
Chapter 2

Digital Design Strategies
and Techniques

Outline
n Design processing steps
n Analog building blocks for digital

primitives
n Using a LUT to implement logic functions
n Discussion of design processing steps
n Synchronous logic rules
n Clocking strategies
n Logic minimization
n What does the synthesizer do ?
n Area/delay optimization

Design Processing Steps
n The processing steps from design to FPGA

hardware
n The design is parsed for syntax errors.
n The design is minimized and optimized for the

target architecture.
n Recognized structure elements are replaced

with selected library modules or cores.
n Timing and resource requirements are

estimated.
n The design is converted to a netlist.
n The design elements and modules are linked

together and ‘black-box’ modules are
replaced with library or core module netlists.

Design Processing Steps
n The processing steps from design to FPGA

hardware (cont.)
n Floorplanning and routing attempts are made

until the timing and resource constraints are
met.

n Timing and resource reports are extracted
from the design. A timing annotated netlist is
created to support post-routed simulation.

n The device configuration files are created.

Analog Building Blocks for
Digital Primitives
n Digital logics are implemented by

n Transistors
n Diodes
n Resistors

n Examples
n Inverter

• Fig. 2-1
n NAND gate

• Fig. 2-2
n NOR gate

• Fig. 2-3

Using a LUT to Implement
Logic Functions
n Most FPGAs use a multiplexer (MUX)

Look-Up Table (LUT) as a basic logic
element.
n The LUT is versatile

• Any function of the inputs is possible
• The LUT is efficiently implemented in silicon

n Configuration
• MUX control inputs

• Logic inputs
• MUX data inputs

• Be strapped to logic levels to implement the desired
function

Using a LUT to Implement
Logic Functions

n Example
n An inverter implemented using MUX

1

0

Using a LUT to Implement
Logic Functions

n Synthesis
example
n Overheat

detector

// Latch the overheat output signal when overheat is
// asserted and the user presses the pushbutton.
always @ (posedge clock or posedge reset)

begin
if (reset)

overheat_out <=1'b0;

// Overheat_out is held forever (or until reset).
else if (overheat_in_sync2 && pushbutton_sync2);

overheat_out <=1'b1;
end

endmodule

module overheat (clock, reset, overheat_in, pushbutton_in, overheat_out);
input clock, reset, overheat_in, pushbutton_in;
output overheat_out;
reg overheat_out;
reg pushbutton_sync1, pushbutton_sync2;
reg overheat_in_sync1, overheat_in_sync2;

// Always synchronize inputs that are not phase related to
// the system clock.
// Use double-synchronizing flipflops for external signals
// to minimize metastability problems.
// Even better would be some type of filtering and latching
// for poorly behaving external signals that will bounce
// and have slow rise/fall times.

always @ (posedge clock or posedge reset)
begin

if (reset)
begin
pushbutton_sync1 <= 1'b0;
pushbutton_sync2 <= 1'b0;
overheat_in_sync1 <= 1'b0;
overheat_in_sync2 <= 1'b0;
end

else begin
pushbutton_sync1 <= pushbutton_in;
pushbutton_sync2 <= pushbutton_sync1;
overheat_in_sync1 <= overheat_in;
overheat_in_sync2 <= overheat_in_sync1;
end

end

Using a LUT to Implement
Logic Functions

n Graphical version of the netlist

Look-up table (AND gate)D-FF

D-FF
D-FF

Using a LUT to Implement
Logic Functions

n Graphical version of the netlist
n Notes

• The correct use of global resources for
clock and reset

• Using a LUT for AND gate that is located
between two DFF’s

• Verilog does not support direct assignment
of hardware resources

• It is the designer’s job to assure that these
inferences are made correctly.

Using a LUT to Implement
Logic Functions

n Estimation of the timing and
resource requirements

Timing information

Resource information

Discussion of Design
Processing Steps
n Syntax checking
n Identifying the syntax, typing, and

other errors
n Where is the error ?

