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Abstract—1In this paper, various aspects of digital fuzzy logic
controller (FLC) design and implementation are discussed.
Classic and improved models of the single-input single-output
(SISO), multiple-input single-output (MISO), and multiple-input
multiple-output (MIMO) FLC’s are analyzed in terms of
hardware cost and performance. A set of universal parameters
to characterize any hardware realization of digital FLC’s is
defined. The comparative study of classic and alternative MIMO
FLC’s is presented as a generalization of other controller
configurations. A processing element (PE) for the parallel FLC
architecture realizing improved inferencing of MIMO system is
designed, characterized, and tested. Finally, as a case feasibility
study, a direct data stream (DDS) architecture for complete
digital fuzzy controller is shown as an improved solution for
high-speed, cost-effective, real-time control applications.

1. INTRODUCTION

HIS paper discusses the most important design issues for
digital fuzzy logic control circuits. Digital fuzzy logic

controllers (FLC) are so far the most commercially successful
implementations of fuzzy logic circuits. The dominant posi-
tion of digital fuzzy logic control circuits can be explained
considering psychological, economical, and technical factors.

Since the development of the first functional inference
engine by Togai and Watanabe in 1985 [52]-[54], there have
been many successful developments of digital implementations
of fuzzy logic-based systems published to date (see, for
example, [4]-[16], [18]-[27], [32]-[35], and [38]-[61]). Due
to the wide variety of such achievements, it is hard to
appropriately characterize and compare various FLC devices.
This is often confusing when different data are provided,
especially in terms of overall FLC performance, compatibility,
and capability.
" Hence, the purpose of this paper is twofold. First, it is
to present the unified theoretical background for fuzzy logic
controllers and their classic and improved models, as well as
to discuss FLC implementations in terms of hardware cost
and performance. Second, it is to illustrate the improved
implementation of highly parallel FLC in digital technique.
Interval-based membership functions and/or fuzzy operators
are not considered [55].

The organization of this paper is the following. First, the
general foundation regarding digital fuzzy logic control is
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laid down. Second, the set of major characteristics is defined
followed by the analytical formulation of single-input single-
output (SISO), multiple-input single-output (MISO), and
multiple-input ‘multiple-output (MIMO) FLC models. Third,
the very large scale integration (VLSI) implementation issues
are discussed and are illustrated with a MIMO FLC design.
Finally, the summary concludes this paper.

II. Fuzzy LOGIC HARDWARE

This section reviews some basic concepts behind the dig-
ital hardware implementations of fuzzy logic circuits. It is,
therefore, an introduction to FLC implementations analyzed
in Section IIIL.

The theory behind fuzzy control is not outlined in this
paper. For theoretical details regarding the fuzzy logic control
and fuzzy logic controllers, the reader is referred to the
introductory and tutorial papers [30], [31], and [62], or recently
published books [7] and [22].

Most of the control applications of fuzzy logic can be
generalized by means of a simple structure shown in Fig. 1.
Let us briefly discuss the main stages of the control scheme
delineated in Fig. 1.

A. Fuzzification

Fuzzification is a transformation of the crisp data into a
corresponding fuzzy set. Before the data can be fuzzified,
however, it should first be normalized to meet the range of
the universe of discourse suitable for the controller input. The
normalization unit is not shown in Fig. 1.

Typically, the state of the process is examined by means of
its parameter measurements. Such measurements generate the
analog-type data available for further use in control system.
Assume that the analog output from the process under control
is feedback to the digital fuzzy controller. First, the analog-
to-digital conversion has to be performed followed by the
input-data normalization. Note that both procedures mentioned
above have their own accuracy and resolution. This fact
suggests some fuzzification techniques that can compensate
for the unavoidable loss of accuracy. It is important to stress
that these procedures are usually responsible for introduction
of a systematic error to the input data.

As a result, the fuzzification can follow three basic strate-
gies. :

