
Lecture Notes in Computer Science
Edited by G. Goos and J. Hartmanis

756

Advisory Board: W. Brauer D. Gries J. Stoer

Josef Pieprzyk Babak Sadeghiyan

Design of
Hashing Algorithms

Springer-Verlag
Berlin Heidelberg NewYork
London Paris Tokyo
Hong Kong Barcelona
Budapest

Series Editors

Gerhard Goos
Universit~it Karlsruhe
Postfach 69 80
Vincenz-Priessnitz-StraBe 1
D-76131 Karlsruhe, Germany

Juris Hartmanis
Cornell University
Department of Computer Science
4130 Upson Hall
Ithaca, NY 14853, USA

Authors

Josef Pieprzyk
Department of Computer Science, Centre for Computer Security Research
University of Wollongong
Wollongong, N.S.W. 2500, Austrafia

Babak Sadeghiyan
Computer Engineering Department, Amir-Kabir University of Technology
Tehran, Iran

CR Subject Classification (1991): E.3-4, G.2.1, E2.2, D.4.6, C.2.0

ISBN 3-540-57500-6 Springer-Verlag Berlin Heidelberg New York
ISBN 0-387-57500-6 Springer-Verlag New York Berlin Heidelberg

This work is subject to copyright. All rights are reserved, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, re-use
of illustrations, recitation, broadcasting, reproduction on microfilms or in any other
way, and storage in data banks. Duplication of this publication or parts thereof is
permitted only under the provisions of the German Copyright Law of September 9,
1965, in its current version, and permission for use must always be obtained from
Springer-Verlag. Violations are liable for prosecution under the German Copyright
Law.

@ Springer-Verlag Berlin Heidelberg 1993
Printed in Germany

Typesetting: Camera-ready by author
Printing and binding: Druckhaus Beltz, Hemsbach/Bergstr.
45/3140-543210 - Printed on acid-free paper

P r e f a c e

Historically, computer security is related to both cryptography and access

control in operating systems. Cryptography, although mostly applied in

the military and diplomacy, was used to protect communication channels

and storage facilities (especially the backups). In the seventies there was a

breakthrough in cryptography - the invention of public-key cryptography. It

started in 1976 when Diffie and Hellman formulated their public-key distribu-

tion system and formally defined public-key cryptosystems. Two years later

two practical implementations of public-key cryptosystems were published.

One was designed by Rivest, Shamir, and Adleman (called the RSA system);

the authors based the system on the two "all'cult" numerical problems: dis-

crete logarithm and factorization. The other invented by Merkle and Hellman

was based on the knapsack problem, which is even "harder" than these used

in the RSA system. Since that time cryptography, traditionally seen as the

theory of encryption algorithms, has extended its scope enormously. Now it

comprises many new areas, namely authentication, digital signature, hash-

ing, secret sharing, design and verification of cryptographic protocols, zero

knowledge protocols, quantum cryptography, etc.

This work presents recent developments in secure hashing algorithm

design. The main part of the work was written when the authors were with

the Department of Computer Science, University of New South Wales, Aus-

tralian Defence Force Academy, and Babak Sadeghiyan was a PhD student

working with Josef Pieprzyk as his supervisor.

Hashing is a process of creating a short digest (i.e. 64 bits) for a message

of arbitrary length, for example 20 Mbytes. Hashing algorithms were first

used for searching records in databases. These algorithms are designed to

create a uniform distribution of collisions (two messages collide if their digests

Yl

are the same). In cryptographic applications, hashing algorithms should be

"collision-free", i.e. finding two different messages hashed to the same digest

should be computationally intractable. Hashing algorithms are central for

digital signature applications and are used for authentication without secrecy.

There have been many proposals for secure hash algorithms, and some

of them have been in use for a while. However, many of them have proved

insecure. One of the major reasons for this is the progress in technology.

The failed effort of many researchers suggests that we should work on some

guidelines or principles for the design of hash functions. This work presents

some principles for the design of secure hash algorithms. Hash algorithms

are classified based on whether they apply a block cipher as the underlying

one-way function or not.

For a block-cipher-based hash scheme, if the underlying block cipher is

secure agMnst chosen plaintext/ciphertext attack, the hash scheme is secure

against meet-in-the-middle attack. We develop structures, based on DES-like

permutations and assuming the existence of pseudorandom function genera-

tors, which can be adopted both for the structure of block-cipher-based hash

schemes and for the underlying block ciphers to be used in such schemes.

Non-block-cipher-based hash functions include a spectrum of many dif-

ferent proposals based on one-way functions from different branches of math-

ematics. So, in the book, generalized schemes for the construction of hash

functions are developed, assuming the existence of a one-way permutation.

The generalized constructions are improvements upon the Zheng, Matsumoto

and Imai's hashing scheme, based on the duality between pseudorandom bit

generators and hash functions, but they incorporate strong one-way per-

mutations. It is shown that we can build such strong permutations with

a three-layer construction, in a theoretical approach. Two schemes for the

construction of families of strong one-way permutations are also proposed.

Acknowledgement

We were very fortunate to receive help from many people throughout the

time of this project. Firstly, we would like to express our deep gratitude

to Professor Jennifer Seberry for her critical comments, helpful suggestions

and encouragement. Also we would like to thank Professor Tsutomu Mat-

sumoto and Dr Rei Safavi-Naini for their thoughtful criticism, suggestions

and corrections. We also received helpful comments about the work from

Dr Lawrence Brown, Professor Andrzej Go~cinski, Dr Thomas Hardjono, Dr

Xian-Mo Zhang and Dr Yuliang Zheng. We thank all our friends from the

Department of Computer Science, University College, University of NSW,

for their friendliness and everyday support. In particular our thanks go to

Dr George Gerrity, Mr Per Hoff, Mr Jeff Howard, Dr Jadwiga Indulska, Mr

Martin Jaatun, Mr Ken Miles, Mr Andy Quaine and Mr Wen Ung. Fi-

nally we would like to thank Mrs Nilay Genctruck for proof-reading the final

manuscript.

This project was partially supported by the Australian Research Coun-

cil grant number A49131885.

September 1993 Josef Pieprzyk

Babak Sadeghiyan

C o n t e n t s

1 I n t r o d u c t i o n

1.1 Background and Aims

1.1.1

1.1.2

1.1.3

1.1.4

1.1.5

1.1.6

1.2

1

. : 1

In t roduc to ry Comments 1

Discussion of Public-key and Pr iva te-key C r y p t o g r a p h y 2

Digital Signature . 5

RSA Cryp tosys t em and Digital Signature 9

Signature-Hashing Scheme 10

Other Applicat ions of Hash Functions 13

Contents of the Book . 14

O v e r v i e w o f H a s h F u n c t i o n s 18

2.1 In t roduc t ion . 18

2.2 Proper t i es of Secure Hash Functions 19

2.3 Definitions . 20

2.3.1 Strong and Weak Hash Functions 20

2.3.2 Message Authent ica t ion Codes and Manipu la t ion De-

tect ion Codes . 22

2.3.3 Block-cipher-based and Non-block-c ipher-based Hash

Functions . 23

2.4 Block-cipher-based Hash Functions 24

X

2.4.1

2.4.2

2.4.3

2.4.4

2.4.5

2.4.6

2.4.7

2.4.8

2.4.9

2.4.10

Rab in ' s Scheme .

Cipher Block Chaining Scheme

CBC with Checksum Scheme

Combined P la in tex t -Cipher tex t Chaining Scheme . . .

Key Chaining Scheme

Win te rn i t z ' Key Chaining Schemes

Quisquater and Girau l t ' s 2n-bit Hash Funct ion

Merkle ' s Scheme .

N-hash Algor i thm .

M D C 2 and MDC4 .

2.5 Non-block-cipher-based Hash Functions

2.5.1 Cipher Block Chaining with RSA

2.5.2 Schemes Based on Squaring

2.5.3 Schemes Based on Claw-Free Pe rmuta t ions

2.5.4 Schemes Based on the Knapsack P r o b l e m

2.5.5 Schemes Based on Cellular A u t o m a t a

2.5.6 Software Hash Schemes

2.5.7 Mat r ix Hashing .

2.5.8 Schnorr 's F F T Hashing Scheme

2.6 Design Principles for Hash Functions

2.6.1 Serial Method .

2.6,2 Paral lel Method .

2.7 Conclusions .

25

26

26

27

28

29

30

31

32

33

34

35

36

38

39

40

41

43

44

45

45

46

46

M e t h o d s o f A t t a c k o n H a s h F u n c t i o n s 48

3.1 In t roduc t ion . 48

XI

3.2 G e n e r a l A t t a c k s . 49

3.3 S p e c i a l A t t a c k s . 50

3.3.1 M e e t - i n - t h e - m i d d l e A t t a c k 51

3.3.2 G e n e r a l i z e d M e e t - i n - t h e - m i d d l e A t t a c k 52

3.3.3 C o r r e c t i n g Block A t t a c k 53

3.3.4 A t t a c k s D e p e n d i n g on A l g o r i t h m W e a k n e s s e s 53

3.3.5 Di f fe ren t i a l C r y p t a n a l y s i s 54

3.4 C o n c l u s i o n s . 54

4 P s e u d o r a n d o m n e s s 56

4.1 I n t r o d u c t i o n . 56

4.2 N o t a t i o n . 58

4.3 I n d i s t i n g u i s h a b i l i t y . 58

4.4 P s e u d o r a n d o m Bi t G e n e r a t o r s 60

4.5 P s e u d o r a n d o m F u n c t i o n G e n e r a t o r s 62

4.6 P s e u d o r a n d o m P e r m u t a t i o n G e n e r a t o r s 66

4.6.1 C o n s t r u c t i o n . 66

4.6.2 I m p r o v e m e n t s a n d I m p l i c a t i o n s 69

4.6.3 S e c u r i t y . 72

4.7 C o n c l u s i o n s . 76

5 C o n s t r u c t i o n o f S u p e r - P s e u d o r a n d o m P e r m u t a t i o n s 7 7

5.1 I n t r o d u c t i o n . 77

5.2 S u p e r - P s e u d o r a n d o m P e r m u t a t i o n s 78

5.3 N e c e s s a r y a n d Sufficient C o n d i t i o n s 79

5.4 S u p e r - P s e u d o r a n d o m n e s s in G e n e r a l i z e d D E S - l i k e P e r m u t a t i o n s 92

5.4.1 F e i s t e l - T y p e T r a n s f o r m a t i o n s 93

•

5.4.2 Super-Pseudorandomness of Type-1 Transformat ions 96

5.5 Conclusions and Open Problems 103

A S o u n d Structure

6.1

6.2

6.3

6.4

6.5

105

In t roduct ion . 105

Preliminaries . 106

Perfect Randomizers . 112

A Construct ion for Super-Pseudorandom Permuta t ion Gener-

ators . 116

6.4.1 Super-Pseudorandomness of r 1, f , h, 1, f) 117

6.4.2 Super-Pseudorandomness of r 1, f, f2, 1, f) 124

Conclusions and Open Problems 130

7 A Construct ion for One Way Hash Funct ions and Pseudo-
random Bit Generators 132

7.1 In t roduct ion . 132

7.2 Nota t ion . 134

7.3 Preliminaries 135

7.4 Theore t ic Constructions . 137

7.4.1 Naor and Yung's Scheme 138

7.4.2 Zheng, Matsumoto and Imai 's First Scheme 138

7.4.3 De Santis and Yung's Schemes 139

7.4.4 Rompel ' s Scheme . 140

7.5 Hard Bits and Pseudorandom Bit Generat ion 140

7.6 A Strong One-Way Permuta t ion 146

7.7 U O W H F Construct ion and P B G 151

7.7.1 U O W H F Based on the Strong One-way Permuta t ion . 152

XIII

7.8

7.9

7.7.2 Parameterization . 153

7.7.3 Compressing Arbitrary Length Messages 154

A Single construction for UOWHF and PBG 155

Conclusions and Extensions 156

8 H o w

8.1

8.2

8.3

8.4

to C o n s t r u c t a F a m i l y o f S t r o n g O n e W a y P e r m u t a t i o n s 157

Introduction . 157

Preliminary Comments . 159

Strong One Way Permutations 162

8.3.1 A Scheme for the Construction of Strong Permutations 164

8.3.2 A Three-layer Construction for Strong Permutations . 166

Conclusions . 168

C o n c l u s i o n s

9.1

9.2

9.3

170

Summary . 170

Limitations and Assumptions of the Results 174

Prospects for Further Research 177

B i b l i o g r a p h y 179

I n d e x 191

List of Symbols

C Ciphertext

M Message or a plaintext

K Key

E Alphabet

Summation

C Subset

Mapping

o Composition of functions

E Set membership

--= Congruence

Factorial

I Such that (set notation)

| Exclusive-or (of Booleans)

V Or (of Booleans)

A And (of Booleans)

[[Concatenation

O(f) Big-Oh of the function f

U Union

Ix] Smallest integer greater than x

[xJ Greatest integer smaller than x

N The set of natural numbers

Zn The set of integers modulo n

I x I Absolute value of the number x

S Number of elements in the set S

log n Logarithm to the base n

Chapter 1

Introduct ion

1.1 Background and Aims

1.1.1 Introductory Comments

The development of telecommunication and computer technologies have

brought us into an era in which inexpensive contact between people or com-

puters on opposite sides of the world is commonplace. The existing services

such as electronic mail, electronic funds transfer, and home banking have

already changed our way of life. Electronic mail systems significantly reduce

our reliance on paper as the major medium for exchange of information, by

providing rapid and economic ways for the distribution of data. It is clear

that, with the widespread implementation and use of such services, senders

and receivers of sensitive or valuable information will require secure means

for validating and authenticating the electronic messages they exchange. The

least that may be expected of these services is that they should offer the same

security level as that of the conventional mechanisms. In the mail service,

conventional paper mail has its own envelope, which protects the secrecy of

its contents, it is also signed which assures the recipient of its origin. Similar

properties should have the electronic mail service.

On the other hand, the increased use of satellite, microwave, cellular

mobile and other forms of radio communication allow the illicit interception

of communications. Moreover, the widespread use of computers provides

2 Chapter 1 I N T R O D U C T I O N

the interceptors with computer data, which can easily be edited to sort the

valuable information. Figure 1.1 schematically shows such a scenario.

Sender Receiver

Passive wiretapper

Figure 1.1: Passive Eavesdropping over Communication Networks

While eavesdropping on radio communications is a passive act, an active

wiretapper can inject fraudulent messages in other types of communication

links such as telephone networks. Figure 1.2 illustrates a possible active

wiretapping scenario.

1.1.2 Discussion of Public-key and Private-key Cryp-
tography

Cryptography is the study of mathematical systems for solving two kinds

of security problems: privacy and authentication [Diffie and Hellman, 1976].

A privacy system prevents the extraction of information by unauthorized

parties from messages transmitted over a public channel, thus assuring the

sender of the message it will be read only by the intended recipient. An

authentication system prevents the unauthorized injection of messages into

a public channel, assuring the receiver of a message of its legitimacy. The

authentication problem can be divided into message authentication, where

the problem is assuring the receiver that the text has not changed since it

left the sender, and user authentication, where the problem is verifying that

1.1 Background and Aims 3

Sender

| |

Receiver

Active wirciappcr

Figure 1.2: Active Eavesdropping

an individual is who they claim to be.

Once, cryptography was of interest only in military and diplomatic

world. Now, with services such as electronic mail, and the existence of huge

databases containing sensitive medical and personal data, the need for cryp-

tography is evermore widespread in our society.

Encryption is a mathematical transformation or function applied to the

message such that an eavesdropper is not able to extract any useful infor-

mation about the original message from the transformed message (the trans-

formed message is also called a cryptogram or a ciphertext). Along with the

technological developments in teleprocessing, which have given rise to new

secrecy and authenticity requirements, cryptographers have developed new

encryption algorithms using complex mathematical systems [Moore, 1988].

The conventional cryptographic schemes are single-key or private-key cryp-

tosystems where the transformation is controlled by a secret key. With new

advances in computer technology, many conventional cryptographic schemes

were eventually broken. Nevertheless, new and more complex private-key

encryption schemes for the security of files were designed.

4 Chapter 1 IN TR O D U C TIO N

New families of cryptosystems known as substitution-permutation net-

works were developed, based on the theoretical works of Shannon ([Shannon,

1949b], [Shannon, 1949a]). They led to the development of systems such as

Lucifer in 1973, DES in 1977, FEAL in 1987 [Shimizu and Miyaguchi, 1987],

and LOKI in 1990 [Brown, 1991]. It is mentioned in [Brown, 1991] that:

Traditional cryptographic schemes have relied on a series of sub-

stitution, where letters or words are replaced by others, and trans-

position or permutation, where the order of letters or words is

changed, operations to conceal the message. The particular sub-

stitution or transposition used is controlled by a key. This key is

used by both the sender and the recipient of the concealed message,

and hence has to be kept secret in order to protect the secrecy of

the message. Such schemes are called Private-key Cryptosystems

for this reason.

These systems need to exchange keys via a private or secure channel,

for example a trusted courier, to keep them secret. Figure 1.3 shows an

application of a private-key cryptosystem to provide secrecy of transmitted

messages via encryption.

E k(M) = C
Encryption = Decryption

Ek D k .~ Ek 1

t t
k ~ 0 Private channel (~ - - - -~ k

t
k

M

Figure 1.3: Traditional Cryptosystem with the Decryption Key Transferred
over a Private Channel

Merkle suggests the reason why the private channel is not used for

normal communication is because of its expense and inconvenience 1 [Merkle,

1978].
1Diflle and I-Iellman mentioned that:

1.1 Background and Aims 5

A major problem with applications of private-key cryptosystems in

large computer networks is key distribution, which require ~ key ex-

changes for n parties, unless some form of trusted key distribution hierarchy

is used.

Another problem is its failure in resolving authentication problems aris-

ing from the dishonesty of either the sender or receiver. In electronic mail, for

some messages, a degree of privacy or secrecy is needed, while authenticity is

a requirement for nearly all messages. The technique of authentication with

private-key cryptosystems is seriously deficient, since both the sender and

receiver must know a secret key. The sender uses the key to generate an au-

thenticator, and the receiver uses it to check the authenticator. Having this

key, the receiver can aJso generate forged authenticators and therefore, may

forge messages appearing to come from the sender. Hence, though this kind

of authenticator can protect both sender and receiver against third party en-

emies, it cannot protect one against fraud committed by the other [Davies,

1983]. As a solution to the dispute problems, Diftie and Hellman proposed

the use of digital signature based on public-key cryptosystems [Diffie and

Hellman, 1976].

1.1.3 Digital Signature

To provide a digital signature, as a feature which enables anyone to determine

the authenticity of a document without being able to forge it, some require-

ments should be fulfilled [Davies and Price, 1980]. First, any receiver should

have some knowledge of who the sender is, so there must be something on

public record concerning the sender which must also enter into the process of

verifying the signature. Second, the process of signing the document should

use some secret information known only to the signer. This secret key must

be somehow related to the public information. Third, the signature must

depend in a complex way on every digit of the message so that it would be

impossible to modify the message and leave its signature unchanged. This

requirement implies that the size of the signature field must be big enough

The secure channel cannot be used to transmit the message itself, for reasons
of capacity or delay. For example, the secure channel might be a weekly
courier and the insecure channel be a telephone line.

6 Chapter 1 INTRODUCTION

so the search of all possible messages for a given signature is intractable.

While a person's handsigned signature is constant, a digital signature

depends upon the message. It can be computed only by the sender of the

message, on the basis of some private information (known to the sender

only). Digital signatures allow authentication of messages by guaranteeing

that firstly no one (except the sender) is able to produce the sender's sig-

nature and secondly the sender is not able to deny their signature for the

message they sent. The receiver can verify that no one tampered with the

message while it was on its way to him, and the sender is confident that

the receiver will not be able to change even one bit of the message without

altering the signature.

Diffie and Hellman in their seminal paper [Diffie and Hellman, 1976],

mentioned that:

Widening applications of teleprocessing have given rise to a need

for new types of cryptographic systems, which minimize the need

for secure key distribution channels and supply the equivalent of

a written signature.

At the same time that communications and computation have

given rise to new cryptographic problems, their offspring, infor-

mation theory, and the theory of computation have begun to supply

tools for the solution of important problems in classical cryptog-

raphy.

The search for secure cryptosystems with more convenient features is

one of the main themes of cryptographic research. In the nineteen-twenties

the one-time pad cryptosystem was invented and later was shown to be un-

conditionally secure, that is the system can resist any cryptanalytic attack no

mat ter how much computation is allowed. One time pads require long keys

and are therefore expensive in most applications. However, the security of

most other cryptographic schemes is based on the computational difficulty of

discovering the plaintext without the knowledge of the key. These cryptosys-

terns are called computationally secure that is, the system is secure because of

the intractability of the cryptanalysis. The complexity theory classifies prob-

lems into classes depending on their computational difficulty. In general, if

1.1 Background and Aims 7

a cryptanalysis problem is solvable in polynomial t ime with polynomial-size

computing resources, the corresponding cryptographic system is considered

to be broken. Such a cryptanalysis problem is said to belong to the class

P. All computational problems for which there is no polynomial-t ime al-

gorithm, are collectively called intractable (for more details about different

classes of intractability refer to [Garey and Johnson, 1979]). Using intractable

computational problems, Diffie and Hellman and also independently Merkle

[Merkle, 1978] modified the concept of a private channel by introducing the

public-key distribution system or the concept of the public channel. They

noted that it is possible to design systems in which two parties communicate

over a public channel and use publicly known algorithms to exchange a secret

piece of information. Later this concept was further elaborated by Rivest,

Shamir and Adleman [Rivest et al., 1978] and Merkle and Hellman [Merkle

and Hellman 1978]. As the result of their works public-key cryptography has

been invented.

In public-key cryptosystems, the receiver of a message generates be-

forehand a public key c and a secret key d. The public key e is used with

a publicly known algorithm E for encryption, while the secret key d is used

with algorithm D, which is also publicly known, for decryption. Figure 1.4

depicts a secrecy system with a public-key cryptosystem.

Encryption

Ee

T

Dd(C = M
E e (M) = C ~[Decryption

reciever's
secret key d

e

reciever's public key e

Sender Public Channel Receiver

Figure 1.4: Public-key Cryptosystem with the Encryption Key Transferred
over a Public Channel

To make a secure signature on the message, one can reverse the process

of application of the two algorithms of the public-key cryptosystem. The

sender of a message generates a public key e' and a secret key d'. The

8 Chapter 1 INTRODUCTION

sender decrypts the message x with his secret key d' to get S = Da,(x) as his
signature on x. A receiver can restore the message with the aid of the sender's
public key e', by applying encryption as E~,(S). Figure 1.5 illustrates the

mechanism of a digital signature based on a public-key cryptosystem.

M ~ Decryption IS= Dd,(M) _[Encryption

sender's secret key[Is~ndcr'~ public keY T

[M = Er
) -

Sender Public Channel Receiver

Figure 1.5: Principle of Digital Signature Based on a Public-key Cryptosys-
t e n

The restoration of the message text using the sender's public key verifies
that S is coming from the sender as only he has access to the secret key and

only he can generate the signature. To verify the signature, the receiver

relies on the redundancy in the message in order to see that the result of
applying the transformation E is a genuine message. If a wrong key was
used, the result would be a random pattern with a high probability. If the
message to be encrypted was random, there would be no way of resolving this
dilemma. Merkle suggested that some controlled redundancy be deliberately
introduced into the message so that it can be verified [Merkle, 1978].

It is noteworthy that not all public-key cryptosystems can be used for

both privacy (secrecy) and authentication. Those that can, allow the process
by which encryption and decryption is made to be reversed. The only known
public-key cryptosystem which can be adapted for both authentication and

secrecy was developed by Rivest, Shamir and Adleman, and is called the
RSA cryptosystem [Rivest et al., 1978].

1.1 B a c k g r o u n d and A i m s 9

1.1.4 RSA Cryptosystem and Digital Signature

In the RSA cryptosystem used for secrecy, the receiver chooses two large

primes p and q and forms their product N. He keeps p and q secret, but makes

N public. N must be large enough so that its factorization is infeasible. To

meet this requirement, Davies suggested that N must be a number of 500

binary digits or more 2 [Davies, 1983]. A message is divided into blocks of a

length such that each block x is a number between 0 and N - 1. The secret

key d and the public key e are chosen such that both are relatively prime

t o p - 1 and q - l , and de = 1 (modr where r the least common

multiple of p - 1 and q - 1. The ciphertext y is calculated by the sender

as y = x r (mod N). The receiver can recreate the plaintext by computing

x = yd (mod N). Even knowing e and N, it is intractable for an enemy to

derive d by factorizing N and thus obtaining r as the factors p and q are

kept secret.

If RSA is used for authentication, the signature S for the message

block x is calculated as S = x d (rood N) [Rivest et al., 1978], [De Jonge

and Chaum, 1986]. Although it is very elegant, there are some problems with

the RSA signature scheme. Encryption is used mainly during the communi-

cation process, and the ciphertext is forgotten after the communication has

been completed and the message has been recovered. However, a signature

is kept for lifetime of the message, and it accompanies the message until it

is destroyed. Signing each block separately using the RSA transformation

produces a signature with the same length as the message. This is an expen-

sive and unsatisfactory solution as it needs a double space for storage and

a double bandwidth for transmission. Moreover, the computation required

for RSA encryption or decryption is time consuming. Davies noted that it

takes many minutes for a microcomputer to encrypt one block of 512 bits,

and most messages or documents which need signature contain many such

blocks [Davies, 1983]. Signing individual blocks also has the disadvantage as

blocks may be fraudulently interchanged.

2More recently [Silverman, 1991] suggested that
For the time being, even with much faster computers, 120 digits promises to
be the limit of practical factoring.

where digits means decimal digits.

10 C h a p t e r 1 I N T R O D U C T I O N

Moore analyzed the multiple application of the RSA signature scheme

and showed how to obtain a forged signature 3 from a collection of valid ones

[Moore, 1988]. There are several ways to do this. Here we describe a simple

version of the attack. Consider a message m which can be represented as

the product of two other messages, m = u v (mod N). If someone could

obtain a signature on m from a signing party, he would be able to forge a

signature on u or v without needing to know the secret key d of the signing

party. Since m d = (u v) d = u d v d (rood N), then

a n d

mdu e = u d v d u e : V d

m d v e = ~ d v d ~ e ~ U d

(mod N)

(mod N)

This attack relies on the fact that the mathematical function which RSA

uses namely exponentiation modulo a composite number, preserves the mul-

tiplicative structure of the input.

1.1.5 Signature-Hashing Scheme

Although the notion of a digital signature is one of the most fascinating fea-

tures of public-key cryptography, the proof of security of public-key systems

relies on assumptions that the underlying computational problems are in-

tractable. In the RSA system both the factorization and discrete logarithm

problems are assumed to be intractable. In addition, a practical implemen-

tation of a signature scheme is often made very difficult by the complexity

of the algorithm needed in the system [Damgard, 1987]. Furthermore, the

homomorphic structure of the underlying mathematical function makes the

signature schemes vulnerable to attacks as outlined in the previous subsec-

tion. as that of the previous subsection. To protect signatures against such

attacks, users can sign only meaningful messages, but this places the burden

of security entirely on the users. These problems suggest the strategy of

applying some suitable transformation to the message before signing it, in

order to strengthen the signature system by destroying any structure in the

underlying public-key algorithm. Mostly a signature-hashing scheme is used

where the method is to apply a one-way hash function to the message before

aIt was first pointed out in [Davida, 1982] and in [Denning, 1984].

1.1 Background and Aims 11

it is signed. The message is thus signed by computing S = D(h(M)), where

h is the one-way hash function. The values that the hash function generate

are effectively random numbers that depend on all the bits of the message.

Although M may be of any finite length, h(M) is usually of a predetermined

size.

Additionally, a hashing scheme is able to improve the speed of a sig-

nature scheme. For example, combining the RSA signature scheme with a

collision free hash function we get a scheme which is more efficient and much

more secure. The hash function compensates for the computationally in-

tensive nature of the RSA algorithm by providing a compressing technique

such that the whole document is summarized or represented in a checksum.

Then the digital signature is applied to the compressed version. Note that

some messages may be shorter than a block, in these cases the hash scheme

does not improve the efficiency of calculating the signatures, but most mes-

sages contain several blocks. The function h is defined such that h(M) can

be calculated from the message M with easily, but if only h(M) is known,

finding even one message M that will generate this value is "difficult". More-

over, calculating any other message M' that yields the same hash value, i.e.,

h(M) = h(M'), must be infeasible. The hash value is subject to the signature

process of the RSA method with the secret key of the sender d. The cor-

responding public key e is used by the receiver to invert the transformation

and restore the value h(M). At the receiving end, the function h is applied

to the received message M, and the two values of h(M) are compared. The

signature is considered genuine if the two values are equal. Figure 1.6 depicts

this procedure.

It would therefore not be necessary to divide the text into blocks and

apply the signature process to each block separately. Instead it is sufficient to

form a one-way hash function of the entire message and apply the signature

to this function.

In the above scenario, the function h must be public knowledge, since

the receiver applies it to the message. Possibly the biggest threat is the mod-

ification of existing or known messages for which the signature is available so

that the same value is generated. It is noteworthy that here we are referring

to all messages, not only "meaningful" or "useful" messages. The strength of

the above method depends essentially on the inability of a forger to construct

12 Chapter 1 INTRODUCTION

M

{ _[Decryption

] Dd

T sender's s~t dkey] [~ender's public key

Sender Public Channel Receiver

Figure 1.6: Digital Signature with the Application of a Hash Function

any message that matches a given hash value.

A hash function can be defined to be a cryptographic function for com-

puting a fixed length digest of a message [Akl, 1983], [Preneel et al., 1992].

Denning lists the following four properties that the function h should satisfy 4

[Denning, 1984]:

1. h should destroy all homomorphic structures in the underlying public-

key cryptosystem.

2. h should be able to be computed over the entire message, rather than

just on a block.

3. h should be one-way so that messages are not disclosed by their signa-

tures.

. h should have the property that for any given message M and value

h(M), it is computationally infeasible to find another message M' such

that h(M) = h(M').

4Hash functions, as functions for computing fixed length compressions of messages,
can support operations such as INSERT, SEARCH and DELETE in computer systems.
However, the requirements for such hash functions is looser than that of the hash functions
required in cryptography.

1.1 Background and Aims 13

Besides strengthening the digital signature, the hashing scheme pro-

vides several other advantages. First, it separates the signature transforma-

tion from the secrecy transformation, allowing secrecy to be implemented

with a private-key cryptosystem while the signature is implemented with a

public-key cryptosystem. An advantage of this separation is that in the con-

text of the ISO Open System Interconnect Reference Model, integrity and

confidentiality can be provided at different layers. Second, signatures can

be publicly disclosed without revealing their corresponding messages. This

is particularly important when recovering from compromises or disclosure of

private keys. Third, it can provide a more efficient method of signing mes-

sages. The RSA transformation, for example, is several times slower than

the DES. So it is considerably faster to first apply DES for hashing a long

message down to a single block and then applying the RSA signature, than

applying the RSA signature to the entire message.

1.1.6 Other Appl ica t ions o f Hash Funct ions

In the previous section, we described the use of hashing schemes to provide

efficient and secure digital signatures in message handling systems. This is

not the only application of hash functions in cryptography. For example,

when the integrity of a file is to be protected against illicit alteration, the

owner of the file can obtain a hash version of the file. Now, the file can

be stored on a public medium. Whenever the file is to be used, its owner

computes the hash value of the file and compares it with the stored copy.

If they are equal, the file is intact and has not been tampered with. It

is noteworthy that hash functions play an important role in the design of

efficient cryptographic protocols [Preneel et al., 1992].

In [Sadeghiyan, 1991] an overview of secure electronic mail has been

presented, where the importance of secure hash functions in providing many

different security services such as message integrity check, message origin

authentication check, message authentication check, and key management is

demonstrated.

The need for secure hash functions has been realized before [Denning,

1984] and [Davies and Price, 1980]. Several attempts have been made to

construct such functions using encryption algorithms such as DES or RSA.

14 Chapter 1 INTRODUCTION

However, none of these schemes have proved to be secure, and several of

these proposals using DES have also been proven to be insecure [Damgard,

1987]. As the security of many cryptographic services and schemes reduces

to the existence of a secure hash function, the aim of this book is to discuss

design rules for the construction of secure hash functions.

As many cryptographic hashing schemes rely on the application of block

cryptosystems such as DES or LOKI, in the first part of this book we will

develop a new construction for block cryptosystems in order that they can

be applied in secure hashing schemes.

It has also been shown that the existence of a secure hash function

depends on the existence of a one-way function, and in practice many schemes

for hash functions take advantage of the application of such functions. In the

second part of the book we consider the application of one-way functions in

hashing schemes and we show how to construct a secure hash function given

the existence of a one-way permutation. As one-way hash functions are, in a

sense, duals of pseudorandom bit generators, we also show how to construct

a module which can be used for the construction of both pseudorandom bit

generators and one-way hash functions.

1.2 C o n t e n t s of t h e B o o k

The book is arranged as follows. In Chapter 2 an overview of cryptographic

hash functions is presented. The chapter shows how much effort has been

put into the design of secure hash functions, and also demonstrates that

the design of an efficient and provably secure hash function has been less

successful. It also gives a division of hash functions based on whether the

hash scheme uses a block cipher in their structure. First, the requirements

of a "good" hash algorithm are described. Second, formal definitions of hash

functions are presented. Third, the classification of CCITT for hash functions

in secure message handling standards is stated. Then, several proposals for

hash schemes are presented and known attacks on them noted. They are also

categorized based on whether they incorporate a block cipher.

In Chapter 3, methods of attack on hash functions are presented. This

1.2 Contents of the Book 15

chapter only describes some rather general methods of attack on hash func-

tions and how these attacks work. First, an attack based on the birthday

paradox, named after a problem in probability theory, is described. This

attack is a general method of attack and can be launched against any hash

scheme. Then a special version of it, known as the meet-in-the-middle at-

tack, is presented; this can be launched against schemes which employ block

chaining in their structure. The probability of success for the above men-

tioned attacks depends on the length of the hash value and how randomly

the cryptographic algorithm performs. Some other methods of attack against

hash functions are also described where specific weaknesses of the algorithms

are exploited to find collisions.

In Chapter 4 recent developments in the theory of pseudorandomness

based on a complexity theoretic approach axe presented. A short discussion

on pseudorandomness of a block cipher and its relation to the birthday at-

tack and the meet-in-the-middle attack is also presented. First, concepts

of pseudorandomness and indistinguishability are introduced and, based on

that, definitions for pseudorandom bit generators and pseudorandom func-

tion generators are presented. Then distinguishing circuits are defined. Note

that any chosen plaintext attack against a block cipher is equivalent to a

distinguishing circuit. Later the construction of pseudorandom permutation

generators is described using Luby and Rackoff structure with three rounds

of DES-like permutations and with three pseudorandom functions. Luby abd

Rackoff used this result to justify the application of DES-like permutations

in the structure of DES. Then super-distinguishing circuits are introduced,

where a chosen plaintext/ciphertext attack against a block cipher is equiva-

lent to a super-distinguishing circuit. A meet-in-the-middle attack against a

block-cipher-based hash scheme for finding colliding messages is virtually a

chosen plaintext/ciphertext attack against the underlying block cipher. Fur-

thermore, if there is a super distinguishing circuit for a block cryptosystem,

there is a possibility of making collision messages for the corresponding block-

cipher-based hash scheme. We conclude this chapter with the result that,

if a block cipher is to be applied for hashing messages, it should be secure

against a chosen plaintext/ciphertext attack. In other words, the cryptosys-

tem family should be a super-pseudorandom permutation generator.

In Chapter 5, necessary and sufficient conditions for the construction of

16 Chapter 1 INTRODUCTION

super-pseudorandom permutation generators are presented. After developing

a convenient type for distinguishing circuits, we show the conditions that a

DES-like construction for cryptosystems should satisfy, in order to achieve

super-pseudorandomness. Based on this result we suggest that it is possible

to achieve a super-pseudorandom permutation generator with four rounds of

DES-like permutations and two independent pseudorandom functions. Next

we generalize the above results and apply them for the generalized type

DES-like permutations. We show how to construct a super-pseudorandom

permutation using k 2 rounds of type-1 Feistel type transformations, where k

is the number of branches of the structure.

In Chapter 6, we show how to construct a super-pseudorandom permu-

tation generator from a single pseudorandom function generator. First, we

develop a construction with two modules of Luby and Rackoff structure. We

show that if two of the random functions are replaced by two random per-

mutations, then each branch of the construction becomes independent of the

other, and it is possible to make a perfect randomizer with two independent

random functions. Then, based on the structure of this perfect randomizer,

we show that it is possible to make another structure with only a single

random function, where the two structures are indistinguishable from each

other. The result of this chapter is that a new structure for the construction

of block ciphers secure against a chosen plaintext/ciphertext attack is devel-

oped. This structure can be used in the design of block ciphers for hashing

schemes.

The other class of hash schemes consists of those in which a one-way

function other than a block cipher has been used. In Chapters 7 and 8

we consider the construction of hash functions based on one-way permuta-

tions. In Chapter 7 a construction for one-way hash functions and pseu-

dorandom bit generators is presented. First, some definitions for one-way

functions, hard bits of one-way functions and pseudorandom bit generators

are given. Then some complexity-theoretic constructions for hash functions

are reviewed. The Zheng-Matsumoto-Imai (ZMI) hashing scheme, as a dual

of Blum-Micali pseudorandom bit generators is presented. To improve the

efficiency of the ZMI scheme, we introduce the notion of strong one-way

permutations. Next, given the existence of a one-way permutation, we in-

troduce a method to make a strong one-way permutation, where calculating

1.2 Contents of the Book 17

every bit of the input is as difficult as inverting the one-way permutation

itself. Finally, we apply the proposed strong one-way permutation to con-

struct a module which can be used for pseudorandom bit generation and

secure hashing schemes.

In Chapter 8, we propose a practical way of constructing a family of

strong one-way permutations. This family has the property that when a

member is selected randomly, it is a strong one-way permutation. We use

polynomials in a Galois field. Two methods are proposed. The first method is

based on the composition of several rounds of a randomly chosen polynomial

with any one-way permutation. The other method is based on a threefold

composition, by applying a one-way permutation which we call a hiding

permutation.

In Chapter 9, some concluding remarks are given.

C h a p t e r 2

Overv i ew of Hash F u n c t i o n s

2.1 I n t r o d u c t i o n

As we described in Chapter 1 the authentication of a message M is a proce-

dure that allows two or more communicators to verify the authenticity of a

document so that any fraudulent or accidental modification of the message

is detected by the intended receiver. The techniques for authentication of

messages are usually based on the redundancy contained in the message or

are based on checks on some appropriate redundant information added to the

message. The redundant information can be calculated as a hashing function

for the message or it can be computed by an encryption algorithm for the

message using a secret key known only to the communicating parties, It is

important that a good authentication check be computed in such a way that

the introduction of bogus messages into the communication network and the

partial modification of genuine messages already present in the network is

practically intractable.

In some cryptographic formats, each block of the plaintext message con-

tains checksum bits that are appended to the block prior to encryption. The

checksum is visible after decrypting the ciphertext. Notice that it is not the

responsibility of the encryption protocol to protect communication against

noise in the channel; that is for other communication layers to handle. The

checksum is there to help determine whether the decryption was successful,

in case the receiver selected the wrong key. This is particularly important

2.2 Properties of Secure Hash Functions 19

when little or no error checking is used in the lower communication layers.

The checksum alone cannot detect the work of a clever, active, wiretapper.

That is what message digests are for.

In hashing-signature schemes, the signature is condensed by the use of

a one-way hashing algorithm to form a small message digest of the entire

message. The digest is analogous to a checksum, but it must be practically

impossible to make another message that maps to the same digest or hash

value. As an example of a bad choice of hashing algorithm, suppose that the

Hamming error correcting code is used to form a check. An opponent could

easily modify the message by inverting some information bits and those parity

bits which are a function of the inverted information bits. The modified

message would appear genuine to a receiver as the verifying procedure could

not detect the modifications. Hence, for a hash scheme to be suitable for

digital signatures some additional requirements should be satisfied.

2.2 P r o p e r t i e s of Secure H a s h F u n c t i o n s

When a hash function is applied to provide a secure hashing-signature scheme

for electronic mail or documents, one important criterion is that the set of

all hash values be nearly one-to-one with respect to the set of all message

texts [Jueneman, 1987]. In other words, it is desirable that the checksums

of two messages be identical if and only if those messages are identical. In

general, this is impossible to satisfy when messages are longer than the hash

value. However, Jueneman specifically lists the following properties for a

secure hashing algorithm in [Jueneman, 1987]:

1. The hashing algorithm should be executed efficiently on computers with

no need for special purpose cryptographic hardware.

2. The hash value must be sensitive to all possible permutations and rear-

rangements, as well as the edition, deletion, and insertion of the text.

3. If two different texts are compressed, tile probability that the two hash

values are equal should be a uniformly distributed random variable.

4. The length in bits of the hash value should be long enough so that

it resists the so-called birthday attack. With today's technology this

20 Chapter 2 OVERVIEW OF HASH FUNCTIONS

value should be of the order of 128 bil:s. We will explain more about

this attack later.

5. The hashing algorithm must not be invertible, nor subject to decom-

position into separate and independent elements.

Concerning the last requirement, when the hashing algorithm is subject to

decomposition into separate and independent elements, each element may be

small enough that the birthday attack is feasible, from the computational time

and storage point of view. Moreover, if the hashing algorithm were invertible,

it would be possible to work both forward and backward to produce matching

values. We will say more about matching by working forward and backward

in Chapter 4, where we discuss the issue of meet-in-the-middle attacks.

2 . 3 D e f i n i t i o n s

2.3.1 Strong and Weak Hash Functions

There have been many proposals for hashing algorithms, and they can be

divided into two broad categories, based on their level of security: collision-

free hash functions and universal one-way bash functions. Merkle uses the

names strong one-way hash function and weak one-way hash function respec-

tively [Merkle, 1979], [Merkle, 1989a], [Merkle, 1989b]. We use the terms

interchangeably.

A strong one-way hash function or a collision-free hash function is a

function h such that:

1. h can be applied to any message or document M of any size.

2. h produces a fixed size output.

3. Given h and M, it is easy to compute h(M).

4. Given the description of the function h, it is computationally infeasible

to find two distinct messages which hash to the same value 1.

1Messages which hash to the same value are called colliding messages or collisions.

2.3 Det~nitions 21

On the other hand, a weak one-way hash function or a universal one-way

hash function is a function that:

1. h can be applied to any message or document M of any size.

2. h produces a fixed size output.

3. Given h and M, it is easy to compute h(M).

4. Given the description of the function h and a randomly chosen message

M, it is computationally intractable to find another message which

hashes to the same value.

Strong one-way hash functions are easier to use in systems than weak one-

way hash functions, because there are no preconditions on the selection of

the messages.

With weak one-way hash functions, there is no guarantee that finding

a pair of messages which map to the same hash value is difficult. Thus,

there may be messages m and m' that map onto the same hash value. How-

ever, deliberately picking a message equal to m or m' must be prevented.

Furthermore, there should not be too many of those pairs; otherwise a ran-

domly chosen message would not be safe. Thus, with a weak one-way hash

function, finding another message which hashes to the same value as some

randomly chosen rn should be difficult. However, the message m may be cho-

sen non-randomly, if the function h is random. Thus, many weak one-way

hash functions have been described based on DES or on other good block

ciphers [Merkle, 1979], [Merkle, 1989b].

In order to introduce randomness into the weak hashing algorithms,

various methods have been proposed. One method is to randomize the mes-

sage by encrypting it with a good block cipher using a truly random key.

The random key would also be added at the start of the resulting ciphertext

[Merkle, 1989a]. Another method is to select a random prefix to the message

before running the hash algorithm. Such a random prefix would effectively

randomize the hash value. Yet another method is to choose the hash func-

tion randomly from a family of hash functions instead of randomizing the

message itself [Carter and Wegman, 1979].

