
Chapter 2

Digital Design Strategies 
and Techniques



Outline
n Design processing steps
n Analog building blocks for digital 

primitives
n Using a LUT to implement logic functions
n Discussion of design processing steps
n Synchronous logic rules
n Clocking strategies
n Logic minimization
n What does the synthesizer do ?
n Area/delay optimization



Design Processing Steps
n The processing steps from design to FPGA 

hardware
n The design is parsed for syntax errors.
n The design is minimized and optimized for the 

target architecture.
n Recognized structure elements are replaced 

with selected library modules or cores.
n Timing and resource requirements are 

estimated.
n The design is converted to a netlist.
n The design elements and modules are linked

together and ‘black-box’ modules are 
replaced with library or core module netlists.



Design Processing Steps
n The processing steps from design to FPGA 

hardware (cont.)
n Floorplanning and routing attempts are made 

until the timing and resource constraints are 
met.

n Timing and resource reports are extracted 
from the design. A timing annotated netlist is 
created to support post-routed simulation.

n The device configuration files are created.



Analog Building Blocks for 
Digital Primitives
n Digital logics are implemented by

n Transistors
n Diodes
n Resistors

n Examples
n Inverter

• Fig. 2-1
n NAND gate

• Fig. 2-2
n NOR gate

• Fig. 2-3



Using a LUT to Implement 
Logic Functions
n Most FPGAs use a multiplexer (MUX) 

Look-Up Table (LUT) as a basic logic 
element.
n The LUT is versatile

• Any function of the inputs is possible
• The LUT is efficiently implemented in silicon

n Configuration
• MUX control inputs

• Logic inputs
• MUX data inputs

• Be strapped to logic levels to implement the desired 
function 



Using a LUT to Implement 
Logic Functions

n Example
n An inverter implemented using MUX

1

0



Using a LUT to Implement 
Logic Functions

n Synthesis 
example
n Overheat 

detector

// Latch the overheat output signal when overheat is
//  asserted and the user presses the pushbutton.
always @ (posedge clock or posedge reset)

begin
if (reset)

overheat_out <=1'b0;

// Overheat_out is held forever (or until reset).
else if (overheat_in_sync2 && pushbutton_sync2);

overheat_out <=1'b1;
end

endmodule

module overheat (clock, reset, overheat_in, pushbutton_in, overheat_out);
input clock, reset, overheat_in, pushbutton_in;
output overheat_out;
reg overheat_out;
reg pushbutton_sync1, pushbutton_sync2;
reg overheat_in_sync1, overheat_in_sync2;

// Always synchronize inputs that are not phase related to 
//  the system clock.
// Use double-synchronizing flipflops for external signals 
//  to minimize metastability problems.
// Even better would be some type of filtering and latching 
//  for poorly behaving external signals that will bounce
//  and have slow rise/fall times.

always @ (posedge clock or posedge reset)
begin

if (reset)
begin
pushbutton_sync1 <= 1'b0;
pushbutton_sync2 <= 1'b0;
overheat_in_sync1 <= 1'b0;
overheat_in_sync2 <= 1'b0;
end

else begin
pushbutton_sync1 <= pushbutton_in;
pushbutton_sync2 <= pushbutton_sync1;
overheat_in_sync1 <= overheat_in;
overheat_in_sync2 <= overheat_in_sync1;
end

end



Using a LUT to Implement 
Logic Functions

n Graphical version of the netlist

Look-up table (AND gate)D-FF

D-FF
D-FF



Using a LUT to Implement 
Logic Functions

n Graphical version of the netlist
n Notes

• The correct use of global resources for 
clock and reset

• Using a LUT for AND gate that is located 
between two DFF’s

• Verilog does not support direct assignment 
of hardware resources

• It is the designer’s job to assure that these 
inferences are made correctly.



Using a LUT to Implement 
Logic Functions

n Estimation of the timing and 
resource requirements

Timing information

Resource information



Discussion of Design 
Processing Steps
n Syntax checking
n Identifying the syntax, typing, and 

other errors
n Where is the error ? 