• A semicolon is appended on one of the if
statement (Listing 2-3, p. 48)

n Different tools give different error
messages

• It makes good sense to have several tools
available for checking your code.

Discussion of Design
Processing Steps

n Design minimization and
optimization
n Hardware configuration

• FPGA
• Semi-custom FPGA
• ASIC

n The synthesis result is related to the
logic structure of FPGA

Discussion of Design
Processing Steps

n Xilinx 4K family Configuration Logic Block (CLB)
n Two 4-input LUTs feeding a pair of flipflops

LUT

D-FF

Discussion of Design
Processing Steps

n Synthesis process steps
n Step 1

• Flattening the design into large Boolean
equations with one equation for each
module output, design section output, or
register output

Discussion of Design
Processing Steps

n Example
n A simple 2-bit adder code
module adder (clock, reset, a, b, c); // Simple adder (no carry input).

input clock, reset, a, b;
output c;
reg [1:0] c;
always @ (posedge clock or posedge reset)
begin if (reset)

c = 2'b0;
else

c = a + b; // Adder.
end

endmodule

Discussion of Design
Processing Steps

n Truth table for simple adder example
n C[0] could be represented by an XOR gate
n C[1] could be represented by an AND gate

0111

1001

1010

0000

C[0]C[1]ba

Discussion of Design
Processing Steps

n A flattened version of the simple
adder example
n C[0] <= a^b;
n C[1] <=a&b;

Reg_c[1]

Reg_c[0]

AND

XOR

Discussion of Design
Processing Steps
n Synthesis process steps
n Step 2

• Minimizing the Boolean equations
• By recognizing and removing redundant logic

terms

n Step 3
• Recognized structure elements are replaced

with selected modules.
• E.g. a<=a-1 à Down counter
• Replacing the logic with a pre-defined circuit

optimized for the target architecture for either
speed or area

Discussion of Design
Processing Steps
n Synthesis process steps

n Step 4
• Timing and resource requirements are estimated by

the compiler
• May not be accurate enough
• Why the estimation is not accurate ?

• The manufacturer may have made changes to the
timing parameters.

• The library and black-boxes are not yet part of the
design netlist.

n Step 5
• The design is converted to a netlist

• The most common one is EDIF format

Discussion of Design
Processing Steps

n Synthesis process steps
n Step 6

• The design elements and modules are
linked together and ‘black-box’ modules
are replaced with library module netlists.

Discussion of Design
Processing Steps
n Synthesis process steps

n Step 7
• Floorplanning and routing attempts are made until

the timing and resource constraints are met.
• Floorplanning assigns elements from device logic to

the designed circuitry.
• The efficiency of routing and the resulting speed of

the routed design depend on the arrangement of the
module element.

• Typical routing densities of FPGAs
• Alteraà 65%
• Xilinxà 85%
• Capability of 100% routing of all logic is only an

advertisement.

Discussion of Design
Processing Steps

n Synthesis process steps
n Step 8

• Timing and resource reports are extracted
from the design. A timing annotated netlist
is created to support post-routed simulation

• A common format is SDF format
• SDFà Standard Delay Format

• Example
• Listing 2-9

Discussion of Design
Processing Steps

n Synthesis
process
steps
(SDF
netlist)

Discussion of Design
Processing Steps
n Synthesis process steps

n Step 9
• The device configuration files are created.
• Way of programming

• EPROM programming
• Downloading through serial or parallel cable
• Stored in memory