22 Chapter 2 OVERVIEW OF HASH FUNCTIONS

Weak one-way hash functions are weakened when they are used re-

peatedly. As more messages are signed with the same weak one-way hash

function, the chance of finding a message with a hash value equal to the

hash value of a previous message increases. Hence, the overall security of

the system is reduced. In contrast, strong one-way hash functions provide

full security, even when applied repeatedly [Merkle, 1989b]. Stating that a

hash scheme is secure usually means it is secure in the 'strong' sense, unless

the context implies otherwise. In this chapter, when we say that a particu-

lar hash scheme is secure, we mean that there is yet no attack to find two

distinct messages which hash to the same value (digest), with the computing

resources that today's technology provides.

2.3.2 Message Authent i ca t ion Codes and Manipula-

t ion Detec t ion Codes

As the presence of redundancy in the message distinguishes authentic infor-

mation from bogus information, in some methods the modification of infor-

mation is detected through the distortion of the internal redundancy of the

information. A universal algorithm, however, has to protect the integrity of

the information without any assumption about the internal structure of the

message [Preneel et al., 1992]. There are two major approaches to introduc-

ing controlled redundancy into the information. The redundant information

can be calculated as a cryptographic hash function of the message M under

the control of a secret key K known only to the communicating entities. In

this case, the redundant information is called Message Authentication Code

or MAC. The ANSI9.9 message authentication standard represents one such

technique. MACs make use of traditional cryptographic algorithms such as

the DES, and rely on a secret authentication key to ensure that only au-

thorized persons can generate a message with the appropriate MAC. As we

mentioned earlier, RSA digital signature can be used to establish both the

authenticity of a document and its origin. Because of the intensely compu-

tational nature of RSA, most digital signature schemes make use of hashing

techniques. A MAC approach based on DES or other traditional crypto-

graphic algorithms is often used for this purpose.

As we mentioned earlier, a secure MAC scheme should prevent even

2.3 Definitions 23

the owner of the private key from finding a collision message; otherwise the

scheme would not be able to solve the problem of disputes arising between

two communicating parties.

There are sometimes advantages in using a hashing algorithm which

does not require a secret key. When the message is encrypted to provide

confidentiality, it is preferable to provide the MAC on the plaintext instead

of computing it on the ciphertext [Montolivo and Wolfowicz, 1987] so that

authentication is independent of secrecy. Thus, authentication without con-

fidentiality is possible, and even if the encryption scheme is broken, the

authenticity of the information is still assured. The disadvantage of this

method is the additional burden of the key management.

The other approach is computing the redundant information as a hash

function of the message M alone, without requiring the use of a crypto-

graphic key. In this case, the redundant information is called Manipulation

Detection Code or MDC. As the hash function for producing the MDC is

publicly known, the message together with the MDC is usually enciphered in

order to prevent an attacker from succeeding in substituting his own MDC

along with the modified text. The advantage of MDC is that only publicly

known elements are required; as a result, it simplifies the key management

in secure message-handling systems. In addition, as the authentication is

separated from the encryption function or its mode of operation, encryption

and message authentication can be implemented in different protocol layers

in the context of the OSI reference model. The disadvantage of this approach

is that, if the confidentiality mechanism is compromised, then there can be

no assurance of the integrity.

2.3.3 Block-cipher-based and Non-block-c ipher-bas-

ed Hash Functions

One of the requirements of hash functions mentioned in [Denning, 1984] is

that a hash function should be a one-way function, where a one-way function

is a function which is easy to compute but difficult to invert. Rompel has

shown that one-way functions are necessary and sufficient conditions for the

construction of secure hash schemes [Rompel, 1990]. In other words the

existence of a secure hash scheme depends on the existence of a one-way

24 Chapter 2 OVERVIEW OF HASH FUNCTIONS

function. For a secure block cipher, given a ciphertext and the corresponding

plaintext, it is difficult to find the key. Hence, many proposals for hashing

algorithms have used a traditional block cipher as the underlying one-way

function. Other proposals apply other types of functions which are considered

to be one-way.

Not every block cipher algorithm may be suitable for the construction

of a hashing algorithm. In Section 2.4 we present some proposals based on the

application of known block ciphers such as DES. We also mention whether

they have remained secure, or have been successfully attacked. In Chapter

3 we present methods of attack on hashing algorithms. Based on that, we

explain in Chapter 4 what property a block cipher might have in order to be

suitable for the construction of secure hashing algorithms.

There have been many proposals based on functions from number the-

ory and other fields of mathematics which are considered to be one-way. In

Section 2.5 we present some of these hashing functions and mention whether

there has been any successful attack on them or not. In Chapter 8 we show

how to make an efficient one-way hash function from any one-way permuta-

tion.

2.4 Block-cipher-based Hash Functions

To minimize the effort in the design of a cryptographically secure hash func-

tion, many designers of hash functions tend to base their schemes on exist-

ing encryption algorithms. In this section we present an overview of such

schemes.

The general scheme for the construction of a hash function based on

the application of a block cipher algorithm is to divide the message or the

document into blocks. The blocklength is equal to the input or the key of

the block cipher algorithm, depending on the scheme. If the length of the

message is not a multiple of the blocklength, then the information is usually

encoded and an additional block containing the binary representation of the

added bits is appended to the message. To provide a randomizing element,

an initial vector is normally used. This vector is denoted by I V and its value

is either well known, or exchanged along with a key, or prefixed onto the

2.4 Block-cipher-based Hash Functions 25

message. The encryption algorithm E is denoted by

E(K ,M)

where M is the input to the algorithm and K is the key. The proof of the

security of such schemes relies on the collision freeness of the encryption

algorithm used. We will return to this matter in section 2.6 where we ex-

plain Damgard's design principle [Damgard, 1987] and Merkle's meta method

[Merkle, 1989b].

2.4.1 Rabin 's S c h e m e

As an application of encryption algorithms in the construction of secure hash

functions, consider the scheme proposed by Rabin in [Rabin, 1978]. Rabin's

scheme can be described as follows. First the message is divided into blocks

whose lengths are equal to the length of the input of the encryption algorithm.

If the encryption algorithm is DES, for example, then the message is divided

into blocks of 64 bits. Suppose that t blocks have resulted. Then the following

computations are performed (see Figure 2.1)

Ho = IV

Hi = E(Mi, Hi-1)

H(M) = Ht

i = l , 2 , . . . , t

Although Rabin's scheme is simple and elegant, Yuval demonstrated how it

M 1 M 2 M t

Figure 2.1: Rabin's Hashing Scheme

is susceptible to the so-called birthday attack when the size of the hash value

is 64 bits [Yuval, 1979]. The scheme is also susceptible to meet-in-the-middle

attack. We explain more about these attacks in Chapter 3.

26 Chapter 2 OVERVIEW OF HASH FUNCTIONS

2.4.2 Cipher Block Chaining Scheme

A widespread method for computing a hash value is the application of the

cipher block chaining mode of a block cipher algorithm. In this scheme,

the hash value is the last block of the ciphertext that resulted from the

application of the encryption algorithm in cipher block chaining (CBC) mode

to the message [DES, 1985], [DES, 1983], while the key and the initial value

are kept public. The scheme can be described as follows (see Figure 2.2)

H o = I V

Hi = E(K, MiOHi_I) i = 1 ,2 , . . . , t

H(M) = Ht

A variation of the above method is to apply the encryption algorithm in the

M 1 K M2 K Mt K

Figure 2.2: Cipher Block Chaining Scheme

cipher feedback (CFB) mode.

The security of this scheme depends on the error propagation properties

of the applied mode of operation.

2.4.3 C B C wi th Checksum Scheme

Another variation on the previous scheme is to add some redundancy to

the message in the form of the exclusive-OR of the plaintext blocks, where

the initial vector is assumed to be zero. ~ The redundant information forms

a checksum which is appended to the plaintext blocks [Akl, 1983]. Subse-
quently, a block encryption algorithm in either cipher block chaining (CBC)

mode or cipher feedback (CFB) mode or output feedback (OFB) mode is

applied to the entire bit string [Meyer and Matyas, 1982]. In this scheme the

2.4 Block-cipher-based Hash Functions 27

key can be either private or publicly known. If the key is secret, the security

of the scheme depends on the mode of the encryption algorithm. However,

the three proposed modes have been shown to be susceptible to attacks based

on manipulations of blocks [Jueneman, 1982]. Table 2.1 is from [Preneel et

al., 1992] and indicates which manipulations are possible on blocks, so that

the manipulations are not detectable. If the key is not secret, the scheme is

also susceptible to meet-in-the-middle attack. To improve the above scheme,

mode CBC CFB OFB
insertion v/ v /
permutation ~/ v /
substitution v /

Table 2.1: Manipulations on Blocks, in CBC, CFB and OFB Modes

a version was proposed by [Meyer and Matyas, 1982] where the checksum is

provided by the addition of the plaintext blocks in the Galois field with 2 m

elements for some m.

2.4.4 Combined Plaintext-Ciphertext Chaining
Scheme

If we are applying a block cipher algorithm for both encryption of the mes-

sage and generation of the hash value, different keys should be used for

each operation, otherwise the scheme would be susceptible to several ma-

nipulations [Meyer and Matyas, 1982]. However, [Meyer and Matyas, 1982]

proposed a scheme which needs one secret key to provide both secrecy and

authentication. The description of the scheme is as follows (see Figure 2.3)

M = M, . . . M1

Mt+~ = I V

Hi = E (K , M i | i = l , 2 , . . . , t

H (M) = Ht+l

In the above scheme M0 and H0 are considered to be equal to zero. While

H (M) provides a hash of the message the Hi provide the ciphertext blocks.

It is noteworthy that this algorithm is also susceptible to the birthday attack.

28 Chapter 2 OVERVIEW OF HASH FUNCTIONS

Figure 2.3:
Scheme

M 1 K M2 K IV K

H

Meyer and Matyas's Combined Plaintext-Ciphertext Chaining

2.4.5 Key Chaining Scheme

This scheme has been proposed in [Davies, 1983] and [Denning, 1984] and is

an improvement of Rabin's scheme. It can be described as follows.

H o = I V

Hi = E(Mi @ Hi-I,H~-I)

H(M) = Ht

i = 1 , 2 , . . . , t

Although the scheme is an improvement of Rabin's scheme, it is still subject

to meet-in-the-middle attack. Several modifications have been proposed to

improve the scheme further. The first, proposed in [Davies and Price, 1980], is

to repeat the scheme twice over the message, and the second modification is to

execute the above algorithm with two different initial values, Coppersmith,

however, showed that the meet-in-the-middle attack can still break these

improved versions of the scheme [Coppersmith, 1985]. The third proposal is

to first encrypt the message in CBC or CFB mode before applying the hash

scheme. The fourth proposal is to append a checksum of all the message

blocks before the execution of the hash scheme [Seberry and Pieprzyk, 1989].

When DES is used as the block cipher, each of the above schemes

is vulnerable to attacks exploiting keys with some weaknesses. Quisquater

and Delescaille worked on a collision search Mgorithm, which resulted in an

attack on the fourth modified scheme [Quisquater and Delescaille, 1989a] and

[Quisquater and Delescaille, 1989b].

2.4 Block-cipher-based Hash Functions 29

2 .4 .6 W i n t e r n i t z ' K e y C h a i n i n g S c h e m e s

As we mentioned, the key chaining scheme and its modified versions are sub-

ject to meet-in-the-middle attack. However, Winternitz proposed a scheme

for the construction of a one-way function from any block cipher. In any

good block cipher, given an input and an output, it should be difficult to

work out the applied key, while given the output and the key it should be

easy to compute the input. In Winternitz' construction we are able to make

a one-way function from any good block cipher so that, given the output and

the key, it is difficult to guess at the value of the input. The construction is

defined as

E*(K, M) = E(K, M) @ M

Based on this construction, Donald Davies proposed a hash algorithm which

can be described as in Figure 2.4.

IV

M1 M2 Mt

Figure 2.4: Davies' Scheme

H o = I V

Hi = E(Mi, Hi-1) q) Hi-1 i : l , 2 , . . . , t

H(M) = Ht

A similar scheme was proposed by Matyas, Meyer and Oseas and is described

in Figure 2.5.

H0 = IV

Hi = E(H~_I,Mi) | Mi i = 1 ,2 , . . . , t

H(M) = Ht

Both of the above schemes were intended to be implemented with DES, and

so under certain conditions the schemes are vulnerable to attacks based on

30 Chapter 2 OVERVIEW OF HASH FUNCTIONS

IV

M 1 M 2 Mt

Figure 2.5: Meyer, Matyas and Oseas' Scheme

weak keys [Preneel et al., 1992] or a key collision search [Quisquater and

DeIescaille, 1989b], while the threat of meet-in-the-middle attack has been

thwarted because of the one-wayness of the applied function.

2 . 4 . 7 Q u i s q u a t e r a n d G i r a u l t ' s 2 n - b i t H a s h Function

It is possible to attack all the hash schemes which produce 64 bit hash values

with the birthday attack, since one need only obtain 232 messages and their

corresponding hash values to find collisions. As all of today's encryption

schemes such as DES, FEAL and LOKI are 64-bit block ciphers, there have

been many attempts to design schemes based on 64-bit block ciphers which

result in a 128-bit hash value. One of the simplest solutions is to repeat a

64-bit scheme for two different values of a parameter, such as the initial value

or the key.

One such attempt was made by Quisquater and Girault where they

suggested a 128-bit hash algorithm using a 64-bit block cipher [Quisquater

and Girault, 1989]. They took DES as the underlying block cipher. The

description of their algorithm is given in Figure 2.6.

H10 = IV1

H20 = IV2

Tli = E(Ml i , HII_a @ M2i) @ M2i

T2~ = E(M2i, H2i-a | Ml i ~ Tli) @ Mli

Hli = Hli-a @H2i-1 @T2i

H2i = Hli-1 ~ H2i-1 @ Tl i

H(M) = Hlt [[H2t

As DES is the underlying block cipher, some keys with certain weaknesses

2.4 Block-cipher-based Hash Functions 31

Hlia M.li M.2i H.2i_ 1

-(D= I =0 -()

f
Hli H2 i

Figure 2.6: Quisquater and Girault's 2n-bit Scheme

can be exploited to compute collision messages for the scheme. In [Miyaguchi

et al., 1990], it has been shown how to make collision messages for the above

schem e using the complementation property and the weak keys of DES. More-

over, [Preneel et al., 1992] report that Coppersmith has broken this scheme

for every block cipher because of linearities.

2 .4 .8 M e r k l e ' s S c h e m e

Based on Winternitz' construction, Merkle proposed several schemes in

[Merkle, 1979], [Merkle, 1989a] and [Merkle, 1989b]. These schemes based

on the application of DES, result in hash value of around 128 bits. The

construction of these schemes follows a general method for the construction

of hash algorithms. Merkle called it the meta method, which is the same as

32 Chapter 2 OVERVIEW OF HASH FUNCTIONS

the serial method of design principles described by Da.mgard in [Damgard,

1989]. We describe the method later in this chapter, in Section 2.6. Merkle's
proposals take advantage of the construction of Winternitz. In some pro-

posals with complex and fast implementation, the message is first divided

into blocks of 106 bits. The concatenation of each 106-bit block Mi of data

with the 128-bit block Hi-1 and the hash value result of the previous stage,

makes Xi, a 234-bit block. We denote this concatenation by Xi = Mi II Hi-1.

Each block Xi is further divided into two pieces, Xa and Xi~ for each of the

llT-bits in size. The description of the method is as follows (see Figure 2.7).

H o = I V

Xi = Hi-1 I[M~

Hi = E*(00 II first 59 bits of{E*(100 II Xli)} II

first 59 bits of{E*(101]1 X2i))]]

E*(01 [[first 59 bits of{E*(ll0 II X1;)} [[

first 59 bits of{E*(lll [[X2,)}

H(M) = Ht

In this scheme E* is defined as Winternitz' construction and the strings 00,

01,100, 101,110 and 111 have been included to prevent the manipulation of

weak keys.

2.4.9 N-hash Algorithm

N-hash is a hashing algorithm which produces a 128-bit hash value
[Miyaguchi et al., 1989]. The algorithm, which was suggested by the de-

signers of the FEAL block cipher algorithm, is based on a 128-bit encryption

algorithm with the key length equal to the block length. The encryption

algorithm is a Feistel type cipher with 16 rounds, and takes advantage of

the f functions of FEAL. The N-hash algorithm uses yet another chaining

scheme and is defined as follows in Figure 2.8.

Ho = IV

Hi = E(Mi, Hi-l) ~ Hi-a @ Mi

H(M) = Ht

i = 1 ,2 , . . . , t

2.4 Block-cipher-based Hash Functions 33

M i lli. 1
u l i I

Xli ~ X2i
! I !

1100 Xli I

I I

I
59 bits of each

I;o; X2i I l ifo Xli I

,oot t, ,o, (, ,

H i

Figure 2.7: Merkle's Scheme

[ltt X2i [

I

Biham and Shamir showed that the N-hash algorithm is susceptible to dif-

ferential cryptanalysis and that it is possible to find collision messages for it

[Biham and Shamir, 1991@

2 . 4 . 1 0 M D C 2 a n d M D C 4

For modification detection in secure transactions, IBM proposed its MDC

hashing scheme. There are two versions of this hashing scheme, namely,

IV

MI

I "~li
M2 Mt

Figure 2.8: N-hash Structure Based on a Block Cipher Algorithm

34 Chapter 2 OVERVIEW OF HASH FUNCTIONS

MDC2 and MDC4. The former applies two DES encipherments per 8-byte

input block, whilst the latter applies four DES encipherments. The MDC

calculation procedure defines a one-way function based on Winternitz' pro-

posal. Two different versions allow the user to make a trade-off between

performance and security. As descriptions of the two proposals are beyond

the scope of this overview, we give just a schematic presentation of MDC4,

where better security is achieved at the expense of slower performance (see

Figure 2.9). The idea is to first encrypt the message blocks using the previous

hash result as the key, and then encrypt the hash block while the encrypted

message serves as the key. In Figure 2.9, Mli and M2i are each 64 bits in

length, and contain the left half and the right half of the 128-bit input mes-

sage block, respectively. Note Hli-1 and H21-x form the key input of the

128-bit cryptographic procedure. The rood1 function sets the bits 1 and 2 of

input to 1 and 0, respectively, while the rood2 function sets the bits 1 and 2

of its input to 0 and 1, respectively. These functions remove the symmetric

structure of the above hash scheme, and also prevent manipulations based

on a weakness of DES, that E(K, M) = E(K, M). They also exclude weak

keys of DES. As four DES encryptions are performed on each 128-bit mes-

sage block, the scheme is less efficient than the previously mentioned ones.

However, there has not yet been any attack on these schemes. Although the

literature on the hashing schemes based on block ciphers is larger than we

have presented here, the above schemes are representative of the types of

proposals and the problems involved in them. There are collections of pro-

posals based on block ciphers in [Akl, 1983] and [Meijer and Akl, 1982] for

further reference.

2.5 Non-block-c ipher-based Hash Functions

The other proposals for hash functions are those that do not take advantage

of block cipher algorithms, but of functions that are complicated and difficult

to invert. We call the second class of hash functions non-block-cipher-based
hash algorithms. As the name implies, these hash functions include proposals

based on one-way functions from number theory, e.g. the RSA, squaring,

knapsack, or complicated software algorithms, or cellular automata schemes.

In the following we describe some of the non-block-cipher-based hash schemes

according to the kind of function employed.

2.5 Non-block-cipher-based Hash Functions

M1 i Hll. 1 H21-1 M2i

35

H1 i H2i

Figure 2.9: IBM's MDC4 Scheme

2 . 5 . 1 C i p h e r B l o c k C h a i n i n g w i t h R S A

For the first scheme, consider the RSA algorithm as the underlying one-way

function, and perform the Cipher Block Chaining mode of bock ciphers with

it. The description of the scheme is as follows:

Ho = I V

M ~ Hi = (H~_~| ~) modN

H (M) = l i t

i = 1 , 2 , . . . , t

where N and e are public. A correcting block attack can compromise the

scheme by appending or inserting a correcting block to achieve a desired hash

value. A modified version of the above scheme is to add some additional

36 Chapter 2 OVERVIEW OF HASH FUNCTIONS

redundancy to the message to avoid a correcting block attack [Davies and

Price, 1980]. To achieve a secure RSA, N should be at least 512 bits in length

and as the result implementation of the above algorithm is very slow.

2 .5 .2 S c h e m e s B a s e d on S q u a r i n g

Davies and Price ' s Squaring Scheme

In order to speed up the above cipher block chaining algorithm with RSA,

Davies and Price proposed the application of squaring instead of using the

public exponent [Davies and Price, 1984]. Thus

Hi = (Hi-1 @ Mi) 2 mod N

To avoid a correcting block attack, they suggested setting 64 bits of every

message block to 0. However, Girault has shown that it is possible to find

collision messages for the scheme [Girault, 1987]. To improve this scheme,

the introduced redundancy should be of the order of 128 bits.

Girault also discussed several other schemes based on squaring. These

schemes are listed as follows:

1. H i = Hi_ 1 ~ (m~ mod N)

This scheme is vulnerable to attacks based on the permutation of

blocks, insertion of an even number of blocks, insertion of zero blocks,

or manipulations on small blocks where Mi 2 < N.

2. Hi = Mi @ (H/2_1 mod N)

This method is vulnerable to attacks based on a correcting block.

3. Hi = (Hi-1 @ (M~ mod N)) 2 mod N

There is no gain in the execution time of this scheme, but on the other

hand no attack on it has yet been given.

CCITT's Proposal

Appendix D of the X.509 recommendations of CCITT standards on secure

message handling, proposes an algorithm for hashing based on squaring. The

2.5 Non-block-cipher-based Hash Functions 37

proposed scheme introduces 256 bits of redundancy to be distributed over

every 256-bit message block by interleaving every four bits of the message

with 1111, so that the total number of bits in each block becomes 512. Then

the CBC mode of the exponentiation algorithm with exponent equal to 2 is

run on the modified message. This scheme makes the four most significant

bits of every byte in each block equal to 1. However, Coppersmith developed

an attack to construct collision messages for this scheme when the hash

scheme is used with an RSA signature scheme [Coppersmith, 1989].

J u e n e m a n ' s S c h e m e

As squaring is the fastest possible exponentiation, Jueneman proposed sev-

eral approaches based on squaring. His first proposal is similar to that of

Davies and Price with the difference that the exclusive-OR operation is re-

placed by addition, and N is the prime number 231 - 1. This scheme results

in a 32-bit hash value. However, the scheme has two weaknesses. First

the hash value is rather short. Second, the scheme is vulnerable to the

meet-in-the-middle attack. To obtain a 128-bit hash result, the designer pro-

posed iterating the scheme four times [Jueneman et al., 1985]. This scheme

is vulnerable to the generalized birthday attack, because of the common

modulus of all the four iterations. The third version was to choose four

different moduli Nj (for j = 1 to 4) equal to the four largest prime num-

bers smaller than 2 ~1 - 1 [Jueneman, 1987], [Jueneman, 1986]. The scheme

can be described as follows. Divide the message into blocks of 128 bits

length. Then split each message block Mi into four Ml i to M4i. A fifth

block is constructed with selection of some bits from MI~ to M4~, as follows.

Mhi ---- (00 [[Mli31_26 [[M2i31_~,][M3i31_24 [[M4i3~_24) and the second bit of

Mli to M4i is set to 0. For j = 1 to 4, the four functions Hj,i are described

a s :

gj , i ~-- [(Hjmod4,1-1 0 MIi) - - (g(j+l)mod4,i_ 1 0 M 2 i) +

~-(U(j~-2)mod4,i-i (~ i a i) - (H(j~-3)mod4,i- 1 (~ i d i) ~-

+(--1)J+1/5i] 2 rood Nj

However, it is reported in [Preneel et al., 1992] that Coppersmith has bro-

ken it in about 23~ operations with a correcting block attack that combines

algebraic manipulations with a birthday attack.

38 Chapter 2 O V E R V I E W OF H A S H F U N C T I O N S

D a m g a r d ' s S q u a r i n g S c h e m e

Damgard, in his paper on the design principles for the construction of collision

free hash functions [Damgard, 1989], described a scheme based on squaring

to map a block of n bits into a block of m bits. The description of the scheme

is as follows:

Ho = I V

Hi = extract m bits of (00111111 I[Hi-1 [[Mi) 2 mod N

H (M) = Ht

In the above scheme, extract is a function which extracts m bits from the

result of the squaring function. To obtain a secure scheme m should be big

enough to thwart the birthday attack. Moreover, the eztract function should

select bits for which finding colliding inputs is made difficult. One choice is

to extract ra uniformly distributed bits. However, for practical reasons, it

is better to bind them together in bytes. Another possibility is to extract

every fourth byte. In [Dwemen et al., 1991b], the authors reported that this

scheme can be broken.

2 .5 .3 S c h e m e s B a s e d on C l a w - F r e e P e r m u t a t i o n s

Damgard showed that it is possible to construct collision-free hash functions

based on the existence of claw-free permutations [Damgard, 1987]. A claw-

free set of permutations is a set of permutations S = {f0, f l , . . . , fr-1}, such

that, for each x in the domain of fi, it is easy to compute f i (x) for all

i = 0 , . . . , r - 1, but it is computationally intractable to create a claw, that

is, to find a y such that, for some i ~ j , f i (x) = f j (y) . Damgard argued that

the following scheme would yield a provable collision free-hash function.

Ho = I V

Hi = fM,(g, -1) i = 1 , 2 , . . . , t

H (M) = H~

Goldwasser, Micali and Rivest also showed that a similar structure with r = 0

would yield a secure signature scheme [Goldwasser et al., 1988]. Damgard

also proposed three further schemes, based on modular squaring, for the

construction of claw-free permutations.

2.5 Non-block-cipher-based Hash Functions 39

2.5.4 S c h e m e s Based on the Knapsack P r o b l e m

As the knapsack problem is one of the problems in number theory which is

considered to be difficult to invert, there have been some proposals made for

it.

Damgard's Knapsack Scheme

Another scheme proposed by Damgard for the construction of collision-free

hash functions is based on the application of the knapsack and can be de-

scribed as follows. Choose at random numbers a l , . . . , a 8 in the interval

1 , . . . , N, where s indicates the maximum length of a message to be expected

in blocks. Damgard chooses s = 256 and N = 212~ - 1. Then the binary

message M1,M2, . . . , Ms can be hashed as:

H(M) = ~ M~ai
4----1

This scheme would give an output in the length of 128 bits.

However, Camion and Patarin have shown that the above scheme is not

secure [Camion and Patarin, 1991]. They demonstrate that a probabilistic

algorithm with about 232 computations can break the scheme; this number

of operations is feasible with modern computer technology.

Impagliazzo and Naor's Scheme

Impagliazzo and Naor proposed a cryptographic subset sum function which

can be applied for hashing schemes. The description of the scheme is as

follows. Choose at random numbers a l , . . . , a~ in the iterval 0 , . . . , N, where

n indicates the length of the message in bits, and N = 2~-1 where g < n. The

binary message M = Mx, M2, . . . , M~ corresponds to a subset S C {1 , . . . , n}

and can be hashed as:

H(M) = ~ ai mod 2 ~
iES

Impagliazzo and Naor have not mentioned any concrete values for the above

scheme, but they have shown that it is theoretically sound.

40 Chapter 2 O V E R V I E W OF HASH FUNCTIONS

2 . 5 . 5 S c h e m e s B a s e d o n C e l l u l a r A u t o m a t a

In a simple case, a cellular automaton consists of a line of cells or sites, each

with value 0 or 1. These values are updated in a sequence of discrete time

steps, according to a definite and fixed rule. Denoting the value of a cell at

position i by ai, a simple rule gives its new value as:

a~ = r ai, ai+l)

where r is a Boolean function which specifies the rule [Wolfram, 1986]. De-

spite the simplicity of their construction, many cellular automata schemes

produce systems of considerable complexity.

Damgard ' s Scheme Based on Wolfram's P s e u d o r a n d o m Bit Gen-
erator

Wolfram's pseudorandom bit generator consists of a one-dimensional cellular

automaton of n bits. Let x = Xo, Xl , . . . ,x,~_a be the input seed of the bit

generator. The function g(xi) defines the value of i-th cell in the next time

step. The function g is defined as follows:

= v

where V stands for OR, and @ means XOR. Denote the value of the i-th cell

in the j - th time step by gj(xi). The bit generator b(x) starts from a random

x and outputs the sequence gj(xo). For d > c , let bc-d(X) denote the string

go(x0), g +l (x0), . . . , gd(0)

The hash function is defined as follows:

go = I V

Hi = bc-d(Mi II Hi-1 II Z) i = 1 , 2 , . . . , t

H (M) = Ht

where Z is a random value, added to make finding collision messages more

difficult. As a concrete proposal, Damgard suggested n = 512, r = 256, c =

257 and d = 384. The proposed hash function will hash messages of arbitrary

length into 128-bit strings. However Daemen, Govaerts, and Vandewalle

showed how to cryptanalyze this scheme and find colliding messages [Daemen

et al., 1991b].

2.5 Non-block-cipher-based Hash Functions 41

Cellhash Scheme

In order to achieve a hash scheme that can be implemented on a chip, Dea-

men, Govaerts and Vandewalle [Daemen et al., 1991b] proposed a hardware-

oriented one-way hash function which is called Cellhash. The properties

desired in the design of Cellhash were firstly to achieve a size of at least

128 bits to prevent a birthday attack; the result of cellhash is then 257 bits

long. The second property was to design a function such that the diffusion

of information could be guaranteed. The third was to achieve confusion of

information so that the hash result depends on the bits of the message in a

complicated way. The fourth property was to achieve a hash function which

actually works at high speed. The computation of the cellhash is done as

follows. First, O's are appended to the message so that the length is at least

248 bits and congruent to 24 (mod 32). The number of bits added is rep-

resented in a byte subsequently appended. I V is the all-zero bit string of

length 257. The computation of Hj from Hi-1 is done under the key Mj, the

j - th message block, and can be considered as a 5-step transformation. The

calculations in each step are done simultaneously on all bits of Hi-1. Let

h0, h i , . . . , h256 denote the bits of Hi-1 and m0, m l , . . . , m2ss denotes the bits

of Mj.

Step1 : hi = hi | (hi+a V hi+2) 0 < i < 257

Step2: h 0 = h 0

Step3 : hi = hi-3 �9 hi @ hi+3 0 _< i < 257

Step4 : hi = hi �9 mi- t 1 <_ i < 257

Step5: hi=haoi 0 _ < i < 2 5 7

There has not been any attack on this scheme yet.

2.5.6 Sof tware H a s h S c h e m e s

There are numerous designs where the underlying one-way function is a block

cipher, and some of them were shown in the previous section. As the purpose

of a block cipher is different from that of a hash function, some dedicated

software hash functions have been proposed to provide more efficient solu-

tions.

42 Chapter 2 OVERVIEW OF HASH FUNCTIONS

M D 4 a n d M D 5

Rivest proposed MD4 for hashing [Rivest, 1990]. It is a software oriented

scheme which is especially designed to be quite fast on 32-bit machines. The

algorithm produces a 128-bit output; so it is not computationally feasible

to produce two messages having the same hash value. The scheme provides

diffusion and confusion of the input information, while it does not use any

tables or S-boxes. MD4 has been placed in the public domain for review.

The description of MD4 is beyond the scope of this overview.

The MD5 hashing algorithm is a strengthened version of MD4. It has

more rounds and incorporates other revisions based on comments for the

MD4 algorithm. There is not yet any known method of breaking MD4 or

MD5. Den Boer and Bosselaers demonstrated an attack on the last two

rounds of MD4 in [den Boer and Bosselaers, 1991]. Their work shows that,

if the three-round MD4 algorithm is stripped of its first round, it is possible

to find for a given input value two different messages hashing to the same

output. There is also another work [Berson, 1992] which analyses any single

round of MD5 separately.

HAVAL

HAVAL stands for a one-way hashing algorithm with variable length of out-

put. It was designed at the University of Wollongong by Zheng, Pieprzyk,

and Seberry [Zheng et al., 1992]. It compresses a message of an arbitrary

length into a digest of 128, 160, 192, 224 or 256 bits. The security level

can be adjusted by selecting 3, 4, or 5 passes. The HAVAL structure is

based on MD4 and MD5. Unlike MD4 and MD5 whose basic operations

are being done using functions of three Boolean variables, HAVAL employs

five Boolean functions of seven variables (each function serves a single pass).

All functions used in HAVAL are highly nonlinear, 0-1 balanced, linearly

inequivalent, mutually output-uncorrelated and satisfy the Strict Avalanche

Criterion (SAC).

The structure of HAVAL is much more complex than MD5 and the

authors argue that HAVAL with five passes, is more secure than MD5. The

experiments showed that HAVAL with 3 passes is 60% faster than MD5, it

2.5 Non-block-cipher-based Hash Functions 43

is 15% faster than MD5 when HAVAL applies 4 passes and it is as fast as

MD5 when it has 5 passes. The authors mentioned an even faster HAVAL

version which is based on Boolean functions of five variables [Charnes and

Pieprzyk, 1992]. There has been no attack on the scheme to date.

Snefru

Another software hashing scheme is Snefru, proposed in [Merkle, 1990b].

Merkle suggested this scheme as a hashing scheme which is easy to implement,

resistant to cryptographic attacks, and is fast when implemented in software.

Snefru produces a hash result of 128 bits and takes advantage of 8 S-boxes.

The original scheme of Snefru had two rounds. However, Biham and Shamir

have shown how to create an unlimited number of pairs hashing to the same

128-bit hash value with a two-round Snefru [Biham and Shamir, 1991b].

This resulted in a later proposal for Snefru which consisted of four rounds.

Although Snefru provides greater flexibility in selecting input and output

block sizes, MD4 was already slightly faster than Snefru with two passes.

The change to four passes means MD4 is now over twice as fast as Snefru.

Altogether, if MD4 proves secure, it is more attractive as a standard for

hashing since it has a better performance [Merkle, 1990a].

2 . 5 . 7 M a t r i x H a s h i n g

Matrix algebra is another area which has been used in the construction of

hashing algorithms. One such proposal is called the Random Matrix Hashing

Algorithm [Banieqbal and Hilditch, 1990]. The algorithm considers its input

to be a 1 • m row vector of bits, and its output to be an n x 1 column vector

of bits. The algorithm consists of choosing a fixed m x n random binary

matrix, and multiplying it by the input vector. The matrix should be kept

secret as a key. Moreover, it can be chosen in such a way that the scheme is

invertible if required. The algorithm can be sized to any bit length for input

or output or both.

Another scheme, invented by Harari also uses as key a random t • t

matrix A, with t the number of m-bit blocks of the plaintext M [Harari,

44 Chapter 2 O V E R V I E W OF HASH FUNCTIONS

1984]. The hash value is computed as

H(M) = MT A M = y~ aij .xi .xj
i<j

The scheme, however, is insecure under a chosen message attack.

2.5.8 Schnorr's FFT Hashing Scheme

Schnorr proposed an efficient algorithm that hashes messages of arbitrary

bit length into a 128-bit hash value [Schnorr, 1991]. The algorithm consists

of two stages, a discrete Fourier transformation and a polynomial recursion

over a finite field. The message is padded so that its length in bits becomes

a multiple of 128. It is recommended that the message is appended so that a

single 1 bit is followed by a suitable number of 0 bits which are also followed

by a binary representation of the message length in bits. Let the padded

message consist of n blocks M1 , . . . , Mn each of which is 128 bits long. The

algorithm for the hash function h is:

Ho = I V = O123456789ABCDEFFEDCBA987654321

Hi = g(Mi H Hi-l)

H(M) = H,

g is a hash algorithm with input size of 256 bits and output size of 128 bits.

g uses the discrete Fourier transform FTs. It is given that FTs(ao , . . . , az) =

(bo, . . . , bT) with

7

bi = ~ 24iJaj (mod p) for i = 0 , . . . , 7
j = O

Let p be the prime p = 65537 = 2 a6 + 1. Let the input to g be denoted by

(e0 , . . . , e15) E {0, 1}256; then the description of g is as follows.

.

2.

(C o , e 2 , e 4 , . . . , e l 4) - - FTs(eo, e2, e 4 , . . . , e l 4)

For i = 0 , . . . , 1 5 do

ei : el + ei-lei-2 + e~,_ 3 + 2 / (mod p)

(The indices i, i - 1, i - 2, i - 3, ei-3 are taken modulo 16)

2.6 Design Principles for Hash Functions 45

3. Repeat steps 1 and 2

However, Daemen, Bosselaers, Govaerts, and Vandewalle [Daemen et al.,
1991a], and also Baritaud and Gilbert [Baritaud and Gilbert, 1992] presented

their attacks on the scheme. They showed that it is possible to construct

collisions for Schnorr's FFT Hashing scheme. This resulted in a later proposal

based on FFT, where the weaknesses discovered are removed. The improved

version is called FFT-Hash II and is detailed in [Schnorr, 1992]. At the

Crypto'92 Conference, Serg Vandery showed that this version is not secure

either [Vandery, 1992].

2.6 Design Principles for Hash Functions

As we mentioned earlier, a hash function is called collision free if it maps

messages of any length to strings of some fixed length, such that finding

x, y with h(x) = h(y) is a hard problem. Many of the difficulties in giving

proofs for known constructions, arise from the fact that things seem to get

more complex as the lengths of the messages hashed increase. On the other

hand, a hash function is of no use if we are not allowed to hash messages

of arbitrary lengths. Damgard presents two methods in [Damgard, 1989] to

remove this difficulty. He shows that the ability to cut just one bit off the

length of a message in a collision-free way implies an ability to hash messages

of an arbitrary length. The methods are basic design principles which can

be used as guide for designing hash functions. One approach allows hashing

of long messages to be implemented serially, while the other approach allows

parallel hashing of long messages. The serial method is the same as Merkle's

meta method, which was invented independently and has been presented in

[Merkle, 1989b].

2 . 6 . 1 S e r i a l M e t h o d

Let f be a fixed-size, collision-fi'ee, hash function mapping g bits to m bits.

Then a collision-free hash function H, which maps strings of arbitrary length

to m bit strings can be constructed as follows. The input M E {0, 1}* is split

in blocks of the size g - m - 1 bits. If the block is incomplete, it is padded

46 Chapter 2 O V E R V I E W OF H A S H F U N C T I O N S

with O's. Let d be the number of O's needed. The binary representation of d,

prefixed with an appropriate number of O's, would be appended as an extra

block. Assume the length of the text after padding is n. Generate a sequence

of m bit blocks h0, h i , . . . , h t - +1, by:

hi = f(0 m+l IIM1)
n

hi+l = f (hi ll l ll Mi+l) i = l , 2 , . . . , g _ m

H (M) = h , +1

2 . 6 . 2 P a r a l l e l M e t h o d

This method would allow parallel computation of the hash value on several

processors. If, for example, c processors co-operate, they would achieve a

speed increased by a factor of c. In some references such as [Preneel et al.,],

this method is called the tree approach to hashing functions.

Let f be a fixed-size, collision-free, hash function mapping m bits to t

bits. Then a collision free hash function H which is implemented in a parallel

way and maps strings of arbitrary length to t bit strings can be constructed

as follows. Let a message M of length n be given. The message is padded

with a number of O's so that the resulting bit string has length equal to 2km

for some k.

h~ = f(M2i-1 II M2d i = 1 , . . . , 2 k-'

h! = j-1 �9 f(h2i-1 II h~:, 1) i = 1 , . . . ,2 k-j

H (M) = f(h~ -1 II hk-1)

The final hash value is H (M) for the message M.

(j = 2 , . . . , k - 1)

2.7 Conc lus ions

In this chapter we reviewed the basic definitions of hash functions. We pre-

sented several classifications for hash functions. The first classification di-

vides the proposed hashed functions according to their level of security. In

this classification they are divided into weak and strong one-way hash func-

tions. The second classification was more concerned with the technical issue

2. 7 Condusions 47

of whether a private key was involved in the scheme or not. The third classi-

fication was concerned with the structure of the hashing algorithm itself, and

it considered whether a block cipher had been applied as the underlying one-

way function. We reviewed various proposals, and divided them according

to the third classification.

Although this chapter does not cover all the proposals, whether based

on a block cipher or on other one-way functions, it gives a representative

overview of the type of proposals and the problems associated with them,

At the end, we remark that our aim is to develop some design rules for the

construction of hash functions where they are considered as block-cipher-based

and non block-cipher-based.

C h a p t e r 3

M e t h o d s of A t t a c k on H a s h

F u n c t i o n s

3.1 I n t r o d u c t i o n

The best method to evaluate a hash scheme is to see what attacks an adver-

sary may perform to find two messages that map to the same hash value. The

hashing algorithm produces, as the hash value, a fixed length 'random' num-

ber which depends on all the bits of the message. In general, it is assumed

that the adversary knows the hash algorithm. As a conservative approach,

it is assumed that he or she can perform an adaptive chosen message attack,

where he or she may choose messages, ask for their hash values, and try to

compute messages with the same hash value. There are several methods for

using such pairs in order to attack a hash scheme and to calculate colliding

messages. Some methods are general and can be applied against any hash

scheme. The so-called birthday attack is such a method and can be applied

against any type of hash scheme. Other methods are applicable against only

special groups of hash schemes. Some of these special attacks can be launched

against a wide range of hash functions. For example, the so-called meet-in-

the-middle attack can be launched against any scheme that uses some sort of

block chaining in its structure. Others can be launched only against smaller

groups. For example, the so-called correcting block attack is applied mainly

against hash functions based on modular arithmetic.

3.2 Genera/Attacks 49

Furthermore, some hash schemes have been broken with methods which

are only applicable to those particular hash schemes. Such attacks are not

included in this chapter; however, it was mentioned in Chapter 2 how a hash

scheme can be broken in a special way.

In this chapter, we give a brief explanation of these general attacks and

special attacks.

3 . 2 G e n e r a l A t t a c k s

In Subsection 2.4.1 we introduced Rabin's hashing scheme. The scheme is

an efficient hash function based on a block cipher. Rabin used DES as the

block cipher. As DES transforms 64-bit plaintext blocks to 64-bit ciphertext

blocks, the proposed scheme provides a 64-bit hash value. Later, Yuval

showed in [Yuval, 1979] that this scheme is subject to the so-called birthday
attack. The idea behind the attack originates from a famous problem from

probability theory, called the birthday problem. The paradox can be stated as

follows: What is the minimum number of pupils in a classroom so that the

probability that at least two pupils in this classroom have the same birthday

is greater than 0.5? The answer to this question is 23, which is much smaller

than the value one might suggest by intuition. The justification for this result

is as follows. Suppose that the pupils are entering the class one at a time.

The probability that the birthday of the first pupil is a specific day of the

year is equal to 3~-g" The probability that the birthday of the second pupil

is not the same as the first one is equal to 1 - 3~g" If the birthdays of the

first two pupils are different, the probability that the birthday of the third

pupil is different from the first one and the second one is equal to 1
3 6 5 "

Consequently, the probability that t students have different birthdays is equal
t o (l - 1 2 a-gg)(1 - a -g)" - (1 - t - 1 5--~), and the probability that at least two of

them have the same birthday is

P = I - (1 - 1 2) . . (1 t - 1

- 365 �9 -g 5-)

It can be easily computed that for t > 23, this probability is bigger than 0.5.

The idea of the above problem can be employed for attacking hash

functions. Suppose that the number of bits of the hash value is n. An

50 Chapter 3 METHODS OF A T T A C K ON HASH F U N C T I O N S

adversary generates rl variations on a bogus message and r2 variations on a

genuine message. The probability of finding a bogus message and a genuine

message that hash to the same result can be approximated by

p ,.~ l _ c-~-~ 2-

where r2 >> 1 [Ohta and Koyama, 1990]. When rl = r2 = 2~, the above

probability is about 0.63. Jueneman has shown in [Jueneman, 1986] that for

n = 64 the processing and sorting requirements are feasible in reasonable

t ime with today's computing resources. On the other hand, a memory-time

trade-off is also possible. It is usually recommended that the hash value

should be around 128 bits to achieve security against a birthday attack.

This method of attack does not take advantage of the structural proper-

ties of the hash scheme or its algebraic weaknesses. In other words, it can be

launched against any hash scheme. In addition, it is assumed that the hash

scheme assigns to a message a value which is chosen with a uniform proba-

bility among all the possible hash values. Note that if there is any weakness

in the structure or certain algebraic properties of the hash scheme, or the

hash values do not have a uniform probability distribution, then generally

it would be possible to find colliding messages with a better probability and

fewer message-hash value pairs.