• A semicolon is appended on one of the if
statement (Listing 2-3, p. 48)

n Different tools give different error 
messages

• It makes good sense to have several tools 
available for checking your code.



Discussion of Design 
Processing Steps

n Design minimization and 
optimization
n Hardware configuration

• FPGA
• Semi-custom FPGA
• ASIC

n The synthesis result is related to the 
logic structure of FPGA



Discussion of Design 
Processing Steps

n Xilinx 4K family Configuration Logic Block (CLB)
n Two 4-input LUTs feeding a pair of flipflops

LUT

D-FF



Discussion of Design 
Processing Steps

n Synthesis process steps
n Step 1

• Flattening the design into large Boolean 
equations with one equation for each 
module output, design section output, or 
register output



Discussion of Design 
Processing Steps

n Example
n A simple 2-bit adder code
module adder (clock, reset, a, b, c); // Simple adder (no carry input).

input clock, reset, a, b;
output c;
reg [1:0] c;
always @ (posedge clock or posedge reset)
begin if (reset)

c = 2'b0;
else

c = a + b; // Adder.
end

endmodule



Discussion of Design 
Processing Steps

n Truth table for simple adder example
n C[0] could be represented by an XOR gate
n C[1] could be represented by an AND gate

0111

1001

1010

0000

C[0]C[1]ba



Discussion of Design 
Processing Steps

n A flattened version of the simple 
adder example
n C[0] <= a^b; 
n C[1] <=a&b;

Reg_c[1]

Reg_c[0]

AND

XOR



Discussion of Design 
Processing Steps
n Synthesis process steps
n Step 2

• Minimizing the Boolean equations
• By recognizing and removing redundant logic 

terms

n Step 3
• Recognized structure elements are replaced 

with selected modules.
• E.g. a<=a-1 à Down counter
• Replacing the logic with a pre-defined circuit 

optimized for the target architecture for either 
speed or area



Discussion of Design 
Processing Steps
n Synthesis process steps

n Step 4
• Timing and resource requirements are estimated by 

the compiler
• May not be accurate enough
• Why the estimation is not accurate ?

• The manufacturer may have made changes to the 
timing parameters.

• The library and black-boxes are not yet part of the 
design netlist.

n Step 5
• The design is converted to a netlist

• The most common one is EDIF format



Discussion of Design 
Processing Steps

n Synthesis process steps
n Step 6

• The design elements and modules are 
linked together and ‘black-box’ modules 
are replaced with library module netlists.



Discussion of Design 
Processing Steps
n Synthesis process steps

n Step 7
• Floorplanning and routing attempts are made until 

the timing and resource constraints are met.
• Floorplanning assigns elements from device logic to 

the designed circuitry.
• The efficiency of routing and the resulting speed of 

the routed design depend on the arrangement of the 
module element.

• Typical routing densities of FPGAs
• Alteraà 65%
• Xilinxà 85%
• Capability of 100% routing of all logic is only an 

advertisement.



Discussion of Design 
Processing Steps

n Synthesis process steps
n Step 8

• Timing and resource reports are extracted 
from the design. A timing annotated netlist
is created to support post-routed simulation

• A common format is SDF format
• SDFà Standard Delay Format

• Example
• Listing 2-9



Discussion of Design 
Processing Steps

n Synthesis 
process 
steps 
(SDF 
netlist)



Discussion of Design 
Processing Steps
n Synthesis process steps

n Step 9
• The device configuration files are created.
• Way of programming

• EPROM programming
• Downloading through serial or parallel cable
• Stored in memory

