
123

Marcus Rogers
Kathryn C. Seigfried-Spellar (Eds.)

Digital Forensics
and Cyber Crime
4th International Conference, ICDFC 2012
Lafayette, IN, USA, October 2012
Revised Selected Papers

114

Lecture Notes of the Institute
for Computer Sciences, Social Informatics
and Telecommunications Engineering 114

Editorial Board

Ozgur Akan
Middle East Technical University, Ankara, Turkey

Paolo Bellavista
University of Bologna, Italy

Jiannong Cao
Hong Kong Polytechnic University, Hong Kong

Falko Dressler
University of Erlangen, Germany

Domenico Ferrari
Università Cattolica Piacenza, Italy

Mario Gerla
UCLA, USA

Hisashi Kobayashi
Princeton University, USA

Sergio Palazzo
University of Catania, Italy

Sartaj Sahni
University of Florida, USA

Xuemin (Sherman) Shen
University of Waterloo, Canada

Mircea Stan
University of Virginia, USA

Jia Xiaohua
City University of Hong Kong, Hong Kong

Albert Zomaya
University of Sydney, Australia

Geoffrey Coulson
Lancaster University, UK

Marcus Rogers
Kathryn C. Seigfried-Spellar (Eds.)

Digital Forensics
and Cyber Crime

4th International Conference, ICDF2C 2012
Lafayette, IN, USA, October 25-26, 2012
Revised Selected Papers

13

Volume Editors

Marcus Rogers
Purdue University, Center for Education
and Research in Information Assurance and Security
Lafayette, IN, 47906, USA
E-mail: rogersmk@purdue.edu

Kathryn C. Seigfried-Spellar
The University of Alabama
Tuscaloosa, AL, 35487, USA
E-mail: spellark@seattleu.edu

ISSN 1867-8211 e-ISSN 1867-822X
ISBN 978-3-642-39890-2 e-ISBN 978-3-642-39891-9
DOI 10.1007/978-3-642-39891-9
Springer Heidelberg New York Dordrecht London

Library of Congress Control Number: 2013944669

CR Subject Classification (1998): K.4.1, K.4.4, K.6.5, K.5, C.5.3, C.3, J.1

© ICST Institute for Computer Science, Social Informatics and Telecommunications Engineering 2013
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection
with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and
executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication
or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location,
in ist current version, and permission for use must always be obtained from Springer. Permissions for use
may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution
under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

As we continue our journey into the twenty-first century, our reliance on tech-
nology and cyber infrastructure has increased at an incredible pace. This fact
is not lost on those who wish to use technology for criminal activities. If we
believe the current statistics that are available, the frequency and prevalence of
cybercrime have reached epidemic proportions. The estimated loss as a result of
cyber criminal activity is hundreds of millions of dollars annually. Cybercrime
is undoubtedly the new transnational criminal activity with no boundaries or
borders. As such, it is important that the international community (industry,
government, law enforcement, and academia) come together in order to share
ideas and possible solutions to help us deal with this global, increasing risk.

This volume contains papers presented at the 4th Annual International ICST
Conference on Digital Forensics and Cybercrime (ICDF2C 2012), held October
25–26 2012, in Lafayette, Indiana, USA. ICDF2C is unique in that it brings
together the various constituents in the digital forensic field (e.g., academia,
government, law enforcement, business). The focus of the conference is on the
applied nature of digital forensics and it provides an opportunity for researchers
and practitioners to interact and discuss the various challenges and potential
solutions.

The 20 papers presented in this volume represent an excellent cross section of
the current work in the field of digital forensics. The topics covered range from
behavior and law, to mobile devices, malware and new developments. The papers
went through a double-blind peer review process. Three reviewers selected from
the Technical Program Committee reviewed each paper.

We would like to thank those individuals who volunteered their time to be on
the Technical Program Committee, as well as all of the people who volunteered
to be Chairs of the various sections. The success of the conference was in large
part due to the efforts of the staff at EAI, with a special thank you for the
tireless efforts of Erica Polini, who kept us all on track.

Marcus Rogers
Kathryn C. Seigfried-Spellar

Organization

General Chair

Marcus Rogers Purdue University, USA

Technical Program Committee Chairs

Pavel Gladyshev University College Dublin, Ireland
Eugene Spafford Purdue University, USA

Publicity Co-chairs

Ibrahim Baggili Zayed University, United Arab Emirates
Sanjay Goel University at Albany, State University of

New York, USA

Industry Track Chair

Fred Kerr USA

Local Chair

Tejashree Datar Purdue University, USA

Conference Manager

Erica Polini EAI, Italy

Workshop Chair

Frank Adelstein ATC-NYC, USA

Publications Chairs

Nasir Memon Polytechnic Institute of New York University,
USA

Andrew Marrington Zayed University, United Arab Emirates

Demos and Tutorials Chair

John Sammons Marshall University, USA

Law Enforcement Chair

Lt. Chuck Cohen Indiana State Police, USA

VIII Organization

Legal Chair

Mike Losavio University of Louisville, USA

Behavioral Sciences Chair

Kate Seigfried-Spellar Seattle University, USA

Steering Committee

Pavel Gladyshev University College, Dublin
Marcus Rogers Purdue University, USA
Ibrahim Baggili Zayed University, United Arab Emirates
Sanjay Goel University at Albany, State University of

New York, USA

Technical Program Committee

Ibrahim Baggili Zayed University, United Arab Emirates
Felix Balado University College Dublin, Ireland
Florian Buchholz James Madison University, USA
Glenn Dardick Longwood University, USA
Katrin Franke Gjovik University College, Norway
Felix Freiling University of Mannheim, Germany
Sandra Frings Fraunhofer IAO, Germany
Zeno Geradts Netherlands Forensic Institute,

The Netherlands
Pavel Gladyshev University College Dublin, Ireland
Sanjay Goel University at Albany, State University of

New York, USA
Andrew Harbison Grant Thornton, Ireland
Michael Harris Ernst & Young, Ireland
Andrew Jones Khalifa University, United Arab Emirates
Anthony Keane Blanchardstown Institute of Technology,

Ireland
Tahar Kechadi University College Dublin, Ireland
Chang-Tsun Li University of Warwick, UK
Juha Lampinen National Bureau of Investigation, Finland
Vivienne Mee Rits Computer Forensics, Ireland
Nasir Memon Polytechnic Institute of New York University,

USA
Stig Mjolsnes Norwegian University of Science and

Technology, Norway
George Mohay Queensland University of Technology, Australia
Bruce Nikkel UBS, Switzerland
Slim Rekhis Institute of Technology in Communications,

Tunisia

Organization IX

Marcus Rogers Purdue University, USA
John Sheppard Waterford Institute of Technology, Ireland
Eugene Spafford CERIAS - Purdue University, USA
Bhadran V.K. Resource Centre for Cyber Forensics, India
Vinod Bhattathiripad Farouq Institute of Management Studies, India
Oscar Vermaas Netherlands National Police Force,

The Netherlands
Svein Willassen Norwegian University of Science and

Technology, Norway
Gregg Gunsch Defiance College, USA
Tim Wedge Defiance College, USA
James Lyle NIST, USA
Nicole Beebe University of Texas San Antonio, USA

Table of Contents

Cloud Investigations

Cloud Computing Reference Architecture and Its Forensic Implications:
A Preliminary Analysis . 1

Keyun Ruan and Joe Carthy

Cloud Forensic Maturity Model . 22
Keyun Ruan and Joe Carthy

Identifying Remnants of Evidence in the Cloud . 42
Jeremy Koppen, Gerald Gent, Kevin Bryan, Lisa DiPippo,
Jillian Kramer, Marquita Moreland, and Victor Fay-Wolfe

Malware

On Improving Authorship Attribution of Source Code 58
Matthew F. Tennyson

Behavioral

Towards Automated Malware Behavioral Analysis and Profiling
for Digital Forensic Investigation Purposes . 66

Ahmed F. Shosha, Joshua I. James, Alan Hannaway,
Chen-Ching Liu, and Pavel Gladyshev

Measuring the Preference of Image Content for Self-reported Consumers
of Child Pornography . 81

Kathryn C. Seigfried-Spellar

Cybercrime, Censorship, Perception and Bypassing Controls:
An Exploratory Study . 91

Ibrahim Baggili, Moza Al Shamlan, Bedoor Al Jabri, and
Ayesha Al Zaabi

Law

When Should Virtual Cybercrime Be Brought under the Scope
of the Criminal Law? . 109

Litska Strikwerda

XII Table of Contents

New Developments in Digital Forensics

Research Trends in Digital Forensic Science: An Empirical Analysis
of Published Research . 144

Ibrahim Baggili, Afrah BaAbdallah, Deena Al-Safi, and
Andrew Marrington

Face Recognition Based on Wavelet Transform and Adaptive Local
Binary Pattern . 158

Abdallah Mohamed and Roman V. Yampolskiy

Similarity Preserving Hashing: Eligible Properties and a New Algorithm
MRSH-v2 . 167

Frank Breitinger and Harald Baier

Investigating File Encrypted Material Using NTFS $logfile 183
Niall McGrath and Pavel Gladyshev

Finding Data in DNA: Computer Forensic Investigations of Living
Organisms . 204

Marc B. Beck, Eric C. Rouchka, and Roman V. Yampolskiy

On the Completeness of Reconstructed Data for Database Forensics 220
Oluwasola Mary Adedayo and Martin S. Olivier

Mobile Device Forensics

BlackBerry PlayBook Backup Forensic Analysis . 239
Mohamed Al Marzougy, Ibrahim Baggili, and Andrew Marrington

ANTS ROAD: A New Tool for SQLite Data Recovery on Android
Devices . 253

Lamine M. Aouad, Tahar M. Kechadi, and Roberto Di Russo

Evaluating and Comparing Tools for Mobile Device Forensics Using
Quantitative Analysis . 264

Shahzad Saleem, Oliver Popov, and Oheneba Kwame Appiah-Kubi

Detection of Masqueraded Wireless Access Using 802.11 MAC Layer
Fingerprints . 283

Christer Idland, Thomas Jelle, and Stig F. Mjølsnes

Table of Contents XIII

Cybercrime Investigations

BREDOLAB: Shopping in the Cybercrime Underworld 302
Daan de Graaf, Ahmed F. Shosha, and Pavel Gladyshev

A Review and Comparative Study of Digital Forensic Investigation
Models . 314

Kwaku Kyei, Pavol Zavarsky, Dale Lindskog, and Ron Ruhl

Author Index . 329

M. Rogers and K.C. Seigfried-Spellar (Eds.): ICDF2C 2012, LNICST 114, pp. 1–21, 2013.
© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2013

Cloud Computing Reference Architecture
and Its Forensic Implications: A Preliminary Analysis

Keyun Ruan and Joe Carthy

Center for Cybersecurity and Cybercrime Investigation
University College Dublin

{keyun.ruan,joe.carthy}@ucd.ie

Abstract. In this paper, researchers provide a preliminary analysis on the
forensic implications of cloud computing reference architecture, on the
segregation of duties of cloud actors in cloud investigations, forensic artifacts
on all layers of cloud system stack, cloud actors interaction scenarios in cloud
investigations, and forensic implications of all cloud deployment models. The
analysis serves as feedback and input for integrating forensic considerations
into cloud standardization processes from early stage, and specifies
requirements and directions for further standardization efforts.

Keywords: Cloud Forensics, NIST, Cloud Computing, Standardization, Digital
Investigation, Digital forensics.

1 Introduction

In late 2011, NIST released its final definition of cloud computing after 15 versions of
working definitions, and it is defined as a model for enabling ubiquitous, convenient,
on-demand network access to a shared pool of configurable computing resources
(e.g., networks, servers, storage, applications, and services) that can be rapidly
provisioned and released with minimal management effort or service provider
interaction. This cloud model offers three types of service models, i.e., Software as a
Service (SaaS), Platform as a Service (PaaS) and Infrastructure as a Service (IaaS),
and four types of deployment models, i.e., private cloud, community cloud, public
cloud and hybrid cloud (Mell and Grance 2011).

As an extension to the NIST cloud computing definition, a NIST Cloud Computing
Reference Architecture (Liu et al. 2011) has been released as a generic high-level
conceptual model for discussing the requirements that are the basis for discussing the
characteristics, uses, and standards for cloud computing (Hogan et al 2011). The
NIST Cloud Computing Standards Roadmap (Hogan et al 2011) has also been
released after surveying the existing standards landscape for security, portability, and
interoperability standards/models/studies/use cases, etc. relevant to cloud computing
in order to identify standards gaps and standardization priorities. However, little has
been mentioned on the forensic implications and standardization gap in these
documents.

2 K. Ruan and J. Carthy

Several researchers have identified various challenges posed by cloud adoption to
digital investigation (Spyridopoulos and Katos 2011, Birk and Wegener 2011, Biggs
and Vidalis 2009, Ruan et al. 2011A). In 2011, hackers rented Amazon servers and
launched the second-largest online data breach in U.S. history (Galante et al. 2011).
The need for digital investigation in cloud environments is only going to rise as cloud
adoption emerges. According to survey results based on 156 forensic experts and
practitioners worldwide (Ruan et al. 2011B), more than half of the respondents agree
that “establishment of a foundation of standards and policies for forensics that will
evolve together with the technology” is an opportunity for cloud forensics, 88.89% of
the respondents agree or strongly agree that “designing forensic architecture for the
Cloud” is a valuable research direction for cloud forensics.

Digital forensics has historically been an “after-after-thought” whereas security has
been an “after-thought” whenever new technologies emerge. This could be one of the
reasons why today cybercrime causes an annual loss of 750 billion Euros in Europe
alone, according to new statistics released by Interpol (Cheslow 2012). On the other
hand, the field of digital forensics lacks consensus in fundamental aspects of its
activities in terms of methodology and procedures (Cohen 2011). There is no single
framework that can be used as a general guideline for investigating all incidents cases
(Selamat et al 2008), and a comprehensive model of cybercrime investigation is
important for standardizing terminology, defining requirements, and supporting the
development of new techniques and tools for investigations (Ciardhuáin 2004).

Cloud computing is expected to reach maturity in another decade (CSA 2012,
Thomason 2010), as one of most significant paradigm shifts in computing history,
it is an unique timing for digital forensics to be pro-actively integrated in cloud
architectural design and standard acceleration. As a first step, in this paper researchers
analyze the forensic implications based on the high-level conceptual cloud computing
reference architecture and specify requirements for the future standardization
efforts. The analysis is independent from any specific jurisdiction or specific service
offering.

2 Cloud Actors and Segregation of Duties

As shown in Fig 1, Liu et al. (2011) defines five major cloud actors: cloud consumer,
cloud provider, cloud carrier, cloud auditor and cloud broker. Each actor is an entity
(a person or an organization) that participates in a transaction or process and/or
performs tasks in cloud computing. In this paper researchers discuss two types of
digital investigation, i.e. internal investigation happens within the cloud environment
among cloud actors for security and incident response purposes, and external
investigations initiated by external parties such as law enforcement for civil or
criminal investigation. In this section, segregation of duties of each cloud actor
regarding digital investigation is analyzed.

 Cloud Computing Reference Architecture and Its Forensic Implications 3

Fig. 1. NIST Cloud Conceptual Reference Model (Liu et al. 2011)

2.1 Cloud Provider and Cloud Consumer

According to NIST definition in Liu et al. 2011, the cloud provider is a person, an
organization; it is the entity responsible for making a service available to interested
parties through different cloud offerings. A cloud provider acquires and manages the
computing infrastructure required for providing the service, runs the cloud software
that provides the service, and makes arrangement to deliver the cloud services to the
cloud consumers through network access. A cloud provider’s activities can be
described in five major areas, i.e., service deployment, service orchestration, cloud
service management, security, and privacy.

As data is being migrated to cloud providers, so is evidence. Service provider will
inevitably be expected to become evidence provider. Increasingly, both consumer and
law enforcement will acquire access to evidence and demand forensic support from
cloud providers. However, interfaces for such access and requirement of such support
are still largely undefined.

As defined in Liu et al. 2011, the cloud consumer represents a person or
organization that maintains a business relationship with, and uses the service from a
cloud provider. A cloud consumer browses the service catalog from a cloud provider,
requests the appropriate service, sets up service contracts with the cloud provider, and
uses the service. The cloud consumer is the principle stakeholder for the cloud
computing service.

As the principle stakeholder for cloud computing service, the consumer is
responsible to demand visibility and control, be aware of its own risks from cloud
migration, and make sure that appropriate security controls are implemented.
However, guidelines on assessing forensic risks and concerns are still largely missing
for consumers.

4 K. Ruan and J. Carthy

The segregation of duties between cloud provider and cloud consumers regarding
forensic investigations is very complex and needs to be further clarified. With the
absence of such clarification, in this section researchers utilize the Cloud Security
Alliance (CSA) Cloud Control Matrix (CCM) v1.2 which rests on other industry-
accepted security standards, regulations and controls frameworks such as HITRUST
CSF, ISO 27001/27002, ISACA COBIT, PCI, HIPPA, NIST and SAS 70 as a starting
point, identify controls that are closely related to forensic process, then group them
into a) sole provider responsibility and b) provider and consumer shared
responsibility.

The current forensic-related responsibilities expected solely from the provider are
as follows:

1) Data ownership and stewardship (related control DG-01): all data should be
designated with stewardship with assigned responsibilities defined, documented and
communicated by the cloud provider. Such designation and documentation can be
used for identification of evidence ownership and chain of custody in a forensic
investigation.

2) Data retention and disposal (related control DG-04 DG-05): cloud provider must
ensure backup and redundancy mechanisms are in place for data retention and
storage; testing recovery of backups must be implemented at planned intervals by the
cloud provider; cloud provider must secure disposal and complete removal of data
from all storage media, ensuring data is not recoverable by any computer forensic
means. Redundant storage is a source for forensic investigation. Event reconstruction
and evidence recovery can be made possible through restoring back-ups. However,
evidence will not be recoverable if the provider has physically destroyed all storage
where evidence might reside.

3) Facility Security (related control FS-03 FS-04 FS-05 FS-06): authorization and
access control to physical facility security should be ensured and reinforced by the
cloud provider. As a result, cloud provider is responsible of providing access logs to
physical storage.

4) Clock Synchronization (related control SA-12): an external accurate, externally
agreed upon, time source should be used by the cloud provider to synchronize the
system clocks of all relevant information processing systems within the organization
or explicitly defined security domain to facilitate tracing and reconstitution of activity
timelines. Clock synchronization is critical for analysis of event sequence and event
reconstruction in a forensic investigation.

5) Audit log and intrusion detection (related control SA-14): audit logs recording
privileged user access activities, authorized and unauthorized access attempts, system
exceptions, and information security events shall be retained, complying with
applicable policies and regulations. Audit logs shall be reviewed at least daily and file
integrity (host) and network intrusion detection (IDS) tools implemented to help
facilitate timely detection, investigation by root cause analysis and response to
incidents. Physical and logical user access to audit logs shall be restricted to
authorized personnel. In cases of an investigation, provider should be responsible of
providing such audit logs.

 Cloud Computing Reference Architecture and Its Forensic Implications 5

The current forensic-related responsibilities expected to be shared between
provider and consumer are as follows:

1) Audit (related control CO-01 CO-02 CO-03): audit planning, independent audit,
third-party audits should be carried about by both provider and consumer on data
duplication, access and data boundary limitations. Forensic related terms need to be
defined and included in audit planning, independent audit, and third-party audits from
both provider and consumer side.

2) Regulatory mapping (related control CO-05): information system elements
(data, objects, applications, infrastructure and hardware) may be assigned a legislative
domain and jurisdiction to facilitate statutory, regulatory and contractual requirements
for compliance mapping. This mapping is of significant value in determining the
legislative domain of digital evidence.

3) Data classification/labeling/handling (related control DG-02 DG-03): data and
objects containing data shall be assigned a classification based on data type,
jurisdiction of origin, jurisdiction domiciled, legal constrains, contractual constrains,
and sensitivity that can be useful in a forensic investigation.

4) Asset management (related control FS-08): a complete inventory of critical
assets shall be maintained with ownership defined and documented. In a forensic
investigation, such documentation can be of great value and needs to be provided by
both provider and consumer.

5) Authentication and Authorization (related control IS-07, IS-08, SA-02, SA-07):
granting and revoking normal and privileged access to applications, databases,
systems, databases, server, network, and sensitive data should be restricted and
approved. Multi-factor authentication is required for all remote user access. In a
forensic investigation, authentication and authorization logs and records to critical
assets under investigation need to be provided by both provider and consumer.

6) Incidence management (related control IS-22 IS-25): policies and procedures
should be established to triage security related events and ensure timely and thorough
incident management. Mechanism shall be put in place to monitor and quantify the
type, volumes and costs of information security incidents. Mechanisms to trigger
post-incident investigations need to be included in the incidence management
procedures.

7) Legal preparation (related control IS-24): in the event a follow-up action
concerning a person or organization after an information security incident requires
legal action proper forensic procedures including chain of custody shall be required
for collection, retention, and presentation of evidence to support potential legal action
subject to the relevant jurisdiction.

8) Data integrity and segmentation (related control SA-03 SA-05 SA-09): system
interfaces, jurisdictions, or with a third party shared service provider to prevent
improper disclose, alteration or destruction. The preservation of evidence integrity
and segmentation is also a shared responsibility between provider and consumer.

Despite forensic-related controls are specified in CCM here and there, a separate
set of controls explicitly covers the whole forensic process specifying a list of
forensic capabilities is needed to further clarify, analyze and enforce the segregation
of duties regarding forensic investigations among all cloud actors, especially between

6 K. Ruan and J. Carthy

provider and consumer at current stage. To develop such a set of controls, researchers
suggest the following steps:

1) Identification of a list of forensic capabilities include
a) Investigative capabilities: a mapping of various existing forensic process models

to cloud environment to cover core forensic phases.
b) Pre-investigative capabilities: defining a set of capabilities that are needed for

pro-active forensic readiness in cloud environment, such as identity management,
encryption management, interoperability management capabilities.

c) Supportive capabilities: certain capabilities are needed throughout the whole
forensic process but are not core forensic phases, such as evidence management, case
management, multi-jurisdiction, multi-tenancy capabilities.

d) Interfacing capabilities: the split of control in cloud environment implies the
need for access and exchange forensic data, thus interfacing capabilities need to be
defined between cloud actors, especially cloud provider and consumer when it comes
to internal investigation. Interfacing capabilities also need to be defined for external
investigation when law enforcement is involved.

2) An in-depth analysis of segregation of duties between provider and consumer
against the list of forensic capabilities, in which requirement of forensic support from
provider side can be better understood and demanded from the consumer through
contractual negotiation.

3) Identification of a list of forensic capabilities that can be integrated and provided
as a service through standard interfaces, so that providers can start integrating these
services at early stage while cloud technology matures.

2.2 Cloud Broker

A cloud broker is an entity that manages the use, performance and delivery of cloud
services and negotiates relationships between cloud providers and cloud consumers.
As cloud computing evolves, the integration of cloud services can be too complex for
cloud consumers to manage. As shown in Fig 2 below, a cloud consumer may request
cloud services from a cloud broker, instead of contacting a cloud provider directly,
and in this case the actual cloud providers are invisible to the cloud consumer and the
cloud consumer interacts directly with the cloud broker. The cloud broker may create
a new service by combining multiple services or by enhancing an existing service. In
general, a cloud broker can provide services in service intermediation, service
aggregation and service arbitrage (Liu et al. 2011)

Fig. 2. NIST Usage Scenario for Cloud Broker (Liu et al. 2011)

 Cloud Computing Reference Architecture and Its Forensic Implications 7

According to Gartner (Cearley and Smith 2012), cloud brokerage is expected to
accelerate over the next three years and will facilitate cloud consumption. Cloud
broker can play the following role in a forensic investigation:

1) Aggregate forensic capabilities of multiple providers and deliver to consumer
while actual providers are hidden from the consumer

2) Facilitate investigation by adding an extra layer of forensic support, for example
in areas of evidence segregation and interfacing law enforcement.

2.3 Cloud Carrier

A cloud carrier acts as an intermediary that provides connectivity and transport of
cloud services between cloud consumers and cloud providers. Cloud carriers provide
access to consumers through network, telecommunication and other access devices.
As shown in Fig 3 below, the cloud provider arranges for two unique Service Level
Agreements (SLAs), one with a cloud carrier (e.g., SLA2) and one with a cloud
consumer (e.g., SLA1). A cloud provider may request dedicated and encrypted
connections to ensure the cloud services are consumed at a consistent level according
to the contractual obligations with the cloud consumers. In this case, the provider may
specify its requirements on capability, flexibility and functionality in SLA2 in order
to provide essential requirements in SLA1. (Liu et al. 2011)

Fig. 3. NIST Usage Scenario for Cloud Carrier (Liu et al. 2011)

Carriers are not likely to be directly involved in a forensic investigation, however
they can still play a critical role in providing pre-investigative and supportive
capabilities, such as evidence transport, chain of custody, and inter-cloud forensic
capabilities.

2.4 Cloud Auditor

A cloud auditor is a party that can perform an independent examination of cloud
service controls with the intent to express an opinion thereon. Audits are performed to
verify conformance to standards through review of objective evidence. A cloud
auditor can evaluate the services provided by a cloud provider in terms of security
controls, privacy impact, performance, etc. The audit may involve interactions with
both cloud consumer and cloud provider, as shown in Fig 4 below (Liu et al. 2011)

8 K. Ruan and J. Carthy

Fig. 4. NIST Usage Scenario for Cloud Auditor (Liu et al. 2011)

Forensic capabilities and segregation of duties among cloud actors in delivering these
capabilities to facilitate both internal and external cloud investigations need to be
reflected into auditable regulatory or contractual language. Currently these terms are
missing. A set of key terms for the Service Level Agreement (SLA) between the cloud
provider and cloud consumer are identified and recommended by Ruan et al. (2012).

3 Forensic Artifacts in Cloud Environment

A generic stack diagram is defined in NIST Reference Architecture (Liu et al. 2011)
to represent the grouping of three types of system components for delivering cloud
services, i.e., Physical Resource Layer, Resource Abstraction Layer, and Service
Layer, as shown in Fig 5. Similar to traditional computer system stack, a list of
forensic artifacts and its order of volatility need to be identified and specified for the
cloud system stack.

3.1 Physical Layer

The Physical Resource Layer includes hardware computing resources such as
computers (CPU and memory), networks (routers, firewalls, switches, network links
and interfaces) and storage components (hard disks) and other physical computing
infrastructure elements, as well as facility resources such as heating, ventilation, and
air conditioning (HVAC), power, communications, and other aspects of the physical
plant (Liu et al. 2011).

This layer consists of physical storage and is under control of the cloud provider. It
is often geographically distant from the consumer and the law enforcement. Forensic
artifacts for the hardware layer include hard disks, network logs, router logs, etc. This
layer also includes data center artifacts such as access records, facility logs, activity
logs, interior and exterior camera footage, biometrics records, visitor records,
organization chart and contact information, etc. Gaining access to actual physical data
center and carry out on-site investigation can be too costly or even impossible in most
cases. Forensic artifacts on this layer often have to be acquired through remote
forensics, or provided by provider.

 Cloud Computing Reference Architecture and Its Forensic Implications 9

Fig. 5. Cloud System Environment (Liu et al. 2011)

3.2 Abstraction Layer

The Resource Abstraction and Control Layer contains the system components that
Cloud Providers use to provide and manage access to the physical computing
resources through software abstraction. Resource abstraction components typically
include software elements such as hypervisors, virtual machines, virtual data storage,
and other computing resource abstractions (Liu et al. 2011).

This layer is under control of the cloud provider and hidden from the consumer.
However this layer is extremely critical for addressing multi-tenant issues around
evidence segregation, and locating the actual physical computing resources (hard disk
storage, etc.) from virtual resources in the Service Layer. Forensic artifacts on this
layer include hypervisor event logs, virtual images, etc. Barrett (2012) provides a
comprehensive overview of virtual forensics in cloud environments.

3.3 Service Layer

The Service Layer is where Cloud Providers define interfaces for Cloud Consumers
to access the computing services. Access interface of each of the three service models

10 K. Ruan and J. Carthy

are provided in this layer. It is possible, though not necessary, that SaaS applications
can be built on top of PaaS components and PaaS components can be built on top of
IaaS components. (Liu et al. 2011)

The Service Layer is where the segregation of duties between the provider and the
consumer comes in, and the segregation is where the interface is. Forensic artifacts
reside from the service interface above can and need to be collected by the consumer.
Forensic artifacts reside from the service interface below (including Resource
Abstraction and Control Layer and Physical Resource Layer) can and need to be
collected by the provider. As discussed earlier, a set of standardized forensic
interfaces need to be defined and integrated into different service layer corresponding
to forensic capabilities required from both provider and consumer side.

3.3.1 OS Layer (IaaS)
The IaaS interface layer can also be called OS (Operating System) Layer, as this layer
of interface provides interfaces to access operating system and drivers, and is hidden
from SaaS consumers and PaaS consumers. An IaaS cloud allows on or multiple guest
OS’s to run virtualized on a single physical host. Generally, consumers have broad
freedom to choose which OS to be hosted among all the OS’s that could be supported
by the Cloud Provider. The IaaS consumers should assume full responsibility for the
guest OS’s, while the IaaS provider controls the host OS (Liu et al. 2011).

Forensic artifacts on this layer are similar to forensic artifacts in virtual OSs, which
include virtual operating system event logs, configuration logs, audit logs, registry, anti-
virus/anti-spyware application logs, intrusion detection system logs, virtual network logs,
etc.

3.3.2 Middleware Layer (PaaS)
The PaaS interface layer can also be called Middleware Layer, as this layer of interface
provides software building blocks (e.g., libraries, database, and Java virtual machine) for
developing application software in the cloud. The middleware is used by PaaS
consumers, installed/managed/maintained by IaaS consumers or PaaS providers, and
hidden from SaaS consumers (Liu et al. 2011).

Forensic artifacts on this layer are similar to forensic artifacts in traditional
(integrated) development environment, which include source code, performance logs,
debugging logs, access logs, account information, etc.

3.3.3 Application Layer (SaaS)
The SaaS interface layer can also be called Application Layer, as this layer of
interface includes software applications targeted at end users or programs. The
applications are used by SaaS consumers, or installed/managed/maintained by PaaS
consumers, IaaS consumers and SaaS providers (Liu et al. 2011).

Forensic artifacts on this layer are similar to forensic artifacts in traditional software
applications, which include application logs, authentication and authorization logs,

 Cloud Computing Reference Architecture and Its Forensic Implications 11

account information, etc. The only difference is the software is hosted remotely from the
consumer via the browser (or other thin-client or thick-client) thus thin-client/thick-client
forensic data collection will play a major role in forensic data collection on this layer from
the consumer side.

3.4 Forensic Acquisition in the Cloud

Based on the analysis above, researchers conclude that forensic acquisition in the
cloud has to resort to a hybrid approach of remote, live, virtual, network, thin-client,
thick-client, large-scale forensic acquisition due to the nature of forensic artifacts in
cloud environments. A list of pro-active forensic artifacts needs to be identified across
the cloud system stack to ensure forensic readiness. The identification of pro-active
forensic artifacts must evolve closely with the developments of cloud SIEM solutions.
A list of re-active forensic artifacts needs to be identified across cloud system stack
with order of volatility for post-incident forensic evidence collection. Some of the e-
discovery methodologies can be borrowed in identifying and collecting re-active
forensic artifacts, such as creating a “data map” for these artifacts (Gonsowski 2012).

4 Cloud Actors Interactions

There are various ways for cloud actors to interact in cloud investigations. In this
section, researchers introduce three main organizational interaction scenarios for
cloud investigations based on the analysis of the forensic implications of the three
main usage scenarios described in Liu et al. (2011). These interaction scenarios are
detailed views of the organizational dimension described in Ruan et al. (2011) and are
analyzed under the aspects of 1) Service level agreements 2) Internal and external
investigation and 3) Forensic artifacts.

4.1 Scenario 1

Fig 6 depicts the simplest scenario for cloud actors’ interaction. In a service offering,
there is a single relation between the cloud consumer and the cloud provider, the
cloud provider may or may not provide services through a cloud carrier.

The consumer signs a SLA (SLA1) with the provider. The provider signs a
separate SLA (SLA2) with the carrier when the relation between provider and carrier
exist. A cloud auditor may be involved to audit SLA(s). Forensic segregation of
duties, requirements and implementations need to be defined and audited through the
SLA(s).

An internal investigation happens between the provider and consumer shared
systems. An external investigation is initiated by law enforcement towards the
consumer, provider or system shared by provider and consumer. Provider, or
consumer, or may resort to external assistance in enhancing forensic capabilities in
facing internal or external investigations.

Forensic artifacts are scattered between provider and consumer systems.

12 K. Ruan and J. Carthy

Fig. 6. Cloud Actors Interaction Scenario 1

4.2 Scenario 2

In the scenario shown in Fig 7, the cloud broker is acting as a cloud provider to the
cloud consumer. The actual provider(s) are invisible to cloud consumer.

The consumer signs SLA A with broker. The broker signs a range of SLAs (SLA
B1, SLA B2, SLA B3, …) with multiple providers (Cloud Service Provider 1, Cloud
Service Provider 2, Cloud Service Provider 3) respectively, and may sign a separate
SLA C with a cloud carrier when services are delivered through a carrier. A cloud
auditor may be involved to audit SLA(s). Forensic segregation of duties, requirements
and implementations need to be defined and audited through the SLA(s).

An internal investigation happens within the shared cloud environment among
cloud consumer, broker and provider(s). An external investigation is initiated by law
enforcement towards cloud consumer, one or multiple providers, or broker, or cloud
resources shared by consumer, broker, and provider(s).

Forensic artifacts are scattered across consumer, provider(s) and broker systems.
Computing resources of one or more of these actors in the shared cloud system and

might, and very likely will involve all of the cloud actors in the investigative process
as forensic artifacts are scattered across the shared system.

 Cloud Computing Reference Architecture and Its Forensic Implications 13

Fig. 7. Cloud Actors Interaction Scenario 2

4.3 Scenario 3

In the third scenario demonstrated in Fig 8, there is a liner chain of dependencies
between cloud entities. One cloud consumer uses service(s) from a cloud provider,
which uses service(s) from another cloud provider. It is a repetition of scenario 1.

Each pair of service relation between two cloud entities is defined via a SLA
(e.g.,SLA A1, SLA A2, ..). In cases when services are delivered through a cloud
carrier, separate SLAs (e.g. SLA B1, SLA B2, SLA B3) are specified between the
cloud entity and the cloud carrier. A cloud auditor might be involved to audit the
SLAs among cloud entities, in which case forensic requirements and performances
should be audited and evaluated.

An internal investigation happens within the cloud systems shared among the chain
of cloud entities. An external investigation happens when law enforcement initiate an
investigation to one or more or all entities in the chain of cloud entities which might
anyways affect the whole chain of cloud entities later on in the investigative process.
Any pair of cloud entities on two sides of a SLA might resort to external assistance in
enhancing forensic capabilities in both internal and external investigations, which
should be specified in the SLA.

Forensic artifacts are scattered throughout the chain of cloud entities in shared
environment. Segregation of duties between each pair of the entities (one acts as
provider, another acts as consumer) is similar to scenario 1 described earlier.

14 K. Ruan and J. Carthy

Fig. 8. Cloud Actors Interaction Scenario 3

5 Cloud Deployment Models and Forensic Implications

There are four types of cloud deployment models according to Liu et al. 2011. In this
section, forensic implications in technical, organizational and legal dimensions of
these four deployment models are analyzed based on the three-dimensional model
proposed in Ruan et al. 2011.

5.1 Public Cloud

A public cloud is one in which the cloud infrastructure and computing resources are
made available to the general public over a public network, as shown in Fig 9. A
public cloud is owned by an organization selling cloud services, and serves a diverse
pool of clients (Liu et al. 2011)

Salesforce Chatter, Gmail, Dropbox are popular public SaaS offerings. Force.com
and Google App Engine are leading public PaaS offering providers. Amazon Web
Service (AWS) and Windows Azure are leading public IaaS offering providers.

5.1.1 Cloud Consumers Accessing the Cloud over a Network
In this case, cloud consumers are often small-scale enterprises or personal users who
have minimum or none forensic capabilities of their own, or large enterprise or

 Cloud Computing Reference Architecture and Its Forensic Implications 15

government agencies seeking cheap deployment or storage for non-mission critical
services.

Technically, this deployment model often allows easy registration and anonymous
usage that could be exploited by malicious users. Personal users need to pay attention
to how Personal Identifiable Information (PII) information are used, stored and
transferred in the cloud system. Providers need to deliver strong capabilities in
evidence segregation in elastic multi-tenant environment and evidence acquisition
with the proliferation of client endpoints.

Organizationally, policies and procedures on forensic capabilities and implementations
mostly rely on the provider side.

Legally, multiple jurisdictions are a default scenario and there is often standard SLA
between provider and consumer with little room for customization and negotiation.

Fig. 9. Public Cloud (Liu et al. 2011)

5.1.2 Cloud Consumers Accessing the Cloud from within the Enterprise Network
In this case, cloud consumers are often enterprises (or government agencies) that
deploy non-mission critical services in the public cloud. These consumers typically
have certain level of internal security/forensic implementations before migrating to
the cloud.

Technically, the default level of security/forensic implementations of the provider
can sometimes be higher than consumer’s legacy implementations, thus migrating to
the cloud can result in an “upgrade” in security/forensic implementations from the
consumer side. An extra layer of authorization/authentication and access control can
be added through the enterprise network.

Organizationally, consumer may share some of the responsibilities on policy and
procedures on forensic implementations.

Legally, consumer can specify the jurisdiction where its data resides via SLA.

16 K. Ruan and J. Carthy

5.2 Private Cloud

As shown in Fig 10, a private cloud gives a single cloud consumer’s organization the
exclusive access to and usage of infrastructure and computational resources. It may be
managed either by the cloud consumer organization of a third party, and may be
hosted on the organization’s premises (i.e. on-site private clouds) or outsourced to a
hosting company (i.e. outsourced private clouds) (Liu et al. 2011)

Oracle Grid, IBM Cloudburst are leading private IaaS offerings. Oracle Fusion,
IBM Dynamic Infrastructure are leading private PaaS offerings. Sun Comms Suite,
IBM LotusLive iNotes, IBM Smart Analytics Cloud, e.g., are private SaaS solutions.

5.2.1 On-Site Private Cloud
This deployment model is similar to traditional internal enterprise IT infrastructure. In
this case, the cloud consumers are often medium-large enterprise or government
agencies that deploy mission critical services in the private cloud. These consumers
typically have a high level of internal security/forensic implementation before
migrating to the cloud.

Technically, when the level of the consumer’s legacy security/forensic
implementations is higher than the provider’s default offering, cloud migration can
result in a “downgrade” on security/forensic implementations on the consumer side in
exchange for a reduced cost of IT infrastructure and such risk of “downgrade” needs
to be thoroughly assessed before migration.

Organizationally, collaborative efforts need to be made by forensic teams from
both provider and consumer side to deliver strong forensic capabilities.

Legally, data resides on-premise thus evidence will be in the same jurisdiction(s)
as consumer.

Fig. 10. On-site private cloud (Liu et al. 2011)

 Cloud Computing Reference Architecture and Its Forensic Implications 17

5.2.2 Out-Sourced Private Cloud
Out-sourced private cloud, as shown in Fig 11, is cheaper compare to on-site private
cloud deployment model because maintenance and infrastructure of the private cloud
is off-premise. All implications are similar to previous case except that legally, the
private cloud can be in different jurisdiction(s) than the consumer.

Fig. 11. Out-sourced Private Cloud (Liu et al. 2011)

5.3 Community Cloud

As shown in Fig 12, a community cloud serves a group of cloud consumers who have
shared concerns such as mission objectives, security, privacy and compliance policy,
rather than serving a single organization as a private cloud does. Similar to private
clouds, a community cloud may be managed by the organizations or by a third-party,
and may be implemented on customer premise (i.e. on-site community cloud) or
outsourced to a hosting company (i.e. outsourced community cloud) (Liu et al. 2011)

IBM’s Federal Community Cloud (FCC), for example, is a community cloud
solution for federal organizations. NYSE Techonologies supports a community cloud
called Capital Markets Community Cloud.

5.3.1 On-Site Community Cloud
In this case, cloud resources are hosted by one or multiple organizations in the same
community that provide and consumer these cloud resources, and these cloud
resources can be accessed remotely from other organizations in the same community.

18 K. Ruan and J. Carthy

Fig. 12. On-site Community Cloud (Liu et al. 2011)

Technically, forensic capabilities are delivered by multiple hosting organizations
with a joint effort. Evidence segregation is needed among multiple tenant
organization(s) consuming the community cloud.

Organizationally, policies and procedures on forensic implications are shared
among hosting organizations and tenant organizations.

Legally, evidence can reside in different jurisdiction(s) when hosting organization(s)
and tenant organization(s) are geographically remote. Multi-tenant issues exist among
tenant organizations within the community.

5.3.2 Outsourced Community Cloud
In the case of outsourced community cloud as shown in Fig 13, multiple organizations in
the same community share a private cloud hosted by a cloud provider and access cloud
resources remotely. Outsourced community cloud is cheaper than on-premise community
cloud because maintenance and infrastructure of the community cloud is off-premise.

Technically, forensic capabilities are provided by the cloud provider and the tenant
organizations in the community. Evidence segregation is needed among multiple
consumer organizations consuming the community cloud.

Organizationally, policies and procedures on forensic implications are shared
among provider and consumer organizations.

Legally, evidence can reside in different jurisdiction(s) when provider and consumer
organizations are geographically remote. Multi-tenant issues exist among consumer
organizations within the community.

5.4 Hybrid Cloud

As shown in Fig 14, a hybrid cloud is a composition of two or more clouds (on-site
private, on-site community, off-site private, off-site community or public) that remain
as distinct entities but are bound together by standardized or proprietary technology
that enables data and application portability (Liu et al. 2011)

 Cloud Computing Reference Architecture and Its Forensic Implications 19

Fig. 13. Outsourced Community Cloud (Liu et al. 2011)

Fig. 14. Hybrid Cloud (Liu et al. 2011)

20 K. Ruan and J. Carthy

According to Garner, hybrid computing is among top 5 trends of cloud computing
and could lead to a unified model over time in which there is a single “cloud” made
up of multiple cloud platforms (internal or external) that can be used as needed based
on changing business requirements (Cearley and Smith 2012). Both security and
forensic implications are extremely complex and are out of scope at current stage.

6 Conclusions and Future Work

Based on the preliminary analysis of the cloud reference architecture researchers
conclude the following directions are important for better integration the missing
considerations of forensic capabilities in cloud standardization process.

A standardization gap analysis is needed for forensic capabilities based on a
mapping of traditional forensic process models to cloud environments. A forensic
reference architecture for the cloud needs to be developed to be used as a baseline for
analyzing and discussing forensic issues in cloud environments. A forensic capability
model needs to be developed for cloud environments specifying segregation of duties
of all cloud actors and mechanisms to access and audit such capabilities. Pro-active
and re-active forensic artifacts need to be identified across cloud system stack with
order of volatility for collection. A set of forensic interfaces need to be defined and
implemented between cloud actors, especially between provider and consumer on the
service layer at current stage, in order to collect and aggregate forensic artifacts for
both internal and external investigative purposes. Such interfaces can be integrated as
a service from the provider. Forensic considerations need to be included in the cloud
interoperability discussions as the emergence of cloud brokerage and hybrid cloud
deployment model indicates that the complexity of cloud forensics will soon go
beyond provider and consumer, becoming a challenge for the entire cloud ecosystem.

Researchers are actively working on some of directions above.

References

Ciardhuain, S.O.: An Extended Model of Cybercrime Investigations. International Journal of
Digital Evidence 3(1) (2004)

Selamat, S.R., Yusof, R., Sahib, S.: Mapping Process of Digital Forensic Investigation
Framework. International Journal of Computer Science and Network Security 8(10) (2008)

Spyridopoulos, T., Katos, V.: Requirements for a Forensically Ready Cloud Storage Service.
International Journal of Digital Crime and Forensics 3(3), 19–36 (2011)

Birk, D., Wegener, C.: Technical issues of forensic investigations in cloud computing
environments. In: 2011 IEEE Sixth International Workshop on Systematic Approaches to
Digital Forensic Engineering (SADFE), pp. 1–10 (2011), doi:10.1109/SADFE.2011.17

Biggs, S., Vidalis, S.: Cloud computing: The impact on digital forensic investigations. In:
International Conference for Internet Technology and Secured Transactions, ICITST 2009,
pp. 1–6 (2009)

Cohen, F.: Putting the Science in Digital Forensics. Journal of Digital Forensics, Security and
Law 6(1), 7–14 (2011)

 Cloud Computing Reference Architecture and Its Forensic Implications 21

CSA, Cloud Computing Market Maturity Study Results. Cloud Security Alliance, ISACA
(September 2012)

Galante, J., Kharif, O., Alpeyev, P.: Sony Network Breach Shows Amazon Cloud’s Appeal for
Hackers, Bloomberg (May 16, 2011), http://www.bloomberg.com/news/
2011-05-15/sony-attack-shows-amazon-s-cloud-service-lures-
hackers-at-pennies-an-hour.html (retrieved on June 22, 2012)

Cearley, D.W., Smith, D.M.: Five Cloud Computing Trends That Will Affect Your Cloud
Strategy Through 2015, Gartner (February 10, 2012)

Thomason, I.: Cloud Services a Decade away from Maturity, V3.co.uk (August 19, 2010),
 http://www.v3.co.uk/v3-uk/news/1999968/

cloud-services-decade-away-maturity
Hogan, M., Liu, F., Sokol, A., Tong, J.: NIST Cloud Computing Standards Roadmap. National

Institute of Standards and Technology. Special Publication 500-291 (2011)
Liu, F., Tong, J., Mao, J., Bohn, R., Messina, J., Badger, L., Leaf, D.: ‘NIST Cloud Computing

Reference Architecture’ National Institute of Standards and Technology. Special Publication
500-292 (2011)

Mell, P., Grance, T.: ‘The NIST Definition of Cloud Computing’ National Institute of
Standards and Technology, Special Publication 800-145 (2011)

Ruan, K., Carthy, J., Kechadi, T., Crosbie, M.: Cloud Forensics. In: Peterson, G., Shenoi, S.
(eds.) Advances in Digital Forensics VII. IFIP AICT, vol. 361, pp. 35–46. Springer,
Heidelberg (2011a)

Ruan, K., James, J.I., Carthy, J., Kechadi, T.: Key Terms For Service Level Agreements To
Support Cloud Forensics. In: Peterson, G., Shenoi, S. (eds.) Advances in Digital Forensics
VIII. IFIP AICT, vol. 363, pp. 201–212. Springer, Heidelberg (2012)

Ruan, K., Carthy, J., Kechadi, T.: Survey on cloud forensics and critical criteria for cloud
forensic capability: A preliminary analysis. In: 6th Annual Conference of the ADFSL
Conference on Digital Forensics, Security and Law, Richmond, Virginia, USA (2011b)

Cheslow, D.: Interpol to crack down on cyber crime, MSNBC.com (2012),
 http://www.msnbc.msn.com/id/47338831/ns/

technology_and_science-tech_and_gadgets/t/interpol-crack-
down-cyber-crime/ (retrieved June 22, 2012)

Gonsowski, D.: Compliance in the Cloud & the Implication on Electronic Discovery. In: Ruan, K.
(ed.) Cyber Crime and Cloud Forensics: Applications of Investigative Processes. IGI Global
(December 2012)

Barrett, D.: Security Architecture and Forensic Awareness: Forensics in Virtualized
Environments. In: Ruan, K. (ed.) Cyber Crime and Cloud Forensics: Applications of
Investigative Processes. IGI Global (December 2012)

M. Rogers and K.C. Seigfried-Spellar (Eds.): ICDF2C 2012, LNICST 114, pp. 22–41, 2013.
© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2013

Cloud Forensic Maturity Model

Keyun Ruan and Joe Carthy

Center for Cybersecurity and Cybercrime Investigation
University College Dublin

{keyun.ruan,joe.carthy}@ucd.ie

Abstract. In this paper we present a shortened version of the Cloud Forensic
Maturity Model (CFMM). It composes of two inter-related parts, i.e., the Cloud
Forensic Investigative Architecture (CFIA) and the Cloud Forensic Capability
Matrix (CFCM). The CFMM is developed in order to create a reference model
to evaluate and improve cloud forensic maturity. It is a part an on-going project,
and is evaluted by a panel of experts and practitioners as a first step for further
cloud forensic standardization efforts.

Keywords: Cloud Forensics, Cloud Computing, Digital Forensics, Cloud
Forensic Maturity Model, Cloud Forensic Investigative Architecture, Cloud
Forensic Capability Matrix, Cloud Forensic Standardization.

1 Introduction

As the cloud paradigm emerges, the need for carrying out digital investigation in cloud
computing environments has become inevitable, no matter it is internal investigation
initiated by one of the cloud actors to investigate security incidents and policy violations,
or external investigation initiated by law enforcment to investigate crimincal or civil
cases. Cloud forensics is at its infancy. It is faced with challenges in technical,
organizational, and legal dimensions, as well as promising opportunities as listed in Ruan
et al. (2011A). The cloud paradigm shift has initiated a major standardization wave. It is
an unique timing to analyze and integrate missing forensic considerations and capabilities
into the standardization and maturing process of cloud computing.

Based on the survey “Cloud Forensics and Critical Criteria for Cloud Forensic
Capability” carried out for the purpose of this research (Ruan et al. 2011B), we
propose the Cloud Forensic Maturity Model (CFMM), a reference model for
evaluating, developing and improving cloud forensic maturity. CFMM composes of
two inter-related parts, i.e., the Cloud Forensic Investigative Architecture (CFIA), and
the Cloud Forensic Capability Matrix (CFCM). CFIA is a conceptural reference
architecture for digital investigations in cloud computing environments. CFCM is a
matrix to evaluate and improve capabilities that correspond to components in CFIA.

In this paper we introduce a shortened version of CFMM due to the page limit. We
dicuss the initial validation and feedback for CFMM carried out by a panel of digital
forensic experts and practioners. We then provide three brief use cases of CFMM.
Firstly we use it to discuss invesitgative scenarios and generate process models.
Secondly we use it to compare current cloud capaiblities of several leading cloud
offerings. Lastly we use it to analyze cloud forensic standardization gaps.

This research is still o
however, we believe it is
thinking and progress on d
provide a structure for va
forensic research and develo

2 Cloud Forensic

The Cloud Forensic Invest
components for enabling d
high level component ba
Architecture is shown in Fig

Fig. 1.

The Cloud Forensic Inv

as follows

• Pre-investigative R
• Core-forensic Proc
• Supportive Process
• Investigative Interf

As shown in Fig 1, the bla
the right hand side of the b
cloud environment consist
environment, the organizat

Cloud Forensic Maturity Model

on-going with various in-depth analyses and mappin
useful to share with the research community our curr

developing such a model in order to lay a foundation
arious discussions and efforts at the early days of clo
opment.

Investigative Architecture (CFIA)

tigative Architecture (CFIA) is developed to include
digital investigations in cloud computing environment
sed representation of the Cloud Forensic Investigat
gure 1.

Cloud Forensic Investigative Architecture

estigative Architecture is composed of four main secti

Readiness
cess
ses
faces

ack line represents the concept of interface. Everything
black line is the cloud environment being investigated. T
ts of its technical infrastructure that is often a sha
tional interation among all cloud actors (cloud consum

23

ngs,
rent
and
oud

key
t. A
tive

ions

g on
The
ared
mer,

24 K. Ruan and J. Carthy

cloud provider, cloud broker, etc.) and its legal complications such as multi-
jurisdiction and multi-tenancy.

On the left hand side of the black line are the “investigators”, either internal forensic
team or external law enforcement, who carry out the investigation by utilizing and
managing the forensic capabilities within the cloud environment adding their own forensic
capabilities.

On the top of the architecture are the pre-investigative readiness components. Pre-
investigative readiness components include event management, identity management,
encryption management, and interoperability. These components are essential to
ensure investigative preparedness and enable investigations.

In the centre of the architecture in the vertical layout are the core forensic process
components. Core foensic process components include pro-active data collection, re-active
data collection, hybrid acquisition, examination and analysis. Hybrid acquisition is a part
of re-active data collection, however, as it includes a wide range of forensic acquisition
techniques which will be discussed later in the paper, it is prudent to consider it as a
separate core forensic phase.

On the right of the architecture in the horizontal layout are the supportive processes
components . Supportive processes components include evidence management, case
management, mulitple jurisdiction and multi-tenancy. They are needed throughout the
timeline of an investigation.

3 Cloud Forensic Capability Matrix (CFCM)

Borrowing core concepts of the Capability Maturity Model (CMM) for Software
developed by Paulk (1993), the Cloud forensic Capability Matrix is a capability
maturity model for assessing and improving cloud forensic capability maturity for any
given cloud actor (i.e. cloud consumer, cloud provider, cloud broker, cloud carrier,
cloud auditor) or law enforcement.

The Cloud Forensic Capability Matrix composes of six maturity levels from low to
high as follows:

• Level 1 Minimum
• Level 2 Basic
• Level 3 Ad-hoc
• Level 4 Well-formalized
• Level 5 Mature
• Level 6 Advanced

Cloud forensic capabilities are the basis for the Cloud Forensic Capability Matrix, and
are divided into four main categories corresponding to the cloud forensic architecture:

• Pre-investigative capabilities: capabilities in preparation for both internal and
external investigations

• Investigative capabilities: capabilities required in the core investigative process
• Supportive capabilities: capabilities required to support and complete the

investigation case

• Interfacing capabi
interface between
involved in cloud i

Each capability is compose
in organizational, legal and
with sub capabilities as a de

Due to page limit, we pr
capability matrix for cloud c
as shown in Table 1 below.

Detailed descriptions and
capability are being develope

Cloud Forensic Maturity Model

ilities: capabilities dealing with the internal and exter
the cloud system environment and investigative par

investigations.

ed of key capability, sub capability and a set of key crite
d technical dimensions. Figure 2 shows all key capabili
etailed view of the CFIA.

Fig. 2. Cloud Forensic Capabilities

rovide a section of the CFCM, a top-level pre-investiga
consumer, cloud provider, cloud auditor and law enforcem

d criteria requirements for each actor on each level for e
ed and refined. Use cases are being collected for validation

25

rnal
rties

eria
ities

ative
ment

each
n.

26 K. Ruan and J. Carthy

Table 1. Pre-investigative Capability Matrix for Cloud Consumer, Cloud provider, Cloud
Auditor and Law Enforcement

 Consumer Provider Auditor Law Enforcement

 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6

Pre-investigative capabilities

Identity management

Authorization X X X X X X X X X X X X X X X X X X

Authenticatio

n X X X X X X X X X X X X X X X X X X

Role

management X X X X X X X X X X X X X X X X X X

Anonymity

management X X X X X X X X X X X X X

Event management

Event

construction X X X X X X X X

Event

freezing X X X X X X X X

Event

traceability X X X X X X X X X X X

Time

sequence X X X X X X X X X X X

Event

reconstruction X X X X X X X X X X X X X X X

Encryption management

Acquisition in

transit X X X X X X X X X X

Acquisition at

rest X X X X X X X X X X X X X X

 Cloud Forensic Maturity Model 27

Table 1. (Continued.)

4 Cloud Forensic Capabilities

In this section we provide brief descriptions for all cloud forensic key capabilities and
sub capabilities. Key criteria for each capability is not included in this paper due to
page limit.

4.1 Pre-investigative Capabilities

4.1.1 Identity Management
Identity management capability is the ability of a cloud entity to manage individual
user identities, their authentication, authorization, roles and privileges/permissions to
access system resources in the cloud environment. It includes four sub capabilities:

• Authorization capability: the ability of a cloud entity to define and enforce access
control policy to cloud resouces. An access control policy consists of a list of
resoucres and access rights to these resources.

• Authentication capability: the ability of a cloud entity to effectively verify its
users’ identity when requesting to access cloud resources.

• Role management capability: the ability of a cloud entity to manage user roles.
• Anonymity management capability: the abitily of a cloud entity to manage

anonymous users. Anonymity introduces risk and challenges for identity
management and increases difficulties for identifying malicious users.

4.1.2 Event Management
Event management capability is the ability of a cloud entity to conceptually construct
the unit of an “event” and techniqually implement that concept so that it can be
constructed, traced, reconstructed when required, and frozen as a crime scene under
investigation when needed. It is a range of high-level advanced pre-investigative
capaiblities for cloud environments that must be based on a high level of
interoperability among different cloud actors. It includes five sub capabilities:

Key

management X X X X X X X X X X X X X X X X

Evidence

decryption X X X X X X X X X X X X X X

Interoperability

Dependency X X X X X X X X

Migration X X X X X X X X

28 K. Ruan and J. Carthy

• Event construction capability: the abitliy of a cloud entity to properly define what
is considered to be an “event” in a cloud system, including a set of information
needed to describe the “who”, “what”, “when”, “where” and “how” of the event.

• Event freezing capability: the ability of a cloud entity to “freeze” the event at the
immediate state in case of criminal offense, intrusion, or investigation.

• Event traceability capability: the ability of a cloud entity to trace the state(s) of an
event in the cloud system, or back to its original state.

• Time sequence capability: the ability of a cloud entity to maintain a definite and
synchronized time sequence in the (shared) cloud system including maintaining
time synchronization across the cloud environment.

• Event reconstruction capability: the ability of a cloud entity to reconstruct the
past state of an event with a level of accuracy that the reconstructed information
can be admitted as digital evidence.

4.1.3 Encryption Management
Encryption management capability is the ability of a cloud entity to search, acquire
and access encrypted forensic data in shared cloud environment without breaching
privacy or data protection regulation under jurisdiction(s) of concern. It include four
sub capabilities:

• Acquisition in transit capability: the abitliy of a cloud entity to search and acquire
potential evidence from encrypted data in transit in live cloud transactions on the
servie layer of the cloud system.

• Acquisition at rest capability: the abitliy of a cloud entity to search and acquire
potential evidence from encrypted data at rest in physical or virtual cloud storage.

• Key management capability: the abitliy of a cloud entity to ensure encryption keys
are accessible to authorized internal investigators (human) or invstigative agents
(machine) to decrypt information that might be relevant to the investigation.

• Evidence decryption: the ability of a cloud entity to ensure potential digital evidence
in the cloud environment can be appropriately decrypted for the purpose of lawful
investigation without breaking laws or regulations under the jurisdicion(s) where the
services operate.

4.1.4 Interoperability
Interoperability capability is the abiliyt of a cloud entity to ensure forensic readiness
in inter-cloud environments. It includes two sub capabilties:

• Dependency capability: the ability of a cloud entity to ensure forensic readiness
when there is a chain of dependency of multiple service providers.

• Migration capability: the ability of a cloud entity to ensure forensic readiness
when forensic data or digital evidence is migrated from one cloud to another.

4.2 Investigative Capabilities

4.2.1 Pro-active Data Collection
Pro-active data collection capability is the ability of a cloud entity to maximize its
potential to use digital evidence while minimizing the cost of an investigation, i.e., the

 Cloud Forensic Maturity Model 29

preparedness and readiness of a cloud entity before an investigation. Pro-active data
collection includes two sub capabilities:

• Pro-active artifacts identification: the ability of a cloud entity to identity,
document and collect a list of digital artifacts that are essential for a digital
investigation or can facilitate a digital investigation that need to be managed pro-
actively before an investigation ensuring forensic soundness. These artifacts can
be scattered all over the system and the organization, and might include non-
digital information that needs to be digitized for future use. These artifacts vary
greatly among different cloud actors and in different cloud offerings and are
mostly static input for cloud forensic examination and anlaysis.

• Log management capability: the ability of a cloud entity in dealing with, often
large volumes of, log messages generated from a cloud system while ensuring
forensic soundness. Log messages generated from log management are the main
input of static forensic data in forensic collection, and can also be useful for the
purpose of regulatory compliance.

4.2.2 Re-active Data Collection
Re-active data collection capability is the ability of a cloud entity to trigger forensic
data collection after an incident, either immediately (e.g. an intrusion alert) or after a
period of time until the incident is discovered internally in the cloud system or
externally notified by the law enforcement. Re-active data collection capabilities
include four sub capabilities:

• Incidence response capability: the ability of a cloud entity to receive, review and
respond to a (security) incident, from intrusion to criminal act. Analysis can be
applied on synthesizing data from various sources to determine trends and
patterns in incident activity. This information can be used to help predict future
activity or to provide early warning when the activity matches a set of previously
determined characteristics. In case of cloud investigation, notice from law
enforcement can also be considered as an incident that needs to be responded to.

• Re-active artifacts capability: the ability of a cloud entity to have a well-defined
and documented list of forensic artifacts that are essential for a digital
investigation or can facilitate a digital investigation that need to be identified,
collected and managed re-actively after an investigation. These artifacts can be
scattered all over the cloud environment, i.e., in the service layer, abstraction
layer, physical layer of the cloud stack, and among all cloud actors. They are
often a hybrid combination of static and volatile digital artifacts, and might also
include non-digital information that needs to be digitized for forensic
examination and analysis. These artifacts vary greatly among different cloud
actors and in different cloud offerings. Re-active artifacts capability also includes
the ability of a cloud entity to specify the order of volatility of the forensic
artifacts in re-active data collection. Generally the order should follow a. Service
layer artifacts b. Abstraction layer artifacts c. Physical layer artifacts.

• E-discovery capability: the ability of a cloud entity to search and locate
electronically stored information (ESI) about specific topic in the cloud

30 K. Ruan and J. Carthy

environment and provide them in a sound fashion. In case of digital investigation,
e-discovery is a part of re-active data collection.

• Data recovery capability: the ability of a cloud entity to salvage data from
damaged, failed, corrupted, inaccessible, or compromised physical or virtual
storage media in the cloud environment when it cannot be accessed normally.
Recovery may be required due to physical damage to the storage device, logical
damage to the file system that prevents it from being mounted by the host
operating system, or intentional damage by the criminal to destroy the digital
evidence.

4.2.3 Hybrid Acquistion
Hybrid acquisition capability is the ability of the cloud entity to search and acquire
forensic data from different layers and different components in the cloud
environment. Cloud computing is a hybrid collection of many existing network,
mobile, virtual and grid computing technologies, thus a hybrid combination of
forensic acquisition techniques need to be configured in different investigative
scenarios. Hybrid forensic acquisition capabilities include seven sub capabilities:

• Remote forensic acquisition capability: the ability of a cloud entity to search and
acquire forensic data from geographically remote physical infrastructure via an
active network connection. Remote forensic acquisition often consists of
installing forensic agent on the remote hardware infrastructure, and grant access
to search content and acquire decrypted forensic data to an authorized
investigation request.

• Live forensic acquisition capability: the ability of a cloud entity to search and
acquire forensic data from a running/live/volatile/dynamic system. Live forensic
acquisition is usually carried out as a part of incident response to capture volatile
forensic data from a live system before switching off the power to preserve
memory, process, and network information that would be lost with traditional
forensic approach. Cloud system cannot be easily ‘switched off’, thus making
live forensic acquisition capability an essential capability for a cloud
investigation to capture volatile forensic data from a cloud system.

• Virtual forensic acquisition capability: the ability of a cloud entity to search and
acquire forensic data from virtualized environment, i.e., virtual machines, virtual
images, hypervisors, and cloud resource abstraction layer in general.

• Network forensic acquisition capability: the ability of a cloud entity to search and
acquire forensic data from a dynamic network. Broad network access is one of
the essential characteristics of cloud computing thus making network forensic
acquisition and essential capability for cloud investigations.

• Thin client forensic acquisition capability: the ability of a cloud entity to search,
recover and acquire forensic data from thin clients, such as web-browser, mobile
devices, smart phones, iPads, or any digital device that has both internal memory
and communication ability, that are connected to the cloud and heavily dependent
on services from the cloud. The rise of cloud computing is enabling a
proliferation of “thin” endpoints globally, making thin-client forensic acquisition
essential to cloud investigations.

 Cloud Forensic Maturity Model 31

• Thick client forensic acquisition capability: the ability of a cloud entity to search,
recover, and acquire forensic data from thick clients, such as workstations, that
are connected to the cloud.

• Large-scale forensic acquisition capability: the ability of a cloud entity to search,
recover and acquire forensic data from large-scale systems with large data
volume. It consists of the techniques to locate and search in large-scale data sets,
and to process and transfer large volume of data.

4.2.4 Examination
Examination capability is the ability of a cloud entity to examine forensic data
collected from the collection phase to generate input for further forensic analysis.
Examination capability includes two sub capabilities:

• Data extraction capability: the ability of a cloud entity to retrieve data out of,
often unstructured or poorly structured, raw forensic data sets collected from
various sources in a cloud system for further forensic examination and analysis.

• Data reduction capability: the ability of a cloud entity to minimize the amount
data that needs to be examined and analyzed in a forensic investigation. It is an
automatic or semi-automatic process that can dramatically eliminates redundant
data and reduces cost of investigation. Typical techniques of data reduction
include data compression, filtering, and data de-duplication.

4.2.5 Analysis
Analysis capability is the ability of a cloud entity to analyze forensic data and
generate analysis result as digital evidence. Analysis capability includes four sub
categories:

• Data mining capability: the ability of a cloud entity to extract knowledge from
large volme data sets in a human-understandable structure automatically or semi-
automatically. Data correlation capability is the ability of a cloud entity to
analyze whether and how strongly pairs of variables are related using statistical
techniques. It is an essential capability to analyze forensic datasets generated
from diverse sources.

• Anomaly detection capability: the ability of a cloud entity to detect patterns in a
given dataset that do not conform to an established normal behavior in the
forensic analysis phase. The patterns detected are called anomalies and are often
critical in further analysis of the digital evidence.

• Profiling capability: the ability of a cloud entity to analyze traces from large
volume data set in order to draw a profile relevant to the supporting of a digital
investigation. It is an analysis process to discover from the correlations between
data in forensic datasets that can be used to identify and represent a human or
nonhuman subject (individual or group), and/or the application of profiles (sets of
correlated data) to individuate and represent a subject or to identify a subject as a
member of a group or category.

32 K. Ruan and J. Carthy

4.3 Supportive Capabilities

4.3.1 Evidence Management
Evidence management capability is the ability of a cloud entity to make sure evidence
is kept and handled in a fashion ensuring the integrity of evidence throughout the
evidence timeline so that the evidence is admissible to court, i.e., from acquisition,
examination, analysis, transport, storage, presentation, to disposal. Evidence
management capability includes five sub capabilities:

• Evidence transport capability: the ability of a cloud entity to transport evidence in
a forensically sound manner to preserve evidence in its original form without
undetectable addition, modification, and deletion of bits.

• Evidence storage capability: the ability of a cloud entity to store digital evidence
so that it is well preserved when stored physically or electronically, ensuring the
soundness of the evidence and the chain of custody in an investigation.

• Evidence destruction capability: the ability of a cloud entity to destroy evidence
and other information associated with a legal matter after its use in the matter
ends, often under the order from the courts. In the cloud scenario, the complete
destruction of data means the destruction of the actual physical storage (e.g. hard
drive) in a way that it is impossible for the data to be recovered.

• Evidence soundness capability: the ability of a cloud entity in ensuring the digital
evidence remains in its original form without undetectable addition, deletion or
modification of evidence data, throughout the evidence timeline within the cloud
entity.

• Chain of custody capability: the ability of a cloud entity to chronologically
document the entire digital evidence timeline, showing the seizure, custody,
control, transfer, analysis and disposition of the physical or electronic evidence.

4.3.2 Case Management
Case management capability is the ability of a cloud entity to manage the
investigative case in an appropriate, sufficient, and well-archived fashion. Case
management capability includes three sub capabilities:

• Documentation capability: the ability of a cloud entity to appropriately document
the investigative process throughout the case timeline, aspects include
investigative techniques applied, chain of custody of evidence, investigators
involved in the case, etc.

• Presentation capability: the ability of a cloud entity to appropriately present
evidence, analysis, and interpretations in the investigative process in the form of
expert reports, depositions, and testimony, aspects ranging from the order of
presentation of information to the use of graphics and demonstrations.

• Reporting capability: the ability of a cloud entity to appropriately report the result
of the investigative process, whether or not there are enough evidence to validate
the hypothesis, based on which the investigate is carried out.

 Cloud Forensic Maturity Model 33

• Elasticity capability: the ability of a cloud entity to be flexible with the scale of
the case size. As elasticity is one of the essential characteristics of cloud
computing, services are easily scaled up and down based on demand, forensic
cases can also range from small scale to large scale in one cloud environment,
thus making elasticity a necessary capability for case management.

4.3.3 Multi-jurisdiction
Multi-jurisdiction capability is the ability of a cloud entity to have a clear
understanding of different legal, regulatory requirements and forensic process under
multiple jurisdictions so that the investigation is carried out in an appropriate,
sufficient and legitimate manner. Multi-jurisdiction capability includes three sub
capabilities:

Legal requirements: the ability of a cloud entity to have a clear understanding of
the legal process(s) required for a digital investigation under the jurisdiction(s)
services operate, including the aspects of ciminal/civil processes, warrant,
notification, search, seizure, evidence amissibility, etc.

Regulatory requirements: the ability of a cloud entity to have a clear understanding
of the regulatory requirements related to digital investigation under the jurisdiction(s)
service operate, including the aspects of data retention, evidence decryption, etc.

4.3.4 Multi-tenancy
Multitenancy capability is the ability of a cloud entity (provider, or broker on behalf
of providers) to provision and de-provision forensic implementations among multiple
tenants sharing same computing resources, as well as the ability to segregate tenants’
data throughout the investigation process. Multitenancy capability includes two sub
capabilities:

• Segregation capability: the ability of a cloud entity to segregate forensic data
among different tenants in a shared cloud environment. In the public and
community cloud environment, computing resources are shared on the physical
and abstraction control layer of the cloud system stack among multiple tenants,
and in both internal and external investigation, there is a need to rapidly and
clearly segregate forensic data among different tenants so that tenants who are
not related to the investigative case can stay out of the forensic process.

• Provisioning/de-provisioning capability: the ability of a cloud entity to rapidly
provision and de-provision computing resources along with the forensic
implementations for those computing resources among different tenants when
needed.

4.4 Interfacing Capabilities

4.4.1 Law Enforcement
Law enforcement interface capability is the ability of a cloud entity to appropriately
interface law enforcement in cases of external investigations while minimizing
internal loss due to search and seizure of computing resources in the cloud

34 K. Ruan and J. Carthy

environment by the law enforcement. Law enforcement capability includes three sub
capabilities:

• Notification capability: the ability of a cloud entity to notify all other cloud actors
involved in a specific cloud service under investigation of law enforcement in a
timely and appropriate manner

• Search capability is the ability of a cloud entity to interface with the law
enforcement when facing a search (with warrant).

• Seizure capability: the ability of a cloud entity to properly respond and react to
the request from law enforcement to seize its computing resources, or suspend its
services to maintain business continuity or minimize financial loss.

4.4.2 Forensic Staffing
Forensic staffing capability is the ability of a cloud entity to organize a functional
staffing structure to facilitate both internal and external investigations. Forensic
staffing capability includes four sub capabilities:

• Internal forensic team capability: the ability of a cloud entity to form an ad-hoc or
well-formalized team of forensic specialists to be in charge of full range of
internal forensic capabilities.

• External assistance capability: the ability of a cloud entity to hire external
assistance to assist in forensic capabilities, e.g., hybrid forensic acquisition, when
they cannot be met internally.

• Legal advisory capability: the ability of a cloud entity to consult both internal and
external legal advisory to assist internal or external investigations

5 Initial Validation and Feedback

As part of the initial validation process, a panel of 8 forensic practitioners and experts
from law enforcement and academia was invited to assess and evalute the proposed
model based on a shortened description of the Cloud Forensic Investigative
Architecture and the Cloud Forensic Capability Matrix. The panel was asked the
following 3 questions:

(1) Do you think the investigative architecture can work as a high-level
reference architecture for investigation in cloud environments?

(2) Are there any major asepcts that are missing in this architecture/model?
(3) In your opinion, is this model possibly a good foundation and first step for

cloud forensic standardization? If yes, are there any apsects that can be
further improved? If no, why?

All 8 experts answered yes to the first question. In the comments, one expert
mentioned that the matrix table is particlarly useful for identifying what role a cloud
provider/auditor can play, especially on the pro-active side.

When answering the second question, one expert suggested to include ‘data
access/control’ in the case management sub capabilities. The reason is many forensic
programs offer a review piece that maybe hosted in the Cloud.

All 8 experts answered
cloud actos and roles need t
the concept of CMM is a go

6 Sample Usage of

In this section we demonstr

6.1 Building Investigat

We take re-active data coll
CFIA, and discuss the follo

Fi

Fig 3 describes the scena
in an (internal or external)
from the consumer side. T

Cloud Forensic Maturity Model

yes to the third question. One expert mentioned that
to be more clearly defined, but developing CFCM based
ood idea.

f CFMM

rate usage of CFMM through three simple analyses.

tive Procedures

ection as an example, take out relavant components of
owing three investigative scenarios and procedures.

ig. 3. Re-active Collection Scenario 1

ario when only one consumer and its provider are invol
investigation case. In many cases, this scenario is initia

The consumer first starts the incident response procedu

35

the
d on

the

lved
ated
ure,

36 K. Ruan and J. Carth

and then makes an attempt
is a high-level forensic clou
chapter), at the mean time
incident, segregates resourc
the “event” for that particu
consumer and the provide
discovery, hybrid acquisitio
according to the order of
freezing as a sophisicated
forensics capability, in whi
efforts immediately after in

Fi

Fig 4 describes the scenar
involved in an (internal or ex
from the provider side. The
resources for the consumers
those consumers. At the m

hy

to freeze the “event” on the consumer side (event freez
ud forensic capability, which will be discussed in the n
e the provider triggers its incident response to the sa
ces of the consumer in question, makes an attempt to fre
ular consumer after the segregation. In the next step

er should coordinate forensic capabilities to carry out
on and data recovery to collect re-active forensic artifa
f volatility in the cloud environment they share. Ev

capability is not possible until a mature level of clo
ich case the consumer and the provider should coordin

ncident response.

ig. 4. Re-active Collection Scenario 2

rio when one provider and more than one of its consumers
xternal) investigation. In many cases, this scenario is initia
provider first starts its incident response procedure, segreg
in question, and makes an attempt to freeze the “events”

mean time, various consumers are notified with the sa

zing
next
ame
eeze

the
t e-
acts
vent
oud
nate

s are
ated
gate

” for
ame

incident, initiate their incide
freeze their “events” accord
consumers coordinate their
acquisition and data recover
of volatility in the cloud envi

Fi

Cloud Forensic Maturity Model

ent response procedures respectively, and make attempt
dingly as the provider. In the next step, the provider and
r forensic capabilities to carry out e-discovery, hyb

ry to collect re-active forensic artifacts according to the or
ironment they all share.

ig. 5. Re-active Collection Scenario 3

37

s to
the

brid
rder

38 K. Ruan and J. Carthy

Fig 5 describes the third scenario when one consumer and its broker are involved in an
(internal or external) investigation. The broker is coordinating services provided by
multiple providers and these providers are often hidden from the consumer. In this case,
the broker starts its incident response procedure, segregate resources for the consumer in
question, notify the providers for that consumer, the providers starts their incident
response procedures respectively, segregates resources for that consumer, and make
attempts to freeze the “event” for that consumer. At the mean time, the consumer starts its
incident response procedure, makes an attempt to freeze the “event”. In the next step,
broker coordinates its providers to aggregate forensic capabilities with the consumer’s
forensic capabilities to carry out e-discovery, hybrid acquisition, and data recovery to
collect re-active forensic artifacts according to the order of volatility in the cloud
environment they all share.

6.2 Comparing Forensic Capabilities of Cloud Offerings

In this section we take several capabilities specified in the CFCM as examples to
compare forensic capability of cloud offerings from four major providers, i.e.
Amazon Web Services (Amazon 2011), Google Apps (Google 2011), Force.com
(Salesforce.com 2012), and Windows Azure (Kaufman and Venkatapathy 2010), and
identity current capabilities that can be utilized or leveraged for investigative
purposes. The results are shown in Table 2-6.

Table 2. Encryption in Transit

Table 3. Encryption at Rest

Provider Capabilities
Force.com End-to-end TLS/SSL encryption
Windows Azure Critical internal comunications are protected using SSL encryption
Amazon
CloudFront

HTTPS can be configured for all requests

Amazon All requests are HMAC-SHA1 signed in Amazon Elastic MapReduce, CloudFront,
Auto Scaling, CloudWatch, and Simple Storage Service (Amazon S3)

Google Apps Google Apps for Business and Google Apps for Education: offer domain
administrators the ability to force all users in their domain to use HTTPS

Provider Capabilities
Force.com Customer passwords stored after applying MD5 hash function; supports the

encryption of field data in custom fields.
Windows Azure .NET Cryptographic Service Providers (CSPs) can be integrated to provide AES

algorithms, MD5 and SHA-2 hash functionality, RNGCryptoServiceProvider class,
Straightforward key management methods, etc.

Amazon Amazon S3, EBS, Amazon Simple DB, Amazon Simple Queue Service (Amazon
SQS) recommend consumers to encrypt sensitive data before uploading

Google Apps Data chunks are not stored in clear text so that are not humanly readable

 Cloud Forensic Maturity Model 39

Table 4. Authentication

Table 5. Data recovery

Provider Capabilities
Force.com Two-factor authentication processes; Federated authentication single sign-on;

Delegated authentication single sign-on
Windows Azure Windows Live ID (one of the longest-running Internet authentication services

available); Subscription based; SMAPI Authentication
Amazon Web
Services

AWS IAM enables a customer to create multiple users and manage the permissions
for each of these users within their AWS Account. A user is an identity (within a
customer AWS Account) with unique security credentials that can be used to access
AWS Services. AWS MFA allows Multi-factor authentication

Google Apps Service-to-service authentication; x509 host certificates; Two factor authentication
mechanisms; Optional two step verification (a built-in two-factor authentication
capability);

 Single Sign-On (SSO) with Google Apps for Business, Google Apps for Education,
and Google Apps for ISPs

Provider Capabilities
Amazon Web
Services

Amazon S3, Amazon Simple DB: removal of the mapping from the public name to
the object starts immediately, and is generally processed across the distributed
system within several seconds. Once the mapping is removed, there is no remote
access to the deleted object. The underlying storage area is then reclaimed for use
by the system.
Amazon Relational Database Service (Amazon RDS): once an Amazon RDS DB
Instance deletion API is run, the DB Instance is market for deletion and once the
instance no longer indicates ‘deleting’ status, it has been removed. At this point the
instance is no longer accessible and unless a final snapshot copy was asked for, it
cannot be restored and will not be listed by any of the tools or APIs.
Amazon S3, Amazong SimpleDB, Amazong Elastic Block Store (EBS): data is
redundantly stored in multiple physical locations as part of normal operation of
those services at no additional charge.
Amazon S3 and Amazon SimpleDB store objects multiple times across multiple
Availability Zones on the initial write and then actively doing further replication in
the event of device unavailability or detected bit-rot.
Amazon EBS stores replication within the same Availability Zone.
Amazon S3 regularly verifies the integrity of data stored using checksums, and
calculates checksums on all network traffic to detect corruption of data packets
when storing or retrieving data. If corruption is detected, it is repaired using
redundant data.

Windows Azure Windows Azure’s Storage subsystem makes customer data unavailable once delete
operations are called. All storage operations including delete are designed to be
instantly consistent. Successful exectuion of a delete operation removes all
references to the associated data item and it cannot be accessed via the storage APIs.
All copies of the deleted data item are then garbage collected. The physcial bits are
overwritten when the assoicated storage block is reused for storing other data, as is
typical with standard computer hard drives.

Google Apps After a Google Apps user or Google Apps administrator deletes a message, account,
user, or domain, and confirms deletion of that item (e.g., empties the Trash), the
data in question is removed and no longer accessible from that user’s Google Apps
interface. The data is then deleted from Google’s active servers and replication
servers. Pointers to the data on Google’s active and replication servers are removed.
De-referenced data will be overwritten with other customer data over time.
Google Apps data is replicated to multiple systems within a data center, and also
replicated to a secondary data center.

40 K. Ruan and J. Carthy

Table 6. Evidence Destruction

From this comparision analysis we also discovered the following additional

capabilities provided by several cloud offerings that worth noticing.
Event reconstruction: Amazon S3 Versioning enables customers to preserve,

retrieve, and restore every version of every object stored in Amazon S3 bucket. With
Versioning, cusomter can easily recover from both unintended user actions and
application failures. By dafault, requests will retrieve the most recently written
version. Older versions of an object can be retrieved by specifyng a version in the
request.

Multi-jurisdiction: Windows Azure allow all customers choose where their data is
stored. Data in Windows Azure is stored in Microsoft datacenters around the world
based on the geo-location properties specified by the customer using the Windows
Azure Portal.

6.3 Analyzing Standardization Gaps

In this section we list major international cloud standardization working projects that
are relevant to forensics capabiities and can be venues to bridge standardization gaps
for cloud forensic maturity.

On an architectural and matrix level, the NIST Cloud Computing Security Working
Group (NCC-SWG) (NIST 2012) and the Cloud Security Alliance Cloud Control
Matrix (CCM) (CCM 2012) are the best fits for forensic related standardization
efforts.

On interoperability issues, the Standard for Intercloud Interoperability and
Federation (SIIF) being developed by IEEE P2302 InterCloud Working Group (IEEE
2012) is the best fit for defining interoperability capability for cloud forensics.

On interfacing capability provided by cloud management interfaces, the DMTF
Cloud Management Working Group (DMTF 2011) is addressing requirements for the
management interfaces between the cloud servcie conusmer/developer and the cloud
service provider, which can be leveraged for forensic interfaces.

Provider Capabilities
Amazon Web
Services

AWS uses the techniques detailed in DoD 5220.22-M (National Industrial Security
Program Operating Manual) or NIST 800-88 (Guidelines for Media Sanitization) to
destory data as part of the decommissioning process. If a hardware device is unable
to be decommissioned using these procedures, the device will be degaussed or
physically destroyed in accordance with industry-standard practices.

Google Apps When retired from Google’s systems, disks containing customer information are
subject to a data destruction process before leaving Google’s premises. First, policy
requires the disk to be logically wiped by authorized individuals. using a full write
of the drive with all zeroes (0x00) followed by a full read of the drive to ensure that
the drive is blank. Then, another authorized individual is required to perform a
second inspection to confirm that the disk has been successfully wiped. These erase
results are logged by the drive’s serial number for tracking. Finally, the erase drive
is released to inventory for reuse and redeployment. If the drive cannot be erased
due to hardware failure, it must be securely stored until it can be destroyed. Each
facility is audited on a weekly basis to monitor compliance with the disk erase
policy.

 Cloud Forensic Maturity Model 41

On evidence management, SNIA (Storage Networking Industry Association)
Cloud Storage Security working group (SNIA 2011) is developing a standard called
Cloud Data Management Interface (CDMI), where basic evidence management
requirements can be included and forensic interfaces can be considered.

7 Conclusions and Future Work

In this paper we present a shortened version of the Cloud Forensic Maturity Model
and its two inter-related parts, i.e. the Cloud Forensic Investigative Architecture, and
the Cloud Forensic Capability Matrix. According to initial evalution and feedback,
experts and practitioners agree that this is a good foundation and first step for cloud
forensic standardization. We are still actively collecting use cases to validate and
refine the model. We are also working on a detailed mapping of the Cloud Forensic
Three-Dimensional Model to the CFMM to analyze the interactions and overlap of
legal, technical and organizational key criteria to inspire more inter-disciplinary
research approaches.

References

Amazon, Amazon Web Services: Overview of Security Processes (2011)
CCM (2012), https://cloudsecurityalliance.org/research/ccm/ (retrieved

on July 7, 2012)
DMTF, Cloud Management WG Charter v1.1 – (May 1, 2011),
 http://members.dmtf.org/apps/org/workgroup/cmwg/ (retrieved on June

26, 2012)
Eucalyptus Systems, Eucalyptus 3.0.1 Administration Guide (2012)
Google Inc., Security Whitepaper: Google Apps Messaging and Collaboration Products (2011)
Kaufman, C., Venkatapathy, R.: Windows Azure Security Overview (2010)
Salesforce.com, Inc., Security Implementation Guide (2012)
Ruan, K., Baggili, I., Carthy, J., Kechadi, T.: Survey on cloud forensics and critical criteria for

cloud forensic capability: a preliminary analysis. Journal of Network Forensics (2011B)
Ruan, K., Baggili, I., Cathy, J., Kechadi, T.: Cloud forensics definitions and critical criteria for

cloud forensic capability: an analysis of survey results. Digital Investigation (2012) (under
review)

Ruan, K., Carthy, J., Kechadi, T., Crosbie, M.: Cloud Forensics. In: Peterson, G., Shenoi, S.
(eds.) Advances in Digital Forensics VII. IFIP AICT, vol. 361, pp. 35–46. Springer,
Heidelberg (2011a)

IEEE, ICWG/2302 WG – Intercloud WG (ICWG) Working Group (2012),
 http://standards.ieee.org/develop/wg/ICWG-2302_WG.html (retrieved

on July 6, 2012)
SNIA, Information Technology – Cloud Data Management Interface (CDMI) Version 1.0.1

(September 15, 2011)
NIST, Cloud Security (2012), http://collaborate.nist.gov/

twiki-cloud-computing/bin/view/CloudComputing/CloudSecurity
(retrieved on July 7, 2012)

Paulk, M.: Capability Maturity Model for Software. John Wiley & Sons (1993)

M. Rogers and K.C. Seigfried-Spellar (Eds.): ICDF2C 2012, LNICST 114, pp. 42–57, 2013.
© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2013

Identifying Remnants of Evidence in the Cloud*

Jeremy Koppen, Gerald Gent, Kevin Bryan, Lisa DiPippo, Jillian Kramer**,
Marquita Moreland***, and Victor Fay-Wolfe

University of Rhode Island,
Kingston, RI USA

{bryank,dipippo,wolfe}@cs.uri.edu

Abstract. With the advent of cloud computing, law enforcement investigators
are facing the challenge that instead of the evidence being on a device that they
can seize, the evidence is likely located in remote data centers operated by a
service provider; and may even be in multiple locations (and jurisdictions)
across the world. The most practical approach for an investigator when cloud
computing has been used is to execute a warrant that requires the service
provider to deliver the evidence. However, to do this, the investigator must be
able to determine that a cloud application was used, and then must issue a
warrant with reasonable scope (e.g. the subject’s username at the cloud
provider, the name of the documents, the dates accessed, etc). Fortunately, most
cloud applications leave remnants (e.g. cached web sites, cookies, registry
entries, installed files, etc) on the client devices. This paper describes the
process for identifying those remnants and parsing them to generate the data
required by law enforcement to form warrants to cloud service providers. It
illustrates the process by obtaining remnants from: Google Docs accessed by
Internet Explorer, Dropbox, and Windows Live Mesh.

Keywords: cloud computing, cloud forensics, digital forensics.

1 Introduction

Cloud computing, where applications and data storage are provided as services to
users via the Internet, is becoming more and more prevalent - and because of it, law
enforcement investigators are facing new challenges in obtaining evidence. Instead of
the evidence being on a device that they can seize, the evidence is likely located in a
data center at a service provider that is often not geographically easily accessible. In
fact, the data may be stored in multiple physical locations (and jurisdictions) across

* This work was supported by a grant from the U.S. Department of Justice’s National

Institute of Justice Electronic Crimes Research and Development program – Grant # 2011-
FD-CX-K011.

** Supported as a National Science Foundation Research Experience For Undergraduate
student researcher from Villanova university under grant NSF 1004409.

*** Supported as a National Science Foundation Research Experience For Undergraduate
student researcher from Purdue university under grant NSF 1004409.

 Identifying Remnants of Evidence in the Cloud 43

the world. The problem is particularly acute for law enforcement investigators from
smaller organizations, where extensive traveling to obtain evidence is not feasible.
Furthermore, the volume of data kept by these service providers is so vast and the
data is so complex that it is often impractical for an investigator armed with a warrant
to extract the evidence from the data centers of most service providers, even if he/she
were physically present.

The most practical approach for State and local law enforcement is to execute a
warrant through the service provider’s Keeper of Records that requires the service
provider to deliver the evidence. This mitigates the issues of having to travel to
remote and multiple physical locations, and issues of needing to understand data
formats to find the evidence in vast data storage centers. Although there are other
potential problems with this approach, such as uncooperative service providers, a
warrant to a service provider to acquire evidence is the best means available to law
enforcement when cloud applications have been used by a suspect.