The birthday attack is a general method against authentication schemes,

even if the hash function is applied to encrypted data or is evaluated under

the control of a private key. Ohta and Koyama explain how the meet-in-the-

middle attack, which is a version of the birthday attack, can be employed

agMnst signature schemes, where a signatory can forge a bogus message for

his own signature, or an adversary can offer the signer a message he or she is

willing to sign and replace it later with a bogus message [Ohta and Koyama,

19901.

3.3 Spec ia l A t t a c k s

Unlike the birthday attack, which can be launched against any hashing

schemei there are some methods of attack that can be launched against only

some groups of hash functions. We review these methods in this section.

3.3 Special Attacks 51

3.3.1 M e e t - i n - t h e - m i d d l e A t t a c k

Meet-in-the-middle attack is a variation of the birthday attack, but instead

of comparing the hash values, the intermediate variables in the chaining are

compared. The attack can be launched against schemes which employ some

sort of block chaining in their structure. In contrast to birthday attack, meet-

in-the-middle attack enables an attacker to construct a bogus message with

a desired hash value. In this attack the message is divided into two parts.

The attacker generates rl variations on the first part of a bogus message.

He starts from the initial value and goes forward to the intermediate stage.

He also generates r2 variations on the second part of the bogus message. He

starts from the hash result and goes backward to the intermediate stage. The

probability of a match in the intermediate stage is the same as the probability

of success in the birthday attack.

Nishimura and Sibuya described three variations of this attack in

[Nishimura and Sibuya, 1990]. They argued that crediting the high prob-

ability of success in the meet-in-the-middle attack to the classical birthday

problem is not exact and is misleading. However, they conceded that the

asymptotic conclusions in the literature are correct. They considered three

matching models and called them the model A, B and C. Later they cal-

culated the exact probabilities of success for each attack with the specified

matching model. They based their discussion on the assumption that the

encryption and decryption functions to be used were random. As in many

hashing schemes, DES was used as the underlying cryptosystem. The ques-

tion whether DES has some algebraic structure or can be considered random,

has been studied extensively in [Hellman et al., 1976]. We give a detailed

discussion of which cryptosystems can be considered random in Chapter 4.

Mi Mi+l Mn-1 Mn

Figure 3.1: Meet-in-the-middle Attack, Model B

Model A is a typical attack and was described previously. In model

B most of the bogus message is kept fixed, but r l variants of the (bogus)

52 Chapter 3 METHODS OF ATTACK ON HASH FUNCTIONS

message block, one stage before the intermediate stage, and r2 variants of

the bogus message block, after the intermediate stage are provided. Then

the forward and backward procedures are applied. Figure 3.1 shows the

intermediate stage and message blocks one stage before and after it.

Model B attack is also an effective attack against the block cryptosys-

tem itself [Nishimura and Sibuya, 1990]. The block ciphers most resis-

tant to model B attacks are those which are secure against chosen plain-

text /c iphertext attacks 1.

In model C attack, the forward sequences are generated as in the model

A attack, whilst the backward sequences are generated as in the model B

attack. So rx variants of the first part of the bogus message are provided,

and r2 variants of the bogus message block, after the intermediate stage

are made. Nishimura and Sibuya suggested that model C attack is effective

against hashing schemes based on a cipher block chaining mode of the block

cipher.

The meet-in-the-middle attack can be prevented by avoiding schemes

which are invertible. Winternitz' scheme is an effort to get around this attack

[Winternitz, 1983].

3.3.2 Genera l i zed M e e t - i n - t h e - m i d d l e At tack

To avoid the meet-in-the-middle attack, some authors [Davies and Price,

1980] [Davies and Price, 1984] considered two-fold iterated schemes. These

include iteration of a hashing scheme with two different initial values, and/or

repeating the message twice and then applying the hash scheme. However,

Coppersmith [Coppersmith, 1985] and Girault et al. [Girault et al., 1988]

extended the meet-in-the-middle attack to break not only the two-fold but

also p-fold iterated schemes. They called their method the generalized meet-

in-the-middle attack and showed that it requires only O(10P.2~) operations

(n is the number of bits in the hash string). In their method of attack, a

trade-off is made between t ime and storage.

1A more detailed explanation of the chosen plaintext/ciphertext attack and also of the
chosen plaintext attack will be given in Chapter 4.

3.3 Special Attacks 53

3.3.3 Correct ing Block Attack

In this attack, the bogus message is concatenated with a block in order that

the hash result is corrected and attains the desired value. This attack is often

applied to the last block and is called correcting last block attack, although it

can be applied to other blocks as well. In [Mitchell, 1989] and [Mitchell and

Walker, 1988], such an attack against a hash scheme based on the CBC mode

of DES has been described. Hash functions based on modular arithmetic are

especially sensitive to the correcting last block attack [Preneel et al., 1992].

The introduction of redundancy into the message in these schemes, makes

finding a correcting block with the necessary redundancy difficult, although,

it makes the scheme less efficient. We should mention here that the difficulty

of finding a correcting block depends on the nature of the introduced redun-

dancy. For example, Coppersmith has shown in [Coppersmith, 1989] that

the redundancy proposed by the CCITT, for the modular squaring hashing

scheme, does not provide a secure hash scheme.

3.3.4 Attacks Depend ing on Algor i thm Weaknesses

As we mentioned in Section 2.4.3, a hashing scheme based on a block cipher

algorithm in cipher block chaining or cipher feedback or output feedback

mode of operation can be compromised by insertion, permutation and substi-

tution of the blocks. These attacks take advantage of the algebraic structure

of the hashing scheme. Miyaguchi, Ohta, and Iwata showed in [Miyaguchi

et al., 1990] how to compromise many hash schemes by using the algebraic

properties of the structure of each hashing scheme and certain weaknesses of

the underlying block cipher. For example, some well known weaknesses of

DES which have been exploited are as follows:

1. DES is symmetric under complementation, that is,

C = DES(I f , M) ~ -C = DES(-[(,-M)

This weakness allows the construction of trivial collisions.

2. DES has weak and semi-weak keys. There are 4 weak keys, for which
encryption equals decryption, that is DES(I f , M) = D E S - I (K , M).

54

.

Chapter 3 METHODS OF ATTACK ON HASH FUNCTIONS

There exist also 6 pairs of semi-weak keys, for which

DES(K2, DES(K1, M)) = M .

DES has key collisions. A collision is a pair of keys K1, K2 such that

DES(IQ, M) = DES(K2, M) for a message.

3.3.5 Differential Cryptanalysis

Eli Biham and Adi Shamir have developed a method for attacking block ci-

phers, which they call differential cryptanalysis [Biham and Shamir, 1990].

This attack is a general method for attacking cryptographic algorithms. It

has exposed the weaknesses in many cryptographic algorithms, including Sne-

fru. Snefru is a software hash function proposed by Merkle [Merkle, 1990c],

[Biham and Shamir, 1991b]. Recently, it has also been applied successfully to

break one round of the MD5 hash scheme by Berson [Berson, 1992]. The dif-

ferential cryptanalysis attack takes advantage of the non-uniform probability

distribution of the output caused by non-random S-boxes. A description of

the attack is beyond the scope of this book; however the interested reader

is referred to [Biham and Shamir, 1990], [Biham and Shamir, 1991a] and

[Biham and Shamir, 1991b] for further information.

3.4 C o n c l u s i o n s

In this chapter, we reviewed some methods of attack on hashing algorithms.

Differential cryptanalysis, the correcting block attack, and attacks depend-

ing on an algorithm's weak points are based on non-random behaviour of

the hash scheme. On the other hand, the birthday attack and the meet-in-

the-middle attack assume the hashing scheme is random, and they try to

exploit the small bit length of the hash value (see [Nishimura and Sibuya,

1990]). For a hash scheme to be considered random in a birthday attack, it

is enough for the scheme to be secure against chosen message attacks. In the

meet-in-the-middle attack, an attacker starts from some initial value. Having

a message of several blocks, he or she performs the hash scheme on the initial

value and the first block and goes forward to reach a middle point. Then he

3.4. Conclusions 55

or she starts from the final value, i.e., the hash value, and goes backwards

to reach the middle point. He provides many variations of the message and

repeats the above procedure on each. If the middle-stage values of two of

the messages match, then two 'colliding' messages are found and the hash

scheme is successfully attacked. As we will explain in the next chapter, this

type of attack is a version of chosen plaintext/ciphertext attack on the un-

derlying block cipher, where a cryptanalyst is allowed not only to choose

plaintexts of his own choice and see the corresponding ciphertext, but also

to choose ciphertext of his own choice and see the corresponding plsintext.

For a hash scheme to be considered random in the meet-in-the-middle at-

tack, the underlying block cipher should behave like a random permutation

against chosen plaintext/ciphertext attack. In Chapters 4, 5, and 6, design

rules for the development of a block cipher which is secure against chosen

plaintext/ciphertext attack will be discussed.

Chapter 4

P seudorandomness

4.1 I n t r o d u c t i o n

Block ciphers have been used as the underlying one-way function in the con-

struction of hash functions, because of their ease of implementation. Some

designers of hash algorithms have even proposed constructing 2n-bit hash

functions from n-bit block ciphers. However, Lai and Massey suggested that

for a block-cipher-based hash scheme any attack on the block cipher itself

implies an attack of the same type on the hash scheme with the same compu-

tational complexity [Lai and Massey, 1992]. Hence, block-cipher-based hash

schemes may be vulnerable to attacks based on the exploitation of the al-

gebraic properties of the underlying block cipher. Furthermore, if the block

length of the underlying block cipher is rather short or it does not behave

like a random transformation, then the hash scheme is vulnerable to attacks

of the same type with the same computational complexity.

The meet-in-the-middle attack can be considered as a version of chosen

plaintext/ciphertext attack against the block cipher, where a cryptanaiyst is

allowed not only to choose plaintext of his own choice and see the correspond-

ing ciphertext, but also to choose ciphertext of his own choice and see the

corresponding plaintext. If the block cipher behaves like a random permuta-

tion against chosen plaintext/ciphertext attack, then a hash scheme based on

it, is secure against the meet-in-the-middle attack. Unfortunately, the known

block ciphers are only claimed to be secure against chosen plaintext attacks,

4.1 Introduction 57

and none of them claim to be secure against chosen plaintext/ciphertext

attack.

The design of most known block ciphers is based on the theoretical work

of Shannon [Shannon, 1949b], [Shannon, 1949a]. He suggested that consecu-

tive rounds of confusion and diffusion would provide a strong cryptographic

algorithm. DES and most of the known block ciphers take advantage of Feis-

tel type permutations. The definition of Feistel type permutations will be

given later in Section 4.6. Such a permutation involves a function controlled

by a key to provide the desired confusion and diffusion. On the other hand,

it should be mentioned that the design rules for DES were never published.

Luby and Rackoff showed that three rounds of Feistel type permutations,

with three different random functions, would yield a block cipher which can

be shown to be secure against chosen plaintext attack [Luby and Rackoff,

1988]. Although the functions employed in DES, i.e. the S boxes, are by no

means random functions, Luby and Rackoff considered their result to be a

justification for the application of a Feistel type permutation in the design

of DES. In other words, although they did not examine the S boxes of DES,

they showed that the structure applied in the design of DES is a sound struc-

ture for the design of block ciphers which are secure against chosen plaintext

attack. In a similar vein, in Chapters 4, 5, and 6, we develop a structure

which we show is secure against chosen plaintext/ciphertext attack. This

chapter is devoted to preliminary definitions. We define what is meant by

pseudorandomness, and when a generator can be distinguished from a truly

random one. Then, the definitions for pseudorandom bit generators, pseudo-

random function generators, and pseudorandom permutation generators are

given. These definitions are based on a complexity-theoretic approach. We

use circuits to evaluate whether a permutation generator is pseudorandom.

These circuits model the chosen plaintext attack. As we wish to develop

structures secure against the chosen plaintext/ciphertext attack, we also de-

scribe a circuit model for this attack. Permutation generators that are secure

in this model are called super-pseudorandom.

58 Chapter 4 PSEUDORANDOMNESS

4.2 N o t a t i o n

The notations we use are similar to these in [Pieprzyk, 1991]. The set of all

integers is denoted by N. Let E = {0, 1} be the alphabet we consider. For

n E N, E ~ is the set of all 2 '~ binary strings of length n. The concatenation

of two binary strings x, y is denoted by x II Y. The bit by bit exclusive-OR

of x and y is denoted by x ~ y. By z ET S, we mean that x is chosen from a

set S uniformly at random.

4.3 Indist inguishabi l i ty

Classical pseudorandom generators are deterministic algorithms with well

defined mathematical structures that output numbers or binary strings that

look like random ones. Statistical tests provide us with a useful tool for

testing the quality of pseudorandom generators.

Consider two different message sources S and S' with their respective

probability distributions p and p' over E, where E is the set of elementary

messages. Given that one source is truly random and the other is not, an

observer, having access to the outputs of the sources, tries to distinguish

between them. Figure 4.1 depicts this scenario.

? ?

Figure 4.1: Distinguishing Two Sources S and S'

If the observer can gather enough occurrences of the elementary mes-

sages E~ it may be possible for him to distinguish its source. Such message

sources are called classical [Pieprzyk, 1990]. When the number of elementary

4.3 Indistinguishability 59

messages is so large that it would be impossible to collect enough information

about any elementary message, the previous approach fails. In this case, it is

assumed that the observer is able to collect a polynomial number of elemen-

tary messages from the sources, or that the observer has polynomially limited

computing power and polynomially limited time. Having such a resource, he

uses an algorithm to process the collected information and to give the final

decision as a binary output. When the algorithm decides that the source is

a truly random one, it outputs 0, or outputs 1 otherwise. Such an algorithm

is called a distinguisher. It is noteworthy that the distinguisher can give its

decision only with some probability. The more samples it gathers from the

sources, the more probable that the decision is correct. However, it should

be emphasized that the distinguisher can only access a polynomial number

of samples.

Yao in his seminal paper [Yao, 1982] formally defined a distinguisher

as follows:

Def in i t ion 4.1 Let S, S ~ be two sources. A distinguisher Cn is a probabilis-

tic polynomial time algorithm with the following properties.

�9 For any input (n , ,) , w h e r e , = is a sequence of nk

outputs of S, the algorithm C~ halts in time O(n t) and gives a Boolean

output Cn(e~).

�9 Prob[C~(S) = 1] is the probability that Cn(a) = 1 when ~ is generated

by S.

�9 Prob[Cn(S') = 1] is the probability that Cn(a) = 1 when ~ is generated

by S t .

�9 There exists an infinite sequence of values nl < n2 < . . . such that

I Prob[Cn(S) = 1] - Prob[C~(S') = 1]]> e

for some fixed t, k and for any e > 0 where n = nl ,n~,

The equivalent of the above distinguisher can also be defined in terms

of probabilistic Boolean circuits. As Luby and Rackoff used such circuits

60 Chapter 4 P S E U D O R A N D O M N E S S

to define distinguishers, we prefer to use this model to agree with their ap-

proach. The Boolean circuit equivalent to the distinguisher algorithm can be

described as follows:

Def in i t i on 4.2 Let S, S' be two sources. A distinguisher C~ for (S, S') is

an acyclic probabilistic circuit which contains Boolean gates, i.e., AND, OR

and N O T gates, constant gates, i.e., ' O ' and ' 1 ', and accepts n k n-bit inputs

from the message source and randomly selected inputs such that the following

conditions hold.

�9 For any input (n, a), where a = (x l , x 2 , . . . , x , ~) is a sequence of n k

outputs of S, the circuit Cn gives a Boolean output C~(a).

�9 The size of the circuit is less than or equal to n t and is measured by

the total number of connections inside the circuit.

�9 Prob[Cn(S) = 1] is the probability that Ca(a) = 1 when a is generated

by S.

�9 erob[Cn(S') = 1] is the probability that Ca(a) = 1 when a is generated

by S'.

�9 There exists an infinite sequence of values nl < n2 < . . . such that

[Prob[C~(S) = 1] - Prob[C.(S') = 1] [> e

for some fixed t, k and for any e > 0 where n = nl, n2,

The definition for indistinguishability can be given as follows, using the

above distinguishing circuits for evaluation.

Def in i t i on 4.3 Two sources S and S' are said to be indistinguishable if there

exists no distinguisher for them.

4 .4 P s e u d o r a n d o m Bi t G e n e r a t o r s

A bit generator is a deterministic algorithm which extends an n-bit input,

known as a seed, to a bigger string of O(n k) bits. The definition for bit

generators can be given formally as follows:

4.4 Pseudorandom Bit Generators 61

Def in i t ion 4.4 Let l be a polynomial with l(n) > n. A bit generator is a

deterministic polynomial-time function g that upon receiving an n-bit input

as a seed, runs in polynomial time and extends the seed into a sequence of

l(n) bits bl, b~, . . . , bl(n) as the output.

A bit generator is called pseudorandom if, upon receiving a random n-

bit seed for sufficiently large n, the corresponding generator is indistinguish-

able from a truly random one. The definition is given formally as follows:

D e f i n i t i o n 4.5 A bit generator gn is pseudorandom if for large enough n

and for any distinguisher C,~,

I Prob[Cn(g,) = 1] - Prob[Cn(R) = 1] I< Q(n) 2 n

where Prob[Cn(g~) = 1] is the probability that the distinguisher C,~ outputs

1, if an n-bit string is selected randomly and uniformly from all n bit strings

as the seed to the bit generator and the distinguisher examines the nk-bit

string of the bit generator, and Prob[Cn(R) = 1] is the probability that the

distinguisher outputs 1 if the nk-bit string is selected randomly and uniformly

from all possible strings, and Q(n) is any polynomial in n.

Informally, g~ is pseudorandom if there is no polynomial (in n) size

circuit, or no polynomial t ime algorithm which can significantly distinguish

the l(n)-bit string of the output of the bit generator from a string randomly

chosen from the set of all l(n) bit strings, for infinitely many n.

Since any distinguisher is a specific test, the above definition can be

stated that , a bit generator is pseudorandom if it passes all polynomial-time

tests, for large enough n. Yao proved that a bit generator passes any polyno-

mial size test if the output bits are unpredictable or the output string passes

the next bit test. If given the generator g and the first s output bits of the

bit generator b l , . . . ,b8 (note that the input seed is kept secret), it is not

feasible computationally to predict the (s + 1)th bit of the output string, it

is said that the generator passes the next bit test. The following theorem is

derived from [Yao, 1982]. It has been stated by Blum, Micali, Alexi, Chor,

Goldreich, Schnorr, and Goldwasser in a different form ([Blum and Micali,

19841,[Alexi et al., 1988],[Goldreich et al., 1986]).

62 Chapter 4 P S E U D O R A N D O M N E S S

T h e o r e m 4.1 Let g be a polynomial bit generator, then the following state-

ments are equivalent:

�9 g passes the next bit test.

�9 g is indistinguishable from a truly random bit generator.

In other words, the indistinguishability test is equivalent to the unpredictabil-

ity test.

All practical implementations of pseudorandom bit generators are based

on functions which are conjectured to be one-way, where a one-way function,

informally speaking, is a function which is easy to compute but hard to invert

[Goldreich and Levin, 1989]. A formal definition of one-way functions will be

given in Chapter 7. Unfortunately, complexity theory has not yet provided

the answer to the fundamentM question as to whether one-way functions

exist. The relation between pseudorandom bit generators and is given in the

following theorem of [Levin, 1987].

T h e o r e m 4.2 There exists a pseudorandom bit generator if there exists a

one-way function.

4.5 P s e u d o r a n d o m F u n c t i o n G e n e r a t o r s

In this section we present the notion of pseudorandom function generators.

By a function f , we mean a transformation from E n to En. The set of all

functions on En is denoted by H~, that is, H,~ = { f [f : E'~ ---* E~}, and

it consists of 2 n2€ elements. The composition of two functions f and g is

defined as (f og)(x) = f (g(x)) . The/-fold composition of f is denoted by f ' .

A function f is a permutation if it is a one-to-one and onto function. The set

of all permutations on E~ is denoted by Pn and it consists of 2~! elements.

A function generator is a collection of functions with two properties:

indexing and polynomial time evaluation. The precise definition of function

generators is given below.

Def in i t ion 4.6 Let l(n) be a polynomial in n, a function generator F =

{Fn : n e N } is a collection of functions with the following properties:

4.5 Pseudorandom Function Generators 63

�9 Indexing: Each F,~ specifies for each k of length l(n) a function fn,k E

14..

�9 Polynomial-time evaluation: Given a key k E E t(~), and a string x E

E n, fn,k(X) can be computed in polynomial time in n.

A pseudorandom function generator is a function generator that cannot

be distinguished from a truly random one. In other words, i~ is a collection

of functions on n-bit strings that cannot be distinguished from the set of all

functions on n-bit strings. To determine whether a collection of functions

can be distinguished from the set of all functions, distinguishing circuits

for functions are used, which are similar to distinguishing circuits for bit

generators but are more powerful. They are, in fact, oracle circuits. The

exact definitions of oracle circuits and distinguishing circuits for functions

and pseudorandom function generators are given below.

Def in i t ion 4.7 An oracle circuit C~ is an acyclic circuit which contains

Boolean gates of the type AND, OR and NOT, and constant gates of the

type zero and one, and a particular kind of gates named oracle gates. Each

oracle gate has an n-bit input and an n-bit output and is evaluated using

some function from H~. The oracle circuit (~ has a single bit output.

Def in i t ion 4.8 The size of an oracle circuit C~ is the total number of con-

nections between gates, Boolean gates, constant gates and oracle gates.

Def in i t ion 4.9 A distinguishing circuit family for a function generator F is

an infinite family of circuits {C~I, Cn:, . . .} , where nl < n2 < . . . , such that

for some pair of constants cl and c2 and for each n E {nl, n2,...} there is a

circuit Ca with the following properties.

�9 The size of Cn is less than or equal to n cl .

�9 IfProb{Cn[Hn] --- 1} is the probability that the output bit of Cn is one

when a function is randomly selected from Hn and used to evaluate the

oracle gates and if Prob{C,~[F~] = 1} is the probability that the output

bit of C,~ is one when a key k of length l(n) is randomly chosen and fn,k

64 Chapter 4 PSEUDORANDOMNESS

is used to evaluate the oracle gates, then the distinguishing probability
for C~ is greater than or equal to 1 -g~, that is,

1
I Prob{C=[H~] = 1} -Prob{C~[Fn] = 1} l> - - nC2

D e f i n i t i o n 4.10 A function generator F is pseudorandom if there is no dis-

tinguishing circuit family for F.

In other words, a distinguishing circuit for a function generator can be

described as an algorithm that gathers a polynomial number of the inputs,

for inputs of its own choice, to oracle gates with the function f . If the

distinguisher decides that the f has been selected from F,~, it outputs 1. If

it decides otherwise, it outputs 0, meaning that it has decided that f has

been randomly selected from Hn. If the probabilities of the decisions are

significantly different, then the circuit has distinguished Fn from H=. The

general scheme of distinguishing circuits for function generators is shown

in Figure 4.2. Goldreich, Goldwasser and Micali were able to construct a

n-bit input n-bit input

Input ~ O u t p m

Oracle Gates

Figure 4.2: The General Scheme of Distinguishers for Function Generators

pseudorandom function generator, given a pseudorandom bit generator which

stretched an n-bit seed to a 2n-bit string [Goldreich et al., 1986]. Their

construction is as follows. For a given index x and a given argument y, f , (y)

can be obtained by applying the pseudorandom bit generator n times. The

function f , can be represented as a tree, its lowest layer provides the values of

the function and the path specifies the argument of the function. To describe

4.5 Pseudorandom Function Generators 65

their construction specifically, for x E E" consider

A (u) =

where G(x) = b~... b~n is the output of the bit generator for seed x, and

G~(x) is defined recursively as follows:

a o (x) =

a (z) =

and y = yly2.. , y,. Figure 4.3 shows these operations in a diagram. Goldreich,

". Z

Figure 4.3: A Pseudorandom Function Generator where f~(y) = Gy(x) with
y = Olz

Goldwasser and Micali showed first that the collection F = {Fn} is a func-

tion generator, as it satisfies indexing and polynomial time evaluation, and

secondly, that it is pseudorandom.

According to the definition that we gave earlier in Section 4.5 for func-

tions, a function is not necessarily one-to-one. Hence, it is not necessarily

invertible. We call those functions that are one-to-one, permutations. Pseu-

dorandom function generators have many applications, but unless they are

also invertible, they cannot be used directly in a block cipher cryptosystem.

For a time, it was questionble whether it was possible to build pseudorandom

invertible permutation generators using pseudorandom function generators.

66 Chapter 4 PSEUDORANDOMNESS

Luby and Rackoff showed that it is possible to build an invertible pseudoran-

dom permutation generator from three pseudorandom function generators

[Luby and Rackoff, 1988]. In the next section, we explain more about pseu-

dorandom permutation generators and the structure that Luby and Rackoff

put forward.

4 .6 P s e u d o r a n d o m P e r m u t a t i o n G e n e r a t o r s

4.6.1 Construction

Consider the well known DES cryptographic algorithm. It consists of 16

rounds, where each round is called a Feistel type permutation or a DES-like

permutation. The following gives the precise definition of such a permutation

(an illustration is given in Figure 4.4).

Def in i t ion 4.11 For a function f E H~, the DES-like permutation associ-

ated with f is D~n,! E P~, defined as

D2nj(L II R) = (R ~ f (L) II L)

where R and L are n-bit strings, that is, R and L are contained in ~n.

L R

R~ f(L) L

Figure 4.4: A Feistel-type or a DES-like Permutation

Note that, no matter whether f is one-to-one or not, the transformation D is

a permutation. If the above structure incorporates collections of functions at

f , then a collection of invertible permutations would result. If the collection

of functions is a function generator, then the collection of permutations is a

4.6 Pseudorandom Permutation Generators 67

permutation generator. However, the resulting permutation generator is not

pseudorandom. This collection can always be distinguished from a collection
of random permutations, since the right half of the output is always equal to

the left half of the input. A natural question is whether the composition of

such permutations would yield a stronger structure.

Defini t ion 4.12 Having a sequence of functions f l , f 2 , . . . , f l E Hn, we de-

fine the composition of their DES-like permutations as r E P2n, where

r , f 2 , f l) = D2n,l, o D2n,l~_~ o . . . o D2n,ll

Consider a simple composition r f) , where the input is (L [[R) and

the output is (S II T) (see Figure 4.5). If the structure incorporated each of

L R

S T

Figure 4.5: Permutation Generator ~b(g, f)

a collection of functions at f and g, then a collection of permutations would

result. However, this collection is not pseudorandom as there is a circuit

given by Luby and Rackoff that is able to distinguish these permutations

from a permutation selected randomly from the set of all permutations. The

structure of this distinguishing circuit is shown in Figure 4.6, where two or-

acles are examined with different inputs L II R, and L II R2. If the oracles
evaluate a permutation with a ~b(g, f) structure, then /~1 �9 R2 is always

equal to T1 | T2. If the permutation is chosen randomly from the set of all

permutations, the probability of equality is 1 . A method for constructing

pseudorandom permutation generators from pseudorandom functions, using

a DES-like structure, was first presented by Luby and Rackoff. The struc-

ture consists of a three-layer composition of DES-like permutations with a

68 Chapter 4 PSEUDORANDOMNESS

L R1 L R 2

Figure 4.6: A Distinguishing Circuit for r f)

different pseudorandom function generator at each layer. This structure is
shown in Figure 4.7. The following lemma describes the proposed structure

L R

S T

Figure 4.7: Luby and Rackoff's Proposed Structure

and is due to Luby and Rackoff [Luby and Rackoff, 1988].

L e m m a 4.1 Let f l , f 2 , f3 Er Hn be independent random functions and C2n

be an oracle circuit with m < 2 '~ oracle gates; then

m 2

[Prob{C2~[P2,~] = 1} -Prob{C2n[r f2,fl)] = 1} [_< ~ -

4.6 Pseudorandom Permutation Generators 69

As in practice, the number m of oracle gates used is at most a polynomial in
r n 2 r r t 2

n, then u162 is less than 1 over any polynomial in n. Note that ~- is actually

an upper bound on the probability of distinguishing. The above lemma says

that there is no distinguishing circuit for the construction. It is clear that

any distinguishing circuit of Definition 4.9 is equivalent to a chosen Plaintext

attack. Therefore a block cipher secure against chosen plaintext attack can

be constructed using three independent random functions]'1, f2 and]'3, and

three rounds of DES-like permutation. Luby and Rackoff also demonstrated

that the construction remains secure against chosen plaintext attack even

when functions are selected from three pseudorandom function generators.

4.6.2 Improvements and Implications

This result was considered a breakthrough in the theory of pseudorandom-

hess, with many cryptographic implications. The proof of the above lemma

is based on the assumption that the function used in each layer is a randomly

chosen function. Luby and Rackoff considered their result as a justification

for the application of DES-like permutations in the design of DES, in the

sense that the structure used in DES is sound, although the S-boxes and the

functions applied at each round of DES are by no means random.

The result achieved by Luby and Rackoff has attracted much attention

to their structures, and since then there have been many researchers trying

to improve this result or to apply it for the construction of locally random bit

generators and function generators. One such example is by Schnorr, where

a construction for locally pseudorandom bit generators is suggested [Schnorr,

1988]. Schnorr proposed using a single pseudorandom function generator f

(instead of three), i.e. r f, f) , to obtain a pseudorandom permutat ion

generator so the amount of necessary memory would be minimized. Then

the permutation generator would be used to construct a pseudorandom string

generator which stretched n2 ~ bits to 2n22~ bits. Although the construction

for the pseudorandom string generator is valid, it was shown by Rueppel

that the claim of pseudorandomness for r f, f) is not true [Rueppel, 1990].

The distinguishing circuit that he suggested for this permutation generator is

shown in Figure 4.8 and is described here. The distinguishing circuit has two

oracle gates. A 2n-bit string (L II R) C E2~ is fed to the first oracle where

70 Chapter 4 P S E U D O R A N D O M N E S S

the output is ($1 II T1). Then the second oracle is fed with (T~ II &), where
the output is denoted by ($2 1[T2). If the permutation used in the evaluation
of the oracles has a r f, f) structure, (S~ I} T~) is always equal to (L II R).
If the permutation is chosen randomly from the set of all permutations, the
probability of equality is 1 However, the question whether a smaller number

L R

=k.: [~ Compara to r -~

Figure 4.8: A Distinguishing Circuit for r f, f)

of independent pseudorandom function generators would suffice was still an

open problem. Rueppel also showed that r g, f) is not pseudorandom. It
can be distinguished with the same distinguishing circuit as for r f, f).
This result I was independently obtained by Ohnishi in [Ohnishi, 1988]. He
also generalized this result to show that both

and

r , f 2 , f l , f l , f 2 , . . . , f ,)

are not pseudorandom, where fi E Hn for i = 1. . . s. The description of the
distinguishing circuit is as follows:

1. Choose (L II R) e Z 2'~.

2. Input (L II R) to the first oracle gate O1. Denote the output of O1 by

(S,]1 T,).

3. Input (T1 [[S1) to the second oracle gate 02. Denote the output of O2
by ($2]1 T2).

1The result was reported in [Zheng et al., 1990c].

4.6 Pseudorandom Permutation Generators 71

4. The distinguisher decides that the permutation generator examined is

not pseudorandom if (L II R) = (s~ II T=), and outputs a bit 1.

If a permutation with the structure r f2, f l , f2, , f~) is used

for the evaluation of the oracles, the output of the above circuit is always 1.

If the permutation is chosen randomly from the set of all permutations, the

output of the above distinguishing circuit is 1 with the probability 1

Ohnishi also proved that two (instead of three) independent pseudo-

random function generators is enough in Luby and Rackoff's construction,

i.e. both r and r are pseudorandom permutation genera-

tors. However, it was an open problem whether permutations like r f , f)

were pseudorandom. Later Zheng, Matsumoto and Imai showed that for any

i,j , k E N, g,(ff, f j , f i) is not pseudorandom, and there is a distinguishing
(i+j) (j+k) and circuit with (ml q- m2 + 1) oracle gates, where ml = d , rn2 = d

d = gcd(i+j , j+k) [Zheng et al., 1990c]. The description of the distinguishing

circuit is outlined here.

1. The input to oracle gate O0 is (L0 [I/~,) = (0'~ II 0n) �9

. The input to oracle gate O1 is (L1 [[R1) = (O n I[T1), and if T/~ 1 > 1

then for each 1 < p < rex, the input to oracle gate Op is (Lp II Rp) =

(0 II Rp_l �9 Sp_l).

. The input to oracle gate O~+1 is (Lmld_ 1][~ml-F1) = (To][On), and if

rn2 > 1, then for each ml + 1 < t ~ ml + m2, the input to oracle gate

o, is (L, II n,) = (L,_I �9 T _I II 0 r)

4. The distinguisher decides that the permutation generator examined is

not pseudorandom if Tin1 = Lml+m2 O Tml+m~, and outputs a bit 1.

If the permutation used in the evaluation of the oracles has a

~,(fk, f j , fi) structure, the output of the above circuit is always 1. If the per-

mutation is chosen randomly from the set of all permutations, the output of

the above distinguishing circuit is 1 with probability ~ . The circuit is shown

in Figure 4.9. However, the interesting question raised in [Schnorr, 1988]

on designing a pseudorandom permutation generator applying only a sin-

gle pseudorandom function generator remained unsolved. Finally, Pieprzyk

72 Chapter 4 PSEUDORANDOMNESS

o~
I
o~
I
T

01

02

O n O n

I Oo I

I IOm+
I I

Oral+ 2
1 !

I Ore, I
' m]

~ 0 n

I
I
~o n

O n

I

Figure 4.9: A Distinguishing Circuit for r f j , fi)

showed that r f, f , f) for i > 2 is a pseudorandom permutation genera-

tor [Pieprzyk, 1991]. This result actually solved the open problem raised in

Schnorr's paper and was formally stated by Zheng, Matsumoto and Imai in

[Zheng et al., 1990c].

4.6.3 Security

An encryption algorithm, such as DES, can be considered as a collection or

a family of permutations. For example, in the case of DES, the encryption

algorithm is a collection of 25s permutations, where each permutation is a

member of P64 and is indexed by a key k. Similarly, the decryption algorithm

can also be considered as a family of permutations, where the composition of

an encryption algorithm with the corresponding decryption algorithm yields

the identity permutation. In the case of DES, the decryption algorithm is

also a collection of 258 permutations, where each permutation is a member

4.6 Pseudorandom Permutation Generators 73

of P64 and is indexed by a key k. Every private-key block cipher should

have the property that, given the key and an input, both encryption and

decryption can be carried out efficiently. In a chosen plaintext attack, which

is one of the strongest attacks against a cryptosystem, it is assumed that

an opponent who does not know the key, is allowed to choose a 'reasonable'

number of plaintext blocks and to see the corresponding encryption of these

blocks. During this process, the opponent is allowed to interactively choose

the next plaintext block to see its encryption, based on all previous plaintext

blocks and their encryptions. The cryptosystem ~s considered secure against

the opponent if, given a new ciphertext, he cannot predict the corresponding

plaintext 'significantly' better than if he had not seen the previous pairs of

plaintext-ciphertext. The cryptosystem is said to be secure against chosen

plaintext attack if it is secure against all such opponents.

Luby and Rackoff in their justification of the design structure of DES

wrote:

The apparent security of DES when it is used as a block private-

key cryptosystem rests on the fact that DES seems to pass the

black box test, which was informally suggested by Turing. The

black box test is the following.

Say that we have two black boxes, one of which computes a fixed

randomly chosen function from F64 and the other computes D E S k

for a fixed randomly chosen k. Then no algorithm which examines

the boxes by feeding inputs to them and looking at the outputs can

obtain, in a reasonable time, any significant idea about which box

is which.

I f DES passes the black box test, then it is secure against a chosen

plaintext attack when used as a block private key cryptosystem.

Then they added, that it is sufficient that a permutat ion generator be

pseudorandom, to be secure against chosen plaintext attack.

We observed that a permutat ion generator is pseudorandom if there is

no distinguishing circuit, where a distinguishing circuit represents a proba-

bilistic algorithm which has access to a polynomial (in the length of input)

number of input-output samples via oracle gates. As the oracle gates use

74 Chapter 4 PSEUDORANDOMNESS

permutations only in their normal direction, the distinguishing circuit can

choose only inputs and ask for the corresponding outputs. The other no-

tion which was introduced in [Luby and Rackoff, 1988] was that of super-

pseudorandomness, which is a stronger property than pseudorandomness. A

permutation generator is super-pseudorandom if there is no distinguishing

circuit for it, where distinguishing circuits are equipped with both normal

oracle gates normal oracle gates and inverse oracle gates. In this case, the dis-

tinguishing circuit may choose not only inputs and ask for the corresponding

outputs, but may also choose outputs and ask for the corresponding inputs.

Such circuits are called super-distinguishing circuits. We give the formal

definition for such circuits in the next chapter.

In a chosen plaintext/ciphertext attack, which is an even stronger at-

tack than chosen plaintext attack, an opponent can interactively choose

plaintext blocks and see their encryptions and choose ciphertext and see

their corresponding plaintext blocks. Thus the opponent is allowed to attack

the cryptosystem from 'both ends'. The cryptosystem is considered secure

against chosen ciphertext/plaintext attack if, when the opponent is given

a new ciphertext, he cannot predict the corresponding plaintext any better

than if he had not seen the previous pairs of plaintext-ciphertext. Similarly,

if a cryptosystem is secure against chosen ciphertext/plaintext attack, when

the opponent is given a new plaintext he cannot predict the corresponding

ciphertext any better than if he had not seen the previous pairs of plaintext-

ciphertext.

As we mentioned earlier, for a permutation generator to be super-

pseudorandom, it should be evaluated with distinguishing circuits equipped

with both normal and inverse oracle gates. We should add here that, for

a permutation generator, being super-pseudorandom is equivalent to being

secure against a chosen plaintext/ciphertext attack. As the meet-in-the-

middle attack against a block-cipher-based hash scheme is an oracle circuit

containing Boolean gates and has two types of oracle gates that are encryp-

tion and decryption, it is a super-distinguishing circuit for the underlying

block cipher such that it outputs a bit I if two colliding messages are found.

Thus meet-in-the-middle attack can be considered a version of chosen plain-

text/ciphertext attack against the underlying block cipher. If a block cipher

is secure against chosen plaintext/ciphertext attack, the meet-in-the-middle

4.6 Pseudorandom Permutation Generators 75

attack cannot successfully be applied against a corresponding block-cipher-

based hash scheme. Hence we are interested in developing a structure which

can be used for the construction of cipher systems secure against chosen

plaintext/ciphertext attacks, such that it can be used for the construction of

block-cipher-based hashing algorithms.

Note that every super-pseudorandom permutation generator is also a

pseudorandom permutation generator, but it can be shown that the converse

is not necessarily true. As an example, it was shown in [Luby and Rackoff,

1988] that although ~b(h, g, f) is a pseudorandom permutation generator, it is

not a super-pseudorandom permutation generator. A distinguishing circuit

with normal and inverse oracle gates for r (h, g, f) can be described as follows.

The distinguisher has two normal oracle gates. The first normal oracle gate

is fed with (L [[R1) and the second normal oracle gate with (L II R2), where

R1 ~ R2. Let ($1 II T1) and ($2 II T2) be the outputs of these two normal

oracle gates, respectively. The distinguisher has also an inverse oracle gate

with input ($2 | R~ | R: II T2). If the last n bits of this inverse oracle gate

are equal to (L ~) T1 �9 T~), the distinguisher decides that the permutation

generator examined is not super-pseudorandom, and outputs a bit 1. If the

permutation used in the evaluation of the oracles has a ~b(h, g, f) structure,

the output of the above circuit is always 1. If the permutation is chosen

randomly from the set of all permutations, the output of the above super-

distinguishing circuit is 1 with probability ~ . The circuit is shown in Figure

4.10.

L R1 L R2

Compatator)

Figure 4.10: A Super-distinguishing Circuit for r f)

76 Chapter 4 PSEUDORANDOMNESS

4.7 C o n c l u s i o n s

In this chapter, the concepts of indistinguishability and pseudorandomness

were presented. It was explained that pseudorandomness of a permuta-

tion generator, such as a block cipher, implies its security against cho-

sen plaintext attack. We also explained that, in block-cipher-based hash

schemes, we should apply a block cipher which is secure against chosen

plaintext/ciphertext attack in order to obtain security against the meet-in-

the-middle attack, as such an attack could be transformed into a version of

chosen plaintext/ciphertext attack against the underlying block cipher.

It is worthy of note that if a block cipher which is secure against chosen

plaintext/ciphertext attack is used in the construction of a hash scheme, the

hash scheme need not be collision free. Lai and Massey showed that there

may be attacks on the block-cipher-based hash scheme that are easier than

attacks on the underlying block cipher alone [Lai and Massey, 1992].

Anyway, Luby and Rackoff's construction of a pseudorandom permu-

tation generator with three rounds of DES-like permutations and three in-

dependent pseudorandom function generators and their justification of DES

structure based on this result raise the question of how to construct super-

pseudorandom permutation generators for use in the construction of stronger

block ciphers. Luby and Rackoff proved that r h, g, f) , a construction with

four rounds of DES-like permutations with four independent pseudorandom

function generators, yields a super-pseudorandom permutation generator.

This result suggests that more rounds should be added to a block cipher se-

cure against chosen plaintext attack to make it resistant to stronger attacks

such as chosen plaintext/ciphertext attack. But it does not offer more in-

sight into the construction of a block cipher with a stronger structure. In the

next chapter we study super-pseudorandom permutation generators, and we

investigate necessary and sufficient conditions for the construction of such

generators.

C h a p t e r 5

C o n s t r u c t i o n of

S up er- P s e u d o r a n d o m

P e r m u t a t i o n s

5.1 I n t r o d u c t i o n

In the previous chapter we showed how Luby and Rackoff constructed a pseu-

dorandom invertible permutation generator using three pseudorandom func-

tion generators and three rounds of DES-like permutations. This structure

is denoted by ~b(h, g, f) . Later Pieprzyk showed that four rounds of DES-like

permutations with a single pseudorandom function generator ~b(f 2, f , f, f) is

also pseudorandom and is secure against a chosen plaintext attack [Pieprzyk,

1991]. Luby and Rackoff also introduced the notion of super-pseudoran-

domness, where the block cryptosystem is secure against a chosen plain-

text/ciphertext attack. They proved that ~b(h, g, f, e) is super-pseudorandom.

It remained to be shown how to construct super-pseudorandom permutations

and ascertain whether r f, f, f) was super-pseudorandom.

In this chapter, we present necessary and sufficient conditions for the

super-pseudorandomness of DES-like permutations. We further show that

four rounds of such permutations with a sing]e random function is not super-

pseudorandom. We present a super distinguishing circuit for ~b(f 2, f, f, f)

and another one for some cases of ~b(f l, fk, j.j, fl).

78 Chapter 5 CONSTRUCTION OF SUPER-PSEUDORANDOM...

Feistel-type permutations were presented in the previous chapter. In

this chapter, three generalizations of this class of permutations are presented,
where they are called type-l, type-2 and type-3 Feistel transformations. At

the end of this chapter, we also investigate the necessary and sufficient

conditions for super-pseudorandomness of type-1 Feistel transformations,

and we show that using k 2 rounds of this transformation yields a super-

pseudorandom permutation generator, where k is the number of branches of

the structure. We also show that using k s - k + 1 rounds of the inverse of

this type of transformation is a pseudorandom permutation generator.

The results of this chapter have also appeared in [Sadeghiyan and

Pieprzyk, 1991b].

5.2 Super-Pseudorandom Permutat ions

This section provides some preliminary definitions and notions which are

used in this chapter and Chapter 6.

As we mentioned in Chapter 4, the first construction of pseudoran-

dom permutations from pseudorandom functions was presented by Luby and

Rackoff. They showed that a block cryptosystem can be constructed which

is secure against a chosen plaintext attack when a cryptanalyst can ask for

only a polynomial number of plaintext. However, for some cryptographic

applications, such as block cipher based hash functions, we require stronger

properties for security against a chosen plaintext/ciphertext attack. When

the block cryptosystem is secure against the chosen plaintext/ciphertext at-

tack, it is called super-pseudorandom. This notion only applies to invertible

permutation generators and is stated formally in the following three defini-

tions.

