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P r e f a c e  

Historically, computer security is related to both cryptography and access 

control in operating systems. Cryptography, although mostly applied in 

the military and diplomacy, was used to protect communication channels 

and storage facilities (especially the backups). In the seventies there was a 

breakthrough in cryptography - the invention of public-key cryptography. It 

started in 1976 when Diffie and Hellman formulated their public-key distribu- 

tion system and formally defined public-key cryptosystems. Two years later 

two practical implementations of public-key cryptosystems were published. 

One was designed by Rivest, Shamir, and Adleman (called the RSA system); 

the authors based the system on the two "all'cult" numerical problems: dis- 

crete logarithm and factorization. The other invented by Merkle and Hellman 

was based on the knapsack problem, which is even "harder" than these used 

in the RSA system. Since that time cryptography, traditionally seen as the 

theory of encryption algorithms, has extended its scope enormously. Now it 

comprises many new areas, namely authentication, digital signature, hash- 

ing, secret sharing, design and verification of cryptographic protocols, zero 

knowledge protocols, quantum cryptography, etc. 

This work presents recent developments in secure hashing algorithm 

design. The main part of the work was written when the authors were with 

the Department of Computer Science, University of New South Wales, Aus- 

tralian Defence Force Academy, and Babak Sadeghiyan was a PhD student 

working with Josef Pieprzyk as his supervisor. 

Hashing is a process of creating a short digest (i.e. 64 bits) for a message 

of arbitrary length, for example 20 Mbytes. Hashing algorithms were first 

used for searching records in databases. These algorithms are designed to 

create a uniform distribution of collisions (two messages collide if their digests 
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are the same). In cryptographic applications, hashing algorithms should be 

"collision-free", i.e. finding two different messages hashed to the same digest 

should be computationally intractable. Hashing algorithms are central for 

digital signature applications and are used for authentication without secrecy. 

There have been many proposals for secure hash algorithms, and some 

of them have been in use for a while. However, many of them have proved 

insecure. One of the major reasons for this is the progress in technology. 

The failed effort of many researchers suggests that we should work on some 

guidelines or principles for the design of hash functions. This work presents 

some principles for the design of secure hash algorithms. Hash algorithms 

are classified based on whether they apply a block cipher as the underlying 

one-way function or not. 

For a block-cipher-based hash scheme, if the underlying block cipher is 

secure agMnst chosen plaintext/ciphertext attack, the hash scheme is secure 

against meet-in-the-middle attack. We develop structures, based on DES-like 

permutations and assuming the existence of pseudorandom function genera- 

tors, which can be adopted both for the structure of block-cipher-based hash 

schemes and for the underlying block ciphers to be used in such schemes. 

Non-block-cipher-based hash functions include a spectrum of many dif- 

ferent proposals based on one-way functions from different branches of math- 

ematics. So, in the book, generalized schemes for the construction of hash 

functions are developed, assuming the existence of a one-way permutation. 

The generalized constructions are improvements upon the Zheng, Matsumoto 

and Imai's hashing scheme, based on the duality between pseudorandom bit 

generators and hash functions, but they incorporate strong one-way per- 

mutations. It is shown that we can build such strong permutations with 

a three-layer construction, in a theoretical approach. Two schemes for the 

construction of families of strong one-way permutations are also proposed. 
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Chapter  1 

Introduct ion  

1.1 Background and Aims 

1.1.1 Introductory Comments  

The development of telecommunication and computer technologies have 

brought us into an era in which inexpensive contact between people or com- 

puters on opposite sides of the world is commonplace. The existing services 

such as electronic mail, electronic funds transfer, and home banking have 

already changed our way of life. Electronic mail systems significantly reduce 

our reliance on paper as the major medium for exchange of information, by 

providing rapid and economic ways for the distribution of data. It is clear 

that, with the widespread implementation and use of such services, senders 

and receivers of sensitive or valuable information will require secure means 

for validating and authenticating the electronic messages they exchange. The 

least that may be expected of these services is that they should offer the same 

security level as that of the conventional mechanisms. In the mail service, 

conventional paper mail has its own envelope, which protects the secrecy of 

its contents, it is also signed which assures the recipient of its origin. Similar 

properties should have the electronic mail service. 

On the other hand, the increased use of satellite, microwave, cellular 

mobile and other forms of radio communication allow the illicit interception 

of communications. Moreover, the widespread use of computers provides 
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the interceptors with computer data, which can easily be edited to sort the 

valuable information. Figure 1.1 schematically shows such a scenario. 

Sender Receiver 

Passive wiretapper 

Figure 1.1: Passive Eavesdropping over Communication Networks 

While eavesdropping on radio communications is a passive act, an active 

wiretapper can inject fraudulent messages in other types of communication 

links such as telephone networks. Figure 1.2 illustrates a possible active 

wiretapping scenario. 

1.1.2 Discussion of Public-key and Private-key Cryp- 
tography 

Cryptography is the study of mathematical systems for solving two kinds 

of security problems: privacy and authentication [Diffie and Hellman, 1976]. 

A privacy system prevents the extraction of information by unauthorized 

parties from messages transmitted over a public channel, thus assuring the 

sender of the message it will be read only by the intended recipient. An 

authentication system prevents the unauthorized injection of messages into 

a public channel, assuring the receiver of a message of its legitimacy. The 

authentication problem can be divided into message authentication, where 

the problem is assuring the receiver that the text has not changed since it 

left the sender, and user authentication, where the problem is verifying that 
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Sender 

| |  

Receiver 

Active wirciappcr 

Figure 1.2: Active Eavesdropping 

an individual is who they claim to be. 

Once, cryptography was of interest only in military and diplomatic 

world. Now, with services such as electronic mail, and the existence of huge 

databases containing sensitive medical and personal data, the need for cryp- 

tography is evermore widespread in our society. 

Encryption is a mathematical transformation or function applied to the 

message such that an eavesdropper is not able to extract any useful infor- 

mation about the original message from the transformed message (the trans- 

formed message is also called a cryptogram or a ciphertext). Along with the 

technological developments in teleprocessing, which have given rise to new 

secrecy and authenticity requirements, cryptographers have developed new 

encryption algorithms using complex mathematical systems [Moore, 1988]. 

The conventional cryptographic schemes are single-key or private-key cryp- 

tosystems where the transformation is controlled by a secret key. With new 

advances in computer technology, many conventional cryptographic schemes 

were eventually broken. Nevertheless, new and more complex private-key 

encryption schemes for the security of files were designed. 
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New families of cryptosystems known as substitution-permutation net- 

works were developed, based on the theoretical works of Shannon ([Shannon, 

1949b], [Shannon, 1949a]). They led to the development of systems such as 

Lucifer in 1973, DES in 1977, FEAL in 1987 [Shimizu and Miyaguchi, 1987], 

and LOKI in 1990 [Brown, 1991]. It is mentioned in [Brown, 1991] that: 

Traditional cryptographic schemes have relied on a series of sub- 

stitution, where letters or words are replaced by others, and trans- 

position or permutation, where the order of letters or words is 

changed, operations to conceal the message. The particular sub- 

stitution or transposition used is controlled by a key. This key is 

used by both the sender and the recipient of the concealed message, 

and hence has to be kept secret in order to protect the secrecy of 

the message. Such schemes are called Private-key Cryptosystems 

for this reason. 

These systems need to exchange keys via a private or secure channel, 

for example a trusted courier, to keep them secret. Figure 1.3 shows an 

application of a private-key cryptosystem to provide secrecy of transmitted 

messages via encryption. 

E k(M) = C 
Encryption = Decryption 

Ek D k .~ Ek 1 

t t 
k ~ 0 Private channel (~ - - - -~  k 

t 
k 

M 

Figure 1.3: Traditional Cryptosystem with the Decryption Key Transferred 
over a Private Channel 

Merkle suggests the reason why the private channel is not used for 

normal communication is because of its expense and inconvenience 1 [Merkle, 

1978]. 
1Diflle and I-Iellman mentioned that: 
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A major problem with applications of private-key cryptosystems in 

large computer networks is key distribution, which require ~ key ex- 

changes for n parties, unless some form of trusted key distribution hierarchy 

is used. 

Another problem is its failure in resolving authentication problems aris- 

ing from the dishonesty of either the sender or receiver. In electronic mail, for 

some messages, a degree of privacy or secrecy is needed, while authenticity is 

a requirement for nearly all messages. The technique of authentication with 

private-key cryptosystems is seriously deficient, since both the sender and 

receiver must know a secret key. The sender uses the key to generate an au- 

thenticator, and the receiver uses it to check the authenticator. Having this 

key, the receiver can aJso generate forged authenticators and therefore, may 

forge messages appearing to come from the sender. Hence, though this kind 

of authenticator can protect both sender and receiver against third party en- 

emies, it cannot protect one against fraud committed by the other [Davies, 

1983]. As a solution to the dispute problems, Diftie and Hellman proposed 

the use of digital signature based on public-key cryptosystems [Diffie and 

Hellman, 1976]. 

1.1.3 Digital Signature 

To provide a digital signature, as a feature which enables anyone to determine 

the authenticity of a document without being able to forge it, some require- 

ments should be fulfilled [Davies and Price, 1980]. First, any receiver should 

have some knowledge of who the sender is, so there must be something on 

public record concerning the sender which must also enter into the process of 

verifying the signature. Second, the process of signing the document should 

use some secret information known only to the signer. This secret key must 

be somehow related to the public information. Third, the signature must 

depend in a complex way on every digit of the message so that it would be 

impossible to modify the message and leave its signature unchanged. This 

requirement implies that the size of the signature field must be big enough 

The secure channel cannot be used to transmit the message itself, for reasons 
of capacity or delay. For example, the secure channel might be a weekly 
courier and the insecure channel be a telephone line. 
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so the search of all possible messages for a given signature is intractable. 

While a person's handsigned signature is constant, a digital signature 

depends upon the message. It can be computed only by the sender of the 

message, on the basis of some private information (known to the sender 

only). Digital signatures allow authentication of messages by guaranteeing 

that firstly no one (except the sender) is able to produce the sender's sig- 

nature and secondly the sender is not able to deny their signature for the 

message they sent. The receiver can verify that no one tampered with the 

message while it was on its way to him, and the sender is confident that 

the receiver will not be able to change even one bit of the message without 

altering the signature. 

Diffie and Hellman in their seminal paper [Diffie and Hellman, 1976], 

mentioned that: 

Widening applications of teleprocessing have given rise to a need 

for new types of cryptographic systems, which minimize the need 

for secure key distribution channels and supply the equivalent of 

a written signature. 

At the same time that communications and computation have 

given rise to new cryptographic problems, their offspring, infor- 

mation theory, and the theory of computation have begun to supply 

tools for the solution of important problems in classical cryptog- 

raphy. 

The search for secure cryptosystems with more convenient features is 

one of the main themes of cryptographic research. In the nineteen-twenties 

the one-time pad cryptosystem was invented and later was shown to be un- 

conditionally secure, that is the system can resist any cryptanalytic attack no 

mat ter  how much computation is allowed. One time pads require long keys 

and are therefore expensive in most applications. However, the security of 

most other cryptographic schemes is based on the computational difficulty of 

discovering the plaintext without the knowledge of the key. These cryptosys- 

terns are called computationally secure that is, the system is secure because of 

the intractability of the cryptanalysis. The complexity theory classifies prob- 

lems into classes depending on their computational difficulty. In  general, if 



1.1 Background and Aims 7 

a cryptanalysis problem is solvable in polynomial t ime with polynomial-size 

computing resources, the corresponding cryptographic system is considered 

to be broken. Such a cryptanalysis problem is said to belong to the class 

P.  All computational  problems for which there is no polynomial-t ime al- 

gorithm, are collectively called intractable (for more details about  different 

classes of intractability refer to [Garey and Johnson, 1979]). Using intractable 

computational  problems, Diffie and Hellman and also independently Merkle 

[Merkle, 1978] modified the concept of a private channel by introducing the 

public-key distribution system or the concept of the public channel. They 

noted that  it is possible to design systems in which two parties communicate  

over a public channel and use publicly known algorithms to exchange a secret 

piece of information. Later this concept was further elaborated by Rivest, 

Shamir and Adleman [Rivest et al., 1978] and Merkle and Hellman [Merkle 

and Hellman 1978]. As the result of their works public-key cryptography has 

been invented. 

In public-key cryptosystems, the receiver of a message generates be- 

forehand a public key c and a secret key d. The public key e is used with 

a publicly known algorithm E for encryption, while the secret key d is used 

with algorithm D, which is also publicly known, for decryption. Figure 1.4 

depicts a secrecy system with a public-key cryptosystem. 

Encryption 

Ee 

T 

Dd(C = M 
E e (M) = C ~[ Decryption 

reciever's 
secret key d 

e 

reciever's public key e 

Sender Public Channel Receiver 

Figure 1.4: Public-key Cryptosystem with the Encryption Key Transferred 
over a Public Channel 

To make a secure signature on the message, one can reverse the process 

of application of the two algorithms of the public-key cryptosystem. The  

sender of a message generates a public key e' and a secret key d'. The 
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sender decrypts the message x with his secret key d' to get S = Da,(x) as his 
signature on x. A receiver can restore the message with the aid of the sender's 
public key e', by applying encryption as E~,(S). Figure 1.5 illustrates the 

mechanism of a digital signature based on a public-key cryptosystem. 

M ~ Decryption IS= Dd,(M) _[ Encryption 

sender's secret key[ Is~ndcr'~ public keY T 

[M = Er 
) - 

Sender Public Channel Receiver 

Figure 1.5: Principle of Digital Signature Based on a Public-key Cryptosys- 
t e n  

The restoration of the message text using the sender's public key verifies 
that S is coming from the sender as only he has access to the secret key and 

only he can generate the signature. To verify the signature, the receiver 

relies on the redundancy in the message in order to see that the result of 
applying the transformation E is a genuine message. If a wrong key was 
used, the result would be a random pattern with a high probability. If the 
message to be encrypted was random, there would be no way of resolving this 
dilemma. Merkle suggested that some controlled redundancy be deliberately 
introduced into the message so that it can be verified [Merkle, 1978]. 

It is noteworthy that not all public-key cryptosystems can be used for 

both privacy (secrecy) and authentication. Those that can, allow the process 
by which encryption and decryption is made to be reversed. The only known 
public-key cryptosystem which can be adapted for both authentication and 

secrecy was developed by Rivest, Shamir and Adleman, and is called the 
RSA cryptosystem [Rivest et al., 1978]. 
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1.1.4 RSA Cryptosystem and Digital Signature 

In the RSA cryptosystem used for secrecy, the receiver chooses two large 

primes p and q and forms their product N. He keeps p and q secret, but makes 

N public. N must be large enough so that its factorization is infeasible. To 

meet this requirement, Davies suggested that N must be a number of 500 

binary digits or more 2 [Davies, 1983]. A message is divided into blocks of a 

length such that each block x is a number between 0 and N - 1. The secret 

key d and the public key e are chosen such that both are relatively prime 

t o p - 1  and q - l ,  and de = 1 (modr  where r  the least common 

multiple of p - 1 and q - 1. The ciphertext y is calculated by the sender 

as y = x r (mod N). The receiver can recreate the plaintext by computing 

x = yd (mod N). Even knowing e and N, it is intractable for an enemy to 

derive d by factorizing N and thus obtaining r as the factors p and q are 

kept secret. 

If RSA is used for authentication, the signature S for the message 

block x is calculated as S = x d (rood N) [Rivest et al., 1978], [De Jonge 

and Chaum, 1986]. Although it is very elegant, there are some problems with 

the RSA signature scheme. Encryption is used mainly during the communi- 

cation process, and the ciphertext is forgotten after the communication has 

been completed and the message has been recovered. However, a signature 

is kept for lifetime of the message, and it accompanies the message until it 

is destroyed. Signing each block separately using the RSA transformation 

produces a signature with the same length as the message. This is an expen- 

sive and unsatisfactory solution as it needs a double space for storage and 

a double bandwidth for transmission. Moreover, the computation required 

for RSA encryption or decryption is time consuming. Davies noted that it 

takes many minutes for a microcomputer to encrypt one block of 512 bits, 

and most messages or documents which need signature contain many such 

blocks [Davies, 1983]. Signing individual blocks also has the disadvantage as 

blocks may be fraudulently interchanged. 

2More recently [Silverman, 1991] suggested that 
For the time being, even with much faster computers, 120 digits promises to 
be the limit of practical factoring. 

where digits means decimal digits. 
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Moore analyzed the multiple application of the RSA signature scheme 

and showed how to obtain a forged signature 3 from a collection of valid ones 

[Moore, 1988]. There are several ways to do this. Here we describe a simple 

version of the attack. Consider a message m which can be represented as 

the product of two other messages, m = u v  (mod N). If someone could 

obtain a signature on m from a signing party, he would be able to forge a 

signature on u or v without needing to know the secret key d of the signing 

party. Since m d = ( u v )  d = u d v  d (rood N), then 

a n d  

mdu e = u d v d u  e : V d 

m d v  e = ~ d v d ~ e  ~ U d 

(mod N) 

(mod N) 

This attack relies on the fact that the mathematical function which RSA 

uses namely exponentiation modulo a composite number, preserves the mul- 

tiplicative structure of the input. 

1.1.5 Signature-Hashing Scheme 

Although the notion of a digital signature is one of the most fascinating fea- 

tures of public-key cryptography, the proof of security of public-key systems 

relies on assumptions that the underlying computational problems are in- 

tractable. In the RSA system both the factorization and discrete logarithm 

problems are assumed to be intractable. In addition, a practical implemen- 

tation of a signature scheme is often made very difficult by the complexity 

of the algorithm needed in the system [Damgard, 1987]. Furthermore, the 

homomorphic structure of the underlying mathematical function makes the 

signature schemes vulnerable to attacks as outlined in the previous subsec- 

tion. as that of the previous subsection. To protect signatures against such 

attacks, users can sign only meaningful messages, but this places the burden 

of security entirely on the users. These problems suggest the strategy of 

applying some suitable transformation to the message before signing it, in 

order to strengthen the signature system by destroying any structure in the 

underlying public-key algorithm. Mostly a signature-hashing scheme is used 

where the method is to apply a one-way hash function to the message before 

aIt was first pointed out in [Davida, 1982] and in [Denning, 1984]. 
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it is signed. The message is thus signed by computing S = D(h(M)), where 

h is the one-way hash function. The values that the hash function generate 

are effectively random numbers that depend on all the bits of the message. 

Although M may be of any finite length, h(M) is usually of a predetermined 

size. 

Additionally, a hashing scheme is able to improve the speed of a sig- 

nature scheme. For example, combining the RSA signature scheme with a 

collision free hash function we get a scheme which is more efficient and much 

more secure. The hash function compensates for the computationally in- 

tensive nature of the RSA algorithm by providing a compressing technique 

such that the whole document is summarized or represented in a checksum. 

Then the digital signature is applied to the compressed version. Note that 

some messages may be shorter than a block, in these cases the hash scheme 

does not improve the efficiency of calculating the signatures, but most mes- 

sages contain several blocks. The function h is defined such that h(M) can 

be calculated from the message M with easily, but if only h(M) is known, 

finding even one message M that will generate this value is "difficult". More- 

over, calculating any other message M'  that yields the same hash value, i.e., 

h(M) = h(M'), must be infeasible. The hash value is subject to the signature 

process of the RSA method with the secret key of the sender d. The cor- 

responding public key e is used by the receiver to invert the transformation 

and restore the value h(M). At the receiving end, the function h is applied 

to the received message M, and the two values of h(M) are compared. The 

signature is considered genuine if the two values are equal. Figure 1.6 depicts 

this procedure. 

It would therefore not be necessary to divide the text into blocks and 

apply the signature process to each block separately. Instead it is sufficient to 

form a one-way hash function of the entire message and apply the signature 

to this function. 

In the above scenario, the function h must be public knowledge, since 

the receiver applies it to the message. Possibly the biggest threat is the mod- 

ification of existing or known messages for which the signature is available so 

that  the same value is generated. It is noteworthy that here we are referring 

to all messages, not only "meaningful" or "useful" messages. The strength of 

the above method depends essentially on the inability of a forger to construct 



12 Chapter 1 INTRODUCTION 

M 

{ _[ Decryption 

] Dd 

T sender's s~t dkey] [ ~ender's public key 

Sender Public Channel Receiver 

Figure 1.6: Digital Signature with the Application of a Hash Function 

any message that matches a given hash value. 

A hash function can be defined to be a cryptographic function for com- 

puting a fixed length digest of a message [Akl, 1983], [Preneel et al., 1992]. 

Denning lists the following four properties that the function h should satisfy 4 

[Denning, 1984]: 

1. h should destroy all homomorphic structures in the underlying public- 

key cryptosystem. 

2. h should be able to be computed over the entire message, rather than 

just on a block. 

3. h should be one-way so that messages are not disclosed by their signa- 

tures. 

. h should have the property that for any given message M and value 

h(M),  it is computationally infeasible to find another message M'  such 

that h(M) = h(M'). 

4Hash functions, as functions for computing fixed length compressions of messages, 
can support operations such as INSERT, SEARCH and DELETE in computer systems. 
However, the requirements for such hash functions is looser than that of the hash functions 
required in cryptography. 
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Besides strengthening the digital signature, the hashing scheme pro- 

vides several other advantages. First, it separates the signature transforma- 

tion from the secrecy transformation, allowing secrecy to be implemented 

with a private-key cryptosystem while the signature is implemented with a 

public-key cryptosystem. An advantage of this separation is that  in the con- 

text of the ISO Open System Interconnect Reference Model, integrity and 

confidentiality can be provided at different layers. Second, signatures can 

be publicly disclosed without revealing their corresponding messages. This 

is particularly important when recovering from compromises or disclosure of 

private keys. Third, it can provide a more efficient method of signing mes- 

sages. The RSA transformation, for example, is several times slower than 

the DES. So it is considerably faster to first apply DES for hashing a long 

message down to a single block and then applying the RSA signature, than 

applying the RSA signature to the entire message. 

1.1.6 Other  Appl ica t ions  o f  Hash  Funct ions  

In the previous section, we described the use of hashing schemes to provide 

efficient and secure digital signatures in message handling systems. This is 

not the only application of hash functions in cryptography. For example, 

when the integrity of a file is to be protected against illicit alteration, the 

owner of the file can obtain a hash version of the file. Now, the file can 

be stored on a public medium. Whenever the file is to be used, its owner 

computes the hash value of the file and compares it with the stored copy. 

If they are equal, the file is intact and has not been tampered with. It 

is noteworthy that hash functions play an important role in the design of 

efficient cryptographic protocols [Preneel et al., 1992]. 

In [Sadeghiyan, 1991] an overview of secure electronic mail has been 

presented, where the importance of secure hash functions in providing many 

different security services such as message integrity check, message origin 

authentication check, message authentication check, and key management is 

demonstrated. 

The need for secure hash functions has been realized before [Denning, 

1984] and [Davies and Price, 1980]. Several attempts have been made to 

construct such functions using encryption algorithms such as DES or RSA. 
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However, none of these schemes have proved to be secure, and several of 

these proposals using DES have also been proven to be insecure [Damgard, 

1987]. As the security of many cryptographic services and schemes reduces 

to the existence of a secure hash function, the aim of this book is to discuss 

design rules for the construction of secure hash functions. 

As many cryptographic hashing schemes rely on the application of block 

cryptosystems such as DES or LOKI, in the first part of this book we will 

develop a new construction for block cryptosystems in order that they can 

be applied in secure hashing schemes. 

It has also been shown that the existence of a secure hash function 

depends on the existence of a one-way function, and in practice many schemes 

for hash functions take advantage of the application of such functions. In the 

second part of the book we consider the application of one-way functions in 

hashing schemes and we show how to construct a secure hash function given 

the existence of a one-way permutation. As one-way hash functions are, in a 

sense, duals of pseudorandom bit generators, we also show how to construct 

a module which can be used for the construction of both pseudorandom bit 

generators and one-way hash functions. 

1.2 C o n t e n t s  of  t h e  B o o k  

The book is arranged as follows. In Chapter 2 an overview of cryptographic 

hash functions is presented. The chapter shows how much effort has been 

put into the design of secure hash functions, and also demonstrates that 

the design of an efficient and provably secure hash function has been less 

successful. It also gives a division of hash functions based on whether the 

hash scheme uses a block cipher in their structure. First, the requirements 

of a "good" hash algorithm are described. Second, formal definitions of hash 

functions are presented. Third, the classification of CCITT for hash functions 

in secure message handling standards is stated. Then, several proposals for 

hash schemes are presented and known attacks on them noted. They are also 

categorized based on whether they incorporate a block cipher. 

In Chapter 3, methods of attack on hash functions are presented. This 
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chapter only describes some rather general methods of attack on hash func- 

tions and how these attacks work. First, an attack based on the birthday 

paradox, named after a problem in probability theory, is described. This 

attack is a general method of attack and can be launched against any hash 

scheme. Then a special version of it, known as the meet-in-the-middle at- 

tack, is presented; this can be launched against schemes which employ block 

chaining in their structure. The probability of success for the above men- 

tioned attacks depends on the length of the hash value and how randomly 

the cryptographic algorithm performs. Some other methods of attack against 

hash functions are also described where specific weaknesses of the algorithms 

are exploited to find collisions. 

In Chapter 4 recent developments in the theory of pseudorandomness 

based on a complexity theoretic approach axe presented. A short discussion 

on pseudorandomness of a block cipher and its relation to the birthday at- 

tack and the meet-in-the-middle attack is also presented. First, concepts 

of pseudorandomness and indistinguishability are introduced and, based on 

that, definitions for pseudorandom bit generators and pseudorandom func- 

tion generators are presented. Then distinguishing circuits are defined. Note 

that any chosen plaintext attack against a block cipher is equivalent to a 

distinguishing circuit. Later the construction of pseudorandom permutation 

generators is described using Luby and Rackoff structure with three rounds 

of DES-like permutations and with three pseudorandom functions. Luby abd 

Rackoff used this result to justify the application of DES-like permutations 

in the structure of DES. Then super-distinguishing circuits are introduced, 

where a chosen plaintext/ciphertext attack against a block cipher is equiva- 

lent to a super-distinguishing circuit. A meet-in-the-middle attack against a 

block-cipher-based hash scheme for finding colliding messages is virtually a 

chosen plaintext/ciphertext attack against the underlying block cipher. Fur- 

thermore, if there is a super distinguishing circuit for a block cryptosystem, 

there is a possibility of making collision messages for the corresponding block- 

cipher-based hash scheme. We conclude this chapter with the result that, 

if a block cipher is to be applied for hashing messages, it should be secure 

against a chosen plaintext/ciphertext attack. In other words, the cryptosys- 

tem family should be a super-pseudorandom permutation generator. 

In Chapter 5, necessary and sufficient conditions for the construction of 
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super-pseudorandom permutation generators are presented. After developing 

a convenient type for distinguishing circuits, we show the conditions that a 

DES-like construction for cryptosystems should satisfy, in order to achieve 

super-pseudorandomness. Based on this result we suggest that it is possible 

to achieve a super-pseudorandom permutation generator with four rounds of 

DES-like permutations and two independent pseudorandom functions. Next 

we generalize the above results and apply them for the generalized type 

DES-like permutations. We show how to construct a super-pseudorandom 

permutation using k 2 rounds of type-1 Feistel type transformations, where k 

is the number of branches of the structure. 

In Chapter 6, we show how to construct a super-pseudorandom permu- 

tation generator from a single pseudorandom function generator. First, we 

develop a construction with two modules of Luby and Rackoff structure. We 

show that if two of the random functions are replaced by two random per- 

mutations, then each branch of the construction becomes independent of the 

other, and it is possible to make a perfect randomizer with two independent 

random functions. Then, based on the structure of this perfect randomizer, 

we show that it is possible to make another structure with only a single 

random function, where the two structures are indistinguishable from each 

other. The result of this chapter is that a new structure for the construction 

of block ciphers secure against a chosen plaintext/ciphertext attack is devel- 

oped. This structure can be used in the design of block ciphers for hashing 

schemes. 

The other class of hash schemes consists of those in which a one-way 

function other than a block cipher has been used. In Chapters 7 and 8 

we consider the construction of hash functions based on one-way permuta- 

tions. In Chapter 7 a construction for one-way hash functions and pseu- 

dorandom bit generators is presented. First, some definitions for one-way 

functions, hard bits of one-way functions and pseudorandom bit generators 

are given. Then some complexity-theoretic constructions for hash functions 

are reviewed. The Zheng-Matsumoto-Imai (ZMI) hashing scheme, as a dual 

of Blum-Micali pseudorandom bit generators is presented. To improve the 

efficiency of the ZMI scheme, we introduce the notion of strong one-way 

permutations. Next, given the existence of a one-way permutation, we in- 

troduce a method to make a strong one-way permutation, where calculating 
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every bit of the input is as difficult as inverting the one-way permutation 

itself. Finally, we apply the proposed strong one-way permutation to con- 

struct a module which can be used for pseudorandom bit generation and 

secure hashing schemes. 

In Chapter 8, we propose a practical way of constructing a family of 

strong one-way permutations. This family has the property that when a 

member is selected randomly, it is a strong one-way permutation. We use 

polynomials in a Galois field. Two methods are proposed. The first method is 

based on the composition of several rounds of a randomly chosen polynomial 

with any one-way permutation. The other method is based on a threefold 

composition, by applying a one-way permutation which we call a hiding 

permutation. 

In Chapter 9, some concluding remarks are given. 
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Overv i ew  of Hash  F u n c t i o n s  

2.1 I n t r o d u c t i o n  

As we described in Chapter 1 the authentication of a message M is a proce- 

dure that allows two or more communicators to verify the authenticity of a 

document so that any fraudulent or accidental modification of the message 

is detected by the intended receiver. The techniques for authentication of 

messages are usually based on the redundancy contained in the message or 

are based on checks on some appropriate redundant information added to the 

message. The redundant information can be calculated as a hashing function 

for the message or it can be computed by an encryption algorithm for the 

message using a secret key known only to the communicating parties, It is 

important that a good authentication check be computed in such a way that 

the introduction of bogus messages into the communication network and the 

partial modification of genuine messages already present in the network is 

practically intractable. 

In some cryptographic formats, each block of the plaintext message con- 

tains checksum bits that are appended to the block prior to encryption. The 

checksum is visible after decrypting the ciphertext. Notice that it is not the 

responsibility of the encryption protocol to protect communication against 

noise in the channel; that is for other communication layers to handle. The 

checksum is there to help determine whether the decryption was successful, 

in case the receiver selected the wrong key. This is particularly important 
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when little or no error checking is used in the lower communication layers. 

The checksum alone cannot detect the work of a clever, active, wiretapper. 

That is what message digests are for. 

In hashing-signature schemes, the signature is condensed by the use of 

a one-way hashing algorithm to form a small message digest of the entire 

message. The digest is analogous to a checksum, but it must be practically 

impossible to make another message that maps to the same digest or hash 

value. As an example of a bad choice of hashing algorithm, suppose that the 

Hamming error correcting code is used to form a check. An opponent could 

easily modify the message by inverting some information bits and those parity 

bits which are a function of the inverted information bits. The modified 

message would appear genuine to a receiver as the verifying procedure could 

not detect the modifications. Hence, for a hash scheme to be suitable for 

digital signatures some additional requirements should be satisfied. 

2.2 P r o p e r t i e s  of  Secure  H a s h  F u n c t i o n s  

When a hash function is applied to provide a secure hashing-signature scheme 

for electronic mail or documents, one important criterion is that the set of 

all hash values be nearly one-to-one with respect to the set of all message 

texts [Jueneman, 1987]. In other words, it is desirable that the checksums 

of two messages be identical if and only if those messages are identical. In 

general, this is impossible to satisfy when messages are longer than the hash 

value. However, Jueneman specifically lists the following properties for a 

secure hashing algorithm in [Jueneman, 1987]: 

1. The hashing algorithm should be executed efficiently on computers with 

no need for special purpose cryptographic hardware. 

2. The hash value must be sensitive to all possible permutations and rear- 

rangements, as well as the edition, deletion, and insertion of the text. 

3. If two different texts are compressed, tile probability that the two hash 

values are equal should be a uniformly distributed random variable. 

4. The length in bits of the hash value should be long enough so that 

it resists the so-called birthday attack. With today's technology this 
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value should be of the order of 128 bil:s. We will explain more about 

this attack later. 

5. The hashing algorithm must not be invertible, nor subject to decom- 

position into separate and independent elements. 

Concerning the last requirement, when the hashing algorithm is subject to 

decomposition into separate and independent elements, each element may be 

small enough that the birthday attack is feasible, from the computational time 

and storage point of view. Moreover, if the hashing algorithm were invertible, 

it would be possible to work both forward and backward to produce matching 

values. We will say more about matching by working forward and backward 

in Chapter 4, where we discuss the issue of meet-in-the-middle attacks. 

2 . 3  D e f i n i t i o n s  

2.3.1 Strong and Weak Hash Functions 

There have been many proposals for hashing algorithms, and they can be 

divided into two broad categories, based on their level of security: collision- 

free hash functions and universal one-way bash functions. Merkle uses the 

names strong one-way hash function and weak one-way hash function respec- 

tively [Merkle, 1979], [Merkle, 1989a], [Merkle, 1989b]. We use the terms 

interchangeably. 

A strong one-way hash function or a collision-free hash function is a 

function h such that: 

1. h can be applied to any message or document M of any size. 

2. h produces a fixed size output. 

3. Given h and M, it is easy to compute h(M). 

4. Given the description of the function h, it is computationally infeasible 

to find two distinct messages which hash to the same value 1. 

1Messages which hash to the same value are called colliding messages or collisions. 
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On the other hand, a weak one-way hash function or a universal one-way 

hash function is a function that: 

1. h can be applied to any message or document M of any size. 

2. h produces a fixed size output. 

3. Given h and M, it is easy to compute h(M). 

4. Given the description of the function h and a randomly chosen message 

M, it is computationally intractable to find another message which 

hashes to the same value. 

Strong one-way hash functions are easier to use in systems than weak one- 

way hash functions, because there are no preconditions on the selection of 

the messages. 

With weak one-way hash functions, there is no guarantee that finding 

a pair of messages which map to the same hash value is difficult. Thus, 

there may be messages m and m' that map onto the same hash value. How- 

ever, deliberately picking a message equal to m or m' must be prevented. 

Furthermore, there should not be too many of those pairs; otherwise a ran- 

domly chosen message would not be safe. Thus, with a weak one-way hash 

function, finding another message which hashes to the same value as some 

randomly chosen rn should be difficult. However, the message m may be cho- 

sen non-randomly, if the function h is random. Thus, many weak one-way 

hash functions have been described based on DES or on other good block 

ciphers [Merkle, 1979], [Merkle, 1989b]. 

In order to introduce randomness into the weak hashing algorithms, 

various methods have been proposed. One method is to randomize the mes- 

sage by encrypting it with a good block cipher using a truly random key. 

The random key would also be added at the start of the resulting ciphertext 

[Merkle, 1989a]. Another method is to select a random prefix to the message 

before running the hash algorithm. Such a random prefix would effectively 

randomize the hash value. Yet another method is to choose the hash func- 

tion randomly from a family of hash functions instead of randomizing the 

message itself [Carter and Wegman, 1979]. 
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Weak one-way hash functions are weakened when they are used re- 

peatedly. As more messages are signed with the same weak one-way hash 

function, the chance of finding a message with a hash value equal to the 

hash value of a previous message increases. Hence, the overall security of 

the system is reduced. In contrast, strong one-way hash functions provide 

full security, even when applied repeatedly [Merkle, 1989b]. Stating that  a 

hash scheme is secure usually means it is secure in the 'strong' sense, unless 

the context implies otherwise. In this chapter, when we say that a particu- 

lar hash scheme is secure, we mean that there is yet no attack to find two 

distinct messages which hash to the same value (digest), with the computing 

resources that today's technology provides. 

2.3.2 Message  Authent i ca t ion  Codes  and Manipula-  

t ion Detec t ion  Codes  

As the presence of redundancy in the message distinguishes authentic infor- 

mation from bogus information, in some methods the modification of infor- 

mation is detected through the distortion of the internal redundancy of the 

information. A universal algorithm, however, has to protect the integrity of 

the information without any assumption about the internal structure of the 

message [Preneel et al., 1992]. There are two major approaches to introduc- 

ing controlled redundancy into the information. The redundant information 

can be calculated as a cryptographic hash function of the message M under 

the control of a secret key K known only to the communicating entities. In 

this case, the redundant information is called Message Authentication Code 

or MAC. The ANSI9.9 message authentication standard represents one such 

technique. MACs make use of traditional cryptographic algorithms such as 

the DES, and rely on a secret authentication key to ensure that only au- 

thorized persons can generate a message with the appropriate MAC. As we 

mentioned earlier, RSA digital signature can be used to establish both the 

authenticity of a document and its origin. Because of the intensely compu- 

tational nature of RSA, most digital signature schemes make use of hashing 

techniques. A MAC approach based on DES or other traditional crypto- 

graphic algorithms is often used for this purpose. 

As we mentioned earlier, a secure MAC scheme should prevent even 
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the owner of the private key from finding a collision message; otherwise the 

scheme would not be able to solve the problem of disputes arising between 

two communicating parties. 

There are sometimes advantages in using a hashing algorithm which 

does not require a secret key. When the message is encrypted to provide 

confidentiality, it is preferable to provide the MAC on the plaintext instead 

of computing it on the ciphertext [Montolivo and Wolfowicz, 1987] so that  

authentication is independent of secrecy. Thus, authentication without con- 

fidentiality is possible, and even if the encryption scheme is broken, the 

authenticity of the information is still assured. The disadvantage of this 

method is the additional burden of the key management. 

The other approach is computing the redundant information as a hash 

function of the message M alone, without requiring the use of a crypto- 

graphic key. In this case, the redundant information is called Manipulation 

Detection Code or MDC. As the hash function for producing the MDC is 

publicly known, the message together with the MDC is usually enciphered in 

order to prevent an attacker from succeeding in substituting his own MDC 

along with the modified text. The advantage of MDC is that only publicly 

known elements are required; as a result, it simplifies the key management 

in secure message-handling systems. In addition, as the authentication is 

separated from the encryption function or its mode of operation, encryption 

and message authentication can be implemented in different protocol layers 

in the context of the OSI reference model. The disadvantage of this approach 

is that,  if the confidentiality mechanism is compromised, then there can be 

no assurance of the integrity. 