However, there are several substantial barriers to an investigator obtaining
evidence from cloud service providers. First, the investigator must be able to
determine that a cloud application was used. Typically all they have to work from are
seized devices (computers, phones, etc); and determining that the suspect was using a
cloud application by examining a seized device is often very difficult. Second, even if
law enforcement seizes the suspect's devices, the suspect may use other
devices/means to access his/her cloud data to modify or delete it. This makes it
essential that law enforcement quickly deduce that cloud computing was used so that
they can issue preservation orders to the service provider. Third, to meet practicality
considerations and restrictions on scope, preservation orders and warrants must be
specific and indicate details such as the cloud application used, the user account, the
dates it was used, and files of interest - information that can be even more difficult for
the investigator to obtain from the suspect's devices. Finally, cloud computing is in its
"Wild West" stage where new cloud applications are coming and going daily. Keeping
up with which cloud applications the suspect might have used and where on devices
that the applications keep the data necessary for a preservation order and warrant is
impractical for State and local law enforcement investigators.

This paper reports our research to determine what remnants are left on devices
(computers, phones, iPads, etc.) and how to collect and present those remnants
necessary for law enforcement to meet restrictions on scope in warrants and
preservation orders served to the cloud service provider. These remnants of cloud
applications that are left on devices include data found in file system data structures,
cached web sites, cookies, index.dat entries, registry entries, and several other places
on devices used by the suspect. This includes information such as the cloud
applications used, usernames at the service provider, dates and times that the cloud
applications were used, and cloud application document names involved.

Section 2 provides background on cloud computing and related forensics tools.
Section 3 describes the process used to identify and find remnants. Section 4 provides
details on the initial cloud applications that we used for proof of concept. Section 5
summarizes and describes the next steps in creating a full, robust, tool to support law
enforcement in investigations that involve evidence in The Cloud.

44 J. Koppen et al.

2 Background

This section presents background on cloud computing and on related digital forensics
tools that have established the paradigm of focusing on specific classes of evidence –
the paradigm on which we base the notion of searching specifically for cloud
remnants.

2.1 Cloud Computing

According to the latest definition from NIST, cloud computing is "a model for
enabling convenient, on-demand network access to a shared pool of configurable
resources (e.g., networks, servers, storage, applications, and services) that can be
rapidly provisioned and released with minimal management effort or service provider
interaction." [1].

NIST's cloud model promotes availability and is composed of five essential
characteristics:

- On-demand self-service
- Broad network access
- Resource pooling
- Rapid elasticity
- Measured service

Most cloud computing infrastructures consist of services delivered through common
centers and are built on servers. Clouds often appear as single points of access for
users' computing needs. The major cloud service providers include Amazon [2], Apple
[3], Dropbox [4], Rackspace Cloud [5], Salesforce [6], Skytap [7], Microsoft
Windows Live [8] and Google [9]. Some of the larger IT firms that are actively
involved in cloud computing are Huawei [10], Cisco [11], Fujitsu [12], Dell [13],
Hewlett Packard [14], IBM [15], VMWare [16], Hitachi [17] and NetApp [18]. A
more complete list is provided in Section 4.1.

The fundamental concept of cloud computing is that the computing is "in the
cloud" i.e. the processing (and the related data) is not in a specified, known or static
place(s). In fact, data may be stored in many different locations. This is contrary to
what law enforcement investigators are more used to: where processing takes place on
a client device or in one or more specific servers that are known. Although an
empowering and “freeing” concept for users, the removal of data to the cloud presents
problems for law enforcement who often need to find the place(s) of the evidence.

Cloud Architecture. NIST's cloud general architecture that describes the delivery of
cloud computing, typically involves multiple cloud components communicating with
each other over application programming interfaces, usually web services.

The two most significant components of cloud computing architecture are known
as the front end and the back end. The front end, also called the cloud client, is the

 Identifying Remnants of Evidence in the Cloud 45

part seen by the user. This includes the user's device (computer, phone, etc) and the
applications used to access the cloud, such as a web browser. The back end of the
cloud computing architecture is the ‘cloud’ itself, comprising various computers,
servers and data storage devices networked together.

Cloud services can be delivered at three levels: Service, Platform and Infrastructure,
and any particular cloud application can provide one or more of these services.

Cloud application services, also known as "Software as a Service (SaaS)," deliver
software over the Internet, eliminating the need to install and run the application on
the customer's own devices and simplifying maintenance and support. People tend to
use the terms ‘SaaS’ and ‘cloud’ interchangeably, when in fact SaaS is just one type of
cloud service available. Key characteristics of SaaS include:

• Network-based access to, and management of, commercially available (i.e.,
not custom) software;

• Activities that are managed from central locations rather than at each
customer's site, enabling customers to access applications remotely via the
Web;

• Application delivery that typically is closer to a one-to-many model (single
instance, multi-tenant architecture) than to a one-to-one model, including
architecture, pricing, partnering, and management characteristics;

• Centralized feature updating, which obviates the need for downloadable
patches and upgrades.

Cloud platform services or "Platform as a Service (PaaS)" deliver a computing
platform and/or solution stack as a service, often consuming cloud infrastructure and
sustaining cloud applications. It facilitates deployment of applications without the
cost and complexity of buying and managing the underlying hardware and software
layers.

Cloud infrastructure services, also known as "Infrastructure as a Service (IaaS)",
delivers computer infrastructure - typically a platform virtualization environment - as
a service. Rather than purchasing servers, software, data-center space or network
equipment, clients instead buy those resources as a fully outsourced service. Suppliers
typically bill such services on a utility computing basis and amount of resources
consumed (and therefore the cost) will typically reflect what the client uses.

Cloud Data. The cloud model has been criticized by privacy advocates for the greater
ease with which the companies hosting the cloud services can control and monitor the
communication and data stored between the user and the host company [19, 20].
Regulations governing cloud data storage include FISMA [21], HIPAA [22] and SOX
[23], the credit card industry's PCI DSS [24], and SAS 70 Type II certification [25]. In
fact many research projects on “cloud forensics” tend to focus on privacy issues – not
the pragmatic issues of how to perform forensics with a valid warrant when the
suspect uses cloud computing.

Significance of the Cloud. According to an April 2011 forecast by Forrester Research,
the volume of the global Cloud computing market will reach $241 billion by the year

46 J. Koppen et al.

2020, from just $40.7 billion in 2009 [26]. Similarly, a report from 451 Market Monitor
predicts a 24% compound annual growth rate (CAGR) of Cloud computing revenue
between 2010 and 2013 [27]. Cisco reported in 2011 that global Cloud IP traffic will
increase twelvefold in the five years from 2010 to 2015 [27]. This prediction indicates an
overall CAGR of 66% over that time period. According to the IDC, the revenue of
worldwide public Cloud services has a growth rate which exceeds that of the global IT
market as a whole by a factor of four [28]. This rapidly increasing popularity is
becoming a considerable contribution to the IT market’s overall growth.

Law Enforcement Investigations and Cloud Computing. Given the rapid growth in
the use of Cloud Computing, the Cloud will likely be the next evolution in the history
of computing, following in the footsteps of mainframes, minicomputers PCs, servers,
smart phones, and so on. It could radically change the way enterprises manage
information technology. As such, cloud computing has the potential to be the next
disruptive technology that prevents law enforcement from performing effective digital
forensics [29].

2.2 Digital Forensics Tools

The concept of identifying specific classes of remnants that this project uses is
consistent with a trend in digital forensics tools - the use of focused special-purpose
tools that integrate with an overall forensics tool suite. These special-purpose tools
focus on a specific class of evidence, gather it, and present it either as a report or as
data suitable to be imported into a forensic analysis tool such as FTK [30],
EnCase[31], or X-Ways[32]. Some of these focused tools include:

• P2P Marshal - ATC-NY developed P2P Marshal [33] to automatically analyze
peer-to-peer (P2P) usage on disk images (Forensic Edition) and live systems
(Field Edition). It detects what P2P client programs are, or were, present, extracts
configuration and log information, and displays the shared (uploaded) and
downloaded files. It also includes extensive search capabilities and a thumbnail
browser and image viewer. The tool produces reports in RTF, PDF, and HTML
formats and runs on Windows machines.

• Mac Marshal - ATC-NY developed Mac Marshal [34] to analyze Mac OS X file
system images. It scans a Macintosh disk image, automatically detects and
displays Macintosh and Windows operating systems and virtual machine images,
then runs a number of analysis tools on the image to extract Mac OS X-specific
forensic evidence written by the OS and common applications. Mac Marshal
Forensic Edition runs on an investigator's Mac workstation to analyze a disk
image. Mac Marshal Field Edition runs on a Mac target machine from a USB
drive. It extracts volatile system state data, including a snapshot of physical
RAM. Mac Marshal follows forensic best practices and maintains a detailed log
file of all activities it performs. It produces reports in RTF, PDF, and HTML
formats, and runs on Mac OS X-based analysis machines.

 Identifying Remnants of Evidence in the Cloud 47

• Cyber Marshal Dropbox Reader – ATC-NY released this collection of command
line tools to parse Dropbox configuration and cache files stored as SQLite
databases. The reader works with Dropbox Cloud storage software on Windows,
Macintosh, or Linux systems [35].

• Gargoyle - Wetstone Technologies developed Gargoyle [36] to detect malware on
a computer. It has data sets of remnants indicative of over 10,000 programs, most
of them being malware. It can mount disk images, presents reports of the likely
software it finds, and exports to formats for import to EnCase, FTK, and
spreadsheets.

• NetAnalysis - Digital Detective developed the NetAnalysis tool [37] to collect
and report browser remnants (cached web sites, history, cookies, etc) from disks
and disk images in an easy to understand and easy to use format.

• Internet Evidence Finder – JADsoftware Incorporated created this tool to scan a
computational device and identify web browser artifacts. It is designed to find
existing and deleted data that has been left behind by Internet communications.
The reporting style allows the user to search, filter, and bookmark results [38].

• RedLight - Our group at the URI Digital Forensics Center developed RedLight
[39] to detect pornography in files on mounted drive or drive image. RedLight is
based on how law enforcement investigates a case - by finding likely
pornography in images very quickly, allowing visual confirmation by the
investigator through a display of thumbnails, and then exporting selected images,
reports, and hash sets suitable for importing into EnCase, FTK, and X-Ways.

All of these tools, and many other useful digital forensics tools, are designed to search
computers and/or disks or disk images, find a particular class of evidence (e.g. peer-
to-peer application remnants, malware remnants, browser remnants, etc), and report it
to the investigator and/or allow its import into a major analysis tool.

There are no forensics tools specifically meant to collect and report remnants of
Cloud applications – this research is the first step towards that goal.

3 Finding Cloud Remnants

This section presents our approach to determining what remnants cloud applications
leave. There are two primary classes of cloud applications: browser-based, and
installed components. Browser-based cloud applications execute exclusively in the
browser and thus their remnants are found in browser remnants. Installed component
cloud applications require software to be installed on the device.

3.1 Cloud Remnant Locations

The remnant data sets vary based on the operating system (e.g. Windows, MacOS,
Linux, Android, iOS, etc.) and for browser-based application they also depend on the
browser. We have identified several key places that cloud application remnants can
be found.

48 J. Koppen et al.

• Cached web sites - Cached web sites are the files that the browser downloads
and stores on the client device when a web site is requested. Cached web
sites will often indicate the cloud application used, the dates it was used (file
modified, created, access times), the username (which often appears in a
"logged on" message on the cloud application web pages), account names
and kind of account, and more. Most cloud applications display this
information in known areas of the web page using known HTML-based
formatting tags that the resulting cloud analysis tool can search for. How
browsers cache web sites varies based on the browser, so the remnant data
set will have to be developed differently for all prominent browsers, but the
web page content that it looks for will typically be the same.

• Web history - Web sites visited are often tracked in web history files,
index.dat, files and places like the Windows registry. The URLs in the web
history indicate that the user likely visited the web site (e.g. to use a cloud
application), and occasionally show the HTTP parameters in the URL which
can indicate things like user IDs and actions to be performed.

• Cookies - Most cloud applications use cookies to track user activity and
facilitate ease of re-connection. The format of most cookies requires some
decoding, but the formats are standard. Even encoded proprietary information
such as user identifiers that may be meaningless when pulled off a device can be
provided to the service provider in the warrant for interpretation and decoding
to useful evidence.

• Installed files and registry entries – Installed component cloud applications,
such as Dropbox [4], require the installed client software to communicate
with the cloud application via the Internet. Presence of these installed
components indicate that the cloud application was possibly used, and often
contain configuration files and registry entries with specifics such as
usernames, account names and types, IP addresses and port numbers of the
service, and history of use. Some of these configuration file formats and
registry keys may be encoded and proprietary, but they can be obtained and
presented to the service provider in the warrant for decoding to useful
evidence.

• Modified files and registry entries - Some web applications, like online
storage applications, download files as part of their on-going operation. The
modified, accessed and created dates of these files and how they were
created (e.g. by a service) can be important in some investigations.

3.2 Identifying Cloud Signature Remnants

To identify cloud application remnant data sets we first identify which files the cloud
applications typically install and/or access, then we use software to parse these files to
extract specific data the is of relevance for forming warrants.

Determining Modified Files. We use two primary techniques for compiling a list of
files that are modified by cloud applications: hash sets and monitoring tools.

 Identifying Remnants of Evidence in the Cloud 49

Hash sets are lists of MD5 hash values of files that can be created by a software
tool, such as AccessData’s Forensic Toolkit (FTK) [30], scanning each file on the
device and recording the MD5 hash value of that file. We used FTK to create a hash
set of all files on a VMWare virtual machine (VM) that uses the target operating
system (e.g. Windows 7). We then launch a cloud application on that virtual machine.
We again take hash sets of the entire system after performing various tasks in the
application including, but not limited to: connection, logon, using the application, and
saving data on the cloud storage. Differences in the hash sets indicate the files that
have been changed in the respective steps of using the cloud application. Although
useful, this technique can yield a great deal of changed files, all of which have to be
further inspected to ascertain their relevance, if any, to the signature of the
application.

To refine the results of hash set monitoring, we used several special-purpose
commercial monitoring tools. We used two categories of monitoring tools – dynamic
monitoring tools and static monitoring tools.

Dynamic monitoring tools monitor an executing system and report live results.
Our primary dynamic monitoring tool was SysInternals/Microsoft’s Process Monitor
[40], which is a tool that analyzes a process and reports on the CPU utilization, file
I/O, Registry operations, network operations, and memory statistics. By observing its
live reports during the various phases of using a cloud application, we were able to
determine what system resources the cloud application used. For instance, we were
able to observe the registry keys locked by Windows Live Mesh while it executed –
the presence of these registry keys then being an element of the remnant data set for
that application.

The primary static monitoring tool that we used for Windows systems is InCtrl5
[41] that monitors the state of the system before and after installation of software. We
used InCtrl5 to establish what files installed-component software placed on the
system, what registry entries they inserted, and what existing files they modified.
Other tools such a Total Uninstall [42], and Spy Me [43] provide similar insight.

Parsing Files. The above techniques yield which files are added, and modified, by
cloud applications. These files then need to be parsed to extract the specific data
required by law enforcement.

Parsing requires searching the files for known keywords or substrings and then
further processing of the text around those substrings for known parameters. For
instance, when Google Docs is used on a Windows 7 computer via Internet Explorer,
the substring docs.google.com/document/create? appears in an index.dat file and
possibly the web history. The text following that string can contain the file name of
the created document. In some circumstances a key string is first found and then
subsequent searching and parsing is necessary. For instance, the presence of the string
docs.google.com/ in the index.dat file can indicate that the HTML code of the cached
web sites on the device should be parsed for the specific HTML that Google Docs
uses to display the username on all Google Docs pages. The parser then extracts the

50 J. Koppen et al.

username from the HTML code as a use remnant for law enforcement to use in their
warrant.

Note that there is a substantial manual process that involves using these tools in a
laboratory setting to pinpoint which changes to the system are made by the use of a cloud
application (and which are not), and what relevant information those changes might yield.
This research is the first step in establishing a process by which cloud remnant data sets
can be added to a tool that will support law enforcement investigations.

4 Results

We constructed partial data sets for some important and representative cloud
applications as a proof of concept. This section describes data sets for Google Docs
as an example of browser-based applications, and of Dropbox and Windows Live
Mesh as examples of installed component applications.

4.1 Browser-Based Cloud Applications

To demonstrate our techniques for searching browser-based cloud applications, we
investigated Microsoft’s Internet Explorer web browser versions 6, 7, 8, and 9 on
Windows XP and Windows 7. All of these versions of Internet Explorer implement
browser data in the index.dat file [44] structure from version 5. Overall, all of the
Internet Explorer versions share the same index.dat structure, but the location of the
temporary Internet files may change. Using the hash set technique of Section 3.2 we
were able to determine the index.dat file used for Google Docs.

We wrote a parsing program to search the index.dat file to extract the last accessed
time, the URL visited, and the filename based on keywords. The last accessed time
indicates when the website was visited by the user. The URL visited stores the ASCII
string representation of the URL that was visited, and the filename stores the name of
the file that was accessed and temporarily stored by the browser on the physical
device. The filename may not be set in all of the entries of an index.dat file because
not all entries correspond to a file that is being temporarily stored on the computing
device. As noted before, Internet Explorer versions 6, 7, 8, and 9 all implement the
same data structure to store temporary Internet files. These applications implement
Client URL Cache Version 5.

In every index.dat file there exists a 32-bit integer value at offset 0x20, which
indicates where the entries are being stored on the file. Once the parsing program
moves to the beginning of the entry storage, it starts to search for any valid entries.

An entry can be one of three types:

• REDR - a browser redirect.
• LEAK - an error that was generated. Usually this is generated due to an error

occurring during the deletion operation of a URL entry.
• URL – URL that the user visited.

 Identifying Remnants of Evidence in the Cloud 51

The parsing program only scans for entries marked LEAK or URL. It will not search
for REDR entries because the final URL that the user would arrive at would still be
indicated as a URL entry. After parsing the data, the parsing program moves to the
URL and Filename offsets to parse the ASCII String representation of the bytes
located in these data fields. After all of the data for the entry has been parsed, the
parsing program determined if the entry has any evidentiary value. If the entry does
contain evidentiary value, it is added to the set of data to report. The tool then
continues searching for another iteration of a URL or LEAK entry.

Below in Figures 1 and 2, a URL entry is shown after it has been parsed by a
custom WinHex template.

Fig. 1. Hex view of Index.dat File URL Entry

Fig. 2. Parsed URL Bytes

To determine if a parsed entry is of evidentiary value, it is compared against a list
of user-specified keywords, such as the following: Google Documents, Google Mail,
Google Plus, Personal Google Web Searches. Figure 3 shows an example keyword
file used by the parsing program.

52 J. Koppen et al.

Fig. 3. Example Investigator Keyword File

The parsing program then searches each of the entries found in an index.dat file to
determine if any of the keywords from the user generated keyword.txt file is present.
If any keyword matches, then the entry is added as a result for the corresponding
keyword group. Once the parsing of an entire index.dat file is finished, the entries
that contained keywords are then written out to a Keyword Group in a report file
formatted in HTML. The same steps are repeated for each index.dat file found, with
a separate HTML report for each index.dat file.

When we applied this technique to the remnants left by the use of Google Docs, we
have found that Google Docs leaves cached web sites that can determine the
application and dates/times of use:

• Start page: -URL: https://docs.google.com/ -Title: Google Docs
• File listing: -URL: https://docs.google.com/#all -Title: Google Docs - All

items
• Create: -URL: https://docs.google.com/document/create?hl=en -Title: create
• New document: -URL: https://docs.google.com/document/d/1CjOwcXrET-

uaFGPzalbNPS_P6kgQNhBlwhAMprwNHXs/ edit?hl=en -Title: Untitled
document - Google Docs

• Save as new name (test): -URL: https://docs.google.com/document/d/
1CjOwcXrET-uaFGPzalbNPS_P6kgQNhBlwhAMprwNHXs/edit?hl=en# -
Title: test - Google Docs

(where the long string in the URL parameter list is constant and likely an identifier
that can be part of the warrant to Google.) These are just some sample cached files.
Furthermore, the Google username is stored in an index.dat file as well as being
available by subsequent parsing of some cached web sites.

We have monitored other browser-based applications such as iCloud and Zoho.
Those two, for instance, leave cookies as well as Internet history.

 Identifying Remnants of Evidence in the Cloud 53

4.2 Installed Applications

As noted before, a client-based cloud-computing application requires the user to
install a piece of client software on a physical computing device. This paper reports
our results on collecting artifacts from the Dropbox and Windows Live Mesh
applications. Dropbox was chosen due to its immense popularity. In April 2011,
Dropbox announced they had over 25 million users (Arrington, 2011). Windows Live
Mesh was chosen due to the fact that it is supported by Microsoft, and is expected to
be included in future operating systems (“BUILD, 2011”). Both of these allow for a
user to upload files and folders via a client application. Then these files and folders
can be downloaded on any other computer (“Dropbox”, “Windows Live Mesh 2011”).

Dropbox. The main focus of our investigation of Dropbox was on Dropbox SQLite
database files that are typically present and contain data that would be of evidentiary
value. These two database files are named config.db and filecache.db. The config.db
database file contains the following information regarding the user’s Dropbox account:

• Dropbox Version - The version of Dropbox that is being used
• Unique Dropbox Host ID - A unique 128 bit key pertaining to a user account
• Dropbox Path - The path on the computational device where Dropbox has

mounted its virtual folder
• Dropbox Username - A string username that is specified by the user
• Recently Changed Files - List of files that were most recently changed on the

Dropbox account

Fig. 4. Dropbox Config.db

54 J. Koppen et al.

The filecache.db database file contains a table called file_journal, which contains the
following information for any files stored on the Dropbox account:

• Server Path - Stores the path of the file with the server identification
• Local Filename - Stores the local filename of the file that was added to the

Dropbox account
• SHA-256 Hash - Stores the SHA-256 Hash in a Base-64 encoded string
• Local Size (MB) - Stores the Local Size of the file in MB
• Modified Time (UTC) - Stores the time that the file was modified
• Created Time (UTC) - Stores the time that the file was created

Fig. 5. File_Journal Table From File_Cache.db

Our parsing program scanned every user account described in the investigator’s
keyword list to determine the presence of a Dropbox directory. In Windows 7 the tool
scans the user’s AppData directory, and in Windows XP the tool scans the user’s
Application Data directory. If the Dropbox directory is found, then the software
parses the config.db database file by using an instance of an SQLReader class that
we programmed to parse SQLLite databases. After the data in the SQLLite database
that matches keywords from the investigator’s list has been determined, it is written
out to a Dropbox Results HTML webpage report. Next, the software parses the
filecache.db database file and sends all of the parsed data to the same Dropbox
Results HTML webpage report. This information provides law enforcement unique
user identification information, along with all of the files that the user had placed on
the Dropbox account for storage.

Windows Lives Mesh. Windows Live Mesh is an application that allows a user to
sync multiple folders, and subsequent files, within a supported Windows operating
system to a cloud storage device, which is maintained by Microsoft.

Windows Live Mesh installs programs in the folder %PROGRAMFILES%\Windows
Live. and in registry entries: HKCU\Software\Microsoft\Windows Live and
HKLM\Software\Microsoft\Windows Live.

We found that there are several .edb database files used by Windows Live Mesh.
These files are Extensible Storage Engine, JET Blue, database files. JET Blue was
created by Microsoft and implements an Indexed Sequential Access Method (ISAM),
data storage approach. In order to parse this database file the parsing program will use

 Identifying Remnants of Evidence in the Cloud 55

the ManagedEsent .NET library. This library provides the ability to load the database
and extract data.

Inside of this Windows Live Mesh directory there exists a directory titled “DB”.
The “DB” directory contains one subdirectory called “Device” which contains
Device.edb database file. In this file there is a User table that corresponds to the
account information. The User table contains all of the user specific information such
as: the email address of the account used, a unique ID, the last time the account was
updated, the published date of the account, and the Name that corresponds to the
user’s account. This table provides a wealth of information about the user’s Windows
Live Mesh account. Once all of this table’s information is parsed, it will be printed
out to a table inside of an .HTML webpage for a report to the law enforcement
investigator.

The “DB” directory also contains subdirectories for each user account that was
accessed, which are named from a unique user GUID. This GUID can be found in the
User table from the Device.edb file. This directory contains an .edb database file that
is also named based off of the unique user GUID. This file contains information
corresponding to the user’s files.

Inside of this user GUID database file there are several tables. Our parsing software
first accesses the MeshObject table, which contains fields called “Id”. These unique Ids
correspond to directories that were synced with Windows Live Mesh. Windows Live
Mesh creates tables for each directory that the user synced. The tool then parses each Id
found in the Mesh Object in order to detect the names of the tables that contain
information regarding the files that were synced. Once this Id has been parsed, the tool
opens another table that is titled “{MeshObject Id}_DataEntity_Enclosure”.

Inside of this table there exists the following information for each file or directory
added:

• Filename
• Parent History
• Creation Time (UTC)
• File Last Write Time (UTC).

5 Conclusion

Many informed predictions believe that cloud computing will become the
predominant way that digital data is processed and stored. As such, it will necessitate
changes in law enforcement policy and practice when performing investigations with
digital evidence. The results reported here in the application of techniques to
determine cloud remnants, and to parse those remnants for data that is required by law
enforcement investigators is the first step in developing a tool to arm investigators
against the looming threat that cloud computing poses - the threat of vast amounts of
digital evidence not being available in the form that investigators have been trained to
handle.

Based on the work reported here, we are developing a tool, called Cloud Signature,
that performs the parsing described in Section 4 and generates reports that are easy for

56 J. Koppen et al.

law enforcement to use to fashion preservation letters and warrants. The tool will use
the remnants described in this paper as well as remnants from other browsers (we are
currently integrating the parsing of the Chrome browser remnants) and eventually
remnants from mobile devices, specifically iOS and Android devices. Cloud Signature
is being designed so that as the data sets for more cloud applications are determined,
they can easily be added helping ensure that Cloud Signature keeps pace with the
rapidly evolving landscape of the Cloud.

References

1. Mell, P., Grance, T.: The NIST Definition of Cloud Computing. Information Technology
Laboratory (2009), http://www.nist.gov/itl/cloud/upload/cloud-def-
v15.pdf

2. Amazon, Inc., http://www.amazon.com/
3. Apple iCloud, http://www.apple.com/icloud/
4. Dropbox, http://www.dropbox.com/
5. Rackspace Cloud, http://www.rackspace.com/cloud/
6. Salesforce, Inc., http://www.salesforce.com/
7. Skytap, Inc., http://www.skytap.com/
8. Microsoft Corporation, Windows Live, http://explore.live.com/
9. Google, http://www.google.com/

10. Huawei Technologies Co., Ltd., http://www.huawei.com/
11. Cisco Systems, Inc., http://www.cisco.com/
12. Fujitsu, Ltd., http://www.fujitsu.com/global/
13. Dell, Inc., http://www.dell.com/
14. Hewlett-Packard Development Company, L.P., http://www.hp.com/
15. IBM, http://www.ibm.com/
16. VMware, Inc., http://www.vmware.com/
17. Hitachi, Ltd., http://www.hitachi.com/
18. NetApp, Inc., http://www.netapp.com/
19. Security Guidance for Critical Areas of Focus in Cloud Computing V2.1. Cloud Security

Alliance (2009)
20. Mather, T., Kumaraswamy, S., Latif, S.: Cloud Security and Privacy: An Enterprise

Perspective on Risk and Compliance, p. 239. O’Reilly Media (2009)
21. Federal Information Security Management ACT (FISMA) Implementation Project,

http://csrc.nist.gov/groups/SMA/fisma/index.html
22. Health Information Privacy: The Health Insurance Portability and Accountability Act

(HIPPA), http://www.hhs.gov/ocr/privacy/
23. The Sarbanes-Oxley Act, http://www.soxlaw.com/
24. PCI SSC Data Security Standards Overview,

https://www.pcisecuritystandards.org/
security_standards/index.php

25. SAS 70 Definition: Type II,
http://www.sas70.us.com/what-is/definition-of-sas70.php

26. Kirilov, K.: Cloud Computing Market Will Top $241 Billion in 2020. Cloud Tweaks
(2011), http://www.cloudtweaks.com/2011/04/
cloud-computing-market-will-top-241-billion-in-2020/

 Identifying Remnants of Evidence in the Cloud 57

27. Columbus, L.: Roundup of Cloud Computing Forecasts and Market Estimates. A Passion
for Research (2012),
http://softwarestrategiesblog.com/2012/01/17/
roundup-of-cloud-computing-forecasts-and-market-estimates-2012/

28. IDC Cloud Research, http://www.idc.com/prodserv/idc_cloud.jsp
29. Bigsey, Cloud Computing and the Impact on Digital Forensic Investigations. ZDNet

(2009), http://www.zdnet.co.uk/blogs/
cloud-computing-and-the-impact-on-digital-forensic-
investigations-10012285/

30. Access Data FTK, http://accessdata.com/products/
computer-forensics/ftk

31. EnCase Forensic v7, http://www.guidancesoftware.com/
encase-forensic.htm

32. X-Ways, http://www.x-ways.net/
33. ATC P2P Marshal, http://p2pmarshal.atc-nycorp.com/
34. ATC Mac Marshal, http://macmarshal.atc-nycorp.com/
35. ATC Cyber Marshall Dropbox Reader, http://www.cybermarshal.com/

index.php/cyber-marshal-utilities/dropbox-reader
36. Gargoyle Investigator, http://www.wetstonetech.com/

cgi-bin/shop.cgi?view,2
37. NetAnalysis, http://www.digital-detective.co.uk/netanalysis.asp
38. JADsoftware’s Internet Evidence Finder,

http://www.jadsoftware.com/internet-evidence-finder/
39. RedLight, http://www.dfc.cs.uri.edu/redlight.php
40. Process Monitor v3.01, http://technet.microsoft.com/

en-us/sysinternals/bb896645
41. PCMag InCtrl5, http://www.pcmag.com/article2/0,2817,25126,00.asp
42. Total Uninstall, http://www.martau.com/
43. Spy Me, http://www.ghacks.net/2009/03/01/

software-installation-monitor/
44. Jones, K.J.: Forensic Analysis of Internet Explorer Activity Files (2003),

http://www.mcafee.com/us/resources/white-papers/
foundstone/wp-pasco.pdf

M. Rogers and K.C. Seigfried-Spellar (Eds.): ICDF2C 2012, LNICST 114, pp. 58–65, 2013.
© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2013

On Improving Authorship Attribution of Source Code

Matthew F. Tennyson

Bradley University, Department of Computer Science & Information Systems, Peoria, IL, USA
mtennyson@bradley.edu

Abstract. Authorship attribution of source code is the task of deciding who
wrote a program, given its source code. Applications include software forensics,
plagiarism detection, and determining software ownership. A number of me-
thods for the authorship attribution of source code have been proposed. This
paper presents an overview and critique of the state of the art in the field. An
independent comparative study is presented using an unprecedented experimen-
tal design and data set, as well as proposals for improvements and future work.

Keywords: authorship attribution, software forensics, plagiarism detection.

1 Introduction

In 1993, the term "software forensics" was coined to refer to the process of analyzing
software – usually malicious remnants left after an attack – to identify the authors of
the software in question or to at least identify characteristics of the authors [1]. The
basic premise behind software forensics is that programmers generally apply a unique
style to the code they write. As a result, programmers often leave "fingerprints" by
embedding idiosyncratic features in their software. By identifying such features and
associating them with a particular programmer, the original author of software whose
author is otherwise unknown can be discovered.

The term "authorship attribution" refers simply to "the task of deciding who wrote
a document" [2]. Features are generally analyzed regarding the style in which the
document was written. These stylistic features might include the frequency or use of
certain words, word length, word patterns, etc. Typically, documents of known au-
thorship are used as training data, and the training results are then used to attribute an
author to documents of unknown authorship. Numerous methods for authorship attri-
bution have been proposed for natural language documents, including lexical me-
thods, grammatical methods, and language-model methods.

Recent surveys of authorship attribution methods include those of Patrick Juola [3]
and Efstathios Stamatatos [4]. Juola provides an historical context and analysis of
some state-of-the-art methods in order to ultimately offer a recommendation for best
practices. Stamatatos discusses the myriad applications of authorship attribution. An
analysis of authorship attribution methods is also provided, which is focused on tex-
tual representation and computational requirements, providing a perspective grounded
in information science.

 On Improving Authorship Attribution of Source Code 59

Authorship attribution of source code, specifically, refers to the task of deciding
who wrote a source code document. Authorship attribution is, therefore, a tenet of
software forensics. Applications of source code authorship attribution include not
only forensics investigations, but also plagiarism detection, software ownership dis-
putes, and other similar activities.

Many researchers have contributed to the depth of knowledge regarding source
code authorship attribution. Oman and Cook [5] were one of the first researchers to
present a method for identifying authorship of programs based on programming style.
Gray, Sallis, and MacDonell [6] introduced several metrics that can be used for au-
thorship attribution of source code, and developed a tool called IDENTIFIED capable
of extracting those metrics. Krsul and Spafford [7] performed one of the first in-depth
studies of source code authorship attribution, analyzing several methods for determin-
ing authorship including discriminant analysis and several classification techniques
using a tool called LNKnet. MacDonell, Gray, MacLennan, and Sallis [8] utilized
neural networks, multiple-discriminant analysis, and case-based reasoning. Ding and
Samadzadeh [9] utilized canonical discriminant analysis and 56 metrics to determine
authorship. Lange and Mancoridis [10] utilized the similarity of histogram distribu-
tions of 18 code metrics, which were selected using a genetic algorithm. Elenbogen
and Seliya [11] utilized a C4.5 decision tree. Frantzeskou, Stamatatos, Gritzalis,
Chaski, and Howald [12] utilized Source Code Author Profiles (SCAP) using n-grams
to represent programs and a similarity measure to determine authorship.

In 2010, Burrows [13] presented a comparative study that included most of the
aforementioned methods of source code authorship attribution. The study consisted of
a 10-class experiment (determining the author of a program from a set of ten candi-
date authors). A "leave-one-out cross validation" experimental design was used (each
program in the data set was selected, in turn, as a query program while the remaining
programs were used as training data). The results were measured in terms of accuracy
(as a percentage of programs whose authors were correctly identified). The most ef-
fective method was found to be the Frantzeskou method [12].

In addition to presenting the comparative study, Burrows also presented a new
method of source code authorship attribution. This new method was evaluated using
the same 10-class experiment used to evaluate the other methods. The Burrows me-
thod performed the best on 3 out of 4 segments of the data set, while Frantzeskou
performed the best on the remaining segment.

The Burrows and Frantzeskou methods are clearly state of the art in authorship
attribution of source code. This paper presents an overview and critique of these
methods, an independent comparative study of them using an unprecedented experi-
mental design and data set, as well as proposals for improvements and future work.

2 Overview

Both the Frantzeskou and Burrows methods utilize n-grams to represent programs,
and they both use a similarity measure to determine authorship. However, they are
significantly different in the way the n-grams are formed and the specific similarity

60 M.F. Tennyson

measures that are used. How the training programs are grouped is also a key differ-
ence. These differences will be delineated in the following sections.

2.1 The Frantzeskou Method

The Frantzeskou method uses source code author profiles to characterize the pro-
grams written by each author. The concept of author profiles is derived from the work
of Keselj [14]. The concept of an author profile is defined as the set of the most fre-
quent n-grams used in all sample works by that author with their normalized frequen-
cies. So, a profile is a set of ordered pairs (xi, fi), where xi is the ith most frequent
n-gram used by that author and fi is the normalized frequency of that n-gram. The
number of n-grams in the set is L, so the set contains the L most frequently-used
n-grams. Frantzeskou uses raw frequencies, rather than normalized frequencies, how-
ever. The contention is that the frequencies are not used except to sort the n-grams, so
normalization is not necessary.

The n-grams are extracted at the byte level for programs in the data set, which
means that all information stored in the source files are represented in the profiles –
no information is lost. Whitespace, comments, every single byte saved in the source
file is processed and included as n-grams in the author profiles.

The similarity measure used in the Frantzeskou method is the Simplified Profile In-
tersection (SPI). The SPI is simply a count of the number of n-grams that a profile and
a query program have in common: | PA ∩ Pp |, where PA represents the author profile
and Pp represents the program profile. This simple metric is used to determine which
author profile in the data set is most similar to a query program, and it is the author
whose profile is most similar that is attributed to be the author. So, in essence, it is the
author who frequently uses the sequences of characters that appear most frequently in
the query program that is attributed to be the author.

2.2 The Burrows Method

The Burrows method uses a lossy approach for representing programs. In this method,
n-grams are based on tokens. Tokens include selected operators, keywords, and white
space. Programs are scanned (such that information deemed irrelevant is lost), and the
token stream is broken into n-grams using a sliding window approach.

Based on empirical results, the authors of this method chose n=6 for the n-gram
size. The similarity measure used is Okapi BM25 [15]. This measure was selected
among five similarity measures that were evaluated: Okapi BM25, Cosine, Pivoted
Cosine, language modeling with Dirichlet smoothing, and a metric developed specifi-
cally for source code authorship attribution called Author1. Through empirical testing,
Okapi BM25 was found to be the most effective.

The actual approach for attributing authorship is typical for similarity-based au-
thorship attribution methods. To determine the author of a program, that program is
considered to be a query. The query is compared using a similarity measure to all of
the programs in the data set. The author of the most-similar program is considered the

 On Improving Authorship Attribution of Source Code 61

author of the query program. So, in essence, it is the author who wrote the program
that is most similar to the query program that is attributed to be the author.

3 The Comparative Study

Although both the Burrows and Frantzeskou methods have been shown to be state of
the art, this is the first independent comparative study that has been performed on
them. This study consisted of a 20-class experiment. A leave-one-out cross validation
experimental design was used. The results were measured as a percentage of pro-
grams correctly identified. The data set included both C++ and Java programs.

The collection of programs used in the study included a total of 7517 Java and C++
documents. The programs consisted of sample programs distributed with introductory
programming and data structures textbooks. The textbooks included twenty Java text-
books and twenty C++ textbooks. Among the Java textbooks, there were no duplicate
authors. Similarly, among the C++ textbooks, there were no duplicate authors. There
were, however, nine textbooks that overlapped between the two languages. That is,
nine textbooks were selected that had a Java edition and an equivalent C++ edition.
So, there were a total of 31 unique authors represented (11 unique to the Java collec-
tion, 11 unique to the C++ collection, and 9 that overlapped between the two languag-
es). There were 3906 documents in the C++ collection and 3611 documents in the
Java collection, meaning the C++ collection had an average of 195 documents per
author while the Java collection had an average of 181 documents per author.

Sample programs from programming textbooks were used, in part, to provide an
accessible analog to student-submitted programs. The programs are academic in na-
ture, varied according to the nature of the material being exemplified in each sample
program, and reasonably close to "perfect ground truth." Copyright laws and reputa-
tions would prohibit plagiarism. Consistency in approach and style would be self-
enforced for reasons related to both pedagogy and software engineering. Moreover,
sample programs from textbooks are generally feely available and easily accessible.

The study was conducted as a series of 20-class experiments, using a leave-one-out
cross validation experimental design, and the results were measured as a percentage
of programs correctly identified. A 20-class experiment means that the author of each
document was determined from a set of 20 candidate authors. A leave-one-out cross
validation experimental design means that each program in the data set was selected,
in turn, as a query program while the remaining programs were used as training data.
The results being measured in terms of accuracy means that the results were measured
as a percentage of programs whose authors were correctly identified.

Each experiment was conducted as follows: Every program in the data set was
represented as dictated by the method being evaluated. For the Burrows method, each
program was tokenized. For the Frantezkou method, a source code author profile
(SCAP) was created for each author. Each program in the data set was selected,
in turn, as a query program. The author of that program was attributed according to
the method being evaluated, using the remaining programs in the data set as the pro-
grams of known authorship. Each program was marked as either correctly attributed

62 M.F. Tennyson

or incorrectly attributed. T
percentage of the programs

The Frantzeskou method
Burrows method successfu
however, that this comparis
the data by removing all co
the Frantzeskou method has
lations information contain
anonymized documents. W
the methods were quite sim

In the end, a total of six
method was used to attribu
to attribute the Java docum
C++ documents, (4) the F
ments, (5) the Frantzeskou
C++ documents, and (6) th
versions of the Java docume

F

Frantzeskou successfully
even after they were anonym
the Java documents. Also, a
Java documents and C++ d
pancy could be explained b
different set of features we
further in the Analysis secti

The overall results of the experiment were measured a
correctly attributed.

d successfully attributed 94.3% of the documents, while
ully attributed 89.5% of the documents. One could arg
son is unfair. The Burrows method inherently anonymi
omments and string literals. By not anonymizing the d
s an intrinsic advantage of including in its similarity cal
ned therein. So, the methods were also compared us

When using anonymized documents, the overall results
milar.
x individual experiments were conducted: (1) the Burro
ute the C++ documents, (2) the Burrows method was u

ments, (3) the Frantzeskou method was used to attribute
Frantzeskou method was used to attribute the Java do

method was used to attribute anonymized versions of
he Frantzeskou method was used to attribute anonymi
ents. The results of the study are shown in Figure 1.

Fig. 1. Results of comparative study

y attributed a larger percentage of the C++ docume
mized. However, Burrows attributed a larger percentage
a relatively large discrepancy can be seen in the numbe

documents successfully attributed by Burrows. This disc
by the features selected for tokenization, because an utte
ere used for each language. Feature selection is discus
ion.

as a

the
gue,
izes

data,
lcu-
sing

for

ows
used

the
ocu-

the
ized

ents,
e of
r of
cre-
erly
ssed

 On Improving Authorship Attribution of Source Code 63

4 Analysis

The two methods evaluated are clearly state of the art in authorship attribution of
source code. In the worst case (the Burrows attribution of C++ documents), over 88%
of the documents were successfully attributed. Given the large nature of the data set,
these results are remarkable. However, opportunities to improve both methods clearly
exist. This section describes some of those opportunities.

4.1 The Burrows Method

Perhaps the most obvious improvement to be made to the Burrows method is that of
feature selection. The features were selected by creating six classes of features: opera-
tors, keywords, input/output tokens, function tokens, white space tokens, and literal
tokens. Selected features were categorized into these classes. Sets of features were
formed from all possible combinations of the classes, and empirical means were used
to select the most significant feature classes. In the end, the feature classes selected
were operators, keywords, and white space tokens.

An issue with this methodology is that the initial selection of features was some-
what arbitrary, as was the categorization into the six classes. Moreover, the fact that
features were grouped and evaluated thusly meant that individual features were not
evaluated – rather, somewhat arbitrary groupings of features were evaluated. In some
of these classes, obvious omissions were made. For example, the white space tokens
included carriage returns and new lines, but did not include line feeds. Furthermore,
commonly-used symbols that are often emphasized in regards to programming style –
such as semicolons and "curly braces" – were not even considered.

The Burrows method uses the "single best result" metric to assign authorship. That
is, the author of the top-ranked document returned by the search query is attributed to
be the author of said query document. This metric was selected based on an empirical
comparison over two other metrics that were also considered. Additional metrics
could certainly be considered. One possibility is to utilize an idea from the Frant-
zeskou method, and represent an author's entire corpus as a profile. If the work of
each author were represented as a single document, it would certainly make sense for
the author of the "single best result" to be attributed as the author.

In the Burrows experiments presented in this paper, the query documents were left
in the corpus when the indexes were created by the search engine. As a result, the
query document affects the Okapi similarity calculations. So, even though the query
document was omitted from the results returned by the search engine, the query doc-
ument still played a role in determining which results were returned in the first place.
Therefore, the results of the comparative study are thusly skewed in favor of the Bur-
rows method. For a better comparison, the query document itself should provide abso-
lutely no knowledge in determining the authorship of said document.

64 M.F. Tennyson

4.2 The Frantzeskou Method

One potential improvement to be made to the Frantzeskou method is that of the simi-
larity metric, the so-called SPI. The metric is used to determine which author profile
in the data set is most similar to a query program, simply by determining how many
n-grams the author profile and query program have in common. So, essentially, it is
the author who frequently uses the sequences of characters that appear most frequent-
ly in the query program that is attributed to be the author. This similarity metric is
quite simplistic, and a more sophisticated metric might be apropos.

In the Frantzeskou method, an author profile includes the L most frequently occur-
ring n-grams used by that author, where L is a parameter. Choosing the size of L is a
difficult task. Indeed, Frantzeskou leaves the determination of the optimal value for L
to future work. Burrows suggests that the optimal value of L is effectively infinity,
such that author profiles are not truncated at all, noting that this technique is equiva-
lent to coordinate matching [16-17].

5 Conclusion and Future Work

The two methods evaluated are clearly state of the art in authorship attribution of
source code. We've shown that the Frantzeskou method can successfully attribute
over 94% of documents in a 20-class experiment. When the data has been anony-
mized by stripping out all comments and string literals, the success rate still ap-
proaches an impressive 90%. Likewise, the Burrows method, which inherently ano-
nymizes data, successfully attributed nearly 90% of all documents.

Incremental improvements can likely be made to both methods. Selecting different
feature sets, tweaking Okapi parameters, selecting an altogether different similarity
measurement, utilizing a metric other than "single best result" to assign authorship,
and representing an author's entire set of work as a profile rather than as individual
documents would all be viable opportunities for improving the Burrows method. Po-
tential improvements to the Frantzeskou method might include utilizing other similar-
ity metrics and investigating the choice for the L parameter. When performing studies
utilizing the Burrows method, it is also imperative that the query document not be
included when generating the search engine indexes.

Future work also includes investigating ways of combining the two current state-
of-the-art methods to create a new, more-effective method. Perhaps a "confidence
level" could be applied to each document attribution. If the confidence is deemed low,
alternative factors and/or methods could be utilized to assist in the final determina-
tion. Perhaps "identifying" data such as comments and string literals could be handled
separately from the primary method of authorship attribution. If such information is
unavailable, it won't affect the primary means of attribution. If it is available, it could
be used in a secondary manner to supplement the primary method. This could make
sense, considering the data contained in comments and string literals are mostly free
from the confines of the programming language syntax and so, perhaps, should intrin-
sically be analyzed differently. Other factors such as identifiers and file names could
potentially be analyzed in a similar way.

 On Improving Authorship Attribution of Source Code 65

References

1. Spafford, E.H., Weeber, S.A.: Software Forensics: Can We Track Code to its Authors?
Computers & Security (COMPSEC) 12(6), 585–595 (1993)

2. Zhao, Y., Zobel, J.: Effective and Scalable Authorship Attribution Using Function Words.
In: Lee, G.G., Yamada, A., Meng, H., Myaeng, S.-H. (eds.) AIRS 2005. LNCS, vol. 3689,
pp. 174–189. Springer, Heidelberg (2005)

3. Juola, P.: Authorship attribution. Foundations and Trends in Information Retrieval 1(3),
233–334 (2007)

4. Stamatatos, E.: A Survey of Modern Authorship Attribution Methods. Journal of the
American Society for Information Science and Technology 60(3), 538–556 (2009)

5. Oman, P.W., Cook, C.R.: Programming Style Authorship Analysis. In: Proceedings of the
17th Conference on ACM Annual Computer Science Conference (CSC), pp. 320–326
(1989)

6. Gray, A., Sallis, P., MacDonell, S.: IDENTIFIED (Integrated Dictionary-based Extraction
of Non-language Dependent Token Information for Forensic Identification, Examination,
and Discrimination): A Dictionary-based System for Extracting Source Code Metrics for
Software Forensics. In: Proceedings of the International Conference on Software Engineer-
ing (ICSE), pp. 252–259 (1998)

7. Krsul, I., Spafford, E.H.: Authorship Analysis: Identifying the Author of a Program. Com-
puters & Security (COMPSEC) 16(3), 233–257 (1997)

8. MacDonell, S.G., Gray, A.R., MacLennan, G.,Sallis, P.J.: Software Forensics for Discri-
minating between Program Authors using Case-based Reasoning, Feedforward Neural
Networks and Multiple Discriminant Analysis. In: Proceedings of the 6th International
Conference on Neural Information Processing (ICONIP), pp. 66-71 (1999)

9. Ding, H., Samadzadeh, M.H.: Extraction of Java Program Fingerprints for Software
Authorship Identification. The Journal of Systems and Software 72, 49–57 (2004)

10. Lange, R., Mancoridis, S.: Using Code Metric Histograms and Genetic Algorithms to Per-
form Author Identification for Software Forensics. In: Proceedings of the 9th Annual Con-
ference on Genetic and Evolutionary Computation (GECCO), pp. 2082–2089 (2007)

11. Elenbogen, B.S., Seliya, N.: Detecting Outsourced Student Programming Assignments.
Journal of Computing Sciences in Colleges 23(3), 50–57 (2008)

12. Frantzeskou, G., Stamatatos, E., Gritzalis, S., Chaski, C.E., Howald, B.S.: Identifying
Authorship by Byte-Level N-Grams: The Source Code Author Profile (SCAP) Method.
International Journal of Digital Evidence 6(1), 1–18 (2007)

13. Burrows, S.D.: Source Code Authorship Attribution. Dissertation. RMIT University,
Melbourne, Australia (2010)

14. Keselj, V., Peng, F., Cercone, N., Thomas, C.: N-gram Based Author Profiles for Author-
ship Attribution. In: Proceedings of the Pacific Association for Computational Linguistics,
pp. 255–264 (2003)

15. Robertson, S.E., Walker, S.: Okapi/Keenbow at TREC-8. In: Voorhees, E., Harman, D.
(eds.) Proceedings of the Eighth Text Retrieval Conference, pp. 151–162. National Insti-
tute of Standards and Technology, Gaithersburg (1999)

16. Witten, I.H., Moffat, A., Bell, T.C.: Managing Gigabytes: Compressing and Indexing
Documents and Images. Morgan Kaufmann, San Francisco (1999)

17. Uitdenbogerd, A.L., Zobel, J.: Music ranking techniques evaluated. In: Oudshoorn, M.,
Pose, R. (eds.) Proceedings of the Twenty-Fifth Australasian Computer Science Confe-
rence, pp. 275–283. Australian Computer Society, Melbourne (2002)

M. Rogers and K.C. Seigfried-Spellar (Eds.): ICDF2C 2012, LNICST 114, pp. 66–80, 2013.
© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2013

Towards Automated Malware Behavioral Analysis
and Profiling for Digital Forensic Investigation Purposes

Ahmed F. Shosha, Joshua I. James, Alan Hannaway,
Chen-Ching Liu, and Pavel Gladyshev

UCD School of Computer Science and Informatics,
University College Dublin, Dublin, Ireland

{Ahmed.Shosha,Alan.Hannaway}@ucdconnect.ie,
{Joshua.James,Liu,Pavel.Gladyshev}@ucd.ie

Abstract. Digital forensic investigators commonly use dynamic malware
analysis methods to analyze a suspect executable found during a post-mortem
analysis of the victim’s computer. Unfortunately, currently proposed dynamic
malware analysis methods and sandbox solutions have a number of limitations
that may lead the investigators to ambiguous conclusions. In this research, the
limitations of the use of current dynamic malware analysis methods in digital
forensic investigations are highlighted. In addition, a method to profile dynamic
kernel memory to complement currently proposed dynamic profiling techniques
is, then, proposed. The proposed method will allow investigators to automate
the identification of malicious kernel objects during a post-mortem analysis of
the victim’s acquired memory. The method is implemented in a prototype
malware analysis environment to automate the process of profiling malicious
kernel objects and assist malware forensic investigation. Finally, a case study is
given to demonstrate the efficacy of the proposed approach.

Keywords: Dynamic Malware Analysis, Kernel Object Profiling, Malware
Investigation, Memory Forensics, Post-Mortem Analysis.

1 Introduction

Malware, or malicious software, has become a commonly used tool to commit crimes on
the Internet, and poses significant threat to the security of computer systems and privacy
of computer users. To defend against malware, a large body of computer security
research has resulted in various techniques to analyze, detect and eliminate malware
[1-8]. Although proposed approaches assist malware analysts in accomplishing their
mission, advanced malware countermeasure techniques have been developed to generate
variants of the malicious code in an attempt to elude detection from traditional methods.
Further, the substantial increase in discovered malware samples every day negatively
impacts the effectiveness of traditional static analysis approaches. As such, highly
automated dynamic techniques have been called for [9]. A variety of automated dynamic
malware analysis approaches have been proposed to cope with the large number of
discovered malware samples. These dynamic methods were implemented in various

 Towards Automated Malware Behavioral Analysis and Profiling 67

sandbox solutions to provide the required process automation, and assist malware
analysts in acquiring required knowledge about the malicious code’s behavior [10]. A
sandbox, in this work, refers to a managed virtual environment with a pre-determined
software configuration used to implement proposed methods and to observe a behavior of
a malicious binary through its execution process [10].

From a digital forensic investigation perspective, when investigators are confronted
with an investigation involving a suspect executable, different incident response
procedures are followed to analyze and investigate the suspect binary. Dynamic
malware analysis methods proposed in computer security research are commonly
used to allow an investigator to understand the behavior of a suspect executable.
Analysis of extracted traces, correlating evidence and artifacts to the suspect
executables’ behavior, however, is manually conducted by the investigator, and solely
relies on his or her expertise. This manual process is time consuming, error prone and
allows for inconsistent interpretation of malicious evidence which threatens the
integrity of the investigation [11]. Moreover, the use of dynamic malware analysis
methods for forensic investigation purposes has a number of limitations. Currently
proposed methods are designed to assess the behavior of malicious code for signature
development purposes, and have not been designed specifically considering the
concepts and principles of digital forensic investigations. Thus, employing these
methods in malware forensic investigations may result inaccurate conclusion.

This work highlights the limitations of the use of currently proposed dynamic
malware analysis methods applied to digital forensic investigations, and proposes a
set of improvements to utilize these methods for forensic investigation purposes. To
this end, a method for dynamically profiling the kernel memory of malware objects is
proposed. The proposed method allows for automated identification and extraction of
malicious kernel objects from a victim’s acquired forensic memory image during a
post-mortem forensic analysis. In addition, it can be extended to profile different
behavioral aspects of malware execution, and allow an investigator to automate the
process of malware traces detection in a post-mortem forensic analysis of the victim’s
computer system. To demonstrate the applicability of the proposed method, a
prototype forensic-specific dynamic analysis sandbox solution has been developed
and implements the proposed profiling technique. Developed sandbox is evaluated
through a case study involving profiling a commonly used malware tool-kit that
emerged over the last few years to commit financial crimes on the Internet.
Developed profiles are, then, used to automate the analysis of dynamic kernel
memory during post-mortem forensic analysis and automatically identify malware
related kernel objects.

To summarize, the contribution of this paper is as follows:
• This work highlights the limitations of the use of currently proposed

dynamic analysis methods in malware forensic investigations, and outlines
required improvements to utilize the capabilities of these methods for digital
forensic investigation purposes.

• This work proposes a dynamic profiling method applied to dynamic kernel
memory to automate the process of identification and extraction of malicious

68 A.F. Shosha et al.

kernel objects in acquired forensic memory images during a post-mortem
forensic analysis.

• This work present a prototype dynamic malware analysis sandbox for digital
forensic investigation purpose based on the proposed dynamic kernel
memory profiling method.

Paper Organization. In section 2, limitations of currently proposed dynamic
malware analysis methods in forensic investigations are described. In section 3,
profiling of dynamic kernel memory for digital forensic investigation purposes is
presented and described in details. Section 4 describes the prototype implementation
of the proposed approach, and gives a case study. Section 5 gives a discussion about
the proposed method and outlines future research work. Finally, section 6 concludes
the paper.

2 Limitations of Dynamic Analysis Methods from Digital
Forensic Investigation Perspective

Dynamic analysis of malware is an automated approach to identify a behavior of
malicious program through observation of the program’s execution in a managed
environment [12]. Typically, malicious programs are automatically loaded into a
managed virtual machine environment and executed. Interactions between the
malicious program and an operating system are observed to provide human analysts
an overview about the sample’s behavior and whether further analysis is required or
not. Observed interactions of the malicious program in monitored operating systems
include which system calls are invoked, and arguments used to interact with the
operating system kernel. Finally, a detailed report about the program’s activities, i.e.
file activities, Windows Registry activities, and networking activities, are provided to
the analyst. Such information allows a human analyst to identify if a program subject
to analysis is a new malware sample, a variant sample or a benign program. Based on
the analyst’s decision, proper detection signature is developed. In contrast, a number
of anti-analysis techniques have been developed by malware authors to disrupt
malware analysis process, and impede further investigations [13, 14].

Although currently proposed dynamic analysis methods substantially automate and
improve the process of malware analysis and malicious code signature development
in computer security research, the use of these methods is limited in digital forensic
investigations. Thus, a part of malware analysis for digital forensic investigations is
accomplished manually despite the fact that it can be automated, if digital forensic
investigation objectives were initially considered and integrated into the design of
these methods. More important, relying on results of currently proposed methods may
contribute in resulting inaccurate forensic investigation conclusions.

This section highlights a number of limitations that hinder utilization of currently
proposed dynamic malware analysis methods in digital forensic investigations, and
proposes a set of improvements that, if considered, assist in automating malware
investigation and preserve the integrity forensic analysis.

 Towards Automated Malware Behavioral Analysis and Profiling 69

2.1 Multiple Malicious Execution Paths

Malware developers employ different methods to impede dynamic analysis of
malware and malicious code investigation [14]. A prevalent feature in malware is the
frequent collection of intelligence about the surrounding environment and attempting
to detect whether it is an analysis or debugging environment. If an analysis
environment is detected, malware may suppress its execution and terminate malicious
payload installation, or may execute a different execution path that results in benign
traces in an attempt to evade the human analyst. This behavior is termed “malware’s
evasion personalities” [15]. To defend against evasion personalities, various
approaches have been proposed to disguise the analysis environment, so that, it
becomes transparent to a malware. Although proposed disguising methods to defend
against evasion personalities substantially contribute to the intended analysis goal, a
possibility of existence of multiple execution paths is still valid. Malware may have
different malicious payloads or have different behaviors based on certain properties of
the compromised environment: the existence of a predetermined Internet browser
version, or installation of specific software or hardware, for example. Since currently
implemented dynamic analysis methods do not consider tracking multiple execution
paths [16] and developed sandbox solutions cannot consider all possible environment
configurations, analysis may result in an execution path that has never been executed
on the victim system subject of forensics investigation. This incomplete analysis
could lead digital forensic investigators to reach an invalid conclusion based on
incomplete knowledge of the behavior of the malware.

To overcome multiple execution paths in computer security research, paths
tracking techniques have been proposed to execute all possible paths in malicious
programs [16]. Unfortunately, proposed techniques are computationally expensive
when applied to thousands of malware samples collected every day.

Investigation of all possible malware execution paths can be associated with
observations of the state of the system to determine possible explanations that could
have resulted in observed system state. Formal theories have been proposed to
provide required explanations in the context of multiple execution paths, and to
reconstruct events related to a certain execution path [17, 18]. Although these theories
have applications in different forensic investigation domains, an application to
malware evasion personality detection is still missing. Thus, inclusion of these
approaches to malware analysis provides more information to assist investigators in
deriving reasonable conclusions.

2.2 Interrelation between Observed Objects

Dynamic malware analysis methods monitor the interactions between a malware
sample and an operating system kernel [19, 20], e.g. invoked system calls and its
arguments. Other methods, such as those proposed in [21, 22] not only observe
objects interactions, but also, profile the interaction patterns such as evolving pattern
of a malicious object’s data structure in dynamic kernel memory. Profiled patterns are
further used to derive a malware detection signature. In digital forensic investigations

70 A.F. Shosha et al.

of malware, interrelations between observed objects are essential to deduction of
further actions invoked by a malicious object [23]. If relations between observed
objects are not properly defined, it may not be possible to infer an instance of an
action. That is, investigators are required to manually define the relations between
observed objects. Currently proposed dynamic malware analysis methods do not
observe and define the mutual relation between malicious objects, although, there are
various extensions that can provide necessary information about malicious objects
interrelationships [24].

Different methods allow tracking information flow between objects, denoted as
dynamic taint analysis, which is considered a complementary approach to dynamic
analysis approaches [25]. In dynamic taint tracking, information is labeled and
tracked throughout program execution for different purposes. More precisely,
propagation of labeled information in dynamic tainting systems is tracked in the
context of a malicious objects’ execution. Currently proposed dynamic tainting and
tracking systems focus on tracking data between objects; however, data propagation
paths can be used to derive the interrelations between observed objects. Such derived
information allows automation of the process of object interrelation construction, and
allows investigators to infer further actions based on defined objects relationships.
That is, extending dynamic taint tracking to consider dynamic identification of
interrelationships between observed malicious objects and integration of such
methods in dynamic analysis approaches is essential for digital forensic investigation,
and assists investigators in automating the forensic analysis processes based on object
relationships.

2.3 Profiling Dynamic Kernel Objects

Memory forensics is an important portion of digital forensic investigation process
when malware is concerned. Various signature-based approaches have been proposed
to extract kernel data structures from dynamic kernel memory [26]. These methods
scan the dynamic kernel memory to detect and extract different kernel data structure
types such as processes, threads, network or VAD objects in Windows operating
system kernel [27, 28]. Forensic analysis of extracted objects, and determining if an
object belongs to a malware, is a manual process that relies on the investigator’s
expertise. Forensic analysis of kernel data structure objects requires, as well, deep
knowledge of the operating system internals and techniques employed by malware to
disrupt investigation through the manipulation of the kernel object characteristics.
Moreover, specification of the kernel data structures are likely to change with new
builds of the operating system kernel. Thus, manual investigation of the kernel data
structure in acquired memory is a significant challenge for forensic investigators.

In computer security research, different approaches have been proposed for
automated profiling of kernel objects characteristics in dynamic kernel memory, to
assist malware signature development process [22]. Proposed methods are designed to
identify the evolving patterns of kernel data structures in memory and profile such
pattern. However, these methods are insufficient for forensic analysis of kernel data

 Towards Automated Malware Behavioral Analysis and Profiling 71

structure, as they do not allow for automated identification of malicious objects in
post-mortem forensic investigations based on developed profiles.

Profiling for digital forensic investigation purposes has been proposed in different
investigative domains [29]. However, profiling malware behavior for digital forensic
investigation is still missing. A profiling method to automate forensic identification
and extraction of malicious objects will, significantly, assist the process of malware
forensic investigation and memory forensic analysis.

3 Profiling Dynamic Kernel Memory

In this section, a method for profiling dynamic kernel memory for digital forensic
investigation purposes is presented. The proposed method allows for automated
identification of malicious kernel objects in post-mortem forensic analysis of acquired
memory.

Dynamic kernel memory is a memory portion where dynamically allocated kernel
data structure objects are present. Dynamic kernel memory recently became a target
of an increasing amount of kernel level malware such as rootkit attacks [30]. These
attacks employ advanced stealth techniques to control and manipulate an operating
system kernel. For example, Direct Kernel Object Manipulation (DKOM) attack
allows rootkits to hide malicious kernel objects in the operating system kernel through
manipulation of malicious kernel object’s characteristics [30]. Other attacks such as
hijacking kernel execution – denoted as Kernel Object Hooking attack (KOH) [31]–
allow kernel level malware to execute compromised code after hijacking the kernel
code control flow.

Digital forensic investigators of dynamic memory are required to investigate
various kernel level data structure types to identify a presence of rootkits, and
existence of malicious kernel objects. As previously discussed, this investigative
process has limitations that may compromise the investigation’s integrity. Thus, an
approach for automated forensic investigation of dynamic kernel objects is required.

In the proposed method, a procedure to monitor kernel object’s characteristics is
proposed and utilized to develop a profile for malicious kernel objects. Developed
profiles will allow investigators to automatically determine kernel objects related to
malware in an acquired forensic memory image during post-mortem forensic analysis
based on Object-To-Profiles matching procedure.

3.1 Profiling Malicious Kernel Objects for Forensic Investigation Purposes

Program execution process in the operating system requires allocation of memory
regions to the program to execute its instructions, and creation of kernel objects in
dynamic kernel memory to manage the program execution. These kernel objects
control every aspect of the program’s execution in the operating system kernel. For
example, EPROCESS in Windows operating systems [32] or task_struct in
UNIX based systems represent and manage running program’s processes and threads
in the operating system kernel.

72 A.F. Shosha et al.

Since kernel object data structures are formally defined by the operating system
code, and instances of these objects are allocated in dynamic kernel memory,
investigators attempt to differentiate between benign kernel objects and malicious
kernel objects. This process is essential to determine which memory regions are
allocated to malware, and which regions are suspicious but non-conclusive and
require further analysis.

Fig. 1. Kernel Object Profiler Process Model

To automate the process of malicious kernel object identification in post-mortem
memory analysis, the proposed method profiles the characteristics of a malicious
kernel objects in dynamic kernel memory. When a program is being executed in, there
exist a unique set of characteristics of kernel object’s properties that identifies the
program. Determining such characteristics and monitoring its values, while program
code is being executed, allows for development of an object profile that can be used
to assist kernel objects investigation. To determine characteristics of malicious kernel
objects, memory monitoring and introspection technique are employed to observe
memory regions allocated to the dynamic kernel objects.

The proposed profiling process model is shown in Figure 1. A malicious code
executed instructions are monitored through a dynamic analysis method in a managed
virtual environment. Through malicious code execution, snapshots of memory
allocated to the kernel objects that represent malware execution is acquired at
each executed instruction, and are added to the object profile for further use in a
digital forensic investigation. Acquired memory snapshots are automatically matched
to the kernel object’s definition to identify kernel object property values and
determine values that have changed as a result of instructions execution. Finally, at
post-mortem memory investigation, developed profiles are used to automate
malicious kernel object identification. This is accomplished by extracting dynamic
kernel objects from acquired memory and automatically match extracted objects with
developed profiles.

 Towards Automated Malware Behavioral Analysis and Profiling 73

3.2 Kernel Object Memory Profiling Formalization

This section presents a formalization used in profiling memory allocated to malicious
kernel objects, and determining object properties at different execution states. A
malicious kernel object ܱ represents a malicious code execution in an operating
system kernel. Memory region ߤ is a dynamic kernel memory space allocated to ܱ.
A kernel object ܱ holds a set of properties ߩ that used by the operating system
kernel to manage the program execution, such that:

Fig. 2. An Example of Kernel Object Profile

Ox= ቄρ1,… ρkቚ ρj is allocated at memory offset μj }

A Forensic Kernel Object Profile (OP) is a set of elements that represent memory
snapshots for memory allocated to the kernel object ௫ܱ through execution of a
program represented by ௫ܱ. An element in the set is called kernel object’s memory
snapshot ሺߙሻ at an executed instruction ߯, and is defined as a set of 2-tuples ሺߤఘ, ,ఘሻߥ
where ߤఘ represents a memory offset for a kernel object property ߩ௫ א ܱ and ߭
represents a value assigned to property ߩ௫ as a result of an execution state ߯, such
that:

χcur ሺαሻ={(μ1:=υ1)∧ (μ2:=υ2)… ∧…(μn:=υn)}

Figure 2 presents an example of forensic kernel object profiling of the EPROCESS
dynamic kernel object in Windows operating system kernel. The rounded boxes in
Figure 2 show various kernel object’s memory snapshot ሺߙሻ at different executed
instructions. For example, at the initialization state, the operating system initializes
properties of a kernel object through assigning a process name, unique process id,
initializing the process kernel information, determining control flags and assigning
proper access security token at offsets, +0x154, +0x084, +0x000, +0x248 and
+0x0c8, respectively [32]. Through program execution, properties of the kernel object
are changed to allow the program to execute intended code, i.e. new security flags are
assigned and existing control flags are updated, etc.

{
+0x000:=
+0x084:=
+0x154:=
+0x248:=
+0x0c8:=
}

{
+0x000:=
+0x084:=
+0x154:=
+0x248:=
+0x0c8:=
}

{
+0x000:=
+0x084:=
+0x154:=
+0x248:=
+0x0c8:=
}

{
+0x000:=
+0x084:=
+0x154:=
+0x248:=
+0x0c8:=
}

74 A.F. Shosha et al.

Thus, according to presented profiling method, different kernel object snapshots ሺߙሻ for dynamic memory allocated to the object are acquired. For example, at
instruction execution state ߯௨ାଵ, characteristics of profiled kernel object are defined
as:

χcur+1 ሺαሻ={(0x000:=υcur+1)∧(0x084:=υinit)∧ ..ሺ0x0c8:=υcur+1ሻ…}

and the Forensic Kernel Object Profile (OP), is defined as:

OP(EPROCESSmalware)={χinitሺαሻ , χcurሺαሻ , χcur+1ሺαሻ, …,χlst(α)}

Fundamentally, profiled memory snapshots encode changes in the object properties at
different execution states, and determine characteristics of profiled object at every
execution state. The observed changes in monitored object properties, results in a
unique property updates pattern that allows for development of a malicious kernel
object profile and assists in differentiating malicious kernel objects from benign
kernel objects.

To accurately profile properties of a specific kernel object, some properties in
kernel object definition may include host or user specific data, e.g. timestamp of the
object creation or user directory of downloaded malicious programs, etc. Such
information is specific to the analysis environment configuration and may contribute
to inaccurate profiles. Thus, kernel object properties of interest – and that are
considered in profiling process – are properties that affect program execution in the
operating system kernel and, if tampered with, monitored program may produce
unpredictable behavior [33, 38]. Thus, user or host specific information is defined as a
set of properties ߩ௫ and are excluded from profiling process. Hence, a final profile
denoted as OPሺObj୶ሻ is formalized as follow:

 OP(Objx) = ራ χmሺαሻ- ሩ ρex
ρexאρ

a

a

This formula represents the process of profiling a memory snapshot of a kernel object
of interest at different instruction execution states. To generalize developed profiles
and exclude properties that may produce false negative results, user specific
information such as, process id, user timestamps or an executable location, are
eliminated from profiling process and kernel specific properties are only considered in
the profiling procedure.

3.3 From Malicious Code Execution to Object Profiles

As previously illustrated, memory regions allocated to a malicious kernel objects are
profiled to determine the object characteristics in different execution states. This
section presents a formalization of code execution states that stimulate presented
profiling process. A malicious executable P is modeled as a binary program that holds
a set of assembly language instructions ߇ ൌ ሼܫଵ, ଶܫ … . ሽ. The execution of theܫ

 Towards Automated Malware Behavioral Analysis and Profiling 75

malicious program P possesses a sequential execution of instruction set I in P with an
exception to instructions that change program control-flow, e.g. jump instructions.

Consequently, malicious program execution can be presented as a control flow
graph (CFG) [34, 39]. CFG (P) can be defined as 2-tuple ሺܵ, א ሻ, where Sܧ is an ߑ
execution state presented as assembly instructions, and E is a set of edges ܧ ك ܵ ൈ ܵ,
where E represents a transition corresponding to execution of a malicious instruction
in memory.

The kernel object memory profiling procedure based on presented formalization is
defined as 3-tuple, ܲ ൌ ൳ܫ, ,ܧ :൷, whereۄܫۃܴܲ

• I is a set of execution states, each representing an instruction in
determined malicious executable.

• E is a set of edges corresponds to transition to an instruction.
 is the profiling procedure that acquire a snapshot of memory ۄܫۃܴܲ •

allocated to malicious kernel object at execution of an instruction ܫ.

Fig. 3. Executed Code CFG to Memory Profiles Snapshots CFG

Figure 3 presents a practical example of modeling a malicious executable, and
creating a profile of memory allocated to kernel objects in dynamic kernel memory.
Code in Figure 3 is modeled as a CFG graph. Each instruction is modeled as an
execution state, and execution of next instruction is represented as a transition in the
CFG graph. Instructions similar to those presented in line 4 represents a branching
transition of the CFG graph to instructions located at Loc_30902E in memory.
Through execution of the malware CFG modeled graph, malicious kernel objects are
profiled using presented method, and added to the malicious kernel object profiling
space.

Intuitively, the object profile space can, as well, be modeled as CFG of profiles
analogy to code CFG. Profile CFG illustrated in Figure 3 represents an EPROCESS

INS Argument
1 push dwDesiredAccess
2 call ds:openMutex
3 cmp [ebp+var_4] , eax
4 Jz Short loc_30902E
5 push offset Name
6 push 0
7 push 0
8 call ds:createMutex
loc_30902E
9 push 0
10 call ds:exit
loc_30903A
11 mov esp , ebp
12 pop esp
13 retn

76 A.F. Shosha et al.

object of a running malicious process in Windows operating system kernel.
Consecutive memory snapshots are acquired for malicious object through malicious
code execution in a managed environment. Acquired memory profiles are, then, used
to determine malicious EPROCESS kernel objects in a digital forensic investigation of
memory images that infected with profiled malware sample.

4 Implementation and Case Study

Implementing a prototype dynamic kernel object profiler for digital forensic
investigation purpose requires dynamic access to memory regions allocated to
malicious kernel objects and monitoring executed instructions by malicious code.
That is, QEMU [35], an open source processor emulator was used to accomplish
aforementioned requirements. QEMU was customized to allow instruction emulation
to stimulate proposed kernel object profiling procedure. Note that, in this research,
Windows operating system kernel is approached for presented profiling process,
specifically dynamic kernel objects that represent running process in Windows, such
as, EPROCESS and its substructures: _KPROCESS and _KTHREAD. This is because
EPROCESS kernel object is a common target for forensic investigators of malware
and references different types of kernel objects that are essential to the investigation.
For example, EPROCESS keeps track of memory allocated to a program through the
Virtual Address Descriptor data structure, and files mapped in memory [36].
Determining memory regions allocated to a program in QEMU is accomplished
through monitoring the value loaded into CR3 processer registers. This value
represents the page-directory base register (PDBR) of physical memory address of
current program’s process loaded into QEMU processor [32]. Monitoring the
aforementioned register enables determining the physical memory address of
currently loaded EPROCESS into the emulation processer. Once memory region for
an EPROCESS is determined, the memory region is mapped to the formal definition
of EPROCESS as described in Windows operating system kernel specification to
identify the offset of each property in monitored object and its value. Finally, the
proposed profiling procedure snapshots identified memory offsets, as previously
described, at invocation of emulated instructions in QEMU processor. Acquired
malicious EPROCSS profiles are, then, used to automate identifying if a kernel
objects is malicious or not in post-mortem analysis of a memory.

To automate the process of malicious EPROCESS extraction and identification, a
plugin to Volatility Memory Forensic Framework [26] developed to automatically
extract kernel objects and match extracted objects with developed malware profiles. If
an extracted object matches a profile, memory regions allocated to the suspect
program and referenced by the suspect EPROCESS are automatically extracted for
further forensic analysis.

4.1 Zeus Toolkit Profiling Case Study

To evaluate the efficacy of the proposed method, a forensic profile for Zeus malware [37]
was developed. Zeus is a toolkit that is commonly used to commit financial crimes on the

 Towards Automated Malware Behavioral Analysis and Profiling 77

Internet [37]. In the last few years, Zeus toolkit has become a dominant tool for cyber
criminals since it allows to, easily, configure a malicious binaries to commit a variety of
cybercrimes, such as stealing the users’ Internet baking accounts and credit card
information and leaking user-sensitive financial information to a black market.

To verify developed Zeus’s profiles, four Windows 7 virtual machines infected
with Zeus malware were deployed. Dynamic kernel memory of each infected VM
acquired for analysis, and matched with developed Zeus profiles. Kernel objects in
each forensic memory image have been processed using Volatility with developed
extraction and identification plugin.

Table 1. Results of Profiling the CFG Graphs Corresponds to Zeus’s Executable

Zeus

Variants

Acquired
memory

Snapshots

Benign
Kernel Objects

False
Detections

ntos.exe 4511 64 -
oembios.exe 4009 52 -
Sdra64.exe 3794 52 -
PP08.exe 3401 43 -

This allows automatic identification of malicious kernel objects related to Zeus,
and also automatically extracted memory regions referenced by Zeus’s EPROCESS
kernel object.

Table 1 shows the results of Zeus’s profiling process and characteristics of each
acquired forensic memory image for investigation. As shown in Table 1, Zeus’s
Kernel Object Profile (OP) is consists of up-to 4500 object memory snapshots.

In essence, acquired memory snapshots of Zeus’s kernel object correspond to
emulated instructions of Zeus’s executable and executed states in Zeus’s modeled
CFG graph, as previously described. In addition, each acquired memory image has
up-to 60 EPROCESS kernel objects for commonly-used benign software e.g.
Microsoft Internet Explorer, MS Media Player, and MS Office.

Matching extracted kernel objects with acquired profiles resulted in identification
of Zeus’s EPROCESS objects in all memory images without producing false positives
with benign EPROCESS objects. Furthermore, to verify the preciseness of acquired
profiles, Zeus’s profiles have been used to investigate freely available [26] seven
different Windows XP SP2 forensic memory images infected with different malware
samples. Developed profiles, however, did not produce false results with other
malicious kernel objects.

5 Discussion and Future Work

Although presented profiling method shows promising results in determining
characteristics of malicious kernel objects and automating malicious kernel object
identification in post-mortem memory analysis, some improvements are required.

78 A.F. Shosha et al.

The proposed method is considered a complementary approach for dynamic
analysis techniques; thus, challenges to dynamic analysis approaches may, also, affect
the proposed method. For example, to develop a complete object profile, all execution
paths in malicious code’s CFG graph have to be considered. Otherwise, if a malicious
code has multiple execution paths, proposed method may results in incomplete
profiles and may produce false results. Thus, the proposed method has to be assisted
with proposed improvements to dynamic analysis approaches for digital forensic
investigation.

Hence, our future work plan includes approaching proposed dynamic analysis
improvements and implementing improved approaches in a forensic-specific malware
investigation platform.

6 Conclusion

This research highlighted the limitations of employing dynamic malware analysis
approaches in digital forensic investigations of malware, and proposed a set of
improvements to presented limitations. Based on highlighted limitations, a method
proposed to profile malicious kernel objects in dynamic kernel memory. Developed
malware profiles allow investigators to automatically identify malicious kernel
objects during post-mortem memory analysis of acquired dynamic kernel memory of
the victim’s computer. To allow an automated profiling of malicious kernel objects, a
prototype malware sandbox solution developed and used to profile a malware family
that is commonly used to commit finical crime on the Internet.

References

1. Yin, H., et al.: Panorama: Capturing System-wide Information Flow for Malware
Detection and Analysis. In: Proceedings of the 14th ACM Conference on Computer and
Communications Security (2007)

2. Yin, H., Liang, Z., Song, D.: HookFinder: Identifying and Understanding Malware
Hooking Behaviors. In: Proceedings of Distributed System Security Symposium (2008)

3. Kolbitsch, C., et al.: Effective and Efficient Malware Detection at the End Host. In:
Proceedings of the 18th Conference on USENIX Security Symposium (2009)

4. Vasudevan, A., Yerraballi, R.: Cobra: Fine-grained Malware Analysis using Stealth
Localized-Executions. In: Proceedings of IEEE Symposium on Security and Privacy
(2006)

5. Dinaburg, A., et al.: Ether: Malware Analysis Via Hardware Virtualization Extensions. In:
Proceedings of the 15th ACM Conference on Computer and Communications Security
(2008)

6. Lanzi, A., Sharif, M., Lee, W.: K-Tracer: A System for Extracting Kernel Malware
Behavior. In: Proceedings of the 16th Annual Network and Distributed System Security
Symposium (2009)

7. Bayer, U., et al.: Dynamic Analysis of Malicious Code. Journal in Computer
Virology 2(1), 67–77 (2006)

 Towards Automated Malware Behavioral Analysis and Profiling 79

8. Christodorescu, M., Jha, S.: Static Analysis of Executables to Detect Malicious Patterns.
In: Proceedings of the 12th USENIX Security Symposium (2003)

9. Moser, A., Kruegel, C., Kirda, E.: Limits of Static Analysis for Malware Detection.
In: Proceedings of Computer Security Applications Conference (2007)

10. Egele, M., et al.: A Survey on Automated Dynamic Malware Analysis Techniques and
Tools. ACM Comput. Surv. 44(2), 1–42 (2012)

11. Farmer, D., Venema, W.: Forensic Discovery. Addison-Wesley (2005)
12. Nance, K., Bishop, M., Hay, B.: Virtual Machine Introspection: Observation or

Interference? In: IEEE Security and Privacy (2008)
13. Sharif, M., et al.: Impeding Malware Analysis Using Conditional Code Obfuscation.

In: Proceedings of the Network and Distributed System Security Symposium (2008)
14. You, I., Yim, K.: Malware Obfuscation Techniques: A Brief Survey. In: Proceedings of

the Int. Conf. on Broadband, Wireless Company (2010)
15. Balzarotti, D., et al.: Efficient Detection of Split Personalities in Malware. In: Symposium

on Network and Distributed System Security (NDSS) (2010)
16. Moser, A., Kruegel, C., Kirda, E.: Exploring Multiple Execution Paths for Malware

Analysis. In: IEEE Symposium on Security and Privacy (2007)
17. Shosha, A.F., James, J.I., Gladyshev, P.: A Novel Methodology for Malware Intrusion

Attack Path Reconstruction. In: Gladyshev, P., Rogers, M.K. (eds.) ICDF2C 2011.
LNICST, vol. 88, pp. 131–140. Springer, Heidelberg (2012)

18. Gladyshev, P., Patel, A.: Finite State Machine Approach to Digital Event Reconstruction.
In: Digital Investigation (2004)

19. Forrest, S., Hofmeyr, S., Somayaji, A.: The Evolution of System-Call Monitoring.
In: Proceedings of the Annual Computer Security Applications Conference (2008)

20. Mutz, D., et al.: Anomalous System Call Detection. ACM Trans. Information System
Security (2006)

21. Riley, R., Jiang, X., Xu, D.: Multi-Aspect Profiling of Kernel Rootkit Behavior.
In: Proceedings of the 4th ACM European Conference on Computer Systems (2009)

22. Rhee, J., Lin, Z., Xu, D.: Characterizing Kernel Malware Behavior With Kernel Data
Access Patterns. In: Proceedings of the 6th ACM Symposium on Information, Computer
and Communications Security (2011)

23. Malin, C., Casey, E., Aquilina, J.: Malware Forensics: Investigating and Analyzing
Malicious Code. Syngress (2008)

24. Newsome, J., Song, D.: Dynamic Taint Analysis for Automatic Detection, Analysis, and
Signature Generation of Exploits on Commodity Software. In: Proceedings of Network
and Distributed System Security Symposium (NDSS) (2005)

25. Schwartz, E., Avgerinos, T., Brumley, D.: All You Ever Wanted to Know About Dynamic
Taint Analysis and Forward Symbolic Execution. In: IEEE Symposium on Security and
Privacy (Oakland 2010) (2010)

26. Volatility.: An Advanced Memory Forensics Framework (2012),
https://www.volatilesystems.com/default/volatility

27. Dolan-Gavitt, B.: The VAD Tree: A Process-Eye View of Physical Memory. In: Digital
Investigation (2007)

28. Schuster, A.: Searching for Processes and Threads in Microsoft Windows Memory Dumps.
In: Proceedings of the 6th Annual Digital Forensic Research Workshop (2006)

29. Marrington, A., et al.: A Model for Computer Profiling. In: The Third International
Workshop on Digital Forensics (2010)

30. Hoglund, G.: Rootkits: Subverting the Windows Kernel. Addison-Wesley (2005)

80 A.F. Shosha et al.

31. Wang, Z., et al.: Countering Kernel Rootkits With Lightweight Hook Protection.
In: Proceedings of the 16th ACM Conference on Computer and Communications Security
(2009)

32. Russinovich, M.: Windows Internals. Microsoft Press (2009)
33. Dolan-Gavitt, B., et al.: Robust Signatures for Kernel Data Structures. In: Proceedings of

the 16th ACM Conference on Computer and Communications Security (2009)
34. Clarke, E., Grumberg, O., Peled, D.: Model Checking. MIT Press (2000)
35. Bellard, F.: QEMU, A Fast and Portable Dynamic Translator. In: Proceedings of the

Annual Conference on USENIX Annual Technical Conference (2005)
36. Van Baar, R.B., Alink, W., Van Ballegooij, A.R.: Forensic Memory Analysis: Files

Mapped in Memory. Digital Investigation (2008)
37. Binsalleeh, H., et al.: On the Analysis of the Zeus Botnet Crimeware Toolkit.

In: Proceedings of the Eighth Annual International Conference on Privacy Security and
Trust (2010)

38. Shosha, F.A., James, J., Chen-Ching, L., Gladyshev, P.: Evasion-Resistant Malware
Signature Based on Profiling Kernel Data Structure Objects. In: Proceedings of the 7th
Intl. Conference on Risks and Security of Internet Systems (CRiSIS) (2012)

39. Shosha, A.F., James, J.I., Liu, C.-C., Gladyshev, P.: Towards Automated Forensic
Event Reconstruction of Malicious Code (Poster abstract). In: Balzarotti, D., Stolfo, S.J.,
Cova, M. (eds.) RAID 2012. LNCS, vol. 7462, pp. 388–389. Springer, Heidelberg (2012)

M. Rogers and K.C. Seigfried-Spellar (Eds.): ICDF2C 2012, LNICST 114, pp. 81–90, 2013.
© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2013

Measuring the Preference of Image Content
for Self-reported Consumers of Child Pornography

Kathryn C. Seigfried-Spellar

The University of Alabama, 428 Farrah Hall, Tuscaloosa AL, 35487, USA
kseigspell@bama.ua.edu

Abstract. Research has begun to critically analyze the types of images
collected by child pornography consumers. However, the collections of child
pornography consumers may not necessarily be representative of their
preferences. In addition, a literature review of the available scales or
measurements, which assessed pornography preference, yielded scarce results
regarding images of child sexual victimization. First, this paper will review
some of the empirical literature on the various types of images collected by
child pornography consumers. Next, this author will discuss the
development of the Child Pornography Image Preference Scale (CPIPS), a
self-report measure of child pornography image preference. Finally, the
results of a preliminary test of the CPIPS will be discussed along with the
study’s limitations. Overall, by introducing this scale to the academic and law
enforcement community, further validation through empirical testing may be
achieved for the Child Pornography Image Preference Scale (CPIPS).

Keywords: child pornography, image content, measurement, self-report.

1 Content of Child Sex Abuse Images

Research has begun to critically analyze the types of images collected by child
pornography consumers. In 2003, research was conducted by the National Center
for Missing & Exploited Children, which became known as the National Juvenile
Online Victimization (N-JOV) study. The N-JOV study nationally sampled law
enforcement agencies regarding the number of arrested cases involving Internet
crimes against children between July 1, 2000 and June 30, 2001 [1]. Of the
estimated 2,577 arrests, 36% were for possession, distribution, or trading of Internet
child pornography. According to the report, the majority of the child pornography
images collected by the offenders depicted young, prepubescent children between
the ages of 6 and 12 years with some of the offenders possessing images of
children younger than 3 years of age [1]. In addition, the content of the child
pornography images were graphic in nature, such as the sexual penetration of a
child and sadistic violence including rape and torture. Overall, the authors concluded
the majority of child pornography images seized by law enforcement depict the
explicit sexual and/or violent abuse of prepubescent children [1].

82 K.C. Seigfried-Spellar

In a follow up analysis, Wells, Finkelhor, Wolak, and Mitchell examined the
law enforcement cases identified from the N-JOV study in which no arrest was
made by any U.S. law enforcement agency [2]. Wells et al. yielded a final sample
of 68 non-arrest cases, and 34 of those cases involved Internet child
pornography. Of the 34 child pornography cases, 70% involved images depicting
graphic sexual abuse with nearly half of the images showing penetration. In
addition, 44% of the images were of an adult engaging in a sexual act with a child
[2].

In a study conducted by Webb, the pornography collections of 90 men convicted
of Internet child pornography offences were analyzed using the COPINE
continuum. The number of images was 16,698 but the collections ranged in size
from 2 to 921,000 child pornography images. For 72 of the men, information was
available regarding the age of the victims in their collections, and 86% of these
cases included images of children under the age of 10 years [3]. 31% of the men
collected images at the highest level of child sexual victimization (sadistic/bestiality)
with the majority collecting images categorized as explicit erotic posing (71%),
explicit sexual activity (71%), assault (80%), and gross assault (76%)[3]. Overall,
the study suggested the majority of the offenders are collecting images of young
children with higher levels of child sexual victimization.

More recently the Child Exploitation and Online Protection Centre (CEOP),
which is a part of the United Kingdoms’ law enforcement, focuses on child sex
abuse crimes. In their 2007-2008 strategic report, the centre reported an increase
in the number of noncommercial sources depicting babies and toddlers in child
sex abuse images [4]. In addition, law enforcement has witnessed an increase in
the number of images depicting children of different racial backgrounds and
locations, such as South America, and South Korea. This trend in the increased
number of non-White child victims was noted in the 2009 report as well [5].
Overall, the reports suggested this trend in atypical racial diversity might be related
to the increase in traveling child sex offenders, who commute abroad and record
their abuse [4,5].

The CEOP also noted an increase in the severity of images being posted by
commercial sources. Traditionally, less sexually graphic images are posted to entice
customers to provide payment for the more sexually explicit and violent images of
child abuse [4]. However, according to the CEOP’s Behavioral Analysis Unit,
commercial sources are responding to an increased desire for images depicting
sadistic sexual violence and younger victims [4]. In other words, the content of the
initial images being posted to entice the consumers are depicting increased levels
of graphic sexual and physical victimization of younger children.