Def in i t ion 5.1 A permutation generator F is a function generator such that

each function f~,k is one-to-one and onto. Let T = {F--~, : n E N}, where

K = '[7.,k : k G ~t(,O }, where f . ,k is the inverse off. ,k. F is called invertible

if F is also a permutation generator.

Defin i t ion 5.2 A super-distinguishing family of circuits for an invertible

permutation generator F is an infinite family of circuits {SC,~I, SCn2,.. ,},

5.3 Necessary and Sufficient Conditions 79

where nl < n2 < . . . , where each circuit is an oracle circuit containing two

types of oracle gates, normal and inverse, such that for some pair of constants

Cl and c2 and for each n E {n l ,n2 , . . . } there exist a circuit SC~ with the

following properties.

�9 The size of SC,~ is less than or equal to n c~ .

IfProb{SC=[P~] = 1} is the probability that the output bit of SC,~ is one

when a permutation p is randomly selected from P,~ and p and p are used

to evaluate normal and inverse oracle gates, and i fProb{ SC,[F~] = 1}

is the probability that the output bit of SC,~ is one when a key k of

length l(n) is randomly chosen and f,~,k and "f,~,k is used to evaluate the

normal and inverse oracle gates, respectively, then the distinguishing

probability for SC~ is greater than or equal to 1 - ~ , that is,

1 I Prob{SC~[P~] = 1} - Prob{SC,~[F,~] = 1} l> - -
nc2

Def in i t i on 5.3 A permutation generator F is super-pseudorandom if there

is no super-distinguishing circuit family for F.

If F is a super-pseudorandom permutation generator, it is secure again-

st the chosen plaintext/ciphertext attack where a cryptanalyst can interac-

tively choose plaintext blocks and view their corresponding cryptograms and

also select cryptograms and see their corresponding plaintext blocks.

5.3 N e c e s s a r y and Sufficient C o n d i t i o n s

It is possible to make a super-pseudorandom permutation generator with four

independent random functions, if f l , f2, fa, f4 E Hn are independent random

functions, then r f3, f2, f l) is a super-pseudorandom permutation 1. This

was shown by Luby and Rackoff in [Luby and Rackoff, 1988] (see Figure

5.1). This proposal implies that, by increasing the number of rounds and the

1In Chapters 5 and 6, we say a permutation for a permutation generator, a pseudor~n-
dom permutation for a pseudorandom permutation generator and a super-pseudorandom
permutation for a super-pseudorandom permutation generator for the sake of brevity.

80 Chapter 5 CONSTRUCTION OF SUPER-PSEUDORANDOM...

L R

Figure 5.1: A Super-Pseudorandom Permutation Generator

number of pseudorandom functions in a DES-like cryptosystem, better secu-

rity is attainable. It is question whether a super-pseudorandom permutation

generator can be built with a smaller number of random functions. If it can,

it would then be possible to adopt a sounder structure for the construction

of block ciphers.

In this chapter, we present the necessary and sufficient conditions for

the construction of super-pseudorandom permutations in Theorem 5.1. Next,

these conditions are applied to construct a super-pseudorandom permutation

with fewer random functions. Next, it is shown that a super-pseudorandom

permutation cannot be constructed with a single random function and four

rounds of DES-like permutations.

First a definition for independent permutations is given; this is used

later in this chapter for the proof of Theorem 5.1.

Definit ion 5.4 A D-distinguishing family of circuits for two invertible pseu-

dorandom permutation generators (II1, II2) is an infinite family of circuits

{DC,~,DC~2, . . .} , where nl < n2 < . . . , where each circuit is an oracle cir-

cuit containing two types of oracle gates, such that for some pair of constants

cl and c2 and for each n E {nl, n2, . . .} there exists a circuit DCn with the

following properties.

�9 The size of DC, is less than or equal to n c~ .

�9 IfProb{DC,~[P,~,Pn] = 1} is the probability that the output bit of DC,~

is 1, when two permutations pa and p2 are chosen independently and

5.3 Necessary and Su~cient Conditions 81

randomly from Pn and are used to evaluate the two types of oracle gates

of DC,,, respectively, and if Prob{DC,~[131,112] = 1} is the probability

that the output bit of DC,~ is one when a key k of length l(n) is randomly

chosen and pl,k E H1 and P2,k E I]2 are used to evaluate the two types

of oracle gates, respectively, then the distinguishing probability for DC=

is greater than or equal to 1 -~ , that is,

1
I Prob{DCn[Pn, Phi = 1} - Prob{DC~[1]l, 112] = 1} [>

nc2

D e f i n i t i o n 5.5 Two pseudorandom permutation generators, 131 and 11~, are

said to be independent if there is no D-distinguishing oracle circuit family

for (111, II2).

Note that the D-distinguishing oracle circuits are generalizations of

the distinguishing circuits and the super-distinguishing circuits if two simple

tests are excluded. If there is no distinguishing circuit family for 131, then

there is no D-distinguishing circuit for the permutat ion generators 131 and

131 itself, provided that the D-distinguishing circuit is not testing the iden-

tity of the two permutation generators (for example, giving an input to the

two types of oracles and comparing the outputs). Moreover, if there is no

super-distinguishing circuit family for 131, then there is no D-distinguishing

circuit for a permutat ion generator H1 and its inverse 131, and provided that

the D-distinguishing circuit is not testing to see whether the two permuta-

tion generators are inverse to each other (for example, giving an input to

one type of oracle and feeding the other type of oracle with this result and

comparing the output with the original input). Furthermore, the converse

of these statements is also true. For example, if there is no D-distinguishing

circuit for 131 and 131 itself, except if the circuit is testing the identity of the

two permutat ion generators, then the permutat ion generator Ha is pseudo-

random. We apply D-distinguishing circuits as a tool for the evaluation of

both pseudorandomness and super-pseudorandomness.

The following lamina shows how to construct two independent permu-

tations, applying DES-like structures.

L e m m a 5.1 Let f l , f 2 , . . . , f i Er Fn, where ~ E N. Then G2 = r

and G3 = ~ (f l , . . . , f i - 1) are two independent permutations if and only if

they are pseudorandom.

82 Chapter 5 C O N S T R U C T I O N OF SUPER-PSEUDORANDOM.. .

Proof : First, we show that if G~ = r f~) and G3 = r f i - l) ,

are pseudorandom, then they are independent permutations, where f l , . . . , fl ET

F~. For simplicity let f l , . . . , fi E~ H~, and suppose that one is allowed to

examine only a polynomial (in n) number of oracle gates. When G2 and

G3 are pseudorandom, it is assumed that the probability of distinguishing

G2 or Ga from a random permutation is less than 1 for any constant c~ ~ - ,

and a sufficiently large n. Since both G2 and Ga are indistinguishable from

random permutations, any distinguishing circuit for the dependency of G2

and G3 would be a circuit which estimates the output value at least from

either branch of G2 or G3 for input, when a polynomial number of G2 and G3

oracles are examined. As, both G2 and G3 have two branches, two situations

may arise.

�9 The number of rounds i is even.

When i is even, each branch of G2 and G3 is fed with a different set of

random functions. Figure 5.2 illustrates these structures. Denote the

L~ R~

.

i

So, W~, So, To,
Figure 5.2:G2 and G3 when i is Even

output of G2 on an input of (L, II R,) by (Sa, [[To2) and the output
of C3 on an input of (Lj f[Rj) by (Sa3 If To,).

Sa~ = Rt @ f2(Lt) @. . . ~} f~-2(.) @ fi(Ta2)

TG2 = Ll @ f3(.) @ . .. @ f i- l (.)

Sa3 = Rj @ f i - l (L j) @. . . @ f3(.) @ f,(TG3)

Tv3 = Lj @ fi-2(.) @ . . . @ f2(.)

5.3 Necessary and Sufficient Conditions 83

As each function f l , . . . , fi is chosen independently and randomly from

the set of all functions, the probability that these two random variables
m(,~-l)

are the same in m oracle gates is equal to 2- . As there are four

random variables, the probability that two of them are the same is
6re(m-l) 2" . When m is polynomial in n, this probability is less than

1_ for any constant c2 and a sufficiently large n. If f l , . , fi were n e 2 , � 9

chosen from Fn rather from H,~, the probability that two of the above

four random variables are the same would remain less than 1 over any

polynomial in n. Hence, the above four variables are independent of

one another, and there is no D-distinguishing circuit for G2 and G3.

�9 The number of rounds i is odd.

In this structure, one branch of

functions which feeds a branch

with a different set of random

L t R

G2 is fed with the same set of random

of Ga, but the other branches are fed

The four functions (See Figure 5.3).

So, To, So, To,

Figure 5.3: G: and G3 when i is Odd

output random variables in this configuration are as follows.

Sv~ = L, | f3(.) | | f i -: | fi(T6:)

TG~ = Rz | f2(Lt) | | f i - l(.)

So3 = L j r Ii-:(.) 8 . . . �9 f,(Tc3)

TG3 = Rj �9 f i - i (i l) (~ fi-3 0 . . . �9 f2(.)

Tc2 and Ta3 are the sum of outputs of the same set of random func-

tions, but with a reverse ordering. In general, when two functions f

and g are chosen independently and randomly from Hn, (f o g)(x) is

84 Chapter 5 CONSTRUCTION OF SUPER-PSEUDORANDOM...

independent of (g o f)(x) for any x. As the functions f l , . . , fi are cho-

sen independently and randomly from H,, then the probability that

two random variables Ta~ and Ta3 are the same in m oracle gates is
re(m--l) 2- . Hence, the probability that two of the above four random vari-

ables are the same is sm{2~.-1). Again, when m is polynomial in n, this

probability is less than 1 for any constant c2 and a sufficiently large ~-~,

n. When random functions are replaced by pseudorandom ones, the

probability of dependency between G2 and G3 remains less than 1 over

any polynomial in n (see [Luby and Rackoff, 1988].

Although, in the above proof, we assumed that the pseudorandom func-

tions f l , . . . ,f~ are chosen independently from Fn, this is not a necessary

condition. Generally, it is sufficient that only fi-1 and f2 be chosen indepen-

dently to make the output random variables of the two pseudorandom per-

mutation generators G2 and G3 independent, and it does not matter whether

the other pseudorandom functions are chosen independently.

We next show that, if G2 and G3 are independent, then they are pseu-

dorandom. If G2 and G3 are independent, there is no oracle circuit equipped

with two types of oracle gates to distinguish them from two independently

chosen random functions. In other words, the probability that such a family

of oracle circuits distinguishes G2 and G3 from two independently chosen

random functions is not greater than (or equal to) ~ for some constant c2 no2

and for each n. As an oracle circuit with two types of oracle gates is a much

stronger distinguisher than an oracle circuit with only one type of oracle

gate, using only one type of oracle reduces the possibility of distinguishing.

Hence, the following relations hold.

I ProD{C~[G~] = 1} - Prob{C2~[P~] = 1} <
1 I Prob{DC2~[G2,G3] = 1} - Prob{De2n[P2~,P~=] = 1} <

nC2

and also

] Prob{C2=[G3] = 1} - Prob{C2~[P2~] = 1} <
1

[Prob{DC2n[G2,G3] = 1} - Prob{DC~[P2~,P2=] = 1} <
nC2

The above inequalities show that both G2 and G3 are pseudorandom when

they are independent. This completes the proof of Lemma 5.1. []

5.3 Necessary and Sufficient Conditions 85

T h e o r e m 5.1 Let f l , f 2 , . . . , f i E Fn such that Ga = ~ b (f i , . . . , f l) is pseu-
dorandom. Then Ga is super-pseudorandom if and only if G2 = ~b(fi,..., f2)
and G3 = r 1 6 3 fi-1) ave independent permutations.

P r o o f : To prove Theorem 5.1, we prove two lemmas A and B.

* L e m m a A If G2 and G3 are independent, then G1 is super-pseudora-
ndoTgt.

To prove this, it is necessary to show that G3 = r and G~ =

r are independent of each other. Figure 5.4 shows these

s t ructures with respect to each other , The validity of this claim can be

Figure 5.4: Ga and G3 with Respect to Each Other

i

shown by contradiction. Assume that G1 and G3 are not independent ; there

exists a D-distinguishing circuit family for which

I Prob{DC2~[Ga,-Gt] = 1} -Prob{D(Y~,~[P2n, P2=] = 1} 1>_ 1
r/~c2

for some constant c2. Wi thout changing the inequality relation, we have

I Prob{DCz,[G3, GI] = 1} - Prob{DC2,[G3, G3] = 1} +
1

Prob{DC2,~[G3, G3] = l} - Prob{DC2n[P2,~, P2n] = 1} I > - -
- - n c 2

Then

]Prob{DC2n[G3, G1] = 1} - P r o b { D G 2 , [G 3 , G3] = 1}1 +
1

[Prob{DC2,[Ga,G3] = 1} - Prob{DC2n[P2n, P2,~] = 1} } >
n c 2

86 Chapter 5 CONSTRUCTION OF SUPER-PSEUDORANDOM...

If I Prob{DC~,[G3, G3] = 1} -Prob{DC2,~[P2,~,P2,] = 1} I> • for some

constant c, then Ga is not pseudorandom; this contradicts our assumption.

If lProb{DC2,[Ga,'d~] = 1 } - Prob{DC2,[G3, G3] = 1} I> 1_ for some

constant c, then the oracle circuit distinguishes fi from a randomly chosen

function. This also contradicts our assumption tha t fi is chosen from a

pseudorandom function generator. Since both cases lead to contradictions,

we conclude tha t G3 and G1 are independent of each other. Note that , in

order for G1 and Ga to be two independent permutat ions, there is no need

tha t the pseudorandom function fi be chosen independently of f l , . . . , f i ' l .

By L e m m a A, G2 and G3 are independent. Hence

1
[Prob{DC2.~[G2, G3] = 1} - Prob{DC2~[P2,~, P2~] = 1} [< - -

T/,C2

for any constant c~. Without changing the sign of inequality, we may rewrite

the above relation as,

[Prob{DC2.[G1,-G~ l = 1} - Prob{DC2.[G~,-G~] = 1} +

Prob{DC2,~[Ga,-GI] = 1} - Prob{DC2,[Ga,G1] = 1} +
1

Prob{DC2,~[G2, G3] = 1} - ProD{DC2,~[P2,, P2~] = l} I <
nc2

Then

Prob{DC2.[G2, G3] 1} ~' - - = -Prob{D(.2.[Ga, G~] = 1}]

Prob{nC2,~[Ga,-G~] = 1} - Prob{DC2.[G1,-Gx] = 1} [

[Prob{DC2.[GI,-G1] = 1} - Prob{DC2.[P2.,P ,d = 1} I1
1

<
Tic2

Thus

I Prob{DC2.[GI,-G~] = 1} - P r o b { D C 2 . [P 2 . , P2.] = 1}

]Prob{DC2,[G3,-G1] = 1} -Prob{DC2,~[Ga,-G1] = 1}

+

1
<

rtc2

Since it was assumed that G2 and G3 are two independent permutat ions, and

so are G3 and G1, then lProb{DC2.[G~,G3] = 1} - P r o b {DC2 . [G3 ,G1] =
1} [is less than & for any constant c, since

n c

]Prob{DC2.[G2, G3] = 1} -Prob{DC2.[G3,-G1] = 1} I <

I Prob{DC2=[G2, G3] = 1} - Prob{DC2.[P2., P2.] = 1} +
1

I Prob{DC2.[G3,'di] = 1} - Prob{DC~.[P2.,P~.] = 1} < - -
r t c

5.3 Necessary and Suff/cient Conditions 87

Hence, each of the above absolute values is less than 1 ~-q. In other words

I Prob{DC2,[GI,'G~] = 1} - Prob{DC2n[P2,, P2n] = 1} l< ~
//c2

Hence G1 and G1 are independent of each other, and G1 is a super-pseudo-

random permutat ion, as it is pseudorandom.

To conclude Theorem 5.1, we also need Lemma B.

�9 L e m m a B If Ga is a super-pseudorandom permutation, then G~ and
G3 are two independent permutations.

According to the assumption of this lemma, we have that

I Prob{DC2n[G1,-G~] = 1} -Prob{DC2,~[P2n, P2,~] = 1}]< 1_~
nc2

for any constant c2. Wi thout changing the sign of inequality,

I Prob{DC2n[G~,-C~] = 1} - Prob{DC2~[G3,-C~] = 1} +

Prob{DC2n[G3, G1] = l} - Prob{DC2~[G3, G2] = 1} +
1 Prob{DC2,~[Ga, G~] = 1} - Prob{DC~n[P2,,P2~] = 1} } < - -

nC2

Then

I1 Prob{DC2,[G1,-dl] = 1} - P r o b { D C 2 n [G 3 , G1] = 1}1 -

r -~ [Prob{DC=,~[Ga,-G1] = 1} - P ob{DC .[a3,a] = 1}1 -

1
I Prob{DC2, [G3, G2] = 1} -Prob{DC n[P=,,, = 1} II <

nr

If either of G2 or G3 are not pseudorandom, it can be shown that G1 is not

super-pseudorandom. To justify this claim, suppose there is a probabil is t ic

distinguishing circuit with m oracle gates which distinguishes Ga f rom a

1 for some constant c. random permuta t ion with a probabil i ty be t te r than ~

In other words, when m inputs, i.e. Sj II Tj, are fed to its (only normal)

oracle gates, the probabil i ty of obtaining a desired output is bigger than ! no"

Suppose that a 2n bit string (R~ [[L~) is fed to a normal oracle gate of G1

and the ou tpu t is (Si II Ti). If (Ri l[Li) is fed to G3, the ou tpu t is ei ther

(T~][St) or (T[II S~), depending on whether Ga consists of an odd or an

even number of rounds. Without loss of generality, assume that the ou tpu t

88 Chapter 5 CONSTRUCTION OF SUPER-PSEUDORANDOM...

R L

!

S
S+ct T

S ' + ~ .

Figure 5.5: When an Inverse and a Normal Gate are Applied with Each
Other

is (Ti II S~). Now, if (S; @ c~ II T~) is fed to an inverse oracle gate of G1, the

output is equivalent to the output of a normal oracle gate, G3, when it is fed

with (S~ @ a II Td. This procedure is depicted in Figure 5.5. Hence, it is

possible to obtain a desired output with a probability bet ter than 3 , when

m inverse oracle gates of G1 are examined with different values for ~. Then

a probabilistic super-distinguishing circuit for G1 with at most m 2 normal

oracles and m 2 inverse oracles would be able to yield the same output with

the same probability.

Suppose it can be proved that G3 is pseudorandom; then it can be

shown that
1

I Prob{DC2,~[G1,-Ga] = 1} - Prob{DC2n[Ga,-G1] = 1} l< n-'-~

for any constant c, since G3 and G1 are independent of each other (this was

proved in Lemma A). As G1 is assumed to be super-pseudorandom, the

following inequality is also valid

[Prob{DC2n[Ga,-G1] = 1} - Prob{DC2,~[Ga, G2] --- 1} [+
1

I Prob{DC2n[a3, G2] = 1} -Prob{DC2n[P2n, P2,~] = 1} [< - - nc2
Hence

1
I Prob{DC2,~[G3, a21 = 1} - ProblDC2n[P~n, P:n] = 1} I< - -

no2

5.3 Necessary and Sufticient Conditions 89

In other words, G2 and G3 are independent of each other.

the proof of Theorem 5.1.

This completes
[]

C o r o l l a r y 5.1 Let f l , f 2 , . . . , f i Er F, such that G1 = r is a
pseudorandom permutation. Then Ga is super-pseudorandom if and only if

G2 = r f2) and Ga = r f~-~) are pseudorandom permutations.

P r o o f : As shown in Lemma 5.1, if f2 and fi-1 are two independent pseu-

dorandom functions, and G2 and Ga are pseudorandom, then they are inde-

pendent . .&s was shown in Theorem 5.1, when G2 and Ga are independent,

G1 is super-pseudorandom. Moreover, it was shown that , if G1 is super-

pseudorandom, then G2 and Ga are independent of each other, and when

they are independent both are pseudorandom and satisfy the conditions of

Theorem 5.1. This finishes the proof. []

Ohnishi showed that it is possible to use two independent pseudoran-

dom functions, instead of three, in a three round DES-like structure to obtain

a pseudorandom permutation. That is, ~b(f~, f2, fa) is a pseudorandom per-

mutat ion generator [Ohnishi, 1988]. Applying his results and Theorem 5.1,

we have the following corollary.

C o r o l l a r y 5.2 Let f l , f2 Er F,; then Ga = r f l , f l) is a super-
pseudorandom permutation.

Later Patarin also proved this corollary, using another method for the eval-

uation of super-pseudorandomness [Patarin, 1992]. This structure is de-

picted in Figure 5.6. It turns out that it is possible to construct super-

distinguishing circuits with a distinguishing probability near 1 for some struc-

tures. We now investigate selected structures and show how to construct

super-distinguishing circuits for them.

L e m m a 5.2 Let f Er H,~; then r f , f, f) is not super-pseudorandom and

there is a super-distinguishing circuit SC2n with 4 normal and inverse oracle

9ares.

P r o o f : By Theorem 5.1, ~b(f 2, f, f , f) is super-pseudorandom if ~b(f ~, f , f)

and r f , f) are independent. Zheng, Matsumoto and Imai showed that

90 Chapter 5 CONSTRUCTION OF SUPER-PSEUDORANDOM,.

I

[

Figure 5.6: A Super-Pseudorandom Permutation Generator with Two Pseu-
dorandom Function Generators

it is impossible to get a pseudorandom permutation with three rounds of

DES-like permutations and a single random function [Zheng et al., 1990c]; so

neither r f, f) nor r f , f) are pseudorandom, and they are not there-

fore independent. Therefore r f, f , f) cannot be a super-pseudorandom

permutation by Theorem 5.1. The structure of a super-distinguishing circuit

SC2~ is as follows.

Let 00, 01,03 be normal oracle gates and let 02 be an inverse oracle

gate. Denote by (L= II R=) and (S= II T~), respectively, the input to and the

output of the u-th oracle gate, and denote by 0 '~ E E ~ an n-bit string of all

0.

1. The input to O0 is (L0 II/to) = (0 n II 0n)

2. The input to 01 is (L1 II R1) = (0 '~ I[~/}~)

3. The input to 02 is (L2 II R2) = (0 n 11 0n)

4. The input to 03 is (L3 I[R3) = (S~]] ~/~ | To)

5. SC2~ outputs a 1 if and only if T3 = To @ T~

When a function r f, f , f) is used to evaluate the oracle gates, the

probability that SC2,~ outputs a 1, is equal to 1, and when a function is

5.3 Necessary and Sufficient Conditions 91

drawn randomly and uniformly from P2~ the probability that SC2n outputs
l i s 1 ~ . Thus SC2,~ is a super-distinguishing circuit for r f, f, f). []

Figure 5.7 depicts this distinguishing circuit.

E

o 0

=11~1 =."

~ i r ~ l =

o

, q-TI--

,

--r-7-q--

Figure 5.7: A Super-distinguishing Circuit for r f, f, f)

Lemma 5.2 can be generalized to the following theorem.

Theo rem 5.2 Let f Cr Hn; there is a super-distinguishing circuit with p +
q + 4 normal and inverse oracle gates for t~(f l, fk, f j , fl), where p and q

satisfy

i + j - l = (q - p) (j + k)

Proof : Because of the results of Zheng, Matsumoto and Imai, neither

r fk, f j) nor r if , fk) is pseudorandom [Zheng et al., 1990c]. Thus,
by Theorem 5.1, ~b(f l, fk, f j , fi) is not super-pseudorandom. We have con-
structed a distinguisher for the following case.

92 Chapter 5 CONSTRUCTION OF SUPER-PSEUDORANDOM.. .

Let 0o, 0 , , . . . , 0,+1 and 0v+++3 be normal oracle gates and let Or+2 ,
. . . , Op+q+ ~ be inverse oracle gates, where p and q satisfy: i + j + k + p(j + k) =

l + k + q(j + k) or,
i + j - l = (q - p) (j + k)

The structure of SC2n is as follows:

1. The input to O0 is (Lo II Ro) = (0 = }1 0=)

2. The input to 01 is (L1 II R1) = (0 = 11 To) and the input for 02 to 0v+l

is (L,~ II R,,) = (0" II T=_, @ R=-I)

3. The input to 0v+2 is (Lv+2 [[Rv+2) = (0 n [[0 n)

4. The input to 0pea is (Lp+3]1 Rp+3) = (Sv+3 II 0 ~) and the input for
0,+4 to 0,+q+2 is (L~ [I R=) = (Lu-1 (~ T,,-1 [[0 n)

5. The input to 0p+q+a is (Lv+q+3 H Rp+q+3) = (Sp+q+2 II T, + T,+q+=)

6. SCan outputs a 1 if and only if Tv+q+3 = Tp ~ Tp+l

When a function r fk, i f , f i) is used to evaluate the oracle gates
and i + j + k + p(j + k) = l + k + q(j + k), the probability that 6'2, outputs a

1, is equal to 1, and when a function is drawn randomly and uniformly from
P2,, the probability that C2, outputs 1, is equal to ~ . [] Figure 5.8

depicts this distinguishing circuit.

5.4 Super-Pseudorandomness in

Generalized DES-like Permutations

A DES-like permutation is a permutation in P2= that uses functions in H,.
Zheng, Matsumoto and Imai made three types of permutations in Pk,~ by

generalizing the construction of the DES-like permutation and application
of functions in H,~, and called them type-l, type-2 and type-3 Feistel trans-
formations [Zheng et al., 1990d]. In this section, we show that k 2 rounds of
type-1 transformations are required to get a super-pseudorandom permuta-
tion.

5.4 Super-Pseudorandomness in Generalized DES-Bke Permutations 93

0 0

Op+2
I

0

Op+3

0 0

0 0

I

I "IC~176 I

Figure 5.8: A Distinguishing Circuit for ~(f l , fk, f j , fi)

First, we present the definition of type-1 transformations. Then, the

necessary and sufficient conditions for the super-pseudorandomness of this

type of transformation will be presented; accordingly, some cases which

are pseudorandom but cannot be super pseudorandom, will be given. Fi-

nally, we show that k 2 rounds of typed transformations produce a super-

pseudorandom permutation.

5 . 4 . 1 F e i s t e l - T y p e T r a n s f o r m a t i o n s

Type-1 T r a ns f o rma t ions

Let gl,i E Ukn be a function associated with an fl E Hn and defined by

gl,i(gl II B2 II . . . II Bk) = (B2 | fi(B~) II B3 II-.-II II g l)

94 Chapter 5 C O N S T R U C T I O N OF S U P E R - P S E U D O R A N D O M . . .

where Bj E E~ for 1 < j < k and k E N. Functions defined in such a way

are called type-1 transformations (See Figure 5.9). gl,i can be decomposed

B1 B2 B3 �9 �9 �9 B k

B 2 ~ f i (B 1) B3 �9 �9 o B k B1

Figure 5.9:Type-1 Feistel Type Transformations

into gl,i = Lrot o 7rl,i, where

~,,(B~ II B~ II... II Bk) = (B~ II B~ �9 f i (B ,) I I B3 I1... II Bk)
Zro,(B~ II B~ II... II Bk) = (B~ II B3 II... II Bk II Ba)

The function gl,i is an invertible permutation on Eke, and its inverse, denoted

by gl,i is given by gl,i = 7r1,i o Rrot, where

lrlrot(B1 II B2 }l "" }] Bk) = (Bk II B1 I} B~ I1... II Bk-1)

For f l , f 2 , . - . , f8 e H, , define r f2, f l) = gl,s o . . . o ga,2 o gl,1.

Note that Ca is an invertible permutat ion on Ek,, and its inverse r is defined

by

• l (f l , f 2 , ' ' " , fs) = g l ,10 gl,2 O . . . O ffl,s

Type-2 Transformations

Let g2,i E Hkn be a function associated with a function tuple

hi = (fi,~, fi,3, . . . , J~',2t-1),

k and fi,j E H , , and defined by where I = ~

g2,1(B1 II B~ II... [[B k) = (B 2 @ fi,l(B1)]1... It Bk-1 I[Bk@fi , k - l (Bk-1)]1 B1)

where B i E ~ for 1 < j < k and k E N (See Figure 5.10). Functions defined

in such a way are called type-2 transformations, g2,i can be decomposed into

5.4 Super-Pseudorandomness in Generalized DES-l ike Permuta t ions 95

B1 B2 B3 B4 �9 �9 �9 B k l Bk

B3 �9 " �9 B k l BI
B 2 $fi,1 (B 1) B4 efi,3 (133) Bk @fi,k-1 (B k-1)

Figure 5.10:Type-2 Feistel-Type Transformations

g2,i = Lrot o 7c2,i~ where

~r2,i(B1 [[B2 [[. . . [[Bk) =

(B1 11 92 �9 f iA(B1) 11... 11 Bk-1 [I Bk �9 f i , k - l (Bk -1))

The function g2,i is an invertible permutation on E k~, and its inverse, denoted

by g2,i is given by -g2,1 = 7c2,i o Rrot.

For s-tuples of functions (hi, h2 , . . . , h~), define

~b2(hs, . . . , h2, hi) = g2,s o . . . o g2,2 o g2,1

Note that ~b2 is an invertible permutation on E kn, and its inverse ~2 is defined

by

r h 2 , . . . , h~) = Y2,1 o ~/-2,2 o . . . o g2,s

T y p e - 3 T r a n s f o r m a t i o n s

Let g2,i E Hk,~ be a function associated with a function-tuple

hi = (fi,x,/i,3,..., fi,k-1)

, where f~,j E H,~. Then g3,i is defined by

93,,(B1 LL B~ II-.-LI B~) = (B~ �9 T,,~(B1) IL.-. II ~k �9 II B~)

where Bj E E n for 1 _< j _< k and k E N (See Figure 5.11). Functions

defined in such a way are called type-3 transformations. The function g3,i

can be decomposed into 93,1 = Lrot o 7rz,i, where

~r3,1(B1]l B2 II .-. [[Bk) = (BI [[82 Ofi,l(B,)[[... [I Bk �9 f~,k-~(Bk-x))

96 Chapter 5 CONSTRUCTION OF SUPER-PSEUDORANDOM.. .

B1 B2 B3 . . . B k-1 Bk

BI
B2$fi, l(B1) B3r BkOfi, k-l(Bk-1)

Figure 5.11:Type-3 Feistel-Type Transformations

The function g3,i is an invertible permutation on E kn, and its inverse, denoted

by g3,i is given by g3,i = ~3,i o Rrot. Note that ~a,~(C1 II . . . II Ck) ---- (BI II
�9 .. II Bk), where BI = Ca and Bj = Cj • fl,j-l(Bj-1) for each 2 < j < k. It

is easily seen that ra,i is not an involution.

For s-tuples of functions (hi, h2 , . . . , h,), define

r �9 �9 h2, hi) = g3,, o . . . o g3,2 o g3,1

Note that r is an invertible permutat ion on E kn, and its inverse r is defined

by

r h2, . . . , hs) = Y3,1 o ~,2 o . . . o y~,,

5 . 4 . 2 S u p e r - P s e u d o r a n d o m n e s s o f T y p e - 1 T r a n s f o r -

m a t i o n s

Zheng, Matsumoto and Imai investigated the construction of provably se-

cure block ciphers [Zheng et al., 1990d]. A by-product of their work was the

construction of super-pseudorandom permutat ion generators from type-2 and

type-3 transformations, where they proved that s > k+2 rounds are required.

In this subsection, we investigate the necessary and sufficient conditions for

the construction of super-pseudorandom permutations based on type-1 Feis-

tel permutations. These conditions will be presented after some preliminary

observations. Moreover, we show that k 2 rounds of such permutations yield

a super-pseudorandom permutat ion generator.

5.4 Super-Pseudorandomness in Generalized DES-like Permutations 97

A Few Observations

It can be shown that 2k - 1 rounds of type-1 transformations, where each

round is associated with a randomly and independently chosen function from

F,~, is a pseudorandom permutation.

The following lemma was proved by Zheng, Matsumoto, and Imai in

[Zheng et al., 1990d] and formally represents the above statement.

L e m m a 5.8 Let Q be a polynomial in n and let Ck,~ be an oracle circuit with

Q(n) < 2 ~ Oracle gates; then

(k 1)Q2(n)
I Prob{Ck~[Pk~] = 1}-Prob{Ck~[r ,f~, f a)] = 1} I_< 2 n

where f l , f 2 , . . . , f2k-1 er Fn.

Although the above lemma states that ~bl(f~k-1,..., f2, f l) is pseudorandom,

it is interesting to note that this structure is not super-pseudorandom. This

is proved in the following lemma, where a super-distinguishing circuit is pre-

sented.

L e m m a 5.4 For any f2k -1 , . . . , f 2 , f l Er F~, there is super-distinguishing

circuit SCkn for r f2, f l) .

P r o o f : Let B1, B2 , . . . , Bk be strings of length n. The super-distinguishing

circuit has two oracles, a normal oracle and an inverse oracle. The input to

the normal oracle is B1]1 B2 II . . . II Bk. Let $1]] 5:2]] . . .]] Sk be the output

of this oracle. Let the input to the inverse oracle gate be $1 |]] $2]l .- . H Sk

where a is an arbitrary n-bit string. The output of SC2n is 1 if and only

if the last n bits of the output from the inverse oracle gate are equal to

Bk | a. It can be verified that the output of SC2n is always 1 when the

normal and inverse oracle gates are computed using r for the normal oracle

gate and r for the inverse oracle gate. On the other hand, if the oracle gates

are computed using a permutation randomly chosen from Pk,~, the output of

SCk, is 1 with probability ~ (see Figure 5.12). [] It can be easily verified

that, by using an inverse oracle together with a normal oracle, the effect of

98 Chapter 5 CONSTRUCTION OF SUPER-PSEUDORANDOM.. .

B I B 2 II k

- - - - -A I " - - I
i NormalOracle 1

I I . . . I
Sz S 2 Sk

.)

I ve so O a le 1
I I - - - I

BL+a

Figure 5.12: A Distinguishing Circuit for r f2, f l)

f2k-, is virtually removed. In other words, the super-distinguisher actually

evaluates the inverse oracle with

r (fa, f2, �9 �9 �9 A ~ - 2)

which is not pseudorandom by any means.

It can also be shown that the effect of f2k-2, . . . , fk+2 and fk can also be

removed (individually) by procedures similar to those given in the proof of

Theorem 5.1. If there existed a construction with type-1 transformations G1,

such that, after removing the last k random functions in G1 and the first k

random functions in G1, the remaining structures were pseudorandom, then

G1 would be a super-pseudorandom permutation.

Necessary and Sufllcient Conditions

We now give the necessary and sufficient conditions for the super-pseudoran-

domness of i rounds of type-1 transformations.

Theorem 5.3 Let G1 = ~bl (f i, . . . , f l) be a pseudorandom permutation where

G1 E Pkn and consists of i rounds of type-1 transformations and f l , f2, . . . ,

f i Er H, . Then Gz is a super-pseudorandom permutation if and only if

a2,j -= r o Lrot o r and Gzj = ~ l (f l , - - . , ~ - j) o
R~ot o r fi) are pseudorandom permutations for j = 1 ,2 , . . . , k

and i - j # kl , where l = [~1.

5.4 Super-Pseudorandomness in Generalized DES-like Permutations 99

P r o o f : Note that a type-1 transformation is a generalization of a DES-like

permutation, and that the effect of f i- j+l in the inverse oracle gates and the

effect of f j in normal oracle gates can be removed individually by applying

normal and oraclegates for j = 1, 2 , . . . , k and i - j # kl, where 1 = [~].

To justify the theorem, the two following claims need to be proved for

each j .

1. If Ga is super-pseudorandom, then G2,j and Ga,j are pseudorandom.

2. If G2,j and G3,j are pseudorandom, then G1 is super-pseudorandom.

The validity of the above claims can be checked for each j . For instance,

consider j = 1; then G2,1 = r f2)o Lrot and G3,1 = r f~-a)o

Rrot. As in the proof of Lemma 5.1, it can be shown that G2,1 and Ga,1 are

independent if and only if they are pseudorandom. In addition, as in the

proof of Theorem 5.1, it can be shown that, if G2,1 and G3,1 are independent,

then G1 is super-pseudorandom. For j = 2 , . . . , k the proofs can be obtained

by a similar method. Note that when i - j = [~J k, the effect of fl-j+l c a n n o t

be removed with inverse and normal oracle gates, because of the structure of

type-1 transformations; so it is not necessary to prove the above claims for it.

Since all possible reductions of ~bl and ~b 1 remain pseudorandom having even

super-distinguishing circuits, then ~bl is a super-pseudorandom permutation.
[]

Although it was already stated in Lemma 5.3 that 2 k - 1 rounds of type-

1 permutations ~bl give a pseudorandom permutation, 3k - 2 rounds of this

transformation do not necessarily yield a super-pseudorandom permutation

since 2k - 1 rounds, or even 3k - 2 rounds, of its inverse transformation ~ do

not result in pseudorandomness. It can be shown that k(k - 1) + 1 rounds

of ~ result in pseudorandomness. This is formMly stated in the following

lemma.

L e m m a 5.5 Let r be a permutation defined by

~ l (f k 2 - k + l , . ' ' , f 2 , fl) ---= g ' l , k 2 - k + l 0 . . . 0 e l , 2 0 ffl ,1

100 Chapter 5 C O N S T R U C T I O N OF S U P E R - P S E U D O R A N D O M . . .

Let Q be a polynomial in n and let Ck~ be an oracle circuit with Q(n) < 2 n

oracle gates; then

I Prob{Ck,~[Pk,~] = 1} - Prob{Ck~[r f2,f~)] = 1} I<
< (k 2 - k + 1)QS(n)
- - 2n+1

where f l , f 2 , . . . ,fk2-k+l Er Hn.

P r o o f : The proof of this l emma is very similar to the proof of L e m m a 5.3

presented in [Zheng et al., 1990d]. The method for proof is the same as the

me thod developed in [Luby and Rackoff, 1988] for proving the pseudoran-

domness of r g, f) .

Here, we use the notat ion from [Zheng, 1990]. Assume that Ck~ is an

oracle circuit with Q(n) 2 oracle gates, which are numbered 1, 2 , . . . , Q. The

inputs to the oracle gates are all different. Let fl be the probabi l i ty space

on (k 2 - k + 1)nQ bit strings with the uniform probabil i ty distr ibution. Any

w E fl can be wri t ten as w = wlw2...w(k2-k+l)=r For each 1 < i < Q,

1 < j < 2k - 1, define a random variable Xi,j as follows:

X i , j @) = ~ b + l . . . ~ b + ~

where b = j n Q + (i - 1)n. There is a total of (k 2 - k + 1)Q such variables.

For each 1 < j < k s - k + 1, let X j @) = XI , j (~) II Xs,s(~) I1. . . II X~,S(~),

At a sample point w E ~, Pi-gate is defined as follows:

Pi-gate:

The input is (Bi,1 II Bi,s I I . . . II B~,k).

ui,a = m i n { d : 1 < d < i and Bi,1 = Ba,1}.

We let Bi,2 = Bi,1 @ X~,,1,1.

For 2 < j < k 2 - k + 1, do the following operations.

If j is a multiple of k do:

uid = m i n { d : 1 < d < i and Bi,k = Bd,k},

and let Bi,1 = Bi,k | X~. , d

2Q(n) is abbreviated to Q.

5.4 Super-Pseudorandomness in Generalized DES-like Permutat ions 101

otherwise do:

u~,j = m i n { d : 1 < d < i and Bi,jmodk -= B~,jmoak},

and let Bi,jmodk+l = Bi,jmodk 0 Xui,j 5"

The output is (Bi,k [[Bi,1 [[. . . [[Bi,k-1).

Note that the structure of a Pi-gate is similar to r f~, fa).

Let the random variable C(w) be the output of the circuit Ck,~ when the oracle

gates are evaluated by the above/~ and let E(C) be the expectation

of C(w). Hence, the value of E(C) is equal to the probability that C(w) = 1.

We now describe a random variable C I which is equal to the output bit

of the distinguishing circuit Ck~ when the oracle gates are evaluated with

r f2, f~)- Then we show that E (C) = E(C') .

Let the random variable C'(w) be the output of the circuit Ck~ when

the oracle gates are evaluated by the introduction of P'-gates. A P'-gate is

described as follows:

P/-gate:

The input is (Bi,1 [[Bi,2][...][Bi,k).

ui,1 = m i n { d : 1 < d < i and Bi,a = B~,a},

and let Bi,2 = Bi,1 | X~,i,l,1.

For 2 < j < k 2 - k + 1, do the following operations.

If j is a multiple of k do:

ui,j = ra in{d: 1 < d < i and Bi,A: = Bd,k},

and let X/,j = B~,k | Xij ,

and let Bi,1 = Bi,k 0 X~ui,j,j

otherwise do:

u~,j = m i n { d : 1 < d < i and Bi,jmoak = Bd,jmoak},

and let X[,j = Bi,jmodk 0 Xi , j ,

and let Bi,jmodk+ 1 = Bi,jmodk @ Xtui,j,j

102 Chapter 5 CONSTRUCTION OF SUPER-PSEUDORANDOM...

The output is (Bi,k]] Bi,1][... II Bi,k_~)

It is clear that E(C') = Prob{Ck~[r f2, fl)] = 1}. Now

we show that E(C) = E(C'). Note that Xi,i(w) has a uniform distribution

on N". As, at each round, Bi,j does not depend on Xi,j, then X .~. = Bib

Xi5 also has a uniform distribution on ~ . Hence, E(C) and E(C') are

identical. Let A be the random variable which is defined to be the output of

the distinguisher Ck~ when the oracle gates are evaluated exactly the same

way as in the definition of a P' gate, except that the output of the i-th oracle

gate is (Xi,~ II Xi,2 II . . . II Xi,i). Because A is determined by Ck~ when

the output values from each oracle gate are independently and identically

distributed random variables and because Ck~ never repeats an input value

to an oracle gate, E(A) = Prob{Ck~[Hk~] = 1}. Then, it follows that

[Prob{ek,~[H~] = 1} -Prob{ek,~[r f2, f 1)] = 1} [=

=[E(A) - E(C') I

For w E ~, if there are pairs (d, i) with 1 < d < i < Q such that

B~,2 = Bi,2, then X1 is called bad. As there are Q oracle gates, then the

probability that X1 is bad is

Q:
Prob{Xl@) is bad } - Q(Q - 1) <

2n+1 - - 2 n + l

Similarly, for w E ~, if there are pairs (d, i) with 1 _< d < i < Q such that

Bd,i+l = Bi,i+l, then Xj is called bad. The probability that Xj is bad is

Q2
erob{Xj(w) is bad } < 2n+1

If Xj(w) is not bad for all 1 < j G k 2 - k + 1, then A(w) = C'(w). Thus we

have

[Prob{Ck.[Hk~] = 1} - Prob{Ckn[~b2(fk2_.k+l,. . . , f2, f l)] = 1} [<

< (k 2 - k + 1)O 2
- - 2 n + 1

This completes the proof of the lemma. []

Since, according to Theorem 5.3, by the application of normal and

reverse oracle gates, the effect of at most k - 1 rounds of r and k - 1 rounds

5.5 Conclusions and Open Problems 103

of r can be removed, k 2 = k 2 - k + 1 + (k - 1) > 2k - 1 + (k - 1) rounds of

type-1 transformations can resist super-distinguishing circuits. This is stated

formally in the following theorem.

T h e o r e m 5.4 Let Q be a polynomial in n and SCkn be a super-distinguishing

circuit with Q(n) < 2 ~ normal and inverse oracle gates; then

[Prob{SCkn[Pk,~] = 1} - Prob{SCkn[r .. f2,f l)] = 1} I< k2Q2(n)
, �9 ~ 2 . D ,

where f l , f 2 , . . . , fk2 er Hn.