2.3.3 Block-cipher-based and Non-block-c ipher-bas-  

ed Hash Functions 

One of the requirements of hash functions mentioned in [Denning, 1984] is 

that a hash function should be a one-way function, where a one-way function 

is a function which is easy to compute but difficult to invert. Rompel has 

shown that one-way functions are necessary and sufficient conditions for the 

construction of secure hash schemes [Rompel, 1990]. In other words the 

existence of a secure hash scheme depends on the existence of a one-way 
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function. For a secure block cipher, given a ciphertext and the corresponding 

plaintext, it is difficult to find the key. Hence, many proposals for hashing 

algorithms have used a traditional block cipher as the underlying one-way 

function. Other proposals apply other types of functions which are considered 

to be one-way. 

Not every block cipher algorithm may be suitable for the construction 

of a hashing algorithm. In Section 2.4 we present some proposals based on the 

application of known block ciphers such as DES. We also mention whether 

they have remained secure, or have been successfully attacked. In Chapter 

3 we present methods of attack on hashing algorithms. Based on that, we 

explain in Chapter 4 what property a block cipher might have in order to be 

suitable for the construction of secure hashing algorithms. 

There have been many proposals based on functions from number the- 

ory and other fields of mathematics which are considered to be one-way. In 

Section 2.5 we present some of these hashing functions and mention whether 

there has been any successful attack on them or not. In Chapter 8 we show 

how to make an efficient one-way hash function from any one-way permuta- 

tion. 

2.4 Block-cipher-based Hash Functions 

To minimize the effort in the design of a cryptographically secure hash func- 

tion, many designers of hash functions tend to base their schemes on exist- 

ing encryption algorithms. In this section we present an overview of such 

schemes. 

The general scheme for the construction of a hash function based on 

the application of a block cipher algorithm is to divide the message or the 

document into blocks. The blocklength is equal to the input or the key of 

the block cipher algorithm, depending on the scheme. If the length of the 

message is not a multiple of the blocklength, then the information is usually 

encoded and an additional block containing the binary representation of the 

added bits is appended to the message. To provide a randomizing element, 

an initial vector is normally used. This vector is denoted by I V  and its value 

is either well known, or exchanged along with a key, or prefixed onto the 
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message. The encryption algorithm E is denoted by 

E(K ,M)  

where M is the input to the algorithm and K is the key. The proof of the 

security of such schemes relies on the collision freeness of the encryption 

algorithm used. We will return to this matter in section 2.6 where we ex- 

plain Damgard's design principle [Damgard, 1987] and Merkle's meta method 

[Merkle, 1989b]. 

2.4.1 Rabin 's  S c h e m e  

As an application of encryption algorithms in the construction of secure hash 

functions, consider the scheme proposed by Rabin in [Rabin, 1978]. Rabin's 

scheme can be described as follows. First the message is divided into blocks 

whose lengths are equal to the length of the input of the encryption algorithm. 

If the encryption algorithm is DES, for example, then the message is divided 

into blocks of 64 bits. Suppose that t blocks have resulted. Then the following 

computations are performed (see Figure 2.1 ) 

Ho = IV  

Hi = E(Mi, Hi-1) 

H(M) = Ht 

i = l , 2 , . . . , t  

Although Rabin's scheme is simple and elegant, Yuval demonstrated how it 

M 1 M 2 M t 

Figure 2.1: Rabin's Hashing Scheme 

is susceptible to the so-called birthday attack when the size of the hash value 

is 64 bits [Yuval, 1979]. The scheme is also susceptible to meet-in-the-middle 

attack. We explain more about these attacks in Chapter 3. 
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2.4.2 Cipher Block Chaining Scheme  

A widespread method for computing a hash value is the application of the 

cipher block chaining mode of a block cipher algorithm. In this scheme, 

the hash value is the last block of the ciphertext that resulted from the 

application of the encryption algorithm in cipher block chaining (CBC) mode 

to the message [DES, 1985], [DES, 1983], while the key and the initial value 

are kept public. The scheme can be described as follows (see Figure 2.2) 

H o = I V  

Hi = E(K, MiOHi_I) i =  1 ,2 , . . . , t  

H(M) = Ht 

A variation of the above method is to apply the encryption algorithm in the 

M 1 K M2 K Mt K 

Figure 2.2: Cipher Block Chaining Scheme 

cipher feedback (CFB) mode. 

The security of this scheme depends on the error propagation properties 

of the applied mode of operation. 

2.4.3 C B C  wi th  Checksum Scheme  

Another variation on the previous scheme is to add some redundancy to 

the message in the form of the exclusive-OR of the plaintext blocks, where 

the initial vector is assumed to be zero. ~ The redundant information forms 

a checksum which is appended to the plaintext blocks [Akl, 1983]. Subse- 
quently, a block encryption algorithm in either cipher block chaining (CBC) 

mode or cipher feedback (CFB) mode or output feedback (OFB) mode is 

applied to the entire bit string [Meyer and Matyas, 1982]. In this scheme the 
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key can be either private or publicly known. If the key is secret, the security 

of the scheme depends on the mode of the encryption algorithm. However, 

the three proposed modes have been shown to be susceptible to attacks based 

on manipulations of blocks [Jueneman, 1982]. Table 2.1 is from [Preneel et 

al., 1992] and indicates which manipulations are possible on blocks, so that 

the manipulations are not detectable. If the key is not secret, the scheme is 

also susceptible to meet-in-the-middle attack. To improve the above scheme, 

mode CBC CFB OFB 
insertion v/ v / 
permutation ~/ v / 
substitution v / 

Table 2.1: Manipulations on Blocks, in CBC, CFB and OFB Modes 

a version was proposed by [Meyer and Matyas, 1982] where the checksum is 

provided by the addition of the plaintext blocks in the Galois field with 2 m 

elements for some m. 

2.4.4 Combined Plaintext-Ciphertext Chaining 
Scheme 

If we are applying a block cipher algorithm for both encryption of the mes- 

sage and generation of the hash value, different keys should be used for 

each operation, otherwise the scheme would be susceptible to several ma- 

nipulations [Meyer and Matyas, 1982]. However, [Meyer and Matyas, 1982] 

proposed a scheme which needs one secret key to provide both secrecy and 

authentication. The description of the scheme is as follows (see Figure 2.3) 

M =  M, . . . M1 

Mt+~ = I V  

Hi = E (K ,  M i |  i = l , 2 , . . . , t  

H ( M )  = Ht+l 

In the above scheme M0 and H0 are considered to be equal to zero. While 

H ( M )  provides a hash of the message the Hi provide the ciphertext blocks. 

It is noteworthy that this algorithm is also susceptible to the birthday attack. 
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Figure 2.3: 
Scheme 

M 1 K M2 K IV K 

H 

Meyer and Matyas's Combined Plaintext-Ciphertext Chaining 

2.4.5 Key  Chaining Scheme  

This scheme has been proposed in [Davies, 1983] and [Denning, 1984] and is 

an improvement of Rabin's scheme. It can be described as follows. 

H o = I V  

Hi = E(Mi @ Hi-I,H~-I) 

H(M) = Ht 

i = 1 , 2 , . . . , t  

Although the scheme is an improvement of Rabin's scheme, it is still subject 

to meet-in-the-middle attack. Several modifications have been proposed to 

improve the scheme further. The first, proposed in [Davies and Price, 1980], is 

to repeat the scheme twice over the message, and the second modification is to 

execute the above algorithm with two different initial values, Coppersmith, 

however, showed that the meet-in-the-middle attack can still break these 

improved versions of the scheme [Coppersmith, 1985]. The third proposal is 

to first encrypt the message in CBC or CFB mode before applying the hash 

scheme. The fourth proposal is to append a checksum of all the message 

blocks before the execution of the hash scheme [Seberry and Pieprzyk, 1989]. 

When DES is used as the block cipher, each of the above schemes 

is vulnerable to attacks exploiting keys with some weaknesses. Quisquater 

and Delescaille worked on a collision search Mgorithm, which resulted in an 

attack on the fourth modified scheme [Quisquater and Delescaille, 1989a] and 

[Quisquater and Delescaille, 1989b]. 
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2 .4 .6  W i n t e r n i t z '  K e y  C h a i n i n g  S c h e m e s  

As we mentioned, the key chaining scheme and its modified versions are sub- 

ject to meet-in-the-middle attack. However, Winternitz proposed a scheme 

for the construction of a one-way function from any block cipher. In any 

good block cipher, given an input and an output, it should be difficult to 

work out the applied key, while given the output and the key it should be 

easy to compute the input. In Winternitz' construction we are able to make 

a one-way function from any good block cipher so that, given the output  and 

the key, it is difficult to guess at the value of the input. The construction is 

defined as 

E*(K, M) = E(K, M) @ M 

Based on this construction, Donald Davies proposed a hash algorithm which 

can be described as in Figure 2.4. 

IV 

M1 M2 Mt 

Figure 2.4: Davies' Scheme 

H o = I V  

Hi = E(Mi, Hi-1) q) Hi-1 i : l , 2 , . . . , t  

H(M) = Ht 

A similar scheme was proposed by Matyas, Meyer and Oseas and is described 

in Figure 2.5. 

H0 = IV 

Hi = E(H~_I,Mi) | Mi i = 1 ,2 , . . . , t  

H(M) = Ht 

Both of the above schemes were intended to be implemented with DES, and 

so under certain conditions the schemes are vulnerable to attacks based on 
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IV 

M 1 M 2 Mt 

Figure 2.5: Meyer, Matyas and Oseas' Scheme 

weak keys [Preneel et al., 1992] or a key collision search [Quisquater and 

DeIescaille, 1989b], while the threat of meet-in-the-middle attack has been 

thwarted because of the one-wayness of the applied function. 

2 . 4 . 7  Q u i s q u a t e r  a n d  G i r a u l t ' s  2 n - b i t  H a s h  Function 

It is possible to attack all the hash schemes which produce 64 bit hash values 

with the birthday attack, since one need only obtain 232 messages and their 

corresponding hash values to find collisions. As all of today's encryption 

schemes such as DES, FEAL and LOKI are 64-bit block ciphers, there have 

been many attempts to design schemes based on 64-bit block ciphers which 

result in a 128-bit hash value. One of the simplest solutions is to repeat a 

64-bit scheme for two different values of a parameter, such as the initial value 

or the key. 

One such attempt was made by Quisquater and Girault where they 

suggested a 128-bit hash algorithm using a 64-bit block cipher [Quisquater 

and Girault, 1989]. They took DES as the underlying block cipher. The 

description of their algorithm is given in Figure 2.6. 

H10 = IV1 

H20 = IV2 

Tli  = E(Ml i ,  HII_a @ M2i) @ M2i 

T2~ = E(M2i, H2i-a | Ml i  ~ Tli) @ Mli  

Hli  = Hli-a @H2i-1 @T2i 

H2i = Hli-1 ~ H2i-1 @ Tl i  

H(M) = Hlt  [[ H2t 

As DES is the underlying block cipher, some keys with certain weaknesses 
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Hlia M.li M.2i H.2i_ 1 

-(D= I =0 -() 

f 
Hli  H2 i 

Figure 2.6: Quisquater and Girault's 2n-bit Scheme 

can be exploited to compute collision messages for the scheme. In [Miyaguchi 

et al., 1990], it has been shown how to make collision messages for the above 

schem e using the complementation property and the weak keys of DES. More- 

over, [Preneel et al., 1992] report that Coppersmith has broken this scheme 

for every block cipher because of linearities. 

2 .4 .8  M e r k l e ' s  S c h e m e  

Based on Winternitz' construction, Merkle proposed several schemes in 

[Merkle, 1979], [Merkle, 1989a] and [Merkle, 1989b]. These schemes based 

on the application of DES, result in hash value of around 128 bits. The 

construction of these schemes follows a general method for the construction 

of hash algorithms. Merkle called it the meta method, which is the same as 
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the serial method of design principles described by Da.mgard in [Damgard, 

1989]. We describe the method later in this chapter, in Section 2.6. Merkle's 
proposals take advantage of the construction of Winternitz. In some pro- 

posals with complex and fast implementation, the message is first divided 

into blocks of 106 bits. The concatenation of each 106-bit block Mi of data 

with the 128-bit block Hi-1 and the hash value result of the previous stage, 

makes Xi, a 234-bit block. We denote this concatenation by Xi = Mi II Hi-1. 

Each block Xi is further divided into two pieces, Xa and Xi~ for each of the 

llT-bits in size. The description of the method is as follows (see Figure 2.7). 

H o = I V  

Xi = Hi-1 I[ M~ 

Hi = E*(00 II first 59 bits of{E*(100 II Xli)} II 

first 59 bits of{E*(101 ]1 X2i)) ]] 

E*(01 [[ first 59 bits of{E*(ll0 II X1;)} [[ 

first 59 bits of{E*(lll  [[ X2,)} 

H(M) = Ht 

In this scheme E* is defined as Winternitz' construction and the strings 00, 

01,100, 101,110 and 111 have been included to prevent the manipulation of 

weak keys. 

2.4.9 N-hash Algorithm 

N-hash is a hashing algorithm which produces a 128-bit hash value 
[Miyaguchi et al., 1989]. The algorithm, which was suggested by the de- 

signers of the FEAL block cipher algorithm, is based on a 128-bit encryption 

algorithm with the key length equal to the block length. The encryption 

algorithm is a Feistel type cipher with 16 rounds, and takes advantage of 

the f functions of FEAL. The N-hash algorithm uses yet another chaining 

scheme and is defined as follows in Figure 2.8. 

Ho = IV  

Hi = E(Mi, Hi-l) ~ Hi-a @ Mi 

H(M) = Ht 

i = 1 ,2 , . . . , t  
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Figure 2.7: Merkle's Scheme 

[ltt X2i [ 

I 

Biham and Shamir showed that the N-hash algorithm is susceptible to dif- 

ferential cryptanalysis and that it is possible to find collision messages for it 

[Biham and Shamir, 1991@ 

2 . 4 . 1 0  M D C 2  a n d  M D C 4  

For modification detection in secure transactions, IBM proposed its MDC 

hashing scheme. There are two versions of this hashing scheme, namely, 

IV 

MI 

I "~li  
M2 Mt 

Figure 2.8: N-hash Structure Based on a Block Cipher Algorithm 
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MDC2 and MDC4. The former applies two DES encipherments per 8-byte 

input block, whilst the latter applies four DES encipherments. The MDC 

calculation procedure defines a one-way function based on Winternitz' pro- 

posal. Two different versions allow the user to make a trade-off between 

performance and security. As descriptions of the two proposals are beyond 

the scope of this overview, we give just a schematic presentation of MDC4, 

where better security is achieved at the expense of slower performance (see 

Figure 2.9). The idea is to first encrypt the message blocks using the previous 

hash result as the key, and then encrypt the hash block while the encrypted 

message serves as the key. In Figure 2.9, Mli and M2i are each 64 bits in 

length, and contain the left half and the right half of the 128-bit input mes- 

sage block, respectively. Note Hli-1 and H21-x form the key input of the 

128-bit cryptographic procedure. The rood1 function sets the bits 1 and 2 of 

input to 1 and 0, respectively, while the rood2 function sets the bits 1 and 2 

of its input to 0 and 1, respectively. These functions remove the symmetric 

structure of the above hash scheme, and also prevent manipulations based 

on a weakness of DES, that E(K,  M) = E(K, M). They also exclude weak 

keys of DES. As four DES encryptions are performed on each 128-bit mes- 

sage block, the scheme is less efficient than the previously mentioned ones. 

However, there has not yet been any attack on these schemes. Although the 

literature on the hashing schemes based on block ciphers is larger than we 

have presented here, the above schemes are representative of the types of 

proposals and the problems involved in them. There are collections of pro- 

posals based on block ciphers in [Akl, 1983] and [Meijer and Akl, 1982] for 

further reference. 

2.5 Non-block-c ipher-based Hash Functions 

The other proposals for hash functions are those that do not take advantage 

of block cipher algorithms, but of functions that are complicated and difficult 

to invert. We call the second class of hash functions non-block-cipher-based 
hash algorithms. As the name implies, these hash functions include proposals 

based on one-way functions from number theory, e.g. the RSA, squaring, 

knapsack, or complicated software algorithms, or cellular automata schemes. 

In the following we describe some of the non-block-cipher-based hash schemes 

according to the kind of function employed. 
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M1 i Hll. 1 H21-1 M2i 
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Figure 2.9: IBM's MDC4 Scheme 

2 . 5 . 1  C i p h e r  B l o c k  C h a i n i n g  w i t h  R S A  

For the first scheme, consider the RSA algorithm as the underlying one-way 

function, and perform the Cipher Block Chaining mode of bock ciphers with 

it. The description of the scheme is as follows: 

Ho = I V  

M ~ Hi = (H~_~| ~) modN 

H ( M )  = l i t  

i = 1 , 2 , . . . , t  

where N and e are public. A correcting block attack can compromise the 

scheme by appending or inserting a correcting block to achieve a desired hash 

value. A modified version of the above scheme is to add some additional 
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redundancy to the message to avoid a correcting block attack [Davies and 

Price, 1980]. To achieve a secure RSA, N should be at least 512 bits in length 

and as the result implementation of the above algorithm is very slow. 

2 .5 .2  S c h e m e s  B a s e d  on S q u a r i n g  

Davies and Price ' s  Squaring Scheme 

In order to speed up the above cipher block chaining algorithm with RSA, 

Davies and Price proposed the application of squaring instead of using the 

public exponent [Davies and Price, 1984]. Thus 

Hi = (Hi-1 @ Mi) 2 mod N 

To avoid a correcting block attack, they suggested setting 64 bits of every 

message block to 0. However, Girault has shown that it is possible to find 

collision messages for the scheme [Girault, 1987]. To improve this scheme, 

the introduced redundancy should be of the order of 128 bits. 

Girault also discussed several other schemes based on squaring. These 

schemes are listed as follows: 

1. H i = Hi_ 1 ~ (m~ mod N) 

This scheme is vulnerable to attacks based on the permutation of 

blocks, insertion of an even number of blocks, insertion of zero blocks, 

or manipulations on small blocks where Mi 2 < N. 

2. Hi = Mi @ (H/2_1 mod N) 

This method is vulnerable to attacks based on a correcting block. 

3. Hi = (Hi-1 @ (M~ mod N)) 2 mod N 

There is no gain in the execution time of this scheme, but on the other 

hand no attack on it has yet been given. 

CCITT's Proposal 

Appendix D of the X.509 recommendations of CCITT standards on secure 

message handling, proposes an algorithm for hashing based on squaring. The 
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proposed scheme introduces 256 bits of redundancy to be distributed over 

every 256-bit message block by interleaving every four bits of the message 

with 1111, so that the total number of bits in each block becomes 512. Then 

the CBC mode of the exponentiation algorithm with exponent equal to 2 is 

run on the modified message. This scheme makes the four most significant 

bits of every byte in each block equal to 1. However, Coppersmith developed 

an attack to construct collision messages for this scheme when the hash 

scheme is used with an RSA signature scheme [Coppersmith, 1989]. 

J u e n e m a n ' s  S c h e m e  

As squaring is the fastest possible exponentiation, Jueneman proposed sev- 

eral approaches based on squaring. His first proposal is similar to that of 

Davies and Price with the difference that the exclusive-OR operation is re- 

placed by addition, and N is the prime number 231 - 1. This scheme results 

in a 32-bit hash value. However, the scheme has two weaknesses. First 

the hash value is rather short. Second, the scheme is vulnerable to the 

meet-in-the-middle attack. To obtain a 128-bit hash result, the designer pro- 

posed iterating the scheme four times [Jueneman et al., 1985]. This scheme 

is vulnerable to the generalized birthday attack, because of the common 

modulus of all the four iterations. The third version was to choose four 

different moduli Nj (for j = 1 to 4) equal to the four largest prime num- 

bers smaller than 2 ~1 - 1 [Jueneman, 1987], [Jueneman, 1986]. The scheme 

can be described as follows. Divide the message into blocks of 128 bits 

length. Then split each message block Mi into four Ml i  to M4i. A fifth 

block is constructed with selection of some bits from MI~ to M4~, as follows. 

Mhi ---- (00 [[ Mli31_26 [[ M2i31_~, ][ M3i31_24 [[ M4i3~_24) and the second bit of 

Mli  to M4i is set to 0. For j = 1 to 4, the four functions Hj,i are described 

a s :  

gj , i  ~-- [(Hjmod4,1-1 0 MIi)  - -  (g(j+l)mod4,i_ 1 0 M 2 i )  + 

~-(U(j~-2)mod4,i-i (~ i a i )  - ( H(j~-3)mod4,i- 1 (~ i d i )  ~- 

+(--1)J+1/5i]  2 rood Nj 

However, it is reported in [Preneel et al., 1992] that Coppersmith has bro- 

ken it in about 23~ operations with a correcting block attack that combines 

algebraic manipulations with a birthday attack. 
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D a m g a r d ' s  S q u a r i n g  S c h e m e  

Damgard, in his paper on the design principles for the construction of collision 

free hash functions [Damgard, 1989], described a scheme based on squaring 

to map a block of n bits into a block of m bits. The description of the scheme 

is as follows: 

Ho = I V  

Hi = extract m bits of (00111111 I[ Hi-1 [[ Mi) 2 mod N 

H ( M )  = Ht 

In the above scheme, extract is a function which extracts m bits from the 

result of the squaring function. To obtain a secure scheme m should be big 

enough to thwart the birthday attack. Moreover, the eztract function should 

select bits for which finding colliding inputs is made difficult. One choice is 

to extract ra uniformly distributed bits. However, for practical reasons, it 

is better to bind them together in bytes. Another possibility is to extract 

every fourth byte. In [Dwemen et al., 1991b], the authors reported that this 

scheme can be broken. 

2 .5 .3  S c h e m e s  B a s e d  on  C l a w - F r e e  P e r m u t a t i o n s  

Damgard showed that it is possible to construct collision-free hash functions 

based on the existence of claw-free permutations [Damgard, 1987]. A claw- 

free set of permutations is a set of permutations S = {f0, f l , . . . ,  fr-1}, such 

that,  for each x in the domain of fi, it is easy to compute f i (x)  for all 

i = 0 , . . .  , r  - 1, but it is computationally intractable to create a claw, that 

is, to find a y such that, for some i ~ j ,  f i (x )  = f j (y) .  Damgard argued that 

the following scheme would yield a provable collision free-hash function. 

Ho = I V  

Hi = fM,(g, -1)  i = 1 , 2 , . . . , t  

H ( M )  = H~ 

Goldwasser, Micali and Rivest also showed that a similar structure with r = 0 

would yield a secure signature scheme [Goldwasser et al., 1988]. Damgard 

also proposed three further schemes, based on modular squaring, for the 

construction of claw-free permutations. 
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2.5.4 S c h e m e s  Based  on the  Knapsack  P r o b l e m  

As the knapsack problem is one of the problems in number theory which is 

considered to be difficult to invert, there have been some proposals made for 

it. 

Damgard's Knapsack Scheme 

Another scheme proposed by Damgard for the construction of collision-free 

hash functions is based on the application of the knapsack and can be de- 

scribed as follows. Choose at random numbers a l , . . . , a 8  in the interval 

1 , . . . ,  N,  where s indicates the maximum length of a message to be expected 

in blocks. Damgard chooses s = 256 and N = 212~ - 1. Then the binary 

message M1,M2, . . . ,  Ms can be hashed as: 

H(M) = ~ M~ai 
4----1 

This scheme would give an output in the length of 128 bits. 

However, Camion and Patarin have shown that the above scheme is not 

secure [Camion and Patarin, 1991]. They demonstrate that a probabilistic 

algorithm with about 232 computations can break the scheme; this number 

of operations is feasible with modern computer technology. 

Impagliazzo and Naor's Scheme 

Impagliazzo and Naor proposed a cryptographic subset sum function which 

can be applied for hashing schemes. The description of the scheme is as 

follows. Choose at random numbers a l , . . . ,  a~ in the iterval 0 , . . . ,  N, where 

n indicates the length of the message in bits, and N = 2~-1 where g < n. The 

binary message M = Mx, M2, . . . ,  M~ corresponds to a subset S C {1 , . . . ,  n} 

and can be hashed as: 

H(M) = ~ ai mod 2 ~ 
iES 

Impagliazzo and Naor have not mentioned any concrete values for the above 

scheme, but they have shown that it is theoretically sound. 
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2 . 5 . 5  S c h e m e s  B a s e d  o n  C e l l u l a r  A u t o m a t a  

In a simple case, a cellular automaton consists of a line of cells or sites, each 

with value 0 or 1. These values are updated in a sequence of discrete time 

steps, according to a definite and fixed rule. Denoting the value of a cell at 

position i by ai, a simple rule gives its new value as: 

a~ = r ai, ai+l) 

where r is a Boolean function which specifies the rule [Wolfram, 1986]. De- 

spite the simplicity of their construction, many cellular automata schemes 

produce systems of considerable complexity. 

Damgard ' s  Scheme  Based on Wolfram's  P s e u d o r a n d o m  Bit  Gen-  
erator 

Wolfram's pseudorandom bit generator consists of a one-dimensional cellular 

automaton of n bits. Let x = Xo, Xl , . . .  ,x,~_a be the input seed of the bit 

generator. The function g(xi) defines the value of i-th cell in the next time 

step. The function g is defined as follows: 

= v 

where V stands for OR, and @ means XOR. Denote the value of the i-th cell 

in the j - th  time step by gj(xi). The bit generator b(x) starts from a random 

x and outputs the sequence gj(xo). For d > c ,  let bc-d(X) denote the string 

go(x0), g +l (x0), . . . ,  gd( 0) 

The hash function is defined as follows: 

go = I V  

Hi = bc-d(Mi II Hi-1 II Z) i = 1 , 2 , . . . , t  

H ( M )  = Ht 

where Z is a random value, added to make finding collision messages more 

difficult. As a concrete proposal, Damgard suggested n = 512, r = 256, c = 

257 and d = 384. The proposed hash function will hash messages of arbitrary 

length into 128-bit strings. However Daemen, Govaerts, and Vandewalle 

showed how to cryptanalyze this scheme and find colliding messages [Daemen 

et al., 1991b]. 
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Cellhash Scheme  

In order to achieve a hash scheme that can be implemented on a chip, Dea- 

men, Govaerts and Vandewalle [Daemen et al., 1991b] proposed a hardware- 

oriented one-way hash function which is called Cellhash. The properties 

desired in the design of Cellhash were firstly to achieve a size of at least 

128 bits to prevent a birthday attack; the result of cellhash is then 257 bits 

long. The second property was to design a function such that the diffusion 

of information could be guaranteed. The third was to achieve confusion of 

information so that the hash result depends on the bits of the message in a 

complicated way. The fourth property was to achieve a hash function which 

actually works at high speed. The computation of the cellhash is done as 

follows. First, O's are appended to the message so that the length is at least 

248 bits and congruent to 24 (mod 32). The number of bits added is rep- 

resented in a byte subsequently appended. I V  is the all-zero bit string of 

length 257. The computation of Hj from Hi-1 is done under the key Mj, the 

j - th  message block, and can be considered as a 5-step transformation. The 

calculations in each step are done simultaneously on all bits of Hi-1. Let 

h0, h i , . . . ,  h256 denote the bits of Hi-1 and m0, m l , . . . ,  m2ss denotes the bits 

of Mj. 

Step1 : hi = hi | (hi+a V hi+2) 0 < i < 257 

Step2: h 0 = h 0  

Step3 : hi = hi-3 �9 hi @ hi+3 0 _< i < 257 

Step4 : hi = hi �9 mi- t  1 <_ i < 257 

Step5: hi=haoi  0 _ < i < 2 5 7  

There has not been any attack on this scheme yet. 

2.5.6  Sof tware  H a s h  S c h e m e s  

There are numerous designs where the underlying one-way function is a block 

cipher, and some of them were shown in the previous section. As the purpose 

of a block cipher is different from that of a hash function, some dedicated 

software hash functions have been proposed to provide more efficient solu- 

tions. 
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M D 4  a n d  M D 5  

Rivest proposed MD4 for hashing [Rivest, 1990]. It is a software oriented 

scheme which is especially designed to be quite fast on 32-bit machines. The 

algorithm produces a 128-bit output; so it is not computationally feasible 

to produce two messages having the same hash value. The scheme provides 

diffusion and confusion of the input information, while it does not use any 

tables or S-boxes. MD4 has been placed in the public domain for review. 

The description of MD4 is beyond the scope of this overview. 

The MD5 hashing algorithm is a strengthened version of MD4. It has 

more rounds and incorporates other revisions based on comments for the 

MD4 algorithm. There is not yet any known method of breaking MD4 or 

MD5. Den Boer and Bosselaers demonstrated an attack on the last two 

rounds of MD4 in [den Boer and Bosselaers, 1991]. Their work shows that, 

if the three-round MD4 algorithm is stripped of its first round, it is possible 

to find for a given input value two different messages hashing to the same 

output. There is also another work [Berson, 1992] which analyses any single 

round of MD5 separately. 

HAVAL 

HAVAL stands for a one-way hashing algorithm with variable length of out- 

put. It was designed at the University of Wollongong by Zheng, Pieprzyk, 

and Seberry [Zheng et al., 1992]. It compresses a message of an arbitrary 

length into a digest of 128, 160, 192, 224 or 256 bits. The security level 

can be adjusted by selecting 3, 4, or 5 passes. The HAVAL structure is 

based on MD4 and MD5. Unlike MD4 and MD5 whose basic operations 

are being done using functions of three Boolean variables, HAVAL employs 

five Boolean functions of seven variables (each function serves a single pass). 

All functions used in HAVAL are highly nonlinear, 0-1 balanced, linearly 

inequivalent, mutually output-uncorrelated and satisfy the Strict Avalanche 

Criterion (SAC). 

The structure of HAVAL is much more complex than MD5 and the 

authors argue that HAVAL with five passes, is more secure than MD5. The 

experiments showed that HAVAL with 3 passes is 60% faster than MD5, it 
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is 15% faster than MD5 when HAVAL applies 4 passes and it is as fast as 

MD5 when it has 5 passes. The authors mentioned an even faster HAVAL 

version which is based on Boolean functions of five variables [Charnes and 

Pieprzyk, 1992]. There has been no attack on the scheme to date. 

Snefru  

Another software hashing scheme is Snefru, proposed in [Merkle, 1990b]. 

Merkle suggested this scheme as a hashing scheme which is easy to implement, 

resistant to cryptographic attacks, and is fast when implemented in software. 

Snefru produces a hash result of 128 bits and takes advantage of 8 S-boxes. 

The original scheme of Snefru had two rounds. However, Biham and Shamir 

have shown how to create an unlimited number of pairs hashing to the same 

128-bit hash value with a two-round Snefru [Biham and Shamir, 1991b]. 

This resulted in a later proposal for Snefru which consisted of four rounds. 

Although Snefru provides greater flexibility in selecting input and output  

block sizes, MD4 was already slightly faster than Snefru with two passes. 

The change to four passes means MD4 is now over twice as fast as Snefru. 

Altogether, if MD4 proves secure, it is more attractive as a standard for 

hashing since it has a better performance [Merkle, 1990a]. 

2 . 5 . 7  M a t r i x  H a s h i n g  

Matrix algebra is another area which has been used in the construction of 

hashing algorithms. One such proposal is called the Random Matrix Hashing 

Algorithm [Banieqbal and Hilditch, 1990]. The algorithm considers its input 

to be a 1 • m row vector of bits, and its output to be an n x 1 column vector 

of bits. The algorithm consists of choosing a fixed m x n random binary 

matrix, and multiplying it by the input vector. The matrix should be kept 

secret as a key. Moreover, it can be chosen in such a way that the scheme is 

invertible if required. The algorithm can be sized to any bit length for input 

or output  or both. 

Another scheme, invented by Harari also uses as key a random t • t 

matrix A, with t the number of m-bit blocks of the plaintext M [Harari, 
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1984]. The hash value is computed as 

H(M)  = MT A M  = y~ aij .xi .xj  
i<j 

The scheme, however, is insecure under a chosen message attack. 

2.5.8 Schnorr's FFT Hashing Scheme  

Schnorr proposed an efficient algorithm that hashes messages of arbitrary 

bit length into a 128-bit hash value [Schnorr, 1991]. The algorithm consists 

of two stages, a discrete Fourier transformation and a polynomial recursion 

over a finite field. The message is padded so that its length in bits becomes 

a multiple of 128. It is recommended that the message is appended so that a 

single 1 bit is followed by a suitable number of 0 bits which are also followed 

by a binary representation of the message length in bits. Let the padded 

message consist of n blocks M1 , . . . ,  Mn each of which is 128 bits long. The 

algorithm for the hash function h is: 

Ho = I V  = O123456789ABCDEFFEDCBA987654321 

Hi = g(Mi H Hi-l) 

H(M)  = H, 

g is a hash algorithm with input size of 256 bits and output size of 128 bits. 

g uses the discrete Fourier transform FTs.  It is given that FTs(ao , . . . ,  az) = 

(bo, . . . ,  bT) with 

7 

bi = ~ 24iJaj (mod p) for i = 0 , . . . ,  7 
j = O  

Let p be the prime p = 65537 = 2 a6 + 1. Let the input to g be denoted by 

(e0 , . . . ,  e15) E {0, 1}256; then the description of g is as follows. 

. 

2. 

( C o ,  e 2 ,  e 4 ,  . . . , e l 4 )  - -  FTs(eo, e2, e 4 , . . . ,  e l 4 )  

For i = 0 , . . . , 1 5  do 

ei : el + ei-lei-2 + e~,_ 3 + 2 / (mod p) 

(The indices i, i - 1, i - 2, i - 3, ei-3 are taken modulo 16) 



2.6 Design Principles for Hash Functions 45 

3. Repeat steps 1 and 2 

However, Daemen, Bosselaers, Govaerts, and Vandewalle [Daemen et al., 
1991a], and also Baritaud and Gilbert [Baritaud and Gilbert, 1992] presented 

their attacks on the scheme. They showed that it is possible to construct 

collisions for Schnorr's FFT Hashing scheme. This resulted in a later proposal 

based on FFT, where the weaknesses discovered are removed. The improved 

version is called FFT-Hash II and is detailed in [Schnorr, 1992]. At the 

Crypto'92 Conference, Serg Vandery showed that this version is not secure 

either [Vandery, 1992]. 

2.6 Design Principles for Hash Functions 

As we mentioned earlier, a hash function is called collision free if it maps 

messages of any length to strings of some fixed length, such that finding 

x, y with h(x) = h(y) is a hard problem. Many of the difficulties in giving 

proofs for known constructions, arise from the fact that things seem to get 

more complex as the lengths of the messages hashed increase. On the other 

hand, a hash function is of no use if we are not allowed to hash messages 

of arbitrary lengths. Damgard presents two methods in [Damgard, 1989] to 

remove this difficulty. He shows that the ability to cut just one bit off the 

length of a message in a collision-free way implies an ability to hash messages 

of an arbitrary length. The methods are basic design principles which can 

be used as guide for designing hash functions. One approach allows hashing 

of long messages to be implemented serially, while the other approach allows 

parallel hashing of long messages. The serial method is the same as Merkle's 

meta method, which was invented independently and has been presented in 

[Merkle, 1989b]. 

2 . 6 . 1  S e r i a l  M e t h o d  

Let f be a fixed-size, collision-fi'ee, hash function mapping g bits to m bits. 

Then a collision-free hash function H, which maps strings of arbitrary length 

to m bit strings can be constructed as follows. The input M E {0, 1}* is split 

in blocks of the size g - m - 1 bits. If the block is incomplete, it is padded 
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with O's. Let d be the number of O's needed. The binary representation of d, 

prefixed with an appropriate number of O's, would be appended as an extra 

block. Assume the length of the text after padding is n. Generate a sequence 

of m bit blocks h0, h i , . . . ,  h t -  +1, by: 

hi = f(0 m+l IIM1) 
n 

hi+l = f (hi  ll l ll Mi+l) i = l , 2 , . . . , g _ m  

H ( M )  = h , +1 

2 . 6 . 2  P a r a l l e l  M e t h o d  

This method would allow parallel computation of the hash value on several 

processors. If, for example, c processors co-operate, they would achieve a 

speed increased by a factor of c. In some references such as [Preneel et al., ], 

this method is called the tree approach to hashing functions. 

Let f be a fixed-size, collision-free, hash function mapping m bits to t 

bits. Then a collision free hash function H which is implemented in a parallel 

way and maps strings of arbitrary length to t bit strings can be constructed 

as follows. Let a message M of length n be given. The message is padded 

with a number of O's so that the resulting bit string has length equal to 2km 

for some k. 

h~ = f(M2i-1 II M2d i =  1 , . . . , 2  k-'  

h! = j-1 �9 f(h2i-1 II h~:, 1) i = 1 , . . .  ,2 k-j 

H ( M )  = f(h~ -1 II hk-1) 

The final hash value is H ( M )  for the message M. 

(j = 2 , . . . , k -  1) 

2.7 Conc lus ions  

In this chapter we reviewed the basic definitions of hash functions. We pre- 

sented several classifications for hash functions. The first classification di- 

vides the proposed hashed functions according to their level of security. In 

this classification they are divided into weak and strong one-way hash func- 

tions. The second classification was more concerned with the technical issue 
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of whether a private key was involved in the scheme or not. The third classi- 

fication was concerned with the structure of the hashing algorithm itself, and 

it considered whether a block cipher had been applied as the underlying one- 

way function. We reviewed various proposals, and divided them according 

to the third classification. 

Although this chapter does not cover all the proposals, whether based 

on a block cipher or on other one-way functions, it gives a representative 

overview of the type of proposals and the problems associated with them, 

At the end, we remark that our aim is to develop some design rules for the 

construction of hash functions where they are considered as block-cipher-based 

and non block-cipher-based. 



C h a p t e r  3 

M e t h o d s  of  A t t a c k  on  H a s h  

F u n c t i o n s  

3.1 I n t r o d u c t i o n  

The best method to evaluate a hash scheme is to see what attacks an adver- 

sary may perform to find two messages that map to the same hash value. The 

hashing algorithm produces, as the hash value, a fixed length 'random' num- 

ber which depends on all the bits of the message. In general, it is assumed 

that the adversary knows the hash algorithm. As a conservative approach, 

it is assumed that he or she can perform an adaptive chosen message attack, 

where he or she may choose messages, ask for their hash values, and try to 

compute messages with the same hash value. There are several methods for 

using such pairs in order to attack a hash scheme and to calculate colliding 

messages. Some methods are general and can be applied against any hash 

scheme. The so-called birthday attack is such a method and can be applied 

against any type of hash scheme. Other methods are applicable against only 

special groups of hash schemes. Some of these special attacks can be launched 

against a wide range of hash functions. For example, the so-called meet-in- 

the-middle attack can be launched against any scheme that uses some sort of 

block chaining in its structure. Others can be launched only against smaller 

groups. For example, the so-called correcting block attack is applied mainly 

against hash functions based on modular arithmetic. 
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Furthermore, some hash schemes have been broken with methods which 

are only applicable to those particular hash schemes. Such attacks are not 

included in this chapter; however, it was mentioned in Chapter 2 how a hash 

scheme can be broken in a special way. 