In addition, a report by the Internet Watch Foundation supported previous
research in that the images depict severe forms of sexual abuse with over half
(69%) of the child victims appearing to be under the age of 10 years [6]. Of those
images, 24% appear to be under the age of 6 years with 4% of the child victims
appearing to be to be under the age of 2 years [6]. Lastly, over half of the images
were also classified as level 4 (penetrative sexual abuse) or 5 (sadism or

 Measuring the Preference of Image Content 83

bestiality), which are the two most severe levels of child sexual victimization
according to the UK’s Sentencing Guidelines Council [6].

Finally, the Canadian Centre for Child Protection analyzed the tips received
between September 26, 2002 and March 31, 2009 from cybertip.ca, Canada’s tipline
for reporting Internet crime against children. Of the 35,111 websites reported to the
tipline, 15,662 hosted images of child sexual abuse [7]. According to the report,
35.9% of the images depicted sexual assault and 64.1% showed the victim in
sexually provocative poses [7]. Over half of the images depicted children under
the age of 8 years, and some of the pictures were of babies and toddlers with
roughly 1/3 of these images depicting sexual assaults. In addition, 68.5% of the
sadistic sexual assault images, which includes bestiality, bondage, and torture,
involved children under the age of 8 years. Finally, the majority (83%) of the
children in the images were female [7].

After examining 800 commercial websites reported to cybertip.ca, three pornographic
themes were identified: innocence, adult sexuality and pornography, and darkness and
depravity [7]. The websites using the “innocence theme” tended to have images of
younger children (toddlers to elementary school age) posing rather than being sexually
abused, and the website utilized bright colors, toys, and words like “angel” and “pure.”
The adult sexuality and pornography themed websites used sexually explicit and slang
terminology, such as “slut” and Nymphet,” and the children were depicted as
promiscuous and willing sex partners. In addition, the images were likely to be of
children provocatively posing and being sexually abused. Finally, the darkness and
depravity pornographic theme used words such as “pedophile” and “sick,” and focused
on images depicting the sexual abuse of children by either other children or adults.
Also, these websites sometimes posted sexually explicit abuse images of babies and
toddlers [7].

2 Child Pornography Image Preference Scale

A literature review of the available scales or measurements, which assessed
pornography preference, yielded scarce results regarding images of child sexual
victimization. A few surveys in the area of media preference or sexual abuse
attitudes included: Sexual Opinion Survey [8], Internet Sex Screening Test,
Attitudes toward Sexual Abuse [9], and the Internet Behaviours and Attitudes
Questionnaire [10]. However, the majority of the media preference scales only
included one item, if they included one at all, related to child sex themes,
thereby measuring a general genre of child pornography rather than any specific
content or themes within child pornography collections [c.f., 11]. In addition, the
scales assessing sexually deviant attitudes tended to focus on the relationship
between violent adult pornography and violence toward women or attitudes
regarding hands-on child sex abuse [c.f., 9].

Therefore, a new questionnaire was developed to assess the respondent’s level of
preference for various content-specific forms of child pornography, such as the

84 K.C. Seigfried-Spellar

choice of victimization, age, and sex of the child. The items included for the
newly developed Child Pornography Image Preference Scale (CPIPS; see Appendix)
was selected based on their face validity, and the author developed the survey
with the assistance of a local law enforcement agency in order to better
understand the range of images routinely discovered in child pornography
collections. As previously discussed, a literature review identified some recent
trends in the types of child sex abuse images available on the Internet, so all of
these resources were considered in the development of the survey.

The CPIPS was a likert rating scale [12], which asked the respondents to rate
their level of agreement or disagreement to each statement. Since some respondents
might be ambivalent regarding their preference to certain forms of child
pornography, the author used an odd numbered likert scale (5-point) in order to
provide an ambivalent or “neutral” item response. The CPIPS included 21 items
scaled from 1 (Strongly Do Not Prefer) to 5 (Strongly Prefer).

The newly devised scale was pilot tested and reviewed by professionals in the
field who provided preliminary feedback regarding the nature of the statements
(clarity, simplicity, ambiguity). Feedback suggested the CPIPS had strong face
validity, and the items appeared to be measuring the desired constructs.

3 Empirical Test of the CPIPS

Participants. Respondents were voluntarily recruited via the Internet by
publicizing or advertising the study using various online resources including chat
rooms, bulletin boards, discussion forums, and social media websites. This sampling
methodology, often referred to as snowballing, allowed the author to target
respondents from the “general population of Internet users.” In addition, Internet-
based research designs increase the likelihood of self-disclosure since the
respondents feel anonymous when completing online surveys rather than studies
involving face-to-face interaction. In order to participate in the study, the
respondents had to indicate on the demographics questionnaire that they were at
least 18 years of age or older and were currently permanent residents of either
the United States, United Kingdom, Australia, or Canada. The participants were
required to provide consent, and they were able to quit the survey at anytime.

Design and Procedure. The Child Pornography Image Preference Scale was a
part of a larger study assessing the personality characteristics of self-reported
child pornography consumers [see 13]. However, this scale was only available
online for approximately 2-weeks. Those respondents who self-reported any of the
following behaviors were linked to the CPIPS: “knowingly accessing, viewing,
downloading, exchanging and/or sharing pornography images of individuals
under the age of 18 years.”

The online survey started with a home page, which acted as a consent form to
which the respondents had to agree or decline to participate. If the prospective
respondents agreed, they had to click on the “I Agree” button in order to participate.

 Measuring the Preference of Image Content 85

After clicking on the “I Agree” button, the respondents were asked to complete
the questionnaires, which would take approximately 20 to 30 minutes to complete
in total. Once the questionnaires were completed, the participants were taken to
the survey’s “Debriefing” page were the study’s true intentions were revealed, and
the respondents had to decide whether to submit (opt-in) or withdraw their
responses (opt-out) from the final dataset.

At no time were the respondents asked for any identifying information (e.g.,
name). In order to protect the respondents’ anonymity and confidentiality, they
were provided with an ID number, which the database randomly assigned to the
participant’s responses. Thus, the responses to the questionnaires were not linked
or matched to any particular individual, which was extremely important to
increase the participant’s confidence in self-disclosing criminally-sanctioned
behaviors (e.g., exchanging child pornography). As for the questionnaire items, the
items were forced choice; however, the respondents could respond by endorsing,
“decline to answer,” to each survey item in order to meet the Institutional
Review Board’s requirements.

4 Results

As stated in the methodology section, all respondents reporting some level of
intentional child pornography use were linked to the CPIPS in order to assess
their preference for child pornography images. For the two weeks this scale was
available, two child pornography users (n = 2) completed and submitted their
responses to the CPIPS. Due to anonymity, the two child pornography users were
randomly assigned an ID number, and they will be referred to as #2488 and #297.

As shown in Table 1, child pornography user #2488 was more likely to prefer
pornographic images of teens. In addition, #2488 was indifferent towards
nonsexual and sexual images of children posing and did not prefer pornographic
images of children perform sexual acts on themselves (e.g., self-masturbation) or
pornographic images of children from different racial or ethnic backgrounds.
Overall, this respondent appeared to prefer pornographic images of teens, regardless
of whether the child was posing in a nonsexual or sexually provocative manner.

However, child pornography user #297 self-reported stronger preferences for a
wider range of image content. As shown in Table 8, #297 strongly preferred all
of the child pornography image content except pornographic images of children
who are developed (e.g., pubic hair) and non-pornographic images of children
posing, both of which received a rating of 1 (Strongly Do Not Prefer). Overall,
this respondent preferred a wider range of image content except those images,
which depicted older, post- pubescent children, and images that were less sexual or
nonpornographic in nature.

86 K.C. Seigfried-Spellar

Table 1. CP images preference ratings for CP User #2488 and #297

Note. Values represent respondent's self-
reported preference for certain types of child
pornograpy images. Values scaled 1 (Strongly
Do Not Prefer), 2 (Do Not Prefer), 3
(Indifferent), 4 (Prefer), and 5 (Strongly Prefer).

Image Content ID #2488 ID #297

Infants 1 5

Toddlers 1 5

Pre-Teens 1 5

Teens 4 5

Developed 1 1

Boys 1 5

Girls 1 5

Child-Only 1 5

Adult-Child 1 5

Nonsexual Posing 3 1

Sexual Posing 3 5

Genitals 2 5

Child w/ Child 1 5

Child w/ Adult 1 5

Child w/ Self 2 5

Child w/ Animals 1 5

Power Over Child 1 5

Bondage 1 5

Violence 1 5

Racial or Ethnic 2 5

Novel or Unusual 1 5

CP User

 Measuring the Preference of Image Content 87

5 Discussion

Based on the limited data collected, this author was unable to draw statistical
inferences from the results of the Child Pornography Image Preference Scale.
However, there were notable descriptive differences in the types of images preferred
by child pornography user #2488 and #297. In general, respondent #2488 appeared
to prefer pornographic images of teens, regardless of whether the child was
posing in a nonsexual or sexually provocative manner, while respondent #297
preferred a wider-range of sexually explicit image content.

Although data was collected from two self-reported consumers of child
pornography, this study provides preliminary evidence that individuals are
willing to self-report deviant image preferences in an online, anonymous
environment. In addition, the face validity of the CPIPS appears promising since
the responses to the CPIPS for #2488 and #297 yielded a different pattern of
endorsements, which suggest a different pattern of interest. In future studies, this
pattern of interest or preference in the child pornography images may reflect
different motivations and personality characteristics.

Again, research suggests child pornography users collect sexualized images of
children for a variety of reasons. Interviews with child pornography users have
suggested some offenders move “thorough a variety of pornographies, each time
accessing more extreme material” [14, p. 343] as a result of desensitization or
appetite satiation, which lead to collecting and discovering other forms of
deviant pornography [15]. Also, some of the consumers stated they downloaded the
images simply because they were available and accessible, making the behaviors
primarily a result of compulsivity rather than a specific sexual interest in
children [16].

Child pornography consumers exhibit a complex array of sexual interests, which
may be representative of a more general level of paraphilic tendencies rather than
a specific sexual interest in children. Research suggests the majority of Internet child
pornography users are collecting a wider range of deviant pornography, which may
reflect a general level of sexual deviance rather than a specific paraphilia, such
as pedophilia. The extent to which a child pornography user is likely to be a
pedophile or a “dissident” expressing a wide range of sexual interest will best be
understand through rigorous, empirical research. Overall, with future replication
and empirical validation, the Child Pornography Image Preference Scale may be
the first measure of people’s preferences for child pornography images.

6 Conclusion

This study demonstrated that respondents are willing to report their level of
preference for various types of child pornography. Understanding the types of
images preferred by child pornography users may assist in understanding their
motivation for engaging in this illegal behavior. After all, previous research suggests
those individuals who possess child pornography images are not at a greater risk for
becoming child sex offenders [c.f., 17, 18]. Therefore, the size and content of their
collections may indicate a general need or addiction to sexual stimuli, such as other

88 K.C. Seigfried-Spellar

forms of deviant pornography, rather than an intense sexual arousal toward
children (pedophilia). Finally, future research may be able to identify whether
personality characteristics (i.e., aggressive) are predicative of image preference (i.e.,
violent, sadistic images) for child pornography consumers.

Overall, Internet-based research will continue to increase in popularity due to
its advantages over more traditional forms of methodology, such as the accessibility
of target populations with narrow interests. With regards to child pornography
research, the Internet may be the best place to analyze both the users and
behaviors due to the perceived anonymity and cloak of safety offered by the
Internet. This type of research will continue to be a socially sensitive topic, but
further empirical validation within the law enforcement and academic
community is needed for the Child Pornography Image Preference Scale.

References

1. Wolak, J., Mitchell, K., Finkelhor, D.: Internet Sex Crimes Against Minors: The Response
of Law Enforcement. National Center for Missing & Exploited Children, Washington, DC
(2003)

2. Wells, M., Finkelhor, D., Wolak, J., Mitchell, K.: Defining Child Pornography: Law
Enforcement Dilemmas in Investigations of Internet Child Pornography Possession. Police
Practice and Research 8(3), 269–282 (2007)

3. Webb, L., Craissati, J., Keen, S.: Characteristics of Internet Child Pornography Offenders:
A Comparison with Child Molesters. Sex Abuse 19, 449–465 (2007)

4. Child Exploitation and Online Protection Centre: Strategic Overview 2007-2008. Child
Exploitation and Online Protection Centre, London (2008)

5. Child Exploitation and Online Protection Centre: Strategic Overview 2008-2009. Child
Exploitation and Online Protection Centre, London (2009)

6. Internet Watch Foundation: 2008 Annual and Charity Report (April 2009),
http://www.iwf.org.uk/

7. Bunzeluk, K.: Child Sexual Abuse Images: An Analysis of Websites by cybertip.ca.
Canadian Centre for Child Protection, Winnipeg (2009)

8. Fisher, W., Byrne, D., White, L.A., Kelly, K.: Erotophobia-erotophilia as a Dimension of
Personality. Journal of Sex Research 26, 123–151 (1988)

9. Briere, J., Henschel, D., Smiljanich, K.: Attitudes toward Sexual Abuse: Sex Differences
and Construct Validity. Journal of Research in Personality 26, 398–406 (1992)

10. O’Brien, M.D., Webster, S.D.: The Construction and Preliminary Validation of the
Internet Behaviours and Attitudes Questionnaire (IBAQ). Sex Abuse 19, 237–256 (2007)

11. Bogaert, A.F.: Personality, individual differences, and preferences for the sexual media.
Archives of Sexual Behavior 30(1), 29–53 (2001)

12. Likert, R.: A Technique for the Measurement of Attitudes. Archives of
Psychology 22(140), 44–53 (1932)

13. Seigfried-Spellar, K.C., Rogers, M.K.: Discriminating Self-Reported Internet Child
Pornography Users by Individual Differences and Sex (2012) (submitted for publication)

14. Quayle, E., Taylor, M.: Paedophiles, Pornography and the Internet: Assessment Issues.
British Journal of Social Work 32, 863–875 (2002)

15. Quayle, E., Taylor, M.: Model of Problematic Internet Use in People with a Sexual Interest
in Children. CyberPsychology & Behavior 6, 93–106 (2003)

 Measuring the Preference of Image Content 89

16. Basbaum, J.P.: Sentencing for Possession of Child Pornography: A Failure to Distinguish
Voyeurs from Pederasts. Hastings Law Journal 61, 1–24 (2010)

17. Hessick, C.B.: Disentangling Child Pornography from Child Sex Abuse. Washington
University Law Review 88, 853–902 (2010)

18. Malamuth, N., Huppin, M.: Drawing the Line on Virtual Child Pornography: Bringing the
Law in Line with the Research Evidence. N.Y.U. Review of Law and Social Change. 31,
773–790 (2007)

Appendix: Child Pornography Image Preference Scale (CPIPS)

Below are a number of items related to your preference for sexually explicit
websites. You will probably find that you like some of the items and dislike
some others and that is okay. We realize that everyone is different, so please
respond as honestly as you can.

Remember, this survey is completely confidential and anonymous, meaning
there is no way that your responses will be linked back to you.

STRONGLY STRONGLY
DO NOT PREFER indifferent PREFER

1 2 3 4 5

 1 if you strongly do not prefer the item
 2 if you do not prefer the item

 3 if you feel indifferent or neutral about the item
 4 if you prefer the item
 5 if you strongly prefer the item

1. Pornographic images of infants.

2. Pornographic images of toddlers.
3. Pornographic images of preteens.

4. Pornographic images of teens.
5. Pornographic images of children who are developed (e.g., pubic hair).
6. Pornographic images of boys.

7. Pornographic images of girls.
8. Pornographic images featuring only children.
9. Pornographic images featuring children with adults.

10. Non-pornographic images of children posing.
11. Images of children posing sexually or provocatively.
12. Pornographic images of children that focus on the genitals.

13. Images of children performing sexual acts on other children.
14. Images of children performing sexual acts on other adults.

90 K.C. Seigfried-Spellar

15. Images of children performing sexual acts on themselves

 (e.g., self- masturbation).
16. Images of children performing sexual acts on or with animals.
17. Pornographic images depicting power or control over the child.

18. Pornographic images of children depicting bondage (e.g., being tied-up).
19. Pornographic images of children depicting violence (e.g., hit, kicked).
20. Pornographic images of children from different racial or ethnic backgrounds.

21. Pornographic images of children that are novel or unusual.

M. Rogers and K.C. Seigfried-Spellar (Eds.): ICDF2C 2012, LNICST 114, pp. 91–108, 2013.
© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2013

Cybercrime, Censorship, Perception and Bypassing
Controls: An Exploratory Study

Ibrahim Baggili1, Moza Al Shamlan2, Bedoor Al Jabri2, and Ayesha Al Zaabi2

1 Tagliatela College of Engineering, Department of Electrical and Computer Engineering
and Computer Science, University of New Haven, CT

Ibaggili@newhaven.edu
2 Zayed University, College of Technological Innovation

Advanced Cyber Forensics Research Laboratory
m80001612@zu.ac.ae, {budur44,ayesha.alzaabi}@hotmail.com

Abstract. Countries have employed the Internet proxy as a censorship mechanism
for various reasons. Concurrently, cyber criminal activities continue to rise. This
research explores peoples' engagement in bypassing the Internet proxy and if it is
related to cyber criminal engagement. Through an experimental design, participants
were randomly assigned to three groups. Using manipulation paragraphs, in the first
group (Group 1), a positive view on the Internet proxy was presented. In the second
group (Group 2), a negative view on the Internet proxy was presented. The third
group (Group 3) was used as the control group, where the participants’ view of the
Internet proxy was not manipulated. All three groups were asked to self-report their
rate of proxy bypass (SRPBE) and cybercrime engagement (CCI). The results
indicated a significant positive correlation between self-reported cyber criminal
engagement and self-reported proxy bypass engagement. The results also showed
that individuals with more knowledge in computers are more likely to bypass the
Internet proxy. However, individuals with better knowledge in computers are not
necessarily the ones that are more likely to commit cyber criminal activities. The
results were inconclusive on whether or not the manipulation paragraphs used had
an effect on the participants’ view of the Internet Proxy.

Keywords: Cybercrime, psychology, censorship, Internet proxy, UAE.

1 Introduction

With time the Internet continues to grow. More users today are engaged in the World
Wide Web and are actively infused with this technology. The Internet World Stats
website reveals the number of increasing Internet surfers in different regions of the
world. Data also reveals that there are about fifty seven million surfers in the Middle
East alone. In the case of the United Arab Emirates (UAE), it was determined that it
has the fifth highest number of Internet users amongst other Middle Eastern countries
[1]. Furthermore, it is one out of a number of countries that applies an Internet proxy
to censor Internet content.

The reasons behind the employment of an Internet proxy may vary. In the UAE,
the purpose could range from religious, to social, to political reasons [2]. One of these

92 I. Baggili et al.

reasons could also be to prevent cyber criminals from accessing and downloading
hacking and exploitation tools. For example, when attempting to visit the website
http://remote-exploit.org, a website that contains software that could be used for
malicious purposes, we find that the Internet Proxy in the UAE prohibits access to
such a website. If a primary reason for censoring Internet content is to prohibit users
that are actively engaged in cybercrime from downloading hacking tools and content,
it becomes important to investigate the relationship between bypassing the Internet
proxy and cybercrime engagement.

Internet censorship remains a topic of debate despite the many reasons behind why
an Internet proxy is applied. In the UAE for instance, Sheikh Abdulla Bin Zayed,
Minister of Information and Culture is in favor of an open Internet, for he states that
the UAE’s Internet Service Providers should not block access to websites because
every citizen is entitled to knowledge and learning [3].

Due to the restricted Internet access in the UAE, it is hypothesized that users may
engage in ways to bypass the Internet proxy. The purpose and intentions behind such
user activity is yet to be empirically examined. Understanding this relationship can
shed light on the effectiveness of the Internet proxy, and whether it is fulfilling the
purpose of evading cyber criminals from accessing illegal content.

2 Problem Statement

One of the reasons of employing an Internet proxy is to not only censor illegal
content, but also to curb cyber criminal engagement. Currently, there is no formal
published research that studies the relationship between cyber criminal engagement
and proxy bypass engagement. It is important to study this relationship in order to
validate the productivity of the Internet proxy.

3 Research Questions and Hypotheses

In this study, the researchers attempted to answer the following questions:

• Is there a relationship between Self Reported Proxy Bypass (SRPB) and
cybercrime engagement?

• Is there a relationship between the level of knowledge in computers and
SRPB?

• Can respondents be manipulated using manipulation paragraphs to affect
their perception of the employment of an Internet proxy?

To answer the abovementioned questions three major hypotheses were formulated:

• H1: There is a positive correlation between self-reported cybercrime (CCI)
and self-reported proxy bypass engagement (SRPB).

• H2: Individuals with better knowledge in computers are more likely to
bypass the Internet proxy and engage in cybercrime.

• H3: Decreasing the positive perception of the Internet proxy increases self
reported cybercrime and proxy bypass engagement.

 Cybercrime, Censorship, Perception and Bypassing Controls: An Exploratory Study 93

4 Literature Review

4.1 Censorship and The Internet Proxy

Censorship is a widely implemented practice. Censorship is “The restriction of what
people may say, hear, write, read, or see” [4]. The Fileroom website, an archive of
various materials lists censored cases in different regions of the world
(thefileroom.org). This website, in partnership with the National Coalition against
Censorship (NCAC) aims to fight types of censorship that may violate the right of
human expression. On the other hand, there are supporters of censorship, which are
those who are usually applying it, which in many cases is the government, special
interest groups, or individuals. Organizations and people that are pro-censorship look
at it from a different perspective mostly perceiving it as a security measure to ensure
the wellbeing and morals of societies [4].

There are different types of censorship ranging from censorship in tangible
material such as books and magazines, to intellectual ideas, services, and the
placement of restricting rules and regulations that prohibit people from exercising a
particular action. When it comes to censorship of the Internet, the United Arab
Emirates (UAE) is in the top ten ranks according to a research that The National
newspaper has reviewed, along with China, Iran and Saudi Arabia. This list also
includes the United States, Germany, France, Canada, Tunisia, and Bahrain [5]. For
instance, Chinese Internet Service Providers (ISPs) censor topics like Tibet, Taiwan
and Tiananmen (for political reasons), and even high profile websites like BBC and
Voice of America. Moreover, the Iranian government censors content that may
include pornography, politics, religion, and anything that may have a heavy western
influence like music, videos or movies; resulting in a 10+ million blocked websites
ranging from Wikipedia to YouTube to Amazon. Also, the Saudi Arabian government
put a ban on any anti-Islamic websites along with women’s rights topics, gambling
and pornography. The above mentioned countries are only a small sample of nations
that apply censorship [6].

Although the stated reasons behind applying censorship may seem to be moral,
there may be a dual purpose. For example, although Internet censorship may be
perceived as a way of protecting children from “dangerous or disturbing ideas and
information” [7], others may think of it as an effective way of controlling people’s
minds. If we look at the cases of different countries, nations propose independent
reasons behind applying Internet censorship. For example, in the UAE, if you try to
access a blocked website, the following message appears on the browser: “Access to
this site is currently blocked. This site falls under the prohibited content categories of
the UAE’s Internet Access Management Policy”. The prohibited content categories
are provided, and the reasons behind blocking a website can be political, social,
cultural, or religious.

Censorship is an old concept and has been around for many years. Censoring may
include the destruction of a certain work, banning it, or making it illegal to produce or
sell [8]. In the following part of the literature review, censorship examples are
discussed with relation to criminal activities.

94 I. Baggili et al.

Looking back at the second World War, Hitler, for instance, applied censorship
and banned various books for the sole purpose of implementing a “Totalitarian
philosophy” [9]. He attempted to control what the people in Germany read, how they
thought, and what they believed in. The employment of his philosophy shifted
people’s beliefs. Although he was a powerful man and tried to indoctrinate people’s
minds with his ideology, many had opposed him. In reality, many had planned
conspiracies and assassinations in hopes of terminating Hitler and his regimes [10].

In the 1970’s, alcohol was prohibited in the United States by the 18th amendment.
During the World War, people felt the need to become patriotic and consume their
time in conserving grain, rather than drinking alcohol. This prohibition led to
organized crime [11]. Large quantities of alcohol were smuggled in from Canada,
overland and via the Great Lakes [12], thus indicating how the alcohol ban led to an
increase in the rate of crime and illegal activities.

In 1979, the Chinese government decided to restrict the number of people in
Chinese families and allow most of them to only have one child; they called it the
one-child policy [13]. The population of Chinese people made up a quarter of the
world’s population when they were only using seven percent of the land on earth.
This rise in the population was because of Mao Zedong who led the Chinese people
into giving birth to as many children as possible between 1950 and 1960 to bury the
United States in a human wave [14]. Although the one-child policy prevented at least
300 million births, and boosted prosperity [14], it led to a gender disproportion in the
population. Since the Chinese society tends to favor a male inheritor, this led to the
abortion of many female babies [15]. The policy in place led to illegal activities such
as infanticide, human trafficking, having illegal children and sending them off to
isolated regions where they cannot be found, and girls being picked up by gangs to be
used for banned activities [16]. Despite the primary goal that was set behind applying
this ban or policy, there is an indication of the rise in illegal activity due to the
restrictions that this policy has placed upon the people of China.

In the mid nineteenth century, abortion in the United States was illegal. In addition
to it being a crime at the time, it was perceived to be a sin as well [17]. Although
abortion was prohibited, women always found a way around that. NARAL, which is a
pro-choice American Foundation mentions an excerpt of a story from the book
“Women speak out about abortion”. The passage indicates how women had sought
illegal abortion, even in poor hygienic conditions, in order to secretly abort unwanted
children [18]. Although abortion was illegal, it was discovered that about a million
illegal abortions a year were performed in the U.S. [17], thus indicating how the
employment of this law had failed to serve its purpose, and resulted in the increase of
secretly performed abortions.

In the U.S., the government’s interference in banning certain violent video games
is questioned. It has been stated that there is weak evidence with regards to the link
between video games and youth aggressiveness; even when the video game industry
was booming between 1994 and 2000, a decrease in the rate of crime was witnessed,
[19] (this does not necessarily eliminate the relation between those two elements, yet
it sets a possible indication of their negative correlation). One research study on the
relationship between violent video games and its effect on children was conducted.

 Cybercrime, Censorship, Perception and Bypassing Controls: An Exploratory Study 95

This research suggested that conducted experiments have proved the following
similar results: “playing violent video games can indeed cause increases in aggressive
thoughts, feelings and behaviors” [20]. Despite the findings of this research there is
still controversy over this topic.

Censoring violence in media has also been a topic of debate. Those supporting this
type of censorship are concerned about its effect on those watching such violence on
television. Scientific studies have shown the connection between violence and media
violence, but they have not been able to show a causal relationship between the two
[21]. Despite the uncertainty of this relationship, the research emphasizes its negative
effect on children. Opponents believe that despite the large number of research
conducted on violence in the media, very few studies look into this issue in real life.
One study was conducted by Dr. Brandon Canterwall in three countries (Canada,
U.S., and South Africa) in order to identify the connection between media violence
and the rate of crime. The study was conducted from 1945 to 1974 when the
television was first broadcasted in the U.S. and Canada, yet banned in South Africa.
In the U.S. and Canada, homicide rates doubled when television was first introduced,
yet the rates remained stable in Africa [22].

Censorship and bans on literature and media are merely a barrier for some people;
a barrier which can be almost always be overcome. When it comes to books that have
been banned for political or social reasons, one can merely find an online book store
from which to purchase the book, whether it be a physical copy or an electronic copy.
In fact, there was a website dedicated to that purpose; Banned-Books.org. This
website was an online bookstore that sold banned books, audiotapes and videos [23].
There have also been events protesting the banning of books, such as Banned Books
Week, which has been an annual celebration of the “freedom to read” since 1982. The
organization hosts events nation-wide across the United States where bookstores
welcome authors that have been subject to censorship to read their books in the
bookstores and to speak about being censored [24].

Newspapers or magazines may either be banned or contain censored articles within
the printed pages because they could be culturally offensive, religiously unacceptable,
or harmful to the image of political or royal persons. If this is the case, then
individuals seeking the non-censored versions may be able to find it on the Internet,
and in most cases, newspaper or magazine websites are not censored. “And so, if the
government wants to ban the Sunday Times from the newsstands, it should block its
website too. Or, of course, do neither.” [25].

In certain countries, movies showing at the cinemas or aired on television that
contain extremely violent or sexual scenes are usually only shown after those scenes
have been censored. The same is applied to music videos. Some music videos may
not be shown on television because of their highly suggestive nature. This is easily
circumvented by either purchasing a DVD (which in most cases are not censored),
viewing them online through an illegal video streaming website, illegally
downloading the movies, and downloading the censored scenes from file sharing or
peer-to-peer services.

Most of the aforementioned examples illustrate a relationship between bans and
undesired activity. However, until now, no research in the UAE has been conducted

96 I. Baggili et al.

with regards to the relationship between the Internet proxy and cyber criminal
engagement. In this research, the aim is to reveal the nature of this relationship, and it
is hypothesized that like most of the examples illustrated above, that cyber criminal
engagement is positively correlated with bypassing the Internet proxy. This
hypothesis is primarily based on the “all that is banned is desired” principle, and the
idea that obstructing the freedom of users will trigger illegal activity or cybercrime.

4.2 Cybercrime

The UAE is ranked second as the most vulnerable of the Gulf countries to fall victim
to cybercrimes. The world is more connected than ever before, and the credit goes to
technology, because with its positive use arose its misuse. Therefore, studying
cybercrime in the UAE is of critical importance.

We ask ourselves: What is cybercrime? A clear-cut definition does not exist, yet
we know it when we see it, or when we experience it. There have been many attempts
at defining cybercrime. For example, in the book Cybercrime: vandalizing the
Information Society, the author differentiates between computer crime and cyber
crime. Computer crime is “a crime in which the perpetrator uses special knowledge
about computer technology”, whereas cybercrime is “a crime in which the perpetrator
uses special knowledge of cyberspace” [26]. Shinder (2002) also explains that there
are different categories of cybercrime. Mainly, there are two basic categories: Violent
and non-violent cybercrime. Under each category, different types or subcategories
were suggested. Under non-violent cybercrime; cyber trespass, cyber theft, cyber
fraud, and destructive cybercrime. On the other hand, violent cybercrime
encompasses cyber terrorism, assault by threat, cyber stalking, and child pornography
[26].

In 2002 Furnell further illustrates the public’s attitude and awareness of the
cybercrime issue. A survey was conducted in the U.K. in order to determine the
degree of the public’s understanding of cybercrime and how the media has played a
role in shaping that understanding. Consequently, the survey addressed questions that
revolved around three main issues: using unlicensed software, unauthorized use of IT
facilities, and password sharing. The survey indicated that the participants were
involved in the three activities to some extent. However, despite the respondents’
engagement in those issues, over 80% of the participants acknowledged that they
understand that their actions result in cybercrime [27].

The aforementioned results of the survey conducted in the U.K. reveal people’s
acknowledgement of the cybercrime issue, yet they still practice it. Why do people
commit cybercrime? What is their motive or personal reasoning? Can their
perceptions be affected in order to halt this activity? An article mentions various
reasons of engaging in cybercrime, ranging from a user’s excitement to challenge
him/her self, ease of anonymity, to holding a grudge [28]. Although individuals may
engage in such activities for different reasons, manipulating perception may have an
effect on users’ ideas of this activity.

 Cybercrime, Censorship, Perception and Bypassing Controls: An Exploratory Study 97

4.3 Perception

Scientifically, perception is the way people interpret what they sense in the
environment around them; the way they view the world [29]. Perceptions are
provisional much similar in the way in which scientific hypotheses are provisional; as
in peoples’ perceptions of anything around them changes when they learn new
information about them [30].

Any information that people gather or are given can change the way they view a
certain object or idea. Peoples’ perceptions are easily molded and changed both
directly and indirectly. John Stauber and Sheldon Rampton wrote a book unfolding
and describing what it takes to create public opinion, as well as revealing evidence of
opinion manipulation from the early 20th century [31].

Edward Bernay states in his book Propaganda that “scientific manipulation
of public opinion was necessary” and determined that “a relatively small number of
persons pull the wires which control the public mind” [32]. He, in fact, was one of
those individuals that formed peoples’ opinions about numerous concepts and
products in the United States. Examples of which range from promoting bacon as
breakfast food, popularizing smoking cigarettes among women, to presenting the first
World War as a positive concept that benefits the world [31].

The media especially plays an enormous role in influencing peoples’ perceptions
about ideas. Perception manipulation has been practiced in all forms of media. Some
even say the type of medium chosen in order to get a message across may even be
more important than the message itself [33-34]. Ultimately, it will get the desired
effects.

Ball-Rokeach and DeFleur (1976) state that “audience dependency on media
information resources [is] a key interactive condition for alteration of audience
beliefs, behavior, or feelings as a result of mass communicated information” [35].
Today’s media is no longer constrained to television, radio and print magazines. It
seems to be fast-paced, unstoppable and unrestrained. The properties that make up
what global media resulted in an almost involuntary reaction which is the
manipulation of the public’s opinion and behavior [36].

Johnson in 2007 set an example of such impact of perception manipulation once
again but from a military viewpoint. The simple manipulation of a “flash of an image”
such as images of dead women and children can change the public’s perception of
war. When war is depicted in such a way, people are influenced into considering how
negative war is, and pushes back the idea of any benefits that war may bring [36].

Experimental research has grown more popular and prevalent in social
psychological research. In this kind of research, components include a manipulation
of at least a single independent variable, and the randomized assignment of
participants of the research to the manipulation or condition [37].

For example, there are numerous examples of manipulation within medical
experiments and research. Influencing patients into believing they are receiving
treatment (when in reality they are not) can result in change in their behavior and in
cases even cause physical change. This goes to show that one’s perception can be

98 I. Baggili et al.

molded into something that may contradict one’s original ideas, beliefs, and even
reality.

In one study by Massachusetts Institute of Technology scientists, it was shown that
magnetic fields can alter human brain operation; more specifically their moral
judgment. The groups of subjects in the experiment were asked to read short stories
and were then asked to decide whether the actions of the characters in the stories were
morally acceptable or unacceptable. One group was then subjected to transcranial
magnetic stimulation, while another was not. The temporary stimulation appears to
have changed the answers of the first (manipulated) group where the results showed
that the subjects were indecisive about what was morally acceptable or unacceptable,
and that they focused on the outcome of the story as opposed to the intention of the
characters in the stories [38].

The University of Harvard conducted research that explored how effective the
placebo effect can be on people that suffered from pain, arterial hypertension and
asthma. Some subjects were given the actual medication, while another group of
subjects were not given any medication, and instead given a pharmacologically
inactive substance, but were led to believe that they were given legitimate medication.
Approximately 40% of the subjects who were administered fake medicine indicated
that they felt relief from their physical pain [39].

Other instances in the medical field that experiment with the use of the placebo
effect include surgical procedures as well. Hospital patients suffering from chest pain
caused by chronic heart ischemia were separated into two groups: those who
underwent the surgical procedure to rectify it, and those who were only led to believe
that they had the procedure done (by preparing them for the operation, sedating them,
and incising their skin so it appears that they have gone through surgery). Those who
were operated on legitimately showed 40% improvement, while those who went
through the “pretend” surgery showed 80% improvement, [39]. Again, this
demonstrates the power of manipulation of people’s perception.

5 Methodology

This study uses an experimental approach. Participants were randomly assigned into
three groups. In the first group (Group 1), a positive view on the Internet proxy was
presented. In the second group (Group 2), a negative view on the Internet proxy was
presented. The third group (Group 3) was used as the control group, where the
participants’ view of the Internet proxy was not manipulated. All the participants in
each group were asked to complete two self-reported instruments CCI which
represents an index measure of cyber criminal engagement and SRPBE which aims to
measure the engagement of the participants in bypassing the Internet proxy. All
participants were also asked a single question about their level of knowledge of
computers. The responses were analyzed in order to test the following hypotheses:

H1: There is a positive correlation between self-reported cyber crime (CCI) and self-
reported proxy bypass engagement (SRPBE).

 Cybercrime, Censorship, Perception and Bypassing Controls: An Exploratory Study 99

H2: Individuals with better knowledge in computers are more likely to bypass the
Internet proxy and engage in cyber crime.
H3: Decreasing the positive perception of the proxy increases self reported
cybercrime.

5.1 Theoretical Constructs

Figure 1 illustrates the different variables and predictors in this research. The two
predictors are Proxy Bypass Engagement and Proxy Perception. The independent
variable is self-reported cybercrime engagement.

Fig. 1. Theory diagram

5.2 Instruments

5.2.1 Proxy Bypass
The researchers created this self-reported measure in order to compare its relationship
with self-reported cybercrime. The survey encompasses questions around the
respondents’ degree of proxy bypass engagement. The types of questions used were
meant to reveal the degree to which the participants were involved in proxy bypass,
and the reasons behind their engagement in this activity (to challenge one’s skills,
access certain websites, or for malicious reasons). A measure for each respondent was
then created in order to assess each participant’s level of bypassing the Internet proxy.

5.2.2 Proxy Perception
This survey instrument was disseminated to three separate groups in which the
“manipulation page” was phrased in a manner that either advocated the employment
of the proxy (Group 1), criticized it (Group 2), or the survey was distributed without
any prior effort of manipulation (Group 3, control group). The aim of the first two
groups was to attempt to create a biased opinion, in a positive or negative manner, so
as to find out whether the “manipulation page” would influence participants’
perception of the proxy. The manipulation paragraphs used are shown in Figures 1
and 2.

100 I. Baggili et al.

Fig. 2. Positive Manipulation Paragraph

Fig. 3. Negative Manipulation Paragraph

5.2.2.1 Self-Reported Cyber Crime
Following the questions around self-reported proxy bypass engagement, participants
were also asked to answer questions related to self-reported cybercrime. The self-
reported cybercrime survey was originally created by Dr. Marcus Rogers, a professor
at Purdue University. The Index measurement was created by Dr. Rogers is an
instrument that has been repeatedly used and cited in various studies [40] [41] [42].

6 Research Protocol

6.1 Participants

After seeking ethical clearance, the researchers were able to disseminate a survey to
4,473 e-mail addresses, which included students and faculty. The researchers gathered
data for a period of two weeks, and the total number of participants in this study was
(n=107) after eliminating 188 participants with incomplete responses 93 of which
were females, and 14 of which were males. The program Gpower was used in order to
determine the sample size necessary for the study.

- For a one-tailed test, with medium effect size (0.5), an alpha of (0.05) and a
power (0.9), the recommended sample size is 140.

- For a two-tailed test, with medium effect size (0.5), an alpha of (0.05) and a
power (0.9), the recommended sample size is 172.

It is unfortunate that the sample size the researchers received was not significantly
high, becoming a limitation of this study. However, the yielded results illustrate
theoretical saturation and a reasonable effect. The authors also note a high dropout
rate, and this was expected due to the measurement’s length.

 Cybercrime, Censorship, Perception and Bypassing Controls: An Exploratory Study 101

6.2 Study Protocol

1. The following process was followed:

a. Ethical clearance was sought from the university research office.
b. A pilot survey test was conducted prior to the distribution of the

survey.
c. The emails were randomly assigned to the three different groups.

The surveys were then disseminated via email to Zayed University
faculty, staff and students.

d. The consent form was included as the first page of the survey for all
participants that would agree to contribute to the study. Participants
were instructed to carefully read and agree to the pre-consent forms
before beginning the survey. The survey could not be completed if
participants did not agree to the consent form.

6.3 Reliability

In order to show that a set of data is internally consistent, it is generally accepted that
the reliability measure Cronbach’s alpha should be greater than 0.7. In this research,
both CCI and SRPBE surpassed 0.7. Consequently, the measurements show a level of
acceptable internal consistency. Table 1 illustrates the reliability measure results.

Table 1. Reliability statistics of SRPBE and CCI

Cronbach’s Alpha Variable N of Items

.929 SRPBE 28

.803 CCI 60

6.4 Data Analysis

After analyzing the data, 188 incomplete responses were eliminated. The data was
analyzed using a variety of statistics. Primarily, the data was tested for normality and
outliers using Q-Q plots and box plots. It is important to note that a total of 12
responses were eliminated after closely examining the Q-Q and box plots. In order to
test whether correlations existed between a set of measures, Pearson’s correlation was
used. Additionally, Analysis of Variance (ANOVA) was used in order to test the
effect of the included manipulation paragraphs in the surveys for groups 1 and 2.
After eliminating outliers, the total number of participants was 95.

6.5 Demographics

The demographics were analyzed to gain a better understanding of the sample as
shown in Table 2.

102 I. Baggili et al.

Table 2. Sample demographics

Demographic
Variable

N of Items Population %

Gender
Females 82 86%
Males 13 14%

Age
Less than 17 1 1%
17-20 37 39%
21-25 31 33%
26-30 4 4%
Above 30 22 23%

Education Level
High school 8 8%
Undergraduate 59 62%
Graduate 8 8%
Postgraduate 20 21%

Academic Major/Expertise
Business 19 20%
Education 13 14%
Liberal arts 8 8%
Health sciences 15 16%
Social sciences 5 5%
IT/ Computers 17 18%
Other 18 19%

Level of computer knowledge
Poor 1 1%
Fair 8 8%
Average 33 35%
Good 40 42%
Excellent 13 14%

7 Results and Discussion

7.1 Hypothesis 1

H1: There is a positive relationship between self-reported cybercrime (CCI) and self-
reported proxy bypass engagement (SRPBE).

In this research, it was hypothesized that a significant positive correlation would
exist between self-reported cyber criminal engagement and self-reported proxy bypass
engagement. Table 3 illustrates that a significant correlation does exist between those
two variables. A correlation is significant at the 0.01 level, meaning that there is a
99% chance (1-0.01) that the correlation is positive and equal to 0.285.

 Cybercrime, Censorship, Perception and Bypassing Controls: An Exploratory Study 103

Table 3. Pearson correlation between SRPBE and CCI

Variables N Significance level (2-tailed) Pearson Correlation

SRPBE x CCI 95 0.05 0.285**

** The correlation is significant at the 0.01 level (2-tailed).

This study examined relationship between self-reported proxy bypass and self-
reported cyber crime engagement. The results found illustrate a relationship similar to
the literature review. This result can be interpreted in different ways. One way of
interpreting the result is that individuals that are engaging in cyber criminal activities
are also the same individuals that are bypassing the Internet proxy. Another plausible
explanation for this result is similar to the notion discussed in the literature review,
which indicated that “What is banned is desired”. Individuals bypassing the Internet
proxy are indeed engaging in cyber criminal activities, which are activities that are
banned by society. H1 is supported from the experimental results, and thus it is
accepted.

7.2 Hypothesis 2

H2: Individuals with better knowledge in computers are more likely to bypass the
Internet proxy and engage in cybercrime.

For the SRPBE measure (Table 4) the means illustrate that those with excellent
knowledge in computers have the highest SRPBE mean. This illustrates that
individuals with excellent knowledge in computers are the ones that are engaging in
bypassing the Internet proxy more often. A plausible explanation for that is that
certain technical skills are needed in order to bypass the Internet proxy. This part of
the hypothesis is accepted – that individuals with more knowledge in computers are
more likely to bypass the Internet proxy.

Table 4. Mean SRPBE for computer knowledge

Computer Knowledge Mean SRPBE N St. Deviation

Average 12.30 33 14.92
Excellent 25.20 13 23.09
Fair 11.63 8 13.00
Good 13.60 40 17.46
Poor 0.00 1
Total 14.42 95 17.42

As for the mean in the CCI measure (Table 5), those that have good computer
knowledge show the highest cybercriminal engagement. This indicates individuals
with at least good knowledge have engaged in cyber criminal activities. A plausible
explanation for that is that most people have engaged in cyber criminal activities such
as downloading illegal music, software and movies from the Internet. It is then
plausible that one does not need strong technical knowledge in computing to simply

104 I. Baggili et al.

enage in cyber criminal activites. This part of the hypothesis is rejected, because the
results illustrate that individuals do not need high levels of computer knowledge to
engage in cyber criminal activites.

Table 5. Mean CCI for computer knowledge

Computer Knowledge Mean CCI N St. Deviation

Average 11.06 33 10.97
Excellent 11.31 13 7.17
Fair 9.90 8 9.98
Good 13.10 40 10.60
Poor 0.00 1
Total 11.74 95 10.21

7.3 Hypothesis 3

H3: Decreasing the positive perception of the proxy increases self reported
cybercrime engagement and proxy bypass engagement.

The means illustrated for the control group in both SRPBE (Table 6) and CCI
(Table 7) measures reveal that the manipulation paragraphs may have had an effect.
This is illustrated in the increasing mean from Group 1 to Group 3 in the SRPBE and
CCI. This indicates that decreasing the positive perception of the proxy increases self-
reported cyber crime and proxy bypass engagement.

Table 6. Group means for SRPBE measure

Group Mean N St. Deviation

1 (Positive view) 12.23 26 17.27
2 (Negative view) 15.16 31 19.32
3 (Control) 15.32 38 16.20
Total 14.42 95 17.42

Table 7. Group mean for CCI measure

Group Mean N St. Deviation

1 (Positive view) 10.92 26 10.18
2 (Negative view) 11.81 31 9.86
3 (Control) 12.24 38 10.74
Total 11.74 95 10.21

When applying ANOVA in order to examine if the means in the groups where
significantly different from one another in CCI and SRPBE, the results revealed that
there was little significance. Reasons of this insignificance are unclear and may vary.
It is possible that participants did not spend their time reading the manipulation
paragraphs; therefore their perception was not significantly manipulated. Also, the

 Cybercrime, Censorship, Perception and Bypassing Controls: An Exploratory Study 105

sample size could be another factor; if the sample size was larger, results of a possible
significance could have been more obvious. The researchers also question the
viability of the manipulation paragraphs used, perhaps the words that were used
where not strong enough to manipulate the participants’ perceptions.

In reference to the literature review, manipulating perception has proven to have
had an effect on individuals. Although it is unclear whether H3 is accepted or
rejected, we do observe a trend in the means of both CCI and SRPBE of the means
increasing from Group 1, to Group 3. The researchers expected that the mean of the
control group would be in the middle – between the positive and the negative, but the
results indicated otherwise. It is plausible that if the participants are not provided with
a manipulation paragraph, that they are more likely to reveal their true opinion, this
could be the reasons that both CCI and SRPBE means are higher in the control
groups. Hypothesis 3 is therefore rejected. The authors note that a more
comprehensive study using various other manipulation techniques should be
conducted in order to re-examine the effect of manipulation on self-reported
cybercrime and proxy bypass engagement.

8 Limitations

There are some limitations in this research. Primarily, there was a significant
difference between the number of male and female participants in the experiment.
This was expected that given that the number of female students surpasses the number
of male students at Zayed University. Moreover, due to time constraints, sending out
the survey to other universities was not possible. An extended process of approval
from the Human Board would have been required, and this study was set to conclude
within a limited time frame. Therefore, only Zayed University students and faculty
were engaged in this study. Furthermore, the number of completed surveys did not
match the power calculations to witness a strong effect.

9 Future Research

This study was conducted only at Zayed University in the UAE. The UAE, as
mentioned before, is one of the top ten countries when it comes to censorship of the
Internet [5]. This research could be expanded in the future to include students from
different universities across the UAE and different countries that employ an Internet
proxy. This would be favorable to gain external validity. Future research might lead to
the discovery of whether implementing a proxy is actually preventing individuals
from committing cybercrime. Moreover, the results of this research can be compared
to future findings of different countries.

10 Conclusion

In this research, the results indicated a significant positive correlation between self-
reported cyber criminal engagement and self-reported proxy bypass engagement. The

106 I. Baggili et al.

results also showed that individuals with more knowledge in computers have a higher
proxy bypass engagement. However, individuals with better knowledge in computers
are not necessarily the ones that are more likely to commit cyber criminal activities.
With regards to perception manipulation, the results are not conclusive on whether or
not the manipulation paragraphs had an effect on people’s view of bypassing the
Internet proxy.

References

1. Internet World Stats: Middle East Internet Usage Statistics, Population, Facebook and
Telecommunications Reports (2009),
http://www.internetworldstats.com/stats5.htm

2. OpenNet Initiative: Internet Filtering in the United Arab Emirates (2005),
http://opennet.net/sites/opennet.net/files/ONI_UAE_2009.pdf

3. Olsen, E.: Rare Criticism of Gulf State Internet Censorship (2002),
http://blogcritics.org/culture/article/
rare-criticism-of-gulf-state-internet/

4. Day, N.: Censorship: Or Freedom of Expression. Learner Publishing Group (2001)
5. Kwong, M.: Reports High Website Censorship. The National Newspaper (2009),

http://www.thenational.ae/news/uae-news/
uae-reports-high-website-censorship

6. Nick: Top 10 Countries Censoring the Web (2008),
http://www.dailybits.com/top-10-countries-censoring-the-web/

7. Vandergrift, K.E.: Intellectual Freedom, and Youth (1997),
http://comminfo.rutgers.edu/professional-development/
childlit/censorship.html

8. Day, N.: Censorship: Or Freedom of Expression. Learner Publishing Group (2001)
9. Cortes, M.V.: Internet Censorship Around the World, University of Chile, Chile (2000),

http://www.isoc.org/inet2000/cdproceedings/8k/8k_4.htm
10. Schrader, P.: An Obsolete Honor: A Story of the German Resistance to Hitler. iUniverse

(2008)
11. Kenney, K.: Prohibitions in the 1920s (2009),

http://kim-kenney.suite101.com/prohibition-in-the-1920s-a90037
12. 1920-30.com: Prohibition in the United States (2005),

http://www.1920-30.com/prohibition/
13. Hesketh, T., Lu, L., Xiang, Z.W.: The Effect of China’s One-Child Family Policy after 25

years. The New England Journal of Medicine (2005),
http://www.nejm.org/doi/full/10.1056/NEJMhpr051833

14. Macartney, J.: Factfile: China’s one-child policy. TimesOnline (2008),
http://uyghuramerican.org/old/articles/1458/1/
Factfile-Chinas-one-child-policy/index.html

15. CNN: China to keep one-child policy. CNN (2008),
http://articles.cnn.com/2008-03-10/world/
china.onechild_1_preference-for-male-heirs-traditional-
preference-gender-imbalance?_s=PM:WORLD

16. Hall, A.T.: China’s one policy and male surplus as a source of demand for sex trafficking
in China (2010), http://nfsacademy.org/wp-content/uploads/
2011/02/Hall-Chinas-One-Child-Policy.pdf

 Cybercrime, Censorship, Perception and Bypassing Controls: An Exploratory Study 107

17. Feminist.com: History of Abortion. Touchstone Publishing (1998),
http://www.feminist.com/resources/ourbodies/abortion.html

18. NARAL Foundation: Choices: Women Speak Out About Abortion (2009),
http://www.prochoiceamerica.org/media/fact-sheets/
abortion-distorting-science-safety-legal-abortion.pdf

19. Thierer, A.D.: Regulating Video Games: Parents or Uncle Sam? CATO Institute (2003),
http://www.cato.org/publications/commentary/regulating-
video-games-parents-or-uncle-sam

20. Gentile, D.A., Anderson, C.A.: Violent Video Games: The Effects on Youth, and Public
Policy Implications. Handbook of Children, Culture, and Violence. Thousand Oaks (2006),
http://www.psychology.iastate.edu/faculty/caa/abstracts/
2005-2009/05ga2.pdf

21. Wagner, M.A., Wagner, J.: Should We Censor Violence in the Media? (2002),
http://www.yellodyno.com/pdf/Violence_in_the_media.pdf

22. Rhodes, R.: Hollow Claims About Fantasy Violence. The New York Times (2000),
http://www.nytimes.com/2000/09/17/opinion/hollow-claims-about-
fantasy-violence.html?pagewanted=all&src=pm

23. Castillo, F.: Banned and Controversial Books (2008),
http://banned-books.com/bblist.html

24. Banned Books Week (2009), http://bannedbooksweek.org/about
25. Flanagan: The Futility of Censorship. Yahoo! News (2009),

http://business.maktoob.com/20090000404858/
The_futility_of_censorship/Article.htm

26. Furnell, S.: Cybercrime: vandalizing the Information Society. Addison-Wesley
Professional Publishers (2001)

27. Shinder, D.: Scene of the cybercrime: computer forensics handbook (2002),
http://www.google.com/books?hl=ar&lr=&id=nQyucKKH6RgC&oi=fnd
&pg=PR25&dq=cyber+crime+&ots=WVbXcJB81-
&sig=Oszwa45V1PaTUTneqKDE9UuvX-
I#v=onepage&q=cyber%20crime&f=false

28. (Stocks, n.d.)
29. Heffner, C.: Introduction to Sensation and Perception (2004),

http://allpsych.com/psychology101/sensation_perception.html
30. Wikia: Perception: Perception and Reality (2001),

http://psychology.wikia.com/wiki/Experimental:Perception
31. Lacasse, M.: How the industry manipulated public opinion: Why you believe what you

believe (2009), http://www.healingdaily.com/beliefs.htm
32. Bernay, E.L.: Propaganda. Kennikat Press (1972)
33. Budd, R.W., Ruben, B.D.: Beyond Media: New Approaches to Mass Communication.

Transaction Publishers (1987)
34. Thayer, L.: On the Mass Media and Mass Communication: Notes Toward a Theory.

Oxford University Press (1986)
35. Ball-Rokeach, S.J., DeFleur, M.L.: A dependency model of mass media effects.

Communication Research 3, 3–21 (1976)
36. Johnson, B.K.: Dawn of the Cognetic Age: Fighting Ideological War by Putting Thought

in Motion with Impact (2007),
http://www.airpower.maxwell.af.mil/airchronicles/apj/
apj07/win07/johnson.html

108 I. Baggili et al.

37. Reis, H.T., Judd, C.M.: Handbook of Research: Methods in Social and Personality
Psychology. Cambridge University Press, Cambridge (2000)

38. Bland, E.: Magnets can manipulate morality: study (2010),
http://www.abc.net.au/science/articles/2010/03/30/2859767.htm

39. Amaral, J.R., Sabbatini, R.M.: Placebo Effect: The Power of the Sugar Pill (1999),
http://www.cerebromente.org.br/n09/mente/placebo1_i.htm

40. Rogers, M.: A social learning theory and moral disengagement analysis of criminal
computer behavior: An exploratory study. University of Manitoba, Canada (2001)

41. Baggili, I.M.: Effects of Anonymity, Pre-Employment Integrity and Antisocial Behavior
on Self-Reported Cyber Crime Engagement: An Exploratory Study. Doctoral dissertation,
Purdue University, USA (2009),
http://dl.acm.org/citation.cfm?id=1834973

42. Baggili, I.M., Rogers, M.: Self-Reported Cyber Crime: An Analysis on the Effects of
Anonymity and Pre-Employment Integrity. Zayed University, UAE, Purdue University,
USA (2009),
http://www.cybercrimejournal.com/ibrahimmarcusIJCCJuly2009.pdf

M. Rogers and K.C. Seigfried-Spellar (Eds.): ICDF2C 2012, LNICST 114, pp. 109–143, 2013.
© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2013

When Should Virtual Cybercrime
Be Brought under the Scope of the Criminal Law?

Litska Strikwerda

University of Twente, Department of Philosophy, P.O. Box 217
7500 AE ENSCHEDE, The Netherlands

L.Strikwerda@utwente.nl

Abstract. This paper is about the question when virtual cybercrime should be
brought under the scope of the criminal law. By virtual cybercrime I mean
crime that involves a specific aspect of computers or computer networks:
virtuality. Examples of virtual cybercrime are: virtual child pornography, theft
of virtual items and the killing of an avatar (a virtual person). Drawing from
philosophical ontology and legal philosophy I will establish what the necessary
and sufficient conditions are for virtual cybercrime to obtain in order to count as
crime under criminal law. I will also examine when virtual cybercrime meets
these criteria.

Keywords: virtual (cyber-)crime, legal ontology, institutional facts, harm
principle, offense principle, legal paternalism, legal moralism.

1 Introduction

The advent of computer technology has given rise to a new type of crime: cybercrime,
which is crime that involves the use of computers or computer networks. Examples of
cybercrime are: the spread of computer viruses, e-fraud and the distribution of child
pornography by means of the Internet. The newest generation of cybercrime is virtual
cybercrime. Virtual cybercrime is crime that involves a specific aspect of computers
or computer networks: virtuality. For example, virtual child pornography, which does
not consist of photographs or film material of real children engaged in sexually
explicit conduct, but of entirely computer-simulated images of virtual children. And
in the Netherlands, for instance, several minors were convicted of theft for the
stealing of virtual items in the virtual worlds of the online multiplayer computer
games Habbo and RuneScape. One of these cases was decided by the highest court in
the Netherlands [1]. In Japan, finally, the police investigated the case of a woman who
“killed” an avatar (a virtual person) in the virtual world of the online multiplayer
computer game MapleStory [2]. But should acts like the aforementioned really be
treated as crimes under criminal law? This paper aims to answer that question.

The abovementioned question belongs to the field of legal ontology. Ontology is
the study of being, which is a branch of philosophy that is concerned with the
questions of which kinds of things exist and how they are categorized according to

110 L. Strikwerda

their differences and similarities. Legal ontology is an applied form of ontology that is
specifically concerned with the question of how things are categorized under law.
Legal ontology does not only study how existing things are categorized under law, but
also how new things should be categorized under law [3].

This paper will study when the new phenomenon of virtual cybercrime should be
categorized as crime under criminal law. This study will consist of the following three
steps:

1. Empirical exploration: what is virtual cybercrime and how, if at all, is it

treated within existing legal systems?
2. Philosophical analysis: what are necessary and sufficient conditions for

virtual cybercrime to obtain in order to count as crime under existing law?
3. Moral evaluation: when does virtual cybercrime meet these criteria?1

The first section of this paper will be concerned with the first step. It will study how
cybercrime is treated within existing legal systems, provide a definition of cybercrime
and determine the scope of the term. Then it will study the different meanings of the
term “virtual” and define the term so that it can be explained what the new legal
phenomenon of virtual cybercrime entails. At last, it will examine how virtual
cybercrime is treated within existing legal systems, provide a definition of the term
virtual cybercrime and determine its scope. In the second section of the paper I will
establish what the necessary and sufficient conditions are for virtual cybercrime to
obtain in order to count as a crime under existing law, which is the second step. I will
analyze virtual cybercrime from the point of view of ontology and legal philosophy. I
will establish that, in order to count as a crime under existing law, it is a necessary
condition for a virtual cybercrime that it has an extravirtual consequence (a
consequence outside the virtual environment). And that that is also a sufficient
condition if the consequence is of such a nature that it can legitimate an interference
with the liberty of citizens by means of penal law on the basis of one of Feinberg's
liberty-limiting principles: the harm principle, the offense principle, legal paternalism
or legal moralism. In the third section I will examine when the extravirtual
consequence(s) of virtual cybercrime are of such a nature that (one of) the
aforementioned liberty limiting principles can be invoked. This is the third step.
Ultimately, I will come to the conclusion that virtual cybercrime should be brought
under the scope of the criminal law when it results in extravirtual harm to others,
offense, harm to the self or evils of other kinds.

2 Virtual Cybercrime: Legal Positioning, Definition and Scope

In this section I will examine what virtual cybercrime is and how, if at all, it is treated
within existing legal systems. I will start with a description of the developing field of
cybercrime. Against this background I will provide a definition of cybercrime and
determine the scope of the term. Then I will study the different meanings of the term

1 These steps are based on Koepsell [3].

 When Should Virtual Cybercrime Be Brought under the Scope of the Criminal Law? 111

“virtual” and define the term so that I can explain what the new legal phenomenon of
virtual cybercrime entails. Next, I will examine how virtual cybercrime is treated
within existing legal systems. At last, I will provide a definition of the term virtual
cybercrime and determine its scope. Note that I will define (virtual) cybercrime in
general terms so that the definition in principle applies to any country or jurisdiction
worldwide.

2.1 Background: The Developing Field of Cybercrime

Crime is generally understood as a human act (or omission) prohibited by law. The
prefix “cyber” refers to the use of computers or computer networks; it means
“computer-mediated” [4,5,6]. Cybercrime thus consists of any computer-mediated
human act that is prohibited by law.

Cybercrime poses a challenge, because the use of computers and computer
networks allows for “new and different forms of (…) [human] activity that evade the
reach of existing penal law” [7]. On the one hand, the use of computers or computer
networks allows for new varieties of anti-social human activity that did not exist
before the advent of computers and computer networks, e.g. the spread of computer
viruses [5,7,8]. On the other hand, computers and computer networks can be used as a
tool to commit traditional crimes, such as fraud, in different ways [5,6,7,8).
Legislators continuously need to determine which of the new and different forms of
human activity that the use of computers and computer networks allows for have to be
prohibited and which not. They have to enact new legal prohibitions in order to
prohibit the new forms of human activity that computers or computer networks allow
for or make existing legal prohibitions sufficiently broad as to include the different
forms of human activity that computers and computer networks allow for. Mostly, the
enactment of new penal provisions or the extension of existing penal provisions takes
place at a national level. Which new and different types of human activity involving
the use of computers and computer networks are outlawed precisely, varies
significantly according to national legal systems, but there is a common ground [7].

The most familiar and most important international initiative to develop penal law
aimed at cybercrime is the Convention on Cybercrime [6], which has been ratified by
most member states of the Council of Europe and some other states, i.e. the United
States of America and Japan. It is the only binding international instrument on this
issue to have been adopted to date. The Convention on Cybercrime establishes “a
common minimum standard of relevant offences” [6]. It defines nine types of new
and different human activities involving the use of computers or computer networks
and State Parties to the Convention agree to establish them as criminal offences under
their domestic law, if they have not yet done so. The first five offence categories are:
illegal access, illegal interception, data interference, system interference and misuse
of devices. They concern new forms of human activity that did not exist before the
advent of computers and computer networks. That is because they can only be carried
out through the use of computers or computer networks. Since these offence
categories concern new forms of human activity, they require signatory states to enact
new legal prohibitions, if they did not prohibit these activities yet [7,8]. They can be

112 L. Strikwerda

classified under the heading “computer crime” [5]. The next four offence categories
are: computer-related forgery, computer-related fraud, offences related to (virtual)
child pornography and offences related to infringements of copyright and related
rights. They concern traditional crimes where computers or computer networks are
used as a tool to commit the crime in a different way. Because states will already have
criminalized these traditional crimes, these offence categories require them to make
their existing laws sufficiently broad to extend to situations involving computers or
computer networks if they did not do so yet [6]. They can be classified under the
heading “computer-facilitated crime” [5].

Many states that have signed the Convention on Cybercrime have also signed its
Additional Protocol [9], which criminalizes the following four types of human acts if
committed through a computer system: the dissemination of racist and xenophobic
material, racist and xenophobic motivated threat, racist and xenophobic motivated
insult and denial, gross minimization, approval or justification of genocide or crimes
against humanity. All of them are computer-facilitated crimes; the Additional
Protocol aims to extend the penal law that already exists in most signatory states to
the commission of traditional crimes through the Internet [9].

Last, the Convention on the Protection of Children against Sexual Exploitation and
Sexual Abuse [10], which has been signed by most of the member states of the
Council of Europe, establishes another relevant offence category. The aforementioned
Convention obliges signatory states to take the necessary legislative or other measures
to criminalize the solicitation of children for sexual purposes (“grooming”) through
information and communication technologies. Grooming is a computer-facilitated
crime: computers or computer networks are used as a tool to establish contacts that
could also be established by means of non-electronic communications. Not all
countries prohibit non-electronic variants of grooming, however, and the
aforementioned provision explicitly does not include them either [10]. It thus differs
from country to country whether the provision on grooming requires signatory states
to extend an existing legal prohibition or to enact a new legal prohibition.

2.1.1 Definition and Scope of Cybercrime
Against the aforementioned background cybercrime can be defined as any new or
different human act that is carried out through the use of computers or computer
networks and is prohibited by the enactment of a new or the extension of an existing
law. It differs from country to country which behaviors involving the use of com-
puters or computer networks are outlawed. The Convention on Cybercrime, its
Additional Protocol and the Convention on the Protection of Children against Sexual
Exploitation and Sexual Abuse provide a list of new and different human acts
involving the use of computers or computer networks that are commonly prohibited,
i.e. illegal access, illegal interception, data interference, system interference, misuse
of devices, computer-related forgery, computer-related fraud, offences related to child
pornography, offences related to infringements of copyright and related rights, acts of
a racist and xenophobic nature that are committed through computer systems and
“grooming.”

 When Should Virtual Cybercrime Be Brought under the Scope of the Criminal Law? 113

2.2 Meaning of the Term “ Virtual”

The adjective “virtual” has both a pre-computer, traditional meaning and a computer-
based meaning [12]. The pre-computer, traditional meaning of the adjective “virtual”
is twofold. Firstly, virtual in this sense can mean “quasi” or “pseudo” [11]. Secondly,
virtual in this sense can mean “imaginary”, “make-believe” or “fake” [12].

There is no consensus on the computer-based meaning of the adjective “virtual.”
There are countless definitions, each focusing on a particular context [11]. What the
adjective “virtual” means precisely, seems to be dependent on its context. Below I
will discuss the computer-based meaning of the term “virtual” in different contexts
that will prove of importance for this paper.

In principle, the term “virtual” can refer to “anything that is created or carried by a
computer and that mimics a “real” entity”, e.g. virtual memory [12]. Virtual memory
is memory that is not actually built into the computer. It is a computer simulation of
physical memory and can effectively function as such [12].

The term “virtual” can also be used in the specific context of a “virtual world”. A
virtual world is an interactive, computer-simulated environment that is accessed by
multiple users at the same time [11]. The first virtual worlds began to appear in the
late 1970s. They were text-based online computer games known as MUDs (Multi-
User Dungeons). MUD players created a fantasy world only using text. The next
stage, graphical MUDs, started in the mid-1980s. They were image- rather than text-
based fantasy worlds. In the twenty-first century graphical MUDs evolved into
MMORPGs (massively multi-player online role-playing games). The increased
internet access speed and the improved computer-processing power allowed for more
complicated graphics, such as 3-D visuals. The vast majority of MMORPGs can still
be described as fantasy worlds. But over the last decade a few virtual worlds have
arisen that eschew the fantasy-based role-playing game play common to MMORPGs.
They offer “an augmented version of reality” [4]. Such virtual worlds are called
“metaverses” [4].

The users of virtual worlds represent themselves by means of an “avatar”. In
graphical virtual worlds an avatar is a graphical object, which usually has a human-
like form. In text-based virtual worlds it is a nick-name. Through their avatars users
interact with each other and with virtual objects. Virtual objects are merely images
that represent certain physical objects, e.g. cars.

Lastly, the term “virtual” can be used in the context of “virtual reality.” Virtual
reality consists, just like a MMORPG, of an interactive, computer-simulated
environment with 3-D visuals. But virtual reality differs from MMORGPs in two
important aspects. First of all, users do not experience the three-dimensional, interac-
tive, computer-simulated environment through an avatar, but through their own eyes
and other senses. Secondly, virtual realities do not offer multi-access yet, at least not
beyond a very limited degree, so users will mainly interact with objects instead of
other users [11]. Virtual reality is designed to exploit the sensory systems of human
beings so as to produce a sense of presence in those environments [13]. Virtual reality
technology first emerged in the 1980s. It consists of a head-mounted display and a
dataglove or datasuit attached to a computer. As the user navigates through and

114 L. Strikwerda

interacts with the computer-simulated environment, the computer gives sensory
feedback through the dataglove or datasuit [12]. Highly advanced datagloves can, for
instance, make the user feel resistance when s/he grabs a computer-simulated object
in the computer-simulated environment [11]. Virtual reality technologies are used to
simulate both real and imaginary environments. In medicine, they are for instance
used to simulate anatomical structures and medical procedures, for example for the
training and education of surgeons [12].

In his dissertation, Søraker has done extensive research on the computer-based
meaning of the term “virtual”. He comes to the conclusion that “computer simulation”
and “interactivity” constitute the essence of the computer-based meaning of the term
“virtual” [11]. Søraker provides the following generic definition of the term “virtual”:
a virtual x is an “interactive, computer-simulated x (or, x, made possible by
interactive computer simulation)” [11]. This definition focuses exclusively on virtual
worlds and excludes from its scope things that are created of carried by a computer
and mimic a real thing, such as virtual memory, because they are not interactive.
Since these things should, for the purposes of this paper, be included in the scope of
the definition of the term “virtual” I will make use of a generic definition of the term
“virtual” that does not necessarily include interactivity. I will take “virtual” to mean
computer-simulated or made possible by computer simulation. The computer
simulation may or may not be interactive.

2.2.1 State of the Art: Virtual Cybercrime
Applying the above-mentioned definition of the term “virtual”, virtual cybercrime can
be described as cybercrime that is carried out through the use of a specific feature of
computers and computer networks, namely computer simulation. It is computer-
simulated crime or crime, made possible by computer simulation. Virtual cybercrime
thus consists of a computer-simulated human act or a human act made possible by
computer simulation, that is prohibited by law.

The distinction between a computer-simulated human act and a human act made
possible by computer simulation is an important one and should, therefore, be
highlighted. A computer-simulated human act is an act that is virtual in itself. When
someone performs a computer-simulated act, s/he acts in a virtual environment
through an input device. An example of a computer-simulated human act is the
shooting of a bear in the virtual environment of a computer game. Such a computer-
simulated human act consists of three steps. First, a human being performs a bodily
action, e.g. the pressing of a button. Second, the computer simulation interprets the
bodily action as a particular command, e.g. “shoot the bear”. Third, the computer
simulation makes the changes to the virtual environment (and possibly to the non-
virtual world as well) that are required by the command, e.g. the bear in the virtual
environment is death. A human act made possible by computer simulation is an act
that is not virtual in itself, but that is defined in terms of a virtual object. Computer
simulation is the condition of possibility for such an act and the nature of that act is
partly determined by features of the computer simulation [11]. The production,
possession or distribution of virtual child pornography is an example of a human act
made possible by computer simulation. The aforementioned act is not virtual in itself,

 When Should Virtual Cybercrime Be Brought under the Scope of the Criminal Law? 115

but defined in terms of a virtual object: virtual child pornography. Virtual child
pornographic images are child pornographic images which, although realistic, do not
involve a child really engaged in sexually explicit conduct. They are either morphed
pictures of real children or entirely computer-generated images [6]. Virtual child
pornographic images are thus made possible by computer simulation. The nature of
the act of producing, distributing and possessing them is partly determined by the
features of the computer simulation, because it does not involve (the profiting from)
child abuse, as opposed to the production, distribution and possession of non-virtual
child pornographic images.

In fact, the production, possession or distribution of virtual child pornography is
the only human act involving computer simulation that is commonly prohibited. The
Convention on Cybercrime’s prohibition on child pornography, as was discussed in
section 1.1.1, includes the production, possession and distribution of virtual child
pornography in its scope [6]. However, Iceland, Scotland and the United States of
America have reserved the right not to apply the prohibition on virtual child
pornography [14].

Dutch case law provides another example of a human act made possible by
computer simulation that has been brought under the scope of penal law. In 2009
Dutch judges have convicted several minors of theft, because they had stolen virtual
items in the virtual worlds of online multiplayer computer games. Three minors were
convicted of theft for the stealing of virtual furniture in the virtual world of the online
multiplayer computer game Habbo [15]. By means of deceit the perpetrators obtained
the usernames and passwords of other Habbo players, so that they could access the
other players’ accounts and transfer their virtual furniture to their own Habbo
accounts. In a similar case, two minors were convicted of theft for stealing a virtual
amulet and a virtual mask in the virtual world of the online multiplayer computer
game RuneScape [16]. The perpetrators had violently forced another player of
RuneScape to give them access to his account, so that they could transfer his virtual
amulet and virtual mask to their own RuneScape accounts. This judgement was
confirmed by the Dutch Supreme Court [1]. The acts of stealing in these cases were
not virtual in themselves, because they involved out-of-the-game infractions (deceit,
violence). But they were defined in terms of virtual objects (the virtual items stolen).
There have not yet been comparable penalties in other jurisdictions [1].2

Examples of computer-simulated crime are only found in the legal literature as
opposed to in actual law [e.g. 4,5,17]. The most well-known example of a
computer-simulated crime is the virtual “rape” that was described by Julian Dibbel in
a much-debated 1993 paper. Dibbel describes how a user represented by an avatar
named Mr. Bungle took control over other users' avatars in the virtual environment of
LambdaMOO and forced their avatars, through his own avatar, to engage in sexual
activities they did not consent to [18]. LambdaMOO was a text-based MOO-MUD: a
MUD that mainly aimed at social interaction with other users [4]. There have not been
penalties with regard to computer-simulated crime yet.

2 See for a thorough analysis of this issue my paper [24].

116 L. Strikwerda

Unlike the virtual worlds of computer games, virtual reality technologies have not
yet been exploited for criminal activities, at least there have not yet been reported
cases of crime instrumented by virtual reality technologies. That is because virtual
realities do not yet offer multi-access or at least not beyond a very limited degree.
Except for rare cases of “victimless” crimes, such as gambling or drunk-driving,
crimes generally victimize another person. And thus virtual realities are not likely to
provide new opportunities for crime until they become multi-accessible on a larger
scale.

Finally, it is important to note that none of the virtual cybercrimes listed above
concern new human activities; they are all different forms of traditional crimes.
Virtual cybercrime consists either of a computer-simulated traditional crime or of a
traditional crime that is defined in terms of a computer-simulated person or object.
Therefore, it only requires legislators to extend existing laws and not to enact new
ones.

2.2.2 Definition and Scope of Virtual Cybercrime
Against this background, virtual cybercrime can be defined as a computer-simulated
human act or a human act made possible by computer simulation that is prohibited by
the extension of an existing law. The scope of virtual cybercrime is unclear, however.
Currently, the production, possession and distribution of virtual child pornography is
the only virtual cybercrime that is commonly prohibited, although not as commonly
as non-virtual child pornography. Putative virtual cybercrimes are, for example,
virtual rape and theft of virtual items. This computer-simulated human act and human
act made possible by computer simulation are not (commonly) prohibited yet. In the
next section I will examine what the necessary and sufficient conditions are for a
computer-simulated human act or a human act made possible by computer simulation
to obtain in order to be prohibited under existing law so that I can ultimately
determine the scope of the term “virtual cybercrime”.

3 Virtual Cybercrime: Necessary and Sufficient Conditions

It was established in the last section that the production, distribution and possession of
virtual child pornography is the only virtual cybercrime that is commonly prohibited.
Since it would be a fallacy to make a general statement about virtual cybercrime on
the basis of one specific instance of virtual cybercrime, an empirical study of the law
does not suffice to answer the question what the necessary and sufficient conditions
are for a computer-simulated human act or a human act made possible by computer
simulation to obtain in order to be prohibited under existing law. Therefore, I will
study virtual cybercrime from a different point of view. As was stated in the
introduction, the study of virtual cybercrime belongs to the field of legal ontology.
Applied forms of ontology often put to use the tools of philosophical ontology in

 When Should Virtual Cybercrime Be Brought under the Scope of the Criminal Law? 117

order to categorize things within a specific domain. I will make use of this method
and put to use the tools of the philosophical ontology of the American philosopher
Searle in order to categorize virtual cybercrime within existing law. I choose to draw
from Searle’s work, because he provides the most influential recent social ontology,
which is an ontology that does not focus on matters of biology and physics, but on
matters of society, and pays special attention to the law. Next I will make use of legal
philosophy to reflect on the outcome of the ontological analysis.

3.1 Ontological Analysis

Searle distinguishes a special class of facts: institutional facts. Institutional facts are
facts that only exist by human agreement or acceptance. They come into being,
because people or authorities impose status functions on things. A good example of
an institutional fact is money. Money exists because we have imposed the status
function of legal tender on pieces of paper and metal. Status functions are imposed by
means of “constitutive rules” that have the following form: “X counts as Y (in context
C)” [19]. An example of a constitutive rule is: the Euro (X) counts as a legal tender
(Y) in certain EU-member countries, which are collectively known as the Eurozone
(C). Penal provisions are also constitutive rules. They typically indicate that a certain
human act (X) counts as a crime (Y) in a particular jurisdiction (C). Penal provisions
are a special kind of constitutive rules, because they precisely specify the conditions
under which the institutional fact (the crime) is created. They take the following form:
for any x that satisfies a certain set of conditions p, x has status Y in C [19]. Consider,
for example, the US penal prohibition on murder. This penal provision makes it the
case that any act (x) that satisfies the conditions of unlawful killing of a human being
with malice aforethought (p) counts as murder (Y) in the jurisdiction of the United
States (C) [21].

In legal terms, the conditions that a human act needs to satisfy in order to count as
a crime are called elements. The specific elements required vary depending on the
crime, but there are two basic elements that are required by each crime: an actus reus
(an unlawful act or failure to act) and a mens rea (a blameworthy mental state, usually
it is required that the actor acts knowingly, purposely or recklessly).3 In fact, all
crimes also require, implicitly or explicitly, that the actus reus must have a certain
consequence, e.g. the death or injury of a person or a loss of property. This common
element is called causation.

In the case of virtual cybercrime the basic elements of a crime can be satisfied
“intravirtually” (within the virtual environment where the act takes place) or
“extravirtually” (outside its virtual environment).4 The element of actus reus can be
satisfied either intravirtually or extravirtually. A computer-simulated human act satis-
fies the element of actus reus intravirtually, because such an act is committed within
a virtual environment through an input device. A human act made possible by

3 The terms “actus reus” and “mens rea” derive specifically from Anglo-American jurisprudence.

But these elements are, although under a different name, also found in other legal systems.
4 The distinction between “intravirtual” and “extravirtual” derives from Søraker [22].

118 L. Strikwerda

computer simulation satisfies the element of actus reus extravirtually, because such
an act, although it is defined in terms of a virtual object, takes place outside the virtual
environment. The element of mens rea can only be satisfied extravirtually, even when
the element of actus reus is satisfied intravirtually. That is because the element of
mens rea concerns the mental state of the human actor, who is necessarily
extravirtual.5 This does not mean that, in the case of an intravirtual actus reus, the
mental state of the actor is judged entirely independently from the virtual environment
in which the act has taken place; for circumstances in the virtual environment can
indicate whether s/he has acted knowingly, willingly or purposely. Like the element
of actus reus, the element of causation can be satisfied either intravirtually or
extravirtually. The element of causation is satisfied intravirtually when the actus reus
has a consequence within the virtual environment and extravirtually when it has a
consequence outside the virtual environment. It should be noted that where the
element of causation is satisfied, within or outside the virtual environment, is not
dependent on where the element of actus reus is satisfied: an intravirtual actus reus
can have an extravirtual consequence and vice versa.

Where the element of causation is satisfied, intravirtually or extravirtually, is of
crucial importance, because it determines the context (C) in which the crime status
(Y) of a computer-simulated human act or human act made possible by computer
simulation (X) holds. A computer-simulated human act or human act made possible
by computer simulation (X) that satisfies the element of causation (p) intravirtually
cannot count as a crime (Y) in the context of the non-virtual world (C), but may count
as a crime (Y) in the context of its virtual environment (C). A computer-simulated
human act or human act made possible by computer simulation (X) that satisfies the
element of causation (p) extravirtually counts as a crime (Y) in the context of the
non-virtual world (C).

The context (C) in which the crime status (Y) of a computer-simulated human act
or human act made possible by computer simulation (X) holds, its virtual environment
or the non-virtual world, determines whether or not the act can be included in the
scope of an existing penal provision. Penal law does not apply within virtual
environments. This is often explained in terms of a “magic circle”. In short, the magic
circle is a metaphorical line which separates the virtual from the non-virtual realm and
excludes penal law from virtual environments; regulation of conduct within these
environments is left to the moderators or users.6 It is important to note that the rules
that are set up by the moderator or users and govern the virtual environment may
constitute the same crimes as we know in the non-virtual world, but they may also
prohibit conduct that does not constitute a crime in the non-virtual world or allow for

5 In the future, the element of mens rea will not necessarily concern the mental state of a human

actor anymore, since autonomous, learning machines, based on neural networks, genetic
algorithms and agent architectures will be capable of having a mens rea of their own [23].
When such a machine will be part of a virtual (reality) environment, the element of mens rea
can be satisfied intravirtually as well. Since this paper focuses on computer-simulated human
acts and human acts made possible by computer simulation, the intravirtual mens rea is
beyond its scope, however.

6 See for a thorough analysis of the “magic circle” my paper [24].

 When Should Virtual Cybercrime Be Brought under the Scope of the Criminal Law? 119

things that are prohibited in the non-virtual world. A computer-simulated human act
or a human act made possible by computer simulation that only counts as a crime in
its virtual environment thus triggers remedies within that virtual environment, but not
penal law. A computer-simulated human act or human act made possible by computer
simulation that counts as a crime in the non-virtual world crosses the metaphorical
line of the magic circle and is, therefore, within the reach of penal law. Other authors
[4,17, 20] have reached similar conclusions.

Consider the following example. Most countries prohibit various aspects of the
production, trade and possession of certain drugs, because they can cause severe
health problems to the people who use them. Within the virtual world of SecondLife
users can produce, trade, possess and use a drug called “Seclimine” through their
avatars [25]. The computer-simulated human act of producing, trading or possessing
Seclimine in SecondLife satisfies the element of causation that is implicit in this actus
reus intravirtually. After all, Seclimine can only be used through an avatar within the
virtual world of SecondLife and can, therefore, not cause severe health problems to
the person behind the avatar. Since the computer-simulated human act of producing,
selling or possessing Seclimine within SecondLife (X) satisfies the element of
causation (p) intravirtually, it cannot count as a crime (Y) in the context of the non-
virtual world (C). If the rules of SecondLife prohibit the producing, selling or
possessing of Seclimine, the act does count as a crime in the context of its virtual
environment though.

Consider another example. Many countries legally restrict gambling. Gambling is
illegal in these countries unless it complies with certain regulations made under law.
In some countries, for example New Zealand, individual persons who participate in
illegal gambling are held liable under criminal law. The actus reus of illegal gambling
can be defined as the unlawful betting or wagering of money or something else of
value. This actus reus implies a certain consequence: financial gain or loss. On the
Internet one can gamble illegally in a virtual casino on a virtual slot machine with
real, non-virtual money. The computer-simulated human act of illegal gambling on a
virtual slot machine with real money satisfies the element of causation that is implicit
in this actus reus extravirtually. After all, the money gained or lost is not virtual.
Since the act of illegal gambling on a virtual slot machine with real money (X)
satisfies the element of causation (p) extravirtually, it counts as a crime (Y) in the
context of the non-virtual world (C) and can thus be brought under the scope of the
penal prohibition on illegal gambling that some countries apply.

Sometimes a computer-simulated human act or human act made possible by
computer simulation (X) can satisfy the actus reus element and the attendant element
of causation of one crime intravirtually and, thereby, satisfy the actus reus element
and the attendant element of causation of another crime extravirtually. Such an act
counts, therefore, as crime Y in the context of its virtual environment (C) and as crime
Z in the context of the non-virtual world (C). Consider the following example. Several
media reported the case of a 43-year-old Japanese woman who “killed” the avatar her
own avatar was married to in the virtual world of the online multiplayer computer
game MapleStory, because it had suddenly divorced her avatar. The woman had
hacked into the account of the person behind her virtual husband and deleted his

120 L. Strikwerda

avatar. When the person found out, he called the police. The police investigated the
case and even arrested the woman at her home, but she was never formally charged
[2]. Provided that the deleting of an avatar is indeed considered manslaughter in the
virtual environment of MapleStory, the act of the Japanese woman satisfies both the
actus reus element (killing) and the element of causation (the death of the avatar) of
that crime intravirtually. After all, both the act of killing and the death of the avatar
occur within the virtual environment of MapleStory. But the death of the avatar in
MapleStory also has a consequence in the non-virtual world; for the user who was
represented by the avatar has lost his virtual alter ego. As was explained in section
1.1.1 countries also commonly prohibit the deterioration of computer data without
right (article 4 Convention on Cybercrime). Since an avatar consists of computer data,
we could say that the killing of the avatar equals the deterioration of (a set of)
computer data. And since the woman illegally accessed the account of the user the
avatar represented, it is also without right.7 By satisfying the elements of the crime of
manslaughter intravirtually, the Japanese woman who killed another user’s avatar in
MapleStory thus satisfies the elements of the crime of deterioration of computer data
extravirtually. In sum, the computer-simulated human act of killing an avatar (X),
which counts as manslaughter (Y) in the context of its virtual environment (C), counts
as deterioration of computer data (Z) in the context of the non-virtual world (C).8

In conclusion, a computer-simulated human act or human act made possible by
computer simulation that satisfies the elements of a crime can only be brought under
the scope of an existing penal provision if it counts as a crime in the non-virtual
world. It does if it satisfies the element of causation extravirtually. So, in order to be
brought under the scope of existing penal law, it is a necessary condition for a
computer-simulated human act or human act made possible by computer simulation
that satisfies the elements of a crime that it satisfies the element of causation
extravirtually. But is that also a sufficient condition? Or are there other conditions to
be met? As will be explained below, the answer to these questions depends on the
stand one takes in the legal philosophical debate between legal positivists and natural
law theorists.

3.2 The Debate between Legal Positivists and Natural Law Theorists

In legal philosophy there are two main, rival, theories about the content of the law:
legal positivism and natural law theory. Legal positivists, like Austin, claim that laws
may have any content. They would thus say that legislators and judiciaries are free to
bring any computer-simulated human act or human act made possible by computer
simulation that has an extravirtual consequence and satisfies the (other) elements of a
crime under the scope of penal law. By contrast, natural law theorists think that the

7 It should probably be added that this already constitutes a crime in itself and that the woman

could, therefore, also be held liable for illegal access (“hacking”).
8 The distinction among the three above-mentioned types of virtual human acts and the different

contexts in which their status function holds, derives from Brey [26].

 When Should Virtual Cybercrime Be Brought under the Scope of the Criminal Law? 121

content of laws is determined by their relation to morality. Classical natural law,
which was originally developed by ancient philosophers such as Plato and Cicero and
further elaborated by Thomas Aquinas, maintains that there is a necessary connection
between law and morality and that an immoral law is no law. Typically, there is a
particular theory of morality conjoined with that view: that the moral order is part of
the natural order and that something is morally right if it is consistent with a natural
purpose or end, such as survival [27]. Natural law theorists would say that legislators
and judiciaries can only bring a computer-simulated human act or human act made
possible by computer simulation that has an extravirtual consequence under the scope
of penal law if the extravirtual consequence consists of a violation of a moral
principle.

The contemporary debate on the content of the law is dominated by the legal
philosophers Hart [28] and Dworkin [29] and interpretations of their work. Their
theories have developed such a level of subtlety and sophistication that the traditional
labels of legal positivism and natural law theory hardly apply anymore, however [27].
For the purposes of this paper only the common ground between Hart's and Dworkin's
theory of law is of importance. Both Hart and Dworkin agree that the law is open to
arguments that are grounded in moral principles. Taking this assumption as a starting
point, Van der Burg argues that the law is most strongly open to moral argument with
regard to special fields or issues that are still developing, such as biotechnology or
ICT [30]. This claim can be explained as follows. As was discussed in the section 1.1,
developing fields or issues such as biotechnology or ICT give rise to new and
different forms of human activity that evade the reach of existing penal law, such as
virtual cybercrime. It is not always clear how penal law should deal with them and
this uncertainty is exhibited in the case of virtual cybercrime. Moral principles can be
used to understand, analyze and evaluate arguments about how the penal law should
deal with these new and different forms of human activity [30]. Yet the question
arises which moral principles can help to determine how the penal law should deal
with virtual cybercrime. Answering this question will be the aim of the next
subsection.

3.2.1 Which Moral Principles Can Help to Determine How the Penal Law
Should Deal with Virtual Cybercrime?

The general question of what moral principles are of importance to determine which
human conduct should be criminalized and which not is extensively treated in
Feinberg's voluminous work The Moral Limits of the Criminal Law, which consists of
four separate books. Feinberg points out that when legislators or judiciaries bring a
certain human act under the scope of a penal provision, citizens are no longer “at
liberty” to perform that act [31]. According to Feinberg such an interference with the
liberty of citizens by means of penal law is usually legitimated on the basis of one of
the following liberty-limiting principles: the harm principle, the offense principle,
legal paternalism or legal moralism [33]. I will discuss each of these liberty-limiting
principles below.

The first liberty-limiting principle, the harm principle, originally derives from Mill.
The harm principle entails “that the only purpose for which power can be rightfully

122 L. Strikwerda

exercised over any member of a civilised community, against his will, is to prevent
harm to others’’ [34]. For reasons of clarity it needs to be emphasized that Feinberg,
contrary to Mill, does not believe that the harm principle is the only valid principle for
legal coercion: after all he thinks that there are also other liberty-limiting principles
[31]. Clearly, the harm principle crucially depends on what is understood by harm
[35]. Mill never explicitly defined harm, but Feinberg has done so. He distinguishes
between harm in a non-normative sense, which he defines as a setback to interest, and
harm in a normative sense, which he defines as a wrong, that is a violation of rights
caused by morally indefensible conduct [31]. Conduct is morally indefensible if it
cannot be justified or excused, e.g. because the victim him- or herself voluntarily
consented to a setback of his or her own interests. Feinberg claims that only setbacks
to interests that are wrongs, and wrongs that are setbacks to interests can count as
harms for the purposes of the harm principle. He thus defines harm, for the purposes
of the harm principle, as a wrongful setback to an interest. One's interests, or more
accurately, the things these interests are in, are components of one's well-being. The
interests that form the basic requisites of one's well-being are called “welfare
interests” and they are protected by law [31]. Welfare interests include: the interest in
the continuance of one's life for a foreseeable interval, the interest in bodily integrity
and the interest in the security of property. Examples of penal provisions that protect
the aforementioned welfare interests are, respectively: prohibitions on murder,
prohibitions on rape and prohibitions on theft. At last it should be added that harms
can not only be suffered by an individual person, but also by society as a whole.
Harms that are suffered by society as a whole consist of wrongful setbacks to “public”
interests, such as the interest in political and economic stability or the interest in a
clean environment [31]. Examples of penal provisions that protect the aforementioned
public interests are, respectively: the prohibition on treason, the prohibition on
counterfeiting and antipollution ordinances [31, 7].