P r o o f : To obtain a pseudorandom permutation, G2,j and G3,j should be

pseudorandom for j = 1, 2 , . . . , k - 1, where, for eX(fk2,.. �9 f2, f l) ,

C2,j = • l (f k 2 , . . . , f j+ l) O Lro, o ~ ; l (f j - 1 , . . . , f l)

and
- - w

C3,j = r f k2 - j) o t~ro t o r fk 2)

G2,j is partitioned into two parts where a part always consists of more than

2k - 1 rounds. So, in the normal oracles, even if the effect of the other k - 1

rounds of r could be removed, the remaining oracle gates would maintain

pseudorandomness. G3,j is also partitioned into two parts where a part always

consists of at least k 2 - k + 1 rounds; so, in the inverse oracles, even if the

effect of the other k - 1 rounds of r could be removed, the remaining would

maintain pseudorandomness. Hence, G2,j and G3,j are pseudorandom for

all j = 1 , 2 , . . . , k - 1, and G1 is a super-pseudorandom permutation. The

probability that a super-distinguishing circuit outputs 1, in the worst case,

is equal to the probability that a distinguishing circuit for ~'1 outputs 1, plus

the probability that a distinguishing circuit 5)r r outputs 1, and is less than
k2Q2('~) []

2 n

5.5 C o n c l u s i o n s and O p e n P r o b l e m s

In the first part of this chapter, we presented the necessary and sufficient

conditions for the construction of super-pseudorandom permutation gener-

ators based on DES-like permutations. If a block cryptosystem is super-

pseudorandom, it is secure against the chosen plaintext/ciphertext attack

104 Chapter 5 CONSTRUCTION OF SUPER-PSEUDORANDOM...

which is a much stronger attack than a chosen plaintext attack. We also

showed that r f , f) , a cryptosystem which consists of DES-like permu-

tations and is secure against chosen plaintext attacks, can be enhanced to

a super-pseudorandom cryptosystem, that is, r by adding one

more round of DES-like permutations. It still remains to be shown how to
construct a super-pseudorandom permutation from a single pseudorandom

function. We give a solution to this question in Chapter 6.

In the second part, we investigated the conditions for the super-pseudo-

randomness of constructions based on type-1 generalized Feistel permuta-

tions. We showed that the composition of k 2 rounds of such permutations

with k 2 pseudorandom function generators, yields a super-pseudorandom per-

mutation generator. It can be shown that ~bl(fk-1,..., fl, fk, fk-a , . . . , f l) is

not pseudorandom although it consists of 2 k - 1 rounds of DES-like permuta-

tions. On the other hand, it can be conjectured that r �9 �9 �9 f2, f a , . . . , f l) ,

where f l is used in k rounds and f2 is used in k - 1, is pseudorandom. It

remains to be discovered what is the minimum number of random functions

needed to achieve super-pseudorandomness with k 2 rounds of type-1 transfor-

mations.

C h a p t e r 6

A Sound Structure

6.1 I n t r o d u c t i o n

As we mentioned in Chapter 4, Lnby and Rackoff employed a structure with

three rounds of DES-like permutations to build a pseudorandom permuta-

tion generator, and considered their result a justification for the application

of DES-like permutations in the design of DES. They also proved that four

rounds of such permutations would provide a super-pseudorandom permu-

tation generator. An implication of this result, is that a greater number

of rounds gives better security. In this chapter, we show how to construct

a super-pseudorandom permutation generator from a single pseudorandom

function generator. This structure is obtained by some modificai~ions in the

structure proposed by Luby and Rackoff.

Clearly, the composition of two or more Luby and Rackoff permutation

generators is also pseudorandom. One would expect that for the resulting

structure, the probability of distinguishing drops to zero if a large enough

number of Luby-Rackoff generators is used, Although, the probability of

distinguishing can be made as small as requested, it will never drop to zero.

Since for any n there is a finite number of compositions after which the alter-

nating group A2~ C P2~ would be generated, there should be a better way to

design a permutation generator. Pieprzyk and Sadeghiyan constructed such

an improved version of the Luby and Rackoff construction [Pieprzyk and Sa-

deghiyan, 1991]. In Section 6.2, some properties of the Luby and Rackoff

106 Chapter 6 A SOUND S T R U C T U R E

construction together with a brief explanation of their proof are examined.

Then the improved construction of Pieprzyk and Sadeghiyan is presented,

and it is shown that the composition of two Luby and Rackoff structures

with four random function generators and two random permutation genera-

tors provides a perfect randomizer. At the end, we present the construction

of the super-pseudorandom permutation generator with a single pseudoran-

dom function generator. We recommend that this structure be used in the

design of block ciphers, as it exhibits better cryptographic strength and has

a simple configuration.

The results of this chapter have been presented in [Pieprzyk and Sa-

deghiyan, 1991] and [Sadeghiyan and Pieprzyk, 1992].

6.2 P r e l i m i n a r i e s

In Chapter 4, we defined DES-like permutations and their compositions,

where, given a sequence of functions fl , f 2 , ' " , fi E Hn, the composition of

their DES-like permutations ~b is defined as

r f i - 1 , . . . , f l) = D2,,I, o D2=,I~_, o . . . o D2=,fl

with r f i - 1 , . . . , f l) e P2n. For the selection of functions fj for j =

1 , - . . , i, there are two possible cases.

The functions are chosen randomly from different pseudorandom func-

tion generators, that is f~ Er F~. For conciseness, we will say that the

functions are pseudorandom. The resulting permutation ~ is pseudo-

random for i = 3, 4 ,

The functions are chosen randomly from the set of all functions in n,

that is, f; Er H~. For conciseness, we will say the functions are random.

The resulting permutation generator is called a randomizer.

To draw some conclusions about the quality of the structured permuta-

tions based on either pseudorandom or truly random functions, distinguishing

circuits introduced in Chapter 4 are used. Structured permutation genera-

tors can first be assessed applying truly random functions. Then, if the

6.2 Preliminaries 107

structure is sound, pseudorandom functions may replace the truly random

ones. For example, Luby and Rackoff first considered the permutation gener-

ator r g, h) with three rounds of DES and three random functions f , g, h.

They proved that

rn 2
[Prob{C2~[P2n] = 1} - Prob{C2,~[r = 1} 1< 2n (6.1)

where m is the number of oracle gates and m < 2 n. When f , g , h Er H,~,

this structure is called an L-R randomizer. They showed that the structure

r g, h) can be "transparent" to the input and proved the necessary con-

ditions for "a leakage" input information to the output. To prove this, they

chose an w E ~, where ~ = E 3ran is the sample space with uniform prob-

ability distribution, that is, for all w E I I , Prob{w) = 1 23m,. Then w was

divided into three (m • n)-bit strings, called X, Y, Z, respectively, and each

was divided into m n-bit segments. The strings X, Y and Z were applied

to construct gates with a similar structure to r For there to be a

leakage of information from the input to the output of the gate, two of the

m segments of X or Y must have the same value. This is called a collision

of those two segments. If there is no leakage of the input to the output , they

said that w is preserving, where any distinguishing circuit cannot make a

decision whether the generator used to evaluate the oracle gates was P2n or

r g, f) . Then they showed that if the random functions were replaced by

pseudorandom ones, then the probability of distinguishing between outputs

would remain less than 1 over any polynomial in n.

w is preserving means that all the outputs of the oracle gates are inde-

pendent from the input (and from each other). When w is NOT preserving

means that there is at least one pair of oracle gates such that their outputs

are related to their inputs and this relation can be used to distinguish ~ from

Pen.

Note that if w is preserving in a distinguishing circuit, then the dis-

tinguisher cannot find any pair of oracle gates with outputs related to its

inputs. Luby and Rackoff showed that the leakage of the input happens only

in two cases, Y is bad or X is bad.

Y is bad if there is a pair of oracle gates (Oi, Oj) such that the random

function g collides, which is the case where g gives the same output for two

different inputs. Figure 6.1 depicts this case. It happens when the input

108 Chapter 6 A SOUND S T R U C T U R E

random variables are such that R = Ri = Rj, but Li ~ Lj. It is obvious that

oi

r

(

: ~

O~
J

R i = R

' (

I (

q

~ V r]

Rj -- R

Figure 6.1: Y is Bad in Two Oracle Gates (Oi, Oj)

cq= L~(g f (R) and c~j= Lj(g f (R)

and, as Li 5~ Lj, then ai 5~ aj. Hence the random function g assigns two

independent random variables g(ai) and g(aj), and the outputs ilk, flj are

independent from the input. The outputs "~i, 7j are also independent only

if the random variables g(a~), g(aj) take on different values. Otherwise, if

fl~ = ~j (this may happen with probability ~ for a single pair of oracle gates),

7i, 7j are related. This may happen only if the function g collides, that is,

and then

g(ai) = g(aj) = Y

~/i = cq (9 h(Y)

7j = aj @ h(Y)

In this case, 74 (9 7i = Li (9 Lj always.

The second possibility for input information leakage to the output hap-

pens when X is bad (see Figure 6.2). It can happen only if Ri # Rj. The ran-

dom function f assigns two independent random variables f (R i) and f (Ri) ;

as a result, the output variables 7i, 7j are independent of the input. The

input information can pass through ~ to the output if a = ai = aj (this

happens with probability 1 for a single pair of gates). Then

~ = R~ (9 g (~)

~j = Rj �9 g(~)

6.2 Preliminaries 109

oi

13i

O.
J

Ri Lj '

 M-rl

~ r �9

~j ~ ~j

Rj

Figure 6.2: X is Bad in Two Oracle Gates (O~, Oj)

In this case,/~i @/3j = Ri | Rj always.

The distinguisher can apply two strategies: the first one "hunting for

(Y is bad)" or the second one "hunting for (X is bad)'. Luby and Rackoff

cMculated that the probability Pv that Y is bad in at least one pair of gates

is
PY <_ m (m - 1) 1

2 2 n

where ~(,~-1) is the number of different pairs of gates if the distinguisher has 2

m oracle gates. In the second strategy, the distinguisher selects different Ri

for all oracle gates and the probability Px that X is bad in at least one pair

of oracle gates is
m(m - 1) 1

Px_<
2 2 n

Obviously if a distinguisher applies some mixed strategy, then

m 2
Prob[co is NOT preserving] < Py + Px <_ 2--g-

Now consider a randomizer q2 = r h) o ~b2(f,g, h) which is con-

structed from two L-R randomizers, co is NOT preserving in ~2 if there is

at least one pair of oracle gates Oi, Oj for which Y is bad or X is bad in

the first randomizer r Figure 6.3 shows the pair with Y is bad (note that

R i = /~j = /~) . Clearly the outputs 71~, 3'j~ are independent of the input. /31~

and ~j~. However, the outputs may be related if fill = ~Jl (with probability

2~1 for a single pair of oracles (Oi, Oi)) and c% = ai2 (this happens with

probability ~ in a single pair of oracle gates). Therefore the probability of

110 Chapter 6 A SOUND S T R U C T U R E

O.
1 O .

J

x

Lj Rj=R

[[tj2 ['Yj2

Li Ri=R

am-

I[li2 Ivi 2

Figure 6.3: Y is Bad in Two Oracle Gates (Oi, Oj) for ~2

Y being bad in a single pair of oracle gates is 22-~. Considering all the possible
pairs of gates, we can conclude that the probability Pv that Y is bad in tY2
is

P r - m (m - 1) 1
2 2 2'~

The second case when X is bad in r is presented in Figure 6.4, where
Ri ~ Rj. Clearly, the outputs ~i2, flJ2 are independent from the input. If
X is bad in (Oi, Oj), then a i l = ajl = a and consequently fli~ = Ri @ g(o~)

and fl31 = Rj @ 9(a). The function h in Ca generates two independent
random variables. Thus 7 = 3% = 7j1 with probability 1 and the relation
to the input remains. The random function g in r assigns two independent

random variables and the outputs 7i2, 7j~ are related only if/3 =/3i2 =/3J2

(with probability ~) . Therefore X is bad in q~ for a single pair of oracle

gates with probability 23--~. If a distinguisher uses some strategy to tell apart
the tested permutation generator, the probability of its success is

Prob[w is NOT preserving in k~2] _< re(m2- 1) (2_~ + 2 - ~ 1 1)

Hence, we have proved the following theorem.

6.2 Preliminaries

ol

q

q
O.

R i Lj Rj

}

a j2

l~ 2 j l ~ l ~ j 2

111

Figure 6.4: X is Bad in Two Oracle Gates (Oi, Oj) for g)2

T h e o r e m 6.1 The randomizer % = r h)oy)2(f,g, h), where f , g , h Er

[In, does not have a distinguisher and

m2 (1 1) (6.2) [Prob{C2~[P2,~] = 1} - Prob{C2,~[ffJ2] = l} {_< -~- ~ +

where m < 2 '~ is the number of oracle gates in the distinguisher.

It is easy to generalize the previous theorem for the composition of
k = 2, 3, 4 , . . . L-R randomizers. As the parameter k grows, the probability
of distinguishing becomes smaller for the generator

C k = h ,) o . . . o Vk(A,g , �9

k

T h e o r e m 6.2 The randomizer ~k, where fl,gi, hi Gr H,~ and i = 1 , . . . , k ,
does not have a distinguisher and

m~ (1 1) (6 . 3) [Prob{C2n[P2,~] = 1} - Prob{C2n[gYk] = 1} [< y ~ + 2(2U_l)n

where m <_ 2 '~ is the number of oracle gates in the distinguisher.

112

6.3

Chapter 6 A SOUND S T R U C T U R E

Perfect R a n d o m i z e r s

In Section 6.2, we saw that the composition of L-R randomizers does not

have any distinguisher with m oracle gates, where m _< 2 ~. There is always

a small probability of success no matter how many elementary randomizers

are used. Since for any parameter n there is a finite number of compositions,

after which the alternating group A2~ C P2~ is generated 1, there must be a

better way to design a permutation generator.

In this section, we show how to improve the L-R randomizer to obtain

the so-called perfect randomizer. Perfectness is defined as follows [Pieprzyk

and Sadeghiyan, 1991]:

Def in i t i on 6.1 A randomizer is perfect if, for all oracle gates used by the

distinguisher, their outputs are independen t of their inputs and independent

of each other.

In the next theorem, a modification in the L-R randomizer structure is made

and it is shown that the change does not diminish its quality. At the same

time the modified randomizer has a further desired property, as one output

branch (3' output) is always independent of the input.

T h e o r e m 6.3 Let f , h Er Hn and g* Er Pn; then the randomizer r h),

does not have any distinguisher and

m 2

] Pr[C~,~(P2,~)] - Pr[C2,(r l< ~ (6.4)

where m <_ 2 n is the number of oracle gates in the distinguisher.

P r o o f : For the proof of the above theorem, the main idea that Luby and

Rackoff used in their proof is adopted in the following explanations. Using

their notation, it can be said that w is NOT preserving in r if Y is bad or

X is bad. If Y is bad in a pair of oracle gates (Oi, Oj), then R = Ri = Rj

and ai ~ aj (see Figure 6.5). Therefore the random permutation g* assigns

1The number of compositions may be exponential in n. In [Pieprzyk and Zhang, 1990],
it is shown that it is possible to produce (2n)! different permutations, having (2 ~). gener-
ators.

6.3 Perfect Randomizers 113

O.
I]I~ [Ri=R

I

O. J
q

~j

Rj=R

t
Figure 6.5: Y is Bad in Two Oracle Gates (0,, Oj) for r g*, h)

two different random variables Y/, Yj, which never collide, and the random

function h generates two independent random variables, that is, the outputs

7/, Vj are independent of the input. The distinguisher , however, can work on

t3,-,/3j as they are generated according to a different probability distribution

(they are random permutations). Clearly,/3/and/3j are always different if the

oracle gates are evaluated by r If all the oracle gates are evaluated by P2,,

then/31 may collide, where i = l, 2 , . . . , m. When oracle gates are evaluated

by P'2n, the probability tha t /3 /do not collide is

2"!

2~m(2 " - m) !

Thus the probability Py, that is, Y is bad and the distinguisher succeeds in

finding a collision when the oracle gates are evaluated by F2n, is

Pv = l - 2"! < m(m + l)
2rim(2" -- m)! -- 2-+1

Consider the second case when X is bad, where R/ ~ Rj. This case

is identical to that in Figure 6.2. The random function f assigns two in-

dependent random variables f(Ri) and f(Rj) . The outputs 71 and 7j are

independent of the input. The probability Px is precisely the same as for

the original L-R randomizer. Therefore

m (m - 1) 1 m(m + l)
Prob[co is NOT preserving in ~] <_ Px + Pv <_ +

2 2 n 2 TM

and the final result follows. []

Now we are ready for the main theorem of this section.

114 Chapter 6 A SOUND STRUCTURE

T h e o r e m 6.4 Let fl , f2, hl,h2 E~ H,~ and g~,g~ E~ Pn. The randomizer

ql~ = r hi) o r h2) is perfect when the number of oracle gates
m <2 '~.

P r o o f : If all ~(,~-1) possible pairs of oracle gates are considered and 2
none of the pairs is transparent to the input, it means that ~2 is perfect,

or, in Luby and Rackoff's terms, w is preserving. Consider a single pair of

O. 1
R i

IIs~ 2]7i 2

O.

J Ih Rj

ll3j2 152

Figure 6.6: Two Oracle Gates (Oi, 03) Evaluated by gl~

oracle gates (Oi, Oj). We are going to show that its outputs (j3i2, flJ2) and

(3'i2, 7j2) are independent of the input variables (see Figure 6.6). According

to the previous lemma, the outputs 3% and 7.h are always independent of the

input; so are the outputs (fli2,/~J~).

Now take the randomizer ~b2 which is fed by two pairs /~i~ ,0% and

/~j~, 7j~- There are two possible cases.

1. 7q and 7jl assume different values (this happens with probability 1 -

1) . It turns out that f2 assigns two independent random variables,

and 712 and 7j2 are independent of the input.

6.3 Perfect Randomizers 115

2. 0% and 7Jl have the same value (this happens with probability ~) .

Thus ai2 5r aj~ and the permutation g" generates two different values.

Finally, the random function h~ makes ")'i2 and 7j2 independent of the

input.

[]

Random permutations g~', g~ play an important role as far as single ran-

domizers are concerned. However, ~2 randomizers can be replaced by a fixed

permutat ion, for instance, the identity permutation. Such a permutat ion can

be written as 9~ = g] = 1. Hence, we have the following corollary.

Corol lary 6.1 Let f l , f2, hi, h2 Er H~; then the randomizer

~ * = Ca(f1, 1, ha) o r 1, h2)

is perfect, when the number of oracle gates m <_ 2 '~.

The structure ~ * is optimal as it uses six DES rounds and four different

random functions.

Perfectness implies that the randomizer

~2 = • l (f l ,g l ,h l) o ~b2(f2,g2, 2)

does not leak any information about the input to the output . Luby and

Rackoff said that , in this case, w is preserving. When co is preserving, the

distinguisher works only on the knowledge of the output (it obviously selects

different input values but their values are not important) .

From the above work, [Pieprzyk and Sadeghiyan, 1991] draw six con-

clusions about the design of pseudorandorn permutat ion generators. We

draw attention to three of these conclusions which can help in the design

of a super-pseudorandom permutation generator from a single pseudoran-

dora function generator, or a sound structure to be applied in the design of

block-cipher-based hash schemes.

1. As the outputs of all oracle gates (ev,!duated by q~ or q**2) are in-

dependent random variables, the knowledge of their inputs does not

provide any useful information to the distinguisher.

116 Chapter 6 A SOUND STRUCTURE

2. Most of the DES-type cryptosystems use the structure ~(fl , f 2 , ' " , fk),
where the fi (i = 1 , . . . , k) are functions generated by a short crypto-

graphic key. The functions are neither random nor pseudorandom. As

far as random functions are employed, the structure

r 1, f2,/3,1, �9 �9 �9 A - l , 1, fk)

is better than r f 2 , " ' , fk), as it is a perfect randomizer.

3. The alternating group A2,~ of the group of all permutations P2n can be

generated using a finite number of concatenations of r [Pieprzyk and

Zhang, 1990]. Thus

I Prob[C2~(P2~)] - Prob[C2~(~)] I= 0

Note that [Pr[C2n(F2~)] - Pr[C2~(k~;)] I> O, as it is possible to design

a distinguisher which can tell apart F2~ from ~ with small probability.

The distinguisher tries to get the same output in two different oracle

gates for two different messages. It can succeed only if the oracle gates

are evaluated by F2~ (for oracle gates evaluated by ~ , any output is

different for different input).

So far we have presented the result of Pieprzyk and Sadeghiyan for the

construction of a perfect randomizer. We included this result and related

explanations in order to use the recommended structure for the construction

of a super-pseudorandom permutation generator from a single pseudorandom

function generator based on DES-like permutations.

6.4 A C o n s t r u c t i o n for S u p e r - P s e u d o r a n -

d o m P e r m u t a t i o n Generators

In Chapter 5, the necessary and sufficient conditions for the construction

of super-pseudorandom permutation generators based on DES-like permu-

tations were investigated. It was also shown that r is super-

pseudorandom, it is a structure with two pseudorandom functions and four

DES-like permutations. This result was an improvement upon the result

shown by Luby and Rackoff, where they demonstrated that r g, f , e) with

6.4 A Construction for Super-Pseudorandom Permutation Generators 117

four pseudorandom function generators is a super-pseudorandom permuta-

tion generator. However the question of how to construct super-pseudoran-

dom permutations from a single pseudorandom function remained an open

problem.

In the remainder of this chapter, we answer the above question and

present a construction based on a single pseudorandom function which is

super-pseudorandom. We take advantage of a structure ~b(h, l , f ,h , l , f)
which is similar to that of the perfect randomizer presented earlier in Sec-

tion 6.3, where not only the output is independent of the input but also the

two branches of the output are independent of each other. First we show

that the above structure provides us with a super-pseudorandom permuta-

tion generator. Then, we present a construction based on a single pseudo-

random function, which replaces one of the pseudorandom functions with

a two-fold composition of the other one, that is, ~b(ff, 1, f , i f , 1, f) , which

is indistinguishable from the previous one. Finally, we show that the con-

struction is super-pseudorandom. Hence, it is possible to construct a super-

pseudorandom permutation from a single pseudorandom function, where we

need six rounds of DES-like permutations and six references to the pseudo-

random function.

6.4.1 S u p e r - P s e u d o r a n d o m n e s s of ~(h, 1, f, h, 1, f)

To construct a super-pseudorandom permutation generator based on a sin-

gle pseudorandom function, we first show that G~ = ~(h, 1, f) o ~(h, 1, f)

is a super-pseudorandom permutation generator. Then we show that, if f2

is substituted for h, G1 = r 1, f, f2, 1, f) is also super-pseudorandom.

To show that G1 is a super-pseudorandom permutation generator, we first

show that G2 = r 1, f , h, 1) and G3 = ~(f , 1, h,f, 1) are not only pseu-

dorandom but also independent permutations. Then we show that G1 is

super-pseudorandom.

L e m m a 6 .1 Let h , f Er Hn be independent random functions and G2 =

r 1, f , h, 1). Then

m 2 r n 2

I Prob{C2n[G2] = 1} - Prob{C2n[P2,~] = 1} I_< ~-j + 22---g

118 Chapter 6 A SOUND STRUCTURE

where C2,~ is any polynomial size distinguishing circuit with m < 2 '~ oracle

gates.

P r o o f : When the distinguisher examines an oracle, the input is a 2n bit

string (i II R) and the output is a 2n bit string (S II T) where

S = i @ R (9 f (i (9 h(L (9 R)) (9 h(R (9 h(L (9 R) (Y f (L (9 h (i (9 R)))

T = R (g h (L (g R) (g f (L (g h (L (g R))

For two different experiments, (L, [I Ri) should be different from (i i II Ri);

so either Li # Lj or Ri ~ Rj or both are different. If there is no leakage of in-

formation from the input to the output, the distinguisher cannot distinguish

the generator used to evaluate the oracle gates from a random generator.

Leakage of information happens when there is at least one pair of oracle

gates such that their outputs are related to their inputs. Let X be a random

variable denoting the ouput of h, the random function in the second round

of the DES-like structure of G2, and let Y be a random variable denoting the

output of f , the random function in the third round of DES=like structure of

G2 (see Figure 6.7). Leakage of information happens in two cases.

L R

S T
Figure 6.7: Random Variables X and Y in G2

1. X is bad. This happens when there is a pair of oracle gates Oi, Oj

with the input random variables Ri # Rj and L~ = L i = L such that

6.4 A Construction for Super-Pseudorandom Permutation Generators 119

the random function h collides. Hence, for this case, we assume that

x~ = xj = x where x~ = h(L @ P~) and xj = h(L @ Rj). It is obvious

that, i f X is bad, then T ~ T j = Ri@Rj always. The probability that h
re(m-l) •

collides in a pair of oracle gates among m oracles is equal to 2 2-"

2. Y is bad. This happens when there is a pair of oracle gates 04, Oj

with the input random variables Ri = Rj = R and Li # Lj such that

the random function f collides. Hence, for this case, we assume that

yi = yj = y where Yi = f (Li @ h(Li @ R)) and yj = f (L j ~ h(Lj @ R)).

It is obvious that, if Y is bad and X is also bad, then Ti @ Tj = Li @ Lj

always. The probability that f collides and also h collides in a pair of

oracle gates among m oracles is equal to m(m-D ~ 2 2 2 " "

The probability that a distinguishing circuit for G2 can be constructed

.~{m-1) .~(m-a) On the other hand, when a permutation p is is equal to 2-+1 + 2 2 n + 1 "

chosen randomly, the probability that p can satisfy the distinguishing circuit

relation is ~ + 2-~. So, an upper bound on the probability of distinguishing

is
r n 2 m 2

I Prob{C2n[P2n] : 1 } - - Prob{V2.[r 1, f , h, 1)] -- 1} 1_< ~ - + 22--- ~

[]

L e m m a 6.2 Let h , f Er H,~ be independent random functions and G3 =

r 1, h, f , 1). Then

m 2 m 2

I Prob{C2n[Gz] = 1} - Prob{C2n[P2n] = 1} I_< ~ - + 22-- ~

where C2~ is a distinguishing circuit with m < 2 ~ oracle gates.

P r o o f : Since the structure of G3 is exactly the same as the structure of

G2 except that the roles of h and f are reversed, a proof similar to that of

Lemma 6.1 can be given for the probability of distinguishing of G3 from a

random permutation, and is omitted here. []

Note that the above lemma is an instance of Lemma 6.1, and when m is

a polynomial in n, the probability of distinguishing G2 or G3 from a random

permutation becomes less than ~ for any constant c2, and sufficiently large no2

n .

120 Chapter 6 A SOUND S T R U C T U R E

L e m m a 6.3 Let h , f E~ H~ be independent random functions and G~ =

r 1, f , h, 1) and G3 = r 1, h, f , 1); then

m s
I Prob{DC2,[G2, G3] = 1} - Prob{DC2,[P2,, P2,] = 1) 15 22 .

where DC2,~ is a D-distinguishing circuit with two types of oracle gates and

m < 2~ the number of oracle gates.

P r o o f : As the distinguisher has two types of oracle gates, one probability

is calculated when two permutations are chosen independently and randomly

from P2n and are used to evaluate the oracle gates. The other probability is

calculated when the distinguisher chooses f and h independently and ran-

domly from Hn and uses them in the G2 and G3 structures, which are applied

for the evaluation of the oracle gates. When the distinguisher examines an

oracle, the input is a 2n bit string (L [I R) and the output is a 2n bit string

(S IIT).

When G2 is examined, the output is

S = L @ R @ f (L G h (L @ R)) @ h (R e h (L @ R) @ f (L @ h (L @ R)))

T = R @ h (L @ R) @ f (L @ h (L @ R))

and when Ga is examined, the output is

S = L @ R @ h (L |

T = R ~ f (L @ R) @ h (L @ f (L @ R))

As both G2 and G3 are pseudorandom, there is no distinguishing circuit with

one type of oracle gate for G2 or for G3. The D-distinguisher could only make

a decision if there were at least one pair of oracle gates whose outputs were

related to each other.

Let)(2 be a random variable denoting the ouput of h, the random

function in the second round of the DES-like structure of G2, and)(3 be a

random variable denoting the output of f , the random function in the second

round of the DES-like structure of G3. Let Y2 be a random variable denoting

the output of f , the random function in the third round of DES-like structure

of G2, and Y3 be a random variable notating the output of h, the random

function in the third round of DES-like structure of G3 (see Figure 6.8). The

distinguisher can make a decision in either of the two following cases.

6.4 A Construction for Super-Pseudorandom Permutation Generators 121

j , 3

Lj Rj

sj

Li R

X2

Y~

si T~
Figure 6.8: The Random Variables)(3, Y3 in G3 and X~, Y2 in G2

. When there is a pair of oracle gates Oi, Oj such that the random

functions f and h collide. For this case we assume that xi,2 = x j,3 = x

where xi,2 = h(Li | Ri) and xj, 3 : f (L j �9 Rj) and Yi,2 = Yj,3 = Y

where yi,2 = f (L; | h(ni | Ri)) and Yh,a = h(nj | f (L j | Rj)). In

this case, when the input random variables Ri ~ Rj and Li = Lj = L,

then Ti �9 Tj = Ri | Rj always, and when the input random variables

Ri = Rj = R and Li ~ Lj then Si | Sj = L~ �9 Lj always. The

probability that f and h collide in a pair of oracle gates among m

oracles is equal to re(m-l)
2 2 2r~ *

. When there is a pair of oracle gates Oi, Oj such that the random

function f collides and the random function h collides. For this case

we assume that xi,2 = yj,3, where xi,2 = h(Li | Ri) and yj,3 = h(Li |

f (n i | Rj)), and yi,2 = xj,3, where yi,~ = f(L~ @ h(L~ | R~)) and

xj,a = f (L j | In this case, when the input random variables Ri ~ Rj

and Li = Lj = L, then Ti | Tj = Ri | Rj Mways. The probability that

f collides and h also collides in a pair of oracle gates among m oracles

is equal to .~(.~-1)1_!_
2 2 2 n "

122 Chapter 6 A SOUND STRUCTURE

The probability that a D-distinguishing circuit could be constructed

for (G2, Ga) would be equal to ~ + ~ . On the other hand, when

two permutations pl and p2 are chosen independently and randomly, the

probability that they can satisfy the distinguishing circuit relation is 2,~ 2-~-~-So,

an upper bound on the probability of distinguishing is

m s
[Prob{DC2~[P2~,P2~] = 1} -Prob{DC2~[G2, Ga] = 1} I< 22,~

[]

T h e o r e m 6.5 Let f , h Er Fn be independently chosen pseudorandom func-
tions, and G2 = r and G3 = r 1). When

1
] Prob{DC~,[G~, G3] = 1} - Prob{DC~n[P2,, P2,] = 1} I< - -

nC2

for any polynomial size D-distinguishing circuit and for any constant c2, then
G1 = r 1, f , h, 1, f) is a super-pseudorandom permutation generator.

P r o o f : First it is necessary to show that G3 = g,(f, 1, h, f , 1) and G1 =

r 1, h, f , 1, h) are independent of each other. In order to prove this, assume

that they are not independent, and that there is a D-distinguishing circuit

such that for a constant c2

1
I Prob{DC2.[G3,-d~] = 1} - Prob{DC~,~[P~n, P2n] = 1} I>

nc2

Without changing the inequality relation, we have

] Prob{DC2,[G3,-C~] = 1} - Prob{DC2,~[Ga, Gs] = 1} +
1

Prob{DC2,~[Ga, Gs] = 1} -Prob{DC2~,[P2n, P2,~] = 1}1 >
T/c2

Then

I Prob{DC~n[aa,-Gl] = 1} -Prob{DC~,[Ga, Gs] = 1} I +
1 I Prob{DC2,~[G3, Gs] = x} -Prob{DC2,~[P2,~,P2n] = 1} I > nc~

If lProb{DC2n[Ga, G3] = 1 } - Prob{DC2,~[P2,~,P2n] = 1} [> 1 ~ - , G3 is

not pseudorandom, as the D-distinguishing circuit is not a test for iden-

tity. This contradicts Lemma 6.2. Furthermore, if l Prob{DC2n[Gs,-G~] =

6.4 A Construction for Super-Pseudorandom Permutation Generators 123

1 } - Prob{DC2n[G3, G31 = 1} l> ~a-~7, then the oracle circuit vir tual ly dis-

tinguishes f from a randomly chosen function. This also contradicts our

assumption that f is a pseudorandom function. Since b o t h cases reduce to

contradictions, then G3 and G1 must be independent of each other, and there

is no D-distinguishing circuit for (G~, G3).

Considering the independence of G2 and G3, we have that

1
I Prob{DC2,~[G2, G3] = 1} - Prob{DC2~[P2=, P2=] = 1} I< J ~,/c2

for any constant c2. Note that G2 and G3 are not inverse to each other; so

the D-dist inguishing circuit cannot be a test for inversion. Wi thou t changing

the sign of inequality, the above relation can be expanded as,

I Prob{DC2.[G1,'G1] = 1} - P r o b { D C : n [G i , G I] = 1}

Prob { DV2n [G3, G1] = 1 } - Prob {DC2n [G3, G~] = 1 }

Prob{DC2n[G2, Gz] = 1} - Prob{DC2.[P2,~, P2.] = 1}

+

+

1 < - -
nc2

Then

[I Prob{DC2n[G2, G3] = 1} - Prob{DC2n[G3, G1] ~-- 1} -

[Prob{DC2n[G3,-C1] = 1} - Prob{D(72n[G1, Ga] = 1} -

1
[Prob{DC~n[G1,-G~] = 1} - Prob{DC2,~[P2n,P2,~] = 1} [I <

n o 2

Since it was assumed that G~ and G3 are independent permutat ions , and so

are G3 and ~ , then I P r o b { D C 2 , ~ [G 2 , a3] = t} - P r o b { D C ~ , ~ [G 3 , - d l] = 1} I

I for any constant c, since would be less than ~-z

I Prob{DC2n[G2, G3] = 1} - Prob{DC2n[G3, G1] = 1}] <

] Prob{DC2,~[G2, G3] = 1} - Prob{DC2n[P2,~, P2.] = 1}] +
1

[Prob{DC2,~[G3,-G1] = 1} - Prob{DC2,~[P2,~,P2n] = 1} I < n--V

Hence

I Prob{DC2n[G1,-G1] = 1} - P r o b { D C 2 . [P 2 n , P2~] = 1} I +
1

]Prob{DC2n[G3,-G1] = 1} -Prob{DC2,~[G1, G1] = 1} I < Tic2

So, each of the above absolute values is less than ~ In other words ~ c 2 ~

] Prob{DC2~[G1,-G1] = 1} - Prob{P(72,~[P2n, P2~] = 1} I < 1 Ttc2

124 Chapter 6 A SOUND STRUCTURE

Hence G1 and G1 are independent of each other, and G1 is a super-pseudo-
random permutation. []

Lemmas 6,1, 6.2 and 6.3 and Theorem 6.5 show that, when the number

of oracle gates m is a polynomial in n, then the probability of making a circuit

which distinguishes Gz = r 1, f, h, 1) from G3 = r 1, h, f , 1) is less than

1--~2 , for any constant c2, and sufficiently large n. Furthermore, the probability

of making a super-distinguishing circuit for G1 = r 1, f) o r 1, f) is also

less than 1--- for any constant c2, and sufficiently large n. In other words,

G1 is secure against chosen plaintext/ciphertext attack if the cryptanalyst is

permit ted to make only a polynomial number of queries.

6.4.2 Super-Pseudorandomness of r 1, f, f2, 1, f)

In Lemmas 6.1, 6.2 and 6.3, upper bounds on the probabilities of distinguish-

ing between two permutat ion generators have been found, where f and h are

two independently chosen pseudorandom functions. In the following lemmas

and theorem, we show that if f~ is substi tuted for h, there is an increase in

the upper bound on the above probabilities. Nevertheless, if the number of

oracles is l imited to some polynomial in n, the corresponding probabilities

would remain less than 1__ for any constant c2, and sufficiently large n. nr

L e m r n a 6.4 Let f , h ET H,~ and let C2,~ be a distinguishing circuit with

m < 2 '~ oracle gates; then

[Prob{C2n[r 2, 1 , f , f2, 1)] = 1} - Prob{C2n[r 1, f , h, 1)] = 1} 1_< 2m2
2 ~

P r o o f : Since both f and h can be considered to be two sequences of

2 ~ independent and uniformly distributed n-bit random variables, for an

argument a E Z~, f(a) and h(a) are two independent n-bit strings. When the

input to an oracle is (L II R) and the oracle is evaluated with r 1, f , h, 1),

each branch of the outputs (that is, S and T) is always a sum of two random

variables generated by the functions f and h (see Figure 6.9). Thus

S = L @ R O f (L @ h(L| @ h (R ~ h(L@R) @ f (L @ h(L~R)))

T = R @ h (L @ R) @ f (L ~ h (L @ R))

6.4 A Construction for Super-Pseudorandom Permutation Generators 125

where all the random variables Yi = f(Li �9 h(Li @ P~)) are independent of

Lj Rj Lj R

S~ T~ Sj T~

Figure 6.9: Random Variables X, Y and Z in G2 and G2

the random variables

Xj = h(Lj | Rj)

Zj = h(Rj | h(Lj | Rj) �9 f (Lj �9 h(Lj | Rj)))

When the input to an oracle is (L II R) and the oracle is evaluated with

~b(f 2, 1, f, f 2 1), each branch of the output (that is, S and T) is always a

sum of two random variables generated by the function f . Thus

S = L | R | f (L | f2(L| | f2 (R| f2(L| | f (L | f2(L|

T = R | 1 7 4 1 7 4 1 7 4 1 7 4

If R = 0, then

S

T

If L = 0, then

= L �9 f (L �9 f2(L)) �9 f2(f2(L) �9 f (L �9 f2(L)))

= f2(L) G f (L �9 f2(L))

S = R@ f3(R)) | f2(R| f2(R) | f3(R))

T = R| f2(R) | f3(R)

126 Chapter 6 A SOUND STRUCTURE

If L = 0 and R = 0, then

S = fa(O)(t)f2(f2(O)@f3(O))

T = f2(0) q)fa(0)

When all the oracle gates are evaluated with r 1, f , f2, 1) or all the oracle

gates are evaluated with r 1,f ,h, 1), a distinguisher generates a bit 1

on its output with the same probability if all the random variables Y/ =

f(L~ @ f2(L~ @ R~)) are independent of the random variables

X i = f2(Lj @ Rj)

Zj = f~(Rj @ f~(Lj @ Ri) @ I(Li �9 f2(L~ | Rj)))

In other words, a distinguisher with m oracle gates generates a bit 1 as its

output when there is one oracle gate Oi such that ill, the input value to the
random function f , is equal to either of

~ = I f (Lj @ Rj)
(f (R j @ f2(L i �9 Rj) r f (i j @ f 2 (i i @ Ri)))

for some j = 1 , . . . ,rn. The probability that in a given oracle the input to

the f function takes a value equal to any of the 2m internal random values

in m oracle gates with different inputs is 2m 5-~-" The probability that a circuit

distinguishes r 1, f, f : , 1) from r 1, f , h, 1) is equal to the probability

that two of the oracles generate dependent random variables. Hence

2m 2
I Prob{C2n[r 2, 1, f , f2, 1)1 = 1} - Prob{C2n[r 1, f , h, 1)1 = 1} I<: 2 n

The probability of distinguishing r 1, f, h, 1) from a random permutat ion

was given in Lemma 6.1. As a result, an upper bound on the overall prob-

ability of distinguishing G2 = r 1, f , f2, i) from a random permutat ion

is

I Prob{C2n[G2] = 1} - ProblC2.[P2.] = 1} 1< 3m2 mS -V- +

where m < 2 '~ is the number of oracle gates. Hence, when the oracle circuit

is bounded by a polynomial number of oracle gates, the probability of dis-

tinguishing r 1, f , f2, 1) from a random permutat ion is less than 1__ for

any constant c2, and for sufficiently large n. []

6.4 A Construction for Super-Pseudorandom Permutation Generators 127

L e m m a 6.5 Let f , h Er Hn and let C2n be a distinguishing circuit with
m < 2 n oracle gates; then

2m 2
I Prob{C2.~[r 1, f2, f , 1)] = 1} - P rob{C2 . [r 1, h, f , 1)] = 1} I_< 2 n

P r o o f : The proof is similar to the proof of Lemma 6.4. When the input

to an oracle is (L][R) and the oracle is evaluated with r 1, f2 , f , 1),

each branch of the output (that is S and T) is always a sum of two random

variables generated by the function f . Thus

S = L @ R @ f 2 (L | 1 7 4

T = R @ f (L @ R) G f 2 (L |

If R = 0, then

S

T

If L = 0, then

= L D f2(L | f(L)) @ f (f (L) ~ f2(L (~ f(L)))

= f(L) �9 f2(L (~ f(L))

S = R | f3(R)) | f (R | f (R) | f3(R))

T = R(~ f(R) ~ f3(R)

If L = 0 and R = 0, then

S = f3(O)|174

T = / (0) |

When all the oracle gates are evaluated with r 1, f2, f , 1) or all the oracle

gates are evaluated with r 1,h, f , 1), a distinguisher generates a bit 1

as its output with the same probability, if all the random variables Yi =

I2(Li | f (Li | Ri)) are independent of the random variables

Xj = f(Lj ORj)

Zj = f (Rj • f (Lj @ Rj) ~5 f~(Lj �9 f (Lj �9 Rj)))

In other words, a distinguisher with m oracle gates generates 1 as its output

when there is one oracle gate O4 such that ~i, the input value to the random

function f , is equal to f (Lj | f (Lj | Rj)) for some j = 1 , . . . , m. Since f

128 Chapter 6 A SOUND STRUCTURE

was used in two different layers for each oracle, the probability that, in a

given oracle/~i, the input to the f functions takes a value equal to any of

m internal random values Yi, that is, the output of the f2 layer in m oracle
gates with different inputs, is 2,~ Tr The probability that a circuit distinguishes

r 1, f2, f , 1) from r 1, h, f, 1) is equal to the probability that two of the
oracles generate dependent random variables. Hence

I Prob{C2,~[r 1, f2, f, 1)] = 1} - Prob{C2,~[r 1, h, f , 1)] = 1} I< 2m2
2 ~

The probability of distinguishing r 1, h, f, 1) from a random permutation

was given in Lemma 6.2. As a result, an upper bound on the overall prob-

ability of distinguishing Ca = r 1, f2, f , 1) from a random permutation
is

[Prob{C2n[~3] = 1 - Prob{C2n[P2,~] = 1} L< 3m2 m2
- ~ - + 22.

where m _< 2 ~ is the number of oracle gates. Hence, when the oracle circuit

is bounded by a polynomial number of oracle gates, the probability of distin-

guishing r 1, f2, f, 1) from a random permutation is less than ~ for any he2

constant c2, and sufficiently large n. []

T h e o r e m 6.6 Let f Er Fn be a pseudorandom function; then

~1 = r 1, f , f 2 1, f) ,

is a super-pseudorandom permutation.