In this chapter, we give a brief explanation of these general attacks and 

special attacks. 

3 . 2  G e n e r a l  A t t a c k s  

In Subsection 2.4.1 we introduced Rabin's hashing scheme. The scheme is 

an efficient hash function based on a block cipher. Rabin used DES as the 

block cipher. As DES transforms 64-bit plaintext blocks to 64-bit ciphertext 

blocks, the proposed scheme provides a 64-bit hash value. Later, Yuval 

showed in [Yuval, 1979] that this scheme is subject to the so-called birthday 
attack. The idea behind the attack originates from a famous problem from 

probability theory, called the birthday problem. The paradox can be stated as 

follows: What is the minimum number of pupils in a classroom so that the 

probability that at least two pupils in this classroom have the same birthday 

is greater than 0.5? The answer to this question is 23, which is much smaller 

than the value one might suggest by intuition. The justification for this result 

is as follows. Suppose that the pupils are entering the class one at a time. 

The probability that the birthday of the first pupil is a specific day of the 

year is equal to 3~-g" The probability that the birthday of the second pupil 

is not the same as the first one is equal to 1 - 3~g" If the birthdays of the 

first two pupils are different, the probability that the birthday of the third 

pupil is different from the first one and the second one is equal to 1 
3 6 5  " 

Consequently, the probability that t students have different birthdays is equal 
t o ( l -  1 2 a-gg)( 1 - a -g)" - (1  - t - 1  5--~), and the probability that at least two of 

them have the same birthday is 

P = I - ( 1 -  1 2 ) . . ( 1  t - 1  

- 365 �9 -g 5- ) 

It can be easily computed that for t > 23, this probability is bigger than 0.5. 

The idea of the above problem can be employed for attacking hash 

functions. Suppose that the number of bits of the hash value is n. An 
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adversary generates rl variations on a bogus message and r2 variations on a 

genuine message. The probability of finding a bogus message and a genuine 

message that hash to the same result can be approximated by 

p ,.~ l _ c-~-~ 2- 

where r2 >> 1 [Ohta and Koyama, 1990]. When rl = r2 = 2~, the above 

probability is about 0.63. Jueneman has shown in [Jueneman, 1986] that for 

n = 64 the processing and sorting requirements are feasible in reasonable 

t ime with today's computing resources. On the other hand, a memory-time 

trade-off is also possible. It is usually recommended that the hash value 

should be around 128 bits to achieve security against a birthday attack. 

This method of attack does not take advantage of the structural proper- 

ties of the hash scheme or its algebraic weaknesses. In other words, it can be 

launched against any hash scheme. In addition, it is assumed that the hash 

scheme assigns to a message a value which is chosen with a uniform proba- 

bility among all the possible hash values. Note that if there is any weakness 

in the structure or certain algebraic properties of the hash scheme, or the 

hash values do not have a uniform probability distribution, then generally 

it would be possible to find colliding messages with a better probability and 

fewer message-hash value pairs. 

The birthday attack is a general method against authentication schemes, 

even if the hash function is applied to encrypted data or is evaluated under 

the control of a private key. Ohta and Koyama explain how the meet-in-the- 

middle attack, which is a version of the birthday attack, can be employed 

agMnst signature schemes, where a signatory can forge a bogus message for 

his own signature, or an adversary can offer the signer a message he or she is 

willing to sign and replace it later with a bogus message [Ohta and Koyama, 

19901. 

3.3 Spec ia l  A t t a c k s  

Unlike the birthday attack, which can be launched against any hashing 

schemei there are some methods of attack that can be launched against only 

some groups of hash functions. We review these methods in this section. 
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3.3.1 M e e t - i n - t h e - m i d d l e  A t t a c k  

Meet-in-the-middle attack is a variation of the birthday attack, but instead 

of comparing the hash values, the intermediate variables in the chaining are 

compared. The attack can be launched against schemes which employ some 

sort of block chaining in their structure. In contrast to birthday attack, meet- 

in-the-middle attack enables an attacker to construct a bogus message with 

a desired hash value. In this attack the message is divided into two parts. 

The attacker generates rl  variations on the first part of a bogus message. 

He starts from the initial value and goes forward to the intermediate stage. 

He also generates r2 variations on the second part of the bogus message. He 

starts from the hash result and goes backward to the intermediate stage. The 

probability of a match in the intermediate stage is the same as the probability 

of success in the birthday attack. 

Nishimura and Sibuya described three variations of this attack in 

[Nishimura and Sibuya, 1990]. They argued that crediting the high prob- 

ability of success in the meet-in-the-middle attack to the classical birthday 

problem is not exact and is misleading. However, they conceded that the 

asymptotic conclusions in the literature are correct. They considered three 

matching models and called them the model A, B and C. Later they cal- 

culated the exact probabilities of success for each attack with the specified 

matching model. They based their discussion on the assumption that the 

encryption and decryption functions to be used were random. As in many 

hashing schemes, DES was used as the underlying cryptosystem. The ques- 

tion whether DES has some algebraic structure or can be considered random, 

has been studied extensively in [Hellman et al., 1976]. We give a detailed 

discussion of which cryptosystems can be considered random in Chapter 4. 

Mi Mi+l Mn-1 Mn 

Figure 3.1: Meet-in-the-middle Attack, Model B 

Model A is a typical attack and was described previously. In model 

B most of the bogus message is kept fixed, but r l  variants of the (bogus) 
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message block, one stage before the intermediate stage, and r2 variants of 

the bogus message block, after the intermediate stage are provided. Then 

the forward and backward procedures are applied. Figure 3.1 shows the 

intermediate stage and message blocks one stage before and after it. 

Model B attack is also an effective attack against the block cryptosys- 

tem itself [Nishimura and Sibuya, 1990]. The block ciphers most  resis- 

tant  to model B attacks are those which are secure against chosen plain- 

text /c iphertext  attacks 1. 

In model C attack, the forward sequences are generated as in the model 

A attack, whilst the backward sequences are generated as in the model B 

attack. So rx variants of the first part of the bogus message are provided, 

and r2 variants of the bogus message block, after the intermediate stage 

are made. Nishimura and Sibuya suggested that  model C attack is effective 

against hashing schemes based on a cipher block chaining mode of the block 

cipher. 

The meet-in-the-middle attack can be prevented by avoiding schemes 

which are invertible. Winternitz' scheme is an effort to get around this attack 

[Winternitz, 1983]. 

3.3.2 Genera l i zed  M e e t - i n - t h e - m i d d l e  At tack  

To avoid the meet-in-the-middle attack, some authors [Davies and Price, 

1980] [Davies and Price, 1984] considered two-fold iterated schemes. These 

include iteration of a hashing scheme with two different initial values, and/or  

repeating the message twice and then applying the hash scheme. However, 

Coppersmith [Coppersmith, 1985] and Girault et al. [Girault et al., 1988] 

extended the meet-in-the-middle attack to break not only the two-fold but 

also p-fold iterated schemes. They called their method the generalized meet- 

in-the-middle attack and showed that  it requires only O(10P.2~) operations 

(n is the number of bits in the hash string). In their method of attack, a 

trade-off is made between t ime and storage. 

1A more detailed explanation of the chosen plaintext/ciphertext attack and also of the 
chosen plaintext attack will be given in Chapter 4. 
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3.3.3 Correct ing Block Attack 

In this attack, the bogus message is concatenated with a block in order that 

the hash result is corrected and attains the desired value. This attack is often 

applied to the last block and is called correcting last block attack, although it 

can be applied to other blocks as well. In [Mitchell, 1989] and [Mitchell and 

Walker, 1988], such an attack against a hash scheme based on the CBC mode 

of DES has been described. Hash functions based on modular arithmetic are 

especially sensitive to the correcting last block attack [Preneel et al., 1992]. 

The introduction of redundancy into the message in these schemes, makes 

finding a correcting block with the necessary redundancy difficult, although, 

it makes the scheme less efficient. We should mention here that the difficulty 

of finding a correcting block depends on the nature of the introduced redun- 

dancy. For example, Coppersmith has shown in [Coppersmith, 1989] that 

the redundancy proposed by the CCITT, for the modular squaring hashing 

scheme, does not provide a secure hash scheme. 

3.3.4 Attacks  Depend ing  on Algor i thm Weaknesses  

As we mentioned in Section 2.4.3, a hashing scheme based on a block cipher 

algorithm in cipher block chaining or cipher feedback or output feedback 

mode of operation can be compromised by insertion, permutation and substi- 

tution of the blocks. These attacks take advantage of the algebraic structure 

of the hashing scheme. Miyaguchi, Ohta, and Iwata showed in [Miyaguchi 

et al., 1990] how to compromise many hash schemes by using the algebraic 

properties of the structure of each hashing scheme and certain weaknesses of 

the underlying block cipher. For example, some well known weaknesses of 

DES which have been exploited are as follows: 

1. DES is symmetric under complementation, that is, 

C = DES( I f ,  M) ~ -C = DES(-[(,-M) 

This weakness allows the construction of trivial collisions. 

2. DES has weak and semi-weak keys. There are 4 weak keys, for which 
encryption equals decryption, that is DES(I f ,  M) = D E S - I ( K ,  M).  
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There exist also 6 pairs of semi-weak keys, for which 

DES(K2, DES(K1, M)) = M .  

DES has key collisions. A collision is a pair of keys K1, K2 such that 

DES(IQ, M) = DES(K2, M) for a message. 

3.3.5 Differential Cryptanalysis 

Eli Biham and Adi Shamir have developed a method for attacking block ci- 

phers, which they call differential cryptanalysis [Biham and Shamir, 1990]. 

This attack is a general method for attacking cryptographic algorithms. It 

has exposed the weaknesses in many cryptographic algorithms, including Sne- 

fru. Snefru is a software hash function proposed by Merkle [Merkle, 1990c], 

[Biham and Shamir, 1991b]. Recently, it has also been applied successfully to 

break one round of the MD5 hash scheme by Berson [Berson, 1992]. The dif- 

ferential cryptanalysis attack takes advantage of the non-uniform probability 

distribution of the output caused by non-random S-boxes. A description of 

the attack is beyond the scope of this book; however the interested reader 

is referred to [Biham and Shamir, 1990], [Biham and Shamir, 1991a] and 

[Biham and Shamir, 1991b] for further information. 

3.4  C o n c l u s i o n s  

In this chapter, we reviewed some methods of attack on hashing algorithms. 

Differential cryptanalysis, the correcting block attack, and attacks depend- 

ing on an algorithm's weak points are based on non-random behaviour of 

the hash scheme. On the other hand, the birthday attack and the meet-in- 

the-middle attack assume the hashing scheme is random, and they try to 

exploit the small bit length of the hash value (see [Nishimura and Sibuya, 

1990]). For a hash scheme to be considered random in a birthday attack, it 

is enough for the scheme to be secure against chosen message attacks. In the 

meet-in-the-middle attack, an attacker starts from some initial value. Having 

a message of several blocks, he or she performs the hash scheme on the initial 

value and the first block and goes forward to reach a middle point. Then he 
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or she starts from the final value, i.e., the hash value, and goes backwards 

to reach the middle point. He provides many variations of the message and 

repeats the above procedure on each. If the middle-stage values of two of 

the messages match, then two 'colliding' messages are found and the hash 

scheme is successfully attacked. As we will explain in the next chapter, this 

type of attack is a version of chosen plaintext/ciphertext attack on the un- 

derlying block cipher, where a cryptanalyst is allowed not only to choose 

plaintexts of his own choice and see the corresponding ciphertext, but also 

to choose ciphertext of his own choice and see the corresponding plsintext. 

For a hash scheme to be considered random in the meet-in-the-middle at- 

tack, the underlying block cipher should behave like a random permutation 

against chosen plaintext/ciphertext attack. In Chapters 4, 5, and 6, design 

rules for the development of a block cipher which is secure against chosen 

plaintext/ciphertext attack will be discussed. 



Chapter  4 

P seudorandomness  

4.1 I n t r o d u c t i o n  

Block ciphers have been used as the underlying one-way function in the con- 

struction of hash functions, because of their ease of implementation. Some 

designers of hash algorithms have even proposed constructing 2n-bit hash 

functions from n-bit block ciphers. However, Lai and Massey suggested that 

for a block-cipher-based hash scheme any attack on the block cipher itself 

implies an attack of the same type on the hash scheme with the same compu- 

tational complexity [Lai and Massey, 1992]. Hence, block-cipher-based hash 

schemes may be vulnerable to attacks based on the exploitation of the al- 

gebraic properties of the underlying block cipher. Furthermore, if the block 

length of the underlying block cipher is rather short or it does not behave 

like a random transformation, then the hash scheme is vulnerable to attacks 

of the same type with the same computational complexity. 

The meet-in-the-middle attack can be considered as a version of chosen 

plaintext/ciphertext attack against the block cipher, where a cryptanaiyst is 

allowed not only to choose plaintext of his own choice and see the correspond- 

ing ciphertext, but also to choose ciphertext of his own choice and see the 

corresponding plaintext. If the block cipher behaves like a random permuta- 

tion against chosen plaintext/ciphertext attack, then a hash scheme based on 

it, is secure against the meet-in-the-middle attack. Unfortunately, the known 

block ciphers are only claimed to be secure against chosen plaintext attacks, 
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and none of them claim to be secure against chosen plaintext/ciphertext 

attack. 

The design of most known block ciphers is based on the theoretical work 

of Shannon [Shannon, 1949b], [Shannon, 1949a]. He suggested that consecu- 

tive rounds of confusion and diffusion would provide a strong cryptographic 

algorithm. DES and most of the known block ciphers take advantage of Feis- 

tel type permutations. The definition of Feistel type permutations will be 

given later in Section 4.6. Such a permutation involves a function controlled 

by a key to provide the desired confusion and diffusion. On the other hand, 

it should be mentioned that the design rules for DES were never published. 

Luby and Rackoff showed that three rounds of Feistel type permutations, 

with three different random functions, would yield a block cipher which can 

be shown to be secure against chosen plaintext attack [Luby and Rackoff, 

1988]. Although the functions employed in DES, i.e. the S boxes, are by no 

means random functions, Luby and Rackoff considered their result to be a 

justification for the application of a Feistel type permutation in the design 

of DES. In other words, although they did not examine the S boxes of DES, 

they showed that the structure applied in the design of DES is a sound struc- 

ture for the design of block ciphers which are secure against chosen plaintext 

attack. In a similar vein, in Chapters 4, 5, and 6, we develop a structure 

which we show is secure against chosen plaintext/ciphertext attack. This 

chapter is devoted to preliminary definitions. We define what is meant by 

pseudorandomness, and when a generator can be distinguished from a truly 

random one. Then, the definitions for pseudorandom bit generators, pseudo- 

random function generators, and pseudorandom permutation generators are 

given. These definitions are based on a complexity-theoretic approach. We 

use circuits to evaluate whether a permutation generator is pseudorandom. 

These circuits model the chosen plaintext attack. As we wish to develop 

structures secure against the chosen plaintext/ciphertext attack, we also de- 

scribe a circuit model for this attack. Permutation generators that are secure 

in this model are called super-pseudorandom. 
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4.2 N o t a t i o n  

The notations we use are similar to these in [Pieprzyk, 1991]. The set of all 

integers is denoted by N. Let E = {0, 1} be the alphabet we consider. For 

n E N, E ~ is the set of all 2 '~ binary strings of length n. The concatenation 

of two binary strings x, y is denoted by x II Y. The bit by bit exclusive-OR 

of x and y is denoted by x ~ y. By z ET S, we mean that x is chosen from a 

set S uniformly at random. 

4.3 Indist inguishabi l i ty  

Classical pseudorandom generators are deterministic algorithms with well 

defined mathematical structures that output  numbers or binary strings that 

look like random ones. Statistical tests provide us with a useful tool for 

testing the quality of pseudorandom generators. 

Consider two different message sources S and S' with their respective 

probability distributions p and p' over E, where E is the set of elementary 

messages. Given that one source is truly random and the other is not, an 

observer, having access to the outputs of the sources, tries to distinguish 

between them. Figure 4.1 depicts this scenario. 

? ? 

Figure 4.1: Distinguishing Two Sources S and S' 

If the observer can gather enough occurrences of the elementary mes- 

sages E~ it may be possible for him to distinguish its source. Such message 

sources are called classical [Pieprzyk, 1990]. When the number of elementary 
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messages is so large that it would be impossible to collect enough information 

about any elementary message, the previous approach fails. In this case, it is 

assumed that the observer is able to collect a polynomial number of elemen- 

tary messages from the sources, or that the observer has polynomially limited 

computing power and polynomially limited time. Having such a resource, he 

uses an algorithm to process the collected information and to give the final 

decision as a binary output. When the algorithm decides that  the source is 

a truly random one, it outputs 0, or outputs 1 otherwise. Such an algorithm 

is called a distinguisher. It is noteworthy that the distinguisher can give its 

decision only with some probability. The more samples it gathers from the 

sources, the more probable that the decision is correct. However, it should 

be emphasized that the distinguisher can only access a polynomial number 

of samples. 

Yao in his seminal paper [Yao, 1982] formally defined a distinguisher 

as follows: 

Def in i t ion  4.1 Let S, S ~ be two sources. A distinguisher Cn is a probabilis- 

tic polynomial time algorithm with the following properties. 

�9 For any input ( n , , ) ,  w h e r e ,  = is a sequence of nk 

outputs of S, the algorithm C~ halts in time O(n t) and gives a Boolean 

output Cn(e~). 

�9 Prob[C~(S) = 1] is the probability that Cn(a) = 1 when ~ is generated 

by S. 

�9 Prob[Cn(S') = 1] is the probability that Cn(a) = 1 when ~ is generated 

by S t . 

�9 There exists an infinite sequence of values nl < n2 < . . .  such that 

I Prob[Cn(S) = 1 ] -  Prob[C~(S') = 1] ]> e 

for some fixed t, k and for any e > 0 where n = nl ,n~,  . . . .  

The equivalent of the above distinguisher can also be defined in terms 

of probabilistic Boolean circuits. As Luby and Rackoff used such circuits 
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to define distinguishers, we prefer to use this model to agree with their ap- 

proach. The Boolean circuit equivalent to the distinguisher algorithm can be 

described as follows: 

Def in i t i on  4.2 Let S, S' be two sources. A distinguisher C~ for (S, S') is 

an acyclic probabilistic circuit which contains Boolean gates, i.e., AND, OR 

and N O T  gates, constant gates, i.e., ' O ' and ' 1 ', and accepts n k n-bit inputs 

from the message source and randomly selected inputs such that the following 

conditions hold. 

�9 For any input (n, a), where a = ( x l , x 2 , . . . , x , ~ )  is a sequence of n k 

outputs of S, the circuit Cn gives a Boolean output C~(a). 

�9 The size of the circuit is less than or equal to n t and is measured by 

the total number of connections inside the circuit. 

�9 Prob[Cn(S) = 1] is the probability that Ca(a) = 1 when a is generated 

by S. 

�9 erob[Cn(S') = 1] is the probability that Ca(a) = 1 when a is generated 

by S'. 

�9 There exists an infinite sequence of values nl < n2 < . . .  such that 

[Prob[C~(S) = 1 ] -  Prob[C.(S') = 1] [> e 

for some fixed t, k and for any e > 0 where n = nl, n2, . . . .  

The definition for indistinguishability can be given as follows, using the 

above distinguishing circuits for evaluation. 

Def in i t i on  4.3 Two sources S and S' are said to be indistinguishable if there 

exists no distinguisher for them. 

4 .4  P s e u d o r a n d o m  Bi t  G e n e r a t o r s  

A bit generator is a deterministic algorithm which extends an n-bit input, 

known as a seed, to a bigger string of O(n k) bits. The definition for bit 

generators can be given formally as follows: 
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Def in i t ion  4.4 Let l be a polynomial with l(n) > n. A bit generator is a 

deterministic polynomial-time function g that upon receiving an n-bit input 

as a seed, runs in polynomial time and extends the seed into a sequence of  

l(n) bits bl, b~, . . . ,  bl(n) as the output. 

A bit generator is called pseudorandom if, upon receiving a random n- 

bit seed for sufficiently large n, the corresponding generator is indistinguish- 

able from a truly random one. The definition is given formally as follows: 

D e f i n i t i o n  4.5 A bit generator gn is pseudorandom if for large enough n 

and for any distinguisher C,~, 

I Prob[Cn(g,) = 1] - Prob[Cn(R) = 1] I< Q(n) 2 n 

where Prob[Cn(g~) = 1] is the probability that the distinguisher C,~ outputs 

1, if  an n-bit string is selected randomly and uniformly from all n bit strings 

as the seed to the bit generator and the distinguisher examines the nk-bit 

string of the bit generator, and Prob[Cn(R) = 1] is the probability that the 

distinguisher outputs 1 if the nk-bit string is selected randomly and uniformly 

from all possible strings, and Q(n) is any polynomial in n. 

Informally, g~ is pseudorandom if there is no polynomial (in n) size 

circuit, or no polynomial t ime algorithm which can significantly distinguish 

the l(n)-bit string of the output of the bit generator from a string randomly 

chosen from the set of all l(n) bit strings, for infinitely many n. 

Since any distinguisher is a specific test, the above definition can be 

stated that ,  a bit generator is pseudorandom if it passes all polynomial-time 

tests, for large enough n. Yao proved that  a bit generator passes any polyno- 

mial size test if the output  bits are unpredictable or the output  string passes 

the next bit test. If given the generator g and the first s output  bits of the 

bit generator b l , . . . ,b8  (note that  the input seed is kept secret), it is not 

feasible computationally to predict the (s + 1)th bit of the output  string, it 

is said that  the generator passes the next bit test. The following theorem is 

derived from [Yao, 1982]. It has been stated by Blum, Micali, Alexi, Chor, 

Goldreich, Schnorr, and Goldwasser in a different form ([Blum and Micali, 

19841,[Alexi et al., 1988],[Goldreich et al., 1986]). 
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T h e o r e m  4.1 Let g be a polynomial bit generator, then the following state- 

ments are equivalent: 

�9 g passes the next bit test. 

�9 g is indistinguishable from a truly random bit generator. 

In other words, the indistinguishability test is equivalent to the unpredictabil- 

ity test. 

All practical implementations of pseudorandom bit generators are based 

on functions which are conjectured to be one-way, where a one-way function, 

informally speaking, is a function which is easy to compute but hard to invert 

[Goldreich and Levin, 1989]. A formal definition of one-way functions will be 

given in Chapter 7. Unfortunately, complexity theory has not yet provided 

the answer to the fundamentM question as to whether one-way functions 

exist. The relation between pseudorandom bit generators and is given in the 

following theorem of [Levin, 1987]. 

T h e o r e m  4.2 There exists a pseudorandom bit generator if  there exists a 

one-way function. 

4.5 P s e u d o r a n d o m  F u n c t i o n  G e n e r a t o r s  

In this section we present the notion of pseudorandom function generators. 

By a function f ,  we mean a transformation from E n to En. The set of all 

functions on En is denoted by H~, that is, H,~ = { f  [ f : E'~ ---* E~}, and 

it consists of 2 n2€ elements. The composition of two functions f and g is 

defined as ( f  og)(x)  = f (g(x) ) .  The/-fold composition of f is denoted by f ' .  

A function f is a permutation if it is a one-to-one and onto function. The set 

of all permutations on E~ is denoted by Pn and it consists of 2~! elements. 

A function generator is a collection of functions with two properties: 

indexing and polynomial time evaluation. The precise definition of function 

generators is given below. 

Def in i t ion  4.6 Let l(n) be a polynomial in n, a function generator F = 

{Fn : n e N }  is a collection of functions with the following properties: 
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�9 Indexing: Each F,~ specifies for each k of length l(n) a function fn,k E 

14.. 

�9 Polynomial-time evaluation: Given a key k E E t(~), and a string x E 

E n, fn,k(X) can be computed in polynomial time in n. 

A pseudorandom function generator is a function generator that cannot 

be distinguished from a truly random one. In other words, i~ is a collection 

of functions on n-bit strings that cannot be distinguished from the set of all 

functions on n-bit strings. To determine whether a collection of functions 

can be distinguished from the set of all functions, distinguishing circuits 

for functions are used, which are similar to distinguishing circuits for bit 

generators but are more powerful. They are, in fact, oracle circuits. The 

exact definitions of oracle circuits and distinguishing circuits for functions 

and pseudorandom function generators are given below. 

Def in i t ion  4.7 An oracle circuit C~ is an acyclic circuit which contains 

Boolean gates of the type AND, OR and NOT, and constant gates of the 

type zero and one, and a particular kind of gates named oracle gates. Each 

oracle gate has an n-bit input and an n-bit output and is evaluated using 

some function from H~. The oracle circuit (~  has a single bit output. 

Def in i t ion  4.8 The size of an oracle circuit C~ is the total number of con- 

nections between gates, Boolean gates, constant gates and oracle gates. 

Def in i t ion  4.9 A distinguishing circuit family for a function generator F is 

an infinite family of circuits {C~I, Cn:, . . .} ,  where nl < n2 < . . . ,  such that 

for some pair of constants cl and c2 and for each n E {nl, n2,...} there is a 

circuit Ca with the following properties. 

�9 The size of Cn is less than or equal to n cl . 

�9 IfProb{Cn[Hn] --- 1} is the probability that the output bit of Cn is one 

when a function is randomly selected from Hn and used to evaluate the 

oracle gates and if Prob{C,~[F~] = 1} is the probability that the output 

bit of C,~ is one when a key k of length l(n) is randomly chosen and fn,k 
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is used to evaluate the oracle gates, then the distinguishing probability 
for C~ is greater than or equal to 1 -g~, that is, 

1 
I Prob{C=[H~] = 1} -Prob{C~[Fn]  = 1} l> - -  nC2 

D e f i n i t i o n  4.10 A function generator F is pseudorandom if there is no dis- 

tinguishing circuit family for F. 

In other words, a distinguishing circuit for a function generator can be 

described as an algorithm that gathers a polynomial number of the inputs,  

for inputs of its own choice, to oracle gates with the function f .  If the 

distinguisher decides that  the f has been selected from F,~, it outputs  1. If 

it decides otherwise, it outputs 0, meaning that  it has decided that  f has 

been randomly selected from Hn. If the probabilities of the decisions are 

significantly different, then the circuit has distinguished Fn from H=. The 

general scheme of distinguishing circuits for function generators is shown 

in Figure 4.2. Goldreich, Goldwasser and Micali were able to construct a 

n-bit input n-bit input 

Input ~ O u t p m  

Oracle Gates  

Figure 4.2: The General Scheme of Distinguishers for Function Generators 

pseudorandom function generator, given a pseudorandom bit generator which 

stretched an n-bit seed to a 2n-bit string [Goldreich et al., 1986]. Their  

construction is as follows. For a given index x and a given argument y, f , (y )  

can be obtained by applying the pseudorandom bit generator n times. The 

function f ,  can be represented as a tree, its lowest layer provides the values of 

the function and the path specifies the argument of the function. To describe 
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their construction specifically, for x E E" consider 

A ( u )  = 

where G(x) = b~... b~n is the output of the bit generator for seed x, and 

G~(x) is defined recursively as follows: 

a o ( x )  = 

a (z) = 

and y = yly2.. ,  y,. Figure 4.3 shows these operations in a diagram. Goldreich, 

".  Z 

Figure 4.3: A Pseudorandom Function Generator where f~(y) = Gy(x) with 
y = Olz 

Goldwasser and Micali showed first that the collection F = {Fn} is a func- 

tion generator, as it satisfies indexing and polynomial time evaluation, and 

secondly, that it is pseudorandom. 

According to the definition that we gave earlier in Section 4.5 for func- 

tions, a function is not necessarily one-to-one. Hence, it is not necessarily 

invertible. We call those functions that are one-to-one, permutations. Pseu- 

dorandom function generators have many applications, but unless they are 

also invertible, they cannot be used directly in a block cipher cryptosystem. 

For a time, it was questionble whether it was possible to build pseudorandom 

invertible permutation generators using pseudorandom function generators. 
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Luby and Rackoff showed that it is possible to build an invertible pseudoran- 

dom permutation generator from three pseudorandom function generators 

[Luby and Rackoff, 1988]. In the next section, we explain more about pseu- 

dorandom permutation generators and the structure that Luby and Rackoff 

put forward. 

4 .6  P s e u d o r a n d o m  P e r m u t a t i o n  G e n e r a t o r s  

4.6.1 Construction 

Consider the well known DES cryptographic algorithm. It consists of 16 

rounds, where each round is called a Feistel type permutation or a DES-like 

permutation. The following gives the precise definition of such a permutation 

(an illustration is given in Figure 4.4). 

Def in i t ion  4.11 For a function f E H~, the DES-like permutation associ- 

ated with f is D~n,! E P~,  defined as 

D2nj(L II R) = (R ~ f (L)  II L) 

where R and L are n-bit strings, that is, R and L are contained in ~n. 

L R 

R~ f(L) L 

Figure 4.4: A Feistel-type or a DES-like Permutation 

Note that, no matter whether f is one-to-one or not, the transformation D is 

a permutation. If the above structure incorporates collections of functions at  

f ,  then a collection of invertible permutations would result. If the collection 

of functions is a function generator, then the collection of permutations is a 
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permutation generator. However, the resulting permutation generator is not 

pseudorandom. This collection can always be distinguished from a collection 
of random permutations, since the right half of the output is always equal to 

the left half of the input. A natural question is whether the composition of 

such permutations would yield a stronger structure. 

Defini t ion 4.12 Having a sequence of functions f l , f 2 , . . . , f l  E Hn, we de- 

fine the composition of their DES-like permutations as r E P2n, where 

r  , f 2 , f l )  = D2n,l, o D2n,l~_~ o . . . o  D2n,ll 

Consider a simple composition r f) ,  where the input is (L [[ R) and 

the output is (S II T) (see Figure 4.5). If the structure incorporated each of 

L R 

S T 

Figure 4.5: Permutation Generator ~b(g, f)  

a collection of functions at f and g, then a collection of permutations would 

result. However, this collection is not pseudorandom as there is a circuit 

given by Luby and Rackoff that is able to distinguish these permutations 

from a permutation selected randomly from the set of all permutations. The 

structure of this distinguishing circuit is shown in Figure 4.6, where two or- 

acles are examined with different inputs L II R, and L II R2. If the oracles 
evaluate a permutation with a ~b(g, f )  structure, then /~1 �9 R2 is always 

equal to T1 | T2. If the permutation is chosen randomly from the set of all 

permutations, the probability of equality is 1 .  A method for constructing 

pseudorandom permutation generators from pseudorandom functions, using 

a DES-like structure, was first presented by Luby and Rackoff. The struc- 

ture consists of a three-layer composition of DES-like permutations with a 
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L R1 L R 2 

Figure 4.6: A Distinguishing Circuit for r f)  

different pseudorandom function generator at each layer. This structure is 
shown in Figure 4.7. The following lemma describes the proposed structure 

L R 

S T 

Figure 4.7: Luby and Rackoff's Proposed Structure 

and is due to Luby and Rackoff [Luby and Rackoff, 1988]. 

L e m m a  4.1 Let f l , f 2 , f3  Er Hn be independent random functions and C2n 

be an oracle circuit with m < 2 '~ oracle gates; then 

m 2 

[ Prob{C2~[P2,~] = 1} -Prob{C2n[r f2,fl)] = 1} [_< ~ -  
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As in practice, the number m of oracle gates used is at most a polynomial in 
r n  2 r r t  2 

n, then u162 is less than 1 over any polynomial in n. Note that ~-  is actually 

an upper bound on the probability of distinguishing. The above lemma says 

that there is no distinguishing circuit for the construction. It is clear that 

any distinguishing circuit of Definition 4.9 is equivalent to a chosen Plaintext 

attack. Therefore a block cipher secure against chosen plaintext attack can 

be constructed using three independent random functions ]'1, f2 and ]'3, and 

three rounds of DES-like permutation. Luby and Rackoff also demonstrated 

that the construction remains secure against chosen plaintext attack even 

when functions are selected from three pseudorandom function generators. 

4.6.2 Improvements and Implications 

This result was considered a breakthrough in the theory of pseudorandom- 

hess, with many cryptographic implications. The proof of the above lemma 

is based on the assumption that the function used in each layer is a randomly 

chosen function. Luby and Rackoff considered their result as a justification 

for the application of DES-like permutations in the design of DES, in the 

sense that the structure used in DES is sound, although the S-boxes and the 

functions applied at each round of DES are by no means random. 

The result achieved by Luby and Rackoff has attracted much attention 

to their structures, and since then there have been many researchers trying 

to improve this result or to apply it for the construction of locally random bit 

generators and function generators. One such example is by Schnorr, where 

a construction for locally pseudorandom bit generators is suggested [Schnorr, 

1988]. Schnorr proposed using a single pseudorandom function generator f 

(instead of three), i.e. r  f, f ) ,  to obtain a pseudorandom permutat ion 

generator so the amount of necessary memory would be minimized. Then 

the permutation generator would be used to construct a pseudorandom string 

generator which stretched n2 ~ bits to 2n22~ bits. Although the construction 

for the pseudorandom string generator is valid, it was shown by Rueppel 

that the claim of pseudorandomness for r  f, f )  is not true [Rueppel, 1990]. 

The distinguishing circuit that he suggested for this permutation generator is 

shown in Figure 4.8 and is described here. The distinguishing circuit has two 

oracle gates. A 2n-bit string (L II R) C E2~ is fed to the first oracle where 
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the output is ($1 II T1). Then the second oracle is fed with (T~ II &), where 
the output is denoted by ($2 1[ T2). If the permutation used in the evaluation 
of the oracles has a r  f, f )  structure, (S~ I} T~) is always equal to (L II R). 
If the permutation is chosen randomly from the set of all permutations, the 
probability of equality is 1 However, the question whether a smaller number 

L R 

=k.: [~ Compara to r -~  

Figure 4.8: A Distinguishing Circuit for r  f, f)  

of independent pseudorandom function generators would suffice was still an 

open problem. Rueppel also showed that r  g, f)  is not pseudorandom. It 
can be distinguished with the same distinguishing circuit as for r  f, f). 
This result I was independently obtained by Ohnishi in [Ohnishi, 1988]. He 
also generalized this result to show that both 

and 

r  , f 2 ,  f l ,  f l ,  f 2 ,  . . . , f , )  

are not pseudorandom, where fi E Hn for i = 1. . .  s. The description of the 
distinguishing circuit is as follows: 

1. Choose (L II R) e Z 2'~. 

2. Input (L II R) to the first oracle gate O1. Denote the output of O1 by 

(S, ]1 T,). 

3. Input (T1 [[ S1) to the second oracle gate 02. Denote the output of O2 
by ($2 ]1 T2). 

1The result was reported in [Zheng et al., 1990c]. 
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4. The distinguisher decides that the permutation generator examined is 

not pseudorandom if (L II R) = (s~ II T=), and outputs a bit 1. 

If a permutation with the structure r  f2, f l ,  f2, .... , f~) is used 

for the evaluation of the oracles, the output of the above circuit is always 1. 

If the permutation is chosen randomly from the set of all permutations, the 

output of the above distinguishing circuit is 1 with the probability 1 

Ohnishi also proved that two (instead of three) independent pseudo- 

random function generators is enough in Luby and Rackoff's construction, 

i.e. both r  and r  are pseudorandom permutation genera- 

tors. However, it was an open problem whether permutations like r  f ,  f )  

were pseudorandom. Later Zheng, Matsumoto and Imai showed that for any 

i,j ,  k E N, g,(ff, f j , f i )  is not pseudorandom, and there is a distinguishing 
(i+j) (j+k) and circuit with (ml q- m2 + 1) oracle gates, where ml = d , rn2 = d 

d = gcd(i+j ,  j+k)  [Zheng et al., 1990c]. The description of the distinguishing 

circuit is outlined here. 

1. The input to oracle gate O0 is (L0 [I/~,) = ( 0'~ II 0n) �9 

. The input to oracle gate O1 is (L1 [[ R1) = (O n I[ T1), and if T/~ 1 > 1 

then for each 1 < p < rex, the input to oracle gate Op is (Lp II Rp) = 

(0 II Rp_l �9 Sp_l). 

. The input to oracle gate O~+1 is (Lmld_ 1 ][ ~ml-F1) = (To ][ On), and if 

rn2 > 1, then for each ml + 1 < t ~ ml + m2, the input to oracle gate 

o,  is (L, II n,) = (L,_I �9 T _I II 0 r) 

4. The distinguisher decides that the permutation generator examined is 

not pseudorandom if Tin1 = Lml+m2 O Tml+m~, and outputs a bit 1. 

If the permutation used in the evaluation of the oracles has a 

~,(fk, f j ,  fi) structure, the output of the above circuit is always 1. If the per- 

mutation is chosen randomly from the set of all permutations, the output of 

the above distinguishing circuit is 1 with probability ~ .  The circuit is shown 

in Figure 4.9. However, the interesting question raised in [Schnorr, 1988] 

on designing a pseudorandom permutation generator applying only a sin- 

gle pseudorandom function generator remained unsolved. Finally, Pieprzyk 
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Figure 4.9: A Distinguishing Circuit for r  f j ,  fi)  

showed that r  f,  f ,  f)  for i > 2 is a pseudorandom permutation genera- 

tor [Pieprzyk, 1991]. This result actually solved the open problem raised in 

Schnorr's paper and was formally stated by Zheng, Matsumoto and Imai in 

[Zheng et al., 1990c]. 