The second liberty-limiting principle, the offense principle, is not concerned with
(private or public) harm, but with offense. Like harm, offense can be defined both in a
non-normative and a normative sense. The former includes in its reference all kinds of
disliked mental states, such as disgust, shame, embarrassment and fear. The latter
refers to those states when caused by the wrongful conduct of others. Only offense in
this latter sense is intended in the offense principle. Offensive conduct of others is
wrongful if it deprives “the unwilling spectators of the power to determine for
themselves whether or not to undergo a certain experience”, which is a violation of
the right to privacy in the sense of autonomy [33]. The offense principle should not be
invoked too easily. Legislators or judiciaries who want to prohibit wrongful offensive
conduct have to balance the seriousness of the offense caused (e.g. its intensity and
duration) against the independent reasonableness of the offender’s conduct (e.g. if
wrongful offensive conduct is performed at a location where it is common and known
to be common, it is less unreasonable than it would be at a location where it is rare
and unexpected) [33]. Examples of penal provisions that are based on the offensive
principle are: prohibitions on open lewdness, indecent exposure, solicitation and the
distribution or sale of pornography [31].

 When Should Virtual Cybercrime Be Brought under the Scope of the Criminal Law? 123

The third liberty-limiting principle, legal paternalism, is concerned with harm
again, like the first liberty-limiting principle: the harm principle. Contrary to the harm
principle, legal paternalism is not concerned with harm to others, but with harm to the
self. Legal paternalism entails that it is a good and relevant reason in support of a
penal prohibition that is prevents harm to the actor him- or herself [36]. The
interference with a person's liberty is justified by reasons referring exclusively to the
welfare interests of the person coerced [38]. According to Feinberg there are two
types of paternalism: hard (presumptively blamable) paternalism and soft
(presumptively nonblamable) paternalism. Hard paternalism justifies interference
with entirely voluntary self-regarding harmful behavior of people for their own good.
Soft paternalism “consists of defending relatively helpless or vulnerable people from
external dangers, including harm from other people when the protected parties have
not voluntarily consented to the risk (...)” [36]. A person’s self-regarding harmful
behavior is substantially nonvoluntary when the choice to perform it stems from
coercion, drugs or other voluntariness-vitiating factors and is, therefore, alien to him
or her as the choices of someone else. Feinberg thinks that the latter type of
paternalism is actually no kind of paternalism at all, because it authorizes the restraint
of behavior that threatens a person with harm that, although it does not come from
another person, is equally “other” from him- or herself [36]. Feinberg, therefore,
focuses on hard paternalism. Examples of penal provisions that are based on legal
paternalism are: prohibitions on the possession and use of psychoactive drugs and
gambling as well as requirements, enforced by criminal sanctions, such as that
motorcyclists wear crash helmets and that motorists use seat belts [31]. Most of these
penal provisions can, however, not only be defended on the ground that the actors
themselves need to be protected from the harmful consequences of their own acts
(legal paternalism), but also on the ground that social harm needs to be prevented
generally (the harm principle). That is because there is always a public interest
involved, at least to a small extent, when people harm themselves. Think, for instance,
of tax money spent on healthcare costs [36].

The last liberty-limiting principle, legal moralism, is not concerned with harm or
offense, but with evils of other kinds. According to Feinberg there are two types of
legal moralism: pure and impure moralism. Pure moralism entails that “it can be
morally legitimate (...) to prohibit conduct on the ground that it is inherently immoral,
even though it causes neither harm nor offense to the actor or to others” [39]. Impure
moralism refers to the approach of some writers in legal philosophy who are called
legal moralists, although the basic appeal in their arguments is to the harm or offense
principle [39]. Of them Lord Devlin is the best known. Lord Devlin claims that
human conduct is sometimes prohibited solely because society finds it immoral. He
argues that it is legitimate for society to legislate against immorality, because society
is kept together by the invisible bonds of a common morality, and would fall apart if
these bonds were not protected [40]. Devlin thus thinks that immoral behaviour harms
the social cohesion in society and, thereby, appeals to the harm principle. Examples of
penal provisions that are based on legal moralism are: prohibitions on prostitution and
bigamy [31].

124 L. Strikwerda

No writer in legal philosophy denies the validity of the harm principle as a good
and relevant reason in support of a penal provision. Most writers acknowledge the
offense principle as well. But legal paternalism and legal moralism are contested [31].
Feinberg himself thinks that “harm and offense prevention are far and away the best
reasons that can be produced in support of criminal prohibitions, and the only ones
that frequently outweigh the case for liberty. (...) The other principles state
considerations that are at most sometimes (but rarely) good reasons (...)” [39].

From an empirical point of view, it can be established that the harm principle is the
most commonly and the most frequently used ground for criminalization. Although there
are differences across countries and societies in how criminal behaviors are viewed and
treated, the core of the criminal law, across geography and across time, consists of crimes
that produce direct and serious harm to individual persons or groups. The criminal law
contains everywhere and at any time penal provisions defining crimes against persons,
such as murder, assault, rape and battery. Almost as non-controversial as these crimes
against persons are various crimes against property, such as theft, arson and fraud [4].9
Penal provisions that are based on the offense principle, legal paternalism or legal
moralism deviate across geography and across time.

In conclusion, the following moral principles can help to determine how the penal
law should deal with virtual cybercrime: the harm principle, the offense principle,
legal paternalism and legal moralism. In the last section it was established that it is a
necessary condition for a computer-simulated human act or a human act made
possible by computer simulation that satisfies the elements of a crime that it has an
extravirtual consequence if it is to be brought under the scope of a penal provision.
We can now establish that that is also a sufficient condition if the extravirtual
consequence consists of harm (to another or to the self), offense or an evil of another
kind. Yet the question arises when computer-simulated human acts or human acts
made possible by computer simulation result in harm, offense or evils of other kinds.
Answering this question will be the aim of the next section.

4 When Do Computer-Simulated Human Acts or Human Acts
Made Possible by Computer Simulation Result in
Extravirtual Harm, Offense or Evils of Other Kinds?

In this section I will take a so-called top-down approach10: I will apply the harm
principle, the offense principle, legal paternalism and legal moralism to particular
examples of computer-simulated human acts or human acts made possible by
computer simulation that fall under these principles. That way I show when computer-

9 It should be added that the criminal law starts to focus less on harm and more on risk,

however. This trend is currently merely visible in the periphery of criminal law. In the
Netherlands, for example, local laws have been enacted to ban youths from the places where
they hang around in order to prevent vandalism. If this trend continues, it will sooner or later
also affect the core of the criminal law and make harm a less important ground for
criminalization [32].

10 Beauchamp [41] describes the top-down approach as one of the models of moral reasoning in
applied ethics.

 When Should Virtual Cybercrime Be Brought under the Scope of the Criminal Law? 125

simulated human acts or human acts made possible by computer simulation result in
extravirtual harm (to others or to the self), offense or evils of other kinds.

4.1 Can Computer-Simulated Human Acts or Human Acts, Made Possible by
Computer-Simulation Result in Extravirtual Harm to Others?

As was mentioned in the last section, Feinberg defines harm, for the purposes of the
harm principle, as a wrongful setback to a (welfare) interest. This section will aim to
answer the question when a computer-simulated human act or a human act made
possible by computer simulation causes a wrongful setback to a welfare interest.
Before answering this question, it is important to point at two supplementary
principles that guide the application of the harm principle in practical contexts,
however.

First, the harm principle makes sure that the criminal law does not concern itself
with trivia. The harm principle can only be invoked if enough well-being is under
threat [31]. But how great must the infliction upon a welfare interest be in order for
the harm principle to warrant the criminal law to prevent it? According to Holtug, the
harm principle involves a sliding threshold, such that the quantity of well-being that is
under threat varies proportionally with the severity of the coercion in question. For
example, there must be more well-being under threat to legitimate a prison sentence
than a small fine [35]. If the amount of well-being that is under threat is so minor it
cannot even legitimate the imposition of a small fine, the harm principle cannot be
invoked at all.

Second, and this supplementary principle is closely connected to the first, the
application of the harm principle requires a conception of normalcy. “It is the person
of normal vulnerability whose interests are to be protected by coercive power; the
person who, figuratively speaking, can be blown over by a sneeze cannot demand that
other people's vigorous but normally harmless activities be suspended by government
power” [31]. But what is a person of normal vulnerability? Since people and their
situations differ, the amount of their well-being that is affected by a certain harmful
act can vary. This problem is of crucial importance with regard to interactions in the
virtual realm, because one generally does not know who the other person behind the
screen is and, therefore, it is even more difficult than in the non-virtual world to
estimate to which degree a certain harmful act affects the well-being of the other
person.

The criminal law solves the above-mentioned problem by positing a “standard
person” who is to be protected from “standard forms of harm” to “standard [welfare]
interests” [31]. It was established in the last section that the core of the criminal law
protects interests of personality and interests of property. According to Feinberg
standard interests of personality include absence of harmful bodily contacts or the
apprehension thereof, freedom from confinement and absence of emotional distress.
Interests of property include the exclusive enjoyment and possession of land, chattels
and other material resources and their good physical condition. Other legally
protectable interests are: interests in privacy and interests in reputation. Not all
countries protect the latter interests by means of the criminal law, however, some

126 L. Strikwerda

protect them instead by compelling compensation for harm to them under civil law.
Finally, as was mentioned earlier, the criminal law often does not only protect in-
dividual interests, but also public interests, such as the interest in a clean environment
and the interest in economic and political stability [31].

Standard inflictions upon interests of personality consist of harm to a person's
bodily health through e.g. murder or assault; harm to a person’s mental health through
e.g. harassment; diminutions of a person's security by the creation of threats or
dangers and reductions of a person's liberty of movement through abduction or false
imprisonment. Standard inflictions upon interests of property consist of depletion of a
person's material resources through e.g. theft, arson or fraud. Standard inflictions
upon interests in privacy consist of intrusions upon solitude e.g. through “stalking” or
unpermitted disclosure of intimacies e.g. through unlawful filming. It should be added
that the precise definition of “stalking” differs from country to country, but in general
terms it can be described as unwanted, repeated intrusions (e.g. surveillance) and
communications (e.g. phone calls, letters, gifts) that are inflicted upon a victim.
Standard inflictions upon interests in reputation consist of false statements of fact
about a person made in public (defamation). Defamation encompasses both libel and
slander: libel refers to written statements or visual depictions, slander refers to verbal
statements and gestures. Finally, standard inflictions upon public interests, such as the
interest in a clean environment and the interest in economic and political stability
consist of, respectively, environmental crimes (e.g. pollution); certain economic
crimes (e.g. counterfeiting and smuggling) and crimes against the state (e.g. treason,
rioting and obstruction of justice) [31,7]. Below it will be examined which of these
standard forms of harm to standard welfare interests can be caused by computer-
simulated human acts or human acts made possible by computer simulation.

Although it seems improbable at first sight, a computer-simulated human act or a
human act made possible by computer simulation may result in harm to a person's bodily
health. Consider the following example. In 2008 hackers intruded into the nonprofit
Epilepsy Foundation's website and posted a message with a legitimate sounding-title.
Users who clicked on the post were redirected to a page with a computer-generated
animation that consisted of a pattern of squares rapidly flashing in different colors, which
was designed to trigger seizures in both photosensitive and pattern-sensitive epileptics.
Several epilepsy patients were affected [42]. This was possibly the first assault made
possible by computer simulation and, to my knowledge, the only one. A computer-
simulated human act could do the same type of harm if a user of a virtual environment,
e.g. SecondLife or MSN Messenger, would, by the press of a button, make such a
computer-generated animation designed to trigger seizures appear on the screen of
another user, being a photo- and pattern-sensitive epileptic.

Much more often than harm to the bodily health of a person, computer-simulated
human acts do harm to the “bodily health”11 of a person's avatar. For example, a
person can use his or her avatar to kill, assault, rape or torture another person's avatar.
This results in (intravirtual) harm to the bodily health of the avatar, but does not do

11 The term bodily health is used as a metaphor here. The bodily health of an avatar cannot

literally be harmed, because an avatar does not have a physical body. But an avatar has a
virtual body that can be virtually harmed within the virtual environment.

 When Should Virtual Cybercrime Be Brought under the Scope of the Criminal Law? 127

(extravirtual) harm to the bodily health of the person him- or herself. Several authors
[43,44,45] argue that the computer-simulated human act of harming the bodily health
of an avatar may not do harm to the bodily health of the person behind it, but can
result in harm to that person's mental health. When a person is emotionally engaged in
the virtual environment, because s/he is attached to and identifies with his or her
avatar, bodily harm done to the avatar is felt as mental harm to the person [45]. A
person whose avatar is raped, for example, can feel sexually harassed. Note that this is
one of the special cases as were discussed in section 2.1.1 where a computer-
simulated human act (X) satisfies the elements of one crime intravirtually and,
thereby, satisfies the elements of another crime extravirtually and, therefore, counts as
crime Y in the context of its virtual environment (C) and as crime Z in the context of
the non-virtual world (C).

It should be added that a computer-simulated human act causing harm to a person's
mental health is not necessarily aimed at the bodily health of that person's avatar; it
can also be of a different nature. Consider the following example. When Ailin Graef,
the woman who became a millionaire by investing in virtual real estate in SecondLife,
appeared through her avatar on a chat show in the virtual world of SecondLife to talk
about her success, the event was sabotaged by a group of other users. For fifteen
minutes, Graef’s avatar was swarmed by flying pink penises and photographs of
Graef herself that were digitally altered to make her look like she was holding a giant
penis. Graef felt sexually harassed [46]. It is important to note that, in this case, the
sexual harassment within the virtual world of SecondLife spilled into the non-virtual
world, because the identity of the person behind the avatar was known to the
perpetrators. The harassment was not aimed at Graef's avatar (intravirtual), but at
Graef herself (extravirtual). This became especially clear, because a photograph of
Graef was used.

Mental harm to persons is not only done by computer-simulated human acts, but
also by human acts made possible by computer simulation. For example, many virtual
worlds (e.g. SecondLife and World of Warcraft) provide a chat interface, which users
can abuse to send harassing messages to other users through their avatars. It should be
added that harassment cannot only cause harm to the mental health of victims, it can
also cause a diminution of the victim’s security, if the harassment consists of threats.
It is important to highlight that the harassment should be aimed at the user of the
virtual world, not at the user's avatar. As became clear earlier, this can only be the
case when the identity of the person behind the avatar is known to the perpetrator(s).
It may be that the person behind the avatar has revealed his or her own identity, for
instance in a chat conversation. It may also be that the perpetrator has unlawfully
accessed the personal details of the person behind the avatar, e.g. by means of
hacking.

It seems implausible that a computer-simulated human act or a human act made
possible by computer simulation can cause extravirtual reductions of a person's liberty
of movement through abduction or false imprisonment, at least it is not easy to think
of an example. But a computer-simulated human act or a human act made possible
by computer simulation can definitely cause a depletion of a person's material
resources through larceny. I have extensively discussed this issue in another paper

128 L. Strikwerda

[41]. In short, if virtual property is purchased with funds having extravirtual value
(value in the non-virtual world, e.g. pecuniary value), then the extortion thereof
constitutes extravirtual harm.

Computer-simulated human acts or human acts made possible by computer
simulation can raise privacy issues as well. One can, for example, make one's avatar
stalk another person's avatar in a virtual world. This is a computer-simulated human
act. One can also think of unauthorized filming within a virtual world. In SecondLife,
for example, it is possible to film. Films made in SecondLife are often put on
YouTube. Yet one could film the private moments of an avatar, for example of the
avatar having sex, put the film on YouTube without permission and, thereby,
unpermittedly disclose the avatar's intimacies. This is a human act made possible by
computer simulation. Just like with harassment, stalking or unauthorized filming in
the virtual world can spill into the non-virtual world when the perpetrator knows who
the person behind the avatar is. It is questionable though whether there is enough
well-being under threat here to invoke the harm principle.

Computer simulation also offers new possibilities for defamation. Consider the
following example. In 2010 a Dutch man was convicted for libel because he had put a
digitally altered image of the then Prime Minister Balkenende online that depicted
him, among other things, with a Hitler moustache and swastika's [47]. One can also
think of the defamation of avatars here, for example by means of a written statement
on an Internet forum. Contrary to harassment, stalking or unauthorized filming of an
avatar, defamation of an avatar cannot only take effect in the non-virtual world when
other users know who the person behind the avatar is. Some people make money
through their avatars, think for example of the earlier mentioned case of Ailin Graef,
who became a millionaire by investing in virtual real estate in SecondLife through her
avatar Anshe Chung. If someone would make a false statement of fact about Anshe
Chung, for example that she is involved in virtual real estate fraud, and because of
that no one would be willing to do business with her anymore, Ailin Graef, the
woman behind Anshe Chung, would suffer a non-virtual financial loss.

Finally, computer-simulated human acts or human acts made possible by computer
simulation can intrude upon public interests. Counterfeiting, for example, can be
made possible by computer simulation, for people can use graphics software to create
false bank notes.

4.2 Can Computer-Simulated Human Acts or Human Acts, Made Possible by
Computer-Simulation Result in Extravirtual Offense?

In the last section it was established that Feinberg defines offense as a disliked mental
state caused by the wrongful conduct of others. Offensive conduct of others is wrongful
if it deprives “the unwilling spectators of the power to determine for themselves whether
or not to undergo a certain experience” [33]. According to Feinberg examples of penal
provisions that are based on the offense principle are: prohibitions on open lewdness,
indecent exposure, solicitation, activities and materials offensive to religious or patriotic
sensibilities (e.g. blasphemous materials), racial and ethnic slurs and the distribution or
sale of pornography [31]. Weckert, who has done extensive research on offense on the

 When Should Virtual Cybercrime Be Brought under the Scope of the Criminal Law? 129

internet, divides the aforementioned offensive behaviors into three categories. The first
category concerns things that are not necessarily directed at any person or group. This
category includes indecent exposure and solicitation. It actually also includes the sale and
distribution of pornography, but Weckert has excluded pornography from his
categorization, because it raises issues of its own [48]. The second category concerns the
ridiculing or criticizing of beliefs and commitments. This category includes activities and
materials offensive to religious or patriotic sensibilities. The last category concerns
offense taken at language that is racist or sexist or denigrates people with mental or
physical disabilities or the victims of accidents or crimes. This category includes racial
and ethnic slurs. It may also include open lewdness insofar as the lewdness denigrates
people with mental or physical disabilities or the victims of accidents or crimes [48].

Weckert claims that only the last category of offensive behaviors should be
restricted on the Internet. This claim can be explained as follows. As was mentioned
in the last section, Feinberg thinks that we have to balance he seriousness of the
offense caused (e.g. its intensity and duration) against the independent reasonableness
(avoidability) of the offender’s conduct when we invoke the offense principle.
Weckert points out that most offenses on the Internet can easily be avoided. If one is
offended by the content of a certain website, e.g. because it contains materials that
one considers blaspheme, one can simply choose not to visit that website. This would
be different if one was confronted with the offensive material every time one logged
on to the Internet, say by a particular welcoming message or the wording of an image
or icon. And it would definitely be different if one was confronted with the offensive
material on the road one has to pass on one's way to work, e.g. on a billboard. Given
the high degree of avoidability of offense on the Internet, only very serious offenses
can tip the scales so that the offense principle can be invoked. As Weckert explains,
only offenses from the third category are serious enough to do that. They are, contrary
to offenses from the first category, aimed directly at (a group of) persons. They also
differ from offenses from the second category, since they offend because of
characteristics over which people do not have control, such as race, gender and
physical appearance, where offenses from the first category offend because of
characteristics over which people have at least some control, such as political and
religious beliefs. Offenses from the third category are thus the most serious types of
offenses because they single out individuals or groups by characteristics which they
have no power to change and, therefore, there is reason to restrict them on the Internet
[48].12

Weckert's argument does not only make sense with regard to human acts involving
the use of the Internet in general, it also applies to computer-simulated human acts
and human acts, made possible by computer-simulation specifically. The degree of
avoidability with regard to computer-simulated human acts or human acts made

12 If the “unwilling spectator” is a child, there might also be reason to restrict indecent

exposure, which belongs to the first category of offenses, on the Internet. That is because for
children the degree of avoidability of such an offense is lower, especially when an adult
persuades them to watch [37]. One could argue, however, that indecent exposure of an adult
to a child does not constitute offense, but mental harm and that thus the harm principle
instead of the offense principle should be invoked.

130 L. Strikwerda

possible by computer simulation is high, because one has the choice not to participate
in a certain virtual world known for its offensiveness. Of course, this argument is the
strongest with regard to virtual worlds with a pre-designed content. In virtual worlds
where users themselves shape the virtual world, such as SecondLife, it might be
problematic for new users to know whether or not they will find (an area of) the
virtual world offensive. But ultimately, one can always turn off the computer. So, here
also only offenses from the third category are serious enough to tip the scales and
invoke the offense principle. Such offenses, i.e. racial or ethnic slurs and open
lewdness insofar as it denigrates people with mental or physical disabilities or the
victims of accidents or crimes, are most likely to consist of comments, suggestions,
requests, proposals or other communications in an environment made possible by
computer simulation, e.g. a computer game with chat function. But they can also
consist of computer simulated images [48]. In the United Kingdom, for instance, a
man was sentenced to 300 hours of community service, because he had posted an
offensive digitally altered image of a teenage shooting victim on Facebook [50]. The
aforementioned acts are all human acts made possible by computer simulation.
Computer-simulated human acts can produce offenses from the third category as well.
Think, for instance, of a person who makes his or her avatar do the Nazi salute when
it meets a black avatar in a virtual world. No matter whether the person behind the
avatar is black him- or herself, he or she can take offense.

It becomes clear here that offense in the virtual realm differs in one important
aspect from harm in the virtual realm: contrary to harm, we cannot distinguish
between intra- and extravirtual offense. In section 2.2.1 harm was defined as a
wrongful setback to an interest. As was established in section 3.1, a wrongful setback
to an interest can be either intra- or extravirtual. Sometimes, an intravirtual wrongful
setback to one interest counts as an extravirtual wrongful setback to another interest.
As was mentioned above, offense can be defined as a disliked mental state, caused by
the wrongful conduct of others. A disliked mental state can only be extravirtual,
because it concerns a human being and human beings are necessarily extravirtual. An
extravirtual disliked mental state can be caused either by intra- or extravirtual
wrongful conduct of others, but that does not make a difference for the disliked
mental state: one can be as offended by seeing an avatar doing the Nazi salute in the
virtual world of a computer game (intravirtual wrongful conduct) as by being shown
an offensive (digitally altered) image in the non-virtual world (extravirtual wrongful
conduct).

4.3 Can Computer-Simulated Human Acts or Human Acts, Made Possible by
Computer-Simulation Result in Extravirtual Harm to the Self ?

As was established in the last section, the criminal law does not only outlaw behaviors
that harm others, but also behaviors that harm the self. Penal provisions that prohibit
behaviors that inflict harm upon the self are called paternalistic. There are two kinds
of paternalistic penal provisions: provisions that prohibit certain kinds of behavior,
such as the use of psychoactive drugs and gambling, and provisions that require
certain kinds of behavior, enforced by criminal sanctions, such as that motorcyclists

 When Should Virtual Cybercrime Be Brought under the Scope of the Criminal Law? 131

wear crash helmets and that motorists use seat belts [31]. Most of these penal
provisions can, however, also be defended on the ground that social harm needs to be
prevented generally, because there is always a public interest involved, at least to a
small extent, when people harm themselves, e.g. the tax money spent on healthcare
costs [36].

In section 3.1 we distinguished different types of harm, i.e. harm to a person's
bodily or mental health; diminutions of a person's security by the creation of threats or
dangers; reductions of a person's liberty of movement through abduction or false
imprisonment; depletion of a person's material resources; violations of a person's
privacy; defamation and inflictions upon public interests, such as the interest in a
clean environment and the interest in economic and political stability. Not all of these
types of harm can be inflicted upon the self. Public harms are singled out by
definition. It also seems implausible that a person reduces his or her own liberty of
movement through abduction or false imprisonment or that a person violates his or
her own privacy. Yet the question arises which harms inflicted upon the self can
constitute crimes. As will be explained below, Dworkin provides an answer to this
question.

In his influential 1972 article on paternalism [38], Gerald Dworkin lists the
following eleven examples of paternalistic interferences by law:

1. “Laws requiring motorcyclists to wear safety helmets when operating their machines.
2. Laws forbidding persons from swimming at a public beach when lifeguards are not

on duty.
3. Laws making suicide a criminal offense.
4. Laws making it illegal for women and children to work at certain types of jobs.
5. Laws regulating certain kinds of sexual conduct, e.g. homosexuality among

consenting adults in private.
6. Laws regulating the use of certain drugs which may have harmful consequences to

the user but do not lead to anti-social conduct.
7. Laws requiring a license to engage in certain professions with those not receiving a

license subject to fine or jail sentence if they do engage in the practice.
8. Laws compelling people to spend a specified fraction of their income on the purchase

of retirement annuities. (Social Security)
9. Laws forbidding various forms of gambling (often justified on the grounds that the

poor are more likely to throw away their money on such activities than the rich who
can afford to).

10. Laws regulating the maximum rates of interest for loans.
11. Laws against dueling.”

Not all of these examples concern the criminal law. The fourth, eighth and tenth
example concern laws that are generally not part of the criminal law. With regard to
the fifth example, it should be added that most countries have repealed their laws
against homosexuality. The other examples all concern penal provisions that protect
people from harm to their bodily health inflicted by themselves, except for laws

132 L. Strikwerda

forbidding various forms of gambling, which protect people from depletion of
material resources inflicted by themselves.

As the seventh example shows, the class of people whose welfare interests are
protected does not need to be identical with the class of people being coerced. In the
case of professional licensing it is the practitioner's freedom which is directly
interfered with and it is the would-be patient or client whose welfare interests are pre-
sumably being served. This can be called “impure paternalism” [38]. It might be
thought that it is superfluous to distinguish impure paternalism, because any such case
could be brought under the scope of the harm principle. The difference between
instances of impure paternalism and instances of harm to others is, however, that in
the former but not in the latter cases the harm is of such a nature that it could be
avoided by the individuals affected if they so choose. In the case of professional
licensing, the practitioner is coerced so that the would-be patient or client cannot
choose to be treated be an unlicensed practitioner, which might cause (bodily)harm.

I will now establish which of the paternalistic laws that Dworkin mentions are
applicable to computer-simulated human acts or human acts, made possible by
computer simulation. One can think of a computer-simulated equivalent of most of
the (potentially) self-harming prohibited human activities mentioned above. One can,
for example, make an avatar drive a motorcycle without a safety helmet, swim at an
unguarded beach or commit suicide. And as was mentioned in section 2.1.1 people
can use a drug called “Seclimine” through their avatars within the virtual world of
SecondLife. Also, many multiplayer computer games, e.g. World of Warcraft, allow
players to duel against each other through their avatars. But the aforementioned
activities only endanger the (intravirtual) bodily health of the avatar; they do not
endanger the (extravirtual) bodily health of the person behind it and can, therefore,
not be brought under the scope of the paternalistic laws prohibiting there non-virtual
equivalents. The only computer-simulated human act that can actually cause
extravirtual harm to the self and can thus be brought under the scope of a paternalistic
law is the act of gambling on a virtual slot machine. As was already discussed in
section 2.1.1, the computer-simulated human act of gambling on a virtual slot
machine can be brought under the scope of the prohibition on gambling because it
involves real, non-virtual money and can thus cause a depletion of a person's material
resources in the non-virtual world.

I can also think of an example of a human act made possible by computer
simulation that can cause extravirtual bodily harm to the self and can, therefore, be
brought under the scope of one of the paternalistic laws as distinguished by Dworkin.
Unlicensed practice of medicine can be made possible by the Internet and, as will be
explained later, also by computer simulation. People make use of the Internet as a
source of health information and sometimes engage in what has been called “do-it-
yourself-healthcare” [51]. Medical research shows that this can have harmful
consequences [52]. That is because it is difficult to control the reliability of health
information on the Internet, since there is no system of licensing or another form of
authorization available online [51]. So far, one fatal case of do-it-yourself-healthcare
by the use of health information on the Internet has been reported. A 55-year-old man
with cancer found information on the Internet that promoted the use of a certain

 When Should Virtual Cybercrime Be Brought under the Scope of the Criminal Law? 133

medicine for cancer treatment. After self-medicating for four months with the
medicine, which he had obtained from an alternative medicine website, he died.
Autopsy findings suggested an adverse reaction from the use of the medicine [52]. In
the metaverse of SecondLife one can find several virtual hospitals. In some of them
users can also consult a virtual doctor through their avatars. Here, the reliability
problem arises as well. After all, it is difficult to establish whether or not the person
behind the virtual doctor is a licensed doctor. Thus, if a user of SecondLife takes a
medical advice from a virtual doctor, this can be as dangerous for his or her health as
relying on health information on the Internet. Therefore, the paternalistic law
prohibiting unlicensed practice of medicine is in principle applicable.

The above-mentioned example of extravirtual harm to the self made possible by
computer-simulation might be a little far-fetched. After all, it is about a non-virtual
human being in the non-virtual world who takes a medical advice that is obtained in a
virtual environment. A much clearer example of extravirtual harm to the self made
possible by computer simulation would be computer and video game addiction, which
seems to be a growing problem and is associated with a range of mental and bodily
health problems, such as sleep deprivation, social isolation, neglect of personal
hygiene and failure to eat regularly. People are not protected against the harmful
consequences of excessive gaming by a paternalistic law, however: although there are
laws prohibiting the sale of certain (merely violent) computer games to minors, there
are no laws prohibiting people to (excessively) play computer games.

4.4 Can Computer-Simulated Human Acts or Human Acts, Made Possible by
Computer-Simulation Result in Extravirtual Evils of Other Kinds?

As was established in the last section, (pure) legal moralism entails that it is legitimate
to prohibit conduct on the ground that it is inherently immoral, although it causes
neither harm (to the actor or to others) nor offense. Examples of penal provisions that
are based on legal moralism are: prohibitions on deviant sexual activities, such as
prostitution and bigamy, provided that they are “harmless (because voluntary or
consented to) and unoffending (because not forced on the attention of unwilling
observers)” [39]. Note that there is much inconsistency as to prohibitions that are
based upon legal moralism, because they are the product of a society's values and
religious principles and are, therefore, more idiosyncratic in nature [7]. In the
Netherlands, for example, prostitution is legal. And in Morocco, for instance, bigamy
is not prohibited.

One can find a computer-simulated variant of prostitution in the metaverse of
SecondLife. Some people sell sex through their avatars there. They usually work for a
virtual escort service or a virtual bordello. Like in the non-virtual world, they charge
their clients for their services and give the owner of the escort service or bordello a
percentage of their earnings. Virtual prostitution differs essentially from non-virtual
prostitution, however, since no sexual activity actually occurs; it is a computer-
generated animation of sex. Therefore, virtual prostitution can better be described as
pornography than as prostitution [4]. Virtual prostitution is thus one of the special
cases as were discussed in section 2.1.1 where a computer-simulated human act (X)

134 L. Strikwerda

satisfies the elements of one crime intravirtually and, thereby, satisfies the elements of
another crime extravirtually and, therefore, counts as crime Y in the context of its
virtual environment (C) and as crime Z in the context of the non-virtual world (C).
Because virtual prostitution counts as pornography in the non-virtual world the
traditional concerns about morality that historically gave rise to the criminalization of
prostitution do not apply [4]. The offense principle, which generally offers ground to
prohibit pornography, cannot be invoked either, however. As was established in
section 3.2, we have to balance the seriousness of the offense caused against the
independent reasonableness (avoidability) of the offender’s conduct when we invoke
the offense principle. In the virtual realm, the degree of avoidability is generally high.
Therefore, only the most serious offenses can tip the scales so that the offense
principle can be invoked. In section 3.2 it was explained that pornography is not a
serious enough offense that is to do that.

Bigamy can also occur in SecondLife. Although the ceremonies are not legally
binding, people can marry each other through their avatars there. People who are
already married in the non-virtual world can, through their avatars, marry the avatar
of a person who is not their spouse. They find themselves engaged in “cross-world
bigamy” [4]. People can also marry more than one avatar, which constitutes
intravirtual bigamy. Neither cross-world bigamy, nor intravirtual bigamy can be
brought under the scope of the prohibition on bigamy, however, since the law does
not recognize SecondLife unions [4]. And, therefore, the underlying traditional
concerns about morality that historically gave rise to the criminalization of bigamy do
not apply either.

Prostitution or bigamy cannot be made possible by computer simulation, at least it
is difficult to think of examples. Thus, neither of Feinberg's examples of penal
provisions that are based upon legal moralism are applicable to the virtual realm.
Nevertheless, I can think of two examples of prohibitions on human acts made
possible by computer simulation that do seem to be based on legal moralism. The first
example is the prohibition on the production, distribution and possession of virtual
pornography involving sex with animals that some countries (e.g. the Netherlands)
apply. Just like the virtual child pornographic images that were discussed in section
1.2.1 they are either morphed pictures or entirely computer-generated images. Since
neither animals nor humans of flesh and blood are involved in its production, virtual
pornography involving sex with animals cannot constitute harm to either of them. I
have not found evidence that it would constitute harm to people who willingly choose
to watch these images themselves either. And as long as it is distributed among
individuals, which is the case, and is not made publicly accessible, there are no
unwilling spectators who can be offended by it. However, Feinberg distinguishes a
special class of cases where we are offended at the “bare thought” that the conduct
occurs [39]. I think that the production, distribution and possession of virtual
pornography involving sex with animals belongs to this special class of cases.
According to Feinberg, conduct that offends at bare thought is found offensive,
because it is judged to be immoral. Therefore, it should not be brought under the
scope of the offense principle, but under the scope of legal moralism instead [39]. The
second example is the prohibition on the production, distribution and possession of

 When Should Virtual Cybercrime Be Brought under the Scope of the Criminal Law? 135

virtual child pornography. This example is more controversial than the first. I have
written extensively on this topic in another paper [49]. In this paper I argue, in short,
that virtual child pornography does not do harm to others, because, contrary to non-
virtual child pornography, no actual children are involved in the production.13 It does
not do harm to the self either. Except for very rare cases in which virtual child
pornography is aimed at children and instructs them how to perform certain sexual
activities, there is not enough evidence that it would encourage or seduce children
into participating in sexual contacts with adults, neither is there is enough evidence
that it would encourage or seduce peadophiles to commit child abuse [49]. And
virtual child pornography cannot be brought under the scope of the offense principle,
because it is not traded in public, but secretly among peadophiles, and, therefore,
there are no unwilling spectators who are deprived of the power to determine for
themselves whether or not to see these images. I think that the production, distribution
and possession of virtual child pornography offends at bare thought, because it is
judged to be immoral. In my paper I have claimed that virtual child pornographic
images are generally judged to be immoral, because they flout our sexual mentality,
which is based on the equality norm, for sex between adults and children is per
definition unequal [49]. The production, distribution and possession of virtual child
pornography thus results in an evil of another kind than harm (to others or to the self)
or offense.

4.5 Some Short Comments on What the Future Holds

In the sections 1.2.1 and 3.1 it was noted that virtual reality technologies will
probably allow for new possibilities to do harm to others when they become multi-
accessible in the future. In this subsection I will first describe what kind of new
possibilities for human action virtual reality technologies might allow for in the
future. Then I will establish how they can be harmful to others. Next I will examine
whether or not virtual reality technologies could also increase the possibilities to give
offense, do harm to the self or to act inherently immoral.

Philip Zhai has written a “philosophical adventure” in which he explores, from a
theoretical point of view, what kind of human experiences virtual reality technologies
might allow for in the future [53]. Zhai explains that state-of-the-art virtual reality
technologies entail the following. One wears a helmet or goggles and earphones so
that one is not able to see anything except 3-D animated video images on two small
screens in front of one's eyes; nor does one hear anything except sounds from the
earphones. One also wears a bodysuit, including gloves, that gives different amounts
of pressure against different parts of one's body that are in accordance with one's
changing video and audio sensations. Moreover one is situated in a motion-tracker
that detects one's movements and feeds the signals into the computer that also

13 Note that child pornography differs essentially from adult pornography because children

cannot consent to sex. Sex with children is, therefore, always considered abuse or rape.
Child pornography is thus a recording of abuse and rape and is prohibited on the ground that
it harms children and not on the ground that it is offensive.

136 L. Strikwerda

processes all the visual and audio information so that the computer can coordinate
one's movements with the images one sees and the sounds one hears. This way one is
fully immersed in a virtual world, where the goggles are equivalent to one's eyes and
the body suit is equivalent to one's skin [53].

In the virtual world one can encounter all kinds of virtual things that are the result
of digital programming. One can perceive rocks, trees, animals etc., with which one
can interact. One can, for example, pet an animal and the glove one wears will give
sensory feedback so that it feels like one is really petting an animal. The virtual rocks,
trees and animals one perceives may be equal to the rocks, trees and animals one has
seen before in the non-virtual world, but they may also be different. It may be, for
instance, that if one lifts one of the rocks it feels like it weighs as much as a rock
would weigh in the non-virtual world, but it may also be that it feels like the rock is
weightless. In the virtual world one can also meet other human beings. They may be
virtual human beings whose behavior is totally programmed by the computer. But
they may also be the virtual representations of persons who are wired to the same
computer as one is oneself. When one interacts with them, one does not only get the
sensory feedback belonging to the act oneself, but they also get the sensory feedback
from the bodysuit and gloves they are wearing. One can, for example, shake hands
with the virtual representation of another person wired to the same computer and this
information is transformed and transmitted to (the glove worn by) the other person so
that s/he feels like his or her hand is shaken. And much more complicated interactions
are possible. Zhai, for example, describes how two persons wired to the same
computer could have sex through “a seamless combination of digital simulation,
sensory immersion, and functional teleoperation” [53].

Zhai does not think that human interactions mediated by virtual reality
technologies can be harmful. He states: “(...) in the virtual world, nobody can
physically affect us in a way our self-managed program does not allow. We set the
limit in the infrastructure to prevent any serious injury.” [53]. But what if a user hacks
the program of another user and changes the settings? Then one could hit, kick or
otherwise physically hurt the virtual representation of the other person wired to the
same computer as oneself and the other person would get painful sensory feedback
through his or her bodysuit. One would even be able to kill the other person when one
would, for example, be able to impose an electric shock on him or her through the
bodysuit. Bodily harm to the other person could also be done without being wired to
the same computer oneself: one could hack into the program of a user of a virtual
reality technology and add to it a virtual human being that hits, kicks or does another
kind of bodily harm. To sum up, virtual reality technologies could allow for increased
possibilities to do bodily harm to others through computer-simulated human acts or
human acts made possible by computer simulation in the future. Yet the question
arises whether or not virtual reality technologies could also allow for new possibilities
to give offense, to inflict harm upon the self or to act inherently immoral.

It seems implausible that virtual reality technologies would allow for possibilities
to give offense in the future that differ essentially from the possibilities that computer

 When Should Virtual Cybercrime Be Brought under the Scope of the Criminal Law? 137

simulation offers already. It was established in section 3.2 that offense in the virtual
realm differs in one important aspect from harm in the virtual realm, because,
contrary to harm, we cannot distinguish between intra- and extravirtual offense. It was
explained that offense is a disliked mental state, caused by the wrongful conduct of
others. And that a disliked mental state can only be extravirtual, because it concerns a
human being and human beings are necessarily extravirtual. An extravirtual disliked
mental state can be caused either by intra- or extravirtual wrongful conduct of others,
but that does not make a difference for the disliked mental state. Virtual reality
technologies increase the possibilities for intravirtual human acts to have extravirtual
consequences. But since in the case of offense the consequence, a disliked mental
state, is necessarily extravirtual, virtual reality technologies do not increase the
possibilities to give offense.

Virtual reality technologies could allow for new possibilities to do harm to the self
though. As was established above they could offer their users possibilities for hitting,
kicking or otherwise physically hurting each other. Virtual reality technologies might,
therefore, be used for dueling. They could also provide new ways to commit suicide,
e.g. by imposing a fatal electric shock on oneself through one's body suit. Virtual
reality technologies might be used for unlicensed practice of medicine as well. But I
do not think that they will offer possibilities that differ essentially from the
possibilities that computer simulation offers already. The same goes for gambling. It
seems implausible that virtual reality technologies could increase the possibilities for
other types of harm to the self. They may give one the impression that one, for
example, drives on a motorcycle without a safety helmet, swims at an unguarded
beach or is under the influence of drugs. But such impressions do not pose real risks
to one's bodily health and there is thus no reason to bring them under the scope of the
criminal law.

Finally, virtual reality technologies could also allow for new possibilities for
inherently immoral behavior. In section 3.4 it was stated that neither prostitution nor
bigamy, Feinberg's examples of inherently immoral behavior, can currently be made
possible by computer simulation. Virtual reality technology could make both possible
in the future. As was mentioned above, Zhai claims that people might be able to have
sex in the virtual world in the future. If so, they can also sell sex and thus prostitute
themselves in the virtual world. And bigamy could also be made possible by virtual
reality technologies in the future. In several countries, including the Netherlands, it is
allowed to marry by proxy. One can marry someone who has consented to the
marriage, but is not able to attend the ceremony, for instance because s/he is far
abroad and not able to come over for the marriage. In other words, one marries at a
distance. Virtual reality technologies could be used for marriage by proxy. Wearing
the goggles, earphones, body suit and glove two persons wired to the same computer
could say yes to, exchange a ring with and kiss a virtual representation of each other
and the devices would make them hear “yes”, make them feel like they have a ring
put around their finger and make them sense like they are kissed. Once virtual reality
technologies will be used for marriage by proxy, bigamy through virtual reality
technology will also be possible.

138 L. Strikwerda

5 Conclusion

In this paper I have studied the question when virtual cybercrime should be brought
under the scope of the criminal law. The paper consists of three parts. The first part of
the paper is an empirical exploration; in this part I have examined what virtual
cybercrime is and how, if at all, it is treated within existing legal systems. The second
part of the paper is a philosophical analysis; in this part I have established, drawing
from ontology and legal philosophy, what the necessary and sufficient conditions are
for virtual cybercrime to obtain in order to count as crime under existing law. The
third part of the paper is a moral evaluation; in this part I have studied when virtual
cybercrime meets the aforementioned criteria.

In the first part of the paper I have defined cybercrime as any new or different
human act that is carried out through the use of computers or computer networks and
is prohibited by the enactment of a new or the extension of an existing law. I have
pointed out that it differs from country to country which behaviors involving the use
of computers or computer networks are outlawed, but that the Convention on
Cybercrime, its Additional Protocol and the Convention on the Protection of Children
against Sexual Exploitation and Sexual Abuse provide a list of new and different
human acts involving the use of computers or computer networks that are commonly
prohibited. This list includes: illegal access, illegal interception, data interference,
system interference, misuse of devices, computer-related forgery, computer-related
fraud, offences related to child pornography, offences related to infringements of
copyright and related rights, acts of a racist and xenophobic nature that are committed
through computer systems and “grooming.” The first five offence categories concern
new forms of human activity that did not exist before the advent of computers and
computer networks. That is because they can only be carried out through the use of
computers or computer networks. The next offence categories concern traditional
crimes where computers or computer networks are used as a tool to commit the crime
in a different way.

Subsequently, I have described virtual cybercrime as cybercrime that is carried out
through the use of a specific feature of computers and computer networks, namely
computer simulation. It consists of a computer-simulated human act or a human act
made possible by computer simulation. Contrary to ordinary cybercrime, virtual
cybercrime does not concern new human activities; only different human activities.
Therefore, it requires legislators to extend existing laws, but not to enact new ones. In
sum, virtual cybercrime can be defined as a computer-simulated human act or a
human act made possible by computer simulation that is prohibited by the extension
of an existing law. It was established that the scope of virtual cybercrime is unclear,
however. Currently, the production, possession and distribution of virtual child
pornography is the only virtual cybercrime that is commonly prohibited, although not
as commonly as non-virtual child pornography. Putative virtual cybercrimes are, for
example, virtual rape, virtual killing and theft of virtual items.

In the second part of the paper I have explained that an empirical study of the law
does not suffice to answer the question what the necessary and sufficient conditions
are for a computer-simulated human act or a human act made possible by computer

 When Should Virtual Cybercrime Be Brought under the Scope of the Criminal Law? 139

simulation to obtain in order to be prohibited under existing law, since the production,
distribution and possession of virtual child pornography is the only virtual cybercrime
that is commonly prohibited and it would be a fallacy to make a general statement
about virtual cybercrime on the basis of one specific instance of virtual cybercrime.
Therefore, I have studied virtual cybercrime from a different point of view. As was
stated in the introduction, the study of virtual cybercrime belongs to the field of legal
ontology. Applied forms of ontology often put to use the tools of philosophical
ontology in order to categorize things within a specific domain. I made use of this
method and put to use the tools of the philosophical ontology of the American
philosopher Searle in order to categorize virtual cybercrime within existing law.

Searle claims that penal provisions generally take the following form: for any x
that satisfies a certain set of conditions p, x has status Y in C. So, following Searle, a
particular human act (X) counts as a crime (Y) in the jurisdiction of a particular
country (C) when the set of conditions (p) for that crime has been satisfied. I have
explained that in legal terms the conditions that a human act needs to satisfy in order
to count as a crime are called elements. The specific elements required vary
depending on the crime, but there are two basic elements that are required by each
crime: an actus reus (an unlawful act or failure to act) and a mens rea (a blameworthy
mental state, usually it is required that the actor acts knowingly, purposely or
recklessly). In fact, all crimes also require, implicitly or explicitly, that the actus reus
must have a certain consequence, e.g. the death or injury of a person or a loss of
property. This common element is called causation.

I have argued that, in the case of virtual cybercrime, the basic elements of a crime
can be satisfied intravirtually (within the virtual environment where the act takes
place) or extravirtually (outside its virtual environment), except for the element of
mens rea, which can only be satisfied extravirtually, since it concerns the human
actor, who is necessarily extravirtual. I have established that it is of crucial
importance where the element of causation is satisfied, intravirtually or extravirtually,
because it determines the context (C) in which the crime status (Y) of a computer-
simulated human act or human act made possible by computer simulation (X) holds.
A computer-simulated human act or human act made possible by computer simulation
(X) that satisfies the element of causation (p) intravirtually counts as a crime (Y) only
in the context of its virtual environment (C); a computer-simulated human act or
human act made possible by computer simulation (X) that satisfies the element of
causation (p) extravirtually counts as a crime (Y) in the context of the non-virtual
world (C). In special cases a computer-simulated human act or human act made
possible by computer simulation (X) can satisfy the elements of one crime
intravirtually and, thereby, satisfy the elements of another crime extravirtually. Such
an act counts, therefore, as crime Y in the context of its virtual environment (C) and
as crime Z in the context of the non-virtual world (C).

Subsequently I have claimed that the context (C) in which the crime status (Y) of a
computer-simulated human act or human act made possible by computer simulation
(X) holds, its virtual environment or the non-virtual world, determines whether or not
the act can be included in the scope of an existing penal provision. A computer-
simulated human act or a human act made possible by computer simulation that only

140 L. Strikwerda

counts as a crime in its virtual environment triggers remedies within that virtual
environment, but not penal law. A computer-simulated human act or human act made
possible by computer simulation that counts as a crime in the non-virtual world is
within the reach of penal law.

To sum up, I think that it is a necessary condition for a computer-simulated human
act or a human act made possible by computer simulation in order to be brought under
the scope of the criminal law that it has an extravirtual consequence, so that it can
count as a crime in the non-virtual world, provided that it also satisfies the (other)
elements of a crime. I have explained that it depends on the stand one takes in the
legal philosophical debate between legal positivists and natural law theorists, whether
or not that is a sufficient condition as well. Legal positivists claim that laws may have
any content. They would thus say that legislators and judiciaries are free to bring any
computer-simulated human act or human act made possible by computer simulation
that has an extravirtual consequence and also satisfies the (other) elements of a crime
under the scope of penal law. Natural law theorists would say that legislators and
judiciaries can only bring a computer-simulated human act or human act made
possible by computer simulation that has an extravirtual consequence under the scope
of penal law if the extravirtual consequence consists of a violation of a moral
principle. The contemporary debate on the content of the law is dominated by the
legal philosophers Hart and Dworkin and interpretations of their work. Their theories
have developed such a level of subtlety and sophistication that the traditional labels of
legal positivism and natural law theory hardly apply any more. Most legal
philosophers would nowadays agree that the law is open to arguments that are
grounded in moral principles, especially with regard to special fields or issues that are
still developing, such as ICT. Taking this assumption as a starting point, I have
argued that Feinberg's liberty-limiting (moral) principles, i.e. the harm principle, the
offense principle, legal paternalism and legal mo-ralism, can help to determine how
the penal law should deal with virtual cybercrime.

In the third part of the paper I have first established that computer-simulated
human acts or human acts made possible by computer simulation can result in several
types of extravirtual harm to others and that they can, therefore, be brought under the
scope of the harm principle. Then I have argued that computer-simulated human acts
or human acts made possible by computer simulation can result in extravirtual offense
and that they can, therefore, be brought under the scope of the offense principle. Next
I have claimed that computer-simulated human acts or human acts made possible by
computer simulation can result in a couple of forms of extravirtual harm to the self
and that they can, therefore, be brought under the scope of legal paternalism.
Subsequently I have established that computer-simulated human acts or human acts
made possible by computer simulation can result in extravirtual evils of other kinds
and that they can, therefore, be brought under the scope of legal mora- lism. Last I
have argued that, in the future, virtual reality technologies might allow for new
possibilities to do harm (to others or to the self) or to act inherently immoral, but that
it seems implausible that virtual reality technologies would allow for possibilities to
give offense that differ essentially from the possibilities that computer simulation
offers already. That is because virtual reality technologies increase the possibilities

 When Should Virtual Cybercrime Be Brought under the Scope of the Criminal Law? 141

for intravirtual human acts to have extravirtual consequences. But since in the case of
offense the consequence, a disliked mental state, is necessarily extravirtual, virtual
reality technologies do not increase the possibilities to give offense.

Acknowledgements. I would like to thank Philip Brey, Johnny Søraker and Bert-Jaap
Koops for their valuable comments and suggestions.

References

1. Hoge Raad, LJN: BQ9251 (January 31 (2012), http://www.rechtspraak.nl
2. Jilted woman ‘Murdered Avatar’,

http://news.sky.com/home/world-news/article/15127170
3. Koepsell, D.R.: The ontology of cyberspace: philosophy, law, and intellectual property.

Open Court Publishing Company, Peru (2003)
4. Brenner, S.W.: Fantasy Crime: The Role of Criminal Law in Virtual Worlds. Vanderbilt

Journal of Entertainment And Technology Law 11(1), 1–97 (2008)
5. Clough, J.: Principles of Cybercrime. Cambridge UP, Cambridge (2010)
6. Council of Europe, Convention on Cybercrime and Explanatory Report, Budapest, CETS

No.185 (November 23, 2001), http://conventions.coe.int
7. Goodman, M.D., Brenner, S.W.: The Emerging Consensus on Criminal Conduct in

Cyberspace. International Journal of Law and Information Technology 10(2), 139–223
(2002)

8. Tavani, H.T.: Ethics & Technology. Ethical Issues in an Age of Information and
Communication Technology. John Wiley & Sons, Hoboken (2007)

9. Council of Europe, Additional Protocol to the Convention on Cybercrime, concerning the
criminalisation of acts of a racist and xenophobic nature committed through computer
systems, Strasbourg, CETS No.189 (January 28, 2003),
http://conventions.coe.int

10. Council of Europe, Convention on the Protection of Children against Sexual Exploitation
and Sexual Abuse and Explanatory Report, Lanzarote, CETS No. 201 (October 25, 2007),
http://conventions.coe.int

11. Søraker, J.H.: The value of virtual worlds. A philosophical analysis of virtual worlds and
their potential impact on well-being (doctoral dissertation). Ipskamp, Enschede (2010)

12. Brey, P.: Virtual Reality and Computer Simulation. In: Himma, K.E., Tavani, H.T. (eds.)
The Handbook of Information and Computer Ethics, pp. 361–384. John Wiley and Sons,
Hoboken (2008)

13. Allen, C.: Artificial life, artificial agents, virtual realities: technologies of autonomous
agency. In: Floridi, L. (ed.) The Cambridge Handbook of Information and Computer
Ethics, pp. 219–233. Cambridge UP, Cambridge (2010)

14. List of declarations made with respect to treaty No. 185 Convention on Cybercrime,
http://conventions.coe.int

15. Rechtbank Amsterdam, LJN: BH9789, BH9790, BH9791 (April 2, 2009),
http://www.rechtspraak.nl

16. Gerechtshof Leeuwarden, LJN: BK2773, BK2764 (November 10, 2009),
http://www.rechtspraak.nl

17. Kerr, O.S.: Criminal Law in Virtual Worlds. University of Chicago Legal Forum; GWU
Law School Public Law Research Paper No. 391, SSRN,
http://ssrn.com/abstract=1097392

142 L. Strikwerda

18. Dibbell, J.: A rape in cyberspace. How an Evil Clown, a Haitian Trickster Spirit, Two
Wizards, and a Cast of Dozens Turned a Database Into a Society. The Village Voice
(December 23, 1993)

19. Searle, J.R.: Making the Social World. The Structure of Human Civilization. Oxford UP,
New York (2010)

20. Lastowka, G., Hunter, D.: Virtual Crime. 49 New York Law School Review 293 (2004),
Available at SSRN: http://ssrn.com/abstract=564801

21. 18 USC § 1111, http://www.law.cornell.edu/uscode/text
22. Søraker, J.H.: Virtual worlds and their challenge to philosophy: understanding the

“intravirtual” and the “extravirtual”. Metaphilosophy 43(4), 499–512 (2012)
23. Matthias, A.: The responsibility gap: Ascribing responsibility for the actions of learning

automata. Ethics and Information Technology 6, 175–183 (2004)
24. Strikwerda, L.: Theft of virtual items in online multiplayer computer games: an ontological

and moral analysis. Ethics and Information Technology 14(2), 89–97 (2012)
25. Second Life Seclimine VB Sample,

http://www.youtube.com/watchv=OQvgWros7TY
26. Brey, P.: The Physical and Social Reality of Virtual Worlds. In: Grimshaw, M. (ed.) The

Oxford Handbook of Virtuality (forthcoming)
27. Murphy, J.G., Coleman, J.L.: Philosophy of Law: An Introduction to Jurisprudence.

Westview Press, Boulder (1990)
28. Hart, H.L.A.: The Concept of Law. Clarendon Press, Oxford (1961)
29. Dworkin, R.M.: Is Law a System of Rules? In: Summers, R.S. (ed.) Essays in Legal

Philosophy, pp. 25–60. University of California Press, Berkeley (1976)
30. Van der Burg, W.: Law and Ethics: The Twin Disciplines. Erasmus Working Paper Series

on Jurisprudence and Socio-Legal Studies No. 10-02, SSRN,
http://ssrn.com/abstract=1631720

31. Feinberg, J.: The Moral Limits of the Criminal Law, Harm to Others, vol. 1. Oxford UP,
Oxford (1984)

32. Koops, B.J.: Technology and the Crime Society: Rethinking Legal Protection. TILT Law
& Technology Working Paper No. 010/2009 and Tilburg University Legal Studies
Working Paper No. 006/2009. Available at SSRN:
http://ssrn.com/abstract=1367189

33. Feinberg, J.: The Moral Limits of the Criminal Law, Offense to Others, vol. 2. Oxford UP,
Oxford (1985)

34. Mill, J.S.: On Liberty. Longmans, Green and Co., London (1865)
35. Holtug, N.: The Harm Principle. Ethical Theory and Moral Practice 5, 357–389 (2002)
36. Feinberg, J.: The Moral Limits of the Criminal Law, Harm to Self, vol. 3. Oxford UP,

Oxford (1986)
37. Koops, B.J.: Sex, Kids and Crime in Cyberspace: Some Reflections on Crossing

Boundaries. In: Lodder, A.R., Oskamp, A. (eds.) Caught in the Cyber Crime Act, pp. 63–
76. Kluwer, Deventer (2009), Available at SSRN:
http://ssrn.com/abstract=1365986

38. Dworkin, G.: Paternalism. The Monist 56(1), 64–84 (1972)
39. Feinberg, J.: The Moral Limits of the Criminal Law, vol. 4, Harmless Wrongdoing. Oxford

UP, Oxford (1988)
40. Devlin, P.: The Enforcement of Morals. Oxford UP, Oxford (1965)
41. Beauchamp, T.L.: The Nature of Applied Ethics. In: Frey, R.G., Wellman, C.H. (eds.) A

Companion to Applied Ethics, pp. 1–16. Blackwell Publishers, Malden (2003)
42. Hackers Assault Epilepsy Patients via Computer,

http://www.wired.com/politics/security/news/2008/03/epilepsy

 When Should Virtual Cybercrime Be Brought under the Scope of the Criminal Law? 143

43. Huff, C., Johnson, D.G., Miller, K.: Virtual Harms and Real Responsibility. IEEE
Technology and Society Magazine, 12–19 (2003)

44. Powers, T.M.: Real wrongs in virtual communities. Ethics and Information Technology 5,
191–198 (2003)

45. Wolfendale, J.: My avatar, my self: Virtual harm and attachment. Ethics and Information
Technology 9, 111–119 (2007)

46. The legal rights to your ’Second Life’ avatar,
http://news.cnet.com/2100-1047-6147700.html

47. Gerechtshof ’s-Gravenhage, LJN: BO4035 (November 16, 2010),
http://www.rechtspraak.nl

48. Weckert, J.: Offence on the Internet. In: Collste, G. (ed.) Ethics in the Age of Information
Technology, pp. 104–118. Centre for Applied Ethics, Linköping (2000)

49. Strikwerda, L.: Virtual Child Pornography Why Images Do Harm from a Moral
Perspective. In: Ess, C., Thorseth, M. (eds.) Trust and Virtual Worlds Contemporary
Perspectives, pp. 139–161. Peter Lang Publishing, New York (2011)

50. Internet ban for offensive image,
http://www.independent.co.uk/news/uk/crime/
internet-ban-for-offensive-image-7575915.html

51. Collste, G.: The Internet-Doctor. In: Collste, G. (ed.) Ethics in the Age of Information
Technology, pp. 119–129. Centre for Applied Ethics, Linköping (2000)

52. Crocco, A.G., Villasis-Keever, M., Jadad, A.R.: Analysis of Cases of Harm Associated
With Use of Health Information on the Internet. JAMA 287(21), 2869–2871 (2002)

53. Zhai, P.: Get Real. A Philosophical Adventure in Virtual Reality. Rowman & Littlefield
Publishers, Lanham (1998)

M. Rogers and K.C. Seigfried-Spellar (Eds.): ICDF2C 2012, LNICST 114, pp. 144–157, 2013.
© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2013

Research Trends in Digital Forensic Science:
An Empirical Analysis of Published Research

Ibrahim Baggili1, Afrah BaAbdallah2, Deena Al-Safi2, and Andrew Marrington2

1 Tagliatela College of Engineering, Department of Electrical and Computer Engineering
and Computer Science, University of New Haven, CT

Ibaggili@newhaven.edu
2 Zayed University, Advanced Cyber Forensics Research Laboratory

Abu Dhabi, United Arab Emirates, P.O. Box 4783
Andrew.Marrington@zu.ac.ae

Abstract. Digital forensic science is a new discipline. In order to advance and
improve this science, stakeholders should stay abreast over the research trends
in this domain. This research studied, categorized and analyzed a sample of
five-hundred publications (n=500) from this discipline. The results indicated
that the rate of publication in this domain continues to increase over time.
Additionally, results showed an overall lack of anti-forensics research where
only 2% of the sampled papers dealt with anti-forensics. In terms of research
methodology, the results indicated that 17% of the sampled publications were
secondary research, 36% were exploratory studies, 33% were constructive and
31% were empirical. The results also indicated a lack of basic research in this
scientific discipline where most of the research (81%) was applied, and that
only 19% of the sample was categorized as basic research. Additionally, results
exemplified a lack of quantitative research in the discipline, with only 20% of
the research papers using quantitative methods, and 80% using qualitative
methods. Furthermore, results showed that the largest portion of the research
(42.9%) from the examined sample originated from the United States. The
findings also showed a lack of cooperative research between academia and
industry, where only 10% of the research studies examined where a
collaborative effort between industry and academia. Lastly, the findings
indicated an increase in the disparity between the number of published articles
and the number of cited articles over the years possibly indicating isolation
amongst researchers in this domain.

Keywords: Digital forensic science, research trends, research methodologies,
challenges in digital forensics science.

1 Introduction

Cybercrime initially emerged as a threat to computer users and businesses; it now
impacts entire nations. Internet usage continues to rise and so does this threat [1]. Yet,
most computer users remain unconscious of the drastic impact it has on their daily
lives. The statement “The Internet is the crime scene of the 21st century” as written in
the Wall Street Journal, is a realistic indicator of the current times [2].

 Research Trends in Digital Forensic Science 145

Rogers and Seigfried in 2004 reported that cybercrime is constantly on the rise,
spurring a massive progress in digital forensic science (DFS) [3]. This has
consequently lured the attention of scientists towards a subset of DFS – computer
forensics, establishing it as a recognized scientific discipline [4][5].

Patzakis in 2003 described computer forensics as a process of collecting,
preserving, analyzing, and presenting electronic evidence where a computer has been
an instrument to committing a crime [6]. This investigative methodology is used to
reconstruct computer evidence as well as examine digital media storage devices in
order to find electronic evidence which could lead to the source of the crime and its
perpetrator(s). Furthermore, computer forensics is recommended whenever the
security of an organization or company has been breached. In such a scenario, system
administrators begin investigations by acquiring and analyzing the collected digital
evidence.

Research has been conducted and articles published discussing various topics in
DFS. Some researchers have illustrated specific definitions and processes in digital
forensics [7], whereas others have published studies addressing anti-forensics [8].
Additionally, certain researchers have focused their attention to incident response and
best practices when a computer crime occurs [9]. It is beyond this research paper’s
scope to provide a complete overview of all the research conducted under the DFS
umbrella. Nonetheless, it is critical for scientists as well as practitioners to keep up
with research trends associated with the science of digital forensics to acknowledge
and further investigate gaps in the domain.

This research provides a strong primary contribution to this new scientific
discipline, as it empirically studies research trends in the field. The primary goal is to
empirically explore the path that DFS is moving towards through the categorization
and analysis of a sample of five-hundred (n=500) publications issued between 1992
and 2011.

2 Literature Review

DFS is at its infancy and continues to be of utmost importance. Governmental
agencies are obliged to depend on the scientific and private communities to derive
novel methods and tools that allow the extraction and preservation of digital evidence
in a scientific and law-abiding manner. Given the importance of this field and its
impact, it is essential to collect, analyze, and categorize research in this scientific
domain. This can help shed light on the discipline, aiding in a more appropriate
response to cybercrime while contributing to the development of the science and
professional practice in this field.

Garfinkel in 2010 argued that there is a genuine need for a well defined and
collaborative approach to be undertaken by the researchers and institutions in digital
forensics [10]. Garfinkel stated that “Without a clear strategy for enabling research
efforts that build upon one another, forensic research will fall behind the market, tools
will become increasingly obsolete, and law enforcement, military and other users of
computer forensics products will be unable to rely on the results of forensic analysis”
[10].

146 I. Baggili et al.

In order to combat challenges mentioned in academic literature, it is critical to
consistently and empirically study research trends in DFS under a framework where
research in the discipline is collected, categorized, and analyzed. The results can aid
researchers and practitioners in keeping abreast over the trends in the scientific
domain, as well as ensuring that they are on target with any intended scientific goals.
The concept of research trends includes creating a trend map from research papers
and patents and enabling the discipline’s stakeholders to grasp the outline of technical
trends in a particular field [11]. This concept is not new and has already been used in
various disciplines such as Psychology [12], Biology [13], and Sociology.
Furthermore, research trends guide the scientific community in solving challenges and
potential obstacles that hinder the process of the discipline’s development.

Some scientists have illustrated interest in DFS research trends reflected by their
research on the future of the discipline. Rogers and Seigfried in 2004 disseminated a
survey to study and characterize the top five issues in computer forensics. In their
paper, they addressed the main challenges in the field, as well as issues pertaining to
having a defined standardization and modular approach for data representation and
forensic processing.

Moreover, in 2007, Chichao, Wenyuan, and Weiping [14] presented results in their
study which aimed at exploring trends in computer crime and cybercrime research
from 1974 to 2006. In their research, two-hundred and ninety two (n=292) papers on
computer crime and cybercrime publications were drawn from the ISI Web of
Science, the Science Citation Index (SCI), and the Social Science Citation Index
(SSCI). Their results indicated that many papers were written in English, and most
articles came from the U.S.A.

The purpose of this study was to explore the trends in DFS research from past till
present. Publications for this analysis were drawn from scientific and professional
publications such as Springer, Elsevier, Digital Forensics Research Conference
(DFRWS), Journal of Digital Forensics Security and Law (JDFSL), National Institute
of Standards and Technology (NIST), Small Scale Digital Device Forensics Journal,
International Journal of Digital Evidence (IJDE), Journal of Digital Forensic Practice,
International Journal of Electronic Security and Digital Forensics (IJESDF).

What made this research study unique is that the researchers did not disseminate a
survey; rather, they studied, categorized and analyzed the existing literature in DFS to
extrapolate an overview of the scientific discipline and the research trends associated
with it over the years.

3 Methodology

The procedures followed during the data collection phase were empirical. First, the
authors depended on credible publication venues to collect a sample of publications.
The International Journal of Digital Evidence, Digital Forensics Research Conference,
and Springer and Elsevier were powerful resources for collecting the data needed for
the study. Using the collected articles, the authors built a database containing a
sample of five hundred (n=500) research papers related to DFS. The breadth in the
publications helped cover a wide range of research topics in the discipline across
different time periods.

 Research Trends in Digital Forensic Science 147

The process of categorizing the data spanned over two months. It started in the
middle of June 2011 and carried on until the middle of August 2011. Here, the authors
note that the categorization process was manual. Because the process was manual,
bias could have possibly been introduced into the methodology due to human error.
The authors note that this is a limitation in this study and that the researchers strived
to remain accurate throughout the categorization phase.

During the categorization of the papers, each paper that was added to the database
was examined and classified using the following categories:

• Publication year
• Forensic type (Forensic/Anti-Forensic)
• Research type (Primary, Secondary)
• Research methodology type (Exploratory/Constructive/Empirical)
• Research category (Basic/Applied)
• Research method (Qualitative/Quantitative)
• Location/Country of the research
• The originator of the research (Academic/Business or company/ Co-operation of

both)
• Cited/Not cited

Based on the abovementioned categories, the authors objectively classified each paper
and documented that categorization accordingly.

4 Findings and Analysis

The final database contained a sample of five hundred publications (n=500). The data
for each classification category was then analyzed and graphs were created to extract
general trends. The findings for each of the categories are shown in the sections that
follow.

4.1 Publication Year

In this category, the authors examined the percentage of publications produced over
time, as shown in Figure 1. Figure 1 illustrates how the number of research
publications increased over the years. Starting in 1992, the number of published
papers was insignificant compared to the number of papers that were published in
2010. This trend indicates that the number of studies in DFS has steadily increased
throughout the years, though there was a slight decrease in the number of published
research between 2002 and 2003 then a steady output of publications between 2007
and 2008.

The research findings also highlight a dramatic decrease in the number of research
publications published between 2010 and 2011. A reason for this drop could be that
data collection ceased before the end of August 2011 and that publication houses
typically issue papers that were presented in 2011 in 2012 editions of journals or
conference proceedings. Moreover, it is important to take into consideration the

148 I. Baggili et al.

general length of time requ
research papers. The autho
papers collected. Hence, a
will progress as DFS con
organizations.

Fig. 1. Di

4.2 Forensic Type

From the collected data, a
research papers into foren
showed that only 2% of
publications discussed foren

One plausible explanatio
the effectiveness of forens
focus. It is likely that muc
academic community alto
development in anti-foren
Irrespective of the reasons
neglected as a research topi

4.3 Research Type

The results in this categor
categorized as primary res
These results signify that
novelty and infancy of this

ired to submit, accept, approve, and publish peer-review
ors note that this is a potential limitation in the sample
prediction can be made that the annual increase of pap

ntinues to capture the attention of more researchers

igital forensic science publications over time

a conspicuous trend was noticed. After categorizing
nsic and anti-forensic related research papers, the res

the studies discussed anti-forensics, while 98% of
nsics.

on for this is that most scientific research aims at improv
sic examination, whereas anti-forensics has the oppo
ch of the anti-forensics innovation occurs outside of
ogether. Consequently, a relatively low proportion
nsics appears in the peer-reviewed scientific literatu
s, what can be observed is that, overall, anti-forensic
ic in DFS.

ry illustrate that 83% of the analyzed publications w
earch studies, and 17% were secondary research stud
DFS is being driven by primary research, reflecting
science.

wed
e of
pers
and

the
ults
the

ving
osite

the
of

ure.
s is

were
dies.

the

Another pattern the auth
illustrates the results obtain

Fig. 2.

From Figure 2, one can
increase from 1992 until 2
peak with 89 publications.
52 publications in 2011 is
representative of all the rese

As for secondary researc
of research. Overall, there
years.

4.4 Research Methodol

The authors examined the
publications. The three typ
process were: constructive
obtained from the data anal

As shown in Table 1, t
methodology. The reason f
Therefore, additional know
indirect observation or exp
utilization of the empiric
percentage of primary res
gaining knowledge from a d

Research Trends in Digital Forensic Science

hors analyzed was research output type over time. Figur
ned from that analysis.

Primary and secondary research over time

clearly observe that primary research studies continued
010 with some minor fluctuations. In 2010 it reached
Again, a plausible explanation for the decrease from 89
that the publication sample used in this research was

earch studies that were conducted in 2011.
ch studies, Figure 2 demonstrates fluctuations in this t
has been a slight decline in secondary research in rec

logy

e research methodologies used in each of the samp
pes of research methodologies used in the categorizat
e, empirical and exploratory. Table 1 shows the res
ysis process.
the largest percentage of papers, 36%, used an empir
for this may be due to the fact that this field is still n

wledge can be gained by using methods such as direct
perience. Furthermore, a reason for the high percentage
cal research methodology could be linked to the h
search, which depends on collecting original data a
direct observation [15].

149

re 2

d to
the

9 to
not

type
cent

pled
tion
ults

rical
new.
and
e of
high
after

150 I. Baggili et al.

Ta

Resea

Em
Ex
Co

The results also indicat

methodology. The plausibl
many exploratory studies a
science.

Finally, 31% of the res
Constructive research is hi
plausible explanation for th
from a computer science
research methodologies. To
analyzed further, as shown

Fig

Speaking generally, ther
studies, with some fluctu
constructive and empirical
inaccurate because of the
published in 2011.

able 1. Research methodologies used

arch methodology % of sample
papers

mpirical 36 %
xploratory 33 %
onstructive 31 %

te that 33% of the research papers used an explorat
le explanation for that could be that since DFS is n
are being pursued to gain a deeper understanding of

search papers used a constructive research methodolo
ighly linked to the computer sciences, and so is DFS
his finding is that most researchers in this domain co
background, thus many are trained to use construct

o examine the research methodology over time, data w
in Figure 3.

g. 3. Research methodologies over time

re has been consistent growth in the number of explorat
uation in recent years in the rates of publication
l studies. The authors note that the figures for 2011
e sample’s misrepresentation of the literature that w

tory
new,

the

ogy.
S. A
ome
tive
was

tory
of

are
was

4.5 Research Category

Research can be categori
demonstrates that 81% of re
shown in Table 2.

Table

Res

Applied research deals

empirical methodologies [1
basic research tends to e
principles that might not ad
of worry to the field of DFS
more basic research should
foundational elements of th

Fig. 4. Res

To gain a more thorou
research over time as show
research publications and b
in 2009). From year 200
reasonably steady (with a sl

Research Trends in Digital Forensic Science

y

ized as applied or basic research. The collected d
esearch studies are applied, and only 19% are basic. Thi

2. Research category (Applied and Basic)

search category % of sample
papers

Applied 81 %
Basic 19 %

with solving practical problems and generally empl
6]. This sustains the previous trends described. In contr
expand the knowledge and understanding of essen
dd any direct benefit or conclusions. This might be a ca
S, since it is new. The authors speculate on whether or

d be pursued by scientists in this domain to strengthen
his discipline.

search category (Applied and Basic) over time

ugh understanding, the authors analyzed the category
wn in Figure 4. The gap between the number of appl
asic research publications is presently wide (57 in 2010

06 to 2011, the rate of basic research publication w
light increase in 2010 followed by a decrease in 2011).

151

data
is is

loys
rast,
ntial
ause

not
the

y of
lied
, 56
was

152 I. Baggili et al.

The authors speculate th
discipline that has been dri
that may not have had trad
DFS argue that the nature o
research in this domain refl

4.6 Research Method

Table 3 shows another sig
80% of the research studi
quantitative. The fact that
decision making makes it u
qualitative research [16]. In
authors analyzed the researc

Res

Q
Q

Fig. 5. Qu

Figure 5 clarifies the r
volume of quantitative re
steadily increased over the
sharp spikes, one in 2004 (
2010).

hat these results could be attributed to the fact that DFS
iven by experienced and applied practitioners in the fi
ditional academic research training. Many stakeholders
of the field is applied and therefore the amount of appl
ects that notion.

gnificant finding in DFS research trends. It illustrates t
ies were categorized as qualitative and only 20% w
the qualitative method investigates the why and how

understandable as to why there is such a high percentage
n order to further investigate the research methods used,
ch method used over time as shown in Figure 5.

Table 3. Research methods used

search method % of sample
papers

Quantitative Research 20 %
Qualitative Research 80 %

uantitative and qualitative research over time

elationship between the research methods and time. T
search (as measured by published research papers)
e years. Qualitative research, however, experienced t
(24 from 8 in 2003), and in 2009 (69 from 2008, and 8

is a
field
s in
lied

that
were
w of
e of
 the

The
has
two
1 in

 Research Trends in Digital Forensic Science 153

Overall, these graphs illustrate that both research methods are increasing. The
significant drop in qualitative research in 2011 could also be attributed to the
aforementioned sample problem; the data was collected before all the 2011 research
studies were published.

4.7 Location (Country of Origin) of Research

It is important to highlight the location of research publications because it leads to the
discovery of the countries that are pursuing research initiatives in DFS. Therefore, the
data collected was classified based on the institution and/or organization’s country
that issued the study. Some of the publications were issued in one country, yet a few
were issued in co-operation between international universities and communities.
Table 4 shows each country and the number of published articles released from that
specific country.

Table 4. Publications by country

Country # of Papers % of sample

USA 228 42.9

UK 49 9.2

Australia 37 7.0

China 23 4.3

Korea 22 4.1

India 17 3.2

Germany 16 3.0

Ireland 15 2.8

Italy 13 2.4

Taiwan 10 1.9

Canada 9 1.7

France 7 1.3

Japan 7 1.3

Malaysia 7 1.3

Hong Kong 6 1.1

UAE 6 1.1

Netherlands 6 1.1

Singapore 6 1.1

Sweden 5 0.9

Norway 5 0.9

South Africa 5 0.9

Belgium 3 0.6

New Zealand 3 0.6

Poland 3 0.6

Greece 2 0.4

Brazil 2 0.4

Finland 2 0.4

154 I. Baggili et al.

Table 4. (Continued.)

Iran 2 0.4

Switzerland 2 0.4

Saudi Arabia 2 0.4

Turkey 2 0.4

Algeria 1 0.2

Croatia 1 0.2

Romania 1 0.2

Luxembourg 1 0.2

Indonesia 1 0.2

Mexico 1 0.2

Pakistan 1 0.2

Uganda 1 0.2

Spain 1 0.2

Qatar 1 0.2

Table 4 illustrates that the United States of America holds the highest number of

publications at 42.9% of the total sample. The United Kingdom comes in second
place with a significant difference in percentage at 9.2%. China, Korea, India,
Germany, Ireland, Italy, Taiwan, and Canada follow with different percentage
variations at 4.3%, 4.1%, 3.2%, 3.0%, 2.8%, 2.4%, 1.9%, and 1.7% respectively.

4.8 Research Originator

One of the categories used in this study to classify research articles was the originator
of the research studies. Some of the papers were published by professors and
academic experts, whereas others were prepared by digital forensic practitioners.
Additionally, some of the publications were a cooperative effort between academia
and private sector organizations. There have been continuous deliberations amongst
experts in DFS regarding a stronger collaboration between academia and private
sector with regards to DFS research. The authors thought it would be interesting to
explore how much of the research originated from academic institutions, how much
originated from companies, and lastly, the amount of publications in which companies
and academic institutions jointly collaborated on. Table 5 shows the percentage of
papers categorized by the originator.

Table 5. Research originator

Originator % of sample
papers

Academic 60 %
Industry 29 %
Joint 10 %
N/A 1 %

 Research Trends in Digital Forensic Science 155

Table 5 depicts that 60% of the publications were issued by academics. This high
percentage indicates that universities and academics are the most productive in terms
of research in DFS. Furthermore, 29% of the publications were issued by companies
or organizations that were either interested or invested in DFS. Lastly, only 10% of
the research papers stemmed from a cooperative effort between academics and
organizations. The authors couldn’t trace the origin of 1% of the collected
publications.

These results illustrate a clear dichotomy between academia and organizations
when it comes to DFS research. The authors understand the importance of
collaboration between academics and private organizations since the science of digital
forensics is new and concurrently in practice.

4.9 Cited Papers

It is accepted practice to regard impact publications to have a significant number of
citations. Generally a large number of citations for a publication indicates that it is
useful, effective, and in demand. From the five-hundred (n=500) publications that
comprised the study, some were cited, and some were not. During this process,
Google Scholar was used in order to check if an article was cited or not. Table 6
shows the percentage of cited and non-cited papers.

Table 6. Cited and non-cited articles

Cited/non-cited % of sample
papers

Cited articles 66 %
Non-cited articles 34 %

The percentage of citied articles was 66%, unlike the percentage of non-cited

articles which was 34%. This may indicate that DFS is gaining more attention by
academics and organizations. Of course, the number of cited papers will continue to
increase. Perhaps the more interesting metric is the proportion of papers which are
cited – as this may indicate the proportion of the literature which is relevant and
useful to other authors (and perhaps, indirectly, to industry and law enforcement). The
analysis of the number of cited publications over time is illustrated in Figure 6.

Figure 6 also compares the number of published articles to the number of articles
cited by publication year. The data shows that the number of publications in the
sample continues to increase. A trend can be noticed as a significant increase in
disparity between the number of articles published and the number cited articles
starting 2009-2011. The authors speculate that this is most likely because newer
articles have not been sufficiently exposed to other researchers for further work to be
built on top of them yet, although it may also indicate a decrease in the proportion of
published articles which may be regarded as seminal to DFS.

156 I. Baggili et al.

Fig.

5 Conclusions and

DFS has captured the atten
the increase in the number
new scientific discipline, w
heading. Therefore, this res
field of science is leaning t
and classifying them into d
patterns.

There were a few limitat
was the difficulty in findin
be classified under. Due to
research publications into r
forensics, network forensic
more accepted ontology of
within the scientific commu

The authors believe th
constantly updated for mo
abreast over research trends
categorized research publi
sample size will lead to bett

This was the first empir
taking. The authors hope t
topic as the discipline of DF

. 6. Articles cited and published by year

d Future Work

ntion of the scientific community. This, in turn, has led
r of studies and research in the discipline. Yet, it is sti

which makes it difficult to clearly predict where this fiel
search paper attempted to highlight the path that this n
towards; by collecting a random sample of papers (n=5
different categories in an attempt to arrive at research tr

tions that affected the research in this paper. The main
ng ontological research topics where research papers co
o this limitation, the authors were not able to classify
research topics such as media forensics, small scale dev
cs etc. This challenge also points to the idea that perhap
f DFS research topics should be researched and accep
unity.
hat the database of this primary research needs to
ore accurate results, allowing DFS stakeholders to s
s across time. As the database grows, the sample size of
ications will increase as well. Constantly increasing
ter and more accurate future results.
rical step in defining the path that this new discipline
that researchers will continue to expand on this resea
FS continues to mature.

d to
ill a
d is
new
500)
rend

one
ould

the
vice
ps a
pted

be
stay
f the

the

e is
arch

 Research Trends in Digital Forensic Science 157

References

1. Wolf, S.: A click away from a mugging. The Australian (2004),
https://intranet.stjohns.sa.edu.au/curriculum/infotech/
ITissues/pdf/A_click_away_from_a_mugging.pdf (retrieved)

2. Solms, P.B.V.: S.Africa: The crime scene of the 21st century. Wall Street Journal (2011)
3. Rogers, M.K., Seigfried, K.: The future of computer forensics: a needs analysis survey.

Center for Education and Research in Information Assurance and Security, Purdue
University, 656 Oval, West Lafayette, IN 47907, USA (2004)

4. Whitcomb, C.M.: An Historical Perspective of Digital Evidence: A Forensic Scientist’s
View. International Journal of Digital Evidence 1(1) (Spring 2002)

5. Rogers, M.: The role of criminal profiling in the computer forensics process. Elsevier Ltd.
Center for Education and Research in Information Assurance and Security (CERIAS),
Purdue University (2003)

6. Patzakis, J.: Computer Forensics as an Integral Component of the Information Security
Enterprise G. Software, California (2003)

7. Oseles, L.: Computer Forensics: The Key to Solving the Crime. INSS 690 (2001)
8. Peron, C.S.J., Legary, M.: Digital Anti-Forensics: Emerging trends in data transformation

techniques (2005)
9. Al-Zarouni, M., Al-Hajri, H.: A Proof-of-Concept Project for Utilizing U3 Technology in

Incident Response. School of Computer and Information Science, Edith Cowan University
(2007)

10. Garfinkel, S.L.: Digital forensics research: The next 10 years. A Naval Postgraduate
School, Monterey, USA (2010)

11. Nanba, H., Kondo, T., et al.: Automatic creation of a technical trend map from research
papers and patents. In: Proceedings of the 3rd International Workshop on Patent
Information Retrieval, pp. 11–16. ACM, Toronto (2010)

12. Gauvin, L., Spence, J.C.: Psychology research on exercise and fitness: Current research
trends and future challenges (1995)

13. Marzluff, J.M., Bowman, R., et al.: A historical perspective on urban bird research: trends,
terms, and approaches. Avian Ecology and Conservation in an Urbanizing World. Kluwer
Academic, Boston (2001)

14. Lu, C., Jen, W., Chang, W.: Trends in Computer Crime and Cybercrime Research During
the Period 1974-2006: A Bibliometric Approach. In: Yang, C.C., et al. (eds.) PAISI 2007.
LNCS, vol. 4430, pp. 244–250. Springer, Heidelberg (2007)

15. Teller, P.: Whither Constructive Empiricism? Philosophical Studies 106(1-2), 123–150
(2001)

16. Gruman, J.C.: Basic vs. Applied Research: Finding a Balance. The Chronicle of Higher
Education 49(29), B.20 (2003)

M. Rogers and K.C. Seigfried-Spellar (Eds.): ICDF2C 2012, LNICST 114, pp. 158–166, 2013.
© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2013

Face Recognition Based on Wavelet Transform
and Adaptive Local Binary Pattern

Abdallah Mohamed1,2 and Roman V. Yampolskiy1

1 Computer Engineering and Computer Science,
University of Louisville, Louisville, KY, 40292, USA

2 Department of Mathematics, Menoufia University,
Shebin El-Koom, Menoufia, 32511, Egypt

{aamoha04,roman.yampolskiy}@louisville.edu

Abstract. Local Binary Pattern (LBP) is a very efficient local descriptor for
describing image texture. In this paper, we propose a novel face recognition
technique based on wavelet transform and the least square estimator to enhance
the classical LBP. First, Wavelet transform is used to decompose a given image
into four kinds of frequency images from which the features of that image can
be extracted. Then, the least square estimation of local difference between each
image pixel and its neighborhoods is used to build the adaptive LBP. Finally,
the classification accuracy is computed using a nearest neighbor classifier with
Chi-square as a dissimilarity measure. Experiments conducted on three face
image datasets (ORL dataset and two avatar face image datasets); show that the
proposed technique performs better than traditional methods (single scale) LBP
and PCA, Wavelet Local Binary Pattern (WLBP) and Adaptive Local Binary
Pattern (ALBP) in terms of accuracy.

Keywords: Face recognition, avatar, Adaptive Local Binary Pattern (ALBP),
wavelet transform.

1 Introduction

Face recognition has become the center of attention of many researchers during the
last few decades because of its wide range of practical applications, including access
control, surveillance systems and biometric identification. However, after all these
years of research to find out proper human face recognition techniques, identification
of avatars in virtual worlds is still an open problem [1].

Face recognition techniques can be divided into two categories [2]: holistic
matching and local feature-based methods. Local Binary Pattern (LBP) is one of the
most popular local feature-based methods.

LBP, first proposed by Ojala et al. [3], is a powerful way for texture description
and it was applied to face recognition for the first time by Ahonen et al. [4]. Later,
some methods further developed LBP for either recognizing human faces or avatar
faces. For example, Yang et al. [5] applied LBP for face recognition with Hamming
distance constraint. Chen et al. [2] used Statistical LBP for face recognition.
Mohamed et al. [6] applied hierarchical multi-scale LBP with wavelet transform to

 Face Recognition Based on Wavelet Transform and Adaptive LBP 159

recognize avatar faces. In this paper, we propose a novel face recognition approach
combining wavelet transform with a new LBP type (adaptive LBP) to recognize both
human and avatar faces. The efficacy of the new method is demonstrated by the
experiments on ORL dataset and two avatars datasets from Second Life and Entropia
virtual worlds.

The remaining of this paper is organized as follows; Section 2 provides an
introduction to wavelet decomposition. In Section 3, an overview of the LBP is
presented. Section 4, presents the proposed method, Wavelet Adaptive LBP
(WALBP). In Section 5, experimental results are presented followed by conclusions
in Section 6.

2 Review of Wavelet Transform

Wavelet Transform (WT) is a popular tool for image analysis. It provides multi-
resolution analysis of the image by using coefficient matrices [7]. It has many
applications in signal and image processing including multi-resolution analysis,
computer vision and graphics. Many articles have discussed its mathematical
background and advantages [8]. WT can be applied in image decomposition for many
reasons [8]:

• Using WT to decompose an image reduces the resolution of the sub-images and
then the computational complexity will also be reduced.

• WT decomposes an image into sub-images corresponding to different frequency
ranges and this can lead to minimize the computational overhead.

• Using WT allows obtaining the local information in different domains (space and
frequency).

Decomposing an image with the first level of WT provides four sub-bands LL1, HL1,
HL1 and HH1 (see Fig 1.a.).

(a)

(b)

Fig. 1. a) Structure of one-level and two-level wavelet decomposition b) an example of
decomposing an image using one-level and two-level wavelet decomposition

160 A. Mohamed and R.V. Yampolskiy

The sub-band LL represents the approximation coefficient of the wavelet
decomposition and it has the low frequency information of the face image [7]. This
information includes the common features of the same class. The other sub-bands
represent the detailed coefficients of the wavelet decomposition and they have most
of the high frequency information of the face image. This information includes local
changes of face image such as illumination and facial expression. To improve
recognition performance we have to enhance the common features of the same class
and remove changes. So, during our experiments we considered only the
approximation images.

Decomposing an image with two scales will give us seven sub-bands [8]: LL2,
HL2, LH2, HH2, HL1, LH1 and HH1 as in Fig. 1.

3 Local Binary Pattern (LBP)

3.1 LBP Operator

The local binary pattern (LBP) operator was proposed by Ojala et al. [3], to describe
local textural patterns. It works by thresholding the pixels in a certain block of an
image with its center, multiplied by powers of two and then added together to form
the new value (label) for the center pixel [9]. The output value of the LBP operator for
a block of 3x3 pixels can be defined as follows [9]:

)(2),(
7

0
ci

i

i
cc ggSyxLBP −=

=

 (1)

where gc corresponds to the gray value of the central pixel, (xc, yc) are its coordinates,
gi (i = 0,1,2,..,7) are the gray values of its surrounding 8 pixels and S(gi - gc) can be
defined as follows:

,0

,1
)(

 ≥

=−
otherwise

gg
ggS ci

ci
 (2)

The LBP operator was extended to use neighborhoods of different sizes to be able to
deal with large scale structures that may be the representative features of some types
of textures [4, 10]. In the following the notation (P, R) will be used as indication of
neighborhood configurations. P represents the number of pixels in the neighborhood
and R represents the radius of the neighborhood. The neighborhood can be either in a
circular or square pattern (Fig. 2 gives an example of a circular neighborhood for the
same neighbor set of pixels but with different values of the radius).