P r o o f : To prove that G1 is a super-pseudorandom permutation generator,

we first show that ~2 = r 1, f, f2, 1) and Ca = (f, 1, f2, f, 1) are inde-

pendent of each other. As was shown in Lemma 6.4 and Lemma 6.5, in a

D-distinguishing circuit when the input to an oracle is (L [[R) and the oracle

is evaluated with r 1, f , f~, 1), the output is

S = L (9 R (9 f (L (9 f2(L(gR)) (9 f2(R (9 f2(L(gR) (9 f (L (9 f2(L(gR)))

T = R (9 f:(L (9 R) (9 f (L @ f2(L (9 R))

When the oracle is evaluated with r 1, f 2 f, 1), the output is

S' = i (9 R (9 f2 (i (9 f (L (9 R)) (9 f (R @ f (L (9 R) @ f2(L (9 f (L (9 R)))

T' = R(9 I(L (9 R) (9 f~(L (9 f (n (9 R))

6.4 A Construction for Super-Pseudorandom Permutation Generators 129

The six random variables involved are:

X2 = f2 (L~ R)

Y~ = f(L@ f2(L~ R))

Z2 = f2(R@ f~(L @ R) @ f(L @ f2(L @ R)))

and

X3 = f (L@ R)

V~ = I~(L �9 I(L ~ n))

Z3 = f (RO f(L D R) @ f2(L G f(L (b R)))

S, T, S' and T' are always a sum of two random variables generated by the

function f . If a random variable in a output branch of an oracle becomes

dependent on a random variable in any output branch of another oracle, the

other random variables are always independent of each other. For example,

if X2 is equal to X3, the probability that Y2 is equal to Ya is ~ . Likewise, if

Y2 = I/3, the probability that Z2 = Z3 is ~ . Hence, the probability of depen-

dence between two branches is equal to ~ , which is equal to the probability of

dependence between two output branches in two different oracle gates when,

instead of f2, an independent random function such as h is applied. Here,

we calculate an upper bound on the probability of independence. As was

shown earlier in Lemma 6.4, ~b(f 2, 1, f , f2, 1) and ~b(h, 1, f , h, 1) are indistin-

guishable from each other; it was shown in Theorem 6.5 that ~b(h, 1, f , h, 1)

and ~b(f, 1, h, f , 1) are independent of each other, and it was also shown in

Lemma 6.5 that ~b(f, 1, h, f , 1) and ~b(f, 1, f2, f , 1) are indistinguishable from

each other. The probability that there is a D-distinguishing circuit for G2

and ~3 can be written as:

1
I Prob{DC2~[O2, G3] = 1} -Prob{DC2~[P2,, P2~] = 1} l< - -

nC2

This statement can be rewritten as,

I Prob{DC2~[G2, G3] = 1}

+Prob{DC2.[~2 , G3] = 1}

+Prob{DC2n[G2, 63] = 1}

- V r o h { D C 2 n [G ~ , a 3] = 1}

- P r o b { D C 2 n [a ~ , a 3] = i }

- Prob{DC2~[P2~,P2~] = 1} [< - -
1

no2

130 Chapter 6 A SOUND STRUCTURE

where G2 = r 1, f , h, 1) and G3 = r 1, h, f, 1). With reordering and

separation of absolute values, we get

I] Prob{DC2,[G2, G31 = 1}

+ } Prob{DC:,[G2, G31 = 1}

+]Prob{DC~n[G2, G3] = 1}

- Prob{DC2,~[~2, Gal = 1}l

- Prob{DC2,~[G2, G 3] = I } I

- Prob{DC2,~[P2,,,P2,~] = 1} l[

If the sum of the above probabilities is less than 1 over any polynomial in

n, then ~2 and ~3 are essentially independent of each other according to the

definition. When f and h E~ Hn, by applying procedures similar to those

of the proofs of Lemma 6.4, Lemma 6.5 and Lemma 6.2, it can be shown

that the first term is less than --2'~2 the second term is less than -5-~-,2"~2 and 2 n ,
rn 2 m 2 the third term is less than ~-~ + ~ , respectively. So, the sum of these three

probabilities, gives a bound on the probability for making a D-distinguishing
m 2 circuit with m oracle gates for G2 and ~3 as ~ + 2-'~. When there is a

polynomial number of oracle gates, that is, m is a polynomial in n, then

1
b ~ I Prob{De~n[g3,~] 1 } - Pro {Dd,2n[P2,~,P2,~] 1} l< nC 2

for any constant c2, and sufficiently large n. By applying a proof similar

to the proof of Theorem 6.5, it can be shown that, when ~2 and ~3 are

independent, ~1 is super-pseudorandom. []

6.5 Conclusions and Open Problems

We have shown that it is possible to construct a super-pseudorandom per-

mutat ion generator by applying a single pseudorandom function. We took

advantage of the structure for an optimal perfect randomizer presented in

[Pieprzyk and Sadeghiyan, 1991]. We first showed that r 1, f , h, 1, f) is a

super-pseudorandom permutation. Then we showed that , by substituting f~

for h, the probability of making a super-distinguisher is still less than 1 over

any polynomial in n. As r f, f2,1, f) is super-pseudorandom, it can be

applied as a block cipher secure against chosen plaintext/ciphertext attack.

Although such a block cryptosystem is less than practical, it can be viewed

as an a t tempt towards the construction of practical ones which are provably

6.5 Conclusions and Open Problems 131

secure against chosen plaintext/ciphertext attack without relying on any un-

proven hypothesis. However, in the same way that the results of Luby and

Rackoff were considered to be a justification for the application of DES-like

permutations in the design of DESI the above structure can be adopted in

the design of block ciphers to yield stronger cryptographic properties. If

a cryptosystem is super-pseudorandom, it can be applied in block-cipher-

based hash schemes. Two open problems emerge from the results of this

chapter. The structure applies 6 rounds of DES-like permutations. The first

open problem is whether the proposed structure is optimal, and whether any

other structure can be suggested which needs fewer rounds. We do not know

whether r f2, f, f, f) is such a structure, The second open problem is

whether the proposed structure can be adopted to improve the quality of ex-

isting cryptosystems such as DES or LOKI against differential cryptanalysis

without needing to redesign their S-boxes.

Chapter 7

A Cons truc t ion for One Way

Hash Funct ions and

P s e u d o r a n d o m Bit Generators

7.1 I n t r o d u c t i o n

In Chapter 2, we listed the properties that a secure hash function should

satisfy, among them was the property of one-wayness. Several approaches to

constructing hash functions have applied DES, or other block ciphers such

as LOKI, as the underlying one-way function. Unfortunately, DES suffers

from a small key space and also has other undesired properties .such as the

complementation property. In Chapters 4, 5 and 6 we developed a structure

to be employed in the design of block ciphers used in block-cipher-based hash

schemes. On the other hand, block ciphers are not the only functions which

are considered to be one-way and difficult to invert. For example, functions

such as RSA or the squaring modulo composite N are considered to be one-

way. In Chapters 7 and 8 we develop some generalized constructions for hash

functions from one-way permutations.

The current trend in cryptography is to provide the construction of

basic primitives with general cryptographic assumptions that are as weak as

possible. It is theoretically important to base cryptographic primitives and

basic tools on reduced complexity assumptions. Practically it is important to

7.1 Introduction 133

give efficient implementations of such constructions. Each successive paper

on the construction of hash functions has assumed weaker conditions for the

one-way function, and then suggested a construction for hashing with more

complicated procedures. Finally, Rompel gave a construction for one-way

hash functions from any one-way function and proved that the existence of

one-way functions is a necessary and sufficient condition for constructing

hash functions [Rompel, 1990]. However, although his work is theoretically

optimal, it is less than practical. We give a brief description of these theoretic

constructions later in Section 7.4.

Two formal complexity-theoretic definitions have been suggested for

cryptographic hash function families. The first family of hash functions, de-

fined by Damgard, is the Collision Free Hash Functions (CFHF) or Collision

Intractable Hash Functions (CIH). We gave a rough definition of this type of

hash functions in Section 2.3.1, where they were called strong hash functions.

We give the precise formal definition of such a family of functions in Section

7.3. The second family, defined by Naor and Yung, is the Universal One Way

Hash Functions (UOWHF). This family is weaker than the previous one. We

gave a rough definition for this type of hash functions in Section 2.3.1, where

they were called weak hash functions. We will also give the precise formal

definition of such family of functions in Section 7.3.

Zheng, Matsumoto and Imai revealed a duality between pseudorandom

bit generators (PBG) and UOWHF. Applying the revealed duality, they pre-

sented a construction for UOWHF which is equivalent to the construction

of Blum-Micali pseudorandom bit generators [Zheng et al., 1990a]. Blum

and Micali discovered hard-core predicates b of functions f [Blum and Mi-

call, 1984]. Such predicates cannot be efficiently obtained, given f (x) . They

applied this notion to construct a PBG based on the intractability of the

discrete logarithm problem. However, the efficiency of this method is lim-

ited by the number of hard bits of the underlying one-way permutation. It

is noteworthy that Yao generalized this scheme by showing that a PBG can

be constructed from any one-way permutation [Yao, 1982]. He transforms

any one-way permutation into a more complicated one which has a hard-

core predicate. Similar to the works on hash functions, later works on the

construction of pseudorandom bit generators have tried to make more gener-

alizations and assume weaker conditions on the one-way function, for example

134 Chapter 7 A CONSTRUCTION FOR ONE W A Y HFS AND P B G S

see [Goldreich and Levin, 1989] and [Impagliazzo et al., 1989],

In this chapter, we present a method such that given an n-bit one-way

permutation with some known hard bits, a one-way permutation with n hard

bits can be constructed. We call this one-way permutation a strong permuta-

tion. We apply it to present a construction for pseudorandom bit generators

with maximum efficiency, based on the Blum-Micali pseudorandom bit gen-

erator. We also present a method to build a universal one-way hash function

from the strong permutation. Hence, given a one-way permutation, we can

construct both an efficient pseudorandom generator and a universal one-way

hash function. We show that by the application of the strong permutation,

Zheng, Matsumoto and Imai's scheme can be reduced to Damgard's design

principle for construction of hash functions, and will yield the same result.

Therefore, our proposal yields an algorithm that can be used both for gen-

erating pseudorandom bits, and hashing long messages. This has a practical

significance, since it would not be necessary to use two different algorithms

for implementing these two cryptographic tools. The results of this chapter

have appeared in [Sadeghiyan and Pieprzyk, 1991a].

7.2 N o t a t i o n

The notation we use in this chapter and Chapter 8 is similar to [Zheng et al.,

1990a]. The set of all non-negative integers is denoted by N. Let E = {0, 1}

to be the alphabet we consider. For n E N, ~]n is the set of all binary strings

of length n. The concatenation of two binary strings x, y is denoted by x II Y.

The length of a string x is denoted by I x I.

Let I be a monotone increasing function from N to N and f a function 1

from D to R, where D = (J~ D~, D,~ C E ~ and R = I.J~ R~, R~ C Zt(,0. D

is called the domain and R the range of f . Denote by f~ the restriction of

f to E =. The function f is a permutation if each fn is a one-to-one and

onto function, f is polynomial time computable if there is a polynomial time

algorithm computing f (x) for all x E D. The composition of two functions f

and g is defined as f o g (x) = f(g(x)) . The/-fold composition of f is denoted

by f(0.

1Note that the definition of function in this chapter is different from the definition of
function in Section 4.5.

7.3 Preliminaries 135

An (probability) ensemble E, with length l(n), is a family of probability

distributions {En [En : E z(~) --* [0, 1], n E N}. The uniform ensemble U with

length l(n) is the family of uniform probability distributions Un, where each

U~ is defined as Un(x) = 1 for all x E E l(n). By x EE E l(n) we mean that x 21-~,

is randomly selected from E l(n) according to En, and by x E~ S we mean that

x is chosen from the set S uniformly at random. E is samplable if there is

an algorithm M that given input n, outputs an x EE E l(n), and polynomially

samplable if the running time of M is also polynomially bounded.

7.3 P r e l i m i n a r i e s

In this section, the formal definitions for Universal One Way Hash Functions

and Collision Free Hash Functions together with some preliminary definitions

are presented, which are used throughout Chapters 7 and 8. We give other

required definitions as necessary in the text.

Def in i t ion 7.1 A statistical test is a probabilistic algorithm T that given an

input x, where x is an n-bit string, halts in time O(n t) and outputs a bit 0

or 1, where t is some fixed positive integer.

Def in i t i on 7.2 Let I be a polynomial, and E 1 and E 2 be ensembles both with

length l(n). E 1 and E 2 are called indistinguishable from each other, i f for

each statistical test T, for each polynomial Q and for all sufficiently large n,

1
I Prob{T(Xl) = 1} -P rob{T(x2) = 1} [<

Q(n)

where X 1 EEl E l(n), X 2 EE2 E l(n).

Def in i t i on 7.3 A polynomially samplable ensemble E is pseudorandom if it

is indistinguishable from the uniform ensemble U with the same length.

Def in i t i on 7.4 Let f : D -+ R, where D :: Un En and R = On Et(n), be a

polynomial time computable function. We say that f is one-way if for each

136 Chapter 7 A CONSTRUCTION FOR ONE WAY HFS AND PBGS

probabilistic polynomial time algorithm M, for each polynomial Q and for all

sufficiently large n,

1
Prob{f~(M(f~(x))) = f~(x)} < Q(n----)

where x Eu D~.

Let l be a polynomial with l(n) > n and let H be a family of hash

functions defined by H = Un H=, where Hn is a set of functions from E l(s) to

~ , For two strings x, y E Et(,~) with x # y, we say that x and y collide under

h E H , or (x, y) is a collision pair for h, if h(x) = h(y). H is polynomial time

computable if there is a polynomial time algorithm computing all h E H, and

accessible if there is a probabilistic polynomial time algorithm that on input

n E N outputs uniformly at random a description of h E H~. Let F be

a collision finder. F is a probabilistic polynomial time algorithm such that

on input x E E l('~) and h E Hn outputs either ? (cannot find) or a string

y E E~(n) such that x # y and h(x) = h(y). The definition for a Universal

One Way Hash Functions (UOWHF) is formally described as follows.

Def in i t ion 7.5 Let H be a computable and accessible hash function com-
pressing l(n)-bit input into n-bit output strings and F a collision string finder.
H is a universal one-way hash function if for each F, and for each polynomial

Q and for all sufficiently large n,

1
Prob{F(x,h) #?} < Q(n---)

where x E E z('~) and h E~ H~. The probability is computed over all h Er Hn,

x E E t('~) and the random choice of all finite strings that F could have chosen.

The definition for Collision Free Hash Function is given by Damgard

in [Damgard, 1987]. Let A be a collision-pair finder. A is a probabilistic

polynomial time algorithm that on input h E H,~ outputs either ? or a pair

of strings x ,y E E l(n) with x # y and h(x) = h(y). The definition for a

Collision Free Hash Function is formally described as follows:

Def in i t i on 7.6 H is called a collision free hash function if for each A, and

for each polynomial Q, and for all sufficiently large n,

1
Prob{a(h) 4?} < Q(n-----~

7.4 Theoretic Constructions 137

where h E~ Hn, and the probability P r o b { A (h) # ? } is computed over all

h E Hn and the random choice of all finite strings that A could have chosen.

Note that a particular hash scheme was considered to be secure in

Chapter 2, if there was no algorithm which could find colliding messages using

the computing resources that today's technology provides. But a theoretical

construction is considered to be secure if there is no algorithm running in

polynomial time which can find colliding messages.

7.4 T h e o r e t i c C o n s t r u c t i o n s

In this section we give a brief review of constructions suggested for Univer-

sal One Way Hash Functions, which have more theoretic significance. Naor

and Yung were the first who introduced the concept of a UOWHF and sug-

gested a construction based on a one-way permutation. In their construction,

they took advantage of the notion of universal family of functions with colli-

sion accessibility property, which had already been introduced in [Carter and

Wegman, 1979]. The general definition for these functions is given in the

following:

Definit ion 7.7 Suppose G is a set of functions and each element of G is

a function from A to B. G is strongly universal if given any r distinct

elements a l , . . . , a~ of A, and any v elements b l , . . . ,br of B, then there ave

(#a) functions which take al to bl and au to b2 and so on. (#B)2

Definit ion 7.8 A strongly universalr family of functions G has the collision

accessibility property if it is possible to generate in polynomial time a function

g C G that obeys the requirement

g (a l) = 51

g (a :) =

g (ar) = br

138 Chapter 7 A CONSTRUCTION FOR ONE W A Y HFS AND PBGS

7 .4 .1 N a o r a n d Y u n g ' s S c h e m e

Naor and Yung showed that the existence of a secure signature scheme re-

duces to the existence of a UOWHF [Naor and Yung, 1989]. Furthermore, the

construction of a UOWHF can be reduced to the construction of a UOWHF

that compresses one bit. Using the same method as introduced by Carter

and Wegman in [Carter and Wegman, 1979] and [Wegman and Carter, 1981],

Naor and Yung constructed a family of UOWHF's by the composition of

any one-way permutation and a family of strongly universal2 hash functions

with the collision accessibility property. The general definition for strongly

universal functions is given in Definition 7.7. In Naor and Yung's construc-

tion, the one-way permutation provides the one-wayness of the UOWHF, and

the strongly universal2 family of hash functions performs the mapping to the

small length output. When a member is chosen randomly and uniformly

from the family, the output is distributed randomly and uniformly over the

output space.

T h e o r e m 7.1 Let f be a one-way permutation on E ~ and let G= be a str-

ongly universals family of hash functions from E ~ to E '~=a, then Hn = {h =

g o f I g E G,~} is a UOWHF compressing n-bit input strings to (n - 1)-bit

output strings.

In the above construction, the size of the description of the hash function

is O(n2), where n is the size of the input. The above construction is not

efficient in practice, as it compresses only one bit each time. This can be

improved by a factor t when a strongly universalt hash function is used.

7 . 4 . 2 Z h e n g , M a t s u m o t o a n d I m a i ' s F i r s t S c h e m e

This construction is based on the composition of a pairwise independent

uniformizer and a strongly universal hash function with a quasi-injection one-

way function 2. This construction together with the definition of a pairwise

independent uniformizer is given below:

~As the definition of quasi-injection one-way functions involves other definitions which
are beyond the scope of this brief survey, we refer an interested reader to [Zheng et al.,
1990b].

7.4 Theoretic Constructions 139

Def in i t ion 7.9 Let V~ be a set of permutations from l(n)-bit strings to l(n)-

bit strings. V = Un V~ is a pairwise independent uniformizer, i f for each n,

for every (xi, and for every with x,, ya, �9 and xl r

and Yl 7 ~ Y2, there are exactly

2~(~)(21(~) - 1)

permutations in Vn that map xl to yl and x~ to y~.

T h e o r e m 7.2 Let f be a quasi injection one-way function from D to R,

where D = U~ En, R = U~ Era(n) and let rn be a polynomial with re(n) > n.

Let V = U,~ V~ be a pairwise independent uniformizer with length rn(n) and

let G = U,~ G,~ be a strongly universal hash function that compresses m(n)-bit

input into (n - 1)-bit output strings with the: collision accessibility property.

Then H,~ = {h I h = g o v o f~+l,g E G~+~,v �9 Vn+~}, is a universal one-way

hash function compressing (n + 1)-bit input into n-bit output strings.

7 . 4 . 3 D e S a n t i s a n d Y u n g ' s S c h e m e s

De Santis and Yung made two contributions in this area. First, they im-

proved the construction of Naor and Yung by applying a one-to-one one-way

function, instead of a one-way permutation. Second, they presented two con-

structions for a UOWHF with weaker assumptions on the applied one-way

function [De Santis and Yung, 1990].

The first construction is based on the existence of a one-way function

with small expected preimage size, which is a one-way function such that,

when an element in the domain is chosen randomly, the expected size of the

preimage of the element in the range is small. An example of such a function

is squaring modulo a composite. Another example is any one-way function

which is independent of part of its input and just applies to the rest of the

argument.

The second construction is based on the existence of a one-way function

with an almost-known preimage size. In other words, when an element in

the domain is given, an estimate of the si2;e of the preimage set is easily

computable, with a polynomial uncertainty. An example of such a function

140 Chapter 7 A CONSTRUCTION FOR ONE WAY HFS AND PBGS

is a regular function, which is a function such that every image of an n-bit

input has the same number of preimages of length n. Another such function

is decoding random linear codes. Subset sum is another example of such a

function.

The details of the constructions are beyond the scope of this brief sur-

vey, as it needs other definitions and more explanations.

7.4.4 Rompel's Scheme

Rompel managed to construct a UOWHF from any one-way function

[Rompel, 1990]. His construction is rather complicated and elaborate, and a

detailed explanation is beyond the scope of this survey. However, the idea

is to transform any one-way function into a UOWHF through a sequenca of

complicated procedures. First, the one-way function is transformed into an-

other one-way function such that for most elements of the domain it is easy

to find a collision, except for a fraction of them. From this, another one-way

function is constructed such that for most of the elements it is hard to find a

collision. Subsequently, a length increasing one-way function is constructed

such that it is almost everywhere hard to find any collision. Finally this is

turned into a UOWHF, which compresses the input such that it is difficult

to find a collision.

7.5 H a r d Bi t s and P s e u d o r a n d o m Bi t Gen-

erat ion

All the schemes presented in Section 7.4 are of theoretical importance, es-

pecially Rompel's scheme as it can be shown that one-way functions are

necessary and sufficient for secure digital signatures. In other words, if there

exists a one-way function, it is possible to construct a secure digital signature.

However, they are rather impractical.

Zheng, Matsumoto and Imai showed that there is a duality between one-

way hash functions and pseudorandom bit generators [Zheng et al., 1990b]. A

pseudorandom bit generator is a function that given a randomly chosen input,

7.6 Hard Bits and Pseudorandom Bit Generation 141

called a seed, outputs a longer string which cannot be efficiently distinguished

from a truly random one. On the other hand, a one-way hash function

generates a shorter string for a longer one given as the input. The output is

called the hash value and it is computationally difficult to find a pair of strings

that are compressed to the same hash value. They suggested a construction

which is a dual of the Blum-Micali pseudorandom bit generator. For brevity,

we call it the ZMI scheme. The goal of this construction is to provide a

practical scheme, rather than reducing the assumptions on the complexity

of the functions used. However, this construction has a limitation. It is

impossible to compress more than O(log n) bits, due to their assumption

which is the application of any one-way permutation with some known hard

bits.

In this section, we present the notion of hard bits, which is the ba-

sis of the Blum-Micali pseudorandom bit generator and also the ZMI hash

scheme, and the definition of the Blum-Micali pseudorandom bit generator.

In the next section, we present a one-way permutation which we call strong,

and we show how to apply it in order to achieve an efficient Blum-Micali

pseudorandom bit generator, and an efficient hash scheme.

First an informal definition of hard bits. If a function f is one-way then

given f (x) the argument x must be unpredictable [Blum and Micali, 1984]. If

every bit of the argument x were easily computable from f (x) , then f would

not be a one-way function. Therefore, some specific bits of the argument are

unpredictable, and we cannot guess them any better than by flipping a coin.

We call these bits hard bits of f .

Def in i t ion 7.10 Let f : D ~ R be a one-way function, where R = LJ,~ p n

and D = U,~Nt(n). Let i(n) be a function from N to N with 1 <_ i(n) <_ n.

If, for each probabilistic polynomial time algorithm M, for each polynomial

Q and for all sufficiently large n,

1 1
Prob{M(f~(x)) = x',(~)} < ~ + Q(n----)

where X Er ~n and x~(~) is the i(n)-th bit of an x' E ~n satisfying f (x) =

f (x ') , then the i(n)-th bit is a hard bit o f f [Zheng et al., 1990a].

The definition of hard bits implies that under f -1 a hard bit depends on all

bits of f (x) , where f -1 is a hard problem and does not run in polynomial

142 Chapter 7 A CONSTRUCTION FOR ONE W A Y HFS AND PBGS

time. Another intuitive description by Goldreich and Levin is that such bits

concentrate the one-wayness of the function in a strong sense [Goldreich and

Levin, 1989].

Note that the one-wayness of a function is relative to a specific model

of computation with a specific amount of computing resources. On the other

hand, the unpredictability or randomness of bits or strings are also relative

to the specific model of computation with the specific amount of computing

resources. In this chapter, we investigate n-bit one-way permutations and

also the randomness of n-bit long strings, where the running time of an algo-

rithm is a polynomial Q(n) in the length of input. Q(n) can be represented as

being equal to 2 ~("), where a(n) is of order O(log 2 n). tr may be used instead

of Q whenever it is more convenient. For example, a computing resource for

k bits is defined as follows.

De f in i t i on 7.11 We say we have a computing resource for k bits if, given

the output of a one-way function and n - k bits of the input string, one can

find the rem'aining k bits of the input string by exhaustive search.

For the remainder of this chapter, we assume that the available com-

puting resources are for less than k bits such that 2 TM has a growth rate

slightly greater than any polynomial in n.

L e m m a 7.1 The number of hard bits indicates the difficulty of inverting a

one-way function if all the remaining bits are easily calculated.

P r o o f : Assume that only a small number of bits of a function are hard

bits and, when the output is given, we can obtain every remaining bit with
1 1 a probability better than ~ + ~ in polynomial time. A probabilistic algo-

rithm M that first predicts the easy bits and then does an exhaustive search

for finding hard bits can invert the function f in polynomial time with a

probability at least 1 For example, consider that a function has been Q-~.
proven to have only log2(n) hard bits and all its remaining bits are easy to

calculate. If n = 512 then only 9 bits are hard. If we have a computing

resource for more than 9 bits, which we usually have, then given the output,

the input can be obtained in polynomial time with a probability better than
1 Q

Q(,~)"

7.5 Hard Bits and Pseudorandom Bit Generation 143

Hence, a one-way function which has n - k - 1 bits that are easy to

predict, for example, appear directly in the output, should have k + 1 hard

bits.

L e m m a 7.2 All the hard bits are independent of one another.

P r o o f : We give a proof by contradiction. Assume that the il ,i2-th bits

are hard bits that are dependent on each other and there is a probabilis-

tic algorithm M that can calculate il-th bit given both f (x) and i2-th bit

with a probability better than Q--]-~.I Then, we can construct a probabilistic

algorithm M' for guessing the il-th bit.

Algorithm M':

1. Guess the i2-th bit by flipping a coin (guess with probability 0.5).

2. Given the i2-th bit and f (x) , run M and find the il-th bit.

1 1 . then Prob{M'(f (x)) = xil } > ~ + Q-~, which is a contradiction. []

From the above lemma, the following corollary is drawn readily.

C o r o l l a r y 7.1 Let f : D ---+ R be a one-way function, where D = Un En and

R = [. J ~ E z(~). Assume f has t hard bits, t < : n - k , and j < k of them and

f (x) are given, we cannot predict any of the remaining t - j hard bits with a
1 1 probability better than ~ + Q(~).

As we are going to describe the Blum-Micali pseudorandom bit gen-

erator, the formal definition of the next bit test is given below. The notion

of next bit test was presented roughly in Chapter 4, where it was suggested

that for a bit generator to be pseudorandom, it should pass the next bit test.

De f in i t i on 7.12 Let l be a polynomial, and E be an ensemble with length

l(n). We say that E passes the next bit te~t if for each statistical test T,

for each polynomial Q and for all sufficiently large n, the probability that on

input the first i bits of a sequence x randomly selected according to E and

i < l(n), T outputs the (i + 1)th bit o f x is

1 1
Prob{T(x l , . . . ,z;) = xi+l) < -~ + Q(n----)

where x E~ E l(~).

144 Chapter 7 A CONSTRUCTION FOR ONE W A Y HFS AND PBGS

The following theorem is derived from [Yao 82] and has been stated in

[Alexi et al., 1988], [nlum and Micali, 1984] and [Goldreich et al., 1986] in a

different form.

T h e o r e m 7.3 Let E be an polynomially samplable ensemble, the following

statements are equivalent:

�9 E passes the next bit test.

�9 E is indistinguishable from the uniform ensemble U.

In other words, the indistinguishability test is equivalent to the unpredictabil-

ity test.

C o r o l l a r y 7.2 Assume that f : D ~ R is a one-way function, where D =

U~ E n and R = Un E t(n). Also assume that i1,i2,... , it are functions from N

to N, with 1 <_ ij(n) <_ n for each 1 < j < t, t < k and each ij denotes a hard

bit of f . Denote by E 1 and E~ the probability distributions of the random

variables xid,O.., xi~(n) xil(,) [[f (x) and r t . . . r2 rl]] f (x) respectively, where

x E~ E", xiA, 0 is the ij(n)-th bit o f z and rj E~ E. Let E 1 = {E~ I n E N}

and E 2 = {E~ I n E N}, then E 1 and E ~ are indistinguishable from each

other.

P r o o f : From Corollary 7.1, it can be concluded that every string of t < k

hard bits passes the next bit test. This is equivalent to saying that given

f (x) , any string of t < k hard bits is indistinguishable from a string chosen

uniformly at random from E t, according to Theorem 7.1. []

In other words, given f (x) , any string of t < k hard bits is indistin-

guishable from a random string. Such hard bits are called simultaneous hard

bits of f . Note that the maximum number of simultaneous hard bits of any

one-way function cannot be more than n - k.

The notion of hard-core predicates of functions was first discovered by

Blum and Micali and was applied to construct pseudorandom bit generators

(PBG). In the following PSB is defined.

7.5 Hard Bits and Pseudorandom Bit Generation 145

Def in i t i on 7.13 Let l be a polynomial with l(n) > n. A pseudorandom bit

generator is a deterministic polynomial time function g that upon receiving a

random n-bit input, extends it into a sequence of l (n)-bi t pseudorandom bits

bl, b2, . . . , bl(n) as the output.

In other words:

1. Each bit bk is easy to compute.

2. The output bits are unpredictable, in other words the output string

passes the next bit test, that is given the generator g and the first s

output bits bl, . . �9 bs, but not the input string, it is not computationally

feasible to predict the (s + 1)th bit in the sequence

The following theorem describes the Blum-Micali PBG.

T h e o r e m 7.4 Let l be a polynomial with l(n) > n, and let f be a one-way

permutat ion on D = Us En and let the i (n)- th bit be a proven hard bit of f .

Let g, be a function defined as follows:

1. Generate the sequence f (') (x) , f (2) (x) , . . . , f (l (' ~)) (x) , where x e E '~.

2. From right to left (!), extract the i-th bit f rom each element in the above

sequence and output that bit.

so, gn(x) = b,(n)(x) . . , bu(x) bl(x) where x e E ~ and bj(x) = (the i- th bit of

f2)(x)) . The g = {gn I n N} is a pseudorandom bit generator extending

n-bit into l(n)-bit output strings.

If the il(n), . . . , i t (n)- th bits are simultaneous hard bits of f , then the

efficiency of g can be improved by defining the bj(x) to be a function which

extracts all known simultaneous hard bits of f (J)(x) . In [Alexi et al., 1988],

it was proved that the log2(n) least significant bits of the RSA and Rabin

encryption functions are simultaneously hard. Hence, if we use the RSA or

Rabin functions instead of the one-way permutation, with each iteration of

the function we can extract log~(n) bits. For example, if n is equal to 512 and

we would like to produce a 512 bit pseudorandom string, we should iterate

the one-way permutation for r z---~-] r s12 1 /los2(,~) = /1og:~(512)/ = 57 times. If a one-way

permutation has more known hard bits, we (:an use it instead of the RSA or

Rabin function and obtain better efficiency.

146 Chapter 7 A CONSTRUCTION FOR ONE W A Y HFS AND PBGS

7.6 A Strong One-Way Permutation

In this section we construct a one-way permutation with maximum number

of hard bits, which can be used for the construction of both the Blum-Micali

pseudorandom bit generator and one-way hash functions. Before describing

the construction some preliminary definitions are given. These definitions

are from [Webster and Tavares, 1985].

Defini t ion 7.14 A transformation is called complete/f each output bit de-

pends on all input bits. In other words, the simplest Boolean expression for

each output bit contains all the input bits.

Defini t ion 7.15 If the inverse of a complete transformation is also com-

plete, it is described as being two-way complete. In other words, each output

bit depends on all the input bits and vice-versa.

L e m m a 7.3 Ira permutation is complete, then it is also two-way complete.

Defini t ion 7.16 If the correlation between two binary variables is zero, they

are called independent variables.

We do not include the definition of correlation here, as it is not neces-

sary. However, it is given in [Webster and Tavares, 1985] for the interested

reader.

Defini t ion 7.17 Let v be a complete permutation and let all the output bits

be pairwise independent. We call v a perfect permutation.

Kam and Davida in [Kam and Davida, 1979] presented a method where

an entire substitution-permutation network could be guaranteed to be com-

plete, if all the substitution boxes used in the procedure were complete.

DES is an example of a complete cryptographic transformation. Since DES

is reversible and the inverse function (decryption) has the same structure as

encryption, DES is a two-way complete transformation. Webster and Tavares

showed that there is very little correlation between output variables of DES

7. 6 A Strong One- Way Permutation 147

[Webster and Tavares, 1985]. So, we can conclude that DES is an exam-

ple of a perfect permutation in our definitions. Brown has used the known

design criteria of DES to build an extended 128-bit DES and has shown

that his scheme has similar cryptographic properties to DES [Brown, 1989].

Extending the DES structure for more bits, for example 512 bits, has the

disadvantage that the running time is relatively high and comparable to that

of a public key cryptosystem. For the following theorems, we use a two-way

complete permutation such that only k + 1 output bits are independent of

the other bits and we call it a (k+ 1)-bit perfect permutation, which has much

looser requirements than a perfect permutation.

L e m m a 7.4 Let f be an n-bit one-way permutation and V be the set of all n-

bit permutations which are computable in polynomial time, then m = f o v o f

is also a one-way permutation, when v Er V.

P r o o f : Both f and v are polynomial time computable permutations, so the

result of their composition is a polynomial time computable permutation. It

is also one-way as f is a one-way permutation. The probability that m would

not be one-way, is equal to the probability of inverting f in polynomial time,

and is less than 1 [] Q(n)"

By putting some conditions on v and f , we can make the one-way per-

mutation m such that it would be a permutation with the desired properties.

T h e o r e m 7.5 Let m : D --~ D be a one-way permutation where D = (.J~ E n

and m -= f o v o f , where f is a one-way permutation and it has at least k + 1

hard bits, and v is a (k + 1)-bit perfect permutation where the positions of

independent output bits correspond to the position of hard bits of f . For each

probabilistic polynomial time algorithm M, for each polynomial Q and for all

sufficiently large n,

1 1
Prob{M(m(x)) = xi} < -~ + Q(n)

where x Er E "~ and xi is the i-th bit of the x, and 1 < i < n. In other words,

each bit of x is a hard bit of re.

P r o o f : We obtain our proof by contradiction. We show that given re(x),

if an algorithm could find xi, it would he able to invert f . For simplicity of

148 Chap te r 7 A C O N S T R U C T I O N F O R O N E W A Y H F S A N D P B G S

notation, we indicate the first one-way function by f l and the second one by

f2, so m = f2 o v o f l . Assume that M is an algorithm that given re(x), can

predict xi with a probability bigger than �89 + Q-~). In other words, xi is not

a hard bit of m. Two situations may arise:

. When xi is not a hard bit of fx:

Since the i-th bit is not a hard bit of fa, given f l (x) there exists an

algorithm M ~ that can find the i-th bit with a probability bigger than

a + Q-~'x Without loss of generality, consider v to be an invertible

permutation. Due to the two-way completeness property of v, all bits

of v o f l (x) depend on all bits of f l (x) and vice-versa. So, to obtain

f~ (x) , we need to know all the bits of v o fa (x) . Since v is an invertible

function in polynomial time, given v o f l (x) , it is possible to find the

i-th bit of x,

1 1
P rob{U ' (v o f l (x)) = xi} > ~ + Q'(n----~

The probability equation simply says that we can predict xi by tossing

a coin with probability 1/2 or estimating it given v o f l (x) with a

probability better than 1 / Q ' (n) . In other words,

1
Prob{estimating xi I v o f l(x)} > Q'(n-'---)

Without loss of generality, we assume that f2 is a one-way permutation

such that given a f2 (y) , we can guess n - k - 1 bits of y efficiently.

Moreover, the k + 1 independent bits of v correspond to the hard bits

of f2, and knowing some other bits of v o f~ (x) (that is, other than the

independent output bits of v) and v, we cannot calculate all the bits of

v o f l (x) . In accordance with the assumption that the i-th bit is not

a hard bit of m, the following also holds:

1
< Prob{estimating xi I f2 o v o fa(x)} Q(n)
= Prob{estimating xi I v o fx(x)} •

Prob{obtaining v o f~(x) I]'2 o v o fa(x)}

Since the multiplication of two polynomial expressions is another poly-

nomial expression, the following holds for some polynomial Q".

1
Prob{ob ta in ing v o f x (x) [f2 o v o f l(x)} >

Q " (n)

7. 6 A Strong One- Way Permutation 149

This is equivalent to inverting f2 and contradicts our assumpt ion tha t

f2 is a one-way permutation.

2. When xl is a hard bit of f l :

by performing a procedure similar to the first case, it is obvious tha t

the i-th bit should also be a hard bit of m.

[]

L e m m a 7.5 Let m = f2 o v o f l be a one-way permutation, where f~ and v

are defined as in Theorem Zb, and let f l to be a one-way permutation such

that given t < n - k bits of x, no ~ > k bits of f (x) can be guessed with a

probability better than ~ , then given re(x) and any t < n - k bits of z , m (x)

still cannot be inverted.

P r o o f : Since t < n - k bits o f x are known, the value of f l (x) can be

guessed with a probability equal to 21_,, where n - t > k. Hence, any bit of

v o f~(x) cannot be est imated with a probability bet ter than ~ < ~ , if v

is a two-way complete permutation. Without loss of generality, assume tha t

given f2 o v o fa (x), n - k - 1 bits of v o fx (x) can be guessed efficiently. Since the

position of the hard bits of f2 correspond to the positions of the independent

bits of v, given n - k - 1 bits of v o f l (x) , we cannot still es t imate the k + 1

independent output bits of v with a probability better than 1 2-r*-r- The only

possibility for reversing m is that the hard bits of f2 and the t < n - k

bits of x be related to each other by some function such tha t revealing the t

bits of x makes est imating the hard bits of f~ probable. Such possibility has

been excluded by assuming that f l is a one-way permutat ion such tha t given

t < n - k bits of x, no g > k bits of f (x) can be guessed with a probabil i ty

better" than ~ . Because, even if v o fx(x) and f~(x) are related to each other

by a system of linear equations, knowing n - k - 1 bits of v o f l (z) and g < k

bits of the f l (x) , the system of equations still cannot be solved. []

Note that the conditions of Lemma 7.5 for f l only exclude one-way

permutat ions that split into two or more parts, for example f (x l II x2) =

xl [[g(x2). As the definition of hard bits implies tha t the hard bit affects

all the output bits, if a one-way permutat ion with some hard bits had been

150 Chapter 7 A C O N S T R U C T I O N F O R O N E W A Y HF S A N D P B G S

used for f l , then the above conditions would be satisfied without any fur ther

assumptions.

L e m m a 7.6 Let m = f2 o v o f l be the one-way permutation defined in

Theorem 7.5, then given re(x) and any string of t < n - k bits of x, m

cannot be inverted.

L e m m a 7.6 suggests a simple construction for a one-way permuta t ion

m such tha t each bit of x is a hard bit of m and given any t < n - k bits of

x and m (x) , m cannot be inverted. We call such a permutat ion m a strong

one-way permutat ion or simply a strong permutation. The following corollary

can be drawn from Lemma 7.6.

C o r o l l a r y 7.3 Assume that m : D --~ D is a strong one-way permutation,

where D = [J~ E n. Also assume that i x , i2 , . . . , i t are funct ions f rom N to N ,

with 1 <_ i j (n) <_ n for each l <_ j < t, t < n - k. Denote by E 1 and E~ the

probability distributions of the random variables x~,(,) . . , x~2(~) xq(,) [[m (x)

and f t . . . r2 ra 11 m (x) respectively, where x ET E '~, xi,(,~) is the i j (n) - th bit

of x and rj eT ~. Let E l = {E~ [n e N } and E 2 = {E~ [n E N } , then E '

and E 2 are indistinguishable f rom each other.

In other words, any string of t < n - k bits of x is indistinguishable from a

random string.

We can now construct an efficient Blum-Micali pseudorandom bit gen-

erator with the strong one-way permutat ion suggested in Theorem 7.5.

T h e o r e m 7.6 Let l be a polynomial with l(n) > n and m be a strong one-

way permutation. Let g be a function defined as follows:

1. Generate the sequence m(1)(x],~ ~ ~, m(2)(z~ ~ ~ , . . . , m(t(n))(x), where x E ~n.

2. From right to left, extract n - k " 1 bits f rom each element in the above

sequence and output them.

Then g is a pseudorandom bit generator extending n-bit input to (n - k -

1)l(n)-bi t output strings.

7. 7 U O W H F Construction and P B G 151

Since we have a computing resource for k bits, the above scheme yields the

maximum possible efficiency. If k = 128 (l) and n is 512, then with 2

iterations of m, or 4 iterations of f , we can extract 766 pseudorandom bits.

This yields nearly 192 pseudorandom bits per iteration of f , which is 21

times more efficient than using the RSA or Rabin function with the scheme

described in Theorem 7.4.

Note that since the output string is pseudorandom, we can also draw

the following corollary.

Corol lary 7.4 The n - k - 1 extracted bits o f each iteration is distributed

uni formly and randomly in E =-k-1 .

7.7 U O W H F C o n s t r u c t i o n and P B G

Damgard in [Damgard, 1989] used pseudorandom bit generators for hash

functions by extracting a small portion of tile output string. Later, Zheng,

Matsumoto and Imai revealed a duality between the construction of pseudo-

random bit generators and one-way hash functions [Zheng et al., 1990a]. We

show that the construction presented in Theorem 7.6 for a PBG, can also be

used for the construction of a UOWHF. Before showing this, we make some

remarks about UOWHF's.

For universal one-way hash functions, there is no guarantee that it is

not computationally feasible to find pairs of inputs that map onto the same

output. However, there should not be too many such pairs. So, choosing x

randomly, it should be unlikely that anyone can find an x' such that h(x) =

h(x ') [Merkle, 1989b]. However, if we assume that h is random, that is,

hashing is accomplished by looking up the correct value in a large table of

random numbers, then it is possible to choose x in a non-random way since

any method of choosing x that does not depend on h is random with respect

to h.

Another problem with universal one-way hash functions is that repeated

use weakens them. To deal with this problem, we can simply define a family

of one-way hash functions with the property that each member hi of the

family is different from all other members, so any information about how to

152 Chapter 7 A CONSTRUCTION FOR ONE W A Y HFS A N D PBGS

break hi will provide no help in breaking hj for i # j (see [Merkle, 1989b]).

If the system is designed so that every use of a weak one-way hash function is

parameterized by a different parameter, then the overall system security can

be kept high. The UOWHF that Naor and Yung constructed was based on

the application of a one-way permutation and a strongly universal2 family of

hash functions. In the next subsection, we show how to construct a UOWHF

by applying the strong one-way permutation presented in Section 7.6.

7 . 7 . 1 U O W H F B a s e d on the Strong One-way P e r m u -

ta t ion

The following theorem describes the construction of the UOWHF.

T h e o r e m 7.7 Assume that m : D ~ D is a strong one-way permutation,

where D = [,J,~ E n, and chop1 : E ~ --* E n-1 simply chops the last bit, then

h = chop1 o m is a universal one-way hash function.

P r o o f : We obtain our proof by contradiction. Assume that there is a

probabilistic algorithm F that can find a collision, then we show that we can

make an algorithm that can invert m. Suppose that we first choose an x at

random, then run m on x to get m(x), we then obtain h(x) = chopl(m(x)).

There is only one element that can collide with re(x) under chop1. This

element differs from re(x) in one bit. Let us write this element as re(y). If

a collision finder can find a y which collides with x under h with probability

greater than O-~}' it can obtain y from re(y) with the same probability. This

contradicts our assumption that m is a one-way permutation. []

L e m m a 7.7 If we define lchop : E '~ ~ y]n-1 to chop one bit and the position

of the chopped bit is given in the description of the function and can be any

bit, then h = lchop(m(x)) is also a universal one-way hash function.

Proof Sketch: The problem of finding a collision for h, defined in Lemma

7.7, can be reformulated to finding x, y and x ~ y, such that re(x) and re(y)

match at all bits except at the one specified in the definition of the lchop

7. 7 UOWHF Construction and PBG 153

function. By repeating a procedure similar to that for the proof of Theorem

7.7 the claim of this lemma can be shown to be true. []

Since according to Corollary 7.3 and Corollary 7.4 the output of m

is distributed uniformly and randomly in E ~, then to find y by exhaustive

search, we need to perform 2 =-1 operations on average. If this much compu-

tation is greater than 2 ~, then it is not feasible to find the collision.

If we chop t bits of m(x) , then there are (2 t - 1) elements which col-

lide with x under h. If these elements are distributed randomly among 2 n

elements, then we need to do 2 ~-t search operations to find a collision for x.

Since our computational resource can do at most 2 k search operations then

t should be less than n - k.

C o r o l l a r y 7 . 5 Let chopt : E ~ - ~ E ~ - t chop the t last bits and let t < n - k ,

then h = chopt o m is a universal one-way hash function.

Note that the scheme described in the above corollary increases the

efficiency of the hash function scheme, so for hashing long messages, we need

to do less iterations. We can also generalize the above scheme by introducing

tchop, a function which chops t bits of the output. In this case, we need

(n - k - 1) log 2 n bits to specify the positions of the chopped bits.