1) An input crisp data is converted into a fuzzy singleton

in an appropriate universe of discourse. Precisely, the
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Fig. 1. The general scheme of the fuzzy logic-based control.
fuzzy singleton is a crisp value and, hence, no fuzziness
is introduced to the input data; but this strategy has been
widely used for fuzzy control applications because of its
. . . Measurent
computational simplicity. Instrament
2) An input crisp data is converted into a fuzzy vector
based on expert knowledge of the c.haracterlstlcs of Measured Value
measurement instruments, A/D conversion, and normal- a Continuous
ization. In this case, all “vagueness” associated with the : © lgils:,c%?;sgf
measurement and transformations are included in the
: Normalization
resulting fuzzy vector. Quantization
3) An input crisp data is randomly distributed and, there- Discretization
fore, can be converted into fuzzy vector with arbitrary 4 Y
. 1 T
shape. However, the distribution of the fuzzy vector a
may be determined by the parameters of the probabil- -g £
ity distribution available for the specific measurement & ﬂ - Fuzzy Set A
process. _ s - =
Fig. 2 illustrates the example of an arbitrary, experimentally, g )
measured variable A; its value is normalized, quantized, and 23
finally discretized into a fuzzy set A. The variable 4 value & ' ! Discretized
measured at the continuous universe of discourse can be ”g" 4 1 & Universe of
represented by an arbitrary singleton, triangle, or any other i Central Value Discourse
function as listed above. Note that the discrete universe of ) ]
discourse is discretized into n’ equal intervals. The degree of Binary Mapping
membership is also quantized into m/ levels. This membership 1
function is digitized as _shown t'>y the step-shape function. As mlololololololol [ 1111 To11 1 lolololololo
a result,. the membership function is represented by a set of olotolololil1lolt 1l i lol [ folololo
perpendicular segments. _ ) ‘ ) olojololofol1][1]1]1]i[1]o[1][1]1]1]olo]o
The digitized representation of the 1nput. variable is trans- ololololololi[1[ol1]olol1[alololtlololo
formed into a Boolean matrix that has the size of n*m, where ololololololilolol Al ltl1li 1 131100
n denotes the number of m-bit binary vectors. Each vector 0 .
is obtained from the digitized membership function in such a Binary Matrix

way that the m-bit number codes the degree of membership
function on the appropriate position defined by n’ segment.
Note that if 2™ # m/, the mapping must be nonlinear. Also, in
practice n may not be equal to »’, which creates the additional
problem of horizontal nonlinear mapping from universe of
discourse discretized into n’ intervals into n vectors.

B. Fuzzy Inference

To discuss fuzzy inferencing in great detail, let us recall the
fuzzy system characterized by the linguistic description in the

Fig. 2. Example illustrating the idea and steps of fuzzification process.

form of fuzzy implication rules

Ry: TF A1 IS A] AND IF A2 IS A?
AND --- AND IF AK IS AK
THEN B1 IS Bf AND B2 IS B?
AND --- AND BL IS Bf

ALSO
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Ry: TF A11S AL AND IF A2 1S A2
AND ... AND IF AK IS AK
THEN B1 IS B; AND B2 1S B?
AND ... AND BL IS Bf

ALSO

R;: TF A1 1S A} AND IF A2 IS A?
AND --- AND IF AK IS AX
THEN B1 IS B} AND B2 1S B?
AND -.. AND BL IS Bf

ALSO

Rn: IF A1 1S A} AND IF A2 1S A%
'~ AND --- AND IF AK IS A%
THEN B11S B} AND B2 1S B%
AND ... AND BL IS B

where Al, ..., AK represent the input variables,
Al, A? ...  AK  represent the input membership
functions, B, ---, BK represent the output variables,
and B}, B?, ..., BX represent the output membership
functions.

The inference mechanisms employed in fuzzy logic con-
trollers are generally based on various reasoning schemes. The
inference result can be obtained using seven different algo-
rithms [31]. To define a fuzzy inference refer to [62], however,
practical difficulties arises to implement it. Therefore, some
experimental methods that are described in this section are
referred to as reasoning algorithms. These methods attempt to
implement Zadeh’s inference but they are simplified to gain
the practical feasibility. Only four fuzzy reasoning methods
are commonly used. These methods are listed below.

1) Mamdani’s Strategy—Mamdani’s fuzzy reasoning

method is based on MAX-MIN inference operator.

2) Larsen’s Strategy—Larsen’s fuzzy reasoning method is
based on PRODUCT inference operator.

3) Tsukamoto’s Strategy—Tsukamoto’s fuzzy reasoning
method is based on the simplification of Mamdani’s
method, although all membership functions (antecedents
and conclusions) are monotonic.

4) Takagi and Sugeno’s Strategy—Takagi and Sugeno’s
fuzzy reasoning method ‘is based on a distinct model
description. In this model, the control variables are char-
acterized by the functions of the process state variables.

For more elaborative information on these methods, the
reader is referred to [30] and [31].

Inference is performed in the functional block commonly
known as inference engine.

C. Defuzzification

Generally, defuzzification describes the mapping from a
space of fuzzy control action into a nonfuzzy control action.
Defuzzification produces a nonfuzzy action that best represents
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the inferred fuzzy output. Sometimes, after the defuzzifica-
tion, a denormalization procedure is required for practical
applications.

In terms of digital implementation of a defuzzification
strategy, the usual approach involves arithmetic operations
on a large number (depending on the granularity of the
universe of discourse) of binary vectors. These operations
include multiplications, summations, and divisions; therefore,
defuzzification is usually one of the most time consuming
operation in fuzzy processing.