• Programming devices
• Micro-processors
• Stand-alone programmer

• Device types
• ISP (In-System Programming) type
• Re-programmable type

Discussion of Design
Processing Steps
n Shifty (詭詐的) logic circuits
n Example 1

• 2-input NOR gate
• Seems shifty or flaky (古里古怪的)
• The output is very likely to be glitchy when the

inputs change.
• Source for glitchesàSwitch bounces

Discussion of Design
Processing Steps

n Oscilloscope trace of 2-input NOR
n Switch bounce occurs in DIP switch

• To use feedback (hysteresis) to filter switch
bounce

Node 1

Node 3

Discussion of Design
Processing Steps
n Another source for glitches

n RC time delay causing signals traveling with
different arrival time

n R represents
• The sum of source and routing impedance

n C represents
• The net loading
• Could be controlled by setting fanout constraint in

synthesis
n Example 2

• 2-input AND gate with RC network

Discussion of Design
Processing Steps

n Combinational AND gate

RC time delay

Discussion of Design
Processing Steps

n Solution
n Synchronous AND gate
n Adding a D-FF in the output node to

remove the glitches by meeting
• Synchronous logic rules
• Setup and hold times of the D-FF

Latch the output
of AND gate at
proper time !

Synchronous Logic Rules

n Metastability
n Occurs when a clock edge is random with

respect to a change of an asynchronous input
n The FF output may take a longer time than

typical clock-to-Q delay of FF data sheet

metastability

Synchronous Logic Rules
n Solution to the metastability
n Using synchronous design technique

• Adopting a synchronizing clock to qualify,
gate, or trigger a circuit

• The time between clock edges (clock period)
is used to allow signals to propagate and
settle

n Narrowing the metastability window
• Narrowing the setup-and-hold time period by

increasing the speed of FF

Synchronous Logic Rules
n Setup and hold times
n The inputs must meet the setup and

hold times so that the output of FFs is
not metastable (can be predictable).

• The input changes in Tsu earlier than the
synchronizing clock edge

• The input is required to be stable in Th later
than the synchronizing clock edge

clk

input

Tsu Th

stable

Synchronous Logic Rules

n Where do the setup and hold times
occur ?
n Coming from the analog nature of the

flipflop design
• The flipflops use feedback implemented

with cross coupled gates to hold a state.
• It takes time for the FF to achieve their

stable state.

Synchronous Logic Rules
n Real World design

n Real World clock has rise/fall times
• Do not change abruptly

n FF requires stable inputs during setup/hold
time

10%

90%

Tf Tr

Synchronous Logic Rules

n Asynchronous input
problem
n When an asynchronous

input drives multiple
flipflops, and the input
changes near the clock edge,
some flipflops outputs will
change and some will not.

n RC delay is caused by the
FPGA routing and loads

Synchronous Logic Rules
n Solution to the asynchronous input

problem
n Synchronizing the input with a single

flipflop
n Do not violate the setup/hold time

requirement

Synchronous Logic Rules
n How can I create a nearly trouble-free

design ?
n Always synchronize your inputs !

• An asynchronous input drives exactly one FF.
• The output of this FF can be safely used to drive the rest

of your synchronous circuitry.

Synchronous Logic Rules

n Estimating the max. clock frequency
n Example: divided-by-two circuit

Synchronous Logic Rules
n D-FF specifications

n FF minimum input set-up time
• Tsu=1ns

n FF minimum input hold time
• Th=1ns

n Maximum clock-to-output delay
• Tco=1ns

n Maximum propagation delay (Q to D)
• Tqd=1ns

Synchronous Logic Rules

n Timing calculation

clock

D

Q Tco

Tqd

Tsu

Minimum clock period = 3nsà Max clock freq=333.33MHz

Synchronous Logic Rules
n Cascaded FF v.s. Timing delay

n How can this circuit work reliably ?(Fig.2-17)
• What if the min. clock-to-output delay of U1 is less then

the hold time requirement of U2 ?
• U2 will directly latch the updated value instead of the old

value of U1 !!!
• This is not what we want !!!

n FPGA chip designer will create a logic cell that
assure the circuit will work !!!

Synchronous Logic Rules
n Clock skew problem
n Example: two FFs connected in series

with clock skew (Fig. 2-19)
n What is the problem ?

• The clock skew will cause the U2 always
latches the newest value instead of the old
value from U1 !

• Or U2 may latch the unknown value due to
the violation of input set-up time caused by
the clock skew !