• Programming devices
• Micro-processors
• Stand-alone programmer

• Device types
• ISP (In-System Programming) type
• Re-programmable type



Discussion of Design 
Processing Steps
n Shifty (詭詐的) logic circuits
n Example 1

• 2-input NOR gate
• Seems shifty or flaky (古里古怪的)
• The output is very likely to be glitchy when the 

inputs change.
• Source for glitchesàSwitch bounces



Discussion of Design 
Processing Steps

n Oscilloscope trace of 2-input NOR
n Switch bounce occurs in DIP switch

• To use feedback (hysteresis) to filter switch 
bounce

Node 1

Node 3



Discussion of Design 
Processing Steps
n Another source for glitches

n RC time delay causing signals traveling with 
different arrival time

n R represents
• The sum of source and routing impedance

n C represents
• The net loading
• Could be controlled by setting fanout constraint in 

synthesis
n Example 2

• 2-input AND gate with RC network



Discussion of Design 
Processing Steps

n Combinational AND gate

RC time delay



Discussion of Design 
Processing Steps

n Solution
n Synchronous AND gate
n Adding a D-FF in the output node to 

remove the glitches by meeting
• Synchronous logic rules
• Setup and hold times of the D-FF

Latch the output 
of AND gate at 
proper time !



Synchronous Logic Rules

n Metastability
n Occurs when a clock edge is random with 

respect to a change of an asynchronous input
n The FF output may take a longer time than 

typical clock-to-Q delay of FF data sheet

metastability



Synchronous Logic Rules
n Solution to the metastability
n Using synchronous design technique

• Adopting a synchronizing clock to qualify, 
gate, or trigger a circuit

• The time between clock edges (clock period) 
is used to allow signals to propagate and 
settle

n Narrowing the metastability window
• Narrowing the setup-and-hold time period by 

increasing the speed of FF



Synchronous Logic Rules
n Setup and hold times
n The inputs must meet the setup and 

hold times so that the output of FFs is 
not metastable (can be predictable).

• The input changes in Tsu earlier than the 
synchronizing clock edge

• The input is required to be stable in Th later 
than the synchronizing clock edge 

clk

input

Tsu Th

stable



Synchronous Logic Rules

n Where do the setup and hold times 
occur ?
n Coming from the analog nature of the 

flipflop design
• The flipflops use feedback implemented 

with cross coupled gates to hold a state.
• It takes time for the FF to achieve their 

stable state.



Synchronous Logic Rules
n Real World design

n Real World clock has rise/fall times
• Do not change abruptly

n FF requires stable inputs during setup/hold 
time

10%

90%

Tf Tr



Synchronous Logic Rules

n Asynchronous input 
problem
n When an asynchronous 

input drives multiple 
flipflops, and the input 
changes near the clock edge, 
some flipflops outputs will
change and some will not.

n RC delay is caused by the 
FPGA routing and loads



Synchronous Logic Rules
n Solution to the asynchronous input 

problem
n Synchronizing the input with a single

flipflop
n Do not violate the setup/hold time 

requirement



Synchronous Logic Rules
n How can I create a nearly trouble-free 

design ?
n Always synchronize your inputs !

• An asynchronous input drives exactly one FF.
• The output of this FF can be safely used to drive the rest 

of your synchronous circuitry.



Synchronous Logic Rules

n Estimating the max. clock frequency
n Example: divided-by-two circuit



Synchronous Logic Rules
n D-FF specifications

n FF minimum input set-up time
• Tsu=1ns

n FF minimum input hold time
• Th=1ns

n Maximum clock-to-output delay
• Tco=1ns

n Maximum propagation delay (Q to D)
• Tqd=1ns



Synchronous Logic Rules

n Timing calculation

clock

D

Q Tco

Tqd

Tsu

Minimum clock period = 3nsà Max clock freq=333.33MHz



Synchronous Logic Rules
n Cascaded FF v.s. Timing delay

n How can this circuit work reliably ?(Fig.2-17)
• What if the min. clock-to-output delay of U1 is less then 

the hold time requirement of U2 ?
• U2 will directly latch the updated value instead of the old 

value of U1 !!!
• This is not what we want !!!

n FPGA chip designer will create a logic cell that 
assure the circuit will work !!!