 (P=8, R=1) (P= 8, R=1.5) (P=8, R=2)

Fig. 2. Three different LBP operators [4, 6]

 Face Recognition Based on Wavelet Transform and Adaptive LBP 161

LBP operator can also be extended to other definitions and patterns. One of the
most important and successful extensions to the basic LBP operator is called uniform
LBP (ULBP). An LBP is called uniform if the binary pattern contains at most two
different conversions from 0 to 1 or 1 to 0 when the binary string is viewed as a
circular bit string [4]. For example, 11000011, 00111110 and 10000011 are uniform
patterns. The results of statistical analysis indicated that most of patterns in images
are uniform patterns. Ojala reported that with (8, 1) neighborhood, uniform patterns
account for a little less than 90% of all patterns and with (16, 2) neighborhood,
uniform patterns account for around 70% of all patterns [4].

3.2 LBP Histogram

After labeling an image with the LBP the histogram of the labeled image can be
defined as follows [10]:

1,..,1,0,)),((

,

−=== niiyxfIH
yx

i

(3)

where ‘n’ is the number of different labels produced by the LBP operator, f(x, y) is the
labeled image and I (A) is a decision function with value 1 if the event A is true and 0
otherwise.

To form the LBP histogram, the image has to be divided into sub-regions. Then,
the LBP histogram for each sub-region has to be computed and then all sub-regions
histograms have to be combined to form the feature histogram of the whole image
[11].

4 Wavelet Adaptive LBP (WALBP)

We propose an algorithm to work with gray scale images. These images can be either
from the real world (human images) or from virtual worlds (e.g. Second Life and
Entropia). Our algorithm has three steps: preprocessing datasets, extracting features
and classifying each image to its subject.

4.1 Preprocessing Datasets

For the two virtual world datasets (Second Life and Entropia datasets), we have to get
rid of the background in each image if it is present. The presence of the background of
an image has an effect of identifying that image. To remove the background of an
image we manually cropped the facial portion of that image on the bases that the new
facial image should have two eyes, nose and mouth in each image.

During our experiments we decomposed all facial images using the first level of
decomposition and the low frequency coefficient of decomposition is used in the next
step to extract the facial image features.

162 A. Mohamed and R.V. Yampolskiy

4.2 Adaptive Local Binary Pattern (ALBP)

In an image, to improve the classification performance using the LBP by reducing the
estimation error of local difference between each pixel and its neighbors a new
parameter called weight (wp) is defined in the LBP equation. We call this new
approach Adaptive LBP (ALBP).

So the new definition of the LBP equation will have the following form [12, 13]:

)*(2
1

0
, cpp

P

p

p
RP gwgSALBP −=

−

=

 (4)

where the weight wp can be computed using:

)/(p
T
pc

T
pp ggggw

=

(5)

where
cg
 = [gc(1,1);gc(1,2);…;gc(N,M)] is a column vector that contains all possible

values of any pixel gc(i,j), N x M is the size of an image and
pg
 =

[gp(1,1);gp(1,2);…;gp(N,M)] is the corresponding vector for all gp(i,j) pixels. We have
to note that each weight wp is computed along one orientation 2πp/P for the whole
image.

4.3 Classification

The last step in our algorithm is to classify each face image to its class. We have to
build the distance matrix of the training images and the testing ones using the ALBP
definition and the definition of the Chi-Square distance. The Chi-Square distance has
the following form [4]:

)(
),(

1

2

= +

−
=

N

n nn

nn

YX

YX
YXD

(6)

where X is the testing images and Y is the training images.
The distance matrix is used by the definition of the nearest neighbor classifier to

compute the accuracy rate.

5 Experiments

In this section, we verify the performance of the proposed algorithm on three different
datasets: one real world well known human dataset (ORL) and two virtual world
agents (avatar) datasets (see Fig. 3). The proposed method is compared with well-
known methods of face recognition, PCA, single scale LBP and wavelet LBP.

 Face Recognition Based on Wavelet Transform and Adaptive LBP 163

5.1 Experimental Setup

Three facial image datasets were used to evaluate the proposed WALBP method. The
first one is the ORL dataset. The ORL dataset contains 400 images representing 40
distinct subjects [14]. Each subject has 10 different images. These images were taken
at different times, with varying lighting, pose angle, facial expressions (open eyes,
closed eyes, smiling, not smiling) and facial details (wearing glasses or no glasses).
All the images were taken against a dark homogeneous background with the subjects
in an upright, frontal position and each is grayscale image with a resolution of 92 x
112 pixels [14]. We have used all images in this dataset during our experiments
without cropping the facial portion from each image but we used them as they were in
the original dataset. After applying the first level of wavelet decomposition the
resolution of each image in the ORL dataset was changed from 92 x 112 to 46 x 56.

(a)

(b)

(c)

Fig. 3. Samples of one subject of facial images from: a) ORL dataset b) Second Life dataset c)
Entropia dataset

For the other two datasets, the first one was collected from the Second Life (SL)
virtual world [15]. This dataset contains 581 gray scale images with size 1280 x 1024
each to represent 83 different avatars. Each avatar subject has different 7 images for
the same avatar with different frontal pose angle (front, far left, mid left, far right, mid
right, top and bottom) and facial expression.

The second virtual world dataset was collected from Entropia (ENT) Universe virtual
world [16] and contains 490 frontal images of 98 subjects or avatars (5 images per
avatar) with size 407 x 549 pixels each. Each avatar subject’s images have different
frontal angle and details (wearing a mask or no). The facial part of each virtual world
image used in our experiments was manually cropped from the original images (for the
second Life dataset the size will be 260 x 260) based on the location of the two eyes,
mouth and the nose. Each cropped Entropia facial image was rescaled to the size of 180
x 180 pixels. After applying the first level of wavelet decomposition the resolution of
each face image in the Second Life dataset will be reduced to be 130 x 130 and for
Entropia dataset the new resolution for each face image becomes 90 x 90.

The intensity of all images used in all experiments is normalized to reduce the
variance of illumination.

164 A. Mohamed and R.V. Yampolskiy

5.2 Experimental Results

We performed many experiments to proof the superiority of our algorithm over the
other methods used in experiments.

In the first one we compared ALBP with our proposed method WALBP, in this
experiment the first 5 images from each subject in the ORL were used for training and
the rest were used for testing and then the training and testing sets were swapped. The
average of the two experiments was used as the final accuracy rate. We followed the
same protocol with the other two datasets but with different number of training and
testing images. In SL dataset the first 4 images were used for training and the rest
were used for testing and then the training and testing images were swapped. In ENT
dataset the first 3 images were used for training and the rest for testing and then
training and testing images were swapped. The result of this experiment using
different LBP operators can be seen in Fig. 4.

(a)

(b)

(b)

 (b)

Fig. 4. Recognition rate average using: a) ALBP algorithm b) WALBP algorithm

 Face Recognition Based on Wavelet Transform and Adaptive LBP 165

Table 1. Accuracy rates for SL dataset

Algorithm
The number of training images

1 3 5
PCA 76.71% [17] 84.29% 87.35%
LBP 76.50% [17] 86.37% 89.23%

WLBP 79.55% [17] 88.19% 90.56%
WALBP 84.96% 90.66% 93.77%

From Fig 4 we can recognize that in most of the cases the accuracy rate of using

WALBP is better than that of using ALBP. Also the processing time of using
WALBP is less than that of using ALBP.

We also compared WALBP with PCA, Traditional LBP and WLBP using different
number of training images from each subject and the result are shown in table 1. We
did this experiment using only the SL dataset.

It is very clear from Fig 4 and table I that our proposed method can achieve better
result than the other algorithms in terms of accuracy.

6 Conclusions

In this paper, a novel LBP face recognition approach (WALBP) is proposed based on
a new definition of the LBP operator and wavelet transform to increase the
recognition rate of facial images. Experimental results show the effectiveness of the
WALBP in recognizing faces from both real and virtual worlds. In the future work,
we will add statistical features such as mean and standard deviation to the multi-scale
version of the adaptive LBP to increase the recognition rate of faces and facial
expressions.

References

1. Gavrilova, M.L., Yampolskiy, R.V.: Applying Biometric Principles to Avatar Recognition.
In: International Conference on Cyberworlds, Singapore, pp. 179–186 (2010)

2. Chen, L., Wang, Y.H., Wang, Y.D., Huang, D.: Face Recognition with Statistical Local
Binary Patterns. In: 8th International Conference on Machine Learning and Cybernetics,
Baoding, pp. 2433–2438 (2009)

3. Ojala, T., Pietikainen, M., Harwood, D.: A comparative Study of Texture Measures with
Classification Based on Feature Distributions. Pattern Recognition 29, 51–59 (1996)

4. Ahonen, T., Hadid, A., Pietikainen, M.: Face Description with Local Binary Patterns:
Application to Face Recognition. IEEE Transaction on Pattern Analysis and Machine
Intelligence 28, 2037–2041 (2006)

5. Yang, H., Wang, Y.D.: A LBP-based Face Recognition Method with Hamming Distance
Constraint. In: 4th International Conference on Image and Graphics, Sichuan, pp. 645–649
(2007)

166 A. Mohamed and R.V. Yampolskiy

6. Mohamed, A.A., D’Souza, D., Baili, N., Yampolskiy, R.V.: Avatar Face Recognition
Using Wavelet Transform and Hierarchical Multi-scale LBP. In: 10th IEEE International
Conference on Machine Learning and Applications, Honolulu, Hawaii, pp. 194–199
(2011)

7. Garcia, C., Zikos, G., Tziritas, G.: A Wavelet-based Framework for Face Recognition. In:
5th European Conference on Computer Vision, Freiburg, Allemagne, pp. 84–92 (1998)

8. Mazloom, M., Ayat, S.: Combinational Method for Face Recognition: Wavelet, PCA and
ANN. In: International Conference on Digital Image Computing: Techniques and
Applications, Canberra, pp. 90–95 (2008)

9. Meng, J., Gao, Y., Wang, X., Lin, T., Zhang, J.: Face Recognition Based on Local Binary
Patterns with Threshold. In: IEEE International Conference on Granular Computing, San
Jose, CA, pp. 352–356 (2010)

10. Wang, W., Chang, F., Zhao, J., Chen, Z.: Automatic Facial Expression Recognition Using
Local Binary Pattern. In: 8th World Congress on Intelligent Control and Automation,
Jinan, China, pp. 6375–6378 (2010)

11. Liu, X., Du, M., Jin, L.: Face Features Extraction Based on Multi-scale LBP. In: 2nd
International Conference on Signal Processing Systems, pp. v2 438- v2 441 (2010)

12. Guo, Z., Zhang, L., Zhang, D., Zhang, S.: Rotation Invariant Texture Classification Using
Adaptive LBP with Directional Statistical Features. In: 17th IEEE International
Conference on Image Processing, Hong Kong, pp. 285–288 (2010)

13. Mohamed, A.A., Gavrilova, M.L., Yampolskiy, R.V.: Artificial Face Recognition using
Wavelet Adaptive LBP with Directional Statistical Features. In: 12th International
Conference on Cyberworlds, Darmstadt, Germany (2012)

14. The ORL Database, http://www.cl.cam.ac.uk/research/
dtg/attarchive/facedatabase.html

15. Second Life, http://www.secondlife.com
16. Entropia Universe, http://www.entropiauniverse.com
17. Mohamed, A.A., Yampolskiy, R.V.: An Improved LBP Algorithm for Avatar Face

Recognition. In: 23th International Symposium on Information, Communication and
Automation Technologies, Sarajevo, Bosnia & Herzegovina, pp. 1–5 (2011)

Similarity Preserving Hashing: Eligible

Properties and a New Algorithm MRSH-v2

Frank Breitinger and Harald Baier

da/sec Biometrics and Internet Security Research Group
Hochschule Darmstadt, Darmstadt, Germany
{frank.breitinger,harald.baier}@h-da.de

Abstract. Hash functions are a widespread class of functions in com-
puter science and used in several applications, e.g. in computer forensics
to identify known files. One basic property of cryptographic Hash Func-
tions is the avalanche effect that causes a significantly different output if
an input is changed slightly. As some applications also need to identify
similar files (e.g. spam/virus detection) this raised the need for Simi-
larity Preserving Hashing. In recent years, several approaches came up,
all with different namings, properties, strengths and weaknesses which is
due to a missing definition.

Based on the properties and use cases of traditional Hash Functions
this paper discusses a uniform naming and properties which is a first step
towards a suitable definition of Similarity Preserving Hashing. Addition-
ally, we extend the algorithm MRSH for Similarity Preserving Hashing to
its successor MRSH-v2, which has three specialties. First, it fulfills all our
proposed defining properties, second, it outperforms existing approaches
especially with respect to run time performance and third it has two de-
tections modes. The regular mode of MRSH-v2 is used to identify similar
files whereas the f-mode is optimal for fragment detection, i.e. to identify
similar parts of a file.

Keywords: Digital forensics, Similarity Preserving Hashing, fuzzy hash-
ing, MRSH-v2, properties of Similarity Preserving Hashing.

1 Introduction

Within the area of computer forensics investigators are overwhelmed with digital
data. Traditional books, photos, letters and long-playing records (LPs) turned
into ebooks, digital photos, email and mp3. In order to handle this amount of
data, investigators need methods to automatically identify suspect files (e.g.,
images of child abuses). Normally the proceeding is quite simple: the investiga-
tor computes hash values (fingerprints) of all files which he finds on a storage
medium and performs database lookups, e.g., within the widespread National
Software Reference Library (NSRL, [1]). Besides finding exact duplicates using
a cryptographic Hash Function, it is also necessary to uncover similar files using
Similarity Preserving Hashing.

M. Rogers and K.C. Seigfried-Spellar (Eds.): ICDF2C 2012, LNICST 114, pp. 167–182, 2013.
c© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2013

168 F. Breitinger and H. Baier

Cryptographic Hash Functions are well established and thus a clear definition
exists. This is in contrast to Similarity Preserving Hashing where the (preferable)
properties are unclear although there are existing approaches like ssdeep from
Kornblum ([2], 2006), sdhash from Roussev ([3], 2010) or bbHash from Breitinger
et al. ([4], 2012).

There are two main contributions of this paper. On the one hand it discusses
foundations for Similarity Preserving Hashing as a first step towards a definition
of Similarity Preserving Hashing. Our discussion comprises a uniform naming,
five important properties, which we consider to be eligible to be part of a def-
inition of Similarity Preserving Hashing and two use cases to understand our
proposals. On the other hand, we present a new version of the existing Similar-
ity Preserving Hashing algorithm MRSH ([5]). We show that our version MRSH-v2

is compliant with the proposed defining properties. Moreover, practical tests
and a theoretical analysis reveal that MRSH-v2 outperforms existing approaches
with respect to run time performance and allows to detect similar files and file
fragments.

The rest of the paper is organized as follows: At first we present properties
(Sec. 2.1), use cases (Sec. 2.2) and Bloom filters (Sec. 2.3) for Similarity Pre-
serving Hashing in the section on foundations (Sec. 2). Next, we shortly review
related work in Sec. 3. Sec. 4.1 introduces the concepts of the existing algo-
rithm MRSH, while Sec. 4.2 deals with our improved variant MRSH-v2. Based on
the foundations and the new algorithm, Sec. 5 evaluates MRSH-v2 and presents
experimental results. Sec. 6 concludes our paper.

2 Foundations of Similarity Preserving Hashing

The topic uses the term Similarity Preserving Hashing that is also known as
similarity digest, fuzzy Hash Function or similarity preserving Hash Function.
Within a first step we like to come up with a uniform naming.

Each existing approach consists of two sub-functions: one for generating hash
values / fingerprints1 and one for comparing them. Thus, Similarity Preserving
Hashing2 (abbreviated SPH) consists of a

similarity preserving hash function, (abbreviated SPHF) which is a func-
tion / algorithm to create a hash value / fingerprint and a

comparison function, (abbreviated CP) that outputs a similarity score for
two hash values / fingerprints.

In contrast to cryptographic Hash Functions, we do not expect a fixed-length
hash value (more in Sec. 2.1) and therefore the term hashing might be a little
bit confusing. Nevertheless, as some uses cases are almost identical to traditional
Hash Functions, we agreed on this term.

Talking about the similarity of files, one usually distinguishes between byte
level similarity and semantic similarity. In what follows we treat each input as a

1 The term fingerprint or hash value is due to cryptographic Hash Functions.
2 We also use the long term Approach for Similarity Preserving Hashing.

SPH: Properties and MRSH-v2 169

byte sequence and consider byte level similarity. Thus, when talking about the
similarity of two files, we generally talk about the similarity of the underlying
byte sequences.

2.1 Properties of Similarity Preserving Hash Functions

We bring five properties for Similarity Preserving Hashing into being that are dis-
cussed in the following and later used as a benchmark. This results from the neces-
sity thatwedonothavea clear definition rightnow. Inspiredby cryptographicHash
Functions we distinguish between general properties (P1-P3) and security proper-
ties (P4-P5). Finally this sections briefly discusses the impact of the properties to
the existing algorithms: ssdeep ([2]), sdhash ([3]), and bbhash ([4]).

General Properties for SPH

P1 - Compression. The output (hash value) of a SPHF is much smaller than
the input (the shorter the better). In contrast to traditional Hash Functions
we do not expect a fixed-length hash value. The reason for compression is
two-spread. First, a short hash value is space-saving and second, the com-
parison of small hash values is faster.

P2 - Ease of Computation. Generating a hash value is ‘fast’ in practice for
all kinds of inputs. This is comparable to the property of a classical hash
function like SHA-1. It is obvious that ease of computation is a prerequisite
for a SPHF to be usable in practice.

P3 - Similarity Score. In order to compare two hash values we need a ‘com-
parison function’3. Input of the comparison function are two hash values,
its output is a value from 0 to X , where X is the maximum match score.
A match score of X indicates that the hash values are identical or almost
identical, which implies that the input files are identical or almost identical,
too. Preferably the similarity score is between 0 and 100 and represents a
percentage value. If the comparison function is linear, it is easy to map the
match score in [0, X] to the corresponding value in [0, 100].

Security Properties for SPH

P4 - Coverage. Every byte of an input is expected to influence the hash value.
We remark that this property is formulated in a statistical way. It means
that given a certain byte of the input the probability that this byte does
not influence the input’s digest is insignificant. Otherwise it is possible that
small changes will be uncovered. This property is in conformance with the
corresponding characteristic of classical hash functions.

P5 - Obfuscation Resistance. It is the difficulty to achieve a false negative
/ non-match. For instance, let f be a file e.g., a suspect file. Then it should
be difficult to manipulate f to f ′ so that a comparison yield a non-match
but they are still very similar.

3 In most cases the comparison of similarity preserving hash values is more complex
than for traditional hashes where we can use the Hamming distance.

170 F. Breitinger and H. Baier

2.2 Use Cases

This section demonstrates that within the area of Similarity Preserving Hash-
ing both mentioned security properties are sufficient. Assuming the applications
computer forensics, malware or junk mail detection, which are reasonable in
our mind, we identified two common aspects: file identification and fragment
detection, which are explained in the following.

File Identification. The mentioned applications mostly use databases con-
taining hash values of known inputs e.g., it stores fingerprints of known malware
or files from previous investigations. Later on, if the application is faced with
an unknown input, it generates the fingerprint and performs database lookups.
Depending on the underlying database, this processing categorizes files into the
categories: known-to-be-good, known-to-be-bad and unknown input.

Blacklisting. The main challenge for an active adversary is to hide suspect
(=known-to-be-bad) files from an automatic identification through a 3rd party
e.g., investigators, anti-virus software or junk mail scanner. As this is easily
feasible for cryptographic Hash Functions by flipping a single bit, it should not
be possible within the area of SPH. This concludes P5 - obfuscation resistance.

Whitelisting. Within the area of whitelisting we believe that cryptographic
Hash Functions are the mean of choice. For instance, an active adversary is able
to manipulate the ssh daemon of an operation system and include a backdoor.
Thus, the original file and the modified file are still very similar although it is a
malicious ssh daemon.

As whitelisting is out of scope we argue that traditional security properties like
preimage-resistance, second preimage-resistance and collision resistance are not
necessary for SPH - no one likes to manipulate a file to look like a suspect file.

Fragment Detection. Another opportunity for SPH on the binary level is its
ability to identify file fragments e.g., 200kiB out of 1MiB. One possible scenario
is the computer forensics. For instance, an investigator receives a hard disk which
is formatted in quick-mode. Thus he is only able to analyze the low level hdd
blocks. If a match is identified, a known-to-be-bad files were present before the
deletion. In the best case he even may recover the file.

2.3 Bloom Filters and the Comparison Function

A very promising way to represent hash values for SPH are Bloom filters because
they allow a fast comparison using the Hamming distance. According to this,
we briefly describe Bloom filters in general followed by a possible comparison
function (CP) as mentioned in Sec. 2.

Bloom Filters. A Bloom filter is an array of m bits (all set to zero) and used to
represent a set S of n elements. In order to ‘insert’ an element s into the filter, k
independent Hash Functions are used where each Hash Function outputs a value

SPH: Properties and MRSH-v2 171

between 0 andm−1. For instance, to insert s we compute h0(s), h1(s), . . . hk−1(s)
where each h outputs a value between 0 and m− 1. Thus, each Hash Function
sets the corresponding bit within the Bloom filter.

To answer the question if s′ is in S, we compute h0(s
′), h1(s

′), . . . hk−1(s
′) and

look if the bits at the corresponding positions are set to one. If all bits are set to
one, s′ is assumed to be within S with a high probability. Otherwise, if at least
one bit is set to zero, we know that s′ is not within S.

Comparison Function for Bloom Filters. This paragraph explains Rous-
sev’s idea ([3,6]) for a CP. The proceeding how to obtain a set S out of the input
is explained later in Sec. 4.1. Hence, the rest of this section only explains how
we compare Bloom filters.

Let bf, bf ′ be two Bloom filters, let |bf | denote the number of bits set to one
within a Bloom filter and let e be the amount of bits in common (e = |bf ∩ bf ′|).
To define the similarity of two Bloom filters, we have to make some assumptions
of the minimum and maximum overlapping bits by chance wherefore Roussev
introduces a cutoff point C. If e ≤ C, then the similarity score is set to zero.

C is determined as follows

C = α · (Emax − Emin) + Emin (1)

where α is set to 0.3 4, Emin is the minimum number of overlapping bits due
to chance and Emax the maximum number of possible overlapping bits. Thus
Emax is defined as

Emax = min(|bf |, |bf ′|). (2)

As described in Sec. 2.3, k denotes the amount of hash functions and m the size
of a Bloom filter in bits. Furthermore, let bf denote the amount of elements
within a Bloom filter and p = 1 − 1/m the probability that a certain bit isn’t
set to one when inserting a bit. Thus

Emin = m · (1− pk·bf − pk·bf
′
+ pk·(bf+bf ′)) (3)

is an estimation of the amount of expected common bits set to one in the two
Bloom filters bf, bf ′ by chance. In order to receive a similarity score we use

SFscore(bf, bf
′) =

{
0, if e ≤ C

[100 e−C
Emax−C], otherwise .

(4)

Due to different file sizes, it might be possible that |S| is very large and all bits
within bf 5 would be set to one. To overcome this issue, we create a new Bloom
filter if bf = BFmax. Hence, the final hash value is not a single but a list of
Bloom filters. If we’d like to compare them, it is an all-against-all comparison of
Bloom filter sequences.

4 This is done by best practice.
5 The size m of a Bloom filter is fixed.

172 F. Breitinger and H. Baier

Let SD1 = {bf1, bf2, . . . bfs} and SD2 = {bf ′
1, bf

′
2, . . . bf

′
r} the Bloom filter

sequences (hash values) of two inputs and s ≤ r. If bf1 < 6 or bf ′
1 < 6 then

the original input does not contain enough features and the similarity score is
−1, not comparable. Otherwise the similarity score is the mean value of the best
matches of an all-against-all comparison of the Bloom filters, formally defined
as

SDscore(SD1, SD2) =
1

s

s∑
i=1

max
1≤j≤r

SFscore(bfi, bf
′
j) . (5)

3 Related Work

The beginning of similarity preserving hashing was in 2002 by Harbour who
developed dcfldd6 which extends the well-known disk dump tool dd. dcfldd is
also called block based hashing as it divides an input into fixed-size blocks, hash
each block separately and concatenate all hash values. In order to overcome this
approach it is sufficient to insert / remove one byte in the beginning. Thus the
offset of each block shifts and the resulting hash value is completely different.

Context triggered piecewise hashing (abbreviated CTPH) can be consid-
ered as an advancement of dcfldd which fixes the alignment weakness. It was
presented in [2] by Kornblum in 2006 and is based on a spam detection algorithm
of [7]. The basic idea is equal to the aforementioned block based hashing but
instead of dividing an input into blocks of a fixed length, an input is divided
based on the current context of 7 bytes.

As CTPH was the first Approach for Similarity Preserving Hashing, it was
improved in the upcoming years by [8,5,9,10] with respect to both, efficiency
and security. In 2011 [11,12] did a security analysis of CTPH where the authors
focused on blacklisting and whitelisting and came to the conclusion that ssdeep
fails in case of an active adversary.

Similarity Digest Hashing is a completely different Approach for Similarity
Preserving Hashing and was presented in 2010 by Roussev ([3]) including a pro-
totype called sdhash. Instead of dividing an input into pieces, sdhash identifies
“statistically-improbable features” ([13]) using an entropy calculation.

These characteristic features, a sequence of length 64 bytes, are then hashed
using the cryptographic Hash Function SHA-1 ([14]) and inserted into a Bloom
filter ([15]). Hence, files are similar if they share identical features.

Comparison [16] provides a comparison of ssdeep and sdhash and shows that
the latter “approach significantly outperforms in terms of recall and precision in
all tested scenarios and demonstrates robust and scalable behavior”. A security
analysis ([17]) approved this statement but also showed some peculiarities and
weaknesses of sdhash.
6 http://dcfldd.sourceforge.net; visited 02.05.2012

http://dcfldd.sourceforge.net

SPH: Properties and MRSH-v2 173

4 Multi-Resolution Similarity Hashing (MRSH)

Roussev et al. ([5]) present a powerful variation of ssdeep called multi-resolution
similarity hashing (abbreviated MRSH) that slided into obscurity. Therefore Sec.
4.1 explains the concept of the original algorithm and Sec. 4.2 shows changes to
increase the performance.

4.1 Foundations of MRSH

As briefly described within Sec. 3 the main idea of ssdeep is to divide an input
in several chunks based on the current context of 7 bytes where an input is a
byte sequence. As MRSH is based on ssdeep, this algorithm is explained first.

Let an input IN of length L be given as a byte sequence b0b1 . . . bL−1. In order
to identify the end of a chunk (i.e., to divide the input into blocks), ssdeep uses
a window of size 7 bytes that moves through the whole input, byte for byte. At
each position p (0 ≤ p < L) within IN the window contains a byte sequence
BSp = bp−6bp−5 . . . bp which serves as input for a pseudo random function PRF .
We denote this by PRF (BSp). If PRF (BSp) hits a certain value, the end of the
current chunk is identified and bp is called a trigger point. The subsequent chunk
starts at byte bp+1 and ends at the next trigger point or EOF.

In order to define a hit for PRF (BSp), MRSH uses a fixed modulus called
blocksize b e.g., 256 7. Thus, if PRF (BSp) ≡ −1 mod b then bp is a trigger
point and the algorithm identified the end of the chunk. If PRF outputs equally
distributed values, the probability of a hit is reciprocally proportional to b and
therefore the average chunk size should be b bytes8.

In contrast to ssdeep which uses an algorithm called rolling_hash9 for
PRF , MRSH uses the polynomial Hash Function djb210 over the 7 byte window
which is shown in Algorithm 1. For each window (at each position p within IN)
the window needs to be computed.

Algorithm 1. Polynomial Hash Function djb2

unsigned long hash = 5381
int c
for i = 0 → 6 do � Run through all bytes within the window

c = BS[i]
hash = ((hash<< 5) + hash) + c; � 33 · hash + c

end for
return hash

7 ssdeep used a variable modulus based on the file size.
8 Therefore this modulus is called blocksize.
9 This function is a variation of Adler-32; http://en.wikipedia.org/wiki/Adler-32;
visited 04.06.2012

10 http://www.cse.yorku.ca/~oz/hash.html; visited 21.05.2012

http://en.wikipedia.org/wiki/Adler-32
http://www.cse.yorku.ca/~oz/hash.html

174 F. Breitinger and H. Baier

The biggest difference between ssdeep and MRSH is the hash value represen-
tation. ssdeep uses the non-cryptographic Hash Function FNV ([18]) to hash
each chunk. For each chunk it uses the least significant 6 bits of the FNV hash
and concatenates all of them. Thus the final hash value is a Base64 sequence.

MRSH works completely different. All identified chunks build the set S which
is used as basis for the hash value generation using Bloom filters (see Sec.
2.3). Instead of using k different Hash Functions, MRSH “take[s] the MD5 hash
and split[s] it into four 32-bit numbers and take[s] the least significant 11 bits
from each part” ([5]). For instance, imagine the least significant 11 bits are
010 1000 1010 = 0x28A = 650, thus the bit at position 650 within the Bloom
filter is set to one. Having 4 sub-hashes, each chunk sets 4 bits within the Bloom
filter. After inserting BFmax(=256) chunks into a Bloom filter, it reaches its
maximum and a new filter is created. Hence, the final hash value is a list of
Bloom filters.

As stated before, b is the approximate length of a chunk. In comparison to
ssdeep, MRSH uses a minimum chunk size which is 1

4 of the chunk size b. Thus,

whenever a trigger point is discovered the next b
4 bytes are skipped for PRF , so

the chunk is guaranteed a minimum size of b
4 .

4.2 MRSH Version 2

In the following we present an updated version of MRSH called MRSH-v2. Gen-
erally speaking MRSH-v2 uses its precursor as a base frame but with some ac-
commodations based on the aforementioned properties.

PRF. We impose two important requirements on a pseudo random function
(PRF). First, it has to be very efficient with respect to its computation time
as it is invoked for roughly every byte of the input. Second its output should
behave pseudo randomly.

In his version of MRSH Roussev changed the PRF from rolling_hash to
djb2 which he motivates with respect to performance. As shown in Algorithm 1,
djb2 should be quite fast. However, our tests presented in Sec. 5.2 show different
results. The point is, although djb2 looks less complex, it needs to compute the
hash value over the whole window at each time (7 loops per window) whereas
the original version (rolling hash) is able to remove the last byte and add the
new one to the hash value (only one loop per window).

[5, Sec. 3] compares the randomness of djb2 with MD5 and concludes that
djb2 totally fulfills the expectations of a fast PRF. However, [11, Sec. V] shows
that rolling_hash is suitable for MRSH-v2, too.

As outcome of both requirements we decided to make use of the original rolling
hash as PRF in our algorithm MRSH-v2.

Chunk Hash Function. The motivation to change the chunk Hash Function
from FNV to MD5 is that “FNV is not a collision-resistant function and has
some known collision issues [...] especially for inputs with lower entropy which
would present a serious problem for simple hashes” ([5]).

SPH: Properties and MRSH-v2 175

The latter argument is in contrast to [18] where it says that “the high dis-
persion of the FNV hashes makes them well suited for hashing nearly identical
strings”. Furthermore we argue that collision resistance is not necessary as dis-
cussed in Sec. 2.1. Moreover MRSH reduces the MD5 hash value from 128 bits
to 44 bits in order to insert it into the Bloom filter. Thus, the hash looses its
cryptographic properties.

Due to these facts our version uses FNV-1a (64 bit) and is therefore faster
(some measurement results are given in Sec. 5.1).

Minimum Chunk Size. A minimum chunk size comes with two improvements.
First, it overcomes one of the main attacks on ssdeep presented in [11] called
‘adding trigger points’. Second, it increases the performance as the PRF needs
not to be computed at each offset within the input sequence. A drawback is that
some details may lost. This is the case if two subsequent trigger points have a
distance of at most b

4 − 1.
We illustrate this characteristics on base of an extreme example. We assume

that the input byte sequence has a trigger point every
(
b
4 − 1

)
-th byte. They are

denoted by t0, t1, t2, Then every second trigger point is skipped (only trigger
points with an even index are used). Removing the first trigger point t0 from the
input results in considering the trigger points t1, t3, ... yielding a fundamental
different hash value.

However, for performance reasons we agree on the same minimum chunk size
as used in MRSH, b

4 .

Bloom Filters. MRSH uses Bloom filters of size m = 2048 and inserted
BFmax = 256 chunks each setting 4 bits within the Bloom filter which is in
contrast to our implementation. Within MRSH a maximum of 1024 bits could
be set and each Bloom filter could represent approximately 65,536 byte (using
the blocksize b = 256).

The final hash value of MRSH-v2 is mostly based on the settings identified for
sdhash in [3,6]. Thus the Bloom filter size is still m = 2048 bits but we changed
BFmax = 256 and k = 5 (five sub-hashes). The maximum is therefore 800 bits
and one Bloom filter could represent approximately 40,960 byte (more see Sec.
5.1). Also MRSH has a better compression, MRSH-v2 has a better false positive
rate as shown in Sec. 5.6.

In order to insert the chunk hash value into a Bloom filter, we use the least
significant k · log2(m) bits (MRSH divides the chunk hash values). As a conse-
quence our chunk Hash Function needs at least so many bits which is fulfilled
by FNV-1a using the default setting k = 5, m = 2048. A performant proceeding
is given in Algorithm 2. In addition the design of MRSH-v2 allows to change the
parameters like k,m or the chunk Hash Function.

5 Experimental Results and Evaluation

The following sections discuss the properties from Sec. 2.1 with respect to our
algorithm. Furthermore we compare MRSH-v2 to sdhash, bbHash and ssdeep.

176 F. Breitinger and H. Baier

Algorithm 2. Insertion of a chunk hash into a Bloom filter

h is the chunk hash value

k = 5 � Amount of sub-hashes
m = 0x7FF � m = 2048 − 1
shiftOps = 11 � Calculated by log2(m+ 1)

for i = 0 → k − 1 do � Create k sub hashes
bit = (h >> (shiftOps · i)) & m
setBitInBloomFilter(bit)

end for

All experimental tests were performed on a 64Bit Mac OS X with a 2.4 GHz
Intel Core 2 Duo processor.

5.1 P1 - Compression

Due to the design of ssdeep and thus of MRSH-v2, the hash value length depends
on the blocksize b, the amount of chunks per Bloom filter BFmax and the size of
a Bloom filter m (in bits). Each Bloom filter represents approximately BFmax · b
bytes of a given input and thus the compression ratio is m

8 · 1
BFmax·b .

As discussed in Sec. 4.2 we use m = 2048 bits and BFmax = 160. Assuming
these values, the compression ratio is 2048

8 · 1
160·b = 8

5·b for b > 0 and therefore
adjustable by changing b. Table 1 shows the proportion between blocksize b and
the expected hash value length. For instance, by default we set b = 320 and thus
the compression ratio is at 0.5%.

Table 1. Proportion between blocksize b and the hash value length in percent

b 128 160 256 320 512

expected length in % 1.250 1.000 0.625 0.500 0.313

ssdeep produces outputs having at most 100 Base64 characters. This rather
good compression implies a security drawback as discussed in [11]. Put simply,
if there are too many chunks, the last chunks are combined into one large one.
Due to the poor result in the security analysis we neglect ssdeep and focus on
two other approaches.

The hash values of bbHash and sdhash are proportional to the input length,
where the proportionality factor is 0.5% and 3.3%, respectively. However, the
performance of bbHash isn’t acceptable wherefore we come up with the follow-
ing classification: 1. MRSH-v2 (0.5%), 2. sdhash (3.3%), 3. bbHash (0.5%) and
ssdeep.

SPH: Properties and MRSH-v2 177

5.2 P2 - Ease of Computation

This section is roughly divided into two parts. First, we analyze MRSH-v2 itself as
the performance of MRSH-v2 is based on two issues: the pseudo random function
(PRF) and the chunk hash function. Second, we compared our implementation
against other existing algorithms.

All tests are based on a 500MiB file from /dev/urandom.

PRF. In the following we show that the rolling_hash is faster than djb2. In
order to test both algorithms we separated them, run them ‘stand-alone’ and
used all optimizations modes of the gcc compiler11. Of course, both versions
are improved for performance, e.g., the struct of the rolling_hash from
ssdeep was removed. The result is given in Table 2 12.

Table 2. Performance of two possible pseudo random function (PRF)

optimization mode - O1 O2 O3

djb2 23.620s 11.021s 1.236s 1.241s

rolling hash 9.835s 4.315s 1.138s 1.085s

djb2 / rolling hash 2.402 2.554 1.086 1.143

Actually we cannot explain these serious differences. We recognized them by
comparing
– djb2 (8.532s) and rolling_hash (3.808s) within MRSH-v2 and
– djb2 (1.241s) and rolling_hash (1.085s) as ‘stand-alone’.

Chunk Hash Function. As discussed in Sec. 4.2 we decided for FNV-1a in-
stead of the cryptographic Hash Function MD513. To test MD5 we took a
library provided by OpenSSL and used an optimized version of FNV-1a. The
test is focused on the algorithm time (read-in time is neglected) and solved
using the clock()-function from C++. The result is 10−6s from FNV vs.
1.354s of MD5. Using these functions within MRSH-v2 it is 5.235s vs. 6.569s.

The second part of this section is the comparison against other existing algo-
rithms. We skipped bbHash as its performance is not acceptable and focused on
ssdeep and sdhash. Furthermore we also included SHA-1 as a reference time.
All times were measured using the time command and the algorithm CPU-time
(time denotes this by user-time). The results are shown in Table 3.

As expected SHA-1 outperforms every similarity preserving Hash Function
and sdhash is the slowest one due to the high complexity. The difference between
MRSH-v2 and ssdeep relies on the minimum chunk size which allows to skip some
calculations and an improved implementation of the rolling_hash.

11 http://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html ; visited 21.6.2012
12 We do not measure the time it takes to read the file into a buffer.
13 Due to the minimum hash value length of 55 bits (see Sec. 4.2, Bloom filters) it is

not possible to use djb2 which would be even faster.
14 We used sdhash with 2 threads.

http://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html

178 F. Breitinger and H. Baier

Table 3. Performance comparison of similarity preserving Hash Functions and SHA-1

SHA-1 MRSH-v2 sdhash 2.0 sdhash 2.014 ssdeep 2.8

runtime 2.549s 5.235s 28.641s 28.493s 7.131s

algorithm / SHA-1 1.000 2.054 11.236 11.178 2.798

5.3 P3 - Similarity Score

Our algorithm MRSH-v2makes use of the Bloom filter comparison algorithm from
Sec. 2.3 and findings from [17, Sec. 4.3] including an own improvement. In a first
step we show that the existing algorithm is well suited for fragment detection,
but has drawbacks for file similarity detection. As a result we recommend to use
the original comparison function of sdhash for fragment detection. However, we
modify the algorithm to decide about file similarity, too.

Fragment Detection. We discussed the original comparison algorithm in Sec. 2.3.
We explain its shortcomings in what follows based on an example (a generaliza-
tion is easy). As a result MRSH-v2 makes use of this comparison algorithm for
fragment detection only.

Let f and f ′ be two files where f ′ is a fragment of f , e.g. the first 25% of f .
Let SD = {bf1, bf2} be the hash value of f and let SD′ = {bf∗

1 } be the hash
value of f ′ where |bf∗

1 | < |bf1|.
To receive the similarity score we first have to identify the best matching

Bloom filters where the filter similarity is identified by Eq. (4). Recall,

SFscore(bf, bf
′) =

{
0, if e ≤ C

[100 e−C
Emax−C], otherwise .

(4)

In case of fragments we have e = Emax as e = |bf ∩ bf ′| = |bf ′| and Emax =
min(|bf |, |bf ′|) = |bf ′|. Thus the SFscore(bf

∗
1 , bf1) = 100.

Knowing the best matching Bloom filters, the final similarity score is gener-
ated using Eq. (5). Recall,

SDscore(SD1, SD2) =
1

s

s∑
i=1

max
1≤j≤r

SFscore(bfi, bf
′
j) , (5)

where s = |SD′|, r = |SD| (s needs to be smaller). As s = 1, the SDscore is 100
1 .

To sum it up, we compared two obviously different hash values and resulted in a
100% match score. As f ′ is a fragment of f this algorithm is perfect for fragment
detection.

File Similarity Detection. Besides fragments we also interested in identifying
similar files. Taking the aforementioned example concerning f, f ′ we expect a
file similarity of 25%, if |bf1|, |bf2| are at their maximum and |bf∗

1 | = bf1
2 . In

order to achieve file similarity, there are two adaptations:

SPH: Properties and MRSH-v2 179

1. As proposed in [17] MRSH-v2 makes use of a new function E′
max =

max(|bf |, |bf ′|) in Eq. (4) (the min function is replaced by the max func-
tion).

2. Additionally we replace 1
s by 1

r within Eq. (5). As s ≤ r all Bloom filters
are considered (in contrast to [17], where only the first s Bloom filters are
relevant).

To receive the final similarity score, we first have to generate the SFscore defined
by SFscore = [100 e−C

E′
max−C]. Thus we need to determine e, E′

max and C where

– e = |bf1 ∩ bf∗
1 | = |bf∗

1 |,
– E′

max = max(|bf1|, |bf∗
1 |) = |bf1| and

– C = α · (Emax − Emin) + Emin where

• Emax = min(|bf1|, |bf∗
1 |) = |bf∗

1 |) and
• Emin = m · (1− pk·bf1 − pk·bf∗

1 + pk·(bf1+bf∗
1)) = 117.548

We first estimate the amount of bits set to be one using the following

|bf1| = m ·
(
1− (1− 1

m
)k·|bf1|

)
= 2048 · (1− 0.999511725·160) = 662.386

|bf∗
1 | = m ·

(
1− (1− 1

m
)k·|bf

∗
1 |
)

= 2048 · (1− 0.999511725·80) = 363.442

and calculate C by

C = 0.3(363.442− 117.548) + 117.548 = 191.316

To sum it up, we result in

SFscore = [100
e− C

E′
max − C

] = 100 · 363.442− 191.316

662.386− 191.316
= 100 · 172.126

471.0698
= 36.539.

In the very last step we use the adopted version Eq. (5) (instead of 1
s we use

1
r . Thus we have to divide SFscore by 2 and result in a final similarity score of
18.270.

Implementation. These properties allow to extend our algorithm to have two
modes as listed in Fig. 1.

Regular mode (default setting) is used to identify the similarity between two
files.

Fragment mode (use -f option) is the fragment mode and used to find smaller
parts of a file.

180 F. Breitinger and H. Baier

$ dd if=/dev/urandom of=2MiB bs=1m count=2

$ split -b 512k 2MiB

$./mrsh-v2 2MiB xaa

Similarity of files 2MiB and xaa is: 27.113835

$./mrsh-v2 -f 2MiB xaa

Similarity of files 2MiB and xaa is: 99.417396

Fig. 1. A sample for fragment and similar file detection

5.4 P4 - Coverage

Full coverage means that every byte of an input should influence the output.
By design all bytes influence the final hash value and therefore especially some
greater random changes influence the final hash value. Recall, a high similarity
score (e.g., 100) means that two inputs are very similar but it does not imply
that they are completely identical.

ssdeep and MRSH-v2 have a better (full) coverage compared to sdhash, as
[17] shows that there are bytes which don’t influence the similarity digest at all.
bbHash claims to have a full coverage but this is not attest.

5.5 P5 - Obfuscation Resistance

Obfuscation resistance is the difficulty to achieve a non-match. Thus we roughly
analyze the amount of changes an active adversary has to do in order to overcome
this approach. However, this section does not replace a comprehensive security
analysis.

The most obvious attack is to change one byte within each chunk which will
change all chunk hash values. Recall, the chunk size in bytes is approximately
the blocksize b. Let b = 320. Assuming a file of 1048576 bytes (=1 MiB), this
result in 1,048,576

320 = 3276.8 changes. Due to the comparison algorithm it is not
necessary to have changes within each chunk.

[17] showed the possibility of ‘Bloom filter shifts’. It is possible to reduce the
similarity score down to approximately 25 by inserting data at the beginning of
a file. However, the authors also present a first idea to solve this issue which will
be analyzed for the next upcoming version of MRSH-v2.

Nevertheless the possibility to make changes within a specific file depends on
the file type. Generally we classify files in one of the following categories.

Locally sensitive file types (e.g., jpg, pdf, zip, exe) nearly impossible to manipu-
late at each position (e.g., [11] showed that the jpg-header allows changes).
A flipped bit can have ‘global’ consequences such that the file is not readable

SPH: Properties and MRSH-v2 181

anymore. We believe that an active adversary will not overcome MRSH-v2 for
these kind of types15.

Locally non sensitive file types (e.g., txt, doc, bmp) are mostly small (e.g., doc,
txt) and sometimes not so wide-spread (e.g., bmp). Manipulations only in-
fluence the local area e.g., changing a letter within a txt file. For small files,
reducing b increases granularity of the hash value and force an attacker to
do more changes. Of course there are also large doc-files but they mostly
contain images (which give them their unique characteristic).

5.6 False Positive Rate

Within 4.2 we explained that we have to find a good trade-off between compres-
sion and false positive rate. Due to the changes from [k = 4, BFmax = 256] to
[k = 5, BFmax = 160] we reduced the false positive rate

(
1−

(
1− 1

m

)k·BFmax
)k

=

(
1−

(
1− 1

2048

)4·256)4

= 0.0240 (6)

down to(
1−

(
1− 1

m

)k·BFmax
)k

=

(
1−

(
1− 1

2048

)5·160)5

= 0.0035 . (7)

which is a factor of approximately 7.

6 Conclusion

Currently there are no constant naming, definition or properties for Similarity
Preserving Hashing which are necessary to classify them. But due to the in-
creasing amount of data, it is necessary to rate different approaches. Thus this
paper at hand presents 5 properties: 3 general properties and 2 security related
properties. As a conclusion, the identified properties coincide only partially with
traditional Hash Functions which comes due to the different use cases.

Additionally we improved an existing Approach for Similarity Preserving
Hashing from 2007 with respect to performance and introduced MRSH-v2. We
briefly compared it against other algorithms based on the properties. As a re-
sult MRSH-v2 outperforms existing algorithms with respect to performance. The
hash value length is at 0.5% and only surpassed by ssdeep which failed a secu-
rity analysis. As a highlight MRSH-v2 is the first algorithm that has two modes:
fragment detection and similar file detection.

There are three next steps: First, we like to complete the functions of our
implementation (e.g., read directory) . Second, a detailed security analysis of
MRSH-v2 is needed. And third, we would like to implement sdhash using FNV
and analyze the performance.

15 We focused on the binary level and not on a semantic level where it is possible to
rotate an image.

182 F. Breitinger and H. Baier

Acknowledgments. This work was partly funded by the EU (integrated project
FIDELITY, grant number 284862) and supported by CASED (Center for Ad-
vanced Security Research Darmstadt).

We thank Mustafa Karabat for supporting us with programming and testing.

References

1. NIST, “National Software Reference Library” (May 2012),
http://www.nsrl.nist.gov

2. Kornblum, J.: Identifying almost identical files using context triggered piecewise
hashing. In: Digital Forensic Research Workshop (DFRWS), vol. 3S, pp. 91–97
(2006)

3. Roussev, V.: Data fingerprinting with similarity digests. In: Chow, K.-P., Shenoi,
S. (eds.) Advances in Digital Forensics VI. IFIP AICT, vol. 337, pp. 207–226.
Springer, Heidelberg (2010)

4. Breitinger, F., Baier, H.: A Fuzzy Hashing Approach based on Random Sequences
and Hamming Distance. In: ADFSL Conference on Digital Forensics, Security and
Law, pp. 89–101 (May 2012)

5. Roussev, V., Richard, G.G., Marziale, L.: Multi-resolution similarity hashing. In:
Digital Forensic Research Workshop (DFRWS), pp. 105–113 (2007)

6. Roussev, V.: Scalable data correlation. International Conference on Digital Foren-
sics (IFIP WG 11.9) (January 2012)

7. Tridgell, A.: Spamsum. Readme (2002),
http://samba.org/ftp/unpacked/junkcode/spamsum/README

8. Chen, L., Wang, G.: An Efficient Piecewise Hashing Method for Computer Foren-
sics. In: Workshop on Knowledge Discovery and Data Mining, pp. 635–638 (2008)

9. Seo, K., Lim, K., Choi, J., Chang, K., Lee, S.: Detecting Similar Files Based on
Hash and Statistical Analysis for Digital Forensic Investigation. In: Computer Sci-
ence and its Applications (CSA 2009), pp. 1–6 (December 2009)

10. Breitinger, F., Baier, H.: Performance Issues About Context-Triggered Piecewise
Hashing. In: Gladyshev, P., Rogers, M.K. (eds.) ICDF2C 2011. LNICST, vol. 88,
pp. 141–155. Springer, Heidelberg (2012)

11. Baier, H., Breitinger, F.: Security Aspects of Piecewise Hashing in Computer Foren-
sics. In: IT Security Incident Management & IT Forensics (IMF), 21–36 (May 2011)

12. Breitinger, F.: Security Aspects of Fuzzy Hashing. Master’s thesis, Hochschule
Darmstadt (February 2011), https://www.dasec.h-da.de/offerings/theses/

13. Roussev, V.: Building a Better Similarity Trap with Statistically Improbable Fea-
tures. In: 42nd Hawaii International Conference on System Sciences, pp. 1–10
(2009)

14. SHS, “Secure Hash Standard” (1995)
15. Bloom, B.H.: Space/time trade-offs in hash coding with allowable errors. Commu-

nications of the ACM 13, 422–426 (1970)
16. Roussev, V.: An evaluation of forensic similarity hashes. In: Digital Forensic Re-

search Workshop, vol. 8, pp. 34–41 (2011)
17. Breitinger, F., Baier, H., Beckingham, J.: Security and Implementation Analysis of

the Similarity Digest sdhash. In: First International Baltic Conference on Network
Security & Forensics (NeSeFo) (August 2012)

18. Noll, L.C.: Fowler / Noll / Vo (FNV) Hash (2001),
http://www.isthe.com/chongo/tech/comp/fnv/index.html

http://www.nsrl.nist.gov
http://samba.org/ftp/unpacked/junkcode/spamsum/README
https://www.dasec.h-da.de/offerings/theses/
http://www.isthe.com/chongo/tech/comp/fnv/index.html

M. Rogers and K.C. Seigfried-Spellar (Eds.): ICDF2C 2012, LNICST 114, pp. 183–203, 2013.
© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2013

Investigating File Encrypted Material Using NTFS
$logfile

Niall McGrath and Pavel Gladyshev

Digital Forensic Investigation Research Group
University College Dublin

Abstract. When an encrypted file is discovered during a digital investigation
and the investigator cannot decrypt the file then s/he is faced with the problem
of how to determine evidential value from it. This research is proposing a
methodology for locating the original plaintext file that was encrypted on a
hard disk drive. The technique also incorporates a method of determining the
associated plaintext contents of the encrypted file. This is achieved by
characterising the file-encryption process as a series of file I/O operations and
correlating those operations with the corresponding events in the NTFS
$logfile file. The occurrence of these events has been modelled and generalised
to investigate file-encryption. This resulted in the automated analysis of $logfile
in FindTheFile software.

Keywords: NTFS $logfile file, MAC Times, Encryption.

1 Introduction

Law enforcement agencies (LEA) encounter encryption in relation to many crimes.
The distribution of illegal material [1] [2] is an example of the many offences
associated with file encryption. The use of encryption in general has been cited [3] as
a major hurdle in digital investigations. When file-encrypted material is investigated
and the file cannot be decrypted, cracked nor bruteforced; there is no formal method
or technique to extract evidential value. As a result this research presents a
methodology which identifies the original plaintext filename that was encrypted,
while also displaying the plaintext contents of the file. This is irrespective of the file
being “deleted” or not. A typical scenario that occurs is where an encrypted bundle is
transmitted to a buyer or intended recipient of illegal material. Encryption software
has a common feature of giving the option of deleting the original plaintext file after
encryption. This naturally increases the complexity of a digital investigation but does
not restrict it; how to recover deleted files is outlined in [4]. The NTFS $logfile file
($logfile) is the fundamental evidence artefact upon which the proposed methodology
here is based on.

1.1 Problem Description

The main problem with investigating encrypted material is not being able to establish
an evidential link between the encrypted file and the original plaintext file and also

184 N. McGrath and P. Gladyshev

not being able to view the plaintext contents. The approach taken here to solve the
problem is to observe the process of encryption and then characterise the sequence of
events. Extracting event information from $logfile is central to the approach. This
leads to formulating a methodology, where it is modelled, generalised, automated and
then applied formally in a case-study.

1.2 Related Work

Cryptopometry methodology can only be used to investigate illegal material when it is
encrypted and exchanged using public-private key encryption like OpenPGP or X.509
[5]. Cryptopometry also does not reveal the plaintext contents of the encrypted file. It
is however elaborated on how the computer forensic investigator can use
Cryptopometry to identify encrypted material, examine it and extract evidential value
from it in [5]. Typically this scenario is where a distributor encrypts the illegal
material and posts it into a newsgroup or interest group via anonymous re-mailer or
via an instant messenger system. The accomplice who is subscribed to that group
receives encrypted material and can decrypt it. The anonymity of all involved parties
is preserved and the content cannot be decrypted by bystanders [5].

2 Background Information

In order for an application to encrypt a file’s contents the underlying actions that take
place can be categorised according to 1) type of I/O event i.e. Read or Write, 2) the
processes and the sequence of threads that govern execution and 3) where in the stack
does this executable file get called and in what mode i.e. user or kernel. In addition
there are numerous NTFS design goals outlined in [6] but the specific components
that are of interest in this paper are: $logfile and how it is updated by the Log file
service and Master File Table (MFT). ObjectId and how the Distributed Link
Tracking (DLT) service and how they facilitate forensic examinations are also of
interest.

2.1 I/O File Processing

The steps of the I/O file open process along with the principles of I/O request packet
(IRP) processing are detailed in [6]. It is outlined that the runtime library function
calls the CreateFile function, and then the kernell32.dll-windows subsystem is called
which in turn calls the native NtFileCreate function in Ntdll.dll. The transition into
kernel mode (where NtCreateFile in Ntoskrnl.exe is called) and the subsequent
commands to the Object Manager and the I/O manager and finally the transition back
to user mode are listed.

2.2 NTFS

The journal file for the windows operating system is called $logfile. The $logfile is
used to recover from system crashes and unexpected conditions. It has the standard

 Investigating File Encrypted Material Using NTFS $logfile 185

file attributes and stores the log data in the $DATA attribute. The file is organised
into 4,096 byte pages consisting of two parts: the restart and the logging area. The
restart area contains information on how to start the recovery after a system failure
[7]. There are two types of information recorded here. These are “Redo” and “Undo”
information. Redo information is how to reapply one sub-operation of a fully logged
(“committed”) transaction to the volume if a system failure occurs before the
transaction is flushed from the cache. Undo information is how to reverse one sub-
operation of a transaction that was only partially logged (“not committed”) at the time
of a system failure [9]. These “Redo” and “Undo” operation codes are used in a
composite manner to form the series of log records that are written to the $logfile
when a file operation is performed. The hexadecimal (0x) composite operation codes
are used such as 0x0E/0x0F, 0x02/0x00, 0x08/0x00, and 0x14/0x14 for file creation,
delete, extending, truncation, information setting and renaming [9]. NTFS guarantees
that the transaction will appear on the volume, even if the operating system
subsequently fails. A table of values that represent update records for each of the
following transactions is presented in [9]: Initializing (0x02), de-allocating (0x03) file
record segments, writing the end of file record segments (0x04), creating (0x05) and
deleting(0x06) attributes, updating resident (0x07) and non-resident (0x08), setting
attribute sizes (0x0B) adding (0x0E) and deleting (0x0F) index entry allocation and
setting (0x15) and clearing bits in $bitmap (0x16).

In NTFS the primary data structure is the MFT and every file will have at least
one entry in the MFT. The MFT holds information about the files and directories in
MFT entries. These MFT entries store attributes; where an attribute is a data structure
containing a specific type of information such as a file's filename. NTFS take the
form of reading and writing attributes for a given file e.g. the $DATA attribute which
is common to every file in the file system [6]. The $STANDARD_INFORMATION
attribute contains the timestamp information for each file. This attribute determines
the MAC times for a file when the properties of a file are viewed. There is also
a $FILE_NAME attribute that contains the MAC time information as it relates to
the filename for a given file. Link files are created when a file is opened [8].
Also an ObjectID is described as an attribute that uniquely identifies a file or
directory on a volume. This is listed as the location of a file at some point in time; it
is made up of a VolumeID and an ObjectID. The ObjectID of a file can be queried
using the command line tool fsutil [7].

3 Observation towards a Framework

Using three different encryption packages a file was encrypted. The encryption
process was monitored using Process Monitor. Process Monitor is a system activity
monitoring tool which monitors the flow of IRPs between various applications and
the NTFS driver. It is an example of a passive filter driver. The output of Process
Monitor while encryption is taking place is followed. Since three encryption packages
were observed, it would be superfluous to illustrate all three here as the events are
repetitive; therefore the events of one package (PrivateFile) are illustrated below. The
first operation of note in Fig 1 is a file system QueryOpen executed on the plaintext
file to be encrypted. The QueryOpen is initiated by the encryption software exe

186 N. McGrath and P. Gladyshev

process. A file handle is created and results in a successful retrieval of file attributes
like the MAC times along with allocated size. The stack trace of this event originates
from Kernel mode (ntkrnlpa.exe) to user mode (msvbvm60.dll). Next there is a file
system CreateFile call for read access to the file plaintext file. This results in an
opened status. Similarly the stack trace originates in kernel mode and traverses to user
mode. Finally there is a CloseFile instruction whose job is to close down and free up
the previous IRP associated resources. The file is now ready to be read.

Fig. 1. Initial File System Events with Plaintext file

Fig. 2. File System Events with Ciphertext file

Similarly there are file system calls (QueryOpen, CreateFile and CloseFile)
executed on the ciphertext file. The name of this file is inputted by the user or the
software automatically populates the filename field by just appending the new file
extension to the original plaintext file name, Fig 2. There is also a
QueryStandardInformationFile call to query allocation size and determine if the
entry is a directory or not; the file is now prepared to be written to. There are file
system calls (CreateFile & CloseFile) but in addition there are calls to read the
contents of the plaintext file and also to write the plaintext contents to the first
temporary file, Fig 3.

Fig. 3. Temporary file1 system events

Fig. 4. Temporary file2 system events

Subsequently the plaintext contents are re-written to a second temporary file where
the contents of this are encrypted, in Fig 4. Next there is a new handle created to the
ciphertext file and then the encrypted contents of temporary file 2 are written into
the designated ciphertext file. Please see Fig 5. The two temporary files during the
encryption process are deleted. This is achieved by the file system calling a

 Investigating File Encrypted Material Using NTFS $logfile 187

setDispositionInformationFile call, while passing a boolean variable Delete set to
true. There is a file system QueryOpen called on the plaintext file and this returns the
MAC times of the file. Then there is also a QueryInformationVolume where the
volume- create time and volume serial number are returned. There is also
a flag (SupportObjects) returned to indicate whether Objects are supported or not,
this is a reference to the DLT service mentioned earlier. Since the value returned
here is true there is a subsequent file system control call to retrieve the ÒbjectID.
This is the objectid of the birth volume i.e. volume id of where the plaintext file was
originally created.

Fig. 5. Encrypted material written to ciphertext file

Fig. 6. Timelines and timestamps

When a file is accessed or read for file encryption purposes, the last access time
attribute of the plaintext file will indicate the approximate creation time of the
encrypted file. The approximation is caused by the difference in time or lag between
the plaintext file contents being read, buffered in a temporary file then written to a
second temporary file where the encryption is carried out. Once encryption is
completed, the ciphertext data is written to the output file. The timestamp for when
the IRP_MJ_CLOSE (fileClose) executes on the ciphertext file indicates the last
access timestamp, as can be seen in Fig 6. The ciphertext file create timestamp is later
than the last access timestamp for the plaintext file, in addition the ciphertext file last
access timestamp is later than that of the plaintext file.

4 Characterise the Encryption Process

As can be seen from the observations above the flow of the encryption process can be
characterised as a series of file I/O actions. The flow of data through the encryption
process is depicted in Fig 7. The overall result of observing Privatefile encryption is that
four files are created (when plaintext file in not deleted); two temporary files, a lnk file
and the ciphertext file. The different interfaces (files) that the data flows through can
be seen and it is at these “touch-points” along the process flow where evidence can be
retrieved. This is because particular events, as indicated in [7] that occur at each of these
points are recorded chronologically in the $logfile e.g. each mft update is recorded in
$logfile and its entry is preceded with the following string “FILE0”.

188 N. McGrath and P. Gladyshev

Fig. 7. Flow of data through

4.1 Sequence of Events That Constitute the Encryption Process

The sequence model in Fig 8 displays the order in which events take place. This is
important in understanding the contents of the $logfile because a forensic picture of
events can be constructed. The individual events listed here can be classified into various
groups of event-types see table 1. This is needed in forming event sequence signatures.

Fig. 8. UML Sequence Model (plaintext file not deleted)

 Investigating File Encrypted Material Using NTFS $logfile 189

4.2 Establishing an Event Sequence Signature of the Encryption Process

Three encryption software packages were studied here. It was found that in all three
cases that the events which led to the creation of an encrypted file were consistent
with each other. However it was noted that the frequency of certain events and their
sequence varied slightly. Please see table 1 below where the individual event-types of
the three encryption software packages are summarised. It was noted that when the
plaintext file was deleted during encryption that there was no lnk file created. It was
also noted that when plaintext file was not deleted that Privatefile was inconsistent in
creating a lnk file. Under closer scrutiny this was understood to be conflicting with the
anti-virus (AV) scan that was occurring at the time of experiment. Also noted was that
Meo software didn’t create any lnk nor temporary files and this was irrespective of
any AV scans.

Table 1. Event-types

 Plaintext file deleted Plaintext file not deleted
Event -type Privatefil PGP ME Privatefil PGP ME
Create file for plaintext
Create file for ciphertext

Create lnk file X X X X
Create temp file(s) (2) (1) X X

Read plaintext file contents
Write to temp file (s) (2) (1) X X
Write to ciphertext file

5 Modeling Event Sequence Signature of the Encryption
Process

Having observed the consistent occurrence of specific event types in table 1 during
the file-encryption process, with different frequencies and event-sequences - this led
to the question to see if the encryption process could be generalised using some
formal approach. To this end a suitable formalism was introduced to define the
encryption process as an event sequence signature.

5.1 Intrusion Detection Systems – Event Sequence Signature

In the design of Intrusion Detection Systems (IDS) there is a technique used to detect
an intrusion which is called anomaly detection. The detection assumes attacks to be
well-known sequences of actions. These actions are represented in the form of special
patterns, called attack signatures. Attack signatures can be either mono-event or
multi-event, depending on the number of steps in the corresponding attack scenarios.
Defining multi-step attack signatures in a declarative form has been presented and it
shows how temporal properties of multi-event attack signatures can be modelled in
[10]. The presented model is based on high-level declarative Interval Temporal Logic
(ITL). Temporal logic extends propositional logic with a notion of time by
introducing special temporal operators e.g. always (D), sometime (◊), at the next

190 N. McGrath and P. Gladyshev

moment (D). Adding them allows true statements to be defined. The model in [10] is
a slightly modified subset of ITL and it is called it SigITL (Signature ITL). Rules can
be defined directly where a temporal formula that states a partially-ordered set of
events in a multi-event signature. Each event is regarded as an atomic proposition of
SigITL which are assumed to be mutually exclusive. Then temporal properties like
sequence, any order, partial-order, exclusive choice, non-occurrence and repetition are
defined.

5.2 Modeling Event Sequence Signature for the Encryption Process

By applying the SigITL specified in [10], the events in table 1 are grouped and
modelled according to the artefact or “touch-point” that is recorded in $logfile. In
order to formally define the modelling rules, let the following be mutually exclusive
atomic propositions of SigITL: A = Read Plaintext file process, B = Create and Write
to tmp file (repetition), C = Create lnk file process, D = Create and Write Ciphertext
file, E = Delete Plaintext file (if selected by user; non-occurrence), Z1 = User
selection: decision to delete plaintext file and Z2 = User selection: decision not
to delete plaintext file. The temporal events like sequence, non-order, non-
occurrence and mutually exclusive are defined below. If the events must occur in a
fixed sequential order, then they are expressed as follows:

◊A; ◊B; ◊C; ◊D; ◊E or ◊ (A ;B;C ;D;E)

Equation 1. Expressing an ordered sequence of events

When the events occur in no fixed order then they can be expressed using the “∧”
operator. So the events in table 1 can be summarised as :

◊A ;(◊B∧◊C∧◊D ∧◊E)

Equation 2. Sequence of events with deletion of plaintext file

However it was observed that proposition B must follow A and E must occur last.
Propositions C and D occurred in no fixed order other than after A and B but before
E. The non-occurrence of an event between two others can also be expressed using
the “D￢” operator. The occurrence of at least n repetitions of a particular event type

can also be expressed. In this case the proposition B is expressed as Bn where n= 0,
1, 2 since it was observed that B can occur zero times, once or twice, now the
following sequence signature model is arrived at:

◊A; (◊Bn ∧ D￢E) ∧ (◊CD￢E) ∧ (◊D∧ D￢E); ◊E

Equation 3. Events with non-occurrence and with repetition

Alternatively when there is no deletion of the plaintext file the events can be modelled
as:

◊A; ◊Bn ∧ ◊C ∧ ◊D

Equation 4. Events with no deletion of plaintext file

 Investigating File Encrypted Material Using NTFS $logfile 191

But the exclusive choice between two or more alternative events is represented by
the operator ⊕ . Since there is one decision to be made between Z1 or Z2 then there

is an exclusive choice between Equation 3 and Equation 4. This is modelled: ◊Z1;

(◊A ; (◊Bn ∧ D￢E) ∧ (◊CD￢E) ∧ (◊D∧ D￢E); ◊E) ⊕ (◊Z2; (◊A; ◊Bn∧

◊C ∧ ◊D)). Equivalently, this true statement is now expressed as:

◊((Z1; (A ; (Bn ∧ D￢E) ∧ (CD￢E) ∧ (D∧ D￢E); E) ⊕ (Z2; (A; Bn∧ C ∧ D)))

Equation 5. Model of event sequence signature

Equation 5 represents the generalised event sequence signature that occurs during file-
encryption. This leads to the ability of recognising the occurrence of file-encryption
and the subsequent analysis and investigation of encryption by using $logfile.

5.3 Constraint Satisfaction (CS) and Backtracking

Now that the event sequence signature can be modelled and generalised for the file
encryption process it will provide a basis to automate the methodology. The main
components of the methodology will consist of identifying the atomic propositions
(A, B, C, D, E, F, Z1 & Z2) listed above.

To classify the type of model that Equation 5 represents is not that complex as
it clearly represents a constraint satisfaction problem (CSP). In general CS is the
process of finding a solution to a set of constraints that impose conditions that the
variables must satisfy [11]. The general CSP consists in finding a list of values x =
(x[1],x[2], …, x[n]), that satisfies some arbitrary constraint i.e. a boolean function. In
this research x = (A, B, C, D, E, Z1, Z2). Backtracking is an important tool for
solving CSPs. Backtracking recursively builds candidates to the solutions [12], and
abandons each candidate as soon as it determines that it cannot be completed to a
solution. Backtracking forms the basis of the automated solution to the
methodology, this is implemented in FindTheFile, see section 8.

6 Methodology

6.1 Identify the Encrypted File to Be Investigated

As described [9] when a file or a folder is created then a series of log records are
written out to the $logfile. The hexadecimal series 0B/0B→08/00→0B/
0B→07/07→1B/01 was observed to occur a number of times when the ciphertext
file and other files are created during encryption. After an image of the HDD is
taken and the $logfile is exported for analysis the file name of the encrypted file
under investigation is determined.

192 N. McGrath and P. Gladyshev

6.2 Determine BirthVolumeID of Ciphertext File and VolumeID

The BirthVolume ID of the encrypted file is determined and then matched with the
VolumeID of the volumeID of the volume used. It can be concluded that the
encrypted file was created on the same volume of forensically acquired volume under
investigation. So updates or modifications to the ciphertext file would be in the
$logfile.

6.3 Determine $FILE_NAME of Ciphertext File

The final occurrence of the ciphertext file name is searched for in the $logfile as a
unicode string. This provides a starting point from which to step backwards in the
$logfile, backtracking will be used here. Using the hexadecimal series referred to in
6.1 the $FILE_NAME attributes are searched for in the $logfile. These names are the
Win32 name and the DOS name, see [9] for more detail. By analysing the last
occurrence of $FILE_NAME attribute in the $logfile, the timestamps can be
extracted. There are the three MAC times and the MFT modification time displayed
here. Please see next step in 6.4 below, from this it can be seen when the ciphertext
file was created.

6.4 Examine the Timestamps

NTFS timestamps contain the last modified, last accessed created and the MFT
modified times of a file. These form part of the NTFS $FILE_NAME attribute of a
file. These hexadecimal values are decoded to give date and time in UTC. The
creation date of the encrypted file is given to be at the time when there is
IRP_FILE_CLOSE was executed on the ciphertext file. This time closely
approximates the last access time of the plaintext file.

6.5 Determine Where the Add/Delete Index Entry

For the newly created files the 0x0e/0x0f log record is included in $logfile as this
indicates when a file is added/deleted from the index entry. This value is used to
determine if plaintext file is deleted or not. This index entry includes a $FILE_
NAME attribute.

6.6 Determine Other Files Created during Process

Using the hexadecimal patterns outlined in 6.1 and 6.5 the temporary files created
during encryption are identified. During the Privatefile encryption a temporary file is
used where the data is readin and buffered from the plaintext file. Then the data is
written from this temporary file to a second temporary file, where it is encrypted. The
encrypted material is written to the cipherext file from there. If the plaintext file is
not deleted then a .lnk file is created, this links back to plaintext file.

 Investigating File Encrypted Material Using NTFS $logfile 193

6.7 Use the “FILE0” Entry in $logfile to Step Backwards

Each MFT entry starts with the ascii signature string FILE0 (or 0x46494C4530). By
backtracking using the “FILE0” string and by examining the log details of the newly
created and updated files (temp files, lnk, ciphertext and plaintext) the touch-points
or the interfaces are revealed. This indicates the chronology and the sequence that
would take place i.e. when the plaintext file was last updated with an MFT update on
access time and also the newly created files’ MFT update entries.

6.8 Determine the Original Plaintext File Name

The unicode string value of the plaintext file name can easily be extracted from the
$FILE_NAME attribute in the $logfile. By backtracking in $logfile and passing each
file or touch-point will lead to determining the original plaintext file name. There are
Win32 and DOS $Filename attributes. When deletion occurs the process follows a
different series of log record entries i.e. 0F/0E→03/02→16/15→0B/
0B→08/00→0B/0B→07/07→1B/01. For deletion the composite pattern 0F/0E→03/
02→16/15 precedes the 0B/0B→08/00→0B/0B→07/07→1B/01 composite pattern.
Indicating that deleting (0x0F) and adding (0x0E) index entry allocation, de-
allocating (0x03) and the initializing (0x02) of file record segments. The first part of
the composite is for “Redo” and the second part is for "Undo" operation.

6.9 Examine the contents of the Plaintext file

The contents of the $DATA attribute of the plaintext file can be located and
the hexadecimal values extracted. The contents will remain even if the file in
question was deleted during the encryption process. This is because the $bitmap
attributes and the data is just marked as de-allocated in NTFS. Depending on
the size of the plaintext file, then the data can be stored residently on $mft or non-
residently. The hexadecimal pattern 07/00→07/00 indicates what the resident data is
otherwise the addresses of the clusters or run of clusters where non-resident data is
specified in [7].

6.10 Determine BirthVolumeID of Plaintext File

This is to validate that the plaintext file identified was encrypted on the same
volume. This would be carried out after identifying and locating the original plaintext
file.

7 Case Study

The overall objective of this case study is to validate the methodology to see if it can
establish an evidential link between the encrypted file and the original plaintext file
and also view the plaintext contents. The name of the ciphertext file under
investigation is Secret.txt.pfs. If the file name is obfuscated, renamed or its attributes
changed then these activities can be tracked and traced in the $logfile – so evidence

194 N. McGrath and P. Gladyshev

of this would be detected. This activity was observed to have the 0x05/0x06
composite pair in the $logfile.

7.1 Determine BirthVolumeID of Ciphertext File and VolumeID

Determine the BirthVolumeID by using fsutil. A fsutil query is executed against the
file and the resulting BirthVolumeID is outputted. The identical volumeID is
confirmed to occur in $logfile for the ciphertext file. The BirthVolumeID in Fig 9
and the volumeID in Fig 10 are the same so it can be concluded that the encryption
took place on this volume.

Fig. 9. BirthVolumeID of Ciphertext File extracted using fsutil

Fig. 10. VolumeID of Ciphertext file in $logfile

7.2 Determine $FILE_NAME of Ciphertext File

Find the last occurrence of the ciphertext file name in $logfile and backtracking
search is initiated from this point, please see Fig 11. This is part of the $FILE_NAME
attribute.

7.3 Examine the Timestamps

As can be seen from Fig 11 the four timestamps are create, last modified, mft
modified and last accessed– in this order. The 0x 9EADACA345DCCC01 value
represents the time Thu, 26 January 2012 16:14:54 UTC, this represents the last
modified, mft modified and last accessed times. The last access time of plaintext file
will closely approximate this time.

Fig. 11. Ciphertext file name and timestamps

 Investigating File Encrypted Material Using NTFS $logfile 195

7.4 Other Files Created during the Encryption Process

Using the same pattern 0B/0B→08/00→0B/0B→07/07→1B/01 (the series 0B/
0B→07/07→1B/01 is used to close transactions) and by tracking in the $logfile it was
seen that the other files are created i.e. .lnk and two temporary files. The .lnk file is
created if the plaintext file is not deleted during encryption.

7.5 Plaintext File - (Irrespective If It is deleted)

The plaintext file name is determined to be Secret.txt. After the encryption process
has accessed and opened the plaintext file for reading, the last access time recorded in
the $logfile is 0x1E55289745DCCC01, when decoded is Thu, 26 January 2012
16:14:33 UTC, Fig 12.

Fig. 12. Plaintext file-last access date

7.6 Plaintext Contents

Even if the plaintext file is deleted or not-deleted; the plaintext contents remains in
the $logfile, as can be seen in Fig 13. This is subject to the clusters and sectors not
being overwritten by other data that might be added later. Note: The plaintext
contents is also available in the $MFT – this only occurs when the plaintext file is not
deleted during the encryption process.

Fig. 13. Plaintext content in $logfile

7.7 Determine BirthVolumeID of Plaintext file

This is a validation step and fsutil query is executed against the identified plaintext
file and the resulting BirthVolumeID is outputted. The outputted BirthVolumeID is
identical to what is extracted from the $logfile, please see Fig 14 and Fig 15.

Fig. 14. BirthVolumeID of Plaintext File using fsutil

196 N. McGrath and P. Gladyshev

Fig. 15. BirthVolumeId from $logfile

7.8 Result of Investigation

The name of the plaintext file that was encrypted was revealed to be Secret.txt. The
ciphertext file name is Secret.txt.pfs (as was known) and the secret message which
was encrypted is “Secret Message: Icarus flew too close to the sun!”. The result of
this case study is that it validates the methodology. It validates that the objectives of
being able establish an evidential link between the encrypted file and the plaintext
file while also revealing the plaintext contents of the encrypted file are met.

8 Automation of Methodology: FindTheFile Parser

Since the event sequence signature of the encryption process can be modeled and the
occurrence of the event sequence signature can be classified as a constraint
satisfaction problem- this provided the framework to the approach taken to automate
the methodology and using the backtracking algorithm for searching event signatures.
The use of backtracking is justified as it is the formally recognised solution to a CSP.
As a result the parser was built using the JAVA high-level language. The JAVA
language was selected as the language of implementation because of its platform
cross-compatibility and its extensive library of APIs. The parser was called
FindTheFile and the central class for parsing is the StringTokeniser. This class was
instantiated for each activity that is carried out in the encryption process e.g. Create,
Write, Delete file. These activities have corresponding hexadecimal entries in the
$logfile that facilitates identification of these activities. These hexadecimal entries are
used to initialise each StringTokeniser class with the appropriate tokeniser e.g. for
newly created files the hexadecimal composite of 0x0e/0x0f log record would be used
as a tokeniser to indicate the action of adding a newly created file. The Runtime class
from the java.io.* library is also used to call the external tool called fsutil.

8.1 Implementing the Backtracking and Recursion in Java

In order to apply backtracking to the data of a particular instance of a problem that is
to be solved the following procedural parameters: root, reject, accept, first, next, and
output are implemented. FindTheFile takes the instance data X as a parameter and
would do the following: root(X): return the partial candidate at the root of the search
tree, reject(X,c): return true only if the partial candidate c is not worth completing,
accept(X,c): return true if c is a solution of X and false otherwise, first(X,c): generate
the first extension of candidate c, next(X,s): generate the next alternative extension of
a candidate, after the extension s and finally output(X,c): use the solution c of X, as

 Investigating File Encrypted Material Using NTFS $logfile 197

appropriate to the application. These steps are the pseudo code for implementing the
backtracking solution (with recursion). This solution is the searching for the
occurrence of an event sequence signature which is modeled by equation 5. The use
of the iterator JAVA class was used at the core of this processing. This subsequently
facilitated the automation of the methodology.

8.2 Recognising Temporary and Link Files

In order for the parser to be able to separate various created files (temporary and link)
from the target file (plaintext file), the parser uses straightforward rationale. The
rationale is that a temporary file- no matter what software package creates it, it will
always be deleted. So the parser identifies a temporary file by the sequence of events
that occur in the $logfile i.e. the file is created, processed (written to or read from) and
then deleted. There are hexadecimal operator codes to indicate these actions in the
$logfile. This eliminates any problems that might arise with FindTheFile not
recognising file-naming conventions of a specific encryption software package might
have. In the case of recognising the link file – the rationale is simply; a link file will
always have a .lnk extension and this never changes no matter what encryption
software is used.

8.3 FindTheFile

This parser was successfully implemented and was run against the case study. The
$logfile was loaded and the ciphertext file under investigation was entered and then
the parser was started, please see Fig 16. The output panel was generated with the
results of the investigation. The results of the parser demonstrate that the search
located all files that are associated with the ciphertext file under investigation in the
$logfile, while backtracking (with recursion) was successfully implemented. It also
indicates the original plaintext file name and shows with a check-box if it was deleted
during the encryption or not. A text field is also outputted with the plaintext contents
of the original file, regardless if the file was deleted or not. The timestamps (in UTC)
display creation date of the encrypted file and the last accessed time of the plaintext
file that was encrypted, see Fig 17.

Fig. 16. FindTheFile: Initial Screen

198 N. McGrath and P. Gladyshev

Fig. 17. FindTheFile: Output Panel

9 Performance Evaluation

9.1 Introduction

As stated previously the research objective was to develop and evaluate a
methodology for the investigation of encrypted material using the $logfile where: a)
there is an evidential link established between encrypted file and the plaintext file
and, b) the plaintext contents of the original file is revealed. Receiver Operator Curve
(ROC) analysis is carried out to evaluate how well the methodology performed.

9.2 ROC Analysis

ROC analysis incorporates binary classification which is the classifying of a given set
of objects into two groups on the basis of whether they have some property or not.
The medical community applies this to testing techniques and a typical scenario is the
medical testing carried out to determine if a patient has a certain disease or not. ROC
analysis is a useful technique for visualizing, organizing and selecting/evaluating
classifiers based on their performance. When the area under the ROC curve (AUC) is
computed it will indicate the measure of performance as a scalar of the chosen
classifier. The classifier of interest is the finding the right plaintext file and its
contents in $logfile. It is discussed [13] that when measuring the performance of
medical and quality control tests, the concepts sensitivity (true positive rate - TPR),
specificity (true negative rate - TNR) and 1-specifcity (false positive rate - FPR) are
used; these concepts are readily usable for the evaluation of any binary classifier. The
number of true positives, false negatives, true negatives, and false positives always
add up to 100% of the set. It is explained that in statistical hypothesis testing of an
experiment, there will be a null hypothesis and an alternative hypothesis [13]. Based
on the outcome of the experiment, it will be decided whether to reject the null

 Investigating File Encrypted Material Using NTFS $logfile 199

hypothesis or not. If the result of the experiment is statistically significant, then the
null hypothesis is rejected in favour of the alternative hypothesis.

9.3 Experiment

The following experiment was carried out –where there are six encryption scenarios
i.e. encryption with three different packages and for each package there are two
options –deleting and not deleting the plaintext file. As a result there are six event
sequence signatures to monitor and analyse, for each instance two text files were
encrypted. Then this means there are twelve instances of Equation 5. These are
numbered in column “No.”, please see Table 2. The objective of the experiment is to
determine a measure of performance of the methodology in terms of true-positives
and false-positives. A classification variable (dichotomous) that would indicate results
of instantiating the methodology was selected and this is called ‘Successful’ where
Yes and No are the outcome. Then the binary representation of this is in column
“Binary” where there are two classes 1= success and 0= failure.

9.4 Results and Observations

Using the “1”s listed in “Binary” column Table 2 as the list of true positives (TPs)
which are also listed in column B of Table 3, then a list of false positives (FPs) can be
created - take the TPs and replace “0” with “1” and vice-versa [13]. The FPs are
listed in column C of Table 3. The TP rate is then calculated as being the proportion
of files above this point that can be correctly investigated. This is calculated by
summing the number of TPs above this point in the table and then dividing by the
total number of TPs. These values are listed in column D of Table 3. Similar
calculations are carried out for the FP rate in column E. The true negative (TN) rate is
simply calculated by subtracting the FPR from 1 because FPR=1-Specificity. These
calculations constitute the ROC data and are listed in Table 3.

Table 2. Evaluation for six event sequence signatures

No.
(Instance
of Eqn.5)

Delete
plaintext
File
Yes = Y
No = N

Encryption
Package

Successful
 =Yes

X=No

Binary
 =1

X= 0

1.1 Y Privatefle 1
1.2 N Privatefle 1
2.1 Y Privatefle 1
2.2 N Privatefle 1
3.1 Y PGP 1
3.2 N PGP 1
4.1 Y PGP 1
4.2 N PGP 1
5.1 Y MEO 1
5.2 N MEO 1
6.1 Y MEO X 0
6.2 N MEO 1

200 N. McGrath and P. Gladyshev

Table 3. Data to plot ROC graph

A B C D E F
No.

(Instance of
Eqn.5)

TP FP
TP rate

(Sensitivity)
FP rate

(1- specificity)

TN rate
(Specificity)

1.1 1 0 0 0 1
1.2 1 0 0.091 0 1
2.1 1 0 0.182 0 1
2.2 1 0 0.273 0 1
3.1 1 0 0.364 0 1
3.2 1 0 0.455 0 1
4.1 1 0 0.545 0 1
4.2 1 0 0.636 0 1
5.1 1 0 0.727 0 1
5.2 1 0 0.818 0 1
6.1 0 1 0.909 0 1
6.2 1 0 0.909 1 0

Fig. 18. ROC Plot

Using the data in the Table 3, the TPR as Y-axis and the FPR (recall that FPR = 1-
Specificity) as X-axis were graphed to give the ROC plot in Fig 18. Then the AUC
was computed by calculating the area for each row (where A is the TPR column and
C is the FPR column) using the trapezoid rule [13]. Subsequently, a decision plot can
be drawn up – not included here. The decision plot will allow the choice of the
sequence event signature that minimizes the rate of false positives and aids in the
selection of a specific value to use as a threshold that provides a desired trade-off
between the true positive rate and the false positive rate.

It is pointed out that when the AUC is 1 the accuracy of the classifier is concluded
to be excellent, when AUC is between 0.80 and 0.90 the accuracy of the test is

 Investigating File Encrypted Material Using NTFS $logfile 201

regarded to be good, while 0.70 to 0.80 indicates a fair accuracy level, 0.60 to 0.70 is
regarded to be poor and anything else warrants test failure [13]. The AUC in this
research has been calculated to be 0.91. Therefore it can be inferred that the
methodology yielded an excellent result. The results verify the selection of the
instance of Equation 5 variable (Success/Failure) as a classifier. In relation to
Hypothesis Testing, if the Null hypothesis is H0 (indicating randomness) and the
alternative hypothesis is H1 (indicating non-randomness), then where H0: area ≤ 0.5.
H1: area > 0.5. So in relation to this research, the results of the experiment prove
to be more powerful than a random rule as the AUC is 0.91. As a result H0 is
rejected and H1 is accepted i.e. results from the methodology classifier are
not random and are statistically significant. As a note - any points that lie under
the line of no discrimination in Fig 18, would represent where no discrimination can
be made between TPR or FPR this would be regarded as test failure.

10 Research Contribution

The research presents a unique and original method of investigating encrypted
material and revealing the plaintext. This is achieved by characterising encryption as
a series of file I/O operations rather than a mathematical or a theoretical problem.
Then by following the various points along the I/O process flow evidence artefacts
can be identified in the $logfile that lead to a successful investigation of encrypted
material. A novel approach to the investigation of encrypted material is represented
in the use of event sequence signature modelling which aided the classification of the
presented problem as a constraint satisfaction problem. Then this provided the basis
of implementing a successful backtracking search solution. The methodology was
successfully automated by implementing a parser that parsed the $logfile for events
and was able to output the results of the investigation. A side-channel attack is
defined as any attack based on side-channel information e.g. implementation or
physical details of a cryptosystem. The side–channel attack is not based on brute
force or theoretical weaknesses of the cryptosystem that can be exposed through
cryptanalysis techniques [14]. Therefore it can be inferred that this research
effectively results in a side-channel attack on encryption.

11 Future Work

This methodology will be extended to investigate multiple file formats; image
formats like JPEG in particular. This will result in an investigative technique to
analyse steganographically generated image files (stego-files). Once this is in place
emphasis will be placed on admissibility of all evidence produced by methodology-
thus ensuring Daubert compliance. As an approach to achieve this it is necessary to

202 N. McGrath and P. Gladyshev

get the methodology tested in actual field conditions rather than just in laboratory
conditions. Therefore, it is intended to recommend and promote the use of this
methodology within a LEA environment. Use of the methodology in this way would
identify benefits and drawbacks and they would form the basis of future work.

12 Conclusion

The main outcome of this work is a formal methodology. This methodology has been
validated through the development of an automated system and also through its
practical application on a case study. The performance of the methodology has been
evaluated using a binary classification system of true-positives and negatives and has
resulted in an excellent score. The objective of the methodology has been to
investigate encrypted material while revealing the original plaintext file and its
contents- this has been carried out successfully in a case study. The modelling of the
initial problem and backtracking solution served as a framework to facilitate the
generalisation of the process and subsequent automation – so the presented
methodology was compatible and interoperable with all tested types of encryption.
The methodology relies fundamentally on the evidential value that can be extracted
from the $logfile. The main challenge in this research was that the data in the $logfile
is transient as the contents gets rolled over on a cyclical basis – as fresh data gets
written in to the log file, older data is flushed out. Unfortunately there is insufficient
knowledge on the precise nature of the log-rotation cycle of $logfile in the public
domain.

The following tools were used in this research: AccessData FTK Imager 2.5.1,
WinHex 16.2 3, Process Monitor, Dcode, MS FSUTIL, Privatefile, Meo and PGP
Desktop.