Synchronous Logic Rules
n What is the solution ?
n Minimizing the clock skew situation

• FPGA
• The FPGA chip designer has provided low-skew

clock network to assure that the longest skew of
the clock anywhere across the device is shorter
than the shortest sum of clock-to-Q and signal
routing propagation delay.

• ASIC
• H-tree (or balanced) clock distribution network

to reduce the clock skew situation

Synchronous Logic Rules

n H-tree clock distribution

FF FF FF FF

FF FF FF FF

FF FF FF FF

FF FF FF FF

clock

Clocking Strategies

n The most important decision the
FPGA designer makes is
n Clocking strategies

• This must be considered carefully.
• An error in clocking can doom a design.

Clocking Strategies

n Suggested clocking strategies (1)
n When designing an ASIC, if power

consumption is NOT an issue,
• Use one master clock on all FFs
• Replace lower-frequency clocks with clock

enables
• The design has one clock, which results in

the simplest timing analysis.

Clocking Strategies
n Suggested clocking strategies (2)
n When designing an ASIC, if power

consumption IS an issue,
• Running FFs in lower clock frequency in selected parts

of the design is OK.
• Make the design smaller and/or reduce the clock

frequency to reduce the power consumption.
• Minimizing the amount of circuitry running at high

speed.
• Be forced to deal with the problem of synchronizing

signals crossing clock domains in exchange for reduced
power consumption.

Clocking Strategies
n Suggested clocking strategies (3)

n When designing an ASIC, but using FPGAs as
prototypes,

• For fast FPGAs (ASIC-like)
• Running the design with one master clock

• For slow FPGAs (SRAM-based devices)
• Will probably be forced to run modules at the lowest

possible speed to get the design work.
• Drive FFs with multiple clocks,
• Creating clocks in a central clock generator module,
• Minimizing the interconnection between clock domains,
• Making sure signals that cross clock domains are

properly synchronized.

Clocking Strategies

n Suggested clocking strategies (4)
n When doing a fast FPGA design,

• Use up the global clock resources
• Partitioning the design to minimize signals

crossing clock domains
• Synchronizing the signals properly.

n When doing a slow FPGA design,
• Either strategy is fine.

Clocking Strategies

n Clock enable
n Verilog HDL does not support dedicated

clock enable signals.
n FPGA synthesis vendors may provide

this support through compiler directives.
• The code in Listing 2-10 may be

synthesized into different ways depending
on the targeted FPGA.

Clocking Strategies
n Clock-Enable example (Listing 2-10)

module clock_en(out, in, clock, clock_enable1, clock_enable2, reset);

output out;
input in, clock, clock_enable1, clock_enable2, reset;
reg out;

always @ (posedge clock or posedge reset)
begin
if (reset)

out<=0;
else if (clock_enable1)

out<=out; // Hold output if not enabled.
else

out<=(in & clock_enable2);
end

endmodule

Clocking Strategies

n Synthesized clock enable
n Fig. 2-22

Clocking Strategies
n In synthesis, the synthesizer may insert

added logic into the clock-enable path.
n Fig. 2-23

Clocking Strategies
n The clock enable implementation in a

technology that does not have a clock-
enable feature in its logic block.
n Fig. 2-24

Logic Minimization
n A synthesizer can recognize and remove

redundant logic.
n Listing 2-11 v.s. Listing 2-12

input test1, test2, test3;
output sample;

sample = ((test1 & test2 & test3) | (test1 & !test2 & test3)
| (test1 & test2 & !test3));

Listing 2-11

input test1, test2, test3;
output sample;

sample = ((test1 & (test2 | test3));

Listing 2-12
Using K-map

The compiler can also recognize equivalent logic equations

Logic Minimization
n The synthesizer will not be able to extract

the redundant logic if the logic is spread
over across register boundaries.
n Fig. 2-26

Logic Minimization
n How can we take advantages of the

synthesis tool’s capability to minimize the
logic ?
n Never create purely combinational modules !!!
n None of the popular FPGA architectures have

purely combinational logic elements.
n Mixing the combinational logic with the

synchronous logic to allow the synthesis tool
to merge the logic into the resources available
in the device.