4.6.3 Security 

An encryption algorithm, such as DES, can be considered as a collection or 

a family of permutations. For example, in the case of DES, the encryption 

algorithm is a collection of 25s permutations, where each permutation is a 

member of P64 and is indexed by a key k. Similarly, the decryption algorithm 

can also be considered as a family of permutations, where the composition of 

an encryption algorithm with the corresponding decryption algorithm yields 

the identity permutation. In the case of DES, the decryption algorithm is 

also a collection of 258 permutations, where each permutation is a member 
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of P64 and is indexed by a key k. Every private-key block cipher should 

have the property that,  given the key and an input, both encryption and 

decryption can be carried out efficiently. In a chosen plaintext attack, which 

is one of the strongest attacks against a cryptosystem, it is assumed that  

an opponent  who does not know the key, is allowed to choose a 'reasonable' 

number  of plaintext blocks and to see the corresponding encryption of these 

blocks. During this process, the opponent is allowed to interactively choose 

the next plaintext block to see its encryption, based on all previous plaintext 

blocks and their encryptions. The cryptosystem ~s considered secure against 

the opponent if, given a new ciphertext, he cannot predict the corresponding 

plaintext 'significantly' better than if he had not seen the previous pairs of 

plaintext-ciphertext. The cryptosystem is said to be secure against chosen 

plaintext attack if it is secure against all such opponents. 

Luby and Rackoff in their justification of the design structure of DES 

wrote: 

The apparent security of DES when it is used as a block private- 

key cryptosystem rests on the fact that DES seems to pass the 

black box test, which was informally suggested by Turing. The 

black box test is the following. 

Say that we have two black boxes, one of which computes a fixed 

randomly chosen function from F64 and the other computes D E S k  

for a fixed randomly chosen k. Then no algorithm which examines 

the boxes by feeding inputs to them and looking at the outputs can 

obtain, in a reasonable time, any significant idea about which box 

is which. 

I f  DES passes the black box test, then it is secure against a chosen 

plaintext attack when used as a block private key cryptosystem. 

Then they added, that  it is sufficient that  a permutat ion generator be 

pseudorandom, to be secure against chosen plaintext attack. 

We observed that  a permutat ion generator is pseudorandom if there is 

no distinguishing circuit, where a distinguishing circuit represents a proba- 

bilistic algorithm which has access to a polynomial (in the length of input)  

number  of input-output samples via oracle gates. As the oracle gates use 
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permutations only in their normal direction, the distinguishing circuit can 

choose only inputs and ask for the corresponding outputs. The other no- 

tion which was introduced in [Luby and Rackoff, 1988] was that of super- 

pseudorandomness, which is a stronger property than pseudorandomness. A 

permutation generator is super-pseudorandom if there is no distinguishing 

circuit for it, where distinguishing circuits are equipped with both normal 

oracle gates normal oracle gates and inverse oracle gates. In this case, the dis- 

tinguishing circuit may choose not only inputs and ask for the corresponding 

outputs, but may also choose outputs and ask for the corresponding inputs. 

Such circuits are called super-distinguishing circuits. We give the formal 

definition for such circuits in the next chapter. 

In a chosen plaintext/ciphertext attack, which is an even stronger at- 

tack than chosen plaintext attack, an opponent can interactively choose 

plaintext blocks and see their encryptions and choose ciphertext and see 

their corresponding plaintext blocks. Thus the opponent is allowed to attack 

the cryptosystem from 'both ends'. The cryptosystem is considered secure 

against chosen ciphertext/plaintext attack if, when the opponent is given 

a new ciphertext, he cannot predict the corresponding plaintext any better 

than if he had not seen the previous pairs of plaintext-ciphertext. Similarly, 

if a cryptosystem is secure against chosen ciphertext/plaintext attack, when 

the opponent is given a new plaintext he cannot predict the corresponding 

ciphertext any better than if he had not seen the previous pairs of plaintext- 

ciphertext. 

As we mentioned earlier, for a permutation generator to be super- 

pseudorandom, it should be evaluated with distinguishing circuits equipped 

with both normal and inverse oracle gates. We should add here that, for 

a permutation generator, being super-pseudorandom is equivalent to being 

secure against a chosen plaintext/ciphertext attack. As the meet-in-the- 

middle attack against a block-cipher-based hash scheme is an oracle circuit 

containing Boolean gates and has two types of oracle gates that are encryp- 

tion and decryption, it is a super-distinguishing circuit for the underlying 

block cipher such that it outputs a bit I if two colliding messages are found. 

Thus meet-in-the-middle attack can be considered a version of chosen plain- 

text/ciphertext attack against the underlying block cipher. If a block cipher 

is secure against chosen plaintext/ciphertext attack, the meet-in-the-middle 
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attack cannot successfully be applied against a corresponding block-cipher- 

based hash scheme. Hence we are interested in developing a structure which 

can be used for the construction of cipher systems secure against chosen 

plaintext/ciphertext attacks, such that it can be used for the construction of 

block-cipher-based hashing algorithms. 

Note that every super-pseudorandom permutation generator is also a 

pseudorandom permutation generator, but it can be shown that the converse 

is not necessarily true. As an example, it was shown in [Luby and Rackoff, 

1988] that although ~b(h, g, f )  is a pseudorandom permutation generator, it is 

not a super-pseudorandom permutation generator. A distinguishing circuit 

with normal and inverse oracle gates for r (h, g, f )  can be described as follows. 

The distinguisher has two normal oracle gates. The first normal oracle gate 

is fed with (L [[ R1) and the second normal oracle gate with (L II R2), where 

R1 ~ R2. Let ($1 II T1) and ($2 II T2) be the outputs of these two normal 

oracle gates, respectively. The distinguisher has also an inverse oracle gate 

with input ($2 | R~ | R: II T2). If the last n bits of this inverse oracle gate 

are equal to (L ~) T1 �9 T~), the distinguisher decides that the permutation 

generator examined is not super-pseudorandom, and outputs a bit 1. If the 

permutation used in the evaluation of the oracles has a ~b(h, g, f )  structure, 

the output of the above circuit is always 1. If the permutation is chosen 

randomly from the set of all permutations, the output of the above super- 

distinguishing circuit is 1 with probability ~ .  The circuit is shown in Figure 

4.10. 

L R1 L R2 

Compatator ) 

Figure 4.10: A Super-distinguishing Circuit for r  f )  
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4.7  C o n c l u s i o n s  

In this chapter, the concepts of indistinguishability and pseudorandomness 

were presented. It was explained that  pseudorandomness of a permuta- 

tion generator, such as a block cipher, implies its security against cho- 

sen plaintext attack. We also explained that, in block-cipher-based hash 

schemes, we should apply a block cipher which is secure against chosen 

plaintext/ciphertext attack in order to obtain security against the meet-in- 

the-middle attack, as such an attack could be transformed into a version of 

chosen plaintext/ciphertext attack against the underlying block cipher. 

It is worthy of note that if a block cipher which is secure against chosen 

plaintext/ciphertext attack is used in the construction of a hash scheme, the 

hash scheme need not be collision free. Lai and Massey showed that there 

may be attacks on the block-cipher-based hash scheme that are easier than 

attacks on the underlying block cipher alone [Lai and Massey, 1992]. 

Anyway, Luby and Rackoff's construction of a pseudorandom permu- 

tation generator with three rounds of DES-like permutations and three in- 

dependent pseudorandom function generators and their justification of DES 

structure based on this result raise the question of how to construct super- 

pseudorandom permutation generators for use in the construction of stronger 

block ciphers. Luby and Rackoff proved that r h, g, f) ,  a construction with 

four rounds of DES-like permutations with four independent pseudorandom 

function generators, yields a super-pseudorandom permutation generator. 

This result suggests that more rounds should be added to a block cipher se- 

cure against chosen plaintext attack to make it resistant to stronger attacks 

such as chosen plaintext/ciphertext attack. But it does not offer more in- 

sight into the construction of a block cipher with a stronger structure. In the 

next chapter we study super-pseudorandom permutation generators, and we 

investigate necessary and sufficient conditions for the construction of such 

generators. 



C h a p t e r  5 

C o n s t r u c t i o n  of  

S up er- P s e u d o r a n d o m  

P e r m u t a t i o n s  

5.1 I n t r o d u c t i o n  

In the previous chapter we showed how Luby and Rackoff constructed a pseu- 

dorandom invertible permutation generator using three pseudorandom func- 

tion generators and three rounds of DES-like permutations. This structure 

is denoted by ~b(h, g, f) .  Later Pieprzyk showed that four rounds of DES-like 

permutations with a single pseudorandom function generator ~b(f 2, f ,  f,  f )  is 

also pseudorandom and is secure against a chosen plaintext attack [Pieprzyk, 

1991]. Luby and Rackoff also introduced the notion of super-pseudoran- 

domness, where the block cryptosystem is secure against a chosen plain- 

text/ciphertext attack. They proved that ~b(h, g, f, e) is super-pseudorandom. 

It remained to be shown how to construct super-pseudorandom permutations 

and ascertain whether r  f, f, f)  was super-pseudorandom. 

In this chapter, we present necessary and sufficient conditions for the 

super-pseudorandomness of DES-like permutations. We further show that 

four rounds of such permutations with a sing]e random function is not super- 

pseudorandom. We present a super distinguishing circuit for ~b(f 2, f,  f,  f )  

and another one for some cases of ~b(f l, fk, j.j, fl). 
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Feistel-type permutations were presented in the previous chapter. In 

this chapter, three generalizations of this class of permutations are presented, 
where they are called type-l, type-2 and type-3 Feistel transformations. At 

the end of this chapter, we also investigate the necessary and sufficient 

conditions for super-pseudorandomness of type-1 Feistel transformations, 

and we show that using k 2 rounds of this transformation yields a super- 

pseudorandom permutation generator, where k is the number of branches of 

the structure. We also show that using k s - k + 1 rounds of the inverse of 

this type of transformation is a pseudorandom permutation generator. 

The results of this chapter have also appeared in [Sadeghiyan and 

Pieprzyk, 1991b]. 

5.2 Super-Pseudorandom Permutat ions  

This section provides some preliminary definitions and notions which are 

used in this chapter and Chapter 6. 

As we mentioned in Chapter 4, the first construction of pseudoran- 

dom permutations from pseudorandom functions was presented by Luby and 

Rackoff. They showed that a block cryptosystem can be constructed which 

is secure against a chosen plaintext attack when a cryptanalyst can ask for 

only a polynomial number of plaintext. However, for some cryptographic 

applications, such as block cipher based hash functions, we require stronger 

properties for security against a chosen plaintext/ciphertext attack. When 

the block cryptosystem is secure against the chosen plaintext/ciphertext at- 

tack, it is called super-pseudorandom. This notion only applies to invertible 

permutation generators and is stated formally in the following three defini- 

tions. 

Def in i t ion  5.1 A permutation generator F is a function generator such that 

each function f~,k is one-to-one and onto. Let T = {F--~, : n E N},  where 

K = '[7.,k : k G ~t(,O }, where f . ,k is the inverse off. ,k.  F is called invertible 

if F is also a permutation generator. 

Defin i t ion  5.2 A super-distinguishing family of circuits for an invertible 

permutation generator F is an infinite family of circuits {SC,~I, SCn2,.. ,}, 
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where nl < n2 < . . . ,  where each circuit is an oracle circuit containing two 

types of oracle gates, normal and inverse, such that for some pair of constants 

Cl and c2 and for each n E {n l ,n2 , . . . }  there exist a circuit SC~ with the 

following properties. 

�9 The size of SC,~ is less than or equal to n c~ . 

IfProb{SC=[P~] = 1} is the probability that the output bit of SC,~ is one 

when a permutation p is randomly selected from P,~ and p and p are used 

to evaluate normal and inverse oracle gates, and i fProb{ SC,[F~] = 1} 

is the probability that the output bit of SC,~ is one when a key k of 

length l(n) is randomly chosen and f,~,k and "f,~,k is used to evaluate the 

normal and inverse oracle gates, respectively, then the distinguishing 

probability for SC~ is greater than or equal to 1 - ~ ,  that is, 

1 I Prob{SC~[P~] = 1} - Prob{SC,~[F,~] = 1} l> - -  
nc2 

Def in i t i on  5.3 A permutation generator F is super-pseudorandom if there 

is no super-distinguishing circuit family for F. 

If F is a super-pseudorandom permutation generator, it is secure again- 

st the chosen plaintext/ciphertext attack where a cryptanalyst can interac- 

tively choose plaintext blocks and view their corresponding cryptograms and 

also select cryptograms and see their corresponding plaintext blocks. 

5.3 N e c e s s a r y  and Sufficient C o n d i t i o n s  

It is possible to make a super-pseudorandom permutation generator with four 

independent random functions, if f l ,  f2, fa, f4 E Hn are independent random 

functions, then r f3, f2, f l )  is a super-pseudorandom permutation 1. This 

was shown by Luby and Rackoff in [Luby and Rackoff, 1988] (see Figure 

5.1). This proposal implies that, by increasing the number of rounds and the 

1In Chapters 5 and 6, we say a permutation for a permutation generator, a pseudor~n- 
dom permutation for a pseudorandom permutation generator and a super-pseudorandom 
permutation for a super-pseudorandom permutation generator for the sake of brevity. 
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L R 

Figure 5.1: A Super-Pseudorandom Permutation Generator 

number of pseudorandom functions in a DES-like cryptosystem, better secu- 

rity is attainable. It is question whether a super-pseudorandom permutation 

generator can be built with a smaller number of random functions. If it can, 

it would then be possible to adopt a sounder structure for the construction 

of block ciphers. 

In this chapter, we present the necessary and sufficient conditions for 

the construction of super-pseudorandom permutations in Theorem 5.1. Next, 

these conditions are applied to construct a super-pseudorandom permutation 

with fewer random functions. Next, it is shown that a super-pseudorandom 

permutation cannot be constructed with a single random function and four 

rounds of DES-like permutations. 

First a definition for independent permutations is given; this is used 

later in this chapter for the proof of Theorem 5.1. 

Definit ion 5.4 A D-distinguishing family of circuits for two invertible pseu- 

dorandom permutation generators (II1, II2) is an infinite family of circuits 

{DC,~,DC~2, . . .} ,  where nl < n2 < . . . ,  where each circuit is an oracle cir- 

cuit containing two types of oracle gates, such that for some pair of constants 

cl and c2 and for each n E {nl, n2, . . .}  there exists a circuit DCn with the 

following properties. 

�9 The size of DC,  is less than or equal to n c~ . 

�9 IfProb{DC,~[P,~,Pn] = 1} is the probability that the output bit of DC,~ 

is 1, when two permutations pa and p2 are chosen independently and 
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randomly from Pn and are used to evaluate the two types of oracle gates 

of DC,,, respectively, and if Prob{DC,~[131,112] = 1} is the probability 

that the output bit of DC,~ is one when a key k of length l(n) is randomly 

chosen and pl,k E H1 and P2,k E I]2 are used to evaluate the two types 

of oracle gates, respectively, then the distinguishing probability for DC= 

is greater than or equal to 1 -~  , that is, 

1 
I Prob{DCn[Pn, Phi = 1} - Prob{DC~[1]l, 112] = 1} [> 

nc2 

D e f i n i t i o n  5.5 Two pseudorandom permutation generators, 131 and 11~, are 

said to be independent if there is no D-distinguishing oracle circuit family 

for (111, II2). 

Note that  the D-distinguishing oracle circuits are generalizations of 

the distinguishing circuits and the super-distinguishing circuits if two simple 

tests are excluded. If there is no distinguishing circuit family for 131, then 

there is no D-distinguishing circuit for the permutat ion generators 131 and 

131 itself, provided that the D-distinguishing circuit is not testing the iden- 

tity of the two permutation generators (for example, giving an input to the 

two types of oracles and comparing the outputs).  Moreover, if there is no 

super-distinguishing circuit family for 131, then there is no D-distinguishing 

circuit for a permutat ion generator H1 and its inverse 131, and provided that  

the D-distinguishing circuit is not testing to see whether the two permuta- 

tion generators are inverse to each other (for example, giving an input to 

one type of oracle and feeding the other type of oracle with this result and 

comparing the output  with the original input). Furthermore, the converse 

of these statements is also true. For example, if there is no D-distinguishing 

circuit for 131 and 131 itself, except if the circuit is testing the identity of the 

two permutat ion generators, then the permutat ion generator Ha is pseudo- 

random. We apply D-distinguishing circuits as a tool for the evaluation of 

both pseudorandomness and super-pseudorandomness. 

The following lamina shows how to construct two independent permu- 

tations, applying DES-like structures. 

L e m m a  5.1 Let f l , f 2 , . . . , f i  Er Fn, where ~ E N. Then G2 = r  

and G3 = ~ ( f l , . . . , f i - 1 )  are two independent permutations if and only if 

they are pseudorandom. 
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Proof : First, we show that if G~ = r  f~) and G3 = r  f i - l ) ,  

are pseudorandom, then they are independent permutations, where f l , . . . ,  fl ET 

F~. For simplicity let f l , . . . ,  fi E~ H~, and suppose that  one is allowed to 

examine only a polynomial (in n) number of oracle gates. When G2 and 

G3 are pseudorandom, it is assumed that  the probability of distinguishing 

G2 or Ga from a random permutation is less than 1 for any constant c~ ~ - ,  

and a sufficiently large n. Since both G2 and Ga are indistinguishable from 

random permutations,  any distinguishing circuit for the dependency of G2 

and G3 would be a circuit which estimates the output  value at least from 

either branch of G2 or G3 for input, when a polynomial number of G2 and G3 

oracles are examined. As, both G2 and G3 have two branches, two situations 

may arise. 

�9 The number of rounds i is even. 

When i is even, each branch of G2 and G3 is fed with a different set of 

random functions. Figure 5.2 illustrates these structures. Denote the 

L~ R~ 

. 

i 

So, W~, So, To, 
Figure 5.2:G2 and G3 when i is Even 

output of G2 on an input of (L, II R,) by (Sa, [[ To2) and the output 
of C3 on an input of (Lj f[ Rj) by (Sa3 If To,). 

Sa~ = Rt @ f2(Lt) @. . .  ~} f~-2(.) @ fi(Ta2) 

TG2 = Ll @ f3(.) @ . .. @ f i- l ( . )  

Sa3 = Rj @ f i - l (L j )  @. . .  @ f3(.) @ f,(TG3) 

Tv3 = Lj @ fi-2(.) @ . . . @  f2(.) 



5.3 Necessary and Sufficient Conditions 83 

As each function f l , . . . ,  fi is chosen independently and randomly from 

the set of all functions, the probability that these two random variables 
m(,~-l) 

are the same in m oracle gates is equal to 2- . As there are four 

random variables, the probability that two of them are the same is 
6re(m-l) 2" . When m is polynomial in n, this probability is less than 

1_  for any constant c2 and a sufficiently large n. If f l , .  , fi were n e 2 ,  � 9  

chosen from Fn rather from H,~, the probability that two of the above 

four random variables are the same would remain less than 1 over any 

polynomial in n. Hence, the above four variables are independent of 

one another, and there is no D-distinguishing circuit for G2 and G3. 

�9 The number of rounds i is odd. 

In this structure, one branch of 

functions which feeds a branch 

with a different set of random 

L t R 

G2 is fed with the same set of random 

of Ga, but the other branches are fed 

The four functions (See Figure 5.3). 

So, To, So, To, 

Figure 5.3: G: and G3 when i is Odd 

output random variables in this configuration are as follows. 

Sv~ = L, | f3(.) |  | f i -:  | fi(T6:) 

TG~ = Rz | f2(Lt) |  | f i - l( .)  

So3 = L j r  Ii-:(.) 8 . . .  �9 f,(Tc3) 

TG3 = Rj �9 f i - i ( i l )  (~ fi-3 0 . . .  �9 f2(.) 

Tc2 and Ta3 are the sum of outputs of the same set of random func- 

tions, but with a reverse ordering. In general, when two functions f 

and g are chosen independently and randomly from Hn, ( f  o g)(x) is 
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independent of (g o f)(x) for any x. As the functions f l ,  . . ,  fi are cho- 

sen independently and randomly from H,,  then the probability that 

two random variables Ta~ and Ta3 are the same in m oracle gates is 
re(m--l) 2- . Hence, the probability that two of the above four random vari- 

ables are the same is sm{2~.-1). Again, when m is polynomial in n, this 

probability is less than 1 for any constant c2 and a sufficiently large ~-~, 

n. When random functions are replaced by pseudorandom ones, the 

probability of dependency between G2 and G3 remains less than 1 over 

any polynomial in n (see [Luby and Rackoff, 1988]. 

Although, in the above proof, we assumed that the pseudorandom func- 

tions f l , . . .  ,f~ are chosen independently from Fn, this is not a necessary 

condition. Generally, it is sufficient that only fi-1 and f2 be chosen indepen- 

dently to make the output random variables of the two pseudorandom per- 

mutation generators G2 and G3 independent, and it does not matter  whether 

the other pseudorandom functions are chosen independently. 

We next show that, if G2 and G3 are independent, then they are pseu- 

dorandom. If G2 and G3 are independent, there is no oracle circuit equipped 

with two types of oracle gates to distinguish them from two independently 

chosen random functions. In other words, the probability that such a family 

of oracle circuits distinguishes G2 and G3 from two independently chosen 

random functions is not greater than (or equal to) ~ for some constant c2 no2 

and for each n. As an oracle circuit with two types of oracle gates is a much 

stronger distinguisher than an oracle circuit with only one type of oracle 

gate, using only one type of oracle reduces the possibility of distinguishing. 

Hence, the following relations hold. 

I ProD{C~[G~] = 1} - Prob{C2~[P~] = 1} < 
1 I Prob{DC2~[G2,G3] = 1} - Prob{De2n[P2~,P~=] = 1} < 

nC2 

and also 

] Prob{C2=[G3] = 1} - Prob{C2~[P2~] = 1} < 
1 

[ Prob{DC2n[G2,G3] = 1} - Prob{DC~[P2~,P2=] = 1} < 
nC2 

The above inequalities show that both G2 and G3 are pseudorandom when 

they are independent. This completes the proof of Lemma 5.1. [] 
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T h e o r e m  5.1 Let f l , f 2 , . . . , f i  E Fn such that Ga = ~ b ( f i , . . . , f l )  is pseu- 
dorandom. Then Ga is super-pseudorandom if and only if G2 = ~b(fi,..., f2) 
and G3 = r 1 6 3  fi-1) ave independent permutations. 

P r o o f  : To prove Theorem 5.1, we prove two lemmas A and B.  

* L e m m a  A If G2 and G3 are independent, then G1 is super-pseudora- 
ndoTgt. 

To prove this, it is necessary to show that  G3 = r  and G~ = 

r  are independent of each other. Figure 5.4 shows these 

s t ructures  with respect to each other ,  The validity of this claim can be 

Figure 5.4: Ga and G3 with Respect  to Each Other  

i 

shown by contradiction. Assume that G1 and G3 are not independent ;  there 

exists a D-distinguishing circuit family for which 

I Prob{DC2~[Ga,-Gt] = 1} -Prob{D(Y~,~[P2n, P2=] = 1} 1>_ 1 
r/~c2 

for some constant c2. Wi thout  changing the inequality relation, we have 

I Prob{DCz,[G3, GI] = 1} - Prob{DC2,[G3, G3] = 1} + 
1 

Prob{DC2,~[G3, G3] = l} - Prob{DC2n[P2,~, P2n] = 1} I > - -  
- -  n c 2  

Then 

]Prob{DC2n[G3, G1] = 1} - P r o b { D G 2 , [ G 3 ,  G3] = 1}1 + 
1 

[Prob{DC2,[Ga,G3] = 1} - Prob{DC2n[P2n, P2,~] = 1} } > 
n c 2  
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If I Prob{DC~,[G3, G3] = 1} -Prob{DC2,~[P2,~,P2,] = 1} I> • for some 

constant  c, then Ga is not pseudorandom; this contradicts  our assumption.  

If lProb{DC2,[Ga,'d~ ] = 1 } -  Prob{DC2,[G3, G3] = 1} I> 1_ for some 

constant  c, then the oracle circuit distinguishes fi from a randomly  chosen 

function. This also contradicts our assumption tha t  fi is chosen from a 

pseudorandom function generator. Since both cases lead to contradictions, 

we conclude tha t  G3 and G1 are independent of each other. Note that ,  in 

order for G1 and Ga to be two independent permutat ions,  there is no need 

tha t  the pseudorandom function fi  be chosen independently of f l , . . . ,  f i ' l .  

By L e m m a  A, G2 and G3 are independent.  Hence 

1 
[ Prob{DC2.~[G2, G3] = 1} - Prob{DC2~[P2,~, P2~] = 1} [< - -  

T/,C2 

for any constant  c~. Without  changing the sign of inequality, we may rewrite 

the above relation as, 

[Prob{DC2.[G1,-G~ l = 1} - Prob{DC2.[G~,-G~] = 1} + 

Prob{DC2,~[Ga,-GI] = 1} - Prob{DC2,[Ga,G1] = 1} + 
1 

Prob{DC2,~[G2, G3] = 1} - ProD{DC2,~[P2,, P2~] = l} I < 
nc2 

Then 

Prob{DC2.[G2, G3] 1} ~' - -  = -Prob{D(.2.[Ga, G~] = 1}] 

Prob{nC2,~[Ga,-G~] = 1} - Prob{DC2.[G1,-Gx] = 1} [ 

[ Prob{DC2.[GI,-G1] = 1} - Prob{DC2.[P2.,P ,d = 1} I1 
1 

< 
Tic2 

Thus 

I Prob{DC2.[GI,-G~] = 1} - P r o b { D C 2 . [ P 2 . ,  P2.] = 1} 

]Prob{DC2,[G3,-G1] = 1} -Prob{DC2,~[Ga,-G1] = 1} 

+ 

1 
< 

rtc2 

Since it was assumed that  G2 and G3 are two independent permutat ions,  and 

so are G3 and G1, then lProb{DC2.[G~,G3] = 1} - P r o b {DC2 . [ G3 ,G1 ]  = 
1} [ is less than  & for any constant  c, since 

n c 

]Prob{DC2.[G2, G3] = 1} -Prob{DC2.[G3,-G1] = 1} I < 

I Prob{DC2=[G2, G3] = 1} - Prob{DC2.[P2., P2.] = 1} + 
1 

I Prob{DC2.[G3,'di] = 1} - Prob{DC~.[P2.,P~.] = 1} < - -  
r t  c 
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Hence, each of the above absolute values is less than 1 ~-q. In other  words 

I Prob{DC2,[GI,'G~] = 1} - Prob{DC2n[P2,, P2n] = 1} l< ~ 
//c2 

Hence G1 and G1 are independent of each other,  and G1 is a super-pseudo- 

random permutat ion,  as it is pseudorandom. 

To conclude Theorem 5.1, we also need Lemma B. 

�9 L e m m a  B If Ga is a super-pseudorandom permutation, then G~ and 
G3 are two independent permutations. 

According to the assumption of this lemma, we have that  

I Prob{DC2n[G1,-G~] = 1} -Prob{DC2,~[P2n,  P2,~] = 1} ]< 1_~ 
nc2 

for any constant  c2. Wi thout  changing the sign of inequality, 

I Prob{DC2n[G~,-C~] = 1} - Prob{DC2~[G3,-C~] = 1} + 

Prob{DC2n[G3, G1] = l} - Prob{DC2~[G3, G2] = 1} + 
1 Prob{DC2,~[Ga, G~] = 1} - Prob{DC~n[P2,,P2~] = 1} } < - -  

nC2 

Then 

I1 Prob{DC2,[G1,-dl] = 1} - P r o b { D C 2 n [ G 3 ,  G1] = 1}1 - 

r -~ [Prob{DC=,~[Ga,-G1] = 1} - P  ob{DC .[a3,a ] = 1}1 - 

1 
I Prob{DC2, [G3, G2] = 1} -Prob{DC n[P=,,, = 1} II < 

nr 

If either of G2 or G3 are not pseudorandom, it can be shown that  G1 is not 

super-pseudorandom. To justify this claim, suppose there is a probabil is t ic  

distinguishing circuit with m oracle gates which distinguishes Ga f rom a 

1 for some constant  c. random permuta t ion  with a probabil i ty be t te r  than ~ 

In other  words, when m inputs, i.e. Sj II Tj, are fed to its (only normal)  

oracle gates, the probabil i ty of obtaining a desired output  is bigger than ! no" 

Suppose that  a 2n bit string (R~ [[ L~) is fed to a normal  oracle gate of G1 

and the ou tpu t  is (Si II Ti). If (Ri l[ Li) is fed to G3, the ou tpu t  is ei ther 

(T~ ][ St) or (T[ II S~), depending on whether  Ga consists of an odd  or an 

even number  of rounds. Without  loss of generality, assume that  the ou tpu t  
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R L 

! 

S 
S+ct T 

S ' + ~ .  

Figure 5.5: When an Inverse and a Normal Gate are Applied with Each 
Other 

is (Ti II S~). Now, if (S; @ c~ II T~) is fed to an inverse oracle gate of G1, the 

output  is equivalent to the output of a normal oracle gate, G3, when it is fed 

with (S~ @ a II Td. This procedure is depicted in Figure 5.5. Hence, it is 

possible to obtain a desired output with a probability bet ter  than 3 ,  when 

m inverse oracle gates of G1 are examined with different values for ~. Then 

a probabilistic super-distinguishing circuit for G1 with at most m 2 normal 

oracles and m 2 inverse oracles would be able to yield the same output with 

the same probability. 

Suppose it can be proved that G3 is pseudorandom; then it can be 

shown that 
1 

I Prob{DC2,~[G1,-Ga] = 1} - Prob{DC2n[Ga,-G1] = 1} l< n-'-~ 

for any constant c, since G3 and G1 are independent of each other (this was 

proved in Lemma A). As G1 is assumed to be super-pseudorandom, the 

following inequality is also valid 

[ Prob{DC2n[Ga,-G1] = 1} - Prob{DC2,~[Ga, G2] --- 1} [ + 
1 

I Prob{DC2n[a3, G2] = 1} -Prob{DC2n[P2n, P2,~] = 1} [ < - -  nc2 
Hence 

1 
I Prob{DC2,~[G3, a21 = 1} - ProblDC2n[P~n, P:n] = 1} I< - -  

no2 
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In other words, G2 and G3 are independent of each other. 

the proof of Theorem 5.1. 

This completes 
[] 

C o r o l l a r y  5.1 Let f l , f 2 , . . . , f i  Er F, such that G1 = r  is a 
pseudorandom permutation. Then Ga is super-pseudorandom if and only if 

G2 = r  f2) and Ga = r  f~-~) are pseudorandom permutations. 

P r o o f  : As shown in Lemma 5.1, if f2 and fi-1 are two independent pseu- 

dorandom functions, and G2 and Ga are pseudorandom, then they are inde- 

pendent . .&s was shown in Theorem 5.1, when G2 and Ga are independent,  

G1 is super-pseudorandom. Moreover, it was shown that ,  if G1 is super- 

pseudorandom, then G2 and Ga are independent of each other, and when 

they are independent both are pseudorandom and satisfy the conditions of 

Theorem 5.1. This finishes the proof. [] 

Ohnishi showed that  it is possible to use two independent pseudoran- 

dom functions, instead of three, in a three round DES-like structure to obtain 

a pseudorandom permutation. That  is, ~b(f~, f2, fa) is a pseudorandom per- 

mutat ion generator [Ohnishi, 1988]. Applying his results and Theorem 5.1, 

we have the following corollary. 

C o r o l l a r y  5.2 Let f l , f2  Er F,; then Ga = r f l , f l )  is a super- 
pseudorandom permutation. 

Later Patarin also proved this corollary, using another method for the eval- 

uation of super-pseudorandomness [Patarin, 1992]. This structure is de- 

picted in Figure 5.6. It turns out that it is possible to construct super- 

distinguishing circuits with a distinguishing probability near 1 for some struc- 

tures. We now investigate selected structures and show how to construct 

super-distinguishing circuits for them. 

L e m m a  5.2 Let f Er H,~; then r  f ,  f, f )  is not super-pseudorandom and 

there is a super-distinguishing circuit SC2n with 4 normal and inverse oracle 

9ares. 

P r o o f  : By Theorem 5.1, ~b(f 2, f,  f ,  f )  is super-pseudorandom if ~b(f ~, f ,  f )  

and r  f ,  f )  are independent. Zheng, Matsumoto and Imai showed that  



90 Chapter 5 CONSTRUCTION OF SUPER-PSEUDORANDOM,. 

I 

[ 

Figure 5.6: A Super-Pseudorandom Permutation Generator with Two Pseu- 
dorandom Function Generators 

it is impossible to get a pseudorandom permutation with three rounds of 

DES-like permutations and a single random function [Zheng et al., 1990c]; so 

neither r  f,  f )  nor r  f ,  f )  are pseudorandom, and they are not there- 

fore independent. Therefore r  f, f ,  f )  cannot be a super-pseudorandom 

permutation by Theorem 5.1. The structure of a super-distinguishing circuit 

SC2~ is as follows. 

Let 00, 01,03 be normal oracle gates and let 02 be an inverse oracle 

gate. Denote by (L= II R=) and (S= II T~), respectively, the input to and the 

output of the u-th oracle gate, and denote by 0 '~ E E ~ an n-bit string of all 

0. 

1. The input to O0 is (L0 II/to) = (0 n II 0n) 

2. The input to 01 is (L1 II R1) = (0 '~ I[ ~/}~) 

3. The input to 02 is (L2 II R2) = (0 n 11 0n) 

4. The input to 03 is (L3 I[ R3) = (S~ ]] ~/~ | To) 

5. SC2~ outputs a 1 if and only if T3 = To @ T~ 

When a function r f, f ,  f)  is used to evaluate the oracle gates, the 

probability that SC2,~ outputs a 1, is equal to 1, and when a function is 
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drawn randomly and uniformly from P2~ the probability that SC2n outputs 
l i s  1 ~ .  Thus SC2,~ is a super-distinguishing circuit for r f, f, f). [] 

Figure 5.7 depicts this distinguishing circuit. 

E 

o 0 

=11~1 =." 

~ i r ~ l  = 

o 

,  q-TI-- 

, 

--r-7-q-- 

Figure 5.7: A Super-distinguishing Circuit for r  f, f, f)  

Lemma 5.2 can be generalized to the following theorem. 

Theo rem 5.2 Let f Cr Hn; there is a super-distinguishing circuit with p + 
q + 4 normal and inverse oracle gates for t~(f l, fk, f j ,  fl), where p and q 

satisfy 

i + j  - l = ( q - p ) ( j  + k) 

Proof  : Because of the results of Zheng, Matsumoto and Imai, neither 

r  fk, f j )  nor r if ,  fk) is pseudorandom [Zheng et al., 1990c]. Thus, 
by Theorem 5.1, ~b(f l, fk,  f j ,  fi) is not super-pseudorandom. We have con- 
structed a distinguisher for the following case. 
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Let 0o, 0 , , . . . ,  0,+1 and 0v+++3 be normal oracle gates and let Or+2 , 
. . . ,  Op+q+ ~ be inverse oracle gates, where p and q satisfy: i + j + k + p(j  + k) = 

l + k + q(j + k) or, 
i + j  - l = ( q - p ) ( j  + k) 

The structure of SC2n is as follows: 

1. The input to O0 is (Lo II Ro) = (0 = }1 0=) 

2. The input to 01 is (L1 II R1) = (0 = 11 To) and the input for 02 to 0v+l 

is (L,~ II R,,) = (0" II T=_, @ R=-I) 

3. The input to 0v+2 is (Lv+2 [[ Rv+2 ) = (0 n [[ 0 n) 

4. The input to 0pea is (Lp+3 ]1 Rp+3) = (Sv+3 II 0 ~) and the input for 
0,+4 to 0,+q+2 is (L~ [I R=) = (Lu-1 (~ T,,-1 [[ 0 n) 

5. The input to 0p+q+a is (Lv+q+3 H Rp+q+3) = (Sp+q+2 II T, + T,+q+=) 

6. SCan outputs a 1 if and only if Tv+q+3 = Tp ~ Tp+l 

When a function r  fk, i f ,  f i)  is used to evaluate the oracle gates 
and i + j + k + p(j  + k) = l + k + q(j + k), the probability that 6'2, outputs a 

1, is equal to 1, and when a function is drawn randomly and uniformly from 
P2,, the probability that C2, outputs 1, is equal to ~ .  [] Figure 5.8 

depicts this distinguishing circuit. 

5.4 Super-Pseudorandomness in 

Generalized DES-like Permutations 

A DES-like permutation is a permutation in P2= that uses functions in H,.  
Zheng, Matsumoto and Imai made three types of permutations in Pk,~ by 

generalizing the construction of the DES-like permutation and application 
of functions in H,~, and called them type-l, type-2 and type-3 Feistel trans- 
formations [Zheng et al., 1990d]. In this section, we show that k 2 rounds of 
type-1 transformations are required to get a super-pseudorandom permuta- 
tion. 
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0 0 

Op+2 
I 

0 

Op+3 

0 0 

0 0 
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I "IC~176 I 

Figure 5.8: A Distinguishing Circuit for ~(f l ,  fk,  f j ,  fi) 

First, we present the definition of type-1 transformations. Then, the 

necessary and sufficient conditions for the super-pseudorandomness of this 

type of transformation will be presented; accordingly, some cases which 

are pseudorandom but cannot be super pseudorandom, will be given. Fi- 

nally, we show that k 2 rounds of typed transformations produce a super- 

pseudorandom permutation. 

5 . 4 . 1  F e i s t e l - T y p e  T r a n s f o r m a t i o n s  

Type-1  T r a ns f o rma t ions  

Let gl,i E Ukn be a function associated with an fl E Hn and defined by 

gl,i(gl II B2 II . . .  II Bk) = (B2 | fi(B~) II B3 II-.-II II g l )  
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where Bj E E~ for 1 < j < k and k E N. Functions defined in such a way 

are called type-1 transformations ( See Figure 5.9). gl,i can be decomposed 

B1 B2 B3 �9 �9 �9 B k 

B 2 ~ f i ( B 1 )  B3  �9 �9 o B k B1 

Figure 5.9:Type-1 Feistel Type Transformations 

into gl,i = Lrot o 7rl,i, where 

~,,(B~ II B~ II...  II Bk) = (B~ II B~ �9 f i (B , ) I I  B3 I1... II Bk) 
Zro,(B~ II B~ II... II Bk) = (B~ II B3 II... II Bk II Ba) 

The function gl,i is an invertible permutation on Eke, and its inverse, denoted 

by gl,i is given by gl,i = 7r1,i o Rrot, where 

lrlrot(B1 II B2 }l ""  }] Bk) = (Bk II B1 I} B~ I1... II Bk-1) 

For f l ,  f 2 , . - . ,  f8 e H, ,  define r  f2, f l)  = gl,s o . . .  o ga,2 o gl,1. 