Synchronous Logic Rules
n Clock skew problem
n Example: two FFs connected in series 

with clock skew (Fig. 2-19)
n What is the problem ?

• The clock skew will cause the U2 always 
latches the newest value instead of the old 
value from U1 !

• Or U2 may latch the unknown value due to 
the violation of input set-up time caused by 
the clock skew !



Synchronous Logic Rules
n What is the solution ?
n Minimizing the clock skew situation

• FPGA
• The FPGA chip designer has provided low-skew 

clock network to assure that the longest skew of 
the clock anywhere across the device is shorter 
than the shortest sum of clock-to-Q and signal 
routing propagation delay.

• ASIC
• H-tree (or balanced) clock distribution network 

to reduce the clock skew situation



Synchronous Logic Rules

n H-tree clock distribution

FF FF FF FF

FF FF FF FF

FF FF FF FF

FF FF FF FF

clock



Clocking Strategies

n The most important decision the 
FPGA designer makes is 
n Clocking strategies

• This must be considered carefully.
• An error in clocking can doom a design.



Clocking Strategies

n Suggested clocking strategies (1)
n When designing an ASIC, if power 

consumption is NOT an issue, 
• Use one master clock on all FFs
• Replace lower-frequency clocks with clock 

enables
• The design has one clock, which results in 

the simplest timing analysis.



Clocking Strategies
n Suggested clocking strategies (2)
n When designing an ASIC, if power 

consumption IS an issue,
• Running FFs in lower clock frequency in selected parts 

of the design is OK.
• Make the design smaller and/or reduce the clock 

frequency to reduce the power consumption.
• Minimizing the amount of circuitry running at high 

speed.
• Be forced to deal with the problem of synchronizing 

signals crossing clock domains in exchange for reduced 
power consumption.



Clocking Strategies
n Suggested clocking strategies (3)

n When designing an ASIC, but using FPGAs as 
prototypes,

• For fast FPGAs (ASIC-like)
• Running the design with one master clock

• For slow FPGAs (SRAM-based devices)
• Will probably be forced to run modules at the lowest 

possible speed to get the design work.
• Drive FFs with multiple clocks, 
• Creating clocks in a central clock generator module, 
• Minimizing the interconnection between clock domains,
• Making sure signals that cross clock domains are 

properly synchronized.  



Clocking Strategies

n Suggested clocking strategies (4)
n When doing a fast FPGA design,

• Use up the global clock resources
• Partitioning the design to minimize signals 

crossing clock domains
• Synchronizing the signals properly.

n When doing a slow FPGA design,
• Either strategy is fine.



Clocking Strategies

n Clock enable
n Verilog HDL does not support dedicated 

clock enable signals.
n FPGA synthesis vendors may provide

this support through compiler directives.
• The code in Listing 2-10 may be 

synthesized into different ways depending 
on the targeted FPGA.



Clocking Strategies
n Clock-Enable example (Listing 2-10)

module clock_en(out, in, clock, clock_enable1, clock_enable2, reset);

output out;
input   in, clock, clock_enable1, clock_enable2, reset;
reg out;

always @ (posedge clock or posedge reset)
begin
if (reset)

out<=0;
else if (clock_enable1)

out<=out; // Hold output if not enabled.
else

out<=(in & clock_enable2);
end

endmodule



Clocking Strategies

n Synthesized clock enable
n Fig. 2-22



Clocking Strategies
n In synthesis, the synthesizer may insert 

added logic into the clock-enable path.
n Fig. 2-23



Clocking Strategies
n The clock enable implementation in a 

technology that does not have a clock-
enable feature in its logic block.
n Fig. 2-24



Logic Minimization
n A synthesizer can recognize and remove 

redundant logic.
n Listing 2-11 v.s. Listing 2-12

input test1, test2, test3;
output sample;

sample = ((test1 & test2 & test3) | (test1 & !test2 & test3)
| (test1 & test2 & !test3));