7 . 7 . 2 P a r a m e t e r i z a t i o n

Since the hash function presented in Corollary 7.5 is a universal one-way hash

function, we should parameterize it to make it secure for implementation in a

practical scenario. The parameterization can be done in two different ways:

. We can parameterize h by selecting v from a family of (k + 1)-bit perfect

permutations. Then H = {h = chopt o f o v o f I v C Vn} where Vn is

the (k + 1)-bit perfect permutation family and chopt chops the t last

bits.

. We can parameterize h by selecting the function for the compressing

procedure from a family of hash functions. We may choose a family of

chop functions. In this case, the number of bits required to specify a

154 Chapter 7 A C O N S T R U C T I O N FOR ONE W A Y HFS A N D P B G S

member of the family is at most equal to (n - k - l) log 2 n. Alternatively,

we could choose a family of t to 1 strongly universal hash function as

proposed in [Naor and Yung, 1989].

7.7.3 Compressing Arbitrary Length Messages

One of the main desirable properties of hash functions is that they should be

applicable to an argument of any size. Damgard suggested a design principle

in [Damgard, 1989] based on fixed size collision free hash functions. Another

method appeared in [Zheng et al., 1990a] and is the dual of the Blum-Micali

pseudorandom bit generator. Let us call it the ZMI method. We show that

using the strong one-way permutation proposed in Theorem 7.5, these two

methods actually yield one scheme for hashing long messages.

D a m g a r d ' s m e t h o d : Let l(n) be a polynomial with l(n) > n, let f

be a collision free one-way hash function f : E "+t ~ E ~ and let a E~ ~n.

Split an l(n)-bit message x into t-bit blocks and let the blocks be denoted by

xl ,x2, . . . ,x~_~_. If
t

yo = a

Y i + l : f (Y i II X i + 1)

then h(x) = Y t ~ is the hash value of the 10ng message x.
t

Z M I m e t h o d : Let f be a one-way permutation f : E~+t ~ E,~+t and

let I (n) = (il, i 2 , . . . , it) denote the known simultaneously hard bits of f . Let

x = x t . . . X2Xl E Et and b E En. Define insl(n)(b, x) be a function inserting

bits of x in the il-th, . . . , it-th bits of b, that is:

insl(n) (b, x) = bn . . . b i t x t b i t - 1 . . . bi~ X l b i l - 1 . . . b 2 b l

Let z E E n+t and denote by droPi(n)(z) a function dropping the i r t h , . . . ,

i t-th bits of z. Let l be a polynomial with l(n) > n and let a E E~. Split an

l(n)-bit message x into t-bit blocks denoted by x l, x2 , . . . , xt~/, where xi E E t
t

for each 1 < i < ~t-~" Let h be the function from E l('0 to E '~ defined by:

7.8 A Single construction for UOWHF and PBG 155

YO ~ C~

Y l = dropt(.)(f(insi(n)(yo, x ~ _ ~ .)))
t

Yl = dropi(n)(f(insi(n)(yi- l ,X~_i+l)))

then h(x) = Y~_~A, = dropi(n)(f(inst(,~)(yt~_l,XX))). In the original

ZMI scheme h(x) = f (inst(,~)(y~_l ,Xl)) . If we use the strong one-way

permutation m in the ZMI scheme for f , since the t least significant bits

are simultaneously hard bits, then the dropl(,) function performs identically

to the chopt function defined in Corollary 7.5. So, dropt(,)(f(x)) in the

ZMI method would be identical to chopt(m(x)) of Corollary 7.5, which is a

universal one-way hash function from E "+t to E '~. On the other hand, when

the t last bits of a function are simultaneously hard bits, then insi(,)(y0, xt_~)

would yield the same result as (y0 II So using the strong one-way

permutation with the ZMI scheme would yield the same result as using the

one-way hash function proposed in Corollary 7.5 with Damgard's method,

when the message blocks are fed in a similar order.

7.8 A Single cons truc t ion for U O W H F and

P B G

Each iteration of the pseudorandom bit generator presented in Theorem 7.6

is identical to the hash function presented in Corollary 7.5. Assume that we

have a computational resource for at most k=63 bits. For the construction

of the PBG of Theorem 7.6, an algorithm should extract at most n - k - 1

bits, and throw away at least k+ 1 bits on each iteration. On the other hand,

for the construction of the one-way hash function according to Corollary 7.5,

we may chop at most n - k - 1 bits, and leave k + 1 bits as the hash value.

If we choose k < t < n - k, for example for n = 512 we choose 64 < t < 448,

then the algorithm can be used both for pseudorandom bit generation and

universal one-way hashing.

156

7.9

Chapter 7 A C O N S T R U C T I O N FOR ONE W A Y HFS A N D P B G S

C o n c l u s i o n s and E x t e n s i o n s

.

.

We constructed a strong permutation with a (k + 1)-bit perfect per-

mutation, namely a complete permutation whose k + 1 output bits are

independent. A (k + 1)-bit perfect function can be constructed easily

as follows:

v(x) = c(x) G PBGk+l (x)

where x E E '~, c(x) is a complete permutation and PBGk+I(X) denotes

k + 1 output bits of a pseudorand0m bit generator, for the seed x. How-

ever, we constructed a UOWHF and also an efficient pseudorandom bit

generator with the strong permutation. This confirms Naor and Yung's

conjecture that if pseudorandom bit generators exist then UOWHF's

exist [Naor and Yung, 1989].

For the construction of the strong permutation we assumed that the

position of k + 1 hard bits of the one-way function f corresponds to

that of the k + 1 independent bits of v. The following generalization

can easily be shown to be true.

I f v is a perfect permutation then rn = f o v o f is a strong one-way

permutation, where f is any one-way permutation.

In other words, there is no need to know the exact positions of the

hard bits of f . As we mentioned earlier, the running time of a perfect

permutation based on a DES structure for large enough n, for example

n=512, is rather big.

A reasonable question is whether we can apply some simpler mathemat-

ical functions, such as y = (aix) 3 mod m, and/or y = (ax + b) mod m,

or a composition of such functions for v. In Chapter 8, we investigate

how multiple compositions of polynomials of y = px + q in GF(2 n) with

a one-way permutation can be employed to construct a strong one-way

permutation.

C h a p t e r 8

H o w to Construct a Fami ly of

Strong One-way P e r m u t a t i o n s

8.1 I n t r o d u c t i o n

Much effort has been spent to identify the hard bits of some specific num-

ber theoretic one-way functions. In [Alexi et al., 1988] it is shown that the

O(logn) least siginficant bits of the RSA and Rabin encryption functions

are individually hard, and that those O(log n) bits are also simultaneously

hard. In addition, it is shown in [Long and Wigderson, 1988] that the ex-

ponentiation function, that is f(x) = g*(modP), where P is a prime and

g is a generator of Z~, also has O(log n) hard bits. Both these works take

advantage of complicated techniques based on number theoretic approaches.

A breakthrough in this area is due to Goldreich and Levin [Goldreich

and Levin, 1989] who have shown how to build a hard-core predicate for

all one-way functions. They have extended the construction to show that

O(log n) pseudorandom bits can be extracted from any one-way function.

Their result cannot be improved without imposing additional assumptions

on the one-way function [Goldreich and Levin, 1989], leaving the problem of

constructing a function with O(n) simultaneous hard bits open. However, if a

one-way function is proven to have a higher degree of security, then a greater

number of pseudorandom bits could be extracted using the same method.

158 Chapter 8 HOW TO CONSTRUCT A FAMILY...

In [Blum and Goldwasser, 1985], [Goldwasser and Micali, 1984] a con-

struction for a probabilistic encryption function was presented, for which all

the bits of the presented one-way function are simultaneously hard. This

construction is based on the composition of hard bits from many one-way

functions.

Another significant work in this area is due to Scherift and Shamir.

They have shown in [Scherift and Shamir, 1990] that half of the input bits of

an exponentiation function (modulo Blum integers), that is f (x) = g~(mod

N) where N is a Blum integer, are simultaneously hard and almost all bits are

individually hard to evaluate. This work also takes advantage of complicated

techniques. As a result, exponentiation modulo a Blum integer is as yet the

only natural function with O(n) proven simultaneous hard bits.

In Chapter 7, an n-bit one-way permutation such that each input bit

is individually hard and any t < n - O(log n) input bits are simultaneously

hard is called a strong one-way permutation. In this chapter, we show how

to construct a family of strong one-way permutations, such that all input

bits of a permutation are hard and any t < n - O(log n) input bits are

indistinguishable from a random string. In contrast with [Goldwasser and

Micali, 1984], which composes the hard bits of many one-way functions, we

compose one-way permutations to get a strong one-way permutation. Two

practical schemes are proposed. Both schemes take advantage of the family

of polynomials in a Galois field. The first scheme is based on the existence
O n of a one-way permutation and is constructed with (l-h-~g~) fold composition

of a one-way permutation, and a randomly chosen element of the family of

polynomials in a Galois field. The second scheme is based on the existence of

a hiding one-way permutation, and is constructed with a three layer structure

applying a hiding one-way permutation, a randomly chosen element of the

family of polynomials in a Galois field and any one-way permutation.

Section 8.2 gives some preliminary comments on hard bits. In Section

8.3, after investigating some properties of polynomials in a Galois field, the

proposed constructions are presented.

The results of this chapter have appeared in [Sadeghiyan et al., 1991].

8.2 Preliminary Comments

8.2 Preliminary Comments

159

We gave the formal definition of one-way functions in Chapter 7. However,

informally speaking, one-way functions are those which are easy to compute

but difficult to invert. It is clear that the one-way property of a function is

relative to a specific amount of computing resources in a specific model of

computation. In this chapter, we assume that we have a computing resource

for at most 2 k(n) operations, where k(n) = O(]og n). We also assume k+(n) is

a function with a growth rate slightly more than k(n) such that n - k + > k.

As an example, consider k+(n) = O(logl"~

If a function f is one-way then given f (x) the argument x must be

unpredictable. If every bit of the argument x were easily computable from

f (x) , then f would not be a one-way function. Hard bits are some specific

bits of the argument which are unpredictable and cannot be guessed with a

probability better than by flipping a coin [Blum and Micali, 1984], [Zheng

et al., 1990a]. There may exist some one-way functions which do not have

any hard bits. However, we require that any one-way function should have

more than k(n) = O(logn) bits which are unpredictable, though they may

be biased.

If a one-way permutation f had t = n - k + (the maximum possible)

known simultaneous hard bits, it could be used in the Blum-Micali pseu-

dorandom bit generator scheme to obtain the maximum efficiency for the

generator, where the maximum number of bits per iteration of f can be

extracted. We called such a one-way permutation a strong one-way permu-

tation Or simply a strong permutation 1.

In the next section, we present two schemes for the construction of

strong one-way permutations, where we take advantage of polynomials over

the Galois field GF(2~). In the following, some properties of these polyno-

mials which are of interest to us are investigated. However, first we consider

the notion of strongly universal~ hash functions, presented by Carter and

Wegman in [Wegman and Carter, 1981].

1Note the term 'strongly one-way permutation' has been used in [Goldreich et al., 1988]
with a different meaning, however, as the term strong one-way permutation conveys our
desired meaning we used it with the new definition.

160 Chapter 8 H O W TO C O N S T R U C T A FAMILY...

Def in i t ion 8.1 Suppose G is a set of functions and each element of G is

a function from A to B. G is strongly universals i f given any two distinct
#G

elements al, a2 of A and any two elements bx, bs of B, then ~ functions

take al to bl and as to bs.

In other words, the values of g(x) and g(y) are independently and

uniformly distributed in B for every x ,y E A, when g E G is chosen

uniformly at random. Strongly universals sets of functions can be cre-

ated using polynomials over finite fields. As the simplest example consider

G = {g I g(x) = px + q; p, q e GF(2n)} in the finite field GF(2n).

A Few Observations

In Chapter 7, we defined complete permutations as permutations where each

output bit depended on all input bits. In other words, the Boolean expression

for each output bit contained all the input bits. Since the operation in the

Galois field GF(2 '~) is done modulo an irreducible polynomial, the resulting

permutation is such that the Boolean expression for each output bit contains

all the input bits. This is due to the properties of operations in Galois fields.

E x a m p l e : We investigate the case for GF(2a). Here, x is a string of

three bits, x2, xl, Xo, and represents the polynomial xsz 2 + XlZ + xo. Let p

represent p2z 2 + plz + po and q be q2z s q- qlz -I- qo. There are two irreducible

polynomials in GF(23), z 3 = z + 1 and z 3 = z s + 1. When the operation is

done modulo z 3 = z + 1:

g(x) = px + q = (q2 q- p2xo + plxl

-b (ql q- PlXO -1- pOX1

+ (qo -1- pOXO q- p2Xl

and when the operation is done modulo z 3 =

g(x) = px + q --- (q2 q- p2xo + plxl

+ (ql q- plxo + poxl

+ (qo +poxo +p2xl

+ po:r2 + p2z2)z 2

+ p2x2 + p2xl + plx2)z

+ pax2)

z2+ 1:

+ pox2 + p2z2 + p2xx)z 2

+ p2z2)z

+ plx2 + p2z2)

Both irreducible polynomial have produced some common terms, which are

functions of all the input bits, and some other terms in the coefficients of

8.2 Pre l iminary Commen t s 161

g(x) . This would happen if the operation was performed in any GF(2~).

So, it is clear tha t polynomials in GF(2 '~) result in a complete permutat ion.

Notice tha t when p, q are chosen at random, for every x, y, the outputs are

uniformly and independently distributed.

When we are operating in GF(2) the multiplication is equivalent to the

'AND' operation and addition is equivalent to the 'XOR' operation. So each

coefficient in g(x) is the inner product of x with a different string obtained

from p. Note that , if we represent x and g(x) as two vectors, they are related

to each other by a system of n linear equations. In the above example

when the irreducible polynomial is z 3 = z + 1 the above equations can be

represented as

po + P2 Pl P2 x 2] q2 []

g (x) = px + q = Pl + P2 po + P2 Pl x l + ql z 2 z I z ~

Pl P2 Po Xo qo

If we had applied polynomials of higher degree, such as g(x) = c~x 2 + f ix + 7,

a similar result would have been obtained. For the remainder of this chapter,

we use the simplest case g(x) = px + q, although all the following lemmas

and theorems are also true when g is of a higher degree. Notice tha t the

above relation can be stated in a vector representation as:

g (x) = p x + q

Moreover, p and q can be modified in a way such that g and x become related

to each other through a Toeplitz matrix. A Toeplitz matr ix is a mat r ix M

such tha t Mi,j = Mi+l,j+l for all i , j . For the above example, we may write

PO -t- P2 -1- r2 Pl P2 x2 q~

g = Pl + P2 + rl Po + P2 + r2 Pl xl + q~

Pl -1- ro Pl + P2 + rl Po 4- P2 -[- r2 Xo q~

r2

where r = rl is a randomly chosen vector, and q'2 = q2 + r2x2 and

ro

q~ = ql + f ix2 n u r 2 x l and q'o = qo + rox2 + (Pl + rl)Xl + (P2 -1- r2)x0.

L e m m a 8.1 I f g(x) = px + q, where p, q ~i GF(2 n) are chosen randomly,

and n - k + bits of the g(x) are known (or its k + bits are unknown) , then the

probability of guessing each bit of x is equal to 1 27r "

162 Chapter 8 H O W 7'0 CONSTRUCT A FAMILY...

P r o o f : Assume that there is an algorithm L which when given p, q and

some bits of g(x) lists all possible values of x. Since g is a permutation, if

one bit of g(x) is given, L will list all possible values of x which will be 2 ~-1

elements on average. In general, given i bits of g(x), L lists 2 ~-i possible

values of x. If n - k + bits of g(x) are given, L will list 2 k+ possible elements

for x. One can guess the correct value of x with a probability of 1 2k--~-. Since

g is a complete permutation and p and q are chosen randomly, the overall

probability of guessing any bit of x is equal to the probability of guessing the

value of x. []

Note that, for some specific values of p, q some bits of x could be guessed

efficiently, but when we consider the probability of guessing any bit of x over

all values of p and q, it is equal to 1 2k--~-"

8.3 Strong One Way Permutations

In this section we propose two schemes for the construction of strong one-way

permutations. The first construction is given in Theorem 8.1: the building

block of that construction is f o g. The following lemma investigates f o g.

L e m m a 8.2 Let m : D --* D be a one-way permutation where D = (J,~ ~'~

and m = f o g, where f is a one-way permutation, and where g = px + q

with p,q E~ GF(2n). Also assume that i i , i 2 , . . . , i k are functions from N

to N, with 1 <_ ij(n) <_ n / o r each 1 <_ j <_ k. Denote by EX~ and E~ the

probability distributions of the random variables x~k(,O.., xi2(n) xil(,O H re(x)

and rk . . . r2 rl H re(x) respectively, where x er ~n, x,r is the ij(n)-th bit

of x and rj er ~. Let E 1 = {E 1 In e N} and E 2 = {E~ In e g } , then E a

and E 2 are indistinguishable from each other.

In other words, given m(x), the probability of distinguishing any k-bit

string of x from a random string is less than ~ , where k = O(log n) when

the probability is calculated over all values of p, q. Note that Lemma 8.2

virtually says that, given f (x ') and p', q' E, GF(2 n) it is hard to guess any

O(log n) bits of x, where f (x ') = f o g(x) = m(x). As x = p'x' + q' is the

inverse of g(x) = x' = px + q, p, q E, GF(2n). So x is actually the concate-

nation of the inner products of x ~ with n different strings obtained from p~.

8.3 Strong One Way Permutations 163

P r o o f : Goldreich and Levin showed in [Goldreich and Levin, 1989] that:

given f (x ') and p', where f is any one-way function and [p' [=] x' l and p' is
an arbitrary string, the inner product of x' and pl is a hard-core predicate of

1 1 _ _ l j V 1 f , and cannot be guessed with a probability better than ~ + Q(I~'I) -- 2 Q(n)

for each probabilistic polynomial time algorithm and for each Q.

They also extended their result and showed that O(log n) hard bits can

be obtained from any one-way function, where the simultaneous hard bits

are the inner product of O(log n) different n-bit strings with x'. According

to [Goldreich and Levin, 1989], the set of strings may also form a Toeplitz

matrix. As was mentioned earlier, the matrix which relates x to g(x) can be

rearranged into a Toeplitz matrix, so the same sort of proof that has been

given in [Goldreich and Levin, 1989] could be presented here to show that

any k bits of x are indistinguishable from a random string when m(x) is

given. As the method that Goldreich and Levin used to proved their claim

is rather involved and complicated, we avoid repeating it here. However, a

simple and informal justification can be given as follows.

Without loss of generality, assume that f is a one-way permutation

which acts on k + bits and keeps the other bits unchanged. So, given re(x) =
f o g(x), it is hard to guess k + bits of g(x), but n - k + bits of g(x) can be

guessed efficiently. As was proved earlier, x and g(x) are related to each other

with a system of n equations with n variables. When n - k + bits of g(x) are

known, the system of equations can be reduced to a system in k + variables.

However, if any k+-bit string of x is given, the system of equations can be

solved and the values of the k + unknown bits of g(x) would be revealed. Since

there is no algorithm which can invert f with a probability better than 1
1 1 no bit of x can be guessed with an overall probability better than ~ + 2k-~--.

Moreover, any probabilistic algorithm M that could distinguish any t < k bit

string of x from a random string with a probability better than 1 would be
2 t

able to invert f with an overall probability better than ~ which contradicts

our assumption that f is a one-way permutation. []

The result of Lemma 8.2 can be compared with the results of Vazirani

and Vazirani in [Vazirani and Vazirani, 1984], where it is shown that the XOR

of any non-empty subset of hard bits is also hard to guess. Altogether, it can

be concluded that all bits of x are individually hard, and any k = O(logn)

164 Chapter 8 H O W T O C O N S T R U C T A F A M I L Y . . .

bits of x are simultaneously hard bits of f o g and cannot be distinguished

from a random string with a probability of success better than 1 7 , when the

probability is computed over all values of p and q.

8.3.1 A Scheme for the Construct ion of Strong Per-

mutat ions

With the Goldreich-Levin method, only O(log n) pseudorandom bits can be

extracted from any one-way function. This number of pseudorandom bits

cannot be improved without additional assumptions on the complexity of

the one-way function used. The reason this is true is that a one-way function

which cannot be inverted with a probability better than 0--~)' may act only

on log Q(n) of the bits of x and leave the rest unchanged [Goldreich and

Levin, 1989]. In Lemma 8.2, we constructed a one-way permutation f o g

such that any k input bits cannot be distinguished from a random string. If

we apply f o g as a one-way permutation in the Blum-Micali pseudorandom

bit generator, any k bits can be extracted per iteration of f o g. We take

advantage of such a one-way permutation to construct a family of strong

permutations.

In the following, we suggest two schemes to obtain strong permutations

and present the theorems behind them. The first scheme is based on the 8

fold composition of the f o g.

T h e o r e m 8.1 Let m : D --~ D be a one-way permutat ion where D = LJn ~

and m (f o g)8 = (f o g) o . . . o (f o g), where f is a one-way permutation,
Y

s times
and s = O(~),n and g = px q- q where p, q Er GF(2'~). Then m is a strong

one-way permutation.

P r o o f : First, we show that (f og)2 = f o g o f o g has 2k hard bits.

Let us denote the first k bits string of x to be x.--l, its second k bits to be

x.--2 and so on, and consider y = f o g(x) . Given (f o g)2(x), the string

x.--2 [[y.--1 is indistinguishable from a random string (this is true because the

concatenation of hard bits from each iteration in Blum-Micali pseudorandom

bit generator is indistinguishable from a random string and according to

8.3 Strong One Way Permutations 165

Lemma 8.2 any k bit of f o g is indistinguishable from a random string). As

x.__~ H y~-i forms a 2k-bit string, x G y has 2k bits which cannot be guessed

efficiently. Since any k bits of f o g are indistinguishable from a random

string, any 2k-bit string of x @ y is also indistinguishable from a random

string. So, for each probabilistic polynomial time algorithm M

1
P rob{M[(f o g)2(x)] = x ~ y} < 22k------ T

In the following, we will show that the above relation implies that:

P rob{M[(f o g)2(x)] = x} < 221k+

To justify this claim, by contradiction assume that there is a probabilistic

algorithm M' that can compute x with probability bet ter than 22At. By

applying M' in another probabilistic algorithm M", it can be shown that the

value of x | y can be computed with a probability bet ter than 1 M " 2~-~r. first

runs M' on (f o g)2(x) to get the value of x. Then M" runs f o g on x to

find the value of y. M" gives x | y as its output. If the value of x is correct,

the value of y would be correct with probability 1. Hence, M" outputs the

correct value for x | y with a probability better than 1 2~-~. This contradicts

our assumption that xOy cannot be guessed with probability bet ter than 1 22-~.
So, it can be concluded that for each probabilistic polynomial time algorithm

M
1

Prob{M[(f o g)2(x)] = x} < 22k----- ~-

In this way, a one-way permutation is obtained which is more complex than

f , without putting any condition on f . As the number of pseudorandom

bits extracted from a one-way function (or the number of simultaneous hard

bits) with the Goldreich-Levin method is bounded by the complexity or the

'security parameter ' (Goldreich and Levin's term) of the one-way function,

then 2k simultaneous hard bits can be extracted from (f o g)2. This can be

done by choosing a random 2k x n Toeplitz matrix, and multiplying it by x.

Note that, since p and q are chosen randomly and independently, the matrix

which relates g(x) to x can be arranged in a Toeplitz matrix form. In addi-

tion, the matrix can be arranged in such a way that for any predetermined

2k bits of x, the corresponding rows form a Toeplitz matrix. Hence, given

(f o g)2(x), any 2k bits of x cannot be distinguished from a random string.

This completes the proof that two fold iteration of f o g produces a one-way

166 Chapter 8 HOW TO CONSTRUCT A FAMILY...

function such that every 2k input bits are indistinguishable from a random

string.

Using induction and performing a proof similar to that above, it can

be shown that (f o g)i(x) has a complexity or security factor such that ik

random bits can be extracted from it. In addition, in a similar way it can

be shown that each input bit is individually a hard bit and any ik input

bits are simultaneous hard bits. Therefore, to obtain a one-way permutation

with any n - k input bits simultaneously hard, it is enough to construct an

fold iteration of f o g . With k = O(logn), a construction of O (lo-g~) fold

iteration of f o g is needed, which would be performed in polynomial time

anyhow. []

8 . 3 . 2 A Three-layer Construction for Strong Permu-
tations

In Lemma 8.2, we constructed a one-way permutation f o g such that any

k input bits cannot be distinguished from a random string. If there exists

another transformation (permutation) h (such that given any t bit string of

its input x, where t < n - k, it will be difficult to guess any k bits of its

output h(x)), then we can apply this function before g and get f o g o h(x)

as a one-way permutation. The probability of distinguishing any t < n - k

bit string of x from random strings is less than 1 2k--;-4-, when its output is given.

This result is proved in the next subsection. Since h would be able to hide

any k bits of its output, we call it a hiding permutation.

First, we introduce a definition for hiding permutations.

Def in i t i on 8.2 Assume that h : D ~ D is a permutation. Also assume that

in , . . . , it and j l , . . . , jk are functions from g to N, where 1 < il(n), j , (n) < n

for each 1 < l < n. We call h a hiding permutation, if for each probabilistic

polynomial time algorithm M, for each t < n - k and for each polynomial Q

and for all sufficiently large n,

] Prob{M(xi , , . . . ,xil H YJ. , '" 'YJk+)= YJk,''" ,YJl} -- ~-~]< 1__2_
Q(n)

where x Er ~n and xi denotes i-th bit of x, and yj denotes j- th bit of h(x).

8.3 Strong One Way Permutations 167

The following theorem shows how to make a strong permutation from

a hiding permutation.

T h e o r e m 8.2 If h is a hiding permutation and g = px + q, where p, q Er

GF(2'~), and f is any one-way permutation, then m = f o g o h is a strong

one-way permutation.

P r o o f Sketch: To prove that m is a strong one-way permutation we need

to show that any bit of x is hard to guess, and any n - k + bits of x are

simultaneously hard, given only re(x). Assume that, by contradiction, a

probabilistic polynomial time algorithm M could guess xi, given re (x) . Let

x ~ = h(x). Since any xi is a function of some bits of x ~, and according to

Lemma 8.2, any input bit of fog is individually a hard bit, then any algorithm

which can guess xi can guess a hard bit of f o g. This is contradictory to

the assumption that f is a one-way permutation, since computing any hard

bit of f o g is equivalent to reversing f . Hence, every xi is a hard bit of m.

Moreover, having t < n - k bits of x does not reveal any k bits of h(x), since

h is a hiding permutation. Then, having t < n - k bits of x would not help

in inverting m, given re(x) = f o g o h(x). So, for each polynomial Q and

for large enough n, any probabilistic polynomial time algorithm M cannot

distinguish any string of t < n - k bits of :r from a random string with a

probability better than Q-~), when re(x) is given. []

A method for hiding x is based on the application of a one-way permu-

tation which acts on all bits, and serves as a hiding permutation due to the

following lemma.

L e m m a 8.3 Any one-way permutation h which is complete, is a hiding per-

mutation.

P r o o f : We obtain a proof by contradiction. Assume that a one-way

permutation which is complete is not a hiding permutation. Then, there is a

probabilistic polynomial time algorithm M that can obtain YJk, . . . , YJl, given

x i t , . . . , xil, with the available computing resources. On the other hand, since

n - t > k bits of x are not given, then the k bits of the output obtained do not

depend on at least n - t - k bits of the input. This is equivalent to saying that

168 Chapter 8 H O W I ' 0 C O N S T R U C T A FAMILY.. .

h is formed from two functions, say hi, h2, with h(x) = hl (x l t+k , . . . , x i l) [[
h2(.). Obviously ha is not a function of x, which contradicts our assumption

that h is a complete permutation. []

Thus, a concrete example of the construction of a family of strong

one way permutations, based on using a complete one-way permutation as

the hiding permutation, is m(x) = f o g o h(x), where f is any one way

permutation, g = px + q where p,q Er GF(2n), and h is a complete one-way

permutation which acts on all its bits.

8.4 C o n c l u s i o n s

There are many functions that are considered to be one-way, so if someone

knows the value of f (x) , he can find the value of x for less than a fraction 1

of x's. This does not necessarily mean that any bit of x cannot b e guessed

efficiently. On the other hand, it is shown that O(log n) bits of the RSA and

the Rabin encryption schemes are hard to guess [Alexi et al., 1988]. Also, it

was shown that O(log n) bits of the exponentiation function are hard to guess

[Long and Wigderson, 1988]. This does not mean that the remaining bits are

easy to guess, but only that we do not yet have any proof about the remaining

bits. Recently it was shown that ~ bits of the exponentiation function are

simultaneously hard to guess, when the operation is done modulo a Blum

integer [Scherift and Shamir, 1990].

In this chapter, we showed how to make a family of strong one-way

permutations, such that whenever a member is chosen uniformly at random,

we get a one-way permutation such that all its input bits are hard and any

t < n - k bit string of input bits is indistinguishable from a random string,

with a high probability. Two schemes for this purpose were suggested. The

first scheme is based on a one-way permutation. The second scheme relies

on the existence of a hiding permutation. An open problem is to show that

a one-way permutation is complete, or cannot be split into two parts. We

also took advantage of the simplest family of polynomials in a Galois field

and showed that it is also a family of complete permutations: it had already

been shown that it is a family of strongly universal2 functions. The proposed

schemes for the construction of a family of strong one-way permutations can

8.4 Conclusions 169

be shown to work with families of polynomials of higher degree in Galois

fields as well, where such polynomials form a family of strongly universal~

functions. As it was shown in Chapter 7, a strong one-way permutation is

an effective tool for the construction of efficient pseudorandom bit generators

and universal one-way hash functions.

Chapter 9

Conclusions

This book has reviewed some existing cryptographic hash functions together

with methods of attacks on them, and has developed some principles for the

design of such functions. The results of the review and the development of

design principles may now be summarized.

9.1 Summary

Chapter 1 introduced the aim of the book and provided a background for the

theory and practice of secure hash schemes. The necessity for information

authentication in computer environment was explained and cryptographic

primitives to provide security mechanisms were presented. Particular em-

phasis was given to the notion of digital signature and digital signatures

with RSA encryption systems were introduced. Signature-hashing schemes

were described as an improvement over a digital signature scheme with RSA,

since some algebraic properties of RSA can be exploited to produce forged

digital signatures. Signature-hashing schemes provide not only better secu-

rity but also other desired properties such as efficiency. There were many

proposals for hash schemes, but, with a few exceptions, their security was left

as an open problem. The proposals were later analyzed and most of them

were found to be insecure. As the security question of many cryptographic

schemes and services reduces to the question of existence of a secure hash

scheme, the aim of the book was to develop some design principles for the

construction of secure hash functions.

9.1 Summary 171

Chapter 2 surveyed the area of hash functions in cryptography and

provided an overview of the different schemes proposed. Requirements for

secure hash functions were described, and different types of hash functions

with their specifications were also given. Hash functions were divided into

strong or collision-free hash functions and weak or universal one-way hash

functions, based on their degree of security'. They were also divided into

MAC, where a private key takes part in the scheme, or MDC, otherwise.

From the structural point of view, they were divided according to whether

they applied a block cipher as the underlying one-way function, in which case

they were called block-cipher-based hash functions, or whether they used any

other function which was easy to compute but considered difficult to invert.

Finally, principles for designing a hash function which hashes messages of

several block sizes, given a hash function which only hashes one message

block, were presented and two methods, namely, the serial method and the

parallel method were described.

Chapter 3 described different methods of attack on hash functions. The

birthday attack can be launched against any hash scheme. The probability

of success depends on the length of the hash value. For a 64-bit hash value,

gathering 233 hash values and messages increases the chance of finding two

messages having the same hash value to more than 63 %. This happens if

the hash scheme performs a random mapping; otherwise it would be possi-

ble to take advantage of the non-random behaviour of the hash scheme to

find two colliding messages with fewer operations. The other attacks depend

on the structure of the hashing scheme. The meet-in-the-middle attack can

be launched against hashing schemes which employ block chaining in their

structure. The correcting-the-last-block attack can be launched against hash

schemes based on CBC mode of DES, or on modular arithmetics. Some

other attacks take advantage of weaknesses, such as weak keys or some weak

structural algebraic properties, in the algorithm. The differential cryptanal-

ysis attack takes advantage of the non-uniform distribution properties of the

hash scheme.

Chapter 4 examined the notion of pseudorandomness, defined basic

ideas such as indistinguishability, and described recent developments in this

area. It also explained the relationship between this notion and the design of

172 Chapter 9 CONCLUSIONS

block-cipher-based hash functions. Based on the idea of indistinguishability,

pseudorandom bit generators, pseudorandom function generators and pseu-

dorandom permutation generators were defined. The construction of pseudo-

random permutation generators from pseudorandom function generators is

attributed to Luby and Rackoff. Their construction employs three rounds of

DES-like permutations and three pseudorandom function generators. When

a permutation generator is pseudorandom, it is secure against chosen plain-

text attack. Luby and Rackoff considered this as a justification for the appli-

cation of DES-like permutations in the structure of DES. Different trials for

reducing the number of pseudorandom functions together with their weak-

nesses were then described. The notion of super-pseudorandomness was pre-

sented. If a cryptosystem is super-pseudorandom, it is secure against a cho-

sen plaintext/ciphertext attack. It is possible to make a super-pseudorandom

permutation generator with four rounds of DES-like permutations and four

pseudorandom function generators. This has the implication that it is possi-

ble to achieve better security by adding to the number of rounds in DES-like

cryptosystems.

The meet-in-the-middle attack against a block-cipher-based hash

scheme is a super-distinguishing circuit for the underlying block cipher. If the

block cipher is secure against chosen plaintext/ciphertext attack, the meet-in-

the-middle attack cannot successfully be applied against the corresponding

block-cipher-based hash scheme. Hence we are interested in developing a

structure which can be used for the construction of cipher systems secure

against chosen plaintext/ciphertext attacks, so that it can be used for the

construction of block-cipher-based hashing algorithms.

Chapter 5 examined the construction of super-pseudorandom permu-

tations and presented necessary and sufficient conditions for achieving such

permutations. The conclusion drawn from the chapter was that a composi-

tion of DES-like permutations is super-pseudorandom if and only if the two

internal structures, that is, one without the :first round and one without the

last round, are not only pseudorandom but also independent permutations.

An important corollary of this result is that it is possible to construct a super -

pseudorandom permutation generator with four DES-like permutations and

only two pseudorandom function generators. This structure employs one

9.1 Summary 173

pseudorandom function generator for the first and second rounds and an-

other one for the third and the fourth rounds. It was also shown that a

four-round DES-like structure with a single pseudorandom function gener-

ator is not super-pseudorandom, although it may be pseudorandom. The

other contribution of this chapter is the investigation of the conditions for

super-pseudorandomness of generalized DES-like permutations. The major

result of this part is that it is possible to construct super-pseudorandom per-

mutations with k 2 rounds of type-1 Feistel type permutations, where k is the

number of branches of the structure.

Chapter 6 described a structure with a single pseudorandom func-

tion generator and six rounds of DES-like permutations which was super-

pseudorandom. First it was shown that the composition of Luby and Rackoff

permutation generators is also pseudorandom. However, it was shown it is

possible to achieve a perfect randomizer by composing two Luby and Rackoff

permutation generators by applying permutations instead of functions for

the intermediate layers. A structure with four random functions was pre-

sented which was also shown to be perfect. Then it was shown that the

same structure, with only two pseudorandom function generators, is super-

pseudorandom. Finally, it was shown that replacing one of the function

generators with a two-fold composition of the other one does not affect the

super-pseudorandomness of the permutation generator. In the same manner

that the result of Luby and Rackoff may be considered to be a justification for

the application of DES-like permutations in the structure of DES and DES-

like block ciphers, this structure can be recommended for the design of block

ciphers with better security so that they can be used in block-cipher-based

hash schemes.

As the other type hash functions are based on one-way functions other

than block ciphers, Chapters 7 and 8 assume that a one-way permutation is

given, and examine the construction of such hash functions. One-way func-

tions are functions that are easy to compute but difficult to invert. Chapter

7 presented a construction for one-way hash functions and pseudorandom

bit generators. This chapter first reviewed some complexity-theoretic con-

structions for hash functions, on the assumption that a one-way function

exists. These constructions, although important from a theoretical point of

174 Chapter 9 CONCLUSIONS

view, are less than practical. As hash functions can be considered as du-

als of pseudorandom bit generators, a practical scheme called the ZMI hash

scheme, which is dual to the Blum-Micali pseudorandom bit generator, was

based on the existence of a one-way permutation. This scheme, although

practical, suffers from low efficiency. To improve it, a one-way permutation,

which was called a strong one-way permutation, was constructed based on a

three layer structure. The first and the last layer of the construction was a

one-way permutation with some known hard bits and the intermediate layer

was a complete permutation with some independent output bits, where the

positions of the independent bits correspond to the positions of the hard bits

of the one-way permutation. Applying this strong permutation, an efficient

Blum-Micali pseudorandom bit generator and an efficient ZMI hash scheme

could be constructed. A concluding remark of this chapter was that, by ap-

plying the strong one-way permutation, the ZMI hash scheme is reduced to

the general design of Damgard for compressing long messages.

Chapter 8 examined a family of one-way functions that provides a prac-

tical proposal for the construction of strong one-way permutations. This

family has the property that, when a member is drawn randomly, every bit

of the input is a hard bit and every string of n - O(log n) bits of input is

simultaneously hard. This construction consists of @ times composition

of a one-way permutation with a family of strongly universal2 permutations.

With this structure, we are able to transform any one-way permutation into

an efficient hash function by applying the construction proposed in Chapter

7. However, it is also possible to reduce the number of layers to three by

applying a one-way function called a hiding permutation.

9.2 L imi ta t ions and A s s u m p t i o n s of the Re-

sults

This book has been primarily concerned with developing some principles

for the design of hash functions. In Chapter 2, we roughly divided hash

functions into two groups. The first group consisted of those schemes which

employ block ciphers in their structures. The design of block ciphers is

based on the theoretical work of Shannon, who proposed a substitution -

9.2 Limitations and Assumptions of the Results 175

permutation network for the provision of confusion and diffusion of the bits

in the construction of cryptographic algorithms. This led to the development

of block ciphers such as DES, FEAL and LOKI.

Lai and Massey showed that, for a block-cipher-based hash scheme,

any attack on its block cipher implies an attack of the same type on the

hash scheme with the same complexity [Lai and Massey, 1992]. The meet-

in-the-middle attack against a block-cipher-based hash scheme is a super-

distinguishing circuit for the underlying block cipher. If the block cipher is

super-pseudorandom, the meet-in-the-middle attack cannot successfully be

applied against the corresponding block-cipher-based hash scheme, when our

computational resources allow us to work on a polynomial (in the length of in-

put) variation of the message. In other words, if the underlying block cipher

acts like a random permutation in the face of chosen plaintext/ciphertext

attack, or is secure against chosen plaintext/ciphertext attack, then the

block-cipher-based hash scheme is secure against meet-in-the-middle attack.

Hence, it can be recommended to use block ciphers secure against chosen

plaintext/ciphertext attack in block-cipher-based hash schemes. It can be

recommended to apply structures for block-cipher-based hash schemes and

the block ciphers to be used in such schemes which make super-pseudoran-

domness achievable.

Unfortunately, the known block ciphers are at most claimed to be se-

cure against chosen plaintext attacks, and none of them claim to be secure

against a chosen plaintext/ciphertext attack. Most of the known block ci-

phers take advantage of DES-like structures. We restricted our investigation

to the DES-like structure, and we tried to improve it so that it would be pos-

sible to construct a block cipher secure against chosen plaintext/ciphertext

attack. Hence, we were interested in developing a structure which could

be used for the construction of cipher systems secure against chosen plain-

text/ciphertext attacks, so that it could be used for the construction of block-

cipher-based hashing algorithms. We investigated necessary and sufficient

conditions to achieve super-pseudorandomness for DES-like structures. We

also showed that k s rounds of type-1 Feistel type permutations would yield

a super-pseudorandom permutation, where k is the number of branches of

176 Chapter 9 CONCL USIONS

the structure. We showed that r f) and r 1 , / ,g , 1, f) are super-

pseudorandom. We also managed to construct a structure with a single pseu-

dorandom function generator. The result was: r 1, f , f2, 1, f) , which is

a six-round DES-like structure with a single pseudorandom function gener-

ator f . In the layers 1 and 4 of this construction, f is used directly, the

layers 2 and 5 just XOR one branch to the other one, and in the layers 3

and 6 a two-fold composition of f is used. Note that r f , f , f , f , f) is not

even pseudorandom, but r 1, f , f~, 1, f) is super-pseudorandom, while

no additional computation with respect to r f , f , f , f , f) is needed. So

r 1, f , f2, 1, f) can be adopted for the structure of block ciphers to be

used for block-cipher-based hash schemes, as it allows us to achieve super-

pseudorandomness and it requires only a single pseudorandom function gen-

erator.

The above results are based on the existence of a pseudorandom func-

tion generator. A method for the construction of pseudorandom function

generators was given by Goldreich, GoIdwasser and Micali, and was based

on the existence of a pseudorandom bit generator. However, the existence of

pseudorandom bit generators depends on the existence of one-way functions,

and it is not yet known whether a one-way function exists as it depends on

whether P ~ NP. In practice, designers attempt to achieve good S boxes,

instead of designing pseudorandom function generators. Hence, although the

proposed structure is sound, we have not yet constructed such a block cipher,

as we still need to solve other problems such as the design of good S boxes

and key scheduling or both.

The second group of hash schemes consisted of those schemes which

are based on one-way functions other than block ciphers. One-way functions

are those which are easy to compute but difficult to invert. As many dif-

ferent proposals for such schemes exists, we approached the problem from a

theoretical point of view. We developed some generalized constructions for

hash functions from one-way permutations. In fact, we assumed that a one-

way permutation existed and we build a generalized construction for hash

functions. First we noticed that the ZMI hash scheme can be improved if

a one-way permutation with a greater number of simultaneously hard bits

was incorporated in the scheme. Strong one-way permutations were defined

9.3 Prospects for Further Research 177

and a three-layer construction, assuming the existence of a one-way permu-

tation with k + 1 known hard bits and a (k + 1)-bit perfect permutation,

was proposed for its construction. It was also shown, it is possible to achieve

a strong one-way permutation with ~ times composition of any one-

way permutation with a family of strongly universal2 permutations. This

structure can be adopted to transform a one-way permutation into a strong

one-way permutation, and hence to obtain a hash function by applying the

constructions proposed in Section 7.7.2. The proposed schemes can be ap-

plied with any one-way permutation. A limitation is the necessity for proving

that a permutation in fact is one-way.

For functions such as RSA or exponentiation modulo a prime, the size

of the arguments should be big enough so that it would be infeasible to

invert them. For example, in the case of RSA, an argument length bigger

than 512 bits is recommended. A drawback is that, applying such functions

as the underlying one-way permutation makes the hash scheme rather time-

consuming.

However, it was also possible to reduce the number of layers to three,

by assuming the existence of a one-way function which was called a hiding

permutation.

9.3 P r o s p e c t s for Further R e s e a r c h

There have been many proposals for hash schemes, and some of them have

been in use for a while. However, with time, most of them have been broken.

One of the major reasons they were broken is advancement in technology.

Once 233 operations were far beyond the capability of computing resources;

nowadays this is within reach. At that time hash functions producing a 64-

bit result were reasonable designs, while today they are not. Today, if a

cryptographic mechanism requires 264 operations to be broken, it is consid-

ered secure, but who knows what the capabilities of future computers will

be ?! Perhaps in the near future this number of operations would be quite

accessible.

The unsuccessful efforts of many researchers who spent their t ime try-

ing to design practical hash schemes suggest that we should work on some

178 Chapter 9 CONCLUSIONS

guidelines or principles for the design of hash functions, instead of proposing

just another function which temporarily would seem secure. These designs

should be adaptable to the capabilities of new technology. In this book, we

developed some of these principles in such a way that we are not restricted

to some specific number of bits. At the end of each chapter, we included

related open problems, so we do not repeat them here. However, there is one

open problem that should be mentioned here. As we saw earlier, to achieve a

secure hash scheme the fundamental requirement is a one-way function which

is easy to compute. If this problem can be solved, or at least a function found

such that there is a considerable difference between the time necessary for

its computation and its inversion, it would strengthen all the efforts made

for the design of hash functions.