Note that  Ca is an invertible permutat ion on Ek,, and its inverse r is defined 

by 

• l ( f l ,  f 2 , ' ' " ,  fs) = g l ,10  gl,2 O . . .  O ffl,s 

Type-2 Transformations 

Let g2,i E Hkn be a function associated with a function tuple 

hi = (fi,~, fi,3, . . . , J~',2t-1), 

k and fi,j E H , ,  and defined by where I = ~ 

g2,1(B1 II B~ II...  [[ B k ) = ( B 2 @  fi,l(B1) ]1... It Bk-1 I[ Bk@fi , k - l (Bk-1)  ]1 B1) 

where B i E ~ for 1 < j < k and k E N ( See Figure 5.10). Functions defined 

in such a way are called type-2 transformations, g2,i can be decomposed into 
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B1 B2 B3 B4 �9 �9 �9 B k l  Bk 

B3 �9 " �9 B k l  BI 
B 2 $fi,1 (B 1 ) B4 efi,3 ( 133 ) Bk @fi,k-1 (B k-1 ) 

Figure 5.10:Type-2 Feistel-Type Transformations 

g2,i = Lrot o 7c2,i~ where 

~r2,i(B1 [[ B2 [[. . .  [[ Bk) = 

(B1 11 92 �9 f iA(B1)  11... 11 Bk-1 [I Bk �9 f i , k - l (Bk -1 ) )  

The function g2,i is an invertible permutation on E k~, and its inverse, denoted 

by g2,i is given by -g2,1 = 7c2,i o Rrot. 

For s-tuples of functions (hi, h2 , . . . ,  h~), define 

~b2( hs, . . . , h2, hi) = g2,s o . . .  o g2,2 o g2,1 

Note that  ~b2 is an invertible permutation on E kn, and its inverse ~2 is defined 

by 

r  h 2 , . . . ,  h~) = Y2,1 o ~/-2,2 o . . .  o g2,s 

T y p e - 3  T r a n s f o r m a t i o n s  

Let g2,i E Hk,~ be a function associated with a function-tuple 

hi = (fi,x,/i,3,..., fi,k-1) 

, where f~,j E H,~. Then g3,i is defined by 

93,,(B1 LL B~ II-.-LI B~) = (B~ �9 T,,~(B1) IL.-. II ~k �9 II B~) 

where Bj  E E n for 1 _< j _< k and k E N ( See Figure 5.11). Functions 

defined in such a way are called type-3 transformations. The function g3,i 

can be decomposed into 93,1 = Lrot o 7rz,i, where 

~r3,1(B1 ]l B2 II .-. [[ Bk) = (BI [[ 82 Ofi,l(B,)[[ ... [I Bk �9 f~,k-~(Bk-x)) 
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B1 B2 B3 . . . B k-1 Bk 

BI 
B2$fi, l(B1) B3r BkOfi, k-l(Bk-1) 

Figure 5.11:Type-3 Feistel-Type Transformations 

The function g3,i is an invertible permutation on E kn, and its inverse, denoted 

by g3,i is given by g3,i = ~3,i o Rrot. Note that  ~a,~(C1 II . . .  II Ck) ---- (BI II 
�9 .. II Bk), where BI = Ca and Bj = Cj • fl,j-l(Bj-1) for each 2 < j < k. It 

is easily seen that  ra,i is not an involution. 

For s-tuples of functions (hi, h2 , . . . ,  h,),  define 

r �9 �9 h2, hi) = g3,, o . . .  o g3,2 o g3,1 

Note that  r is an invertible permutat ion on E kn, and its inverse r is defined 

by 

r h2, . . . ,  hs) = Y3,1 o ~,2 o . . .  o y~,, 

5 . 4 . 2  S u p e r - P s e u d o r a n d o m n e s s  o f  T y p e - 1  T r a n s f o r -  

m a t i o n s  

Zheng, Matsumoto and Imai investigated the construction of provably se- 

cure block ciphers [Zheng et al., 1990d]. A by-product of their work was the 

construction of super-pseudorandom permutat ion generators from type-2 and 

type-3 transformations, where they proved that  s > k+2  rounds are required. 

In this subsection, we investigate the necessary and sufficient conditions for 

the construction of super-pseudorandom permutations based on type-1 Feis- 

tel permutations.  These conditions will be presented after some preliminary 

observations. Moreover, we show that k 2 rounds of such permutations yield 

a super-pseudorandom permutat ion generator. 
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A Few Observations 

It can be shown that  2k - 1 rounds of type-1 transformations, where each 

round is associated with a randomly and independently chosen function from 

F,~, is a pseudorandom permutation. 

The following lemma was proved by Zheng, Matsumoto,  and Imai in 

[Zheng et al., 1990d] and formally represents the above statement.  

L e m m a  5.8 Let Q be a polynomial in n and let Ck,~ be an oracle circuit with 

Q(n) < 2 ~ Oracle gates; then 

(k 1)Q2(n) 
I Prob{Ck~[Pk~] = 1}-Prob{Ck~[r  ,f~, f a)] = 1} I_< 2 n 

where f l ,  f 2 , . . . ,  f2k-1 er Fn. 

Although the above lemma states that  ~bl(f~k-1,..., f2, f l )  is pseudorandom, 

it is interesting to note that  this structure is not super-pseudorandom. This 

is proved in the following lemma, where a super-distinguishing circuit is pre- 

sented. 

L e m m a  5.4 For any f2k -1 , . . . , f 2 , f l  Er F~, there is super-distinguishing 

circuit SCkn for r  f2, f l) .  

P r o o f  : Let B1, B2 , . . . ,  Bk be strings of length n. The super-distinguishing 

circuit has two oracles, a normal oracle and an inverse oracle. The input to 

the normal oracle is B1 ]1 B2 II . . .  II Bk. Let $1 ]] 5:2 ]] . . .  ]] Sk be the output  

of this oracle. Let the input to the inverse oracle gate be $1 |  ]] $2 ]l .- .  H Sk 

where a is an arbitrary n-bit string. The output  of SC2n is 1 if and only 

if the last n bits of the output  from the inverse oracle gate are equal to 

Bk | a. It can be verified that the output  of SC2n is always 1 when the 

normal and inverse oracle gates are computed using r for the normal oracle 

gate and r for the inverse oracle gate. On the other hand, if the oracle gates 

are computed using a permutation randomly chosen from Pk,~, the output  of 

SCk, is 1 with probability ~ (see Figure 5.12). [] It can be easily verified 

that,  by using an inverse oracle together with a normal oracle, the effect of 
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B I B 2 II k 

- - - - -A I " - - I  
i NormalOracle 1 

I I . . . I  
Sz S 2 Sk 

. )  

I  ve so O a le 1 
I I - - - I  

BL+a 

Figure 5.12: A Distinguishing Circuit for r  f2, f l )  

f2k-, is virtually removed. In other words, the super-distinguisher actually 

evaluates the inverse oracle with 

r (fa,  f2,  �9 �9 �9 A ~ - 2 )  

which is not pseudorandom by any means. 

It can also be shown that the effect of f2k-2, . . . ,  fk+2 and fk can also be 

removed (individually) by procedures similar to those given in the proof of 

Theorem 5.1. If there existed a construction with type-1 transformations G1, 

such that, after removing the last k random functions in G1 and the first k 

random functions in G1, the remaining structures were pseudorandom, then 

G1 would be a super-pseudorandom permutation. 

Necessary and Sufllcient Conditions 

We now give the necessary and sufficient conditions for the super-pseudoran- 

domness of i rounds of type-1 transformations. 

Theorem 5.3 Let G1 = ~bl ( f i, . . . , f l ) be a pseudorandom permutation where 

G1 E Pkn and consists of i rounds of type-1 transformations and f l ,  f2, . . . ,  

f i  Er H, .  Then Gz is a super-pseudorandom permutation if and only if 

a2,j -= r  o Lrot o r  and Gzj = ~ l ( f l , - - . , ~ - j )  o 
R~ot o r  fi) are pseudorandom permutations for j = 1 ,2 , . . . ,  k 

and  i - j # kl ,  where  l = [~1.  
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P r o o f  : Note that a type-1 transformation is a generalization of a DES-like 

permutation, and that the effect of f i- j+l in the inverse oracle gates and the 

effect of f j  in normal oracle gates can be removed individually by applying 

normal and oraclegates for j = 1, 2 , . . . ,  k and i - j # kl, where 1 = [~]. 

To justify the theorem, the two following claims need to be proved for 

each j .  

1. If Ga is super-pseudorandom, then G2,j and Ga,j are pseudorandom. 

2. If G2,j and G3,j are pseudorandom, then G1 is super-pseudorandom. 

The validity of the above claims can be checked for each j .  For instance, 

consider j = 1; then G2,1 = r  f2)o Lrot and G3,1 = r  f~-a)o 

Rrot. As in the proof of Lemma 5.1, it can be shown that G2,1 and Ga,1 are 

independent if and only if they are pseudorandom. In addition, as in the 

proof of Theorem 5.1, it can be shown that, if G2,1 and G3,1 are independent, 

then G1 is super-pseudorandom. For j = 2 , . . . ,  k the proofs can be obtained 

by a similar method. Note that when i - j  = [~J k, the effect of fl-j+l c a n n o t  

be removed with inverse and normal oracle gates, because of the structure of 

type-1 transformations; so it is not necessary to prove the above claims for it. 

Since all possible reductions of ~bl and ~b 1 remain pseudorandom having even 

super-distinguishing circuits, then ~bl is a super-pseudorandom permutation. 
[] 

Although it was already stated in Lemma 5.3 that 2 k - 1  rounds of type- 

1 permutations ~bl give a pseudorandom permutation, 3k - 2 rounds of this 

transformation do not necessarily yield a super-pseudorandom permutation 

since 2k - 1 rounds, or even 3k - 2 rounds, of its inverse transformation ~ do 

not result in pseudorandomness. It can be shown that k(k - 1) + 1 rounds 

of ~ result in pseudorandomness. This is formMly stated in the following 

lemma. 

L e m m a  5.5 Let r be a permutation defined by 

~ l ( f k 2 - k + l ,  . ' '  , f 2 ,  fl) ---= g ' l , k 2 - k + l  0 . . .  0 e l , 2  0 ffl ,1 
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Let Q be a polynomial in n and let Ck~ be an oracle circuit with Q(n)  < 2 n 

oracle gates; then 

I Prob{Ck,~[Pk,~] = 1} - Prob{Ck~[r  f2,f~)] = 1} I< 
< (k 2 - k + 1)QS(n) 
- -  2n+1 

where f l , f 2 , . . .  ,fk2-k+l Er Hn. 

P r o o f  : The  proof of this l emma is very similar to the proof of L e m m a  5.3 

presented in [Zheng et al., 1990d]. The method  for proof is the  same as the 

me thod  developed in [Luby and Rackoff, 1988] for proving the pseudoran- 

domness of r  g, f ) .  

Here, we use the notat ion from [Zheng, 1990]. Assume that  Ck~ is an 

oracle circuit with Q(n)  2 oracle gates, which are numbered  1, 2 , . . . ,  Q. The 

inputs  to the  oracle gates are all different. Let fl be the probabi l i ty  space 

on (k 2 - k + 1)nQ bit strings with the uniform probabil i ty distr ibution.  Any 

w E fl can be  wri t ten as w = wlw2...w(k2-k+l)=r For each 1 < i < Q, 

1 < j < 2k - 1, define a random variable Xi,j as follows: 

X i , j @ )  = ~ b + l  . . . ~ b + ~  

where b = j n Q  + (i - 1)n. There is a total of (k 2 - k + 1)Q such variables. 

For each 1 < j < k s - k + 1, let X j @ )  = XI , j (~)  II Xs,s(~) I1. . .  II X~,S(~),  

At a sample point  w E ~,  Pi-gate is defined as follows: 

Pi-gate: 

The input  is (Bi,1 II Bi,s I I . . .  II B~,k). 

ui,a = m i n { d  : 1 < d < i and Bi,1 = Ba,1}. 

We let Bi,2 = Bi,1 @ X~,,1,1. 

For 2 < j < k 2 - k + 1, do the following operations. 

If j is a multiple of k do: 

uid = m i n { d  : 1 < d < i and Bi,k = Bd,k}, 

and let Bi,1 = Bi,k | X~. ,  d 

2Q(n) is abbreviated to Q. 
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otherwise do: 

u~,j = m i n { d  : 1 < d < i and Bi,jmodk -= B~,jmoak}, 

and let Bi,jmodk+l = Bi,jmodk 0 Xui,j 5" 

The output is (Bi,k [[ Bi,1 [[. . .  [[ Bi,k-1). 

Note that the structure of a Pi-gate is similar to r  f~, fa). 

Let the random variable C(w) be the output of the circuit Ck,~ when the oracle 

gates are evaluated by the above/~ and let E(C)  be the expectation 

of C(w).  Hence, the value of E(C)  is equal to the probability that C(w) = 1. 

We now describe a random variable C I which is equal to the output bit 

of the distinguishing circuit Ck~ when the oracle gates are evaluated with 

r  f2, f~)- Then we show that E ( C )  = E(C' ) .  

Let the random variable C'(w) be the output of the circuit Ck~ when 

the oracle gates are evaluated by the introduction of P'-gates. A P'-gate is 

described as follows: 

P/-gate: 

The input is ( Bi,1 [[ Bi,2 ][...  ][ Bi,k). 

ui,1 = m i n { d  : 1 < d < i and Bi,a = B~,a}, 

and let Bi,2 = Bi,1 | X~,i,l,1. 

For 2 < j < k 2 - k + 1, do the following operations. 

If j is a multiple of k do: 

ui,j = ra in{d:  1 < d < i and Bi,A: = Bd,k}, 

and let X/,j = B~,k | Xij ,  

and let Bi,1 = Bi,k 0 X~ui,j,j 

otherwise do: 

u~,j = m i n { d  : 1 < d < i and Bi,jmoak = Bd,jmoak}, 

and let X[,j = Bi,jmodk 0 Xi , j ,  

and let Bi,jmodk+ 1 = Bi,jmodk @ Xtui,j,j 



102 Chapter 5 CONSTRUCTION OF SUPER-PSEUDORANDOM... 

The output is (Bi,k ]] Bi,1 ][... II Bi,k_~) 

It is clear that E(C') = Prob{Ck~[r f2, fl)] = 1}. Now 

we show that E(C) = E(C'). Note that Xi,i(w) has a uniform distribution 

on N". As, at each round, Bi,j does not depend on Xi,j, then X .~. = Bib 

Xi5 also has a uniform distribution on ~ .  Hence, E(C) and E(C') are 

identical. Let A be the random variable which is defined to be the output of 

the distinguisher Ck~ when the oracle gates are evaluated exactly the same 

way as in the definition of a P' gate, except that the output of the i-th oracle 

gate is (Xi,~ II Xi,2 II . . .  II Xi,i). Because A is determined by Ck~ when 

the output values from each oracle gate are independently and identically 

distributed random variables and because Ck~ never repeats an input value 

to an oracle gate, E(A) = Prob{Ck~[Hk~] = 1}. Then, it follows that 

[ Prob{ek,~[H~] = 1} -Prob{ek,~[r  f2, f 1)] = 1} [= 

=[ E(A) - E(C') I 

For w E ~, if there are pairs (d, i) with 1 < d < i < Q such that 

B~,2 = Bi,2, then X1 is called bad. As there are Q oracle gates, then the 

probability that X1 is bad is 

Q: 
Prob{Xl@) is bad } - Q(Q - 1) < 

2n+1 - -  2 n + l  

Similarly, for w E ~, if there are pairs (d, i) with 1 _< d < i < Q such that 

Bd,i+l = Bi,i+l, then Xj is called bad. The probability that Xj is bad is 

Q2 
erob{Xj(w) is bad } < 2n+1 

If Xj(w) is not bad for all 1 < j G k 2 - k + 1, then A(w) = C'(w). Thus we 

have 

[ Prob{Ck.[Hk~] = 1} - Prob{Ckn[~b2(fk2_.k+l,. . .  , f2,  f l ) ]  = 1} [ <  

< (k  2 - k + 1)O 2 
- -  2 n + 1  

This completes the proof of the lemma. [] 

Since, according to Theorem 5.3, by the application of normal and 

reverse oracle gates, the effect of at most k - 1 rounds of r and k - 1 rounds 
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of r can be removed, k 2 = k 2 - k + 1 + ( k  - 1 )  > 2k - 1 + (k - 1) rounds of 

type-1 transformations can resist super-distinguishing circuits. This is stated 

formally in the following theorem. 

T h e o r e m  5.4 Let Q be a polynomial in n and SCkn be a super-distinguishing 

circuit with Q(n) < 2 ~ normal and inverse oracle gates; then 

[ Prob{SCkn[Pk,~] = 1} - Prob{SCkn[r .. f2,f l)]  = 1} I< k2Q2(n) 
, �9 ~ 2 . D ,  

where f l ,  f 2 , . . . ,  fk2 er Hn. 

P r o o f  : To obtain a pseudorandom permutation, G2,j and G3,j should be 

pseudorandom for j = 1, 2 , . . . ,  k - 1, where, for eX(fk2,.. �9 f2, f l ) ,  

C2,j = • l ( f k 2 , . . . ,  f j+ l )  O Lro, o ~ ; l ( f j - 1 , . . .  , f l )  

and 
- -  w 

C3,j = r  f k2 - j )  o t~ro t o r  fk 2) 

G2,j is partitioned into two parts where a part always consists of more than 

2k - 1 rounds. So, in the normal oracles, even if the effect of the other k - 1 

rounds of r could be removed, the remaining oracle gates would maintain 

pseudorandomness. G3,j is also partitioned into two parts where a part always 

consists of at least k 2 - k + 1 rounds; so, in the inverse oracles, even if the 

effect of the other k - 1 rounds of r could be removed, the remaining would 

maintain pseudorandomness. Hence, G2,j and G3,j are pseudorandom for 

all j = 1 , 2 , . . . ,  k - 1, and G1 is a super-pseudorandom permutation. The 

probability that a super-distinguishing circuit outputs 1, in the worst case, 

is equal to the probability that a distinguishing circuit for ~'1 outputs 1, plus 

the probability that a distinguishing circuit 5)r r outputs 1, and is less than 
k2Q2('~) [] 

2 n 

5.5 C o n c l u s i o n s  and  O p e n  P r o b l e m s  

In the first part of this chapter, we presented the necessary and sufficient 

conditions for the construction of super-pseudorandom permutation gener- 

ators based on DES-like permutations. If a block cryptosystem is super- 

pseudorandom, it is secure against the chosen plaintext/ciphertext attack 
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which is a much stronger attack than a chosen plaintext attack. We also 

showed that r f ,  f ) ,  a cryptosystem which consists of DES-like permu- 

tations and is secure against chosen plaintext attacks, can be enhanced to 

a super-pseudorandom cryptosystem, that is, r  by adding one 

more round of DES-like permutations. It still remains to be shown how to 
construct a super-pseudorandom permutation from a single pseudorandom 

function. We give a solution to this question in Chapter 6. 

In the second part, we investigated the conditions for the super-pseudo- 

randomness of constructions based on type-1 generalized Feistel permuta- 

tions. We showed that the composition of k 2 rounds of such permutations 

with k 2 pseudorandom function generators, yields a super-pseudorandom per- 

mutation generator. It can be shown that ~bl(fk-1,..., fl, fk, fk-a , . . . ,  f l) is 

not pseudorandom although it consists of 2 k -  1 rounds of DES-like permuta- 

tions. On the other hand, it can be conjectured that r  �9 �9 �9 f2, f a , . . . ,  f l ) ,  

where f l  is used in k rounds and f2 is used in k - 1, is pseudorandom. It 

remains to be discovered what is the minimum number of random functions 

needed to achieve super-pseudorandomness with k 2 rounds of type-1 transfor- 

mations. 



C h a p t e r  6 

A Sound Structure  

6.1 I n t r o d u c t i o n  

As we mentioned in Chapter 4, Lnby and Rackoff employed a structure with 

three rounds of DES-like permutations to build a pseudorandom permuta- 

tion generator, and considered their result a justification for the application 

of DES-like permutations in the design of DES. They also proved that four 

rounds of such permutations would provide a super-pseudorandom permu- 

tation generator. An implication of this result, is that a greater number 

of rounds gives better security. In this chapter, we show how to construct 

a super-pseudorandom permutation generator from a single pseudorandom 

function generator. This structure is obtained by some modificai~ions in the 

structure proposed by Luby and Rackoff. 

Clearly, the composition of two or more Luby and Rackoff permutation 

generators is also pseudorandom. One would expect that for the resulting 

structure, the probability of distinguishing drops to zero if a large enough 

number of Luby-Rackoff generators is used, Although, the probability of 

distinguishing can be made as small as requested, it will never drop to zero. 

Since for any n there is a finite number of compositions after which the alter- 

nating group A2~ C P2~ would be generated, there should be a better way to 

design a permutation generator. Pieprzyk and Sadeghiyan constructed such 

an improved version of the Luby and Rackoff construction [Pieprzyk and Sa- 

deghiyan, 1991]. In Section 6.2, some properties of the Luby and Rackoff 
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construction together with a brief explanation of their proof are examined. 

Then the improved construction of Pieprzyk and Sadeghiyan is presented, 

and it is shown that the composition of two Luby and Rackoff structures 

with four random function generators and two random permutation genera- 

tors provides a perfect randomizer. At the end, we present the construction 

of the super-pseudorandom permutation generator with a single pseudoran- 

dom function generator. We recommend that this structure be used in the 

design of block ciphers, as it exhibits better cryptographic strength and has 

a simple configuration. 

The results of this chapter have been presented in [Pieprzyk and Sa- 

deghiyan, 1991] and [Sadeghiyan and Pieprzyk, 1992]. 

6.2  P r e l i m i n a r i e s  

In Chapter 4, we defined DES-like permutations and their compositions, 

where, given a sequence of functions fl ,  f 2 , ' " ,  fi E Hn, the composition of 

their DES-like permutations ~b is defined as 

r  f i - 1 , . . . ,  f l )  = D2,,I, o D2=,I~_, o . . .  o D2=,fl 

with r  f i - 1 , . . . , f l )  e P2n. For the selection of functions fj for j = 

1 , - . . ,  i, there are two possible cases. 

The functions are chosen randomly from different pseudorandom func- 

tion generators, that is f~ Er F~. For conciseness, we will say that the 

functions are pseudorandom. The resulting permutation ~ is pseudo- 

random for i = 3, 4 , . . . .  

The functions are chosen randomly from the set of all functions in n, 

that is, f; Er H~. For conciseness, we will say the functions are random. 

The resulting permutation generator is called a randomizer. 

To draw some conclusions about the quality of the structured permuta- 

tions based on either pseudorandom or truly random functions, distinguishing 

circuits introduced in Chapter 4 are used. Structured permutation genera- 

tors can first be assessed applying truly random functions. Then, if the 
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structure is sound, pseudorandom functions may replace the truly random 

ones. For example, Luby and Rackoff first considered the permutation gener- 

ator r  g, h) with three rounds of DES and three random functions f ,  g, h. 

They proved that 

rn 2 
[ Prob{C2~[P2n] = 1} - Prob{C2,~[r = 1} 1< 2n (6.1) 

where m is the number of oracle gates and m < 2 n. When f , g ,  h Er H,~, 

this structure is called an L-R randomizer. They showed that the structure 

r  g, h) can be "transparent" to the input and proved the necessary con- 

ditions for "a leakage" input information to the output. To prove this, they 

chose an w E ~, where ~ = E 3ran is the sample space with uniform prob- 

ability distribution, that is, for all w E I I ,  Prob{w) = 1 23m,. Then w was 

divided into three (m • n)-bit strings, called X, Y, Z, respectively, and each 

was divided into m n-bit segments. The strings X,  Y and Z were applied 

to construct gates with a similar structure to r  For there to be a 

leakage of information from the input to the output of the gate, two of the 

m segments of X or Y must have the same value. This is called a collision 

of those two segments. If there is no leakage of the input to the output ,  they 

said that w is preserving, where any distinguishing circuit cannot make a 

decision whether the generator used to evaluate the oracle gates was P2n or 

r  g, f ) .  Then they showed that if the random functions were replaced by 

pseudorandom ones, then the probability of distinguishing between outputs  

would remain less than 1 over any polynomial in n. 

w is preserving means that all the outputs of the oracle gates are inde- 

pendent from the input (and from each other). When w is NOT preserving 

means that there is at least one pair of oracle gates such that their outputs  

are related to their inputs and this relation can be used to distinguish ~ from 

Pen. 

Note that if w is preserving in a distinguishing circuit, then the dis- 

tinguisher cannot find any pair of oracle gates with outputs related to its 

inputs. Luby and Rackoff showed that the leakage of the input happens only 

in two cases, Y is bad or X is bad. 

Y is bad if there is a pair of oracle gates (Oi, Oj) such that the random 

function g collides, which is the case where g gives the same output  for two 

different inputs. Figure 6.1 depicts this case. It happens when the input 
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random variables are such that  R = Ri = Rj, but Li ~ Lj. It is obvious that  

oi 

r 

( 

: ~ 

O~ 
J 

R i = R  

' ( 

I ( 

q 

~ V r ]  

Rj -- R 

Figure 6.1: Y is Bad in Two Oracle Gates (Oi, Oj) 

cq= L~(g f (R )  and c~j= Lj(g f (R )  

and, as Li 5~ Lj, then ai 5~ aj.  Hence the random function g assigns two 

independent random variables g(ai) and g(aj), and the outputs  ilk, flj are 

independent from the input. The outputs "~i, 7j are also independent only 

if the random variables g(a~), g(aj) take on different values. Otherwise, if 

fl~ = ~j (this may happen with probability ~ for a single pair of oracle gates), 

7i, 7j are related. This may happen only if the function g collides, that  is, 

and then 

g(ai) = g(aj) = Y 

~/i = cq (9 h(Y) 

7j = aj @ h(Y) 

In this case, 74 (9 7i = Li (9 Lj always. 

The second possibility for input information leakage to the output  hap- 

pens when X is bad (see Figure 6.2). It can happen only if Ri # Rj. The ran- 

dom function f assigns two independent random variables f (R i )  and f (Ri ) ;  

as a result, the output  variables 7i, 7j are independent of the input. The 

input information can pass through ~ to the output  if a = ai = aj (this 

happens with probability 1 for a single pair of gates). Then 

~ = R~ (9 g ( ~ )  

~j = Rj �9 g(~) 



6.2 Preliminaries 109 
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Figure 6.2: X is Bad in Two Oracle Gates (O~, Oj) 

In this case,/~i @/3j = Ri | Rj always. 

The distinguisher can apply two strategies: the first one "hunting for 

( Y  is bad)" or the second one "hunting for (X is bad)'. Luby and Rackoff 

cMculated that the probability Pv that Y is bad in at least one pair of gates 

is 
PY <_ m ( m - 1 )  1 

2 2 n 

where ~(,~-1) is the number of different pairs of gates if the distinguisher has 2 

m oracle gates. In the second strategy, the distinguisher selects different Ri 

for all oracle gates and the probability Px that X is bad in at least one pair 

of oracle gates is 
m(m - 1) 1 

Px_< 
2 2 n 

Obviously if a distinguisher applies some mixed strategy, then 

m 2 
Prob[co is NOT preserving] < Py + Px <_ 2--g- 

Now consider a randomizer q2 = r  h) o ~b2(f,g, h) which is con- 

structed from two L-R randomizers, co is NOT preserving in ~2 if there is 

at least one pair of oracle gates Oi, Oj for which Y is bad or X is bad in 

the first randomizer r Figure 6.3 shows the pair with Y is bad (note that 

R i  = /~j = /~) .  Clearly the outputs 71~, 3'j~ are independent of the input. /31~ 

and ~j~. However, the outputs may be related if fill = ~Jl (with probability 

2~1 for a single pair of oracles (Oi, Oi) ) and c% = ai2 (this happens with 

probability ~ in a single pair of oracle gates). Therefore the probability of 
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Figure 6.3: Y is Bad in Two Oracle Gates (Oi, Oj) for ~2 

Y being bad in a single pair of oracle gates is 22-~. Considering all the possible 
pairs of gates, we can conclude that the probability Pv that Y is bad in tY2 
is 

P r  - m ( m  - 1) 1 
2 2 2'~ 

The second case when X is bad in r is presented in Figure 6.4, where 
Ri ~ Rj. Clearly, the outputs ~i2, flJ2 are independent from the input. If 
X is bad in (Oi, Oj), then a i l =  ajl = a and consequently fli~ = Ri @ g(o~) 

and fl31 = Rj @ 9(a). The function h in Ca generates two independent 
random variables. Thus 7 = 3% = 7j1 with probability 1 and the relation 
to the input remains. The random function g in r assigns two independent 

random variables and the outputs 7i2, 7j~ are related only if/3 =/3i2 =/3J2 

(with probability ~) .  Therefore X is bad in q~ for a single pair of oracle 

gates with probability 23--~. If a distinguisher uses some strategy to tell apart 
the tested permutation generator, the probability of its success is 

Prob[w is NOT preserving in k~2] _< re(m2- 1) (2_~ + 2 - ~ 1  1 ) 

Hence, we have proved the following theorem. 
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Figure 6.4: X is Bad in Two Oracle Gates (Oi, Oj) for g)2 

T h e o r e m  6.1 The randomizer % = r  h)oy)2(f,g, h), where f , g ,  h Er 

[In, does not have a distinguisher and 

m2 ( 1  1 )  (6.2) [ Prob{C2~[P2,~] = 1} - Prob{C2,~[ffJ2] = l} {_< -~- ~ + 

where m < 2 '~ is the number of oracle gates in the distinguisher. 

It is easy to generalize the previous theorem for the composition of 
k = 2, 3, 4 , . . .  L-R randomizers. As the parameter k grows, the probability 
of distinguishing becomes smaller for the generator 

C k  = h , )  o . . .  o Vk(A,g , �9 

k 

T h e o r e m  6.2 The randomizer ~k, where fl,gi, hi Gr H,~ and i = 1 , . . . , k ,  
does not have a distinguisher and 

m~ ( 1  1 ) ( 6 . 3 )  [ Prob{C2n[P2,~] = 1} - Prob{C2n[gYk] = 1} [< y ~ + 2(2U_l)n 

where m <_ 2 '~ is the number of oracle gates in the distinguisher. 
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Perfect  R a n d o m i z e r s  

In Section 6.2, we saw that the composition of L-R randomizers does not 

have any distinguisher with m oracle gates, where m _< 2 ~. There is always 

a small probability of success no matter  how many elementary randomizers 

are used. Since for any parameter n there is a finite number of compositions, 

after which the alternating group A2~ C P2~ is generated 1, there must be a 

better way to design a permutation generator. 

In this section, we show how to improve the L-R randomizer to obtain 

the so-called perfect randomizer. Perfectness is defined as follows [Pieprzyk 

and Sadeghiyan, 1991]: 

Def in i t i on  6.1 A randomizer is perfect if, for all oracle gates used by the 

distinguisher, their outputs are independen t of their inputs and independent 

of each other. 

In the next theorem, a modification in the L-R randomizer structure is made 

and it is shown that the change does not diminish its quality. At the same 

time the modified randomizer has a further desired property, as one output 

branch (3' output) is always independent of the input. 

T h e o r e m  6.3 Let f ,  h Er Hn and g* Er Pn; then the randomizer r  h), 

does not have any distinguisher and 

m 2 

] Pr[C~,~(P2,~)] - Pr[C2,(r l< ~ (6.4) 

where m <_ 2 n is the number of oracle gates in the distinguisher. 

P r o o f  : For the proof of the above theorem, the main idea that Luby and 

Rackoff used in their proof is adopted in the following explanations. Using 

their notation, it can be said that w is NOT preserving in r if Y is bad or 

X is bad. If Y is bad in a pair of oracle gates (Oi, Oj), then R = Ri = Rj 

and ai ~ aj (see Figure 6.5). Therefore the random permutation g* assigns 

1The number of compositions may be exponential in n. In [Pieprzyk and Zhang, 1990], 
it is shown that it is possible to produce (2n)! different permutations, having (2 ~ ). gener- 
ators. 
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O. 
I ]I~ [Ri=R 

I 

O. J 
q 

~j 

Rj=R 

t 
Figure 6.5: Y is Bad in Two Oracle Gates (0,, Oj) for r  g*, h) 

two different random variables Y/, Yj, which never collide, and the random 

function h generates two independent random variables, that  is, the outputs 

7/, Vj are independent of the input. The distinguisher , however, can work on 

t3,-,/3j as they are generated according to a different probability distribution 

(they are random permutations). Clearly,/3/and/3j are always different if the 

oracle gates are evaluated by r If all the oracle gates are evaluated by P2,, 

then/31 may collide, where i = l, 2 , . . . ,  m. When oracle gates are evaluated 

by P'2n, the probability tha t /3 /do not collide is 

2"! 

2~m(2 " - m ) !  

Thus the probability Py, that is, Y is bad and the distinguisher succeeds in 

finding a collision when the oracle gates are evaluated by F2n, is 

Pv = l -  2"! < m(m + l) 
2rim(2" -- m)! -- 2-+1 

Consider the second case when X is bad, where R/ ~ Rj. This case 

is identical to that in Figure 6.2. The random function f assigns two in- 

dependent random variables f(Ri) and f(Rj) .  The outputs 71 and 7j are 

independent of the input. The probability Px is precisely the same as for 

the original L-R randomizer. Therefore 

m ( m - 1 )  1 m(m + l) 
Prob[co is NOT preserving in ~ ]  <_ Px + Pv <_ + 

2 2 n 2 TM 

and the final result follows. [] 

Now we are ready for the main theorem of this section. 
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T h e o r e m  6.4 Let fl , f2, hl,h2 E~ H,~ and g~,g~ E~ Pn. The randomizer 

ql~ = r  hi) o r h2) is perfect when the number of oracle gates 
m <2  '~. 

P r o o f  : If all ~(,~-1) possible pairs of oracle gates are considered and 2 
none of the pairs is transparent to the input, it means that  ~2 is perfect, 

or, in Luby and Rackoff's terms, w is preserving. Consider a single pair of 

O. 1 
R i 

IIs~ 2 ]7i 2 

O. 

J Ih Rj 

ll3j2 152 

Figure 6.6: Two Oracle Gates (Oi, 03) Evaluated by gl~ 

oracle gates (Oi, Oj). We are going to show that its outputs  (j3i2, flJ2) and 

(3'i2, 7j2) are independent of the input variables (see Figure 6.6). According 

to the previous lemma, the outputs 3% and 7.h are always independent of the 

input; so are the outputs (fli2,/~J~). 

Now take the randomizer ~b2 which is fed by two pairs /~i~ ,0% and 

/~j~, 7j~- There are two possible cases. 

1. 7q and 7jl assume different values (this happens with probability 1 - 

1 ) .  It turns out that  f2 assigns two independent random variables, 

and 712 and 7j2 are independent of the input. 
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2. 0% and 7Jl have the same value (this happens with probability ~ ) .  

Thus ai2 5r aj~ and the permutation g" generates two different values. 

Finally, the random function h~ makes ")'i2 and 7j2 independent of the 

input. 

[] 

Random permutations g~', g~ play an important  role as far as single ran- 

domizers are concerned. However, ~2 randomizers can be replaced by a fixed 

permutat ion,  for instance, the identity permutation. Such a permutat ion can 

be written as 9~ = g] = 1. Hence, we have the following corollary. 

Corol lary 6.1 Let f l ,  f2, hi, h2 Er H~; then the randomizer 

~ *  = Ca(f1, 1, ha) o r 1, h2) 

is perfect, when the number of oracle gates m <_ 2 '~. 

The structure ~ *  is optimal as it uses six DES rounds and four different 

random functions. 

Perfectness implies that the randomizer 

~2 = • l ( f l ,g l ,h l )  o ~b2(f2,g2, 2) 

does not leak any information about the input to the output .  Luby and 

Rackoff said that ,  in this case, w is preserving. When co is preserving, the 

distinguisher works only on the knowledge of the output  (it obviously selects 

different input values but their values are not important) .  

From the above work, [Pieprzyk and Sadeghiyan, 1991] draw six con- 

clusions about the design of pseudorandorn permutat ion generators. We 

draw attention to three of these conclusions which can help in the design 

of a super-pseudorandom permutation generator from a single pseudoran- 

dora function generator, or a sound structure to be applied in the design of 

block-cipher-based hash schemes. 

1. As the outputs  of all oracle gates (ev,!duated by q~ or q**2) are in- 

dependent random variables, the knowledge of their inputs does not 

provide any useful information to the distinguisher. 
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2. Most of the DES-type cryptosystems use the structure ~(fl ,  f 2 , ' " ,  fk), 
where the fi (i = 1 , . . . ,  k) are functions generated by a short crypto- 

graphic key. The functions are neither random nor pseudorandom. As 

far as random functions are employed, the structure 

r 1, f2,/3,1,  �9 �9 �9 A - l ,  1, fk) 

is better than r f 2 , " ' ,  fk), as it is a perfect randomizer. 

3. The alternating group A2,~ of the group of all permutations P2n can be 

generated using a finite number of concatenations of r [Pieprzyk and 

Zhang, 1990]. Thus 

I Prob[C2~(P2~)] - Prob[C2~(~)] I= 0 

Note that [ Pr[C2n(F2~)] - Pr[C2~(k~;)] I> O, as it is possible to design 

a distinguisher which can tell apart F2~ from ~ with small probability. 

The distinguisher tries to get the same output in two different oracle 

gates for two different messages. It can succeed only if the oracle gates 

are evaluated by F2~ (for oracle gates evaluated by ~ ,  any output is 

different for different input). 

So far we have presented the result of Pieprzyk and Sadeghiyan for the 

construction of a perfect randomizer. We included this result and related 

explanations in order to use the recommended structure for the construction 

of a super-pseudorandom permutation generator from a single pseudorandom 

function generator based on DES-like permutations. 

6.4 A C o n s t r u c t i o n  for S u p e r - P s e u d o r a n -  

d o m  P e r m u t a t i o n  Generators  

In Chapter 5, the necessary and sufficient conditions for the construction 

of super-pseudorandom permutation generators based on DES-like permu- 

tations were investigated. It was also shown that r  is super- 

pseudorandom, it is a structure with two pseudorandom functions and four 

DES-like permutations. This result was an improvement upon the result 

shown by Luby and Rackoff, where they demonstrated that r  g, f ,  e) with 
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four pseudorandom function generators is a super-pseudorandom permuta- 

tion generator. However the question of how to construct super-pseudoran- 

dom permutations from a single pseudorandom function remained an open 

problem. 