Listing 2-11

input test1, test2, test3;
output sample;

sample = ((test1 & (test2 | test3));

Listing 2-12
Using K-map

The compiler can also recognize equivalent logic equations



Logic Minimization
n The synthesizer will not be able to extract 

the redundant logic if the logic is spread 
over across register boundaries.
n Fig. 2-26



Logic Minimization
n How can we take advantages of the 

synthesis tool’s capability to minimize the 
logic ?
n Never create purely combinational modules !!!
n None of the popular FPGA architectures have 

purely combinational logic elements.
n Mixing the combinational logic with the 

synchronous logic to allow the synthesis tool 
to merge the logic into the resources available 
in the device.



Logic Minimization
n Combinational logic clouds feeding flipflops

n Fig. 2-27



What does the synthesizer do ?

n Synthesizer’s role
n Take Verilog HDL and maps it into 

hardware
n Procedures

• Minimize logic equations by removing 
redundant logic terms

• Map the resulting Boolean equations onto 
the available hardware elements in FPGAs

n Example
• 7-segment decoder 



What does the synthesizer do ?

n Truth table for 7-segment decoder

B3 B2 B1 B0 a b c d e f g

0 0 0 0 1 1 1 1 1 1 0

0 0 0 1 0 1 1 0 0 0 0

0 0 1 0 1 1 0 1 1 0 1

0 0 1 1 1 1 1 1 0 0 1

0 1 0 0 0 1 1 0 0 1 1

0 1 0 1 1 0 1 1 0 1 1

0 1 1 0 1 0 1 1 1 1 1

0 1 1 1 1 1 1 0 0 0 0

1 0 0 0 1 1 1 1 1 1 1

1 0 0 1 1 1 1 1 0 1 1

BCD input Segment output



What does the synthesizer do ?

n Let us consider the output of “a” segment

n The reduced equation for “a” segment



What does the synthesizer do ?

n Verilog design 
for 7-segment 
display decoder 
“a” term

module seven_seg (clk, reset, bcd_input, a_segment);

input clk, reset;
input [3:0] bcd_input;
output a_segment;
reg a_segment;

always @ (posedge clk or posedge reset)
if (reset)

a_segment<=0;
else
begin case (bcd_input)

{1'b0, 1'b0, 1'b0, 1'b0}: a_segment <= 1'b1;
{1'b0, 1'b0, 1'b0, 1'b1}: a_segment <= 1'b0;
{1'b0, 1'b0, 1'b1, 1'b0}: a_segment <= 1'b1;
{1'b0, 1'b0, 1'b1, 1'b1}: a_segment <= 1'b1;
{1'b0, 1'b1, 1'b0, 1'b0}: a_segment <= 1'b0;
{1'b0, 1'b1, 1'b0, 1'b1}: a_segment <= 1'b1;
{1'b0, 1'b1, 1'b1, 1'b0}: a_segment <= 1'b1;
{1'b0, 1'b1, 1'b1, 1'b1}: a_segment <= 1'b1;
{1'b1, 1'b0, 1'b0, 1'b0}: a_segment <= 1'b1;
{1'b1, 1'b0, 1'b0, 1'b1}: a_segment <= 1'b1;
default: a_segment <= 0;

endcase
end

endmodule



What does the synthesizer do ?

n Synthesized Logic for 7-segment display 
decoder “a” term
n Fig. 2-28



Area/Delay Optimization
n Two fundamental concerns in 

implementing a design 
n How big is it ?
n How fast will it operate ?

n The goal of our quest is to achieve good 
enough
n To meet system requirements like

• Product cost
• Development cost
• Performance
• Reliability
• Maintainability
• Time to market 



Area/Delay Optimization

n The experienced designer always 
leaves a way out of a problem by 
insuring that a faster or denser 
device, if at all possible, is available 
in the same device footprint.
n Instead of redesigning a circuit board 

to accommodate a new device at great 
expenses.
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