Bibliography

[Akl, 1983] S.G. Akl. On the Security of Compressed Encoding. In Ad-

vances in Cryptology - CRYPTO '83, pages 209-230. Plenum Publishing
Corporation, 1983.

[Alexi et al., 1988] W. Alexi, B. Chor, O. Goldreich, and C. P. Schnorr. RSA
and Rabin Functions: Certain Parts Are As Hard As the Whole. S I A M

Journal on Computing, 17(2):194-209, 1988.

[Banieqbal and Hilditch, 1990] B. Banieqbal and S. Hilditch. The Random
Matrix Hashing Algorithm. Technical Report UMCS-90-9-1, Department
of Computer Science, University of Manchester, 1990.

[Baritaud and Gilbert, 1992] T. Baritaud and H. Gilbert. F.F.T. Hashing is
not Collision-free. In Abstracts of Eurocrypt '92, pages 31-40, 1992.

[Berson, 1992] T. A. Berson. Differential Cryptanalysis Mod 232 with Appli-
cations to MD5. In Abstracts of Eurocrypt '92, pages 67-76, 1992.

[Biham and Shamir, 1990] E. Biham and A. Shamir. Differential Cryptanal-
ysis of DES-like Cryptosystems. In Abstracts of C R Y P T O '90, pages 1-19,
1990.

[Biham and Shamir, 1991a] E. Biham and A. Shamir. Differential Crypt-
analysis of FEAL and N-hash. In Abstracts of E U R O C R Y P T '91, pages
1-8, 1991.

[Biham and Shamir, 1991b] E. Biham and A. Shamir. Differential Crypt-
analysis of Snefru, Khafre, REDOC-II, LOKI and Lucifer. In Abstracts of

C R Y P T O '91, pages 4.1-4.7, 1991.

180 Bibfiography

[Blum and Goldwasser, 1985] M. Blum and S. Goldwasser. An Efficient
Probabilistic Public-Key Encryption Scheme Which Hides All Partial In-
formation. In Advances in Cryptology - CRYPTO '8~, volume 196 of
Lecture Notes in Computer Science, pages 289-299. Springer-Verlag, 1985.

[Blum and Micali, 1984] M. Blum and S. Micali. How to Generate Crypto-
graphically Strong Sequences of Pseudo-Random Bits. SIAM Journal on

Computing, 13(4):850-864, 1984.

[Brown, 1989] L. Brown. A Proposed Design for an Extended DES. In

Computer Security in the Age of Information. North-Holland, 1989. Pro-
ceedings of the Fifth IFIP International Conference on computer Security,
IFIP/Sec '88.

[Brown, 1991] L. Brown. Analysis of the DES and the Design of LOKI En-

cryption Scheme. PhD thesis, University College, University of New South
Wales, April 1991.

[Camion and Patarin, 1991] P. Camion and J. Patarin. The Knapsack Hash
Function proposed at Crypto '89 can be broken, 1991. In Abstracts of

EUROCRYPT '91.

[Carter and Wegman, 1979] J. L. Carter and M. N. Wegman. Universal

Classes of Hash Functions. Journal of Computer and System Sciences,

18:143-154, 1979.

[Charnes and Pieprzyk, 1992] C. Charnes and J. Pieprzyk. Linear nonequiv-
alence versus nonlinearity. In Abstracts of AUSCRYPT'92, Gold Coast,

December 1992, pages 4.4-4.11.

[Coppersmith, 1985] D. Coppersmith. Another Birthday Attack. In Ad-

vances in Cryptology - CRYPTO '85, Lecture Notes in Computer Science,

pages 14-17. Springer-Verlag, 1985.

[Coppersmith, 1989] D. Coppersmith. Analysis of ISO/CCITT Document
X.509 Annex D, 1989.

[Daemen et al., 1991a] J. Daemen, A. Bosselaers, R. Govaerts, and J. Van-
dewalle, Collisions for Schnorr's Hash Function Fft-Hash Presented at
Crypto '91, 1991. presented at the rump session of ASIACRYPT '91.

Bi bliography 181

[Daemen et al., 1991b] J. Daemen, R. Govaerts, and J. Vandewalle. A

Framework for the Design of One-way Hash Finctions Including Crypt-

analysis of Damgs One-way Function Based on a Cellular Automaton,

1991. in Abstracts of ASIACRYPT '91.

[Damgard, 1987] I. B. Damgard. Collision Free Hash Functions and Pub-
lic Key Signature Schemes. In Advances in Cryptology - E U R O C R Y P T

'87, volume 304 of Lecture Notes in Computer Science, pages 203-216.

Springer-Verlag, 1987.

[Damgard, 1989] I. B. Damgard. A Design Principle for Hash Functions. In

Advances in Cryptology - C R Y P T O '89, volume 435 of Lecture Notes in

Computer Science, pages 416-427. Springer-Verlag, 1989.

[Davida, 1982] G. I. Davida. Chosen signature cryptanalysis of the RSA
public key cryptosystem. Technical Report TR-CS-82-2, Dept. of Electrical

Engineering and Computer Science, Univ. of Wisconsin, 1982.

[Davies and Price, 1980] D. W. Davies and W. L. Price. The Application of

Digital Signatures Based on Public Key Cryptosystems. In Proceedings

of the Fifth International Conference on Computer Communication, pages

525-530, 1980.

[Davies and Price, 1984] D. W. Davies and W. L. Price. Digital Signature
- an update. In Proceedings of the Seventh International Conference on

Computer Communication, pages 845-849, 1984.

[Davies, 1983] D. W. Davies. Applying the RSA Digital Signature to Elec-

tronic Mail, 1983.

[De Jonge and Chaum, 1986] W. De Jonge and D. Chaum. Some Varia-

tions on RSA Signatures and their Security. In Advances in Cryptology -

C R Y P T O '86, volume 263 of Lecture Notes in Computer Science, pages

49-59. Springer-Verlag, 1986.

[De Santis and Yung, 1990] A. De Santis and M. Yung. On the Design of

Provably-Secure Cryptographic Hash Functions. In Abstracts of EURO-

C R Y P T '90, pages 377-397, 1990.

182 Bibliography

[den Boer and Bosselaers, 1991] B. den Boer and A. Bosselaers. An Attack
on the Last Two Rounds of MD4. In Advances in Cryptology - CRYPTO

'91, volume 576 of Lecture Notes in Computer Science, pages 194-203.
Springer-Verlag, 1991.

[Denning, 1984] D. E. Denning. Digital Signatures with RSA and Other
Public-Key Cryptosystems. Communications of the A CM, 27(4):388-392,

1984.

[DES, 1983] Data encryption algorithm - modes of operation, 1983. ANSI
X3.106-1983.

[DES, 1985] Data encryption algorithm, 19851 AS 2805.5.

[Diffie and Hellman, I976] W. Diffie and M. Hellman. New Directions in
Cryptography. IEEE Transactions on Information Theory, IT-22(6):644-
654, 1976.

[Garey and Johnson, 1979] M. Garey and D.S. Johnson. Computers and In-
tractibility: A guide to the Theory of NP-completeness. W.H. Freeman

and Co., San Francisco, 1979.

[Girault et al., 1988] M. Girault, R. Cohen, and M. Campana. A Generalized
Birthday Attack. In Advances in Cryptology - EUROCRYPT '88, volume
330 of Lecture Notes in Computer Science, pages 129-156. Springer-Verlag,

1988.

[Girault, 1987] M. Girault. Hash-Functions Using Modulo-N Operations. In
Advances in Cryptology - EUROCRYPT '87, volume 304 of Lecture Notes

in Computer Science, pages 218-226. Springer-Verlag, 1987.

[Goldreich and Levin, 1989] O. Goldreich and L. A. Levin. A Hard-Core
Predicate for all One-way Functions. In the 21st ACM Symposium on

Theory of Computing, pages 25-32, 1989.

[Goldreich et al., 1986] O. Goldreich, S. Goldwasser, and S. Micali. How to
Construct Random Functions. Journal of the ACM, 33(4):792-807, 1986.

[Goldreich et al., 1988] O. Goldreich, H. Krawczyk, and M. Luby. On the
Existence of Pseudorandom Generators. In Proceedings of the 29th IEEE

Symposium on the Foundations of Computer Science, pages 12-24, 1988.

Bib~ography 183

[Goldwasser and Micali, 1984] S. Goldwasser and S. Micali. Probabilistic
Encryption. Journal of Computer and System Sciences, 28:270-299, 1984.

[Goldwasser et al., 1988] S. Goldwasser, S. Micali, and R. L. Rivest. A Dig-
ital Signature Scheme Secure against Adaptive Chosen-Message Attacks.
S I A M Journal on Computing, 17(2):281-308, 1988.

[Harari, 1984] S. Harari. Nonlinear Non Commutative Functions for Data

Integrity. In Advances in Cryptology - E U R O C R Y P T '84, Lecture Notes
in Computer Science, pages 25-32. Springer-Verlag, 1984.

[Hellman et al., 1976] M. Hellman, R. Merkle, R. Schroeppel, and L. Wash-
ington. Results of an Initial Attempt to Cryptanalyse the NBS Data En-
cryption Standard. Technical report, Information Systems Lab., Depart-
ment of Electrical Engineering, Stanford University, 1976.

[Impagliazzo et al., 1989] R. Impagliazzo, L. A. Levin, and M. Luby. Pseudo-
random generation from one-way functions. In the 21st A C M Symposium

on Theory of Computing, pages 12-24, 1989.

[Jueneman et al., 1985] R. R. Jueneman, S. M. Matyas, and C. H. Meyer.

Message Authentication. IEEE Communication Magazine, 23(9):29-40,
1985.

[Jueneman, 1982] R. R. Jueneman. Analysis of Certain Aspects of Output

Feedback Mode. In Advances in Cryptology - C R Y P T O '82, pages 99-127.

Plenum Press, 1982.

[Jueneman, 1986] R. R. Jueneman. A High Speed Manipulation Detection

Code. In Advances in Cryptology - C R Y P T O '86, volume 263 of Lecture

Notes in Computer Science, pages 327-347. Springer-Verlag, 1986.

[Jueneman, 1987] R. R. Jueneman. Electronic Document Authentication.
IEEE Network Magazine, 1(2):17-23, 1987.

[Kam and Davida, 1979] J. B. Kam and G. I. Davida. Structured Design
of Substitution-Permutation Encryption Networks. IEEE Transactions on

Computers, 28(10):747-753, 1979.

[Lai and Massey, 1992] X. Lai and J. L. Massey. Hash Functions Based on
Block Ciphers. In Abstracts of Eurocrypt '92, pages 53-66, 1992.

184 Bibliography

[Levin, 1987] L. A. Levin. One-Way Functions and Pseudorandom Genera-
tors. Combinatorica, 7(4):357-363, 1987.

[Long and Wigderson, 1988] D. L. Long and A. Wigderson. The Discrete
Logarithm Hides O(log n) Bits. SIAM Journal on Computing, 17(2):363-
372, 1988.

[Luby and Rackoff, 1988] M. Luby and C. Rackoff. How to Construct Pseu-
dorandom Permutations from Pseudorandom Functions. SIAM Journal

on Computing, 17(2):373-386, 1988.

[Meijer and Akl, 1982] H. Meijer and S. Akl. Digital Signature Schemes.
Cryptologia, 6:329-338, 1982.

[Merkle, 1978] R. C. Merkle. Secure Communications over Insecure Chan-
nels. Communications of the ACM, 21(4):294-299, 1978.

[Merkle, 1979] R. C. Merkle. Secrecy, Authentication, and Public Key Sys-

tems. UMI Research Press, 1979.

[Merkle, 1989a] R. C. Merkle. A Certified Digital Signature. In Advances

in Cryptology - CRYPTO '89, volume 435 of Lecture Notes in Computer

Science, pages 218-238. Springer-Verlag,]989.

[Merkle, 1989b] R. C. Merkle. One Way Hash Functions and DES. In Ad-

vances in Cryptology - CRYPTO '89, volume 435 of Lecture Notes in Com-

puter Science, pages 428--446. Springer-Verlag, 1989.

[Merkle, 1990a] R. C. Merkle. Break of 2-pass snefru - reward for 4-pass
snefru, 1990. Newsgroups: sci.crypt.

[Merkle, 1990b] R. C. Merkle. Fast Software Encryption Functions. In Ab-

stracts of CRYPTO '90, pages 457-473, 1990.

[Merkle, 1990c] R. C. Merkle. A Fast Software One-way Hash Function.
Journal of Cryptology, 3:43-58, 1990.

[Merkle and Hellman 1978] R. C. Merkle and M. E. Hellman. Hiding in-
formation and signatures in trapdoor knapsacks. IEEE Trans. Inform.

Theory, volume IT-24(5), September 1978, pages 525-530.

Bibfiography 185

[Meyer and Matyas, 1982] C. H. Meyer and S. M. Matyas. Cryptography: a
New Dimension in Data Security. Wiley g: Sons, 1982.

[Mitchell and Walker, 1988] C. Mitchell and M. Walker. Solutions to the

multidestination secure electronic mail problem. Computers 8~ Security,

7:483-488, 1988.

[Mitchell, 1989] C. Mitchell. Multi-destination secure electronic mail. The

Computer Journal, 32:13-15, 1989.

[Miyaguchi et al., 1989] S. Miyaguchi, M. Iwata, and KI Ohta. New 128-bit

Hash Function. In Proceedings of 4th International Joint Workshop on
Computer and Communications, pages 279-288, 1989.

[Miyaguchi et al., 1990] S. Miyaguchi, K. Ohta, and M. Iwata. Confirma-

tion that Some Hash Functions Are Not Collision Free. In Abstracts of
EUROCRYPT '90, pages 293-308, 1990.

[Montolivo and Wolfowicz, 1987] E. Montolivo and W. Wolfowicz. Digital

Signature: an open problem. In System Security 87, pages 173-183, Pinner,

Middx, UK, 1987. Online Publications.

[Moore, 1988] J. H. Moore. Protocol Failures in Cryptosystems. Proceedings
of the IEEE, 76(5):594-601, 1988.

[Naor and Yung, 1989] M. Naor and M. Yung. Universal One-way Hash

Functions and their Cryptographic Applications. In the 21st ACM Sym-

posium on Theory of Computing, pages 33-43, 1989.

[Nishimura and Sibuya, 1990] K. Nishimura and M. Sibuya. Probability To

Meet in the Middle. Journal of Cryptology, 2:13-22, 1990.

[Ohnishi, 1988] Y. Ohnishi. A study on data security. Master's thesis, To-

hoku University, 1988. in Japanese.

[Ohta and Koyama, 1990] K. Ohta and K. Koyama. Meet-in-the-Middle At-

tack on Digital Signature Schemes. In Abstracts of Auscrypt '90, pages

110-121, 1990.

[Patarin, 1992] J. Patarin. How to Construct Pseudorandom and Super

Pseudorandom Permutations from One Single Pseudorandom Function.

In Abstracts of Eurocrypt '92, pages 235-245, 1992.

186 BibHography

[Pieprzyk and Sadeghiyan, 1991] J. Pieprzyk and B. Sadeghiyan. Optimal
Perfect Randomizers. In Abstracts of A S I A C R Y P T '91, pages 130-135,
1991.

[Pieprzyk and Zhang, 1990] J. Pieprzyk and X. Zhang. Permutation Gen-
erators of Alternating Groups. In Advances in Cryptology - A USCRYPT

'90, volume 453 of Lecture Notes in Computer Science, pages 237-244.
Springer-Verlag, 1990.

[Pieprzyk, 1990] J. Pieprzyk. Theory of Pseudorandomness and its Appli-
cation to Cryptography. Technical Report CS 90/15, University College,
The University of New South Wales, 1990.

[Pieprzyk, 1991] J. Pieprzyk. How to Construct Pseudorandom Permuta-
tions from Single Pseudorandom Functions. In Advances in Cryptology

- E U R O C R Y P T '90, volume 473 of Lecture Notes in Computer Science,

pages 140-150. Springer-Verlag, 1991.

[Preneel et al.,] B. Preneel, R. Govaerts, and J. Vandewalle. Collision resis-
tant hash functions based on blockciphers, submitted to CRYPTO '91.

[Preneel et al., 1992] B. Preneel, R. Govaerts, and J. Vandewalle. Crypto-
graphically Secure Hash Functions: an Overview, 1992.

[Quisquater and Delescaille, 1989a] J. J. Quisquater and J. P. Delescaille.
How Easy is Collision Search? Application to DES. In Abstracts of EU-

R O C R Y P T '89, volume 434 of Lecture Notes in Computer Science, pages

429-434. Springer-Verlag, 1989.

[Quisquater and Delescaille, 1989b] J. J. Quisquater and J. P. Delescaille.
How Easy is Collision Search? New results and applications to DES. In
Advances in Cryptology - CRYPTO '89, volume 435 of Lecture Notes in

Computer Science, pages 408-413. Springer-Verlag, 1989.

[Quisquater and Girault, 1989] J.J. Quisquater and M. Girault. 2n-Bit Hash
Functions Using n-Bit Symmetric Block Cipher Algorithms. In Abstracts

of E U R O C R Y P T '89, 1989.

[Rabin, 1978] M. O. Rabin. Digitalized Signatures. In R. A. Demillo, D. P.
Dobkin, A. K. Jones, and R. J. Lipton, editors, Foundations of Secure

Computation, pages 155-166, New York, 1978. Academic Press.

Bibliography 187

[Rivest et al., 1978] R. L. Rivest, A. Shamir, and L. Adleman. A Method for

Obtaining Digital Signatures and Public-Key Cryptosystems. Communi-

cations of the ACM, 21(2):120-126, 1978.

[Rivest, 1990] R. L. Rivest. The MD4 Message Digest Algorithm. In Ab-

stracts of CRYPTO '90, pages 281-291, 1990.

[Rompel, 1990] J. Rompel. One-way Functions are Necessary and Sufficient
for Secure Signatures. In the 22nd ACM Symposium on Theory of Com-

puting, pages 387-394, 1990.

[Rueppel, 1990] R. A. Rueppel. On the Security of Schnorr's Pseudo Random
Generator. In Advances in Cryptology - EUROCRYPT '89, volume 434 of
Lecture Notes in Computer Science, pages 423-428. Springer-Verlag, 1990.

[Sadeghiyan and Pieprzyk, 1991a] B. Sadeghiyan and J. Pieprzyk. A Con-

struction for One Way Hash Functions and Pseudorandom Bit Generators.
In Advances in Cryptology - EUROCRYPT '91, volume 547 of Lecture

Notes in Computer Science, pages 431-445. Springer-Verlag, 1991.

[Sadeghiyan and Pieprzyk, 1991b] B. Sadeghiyan and J. Pieprzyk. On Nec-

essary and Sufficient Conditions for the Construction of Super Pseudo-
random Permutations. In Abstracts of ASIACRYPT '91, pages 117-123,
1991.

[Sadeghiyan and Pieprzyk, 1992] B. Sadeghiyan and J. Pieprzyk. A Con-
struction for Super Pseudorandom Permutations from A Single Pseudo-
random Function. In Abstracts of EUROCRYPT '92, pages 247-256, 1992.

[Sadeghiyan et al., 1991] B. Sadeghiyan, Y. Zheng, and J. Pieprzyk. How

to Construct a Family of Strong One Way Permutations. In Abstracts of

ASIACRYPT '91, pages 55-59, 1991.

[Sadeghiyan, 1991] B. Sadeghiyan. An Overview of Secure Electronic Mail.
Technical Report CS 91/1, Department of Computer Science, University
College, The University of New South Wales, 1991.

[Scherift and Shamir, 1990] A. Scherift and A. Shamir. Discrete logarithm

is very discreet. In Proceedings of the ACM Symposium on Theory o]

Computing, pages 405-415, 1990.

188 Bibliography

[Schnorr, 1988] C. P. Schnorr. On the Construction of Random Number

Generators and Random Function Generators. In Advances in Cryptology

- EUROCRYPT '88, volume 330 of Lecture Notes in Computer Science,

pages 225-232. Springer-Verlag, 1988.

[Schnorr, 1991] C. P. Schnorr. FFT-Hashing, An Efficient Cryptographic
Hash Function, 1991. presented at the rump session of Crypto '91.

[Schnorr, 1992] C. P. Schnorr. FFT-Hash II, Efficient Cryptographic Hash-
ing. In Abstracts of Eurocrypt '92, pages 41-51, 1992.

[Seberry and Pieprzyk, 1989] J. Seberry and J. Pieprzyk. Cryptography, An

Introduction to Computer Security. Prentice Hall, 1989.

[Shannon, 1949a] C. E. Shannon. Communication Theory of Secrecy Sys-
tems. The Bell System Technical Journal, 28(4):656-715, 1949.

[Shannon, 1949b] C. E. Shannon. The Mathematical Theory of Communica-

tion. The University of Illinois Press, Urbana, 1949.

[Shimizu and Miyaguchi, 1987] A. Shimizu and S. Miyaguchi. Fast Data En-
cipherment Algorithm FEAL. In Advances in Cryptology - EUROCRYPT

'87, volume 304 of Lecture Notes in Computer Science, pages 267-278.
Springer-Verlag, 1987.

[Silverman, 1991] R. D. Silverman. Massively distributed computing and
factoring large integers. Communication of ACM , 34(11):95-103, 1991.

[Vandery, 1992] S. Vandery. FFT-Hash II is not yet collision-free. In Rump

Session, CRYPTO'92, 1992.

[Vazirani and Vazirani, 1984] U. V. Vazirani and V. V. Vazirani. Efficient
and Secure Pseudo-random Number Generation. In Proceedings of the

IEEE Symposium on Foundations of Computer Science, pages 458-463,
1984.

[Webster and Tavares, 1985] A. F. Webster and S. E. Tavares. On the Design
of S-boxes. "In Advances in Cryptology - CRYPTO '85, Lecture Notes in
Computer Science, pages 523-534. Springer-Verlag, 1985.

Bibliography 189

[Wegman and Carter, 1981] M. N. Wegman and J. L. Carter. New Hash

Functions and Their Use in Authentication and Set Equality. Journal of

Computer and System Sciences, 22:265-279, 1981.

[Winternitz, 1983] R. S. Winternitz. Producing a One-way Hash Function

from DES. In Advances in Cryptology - CRYPTO '83, pages 203-207.
Plenum Publishing Corporation, 1983.

[Wolfram, 1986] S. Wolfram. Theory and Application of Cellular Automata.

World Scientific, 1986.

[Yao, 1982] A. C. Ya~. Theory and Applications of Trapdoor Functions. In

the 23rd IEEE Symposium on the Foundations of Computer Science, pages

80-91, 1982.

[Yuval, 1979] G. Yuval. How To Swindle Rabin. Cryptologia, 3:187-189,

July 1979.

[Zheng et al., 1990a] Y. Zheng, T. Matsumoto, and H. Imai. Duality be-

tween Two Cryptographic Primitives. In the 8-th International Conference

on Applied Algebra, Algebraic Algorithms and Error Correcting Codes,

page 15, 1990.

[Zheng et al., 1990b] Y. Zheng, T. Matsumoto, and H. Imai. Structural

Properties of One-way Hash Functions. In Advances in Cryptology -

CRYPTO '90, pages 263-280, 1990.

[Zheng et al., 1990c] Y. Zheng, T. Matsumoto, and H. Imai. Impossibility

and Optimality Results on Constructing Pseudorandom Permutations. In

Advances in Cryptology - EUROCRYPT '89, volume 434 of Lecture Notes

in Computer Science, pages 412-422. Springer-Verlag, 1990.

[Zheng et al., 1990d] Y. Zheng, T. Matsumoto, and H. Imai. On the Con-

struction of Block Ciphers Provably Secure and Not Relying on any Un-

proved Hypotheses. In Advances in Cryptology - CRYPTO '89, volume

435 of Lecture Notes in Computer Science, pages 461-480. Springer-Verlag,

1990.

[Zheng et al., 1992] Y. Zheng, J. Pieprzyk, and J. Seberry. HAVAL - a one-

way hashing algorithm with variable lenght of output. In Abstracts of

AUSCRYPT'92, Gold Coast, December 1.(t92, pages 3.1-3.10.

190 Bibliography

[Zheng, 1990] Yuliang Zheng. Principles for Designing Secure Block Ciphers
and One-Way Hash Functions. PhD thesis, Division of Electrical and
Computer Engineering, Yokohama National University, 1990.

I n d e x

Berson 54

Biham and Shamir 33

Blum and Micali 133

Bhm-Micali PBG 145

Blum-Micali pseudorandom bit gen-

erator 141,164

Brown 147

CCITT standards 36

CFB 26

CFHF 133

CIH 133

Camion and Patarin 39

Carter and Wegman 138, 159

Cellhash 41

Coppersmith 28, 31, 37, 52, 53

D-distinguishing oracle circuit 81

DES key collisions 54

DES-like permutation 66, 92

DES-type cryptosystem 116

DES 4, 14, 30

Damgard's design principle 25

Damgard's method 154

Damgard's squaring scheme 38

Damgard 32, 38, 39, 45, 133, 151

Davida 10

Davies and Price 36

Davies 9, 29

De Santis and Yung's scheme 139

De Santis and Yung 139

Deamen, Govaerts and Vandewalle 41

Denning 10

Diffie and HeUman 5, 6, 7

FEAL 4, 30

FFT hashing scheme 44

FFT-hash II 45

Feistel transformation 92

Feistel type permutation 57, 66

Girault 36, 52

Goldreich and Levin 142,157, 163

Goldreich, Goldwasser and Micah 64

Goldreich-Levin method 165

Goldwasser, Micah and Rivest 38

HAVAL 42

ISO 13

Impagliazzo and Naor's scheme 39

Jueneman 19, 37, 50

Kam and Davida 146

L-R randomizer 107, 112

LOKI 4, 14, 30

Lai 56

Luby and Rackoff 57, 59, 66, 69, 73,

77, 105, 107

Lucifer 4

MAC 22

MD4 42

192 Index

MD5 42, 54

MDC2 34

MDC4 34

MDC 23

Manipulation Detection Code 23

Massey 56

Matyas 29

Merkle and Hellman 7

Merkle's meta method 25, 45

Merkle 7, 8, 20, 31, 43, 54

Message Authentication Code 22

Meyer and Matyas 27

Meyer 29

Miyaguchi, Ohta, and Iwata 53

Moore 10

N-hash 32

Naor and Yung 133, 137

Nishimura and Sibuya 51

OFB 26

Ohnishi 70, 89

Oseas 29

PBG 133

Patarin 89

Pieprzyk and Sadeghiyan 105, 116

Pieprzyk 71, 77

Quisquater and Delescaille 28

Quisquater and Girault 30

RSA algorithm 35

RSA cryptosystem 8

RSA encryption function 145

Rabin encryption function 145

Rabin's scheme 25, 28

Rabin 25, 49

Random Matrix Hashing Algorithm

43

Rivest, Shamir and Adleman 7

Rivest 42

Rompel's scheme 140

Rompel 23, 133

Rueppel 69

Scherift and Shamir 158

Schnorr 44

Shannon 4, 57

Silverman 9

Snefru 43, 54

Toeplitz matrix 161

UOWHF 133, 137

Vazirani and Vazirani 163

Webster and Tavares 146

Winternitz' construction 29, 31

Winternitz 29, 34

Wolfram's pseudorandom bit genera-

tor 40

Yao 59, 61, 133

Yuval 25, 49

ZMI method 154

ZMI scheme 141

Zheng, Matsumoto and Imai 71, 72,

89, 92, 96, 133, 140

Zheng, Pieprzyk, and Seberry 42

active wiretapping 2

alternating group 116

authentication 2, 18

authenticity 5, 18

Index 193

birthday attack 48, 49

black box test 73

cellular automaton 40

chosen plaintext/ciphertext attack 56

cipher block chaining mode 26

cipher feedback mode 26

classical message source 58

classical pseudorandom generators 58

claw-free permutation 38

collision accessibility property 137

collision free hash function 133, 136

collision intractable hash function 133

collision-free hash functions 20

collision-free hash function 38

collision-pair finder 136

complete transformation 146

correcting block attack 48

correcting last block attack 53

differential cryptanalysis 33, 54

digital signature 5

discrete Fourier transform 44

distinguisher 59

distinguishing circuit family 63

distinguishing circuits 63

distinguishing circuit 60

distinguishing probabihty 79

family of strong permutations 164

general attacks 49

generalized meet-in-the-middle attack

52

hard bit of a one-way function 141

hard bits 133,141

hard-core predicates 133

hashing based on squaring 36

hashing scheme 11

hiding permutation 166

independent permutations 81

independent permutation 85

indexing 62

indistinguishability test 144

indistinguishability 60

integrity 22

inverse gate 79

inverse oracle gates 74

key collision search 30

knapsack problem 39

matrix hashing 43

meet-in-the-middle attack 28, 48, 51

message authentication 2

meta method 31

next bit test 61,143

non-block-cipher-based hash algorithms

34

normal gate 79

normal oracle gates 74

one-time pad 6

one-way function 23, 29, 62, 142

oracle circuit 63

output feedback mode 26

parallel method 46

perfect permutation 146

perfect randomizer 112

polynomial time evaluation 62

polynomial-time test 61

polynomially samplable ensemble 135

privacy 2, 5

private-key cryptosystems 3

probabilistic Boolean circuit 59

194 Index

probabilistic polynomial time algorithm

59

probability ensemble 135

pseudorandom bit generator 60, 62,

133, 145

pseudorandom ensemble 135

pseudorandom function generator 62,

63

public-key cryptosystems 7

randomizer 106

redundancy 22

secrecy 5

secure hash scheme 23

secure hashing algorithm 19

semi-weak keys 53

serial method 45

simultaneous hard bits 144, 158

single-key cryptosystems 3

special attacks 49

statistical test 135

strong one-way hash function 20

strong one-way permutation 164

strong permutation 150

strongly universal~ family 137

substitution-permutation networks 4

super-distinguishing family 78

super-pseudorandom permutation gen-

erator 79, 117

super-pseudorandomness 74

super-pseudorandom 85

the public-key distribution system 7

tree approach 46

two-way complete 146

type-1 transformation 94

type-2 transformation 94

type-3 transformation 95

uniform ensemble 135

universal one way hash function 133

universal one-way hash functions 20

universal one-way hash function 136

unpredictability test 144

user authentication 2

weak keys 30, 53

weak one-way hash function 21

Lecture Notes in Computer Science
For information about Vols. 1-680
please contact your bookseller or Springer-Verlag

Vol. 681: H. Wansing, The Logic of Information Struc-
tures. IX, 163 pages. 1993. (Subseries LNAI).

Vol. 682: B. Bouchon-Meunier, L. Valverde, R. R. Yager
(Eds.), IPMU '92 - Advanced Methods in Artificial Intel-
ligence. Proceedings, 1992. IX, 367 pages. 1993.

Vol. 683: G.J. Milne, L. Pierre (Eds.), Correct Hardware
Design and VerificationMethods. Proceedings, 1993. VIII,
270 Pages. 1993.

Vol. 684: A. Apostolico, M. Crochemore, Z. Galil, U.
Manber (Eds.), Combinatorial Pattern Matching. Proceed-
ings, 1993. VIII, 265 pages. 1993.

Vol. 685: C. Rolland, F. Bodart, C. Cauvet (Eds.), Ad-
vanced Information Systems Engineering. Proceedings,
1993. XI, 650 pages. 1993.

Vol. 686: J. Mira, J. Cabestany, A. Prieto (Eds.), New
Trends in Neural Computation. Proceedings, 1993. XVII,
746 pages. 1993.

Vol. 687: H. H. Barrett, A. F. Gmitro (Eds.), Information
Processing in Medical Imaging. Proceedings, 1993. XVI,
567 pages. 1993.

Vol. 688: M. Gauthier (Ed.), Ada-Europe '93. Proceedings,
1993. VIII, 353 pages. 1993.

Vol. 689: J. Komorowski, Z. W. Ras (Eds.), Methodolo-
gies for Intelligent Systems. Proceedings, 1993. XI, 653
pages. 1993. (Subseries LNAI).

Vol. 690: C. Kirchner (Ed.), Rewriting Techniques and
Applications. Proceedings, 1993. XI, 488 pages. 1993.

Vol. 691: M. Ajmone Marsan (Ed.), Application and Theory
of Petri Nets 1993. Proceedings, 1993. IX, 591 pages. 1993.

Vol. 692: D. Abel, B.C. Ooi (Eds.), Advances in Spatial
Databases. Proceedings, 1993. XIII, 529 pages. 1993.

Vol. 693: P. E. Lauer (Ed.), Functional Programming,
Concurrency, Simulation and Automated Reasoning. Pro-
ceedings, 1991/1992. XI, 398 pages. 1993.

Vol. 694: A. Bode, M. Reeve, G. Wolf (Eds.), PARLE '93.
Parallel Architectures and Languages Europe. Proceedings,
1993. XVII, 770 pages. 1993.

Vol. 695: E. P. Klement, W. Slany (Eds.), Fuzzy Logic in
Artificial Intelligence. Proceedings, 1993. VIII, 192 pages.
1993. (Subseries LNAI).

Vol. 696: M. Worboys, A. F. Grundy (Eds.), Advances in
Databases. Proceedings, 1993. X, 276 pages. 1993.

Vol. 697: C. Courcoubetis (Ed.), Computer Aided Verifi-
cation. Proceedings, 1993. IX, 504 pages. 1993.

Vol. 698: A. Voronkov (Ed.), Logic Programming and
Automated Reasoning. Proceedings, 1993. XIII, 386 pages.
1993. (Subseries LNAI).

Vol. 699: G. W. Mineau, B. Moulin, J. F. Sowa (Eds.),
Conceptual Graphs for Knowledge Representation. Pro-
ceedings, 1993. IX, 451 pages. 1993. (Subseries LNAI).

Vol, 700: A. Lingas, R. Karlsson, S. Carlsso~ (Eds.), Au-
tomata, Languages and Programming. Proceedings, 1993.
XII, 697 pages. 1993.

Vol. 701: P. Atzeni (Ed.), LOGIDATA+: Deduct ive
Databases with Complex Objects. VIII, 273 pages. 1993.

Vol. 702: E. B0rger, G. J~iger, H. Kleine Brining, S. Mar-
tini, M. M. Richter (Eds.), Computer Science Logic. Pro-
ceedings, 1992. VIII, 439 pages. 1993.

Vol. 703: M. de Berg, Ray Shooting, Depth Orders and
Hidden Surface Removal. X, 201 pages. 1993.

Vol. 704: F. N. Paulisch, The Design of an Extendible
Graph Editor. XV, 184 pages. 1993.

Vol. 705: H. Griinbacher, R. W. Hartenstein (Eds.), Field-
Programmable Gate Arrays. Proceedings, 1992. VIII, 218
pages. 1993.

Vol. 706: H. D. Rombach, V. R. Basili, R. W. Selby (Eds.),
Experimental Software Engineering Issues. Proceedings,
1992. XVIII, 261 pages. 1993.

Vol. 707: O. M. Nierstrasz (Ed.), ECOOP '93 - Object-
Oriented Programming. Proceedings, 1993. XI, 531 pages.
1993.

Vol. 708: C. Laugier (Ed.), Geometric Reasoning for Per-
ception and Action. Proceedings, 1991. VIII, 281 pages.
1993.

Vol. 709: F. Dehne, J.-R. Sack, N. Santoro, S. Whitesides
(Eds.), Algorithms and Data Structures. Proceedings, 1993.
XII, 634 pages. 1993.

Vol. 710: Z. t~sik (Ed.), Fundamentals of Computation
Theory. Proceedings, 1993. IX, 471 pages. 1993.

Vol. 711: A. M. Borzyszkowski, S. Sokotowski (Eds.),
Mathematical Foundations of Computer Science 1993. Pro-
ceedings, 1993. XIII, 782 pages. 1993.

Vol. 712: P. V. Rangan (Ed.), Network and Operating Sys-
tem Support for Digital Audio and Video. Proceedings,
1992. X, 416 pages. 1993.

Vol. 713: G. Gottlob, A. Leitsch, D. Mundici (Eds.), Com-
putational Logic and Proof Theory. Proceedings, 1993. XI,
348 pages. 1993.

Vol. 714: M. Bruynooghe, J. Penjam (Eds.), Programming
Language Implementation and Logic Programming. Pro-
ceedings, 1993. XI, 421 pages. 1993.

Vol. 715: E. Best (Ed.), CONCUR'93. Proceedings, 1993.
IX, 541 pages. 1993.

Vol. 716: A. U. Frank, I. Campari (Eds.), Spatial Informa-
tion Theory. Proceedings, 1993. XI, 478 pages. 1993.

Vol. 717: I. Sommerville, M. Paul (Eds.), Software Engi-
neering - ESEC '93. Proceedings, 1993. XII, 516 pages.
1993.

Vol. 718: J. Seberry, Y. Zheng (Eds.), Advances in
Cryptology - AUSCRYPT '92. Proceedings, 1992. XIII,
543 pages. 1993.

Vol. 719: D. Chetverikov, W.G. Kropatsch (Eds.), Compu-
ter Analysis of Images and Patterns. Proceedings, 1993.
XVI, 857 pages. 1993.

Vol. 720: V.Ma~ik, J. La~ansk~, R.R. Wagner (Eds.), Data-
base and Expert Systems Applications. Proceedings, 1993.
XV, 768 pages. 1993.

Vol. 721: J. Fitch (Ed.), Design and Implementation of
Symbolic Computation Systems. Proceedings, 1992. VIII,
215 pages. 1993.

Vol. 722: A. Miola (Ed.), Design and Implementation of
Symbolic Computation Systems. Proceedings, 1993. XII,
384 pages. 1993.

Vol. 723: N. Aussenac, G. Boy, B. Gaines, M. Linster, J.-
G. Ganascia, Y. Kodratoff (Eds.), Knowledge Acquisition
for Knowledge-Based Systems. Proceedings, 1993. XIII,
446 pages. 1993. (Subseries LNAI).
Vol. 724: P. Cousot, M. Falaschi, G. Fil~, A. Rauzy (Eds.),
Static Analysis. Proceedings, 1993. IX, 283 pages. 1993.

Vol. 725: A. Schiper (Ed.), Distributed Algorithms. Pro-
ceedings, 1993. VIII, 325 pages. 1993.

Vol. 726: T. Lengauer (Ed.), Algorithms - ESA '93. Pro-
ceedings, 1993. IX, 419 pages. 1993

Vol. 727: M. Filgueiras, L. Damas (Eds.), Progress in Ar-
tificial Intelligence. Proceedings, 1993. X, 362 pages. 1993.
(Subseries LNAI).

Vol. 728: P. Torasso (Ed.), Advances in Artificial Intelli-
gence. Proceedings, 1993. XI, 336 pages. 1993. (Subseries
LNAI).

Vol. 729: L. Donatiello, R. Nelson (Eds.), Performance
Evaluation of Computer and Communication Systems. Pro-
ceedings, 1993. VIII, 675 pages. 1993.

Vol. 730: D. B. Lomet (Ed.), Foundations of Data Organi-
zation and Algorithms. Proceedings, 1993. XII, 412 pages.
1993. /

Vol. 731: A. Schill (Ed.), DCE - The OSF Distributed
Computing Environment. Proceedings, 1993. VIII, 285
pages. 1993.

Voi. 732: A. Bode, M. Dal Cin (Eds.), Parallel Computer
Architectures. IX, 311 pages. 1993.

Vol. 733: Th. Grechenig, M. Tscheligi (Eds.), Human Com-
puter Interaction. Proceedings, 1993. XIV, 450 pages. 1993.

Vol. 734: J. Volkert (Ed.), Parallel Computation. Proceed-
ings, 1993. VIII, 248 pages. 1993.

Vol. 735: D. BjCmer, M. Broy, I. V. Pottosin (Eds.), For-
mal Methods in Programming and Their Applications. Pro-
ceedings, 1993. IX, 434 pages, t993.

Vol. 736: R. L. Grossman, A. Nerode, A. P. Ravn, H.
Rischel (Eds.), Hybrid Systems. VIII, 474 pages. 1993.

Vol. 737: J. Calmet, J. A. Campbell (Eds.), Artificial Intel-
ligence and Symbolic Mathematical Computing. Proceed-
ings, 1992. VIII, 305 pages. 1993.

Vol. 738: M. Weber, M. Simons, Ch. Lafontaine, The Ge-
neric Development Language Deva. XI, 246 pages. 1993.

Vol. 739: H. Imai, R. L. Rivest, T. Matsumoto (Eds.), Ad-
vances in Cryptology - ASIAC.RYPT "91. X, 499 pages.
1993.

Vol. 740: E. F. Brickell (Ed.), Advances in Cryptology -
CRYPTO '92. Proceedings, 1992. X, 593 pages. 1993.

Vol. 741: B. Preneel, R. Govaerts, J. Vandewalle (Eds.),
Computer Security and Industrial Cryptography. Proceed-
ings, 1991. VIII, 275 pages. 1993.

Vol. 742: S. Nishio, A. Yonezawa (Eds.), Object Tech-
nologies for Advanced Software. Proceedings, 1993. X, 543
pages. 1993.

Vol. 743: S. Doshita, K. Furukawa, K. P. Jantke, T. Nishida
(Eds.), Algorithmic Learning Theory. Proceedings, 1992.
X, 260 pages. 1993. (Subseries LNAI)

Vol. 744: K. P. Jantke, T. Yokomori, S. Kobayashi, E.
Tomita (Eds.), Algorithmic Learning TheOry. Proceedings,
1993. XI, 423 pages. 1993. (Subseries LNAI)

Vol. 745: V. Roberto (Ed.), Intelligent Perceptual Systems.
VIII, 378 pages. 1993. (Subseries LNAI)

Vol. 746: A. S. Tanguiane, Artificial Perception and Mu-
sic Recognition. XV, 210 pages. 1993. (Subseries LNAI).

Vol. 747: M. Clarke, R. Kruse, S. Moral (Eds.), Symbolic
and Quantitative Approaches to Reasoning and Uncertainty.
Proceedings, 1993. X, 390 pages. 1993.

Vol. 748: R. H. Halstead Jr., T. Ito (Eds.), Parallel Sym-
bolic Computing: Languages, Systems, and Applications.
Proceedings, 1992. X, 419 pages. 1993.

Vol. 749: P. A. Fritzson (Ed.), Automated and Algorith-
mic Debugging. Proceedings, 1993. VIII, 369 pages. 1993.

Vol. 750: J. L. Diaz-Herrera (Ed.), Software Engineering
Education. Proceedings, 1994. XII, 601 pages. 1994.

Vol. 751: B. J~ihne, Spatio-Temporal Image Processing.
XII, 208 pages. 1993.

Vol. 752: T. W. Finin, C. K. Nicholas, Y. Yesha (Eds.),
Information and Knowledge Management. Proceedings,
1992. VII, 142 pages. 1993.

Vol. 753: L. J. Bass, J. Gomostaev, C. Unger (Eds.), Hu-
man-Computer Interaction. Proceedings, 1993. X, 388
pages. 1993.

Vol. 754: H. D. Pfeiffer, T. E. Nagle (Eds.), Conceptual
Structures: Theory and Implementation. Proceedings, 1992.
IX, 327 pages. 1993. (Subseries LNAI).

Vol. 755: B. MiSller, H. Partsch, S. Schuman (Eds.), For-
mal Program Development. Proceedings. VII, 371 pages.
1993.

Vol. 756: J. Pieprzyk, B. Sadeghiyan, Design of Hashing
Algorithms. XV, 194 pages. 1993.

Vol. 758: M. Teillaud, Towards Dynamic Randomized
Algorithms in Computational Geometry. IX, 157 pages.
1993.

Vol. 760: S. Ceri, K. Tanaka, S. Tsur (Eds.), Deductive
and Object-Oriented Databases. Proceedings, 1993. XII,
488 pages. 1993.

Vol. 761: R. Shyamasundar (Ed.), Foundations of Software
Technology and Theoretical Computer Science. Proceed-
ings, 1993. XIV, 456 pages. 1993.