In the remainder of this chapter, we answer the above question and 

present a construction based on a single pseudorandom function which is 

super-pseudorandom. We take advantage of a structure ~b(h, l , f ,h , l , f )  
which is similar to that of the perfect randomizer presented earlier in Sec- 

tion 6.3, where not only the output is independent of the input but also the 

two branches of the output are independent of each other. First we show 

that the above structure provides us with a super-pseudorandom permuta- 

tion generator. Then, we present a construction based on a single pseudo- 

random function, which replaces one of the pseudorandom functions with 

a two-fold composition of the other one, that is, ~b(ff, 1, f ,  i f ,  1, f ) ,  which 

is indistinguishable from the previous one. Finally, we show that the con- 

struction is super-pseudorandom. Hence, it is possible to construct a super- 

pseudorandom permutation from a single pseudorandom function, where we 

need six rounds of DES-like permutations and six references to the pseudo- 

random function. 

6.4.1 S u p e r - P s e u d o r a n d o m n e s s  of  ~(h, 1, f,  h, 1, f )  

To construct a super-pseudorandom permutation generator based on a sin- 

gle pseudorandom function, we first show that G~ = ~(h, 1, f )  o ~(h,  1, f )  

is a super-pseudorandom permutation generator. Then we show that,  if f2 

is substituted for h, G1 = r  1, f, f2, 1, f) is also super-pseudorandom. 

To show that G1 is a super-pseudorandom permutation generator, we first 

show that G2 = r  1, f ,  h, 1) and G3 = ~( f ,  1, h,f,  1) are not only pseu- 

dorandom but also independent permutations. Then we show that G1 is 

super-pseudorandom. 

L e m m a  6 .1  Let h , f  Er Hn be independent random functions and G2 = 

r  1, f ,  h, 1). Then 

m 2 r n  2 

I Prob{C2n[G2] = 1} - Prob{C2n[P2,~] = 1} I_< ~-j + 22---g 
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where C2,~ is any polynomial size distinguishing circuit with m < 2 '~ oracle 

gates. 

P r o o f  : When the distinguisher examines an oracle, the input is a 2n bit 

string ( i  II R) and the output is a 2n bit string (S II T) where 

S = i @ R (9 f ( i  (9 h(L (9 R)) (9 h(R (9 h(L (9 R) (Y f (L  (9 h ( i  (9 R))) 

T = R ( g h ( L ( g R ) ( g f ( L ( g h ( L ( g R ) )  

For two different experiments, (L, [I Ri) should be different from ( i  i II Ri); 

so either Li # Lj or Ri ~ Rj or both are different. If there is no leakage of in- 

formation from the input to the output, the distinguisher cannot distinguish 

the generator used to evaluate the oracle gates from a random generator. 

Leakage of information happens when there is at least one pair of oracle 

gates such that their outputs are related to their inputs. Let X be a random 

variable denoting the ouput of h, the random function in the second round 

of the DES-like structure of G2, and let Y be a random variable denoting the 

output of f ,  the random function in the third round of DES=like structure of 

G2 (see Figure 6.7). Leakage of information happens in two cases. 

L R 

S T 
Figure 6.7: Random Variables X and Y in G2 

1. X is bad. This happens when there is a pair of oracle gates Oi, Oj 

with the input random variables Ri # Rj and L~ = L i = L such that 
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the random function h collides. Hence, for this case, we assume that 

x~ = xj = x where x~ = h(L @ P~) and xj = h(L @ Rj). It is obvious 

that, i f X  is bad, then T ~ T j  = Ri@Rj always. The probability that h 
re(m-l) • 

collides in a pair of oracle gates among m oracles is equal to 2 2-" 

2. Y is bad. This happens when there is a pair of oracle gates 04, Oj 

with the input random variables Ri = Rj = R and Li # Lj such that 

the random function f collides. Hence, for this case, we assume that 

yi = yj = y where Yi = f (Li  @ h(Li @ R)) and yj = f ( L j  ~ h(Lj @ R)).  

It is obvious that, if Y is bad and X is also bad, then Ti @ Tj = Li @ Lj 

always. The probability that f collides and also h collides in a pair of 

oracle gates among m oracles is equal to m(m-D ~ 2 2 2 "  " 

The probability that a distinguishing circuit for G2 can be constructed 

.~{m-1) .~(m-a) On the other hand, when a permutation p is is equal to 2-+1 + 2 2 n +  1 " 

chosen randomly, the probability that p can satisfy the distinguishing circuit 

relation is ~ + 2-~. So, an upper bound on the probability of distinguishing 

is 
r n  2 m 2 

I Prob{C2n[P2n] : 1 }  - -  Prob{V2.[r 1, f ,  h, 1)] -- 1} 1_< ~ -  + 22--- ~ 

[] 

L e m m a  6.2 Let h , f  Er H,~ be independent random functions and G3 = 

r  1, h, f ,  1). Then 

m 2 m 2 

I Prob{C2n[Gz] = 1} - Prob{C2n[P2n] = 1} I_< ~ -  + 22-- ~ 

where C2~ is a distinguishing circuit with m < 2 ~ oracle gates. 

P r o o f  : Since the structure of G3 is exactly the same as the structure of 

G2 except that the roles of h and f are reversed, a proof similar to that of 

Lemma 6.1 can be given for the probability of distinguishing of G3 from a 

random permutation, and is omitted here. [] 

Note that the above lemma is an instance of Lemma 6.1, and when m is 

a polynomial in n, the probability of distinguishing G2 or G3 from a random 

permutation becomes less than ~ for any constant c2, and sufficiently large no2 

n .  
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L e m m a  6.3 Let h , f  E~ H~ be independent random functions and G~ = 

r  1, f ,  h, 1) and G3 = r  1, h, f ,  1); then 

m s 
I Prob{DC2,[G2, G3] = 1} - Prob{DC2,[P2,, P2,] = 1) 15 22 . 

where DC2,~ is a D-distinguishing circuit with two types of oracle gates and 

m < 2~ the number of oracle gates. 

P r o o f  : As the distinguisher has two types of oracle gates, one probability 

is calculated when two permutations are chosen independently and randomly 

from P2n and are used to evaluate the oracle gates. The other probability is 

calculated when the distinguisher chooses f and h independently and ran- 

domly from Hn and uses them in the G2 and G3 structures, which are applied 

for the evaluation of the oracle gates. When the distinguisher examines an 

oracle, the input is a 2n bit string (L [I R) and the output is a 2n bit string 

(S IIT). 

When G2 is examined, the output is 

S = L @ R @ f ( L G h ( L @ R ) ) @ h ( R e h ( L @ R ) @ f ( L @ h ( L @ R ) ) )  

T = R @ h ( L @ R ) @ f ( L @ h ( L @ R ) )  

and when Ga is examined, the output is 

S = L @ R @ h ( L |  

T = R ~ f ( L @ R ) @ h ( L @ f ( L @ R ) )  

As both G2 and G3 are pseudorandom, there is no distinguishing circuit with 

one type of oracle gate for G2 or for G3. The D-distinguisher could only make 

a decision if there were at least one pair of oracle gates whose outputs were 

related to each other. 

Let )(2 be a random variable denoting the ouput of h, the random 

function in the second round of the DES-like structure of G2, and )(3 be a 

random variable denoting the output of f ,  the random function in the second 

round of the DES-like structure of G3. Let Y2 be a random variable denoting 

the output of f ,  the random function in the third round of DES-like structure 

of G2, and Y3 be a random variable notating the output of h, the random 

function in the third round of DES-like structure of G3 (see Figure 6.8). The 

distinguisher can make a decision in either of the two following cases. 
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j , 3  

Lj Rj 

sj 

Li R 

X2 

Y~ 

si T~ 
Figure 6.8: The Random Variables )(3, Y3 in G3 and X~, Y2 in G2 

. When there is a pair of oracle gates Oi, Oj such that the random 

functions f and h collide. For this case we assume that xi,2 = x j,3 = x 

where xi,2 = h(Li | Ri) and xj, 3 : f (L j  �9 Rj) and Yi,2 = Yj,3 = Y 

where yi,2 = f (L;  | h(ni | Ri)) and Yh,a = h(nj | f ( L j  | Rj)). In 

this case, when the input random variables Ri ~ Rj and Li = Lj = L, 

then Ti �9 Tj = Ri | Rj always, and when the input random variables 

Ri = Rj = R and Li ~ Lj then Si | Sj = L~ �9 Lj always. The 

probability that f and h collide in a pair of oracle gates among m 

oracles is equal to re(m-l) 
2 2 2r~ * 

. When there is a pair of oracle gates Oi, Oj such that the random 

function f collides and the random function h collides. For this case 

we assume that xi,2 = yj,3, where xi,2 = h(Li | Ri) and yj,3 = h(Li | 

f ( n  i | Rj)), and yi,2 = xj,3, where yi,~ = f(L~ @ h(L~ | R~)) and 

xj,a = f ( L j  |  In this case, when the input random variables Ri ~ Rj 

and Li = Lj = L, then Ti | Tj = Ri | Rj Mways. The probability that  

f collides and h also collides in a pair of oracle gates among m oracles 

is equal to .~(.~-1)1_!_ 
2 2 2 n  " 
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The probability that a D-distinguishing circuit could be constructed 

for (G2, Ga) would be equal to ~ + ~ .  On the other hand, when 

two permutations pl and p2 are chosen independently and randomly, the 

probability that they can satisfy the distinguishing circuit relation is 2,~ 2-~-~-So, 

an upper bound on the probability of distinguishing is 

m s 
[Prob{DC2~[P2~,P2~] = 1} -Prob{DC2~[G2, Ga] = 1} I< 22,~ 

[] 

T h e o r e m  6.5 Let f ,  h Er Fn be independently chosen pseudorandom func- 
tions, and G2 = r  and G3 = r  1). When 

1 
] Prob{DC~,[G~, G3] = 1} - Prob{DC~n[P2,, P2,] = 1} I< - -  

nC2 

for any polynomial size D-distinguishing circuit and for any constant c2, then 
G1 = r  1, f ,  h, 1, f )  is a super-pseudorandom permutation generator. 

P r o o f  : First it is necessary to show that G3 = g,(f, 1, h, f ,  1) and G1 = 

r  1, h, f ,  1, h) are independent of each other. In order to prove this, assume 

that they are not independent, and that there is a D-distinguishing circuit 

such that for a constant c2 

1 
I Prob{DC2.[G3,-d~] = 1} - Prob{DC~,~[P~n, P2n] = 1} I> 

nc2 

Without changing the inequality relation, we have 

] Prob{DC2,[G3,-C~] = 1} - Prob{DC2,~[Ga, Gs] = 1} + 
1 

Prob{DC2,~[Ga, Gs] = 1} -Prob{DC2~,[P2n, P2,~] = 1}1 > 
T/c2 

Then 

I Prob{DC~n[aa,-Gl] = 1} -Prob{DC~,[Ga,  Gs] = 1} I + 
1 I Prob{DC2,~[G3, Gs] = x} -Prob{DC2,~[P2,~,P2n] = 1} I > nc~ 

If lProb{DC2n[Ga, G3] = 1 } -  Prob{DC2,~[P2,~,P2n] = 1} [> 1 ~ - ,  G3 is 

not pseudorandom, as the D-distinguishing circuit is not a test for iden- 

tity. This contradicts Lemma 6.2. Furthermore, if l Prob{DC2n[Gs,-G~] = 
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1 }  - Prob{DC2n[G3, G31 = 1} l> ~a-~7, then the oracle circuit vir tual ly dis- 

tinguishes f from a randomly chosen function. This also contradicts  our 

assumption that  f is a pseudorandom function. Since b o t h  cases reduce to 

contradictions,  then G3 and G1 must be  independent  of each other,  and there 

is no D-distinguishing circuit for (G~, G3). 

Considering the independence of G2 and G3, we have that  

1 
I Prob{DC2,~[G2, G3] = 1} - Prob{DC2~[P2=, P2=] = 1} I< J ~,/c2 

for any constant  c2. Note that  G2 and G3 are not inverse to each other; so 

the D-dist inguishing circuit cannot be  a test for inversion. Wi thou t  changing 

the sign of inequality, the above relation can be  expanded as, 

I Prob{DC2.[G1,'G1] = 1} - P r o b { D C : n [ G i ,  G I ]  = 1} 

Prob  { DV2n [G3, G1 ] = 1 } - Prob {DC2n [G3, G~] = 1 } 

Prob{DC2n[G2, Gz] = 1} - Prob{DC2.[P2,~, P2.] = 1} 

+ 

+ 

1 < - -  
nc2 

Then 

[I Prob{DC2n[G2, G3] = 1} - Prob{DC2n[G3, G1] ~-- 1} - 

[Prob{DC2n[G3,-C1] = 1} - Prob{D(72n[G1, Ga] = 1} - 

1 
[ Prob{DC~n[G1,-G~] = 1} - Prob{DC2,~[P2n,P2,~] = 1} [I < 

n o 2  

Since it was assumed that  G~ and G3 are independent  permutat ions ,  and so 

are G3 and ~ ,  then I P r o b { D C 2 , ~ [ G 2 ,  a3] = t} - P r o b { D C ~ , ~ [ G 3 , - d l ]  = 1} I 

I for any constant c, since would be less than ~-z 

I Prob{DC2n[G2, G3] = 1} - Prob{DC2n[G3, G1] = 1} ] < 

] Prob{DC2,~[G2, G3] = 1} - Prob{DC2n[P2,~, P2.] = 1} ] + 
1 

[ Prob{DC2,~[G3,-G1] = 1} - Prob{DC2,~[P2,~,P2n] = 1} I < n--V 

Hence 

I Prob{DC2n[G1,-G1] = 1} - P r o b { D C 2 . [ P 2 n ,  P2~] = 1} I + 
1 

]Prob{DC2n[G3,-G1] = 1} -Prob{DC2,~[G1,  G1] = 1} I < Tic2 

So, each of the above absolute values is less than ~ In other  words ~ c  2 ~ 

] Prob{DC2~[G1,-G1] = 1} - Prob{P(72,~[P2n, P2~] = 1} I < 1 Ttc2 
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Hence G1 and G1 are independent of each other, and G1 is a super-pseudo- 
random permutation. [] 

Lemmas 6,1, 6.2 and 6.3 and Theorem 6.5 show that,  when the number 

of oracle gates m is a polynomial in n, then the probability of making a circuit 

which distinguishes Gz = r 1, f,  h, 1) from G3 = r  1, h, f ,  1) is less than 

1--~2 , for any constant c2, and sufficiently large n. Furthermore, the probability 

of making a super-distinguishing circuit for G1 = r  1, f )  o r  1, f )  is also 

less than 1--- for any constant c2, and sufficiently large n. In other words, 

G1 is secure against chosen plaintext/ciphertext attack if the cryptanalyst is 

permit ted  to make only a polynomial number  of queries. 

6.4.2 Super-Pseudorandomness of r 1, f, f2, 1, f) 

In Lemmas 6.1, 6.2 and 6.3, upper bounds on the probabilities of distinguish- 

ing between two permutat ion generators have been found, where f and h are 

two independently chosen pseudorandom functions. In the following lemmas 

and theorem,  we show that if f~ is substi tuted for h, there is an increase in 

the upper  bound on the above probabilities. Nevertheless, if the number of 

oracles is l imited to some polynomial in n, the corresponding probabilities 

would remain less than 1__ for any constant c2, and sufficiently large n. nr 

L e m r n a  6.4 Let f ,  h ET H,~ and let C2,~ be a distinguishing circuit with 

m < 2 '~ oracle gates; then 

[ Prob{C2n[r 2, 1 , f ,  f2, 1)] = 1} - Prob{C2n[r 1, f ,  h, 1)] = 1} 1_< 2m2 
2 ~ 

P r o o f  : Since both f and h can be considered to be two sequences of 

2 ~ independent and uniformly distributed n-bit random variables, for an 

argument a E Z~, f(a) and h(a) are two independent n-bit strings. When the 

input  to an oracle is (L II R) and the oracle is evaluated with r  1, f ,  h, 1), 

each branch of the outputs (that is, S and T) is always a sum of two random 

variables generated by the functions f and h (see Figure 6.9). Thus 

S = L @ R O  f ( L  @ h(L| @ h ( R ~  h(L@R) @ f ( L  @ h(L~R)))  

T = R @ h ( L @ R ) @ f ( L ~ h ( L @ R ) )  
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where all the random variables Yi = f(Li  �9 h(Li @ P~)) are independent  of 

Lj Rj Lj R 

S~ T~ Sj T~ 

Figure 6.9: Random Variables X, Y and Z in G2 and G2 

the random variables 

Xj = h(Lj | Rj) 

Zj = h(Rj | h(Lj | Rj) �9 f (Lj  �9 h(Lj | Rj))) 

When the input to an oracle is (L II R) and the oracle is evaluated with 

~b(f 2, 1, f,  f 2  1), each branch of the output  (that is, S and T) is always a 

sum of  two random variables generated by the function f .  Thus 

S = L | R |  f (L  | f2(L| | f2 (R|  f2(L| | f (L  | f2(L|  

T = R | 1 7 4 1 7 4 1 7 4 1 7 4  

If R = 0, then 

S 

T 

If L = 0, then 

= L �9 f (L  �9 f2(L)) �9 f2(f2(L) �9 f (L  �9 f2(L))) 

= f2(L) G f (L  �9 f2(L)) 

S = R@ f3(R)) | f2(R|  f2(R) | f3(R)) 

T = R|  f2(R) | f3(R) 



126 Chapter 6 A SOUND STRUCTURE 

If L = 0 and R = 0, then 

S = fa(O)(t)f2(f2(O)@f3(O)) 

T = f2(0) q)fa(0) 

When all the oracle gates are evaluated with r  1, f ,  f2, 1) or all the oracle 

gates are evaluated with r 1,f ,h,  1), a distinguisher generates a bit 1 

on its output  with the same probability if all the random variables Y/ = 

f(L~ @ f2(L~ @ R~)) are independent of the random variables 

X i = f2(Lj @ Rj) 

Zj = f~(Rj @ f~(Lj @ Ri) @ I(Li �9 f2(L~ | Rj))) 

In other words, a distinguisher with m oracle gates generates a bit 1 as its 

output  when there is one oracle gate Oi such that  ill, the input value to the 
random function f ,  is equal to either of 

~ = I f (Lj  @ Rj) 
( f (R j  @ f2(L i �9 Rj) r f ( i j  @ f 2 ( i  i @ Ri))) 

for some j = 1 , . . .  ,rn. The probability that  in a given oracle the input to 

the f function takes a value equal to any of the 2m internal random values 

in m oracle gates with different inputs is 2m 5-~-" The probability that  a circuit 

distinguishes r  1, f,  f : ,  1) from r  1, f ,  h, 1) is equal to the probability 

that  two of the oracles generate dependent random variables. Hence 

2m 2 
I Prob{C2n[r  2, 1, f ,  f2, 1)1 = 1} - Prob{C2n[r 1, f ,  h, 1)1 = 1} I<: 2 n 

The probability of distinguishing r  1, f, h, 1) from a random permutat ion 

was given in Lemma 6.1. As a result, an upper bound on the overall prob- 

ability of distinguishing G2 = r  1, f ,  f2, i) from a random permutat ion 

is 

I Prob{C2n[G2] = 1} - ProblC2.[P2.] = 1} 1< 3m2 mS -V- + 

where m < 2 '~ is the number of oracle gates. Hence, when the oracle circuit 

is bounded by a polynomial number of oracle gates, the probability of dis- 

tinguishing r  1, f ,  f2, 1) from a random permutat ion is less than 1__ for 

any constant c2, and for sufficiently large n. [] 
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L e m m a  6.5 Let f ,  h Er Hn and let C2n be a distinguishing circuit with 
m < 2 n oracle gates; then 

2m 2 
I Prob{C2.~[r 1, f2,  f ,  1)] = 1} - P rob{C2 . [ r  1, h, f ,  1)] = 1} I_< 2 n 

P r o o f  : The proof is similar to the proof of Lemma 6.4. When the input 

to an oracle is (L ][ R) and the oracle is evaluated with r  1, f2 , f ,  1), 

each branch of the output (that is S and T) is always a sum of two random 

variables generated by the function f .  Thus 

S = L @ R @ f 2 ( L | 1 7 4  

T = R @ f ( L @ R )  G f 2 ( L |  

If R = 0, then 

S 

T 

If L = 0, then 

= L D f2(L | f(L)) @ f ( f (L)  ~ f2(L (~ f(L))) 

= f(L)  �9 f2(L (~ f(L)) 

S = R | f3(R)) | f ( R  | f (R) | f3(R)) 

T = R(~ f(R) ~ f3(R) 

If L = 0 and R = 0, then 

S = f3(O)|174 

T = / ( 0 ) |  

When all the oracle gates are evaluated with r  1, f2, f ,  1) or all the oracle 

gates are evaluated with r  1,h, f ,  1), a distinguisher generates a bit 1 

as its output with the same probability, if all the random variables Yi = 

I2(Li | f (Li  | Ri)) are independent of the random variables 

Xj = f(Lj  ORj)  

Zj = f (Rj  • f (Lj  @ Rj) ~5 f~(Lj �9 f (Lj  �9 Rj))) 

In other words, a distinguisher with m oracle gates generates 1 as its output 

when there is one oracle gate O4 such that ~i, the input value to the random 

function f ,  is equal to f (Lj  | f (Lj  | Rj)) for some j = 1 , . . . ,  m. Since f 
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was used in two different layers for each oracle, the probability that, in a 

given oracle/~i, the input to the f functions takes a value equal to any of 

m internal random values Yi, that is, the output of the f2 layer in m oracle 
gates with different inputs, is 2,~ Tr The probability that a circuit distinguishes 

r  1, f2, f ,  1) from r  1, h, f,  1) is equal to the probability that two of the 
oracles generate dependent random variables. Hence 

I Prob{C2,~[r 1, f2, f,  1)] = 1} - Prob{C2,~[r 1, h, f ,  1)] = 1} I< 2m2 
2 ~ 

The probability of distinguishing r  1, h, f,  1) from a random permutation 

was given in Lemma 6.2. As a result, an upper bound on the overall prob- 

ability of distinguishing Ca = r  1, f2, f ,  1) from a random permutation 
is 

[ Prob{C2n[~3] = 1 - Prob{C2n[P2,~] = 1} L< 3m2 m2 
- ~ -  + 22. 

where m _< 2 ~ is the number of oracle gates. Hence, when the oracle circuit 

is bounded by a polynomial number of oracle gates, the probability of distin- 

guishing r  1, f2, f,  1) from a random permutation is less than ~ for any he2 

constant c2, and sufficiently large n. [] 

T h e o r e m  6.6 Let f Er Fn be a pseudorandom function; then 

~1 = r 1, f ,  f 2  1, f ) ,  

is a super-pseudorandom permutation. 

P r o o f  : To prove that G1 is a super-pseudorandom permutation generator, 

we first show that ~2 = r 1, f,  f2, 1) and Ca = (f, 1, f2, f,  1) are inde- 

pendent of each other. As was shown in Lemma 6.4 and Lemma 6.5, in a 

D-distinguishing circuit when the input to an oracle is (L [[ R) and the oracle 

is evaluated with r  1, f ,  f~, 1), the output is 

S = L (9 R (9 f (L  (9 f2(L(gR)) (9 f2(R (9 f2(L(gR) (9 f (L  (9 f2(L(gR))) 

T = R (9 f:(L (9 R) (9 f (L  @ f2(L (9 R)) 

When the oracle is evaluated with r  1, f 2  f, 1), the output is 

S' = i (9 R (9 f2 ( i  (9 f (L (9 R)) (9 f (R  @ f (L  (9 R) @ f2(L (9 f (L  (9 R))) 

T' = R(9 I(L (9 R) (9 f~(L (9 f (n  (9 R)) 
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The six random variables involved are: 

X2 = f2 ( L~ R)  

Y~ = f(L@ f2(L~ R)) 

Z2 = f2(R@ f~(L @ R) @ f(L @ f2(L @ R))) 

and 

X3 = f (L@ R) 

V~ = I~(L �9 I(L ~ n)) 

Z3 = f (RO f(L D R) @ f2(L G f(L (b R))) 

S, T, S' and T' are always a sum of two random variables generated by the 

function f .  If a random variable in a output branch of an oracle becomes 

dependent on a random variable in any output branch of another oracle, the 

other random variables are always independent of each other. For example, 

if X2 is equal to X3, the probability that Y2 is equal to Ya is ~ .  Likewise, if 

Y2 = I/3, the probability that Z2 = Z3 is ~ .  Hence, the probability of depen- 

dence between two branches is equal to ~ ,  which is equal to the probability of 

dependence between two output branches in two different oracle gates when, 

instead of f2, an independent random function such as h is applied. Here, 

we calculate an upper bound on the probability of independence. As was 

shown earlier in Lemma 6.4, ~b(f 2, 1, f ,  f2, 1) and ~b(h, 1, f ,  h, 1) are indistin- 

guishable from each other; it was shown in Theorem 6.5 that ~b(h, 1, f ,  h, 1) 

and ~b(f, 1, h, f ,  1) are independent of each other, and it was also shown in 

Lemma 6.5 that ~b(f, 1, h, f ,  1) and ~b(f, 1, f2, f ,  1) are indistinguishable from 

each other. The probability that there is a D-distinguishing circuit for G2 

and ~3 can be written as: 

1 
I Prob{DC2~[O2, G3] = 1} -Prob{DC2~[P2,,  P2~] = 1} l< - -  

nC2 

This statement can be rewritten as, 

I Prob{DC2~[G2, G3] = 1} 

+Prob{DC2.[~2 ,  G3] = 1} 

+Prob{DC2n[G2, 63] = 1} 

- V r o h { D C 2 n [ G ~ , a 3 ]  = 1} 

- P r o b { D C 2 n [ a ~ , a 3 ] = i }  

- Prob{DC2~[P2~,P2~] = 1} [< - -  
1 

no2 
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where G2 = r  1, f ,  h, 1) and G3 = r  1, h, f,  1). With reordering and 

separation of absolute values, we get 

I] Prob{DC2,[G2, G31 = 1} 

+ } Prob{DC:,[G2, G31 = 1} 

+]Prob{DC~n[G2, G3] = 1} 

- Prob{DC2,~[~2, Gal = 1}l 

- Prob{DC2,~[G2, G 3 ] = I } I  

- Prob{DC2,~[P2,,,P2,~] = 1} l[ 

If the sum of the above probabilities is less than 1 over any polynomial in 

n, then ~2 and ~3 are essentially independent of each other according to the 

definition. When f and h E~ Hn, by applying procedures similar to those 

of the proofs of Lemma 6.4, Lemma 6.5 and Lemma 6.2, it can be shown 

that  the first term is less than --2'~2 the second term is less than -5-~-,2"~2 and 2 n  , 
rn  2 m 2 the third term is less than ~-~ + ~ ,  respectively. So, the sum of these three 

probabilities, gives a bound on the probability for making a D-distinguishing 
m 2 circuit with m oracle gates for G2 and ~3 as ~ + 2-'~. When there is a 

polynomial number of oracle gates, that is, m is a polynomial in n, then 

1 
b ~ I Prob{De~n[g3,~] 1 } -  Pro {Dd,2n[P2,~,P2,~] 1} l< nC 2 

for any constant c2, and sufficiently large n. By applying a proof similar 

to the proof of Theorem 6.5, it can be shown that,  when ~2 and ~3 are 

independent,  ~1 is super-pseudorandom. [] 

6.5 Conclusions and Open Problems 

We have shown that  it is possible to construct a super-pseudorandom per- 

mutat ion generator by applying a single pseudorandom function. We took 

advantage of the structure for an optimal perfect randomizer presented in 

[Pieprzyk and Sadeghiyan, 1991]. We first showed that  r  1, f ,  h, 1, f )  is a 

super-pseudorandom permutation. Then we showed that ,  by substituting f~ 

for h, the probability of making a super-distinguisher is still less than 1 over 

any polynomial in n. As r  f,  f2,1, f )  is super-pseudorandom, it can be 

applied as a block cipher secure against chosen plaintext/ciphertext  attack. 

Although such a block cryptosystem is less than practical, it can be viewed 

as an a t tempt  towards the construction of practical ones which are provably 
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secure against chosen plaintext/ciphertext attack without relying on any un- 

proven hypothesis. However, in the same way that the results of Luby and 

Rackoff were considered to be a justification for the application of DES-like 

permutations in the design of DESI the above structure can be adopted in 

the design of block ciphers to yield stronger cryptographic properties. If 

a cryptosystem is super-pseudorandom, it can be applied in block-cipher- 

based hash schemes. Two open problems emerge from the results of this 

chapter. The structure applies 6 rounds of DES-like permutations. The first 

open problem is whether the proposed structure is optimal, and whether any 

other structure can be suggested which needs fewer rounds. We do not know 

whether r  f2, f,  f, f)  is such a structure, The second open problem is 

whether the proposed structure can be adopted to improve the quality of ex- 

isting cryptosystems such as DES or LOKI against differential cryptanalysis 

without needing to redesign their S-boxes. 



Chapter  7 

A Cons truc t ion  for One Way 

Hash  Funct ions  and 

P s e u d o r a n d o m  Bit Generators  

7.1 I n t r o d u c t i o n  

In Chapter 2, we listed the properties that a secure hash function should 

satisfy, among them was the property of one-wayness. Several approaches to 

constructing hash functions have applied DES, or other block ciphers such 

as LOKI, as the underlying one-way function. Unfortunately, DES suffers 

from a small key space and also has other undesired properties .such as the 

complementation property. In Chapters 4, 5 and 6 we developed a structure 

to be employed in the design of block ciphers used in block-cipher-based hash 

schemes. On the other hand, block ciphers are not the only functions which 

are considered to be one-way and difficult to invert. For example, functions 

such as RSA or the squaring modulo composite N are considered to be one- 

way. In Chapters 7 and 8 we develop some generalized constructions for hash 

functions from one-way permutations. 

The current trend in cryptography is to provide the construction of 

basic primitives with general cryptographic assumptions that are as weak as 

possible. It is theoretically important to base cryptographic primitives and 

basic tools on reduced complexity assumptions. Practically it is important to 
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give efficient implementations of such constructions. Each successive paper 

on the construction of hash functions has assumed weaker conditions for the 

one-way function, and then suggested a construction for hashing with more 

complicated procedures. Finally, Rompel gave a construction for one-way 

hash functions from any one-way function and proved that the existence of 

one-way functions is a necessary and sufficient condition for constructing 

hash functions [Rompel, 1990]. However, although his work is theoretically 

optimal, it is less than practical. We give a brief description of these theoretic 

constructions later in Section 7.4. 

Two formal complexity-theoretic definitions have been suggested for 

cryptographic hash function families. The first family of hash functions, de- 

fined by Damgard, is the Collision Free Hash Functions (CFHF) or Collision 

Intractable Hash Functions (CIH). We gave a rough definition of this type of 

hash functions in Section 2.3.1, where they were called strong hash functions. 

We give the precise formal definition of such a family of functions in Section 

7.3. The second family, defined by Naor and Yung, is the Universal One Way 

Hash Functions (UOWHF). This family is weaker than the previous one. We 

gave a rough definition for this type of hash functions in Section 2.3.1, where 

they were called weak hash functions. We will also give the precise formal 

definition of such family of functions in Section 7.3. 

Zheng, Matsumoto and Imai revealed a duality between pseudorandom 

bit generators (PBG) and UOWHF. Applying the revealed duality, they pre- 

sented a construction for UOWHF which is equivalent to the construction 

of Blum-Micali pseudorandom bit generators [Zheng et al., 1990a]. Blum 

and Micali discovered hard-core predicates b of functions f [Blum and Mi- 

call, 1984]. Such predicates cannot be efficiently obtained, given f (x ) .  They 

applied this notion to construct a PBG based on the intractability of the 

discrete logarithm problem. However, the efficiency of this method is lim- 

ited by the number of hard bits of the underlying one-way permutation. It 

is noteworthy that Yao generalized this scheme by showing that a PBG can 

be constructed from any one-way permutation [Yao, 1982]. He transforms 

any one-way permutation into a more complicated one which has a hard- 

core predicate. Similar to the works on hash functions, later works on the 

construction of pseudorandom bit generators have tried to make more gener- 

alizations and assume weaker conditions on the one-way function, for example 
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see [Goldreich and Levin, 1989] and [Impagliazzo et al., 1989], 

In this chapter, we present a method such that given an n-bit one-way 

permutation with some known hard bits, a one-way permutation with n hard 

bits can be constructed. We call this one-way permutation a strong permuta- 

tion. We apply it to present a construction for pseudorandom bit generators 

with maximum efficiency, based on the Blum-Micali pseudorandom bit gen- 

erator. We also present a method to build a universal one-way hash function 

from the strong permutation. Hence, given a one-way permutation, we can 

construct both an efficient pseudorandom generator and a universal one-way 

hash function. We show that by the application of the strong permutation, 

Zheng, Matsumoto and Imai's scheme can be reduced to Damgard's design 

principle for construction of hash functions, and will yield the same result. 

Therefore, our proposal yields an algorithm that can be used both for gen- 

erating pseudorandom bits, and hashing long messages. This has a practical 

significance, since it would not be necessary to use two different algorithms 

for implementing these two cryptographic tools. The results of this chapter 

have appeared in [Sadeghiyan and Pieprzyk, 1991a]. 

7.2 N o t a t i o n  

The notation we use in this chapter and Chapter 8 is similar to [Zheng et al., 

1990a]. The set of all non-negative integers is denoted by N. Let E = {0, 1} 

to be the alphabet we consider. For n E N,  ~]n is the set of all binary strings 

of length n. The concatenation of two binary strings x, y is denoted by x II Y. 

The length of a string x is denoted by I x I. 

Let I be a monotone increasing function from N to N and f a function 1 

from D to R, where D = (J~ D~, D,~ C E ~ and R = I.J~ R~, R~ C Zt(,0. D 

is called the domain and R the range of f .  Denote by f~ the restriction of 

f to E =. The function f is a permutation if each fn is a one-to-one and 

onto function, f is polynomial time computable if there is a polynomial time 

algorithm computing f ( x )  for all x E D. The composition of two functions f 

and g is defined as f o g ( x )  = f(g(x)) .  The/-fold composition of f is denoted 

by f(0. 

1Note that the definition of function in this chapter is different from the definition of 
function in Section 4.5. 
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An (probability) ensemble E, with length l(n), is a family of probability 

distributions {En [ En : E z(~) --* [0, 1], n E N}. The uniform ensemble U with 

length l(n) is the family of uniform probability distributions Un, where each 

U~ is defined as Un(x) = 1 for all x E E l(n). By x EE E l(n) we mean that  x 21-~, 

is randomly selected from E l(n) according to En, and by x E~ S we mean that  

x is chosen from the set S uniformly at random. E is samplable if there is 

an algorithm M that given input n, outputs an x EE E l(n), and polynomially 

samplable if the running time of M is also polynomially bounded. 

7.3 P r e l i m i n a r i e s  

In this section, the formal definitions for Universal One Way Hash Functions 

and Collision Free Hash Functions together with some preliminary definitions 

are presented, which are used throughout Chapters 7 and 8. We give other 

required definitions as necessary in the text. 

Def in i t ion  7.1 A statistical test is a probabilistic algorithm T that given an 

input x, where x is an n-bit string, halts in time O(n t) and outputs a bit 0 

or 1, where t is some fixed positive integer. 

Def in i t i on  7.2 Let I be a polynomial, and E 1 and E 2 be ensembles both with 

length l(n). E 1 and E 2 are called indistinguishable from each other, i f  for 

each statistical test T, for each polynomial Q and for all sufficiently large n, 

1 
I Prob{T(Xl) = 1} -P rob{T(x2)  = 1} [< 

Q(n) 

where X 1 EEl E l(n), X 2 EE2 E l(n). 

Def in i t i on  7.3 A polynomially samplable ensemble E is pseudorandom if it 

is indistinguishable from the uniform ensemble U with the same length. 

Def in i t i on  7.4 Let f : D -+ R, where D :: Un En and R = On Et(n), be a 

polynomial time computable function. We say that f is one-way if for each 
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probabilistic polynomial time algorithm M, for each polynomial Q and for all 

sufficiently large n, 

1 
Prob{f~(M(f~(x))) = f~(x)} < Q(n----) 

where x Eu D~. 

Let l be a polynomial with l(n) > n and let H be a family of hash 

functions defined by H = Un H=, where Hn is a set of functions from E l(s) to 

~ ,  For two strings x, y E Et(,~) with x # y, we say that x and y collide under 

h E H ,  or (x, y) is a collision pair for h, if h(x) = h(y). H is polynomial time 

computable if there is a polynomial time algorithm computing all h E H,  and 

accessible if there is a probabilistic polynomial time algorithm that on input 

n E N outputs uniformly at random a description of h E H~. Let F be 

a collision finder. F is a probabilistic polynomial time algorithm such that 

on input x E E l('~) and h E Hn outputs either ? (cannot find) or a string 

y E E~(n) such that x # y and h(x) = h(y). The definition for a Universal 

One Way Hash Functions (UOWHF) is formally described as follows. 

Def in i t ion  7.5 Let H be a computable and accessible hash function com- 
pressing l(n)-bit input into n-bit output strings and F a collision string finder. 
H is a universal one-way hash function if for each F, and for each polynomial 

Q and for all sufficiently large n, 

1 
Prob{F(x,h) #?} < Q(n---) 

where x E E z('~) and h E~ H~. The probability is computed over all h Er Hn, 

x E E t('~) and the random choice of all finite strings that F could have chosen. 

The definition for Collision Free Hash Function is given by Damgard 

in [Damgard, 1987]. Let A be a collision-pair finder. A is a probabilistic 

polynomial time algorithm that on input h E H,~ outputs either ? or a pair 

of strings x ,y  E E l(n) with x # y and h(x) = h(y). The definition for a 

Collision Free Hash Function is formally described as follows: 

Def in i t i on  7.6 H is called a collision free hash function if for each A, and 

for each polynomial Q, and for all sufficiently large n, 

1 
Prob{a(h)  4?}  < Q(n-----~ 
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where h E~ Hn, and the probability P r o b { A ( h ) # ? }  is computed over all 

h E Hn and the random choice of all finite strings that A could have chosen. 

Note that a particular hash scheme was considered to be secure in 

Chapter 2, if there was no algorithm which could find colliding messages using 

the computing resources that today's technology provides. But a theoretical 

construction is considered to be secure if there is no algorithm running in 

polynomial time which can find colliding messages. 