Logic Minimization
n Combinational logic clouds feeding flipflops

n Fig. 2-27

What does the synthesizer do ?

n Synthesizer’s role
n Take Verilog HDL and maps it into

hardware
n Procedures

• Minimize logic equations by removing
redundant logic terms

• Map the resulting Boolean equations onto
the available hardware elements in FPGAs

n Example
• 7-segment decoder

What does the synthesizer do ?

n Truth table for 7-segment decoder

B3 B2 B1 B0 a b c d e f g

0 0 0 0 1 1 1 1 1 1 0

0 0 0 1 0 1 1 0 0 0 0

0 0 1 0 1 1 0 1 1 0 1

0 0 1 1 1 1 1 1 0 0 1

0 1 0 0 0 1 1 0 0 1 1

0 1 0 1 1 0 1 1 0 1 1

0 1 1 0 1 0 1 1 1 1 1

0 1 1 1 1 1 1 0 0 0 0

1 0 0 0 1 1 1 1 1 1 1

1 0 0 1 1 1 1 1 0 1 1

BCD input Segment output

What does the synthesizer do ?

n Let us consider the output of “a” segment

n The reduced equation for “a” segment

What does the synthesizer do ?

n Verilog design
for 7-segment
display decoder
“a” term

module seven_seg (clk, reset, bcd_input, a_segment);

input clk, reset;
input [3:0] bcd_input;
output a_segment;
reg a_segment;

always @ (posedge clk or posedge reset)
if (reset)

a_segment<=0;
else
begin case (bcd_input)

{1'b0, 1'b0, 1'b0, 1'b0}: a_segment <= 1'b1;
{1'b0, 1'b0, 1'b0, 1'b1}: a_segment <= 1'b0;
{1'b0, 1'b0, 1'b1, 1'b0}: a_segment <= 1'b1;
{1'b0, 1'b0, 1'b1, 1'b1}: a_segment <= 1'b1;
{1'b0, 1'b1, 1'b0, 1'b0}: a_segment <= 1'b0;
{1'b0, 1'b1, 1'b0, 1'b1}: a_segment <= 1'b1;
{1'b0, 1'b1, 1'b1, 1'b0}: a_segment <= 1'b1;
{1'b0, 1'b1, 1'b1, 1'b1}: a_segment <= 1'b1;
{1'b1, 1'b0, 1'b0, 1'b0}: a_segment <= 1'b1;
{1'b1, 1'b0, 1'b0, 1'b1}: a_segment <= 1'b1;
default: a_segment <= 0;

endcase
end

endmodule

What does the synthesizer do ?

n Synthesized Logic for 7-segment display
decoder “a” term
n Fig. 2-28

Area/Delay Optimization
n Two fundamental concerns in

implementing a design
n How big is it ?
n How fast will it operate ?

n The goal of our quest is to achieve good
enough
n To meet system requirements like

• Product cost
• Development cost
• Performance
• Reliability
• Maintainability
• Time to market

Area/Delay Optimization

n The experienced designer always
leaves a way out of a problem by
insuring that a faster or denser
device, if at all possible, is available
in the same device footprint.
n Instead of redesigning a circuit board

to accommodate a new device at great
expenses.

	page1
	page2
	page3
	page4
	page5
	page6
	page7
	page8
	page9
	page10
	page11
	page12
	page13
	page14
	page15
	page16
	page17
	page18
	page19
	page20
	page21
	page22
	page23
	page24
	page25
	page26
	page27
	page28
	page29
	page30
	page31
	page32
	page33
	page34
	page35
	page36
	page37
	page38
	page39
	page40
	page41
	page42
	page43
	page44
	page45
	page46
	page47
	page48
	page49
	page50
	page51
	page52
	page53
	page54
	page55
	page56
	page57
	page58
	page59
	page60
	page61
	page62
	page63
	page64
	page65
	page66