References

1. Carter, H.: Paedophiles jailed for hatching plot on internet (2007)
2. Joseh, S.: Hamas Terror Chat Rooms (December 11, 2007)
3. Siegfried, J., et al.: Examining the Encryption Threat, Computer Forensic Research and

Development Center. International Journal of Digital Evidence (2004)
4. Bunting, S.: The Official EnCase Certified Examiner Guide. Wiley (2008)
5. McGrath, N., Gladyshev, P., Carthy, J.: Cryptopometry as a Methodology for Investigating

Encrypted Material. International Journal of Digital Crime and Forensics 2(1) (January-
March 2010); special edition of selected papers from e-Forensics (2009)

6. Russinovich, M.E., Solomon, D.A.: Windows Internals Covering Windows Server 2008
and Windows Vista. Microsoft Press, One Microsoft Way (2009)

7. Carrier, B.: File System Forensic Analysis. Addison Wesley, Boston (2005)
8. Parsonage, H.: The Meaning of Linkfiles in Forensic Examinations (2010)
9. Cho, G.-S., Rogers, M.K.: Finding Forensic Information on Creating a Folder in $LogFile

of NTFS. In: Gladyshev, P., Rogers, M.K. (eds.) ICDF2C 2011. LNICST, vol. 88,
pp. 211–225. Springer, Heidelberg (2012)

 Investigating File Encrypted Material Using NTFS $logfile 203

10. Nowicka, E., Zawada, M.: Modeling Temporal Properties of Multi-event Attack
Signatures in Interval Temporal Logic. Wrocław University of Technology (2006)

11. Rossi, F., Van Beek, P., Walsh, T.: Constraint Satisfaction: An Emerging Paradigm.
In: Handbook of Constraint Programming. Foundations of Artificial Intelligence. Elsevier,
Amsterdam (2006)

12. Gurari, E.: Backtracking algorithms “CIS 680: DATA STRUCTURES: Chapter 19:
Backtracking Algorithms” (1999), http://www.cse.ohio-state.edu/gurari/
course/cis680/cis680Ch19.html#QQ1-51-128

13. Altman, D.G., Bland, J.M.: Diagnostic Tests – Sensitivity and Specificity. BMJ 308(6943),
1552 (1994) PMID 8019315

14. Chen, S., Wang, R., Wang, X., Zhang, K.: Side-Channel Leaks in Web Applications:
A Reality Today, A Challenge Tomorrow. In: IEEE Symposium on Security & Privacy
(May 2010), http://research.microsoft.com/pubs/119060/
WebAppSideChannel-final.pdf

M. Rogers and K.C. Seigfried-Spellar (Eds.): ICDF2C 2012, LNICST 114, pp. 204–219, 2013.
© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2013

Finding Data in DNA: Computer Forensic Investigations
of Living Organisms

Marc B. Beck, Eric C. Rouchka, and Roman V. Yampolskiy

Cybersecurity Lab, Department of Computer Engineering and Computer Science,
Speed School of Engineering, University of Louisville, Louisville, KY 40292

Abstract. Recent advances in genetic engineering have allowed the insertion of
artificial DNA strands into the living cells of organisms. Several methods have
been developed to insert information into a DNA sequence for the purpose of
data storage, watermarking, or communication of secret messages. The ability
to detect, extract, and decode messages from DNA is important for forensic
data collection and for data security. We have developed a software toolkit that
detects the presence of a hidden message within a DNA sequence, and
deciphers that message. In order to decode a message we are modifying several
existing cryptanalysis tools that have been developed for solving simple
substitution ciphers and compare their performance.

Keywords: Bioinformatics, Cryptography, DNA computing, Natural
languages, Computer forensics, Steganalysis.

1 Introduction

Deoxyribose Nucleic Acid (DNA) is the carrier of hereditary information for every
living organism. DNA is a double helix with two anti-parallel strands containing four
different nucleotides, which are distinguished by one of the four bases adenine (A),
cytosine (C), guanine (G), and thiamine (T). The two strands form base pairs of
interacting complementary bases (A-T and C-G) held together by hydrogen bonds.
DNA has the potential to store vast amounts of data using combinations of those four
nucleotides within genomes that can range to several billion bases in length [1].

Contained within genomic sequences are regions that code for genes that produce
proteins which are collections of amino acids. In the process of translation, an mRNA
sequence that has been transcribed, or copied, from the gene coding region is used as
a template to transform from the four base code of DNA to the 20 base code of amino
acids. The process by which this transformation occurs, known as the genetic code,
was first uncovered by Marshall Nirenberg [2]. In gene coding regions, a codon
refers to a sequence of three nucleotides that determines which amino acid will be
incorporated next during protein synthesis. With four nucleotides, this method allows
43=64 possible combinations. Each codon encodes for one of 20 amino acids, with
exception of the three STOP codons TAA, TAG, and TGA [3], thus allowing for
degeneracy where multiple codon sequences code for the same amino acid. For the

 Finding Data in DNA: Computer Forensic Investigations of Living Organisms 205

purposes of DNA steganography, characters of messages may be encoded by variable
lengths of DNA sequences that may or may not be three bases in length. While not
codons in the strict biological sense, we will refer to these encoding patterns as
codons for the purpose of this manuscript.

1.1 DNA Computing

DNA computing is an emerging new research field that uses DNA molecules instead
of traditional silicon based microchips. The first researcher to demonstrate the
computing capability of DNA was Leonard Adelman, who in 1994 developed a
method of using DNA for solving an instance of the directed Hamiltonian path
problem [4]. In 1997, Ogihara and Ray demonstrated that DNA computers can
simulate Boolean AND and OR gates [5]. The advantage of DNA computers is that
they are smaller and faster than traditional silicon computers, and they can be easily
used for parallel processing. DNA has also been used as a tool for cryptography and
cryptanalysis, using molecular techniques for its manipulation [3]. Bogard et al.
describe how multiple sequence alignment can be used for error reduction in DNA
computing [6].

1.2 DNA as Storage Medium

DNA has recently been investigated as an ultra-compact, long term data storage
medium (Table 1) and a stegomedium for hiding messages. Instead of expressing a
message as a series of ones and zeros, it is represented in DNA as a series of As, Cs,
Gs, and Ts. A number of algorithms have been developed to encode a message in
DNA characters and either disguise these messages as novel DNA sequences or
encapsulate them within existing ones. It has been proven that it is possible to insert
artificial DNA components that contain encoded information into the genomes of
living organisms [3,7-15].

Craig Venter, who led the private effort to sequence the human genome, managed
to create the first cell with a synthetic genome in 2010. The J. Craig Venter Institute
(JCVI) took a computer file containing the DNA sequence of the bacterium
Mycoplasma mycoides, modified it, produced physical DNA from this sequence, and
inserted this DNA into a cell, which then reproduced under control of the new DNA
to create a new bacterium [15]. This led to the creation of a company, Synthetic
Genomics, which focuses on the creation of synthetic genomes for applications
including vaccine design, bioenergy, and biofuels.

Using DNA as storage medium has many advantages, such as long life,
redundancy, and high density. According to Bancroft et al. [16] about 200 novels or
other data each equivalent in size to “A Tale of Two Cities” could be stored in a DNA
microchip with the area of a postage stamp.

206 M.B. Beck, E.C. Rouchka, and R.V. Yampolskiy

Table 1. Life expectancy and storage capacity of various data storage media compared to DNA

Type Life Expectancy Capacity

DNA Millions of years 108 TB per 1 gram [1]

Hard disk ~10 years Up to 4 TB (2011)

CD ~10 years 800 MB

DVD <10 years Up to 17GB

USB flash drive ~10 years,

depending on usage

Up to 256GB (2011)

Tape ~30 years Up to 35 TB

Yachie et al. [8] demonstrated the possibility to use DNA of living organisms as a
data storage medium by inserting the message “E=mc^2 1905!” into the genome of
B. subtilis. Over 99% of the encoded data was later recovered using sequence
alignment methods.

Living organisms are a great storage medium when it comes to preserving data
over timespans ranging in millions of years. When an organism reproduces, it
automatically creates a backup copy of the data contained in its DNA. In addition,
selective pressure and DNA error correction reduce the risk of the data being
destroyed by random mutations. It has been suggested to use cockroaches, which are
known for their resilience and high reproduction rate, as living time capsules for
storing every issue of The New York Times Magazine for a certain year in their DNA
which could theoretically be retrieved 1000 years later [17].

1.3 Error Correcting Approaches

Even though mutations are rare, occurring at a rate between 10-11 and 10-7 per base per
replication in bacteria and higher eukaryotes [18], it is necessary to consider some
form of error detection and error correction since a mutation can destroy the
encrypted message in the DNA sequence. According to Yachie et al. [8], inserting the
data redundantly into multiple loci of the genome is sufficient to allow the retrieval of
stable and compact data without the need for template DNA, parity checks, or
error correcting algorithms.

The comma code and the alternating code provide a form of error detection
capability by encoding the message in a distinguishable pattern [19]. Arita [9]
developed a comma-free code that has error correction capabilities. The message is
translated into binary as an intermediary step. A parity bit is used in the binary code to
keep the respective number of ones and zeroes odd.

The DNA-Crypt software developed by Heider and Barnekow [10] also translates
messages into binary before encoding it in DNA code. It uses a very thorough
approach to error detection by employing two error correction codes: the 8/4
Hamming-code and the WDH-code. The 8/4 Hamming-code is more compact, but it
can correct fewer errors than the WDH code. DNA-Crypt has an integrated fuzzy
controller using singleton fuzzyfication. The fuzzy controller decides which of the

 Finding Data in DNA: Computer Forensic Investigations of Living Organisms 207

two error detecting codes should be used, or none at all. This decision is based on the
individual mutation rate of the DNA sequence that contains the secret message, the
length of the sequence, and its stability over time. An answer is determined from
those three factors by a set of rules based on heuristics [10].

2 Hiding Data in DNA

2.1 Overview

Steganography is the science of hiding information by transmitting secret messages
through unsuspicious cover carriers in a way that makes the presence of any
embedded messages undetectable. The term has its origins in the Greek language and
means "covered writing". While the goal of cryptography is to make a message
unreadable, steganography aims at avoiding suspicion to the existence of a hidden
message [20]. Due to its properties as a data storage medium, DNA can be used for
steganography (stegomedium).

One of the most important problems in espionage is how to get the obtained
information out of the target country without the information being detected by the
enemy. With the appropriate knowledge and technology, a spy could have the
information inserted into the DNA of an organism, and send it out of the country as an
unsuspicious biological sample. It is possible to insert not only text, but also images
and many other forms of digitizable data into a DNA sequence. For that reason, it is
important to develop forensic tools that can detect hidden information in DNA.

Table 2. Genetic code for protein translation (codons that code for the same amino acid
regardless the third position are highlighted) [2, 3]

 Second Position of codon

T C A G

F

i

r

s

t

P

o

s

i

t

i

o

n

T TTT [F]

TTC [F]

TTA [L]

TTG [L]

TCT [S]

TCC [S]

TCA [S]

TCG [S]

TAT Tyr [Y]

TAC Tyr [Y]

TAA [end]

TAG [end]

TGT [C]

TGC [C]

TGA [end]

TGG [W]

T

C

A

G

T

h

i

r

d

P

o

s

i

t

i

o

n

C CTT [L]

CTC [L]

CTA [L]

CTG [L]

CCT [P]

CCC [P]

CCA [P]

CCG [P]

CAT His [H]

CAC His [H]

CAA Gln [Q]

CAG Gln [Q]

CGT [R]

CGC [R]

CGA [R]

CGG [R]

T

C

A

G

A ATT [I]

ATC [I]

ATA [I]

ATG [M]

ACT [T]

ACC [T]

ACA [T]

ACG [T]

AAT Asn [N]

AAC Asn [N]

AAA Lys [K]

AAG Lys [K]

AGT [S]

AGC [S]

AGA [R]

AGG [R]

T

C

A

G

G GTT [V]

GTC [V]

GTA [V]

GTG [V]

GCT [A]

GCC [A]

GCA [A]

GCG [A]

GAT Asp [D]

GAC Asp [D]

GAA Glu [E]

GAG Glu [E]

GGT [G]

GGC [G]

GGA [G]

GGG [G]

T

C

A

G

208 M.B. Beck, E.C. Rouchka, and R.V. Yampolskiy

An obvious choice of a location for inserting a message into a genome would be a
noncoding genomic region. However, those regions might have other critical,
unknown functions [7] and thus, inserting data there might possibly kill the organism.
Therefore Arita et al. [7] suggested that it may be a more reliable solution to encode
the message in the protein coding regions of genes. There are 20 amino acids and one
stop symbol using a total of 64 possible codons [7]. Two or more codons often code
for the same amino acid. Many of these redundant, or synonymous, codons typically
differ in their third position, also known as the wobble base [3]. In Table 2, codons
encoding the same amino acid regardless of the base in the third position are
highlighted. These are the codons that can be used to embed messages.

Table 3. Research on data hiding in DNA

Researcher Year Coding Message Location Organism

Clelland et

al.[11]

1999 Clelland June 6 invasion:

Normandy

artificial human

Brenner et

al.[12]

1999 Comma

code

Not reported Bsp120I E.coli

Wong et al.

[20]

2003 Clelland

variant

Not reported Not reported Deinococcus

radiodurans

Arita and

Ohashi [7]

2004 Arita AO2KEIO1-F ftsZ gene B. subtilis RIK8

Tanaka et al.

[21]

2005 Similar to

Clelland

MESSAGE Artificial

sequence

Artificial DNA

strand

Yachie et al.

[8]

2007 Keyboard

scan

E=mc^2 1905! metB and proB B.subtilis

BEST2136

Heider and

Barnekow[14]

2008 DNA-

Crypt

TB Vam7

sequence

Saccharomyces

cerevisiae

CG783

Jiao and

Gouette [13]

2009 ASCII

8 bit binary

CODING tatAD

gene

B. subtilis

J. Craig

Venter

Institute[15]

2010 Clelland

variant

Multiple messages Not reported Artificial

bacterium

2.2 Coding Schemes

A code is an algorithm which uniquely represents symbols from some source
alphabet, by symbols or strings of symbols in a target alphabet. In our case, the source
alphabet is the English alphabet plus digits and punctuation characters, and the target
alphabet consists of the four nucleotides. A coding scheme is a set of rules that
determines which symbol of the source alphabet is represented by which symbol in
the target alphabet.

 Finding Data in DNA: Computer Forensic Investigations of Living Organisms 209

Types of Coding Schemes. The coding schemes for inserting messages into DNA
that have been developed can be grouped into three categories: schemes using direct
translation, schemes that use intermediate steps for error detection, and schemes that
have been optimized for detectability or efficiency.

The first category uses a straightforward approach by substituting a sequence of
nucleotides of length n for each alphanumeric symbol [10, 12]. Since the codon in this
case is of length n, up to 4n distinct characters can be encoded. Given the codon
length of n, there are 4n! possible coding schemes. The coding schemes developed by
Clelland [11] and Wong [20] fall into this category.

The second category of coding schemes consists of more complex schemes that use
several intermediate steps, such as translating a message into binary before using a
coding table to translate it into nucleotides. Intermediate steps like this are often used
for error detection, since there are many proven error detection algorithms for binary
messages.

The third category of coding schemes consists of schemes that were designed to
meet certain criteria, such as providing error detection capability, being economical,
or being easy to detect. The comma code, the alternating code, and a coding scheme
based on the Huffman code [18] fall into this category.

Clelland’s Coding Scheme and Wong’s Coding Scheme. The coding scheme
developed by Clelland et al. [11] is very similar to the one developed by Wong et al.
[20]. They are both extensions of the three base codon encoding used by the genetic
code. Since there are 43=64 possible distinct characters that can be encoded, this
scheme allows for all 26 characters of the English alphabet, the digits 0-9, and special
characters. Both coding schemes do not use all possible codons.

DNA-Crypt. The DNA-Crypt coding scheme developed by Heider and Barnekow
[10] translates a message into a five bit sequence, where one bit serves as parity bit to
keep the respective number of ones and zeros odd. The other four bits are translated
into nucleotides, with two bits per nucleotide. As mentioned earlier, it employs two
error correction codes, the 8/4 Hamming-code and the WDH-code.

ASCII Based Coding Scheme. Another coding scheme implements the algorithm
described by Jiao and Gouette [3] which inserts a message into the noncoding region
of an existing DNA sequence. This method consists of several steps:

1) Convert each character in the message into its ASCII representation.
2) Convert the ASCII code from decimal into binary.
3) Converting binary to DNA by replacing 00 with A, 01 with C, 10 with G, and

11 with T.
4) Insert message into a carrier DNA sequence.

Steps 1-3 are referred to as the ASCII coding scheme throughout the remainder of this
paper. The fourth step can be applied to other coding schemes if the message is to be
inserted into a coding DNA region. This insertion is performed by replacing the last
bits of redundant codons in the carrier sequence with characters from the message
sequence. The ASCII coding scheme makes it possible to encode uppercase letters,

210 M.B. Beck, E.C. Rouchka, and R.V. Yampolskiy

lowercase letters, numbers, and special characters. Each character is represented by a
sequence of four bases.

There are 4! = 24 different ways to choose which two-bit binary sequence is
translated into which nucleotide. The DNA-Crypt coding scheme uses 00=T; 01=G;
10=C; 11=A [10], whereas the ASCII coding scheme uses 00= A; 01= C; 10= G; 11=
T [3].

Yachie Coding Scheme. Yachie et al. [8] developed a coding scheme similar to
ASCII encoding. Instead of ASCII it uses the keyboard scan code for each character.
The keyboard scan code is the data that the keyboard sends to the computer to
indicate which key has been pressed. This code, which is hexadecimal, is converted
into binary, and then translated into DNA using a coding table.

Arita Coding Scheme. Arita and Ohashi [7] translated each letter of the English
alphabet as well as an empty space and the characters ‘‘’, ‘.’, ‘&’ into a 6-bit binary
sequence. One of the bits serves as parity bit by keeping both the number of 0s as well
as the number of 1s odd for error detection. When a message encoded with this
coding scheme is inserted into a coding region of a DNA sequence, a 0 indicates to
leave the 3rd base of a codon unchanged, while a 1 indicates that it needs to be
changed. In order to extract the encoded message, one needs to compare the sequence
that contains the message with the original, unchanged sequence to determine if a
base was changed or not [10].

Coding Scheme Based on the Huffman Code. Another coding scheme is based on
the Huffman code developed by David A. Huffman [22] and the frequency of letters
in the English language from “The Code Book” by Simon Singh [23]. The Huffman

Table 4. Letter frequency in English language and DNA coding scheme using
Huffman code [19]

Letter Freq

(%)

Codon Letter Freq (%) Codon

e 12.7 T w 2.4 AAT

t 9.1 AG m 2.4 ACA

a 8.2 AT f 2.2 ACG

o 7.5 GA y 2.0 ACC

i 7.0 GG g 2.0 ACT

n 6.7 GC p 1.9 CCA

s 6.3 GT b 1.5 CCG

h 6.1 CA v 1.0 CCT

r 6.0 CG k 0.8 CCCA

d 4.3 CT j 0.2 CCCG

l 4.0 AAA x 0.2 CCCC

c 2.8 AAG q 0.1 CCCTA

u 2.8 AAC z 0.1 CCCTG

 Finding Data in DNA: Computer Forensic Investigations of Living Organisms 211

code is an entropy encoding algorithm used for lossless data compression. The coding
scheme based on this code currently only encodes letters, but not numbers or special
characters. The average codon length is 2.2 bases. There are 4! possible ways to
generate a Huffman code for encoding the 26 letters of the English alphabet, but it is
also possible to create a Huffman code based scheme that includes numbers and
special characters.

Comma Code. The comma code uses four base codons consisting of combinations of
A, C, G and T, where G serves as a separator between the different characters. The
term comma code may be misleading. It does not mean that G is the encoding for the
comma character, but that it separates the encodings for each character. Smith et al.
[19] suggest using five base codons with a separator every sixth base, but the original
paper by Brenner et al. [12] is more descriptive and recommends the use of four bases
per codon and a vocabulary made up of eight four-base ‘‘words’’ for biochemical
reasons. The gaps between the Gs are filled with TTAC, AATC, TACT, ATCA,
ACAT, TCTA, CTTT, or CAAA. Since this method would only allow the encoding
of eight characters, combinations of two such words separated by a G are used for
each character. This approach results in a total of 64 possible characters consisting of
ten nucleotides each. The comma code encodes lowercase letters, numbers from 0-9,
and special characters. The mapping of codons to characters was arbitrarily
constructed. A sequence in comma code can easily be identified as containing a
message, due to the occurrence of G every five bases, including the beginning and the
end of the sequence. The comma code is the least efficient coding algorithm.

Alternating Code. The alternating code uses 64 codons with six bases per codon,
alternating between purines (A or G) at odd positions and pyrimidines (C or T) at
even positions. This coding scheme creates a pattern that does not occur naturally and
can easily be recognized. For the same reason, the bases could be arranged for
example in a pattern that has three purines followed by three pyrimidines or vice
versa. The alternating code encodes the same characters as the comma code. The
decision which codon codes for which character was made arbitrarily [19].

Summary of Coding Schemes. The coding schemes differ in codon length,
detectability, number of characters that can be encoded, and the number of steps
involved in encoding a message. The Huffman code is the most economical in terms
of codon length, while the comma code is the least economical. The Clelland coding
scheme and the Wong coding scheme are the easiest to implement. The comma code,
alternating code and DNA-Crypt are the easiest to detect, and DNA-Crypt offers the
best error correction.

Inserting a message into a coding region only replaces bases, but does not add new
ones. Therefore the size of the genome is only affected if the message is inserted into
a non-coding region. The length of the encoded message is the length of the
unencoded message multiplied by the codon length of the coding scheme. For
example, the message “UNIVERSITY OF LOUISVILLE” is 24 characters long,
including spaces. It would be

212 M.B. Beck, E.C. Rouchka, and R.V. Yampolskiy

CTGCCTCAGCTTATGCGTCTACAGCTCGAGCGAATTCCCCGACTGCAGCTACT
TCAGCCCCCCATG, which is 72 characters in Wong’s coding scheme and
GTACTGACATGAATCGACATGAATCGTTACGTACTGTCTAGTTACGACATGTACTGAA
TCGTACTGTACTGAATCGTTACGTACTGATCAGATCAGTTACGAATCGCTTTGTTACG
TCTAGAATCGATCAGAATCGCTTTGTACTGACATGAATCGTTACGTACTGTACTGTAC
TGTCTAGAATCGTTACGAATCGATCAGAATCGATCAGTTACGACATG, which is 240
characters in Comma Code.

For inserting pictures, audio, and video files into a DNA sequence it would be best
to translate the binary representation of the file into DNA code, with each base
encoding two bits, for example A=00, C=01, G=10, and T=11.

2.3 Encryption and Watermarking of DNA Messages

To make detection even more difficult, it is possible to encrypt a message using
modern encryption algorithms such as Data Encryption Standard (DES), RSA, and
Number Theory Research Unit (NTRU) before encoding it into DNA.

One application for inserting messages into DNA is watermarking. This method
can help establish brand names for engineered bacteria strains in order to resolve
legal disputes regarding gene related patents [7]. Watermarking infectious agents can
be useful for tracking them back to their source after an accidental release [24].

Researchers at the JCVI inserted four watermarks using a Category 1 coding
scheme similar to Clelland’s and Wong’s into their artificial genome. The first
watermark consists of a copyright like statement; the coding table for Ventner’s
coding scheme, and a hidden HTML page. The second, third, and fourth watermarks
consist of a list of the authors and three quotations.

The coding scheme created by Arita and Ohashi [7] and the DNA-Crypt algorithm
developed by Heider and Barnekow [10] were both designed for watermarking short
trademarks or signatures into genomic DNA.

2.4 Messages Finding Data in DNA

Steganalysis is the process of discovering hidden messages [25]. There are two main
categories of steganalytic methods: blind steganalysis and specific steganalysis. Blind
steganalysis can be used to detect a variety of different steganographic algorithms,
including previously unknown ones. The goal of specific steganalysis is to detect a
specific known steganographic algorithm by exploring how this particular algorithm
works and how it changes the statistics of the cover media [26].

The research on steganalysis is important for several reasons: First, detecting the
presence of secret messages can help intercept communication between members of
terrorist organizations or other illegal groups. Second, improvements in steganalysis
also help to develop better methods for information hiding. Third, better statistical
methods for multimedia contents can emerge as a byproduct of steganalysis research.
These can then be applied in other related research fields, such as digital forensics
[26], or bioinformatics.

 Finding Data in DNA: Computer Forensic Investigations of Living Organisms 213

Most existing steganalysis approaches focus on images as a stegomedium,
especially JPEG images as well as audio and video files. Text documents are not used
as often since they can only hold a smaller amount of information than a graphic
document with same amount of carrier data. However, text files are still used because
they are easily edited, stored, and transferred [27].

2.5 Experiments Performed in Silico

Wang and Zhang [28] have developed a software called WordSpy to detect certain
biological features within a genome. This software regards these biological features of
a genome as a message hidden in a cover-text of genomic sequences. A Hidden
Markov Model is used to decipher the message and to extract over-represented motifs.
WordSpy combines word counting and statistical modeling to detect frequently
occurring sub-sequences [28].

Since many different coding schemes for inserting messages into DNA have been
developed, we decided to develop a software toolkit that would enable us to insert and
extract messages from DNA sequences, allow us to compare different coding
schemes, and serve as basis for research into developing methods to find and extract
messages encoded with unknown coding schemes.

2.6 Solving Substitution Ciphers

The way messages are encoded in DNA is typically through the use of substitution
ciphers, for example, the letter ‘a’ is substituted by the sequence ‘AAA’, the letter ‘b’
by ‘AAC’, and so on. Several methods have been developed for breaking substitution
ciphers. One of our goals is to adapt an algorithm for breaking substitution ciphers to
decode a message written in DNA symbols. Almost all approaches use n-grams of
letters.

Spillman et al. [29] developed a Genetic Algorithm and although they report good
results for their Genetic Algorithm, Delman [30] found Genetic Algorithms to be
unreliable for solving substitution ciphers and was unable to reproduce the results.

Another software called Quipster has been developed by Hasinoff [31]. The
software decodes a median of 94% of the cipher letters correctly.

A Particle Swarm Optimization (PSO) algorithm has been developed by Uddin and
Youssef [29]. Their results show that PSO provides a very powerful tool for the
cryptanalysis of simple substitution ciphers using a ciphertext only attack. Uddin and
Youssef [32] also investigated the use of Ant Colony Optimization (ACO) for
automated cryptanalysis of classical simple substitution ciphers and found them to be
very effective on various sets of encoding keys.

Lucks [33] developed an algorithm which employs an exhaustive search in a
dictionary for words that satisfy constraints on word length, letter position and letter
multiplicity. His method is not restricted to English and can be used for any language.

It is especially difficult to decode short ciphers, because they have different
distribution statistics than larger texts. Hart [34] developed a method that addresses
these problems by using whole words instead of n-grams and by employing a
maximum likelihood estimator.

214 M.B. Beck, E.C. Rouchka, and R.V. Yampolskiy

Jakobsen [35] developed a fast algorithm that is based on a process where an initial
key guess is refined through a number of iterations. Each step of this algorithm
evaluates the plaintext corresponding to the current key and the result is used as a
measure of how close the algorithm is to discovering the correct key. The author
claims that only knowledge of the bigram distribution in the ciphertext and the
expected bigram distribution in the plaintext is necessary in order to decipher the
message. The algorithm currently only uses bigrams, but the author suggests using
trigrams or whole words for future research.

Forsyth and Safavi-Naini [36] approached the solving of substitution ciphers as a
combinatorial optimization problem and developed an algorithm that uses simulated
annealing. This algorithm is very complicated and difficult to implement, but it is
very successful at decrypting ciphertexts, especially ones with over 5000 letters.

Peleg and Rosenfeld [37] address it as a probabilistic labeling problem and
assigned probabilities of representing plaintext letters to every code letter. This
approach was done by using joint letter probabilities. These probabilities were
updated in parallel for all code letters, and using this scheme iteratively, they were
able to break the cipher.

3 Description of DNA-Steg

3.1 Encoding and Inserting Messages

The DNA steganography and steganalysis toolkit we developed currently consists of
two programs. One for encoding a message in a DNA sequence (steganography), and
the other for detecting and extracting a hidden message from a DNA sequence
(steganalysis).

Our software offers a choice of several different coding schemes. It reads in the
coding table for the selected coding scheme from a file and then prompts the user to
either type the message to be encoded on the keyboard or to read it in from a file.
Since the ASCII coding scheme is the only one that distinguishes between uppercase
and lowercase characters, the program converts all characters in the message into
uppercase characters for all coding schemes other than the ASCII coding scheme. The
steganography program then encodes the message using the appropriate coding table.

The toolkit implements the following coding schemes:
- Huffman code based scheme [19]
- Alternating code [19]
- Comma code [12, 19]
- Wong’s coding scheme [20]
- Clelland’s coding scheme [11]
- DNA-Crypt [10]

- ASCII coding scheme [3]

Coding tables for comma code and alternating code were created arbitrarily, since the
original researchers did not provide any.

 Finding Data in DNA: Computer Forensic Investigations of Living Organisms 215

The message can either be directly written to a file by itself if it is to be stored in a
noncoding region, or be inserted into the coding region of an existing DNA sequence
file. For inserting a message in a coding region, the algorithm described by Jiao and
Gouette [3] is used. DNA sequences can be chosen from a folder where they are
stored in FASTA format [24], which is widely used in bioinformatics. The program
displays the maximum number of characters a message can have, depending on the
coding scheme and the sequence it is to be inserted into.

3.2 Approaches to Detecting Messages in DNA

Finding a message that has been inserted into the coding region of a DNA sequence is
relatively simple if the original sequence is known. We have developed a program
which compares a modified DNA sequence with its original. Since the message is
assumed to have been inserted into wobble bases, the first step is to identify wobble
base codons in both sequences and to compare them to each other. The first codon
where the wobble base is different from the one in the original is identified as the
beginning of the message. The last codon where it differs is marked as the end of the
message.

The limitation in this approach is that there are codons where the wobble base does
not change. This is not a problem if it happens in the middle of the message. The
program therefore assumes it contains one long message instead of several smaller
ones. Problems can arise if this happens at the beginning or end of the message, but if
the message can be decoded and it is seen that pieces are missing, the program can
expanded to go back and fix it.

In order to test the program, the message “THIS IS A TEST” was inserted into ftsZ
using the Wong coding scheme. The program then compared the modified sequence
with the original one. It correctly identifies the beginning codon and the end codon of
the message and extracts the modified wobble bases.

Finding a message in a noncoding DNA region is much more difficult. But there
are ways to determine if a DNA sequence is artificial by statistical analysis. For
example, if a certain base is significantly overrepresented, underrepresented, or not
present at all, it can be assumed that the sequence is artificial and should be further
analyzed to determine if it may contain a message.

Messages that have been encoded using a variation of the alternating code or the
comma code are more likely to be detected than messages that were encoded with a
different coding scheme. The reason for that is that they have a repeating pattern,
which can be detected by a human or a computer program. If every nth base is the
same, this hints at the possibility that comma code or a variation thereof has been
used to create this sequence.

Another coding scheme that is easy to identify is the DNA-Crypt coding scheme
because the low occurrence of As in a message encoded with this scheme.

However, as a countermeasure against attempts to detect messages by counting the
occurrence of nucleotides, a coding scheme such as the one developed by Modego
[38] can be used. Modego’s coding scheme uses two codons to encode each letter.
Which codon is used is determined by the GC content of the carrier sequence. For

216 M.B. Beck, E.C. Rouchka, and R.V. Yampolskiy

example, if a message was to be inserted into a sequence with a high GC content, the
letter L would be encoded as CTG, but in a sequence with low GC content it would be
TTA [38]. The obvious tradeoff is the number of characters that can be encoded is cut
in half.

In order to detect the alternating code, the program stores all odd position
characters in one list and all even position characters in another and then compares
both of them. If none of the even characters appears in the list with the odd ones and
vice versa, the program has detected a message in alternating code with the pattern
XYXYXY, where X is either an A or a G and Y a C or a T, or vice versa. The
program can easily be extended to detect alternating codes with pattern XXYYXXYY
or XXXYYY.

Currently the steganalysis part reads messages from a DNA sequence by executing
the algorithm that was used for encoding the message in reverse order. Since it does
not know which coding scheme was used, it uses a brute force approach to test all
supported coding schemes and displays the resulting message on the screen. The user
can choose if the message was hidden in a noncoding region or in an existing DNA
sequence, which can be selected from a folder. If a sequence is chosen, the program
will display the number and the percentage of occurrences of each nucleotide in the
altered sequence as well as in the original sequence. Usually there is not much
difference in the statistics of both sequences, since the inserted messages are fairly
small.

One possible way to detect unknown encoding schemes might be to use the
WordSpy algorithm developed by Wang and Zhang [28].

4 Further Research

We are currently working on a way to modify an existing approach for solving simple
substitution ciphers where each letter in the English alphabet is substituted for a
different English letters to solving simple substitution ciphers in which each letter of
the English alphabet, numbers from 0-9, and several special characters such as spaces,
commas, and periods are each substituted by a combination of three DNA bases.
While the original program searches over the space of 26! possible keys, our program
will have a search space of 64! possible keys.

The goal is to modify several existing approaches and then use the Wisdom of
Artificial Crowds (WoAC) [39, 40] post-processing algorithm instead of brute force
guessing in order to find out with which coding scheme the message has been
encoded in. As a proof of concept, a program will be developed that will be able to
decode any message that has been encoded with a category 1 coding scheme of codon
length 3. This approach can be adapted to be used for other coding schemes as well.

Currently the steganalysis tool can only detect and extract messages that have been
encoded with the previously described coding schemes. For example, it only has two
coding tables for coding schemes of category 1, namely the ones developed by
Clelland [11] and Wong [20]. But since there are four nucleotides, a category 1
coding scheme with a codon length of three, which can encode 64 characters, can be
generated in 64! possible ways. And that is only if the same 64 characters are being

 Finding Data in DNA: Computer Forensic Investigations of Living Organisms 217

used. For example, one coding scheme can start with A=AAA, B=AAC, C=AAG...
while another one could be A=AGT, B=CCG, C=CTG... Brute force guessing which
variant has been used to encode the message would take an enormous amount of time
and would therefore not be feasible.

Knowing the characteristics of several previously developed coding schemes and
their different variations makes it possible to develop a more optimized coding
scheme. For example, coding scheme that is based on the Huffman code could be
expanded to include numbers and special characters.

We also need to develop methods to detect and decode a message if the encoded
message is also encrypted.

5 Conclusion

DNA steganography is a new field and therefore it offers many opportunities to
improve upon existing approaches for steganography as well as steganalysis.

References

1. Anam, B., Sakib, K., Hossain, A., Dahal, K.: Review on the Advancements of DNA
Cryptography. In: International Conference on Software, Knowledge, Information
Management and Application, Paro, Bhutan, August 25-27 (2010)

2. Nirenberg, M.: Historical review: Deciphering the genetic code – a personal account.
Trends in Biochemical Sciences 29(1), 46–54 (2004)

3. Jiao, S.-H., Goutte, R.: Code For Encryption Hiding Data Into Genomic DNA.
In: International Conference on Software Process (2008)

4. Adleman, L.M.: Molecular Computation of Solutions To Combinatorial Problems.
Science, New Series 266(5187), 1021–1024 (1994)

5. Ogihara, M., Ray, A.: Simulating Boolean Circuits on a DNA Computer. RECOMB
(1997)

6. Bogard, C.M., Rouchka, E.C., Arazi, B.: DNA media storage. Progress in Natural
Science 18, 603–609 (2007)

7. Arita, M., Ohashi, Y.: Secret Signatures Inside Genomic DNA. Biotechnology
Progress 20(5), 1605–1607 (2004)

8. Yachie, N., Sekiyama, K., Sugahara, J., Ohashi, Y., Tomita, M.: Alignment-Based
Approach for Durable Data Storage into Living Organisms. Biotechnology Progress 23(2),
4 (2007); (Epub January 25, 2007)

9. Arita, M.: Comma-free design for DNA words. Communications of the ACM 47(5), 99
(2004)

10. Heider, D., Barnekow, A.: DNA-based watermarks using the DNA-Crypt algorithm. BMC
Bioinformatics 8, 176 (2007) (Epub May 31, 2007)

11. Clelland, C.T., Risca, V., Bancroft, C.: Hiding messages in DNA microdots. Nature,
533–534 (1999)

12. Brenner, S., Williams, S.R., Vermaas, E.H., Storck, T., Moon, K., McCollum, C., et al.:
In vitro cloning of complex mixtures of DNA on microbeads: Physical separation of
differentially expressed cDNAs. Proceedings of the National Academy of Sciences of the
United States of America 97(4), 1665–1670 (2000)

218 M.B. Beck, E.C. Rouchka, and R.V. Yampolskiy

13. Jiao, S.-H., Goutte, R.: Hiding data in DNA of living organisms. Natural Science 1(3),
181–184 (2009)

14. Heider, D., Barnekow, A.: DNA watermarks: A proof of concept. BMC Molecular
Biology 9, 40 (2008); (Epub April 23, 2008)

15. Gibson, D.G., Glass, J.I., Lartigue, C., Noskov, V.N., Chuang, R.Y., Algire, M.A., et al.:
Creation of a bacterial cell controlled by a chemically synthesized genome.
Science 329(5987), 52–56 (2010); (Epub May 22, 2010)

16. Bancroft, C., Bowler, T., Bloom, B., Clelland, C.T.: Long-Term Storage of Information in
DNA. Science, New Series 293(5536), 1763–1765 (2001)

17. A Y3K bug.pdf. nature biotechnology 18 (2000)
18. Drake, J.W., Charlesworth, B., Charlesworth, D., Crow, J.F.: Rates of Spontaneous

mutation. Genetics 148(4), 20 (1998)
19. Smith, G.C., Fiddes, C.C., Hawkins, J.P., Cox, J.P.L.: Some possible codes for encrypting

data in DNA. Biotechnology Letters 25(14), 1125–1130 (2003)
20. Wong, P.C., Wong, K.-K., Foote, H.: Organic Data Memory Using the DNA Approach.

Communications of the ACM 46(1), 95–98 (2003)
21. Tanaka, K., Okamoto, A., Saito, I.: Public-key system using DNA as a one-way function

for key distribution. Bio Systems 81(1), 25–29 (2005); (Epub May 27, 2005)
22. Huffman, D.A.: A Method for the Construction of Minimum-Redundancy Codes.

In: Proceedings of the IRE, pp. 1098–1102 (1952)
23. Singh, S.: The Code Book: The Evolution of Secrecy from Mary, Queen of Scots to

Quantum Cryptography. Doubleday, New York (1999)
24. Jupiter, D.C., Ficht, T.A., Qin, Q.-M., de Figueiredo, P.: DNA Watermarking of Infectious

Agents Progress and Prospects. Public Library of Science Pathogens 6(6), 1–3 (2010)
25. Johnson, N.F., Jajodia, S.: Steganalysis: The Investigation of Hidden Information. In:

IEEE Information Technology Conference, Syracuse, NY (1998)
26. Li, B., Huang, J., Shi, Y.Q.: Steganalysis of YASS. IEEE Transactions on Information

Forensics and Security 4(3), 369–382 (2009)
27. Xin-guang, S., Hui, L., Zhong-liang, Z.: A Steganalysis Method Based on the Distribution

of Characters.pdf. In: 8th International Conference on Signal Processing, Beijing, China
(2006)

28. Wang, G., Zhang, W.: A steganalysis-based approach to comprehensive identification and
characterization of functional regulatory elements. Genome Biology 7(6), R49 (2006);
(Epub June 22, 2006)

29. Spillman, R., Janssen, M., Nelson, B., Kepner, M.: Use of a Genetic Algorithm in the
Cryptanalysis of Simple Substitution Ciphers. Cryptologia 17(1), 31–44 (1993)

30. Delman, B.: Genetic Algorithms in Cryptography. Rochester Institute of Technology,
Rochester (2004)

31. Hasinoff, S.: Solving Substitution Ciphers. A Technical Report, University of Toronto
(2003)

32. Uddin, M.F., Youssef, A.M.: An Artificial Life Technique for the Cryptanalysis of Simple
Substitution Ciphers. In: CCECE+CCGEI, May 7-10, pp. 1582–1585. IEEE, Ottawa
(2006)

33. Lucks, M.: A Constraint Satisfaction Algorithm for the Automated Decryption of
Simple Substitution Ciphers. In: Goldwasser, S. (ed.) CRYPTO 1988. LNCS, vol. 403,
pp. 132–144. Springer, Heidelberg (1990)

34. Hart, G.W.: To decode short Cryptograms. Communications of the ACM 37(9), 102–108
(1994)

 Finding Data in DNA: Computer Forensic Investigations of Living Organisms 219

35. Jakobsen, T.: A fast method for cryptanalysis of substitution ciphers. Cryptologia 19(3),
265–274 (1995)

36. Forsyth, W.S., Safavi-Nani, R.: Automated Cryptanalysis of substitution ciphers.
Cryptologia 17(4), 407–424 (1993)

37. Peleg, S., Rosenfeld, A.: Breaking Substitution Ciphers Using a Relaxation Algorithm.
Communications of the ACM 22(11), 598–605 (1979)

38. Modegi, T.: Watermark Embedding Techniques for DNA Sequences Using Codon Usage
Bias Features. In: 16th International Conference on Genome Informatics, Yokohama,
Japan (2005)

39. Yampolskiy, R.V., El-Barkouky, A.: Wisdom of artificial crowds algorithm for solving
NP-had problems. International Journal of Bio-Inspired Computation 3(6) (2011)

40. Yampolskiy, R.V., Ashby, L.H.: Genetic Algorithm and Wisdom of Artificial Crowds
Algorithm Applied to Light Up. In: The 16th International Conference on Computer
Games, Louisville, KY, pp. 27–32 (2011)

On the Completeness of Reconstructed Data

for Database Forensics

Oluwasola Mary Adedayo and Martin S. Olivier

ICSA, Department of Computer Science,
University of Pretoria, South Africa
{mfasan,molivier}@cs.up.ac.za

Abstract. Databases are often used to store critical and sensitive in-
formation in various organizations and this has led to an increase in the
rate at which databases are exploited in computer crimes. Even though
various investigations involving databases have been explored, very lit-
tle amount of research has been done on database forensics. This paper
briefly describes a database reconstruction algorithm presented in an
earlier work and shows the limitation that can be encountered when the
algorithm has to deal with partially reconstructed relations or the dele-
tion of tuples in a relation. Since reconstructed data can often be used
as the evidence to support or refute claims about the data in a database,
the inability to reconstruct necessary data may imply the absence of ev-
idence. However, according to an axiom from forensic science, this does
not mean an evidence of absence. As such, this paper presents two dif-
ferent techniques that can be used in reconstructing more tuples in a
relation and provide corroborating evidence to claims about the data
on a database. A typical example is used to describe the limitation of
the database reconstruction algorithm and how the limitation can be
overcomed by using the techniques described in the paper.

Keywords: Digital forensics, Database forensics, Database reconstruc-
tion algorithm, Digital evidence, Forensic science.

1 Introduction

The use of databases in todays commercial systems cannot be over-emphasized
as databases have become a core component of many computing systems and
are often used to store critical and sensitive information to an organization or
her clients. Unfortunately, the increased usage of databases in storing volumes of
information together with the increased relevance of the data on many databases
in solving various crimes have led to an increase in the number of attacks directed
towards databases and interests investigating databases for artifacts that may
assist in solving various different crimes.

Database forensics is an emerging branch of digital forensics [16,1] that deals
with the identification, preservation, analysis and presentation of evidence from
databases [7]. Even though digital forensics has grown over the last decade from a

M. Rogers and K.C. Seigfried-Spellar (Eds.): ICDF2C 2012, LNICST 114, pp. 220–238, 2013.
c© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2013

On the Completeness of Reconstructed Data for Database Forensics 221

relatively obscure trade-craft to an important part of many investigations [8], the
same cannot be said of database forensics, despite the importance of databases.
Although a large amount of research has been done on digital forensics, database
theory and database security, very little has been done on database forensics [15]
even though investigations involving databases have been explored in theory
and in practice. Similar to other branches of digital forensics, database forensics
helps in determining the root cause of an attack and finds out what was done.
An important aspect of database forensics deals with the ability to revert data
manipulation operations and determine values contained in a database at an
earlier time.

Although various data restoration techniques such as rollback and incremen-
tal backups have been explored over the years, these techniques are sometimes
inadequate for database forensics. For example, a rollback operation can only be
used provided that the transaction has not been committed and the use of in-
cremental backups is dependent on the availability of viable backups from which
data can be restored. Database forensics requires the ability to revert data ma-
nipulation operations even when a transaction has been long committed or when
there are no viable backups.

In our earlier work [6], we presented an algorithm that can be used for re-
constructing the information in a database at an earlier time of interest. The
algorithm makes use of the inverse functions of the relational algebra [4] and in-
corporates the notion of value blocks (a group of queries whose evaluation does
not change the information in a particular relation). The inverse of a query is
found by taking the database schema and the log of modifying queries performed
on the database into consideration. In another work [5], we prove that the re-
lation generated from the algorithm is always correct. That is, even though the
reconstructed relation may be incomplete if compared with the original relation,
it is at least a subset of the original relation.

The generation of incomplete relations or inability to reconstruct values of in-
terest in a relation when using the database reconstruction algorithm [6] stems
from the fact that the inverse generated from some of the inverse operators of the
relational algebra may be missing one or more tuples or values in a column of the
original relations. It also implies that the evidence needed from a database dur-
ing an investigation may not be found. However, this does not imply that such
evidence does not exist. The objective of this paper is to discuss the limitation
of the database reconstruction algorithm and describe some of the techniques
that can be applied in conjunction with the algorithm in order to generate more
complete relations or tuples of a relations as well as provide corroborating evi-
dence regarding claims about the information on a database at an earlier time.
The paper describes a typical application of the reconstruction algorithm that
reflects its limitation. It also discusses two different techniques of reconstructing
more information from a database using the reconstruction algorithm.

222 O.M. Adedayo and M.S. Olivier

2 Background and Notation

This section gives a brief background on database forensics and introduces the
relational model of database management systems (DBMS) and its operators. It
also describes the notation used in the rest of the paper.

2.1 Database Forensics

As earlier mentioned, database forensics often requires the determination of the
information in a database at an earlier time. Although the information in a
database at any instance can be determined by querying the database, much
more effort is required in order to determine the information contained at an
earlier time since various modifications might have occurred. Some of the little
work that has been done in database forensics include the series of papers by
Litchfield [9,10,11,12,13,14] all of which focus on Oracle forensics. Wright [18]
published a book that also explains Oracle forensics and investigates the possi-
bility of using Oracle LogMiner as a forensics tool [17]. Another book by Fowler
[7] focuses on SQL server database forensics and discusses the effect of rootk-
its on data collection and analysis during the forensics investigation of an SQL
server database. None of these works describes the process of reconstructing the
information in a database at an earlier time.

The ability to reconstruct the information on a database at earlier time is
an important aspect of database forensics. An illustration of this fact, which re-
quires forensics investigation is a situation where a sales representative claims to
have sold a large quantity of a certain good at the selling price on the database
at a particular date even though the price presents a huge loss to the organi-
zation. Verifying the representative’s claim requires that the selling price of the
good at that particular date can be determined even though several modifica-
tions/updates might have been performed on the database which might have
affected the price of the good since the date of interest.

In our earlier work, we present an algorithm [6] that can be used to deter-
mine the information contained in a database at an earlier time. Although our
focus in this paper is to discuss the completeness of the result generated from
the algorithm and how this can be improved, it is important to introduce the
notion of inverse relational algebra and value blocks which are a major compo-
nent of the algorithm. The relational algebra [4] is employed since it represents
a fundamental aspect of databases and gives a formal description of how the
information stored in a database relate with each other.

2.2 Inverse Relational Algebra

The relational model for DBMS was developed by Codd [4] and works on the
relational theory of mathematics. The model is composed of one type of com-
pound data known as a relation. Given a set of domains, D = D1, D2, . . . , Dn

over which attributes A = A1, A2, . . . , An are defined respectively, a relation
R (also called an R-table or R(A)) is a subset of the Cartesian product of the

On the Completeness of Reconstructed Data for Database Forensics 223

Table 1. Inverse Operators of the Relational Algebra

Operators Query Inverse Operators

Rename (ρ) R ← ρAi=Bj (R) ρ−1(R) = ρBj=Ai(R)

Cartesian
product (×)

T ← R(A)× S(B) ×−1(T) = (R,S) where
R = πA(T) and S = πB(T)

Union (∪) T ← R ∪ S ∪−1(T) = (R∗, S) where
R∗ = T − S provided that S
is known and vice versa

Intersection
(∩)

T ← R ∩ S ∩−1(T) = (R∗, S∗) where
R∗ = S∗ = T

Difference (−) T ← R − S −−1(T) = R∗ = T . If R is
known, S∗ = R− T .

Division (/) T ← R/S /−1(T) = (R∗, S∗) where
R∗ = RM and RM is the re-
mainder of the division

Join (�) T ← R(A) �p(A,B) S(B)
T ← R �p(A,B) S

�−1 (T) = (R∗, S∗) where
R∗ = πA(T) and S∗ = πB(T)

Projection (π)
T ← πA1,A2,A3(R)

π−1(T) = S∗ = T
T ← R[A1, A2, A3]

Selection (σ)
T ← σp(A)(R)

σ−1
p(A)

(T) = S∗ = T
T ← R[p(A)]

domains. A relation can be conceived as a table where the columns are the at-
tributes, the rows are referred to as tuples and the domains define the data types
of the attributes.

The relational algebra consists of basic operators used to manipulate relations
and a relational assignment operator ←. The basic operators transform either
one or two relations into a new relation. Such transformations are known as
relation-valued expressions (rve). A query is defined in the form T ← rve, where
T is the name of the relation obtained when the rve is evaluated. The basic
operators as defined by Codd [4] and the corresponding notation often used are
shown in the second column of table 1, where R, S, and T are relations and
A, B and C are attributes of these relations. The notation p(attributes) is a
logical predicate on one or more attributes representing a condition that must
be satisfied by a row before the specified operation can be performed on it.

The inverse operators of the relational algebra work on the assumption that
the database schema is known. The aim of the inverse operators is to find the
value of one or more attributes of a relation at a specific time t by finding the
inverse of the most recent query performed on the current relationRt sequentially
until the desired time ti is reached. The output generated by an inverse operator
may either be partial or complete when compared to the original relation. That
is, the inverse of a query Q can be defined as Q−1 such that,

Q−1(Q(Rt)) = R∗
t

224 O.M. Adedayo and M.S. Olivier

where R∗
t is a subset of Rt. That is, some tuples or values that should be in

some columns of R∗
t may be missing1. In cases where R∗

t = Rt, we refer to the
inverse found as a complete inverse. Otherwise, we refer to the inverse found as a
partial inverse. A partial inverse can be a partial tuples inverse and/or a partial
columns inverse depending on whether some of the tuples or values in some
columns of the original relation are missing, respectively. However, regardless
of the classification of the inverse operators, there are often instances where a
complete inverse can be found with some of the operators grouped as partial
inverse. A summary of the inverse operators of the relational algebra and how
inverses are computed is given in table 1. More details about relational algebra,
the inverse operators and instances where a complete inverse can be generated
from the inverse operators classified as partial inverses can be found in earlier
works [6,5].

2.3 Relational Algebra Log and Value Blocks

A relational algebra log (RA log) is a log of queries expressed as relational algebra
operations instead of the traditional SQL notation. The use of the RA log allows
us to easily determine when a relation has been modified. Using the relational
algebra notation, a relation is changed only when a new assignment operation is
made into the relation. This knowledge allows us to group the RA log into a set
of overlapping value blocks. Another advantage of using the RA log instead of the
usual SQL log file is that relational algebra allows queries to be represented as a
sequence of unary and binary operations involving relational algebra operators.
Thus, the log file is more readable. For example, a typical select statement in a
SQL log file can take several forms; however, the use of the RA log eliminates
ambiguities that may arise in defining an inverse for select statements since any
select statement can be expressed with relational algebra operators.

A value block is defined as a set of queries within which a particular relation
remains unchanged. Value blocks are named based on the relation that remains
the same in the block and subscripts are used to signify which value block occurs
first. A value block starts with an assignment operation into the relation and ends
just before another assignment operation into the relation is encountered. For
example, the value block of a relation R is denoted as VRi where i = 1, 2, 3,
The relation R remains the same throughout the execution of block VR1 until it
is updated by the execution of the first query of block VR2 . Thus, the value block
of a relation can be contained in or overlap that of another relation, so that VR1

and VS2 can have a number of queries in common. However, two value blocks of
the same relation, VR1 and VR2 cannot overlap or be a subset of the other [6].
The time stamps usually associated with the traditional query log is preserved
in the RA log in order to group the value blocks into appropriate sequences. An
example of a RA log generated from a traditional log file and divided into value
blocks is shown in figure 1. Subsequent examples in the paper will refer to this
RA log.

1 The mapping generated by queries are not usually a bijection. However, this does
not mean that some inverses cannot be found.

On the Completeness of Reconstructed Data for Database Forensics 225

t0 : R← {tuple1, tuple2}

t1 : S ← {tuple1, tuple2}

t2 : H ← R ∩ S

t3 : S ← Fupdate(word=six)(σnumber=5(S))

t4 : I ← R ∪ S

t5 : J ← H ∩ I

t6 : H ← ∅

t7 : H ← I − J

t8 : R← ρnumber = numeral(R)

t9 : J ← ∅

VR1

VR2

VS1

VS2

VH1

VH2

VH3

VI1

VJ1

VJ2

Fig. 1. A Relational Algebra Log Grouped into Value Blocks

2.4 Database Reconstruction Algorithm

The database reconstruction algorithm employs the notion of RA logs and value
blocks as well as the inverse operators of the relational algebra. In this section, we
give a brief description of the reconstruction algorithm necessary to understand
the content of this paper, a more detailed explanation of the algorithm can be
found in [6].

01: INVERSE(Relation D, RA Query VDi
[1]) {

02: OUTPUT: Inverse of the assignment into D from query q
03: Let q = the query at VDi

[1];
04: switch(q) {
05: case (D ← ∅):
06: T = ∅; return T;
07: case (D ← op D):
08: T = op−1(D); return T;
09: case (D ← A op D):
10: case (D ← D op A): //Assume A is in VAi
11: if (op = ∩): T = D; return T;
12: if ((op = ∪) and (∃ VAi+1

)): T = ∅; return T;
13: else:
14: A ← SOLVE(A, VAi

, log, S);

15: T = op−1(D)|A; return T;
16: }
17: }

Fig. 2. The INVERSE(Relation D, RA Query VDi [1]) function

226 O.M. Adedayo and M.S. Olivier

Although the algorithm is aimed at reconstructing specific values in a relation
on a database at some earlier time, it can also be applied to generate tables in
a database. The algorithm assumes that the query log exists, and contains the
complete set of modifying queries that have been performed on the database
from at least the particular time of interest (or earlier) to the present time.

The reconstruction algorithm consists mainly of two functions: the inverse

and the solve functions. The solve function makes use of the inverse function
(shown in figure 2) which takes as input the name of the relation to be recon-
structed (D) together with a query, specifically the first line of a value block of
D (denoted as VDi [1]) and finds the inverse of the query in order to determine

SOLVE(Relation D, Value Block VDi
, RA Log log, Set S)

OUTPUT: Reconstructed relation D in value block VDi
(RD)

01: Let Q = Set of queries involving relation D in value block VDi
;

02: Let R = Set to reconstructed D from different approaches;
03: If (D, VDi

, RD) ∈ S: return RD
04: else:
05: S = S ∪ (D, VDi

, RD); //RD is initialized as an empty relation
06: for each element e in Q:
07: switch(e) {
08: case (D ← op D):
09: if (� VDi+1

): return D;
10: else:
11: D ← SOLVE(D, VDi+1

, log, S); T ← INVERSE(D, VDi+1
[1]);

12: Insert T into R
13: OR
14: D ← SOLVE(D, VDi−1

, log, S); T ← op D;

15: Insert T into R
16: case (D ← op A): //Assume is in VAi
17: if (� VDi+1

): return D;
18: else:
19: if (� VAi+1

):

20: D ← op A; return D;
21: else:
22: A ← SOLVE(A, VAi+1

, log, S); A ← INVERSE(A, VAi+1
[1]);

23: D ← op A; return D;
24: case (D ← A op D):
25: case (D ← D op A): //Assume A is in VAi
26: if (� VDi+1

): return D;
27: else:
28: D ← SOLVE(D, VDi+1

, log, S); T ← INVERSE(D, VDi+1
[1]);

29: Insert T into R;
30: if (� VAi+1

):

31: D ← SOLVE(D, VDi−1
, log, S);

32: T ← A op D or (D op A); //depending on case
33: Insert T into R;
34: else:
35: D ← SOLVE(D, VDi−1

, log, S);

36: A ← SOLVE(A, VAi
, log, S);

37: T ← A op D or (D op A) //depending on case
38: Insert T into R;
39: OR
40: D ← SOLVE(D, VDi−1

, log, S);

41: A ← SOLVE(A, VAi+1
, log, S); A ← INVERSE(A, VAi+1

[1]);

42: T ← A op D or (D op A); //depending on case
43: Insert T into R;

Fig. 3. The SOLVE function

On the Completeness of Reconstructed Data for Database Forensics 227

44: case (G ← op D): //Assume G is in VGi
45: if (� VDi+1

): return D;
46: else:
47: if (� VGi+1

):

48: T ← op−1(G); Insert T into R;
49: else:
50: D ← SOLVE(D, VDi+1

, log, S); T ← INVERSE(D, VDi+1
[1]);

51: Insert T into R;
52: OR
53: G ← SOLVE(G, VGi+1

, log, S); G ← INVERSE(G, VGi+1
[1]);

54: T ← op−1(G); Insert T into R;
55: case (G ← D op A):
56: case (G ← A op D): //Assume G and A are in VGi

and VAi
respectively

57: if (� VDi+1
): return D;

58: else:
59: if (� VGi+1

):

60: if (op = ∩):
61: Insert G into R;
62: if (op �= ∪):
63: T ← op−1(G)[1]; //D is at index 1 in the output of op−1(G)
64: Insert T into R;
65: if (� VAi+1

):

66: T ← op−1(G)|A; Insert T into R;
67: else:
68: A ← SOLVE(A, VAi+1

, log, S); A ← INVERSE(A, VAi+1
[1]);

69: T ← op−1(G)|A; Insert T into R;
70: else:
71: if (� VAi+1

):

72: G ← SOLVE(G, VGi+1
, log, S); G ← INVERSE(G, VGi+1

[1]);

73: T ← op−1(G)|A; Insert T into R;
74: else:
75: G ← SOLVE(G, VGi+1

, log, S); G ← INVERSE(G, VGi+1
[1]);

76: if (op = ∩): Insert G into R;
77: else:
78: A ← SOLVE(A, VAi+1

, log, S); A ← INVERSE(A, VAi+1
[1]);

79: T ← op−1(G)|A; Insert T into R;
80: }
81: RD ← union of all the relations in R; //Reconstructed D
82: return RD;

Fig. 3. (Continued.)

D in its previous value block (VDi−1). The solve function takes as input the
name of the relation to be reconstructed D, its value block in which it is to
be reconstructed VDi , a relational algebra log log, and a set S which is used
to store tuples of relation and value block (and the corresponding result) which
have been considered during the reconstruction. The reconstructed relation D in
the specified value block is returned from the algorithm. A listing of the solve

function is shown in figure 3.

3 Limitation of the Reconstruction Algorithm

In section 2.2, we mentioned that the output generated from the inverse opera-
tors of the relational algebra may either be complete or partial when compared
with the original relation. Even though every reconstructed relation is always
correct, that is, it is at least a subset of the original relation [5], partial inverses

228 O.M. Adedayo and M.S. Olivier

sometimes affects the amount of information that can be reconstructed using the
database reconstruction algorithm. Since the algorithm depends on the inverse
operators of the relational algebra, the generation of partial inverses from some
of these operators sometimes result in the generation of significantly incomplete
(or empty) relation when using the algorithm.

This section gives a brief description of how the values in a relation at an earlier
time can be reconstructed using the database reconstruction algorithmand reveals
the limitation of the algorithm when dealing with inverse operators that generate
partial inverses. In figure 1, we show a typical example of a RA log generated from
a traditional SQL log file. For simplicity and further explanations in subsequent
sections of the paper, we assume that the content of each relation after executing
the queries in the RA log at each timestamp are as computed in figure 4.

Our aim is to reconstruct the tuples in relation H at time t3 since several
modifications of the relation has occurred. The relations R ans S both have
attributes word and number and contains two tuples each, which are assigned at
time t0 and t1, respectively.

The relation H at time t3 in figure 1 is the same as H at any time between
t2 and t5 inclusively, since the queries executed between these times are in the
same value block of H , that is, VH1 . Using the reconstruction algorithm, there
are three different ways in which the relation H at t3 can be reconstructed:

1. By reversing the query performed on the first line of value block VH2 at time
t6. Unfortunately, this cannot be achieved since the relation H was dropped
(or all its contents were deleted) at this point.

2. Another alternative is to find the inverse of the intersection operation per-
formed at time t5 in order to obtain a partial reconstruction of H . However,
since the relation J was also subsequently deleted at time t9, this inverse
cannot be found since the inverse of the intersection operation is given as
∩−1(J) = (H∗, I∗) where H∗ = I∗ = J .

3. The last possible way of reconstructing H at t3 is to re-execute the query
at time t2. This requires that the relations R an S at time t2 are known
(or reconstructed first). Since relations R and S are in value blocks VR1 and
VS1 , respectively at time t2 and they both have subsequent value blocks, the
relations must first be reconstructed in their respective value blocks at t2
before the query at t2 can be re-executed. The relation R at time t2 (or in
VR1) can be found by finding the inverse of the rename operation performed
at time t8, which is given as ρ−1(R) = ρnumeral = number(R). Since an inverse
rename operation always generates a complete relation, the relation R at t2
is successfully reconstructed from the inverse rename operation. The relation
S at time t2 (or in VS1) can be found by getting the inverse of the update
operation performed on S at t3. The inverse of the update can be represented
as:

F
−1
update(word=six)(σ

−1
number=5(S)) = Fupdate(word=null)(σnumber=5(S)).

This generates the partial relation S∗ shown in table 2. Since relations R
and S at t3 are now known, the query at t3 (H ← R∩ S)can be re-executed

On the Completeness of Reconstructed Data for Database Forensics 229

t0 : R ← {tuple1, tuple2} R
Word Number
five 5
six 6

t1 : S ← {tuple1, tuple2} S
Word Number
four 4
five 5

t2 : H ← R ∩ S H
Word Number
five 5

t3 : S ← Fupdate(word=seven)(σnumber=5(S)) S
Word Number
four 4
seven 5

t4 : I ← R ∪ S I

Word Number
four 4
five 5
six 6

seven 5

t5 : J ← H ∩ I J
Word Number
five 5

t6 : H ← ∅ H
Word Number

t7 : H ← I − J H

Word Number
four 4
six 6

seven 5

t8 : R ← ρnumber = numeral(R) R

Word Numeral
four 4
five 5
six 6

t9 : J ← ∅ J
Word Number

Fig. 4. Original Relations Obtained from Queries Executed

Table 2. Reconstructed relation S∗

S∗
Word Number
four 4
null 5

230 O.M. Adedayo and M.S. Olivier

in order to reconstruct the tuples in H at time t3. However, because the
reconstructed relation S∗ is a partial inverse, the tuple in H at t3 cannot be
reconstructed from the re-execution of this query and an empty relation H∗

with the same attributes as the original relation H is generated (table 3).

Table 3. An Empty Reconstructed relation H∗

H∗ Word Number

This example reflects a major limitation of the database reconstruction al-
gorithm that can be encountered when dealing with partial inverses. In the
rest of this paper, we discuss some of the techniques that can be applied
in conjunction with the reconstruction algorithm in order to generate more
complete reconstructed relations and/or find corroborating evidence regard-
ing the data on a database during database forensics.

4 Absence of Evidence

The database reconstruction algorithm [6] can be used to find the information
in the database at an earlier time. In this same way as data collected in different
branches of digital forensics can be the required evidence or assist in carrying
out an investigation, reconstructed relations may often be used as the evidence2,
provide support for other evidence during an investigation, or to provide more
information about an investigation. Unfortunately, the fact that a reconstructed
relation may be incomplete implies that some evidence may not be found. In
situations where the evidence to refute or support a claim cannot be found in
a reconstructed relation, it is important to remember an axiom from Forensics
Science that says that, “absence of evidence is not evidence of absence” [2]. For
example, if no evidence (or reconstructed data) could be found to support the
sales representative’s claim about the price of good sold on a particular date, it
does not mean that the representative is lying. If no evidence could be found on a
computer to determine whether or not it accessed a particular web page, it does
not mean that the computer was used to access the site. It is important to base
all assertions on solid supporting evidence and not on an absence of evidence
[2]. Thus, it is necessary for an investigator to find corroborating evidence that
clearly demonstrates the falsity or truth of a claim about the information on a
database at an earlier time.

In this paper, we present two techniques of finding corroborating evidence
about claims on the data in a database. The first technique works based on
Locard’s exchange principle that contact between two items will always result

2 Evidence may or may not be admissible in a court of law.

On the Completeness of Reconstructed Data for Database Forensics 231

in an exchange [3]. That is, there will always be some trace evidence with every
interaction even though it may not be easily detected. According to Casey [2],
this principle applies in both the physical and digital realms and can provide
links between them. For example, in a case involving email harassment, the act
of sending messages over a web-based email service can leave traces such as files
and links on the sender’s hard disk and/or web browser as well as some date-
time related information. Other information may also possibly be obtained from
the email service provider [2]. Although this principle may not be true for all
systems in general, it is true for systems that keep record of their actions or
activities. In database reconstruction, the items involved in an interaction are
the relations on a database while the interaction is the operation performed on
such relations. This technique works on the fact that if there is a claim that
some data was in a relation at an earlier time, then there should be some trace
evidence that can be gathered from the interaction of the relation with other
relations on the database.

The second technique for finding corroborating evidence involves the recon-
struction of more complete relations through the iteration of the database recon-
struction algorithm presented in [6] and inferences from reconstructed relations.
The technique works on the fact that the data created when an investigator
reenacts the events in a crime should resemble the original evidence collected
as close as possible. That is, given a reconstructed relation, if an investigator
re-executes the queries performed on the database (using the log record), the
recreated database instance should be the same as the current instance of the
database. If this is not the case, then it implies that some information is missing
in the reconstructed relation since we have already proved that any data in a
reconstructed relation is indeed correct and contained in the original relation [5].

In the following sections we describe how these techniques can be applied
in finding corroborating evidence regarding claims about the information in a
database at an earlier time and how the database reconstruction algorithm can be
used to get more complete reconstructed relations. The techniques are currently
not automated as this paper is focused on describing the logical steps to be
followed during reconstruction.

5 Reconstruction from Interaction

According to Locard’s exchange principle [3], the interaction or contact between
two items will always result in an exchange. The technique of reconstructing data
from interaction works on this principle and is synonymous to the collection of
trace evidence at a crime scene.

From the reconstruction example in section 3, it is obvious that the tuples in
relation H at t3 could not be reconstructed because of two reasons:

1. the database reconstruction algorithm depends on the inverse of the update
performed on relation S, which results in the generation of a partial relation
S∗ with missing values in one of its columns.

232 O.M. Adedayo and M.S. Olivier

2. The inverse of the first query of the subsequent value block of H after time
t3, that is, the query at t6 in value block VH2 cannot be found since H was
either dropped or all of its tuples were deleted at this point.

In general, a particular situation in which the database reconstruction algorithm
may be unable to reconstruct required data during an investigation is when
the relation to be reconstructed is deleted in the subsequent value block of the
relation; one or more relations which the relation being reconstructed interacted
with have been deleted; or where the re-execution of the actual query that led to
the relation being reconstructed cannot be done due to the inability to determine
or reconstruct a complete version of other relations involved in the query.

An alternative way of reconstructing data in these cases is to explore the in-
teraction of the relation to be reconstructed with other relations (using the RA
log) and making inferences based on the operations performed during the inter-
action. A summary of inferences that can be made when considering different
operations in an interaction are given below:

1. Cartesian product: if H ← I(A)× J(B), where A and B are attributes of
the relations, then:
(a) x ∈ πA(H) ⇔ x ∈ I
(b) x ∈ πB(H) ⇔ x ∈ J .

2. Union: if H ← I ∪ J , then:
(a) x ∈ H ⇔ x ∈ I or x ∈ J , and this means that,
(b) x ∈ H and x /∈ I ⇒ x ∈ J and
(c) x ∈ H and x /∈ J ⇒ x ∈ I.

3. Intersection: if H ← I ∩ J , then:
(a) x ∈ H ⇔ x ∈ I and x ∈ J .

4. Difference: if H ← I − J , then:
(a) x ∈ H ⇔ x ∈ I and x /∈ J
(b) x ∈ J ⇒ x /∈ H .

5. Division: if H ← I/J , then
(a) x ∈ H × J ⇒ x ∈ I. That is H × J ⊆ I.

6. Projection: if H ← πA(J), then:
(a) H ⊆ J , that is, y ∈ H ⇒ y ∈ J where y are values in similar columns of

H and J .
7. Selection: if H ← σA(J), then:

(a) H ⊆ J , that is, x ∈ H ⇒ x ∈ J .
8. Rename: if H ← ρA=B(J), where A and B are attributes, then:

(a) J = ρB=A(H) and x ∈ H ⇔ x ∈ J .

Considering the reconstruction example in section 3, this technique can be ap-
plied to reconstruct the tuple in H instead of the empty relation H∗ generated
from the reconstruction algorithm. It is important to note that the technique
of reconstruction from interaction is not independent and requires the usage of
the inverse operators of the relational algebra or the use of the reconstruction
algorithm in regenerating other relations that might be involved in an interac-
tion. This technique can be used in reconstructing the tuples in a relation by
taking the following steps. The reconstruction of the tuples in relation H at t3
(problem from section 3) is used to provide an example of the process at each
step.

On the Completeness of Reconstructed Data for Database Forensics 233

1. Identify all the interactions involving the relation to be reconstructed from
the RA log. There should be at least one interaction before and after the
deletion of the relation. For example, the interactions ofH in figure 4 include
the query at t5 (that is, J ← H ∩ I) and at t7 (that is, H ← I − J).

2. Determine the tuples in the other relations involved in the interaction(s)
that occurred after the deletion of the relation of interest either through the
reconstruction algorithm or the inverse operators of the relational algebra.
For example, we need to find the inverse of the query H ← I − J in order
to determine the tuples in J since relation I is known. Thus, we have3:

−−1(H) = J∗ = I −H

which is as shown in table 4.

Table 4. Relation J∗ from the inverse difference operation

J∗ Word Number
five 5

3. The last step involves making inferences from the other relations that have
been reconstructed in step 2, and which were also involved in an interactions
with the relation being reconstructed before its deletion. For example, the
relation J was involved in an interaction with H at t5 (that is the query,
J ← H ∩ I) and since this involves an intersection operation, the inferences
described earlier implies that every tuple in J must also be in H . That is,

Table 5. H through Reconstruction from Interaction

H
Word Number
five 5

we have the relation H which is given as table 5 instead of the earlier empty
relation in table 3.

6 Reconstruction through Iteration

Another technique that can be used in reconstructing the information in a
database is through the iteration of the database reconstruction algorithm and
the queries in the RA log, and making inferences from tuples generated and
queries performed during the process.

3 Although the resulting J∗ is complete when compared with the original J at t7, this
is not always the case with inverse difference operator.

234 O.M. Adedayo and M.S. Olivier

Rr

Word Number
five 5
six 6

Sr

Word Number
four 4
null 5

Fig. 5. Reconstructed relations Rr and Sr

The technique works on the notion that if the queries in a log are re-executed
using some reconstructed relations, then the final instance of the database gen-
erated after the re-executions should be the same as the current instance of the
database. Since it was proven in an earlier work [5] that the output generated
from the database reconstruction algorithm is correct, any difference between
the current instance of the database and the instance generated from the re-
executions implies that there are some missing data in one or more relations
involved in the queries that were re-executed. The differences identified between
the two database instances can be used to make inferences and reconstruct the
missing data in the relations involved.

Considering the reconstruction example in section 3, this technique can be
applied to reconstruct the tuple in H instead of the empty relation H∗ generated
from the reconstruction algorithm. The steps involved in this technique are listed
below. The reconstruction of the tuples in relationH at t3 (problem from section
3) is used to provide an example of the process at each step.

1. Attempt the reconstruction using the database reconstruction algorithm and
identify other relations that needed to be reconstructed. For example, our
attempt to reconstruct relationH at t3 in figure 4 required the reconstruction
of relations R ans S. For simplicity, we will use a subscript r to denote
relations that were reconstructed or generated from reconstructed relation.
Thus, the reconstruction of relations R and S generated the relations Rr = R
and Sr = S∗ (as explained in section 3) given in figure 5.

2. Re-execute the queries in the log using the reconstructed relations and make
possible inferences whenever a reconstructed relations differs from the cur-
rent instance on the database. For examples, in the reconstruction of H , we
can re-execute the queries in figure 4 using the relations Rr and Sr. The
re-execution process is shown in figure 6.

At time t4 of the re-execution, the relation Ir generated differs from the
relation I in the current instance of the database. A comparison of the two
relations (figure 7) shows that I contains a tuple that is not in Ir and Ir
contains a tuple that is not in I. It is possible to assume that the null value in
Ir is indeed the value “seven” since there is only one column with a missing
value and the second column in both I and Ir matches. Alternatively, we
can make inferences from the tuple in I which is not in Ir . That is, since
I is a union of R and S, then the tuple <seven, 5> should be in either
Rr or Sr. However, since we are sure that the relation Rr is complete, it
implies that the tuple is in Sr. That is, Sr is given as table 6. Since the
relation Sr generated from the inferences are exactly the same as the current

On the Completeness of Reconstructed Data for Database Forensics 235

t0 : Reconstructed relation Rr Rr

Word Number
five 5
six 6

t1 : Reconstructed relation Sr Sr

Word Number
four 4
null 5

t2 : Hr ← Rr ∩ Sr Hr
Word Number

t3 : S ← Fupdate(word=seven)(σnumber=5(S))
Skipped since Sr was

generated from its inverse.

t4 : Ir ← Rr ∪ Sr Ir

Word Number
four 4
five 5
six 6
null 5

Fig. 6. Re-execution of the query log using the reconstructed relations

Ir

Word Number
four 4
five 5
six 6
null 5

I

Word Number
four 4
five 5
six 6

seven 5

Fig. 7. Reconstructed relation Ir and current relation I

Table 6. Table Sr generated from re-execution and inferences

Sr

Word Number
four 4
seven 5

instance of the relation S, no further inferences can be made at this point.
The concluding part of the re-execution process is shown in figure 8. The
relation Hr generated from the re-execution process at time t7 should be
the same as the current instance of H on the database. But, this is not the
case (as shown in figure 9). Again, the differences between the two relations
can be used to make inferences about the data in the database. Relation Hr

contains the tuple <five, 5> which is not present in the current instance of
H , this implies that some data was missing in the reconstructed relations
used to compute Hr. Since the tuple, <five, 5> is not expected to be in Hr,
then the only possibility is that it should have been in the relation Jr since

236 O.M. Adedayo and M.S. Olivier

t5 : Jr ← Hr ∩ Ir Jr
Word Number

t6 : Hr ← ∅ H
Word Number

t7 : Hr ← Ir − Jr Hr

Word Number
four 4
five 5
six 6
null 5

t8 : R ← ρnumber = numeral(R)
Skipped since Rr was

generated from its inverse.

Fig. 8. Re-execution of the query log using the reconstructed relations

Hr

Word Number
four 4
five 5
six 6
null 5

H

Word Number
four 4
six 6

seven 5

Fig. 9. Reconstructed relation Hr and current relation H

all the tuples in Jr were removed from Ir to generate Hr (from the difference
operation at t7). If the tuple is in Jr at t7, it implies that it was also in Jr at
t5 since both times are in the same value block of J . This further implies the
tuple <five, 5> was in both Hr and Ir at time t5. Also, since t5 and t2 are
in the same value block of H , it implies that the tuple <five, 5> was in H at
t2 and subsequently at t3. Thus, the relation H at t3 can be reconstructed
as shown in table 7.

Table 7. H from Reconstruction through Iteration

H
Word Number
five 5

As with the technique of reconstruction from interaction and as shown in the
example above, the technique of reconstruction data through iteration also rely
on the use of the database reconstruction algorithm, inverse relational algebra
and value blocks. Also, the techniques are currently not automated as this paper
is focused on describing the logical steps to be followed during reconstruction.
Both techniques can be used in reconstructing data when dealing situations

On the Completeness of Reconstructed Data for Database Forensics 237

involving incomplete reconstruction of some other relations or the deletion of
required relation at some point in the log file. The decision about which of the
techniques to use will depend on the content of the log file and/or an intuitive
decision of which technique is likely to enable the reconstruction of more data.

7 Conclusion and Future Work

This paper discusses an algorithm for reconstructing the information in a
database at an earlier time and presents the limitation of the algorithm us-
ing a typical example. The limitation of the algorithm arises mainly because of
the possibility of generating incomplete inverses when using the inverse oper-
ators of the relational algebra. Since the reconstructed relation or tuples of a
relation may often be used as evidence in an investigation; to refute or support
claims about the content of a database at an earlier time; or to simply get for
information about an investigation, the reconstruction of incomplete data may
imply that some evidence are missing.

The paper describes two different techniques that can be used in conjunction
with the database reconstruction algorithm and the inverse operators of the
relational algebra to generate more complete relations or provide corroborating
evidence for claims about the data on a database at an earlier time. The first
technique works based on Locard’s exchange principle while the other rely on
the iteration of the reconstruction algorithm and re-execution of the queries in
the log file. Both techniques are described using a typical example.

Future work will entail investigating if these techniques can be used to recon-
struct all the tuples in a relation always and if not, describe the conditions under
which complete relations can be reconstructed. In addition, we will determine
whether the information recovered from a database using the reconstruction al-
gorithm and these techniques is “maximal” in that one determines that the log
contains no further information that may be used to reconstruct values.

Acknowledgement. This research was supported by the Organization for
Women in Science for the Developing World (OWSD).

References

1. Carrier, B.: Defining digital forensic examination and analysis tools using abstrac-
tion layers. International Journal of Digital Evidence 1, 2003 (2002)

2. Casey, E.: Digital Evidence and Computer Crime - Forensic Science, Computers
and the Internet, 3rd edn. Academic Press (2011)

3. Chisum, W.J., Turvey, B.: Evidence dynamics: Locard’s exchange principle & crime
reconstruction. Journal of Behavioural Profiling 1(1) (January 2000)

4. Codd, E.F.: The Relational Model for Database Management, Version 2. Addison-
Wesley (1990)

5. Fasan, O.M., Olivier, M.S.: Correctness proof for database reconstruction algo-
rithm. Digital Investigations (2012)

238 O.M. Adedayo and M.S. Olivier

6. Fasan, O.M., Olivier, M.S.: Reconstruction in database forensics. In: Peterson,
G., Shenoi, S. (eds.) Advances in Digital Forensics VIII. IFIP AICT, vol. 383,
pp. 273–287. Springer, Heidelberg (2012)

7. Fowler, K.: SQL Server Forensic Analysis. Addison Wesley Professional (2008)
8. Garfinkel, S.L.: Digital forensics research: The next 10 years. Digital Investiga-

tion 7, S64 – S73 (2010); The Proceedings of the Tenth Annual DFRWS Conference
9. Litchfield, D.: Oracle forensics part 1: Dissecting the redo logs. NGSSoftware In-

sight Security Research (NISR) Publication (March 2007)
10. Litchfield, D.: Oracle forensics part 2: Locating dropped objects. NGSSoftware

Insight Security Research (NISR) Publication (March 2007)
11. Litchfield, D.: Oracle forensics part 3: Isolating evidence of attacks against the

authentication mechanism. NGSSoftware Insight Security Research (NISR) Publi-
cation (March 2007)

12. Litchfield, D.: Oracle forensics part 4: Live response. NGSSoftware Insight Security
Research (NISR) Publication (April 2007)

13. Litchfield, D.: Oracle forensics part 5: Finding evidence of data theft in the absence
of auditing. NGSSoftware Insight Security Research (NISR) Publication (August
2007)

14. Litchfield, D.: Oracle forensics part 6: Examining undo segments, flashback and
the oracle recycle bin. NGSSoftware Insight Security Research (NISR) Publication
(August 2007)

15. Olivier, M.S.: On metadata context in database forensics. Digital Investigation
5(3-4), 115–123 (2009)

16. Palmer, G.: A road map for digital forensic research. Technical report. In: First
Digital Forensic Research Workshop (DFRWS), Utica, New York (August 2001)

17. Wright, P.M.: Oracle database forensics using logminer. Next Generation Security
Software (January 2005)

18. Wright, P.M., Burleson, D.K.: Oracle Forensics: Oracle Security Best Practices.
Rampant Techpress (2010)

M. Rogers and K.C. Seigfried-Spellar (Eds.): ICDF2C 2012, LNICST 114, pp. 239–252, 2013.
© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2013

BlackBerry PlayBook Backup Forensic Analysis

Mohamed Al Marzougy1, Ibrahim Baggili2, and Andrew Marrington1

1 Advanced Cyber Forensics Research Laboratory, College of Technological Innovation,
Zayed University, Abu Dhabi, U.A.E.

Mohamed.Almarzougy@gmail.com, Andrew.Marrington@zu.ac.ae
2 Tagliatela College of Engineering, Department of Electrical and Computer Engineering

and Computer Science, University of New Haven, CT
Ibaggili@newhaven.edu

Abstract. Due to the numerous complicating factors in the field of small scale
digital device forensics, physical acquisition of the storage of such devices is
often not possible (at least not without destroying the device). As an alternative,
forensic examiners often gather digital evidence from small scale digital
devices through logical acquisition. This paper focuses on analyzing the backup
file generated for the BlackBerry PlayBook device, using the BlackBerry
Desktop Management software to perform the logical acquisition. Our work
involved analyzing the generated “.bbb” file looking for traces and artifacts of
user activity on the device. Our results identified key files that can assist in
creating a profile of the device’s usage. Information about BlackBerry smart
phone devices connected to the tablet was also recovered.

Keywords: BlackBerry, Forensics, PlayBook, Backup.

1 Introduction

The BlackBerry PlayBook is Research in Motion’s (RIM) entrant into the heated
tablet race which includes the iPad and various Android tablets. One of the main
differences between the PlayBook device and other tablets is the ability to tether (via
Bluetooth) to a BlackBerry smart phone for network access while away from WiFi
networks at home or in the office, as compared to using an on-board 3G modem for
that purpose. This tethering is provided by the BlackBerry Bridge feature that extends
the functionality of the paired BlackBerry smart phone to the PlayBook’s larger
screen, enabling the viewing of emails, messages and files stored on the phone.

Although the iPad and the various Android tablets run a tablet-version of an
operating system designed for a smart phone, the BlackBerry PlayBook runs a custom
operating system. This means that research into the forensic acquisition of BlackBerry
smart phones may not be applicable to the PlayBook device. To date, there has been
no research performed on the forensic acquisition and analysis of the PlayBook’s
backup structure. Although the PlayBook has a comparatively small market-share [1],
the PlayBook was the first tablet to gain FIPS 140-2 certification and cleared to be
used by the U.S. Government [2]. Therefore, it is a worthwhile exercise to study the
forensic acquisition, analysis and examination of the device via its backup structure.

240 M. Al Marzougy, I. Baggili, and A. Marrington

This approach has recently been applied successfully to the iPad [3] and we therefore
thought to investigate its applicability to the BlackBerry PlayBook.

The remainder of this paper is organized as follows: in section 2 we briefly discuss
the literature about the forensic examination of various types of tablet computers. In
section 3, we describe the methodology for our experiment and we discuss our
findings in section 4. In section 5 we draw conclusions from our work and we finish
by discussing future research work into this area of small scale digital device
forensics.

2 Background

Mobile phones and tablets are of particular interest to forensic investigations for the
simple reason that due to their mobility they are likely to be in regular contact with
suspects and/or victims throughout the course of the events under investigation. With
enormous diversity in operating system software, hardware specifications, and
vendors, small-scale digital devices like smart phones and tablets are an area of
serious concern in digital forensic research [4].

Small-scale digital device forensics is a rapidly evolving subfield of digital
forensics. The initial popularity of the iPhone and subsequently the iPad led to
research into the retrieval and analysis of digital evidence from these devices
[5][6][7]. There has been some research into Android devices [8], although it has been
almost exclusively focused on phones and much remains to be done before a
generalized methodology for Android forensics is possible [9]. There has also been
some research on BlackBerry smart phone devices [10], but at the time of writing
there is little published research about the BlackBerry PlayBook tablet, which is the
focus of this paper.

2.1 iPhone and iPad

The iPhone, iPod Touch, and iPad all run the iOS operating system, and may be
conceived of as broadly similar devices from a forensics perspective. All iOS devices
interface with a personal computer or accessory peripherals through a proprietary port
on the bottom of the device which connects to the computer’s Universal Serial Bus
(USB) port via a special cable. None of the iOS devices feature removable storage
and consequently, any digital forensic examination of the device must take place via
this cable.

Physical acquisition for iOS devices is limited to commercial products and law
enforcement personnel. Andrew Hoog and Katie Strzempka [11] reviewed most tools
that support iOS device forensics using the criteria: installation, acquisition, reporting
and accuracy, where they came up with a ranking system they used to rank 13 digital
forensics products and methodologies. The Zdziarski method scored the highest (4.1)
where the rest averaged 3.3. Zdziarski’s iPhone forensics method is one of the few
which does not require the target device to be jailbroken - all an examiner has to do is
put the device into recovery mode and load Zdziarski’s tool into the device’s RAM.
The technique is conceptually similar to using a boot CD – essentially the device
boots to an “alternate” system partition that has all the necessary software to run a

 BlackBerry PlayBook Backup Forensic Analysis 241

“dd” command and create a forensic image of the user partition, bypassing any
password protection. The National Institute of Standards and Technology validated
the Zdziarski method as forensically sound [12].

Gómez-Miralles and Arnedo-Moreno employ jailbreaking in their approach, which
uses the Apple Camera Connection Kit for the iPad to connect the device to an
external hard drive [13]. After the iPad is jailbroken, OpenSSH and core utilities
(coreutils) are installed on it, and the investigator connects to the device from a
computer on the same WiFi network as the iPad using ssh. The “dd” command is
issued to the target device specifying that the output is to be stored on the external
hard drive connected via the camera connection kit.

2.2 Android Devices

Similar to the iPhone, Android keeps all the system files and some of the user
information protected on the kernel level. Consequently, many forensic scientists
suggest that the device should be “rooted” (a similar process to jailbreaking) to
facilitate examination [9]. The Android file system is “Yet Another Flash File System
2” (YAFFS2). YAFFS, developed in 2002, was the first file system designed for
NAND (Not-AND) flash memory devices. YAFFS2 was designed in 2004 in
response to the availability of larger sized NAND flash devices; older chips support a
512 byte page size whereas newer NAND memory has 2096 byte pages. YAFFS2 is
backward compatible with YAFFS [8].

The first and most obvious step is to perform a traditional forensics analysis of the
microSD card from the Android device. This step will obviously only result in the
acquisition of whatever data has been stored to the SD card but not the data which is
stored in the device’s non-removable memory. Android device SD cards use the
FAT32 file system and are easily imaged and examined using traditional forensics
tools (including write-blocking hardware).

In order to acquire access to the Android device’s internal memory as opposed to
simply the SD card, USB debugging must be enabled on the device. This mode can be
enabled by the user through the appropriate configuration menu on the Android
device. If the Android device’s keylock is active, then the investigator requires the
user’s passcode to gain access to the configuration menu. According to Lessard and
Kessler [8], unless USB debugging has been enabled, it is not possible to root the
Android device. Golubev [14] explains that in the absence of the passcode, root
access is necessary to bypass the Android device’s keylock. This creates a “chicken
and the egg” scenario where if the keylock passcode is unknown, the investigator
must disable the keylock remotely via root access, but if the investigator cannot
disable the keylock, he/she will be unable to root the Android device.

The exact process of rooting an Android device varies depending on the hardware
manufacturer follows the same general process. This process requires inserting an SD
card (preferably fresh and not the one used by the device as it may store evidence on
it) and enabling USB debugging mode, then, through the use of Android
Development Tools (ADT, part of the Android SDK) and the Android Development
Bridge (ADB), a small program is copied to the SD card. This program is usually

242 M. Al Marzougy, I. Baggili, and A. Marrington

copied to /data/local/tmp, a folder where most installation files reside. The program is
then run in order to root the device.

Other research has focused upon the analysis of the live memory of Android
devices. Researchers have developed a tool that performs a dump of each running
process’ memory [15]. Although excellent for the analysis of a single process (such as
a single running application), many other potentially interesting parts of the Android
device’s memory are not analyzed including in-kernel structures, networking
information, etc. Another issue is that this approach requires memory to be extracted
separately for each process of interest, which requires a number of interactions with
the live system, increasing the chance that evidence will be contaminated. Sylve et al
developed a kernel module that can be loaded to a rooted Android device to dump the
memory of the device to the device’s SD card with very high accuracy [16].

2.3 BlackBerry Devices

BlackBerry devices have long had the reputation for security, both with respect to the
data stored on the device and to the security of emails and messages sent to and from
the device. Previous work studying BlackBerry smart phone devices found that data
was only forensically recoverable on devices where the users had not employed the
device’s encryption features [10]. However, the BlackBerry PlayBook uses a different
operating system entirely from the BlackBerry OS used on the generations of
BlackBerry smart phones up to this point. The BlackBerry Tablet OS is based on
QNX Neutrino, an OS that is employed to run on many other portable devices. This
operating system is Unix-based and features a microkernel.