7.4 T h e o r e t i c  C o n s t r u c t i o n s  

In this section we give a brief review of constructions suggested for Univer- 

sal One Way Hash Functions, which have more theoretic significance. Naor 

and Yung were the first who introduced the concept of a UOWHF and sug- 

gested a construction based on a one-way permutation. In their construction, 

they took advantage of the notion of universal family of functions with colli- 

sion accessibility property, which had already been introduced in [Carter and 

Wegman, 1979]. The general definition for these functions is given in the 

following: 

Definit ion 7.7 Suppose G is a set of functions and each element of G is 

a function from A to B. G is strongly universal  if given any r distinct 

elements a l , . . . , a~  of A, and any v elements b l , . . . ,br  of B,  then there ave 

(#a) functions which take al to bl and au to b2 and so on. (#B)2 

Definit ion 7.8 A strongly universalr family of functions G has the collision 

accessibility property if it is possible to generate in polynomial time a function 

g C G that obeys the requirement 

g ( a l )  = 51 

g ( a : )  = 

g (ar )  = br 



138 Chapter 7 A CONSTRUCTION FOR ONE W A Y  HFS AND PBGS 

7 .4 .1  N a o r  a n d  Y u n g ' s  S c h e m e  

Naor and Yung showed that the existence of a secure signature scheme re- 

duces to the existence of a UOWHF [Naor and Yung, 1989]. Furthermore, the 

construction of a UOWHF can be reduced to the construction of a UOWHF 

that compresses one bit. Using the same method as introduced by Carter 

and Wegman in [Carter and Wegman, 1979] and [Wegman and Carter, 1981], 

Naor and Yung constructed a family of UOWHF's by the composition of 

any one-way permutation and a family of strongly universal2 hash functions 

with the collision accessibility property. The general definition for strongly 

universal functions is given in Definition 7.7. In Naor and Yung's construc- 

tion, the one-way permutation provides the one-wayness of the UOWHF, and 

the strongly universal2 family of hash functions performs the mapping to the 

small length output. When a member is chosen randomly and uniformly 

from the family, the output is distributed randomly and uniformly over the 

output space. 

T h e o r e m  7.1 Let f be a one-way permutation on E ~ and let G= be a str- 

ongly universals family of hash functions from E ~ to E '~=a, then Hn = {h = 

g o f I g E G,~} is a UOWHF compressing n-bit input strings to (n - 1)-bit 

output strings. 

In the above construction, the size of the description of the hash function 

is O(n2), where n is the size of the input. The above construction is not 

efficient in practice, as it compresses only one bit each time. This can be 

improved by a factor t when a strongly universalt hash function is used. 

7 . 4 . 2  Z h e n g ,  M a t s u m o t o  a n d  I m a i ' s  F i r s t  S c h e m e  

This construction is based on the composition of a pairwise independent 

uniformizer and a strongly universal hash function with a quasi-injection one- 

way function 2. This construction together with the definition of a pairwise 

independent uniformizer is given below: 

~As the definition of quasi-injection one-way functions involves other definitions which 
are beyond the scope of this brief survey, we refer an interested reader to [Zheng et al., 
1990b]. 
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Def in i t ion  7.9 Let V~ be a set of permutations from l(n)-bit strings to l(n)- 

bit strings. V = Un V~ is a pairwise independent uniformizer, i f  for each n, 

for every (xi, and for every with x,, ya, �9 and xl r 

and Yl 7 ~ Y2, there are exactly 

2~(~)(21(~) - 1) 

permutations in Vn that map xl to yl and x~ to y~. 

T h e o r e m  7.2 Let f be a quasi injection one-way function from D to R, 

where D = U~ En, R = U~ Era(n) and let rn be a polynomial with re(n) > n. 

Let V = U,~ V~ be a pairwise independent uniformizer with length rn(n) and 

let G = U,~ G,~ be a strongly universal hash function that compresses m(n)-bit 

input into (n - 1)-bit output strings with the: collision accessibility property. 

Then H,~ = {h I h = g o v o  f~+l,g E G~+~,v �9 Vn+~}, is a universal one-way 

hash function compressing (n + 1)-bit input into n-bit output strings. 

7 . 4 . 3  D e  S a n t i s  a n d  Y u n g ' s  S c h e m e s  

De Santis and Yung made two contributions in this area. First, they im- 

proved the construction of Naor and Yung by applying a one-to-one one-way 

function, instead of a one-way permutation. Second, they presented two con- 

structions for a UOWHF with weaker assumptions on the applied one-way 

function [De Santis and Yung, 1990]. 

The first construction is based on the existence of a one-way function 

with small expected preimage size, which is a one-way function such that, 

when an element in the domain is chosen randomly, the expected size of the 

preimage of the element in the range is small. An example of such a function 

is squaring modulo a composite. Another example is any one-way function 

which is independent of part of its input and just applies to the rest of the 

argument. 

The second construction is based on the existence of a one-way function 

with an almost-known preimage size. In other words, when an element in 

the domain is given, an estimate of the si2;e of the preimage set is easily 

computable, with a polynomial uncertainty. An example of such a function 
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is a regular function, which is a function such that every image of an n-bit 

input has the same number of preimages of length n. Another such function 

is decoding random linear codes. Subset sum is another example of such a 

function. 

The details of the constructions are beyond the scope of this brief sur- 

vey, as it needs other definitions and more explanations. 

7.4.4 Rompel's Scheme 

Rompel managed to construct a UOWHF from any one-way function 

[Rompel, 1990]. His construction is rather complicated and elaborate, and a 

detailed explanation is beyond the scope of this survey. However, the idea 

is to transform any one-way function into a UOWHF through a sequenca of 

complicated procedures. First, the one-way function is transformed into an- 

other one-way function such that for most elements of the domain it is easy 

to find a collision, except for a fraction of them. From this, another one-way 

function is constructed such that for most of the elements it is hard to find a 

collision. Subsequently, a length increasing one-way function is constructed 

such that it is almost everywhere hard to find any collision. Finally this is 

turned into a UOWHF, which compresses the input such that it is difficult 

to find a collision. 

7.5 H a r d  Bi t s  and P s e u d o r a n d o m  Bi t  Gen-  

erat ion  

All the schemes presented in Section 7.4 are of theoretical importance, es- 

pecially Rompel's scheme as it can be shown that one-way functions are 

necessary and sufficient for secure digital signatures. In other words, if there 

exists a one-way function, it is possible to construct a secure digital signature. 

However, they are rather impractical. 

Zheng, Matsumoto and Imai showed that there is a duality between one- 

way hash functions and pseudorandom bit generators [Zheng et al., 1990b]. A 

pseudorandom bit generator is a function that given a randomly chosen input, 
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called a seed, outputs a longer string which cannot be efficiently distinguished 

from a truly random one. On the other hand, a one-way hash function 

generates a shorter string for a longer one given as the input. The output  is 

called the hash value and it is computationally difficult to find a pair of strings 

that are compressed to the same hash value. They suggested a construction 

which is a dual of the Blum-Micali pseudorandom bit generator. For brevity, 

we call it the ZMI scheme. The goal of this construction is to provide a 

practical scheme, rather than reducing the assumptions on the complexity 

of the functions used. However, this construction has a limitation. It is 

impossible to compress more than O(log n) bits, due to their assumption 

which is the application of any one-way permutation with some known hard 

bits. 

In this section, we present the notion of hard bits, which is the ba- 

sis of the Blum-Micali pseudorandom bit generator and also the ZMI hash 

scheme, and the definition of the Blum-Micali pseudorandom bit generator. 

In the next section, we present a one-way permutation which we call strong, 

and we show how to apply it in order to achieve an efficient Blum-Micali 

pseudorandom bit generator, and an efficient hash scheme. 

First an informal definition of hard bits. If a function f is one-way then 

given f ( x )  the argument x must be unpredictable [Blum and Micali, 1984]. If 

every bit of the argument x were easily computable from f (x) ,  then f would 

not be a one-way function. Therefore, some specific bits of the argument are 

unpredictable, and we cannot guess them any better  than by flipping a coin. 

We call these bits hard bits of f .  

Def in i t ion  7.10 Let f : D ~ R be a one-way function, where R = LJ,~ p n 

and D = U,~Nt(n). Let i(n) be a function from N to N with 1 <_ i(n) <_ n. 

If, for each probabilistic polynomial time algorithm M,  for each polynomial 

Q and for all sufficiently large n, 

1 1 
Prob{M(f~(x))  = x',(~)} < ~ + Q(n----) 

where X Er ~n and x~(~) is the i(n)-th bit of an x' E ~n satisfying f ( x )  = 

f (x ' ) ,  then the i(n)-th bit is a hard bit o f f  [Zheng et al., 1990a]. 

The definition of hard bits implies that under f -1  a hard bit depends on all 

bits of f ( x ) ,  where f -1  is a hard problem and does not run in polynomial 
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time. Another intuitive description by Goldreich and Levin is that such bits 

concentrate the one-wayness of the function in a strong sense [Goldreich and 

Levin, 1989]. 

Note that the one-wayness of a function is relative to a specific model 

of computation with a specific amount of computing resources. On the other 

hand, the unpredictability or randomness of bits or strings are also relative 

to the specific model of computation with the specific amount of computing 

resources. In this chapter, we investigate n-bit one-way permutations and 

also the randomness of n-bit long strings, where the running time of an algo- 

rithm is a polynomial Q(n) in the length of input. Q(n) can be represented as 

being equal to 2 ~("), where a(n) is of order O(log 2 n). tr may be used instead 

of Q whenever it is more convenient. For example, a computing resource for 

k bits is defined as follows. 

De f in i t i on  7.11 We say we have a computing resource for k bits if, given 

the output of a one-way function and n - k bits of the input string, one can 

find the rem'aining k bits of the input string by exhaustive search. 

For the remainder of this chapter, we assume that the available com- 

puting resources are for less than k bits such that 2 TM has a growth rate 

slightly greater than any polynomial in n. 

L e m m a  7.1 The number of  hard bits indicates the difficulty of inverting a 

one-way function if  all the remaining bits are easily calculated. 

P r o o f :  Assume that only a small number of bits of a function are hard 

bits and, when the output is given, we can obtain every remaining bit with 
1 1 a probability better  than ~ + ~ in polynomial time. A probabilistic algo- 

rithm M that first predicts the easy bits and then does an exhaustive search 

for finding hard bits can invert the function f in polynomial time with a 

probability at least 1 For example, consider that a function has been Q-~. 
proven to have only log2(n ) hard bits and all its remaining bits are easy to 

calculate. If n = 512 then only 9 bits are hard. If we have a computing 

resource for more than 9 bits, which we usually have, then given the output,  

the input can be obtained in polynomial time with a probability better than 
1 Q 

Q(,~)" 
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Hence, a one-way function which has n - k - 1 bits that  are easy to 

predict, for example, appear directly in the output,  should have k + 1 hard 

bits. 

L e m m a  7.2 All the hard bits are independent of one another. 

P r o o f  : We give a proof by contradiction. Assume that the il ,i2-th bits 

are hard bits that are dependent on each other and there is a probabilis- 

tic algorithm M that can calculate il-th bit given both f ( x )  and i2-th bit 

with a probability better  than Q--]-~.I Then, we can construct a probabilistic 

algorithm M'  for guessing the il-th bit. 

Algorithm M': 

1. Guess the i2-th bit by flipping a coin (guess with probability 0.5). 

2. Given the i2-th bit and f (x) ,  run M and find the il-th bit. 

1 1 . then Prob{M'( f (x ) )  = xil } > ~ + Q-~, which is a contradiction. [] 

From the above lemma, the following corollary is drawn readily. 

C o r o l l a r y  7.1 Let f : D ---+ R be a one-way function, where D = Un En and 

R = [ . J ~ E  z(~). Assume f has t  hard bits, t < : n - k ,  and j < k of them and 

f ( x ) are given, we cannot predict any of the remaining t - j  hard bits with a 
1 1 probability better than ~ + Q(~). 

As we are going to describe the Blum-Micali pseudorandom bit gen- 

erator, the formal definition of the next bit test is given below. The notion 

of next bit test was presented roughly in Chapter 4, where it was suggested 

that for a bit generator to be pseudorandom, it should pass the next bit test. 

De f in i t i on  7.12 Let l be a polynomial, and E be an ensemble with length 

l(n). We say that E passes the next bit te~t if for each statistical test T, 

for each polynomial Q and for all sufficiently large n, the probability that on 

input the first i bits of a sequence x randomly selected according to E and 

i < l(n), T outputs the (i + 1)th bit o f x  is 

1 1 
Prob{T(x l , . . .  ,z;) = xi+l) < -~ + Q(n----) 

where x E~ E l(~). 
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The following theorem is derived from [Yao 82] and has been stated in 

[Alexi et al., 1988], [nlum and Micali, 1984] and [Goldreich et al., 1986] in a 

different form. 

T h e o r e m  7.3 Let E be an polynomially samplable ensemble, the following 

statements are equivalent: 

�9 E passes the next bit test. 

�9 E is indistinguishable from the uniform ensemble U. 

In other words, the indistinguishability test is equivalent to the unpredictabil- 

ity test. 

C o r o l l a r y  7.2 Assume that f : D ~ R is a one-way function, where D = 

U~ E n and R = Un E t(n). Also assume that i1,i2,... ,  it are functions from N 

to N,  with 1 <_ ij(n) <_ n for each 1 < j < t, t < k and each ij denotes a hard 

bit of f .  Denote by E 1 and E~ the probability distributions of the random 

variables xid,O.., xi~(n) xil(,) [[ f (x) and r t . . .  r2 rl ]] f (x) respectively, where 

x E~ E", xiA, 0 is the ij(n)-th bit o f z  and rj E~ E. Let E 1 = {E~ I n E N}  

and E 2 = {E~ I n E N},  then E 1 and E ~ are indistinguishable from each 

other. 

P r o o f  : From Corollary 7.1, it can be concluded that  every string of t < k 

hard bits passes the next bit test. This is equivalent to saying that  given 

f ( x ) ,  any string of t < k hard bits is indistinguishable from a string chosen 

uniformly at random from E t, according to Theorem 7.1. [] 

In other words, given f (x) ,  any string of t < k hard bits is indistin- 

guishable from a random string. Such hard bits are called simultaneous hard 

bits of f .  Note that  the maximum number of simultaneous hard bits of any 

one-way function cannot be more than n - k. 

The notion of hard-core predicates of functions was first discovered by 

Blum and Micali and was applied to construct pseudorandom bit generators 

(PBG). In the following PSB is defined. 
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Def in i t i on  7.13 Let l be a polynomial with l(n) > n. A pseudorandom bit 

generator is a deterministic polynomial time function g that upon receiving a 

random n-bit input, extends it into a sequence of  l (n)-bi t  pseudorandom bits 

bl, b2, . . . , bl(n) as the output. 

In other words: 

1. Each bit bk is easy to compute. 

2. The output bits are unpredictable, in other words the output  string 

passes the next bit test, that is given the generator g and the first s 

output bits bl, . .  �9 bs, but not the input string, it is not computationally 

feasible to predict the (s + 1)th bit in the sequence 

The following theorem describes the Blum-Micali PBG. 

T h e o r e m  7.4 Let l be a polynomial with l(n) > n, and let f be a one-way 

permutat ion on D = Us En and let the i (n)- th  bit be a proven hard bit of  f . 

Let g,  be a function defined as follows: 

1. Generate the sequence f ( ' ) ( x ) , f (2 ) ( x ) , . . . , f ( l ( ' ~ ) ) ( x ) ,  where x e E '~. 

2. From right to left (!), extract the i-th bit f rom each element in the above 

sequence and output that bit. 

so, gn(x)  = b,(n)(x) . . ,  bu(x) bl(x) where x e E ~ and bj(x) = (the i- th bit of 

f2)(x)) .  The g = {gn I n N}  is a pseudorandom bit generator extending 

n-bit into l(n)-bit  output strings. 

If the il(n), . . . ,  i t (n)- th  bits are simultaneous hard bits of f ,  then the 

efficiency of g can be improved by defining the bj(x) to be a function which 

extracts all known simultaneous hard bits of f (J)(x) .  In [Alexi et al., 1988], 

it was proved that the log2(n ) least significant bits of the RSA and Rabin 

encryption functions are simultaneously hard. Hence, if we use the RSA or 

Rabin functions instead of the one-way permutation, with each iteration of 

the function we can extract log~(n) bits. For example, if n is equal to 512 and 

we would like to produce a 512 bit pseudorandom string, we should iterate 

the one-way permutation for r z---~-] r s12 1 /los2(,~) = /1og:~(512)/ = 57 times. If a one-way 

permutation has more known hard bits, we (:an use it instead of the RSA or 

Rabin function and obtain better efficiency. 
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7.6 A Strong One-Way Permutation 

In this section we construct a one-way permutation with maximum number 

of hard bits, which can be used for the construction of both the Blum-Micali 

pseudorandom bit generator and one-way hash functions. Before describing 

the construction some preliminary definitions are given. These definitions 

are from [Webster and Tavares, 1985]. 

Defini t ion 7.14 A transformation is called complete/f each output bit de- 

pends on all input bits. In other words, the simplest Boolean expression for 

each output bit contains all the input bits. 

Defini t ion 7.15 If  the inverse of a complete transformation is also com- 

plete, it is described as being two-way complete. In other words, each output 

bit depends on all the input bits and vice-versa. 

L e m m a  7.3 Ira  permutation is complete, then it is also two-way complete. 

Defini t ion 7.16 If  the correlation between two binary variables is zero, they 

are called independent variables. 

We do not include the definition of correlation here, as it is not neces- 

sary. However, it is given in [Webster and Tavares, 1985] for the interested 

reader. 

Defini t ion 7.17 Let v be a complete permutation and let all the output bits 

be pairwise independent. We call v a perfect permutation. 

Kam and Davida in [Kam and Davida, 1979] presented a method where 

an entire substitution-permutation network could be guaranteed to be com- 

plete, if all the substitution boxes used in the procedure were complete. 

DES is an example of a complete cryptographic transformation. Since DES 

is reversible and the inverse function (decryption) has the same structure as 

encryption, DES is a two-way complete transformation. Webster and Tavares 

showed that there is very little correlation between output variables of DES 
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[Webster and Tavares, 1985]. So, we can conclude that DES is an exam- 

ple of a perfect permutation in our definitions. Brown has used the known 

design criteria of DES to build an extended 128-bit DES and has shown 

that his scheme has similar cryptographic properties to DES [Brown, 1989]. 

Extending the DES structure for more bits, for example 512 bits, has the 

disadvantage that the running time is relatively high and comparable to that 

of a public key cryptosystem. For the following theorems, we use a two-way 

complete permutation such that only k + 1 output bits are independent of 

the other bits and we call it a (k+ 1)-bit perfect permutation, which has much 

looser requirements than a perfect permutation. 

L e m m a  7.4 Let f be an n-bit one-way permutation and V be the set of all n- 

bit permutations which are computable in polynomial time, then m = f o v o f 

is also a one-way permutation, when v Er V. 

P r o o f  : Both f and v are polynomial time computable permutations, so the 

result of their composition is a polynomial time computable permutation. It 

is also one-way as f is a one-way permutation. The probability that m would 

not be one-way, is equal to the probability of inverting f in polynomial time, 

and is less than 1 [] Q(n)" 

By putting some conditions on v and f ,  we can make the one-way per- 

mutation m such that it would be a permutation with the desired properties. 

T h e o r e m  7.5 Let m : D --~ D be a one-way permutation where D = (.J~ E n 

and m -= f o v o f ,  where f is a one-way permutation and it has at least k + 1 

hard bits, and v is a ( k + 1)-bit perfect permutation where the positions of 

independent output bits correspond to the position of hard bits of f . For each 

probabilistic polynomial time algorithm M,  for each polynomial Q and for all 

sufficiently large n, 

1 1 
Prob{M(m(x ) )  = xi} < -~ + Q(n) 

where x Er E "~ and xi is the i-th bit of the x, and 1 < i < n. In other words, 

each bit of x is a hard bit of re. 

P r o o f  : We obtain our proof by contradiction. We show that given re(x), 

if an algorithm could find xi, it would he able to invert f .  For simplicity of 
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notation, we indicate the first one-way function by f l  and the second one by 

f2, so m = f2 o v o f l .  Assume that M is an algorithm that given re(x), can 

predict xi with a probability bigger than �89 + Q-~). In other words, xi is not 

a hard bit of m. Two situations may arise: 

. When xi is not a hard bit of fx: 

Since the i-th bit is not a hard bit of fa, given f l (x)  there exists an 

algorithm M ~ that can find the i-th bit with a probability bigger than 

a + Q-~'x Without loss of generality, consider v to be an invertible 

permutation. Due to the two-way completeness property of v, all bits 

of v o f l (x)  depend on all bits of f l ( x )  and vice-versa. So, to obtain 

f~ (x ) ,  we need to know all the bits of v o fa (x ) .  Since v is an invertible 

function in polynomial time, given v o f l ( x ) ,  it is possible to find the 

i-th bit of x, 

1 1 
P rob{U ' (v  o f l ( x ) )  = xi}  > ~ + Q'(n----~ 

The probability equation simply says that we can predict xi by tossing 

a coin with probability 1/2 or estimating it given v o f l ( x )  with a 

probability better  than 1 / Q ' ( n ) .  In other words, 

1 
Prob{estimating xi I v o f l(x)} > Q'(n-'---) 

Without loss of generality, we assume that f2 is a one-way permutation 

such that given a f2 (y ) ,  we can guess n - k - 1 bits of y efficiently. 

Moreover, the k + 1 independent bits of v correspond to the hard bits 

of f2, and knowing some other bits of v o f~ (x )  (that is, other than the 

independent output bits of v) and v, we cannot calculate all the bits of 

v o f l ( x )  . In accordance with the assumption that the i-th bit is not 

a hard bit of m, the following also holds: 

1 
< Prob{estimating xi I f2 o v o fa(x)} Q(n) 
= Prob{estimating xi I v o fx(x)} • 

Prob{obtaining v o f~(x) I ]'2 o v o fa(x)} 

Since the multiplication of two polynomial expressions is another poly- 

nomial expression, the following holds for some polynomial Q". 

1 
Prob{ob ta in ing  v o f x ( x )  [ f2 o v o f l(x)} > 

Q " ( n )  
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This is equivalent to inverting f2 and contradicts our assumpt ion tha t  

f2 is a one-way permutation.  

2. When xl is a hard bit of f l :  

by performing a procedure similar to the first case, it is obvious tha t  

the i-th bit should also be a hard bit of m. 

[] 

L e m m a  7.5 Let m = f2 o v o f l  be a one-way permutation, where f~ and v 

are defined as in Theorem Zb, and let f l  to be a one-way permutation such 

that given t < n - k bits of x, no ~ > k bits of f ( x )  can be guessed with a 

probability better than ~ ,  then given re(x) and any t < n - k bits of  z ,  m ( x )  

still cannot be inverted. 

P r o o f  : Since t < n - k  bits o f x  are known, the value of f l ( x )  can be 

guessed with a probability equal to 21_,, where n - t > k. Hence, any bit of 

v o f~(x)  cannot be est imated with a probability bet ter  than  ~ < ~ ,  if v 

is a two-way complete permutation.  Without  loss of generality, assume tha t  

given f2 o v o fa (x), n - k -  1 bits of v o fx (x) can be guessed efficiently. Since the  

position of the hard bits of f2 correspond to the positions of the independent  

bits of v, given n - k - 1 bits of v o f l ( x ) ,  we cannot still es t imate  the k + 1 

independent  output  bits of v with a probability better  than  1 2-r*-r- The only 

possibility for reversing m is that  the hard bits of f2 and the t < n - k 

bits of x be related to each other by some function such tha t  revealing the t 

bits of x makes est imating the hard bits of f~ probable. Such possibility has 

been excluded by assuming that  f l  is a one-way permutat ion such tha t  given 

t < n - k bits of x, no g > k bits of f ( x )  can be guessed with a probabil i ty 

better" than  ~ .  Because, even if v o fx(x) and f~(x) are related to each other  

by a system of linear equations, knowing n - k - 1 bits of v o f l ( z )  and g < k 

bits of the f l (x ) ,  the system of equations still cannot be solved. [] 

Note that  the conditions of Lemma 7.5 for f l  only exclude one-way 

permutat ions  that  split into two or more parts, for example f ( x l  II x2) = 

xl [[ g(x2). As the definition of hard bits implies tha t  the hard bit affects 

all the output  bits, if a one-way permutat ion with some hard bits had been 
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used for f l ,  then the above conditions would be satisfied without  any fur ther  

assumptions.  

L e m m a  7.6 Let m = f2 o v o f l  be the one-way permutation defined in 

Theorem 7.5, then given re(x)  and any string of  t < n - k bits of x, m 

cannot be inverted. 

L e m m a  7.6 suggests a simple construction for a one-way permuta t ion  

m such tha t  each bit of x is a hard bit of m and given any t < n - k bits of 

x and m ( x ) ,  m cannot be inverted. We call such a permutat ion m a strong 

one-way permutat ion or simply a strong permutation. The following corollary 

can be drawn from Lemma 7.6. 

C o r o l l a r y  7.3 Assume  that m : D --~ D is a strong one-way permutation,  

where D = [J~ E n. Also assume that i x , i2 , . . .  , i t  are funct ions f rom N to N ,  

with 1 <_ i j (n)  <_ n for  each l <_ j < t, t < n -  k. Denote by E 1 and E~ the 

probability distributions of the random variables x~,( , ) . . ,  x~2(~ ) xq( , )  [[ m ( x )  

and f t . . .  r2 ra 11 m ( x )  respectively, where x ET E '~, xi,(,~) is the i j (n) - th  bit 

of  x and rj eT ~.  Let E l = {E~ [ n e N }  and E 2 = {E~ [ n E N } ,  then E '  

and E 2 are indistinguishable f rom each other. 

In other words, any string of t < n - k bits of x is indistinguishable from a 

random string. 

We can now construct an efficient Blum-Micali pseudorandom bit gen- 

erator with the strong one-way permutat ion suggested in Theorem 7.5. 

T h e o r e m  7.6 Let l be a polynomial with l(n) > n and m be a strong one- 

way permutation.  Let g be a function defined as follows: 

1. Generate the sequence m(1)(x],~ ~ ~, m(2)(z~ ~ ~ , . . . ,  m(t(n))(x), where x E ~n.  

2. From right to left, extract n - k "  1 bits f rom each element in the above 

sequence and output them. 

Then g is a pseudorandom bit generator extending n-bit input to (n - k - 

1)l(n)-bi t  output strings. 
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Since we have a computing resource for k bits, the above scheme yields the 

maximum possible efficiency. If k = 128 (l) and n is 512, then with 2 

iterations of m, or 4 iterations of f ,  we can extract 766 pseudorandom bits. 

This yields nearly 192 pseudorandom bits per iteration of f ,  which is 21 

times more efficient than using the RSA or Rabin function with the scheme 

described in Theorem 7.4. 

Note that since the output string is pseudorandom, we can also draw 

the following corollary. 

Corol lary  7.4 The n - k - 1 extracted bits o f  each iteration is distributed 

uni formly  and randomly in E =-k-1 . 

7.7 U O W H F  C o n s t r u c t i o n  and  P B G  

Damgard in [Damgard, 1989] used pseudorandom bit generators for hash 

functions by extracting a small portion of tile output string. Later, Zheng, 

Matsumoto and Imai revealed a duality between the construction of pseudo- 

random bit generators and one-way hash functions [Zheng et al., 1990a]. We 

show that the construction presented in Theorem 7.6 for a PBG, can also be 

used for the construction of a UOWHF. Before showing this, we make some 

remarks about UOWHF's.  

For universal one-way hash functions, there is no guarantee that  it is 

not computationally feasible to find pairs of inputs that map onto the same 

output.  However, there should not be too many such pairs. So, choosing x 

randomly, it should be unlikely that anyone can find an x' such that h(x)  = 

h(x ' )  [Merkle, 1989b]. However, if we assume that h is random, that is, 

hashing is accomplished by looking up the correct value in a large table of 

random numbers, then it is possible to choose x in a non-random way since 

any method of choosing x that does not depend on h is random with respect 

to h. 

Another problem with universal one-way hash functions is that repeated 

use weakens them. To deal with this problem, we can simply define a family 

of one-way hash functions with the property that each member hi of the 

family is different from all other members, so any information about how to 
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break hi will provide no help in breaking hj for i # j (see [Merkle, 1989b]). 

If the system is designed so that every use of a weak one-way hash function is 

parameterized by a different parameter, then the overall system security can 

be kept high. The UOWHF that Naor and Yung constructed was based on 

the application of a one-way permutation and a strongly universal2 family of 

hash functions. In the next subsection, we show how to construct a UOWHF 

by applying the strong one-way permutation presented in Section 7.6. 

7 . 7 . 1  U O W H F  B a s e d  on the  Strong One-way  P e r m u -  

ta t ion  

The following theorem describes the construction of the UOWHF. 

T h e o r e m  7.7 Assume that m : D ~ D is a strong one-way permutation, 

where D = [,J,~ E n, and chop1 : E ~ --* E n-1 simply chops the last bit, then 

h = chop1 o m is a universal one-way hash function. 

P r o o f  : We obtain our proof by contradiction. Assume that there is a 

probabilistic algorithm F that can find a collision, then we show that  we can 

make an algorithm that can invert m. Suppose that we first choose an x at 

random, then run m on x to get m(x), we then obtain h(x) = chopl(m(x)). 

There is only one element that can collide with re(x) under chop1. This 

element differs from re(x) in one bit. Let us write this element as re(y). If 

a collision finder can find a y which collides with x under h with probability 

greater than O-~}' it can obtain y from re(y) with the same probability. This 

contradicts our assumption that m is a one-way permutation. [] 

L e m m a  7.7 If  we define lchop : E '~ ~ y]n-1 to chop one bit and the position 

of the chopped bit is given in the description of the function and can be any 

bit, then h = lchop(m(x)) is also a universal one-way hash function. 

Proof Sketch:  The problem of finding a collision for h, defined in Lemma 

7.7, can be reformulated to finding x, y and x ~ y, such that re(x) and re(y) 

match at all bits except at the one specified in the definition of the lchop 
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function. By repeating a procedure similar to that for the proof of Theorem 

7.7 the claim of this lemma can be shown to be true. [] 

Since according to Corollary 7.3 and Corollary 7.4 the output of m 

is distributed uniformly and randomly in E ~, then to find y by exhaustive 

search, we need to perform 2 =-1 operations on average. If this much compu- 

tation is greater than 2 ~, then it is not feasible to find the collision. 

If we chop t bits of m(x) ,  then there are (2 t - 1) elements which col- 

lide with x under h. If these elements are distributed randomly among 2 n 

elements, then we need to do 2 ~-t search operations to find a collision for x. 

Since our computational resource can do at most 2 k search operations then 

t should be less than n - k. 

C o r o l l a r y  7 . 5  Let chopt : E ~ - ~  E ~ - t  chop the t last bits and let t < n - k ,  

then h = chopt o m is a universal one-way hash function. 

Note that the scheme described in the above corollary increases the 

efficiency of the hash function scheme, so for hashing long messages, we need 

to do less iterations. We can also generalize the above scheme by introducing 

tchop, a function which chops t bits of the output. In this case, we need 

(n - k - 1) log 2 n bits to specify the positions of the chopped bits. 

7 . 7 . 2  P a r a m e t e r i z a t i o n  

Since the hash function presented in Corollary 7.5 is a universal one-way hash 

function, we should parameterize it to make it secure for implementation in a 

practical scenario. The parameterization can be done in two different ways: 

. We can parameterize h by selecting v from a family of (k + 1)-bit perfect 

permutations. Then H = {h = chopt o f o v o f I v C Vn} where Vn is 

the (k + 1)-bit perfect permutation family and chopt chops the t last 

bits. 

. We can parameterize h by selecting the function for the compressing 

procedure from a family of hash functions. We may choose a family of 

chop functions. In this case, the number of bits required to specify a 



154 Chapter 7 A C O N S T R U C T I O N  FOR ONE W A Y  HFS A N D  P B G S  

member of the family is at most equal to ( n - k - l )  log 2 n. Alternatively, 

we could choose a family of t to 1 strongly universal hash function as 

proposed in [Naor and Yung, 1989]. 

7.7.3 Compressing Arbitrary Length Messages 

One of the main desirable properties of hash functions is that they should be 

applicable to an argument of any size. Damgard suggested a design principle 

in [Damgard, 1989] based on fixed size collision free hash functions. Another 

method appeared in [Zheng et al., 1990a] and is the dual of the Blum-Micali 

pseudorandom bit generator. Let us call it the ZMI method. We show that 

using the strong one-way permutation proposed in Theorem 7.5, these two 

methods actually yield one scheme for hashing long messages. 

D a m g a r d ' s  m e t h o d :  Let l(n) be a polynomial with l(n) > n, let f 

be a collision free one-way hash function f : E "+t ~ E ~ and let a E~ ~n. 

Split an l(n)-bit message x into t-bit blocks and let the blocks be denoted by 

xl ,x2, . . . ,x~_~_.  If 
t 

yo = a 

Y i + l  : f ( Y i  II X i +  1)  

then h(x)  = Y t ~  is the hash value of the 10ng message x. 
t 

Z M I  m e t h o d :  Let f be a one-way permutation f : E~+t ~ E,~+t and 

let I (n)  = (il, i 2 , . . . ,  it) denote the known simultaneously hard bits of f .  Let 

x = x t . . .  X2Xl E Et and b E En. Define insl(n)(b, x) be a function inserting 

bits of x in the il-th, . . . ,  it-th bits of b, that is: 

insl(n) (b, x) = bn . . . b i t x t b i t - 1 .  . . bi~ X l b i l - 1  . . .  b 2 b l  

Let z E E n+t and denote by droPi(n)(z) a function dropping the i r t h ,  . . . ,  

i t-th bits of z. Let l be a polynomial with l(n) > n and let a E E~. Split an 

l(n)-bit message x into t-bit blocks denoted by x l, x2 , . . . ,  xt~/, where xi E E t 
t 

for each 1 < i < ~t-~" Let h be the function from E l('0 to E '~ defined by: 
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YO ~ C~ 

Y l  = dropt(.)(f(insi(n)(yo, x ~ _ ~ . ) ) )  
t 

Yl = dropi(n)( f( insi(n)(yi- l ,X~_i+l)))  

then h(x) = Y~_~A, = dropi(n)(f(inst(,~)(yt~_l,XX))). In the original 

ZMI scheme h(x) = f ( inst( ,~)(y~_l ,Xl)) .  If we use the strong one-way 

permutation m in the ZMI scheme for f ,  since the t least significant bits 

are simultaneously hard bits, then the dropl(,) function performs identically 

to the chopt function defined in Corollary 7.5. So, dropt(,)(f(x)) in the 

ZMI method would be identical to chopt(m(x)) of Corollary 7.5, which is a 

universal one-way hash function from E "+t to E '~. On the other hand, when 

the t last bits of a function are simultaneously hard bits, then insi(,)(y0, xt_~) 

would yield the same result as (y0 II So using the strong one-way 

permutation with the ZMI scheme would yield the same result as using the 

one-way hash function proposed in Corollary 7.5 with Damgard's method, 

when the message blocks are fed in a similar order. 

7.8 A Single cons truc t ion  for U O W H F  and  

P B G  

Each iteration of the pseudorandom bit generator presented in Theorem 7.6 

is identical to the hash function presented in Corollary 7.5. Assume that  we 

have a computational resource for at most k=63 bits. For the construction 

of the PBG of Theorem 7.6, an algorithm should extract at most n - k - 1 

bits, and throw away at least k+  1 bits on each iteration. On the other hand, 

for the construction of the one-way hash function according to Corollary 7.5, 

we may chop at most n - k - 1 bits, and leave k + 1 bits as the hash value. 

If we choose k < t < n - k, for example for n = 512 we choose 64 < t < 448, 

then the algorithm can be used both for pseudorandom bit generation and 

universal one-way hashing. 
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C o n c l u s i o n s  and  E x t e n s i o n s  

. 

. 

We constructed a strong permutation with a (k + 1)-bit perfect per- 

mutation, namely a complete permutation whose k + 1 output bits are 

independent. A (k + 1)-bit perfect function can be constructed easily 

as follows: 

v(x)  = c(x) G PBGk+l (x )  

where x E E '~, c(x) is a complete permutation and PBGk+I(X)  denotes 

k + 1 output bits of a pseudorand0m bit generator, for the seed x. How- 

ever, we constructed a UOWHF and also an efficient pseudorandom bit 

generator with the strong permutation. This confirms Naor and Yung's 

conjecture that if pseudorandom bit generators exist then UOWHF's 

exist [Naor and Yung, 1989]. 

For the construction of the strong permutation we assumed that the 

position of k + 1 hard bits of the one-way function f corresponds to 

that of the k + 1 independent bits of v. The following generalization 

can easily be shown to be true. 

I f  v is a perfect permutation then rn = f o v o f is a strong one-way 

permutation, where f is any one-way permutation. 

In other words, there is no need to know the exact positions of the 

hard bits of f .  As we mentioned earlier, the running time of a perfect 

permutation based on a DES structure for large enough n, for example 

n=512, is rather big. 

A reasonable question is whether we can apply some simpler mathemat-  

ical functions, such as y = (aix) 3 mod m, and/or y = (ax + b) mod m, 

or a composition of such functions for v. In Chapter 8, we investigate 

how multiple compositions of polynomials of y = px + q in GF(2 n) with 

a one-way permutation can be employed to construct a strong one-way 

permutation. 



C h a p t e r  8 

H o w  to Construct  a Fami ly  of  

Strong  One-way  P e r m u t a t i o n s  

8.1 I n t r o d u c t i o n  

Much effort has been spent to identify the hard bits of some specific num- 

ber theoretic one-way functions. In [Alexi et al., 1988] it is shown that the 

O(logn) least siginficant bits of the RSA and Rabin encryption functions 

are individually hard, and that those O(log n) bits are also simultaneously 

hard. In addition, it is shown in [Long and Wigderson, 1988] that the ex- 

ponentiation function, that is f(x) = g*(modP), where P is a prime and 

g is a generator of Z~, also has O(log n) hard bits. Both these works take 

advantage of complicated techniques based on number theoretic approaches. 

A breakthrough in this area is due to Goldreich and Levin [Goldreich 

and Levin, 1989] who have shown how to build a hard-core predicate for 

all one-way functions. They have extended the construction to show that 

O(log n) pseudorandom bits can be extracted from any one-way function. 

Their result cannot be improved without imposing additional assumptions 

on the one-way function [Goldreich and Levin, 1989], leaving the problem of 

constructing a function with O(n) simultaneous hard bits open. However, if a 

one-way function is proven to have a higher degree of security, then a greater 

number of pseudorandom bits could be extracted using the same method. 
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In [Blum and Goldwasser, 1985], [Goldwasser and Micali, 1984] a con- 

struction for a probabilistic encryption function was presented, for which all 

the bits of the presented one-way function are simultaneously hard. This 

construction is based on the composition of hard bits from many one-way 

functions. 

Another significant work in this area is due to Scherift and Shamir. 

They have shown in [Scherift and Shamir, 1990] that half of the input bits of 

an exponentiation function (modulo Blum integers), that is f (x )  = g~(mod 

N) where N is a Blum integer, are simultaneously hard and almost all bits are 

individually hard to evaluate. This work also takes advantage of complicated 

techniques. As a result, exponentiation modulo a Blum integer is as yet the 

only natural function with O(n) proven simultaneous hard bits. 

In Chapter 7, an n-bit one-way permutation such that each input bit 

is individually hard and any t < n - O(log n) input bits are simultaneously 

hard is called a strong one-way permutation. In this chapter, we show how 

to construct a family of strong one-way permutations, such that all input 

bits of a permutation are hard and any t < n - O(log n) input bits are 

indistinguishable from a random string. In contrast with [Goldwasser and 

Micali, 1984], which composes the hard bits of many one-way functions, we 

compose one-way permutations to get a strong one-way permutation. Two 

practical schemes are proposed. Both schemes take advantage of the family 

of polynomials in a Galois field. The first scheme is based on the existence 
O n of a one-way permutation and is constructed with (l-h-~g~) fold composition 

of a one-way permutation, and a randomly chosen element of the family of 

polynomials in a Galois field. The second scheme is based on the existence of 

a hiding one-way permutation, and is constructed with a three layer structure 

applying a hiding one-way permutation, a randomly chosen element of the 

family of polynomials in a Galois field and any one-way permutation. 

Section 8.2 gives some preliminary comments on hard bits. In Section 

8.3, after investigating some properties of polynomials in a Galois field, the 

proposed constructions are presented. 

The results of this chapter have appeared in [Sadeghiyan et al., 1991]. 
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We gave the formal definition of one-way functions in Chapter 7. However, 

informally speaking, one-way functions are those which are easy to compute 

but difficult to invert. It is clear that the one-way property of a function is 

relative to a specific amount of computing resources in a specific model of 

computation. In this chapter, we assume that  we have a computing resource 

for at most 2 k(n) operations, where k(n) = O(]og n). We also assume k+(n) is 

a function with a growth rate slightly more than k(n) such that  n - k + > k. 

As an example, consider k+(n) = O(logl"~ 

If a function f is one-way then given f (x)  the argument x must be 

unpredictable. If every bit of the argument x were easily computable from 

f (x) ,  then f would not be a one-way function. Hard bits are some specific 

bits of the argument which are unpredictable and cannot be guessed with a 

probability better than by flipping a coin [Blum and Micali, 1984], [Zheng 

et al., 1990a]. There may exist some one-way functions which do not have 

any hard bits. However, we require that any one-way function should have 

more than k(n) = O(logn) bits which are unpredictable, though they may 

be biased. 

If a one-way permutation f had t = n - k + (the maximum possible) 

known simultaneous hard bits, it could be used in the Blum-Micali pseu- 

dorandom bit generator scheme to obtain the maximum efficiency for the 

generator, where the maximum number of bits per iteration of f can be 

extracted. We called such a one-way permutation a strong one-way permu- 

tation Or simply a strong permutation 1. 

In the next section, we present two schemes for the construction of 

strong one-way permutations, where we take advantage of polynomials over 

the Galois field GF(2~). In the following, some properties of these polyno- 

mials which are of interest to us are investigated. However, first we consider 

the notion of strongly universal~ hash functions, presented by Carter and 

Wegman in [Wegman and Carter, 1981]. 

1Note the term 'strongly one-way permutation' has been used in [Goldreich et al., 1988] 
with a different meaning, however, as the term strong one-way permutation conveys our 
desired meaning we used it with the new definition. 
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Def in i t ion  8.1 Suppose G is a set of functions and each element of G is 

a function from A to B.  G is strongly universals i f  given any two distinct 
#G 

elements al, a2 of A and any two elements bx, bs of  B,  then ~ functions 

take al to bl and as to bs. 

In other words, the values of g(x) and g(y) are independently and 

uniformly distributed in B for every x ,y  E A, when g E G is chosen 

uniformly at random. Strongly universals sets of functions can be cre- 

ated using polynomials over finite fields. As the simplest example consider 

G = {g I g(x) = px + q; p, q e GF(2n)} in the finite field GF(2n). 

A Few Observations 

In Chapter 7, we defined complete permutations as permutations where each 

output bit depended on all input bits. In other words, the Boolean expression 

for each output bit contained all the input bits. Since the operation in the 

Galois field GF(2 '~) is done modulo an irreducible polynomial, the resulting 

permutation is such that the Boolean expression for each output bit contains 

all the input bits. This is due to the properties of operations in Galois fields. 

E x a m p l e :  We investigate the case for GF(2a). Here, x is a string of 

three bits, x2, xl,  Xo, and represents the polynomial xsz 2 + XlZ + xo. Let p 

represent p2z 2 + plz  + po and q be q2z s q- qlz -I- qo. There are two irreducible 

polynomials in GF(23), z 3 = z + 1 and z 3 = z s + 1. When the operation is 

done modulo z 3 = z + 1: 

g(x) = px + q = (q2 q- p2xo + plxl  

-b (ql q- PlXO -1- pOX1 

+ (qo -1- pOXO q- p2Xl 

and when the operation is done modulo z 3 = 

g(x) = px + q --- (q2 q- p2xo + plxl  

+ (ql q- plxo + poxl 

+ (qo +poxo +p2xl  

+ po:r2 + p2z2)z 2 

+ p2x2 + p2xl + plx2)z 

+ pax2) 

z2+  1: 

+ pox2 + p2z2 + p2xx)z 2 

+ p2z2)z 

+ plx2 + p2z2) 

Both irreducible polynomial have produced some common terms, which are 

functions of all the input bits, and some other terms in the coefficients of 
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g(x) .  This would happen if the operation was performed in any GF(2~).  

So, it is clear tha t  polynomials in GF(2  '~) result in a complete permutat ion.  

Notice tha t  when p, q are chosen at random, for every x, y, the outputs  are 

uniformly and independently distributed. 

When  we are operating in GF(2)  the multiplication is equivalent to the 

'AND'  operation and addition is equivalent to the 'XOR'  operation.  So each 

coefficient in g(x)  is the inner product  of x with a different string obtained 

from p. Note that ,  if we represent x and g(x)  as two vectors, they  are related 

to each other by a system of n linear equations. In the above example 

when the irreducible polynomial is z 3 = z + 1 the above equations can be 

represented as 

po + P2 Pl P2 x 2 ] q2 [ ] 

g (x )  = px  + q = Pl + P2 po + P2 Pl x l  + ql z 2 z I z ~ 

Pl P2 Po Xo qo 

If we had applied polynomials of higher degree, such as g(x)  = c~x 2 + f ix + 7, 

a similar result would have been obtained. For the remainder of this chapter,  

we use the simplest case g(x)  = px  + q, although all the following lemmas 

and theorems are also true when g is of a higher degree. Notice tha t  the 

above relation can be stated in a vector representation as: 

g ( x )  = p x  + q 

Moreover, p and q can be modified in a way such that  g and x become related 

to each other through a Toeplitz matrix.  A Toeplitz matr ix  is a mat r ix  M 

such tha t  Mi,j = Mi+l,j+l for all i , j .  For the above example, we may  write 

PO -t- P2 -1- r2 Pl P2 x2 q~ 

g = Pl + P2 + rl Po + P2 + r2 Pl xl + q~ 

Pl -1- ro Pl + P2 + rl Po 4- P2 -[- r2 Xo q~ 

r2 

where r = rl is a randomly chosen vector, and q'2 = q2 + r2x2 and 

ro 

q~ = ql + f ix2  n u r 2 x l  and q'o = qo + rox2 + (Pl + rl)Xl + (P2 -1- r2)x0. 

L e m m a  8.1 I f  g(x)  = px + q, where p, q ~i GF(2  n) are chosen randomly,  

and n - k + bits of  the g(x)  are known (or its k + bits are unknown) ,  then the 

probability of guessing each bit of  x is equal to 1 27r " 
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P r o o f  : Assume that there is an algorithm L which when given p, q and 

some bits of g(x) lists all possible values of x. Since g is a permutation, if 

one bit of g(x) is given, L will list all possible values of x which will be 2 ~-1 

elements on average. In general, given i bits of g(x), L lists 2 ~-i possible 

values of x. If n - k + bits of g(x) are given, L will list 2 k+ possible elements 

for x. One can guess the correct value of x with a probability of 1 2k--~-. Since 

g is a complete permutation and p and q are chosen randomly, the overall 

probability of guessing any bit of x is equal to the probability of guessing the 

value of x. [] 

Note that, for some specific values of p, q some bits of x could be guessed 

efficiently, but when we consider the probability of guessing any bit of x over 

all values of p and q, it is equal to 1 2k--~-" 

8.3 Strong One Way Permutations 

In this section we propose two schemes for the construction of strong one-way 

permutations. The first construction is given in Theorem 8.1: the building 

block of that construction is f o g. The following lemma investigates f o g. 

L e m m a  8.2 Let m : D --* D be a one-way permutation where D = (J,~ ~'~ 

and m = f o g, where f is a one-way permutation, and where g = px + q 

with p,q E~ GF(2n). Also assume that i i , i 2 , . . . , i k  are functions from N 

to N,  with 1 <_ ij(n) <_ n / o r  each 1 <_ j <_ k. Denote by EX~ and E~ the 

probability distributions of the random variables x~k(,O.., xi2(n) xil(,O H re(x) 

and rk . . .  r2 rl H re(x) respectively, where x er ~n, x,r is the ij(n)-th bit 

of x and rj er ~. Let E 1 = {E 1 In  e N} and E 2 = {E~ In  e g } ,  then E a 

and E 2 are indistinguishable from each other. 

In other words, given m(x), the probability of distinguishing any k-bit 

string of x from a random string is less than ~ ,  where k = O(log n) when 

the probability is calculated over all values of p, q. Note that Lemma 8.2 

virtually says that, given f (x ' )  and p', q' E, GF(2 n) it is hard to guess any 

O(log n) bits of x, where f (x ' )  = f o g(x) = m(x). As x = p'x' + q' is the 

inverse of g(x) = x' = px + q, p, q E, GF(2n). So x is actually the concate- 

nation of the inner products of x ~ with n different strings obtained from p~. 
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P r o o f  : Goldreich and Levin showed in [Goldreich and Levin, 1989] that: 

given f (x ' )  and p', where f is any one-way function and [ p' [=] x' l and p' is 
an arbitrary string, the inner product of x' and pl is a hard-core predicate of 

1 1 _ _ l j  V 1 f ,  and cannot be guessed with a probability better than ~ + Q(I~'I) -- 2 Q(n) 

for each probabilistic polynomial time algorithm and for each Q. 

They also extended their result and showed that O(log n) hard bits can 

be obtained from any one-way function, where the simultaneous hard bits 

are the inner product of O(log n) different n-bit strings with x'. According 

to [Goldreich and Levin, 1989], the set of strings may also form a Toeplitz 

matrix. As was mentioned earlier, the matrix which relates x to g(x) can be 

rearranged into a Toeplitz matrix, so the same sort of proof that  has been 

given in [Goldreich and Levin, 1989] could be presented here to show that  

any k bits of x are indistinguishable from a random string when m(x) is 

given. As the method that Goldreich and Levin used to proved their claim 

is rather involved and complicated, we avoid repeating it here. However, a 

simple and informal justification can be given as follows. 

Without loss of generality, assume that f is a one-way permutation 

which acts on k + bits and keeps the other bits unchanged. So, given re(x) = 
f o g(x), it is hard to guess k + bits of g(x), but n - k + bits of g(x) can be 

guessed efficiently. As was proved earlier, x and g(x) are related to each other 

with a system of n equations with n variables. When n - k + bits of g(x) are 

known, the system of equations can be reduced to a system in k + variables. 

However, if any k+-bit string of x is given, the system of equations can be 

solved and the values of the k + unknown bits of g(x) would be revealed. Since 

there is no algorithm which can invert f with a probability better than 1 
1 1 no bit of x can be guessed with an overall probability better than ~ + 2k-~--. 

Moreover, any probabilistic algorithm M that could distinguish any t < k bit 

string of x from a random string with a probability better than 1 would be 
2 t 

able to invert f with an overall probability better than ~ which contradicts 

our assumption that f is a one-way permutation. [] 

The result of Lemma 8.2 can be compared with the results of Vazirani 

and Vazirani in [Vazirani and Vazirani, 1984], where it is shown that  the XOR 

of any non-empty subset of hard bits is also hard to guess. Altogether, it can 

be concluded that all bits of x are individually hard, and any k = O(logn) 
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bits of x are simultaneously hard bits of f o g and cannot be distinguished 

from a random string with a probability of success better  than 1 7 ,  when the 

probability is computed over all values of p and q. 

8.3.1 A Scheme for the Construct ion of  Strong Per- 

mutat ions  

With the Goldreich-Levin method, only O(log n) pseudorandom bits can be 

extracted from any one-way function. This number of pseudorandom bits 

cannot be improved without additional assumptions on the complexity of 

the one-way function used. The reason this is true is that a one-way function 

which cannot be inverted with a probability better than 0--~)' may act only 

on log Q(n)  of the bits of x and leave the rest unchanged [Goldreich and 

Levin, 1989]. In Lemma 8.2, we constructed a one-way permutation f o g 

such that any k input bits cannot be distinguished from a random string. If 

we apply f o g as a one-way permutation in the Blum-Micali pseudorandom 

bit generator, any k bits can be extracted per iteration of f o g. We take 

advantage of such a one-way permutation to construct a family of strong 

permutations. 

In the following, we suggest two schemes to obtain strong permutations 

and present the theorems behind them. The first scheme is based on the 8 

fold composition of the f o g. 

T h e o r e m  8.1 Let m : D --~ D be a one-way permutat ion where D = LJn ~ 

and m ( f  o g)8 = ( f  o g) o . . .  o ( f  o g), where f is a one-way permutation,  
Y 

s times 
and s = O(~),n and g = px  q- q where p, q Er GF(2'~). Then m is a strong 

one-way permutation.  

P r o o f  : First, we show that ( f  og)2 = f o g o f o g has 2k hard bits. 

Let us denote the first k bits string of x to be x.--l, its second k bits to be 

x.--2 and so on, and consider y = f o g(x) .  Given ( f  o g)2(x),  the string 

x.--2 [[ y.--1 is indistinguishable from a random string (this is true because the 

concatenation of hard bits from each iteration in Blum-Micali pseudorandom 

bit generator is indistinguishable from a random string and according to 
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Lemma 8.2 any k bit of f o g is indistinguishable from a random string). As 

x.__~ H y~-i forms a 2k-bit string, x G y has 2k bits which cannot be guessed 

efficiently. Since any k bits of f o g are indistinguishable from a random 

string, any 2k-bit string of x @ y is also indistinguishable from a random 

string. So, for each probabilistic polynomial time algorithm M 

1 
P rob{M[( f  o g)2(x)] = x ~ y} < 22k------ T 

In the following, we will show that the above relation implies that: 

P rob{M[( f  o g)2(x)] = x} < 221k+ 

To justify this claim, by contradiction assume that there is a probabilistic 

algorithm M'  that can compute x with probability bet ter  than 22At. By 

applying M'  in another probabilistic algorithm M", it can be shown that the 

value of x | y can be computed with a probability bet ter  than 1 M "  2~-~r. first 

runs M'  on ( f  o g)2(x) to get the value of x. Then M"  runs f o g on x to 

find the value of y. M" gives x | y as its output. If the value of x is correct, 

the value of y would be correct with probability 1. Hence, M" outputs  the 

correct value for x | y with a probability better than 1 2~-~. This contradicts 

our assumption that xOy cannot be guessed with probability bet ter  than 1 22-~. 
So, it can be concluded that for each probabilistic polynomial time algorithm 

M 
1 

Prob{M[( f  o g)2(x)] = x} < 22k----- ~- 

In this way, a one-way permutation is obtained which is more complex than 

f ,  without putting any condition on f .  As the number of pseudorandom 

bits extracted from a one-way function (or the number of simultaneous hard 

bits) with the Goldreich-Levin method is bounded by the complexity or the 

'security parameter '  (Goldreich and Levin's term) of the one-way function, 

then 2k simultaneous hard bits can be extracted from ( f  o g)2. This can be 

done by choosing a random 2k x n Toeplitz matrix, and multiplying it by x. 

Note that, since p and q are chosen randomly and independently, the matrix 

which relates g(x) to x can be arranged in a Toeplitz matrix form. In addi- 

tion, the matrix can be arranged in such a way that for any predetermined 

2k bits of x, the corresponding rows form a Toeplitz matrix. Hence, given 

( f  o g)2(x), any 2k bits of x cannot be distinguished from a random string. 

This completes the proof that two fold iteration of f o g produces a one-way 
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function such that every 2k input bits are indistinguishable from a random 

string. 

Using induction and performing a proof similar to that above, it can 

be shown that ( f  o g)i(x) has a complexity or security factor such that ik 

random bits can be extracted from it. In addition, in a similar way it can 

be shown that each input bit is individually a hard bit and any ik input 

bits are simultaneous hard bits. Therefore, to obtain a one-way permutation 

with any n - k input bits simultaneously hard, it is enough to construct an 

fold iteration of f o g .  With k = O(logn), a construction of O (lo-g~) fold 

iteration of f o g is needed, which would be performed in polynomial time 

anyhow. [] 

8 . 3 . 2  A Three-layer Construction for Strong Permu- 
tations 

In Lemma 8.2, we constructed a one-way permutation f o g such that any 

k input bits cannot be distinguished from a random string. If there exists 

another transformation (permutation) h (such that given any t bit string of 

its input x, where t < n - k, it will be difficult to guess any k bits of its 

output  h(x)), then we can apply this function before g and get f o g o h(x) 

as a one-way permutation. The probability of distinguishing any t < n - k 

bit string of x from random strings is less than 1 2k--;-4-, when its output  is given. 

This result is proved in the next subsection. Since h would be able to hide 

any k bits of its output,  we call it a hiding permutation. 

First, we introduce a definition for hiding permutations. 

Def in i t i on  8.2 Assume that h : D ~ D is a permutation. Also assume that 

in , . . . ,  it and j l , . . . ,  jk are functions from g to N,  where 1 < il(n), j , (n) < n 

for each 1 < l < n. We call h a hiding permutation, if for each probabilistic 

polynomial time algorithm M, for each t < n - k and for each polynomial Q 

and for all sufficiently large n, 

] Prob{M(xi , , . . .  ,xil H YJ. , '"  'YJk+)= YJk,''" ,YJl} -- ~-~ ]< 1__2_ 
Q(n) 

where x Er ~n and xi denotes i-th bit of x, and yj denotes j- th bit of h(x). 
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The following theorem shows how to make a strong permutation from 

a hiding permutation. 

T h e o r e m  8.2 If  h is a hiding permutation and g = px + q, where p, q Er 

GF(2'~), and f is any one-way permutation, then m = f o g o h is a strong 

one-way permutation. 

P r o o f  Sketch:  To prove that m is a strong one-way permutation we need 

to show that any bit of x is hard to guess, and any n - k + bits of x are 

simultaneously hard, given only re(x). Assume that,  by contradiction, a 

probabilistic polynomial time algorithm M could guess xi, given re (x ) .  Let 

x ~ = h(x). Since any xi is a function of some bits of x ~, and according to 

Lemma 8.2, any input bit of fog is individually a hard bit, then any algorithm 

which can guess xi can guess a hard bit of f o g. This is contradictory to 

the assumption that f is a one-way permutation, since computing any hard 

bit of f o g is equivalent to reversing f .  Hence, every xi is a hard bit of m. 

Moreover, having t < n - k bits of x does not reveal any k bits of h(x), since 

h is a hiding permutation. Then, having t < n - k bits of x would not help 

in inverting m, given re(x) = f o g o h(x). So, for each polynomial Q and 

for large enough n, any probabilistic polynomial time algorithm M cannot 

distinguish any string of t < n - k bits of :r from a random string with a 

probability better than Q-~), when re(x) is given. [] 

A method for hiding x is based on the application of a one-way permu- 

tation which acts on all bits, and serves as a hiding permutation due to the 

following lemma. 

L e m m a  8.3 Any one-way permutation h which is complete, is a hiding per- 

mutation. 

P r o o f  : We obtain a proof by contradiction. Assume that a one-way 

permutation which is complete is not a hiding permutation. Then, there is a 

probabilistic polynomial time algorithm M that can obtain YJk, . . . ,  YJl, given 

x i t , . . . ,  xil, with the available computing resources. On the other hand, since 

n - t  > k bits of x are not given, then the k bits of the output obtained do not 

depend on at least n - t - k bits of the input. This is equivalent to saying that  
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h is formed from two functions, say hi, h2, with h(x) = hl (x l t+k , . . .  , x i l )  [[ 
h2(.). Obviously ha is not a function of x, which contradicts our assumption 

that h is a complete permutation. [] 

Thus, a concrete example of the construction of a family of strong 

one way permutations, based on using a complete one-way permutation as 

the hiding permutation, is m(x)  = f o g o h(x), where f is any one way 

permutation, g = px + q where p,q Er GF(2n), and h is a complete one-way 

permutation which acts on all its bits. 

8.4  C o n c l u s i o n s  

There are many functions that are considered to be one-way, so if someone 

knows the value of f ( x ) ,  he can find the value of x for less than a fraction 1 

of x's. This does not necessarily mean that any bit of x cannot b e  guessed 

efficiently. On the other hand, it is shown that O(log n) bits of the RSA and 

the Rabin encryption schemes are hard to guess [Alexi et al., 1988]. Also, it 

was shown that O(log n) bits of the exponentiation function are hard to guess 

[Long and Wigderson, 1988]. This does not mean that the remaining bits are 

easy to guess, but only that we do not yet have any proof about the remaining 

bits. Recently it was shown that ~ bits of the exponentiation function are 

simultaneously hard to guess, when the operation is done modulo a Blum 

integer [Scherift and Shamir, 1990]. 

In this chapter, we showed how to make a family of strong one-way 

permutations, such that whenever a member is chosen uniformly at random, 

we get a one-way permutation such that all its input bits are hard and any 

t < n - k bit string of input bits is indistinguishable from a random string, 

with a high probability. Two schemes for this purpose were suggested. The 

first scheme is based on a one-way permutation. The second scheme relies 

on the existence of a hiding permutation. An open problem is to show that 

a one-way permutation is complete, or cannot be split into two parts. We 

also took advantage of the simplest family of polynomials in a Galois field 

and showed that it is also a family of complete permutations: it had already 

been shown that it is a family of strongly universal2 functions. The proposed 

schemes for the construction of a family of strong one-way permutations can 



8.4 Conclusions 169 

be shown to work with families of polynomials of higher degree in Galois 

fields as well, where such polynomials form a family of strongly universal~ 

functions. As it was shown in Chapter 7, a strong one-way permutation is 

an effective tool for the construction of efficient pseudorandom bit generators 

and universal one-way hash functions. 



Chapter 9 

Conclusions 

This book has reviewed some existing cryptographic hash functions together 

with methods of attacks on them, and has developed some principles for the 

design of such functions. The results of the review and the development of 

design principles may now be summarized. 

9.1 Summary  

Chapter 1 introduced the aim of the book and provided a background for the 

theory and practice of secure hash schemes. The necessity for information 

authentication in computer environment was explained and cryptographic 

primitives to provide security mechanisms were presented. Particular em- 

phasis was given to the notion of digital signature and digital signatures 

with RSA encryption systems were introduced. Signature-hashing schemes 

were described as an improvement over a digital signature scheme with RSA, 

since some algebraic properties of RSA can be exploited to produce forged 

digital signatures. Signature-hashing schemes provide not only better secu- 

rity but also other desired properties such as efficiency. There were many 

proposals for hash schemes, but, with a few exceptions, their security was left 

as an open problem. The proposals were later analyzed and most of them 

were found to be insecure. As the security question of many cryptographic 

schemes and services reduces to the question of existence of a secure hash 

scheme, the aim of the book was to develop some design principles for the 

construction of secure hash functions. 
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Chapter 2 surveyed the area of hash functions in cryptography and 

provided an overview of the different schemes proposed. Requirements for 

secure hash functions were described, and different types of hash functions 

with their specifications were also given. Hash functions were divided into 

strong or collision-free hash functions and weak or universal one-way hash 

functions, based on their degree of security'. They were also divided into 

MAC, where a private key takes part in the scheme, or MDC, otherwise. 

From the structural point of view, they were divided according to whether 

they applied a block cipher as the underlying one-way function, in which case 

they were called block-cipher-based hash functions, or whether they used any 

other function which was easy to compute but considered difficult to invert. 

Finally, principles for designing a hash function which hashes messages of 

several block sizes, given a hash function which only hashes one message 

block, were presented and two methods, namely, the serial method and the 

parallel method were described. 

Chapter 3 described different methods of attack on hash functions. The 

birthday attack can be launched against any hash scheme. The probability 

of success depends on the length of the hash value. For a 64-bit hash value, 

gathering 233 hash values and messages increases the chance of finding two 

messages having the same hash value to more than 63 %. This happens if 

the hash scheme performs a random mapping; otherwise it would be possi- 

ble to take advantage of the non-random behaviour of the hash scheme to 

find two colliding messages with fewer operations. The other attacks depend 

on the structure of the hashing scheme. The meet-in-the-middle attack can 

be launched against hashing schemes which employ block chaining in their 

structure. The correcting-the-last-block attack can be launched against hash 

schemes based on CBC mode of DES, or on modular arithmetics. Some 

other attacks take advantage of weaknesses, such as weak keys or some weak 

structural algebraic properties, in the algorithm. The differential cryptanal- 

ysis attack takes advantage of the non-uniform distribution properties of the 

hash scheme. 

Chapter 4 examined the notion of pseudorandomness, defined basic 

ideas such as indistinguishability, and described recent developments in this 

area. It also explained the relationship between this notion and the design of 
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block-cipher-based hash functions. Based on the idea of indistinguishability, 

pseudorandom bit generators, pseudorandom function generators and pseu- 

dorandom permutation generators were defined. The construction of pseudo- 

random permutation generators from pseudorandom function generators is 

attributed to Luby and Rackoff. Their construction employs three rounds of 

DES-like permutations and three pseudorandom function generators. When 

a permutation generator is pseudorandom, it is secure against chosen plain- 

text attack. Luby and Rackoff considered this as a justification for the appli- 

cation of DES-like permutations in the structure of DES. Different trials for 

reducing the number of pseudorandom functions together with their weak- 

nesses were then described. The notion of super-pseudorandomness was pre- 

sented. If a cryptosystem is super-pseudorandom, it is secure against a cho- 

sen plaintext/ciphertext attack. It is possible to make a super-pseudorandom 

permutation generator with four rounds of DES-like permutations and four 

pseudorandom function generators. This has the implication that it is possi- 

ble to achieve better security by adding to the number of rounds in DES-like 

cryptosystems. 

The meet-in-the-middle attack against a block-cipher-based hash 

scheme is a super-distinguishing circuit for the underlying block cipher. If the 

block cipher is secure against chosen plaintext/ciphertext attack, the meet-in- 

the-middle attack cannot successfully be applied against the corresponding 

block-cipher-based hash scheme. Hence we are interested in developing a 

structure which can be used for the construction of cipher systems secure 

against chosen plaintext/ciphertext attacks, so that it can be used for the 

construction of block-cipher-based hashing algorithms. 

Chapter 5 examined the construction of super-pseudorandom permu- 

tations and presented necessary and sufficient conditions for achieving such 

permutations. The conclusion drawn from the chapter was that a composi- 

tion of DES-like permutations is super-pseudorandom if and only if the two 

internal structures, that is, one without the :first round and one without the 

last round, are not only pseudorandom but also independent permutations. 

An important corollary of this result is that it is possible to construct a super - 

pseudorandom permutation generator with four DES-like permutations and 

only two pseudorandom function generators. This structure employs one 
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pseudorandom function generator for the first and second rounds and an- 

other one for the third and the fourth rounds. It was also shown that a 

four-round DES-like structure with a single pseudorandom function gener- 

ator is not super-pseudorandom, although it may be pseudorandom. The 

other contribution of this chapter is the investigation of the conditions for 

super-pseudorandomness of generalized DES-like permutations. The major 

result of this part is that it is possible to construct super-pseudorandom per- 

mutations with k 2 rounds of type-1 Feistel type permutations, where k is the 

number of branches of the structure. 

Chapter 6 described a structure with a single pseudorandom func- 

tion generator and six rounds of DES-like permutations which was super- 

pseudorandom. First it was shown that the composition of Luby and Rackoff 

permutation generators is also pseudorandom. However, it was shown it is 

possible to achieve a perfect randomizer by composing two Luby and Rackoff 

permutation generators by applying permutations instead of functions for 

the intermediate layers. A structure with four random functions was pre- 

sented which was also shown to be perfect. Then it was shown that the 

same structure, with only two pseudorandom function generators, is super- 

pseudorandom. Finally, it was shown that replacing one of the function 

generators with a two-fold composition of the other one does not affect the 

super-pseudorandomness of the permutation generator. In the same manner 

that the result of Luby and Rackoff may be considered to be a justification for 

the application of DES-like permutations in the structure of DES and DES- 

like block ciphers, this structure can be recommended for the design of block 

ciphers with better security so that they can be used in block-cipher-based 

hash schemes. 

As the other type hash functions are based on one-way functions other 

than block ciphers, Chapters 7 and 8 assume that a one-way permutation is 

given, and examine the construction of such hash functions. One-way func- 

tions are functions that are easy to compute but difficult to invert. Chapter 

7 presented a construction for one-way hash functions and pseudorandom 

bit generators. This chapter first reviewed some complexity-theoretic con- 

structions for hash functions, on the assumption that a one-way function 

exists. These constructions, although important from a theoretical point of 
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view, are less than practical. As hash functions can be considered as du- 

als of pseudorandom bit generators, a practical scheme called the ZMI hash 

scheme, which is dual to the Blum-Micali pseudorandom bit generator, was 

based on the existence of a one-way permutation. This scheme, although 

practical, suffers from low efficiency. To improve it, a one-way permutation, 

which was called a strong one-way permutation, was constructed based on a 

three layer structure. The first and the last layer of the construction was a 

one-way permutation with some known hard bits and the intermediate layer 

was a complete permutation with some independent output bits, where the 

positions of the independent bits correspond to the positions of the hard bits 

of the one-way permutation. Applying this strong permutation, an efficient 

Blum-Micali pseudorandom bit generator and an efficient ZMI hash scheme 

could be constructed. A concluding remark of this chapter was that, by ap- 

plying the strong one-way permutation, the ZMI hash scheme is reduced to 

the general design of Damgard for compressing long messages. 

Chapter 8 examined a family of one-way functions that provides a prac- 

tical proposal for the construction of strong one-way permutations. This 

family has the property that, when a member is drawn randomly, every bit 

of the input is a hard bit and every string of n - O(log n) bits of input is 

simultaneously hard. This construction consists of @ times composition 

of a one-way permutation with a family of strongly universal2 permutations. 

With this structure, we are able to transform any one-way permutation into 

an efficient hash function by applying the construction proposed in Chapter 

7. However, it is also possible to reduce the number of layers to three by 

applying a one-way function called a hiding permutation. 

9.2 L imi ta t ions  and A s s u m p t i o n s  of  the  Re-  

sults  

This book has been primarily concerned with developing some principles 

for the design of hash functions. In Chapter 2, we roughly divided hash 

functions into two groups. The first group consisted of those schemes which 

employ block ciphers in their structures. The design of block ciphers is 

based on the theoretical work of Shannon, who proposed a substitution - 
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permutation network for the provision of confusion and diffusion of the bits 

in the construction of cryptographic algorithms. This led to the development 

of block ciphers such as DES, FEAL and LOKI. 

Lai and Massey showed that, for a block-cipher-based hash scheme, 

any attack on its block cipher implies an attack of the same type on the 

hash scheme with the same complexity [Lai and Massey, 1992]. The meet- 

in-the-middle attack against a block-cipher-based hash scheme is a super- 

distinguishing circuit for the underlying block cipher. If the block cipher is 

super-pseudorandom, the meet-in-the-middle attack cannot successfully be 

applied against the corresponding block-cipher-based hash scheme, when our 

computational resources allow us to work on a polynomial (in the length of in- 

put) variation of the message. In other words, if the underlying block cipher 

acts like a random permutation in the face of chosen plaintext/ciphertext 

attack, or is secure against chosen plaintext/ciphertext attack, then the 

block-cipher-based hash scheme is secure against meet-in-the-middle attack. 

Hence, it can be recommended to use block ciphers secure against chosen 

plaintext/ciphertext attack in block-cipher-based hash schemes. It can be 

recommended to apply structures for block-cipher-based hash schemes and 

the block ciphers to be used in such schemes which make super-pseudoran- 

domness achievable. 

Unfortunately, the known block ciphers are at most claimed to be se- 

cure against chosen plaintext attacks, and none of them claim to be secure 

against a chosen plaintext/ciphertext attack. Most of the known block ci- 

phers take advantage of DES-like structures. We restricted our investigation 

to the DES-like structure, and we tried to improve it so that it would be pos- 

sible to construct a block cipher secure against chosen plaintext/ciphertext 

attack. Hence, we were interested in developing a structure which could 

be used for the construction of cipher systems secure against chosen plain- 

text/ciphertext attacks, so that it could be used for the construction of block- 

cipher-based hashing algorithms. We investigated necessary and sufficient 

conditions to achieve super-pseudorandomness for DES-like structures. We 

also showed that k s rounds of type-1 Feistel type permutations would yield 

a super-pseudorandom permutation, where k is the number of branches of 
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the structure. We showed that r f )  and r 1 , / ,g ,  1, f )  are super- 

pseudorandom. We also managed to construct a structure with a single pseu- 

dorandom function generator. The result was: r  1, f ,  f2, 1, f ) ,  which is 

a six-round DES-like structure with a single pseudorandom function gener- 

ator f .  In the layers 1 and 4 of this construction, f is used directly, the 

layers 2 and 5 just XOR one branch to the other one, and in the layers 3 

and 6 a two-fold composition of f is used. Note that r  f ,  f ,  f ,  f ,  f )  is not 

even pseudorandom, but r 1, f ,  f~, 1, f )  is super-pseudorandom, while 

no additional computation with respect to r  f ,  f ,  f ,  f ,  f )  is needed. So 

r  1, f ,  f2, 1, f )  can be adopted for the structure of block ciphers to be 

used for block-cipher-based hash schemes, as it allows us to achieve super- 

pseudorandomness and it requires only a single pseudorandom function gen- 

erator. 

The above results are based on the existence of a pseudorandom func- 

tion generator. A method for the construction of pseudorandom function 

generators was given by Goldreich, GoIdwasser and Micali, and was based 

on the existence of a pseudorandom bit generator. However, the existence of 

pseudorandom bit generators depends on the existence of one-way functions, 

and it is not yet known whether a one-way function exists as it depends on 

whether P ~ NP. In practice, designers attempt to achieve good S boxes, 

instead of designing pseudorandom function generators. Hence, although the 

proposed structure is sound, we have not yet constructed such a block cipher, 

as we still need to solve other problems such as the design of good S boxes 

and key scheduling or both. 

The second group of hash schemes consisted of those schemes which 

are based on one-way functions other than block ciphers. One-way functions 

are those which are easy to compute but difficult to invert. As many dif- 

ferent proposals for such schemes exists, we approached the problem from a 

theoretical point of view. We developed some generalized constructions for 

hash functions from one-way permutations. In fact, we assumed that a one- 

way permutation existed and we build a generalized construction for hash 

functions. First we noticed that the ZMI hash scheme can be improved if 

a one-way permutation with a greater number of simultaneously hard bits 

was incorporated in the scheme. Strong one-way permutations were defined 
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and a three-layer construction, assuming the existence of a one-way permu- 

tation with k + 1 known hard bits and a (k + 1)-bit perfect permutation, 

was proposed for its construction. It was also shown, it is possible to achieve 

a strong one-way permutation with ~ times composition of any one- 

way permutation with a family of strongly universal2 permutations. This 

structure can be adopted to transform a one-way permutation into a strong 

one-way permutation, and hence to obtain a hash function by applying the 

constructions proposed in Section 7.7.2. The proposed schemes can be ap- 

plied with any one-way permutation. A limitation is the necessity for proving 

that a permutation in fact is one-way. 

For functions such as RSA or exponentiation modulo a prime, the size 

of the arguments should be big enough so that it would be infeasible to 

invert them. For example, in the case of RSA, an argument length bigger 

than 512 bits is recommended. A drawback is that, applying such functions 

as the underlying one-way permutation makes the hash scheme rather time- 

consuming. 

However, it was also possible to reduce the number of layers to three, 

by assuming the existence of a one-way function which was called a hiding 

permutation. 

9.3 P r o s p e c t s  for Further  R e s e a r c h  

There have been many proposals for hash schemes, and some of them have 

been in use for a while. However, with time, most of them have been broken. 

One of the major reasons they were broken is advancement in technology. 

Once 233 operations were far beyond the capability of computing resources; 

nowadays this is within reach. At that time hash functions producing a 64- 

bit result were reasonable designs, while today they are not. Today, if a 

cryptographic mechanism requires 264 operations to be broken, it is consid- 

ered secure, but who knows what the capabilities of future computers will 

be ?! Perhaps in the near future this number of operations would be quite 

accessible. 

The unsuccessful efforts of many researchers who spent their t ime try- 

ing to design practical hash schemes suggest that we should work on some 
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guidelines or principles for the design of hash functions, instead of proposing 

just another function which temporarily would seem secure. These designs 

should be adaptable to the capabilities of new technology. In this book, we 

developed some of these principles in such a way that we are not restricted 

to some specific number of bits. At the end of each chapter, we included 

related open problems, so we do not repeat them here. However, there is one 

open problem that should be mentioned here. As we saw earlier, to achieve a 

secure hash scheme the fundamental requirement is a one-way function which 

is easy to compute. If this problem can be solved, or at least a function found 

such that  there is a considerable difference between the time necessary for 

its computation and its inversion, it would strengthen all the efforts made 

for the design of hash functions. 
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