BlackBerry devices were among the first smart devices to hit the market and as a
result they became popular among government officials and corporate customers
alike. Most BlackBerry devices come with the option to completely encrypt its
memory. Further, the device makes it possible to encrypt the device’s Secure Digital
(SD) card as well. It is also possible to wipe a BlackBerry device remotely in the
event that the device has been lost or stolen. BlackBerry devices, both the BlackBerry
smart phones and the BlackBerry PlayBook, can also be backed up to a desktop
computer using the BlackBerry Desktop Manager software. These backups may
contain much information of forensic value to an investigator, just as they do for the
iPhone [5] and iPad [3].

3 Methodology

Our method can be summarized as using a BlackBerry PlayBook device under
manual observation, involving recording of all actions and their outcomes, before
backing the device up with BlackBerry Desktop Manager and then analyzing the
backup files produced to determine those of most potential interest to an investigator
and their structure.

 BlackBerry PlayBook Backup Forensic Analysis 243

3.1 Test Equipment

Hardware:
• 64 GB BlackBerry PlayBook running OS 2.0.7971
• BlackBerry Bold 9900 running OS 7.1 Bundle 921 (7.1.0.267, Platform

5.1.0.230)
• IBM ThinkVantage with 2.6 Ghz Quad Core Intel processor, 4 GB RAM

running Windows XP Professional, Service Pack 3.

Software and tools:
• BlackBerry Desktop Software 6.1.0.35
• Facebook for BB PlayBook 2.2.1.7
• WinRAR 3.30
• Hex Workshop 6.6
• SQLite Browser 2.0b1
• AccessData FTK 3.2
• Snagit

3.2 Test Procedure

The BlackBerry PlayBook device was initiated and connected to a wireless network
as part of the initiation process. The device was connected to the lab’s wireless
network and the timezone was selected. After that the device required a BlackBerry
ID, which was created using the following details:

• BlackBerry ID: bbpbmail@gmail.com
• First name: ZUPlayBook
• Last name: Student
• BlackBerry ID username: bbpbmail@gmail.com
• Password: zuBlackBerry
• Recovery Question: Where?
• Recovery Answer: Here
• Screen name: ZU

After the successful BlackBerry ID registration, the device was forced to update to
OS 2.0.7971 and went through the first launch tutorials and demo. After that, the
device was connected to the BlackBerry 9900 smart phone through the BlackBerry
Bridge connection (over Bluetooth). Accessing the BlackBerry Bridge applications
required the smart phone’s password. The PlayBook then accessed emails from the
smart phone through the bridge to the first author’s email address, and we sent and
received test emails to and from the account bbpbmail@gmail.com. The next bridge
app we used was the BlackBerry Messenger (BBM), specifically checking received
messages and then sending and receiving some BBM messages to members of the
smart phone’s contact list. We then disconnected the PlayBook from BlackBerry
Bridge.

244 M. Al Marzougy, I. Baggili, and A. Marrington

The next step was using a new feature in OS 2.0: direct email setup. Using this
feature, the PlayBook device is used to directly receive and send emails over WiFi
without the need for a tethered smart phone device connected via BlackBerry Bridge.

Subsequent to that, we performed some browsing activities on the PlayBook
device, using the default browser, and then we started to run the YouTube and
FaceBook applications. We also used the camera to take two photos and one video.
Finally, a hotspot was created using the BlackBerry smart phone, and the PlayBook
device was connected to that hotspot.

After that the device was connected to the PC to capture a backup. From the
Desktop Software the backup option was set to “Full (all device data and settings)”.

After the backup was taken, more operations were made for comparison. One of
the image files was deleted, a website was deleted from the browsing history and
more images were copied to the device using the Desktop Manager Software. Files
named dizer.jpg and low.jpg and chub.jpg were copied using the file explorer of the
Desktop Manager Software. Then from the device the file chub.jpg was deleted. The
device was then backed up again.

WinRAR was used to extract the files from the .bbb files, which are ZIP files with
the “bbb” extension. After extracting everything into 2 folders, “before delete” and
“after delete”, the folders were added to AccessData FTK as live evidence.

4 Analysis and Findings

After extraction, both files had the same structure. The backed up files were divided
into 3 main tar files: App.tar, Setting.tar and Media.tar. Along with these tarballs was
an xml file describing the content of the files called Manifest.xml. It showed the
device PIN and OS version as well as file size for the above mentioned tarballs as
shown in Figure 1.

Fig. 1. Content of Manifest.xml

4.1 Media.tar

Examining tar files using WinRAR, we first started out with the Media.tar file which
had two folders in it, Media and dtm. The “Media” folder has the same structure of
folders when you connect your device to the PC as shown in Figure 2.

 BlackBerry PlayBook Backup Forensic Analysis 245

We found all the images as well as the video taken by the camera in the folder
Camera in the first .bbb file. Aditionally, all the uploaded images were saved in
the\photos\Pictures\BlackBerry folder. There were no traces of the deleted image
taken by the camera, but moving into the dtm folder of the “after delete” .bbb file we
found the file c2f39ce100000004.bbms which listed the file name of all images
uploaded into the device including the one we deleted.

Fig. 2. Media folder content

4.1 Settings.tar

Settings.tar is an archived folder containing several files. Notably, Settings.tar
contained another file called dynamic.lm in the directory
\accounts\1000\sys\input\fluency\user. This file contained the emails sent from the
device.

The directory \pps\services listed all the services in the device such as:
accelerometer, audio, clock, geolocation, input, light_sensor and more. Table 1
summarises the files found with evidence in them:

Table 1. Evidence Files in services folder

File name Path Description
Status \pps\services\accelerometer The file shows the

orientation of the
device at the time
of backup, and
whether it was
facing up or down.

Status \pps\services\audio The file shows the
audio status and
whether a2dp
bluetooth audio is
enabled or not.

246 M. Al Marzougy, I. Baggili, and A. Marrington

Table 1. (Continued.)

File name Path Description
Status \pps\services\clock The file showed

which time zone
the device was
using.

Status \pps\services\geolocation
\country

The file showed the
country code for
the country the
device was in.

Status \pps\services\network-time Showed the time
stamp of the clock
update and the ntp
server used.

orientation \pps\services\sensor Same information
provided by the
accelerometer
status file

Settings \pps\system The file contained:
• Time format
• Langauge used
• Time Zone

Notably we found two sub-folders in the folder \settings\var which appear worthy

of further investigation; certmgr and keymgr. The first one seemed to contain all the
certificates the device uses for communication and the other one contained a set of
private keys.

Digging further in the folder we found the file wpa_pps.conf in the directory
\var\etc\netsecure which stored all the info related to the wireless networks to which
the device had been connected. Another interesting finding was that the device also
copied all the networks to which the BlackBerry smart phone had ever connected,
including all the SSIDs and passwords, in clear text. This included wireless networks
to which the BlackBerry smart phone had connected before it had connected to the
PlayBook device using BlackBerry Bridge.

4.2 Apps.tar

This file contained obscured folder names, similar to what Apple does with iOS
application folders with obfuscated names. We speculate that the names may be
generated through a hash function of some description. Within Apps.tar, we found a
file named core.all in the directory sys.navigator\appdata\data. This file can be
thought of as a map for the obfuscated folders within the tarball. Furthermore, in the
same folder were other files that were a subset of core.all, like userapps (shown in
Figure 3) which lists only third party apps installed, and core.corporate that lists all
the OS built-in apps, while the file dock showed the apps “pinned” to the dock in the
PlayBook’s GUI.

 BlackBerry PlayBook Backup Forensic Analysis 247

Fig. 3. Userapps lists all third party apps installed on the BlackBerry PlayBook device

Using the abovementioned files we focused on the folders of apps that may have
potential evidence in them. We started by examining the browser’s folder as we
expected it to be the richest in terms of recoverable data. The browser’s folder was
named gYABgJYFHAzbeFMPCCpYWBtHAm0 and it contained the files shown in
Table 2.

Table 2. Evidence from browser app

File name Path Description
settings.sol \#SharedObjects

\browser.swf
This file showed the
settings used by the
browser: history expiry,
homepage, default
search engine, encoding
used, font size and user
agent string can be
found.

Cache(folder) \appdata\data\cache This folder contained
cached web files which
can be used to
reconstruct browsing
history and browsed
pages.

WebpageIcons.db \appdata\data\database An SQLite database that
contains information
about visted sites’ fav
icon and where to get
them. Can be used to
track browsing histroy.

Favicon(folder) \appdata\data\favicon Fav icon are cashed in
this folder in png
formats.

248 M. Al Marzougy, I. Baggili, and A. Marrington

Table 2. (Continued.)

File name Path Description
Snapshot(folder) \appdata\data\snapshot This folder holds the

snapshots of the visited
websites as seen on the
browser history section.
It stores them in 2 sizes
in landscape and
portrait.

browser-v1.0.db \appdata\data A SQLite database that
has 2 tables, Bookmark
and history, which are
self explanatory.

cookieCollection.
db

\appdata\data Another SQLite
database that stores all
the cookies that are
stored on the device with
information like: host,
expiry and last accessed

Further key term searching led us to the YouTube folder

gYABgPcyRJTp899l1vKiJZewK88, to the file qnx.youtube.sol located in
\appdata\data\#SharedObjects\Youtube.swf. Here we also found additional
information about the clip we watched, including the URL, the URL of the comments
and some related videos. The folder appdata\data\appdata had a SQLite database,
cookies.sqlite, that held the cookies used for the YouTube application and others.

4.7 Limitations

The analysis was conducted on only one PlayBook device, so we couldn’t record how
hardware changes might affect the results, if indeed they would affect them. The
experiment was performed on the original PlayBook device, not the new 4G LTE
PlayBook device, which is capable of connecting to the mobile network independent
of the BlackBerry Bridge tethering feature. Likewise; our examination of artifacts left
as a result of the BlackBerry Bridge tethering feature only involved one additional
device, a BlackBerry Bold 9900. Other BlackBerry smart phone devices were not
used in this experiment, although BlackBerry Bridge is supported on a wide range of
BlackBerry smart phone models. Most significantly, the technique described in this
paper depends on logical acquisition through the BlackBerry backup procedure, and
therefore shares the limitations common to logical acquisitions of all digital devices.
Our plans to address these limitations are discussed in section 5, below.

 BlackBerry PlayBook Backup Forensic Analysis 249

5 Conclusions and Future Work

The original (non-4G LTE) BlackBerry PlayBook device is a low-priced tablet which
integrates with the BlackBerry smart phone device. Despite an overall smaller share
of the tablet and smart phone markets than iOS and Android-based competitors, the
BlackBerry devices (PlayBook and smart phones alike) remain popular and widely
deployed in the corporate and government markets, and in the mainstream consumer
market in many countries. This paper described a logical acquisition-based approach
to investigating the BlackBerry PlayBook device. Our approach is based on the use of
the BlackBerry PlayBook backup file created by the normal backup procedure
through the BlackBerry Desktop Management software. We examined the backup
data structure and identified files stored within which appeared to be of forensic
interest. Table 3 lists the files within this backup structure which we identified as
likely containing information of interest to a digital investigation.

Table 3. Summary of results

Tarball File Path within Tarball Description
Settings.tar \accounts\1000\sys\input\fluency\user

\dynamic.lm

Emails that are sent
from the device.

Settings.tar \pps\services\accelerometerb\Status Orientation of the
device at the time of the

backup

Settings.tar \pps\services\audio\Status Bluetooth and A2DP
usage

Settings.tar \pps\services\clock\Status Current Time Zone

Settings.tar \pps\services\geolocation\country

\Status

Country code for geo
location at the time of

the backup

Settings.tar \pps\services\network-time\Status NTP server used and
time stamp for last

update
(Unix EPOCH time)

Settings.tar \pps\services\sensor\orientation Orientation of the
device at the time of the

backup

Settings.tar \pps\system\Settings Language, time format
and time zone

Settings.tar \settings\var 2\certmgr x.509 certificates

Settings.tar \settings\var 2\keymgr Private keys

Settings.tar \var\etc\netsecure\wpa_pps.conf Information about
wireless networks,

including passwords

250 M. Al Marzougy, I. Baggili, and A. Marrington

Table 3. (Continued.)

Tarball File Path within Tarball Description
Media.tar \media\camera

All the images and
videos taken by the
camera, none of the

deleted

Media.tar \dtm\MediaSync
\c2f39ce100000004.bbms

List of all images
synced to the device,
even the deleted ones.

Apps.tar \sys.navigator\appdata\data\core.all
Map to all application

folders

Apps.tar \sys.navigator\appdata\data
\core.corporate

Subset that shows only
OS built in applications

Apps.tar \sys.navigator\appdata\data\userapps Subset that shows user
installed applications

Apps.tar \gYABgJYFHAzbeFMPCCpYWBtHA
m0\

Browser application
folder, can be different

Apps.tar \SharedObjects\browser.swf

\settings.sol

Browser settings

Apps.tar \appdata\data\cache\ Browser Cache

Apps.tar \appdata\data\database

\WebpageIcons.db

Fav icon information

Apps.tar \appdata\data\favicon\ Fav icon image files

Apps.tar \appdata\data\snapshot Websites snapshots

Apps.tar \appdata\data\ browser-v1.0.db Bookmarks and history
tables

Apps.tar \appdata\data\cookieCollection.db Browser cookies

Apps.tar \gYABgE1L_lY-sjW85E1SCBQsrco

\firstlaunch.sol

Device name and
BlackBerry ID used to

initiate the device

Apps.tar \gYABgPcyRJTp899l1vKiJZewK88 YouTube Application
folder

Apps.tar \appdata\data\#SharedObjects

\Youtube.swf

YouTube searches and
videos watched.

Apps.tar \appdata\data\appdata\cookies.sqlite Cookies stored by
YouTube Application.

In the future, we plan to run more extensive tests on a broader range of BlackBerry

hardware and software. We also plan on creating stronger usage scenarios to create
more complete user profiles. As we continue to investigate these devices, it will be
possible to develop a software parser for the PlayBook backup structure which can be
used to automate the discovery of the different items of interest we discovered in the

 BlackBerry PlayBook Backup Forensic Analysis 251

investigation described in this paper. This parser could be combined with a
convenient user interface to display or export this information, to assist forensic
investigators.

The new 4G LTE BlackBerry PlayBook is substantially similar to the original
BlackBerry PlayBook except for the addition of a 4G LTE modem. Although this new
model still supports BlackBerry Bridge, the 4G LTE modem allows connection to the
mobile network directly through a micro-SIM. We anticipate that the back-up
structure would be extremely similar to the structure described in this paper, but have
yet to confirm this through our own testing. One point of interest is that the new 4G
LTE modem may lead to a significant reduction in the use of the BlackBerry Bridge
feature which, as we have shown, leaves interesting evidence about paired BlackBerry
smart phones used with the subject PlayBook.

Another limitation of the work described in this paper, as noted above, is our
dependence on the BlackBerry PlayBook backup file. The backup file may be thought
of as a logically acquired image of the PlayBook device, and as with all logical
acquisitions, there may be some additional evidence stored on the device itself which
cannot be retrieved. For example, deleted files or data stored in primary memory only
as opposed to secondary storage on the device (e.g. cryptographic keys, passphrases)
may be of forensic interest, but will not be retrieved through a logical acquisition of
the PlayBook device’s secondary storage. We plan to address this deficiency by
investigating techniques for physical acquisition of the PlayBook device. DingleBerry
[17] is a PlayBook hacking tool which permits root access to the BlackBerry
PlayBook device. DingleBerry may provide a mechanism for our future work in the
physical acquisition of the BlackBerry PlayBook device.

References

1. Gartner Research. Gartner Says Worldwide Media Tablets Sales to Reach 119 Million
Units in 2012 (2012), http://www.gartner.com/it/page.jsp?id=1980115
(retrieved)

2. BlackBerry PlayBook cleared for government use,
http://www.cbc.ca/news/technology/story/2011/07/
22/technology-BlackBerry-PlayBook-rim.html (retrieved)

3. Ali, S., AlHosani, S., AlZarooni, F., Baggili, I.: iPad2 logical acquisition: Automated or
manual examination? In: Proceedings of the 2012 ADFSL Conference on Digital
Forensics, Security and Law, Richmond, VA (2012)

4. Garfinkel, S.L.: Digital forensics research: The next 10 years. In: Proceedings of the 2010
Digital Forensics Workshop published in Digital Investigation, vol. 7, pp. S64-S73 (2010),
doi:10.1016/j.diin.2010.05.009

5. Bader, M., Baggili, I.: iPhone 3GS Forensics: Logical analysis using Apple iTunes Backup
Utility. Small Scale Digital Device Forensics Journal 4(1) (2010)

6. Gómez-Miralles, L., Arnedo-Moreno, J.: Universal, Fast Method for iPad Forensics
Imaging via USB Adapter. In: Fifth International Conference on Innovative Mobile and
Internet Services in Ubiquitous Computing (IMIS), Valencia, pp. 200–207 (2011)

252 M. Al Marzougy, I. Baggili, and A. Marrington

7. Iqbal, B., Iqbal, A., Al Obaidli, H.: A Novel Method of iDevice (iPhone, iPad, iPod)
Forensics without Jailbreaking. In: 2012 International Conference on Innovations in
Information Technology (IIT), Al Ain (2012)

8. Lessard, J., Kessler, G.C.: Android Forensics: Simplifying Cell Phone Examinations.
Small Scale Digital Device Forensics Journal 4(1) (2010)

9. Vidas, T., Zhang, C., Christin, N.: Toward a general collection methodology for Android
devices. In: Proceedings of the 2011 Digital Forensics Workshop published in Digital
Investigation, vol. 8, pp. S14-S24 (2011)

10. Valli, C., Jones, A.: A Study into the Forensic Recoverability of Data from 2nd Hand
BlackBerry Devices: World-Class Security, Foiled by Humans. In: Proceedings of World
Congress in Computer Science, Computer Engineering and Applied Computing, Las
Vegas, pp. 604–607 (2008)

11. Hoog, A., Strzempka, K.: Independent Research and Reviews of iPhone Forensic Tools
(2010), https://viaforensics.com/resources/white-papers/
iphone-forensics/ (retrieved)

12. National Institute of Standards and Technology, Test Results for Mobile Device
Acquisition Tool: Zdziarski’s Method (2010), http://www.nij.gov/
pubs-sum/232383.htm

13. Gómez-Miralles, L., Arnedo-Moreno, J.: Versatile iPad forensic acquisition using the
Apple Connection Kit. Computers & Mathematics with Applications 63(2), 544–553
(2012)

14. Golubev, N.: Android Forensics Study of Password and Pattern Lock Protection (October
28, 2011), http://android-forensics.com/android-forensics-study-
of-password-and-pattern-lock-protection/143 (retrieved)

15. Thing, V.L.L., Ng, K.-Y., Chang, E.-C.: Live memory forensics of mobile phones.
In: 2010 Digital Forensics Research Workshop Published in Digital Investigation, vol. 7,
pp. S74-S82 (2010)

16. Sylve, J., Case, A., Marziale, L., Richard, G.G.: Acquisition and analysis of volatile
memory from Android devices. Digital Investigation 8(3-4), 175–184 (2012)

17. Wade, C.: (2012), http://www.dingleberry.it/ (visited July 5, 2012)

ANTS ROAD: A New Tool for SQLite Data Recovery
on Android Devices

Lamine M. Aouad, Tahar M. Kechadi, and Roberto Di Russo

Centre for Cybersecurity and Cybercrime Investigation
University College Dublin, Ireland

{lamine.aouad,tahar.kechadi}@ucd.ie

Abstract. Recovering deleted information is one of the most important probative
elements in a forensic investigation that involves a mobile phone. In this paper,
we present a new tool implementing an innovative method, based on a low-level
analysis, to recover deleted data from SQLite databases on Android devices, tak-
ing as an initial example text messages. The paper then proposes a generic frame-
work for deleted data recovery that can be used with a range of SQLite databases
on a variety of Android systems and devices. Indeed, although our initial aim was
to recover deleted SMSs, we realized along the way that, with the appropriate
changes, the initial implemented method can be applicable to the extraction of
deleted information from any SQLite database file.

1 Introduction

In the last decade or so, the world of mobile phones has gone through a tremendous
change, transforming the devices from simple phones to pocket computers, mostly re-
ferred to as smart phones. Prior to this change, using a mobile phone meant by and
large emitting and receiving calls or text messages (SMSs). Nowadays, with the spread
of new hardware and software technologies, a mobile user can also surf the Web, chat,
and do more or less everything he or she can do with a desktop or a notebook computer,
and even more. The capability of these devices is still growing, as the number of their
users. Indeed, they are today the highest-selling consumer electronic devices.

The smart phones proliferation has brought new issues in terms of forensics evidence
acquisition. They handle a large amount of personal data, including text messages, com-
munications logs, contacts, multimedia, geo-location information, etc. These could po-
tentially help answering crucial questions in a criminal investigation. However, the huge
variety of devices and the lack of standards imply that there is no unified method of
accessing, extracting, or retrieving this data. Surely, a huge contribution to the smart
phones market growth was brought by Android OS, by which an impressive amount of
relatively low-price devices has been sold. According to data from Google, the activa-
tion rate is projected to reach a million per day by mid August of this year (2012), and
if it continues we could see 1.5 million per day by the end of 2013. Android accounts
for 68% share of the global smart phone market (2nd quarter of 2012).

These devices store most of the information in database files, which keep track of in-
formation deleted by the user, to a certain extent. However, this information cannot be
accessed by traditional databases browsers and tools, and need alternative techniques.

M. Rogers and K.C. Seigfried-Spellar (Eds.): ICDF2C 2012, LNICST 114, pp. 253–263, 2013.
c© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2013

254 L.M. Aouad, T.M. Kechadi, and R. Di Russo

This paper presents a new low-level analysis method for the recovery of deleted infor-
mation from SQLite database files on Android devices. We particularly applied it to
the recovery of deleted SMSs, then generalize it to other databases and devices. The
next section presents related work and surveys some of the existing tools. Section 3 will
then present the proposed method. Section 4 shows the initial evaluation supporting
few databases from different Android releases and devices, along with a discussion and
future work. Concluding remarks are then given in section 5.

2 Related Work

Android OS stores the information in a set of database files. These files are managed by
SQLite, a database engine, also used by Mozilla Firefox, Thunderbird, Skype, Apple’s
iOS and Blackberry, among others. According to the SQLite documentation [2]: “when
you delete information from an SQLite database, the unused disk space is added to an
internal free-list and is reused the next time you insert data. The disk space is not lost,
but neither it is returned to the operating system”.

About this deleted information, it adds: “if you do not have a backup, recovery is
very difficult. You might be able to find partial string data in a binary dump of the
raw database file. Recovering numeric data might also be possible given special tools,
though to our knowledge no such tools exist. (...) Recovery is also impossible if you
have run vacuum since the data was deleted. If vacuum has not been run, then some of
the deleted content might still be in the database file, in areas marked for reuse. But,
again, there exist no procedures or tools that we know of to help you recover that data”.

In a nutshell, the vacuum operation, mentioned earlier, rebuilds the database. It sim-
ply copies the contents of the database into a temporary database file and then over-
writes the original with the contents of the temporary file. This procedure allows to
reclaim the free marked space. It ensures that each table is stored contiguously and it
may also reduce the number of partially filled pages. In auto-vacuum capable databases,
the Database Management System executes the command automatically. The applica-
tion designer or the database administrator has no control on the rebuilding operation.
This feature is to keep in mind in the deleted records recovery. Indeed, since the user
cannot know the last time that the vacuum command has been executed, he/she cannot
know how many records can be recovered. Also, as a result of this operation, the recov-
ery on the same database at different times will not necessarily return the same result
set.

In [1], the authors have reported the recovery properties of few database systems,
including SQLite, by comparing their behavior in terms of deletion, update, insert, and
vacuum operations. An important behavior of SQLite to mention here is that data is
deleted logically, and not removed. Previous values of a record are however completely
overwritten in many cases during an update. Deleted records are freed and subsequent
insertions may overwrite the data. However, freed pages are not returned to the file
system until vacuum is performed. The recovery rate was also fairly low, at about 400
to 500 records throughout the tested workload, which was up to 30000. Although this is
a completely different use case, including about hundred operations of insertion, update,
deletion and so on, it shows the challenges of recovering information from this database

ANTS ROAD: A New Tool for SQLite Data Recovery on Android Devices 255

management system. In terms of software tools, Epilog [9] for Windows platforms, is
the only dedicated tool to deleted data recovery from SQLite databases we could find. It
includes three recovery algorithms that can be used on any SQLite database, regardless
of the type of the data stored. Nevertheless, the tested version of Epilog, on few SMS
databases, did not recover any of the deleted messages. This is more likely the result
of the wide range of customization and differences in the database structure and fields
across devices and OS versions.

On the other hand, there are many studies in the literature on the retention and recov-
ery of deleted data from different underlying systems including file systems, memory,
and even specific applications such as browsers and documents [11], [12], etc. There are
also many forensic tools and methods performing physical and logical data acquisition,
for Android and other devices, surveys on existing tools can be found in [3], [4], and
few methods in [5], [6], [7], among many others. However, logical acquisition simply
queries the databases, and therefore cannot extract information that are not accessible
from an SQL browser. The existing literature is very limited, and deleted SMSs recov-
ery from an Android device, and more generally any other deleted data source, can be
considered as a relatively unexplored field. The existing forensic analysis support of
database files, other than as physical memory dumps, is very limited. This work aims at
covering this gap.

3 The Method

In order to extract deleted text messages from an Android device, we performed a low-
level analysis on the related database file. Android stores all the information about
SMSs and MMSs in the mmssms.db file. The data we are interested in resides in
the sms table. For a forensically-sound analysis, we pulled out a copy of this database
from the device.

3.1 SQLite Database Structure

Before explaining the method, let us present the structure of SQLite databases. It is
composed of pages, most of which are organized in a B-tree structure. A page is a set of
a fixed number of bytes, whose size is a power of 2, between 512 and 65536 inclusive.
All the pages in the same database have the same size and they are numbered, starting
from 1. Each page can have only a single use between the following.

– Freelist pages: pages that are not in active use anymore, and that are put in a linked
list to be reused if additional pages are required.

– B-tree pages: a B-tree page can be an internal page or a leaf page. The content is
stored only in the leaf pages, so it is on these pages that we focused our attention
on. A B-tree page is either a table B-tree page or an index B-tree page. However,
since the data is stored only in table B-tree pages, we focused only on these. The
data stored in a B-tree table leaf page is organized in cells. Usually, but not always,
each cell contains exactly one record.

256 L.M. Aouad, T.M. Kechadi, and R. Di Russo

– Overflow pages: sometimes the payload of a B-tree cell is too big to fill in a B-tree
page. In these cases, the surplus is stored into an overflow page. The overflow pages
form a chain, the first four bytes of every overflow page are a pointer to the next
page, or have value 0 if the page is the end of the chain.

– Pointer map pages: pages whose aim is to make the auto-vacuum operation more
efficient. They simply contain links between pages from child to parent. The first,
and usually the only one, pointer map page is page 2. A pointer map page exists
only if the database is auto-vacuum. It has been useful to our work to further shrink
the set of candidate pages where to look for the deleted records.

3.2 Analysis Set Up

In every SQLite database, the first page contains the 100 bytes database header, that
is divided into fields. The multibytes fields are stored in big-endian format. For our
analysis, the most significant fields are listed in the following table. All offsets are
intended from the beginning of the first page and all the sizes are expressed in bytes.

Offset Size Description
0 16 The header string ”SQLite format 3\0”.

16 2 The database page size in bytes.
52 4 If greater than 0, the database is

auto-vacuum capable.
56 4 The database text encoding.

A value 1 means UTF-8.

Before starting the analysis, it is necessary to check that the first 16 bytes match the
string ”SQLite format”, followed by the null terminator character. If not, the database is
not a valid SQLite database file, and this method cannot be applied. In our case, if the
mmssms.db copy is not corrupted, it will pass the check.

At offset 16, important information is located, stored in 2-bytes big-endian format,
it is the page size. This is useful for dividing the database into pages, the working units
of the first part of our work, that is the selection of a candidate set of pages where to
look for the deleted records. The Android SMSs database has a page size of 1024 bytes.
The 4-bytes big-endian integer at offset 52 indicates if the database is auto-vacuum.
This information is quite important here. Indeed, if this field has value 0, the database
is not auto-vacuum capable and it is not possibile to explore the pointer map stored in
the second page. The mmssms.db file is auto-vacuum, which is the default.

At offset 56, there is a 4-bytes value that indicates the database text encoding. In
our case, the relevant value is 1, which means UTF-8 encoding. Other values are 2 for
UTF-16 little-endian and 3 for UTF-16 big-endian. For the other fields meaning, we
refer the interested reader to the official SQLite documentation [2]. After the initial first
page analysis, we went on with the analysis of the pointer map page that represents the
starting point of the first selection of interesting pages, i.e. potential source of deleted
text messages.

ANTS ROAD: A New Tool for SQLite Data Recovery on Android Devices 257

3.3 The Pointer Map Page Analysis

As already mentioned, in an auto-vacuum database, the second page represents a pointer
map page, which aim is to facilitate moving the pages around in the database as part of
performing the vacuum operation. It is a sort of lookup table that stores a 5 byte record
for every page that follows the pointer map page. In these records the first byte indicates
the page type, and the others 4 bytes, to read in big-endian format, are a reference to the
parent page, indicated with 0x00 0x00 0x00 0x00 if it is null, or 0xVV 0xVV
0xVV 0xVV (where VV stands for variable) otherwise.

– 0x01 0x00 0x00 0x00 0x00: a B-tree root page has no parent page.
– 0x02 0x00 0x00 0x00 0x00: a B-tree free page has no parent page.
– 0x03 0xVV 0xVV 0xVV 0xVV: the first page of an overflow chain. Its parent

is the B-tree page containing the B-tree cell to which the overflow chain belongs.
– 0x04 0xVV 0xVV 0xVV 0xVV: a page that is part of an overflow chain, but

that is not the first page. Its parent is the previous page in the overflow chain.
– 0x05 0xVV 0xVV 0xVV 0xVV: a page that is part of a table or index B-tree

structure and is not a root page or an overflow page. Its parent is the page containing
the parent tree node in the B-tree structure.

Interested readers can find a deeper analysis of the pointer map page in [2], or [8]. In
our work, in order to perform an initial shrink of the candidate pages set, we kept only
pages that are part of a table B-tree structure and pages in overflow chains. Then, we
made a further selection in this set, keeping only the pages that are not child of the
B-tree root page, because we empirically realized that they do not contain any useful
data. By doing so, the searching set has been significantly reduced.

3.4 B-Tree Table Leaf Pages Analysis

Once we obtained the first candidate set, we started the pages analysis. First of all, we
checked out the first byte of each page. If its value is 0x0D, i.e. 13, it means that the
page is a leaf node in the B-tree structure, so it contains data and it is a good candidate
to contain deleted records.

The second and the third bytes of a page represent the relative offset of the first free
space block inside this page. If this offset is zero, it means that in the page there is no
free space, and then there cannot be any deleted record, since the space occupied by
deleted records is considered to be free. We went on in the analysis selecting only the
pages with at least one free space block, further shrinking the candidate set.

The next two bytes tell us the number of cells in the page (nPages), in our case
the number of non-deleted SMS records. At relative offset 5, a 2-bytes field indicates
the offset from the page starting of the first cell that contain a valid record, while the
next byte is a null separator (0x00). Going on, there are (nPages) byte pairs, each one
containing the relative offset of a valid content cell. Each ’pointed’ cell containing a
non-deleted SMS has a fixed structure, similar to the one shown in figure 1.

The payload length, the Row Id and all the payload header subfields are stored using
a VarInt format. VarInt (Variable Integer) can take between 1 and 9 bytes, depending
on the value stored. The Most Significant Bit (MSB) of each byte indicates if the next

258 L.M. Aouad, T.M. Kechadi, and R. Di Russo

Fig. 1. SMSs record structure

byte is also part of the field (1) or not (0), while the remaining 7 bits are used to store
the value itself. For the mmssms.db file it is enough to consider the case with at most
two bytes VarInt, following this algorithm:

Let x be the value of the first byte
if x < 128 then
result = x

else
Let y be the value of the second byte
result = (x− 128) ∗ 128 + y

end if
Checking that the first byte is less than 128 is equivalent to checking that its MSB

is 0. Indeed, if the x’s most significant bit is 1, the result can also be computed by
concatenating the latter 7 bits of the second byte to the latter 7 bits of the first one.
Storing data in VarInt field allows to save space. Indeed, VarInts are big-endian that,
using a static Huffman encoding, need less space for small positive values.

The data in the payload is stored in a serialized way: it is the Payload header that
indicates how to identify each payload field. In fact, for each payload field there is a
Serial Type Code, what we previously called ”payload header subfields”, that denotes
its type of data, according to the following table. Note that we reported only the Serial
Types that are relevant to the SMSs database.

Serial Meaning
Type

0 null field.
N ≤ 4 big-endian 8*N bit two’s complement integer.

5 big-endian 48 bit two’s complement integer.
6 big-endian 64 bit two’s complement integer.

N ≥ 13 (N-13)/2 bytes string in the database
and odd encoding.

The payload header varies from one table to another. Each manufacturer can add
custom fields to the shown structure. We can check how many fields are in the payload
header simply by reading the payload header length. In a deleted SMS record there are
some differences. Remembering that if in a page there is more than one free block, they
are concatenated in a chain, the first two bytes form a pointer to the next free cell in

ANTS ROAD: A New Tool for SQLite Data Recovery on Android Devices 259

the chain; a value zero indicates that the current block is the last one. The third and the
fourth bytes represent the size of the block in bytes, including the header. Both fields
are big-endian integers.

After this pre-header, we find the payload header. In our analysis, we realized that
the payload header lacks the record size and the record key. Indeed, three different cases
are possible:

– It can start with the payload header size,
– With the NULL byte that precedes the Serial Type Code list, or
– Directly with the first Serial Type Code, in this case the thread id.

Since the payload header is an important information about the record, but it is not al-
ways available, we computed it in advance simply by taking the minimum size between
all the valid record (non-deleted SMSs) size. This is a valid method since all the SMS
record sizes differ at most by one byte, depending on whether the body Serial Type
Code needs one or two bytes. In this computation, we considered only the complete
records that can be recognized by a payload header with at least the 16 basic Serial
Type Codes.

There are also record fragments or records containing only the body, without any
other field, but we did not consider them neither in the computation, nor in the analysis.
Applying this method before starting to collect data, we further reduced the candidate
set to the pages that contain only complete SMSs. Knowing the payload header size, the
data collection has been performed using each Serial Type Code for reading the spec-
ified number of bytes and interpreting them according to the above table. Besides the
chains of deleted cells, built by the first two bytes of each free block, we also managed
the internal chains. We define an internal chain as a chain of deleted SMSs inside the
same cell and it can be recognized by the fact that the record size indicated in the first
two bytes is much bigger than the actual payload content. A simple counter is enough
to understand the transition from a record to the next one in the same cell.

Deleted SMSs could also be found in the space between the page header and the
first valid content cell. When this happens, the first bytes pair after the page header is
greater than 0 and different from the last cell offset (that is, the last bytes pair in the
page header) and it represents the offset, from the beginning of the page, of a deleted
SMS. This SMS can be considered the head of a chain and its first field indicates the
offset of the next element, usually the same offset indicated in the page header as the
first free space block inside this page. Based on these patterns, experimentally induced
from a large set of test data, we carried out a set of evaluations described in the next
section.

4 Evaluation

We tested the method on two different mobile phones, mounting two different versions
of Android OS: the LG Optimus One with Android 2.3.3 and the Samsung Galaxy Gio
with Android 2.3.5.

On the Optimus One we recovered 22 deleted SMSs: 10 incoming, 10 outcoming, 1
draft and 1 of unknown type. On the Samsung Galaxy Gio, we recovered 6 deleted

260 L.M. Aouad, T.M. Kechadi, and R. Di Russo

SMSs: 3 draft, 2 outgoing and 1 incoming. Manually analyzing page by page the
databases, we found 23 deleted SMSs on the Optimus One and 8 on the Galaxy Gio.
The method recovered 22 out of 23 (95% of the deleted records) in the former, and 6
out of 8 (75%) in the latter case. In both cases, however, the unrecovered SMSs were
partially filled or corrupted, i.e. partially overwritten by other SMSs. This means that
the proposed method recovered all the complete deleted SMSs that were still present in
the database files.

After one week of use, we repeated the tests. Since we did not delete any additional
SMSs, the results on the Optimus One have not changed. On the Galaxy Gio, on the
other hand, we deleted all the received and sent SMSs and the proposed method recov-
ered only 2 SMSs, 1 draft and 1 outgoing. This indicates that an auto-vacuum operation
has been performed on it. We also applied the vacuum command manually to the copies
of the acquired databases. No deleted SMSs have been recovered. This confirmes that
the vacuum operation, both manual and automatic, remove all the deleted data that
might have still been in the database. These results highlight how strong is the link
between the deleted SMSs recovery, and more generally the deleted records recovery
from an SQLite database, and the unpredictability of the vacuum operation execution.

4.1 Discussion

The method proposed in this paper implements an efficient way to recover complete
deleted SMS records from a SQLite database on Android phones. Nevertheless, the
applicability of this work remains subject to the vacuum operation. On the one hand,
auto-vacuum is useful to our goal because it allows us to navigate the pointer map page
and shrink considerably the candidate set of pages on which to carry on the deleted
SMSs lookup. Indeed, if the database file was not auto-vacuum capable, its second page
would not contain a valid pointer map and the lookup would have been performed on
the whole set of the database pages, which can be quite big. This would have resulted
with a considerable loss of efficiency. On the other hand, working with an auto-vacuum
enabled database means that we do not have the control of the time of the last clean up.
As a result, it is also possible that two recoveries made at different times on the same
database return two different result sets.

4.2 Additional Use Cases

To understand what part of the deleted SMSs extraction can be reused, we analyzed
two additional databases. Particularly, we tested other Android databases, namely
browser.db and a proprietary database, WhatsApp’smsgstore.db. In the browser
database, we are interested in the bookmarks table that, despite its name, contains the
whole Web history, recording for each visited link whether or not it is saved as a book-
mark. While the general record structure is the same as mentioned for the SMSs, the
payload header changes. We can see that in figure 2. As for the SMS record, we repre-
sented only the basic payload header, but each manufacturer can add custom fields to
the shown structure. The information we are targeting is:

ANTS ROAD: A New Tool for SQLite Data Recovery on Android Devices 261

Fig. 2. History browser item payload header

– title: item title shown on a browser tab,
– url: item url (what we actually see in the browser address bar),
– visits: how many times the url has been visited by the user,
– date: date/time of the last visit,
– bookmark: it indicates whether or not the url is saved as a bookmark.

The second database that we studied is msgstore.db. It is the database used to store
messages sent and received by WhatsApp, a proprietary instant messaging App that uses
the Web to send messages. In this database, we are interested in the messages table
that contains all the sent and received messages. Again, the general record structure is
the same as previously discussed, while the payload header, shown in figure 3, changes.
In this case, however, the payload header is well-defined and it does not depend on the
device manufacturer. For this database, we are targeting the following information.

– key remote jid: for incoming messages it is the sender id, for outcoming ones
the recipient id,

– status: message status. It indicated if the message is incoming or outgoing, or if
it has an unknown value,

– data: message body content,
– timestamp: the timestamp when the message has been created,
– sendTimestamp: the timestamp when the message has been sent,
– receivedTimestamp: the timestamp when the message has been actually re-

ceived by the target user,
– receivedServerTimestamp: for outgoing messages, the timestamp when the

message has been received by the WhatsApp server,
– receivedDeviceTimestamp: for outgoing messages, the timestamp when the

message has been received by the recipient device.

Fig. 3. WhatsApp message payload header

As in the SMS records recovery, for both the Web history items and the WhatsApp
messages, the payload length, the Row id and all the payload header subfields are stored
using a VarInt format. The rules to compute these values are those we discussed in the
previous section. However, this is not the only analogy with the deleted SMSs recovery.
Indeed, we realized that most of the work made can be reused, from the pointer map

262 L.M. Aouad, T.M. Kechadi, and R. Di Russo

analysis to specific details such as the internal and the external chains management. The
only aspect that changes is the field extraction itself. Since the payload header and, con-
sequently the payload itself, is different from database to another, we need to redefine
for every database how to extract each field. In practice, using the discussed method,
we need to establish how to rebuild each record field from a byte group, whose size is
indicated by the related Serial Code Type. Following this process, and implementing it
in a modular way, we could obtain, with a relatively small effort, a generalized module
to recover deleted information from a variety of databases.

4.3 Future Work

In order to recover more deleted information, one direction would be in trying to re-
trieve the previous versions of the database files and then apply the proposed method to
each of them. However, since the auto-vacuum execution overwrites every time the pre-
vious database version with the same name, this should be thought of beforehand and
probably integrated in the development process to facilitate potential forensic investi-
gations. The analysis has been made on SQLite general assumptions, we have already
showed how we investigated ways to reuse this work to recover deleted information
from other Android databases. The following step is to consider a wider range of infor-
mation stored by SQLite databases in a variety of systems and devices. Indeed, many
other phones operating systems use SQLite to store data, including Apple’s iOS and
Blackberry. This method is not limited to Android systems and devices, and it should
be sufficient to check the page size and to adapt the matching Serial Code Types/Payload
Field to the specific table structure to obtain a specific-purpose software that runs for
any auto-vacuum valid SQLite database. We will validate this generalization in our fu-
ture work.

5 Conclusion

In this paper, we proposed and implemented a method for deleted information recovery
from SQLite databases. The initial target was database files under Android OS. We dis-
covered a set of patterns related to deleted information recovery on these databases and
validate it with a set of use cases. This work has a potentially wide range of applica-
tions in the important area of mobile digital forensics. It also aims at setting blueprints
for a wider range and deeper analysis involving additional databases and operating sys-
tems. Indeed, there is a gap in the literature in this area, and this work is addressing it
by proposing a method and a tool implementing and documenting the acquisition and
analysis of deleted information using a popular database engine.

References

1. Stahlberg, P., Miklau, G., Levine, B.: Threats to privacy in the forensic analysis of database
systems. In: Proceedings of the 2007 ACM SIGMOD International Conference on Manage-
ment of Data, SIGMOD 2007 (2007)

2. The SQLite Official Documentation, http://www.sqlite.org

http://www.sqlite.org

ANTS ROAD: A New Tool for SQLite Data Recovery on Android Devices 263

3. Hoog, A., Gaffaney, K.: iPhone forensics. Via Forensics White paper (2009)
4. Hoog, A.: Android Forensics - Investigation, Analysis and Mobile Security for Google An-

droid. Elsevier (2011)
5. Aouad, L., Kechadi, T., Trentesaux, J., Le Khac, N.-A.: An Open Framework for Smartphone

Evidence Acquisition. In: Peterson, G., Shenoi, S. (eds.) Advances in Digital Forensics VIII.
IFIP AICT, vol. 383, pp. 159–166. Springer, Heidelberg (2012)

6. Aouad, L., Kechadi, T.: Android Forensics: A Physical Approach. In: The 2012 International
Conference on Security and Management (July 2012)

7. Quick, D., Alzaabi, M.: Forensic analysis of the Android file system YAFFS2. In: Australian
Digital Forensics Conference (December 2011)

8. Rob, P., Coronel, C.: Database Systems: Design, Implementation and Management. Thomson
Course Technology (2009)

9. The Epilog SQLite forensic tool, http://www.ccl-forensics.com/
Software/epilog-from-ccl-forensics.html

10. Drinkwater, R.: Forensics from the sausage factory - An analysis of the record structure
within SQLite databases. Technical report (May 2011)

11. Carrier, B.: File System Forensic Analysis. Addison Wesley (2005)
12. Rosenblum, M.: Understanding data lifetime. Stanford University (2006)

http://www.ccl-forensics.com/Software/epilog-from-ccl-forensics.html
http://www.ccl-forensics.com/Software/epilog-from-ccl-forensics.html

M. Rogers and K.C. Seigfried-Spellar (Eds.): ICDF2C 2012, LNICST 114, pp. 264–282, 2013.
© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2013

Evaluating and Comparing Tools for Mobile Device
Forensics Using Quantitative Analysis

Shahzad Saleem, Oliver Popov, and Oheneba Kwame Appiah-Kubi

Department of Computer and Systems Sciences
Stockholm University, Forum 100, Isafjordsgatan 39

SE- 16440 Kista, Sweden
{shahzads,popov,okak}@dsv.su.se

Abstract. In this paper we have presented quantitative analysis technique to
measure and compare the quality of mobile device forensics tools while
evaluating them. For examiners, it will provide a formal mathematical base and
an obvious way to select the best tool, especially for a particular type of digital
evidence in a specific case. This type of comparative study was absent in both
NIST’s evaluation process and our previous work (Evaluation of Some Tools
for Extracting e-Evidence from Mobile Devices). We have evaluated UFED
Physical Pro 1.1.3.8 and XRY 5.0. To compare the tools we have calculated
Margin of Error and Confidence Interval (CI) based on the proportion of
successful extractions from our samples in different scenarios. It is followed by
hypothesis testing to further strengthen the CI results and to formally compare
the accuracy of the tools with a certain level of confidence.

Keywords: Digital Forensics, Mobile Device Forensics and tools, e-Evidence,
Evaluation, Confidence Interval, Hypothesis Testing and Quantitative Analysis.

1 Introduction

The digital world as we know it today is becoming increasingly mobile, mostly based
on the growing computational and communication capabilities of the small scale
digital devices (SSDD) and the associated services. The rate of penetration of these
devices is three times faster than the one of personal computers [1] and recent
statistical studies by ITU, indicate that 86.7 individuals out of 100 are using a mobile
device [2].

Indeed, mobile SSDD have literally become a sort of digital behavioral archives
both on individual and collective levels. They are omnipresent recordings of all our
activities, even the illicit ones. Hence, during investigations these digital archives can
prove crucial in providing the evidence in furthering and/or resolving a potential legal
case.

Although every investigation does not end up in a court, even then it is advisable to
treat the entire investigative process in a forensically sound manner. Hence, one can
produce evidence which is admissible in a court of law, if such a need arises. The
term forensically sound and how digital evidence must be handled is stipulated by

 Evaluating and Comparing Tools for Mobile Device Forensics 265

many published documents (that contain principles, standards, rules and guidelines)
such as IOCE’s guidelines [3], RFC 3227 [4], Daubert’s Principle [5], and Federal
Rules of Evidence [6], [7].

Growth in the number of mobile device forensics (MoDeFo) tools is almost
proportional to the volume and variety of mobile devices. These tools are rarely
verified and validated by independent third parties. The evaluation results provided by
the vendors are the only results available to the investigator for selecting the right tool
in a particular situation.

National Institute of Standards and Technology (NIST), as an independent third
party, realized the need to evaluate MoDeFo tools to facilitate the selection of a better
tool for a particular scenario. Therefore, NIST has developed “Smartphone Tool
Specifications [8]” and subsequently formulated “Smart Phone Tool Test Assertions
and Test Plan” [9].

NIST has also evaluated some MoDeFo tools and published their results at CFTT-
Mobile Devices Project’s website [10]. Each tool has been evaluated individually and
the results published for each tool separately [10]. Every test case is elaborated in a
tabular format where one table represents the data regarding the single case. The
outcomes of the evaluation process are presented as either pass or fail with some
additional comments on anomalies. Neither a visualization of evaluation results nor a
comparative study is conducted to help an investigator in selecting a better tool. The
whole process of selection relies on use of heuristics rather than on provable formal
procedures.

In the earlier published paper titled “Evaluation of Some Tools for Extracting e-
Evidence from Mobile Devices” [11] the visualization of reliability assurance levels is
provided for assisting the investigator to compare the tools together in order to select
the better one. This paper tries to improve the selection of MoDeFo tool by using
formal quantitative analysis methods.

While [11] addresses only the reliability assurance levels derived from NIST’s
specifications, the work presented in this paper deals with accuracy and integrity
protection as discussed in Section 3.1. The tools we have evaluated are XRY 5.0
developed by Micro Systemation1 and UFED Physical Pro 1.1.3.8 developed by
Cellebrite2. Mobile phones used to evaluate these tools were Nokia 5800 Xpress
Music and Sony Ericsson Xperia X1.

Mathematical foundations by using quantitative analysis are provided to compare
the tools for each type of digital evidence. In particular, we have calculated the
confidence interval (CI) and the margin of error (MoE) for each tool based on the
proportion of successful extractions. Both CI and MoE factors when studied together
should help an investigator to select a better tool for a specific investigation.

By using inferential statistics we have further strengthened our findings and made
the comparison process more obvious. Based on hypothesis testing we are able to
formally compare the tools in order to determine which one performs better for a
specific type of digital evidence. Graphical visualization of hypothesis testing results
will simplify the comparison and selection process even further.

1 http://www.msab.com/
2 http://www.cellebrite.com/

266 S. Saleem, O. Popov, and O.K. Appiah-Kubi

We have organized our paper in five sections. First section is a brief introduction
of the overall research and the relevance of the work. Brief discussion concerning
digital and mobile device forensics is the subject of the second section. In this section,
we have also outlined the forensic process model which has been followed. Third
section is about the methodology and the performance measurements. It describes CI
and MoE for evaluation of the tools. Finally hypothesis testing is employed to
formally compare the tools together. The analysis and discussion of the results is
presented in the fourth section, while the last one (fifth) is about conclusions and the
direction of future work.

2 Digital and Mobile Device Forensics

Digital Forensics (DiFo) is a relatively new and rapidly evolving discipline of the
traditional Forensics Science. Its roots can be traced back to 1984 [12][13]. One of the
first definitions of the term came from First Digital Forensics Research Workshop
(DFRWS) [14].

DiFo is related to digital evidence or data stored, transformed and transmitted
using a computer, which can help to support or refute a theory about an offense or its
critical elements [15]. Advancement and evolution in the field of digital systems has
spurred the progress in DiFo as well, resulting in the development of four new
branches namely:

1. Computer Forensics
2. Network Forensics
3. Database Forensics
4. Mobile Device Forensics.

In this paper, the focus is on the evaluation of MoDeFo tools. MoDeFo tools deal with
the digital evidences found in mobile devices. Mobile devices, as indicated in Section
1, have become important archives of the daily human behavior thus making the topic
of this research both important and interesting.

2.1 Mobile Device Forensics Process Model

Various organizations, working groups and standardization bodies such as DFRWS,
SWGDE, CART, NIJ, TWGDE have tried to build a standardized vocabulary, remove
inconsistencies and to formalize the terminologies and the overall process as well as
sub-processes [16][17]. As a result some digital forensic process models have also
been developed [12], [14], [18–29].

DiFo is applied on cases with varying circumstances, heterogeneous requirements
and technologies so creating a single DiFo model that fits all is a challenge in itself.
Moreover, we were working in a controlled laboratory environment; with a goal to
find a better tool through evaluation and comparison of various available MoDeFo
tools. So, we followed a condensed form of “Forensic Investigation Process Model
For Windows Mobile Devices” [29], as depicted in Figure 1.

 Evaluating and Comparing Tools for Mobile Device Forensics 267

3 Tool Evaluation

Evaluation is a process used to ensure that a tool behaves satisfactorily and it meets
the performance requirements. According to Matt Bishop “Evaluation is a process in
which the evidence for assurance is gathered and analyzed against criteria for
functionality and assurance”[31]. Formally, verification and validation are the two
different approaches to evaluation.

Verification requires high expertise and knowledge of the source code that is not
available in our case due to the commercial nature of the tools. Therefore, in our case,
validation approach is selected. According to IEEE glossary, “validation is the
process of evaluating a software system or component during, or at the end of, the
development cycle in order to determine whether it satisfies specified requirements”
[32]. During validation, we have tested whether the tool performs as intended. In
addition we also worked to find out some statistical performance measures to provide
a formal basis for matching MoDeFo tools together.

Fig. 1. The condensed form of the Windows Mobile Forensic Process Model [30]

3.1 Measuring Quality of MoDeFo Tools

The objective of the MoDeFo tools evaluation is to identify measures of their
performance as criteria of quality. According to Carrier [27] DiFo tools operate by
employing layers of abstraction. They transform raw bits and bytes into a presentable
format which is human readable at the apex of the abstraction process. An abstraction
layer transforms input data to output data by following a certain rule set, and of
course, with some margin of error as depicted in Figure 2.

We validated the tools and calculated the individual and cumulative MoE induced
by the underlying layers of abstraction for all types of digital evidence. The
proportion of successful extractions of digital evidences was used as a base to
calculate the performance indicators.

Collection

Identification

Preservation

Acquistition

Reporting

Examination & Analysis

268 S. Saleem, O. Popov, and O.K. Appiah-Kubi

Carrier identified the following requirements, a MoDeFo tool must have: [27]

1. Usability: to address the complexity problem a tool must provide the data
at a layer of abstraction that should help the investigator.

2. Comprehensive: the investigator must have access to all the data at the
given layer of abstraction.

3. Accuracy: the MoE must be known to solve the “Error Problem” and to
interpret the results accurately.

4. Deterministic: tool must produce the same output data when given the
same input data and the rule set.

5. Verifiable: the ability to ensure accuracy of the tool by verifying its
results either manually or by some independent third party tool.

6. Read Only: the ability to only read and not modify the original contents.
7. Sanity Checks: to detect any modification in the digital evidence.

Fig. 2. Abstraction Layer Inputs and Outputs [27]

However, in our case these requirements have been condensed to Reliability,
Accuracy and Integrity Preservation. Reliability includes the notions of usability,
comprehension, determinism and verifiability. We have already measured and
published [11] reliability assurance levels by following NIST smart phone tools
specifications [8], smart phone test assertions and test plan [9].

The thrust of this work is to measure the accuracy and the integrity preservation
capabilities of the MoDeFo tools by following B. Carrier’s requirements [27]. To do
so, MoE and the CI were calculated for the proportion of successful extractions by the
MoDeFo tools. Hypothesis testing was then used to not only strengthen the results of
CI and MoE but also to formalize and automate the comparison process. Additional
tests were done to determine the ability of MoDeFo tools in preserving the integrity of
digital evidence. All these results will help an investigator to choose a better tool for a
specific job.

B. Carrier [27] treats integrity preservation as a recommended feature. However, in
case of MoDeFo it is very hard to detach the media from the mobile system.
Consequently, the extraction is performed on a live mobile system. So, the extracted
copy of the potential digital evidence becomes a snap shot of a particular system in a
specific time. Some portions of the original data are eventually modified during the
normal operations of the mobile device. Thus, there is no “original data” to compare
with the extracted copy for the verification of its integrity. Therefore, preserving the
integrity of digital evidence is a must have feature for the MoDeFo tools.

In traditional forensics a trained serologist can comment on the correctness of
DNA by using the explanations from molecular biology, genetics and probability

Layer of
Abstraction

Output Data

Margin of Error

Input Data

Rule Set

 Evaluating and Comparing Tools for Mobile Device Forensics 269

theory [14]. Nevertheless, finding similar analogy is difficult in DiFo, because digital
evidence is a transformation, representation and interpretation of reality.

Moreover, digital evidence is very fragile in nature and one can possibly modify it
without being detected [33]. So, to avoid any ambiguities in such circumstances the
tools should not only extract the data in a forensically sound manner (as explained in
Section 1) but they must also preserve its integrity to make its admissibility more
plausible.

3.2 Evaluation Methodology

NIST has developed an evaluation methodology in the field of DiFo. The project is
called Computer Forensics Tool Testing Project (CFTT) [34]. One of the CFTT’s
branch is associated with testing of MoDeFo tools [10]. NIST has developed a set of
Smartphone Tool Specifications [8] and Smartphone Test Assertions and Test Plan
[9] to evaluate MoDeFo tools. We have followed them [8], [9] to measure the
Reliability Assurance Level and published in our paper as well [11]. We also
classified and published different types of digital evidences associated with mobile
devices [11].

In this paper, the same classification as presented in [11] is used to extend our
previous research work. All the data, processed while calculating CI, MoE and
inferential statistics, comes from our previous work as well [11]. For the sake of
reproducibility, we have again explained the procedure used to populate the potential
digital evidences in the sample mobile devices.

To further extend the work described in [11], we have used “Quantitative Research
Methodology” to evaluate the tools for MoDeFo in terms of their accuracy for
retrieving the digital evidences. As discussed by B. Carrier [27] and presented in
Section 3.1, we calculated point estimate of the proportion of successful extractions
by the MoDeFo tools from our samples. Then we used those proportions to calculate
MoE and CI. In our research, CI is an interval within which the success proportion
will lie with 95% confidence level. We have used 95% confidence level because it is
the number usually used in the scientific research [35].

In the second step, “hypothesis testing” is used to formally compare the MoDeFo
tools by using one tailed tests. It assisted us in choosing the tool which performs
better in terms of accuracy with 95% confidence level. Hypothesis testing is a concept
related to CI so this test will strengthen our CI results as well. Towards the end we
have tested the ability of the two tools to preserve the integrity of digital evidence.

Confidence Interval and Margin of Error. Estimating some point estimator for the
population while dealing with a sample is merely a maximum likelihood estimator for
the actual parameter of the population under consideration. For instance sample mean

X is a maximum likelihood estimator of the population mean µ. We know that X
will not exactly be equal to µ but it will be close. Basically, finding out the point
estimator is of interest along with the determination of the interval within which the
actual population parameter will lie (with a certain level of confidence) [36].

270 S. Saleem, O. Popov, and O.K. Appiah-Kubi

In the case being considered we are finding out both the estimations of MoE and
CI based on the proportion of successful extractions. These measures will be useful in
deciding the level of confidence in a specific tool. The higher the point estimates for
the proportion of successful extractions, the lower the margin of error, and the
narrower the range between upper and lower bounds of confidence interval, the better
the tool is with respect to its performance and accuracy.

The equations to calculate CI are given below:

MoEpCI ±= …………………………………….Equation 1

n

pp
zMoE

)1(
*2/

−= α When n≥30…………Equation 2

n

pp
tMoE

)1(
*2/

−= α When n < 30……….Equation 3

nxp /= ……………………………………………..Equation 4

Whereas:

CI = Confidence Interval
MoE = Margin of Error
p = Proportion of successful extractions
x = number of objects retrieved successfully
n = total number of objects populated

2/αz = 1.96 for 95% confidence level when n≥30 [37]

2/αt = 2.05 for 95% confidence level when n<30 [37]

Hypothesis Testing and One Tailed Test: CI and MoE are calculated for each tool
individually. Based on these performance measures, the investigator will still have to
compare and eventually select a better tool manually. In order to overcome this
problem, hypothesis testing as a formal comparison method is employed.

Testing a particular hypothesis concerning the unknown parameters of a population
by using the sample data [38] was more interesting as compared to the explicit
estimation of the unknown parameters. Hypothesis test is a “one tailed test” if the set
of values lesser or greater than the critical value lies only on one side of the
probability distribution, as shown in Figure 3 [39][40].

 Evaluating and Comparing Tools for Mobile Device Forensics 271

Rejection region, in case of left tailed test, lies below -1.645, hence z-score lesser

than -1.645 will have enough evidence to not to accept Ho with 95% confidence level.
In this case we will have 0.05 probability of Type I Error [40]. Similarly, in the case
of right tailed test the critical region lies on the right hand side of the probability
distribution, with all the z-scores greater than 1.645. These values were used to
interpret the hypothesis testing results.

The tests were done to compare the tools together for each category of digital
evidence. This type of individual comparison is useful when an investigator has many
tools at his disposal. This way, he can select different tools for different categories of
digital evidences during the same investigative process e.g. UFED for call logs and
XRY for SMS.

Fig. 3. One Tailed Hypothesis Testing [39]

The cumulative result for each tool is a combination of all the results in every
category of digital evidence (assuming that every type of digital evidence is equally
important and relevant). The hypothesis testing on the combined results
comprehensively compared the tools. This type of analysis can help an investigator to
select one tool for the entire investigative process based on the accuracy criterion.

Equations relevant to these statistics are the following:

 21

21

ppS

pp
z

−

−= …………… …………………….Equation 5

+=−

21

11
*

21 nn
qpS pp ………………………..Equation 6

()pq −= 1 …………………………………………...Equation 7

272 S. Saleem, O. Popov, and O.K. Appiah-Kubi

()
()21

21

nn

xx
p

+
+= ………………………………………..Equation 8

1

1
1 n

x
p = ……………………………………………….Equation 9

2

2
2 n

x
p = ………………………………………………..Equation 10

Whereas:

1x , is the total number of objects retrieved by XRY

2x , is the total number of objects retrieved by UFED

21 nn = , is the total number of objects populated in the mobile device

We have tested the following hypothesis:
Right Tailed Test:

210 : ppH ≤ Null hypothesis i.e. XRY does not perform better than UFED

211 : ppH > Alternate hypothesis i.e. XRY performs better than UFED

Left Tailed Test:

210 : ppH ≥ Null hypothesis i.e. XRY performs better than UFED

211 : ppH < Alternate hypothesis i.e. XRY does not perform better than UFED

With the theoretical aspects of the work outlined, the next step is to populate the
mobile devices with potential digital evidences.

3.3 Population of Data Objects

The specifics of the data population process relative to mobile devices are well
described in [30] and [11]. For the sake of reproducibility we will reiterate them in the
following section.

Three different methodologies were used to populate data objects in the mobile
devices.[41]

1) Manual: Using the normal handset interfaces only e.g. sending and receiving
SMS via normal handset operations and a network of a mobile operator.

2) Semi Manual: Copying or moving data from a similar mobile device.
3) Automatic: Automated population of data objects e.g. with a tool or a software.

Since, timeline is critical in forensic science, so first of all the date and time was set in
the sample mobile devices. The initial states were extracted and saved as “control
states” to detect and eventually avoid possibility of any errors during the entire process.

 Evaluating and Comparing Tools for Mobile Device Forensics 273

1) Sony Ericsson Xperia X1
a. PIM Entries: A total of 631 PIM (phonebook, calendar, note and

task) entries were populated. Fifteen of them were manually deleted.
We not only used both the mobile devices collaboratively to populate
each other but also synchronized them with MS Office Outlook 2007.
Contact entries include:

i. Special characters
ii. Blank entries

iii. Associated email addresses
iv. Associated picture or image

b. Message Entries: Xperia X1 uses its internal memory to store all the
types of messages. A total of 339 message entries were populated
while 21 of them were manually deleted. We used two SIM cards by
Lycatel3 and Tele24 to manually populate the messages.

i. Lycatel provides free services for both SMS and EMS. So
it was used to populate SMS (comprising both ASCII and
Non-ASCII characters) and EMS entries (having both
smileys and emoticons).

ii. Tele2 sim was used to populate MMS entries (containing
audio, video and graphics).

c. Call Log: A total of 295 call log entries were populated while 14 of
them were manually deleted. Moreover, we also noted that switching
off and then removing the SIM card does not affect the call logs in
Xperia X1.

d. Emails: A total of 444 email entries were populated while 399 of
them were manually deleted. To populate emails, we connected
Xperia X1 to our university WLAN and synchronized it with an
existing email account (automated approach). We also used the
mobile devices to create email entries via mobile operator’s network
(manual approach).

e. Internet History: A total of 500 internet history entries were
populated while 10 of them were manually deleted. We connected our
mobile device to our university WLAN for accomplishing this task.

f. Standalone Files: A total of 1629 standalone file entries, including
audio, video and picture/graphic files, were populated while 386 of
them were manually deleted (manual approach)

g. Application Files: A total of 448 application file entries (including
word, excel, power point, one note and pdf files) were populated
while 5 of them were manually deleted.

h. GPS Entries: GPS entries are also associated with pictures. So we
used them to measure the performance of MoDeFo tools for GPS
entries. We captured the pictures after enabling location services.
These pictures were subsequently saved in the mobile device (manual
approach) as standalone files of graphics type.

3 http://www.lycatel.com/
4 http://www.tele2.se/

274 S. Saleem, O. Popov, and O.K. Appiah-Kubi

2) Nokia 5800 Express Music
The approach to populate data objects in Nokia phone is the same as for
SonyEricsson Xperia X1 with some minor difference in the total number of
objects. The actual numbers are presented in Section 4.

3) SIM Card:
a. PIM: A total of 246 PIM entries were populated. These entries were

populated manually and also copied from the internal memory of our
mobile devices.

b. Message: A total of 30 message entries were populated while 10 of
them were manually deleted.

c. Call Log: A total of 11 call log entries were populated.

4 Results and Discussion

This section is about the results of the evaluation process. Initially, it deals with the
results of CI and MoE. Then it proceeds with the formal comparison of the two tools
by using hypothesis testing.

4.1 Margin of Error and Confidence Interval

The numbers, showed in four tables (1 through 4) depict:

1. Individual performance measures for each type of data objects.
2. Performance measure of MoDeFo tools for each class of data objects

obtained by joining individual measures.
3. All the classes are also merged together to determine the cumulative

performance measure of MoDeFo tools. It should be note that, merging
the results in bullets 2 and 3 is based on an assumption that every object is
equally important and relevant.

The tool with higher proportion of success, smaller MoE and thus higher confidence
level is considered to be better and hence more appropriate to be used in a specific case.

Table 1 is about the evaluation results of both the MoDeFo tools for SonyEricsson
Xperia X1 mobile device. Similarly, Table 2 is about the results of MoDeFo tools
when applied on Nokia 5800 Xpress Music. The numbers in both the tables indicate
that, in most of the cases examined, XRY is performing better than UFED.

4.2 Hypothesis Testing

The performance in terms of accuracy of the two MoDeFo tools is easily determined
by comparing MoE and CI results. However, this type of comparison is not obvious,
and it still has to done manually. Hypothesis testing as a formal method has a clear
potential for automatic execution.

Tables 3, shows the hypothesis testing results for Xperia X1 with both the MoDeFo
tools. It has a column with remarks showing whether we have sufficient evidence to
reject the null hypothesis and to conclude that XRY performs better for a specific type

 Evaluating and Comparing Tools for Mobile Device Forensics 275

of data objects with 95% confidence level. Table 4, (just like Table 3) shows the
hypothesis testing results for Nokia Xpress Music with both the MoDeFo tools.

Both the tables also show combined results for a specific class of data objects with
an assumption that every type of data object is equally relevant and important.
Similarly, all the classes are also joined together to perform hypothesis testing on all
the data objects when seen together, again with same assumption as above.

Table 1. MoE and CI with Sony Ericsson Xperia X1 for both MoDeFo tools

Table 2. MoE and CI with Nokia 5800 Xpress Music for Both MoDeFo Tools

276 S. Saleem, O. Popov, and O.K. Appiah-Kubi

It is evident from Table 3 that for most of the data objects, we have sufficient
evidence (z-score > 1.645) to reject the null hypothesis and to conclude that XRY
performs better when Xperia X1 is used as a source of digital evidences. The tools
(XRY and UFED) are equally good/bad in the case of:

1. Phonebook/Contacts, equally good.
2. Video Calls, equally good with 100% success proportion for both the

tools.
3. URLs visited, equally good with 100% success proportion for both the

tools.
4. Audio Files, equally good with 100% success proportion for both the

tools.
5. Both the tools are equally good for all the types of application files with

100% success proportion.

Table 3. Hypothesis Testing with Xperia X1 for Both MoDeFo Tools

We cannot reject the null hypothesis and thus conclude that XRY performs better

for just three types of data objects:
1. Memo/Notes: Here, UFED is actually performing a bit better.

Nevertheless, we cannot conclude (by using left-tailed test) that UFED
performs better than XRY with 95% confidence level.

2. Video: Using left-tailed test, we can conclude with 95% confidence level
that UFED performs better than XRY for this type of data objects.

 Evaluating and Comparing Tools for Mobile Device Forensics 277

3. Graphics/Pictures: Using left-tailed test, we can conclude with 95%
confidence level that UFED performs better than XRY for this type of
data objects.

4. Standalone Files: We can conclude with 95% confidence level that UFED
performs better than XRY for this class of digital evidences including
audio, video and graphics files.

For the rest of the eight types of data objects, XRY performs better with 95%
confidence level. We can reject the null hypothesis, with 95% confidence level, and
conclude that XRY performs better than UFED for the combined performance
measures of all the types of data objects in Table 3, with an assumption that every
data object is equally important and relevant.

Similarly results in Table 4 provide enough evidence to reject the null hypothesis,
with 95% confidence level, for most of the types of digital evidences, and to conclude
that XRY performs better than UFED. If we merge the results of all the objects of a
class together, with an assumption that all of them are equally important, then we can
see that we still have enough evidence to reject the null hypothesis for all the classes
of digital evidence (except Internet History) with 95% confidence level. Thus we can
conclude that XRY performs better than UFED for all the classes of objects except
“Internet History”. Both the tools did not extract even a single digital evidence of the
“Internet History” class. This amounts to “equally bad” performance by both tools for
this data class of digital evidence.

Table 4. Hypothesis Testing with Nokia 5800 for Both MoDeFo Tools

278 S. Saleem, O. Popov, and O.K. Appiah-Kubi

Moreover, both the tools performed equally good/bad for:

1. SMS, equally good.
2. EMS, equally good.
3. URLs visited, equally bad (0% success proportion for both the tools)
4. Bookmarks/Favorites, equally bad (0% success proportion by both the

tools)
URLs visited and Bookmarks constitute Internet History class, so we can
say that for this class of digital evidence both the tools performed equally
bad.

5. Videos, equally good.
6. Graphics/Pictures, equally good.

There is just one object type of phonebook/contacts where there is not enough
evidence to reject the null hypothesis. In this case, XRY is performing slightly better
than UFED and its z-score is 1.309 which is slightly lesser than 1.645, thus we cannot
reject the null hypothesis with 95% confidence level. However, when the confidence
level is reduced to 90% then there is enough evidence to reject the null hypothesis,
and conclude that XRY performs better than UFED.

With 95% confidence level, one can conclude for the rest of the twelve types of
objects that XRY performs better than UFED. If we combine all the objects together,
again with an assumption that every type of object is equally important and relevant,
then we can say, on cumulative base, that XRY performs better than UFED with 95%
confidence level.

Regarding SIM Card analysis, both tools had 100% success proportion for extracting
the Contacts, SMS/EMS and Call Logs entries. This leads to just one conclusion i.e.
both XRY and UFED are 100% accurate in this area. So, there was neither a need to
calculate CI and MoE nor to perform hypothesis testing for SIM card analysis.

4.3 Integrity Preservation

The central ideas behind integrity preservation are (1) to preserve the data, and (2) to
report on data modifications (if any). The procedure to examine integrity preservation
feature in both tools is outlined below:

1. The images from the mobile devices with both the MoDeFo tools were
extracted.

2. The contents of the images were modified by using WinHex 15.6. An entry
in contacts was modified by changing a contact name from “Shamm” to
“55ura”.

3. We reopened both image files with XRY and UFED.

XRY could not identify the modification and opened the file with the modified
contact name appearing in its contact entries report window. On the other hand,
UFED successfully identified the modification and reported with a “File Corrupted”
error message. So in this regard, UFED came on the top.

The use of a secure platform in the form of smartcards to preserve the integrity of
digital evidence is proposed as one of the plausible solutions for the above problem
[33].

 Evaluating and Comparing Tools for Mobile Device Forensics 279

5 Conclusions and Future Work

Two mobile devices, Xperia X1 and Nokia 5800, are used to evaluate two MoDeFo
tools i.e. XRY 5.0 and UFED Physical Pro 1.1.3.8.

5.1 Conclusion

The first step translated to computing MoE and CI in order to compare the
performance of both tools. The results indicated that XRY is better than UFED for
most of the object types, which we studied. But the comparison was neither obvious
nor formal. The investigator has still to retain and manually compare the numbers to
select a better tool with lesser margin of error, greater success proportion and better
confidence level.

Finally, hypothesis testing was used to make the comparison process more
obvious. The results of this process helped to conclude, with 95% confidence level,
that XRY performs better than UFED for most of the object types. If we assume that
all the object types are equally important and relevant than we can also reject the null
hypothesis and make an overall conclusion that XRY performs better than UFED with
95% confidence level.

Comprehensive visualization of hypothesis testing results is provided in Figure 4.
It shows that most of the vertical bars are above the threshold z-score value of 1.67
for the right tailed test. It provides enough evidence to reject the null hypothesis
(210 : ppH ≤ , XRY does not perform better than UFED) and therefore to accept the

alternate hypothesis (211 : ppH > , XRY performs better than UFED) for most

types of digital evidences found in the mobile devices.

Fig. 4. Visualization of Hypothesis Testing Results

280 S. Saleem, O. Popov, and O.K. Appiah-Kubi

Figure 4 helps in a rapid selection of the appropriate tool for a particular type of
digital evidence involving a specific type of mobile device. Another important
observation in Figure 4 is that, if a tool performs better for a specific type of digital
evidence for one mobile phone then it will also perform better for the same type of
digital evidence with other mobile phone. However, at this stage, this rule cannot be
generalized as it has an exception as well – the “Memo” type digital evidence.

UFED performs better than XRY as far as preserving the integrity of digital
evidence is concerned.

In a nut shell, this paper is about a generic technique, which can be extended both
vertically and horizontally. It means that any number of mobile devices and MoDeFo
tools can be studied by this technique. Therefore, it will help in selecting the most
appropriate MoDeFo tool for any specific incident.

5.2 Future Work

Although the results of CI, MoE and hypothesis testing can help in selecting a better
tool for a particular type of digital evidence, in some way we may consider that
cumulative comparison is somewhat false. This type of cumulative comparison asks
for combining all the types of digital evidences with an assumption that all the types
of digital evidences are equally important and relevant, which may not be true in most
of the real life scenarios.

Despite the possible fallacy in the assumption the comparison results are necessary
when an investigator has to choose just one tool for the entire investigative process.
Especially in the circumstances when the relevance of different types of digital
evidences in solving or furthering a particular case is known in advance. Hence, there
must be a way to compare the MoDeFo tools by considering both performance and
relevance of different types of digital evidences as two different criteria of quality.
For these criteria, there must also be a mechanism to represent real life scenarios by
mapping various degrees of importance and relevance.

In future, we will try to carve a generic model. The model will accommodate
multiple criteria to obtain an overall ranking of the available MoDeFo tools by
combining the results with varying degrees of importance and relevance. It will help
in selecting the most appropriate MoDeFo tool, which may lead to the generation of
better digital evidence.

References

[1] Techsling, Personal Computers Outnumbered by Mobile Phones (2010),
http://www.techsling.com/2010/10/
personal-computers-outnumbered-by-mobile-phones/ (accessed March
28, 2012)

[2] International Telecommunication Union (ITU), ICT Data and Statistics (IDS) (2011),
http://www.itu.int/ITU-D/ict/statistics/material/excel/2011/
Mobile_cellular_01-11_2.xls (accessed March 28, 2012)

 Evaluating and Comparing Tools for Mobile Device Forensics 281

[3] International Organization on Computer Evidence, IOCE - Guidelines for Best Practice in
the Forensic Examination of Digital Technology (2002)

[4] Brezinski, D., Killalea, T.: RFC 3227: Guidelines for Evidence Collection and Archiving
(2002)

[5] Daubert v. Merrell Dow Pharmaceuticals (92-102), 509 U.S. 579 (1993),
http://www.law.cornell.edu/supct/html/92-102.ZS.html (accessed
February 29, 2012)

[6] Weissenberger, G., Duane, J.J.: Federal Rules of Evidence: Rules, Legislative History,
Commentary, and Authority (2004)

[7] Federal Evidence Review, Federal Rules of Evidence 2012 (2012),
http://federalevidence.com/downloads/rules.of.evidence.pdf
(accessed June 10, 2012)

[8] National Institute of Standards and Technology (NIST), Smart Phone Tool Specification,
Version 1.1 (2010)

[9] National Institute of Standards and Technology (NIST), Smart Phone Tool Test
Assertions and Test Plan, Version 1.1 (2010)

[10] National Institute of Standards and Technology (NIST), CFTT- Mobile Devices,
http://www.nist.gov/itl/ssd/cs/cftt/cftt-mobile-devices.cfm
(accessed June 6, 2012)

[11] Kubi, A., Saleem, S., Popov, O.: Evaluation of some tools for extracting e-evidence from
mobile devices. Application of Information and Communication Technologies (10), 603–
608 (2011)

[12] Baryamureeba, V., Tushabe, F.: The enhanced digital investigation process model. In:
Proceedings of the 4th Annual Digital Forensic Research Workshop, pp. 1–9 (2004)

[13] Noblett, M.G., Church, F., Pollitt, M.M., Presley, L.A.: Recovering and Examining
Computer Forensic Evidence. 2(4) (October 2000)

[14] Palmer, G.: A Road Map for Digital Forensic Research, Utica, New York (2001)
[15] Casey, E.: Digital Evidence and Computer Crime: Forensic Science, Computers, and the

Internet, 3rd edn. Academic Press (2011)
[16] United States Computer Emergency Response Team, Computer Forensics US-CERT

(2008)
[17] Meyers, M., Rogers, M.: Computer forensics: the need for standardization and

certification. International Journal of Digital Evidence 3(2), 1–11 (2004)
[18] Kent, K., Chevalier, S., Grance, T., Dang, H.: Guide to integrating forensic techniques

into incident response, pp. 80–86. NIST Special Publication (August 2006)
[19] Carrier, B.: An event-based digital forensic investigation framework. In: Proceedings of

Digital Forensic Research Workshop (2004)
[20] Ieong, R.S.C.: FORZA – Digital forensics investigation framework that incorporate legal

issues. Digital Investigation 3, 29–36 (2006)
[21] Beebe, N.L., Clark, J.G.: A hierarchical, objectives-based framework for the digital

investigations process. Digital Investigation 2(2), 147–167 (2005)
[22] Agarwal, A., Gupta, M., Gupta, S., Chandra, S.: Systematic Digital Forensic Investigation

Model. International Journal of Computer Science and Security 5(1), 118–131 (2011)
[23] Carrier, B.: Getting physical with the digital investigation process. International Journal

of Digital Evidence 2(2), 1–20 (2003)
[24] Reith, M., Carr, C., Gunsch, G.: An Examination of Digital Forensic Models.

International Journal of Digital Evidence 1(3), 1–12 (2002)
[25] National Institute of Justice, Electronic crime scene investigation: A guide for first

responders (2001)

282 S. Saleem, O. Popov, and O.K. Appiah-Kubi

[26] Noblett, M.G., Pollitt, M.M., Presley, L.A.: Recovering and examining computer forensic
evidence. Forensic Science Communications 2(4), 102–109 (2000)

[27] Carrier, B.: Defining digital forensic examination and analysis tools using abstraction
layers. International Journal of Digital Evidence 1(4), 1–12 (2003)

[28] Shin, Y.-D.: New Model for Cyber Crime Investigation Procedure. Journal of Next
Generation Information Technology 2(2), 1–7 (2011)

[29] Ramabhadran, A.: Forensic Investigation Process Model For Windows Mobile Devices.
Tata Elxsi Security Group, pp. 1–16 (2007)

[30] Appiah-Kubi, O.K.: Evaluation of UFED Physical Pro 1.1.3.8 and XRY 5.0: Tools for
Extracting e-Evidence from Mobile Devices. Stockholm University (2010)

[31] Bishop, M.: Evaluating Systems. In: Computer Security: Art and Science, p. 571.
Addison-Wesley Professional (2002)

[32] Radatz, J., Geraci, A., Katki, F.: IEEE standard glossary of software engineering
terminology. IEEE Standards Board, New York, Standard IEEE std (1990)

[33] Saleem, S., Popov, O.: Protecting Digital Evidence Integrity by Using Smart Cards.
Digital Forensics and Cyber Crime 53, 110–119 (2011)

[34] National Institute of Standards and Technology, “Computer Forensics Tool Testing
(CFTT) Project, http://www.cftt.nist.gov/ (accessed: February 26, 2012)

[35] Attia, A.: Why should researchers report the confidence interval in modern research.
Middle East Fertility Society Journal 10(1), 78–81 (2005)

[36] Ross, S.M.: Interval Estimates. In: Introduction to Probability and Statistics for Engineers
and Scientists, 3rd edn., pp. 240–241. Elsevier Academic Press (2004)

[37] University of Leicester, Online Statistics (2000),
http://www.le.ac.uk/bl/gat/virtualfc/Stats/ttest.html
(accessed: June 16, 2012)

[38] Ross, S.M.: Hypothesis Testing. In: Introduction to Probability and Statistics for
Engineers and Scientists, 3rd edn., p. 291. Elsevier Academic Press (2004)

[39] UCAL Academic Technology Services, What are the differences between one-tailed and
two-tailed tests? http://www.ats.ucla.edu/stat/mult_pkg/
faq/general/tail_tests.htm (accessed: June 16, 2012)

[40] Easton, V.J., McColl, J.H.: Statistics Glossary V1.1 (1997),
http://www.stats.gla.ac.uk/steps/glossary/index.html (accessed:
June 16, 2012)

[41] Jansen, W., Delaitre, A.: Mobile forensic reference materials: A methodology and
reification. US Department of Commerce, National Institute of Standards and Technology
(2009)

Detection of Masqueraded Wireless Access

Using 802.11 MAC Layer Fingerprints

Christer Idland, Thomas Jelle, and Stig F. Mjølsnes

Department of Telematics
Norwegian University of Science and Technology,

Trondheim
{christer.idland,thomas.jelle,sfm}@item.ntnu.no

Abstract. Many wireless Internet access operators prefer open local
area network (WLAN) access because this reduces the need for user
assistance for a variety of smaller devices. A 802.11 MAC spoofer mas-
querades as an authorized user and gains access by using an already
whitelisted MAC address. We consider the scenario where the spoofer
waits until the authorized user has finished the session, and then uses
the still whitelisted MAC address for the network access. We propose
and experiment with “implementation fingerprints” that can be used to
detect MAC layer spoofing in this setting. We include eight different tests
in the detection algorithm, resulting in 2.8 in average Hamming distance
of the tests. Eleven different STA devices are tested with promising de-
tection results. No precomputed database of fingerprints is needed.

Keywords: WLAN, 802.11, wireless, media access layer, masquerading,
intrusion detection, network forensics, communication fingerprints.

1 Introduction

1.1 The Problem

Many wireless Internet access operators choose to provide a cryptographically
unprotected wireless local area network (WLAN) link because this simplifies the
user configurations for a variety of smaller devices, makes the wireless association
faster, and reduces the cost of the user help-desk. Still, connecting to a wireless
local area network for the first time may not be hassle-free for the user, because
the setup also depends on user input for authentication, service selection, and
payment. The operator can use a so-called captive portal for the purpose of user
access control. A captive portal responds to any Hypertext Transfer Protocol
(HTTP) client request (normally a web browser) with a special user authen-
tication web page. All other uplink packets from the client will be blocked by
the portal. The response page will give information about the internet access
service, the operator, the access policy and accepted payment services. Once the
client submits the proper credentials, then the Medium Access Control (MAC)
address of the user’s WLAN network interface card (NIC) is whitelisted in the
portal and subsequent packets are routed normally.

M. Rogers and K.C. Seigfried-Spellar (Eds.): ICDF2C 2012, LNICST 114, pp. 283–301, 2013.
c© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2013

284 C. Idland, T. Jelle, and S.F. Mjølsnes

IEEE distributes and manages the allocation of the MAC addresses on a
global basis. The manufacturers of the 802.11 NICs manage the assignment of
a unique MAC to each device produced. This MAC identifier is stored in the
hardware or firmware of the NIC, but can in many instances be modified by an
attacker for the purpose of masquerading as an authorized user, for instance in
the simple access control based on checking the MAC address performed by a
captive portal. This is often called MAC spoofing attack.

Theoretically, this threat of masqueraded attacks does not come as a sur-
prise, because only the user is authenticated by the captive portal, whereas the
communicating devices and all their subsequent data communication are left
without any authentication at all. The IEEE 802.11 standard provides security
mechanisms for establishing a common symmetric authentication key between
the client station (STA) and the access point (AP), where each link data frame
is protected by a message authentication code that enables verification by the
receiver. If a MAC spoofer attacker does not have access to the secret authentica-
tion key, then it will become computationally impossible to generate the correct
message authentication codes, and the data frames from the spoofer will be re-
jected by the AP. In practice, the setup of the cryptographic keys will require
extra user input, which works against user convenience and operator preferences.

Several techniques have been proposed for detecting a spoofing attack while
the victim of the spoofing attack is actively connected to a cryptographically
unprotected WLAN. It is an open problem whether it is possible to detect a
MAC spoofing attack when the victim is no longer connected to the AP. The
problem addressed in this paper is how to detect MAC spoofing when only the
masquerading NIC is actively accessing the AP. An automatic detection of this
type of spoofing attacks requires new algorithms for distinguishing between the
authorized user and the masquerading attacker. Our distinguisher algorithms
presented here are based on observing the heterogeneity of different implemen-
tation characteristics of the 802.11 protocol. We investigate how distinctive fea-
tures of the various 802.11 implementations create NIC fingerprints, and how
these can be used in the detection of MAC spoofing.

1.2 Motivation

The Internet access network Wireless Trondheim is a city wide wireless access
network, mainly based on the IEEE 802.11a/b/g technologies (Wi-Fi). Currently,
the network consists of approximately 500 access points. The geographical cov-
erage is in the Trondheim city center outdoor area of about 1.5 km2. In addition,
the indoor area of all the buildings of the Municipality of Trondheim plus the
coverage area of other central buildings. Wireless Trondheim provides Internet
access service to about 15.000 unique users each month. Typically, 50% of the
client terminals will use the WPA2 Enterprise solutions, while the other half will
use the captive portal solution with authentication but with no encryption.

The main goal of Wireless Trondheim is to provide easy wireless Internet
access for its users on a wide range of wireless equipment, including simple
low-end devices, such as music players and simple mobile phones. Moreover,

Detection of Masqueraded Wireless Access 285

the wireless network shall provide an arena for testing new services in a real
environment (Living Lab). This implies that access control mechanisms must be
as simple to operate and use as possible, keeping minimal requirements of the
hardware and software of the wireless terminal.

On the other hand, cyber crime activities may be carried out by stealing
user names and network addresses (IP, MAC) copied from other terminals. If
a criminal act has been carried out and becomes investigated, then we want to
make sure that the culprit is found and accused, and not some innocent third
person. This implies the need for a strong authentication system, and works
against the requirement of easy access for any user device.

Wireless Trondheim’s motivation for finding solutions to the identity theft
problem is to avoid that innocent users are wrongly accused of serious crime. A
possible scenario is if the police or other authority requests information about the
identity and activity of users during the process of serious crime investigations,
where Wireless Trondheim can only provide possibly incriminating information
about customers that in reality are innocent. This can obviously happen if an
attacker hijacks the session of a user to hide his identity while doing criminal
activity. A successful impersonator could perform criminal activities under an-
other innocents users identity and access. The innocent user will be prosecuted
and could eventually be found guilty in serious crime. The prime motivation of
Wireless Trondheim for deploying a spoofing detection service is therefore to be
able to check whether it is likely that there has been an identify theft before
handing over user information to the police or other authorities. The algorithms
presented here can also be used in an intrusion detection system (IDS) may
block the attack, but this blocking will require reliable digital evidence because
the costs of refusing a legitimate user are potentially high, the commercial and
reputational risks for the service provider, as well as the denial-of-service and
possible false allegations against the subscribed user.

2 Background and Related Work

The Norwegian University of Science and Technology and the company Wire-
less Trondheim started a research collaboration in 2008 taking on the practical
problem of detection of masqueraded wireless access in the 802.11 networks.
This research activity has spurred several master projects and theses at Depart-
ment of Telematics, NTNU. In previous work, techniques have been proposed
and tested for detecting MAC spoofing while the victim is active. In particular,
we based the detection techniques on MAC sequence numbers and other logical
properties of the 802.11 MAC layer [1].

This paper considers the scenario where the spoofer waits until the authorized
user has finished the session, and then take advantage of the still whitelisted
MAC address for the network access. Many of the results reported in this paper
are based on the master thesis work and supervision of Idland [2]. Here we publish
the main results, and put them in the wider problem context of operational
architecture and practice.

286 C. Idland, T. Jelle, and S.F. Mjølsnes

Franklin et al. [4] exploit the fact that the channel scanning algorithm search-
ing for available APs is not explicitly defined in the 802.11 protocol. They develop
a method based on statistical analysis of the interframe timing of transmitted
probe requests in order to identify a specific driver, and the conclusion is that
the majority of wireless drivers do have a distinct fingerprint.

There are important differences in the processing of the Null Data frames in
various implementations and we make good use of this observation. Gu et al. [7]
create seven rules to identify different behavior regarding the Null Data frames.
They focus on the fact that this distinguishing implementation feature may allow
an attacker to recognize and determine the location of a client station. Location
is in this case limited to an AP, for instance at a coffee shop, at home, or at
school. These rules form a basis for the algorithm we present here, but we will
use the rules to detect, and not aid attacks.

There exists several commercially available wireless intrusion detection sys-
tems (IDSs) that claim to detect and even prevent MAC spoofing attacks. One
product in particular, the HSMX from fdXtende [8], uses a captive portal func-
tionality. The manufacturer claims that HSMX will detect MAC address spoofing
and prevent hijacking. It turns out that the hijacking prevention is based on an
active SSL window technique that might not run on low-end devices. Further-
more, the MAC spoofing detection algorithm is based on not accepting more
than one single IP address for a given MAC address, thus it does not defend
against attacks where the victim is no longer online.

3 The Threat Model

3.1 The Wireless Access Network

Wireless Trondheim manages an open 802.11 access network where 802.11a/b/g
are supported. The Wi-Fi Multimedia feature is enabled. Figure 1 presents a
simplified overview of the network structure, depicting the relevant components
for our purposes here. The AP functionality is split into two separate devices,
which are the Lightweight Access Point (LAP) and the Wireless LAN Controller
(WLC). One WLC entity can control several LAPs entities. The captive portal
functionality is integrated in an Internet Gateway entity (Nomadix). The IDS
server can receive the fingerprinting parameter values possibly from the WLC,
or make the acquisition itself by eavesdropping on the wireless link directly. A
whitelisted MAC address in the captive portal will remain whitelisted for up to
60 minutes after traffic has ceased. Obviously, a shorter time to white list flush
will reduce the user’s convenience by having to repeat a log-in after a break, and
reduce the time available for the attacker.

3.2 MAC Spoofing

An easy way to fool an access control system based on whitelisting of MAC ad-
dresses is by performing a MAC spoofing attack. The theory is that the attacker

Detection of Masqueraded Wireless Access 287

Fig. 1. The main network elements of the wireless access network. Several lightweight
access points (LAP) are connected to a wireless LAN controller (WLC). The IDS
server can receive fingerprinting properties from the WLC, or monitor the wireless
links directly.

masquerades as a legitimate client, that is, a client that already has his MAC
address whitelisted. Thereby the attacker gains access to the network. A suitable
MAC address is easily obtained through eavesdropping of the victim’s wireless
communications.

Several methods for detecting attacks based on simultaneous access exists. The
focus of this paper is on the MAC spoofing attack where the attacker and the
victim do not need to be connected simultaneously. The main problem focus is on
the wait-for-availability attack as it is the easiest to perform from the attacker’s
viewpoint. One can also argue that it is the most difficult attack to detect because
the attacker does not force the legitimate client off the network. An attacker
can force a victim off the network connection by sending a deauthenticate or
channel switch frame to the client [3]. These MAC management frames can

288 C. Idland, T. Jelle, and S.F. Mjølsnes

easily be observed by an IDS, ergo it can easily be detected. Our attack scenario
is where the attacker waits until there has not been any frame coming from the
victim’s station (STA) for a significant period of time. Then, inferring that the
victim has left, the attacker takes on the MAC address and tries to continue
using the wireless access network.

4 Algorithms

4.1 Distinctive Features

The behavior of MAC layer STAs differs in many ways due to implementation
differences of the 802.11 protocol. Most of these differences exist because the
standard is not explicit, and therefore open to alternative interpretations. Some
distinctive features are a result of different options and capabilities of the specific
NIC in question. These distinctive features, called fingerprinting properties, are
based on the rules for Null Data frame behavior found in Ref. [7]. We augment
their list with several other distinctive features found during our research. Our
list is presented in Table 1.

4.2 The Tests

The pseudocode for all algorithms described can be found in Appendix and
Ref [2].

Test 1, PS-Poll Test 1 is based on the reported feature that some NICs use
Null Data frames and others use PS-poll frames for power management. That
is somewhat imprecise in relation to what we observed in the experiments. All
STAs in the experiment used Null Data for changing power mode, but one STA
used PS-Poll frames when the AP had buffered frames to send.

Therefore, the test is whether a STA use PS-Poll or not. If a STA use PS-Poll
then the fingerprinting algorithm should observe a PS-Poll frame from the STA
after the AP has announced that it has buffered frames for it. This PS-Poll frame
should be observed within the Listen interval of that STA.

If the frame is a Beacon frame and the bit in the TIM corresponding to the
STA in question is set then the beacon count is incremented. If the beacon count

exceeds the Listen interval then the algorithm concludes that PS-Poll is not
in use and returns suspect attack if it previously was in use. When a PS-Poll
frame is observed the beacon count is reset and the algorithm naturally con-
cludes that PS-Poll is in use, if that was not the case before the algorithm will
return “suspect attack.”

Test 2, Keep Alive. This algorithm tests whether a STA sends a Null Data
frame if it has been idle for 10 seconds in order to keep the session alive. The
timestamps are in milliseconds and thus testing for exactly 10 seconds would
yield very few hits, therefore the test is implemented with a buffer, currently set
to 0.15 seconds.

Detection of Masqueraded Wireless Access 289

Table 1. Fingerprinting properties and their possible values for 802.11 network inter-
face implementations [2]

Fingerprinting Property Possible Values

PS-Poll True / False
Keep Alive True / False
Null before Probe True / False
Mode changing Null Data True / False
Fixed Interval True / False
Null Data Type Regular/QoS including TID
Duration Calculation Pairs of (rate, duration) for each rate
Association Request Duration {0...32767}
Listen Interval {0...256}
Supported Rates Set of up to eight integers ∈ {2...127}
Extended Supported Rates Set of up to 255 integers ∈ {2...127}
QoS Capability Present / Not Present
Vendor Specific Type of vendor specific element

First the time delta is calculated from the timestamp of the previous frame
and the current frame. Then the algorithm checks if the time delta is within
the range of 10 seconds ± the buffer of 0.15 second and in addition if the frame
is a Null Data frame. If both of these conditions are true then the algorithm
concludes that keep alive is in use and returns suspect attack if keep alive was
not in use prior to this frame.

If the first if-conditions fail then a new if-statement checks if the time delta

is larger than 10.15 seconds (10 + buffer). If true then this indicates that the
STA is not using keep alive, and thus the algorithm concludes so and returns
suspect attack.

Test 3, Null before Probe. The rationale behind this test is that some STA sends
a Null Data frame and enters PS mode before starting the channel scanning with
Probe Request frames while other STAs do not do this.

First a set size and a minimum limit are defined. The set size is the number
of probe request bursts that will be observed before any conclusion is made. The
minimum limit is a number ∈ [0, 1] representing the percentage of probe request
bursts where the STA first sends a Null Data frame required in order for the
algorithm to conclude that null before probe is in use.

If the current frame is a Probe Request frame then the algorithm continues.
If the previous frame was a Null Data frame then null before probe is in use and
the algorithm increments the using count as well as the total count. On the
other hand, if the previous frame was not a Null Data frame or a Probe Request
frame then null before probe is not in use and the algorithm only increments the
total count.

290 C. Idland, T. Jelle, and S.F. Mjølsnes

The last part of the algorithm checks if the percentage of times null before
probe was in use is over the minimum threshold in order to conclude if it in fact
is in use. Suspect attack is returned whenever the current conclusion differs from
the previous conclusion.

Test 4, Mode Changing Null Data. Test 4 checks if the STA, when it has data
frames to send, uses a Null Data frame to change mode or if it directly sends
a regular data frame when changing power mode. Note that some STAs always
use mode changing Null Data except when they have been in PS mode for a
duration equal to their own Listen interval, this is therefore included in the
test.

First a set size and a minimum limit are defined. The set size is the number
of power mode changes that will be observed before any conclusion is made. The
minimum limit is a number ∈ [0, 1] representing the percentage of power mode
changes that must be done by using Null Data frames in order for the algorithm
to conclude that mode changing Null Data is in use.

The first if-statement checks whether the STA has been in PS mode longer
than its Listen interval, and if so changes the recorded power mode of the
STA to AM.

The next if-statement checks if the chk nxt pkt variable is set. The first time
the algorithm is executed this is not the case and the algorithm continues to
check if the STA is in PS mode. If the STA is in PS mode (before the current
frame) the algorithm checks if the current frame is a Null Data frame that
changes the power mode to AM. If this is the case, the chk nxt pkt variable is
set. If it is not a Null Data frame with pwr mgt bit == 0, but a regular data
frame with pwr mgt bit == 0, then the algorithm interprets this as the STA is
not using null before probe and therefore increments the total count without
incrementing the using count.

The reason for having the chk nxt pkt variable is that we are only interested
in the power mode changes made when the next packet is a data packet. So,
when the next packet is processed in the algorithm the chk nxt pkt variable is
set and the algorithm checks if the current packet is a regular data packet. If
this is the case the using count is incremented as well as the total count.

The last part of the algorithm works the same way as in Test 3, by returning
suspect attack if the overall conclusion has changed since last time.

Test 5, Fixed Interval. This test checks the duration between Null Data frames
with different values in the Power Management bit. If the STA is using mode
changing Null Data then this interval would translate into the time the STA was
in PS mode. The idea behind this test is that some STA stays in PS mode for a
fixed interval, regardless of which data to transmit.

First a new Null Data frame is detected. If the pwr mgt bit of the previous
Null Data frame was 1 (PS) and the value in the current frame is 0 (AM) then
this pair of Null Data frames will be examined further. If the measured time
interval value between these two frames is within a preset normality range, then
the counter for successful detection of pairs (pair ok count) is incremented.

Detection of Masqueraded Wireless Access 291

The pair total count is incremented regardless of the result of the outcome
of this comparison. In the experiments, the time interval average was computed
from the first 10 time intervals of Null Data frames measured, and the normality
range was heuristically set to ±20% of this average. The last part of the algorithm
computes the fraction of set size Null Data frame pairs where the time interval
falls within the normality range. If this fraction is greater than a threshold
parameter then the algorithm concludes that the STA does use a fixed time
interval for the Null Data frames. The algorithm returns “suspect attack” if the
result of the previous test run was the opposite of this run.

Test 6, Null Data Type. Test 6 is based on observations regarding Null Data
behavior. Recall that the 802.11 standard has two types of Null Data frames; the
regular one and the QoS Null Data frame. It turns out that in a network where
QoS is enabled (as it is in Wireless Trondheim) some STAs use the QoS Null
Data while others do not use it. Amongst those who use the QoS enabled there is
differences in which QoS priority (TID class) they utilize. These implementation
differences make Test 6 viable.

The algorithm for Test 6 is relative simple compared to the other test algo-
rithms. Nevertheless, it identifies a viable fingerprinting property. The algorithm
basically identifies the type of Null Data frame in use and its priority class (TID)
if it was a QoS frame. The algorithm then returns suspect attack if the identified
frame differs from the previous identified Null Data frame.

Test 7, Duration Calculation. Test 7 was motivated by the paper by Gopinath
et al. [5]. The theory is that Null Data frames have the exact same size, and thus
should have the same duration when the data rate is the same. A difference in the
Duration/ID field would indicate different implementations in the calculation
algorithm that again indicates two different STA.

It basically works by recording the duration taken from the Duration/ID

field in the Null Data frames for each data rate used. Recall that the data rate is
available in the radiotap header. If an inconsistency is found then the algorithm
outputs suspect attack.

Test 8, Association Request. Vendor specific extensions as a fingerprinting source
is mentioned in the paper by Gopinath et al. [5]. This was the motivation to
further investigate the Association Request frame looking for possible sources for
fingerprinting. Several potential fields were identified and they are: Duration/ID,
Listen interval, Supported Rates, Extended Supported Rates, QoS Capability
and Vendor Specific.

When the input frame is an Association Request frame, the relevant fields
mentioned above, called implicit identifiers, are recorded. If an Association Re-
quest has been recorded for this MAC address before a check on each individual
field is done and suspect attack is returned in case of any inconsistencies.

292 C. Idland, T. Jelle, and S.F. Mjølsnes

4.3 Creating a Compound Fingerprint

In order to avoid a high false reject rate when using fingerprinting it is important
to rely on several different properties and tests that can flag suspicious behav-
ior. The fingerprints created in our experiments are a composition of properties
determined by the eight tests explained above. The first six tests result in one
fingerprinting property each, while to two latter results in several properties.
Each of the properties from the two latter tests can be used to detect suspicious
behavior in their own right. See Table 1 for an exhaustive list of fingerprinting
properties and their possible values that make up the compound fingerprint. For
a more in-depth explanation of the possible values and their usage consult the
802.11 standard [6].

Our MAC spoof detection algorithm comprises a combination of each of the
eight tests described above, and some additional logic. The logic to determine
whether we are dealing with an attack based on the output from the tests has
not been described. We want to do fingerprinting on the fly and not necessarily
generate a complete fingerprint. The question of how many properties that are
needed, and a selection of optimal parameters in order to achieve acceptable
low false positive and negative rates is open for further work. Some of the tests
might prove to be sufficient by itself, while others require at least one other
test in combination in order to conclude attack with a high probability. The
experiments and the following results will shed some light on these questions.

5 Experiments and Results

5.1 The Terminal Equipment Test

We implemented the fingerprinting algorithm in Perl in order to test the different
distinctive features of the STAs. Table 2 shows an overview of the STAs that
were used in the experiments. The list includes laptops, smartphones and music
players, in addition to a typical attacker setup (laptop with Backtrack 5), and
are all included in the test.

5.2 Test Scenarios

Scenario 1. General Usage This scenario is constructed to test a browsing be-
havior. Two behavioral patterns were considered important to include when
creating this scenario. First, the STA should continuously generate data traffic
for a period of time, resulting in little or no idle time. Second, the STA should
have longer periods where there is no traffic to send. The rationale is that this
is a realistic usage pattern, such as browsing the web, start reading or watching
something, then continue the web browsing. A scenario including these patterns
should also be able to elicit different power management and Null Data behavior.
All STAs of Table 2 were tested in this scenario.

Detection of Masqueraded Wireless Access 293

Table 2. Overview of the STA devices used in the experiments

No. Name and Model OS NIC Browser

S-1 Dell XPS Windows 7 Intel Wi-Fi 1000bgn IE 8
S-2 Lenovo S10-3S Windows 7 Broadcom 802.11n Opera 11
S-3 Acer Aspire 5745G Windows 7 Broadcom 802.11n IE 8
S-4 Dell Inspiron 9400 Windows 7 Intel P/W 3945abg Chrome 11
S-5 iPhone 1. gen. iOS 3.0.1 Not available Safari
S-6 iPhone 4. gen. iOS 4.3 Not available Safari
S-7 Dell Latitude D610 Windows 7 Intel P/W 2915abg IE 8
S-8 Acer Aspire 5670 Win. XP SP3 Intel P/W 3945abg Firefox 3.6
S-9 iPod touch 1. gen iOS 3.1.3 Not available Opera Mini 5
S-10 HTC Hero Android 2.2.1 Not available ”Internet”
S-11 Dell Inspiron 9400 Backtrack 5 Intel P/W 3945abg Firefox 4

Scenario 2. Wait-for-availability Attack Here the user is operating for approxi-
mately eight minutes, with some periods of high traffic, and other periods with
little or no traffic, similar to the behavior of Scenario 1. Then the user logs
off and the attacker spoofs the user’s MAC address and performs the wait-for-
availability attack. One pair of STA devices were randomly chosen, S-5 and S-7,
and tested in this scenario.

Scenario 3. Concurrent Usage This scenario is similar to Scenario 2. The main
difference is that now there are five additional STAs connected to the LAP, all
generating concurrent traffic. In other words, a total of seven STAs are connected
and generating traffic. The scenario is also shortened down to a total of eight
minutes (four minutes before the attack and four minutes after). This fact cer-
tainly makes it harder for the algorithm to determine the fingerprints as it will
be less communication data available for analysis. The question is whether four
minutes of monitoring in an active network is enough, or if longer monitoring
period, ssuch as the ones in Scenario 1 and 2, are required.

5.3 Results

Each of the 7 first distinctive features corresponds to one test, the next 4 features
are gathered in a single test because they all depend on the association request
frame. That leaves us with 8 different test/ distinctive features. Figure 2 shows
the hamming distance between any two of the STAs used in the experiments,
note that the maximal distance of 8 could be obtained if two STAs differed on
every single test.

294 C. Idland, T. Jelle, and S.F. Mjølsnes

Fig. 2. Hamming Distance for the fingerprints in Scenario 1 [2]

Table 3. Results from Scenario 1 on tests 1-8 for S-1 to S-6. Undetermined entries are
shown as ”—”.

Fingerprinting Property S-1 S-2 S-3 S-4 S-5 S-6

PS-Poll F F F F F F
Keep Alive T F F — F F
Null before Probe T — T T T —
Mode changing Null F F F T F F
Fixed Interval F F F F F F
Null Data Type QoS0 Reg. Reg. QoS0 QoS7 Regular
Duration Calculation 314 44 44 314 258 44
Ass. Req. Duration 60 314 213 314 314 314
Listen Interval 10 10 10 10 10 10
Supported Rates s1 s2 s3 s3 s3 s2
Ext. Sup. Rates e1 e2 e1 e1 e1 e2
QoS Capability F F F F F F
Vendor Specific v1-v4 v1,v5 v1-v4 v1 v1 v1,v5

Scenario 1. The results from each of the eight tests performed are presented
in Table 3 and Table 4. The first column presents the different fingerprinting
properties, each of the other columns represents one STA. The first five finger-
printing features are either present (T) or not (F). Algorithms 1-5 determine
these values.

Detection of Masqueraded Wireless Access 295

Table 4. Results from Scenario 1 on tests 1-8 for S-7 to S-11. Undetermined entries
are shown as ”—”.

Fingerprinting Property S-7 S-8 S-9 S-10 S-11

PS-Poll F F F T F
Keep Alive F F F F F
Null before Probe T T F — F
Mode changing Null T T F F —
Fixed Interval T F — F —
Null Data Type Reg. QoS0 QoS7 Reg. Regular
Duration Calculation 44,314 44,314 258 44,213,223,258 44
Ass. Req. Duration 314 213 314 258 314
Listen Interval 10 10 10 3 5
Supported Rates s3 s1 s3 s4 s1
Ext. Sup. Rates e1 e1 e1 e3 e1
QoS Capability F F F T F
Vendor Specific v1 v1-v4 v1 v1 v1

Table 5. Results from Scenario 2 on tests 1-8 for S-5 and S-7

Fingerprinting Property S-5 S-7

PS-Poll F F
Keep Alive F F
Null before Probe T T
Mode changing Null F T
Fixed Interval F F
Null Data Type QoS7 Regular
Duration Calculation 258 44,223,258,314
Ass. Req. Duration 314 314
Listen Interval 10 10
Supported Rates s3 s3
Ext. Sup. Rates e1 e1
QoS Capability F F
Vendor Specific v1 v1

Scenario 2. The eight distinctive features or fingerprints determined for each
STA were identical to the ones determined in Scenario 1, with the exception
of ”Fixed Interval” for S-7. The fingerprints from this scenario are shown in
Table 5.

Scenario 3. In both Scenario 2 and 3 the attacker’s Authentication Request
frame was observed, making it easy to identify exactly when the attack occurred.
The fingerprints from this scenario can be seen in Table 6.

296 C. Idland, T. Jelle, and S.F. Mjølsnes

Table 6. Results from Scenario 3 on tests 1-8 for S-5 and S-7

Fingerprinting Property S-5 S-7

PS-Poll F F
Keep Alive F F
Null before Probe — T
Mode changing Null — —
Fixed Interval — —
Null Data Type QoS7 Regular
Duration Calculation 258 314
Ass. Req. Duration 314 314
Listen Interval 10 10
Supported Rates s3 s3
Ext. Sup. Rates e1 e1
QoS Capability F F
Vendor Specific v1 v1

6 Discussion and Conclusion

We have identified and experimented with some communication fingerprints of
the IEEE 802.11 MAC layer that may serve to distinguish user stations. Our
algorithms are able to detect spoofing attacks where the victim is not connected
simultaneously with the attacker, something commercial IDS cannot do today.
We have shown the feasibility of passively measuring the MAC layer fingerprints
without specialized equipment, and that this can be done efficiently under re-
alistic network access conditions. No precomputed database of fingerprints is
necessary. The test data were acquired under realistic access scenario setups of
8-10 minutes, using 11 different devices. The communication fingerprints exhib-
ited an average Hamming distance of 2.82. Even in the case of severely reduced
communication data available (scenario 3), the tests show that the proposed al-
gorithms are still able to distinguish between devices. The level of attacker skills
required to avoid detection and evidence of session hijacking attacks in 802.11
can be raised considerably by using techniques presented here.

It remains to find out how to fine tune the selection of parameter values in
the algorithms to gain optimal detection efficiency. Also, some of the fingerprints
used are not easily altered as they are hard-coded in the firmware and drivers
of the devices, while other fingerprints might be easier to alter or conceal, so
assessing the difficulty of modifying or concealing a fingerprint are future work.

References

1. Holgernes, E.: Detecting Identity Thefts in Open 802.11e Enabled Wireless Net-
works. Masters thesis, Department of Telematics, NTNU, 109 pages (June 2010),
http://daim.idi.ntnu.no/masteroppgave?id=5476

http://daim.idi.ntnu.no/masteroppgave?id=5476

Detection of Masqueraded Wireless Access 297

2. Idland, C.: Detecting MAC Spoofing Attacks in 802.11 Networks through Finger-
printing on the MAC Layer. Masters thesis, Department of Telematics, NTNU, 96
pages (June 2011), http://daim.idi.ntnu.no/masteroppgave?id=6260

3. Eian, M., Mjølsnes, S.F.: The modeling and comparison of wireless network denial
of service attacks. In: Proceedings of the 3rd ACM SOSP Workshop on Networking,
Systems, and Applications on Mobile Handhelds. ACM (2011)

4. Franklin, J., McCoy, D., Tabriz, P., Neagoe, V., Van Randwyk, J., Sicker, D.: Passive
Data Link Layer 802.11 Wireless Device Driver Fingerprinting. In: Proceedings of
the 15th Conference on USENIX Security Symposium, vol. 15 (2006)

5. Gopinath, K.N., Bhagwat, P., Gopinath, K.: An empirical analysis of heterogeneity
in IEEE 802.11 MAC protocol implementations and its implications. In: Proceedings
of the 1st International Workshop on Wireless Network Testbeds, Experimental
Evaluation & Characterization (2006)

6. IEEE. IEEE Standard for Information Technology—Telecommunications and In-
formation Exchange Between Systems— Local and Metropolitan Area Networks—
Specific Requirements. Part 11: Wireless LAN Medium Access Control (MAC) and
Physical Layer (PHY) Specifications. Technical Report. IEEE (2007)

7. Gu, W., Yang, Z., Que, C., Xuan, D., Jia, W.: On Security Vulnerabilities of Null
Data Frames in IEEE 802.11 based WLANs. In: Proceedings of The 28th Interna-
tional Conference on Distributed Computing Systems, pp. 28–35. IEEE (2008)

8. fdXtended. HSMX - Internet Access Platform, Datasheet (June 9, 2011),
http://www.fdxtended.com/datasheets/HSMX-datasheet.pdf (retrieved)

Appendix: The Algorithms

Input: frame

if frame == Beacon frame and bit in TIM is set then
beacon count++
if beacon count > listen interval then

use PSPoll = false
if use PSPoll was true then

return suspect attack
end if

end if
end if

if frame == PS-Poll frame then
beacon count = 0
use PSPoll = true
if use PSPoll was false then

return suspect attack
end if

end if
Algorithm 1. Test 1, PS-Poll

http://daim.idi.ntnu.no/masteroppgave?id=6260
http://www.fdxtended.com/datasheets/HSMX-datasheet.pdf

298 C. Idland, T. Jelle, and S.F. Mjølsnes

Input: frame

time delta = timestamp previous frame - timestamp current frame
buffer is 0.15 sec
within buffer = 9.85 < time delta < 10.15

if within buffer and frame == Null Data then
use keep alive = true
if use keep alive was false then

return suspect attack
end if

else if time delta > 10.15 then
use keep alive = false
if use keep alive was true then

return suspect attack
end if

end if
Algorithm 2. Test 2, Keep Alive

Input: frame

set size = 5
min limit = 0.80

if frame == Probe Request then

if previous frame was Null Data then
using count++
total count++

else if previous frame was not Probe Request then
total count++

end if
end if

if total count == set size then
use null before probe = using count > set size×min limit
if use null before probe changed value then

return suspect attack
end if
using count = 0
total count = 0

end if

Algorithm 3. Test 3, Null before Probe

Detection of Masqueraded Wireless Access 299

Input: frame

set size = 30
min limit = 0.9

if frame == Beacon frame then
if number of Beacons since data > listen interval then

pwr mode = AM
end if

end if

if chk nxt pkt == true then
if frame type is data and fame �= Null Data then

using count++
total count++

end if
chk nxt pkt = false

else
if pwr mode == PS then

if frame == Null Data and pwr mgt bit == 0 then
chk nxt pkt = true

else if frame is DATA and pwr mgt bit == 0 then
total count++

end if
end if

end if

pwr mode = pwr mgt bit (1 = PS, 0 = AM)

if total count == set size then
use mode chng null = using count > set size×min limit
if use mode chng null changed value then

return suspect attack
end if
using count = 0
total count = 0

end if

Algorithm 4. Test 4, Mode changing Null Data

300 C. Idland, T. Jelle, and S.F. Mjølsnes

Input: frame

set size = 50
threshold = 0.8

if frame == Null Data then
time delta = time elapsed since previous Null Data frame

if pwr mgt previous == PS and pwr mgt current == AM then
if average exists then

if time delta is within range(average) then
pair ok count++

end if
pair total count++

else
calculate average from first 10 pairs

end if
end if

if pair total count == set size then
use fixed interval = (pair ok count/set size) ≥ threshold
if use fixed interval changed value then

return suspect attack
end if
pair ok count = 0
pair total count = 0

end if
end if

Algorithm 5. Test 5, Fixed Interval

Input: frame

if frame == Null Data then
categorize frame as QoS or regular
if frame was QoS type then

identify the priority class (TID)
end if
if frame differs from the previous Null Data frame then

return suspect attack
end if

end if

Algorithm 6. Test 6, Null Data Type

Detection of Masqueraded Wireless Access 301

Input: frame

if frame == Null Data then
get the duration value from the Duration/ID field
get the data rate from the radiotap header

compare duration for given data rate with previous value

if differences in duration value for same data rate then
return suspect attack

end if
end if

Algorithm 7. Test 7, Duration Calculation

Input: frame

if frame == Association Request then
record implicit identifiers
if Ass. Req. for same MAC address is recorded before then

compare implicit identifiers from current and previous frame
if inconsistencies in implicit identifiers then

return suspect attack
end if

end if
end if

Algorithm 8. Test 8, Association Request

Input: frame

run Test 1, PS-Poll
run Test 2, Keep Alive
run Test 3, Null before Probe
run Test 4, Mode changing Null Data
run Test 5, Fixed Interval
run Test 6, Null Data Type
run Test 7, Duration Calculation
run Test 8, Association Request

evaluate outputs from tests 1-8

return attack / no attack based on evaluation

Algorithm 9. The Fingerprinting Algorithm

M. Rogers and K.C. Seigfried-Spellar (Eds.): ICDF2C 2012, LNICST 114, pp. 302–313, 2013.
© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2013

BREDOLAB: Shopping in the Cybercrime Underworld

Daan de Graaf

1, Ahmed F. Shosha2, and Pavel Gladyshev2

1 National High Tech Crime Unit, Netherlands' Police Agency, The Netherlands
Daan.De.Graaf@nhtcu.nl

2 University College Dublin, Ireland
Ahmed.Shosha@ucdconnect.ie, Pavel.Gladyshev@ucd.ie

Abstract. A recent emerging trend in the underground economy is malware
dissemination as a service. Complex botnet infrastructures are developed to
spread and install malware for third-party customers. In this research work, a
botnet forensic investigation model is proposed to investigate and analyze
large-scale botnets. The proposed investigation model is applied to a real-world
law-enforcement investigation case that involves investigation of a large-scale
malware dissemination botnet called BredoLab. The results of the forensic
investigation show the effectiveness of the proposed model in assisting law-
enforcement to conduct a successful forensic analysis of BredoLab botnet and
its related resources.

Keywords: BredoLab, Botnets, Law-Enforcement Investigations, Malware
Forensics, Forensic Investigation Models.

1 Introduction

Over the past few years, cybercrimes on the Internet have gradually transformed to
profit-based crimes. A complex underground economy has emerged with complex
divisions to manage various cybercriminal activities, e.g. financial crimes on the
Internet, identity theft, attacking online services and dissemination of suspicious
services, i.e. spam and phishing distribution. These illegal activities are supported
with a solid networking infrastructure, such as bulletproof hosting through Virtual
Private Network (VPN), to provide the cybercriminals a quality control and
management for their malicious activities.

To manage the underground economy, well-defined organizations are established
to rule the economic and technical aspects of the malicious service delivery through
professional roles, such as, carders, scammers, financial cashiers, malware authors,
spammers, spoof-website designers, money launders and botherders [1]. These
organizations provide fee-based services on behalf of third-party customers to commit
the customers’ required criminal activities. In essence, these illegal services are
mostly advertised on communication forums that are denoted as “Underground
Forums” [2]. Such forums provide a secure communication channel between
malicious services’ providers and the services’ customers through providing an
infrastructure, e.g. communication-based dashboard to manage requested services and

 BREDOLAB: Shopping in the Cybercrime Underworld 303

to advertise newly developed malicious services. To commit previously
aforementioned illegal acts, cybercriminals are usually assisted with botnets. A botnet
is a collection of infected computers connected to the Internet and controlled by a
botnet commander, usually denoted as bot-herder, and utilized to commit wide variety
of cybercrimes, such as denial of Internet-based services [3].

As a bot controller, the bot-herder possesses the ability to download, update and
execute malicious binaries on infected systems [3-4]. Fundamentally, he/she utilizes
this functionality to update installed bots on the victim’s computer with a newly
developed malware sample, to allow execution of new binaries determined to commit
different malicious activities. This process is denoted as “malware downloader” and
describes the ability of a certain botnet to install other malware samples for different
purposes. Since malware downloading is an important resource in botnets, bot-herders
may offer the resource as a fee-based service to other cybercriminals. As a result, a
cybercriminal use such paid service to commit a specific crime, i.e. malware
downloader for banking fraud. A complex example of a botnet that was specifically
used to offer the bots resources for spam activities and bank fraud is BredoLab.

Researchers and anti-virus companies first saw the BredoLab botnet in 2009. It is a
complex downloading platform designed to facilitate malware spread on a massive,
large-scale rate and used as fee-based service for installing malware to third-parties
customers who could use infected machines (bots) to commit various cybercriminal
activities.

From July 2010 till October 2010 the National High Tech Crime Unit of the
Netherlands' Police Agency (NHTCU) did an investigation to a specific BredoLab
botnet. The investigation has estimated that initial size of the botnet is, at least, three
million infected machines. Following the investigation, NHTCU discovered that the
networking infrastructure of this BredoLab botnet was running at a large-scale hosting
provider in the Netherlands. Thus, on October 25, 2010 the NHTCU successfully took
over the control of a BredoLab botnet and got access to servers that were directly
connected to the network.

Because of the large-scale nature of BredoLab, traditional forensics investigation
models were not sufficient to investigate and analyze the bot’s resources. A forensics
investigation model to investigate large-scale botnets was required.

In this research paper, a large-scale botnet’s forensic investigation approach is
proposed to analyze the botnet infrastructure. The proposed approach is applied in a
real-world law-enforcement investigation of a BredoLab botnet. Finally, an analysis
on BredoLab’s resources is conducted to provide practical insights on the
investigation of the malware selling botnets.

Paper Organization. Section two presents the proposed approach to forensically
investigate large-scale botnets. Section three presents a case study of a law-
enforcement investigation on the BredoLab botnet. Section four presents a research
on the botnet data. Finally, section five concludes the paper.

304 D. de Graaf, A.F. Shosha, and P. Gladyshev

2 An Approach to Analyze Large-Scale Centralized Botnets

Various forensic analysis and investigation approaches are proposed to analyze
botnets, and investigate the underground economies. Most of currently proposed
approaches, however, are limited to the analysis of malware samples found in
acquired botnets, or focus on analysis of the communication channels to/from the
cybercriminals. A comprehensive forensic investigation model to investigate large-
scale infrastructure of botnets, however, is still missing.

In this section, we describe the infrastructure model commonly employed in
centralized large-scale botnets, and propose a forensic investigation model to analyze
the infrastructure. Note that, illustrated infrastructure is based on a real-world
investigation case of a BredoLab botnet.

Generally, larges-scale botnets are comprised of several working components, each
of which is designated to one or more predefined functionalities. For example, main
modules in a large-scale botnet such as BredoLab encompass C&C (Command and
Control) servers, databases servers, bot-herder administration panels and customer
control panels. The understanding of each module and the interrelationship between
instances of each module is crucial for forensic investigation of the botnet’s activities
and is required for the proper disassembly of the botnet threats.

From a forensic investigation point of view, successful investigative model has to
consider the modular nature of a botnet under investigation. Otherwise, investigation
of interactions between the botnet’s modules may conclude to insufficient results. As
a result, the proposed botnet investigation model is decomposed into a set of
subcomponents; each component is designated to investigate one or more specific
module in the botnet’s infrastructure. Note that, proposed model can be used when the
botnet is identified and its servers are located.

In the proposed approach, three main investigation stages are defined to analyze
the botnet’s resources. The first stage includes forensic acquisition of the botnet’s
resources, i.e. forensic imaging of botnet hosting servers, etc. The second stage
includes forensic evidence and data extraction of acquired forensic images and
communication networks. Finally, the third stage includes analysis of malware
samples found in botnet resources. A detailed analysis of the botnet backend and the
re-building of the botnet infrastructure in a controlled environment to reconstruct a
full view of the botnet resources is, also, proposed. This allows precise understating
of the botnet threats.

As shown in figure 1, wiretap and net-flow components are designed to allow the
acquisition of sampled network data from the botnet’s communication. The analysis
of botnet network data is essential to identify how the botnet modules are interacting
and communicating with each other, which facilitates forensic investigation of
interrelated modules. Forensic acquisition of the botnet’s infrastructure, when the
botnet is taken down, is accomplished using the forensic images component. This
process includes forensic analysis of the images to extract forensic evidences and
information to continue investigation, such as, botnet administrations and customers
panels’ related information, information about C&C servers, bots’ database and
downloader malware module.

 BREDOLAB: Shopping in the Cybercrime Underworld 305

Fig. 1. Large-Scale Botnet Forensic Investigation Model

Based on extracted evidence from acquired forensic images a detailed behavior
analysis of botnets resources, such as, malware samples behavior is required.

Determining the behavior of malware samples extracted from the botnet
downloader database is accomplished through a dynamic malware analysis
component. Practically, malware analysis component is a preconfigured controlled
dynamic malware analysis environment [5-6] that is used to determine the behavior of
malware samples used in botnets. The behavior analysis of malware samples includes
identification of actions and activities invoked by the sample in infected bots, security
assessment of used exploitation payload and spreading mechanism used by malware
sample, and method used to hide their presence in infected bots, and techniques used
to ensure persistence. Finally, to ensure that valid forensic investigation conclusions
are resulted, a full forensic analysis based on re-building the botnet’s resources in a
controlled environment is developed. The workflow of service provided by the botnet
is traced in the managed environment and are matched to conclusions resulting from
the investigation to ensure validity and integrity of the conclusions.

3 Case Study: BredoLab Botnet Investigation

The first BredoLab exploits where seen in May 2009 by anti-virus companies [7-8].
The initial analysis of BredoLab reveals a complex threat posed by the botnet as
results of employing different sophisticated attack vectors implemented in various
malware samples. Particularly, BredoLab can install a wide range of malware
families, e.g. password stealers, rootkits, backdoors, banking trojans, fake anti-virus
software and spam malware [8].

In this section, a case study is provided about law-enforcement investigation of a
BredoLab botnet. The case study includes procedures used to disassemble the botnet’s
threat and detailed forensic analysis on data extracted from the botnet for forensic
investigation purposes based on the previously presented forensic investigation
model.

306 D. de Graaf, A.F. Shosha, and P. Gladyshev

3.1 NHTCU Investigation

Leaseweb, a large hosting provider located in the Netherlands, started in 2010 with
the Community Outreach Project [9]. This project offers free servers and bandwidth
in support to the organizations that monitor, identify and combat the sources of spam
and crime on the Internet. One of the participants in the project is Abuse.ch, a non-
profit organization that analyses different threats on the Internet, such as, Zeus and
SpyEye [10]. Through Abuse.ch, Leaseweb was informed about a possible large-scale
botnet infrastructure that intersects with their network, since Zeus malware was one of
the malware samples spread by BredoLab. Normally, the regular security process of
Leaseweb encompasses the immediate interaction with the servers’ disseminating
malware and blocking all communication channels. Instead, due to the large-scale
nature of discovered botnet, Leaseweb decided to involve the National High Tech
Crime Unit of the Netherlands' Police Agency (NHTCU) for further tracking of the
botnet’s resources. Initially, NHTCU acquired the net-flow data from the servers at
Leaseweb for further network forensic analysis and investigation. Furthermore, the
NHTCU placed additional wiretaps on eleven servers at Leaseweb to control the
network communication involving BredoLab bots with a total amount of acquired
wiretap data equals to four terabyte.

During the investigation, different malicious servers were fully identified as
followed:

• A malware management server that used to hack and distribute newly
developed malware samples.

• FTP grabber server used to authenticate credentials used by malware and
distributed by the BredoLab botnet.

• A VPN server used for different purposes, such as, management of other
servers, hacks to new proxy servers, Denial of Services (DDoS) attacks and
communication with partners and personal customers.

• A database server used to store information about infected bots and malware
samples distributed by the BredoLab botnet.

• A Jabber server to communicate with various malware samples i.e.
commands to Zeus malware.

• Various C&C servers to control the bots.

In most adversarial legal systems, to establish a valid accusation, forensic analysts are
required to prove that accused person has a knowledge and control - or what so-called
“mens rea”1- based on evidence and artifacts extracted from case under investigation.
In the BredoLab investigation, forensic evidence that establish the knowledge and
control of the criminal activity using BredoLab is obtained from the wiretaps of the
database server and the VPN server. Various forensic evidence and supporting
artifacts, such as, evidence to identify the botnet owners and customers, traces of

1 Mens rea is Latin for "guilty mind". In criminal law, it is viewed as one of the necessary

elements of a crime.

 BREDOLAB: Shopping in the Cybercrime Underworld 307

malware distribution for different purposes, evidence about launching DDoS attacks
and hacking into various websites, are successfully collected during investigation
based on wiretapping investigated servers and the analyses of the network traffic
to/from identified servers.

3.2 BredoLab Botnet Termination Procedures

On October 25, 2010, BredoLab infrastructure was terminated and taken offline. The
NHTCU successfully connected to the backend panel located on one of the C&C
servers through exploiting a cookie extracted from wiretap artifacts of the VPN
server. After controlling the backend panel, the NHTCU terminated all malicious
activity, i.e. active malware distributions tasks. Intuitively, this action will only
contribute to limit infecting new computers; however, to disrupt the ability of
BredoLab, further actions are required to disinfect previously infected bots. Thus,
NHTCU developed a program that is uploaded to all bots in the network and launched
a standard browser on the victims’ computers to allow infected users to read a press-
warning message. This warning message has been viewed over 300,000 times.

BredoLab botnet was let active for a few days in order to reach as much victims as
possible. After that, the network connections to all servers were terminated. Suspect
servers where confiscated for further forensic investigation by the NHTCU.
Additionally, suspect IP’s, domain names and malware found during the investigation
were distributed to the professional security communities.

During the investigation, the bot-herder was identified as results of wiretap data
analysis of the VPN server, since the suspect bot-herder used to use the VPN server
for other non-criminal activities, such as: accessing his personal Facebook account, e-
mail accounts, and his WebMoney accounts. The NHTCU made an international
arrest warrant, through which the suspect got arrested a few days later at the airport of
Yerevan, Armenia. The suspect got convicted in Armenia for four years, based on the
information provided by the NHTCU.

4 Analysis of BredoLab’s Resources and Infrastructure

BredoLab resources’ analysis and forensic investigation is accomplished using the
forensic investigation model described earlier. Thus, in this section, the analysis’s
results of the different BredoLab resources, such as, the network data acquired from
the communication infrastructure and the layout of the network used in a BredoLab
botnet is presented. To reconstruct the network layout, a sampling of the wiretap data
was captured and interrelation between captured network packets was reconstructed
using a custom-built wiretap analysis tools developed by the NHTCU [11]. Each
sampled data packet consists of: source and destination IP addresses, used networking
protocol, source and destination port numbers. The sampled packets are correlated
together to determine the communication network layout used to maintain BredoLab
services. As shown in figure 2, when sampled network data are correlated together,
the BredoLab network infrastructure layout can be identified.

308 D. de Graaf, A.F. Shosha, and P. Gladyshev

Fig. 2. The BredoLab Infrastructure Layout

The BredoLab infrastructure consisted of: a database server, a central proxy server,
several proxies installed on bots, a backend server, a personal hacking server, a VPN
server and several C&C servers. The blue square contains the servers that were
wiretapped at Leaseweb. The red lines are traffic generated by the administrator from
the VPN server. The data created by the previously mentioned wiretap analysis tools
showed that all the traffic from the three C&C servers consists of: HTTP traffic going
to a main proxy server in France, and plain MySQL code going to one central
database server. The database server was used, as well, by one of the installed
malware as FTPgrabber malware. Forensic investigation also showed that the VPN
server has several encrypted connections to a suspect IP addresses in Armenia and
was used to manage other servers.

4.1 Wiretap Data Analysis

Based on determined BredoLab’s communication network infrastructure layout, three
main C&C servers were identified as active servers. Forensic investigation of these
servers’ wiretaps revealed communication traffic to a domain called
“worldhostdns.com”. Further investigations resulted in specified domain is resolve to
an IP address of a C&C server through a proxy server that is located in France.
Analysis of wiretap data has, additionally, revealed that communication between
infected bots and suspect domain is accomplished through various HTTP requests to a
web page named “controller.php”.

 BREDOLAB: Shopping in the Cybercrime Underworld 309

Fig. 3. A sample Communication Packet to a C&C Server

In essence, the communication to the C&C server through “controller.php”,
as shown in figure 3, is defined in the following steps [8]:

• The infected bots connect to the suspect C&C server to update its infection
status and to download newly developed malware through a GET request.
Whereas, the C&C server could identify if connected host is an authorized
bot, if the “Action” parameter in GET request is set “Bot”.

• The C&C server responds to communicate bots with a response message
containing malware samples needed to install.

• The bot replies back if a malware installation task was handled successfully
or not through specific GET request in which “Action” parameter is set to
“Report”. Additionally, infected bots alert the server with the task starting
timestamp via “Unique_Start” parameter.

• Finally, the C&C server reports back with an acknowledgement message.

4.2 Backend Panels Forensic Analysis

Forensic investigation of BredoLab’s network has identified two different backend
panels; one is located on a separate backend server, and the other is located on the
database server. The backend panel is called “BM Tx Edition v1.5.1.” such
that, BM is abbreviation for BredoLab Manager. The Tx and the version numbering is
a reference to installed BredoLab’s software version. Identified panels are developed
in PHP and are used to manage different tasks, like: activate malware orders,
start/stop of malware tasks, and manage installing and cleaning of malware. Besides
management activities, the backend panels also maintain statistics about installed
malware and infected bots. Below is a snapshot sample for information presented in a
backend panel.

192.168.1.101 - - [06/Sep/2011:17:17:16 +0200]
"GEThttp://worldhostdns.com/new/controller.php?actio
n=bot&entity_list=1272705710,1272796684,127875990,12
81608998,1283317892&first=0&rnd=981633&uid=1&guid=29
47510467 HTTP/1.0" - - "-" "-"

192.168.1.101 -- [06/Sep/2011:21:29:32 +0200] " GET
http://worldhostdns.com/new/controller.php?action=re
port&uid=1&guid=3985971469&rnd=123&entity=1259351490
:unique_start;1259970379:unique_start;1271368047:uni
que_start;1278753990:unique_start;1283419228:unique_
start;1283685805:unique_start HTTP/1.0" - - "-"
"-"

310 D. de Graaf, A.F. Shosha, and P. Gladyshev

Fig. 4. BredoLab Sample Backend Panel

An additional important panel is BredoLab’s customers and partners mangement
panel. Customers’ panel which is resident in the database server was used to upload
malware samples and to define prefered number of computers to be infected. Once a
malware is uploaded through the panel, malware spread task is activated on the main
backend panel and then malware is being dissemenated. Finally, the panel, as well,
keeps tracks of open payments and customer related information.

4.3 BredoLab Database Analysis

During post-mortem forensic investigation of the acquired servers’ forensic images, a
BredoLab malware database was successfully extracted. Database forensic
investigation has showed that a database named “BM” is used to store information
about infected bots and different malware samples. Fundamentally, a number of
essential database tables to assist BredoLab service delivery are identified as follow:

• Malware tasks: A table referencing stored information about infected bots
and stored malware to manage outstanding malware infections tasks.

• Bots: A table to store the infected bots information.
• Users: A table that stores information about users and customers who are

controlling the botnet.
• An administration table that is used by the backend panel and various C&C

servers to assist the BredoLab administrator to control service requests, and
payments from customers.

Tasks related to malware activities in the database are divided into two components; a
component that is designated to malware management while the other is for statistics
operations. The management component assists in 1) Upload new malware and place

 BREDOLAB: Shopping in the Cybercrime Underworld 311

it directly in the database as BLOB file, 2) Set country and regional variables to the
location in which malware should be deployed, 3) Pause, load or reload spreading of a
malware. While the statistics component, on the other side, is used to draw malware
dissemination graphs, illustrate spread rates and spread dates in the backend panel.
Every bot that is infected with a certain malware task gets stored in the statistics table.
And for every infection, the backend panel kept track of IP address of the infected
machine, date and timestamp of infection, and country and region.

The acquired statistics table contained information about 3,283,644 infected bots
with 38 different malware tasks. However, the table counts, only, unique IP addresses.
Hence, total infected IP addresses were 477,282 with the 38 different malware tasks.
Note that, this number does not define the actual size of the BredoLab botnet, since it
is possible that bots do not have active tasks at the database acquisition time.

Additionally, the wiretap from law-enforcement investigation of a C&C server
showed that in a month, over one million infected unique IP addresses were
identified. Thus, aforementioned statistics present a challenge in determining the
actual size of a BredoLab botnet. Two tables in the investigated database are linked
directly to the bots and loaders of BredoLab. These tables are used to assist
monitoring of active infections of BredoLab via tracking information, such as:
timestamps of infection and date of last connection to a C&C server, IP address,
country, region and the infected bot GUID. The GUID resembles the serial number of
the hard-drive where BredoLab residents. An administration table called
“admtasks” is, also, identified and is used by the main backend panel and in the
administration panel. The “admtasks” table is linked to the earlier mentioned
malware tasks. “Admtasks” is a principal table in administrating active malware
tasks and tracking customer information to every task. This includes, customer name,
ICQ number of the customer, if found, and all payment details.

A number of 331 malware files dated from July 2009 till October 2010 are
extracted from the “admtasks” table. Extracted malware files were tested using
VTest software in cooperation with Norman IT Security [12]. VTest was recognizing
96% of extracted malware in the database.

Below, are a few examples of the malware samples being used in BredoLab:

• Eighteen malware files were recognized by as Tedroo. Tedroo is known as a
malware that is being used to spread spam.

• Nine malware files were being recognized as Zeus or ZBot malware. Zeus is
a well-known malware family that is being used for banking cybercrimes.

• More than twenty malware files were recognized as being a fake Anti-Virus
program. Fake A/V are used to mislead users into paying money for fake
Anti-Virus products.

• Eight files were recognized as BredoLab malware or BredoLab variants.

5 Conclusion and Discussion

Downloader botnets pose a significant challenge to the user and computer security on
Internet. A prevalent example of downloader botnet is BredoLab. Although, a

312 D. de Graaf, A.F. Shosha, and P. Gladyshev

significant effort to contain BredoLab’s threats by security community and law-
enforcement is spent, recent researches showed that BredoLab and its variants are still
widely spread. Moreover, complex infection and spreading techniques that are found
only in BredoLab malware samples are, unfortunately, now employed in other major
malware families [13-14].

To this end, this practical research paper presented a large-scale forensic
investigation model that is applied to BredoLab botnet investigation. The proposed
model suggested different forensic investigation components to analyze the botnets
resources and to extract necessary evidence to assist law enforcement. Furthermore,
the paper illustrated the law enforcement procedures to forensically acquire and
investigate BredoLab, and to develop required knowledge and control to support
prosecution using proposed model. Most take-downs take months or even years of
research to attempt a take-down [14,15]. In the case of the Bredolab investigation a
wiretap on the VPN server from the main suspect proved to be enough to get the data
needed to take-down the botnet and start prosecution. A combination of research in
the security community together with law-enforcement might prove the best way to
attack these kinds of botnets in the future.

Our future work includes, enhancement to the presented model and integration of
security-related research with law-enforcement procedures to provide better
countermeasures to cybercrime threats.

Acknowledgement. This work is a result of support provided by the National High
Tech Crime Unit from the National Crime Squad part of the Netherlands’ Police
Agency.

References

1. Schiller, C., Binkley, J., Harley, D., Evron, G., Bradley, T., Willems, C.: Botnets, the killer
web app., pp. 77–85. Syngress Publishing, Canada (2007)

2. Yip, M.: The Underground Economy Ecosystem (2011),
http://www.michaelyip.me.uk/blog/2011/08/
the-underground-economy-ecosystem/

3. Ianelli, N., Hackworth, A.: Botnets as a Vehicle for Online Crime. In: First International
Conference on Forensic Computer Science. Carnegie Mellon University, Pittsburgh (2005)

4. Stone-Gross, B., Holtz, T., Stringhini, G., Vigna, G.: The Underground Economy of Spam:
A botmaster’s perspective of coordinating large-scale spam campaigns. In: 4th USENIX
Workshop on Large-Scale Exploits and Emergent Threats. University of California, Santa
Barbara (2011)

5. Ligh, M.H., Adair, S., Hartstein, B., Richard, M.: Malware Analyst’s Cookbook and DVD,
pp. 283–330. Wiley Publishing Inc., Canada (2011)

6. Ligh, M.H., Adair, S., Hartstein, B., Richard, M.: Malware Analyst’s Cookbook and DVD,
pp. 211–224. Wiley Publishing Inc., Canada (2011)

7. Sancho, S.: You Scratch My Back... Bredolab’s Sudden Rise in Prominence. Trend Mirco
Inc. (2009)

8. Tenebro, G.: The Bredolab Files. Symantec Corporation (2009)

 BREDOLAB: Shopping in the Cybercrime Underworld 313

9. Leaseweb, http://blog.leaseweb.com/2010/08/31/
leaseweb-offers-free-web-hosting-to-fight-cybercrime/

10. Abuse.ch The Swiss Security Blog, http://www.abuse.ch
11. National High Tech Crime Unit.: Replay Analyst Toolkit. KLPD, Driebergen (2011)
12. Norman ASA Norway, http://www.norman.com
13. February 2011 Intelligence Report, Bredolab, Zeus and SpyEye stage synchronized,

integrated attacks. Symantec Corporation (2011)
14. Stone-Gross, B., Cova, M., Cavallaro, L., Gilbert, B., Szydlowski, M., Kemmerer, R.,

Kruegel, C., Vigna, G.: Your Botnet is My Botnet: Analysis of a Botnet Takeover. In: 16th
ACM conference on Computer and communications security, pp. 635–647. University of
California, Santa Barbara (2009)

15. Dittrich, D.: So You Want to Take Over a Botnet... In: 5th USENIX Workshop on Large-
Scale Exploits and Emergent Threats. University of Washington, Seattle (2011)

M. Rogers and K.C. Seigfried-Spellar (Eds.): ICDF2C 2012, LNICST 114, pp. 314–327, 2013.
© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2013

A Review and Comparative Study
of Digital Forensic Investigation Models

Kwaku Kyei, Pavol Zavarsky, Dale Lindskog, and Ron Ruhl

Information Systems Security Department
Concordia University College of Alberta, Edmonton T5B 4E4, Canada

kwaku.kyei.f@gmail.com,
{pavol.zavarsky,dale.lindskog,ron.ruhl}@concordia.ab.ca

Abstract. In this paper we present a review and comparative study of existing
digital forensic investigation models and propose an enhanced model based on
Systematic Digital Forensic Investigation Model. One significant drawback in
digital forensic investigation is that they often do not place enough emphasis on
potential admissibility of gathered evidence. Digital forensic investigation must
adhere to the standard of evidence and its admissibility for successful
prosecution. Therefore, the techno-legal nature of this proposed model coupled
with the incorporation of best practices of existing models makes it unique. The
model is not a waterfall model, but iterative in nature helping in successful
investigation and prosecution. The result of the study is expected to improve the
whole investigation process including possible litigation.

Keywords: forensic investigation process, digital evidence, information
sharing.

1 Introduction

Forensic computing and cybercrime investigation emerged as a result of increase in
computer or digital crime due to the development of the Internet and proliferation of
computer technology. The advancement in technology and the rise in online
communication have not only brought about increase in criminal activity (with the use
of the computer either a tool or target or both in committing crime) but also poses a
challenge to law enforcement agencies on how to investigate these complex and
sophisticated crimes. Various investigation models have been developed since 1984
(when the FBI laboratory and other law enforcement agencies began to develop
programs to examine computer evidence). Some of these are for incident response and
others are for court admissibility, but all were developed in an attempt to investigate
and where necessary prosecute offenders. Unfortunately, not much has been achieved
since the success rate for the prosecution is less than two percent [1].

The methods and procedural rules governing evidence gathering and investigation
in these models vary from place to place. Since cybercrime is often transnational and
borderless in nature offenders take advantage of these gaps to avoid arrest and
prosecution [2]. Digital forensics is relatively new compared to other forensic

 A Review and Comparative Study of Digital Forensic Investigation Models 315

disciplines, and therefore there is no common standard of investigation. Each
organization and country tend to adopt its own procedures, some focused on the
technology aspect, and relegate legalities to the background [3], some focused on the
data analysis portion of the investigation or other aspect of the process.

This paper presents a comparative study of the recent Systematic Digital Forensic
Investigation Model [4] and other existing models based on the frame of reference
(number of phases and activities in the existing models) and try to enhance it by
filling in the gaps and omissions identified to make it more comprehensive and
suitable for both investigation and prosecution.

2 Review of Previous Models

A number of digital forensic models have been developed for investigations since
1984; some of these focused on either incident response or investigation or emphasize
a particular phase or activity of an investigation. Below are brief descriptions of the
model development process from 2001 to 2012, see also Fig.1 – Fig.3.

A. Digital Forensic Investigation Model 2001

Kruse & Heiser (2001) came up with a model [5] which has three phases, namely
acquiring evidence, authenticating the evidence and analyzing the evidence, popularly
referred to as the three A’s of digital forensics. This model is concerned with integrity
of the evidence, and was designed for incident response.

B. Digital Forensic Research Workshop 2001

The DFRW model [6] is a collective document created at a Research Workshop
organized in Utica USA in 2001.The model was made up of seven phases, namely
Identification, Preservation, Collection, Examination, Analysis, Presentation and
Decision. One significant feature of the model was that it was an improvement over
previous models because it covered some of the stages others did not cover, such as
the presentation stage. It also laid the foundation for digital forensic investigation and
a framework for future research.

C. Abstract Digital Forensic Model 2002

Reith, Carr and Gunsch reviewed the DFRW and improved it by adding three more
components, which were missing in the previous models. This model [7] was the most
comprehensive of the three because it had all the activities of DFIM and DFRW and
also added Preparation, Approach Strategy and Return of Evidence. Figure 1 shows
the mapping of common elements in the three models and the additions are
highlighted in ADFM.

D. Integrated Digital Investigation Model 2004

The Integrated Digital Investigation Model (IDIP) [8] has five phases, namely
Readiness (Operational and infrastructural readiness), Deployment (Detection and

316 K. Kyei et al.

notification; and confirmation and authorization), Physical Crime Scene Investigation,
Digital Crime Scene Investigation and Review. The model applied the normal
traditional investigation approach and integrated it into digital forensic investigation.
This was quite innovative, especially the reconstruction procedure in both physical
and digital crime scene, which is a strategy used to detect cyber criminals [9].

Fig. 1. The digital forensic investigation phases in the DFIM, DFRW and ADFM models

E. Enhanced Digital Investigation Process Model 2004

The Enhanced Digital Investigation Process Model (EDIP) [10] seeks to enhance
integrated digital investigation process model by adding two additional steps: Trace
back and Dynamite. Figure 2 shows mapping of common elements between the two
models. Deployment phase in EDIP has physical and digital crime scenes, which are
separate phases in IDIP and in addition introduced other useful activities like
Detection & Notification, Confirmation and Submission. Trace back and Dynamite
(reconstruction) would enable the investigator to trace the primary crime scene, from
the footprint obtained from the secondary crime scene with the sole objective of
identifying the possible suspect or criminal, which was a weakness in the earlier
model.

F. Extended Model of Cybercrime Investigation 2004

The EMCI model [11] was developed by Seamus O Ciardhuain, who has considerable
experience not only in cybercrime investigation but also as a researcher, network

 A Review and Comparative Study of Digital Forensic Investigation Models 317

administrator and developer of training for investigators in forensic computing. It is
made up of thirteen (13) steps, namely Awareness, Authorization, Planning,
Notification, Search for and identify evidence, Collection of evidence, Transport of
evidence, Storage of evidence, Examination of evidence, Hypothesis, Presentation of
hypothesis, Proof/Defense of hypothesis and Archive Storage (used for dissemination
of information). The model provides a better understanding of the investigation
process and captures most of the information flow for cybercrime investigation.

Fig. 2. Digital forensic investigation phases in IDIP and EDIP models

G. Digital Forensic Model Based on Malaysian Investigation Process 2009

In 2009, S. Perumal developed investigation model [12] based on cybercrime laws in
Malaysia. The model consists of seven phases namely Planning, Identification,
Reconnaissance, Transport & Storage, Analysis, Proof & Defense, and Archive
Storage. It enhanced existing models by incorporating a live and static data
acquisition process that focuses on volatile data. It also introduced data mining in the
archive storage.

H. Digital Forensic Model for Digital Forensic Investigation 2011

Inikpi developed another model, (DFMDFI) [13] which was generalized into a 4-tier
iterative approach. The first tier was made up of preparation, identification,
authorization and communication. The second tier consisted of rules such as
collection, preservation and documentation. The third tier was made up of rules like
examination, exploratory testing and analysis and the fourth tier has result, review and
report. What is significant about this model is that it is iterative, therefore one can
revisit any activity or phase when it becomes necessary.

I. The Systematic Digital Forensic Investigation Model 2011

Agawal et al. (2011) [4] developed another model, the SDFIM, that organizes the
digital forensic investigation process into eleven phases as outlined in Fig. 3.

318 K. Kyei et al.

Phase 1: Preparation

The preparation phase includes getting the initial understanding of the problem
through assessment, and the right equipment. This phase is used to obtain
authorization and approval, search warrant, and legal notice must also be given to
those concerns and finally appropriate strategy should be developed.

Fig. 3. Digital forensic investigation phases in EMCI, DFMMIP, DFMDFI and SDFIM models

Phase 2: Securing the Scene

The second phase primarily deals with securing the crime scene from unauthorized
access and preserving the evidence from being contaminated.

 A Review and Comparative Study of Digital Forensic Investigation Models 319

Phase 3: Survey and Recognition

Survey and Recognition Phase involves an initial survey conducted by the
investigators for evaluating the crime scene, identifying potential sources of evidence
and formulating an appropriate search plan.

Phase 4: Documenting the Scene

Phase four involves proper documentation of both physical and digital crime scenes
along with photographing, sketching, and crime-scene mapping.

Phase 5: Communication Shielding

Communication Shielding occurs prior to evidence collection. At this stage, all further
possible communication options of the devices should be blocked. Even if the device
appears to be in an off state, some communication features like wireless or Bluetooth
may be enabled. This may result in overwriting the existing information and hence
such possibilities should be avoided.

Phase 6: Evidence Collection

The evidence includes both volatile and non-volatile. The necessary precautionary
measures must be taken to ensure its integrity.

Phase 7: Preservation

Preservation includes copies of digital evidence, packaging, transportation, and
storage. Appropriate procedure and environmental conditions to maintain the chain of
custody should be followed and documented to ensure the electronic evidence
collected is not altered or destroyed.

Phase 8: Examination

Examination involves examining the content of the collected evidence by a forensic
specialist and extracting information for presentation in court. This is made up of
volatile and non-volatile evidence. According to the author, hashing technique like
md5 must be used to authenticate the data.

Phase 9: Analysis

Analysis is more of technical review conducted by the investigative team on the basis
of the result of the examination of the digital evidence and reconstructing the event
data based on the guidelines recommended by the National Institute of Justice.

Phase 10: Presentation

Presentation phase is where a report consisting of detailed summary of the various
steps taken during the investigation and the conclusion arrived at is presented to the
appropriate authorities. It is presented to the court of law when a crime is committed
or corporate management when it is an incident

Phase 11: Result and Review

At the final stage of the investigation, an evaluation is made and the result is used to
update or improve any shortcoming experienced during the investigation.

320 K. Kyei et al.

Agawal et al (2011) performed a comparative analysis of some selected models and
came out with a model that is probably one of the most detailed to date. The
advantages of his model over others are listed in the following section.

3 Advantages and Limitations of the SDFIM

The model is not only comprehensive in scope because it captured almost all the
important activities of the existing models but it is also based on forensic laws and the
guidelines recommended by National Institute of Justice.

The model addresses the issue of collecting digital evidence from either volatile
data or live response or both, which others with the exception of DFMMIP did not.
This is a major concern for cybercrime investigation and equally important ingredient
for prosecution.

In spite of these advantages, the model has the following limitations. For example
it focused on the technical aspect of the investigation, (examination and analysis).
However, all other aspects of the process both pre and post investigation processes
must be considered equally if a comprehensive and detailed model is to be achieved.

The model revealed some similarities in some of the phases which could be
regrouped to make it more coherent. For example, Survey and Recognition could be
part of Preparation, Documenting the Crime Scene and Communication Shielding
could also be part of Securing the Crime Scene, since these two independent phases in
this model in reality are part of Securing Crime Scene. Examination and Analysis
could also be combined. The model used these terms as separate activities but their
definitions are not only similar but also complement each other and it can create
confusion when separated.

SDFIM did not cover all aspects of cybercrime investigation as shown in Table 2
but mainly focuses on the process of obtaining digital evidence. According to
Computer Crime Research Centre, [14] cybercrime is defined as crimes committed on
the Internet using the computer as either a tool or a targeted victim. To effectively
investigate such a crime, especially in a network environment which is a borderless or
distributed system, one needs to trace the footprint from the secondary crime scene to
determine the primary crime scene. [15] [9]. This was completely missing.

Even though the model is designed to investigate cyber-crime, in reality it can only
be useful for computer crime (computer fraud) on a standalone machine where the
computer is used as repository of evidence but not as a tool or target or both, due to
the absence of Trace back and Dynamite [10] as explained earlier. Therefore, it
cannot be applicable to a distributed system or complex architectures or network.

4 Gap Analysis Based Enhanced Digital Forensic Investigation
Model

The weaknesses and limitations of the existing models are shown in Table 2. It is
evident that the existing models did not address all the concerns or capture all the

 A Review and Comparative Study of Digital Forensic Investigation Models 321

activities necessary for investigating and prosecuting cybercrime from start to finish.
Most of them focus too much on processing digital evidence or the investigation
process at the expense of other steps. The motivation for an enhanced model is based
on the fact that digital forensics and for that matter cybercrime investigation involve
not just a single computer but multiple or distributed computers, and successful
investigation of such crime requires access to evidence from various sources.
However, the existing forensic models including the SDFIM, do not sufficiently take
into consideration these various sources of evidence and the need to correlate them
both for the purpose of reconstruction and prosecution.

The proposed model is made up of six phases and is depicted in the flow chart in
Fig. 4. It fills in the relevant gaps that were omitted from the existing models (as
indicated in column II of Table 2) and also introduces Information Sharing shown in
Table 3, which is an important ingredient for effective investigation and prosecution.

One unique feature about the proposed model which is an improvement over
existing models is that, it has all the advantages of the existing models but in addition
addresses the limitations of SDFIM. For example, SDFIM has eleven phases some of
which overlapped, as explained in the previous section. In the proposed model, the
phases have been regrouped as shown in Table 4 for efficiency and consistency.

The inclusion of honeypots/honeynet, intrusion detection and prevention systems
and like tools supporting traceability and reconstruction for ongoing investigation will
enable the security investigators to trace the primary crime scene from the footprint
obtained from the secondary crime scene with the sole objective of identifying the
possible suspect(s) or criminal(s) in a distributed or borderless environment.

Technicalities alone as mentioned in the previous paragraph is not sufficient for
successful investigation and prosecution unless is backed by forensic laws,
cooperation and collaboration from law enforcement agencies from both the primary
and secondary crime scenes. This is achieved through information sharing and
criminal profiling which are very significant for they equipped the law enforcement
agency not only to develop investigative strategy but also effective interviewing
technique.

4.1 Proposed Model: Enhanced Systematic Digital Forensic Investigation
Model (ESDFIM)

In this section, the proposed model will be discussed. The model consists of six major
phases and the structure is illustrated in Fig. 4 and Fig.5.

A. Preparation Phase

Preparation phase is where all the work and activities that needs to be done before the
actual investigation takes place. It includes but not limited to the studying applicable
forensic laws and guidelines, obtaining search warrant, management support,
planning, and setting up appropriate strategy and tools to be used. Monitoring devices
like Intrusion Detection System, Intrusion Prevention systems, Honeypot/Honeynet
and like tools may sometimes be used as detective and preventive techniques
depending on the nature of the crime. These were completely missing in the existing
models.

322 K. Kyei et al.

B. Acquisition and Preservation Phase

Acquisition and preservation phase is where the evidential life cycle starts from and
the tasks performed include securing the crime scene, identifying and collecting both
volatile and non-volatile evidence, labeling & packaging, transporting, image
acquisition, storage and preservation of evidence. In general this phase is where
relevant data are captured, stored and made available for the next phase. It is therefore
important that every item searched and seized including access control, system and
network architectures is legally obtained (plain view, search warrant, consent, etc.)
and properly documented (chain of custody) in conformity to the evidential rule [16],
[17], [18] [23] [24]. The existing models did not capture most of these activities.

Fig. 4. Digital forensic investigation phases in the proposed model

C. Examination and Analysis Phase

Examination and analysis is where forensic examiners and experts look for digital
evidence (Digital Evidence is defined by Carrier and Spafford [8] as digital data that
supports or refutes a hypothesis about digital event or the state of digital data) by
examining and analyzing the content of various digital devices which were legally
seized and properly preserved. This is where the detail and technical job is done
using approved guidelines and accredited forensic tools in order to identify the source
of crime and ultimately trace whoever did it. The evidence to be generated will
depend on the scope of engagement; the nature of the crime and also on the initial
hypothesis and the result may or may not contradict the initial hypothesis, in order to
prove culpability in the court of law [19].

D. Information Sharing Phase

Information sharing is the ability to exchange data between various countries,
organizations, people, and technology (according to Techopedia.com). This weapon
which is effectively used within the social networking sites and the hacking

 A Review and Comparative Study of Digital Forensic Investigation Models 323

community could be applicable in digital forensic investigation. [20]. The
effectiveness of this tool however depends on certification of the information, mutual
trust and understanding among law enforcement agencies, common cybercrime laws
and investigation models being used in both countries else it will have a cascading
effect on prosecution. One important advantage of information sharing is the ability to
get full criminal profile of the suspect(s) [17] [21], which will effectively equip the
law enforcement agencies to develop investigative strategy and effective interviewing
techniques [22].This form of cooperation and information sharing can contribute
effectively towards successful prosecution.

Fig. 5. Complete flow of a digital forensic investigation in the proposed model

E. Presentation Phase

The result of the examination and analysis phase is compiled and presented to the
authority concerned. This is the critical stage of the investigation since the whole
evidence can either be accepted or rejected. The admissibility of the evidence before
the court of law for example depends on certain factors including but not limited to
whether the evidence is materially and properly preserved, (chain of custody or

324 K. Kyei et al.

evidence), whether the evidence is relevant, properly identified and legally obtained,
whether the language used in the presentation is simple and concise to be understood
by the judge or the jury or whether the prosecution and his team can defend and prove
intent, motive, identity or any error or mistake against the challenges and criticism of
the accused/defendant’s team. It is important to remember that the critical point in this
phase is to present the findings to convince and prove your case before the trial judge
or jury in a court of law.

F. Review Phase

The whole investigation is evaluated and areas of improvement identified. From the
beginning of the investigation to court proceedings, and the result are used for future
improvement. The experience gained and lessons learnt are shared and used to train
new staff. Cases are also classified according to its status and remarks made in respect
of whether the case is completed, suspended, pending and ongoing. This is done to
guide future events such as a court appeal, reappearance of an acquitted person or for
a reference. Evidence and exhibits which are returnable are given to their owners.

A unique feature of the proposed model is that it is not waterfall model but
iterative in nature and therefore one has the ability to go back to the previous activity
or phase when it becomes necessary that in doing so will help in the successful
investigation and prosecution.

5 Comparison of the Proposed Model with Existing Models

A significant drawback in digital forensic investigation is that often not enough
emphasis is placed on potential admissibility of the gathered evidence. Digital
forensic investigation must adhere to the standard of evidence and its admissibility for
successful prosecution. Therefore the techno–legal nature of the proposed model,
coupled with the incorporation of best practices of existing models, will not only
equip law enforcement agencies in their fight against computer criminals in both
proactive and reactive ways but will also lead to successful prosecution. The
following tables show our comparison of the proposed ESDFIM with the models
discussed in this paper. Note that all relevant activities from previous models are
included in the proposed model.

Table 1. Summary of phases and activities in existing digital forensic investigation models

 A Review and Comparative Study of Digital Forensic Investigation Models 325

Table 2. Comparison of the proposed ESDFIM model with existing digital forensic
investigation models

326 K. Kyei et al.

Table 3. Comparison of phases and objectives in the proposed ESDFIM model with the
existing digital forensic investigation models

Table 4. New elements in the proposed digital forensic investigation model

6 Conclusion

The objective of this paper is to review, analyze and identify gaps in the existing
models in order to develop a holistic digital forensic investigation model which will
enable law enforcement agencies to correctly investigate and successfully prosecute
cybercriminals. It is believed that adoption of best practices from previous models and
the inclusion of honeypot/honeynets etc, information sharing, criminal profiling as
well as effective interview and interrogative techniques make it more detailed and
comprehensive than the previous models. The new model, the enhanced systematic
digital forensic investigation model, is expected to be not only useful to law
enforcement agencies and organizations’ incident response teams, but will also
provide a basis for the development of useful forensic tools.

 A Review and Comparative Study of Digital Forensic Investigation Models 327

References

1. Boateng, R., et al.: Cyber Crime and Criminality in Ghana: Its Forms and Implications. In:
Proceedings of the 16th Americas Conference on Information Systems (2010)

2. Smith, R.G., Grabosky, P.N., Urbas, G.: Cybercriminals on trial. Cambridge University
Press (2004) ISBN: 9780521840477

3. Kent, K., Chevalier, S., Grance, T., Dang, H.: NIST SP 800-86 Guide to Integrating
Forensic Techniques into Incident Response (2006)

4. Agarwal, A., et al.: Systematic Digital Forensic Investigation Model (2011),
http://www.cscjournals.org/csc/manuscript/journals/
IJCSS/Volume5/Issue1/IJCSS-438.pdf

5. Kruse, W.J., Heiser, G.: Computer Forensics: Incident Response Essentials. Addison-
Wesley (2002) ISBN 0-201-70719-5

6. Palmer, G.: A Road Map for Digital Forensic Research. Technical Report DTR-T001-01,
DFRW, Report From the First Digital Forensic Research Workshop, Utica, NY (2001)

7. Reith, M., Carr, C., Gunsch, G.: An Examination of Digital Forensic Models. International
Journal of Digital Evidence 1(3) (2002)

8. Carrier, B., Spafford, E.H.: Getting Physical with the Investigative Process. International
Journal of Digital Evidence 2(2) (Fall 2003)

9. Lee, H., Palmbach, T., Miller, M.: Henry Lee’s Crime Scene Handbook, Academic Press
(2001) ISBN-13: 978-0124408302

10. Baryamureeba, V., Tushabe, F.: Enhanced Digital Investigation Process Model, Digital
Forensic Research Workshop, Baltimore, MD, USA (2004)

11. Ciardhuáin, S.O.: An Extended Model of Cybercrime Investigations. In:International
Journal of Digital Evidence 3(1) (Summer 2004)

12. Perumal, S.: Digital Forensic Model Based on Malaysian Investigation Process. IJCSNS
International Journal of Computer Science and Network Security 9(8) (August 2009)

13. Ademu, I.O., Imafidon, C.O., Preston, D.S.: A New Approach of Digital Forensic Model
for Digital Forensic Investigation. (IJACSA) International Journal of Advanced Computer
Science and Applications 2(12) (2011)

14. Aghatise, E.J.: Computer Crime Research Center Cybercrime Definition (2006)
15. Carrier, B.: File System Forensic Analysis, Addison-Wesley (2005) ISBN 0-321-26817-2
16. Bunting, S.: Mastering Windows Network Forensic and Investigation, 1st edn. Sybex

(2007) ISBN-13: 978-0470097625
17. Cressey, D.R.: Other People’s Money: Study in the Social Psychology of Embezzlement.

Wadsworth Publishing Company (1972) ISBN-13: 978-0534001421
18. Cosic, J., Baca, M.: A Framework to (Im)Prove “Chain of Custody” in Digital

Investigation Process. In: Proceedings of the CECIIS, Varazdin, Croatia (2010)
19. Roger, M.K.: A social learning theory and moral disengagement analysis of criminal

computer behavior: An exploratory study. University of Manitoba, Winnipeg (2001)
20. Biros, D.P., et al.: Information Sharing: Hackers vs. law enforcement. In: Proceedings of

the 9th Australian Information Warfare and Security Conference, Perth, Australia (2008)
21. Stephenson, P.: Modeling of Post-Incident Root Cause Analysis. International Journal of

Digital Evidence 2(2) (Fall 2003)
22. Turvey, B.: Criminal Profiling: An Introduction to behavioral evidence analysis, 4th edn.

Elsevier (2012) ISBN 978-0-12-385243-4
23. ACFE Fraud Examiners Manual, Canadian Edition (2012)
24. Association of Chief Police Officers (ACPO): Good Practice Guide for Computer based

Electronic Evidence (2006)

Author Index

Al Jabri, Bedoor 91
Al Marzougy, Mohamed 239
Al-Safi, Deena 144
Al Shamlan, Moza 91
Al Zaabi, Ayesha 91
Aouad, Lamine M. 253
Appiah-Kubi, Oheneba Kwame 264

BaAbdallah, Afrah 144
Baggili, Ibrahim 91, 144, 239
Baier, Harald 167
Beck, Marc B. 204
Breitinger, Frank 167
Bryan, Kevin 42

Carthy, Joe 1, 22

de Graaf, Daan 302
DiPippo, Lisa 42
Di Russo, Roberto 253

Fasan, Oluwasola Mary 220
Fay-Wolfe, Victor 42

Gent, Gerald 42
Gladyshev, Pavel 66, 183, 302

Hannaway, Alan 66

Idland, Christer 283

James, Joshua I. 66
Jelle, Thomas 283

Kechadi, Tahar M. 253
Koppen, Jeremy 42
Kramer, Jillian 42
Kyei, Kwaku 314

Lindskog, Dale 314
Liu, Chen-Ching 66

Marrington, Andrew 144, 239
McGrath, Niall 183
Mjølsnes, Stig F. 283
Mohamed, Abdallah 158
Moreland, Marquita 42

Olivier, Martin S. 220

Popov, Oliver 264

Rouchka, Eric C. 204
Ruan, Keyun 1, 22
Ruhl, Ron 314

Saleem, Shahzad 264
Seigfried-Spellar, Kathryn C. 81
Shosha, Ahmed F. 66, 302
Strikwerda, Litska 109

Tennyson, Matthew F. 58

Yampolskiy, Roman V. 158, 204

Zavarsky, Pavol 314

	Preface
	Organization
	Table of Contents
	Cloud Investigations
	Cloud Computing Reference Architecture and Its Forensic Implications: A Preliminary Analysis
	1 Introduction
	2 Cloud Actors and Segregation of Duties
	2.1 Cloud Provider and Cloud Consumer
	2.2 Cloud Broker
	2.3 Cloud Carrier
	2.4 Cloud Auditor

	3 Forensic Artifacts in Cloud Environment
	3.1 Physical Layer
	3.2 Abstraction Layer
	3.3 Service Layer
	3.4 Forensic Acquisition in the Cloud

	4 Cloud Actors Interactions
	4.1 Scenario 1
	4.2 Scenario 2
	4.3 Scenario 3

	5 Cloud Deployment Models and Forensic Implications
	5.1 Public Cloud
	5.2 Private Cloud
	5.3 Community Cloud
	5.4 Hybrid Cloud

	6 Conclusions and Future Work
	References

	Cloud Forensic Maturity Model
	1 Introduction
	2 Cloud Forensic Investigative Architecture (CFIA)
	3 Cloud Forensic Capability Matrix (CFCM)
	4 Cloud Forensic Capabilities
	4.1 Pre-investigative Capabilities
	4.2 Investigative Capabilities
	4.3 Supportive Capabilities
	4.4 Interfacing Capabilities

	5 Initial Validation and Feedback
	6 Sample Usage of f CFMM
	6.1 Building Investigat tive Procedures
	6.2 Comparing Forensic Capabilities of Cloud Offerings
	6.3 Analyzing Standardization Gaps

	7 Conclusions and Future Work
	References

	Identifying Remnants of Evidence in the Cloud*
	1 Introduction
	2 Background
	2.1 Cloud Computing
	2.2 Digital Forensics Tools

	3 Finding Cloud Remnants
	3.1 Cloud Remnant Locations
	3.2 Identifying Cloud Signature Remnants

	4 Results
	4.1 Browser-Based Cloud Applications
	4.2 Installed Applications

	5 Conclusion
	References

	Malware
	On Improving Authorship Attribution of Source Code
	1 Introduction
	2 Overview
	2.1 The Frantzeskou Method
	2.2 The Burrows Method

	3 The Comparative Study
	4 Analysis
	4.1 The Burrows Method
	4.2 The Frantzeskou Method

	5 Conclusion and Future Work
	References

	Behavioral
	Towards Automated Malware Behavioral Analysis and Profiling for Digital Forensic Investigation Purposes
	1 Introduction
	2 Limitations of Dynamic Analysis Methods from Digital Forensic Investigation Perspective
	2.1 Multiple Malicious Execution Paths
	2.2 Interrelation between Observed Objects
	2.3 Profiling Dynamic Kernel Objects

	3 Profiling Dynamic Kernel Memory
	3.1 Profiling Malicious Kernel Objects for Forensic Investigation Purposes
	3.2 Kernel Object Memory Profiling Formalization
	3.3 From Malicious Code Execution to Object Profiles

	4 Implementation and Case Study
	4.1 Zeus Toolkit Profiling Case Study

	5 Discussion and Future Work
	6 Conclusion
	References

	Measuring the Preference of Image Content for Self-reported Consumers of Child Pornography
	1 Content of Child Sex Abuse Images
	2 Child Pornography Image Preference Scale
	3 Empirical Test of the CPIPS
	4 Results
	5 Discussion
	6 Conclusion
	References

	Cybercrime, Censorship, Perception and Bypassing Controls: An Exploratory Study
	1 Introduction
	2 Problem Statement
	3 Research Questions and Hypotheses
	4 Literature Review
	4.1 Censorship and The Internet Proxy
	4.2 Cybercrime
	4.3 Perception

	5 Methodology
	5.1 Theoretical Constructs
	5.2 Instruments

	6 Research Protocol
	6.1 Participants
	6.2 Study Protocol
	6.3 Reliability
	6.4 Data Analysis
	6.5 Demographics

	7 Results and Discussion
	7.1 Hypothesis 1
	7.2 Hypothesis 2
	7.3 Hypothesis 3

	8 Limitations
	9 Future Research
	10 Conclusion
	References

	Law
	When Should Virtual Cybercrime Be Brought under the Scope of the Criminal Law?
	1 Introduction
	2 Virtual Cybercrime: Legal Positioning, Definition and Scope
	2.1 Background: The Developing Field of Cybercrime
	2.2 Meaning of the Term “ Virtual”

	3 Virtual Cybercrime: Necessary and Sufficient Conditions
	3.1 Ontological Analysis
	3.2 The Debate between Legal Positivists and Natural Law Theorists

	4 When Do Computer-Simulated Human Acts or Human Acts Made Possible by Computer Simulation Result in Extravirtual Harm, Offense or Evils of Other Kinds?
	4.1 Can Computer-Simulated Human Acts or Human Acts, Made Possible by Computer-Simulation Result in Extravirtual Harm to Others?
	4.2 Can Computer-Simulated Human Acts or Human Acts, Made Possible by Computer-Simulation Result in Extravirtual Offense?
	4.3 Can Computer-Simulated Human Acts or Human Acts, Made Possible by Computer-Simulation Result in Extravirtual Harm to the Self ?
	4.4 Can Computer-Simulated Human Acts or Human Acts, Made Possible by Computer-Simulation Result in Extravirtual Evils of Other Kinds?
	4.5 Some Short Comments on What the Future Holds

	5 Conclusion
	References

	New Developments in Digital Forensics
	Research Trends in Digital Forensic Science: An Empirical Analysis of Published Research
	1 Introduction
	2 Literature Review
	3 Methodology
	4 Findings and Analysis
	4.1 Publication Year
	4.2 Forensic Type
	4.3 Research Type
	4.4 Research Methodol logy
	4.5 Research Category y
	4.6 Research Method
	4.7 Location (Country of Origin) of Research
	4.8 Research Originator
	4.9 Cited Papers

	5 Conclusions d and Future Work
	References

	Face Recognition Based on Wavelet Transform and Adaptive Local Binary Pattern
	1 Introduction
	2 Review of Wavelet Transform
	3 Local Binary Pattern (LBP)
	3.1 LBP Operator
	3.2 LBP Histogram

	4 Wavelet Adaptive LBP (WALBP)
	4.1 Preprocessing Datasets
	4.2 Adaptive Local Binary Pattern (ALBP)
	4.3 Classification

	5 Experiments
	5.1 Experimental Setup
	5.2 Experimental Results

	6 Conclusions
	References

	Similarity Preserving Hashing: Eligible Properties and a New Algorithm MRSH-v2
	1 Introduction
	2 Foundations of Similarity Preserving Hashing
	2.1 Properties of Similarity Preserving Hash Functions
	2.2 Use Cases
	2.3 Bloom Filters and the Comparison Function

	3 Related Work
	4 Multi-Resolution Similarity Hashing (MRSH)
	4.1 Foundations of MRSH
	4.2 MRSH Version 2

	5 Experimental Results and Evaluation
	5.1 P1 - Compression
	5.2 P2 - Ease of Computation
	5.3 P3 - Similarity Score
	5.4 P4 - Coverage
	5.5 P5 - Obfuscation Resistance
	5.6 False Positive Rate

	6 Conclusion
	References

	Investigating File Encrypted Material Using NTFS $logfile
	1 Introduction
	1.1 Problem Description
	1.2 Related Work

	2 Background Information
	2.1 I/O File Processing
	2.2 NTFS

	3 Observation towards a Framework
	4 Characterise the Encryption Process
	4.1 Sequence of Events That Constitute the Encryption Process
	4.2 Establishing an Event Sequence Signature of the Encryption Process

	5 Modeling Event Sequence Signature of the Encryption Process
	5.1 Intrusion Detection Systems – Event Sequence Signature
	5.2 Modeling Event Sequence Signature for the Encryption Process
	5.3 Constraint Satisfaction (CS) and Backtracking

	6 Methodology
	6.1 Identify the Encrypted File to Be Investigated
	6.2 Determine BirthVolumeID of Ciphertext File and VolumeID
	6.3 Determine $FILE_NAME of Ciphertext File
	6.4 Examine the Timestamps
	6.5 Determine Where the Add/Delete Index Entry
	6.6 Determine Other Files Created during Process
	6.7 Use the “FILE0” Entry in $logfile to Step Backwards
	6.8 Determine the Original Plaintext File Name
	6.9 Examine the contents of the Plaintext file
	6.10 Determine BirthVolumeID of Plaintext File

	7 Case Study
	7.1 Determine BirthVolumeID of Ciphertext File and VolumeID
	7.2 Determine $FILE_NAME of Ciphertext File
	7.3 Examine the Timestamps
	7.4 Other Files Created during the Encryption Process
	7.5 Plaintext File - (Irrespective If It is deleted)
	7.6 Plaintext Contents
	7.7 Determine BirthVolumeID of Plaintext file
	7.8 Result of Investigation

	8 Automation of Methodology: FindTheFile Parser
	8.1 Implementing the Backtracking and Recursion in Java
	8.2 Recognising Temporary and Link Files
	8.3 FindTheFile

	9 Performance Evaluation
	9.1 Introduction
	9.2 ROC Analysis
	9.3 Experiment
	9.4 Results and Observations

	10 Research Contribution
	11 Future Work
	12 Conclusion
	References

	Finding Data in DNA: Computer Forensic Investigations of Living Organisms
	1 Introduction
	1.1 DNA Computing
	1.2 DNA as Storage Medium
	1.3 Error Correcting Approaches

	2 Hiding Data in DNA
	2.1 Overview
	2.2 Coding Schemes
	2.3 Encryption and Watermarking of DNA Messages
	2.4 Messages Finding Data in DNA
	2.5 Experiments Performed
	2.6 Solving Substitution Ciphers

	3 Description of DNA-Steg
	3.1 Encoding and Inserting Messages
	3.2 Approaches to Detecting Messages in DNA

	4 Further Research
	5 Conclusion
	References

	On the Completeness of Reconstructed Data for Database Forensics
	1 Introduction
	2 Background and Notation
	2.1 Database Forensics
	2.2 Inverse Relational Algebra
	2.3 Relational Algebra Log and Value Blocks
	2.4 Database Reconstruction Algorithm

	3 Limitation of the Reconstruction Algorithm
	4 Absence of Evidence
	5 Reconstruction from Interaction
	6 Reconstructionthrough Iteration
	7 Conclusion and Future Work
	References

	Mobile Device Forensics
	BlackBerry PlayBook Backup Forensic Analysis
	1 Introduction
	2 Background
	2.1 iPhone and iPad
	2.2 Android Devices
	2.3 BlackBerry Devices

	3 Methodology
	3.1 Test Equipment
	3.2 Test Procedure

	4 Analysis and Findings
	4.1 Media.tar
	4.1 Settings.tar
	4.2 Apps.tar
	4.7 Limitations

	5 Conclusions and Future Work
	References

	ANTS ROAD: A New Tool for SQLite Data Recovery on Android Devices
	1 Introduction
	2 Related Work
	3 TheMethod
	3.1 SQLite Database Structure
	3.2 Analysis Set Up
	3.3 The Pointer Map Page Analysis
	3.4 B-Tree Table Leaf Pages Analysis

	4 Evaluation
	4.1 Discussion
	4.2 Additional Use Cases
	4.3 FutureWork

	5 Conclusion
	References

	Evaluating and Comparing Tools for Mobile Device Forensics Using Quantitative Analysis
	1 Introduction
	2 Digital and Mobile Device Forensics
	2.1 Mobile Device Forensics Process Model

	3 Tool Evaluation
	3.1 Measuring Quality of MoDeFo Tools
	3.2 Evaluation Methodology
	3.3 Population of Data Objects

	4 Results and Discussion
	4.1 Margin of Error and Confidence Interval
	4.2 Hypothesis Testing
	4.3 Integrity Preservation

	5 Conclusions and Future Work
	5.1 Conclusion
	5.2 Future Work

	References

	Detection of Masqueraded Wireless Access Using 802.11 MAC Layer Fingerprints
	1 Introduction
	1.1 The Problem
	1.2 Motivation

	2 Background and Related Work
	3 The Threat Model
	3.1 The Wireless Access Network
	3.2 MAC Spoofing

	4 Algorithms
	4.1 Distinctive Features
	4.2 The Tests
	4.3 Creating a Compound Fingerprint

	5 Experiments and Results
	5.1 The Terminal Equipment Test
	5.2 Test Scenarios
	5.3 Results

	6 Discussion and Conclusion
	References

	Cybercrime Investigations
	BREDOLAB: Shopping in the Cybercrime Underworld
	1 Introduction
	2 An Approach to Analyze Large-Scale Centralized Botnets
	3 Case Study: BredoLab Botnet Investigation
	3.1 NHTCU Investigation
	3.2 BredoLab Botnet Termination Procedures

	4 Analysis of BredoLab’s Resources and Infrastructure
	4.1 Wiretap Data Analysis
	4.2 Backend Panels Forensic Analysis
	4.3 BredoLab Database Analysis

	5 Conclusion and Discussion
	References

	A Review and Comparative Study of Digital Forensic Investigation Models
	1 Introduction
	2 Review of Previous Models
	3 Advantages and Limitations of the SDFIM
	4 Gap Analysis Based Enhanced Digital Forensic Investigation Model
	4.1 Proposed Model: Enhanced Systematic Digital Forensic Investigation Model (ESDFIM)

	5 Comparison of the Proposed Model with Existing Models
	6 Conclusion
	References

	Author Index