No single optimal defuzzification algorithm exists to date.
One may not exist at all, however, the research has been
going on to find criteria and methods to switch over from one
algorithm to another, or to use some weighted superposition
of more that one algorithm with tunable weights.

There are numerous defuzzification methods. However, only
about five are practical. They are: center-of-area (COA),
center-of-gravity (COG), height defuzzification (HD), center-
of-largest-area (COLA), and mean-of maxima (MOM). These
algorithms are discussed in [44].

III. DIGITAL Fuzzy LOGIC-BASED CONTROLLERS

This section discusses hardware implementation issues of
digital FLC. The section is organized as follows. First, the set
of major parameters characterizing digital FLC is established.
Then, the mathematical background of SISO FLC is discussed.
Finally, two alternative models for the SISO and the MIMO
fuzzy logic controllers are presented.

A. Digital FLC Characteristics

In this section, a set of major parameters characterizing the
digital fuzzy logic controllers is established based on informa-
tion gathered from the publications referenced in this paper and
authors experience. We begin our discussion from the general
viewpoint related to the application of FLC devices.

There are two basic parameters that determine the usefulness
of a certain implementation of FL.C. These are the number of
input variables and the number of output variables. In this
case, the usefulness of a FLC can be viewed by means of the
complexity of the process that can be controlled by a FLC
under consideration.

Based on the information provided in Section II, especially
with respect to the fuzzification, inferencing, and defuzzifi-
cation, it has become obvious that the input transformation
from the analog measurement to the binary representation of
fuzzy information is crucial for the FLC functionality. Also,
the inverse transformation of fuzzy information into a crisp
output determines the accuracy of the overall control action.

On the other hand, in terms of inferencing the basic char-
acteristic of FLC can be referred to as the performance and
“storage ability.” The latter determines the FLC capacity
to store linguistic rules as well as the capacity to store
membership functions assigned to different linguistic variable
values.

One of the major problems of FLC’s characteristics is re-
lated to their performance. In scientific and technical literature
there can be found at least three performance measures. They
are:
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* the maximum frequency of the clock running the FLC

device;

 the number of fuzzy inferences per second (also called

FLIPS) where the fuzzy inference is usually ambiguously
defined, or even not defined. The fuzzy inference may be
understood as a operation determined by a single rule, or
an operation determined be a part of the rule as well;

* the number of elementary fuzzy operations per second

(e.g., MIN or MAX).

It has to be stressed that the above parameters do not provide
a confident measure of the real speed of the FL.C. Therefore,
we propose to characterize the FLC be means of the inpui-
to-output delay time (Tin-out). Such a time is defined as
a total delay time from the moment of providing the input
variable to FLC device until the generation of the crisp action
at the output of this device.! Such a time is, in our opinion,
the most objective measure of the FL.C performance because
it does take into account the real throughput of the device.
The parameters used so far provide, maybe spectacular data,
unfortunately these data lack real performance value. Let us
take as an example, the FLC device that can perform several
million fuzzy logic inferences per second (several MFLIPS),
but the control action could be available at the output after,
let us say, milliseconds ‘since the input stimulus entered the
controller. In such a case, the inference engine of the FLC
is mostly occupied with tedious number crunching that do
not lead to the final result. As we will present later, such
behavior is determined by the internal FLC structure and can
be avoided by the appropriate structure modifications to the
inference engine made at the design stage.

Let us summarize the above discussion and specify the set
of major FLC parameters crucial for further discussion. They
can be listed as follows:

¢ number of input variables (inputs) (K);

» number of output variables (outputs) (L);

= number of linguistic rules in the knowledge base (V);

* number of membership functions in the input universe of

discourse (M Biy);

* number of membership functions in the output universe

of discourse (M Boyrt);

* number of binary vectors characterizing the membership

function (n);

e number of bits in a single binary vector (m);

* input-to-output delay time (Tin-ouT).

The next sections present the results of an algebraic analysis
of various configurations of FLC with regard to the selected
parameters.

B. Single-Input Single-Output Fuzzy Logic Controllers

The SISO system, as overexploited in the literature, is not
discussed in this paper. For details on the analytical description
of the SISO FLC, the reader is referred to [52] or [31].

The next section presents analysis of the MISO FLC.

UIf we consider the pipelined FLC, such device presumably generates the
output every clock cycle. In such a case, the clock period determines an
input-to-output delay time.
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C. Multiple-Input Single-Output Fuzzy Logic Controller

1) Classic Method: If A1, A}, ... AY are fuzzy subsets
of A!, and A2, A3 ... A% are fuzzy subsets of A2
and ---, and AK AK ... AK are fuzzy subsets of
AX; By, By, .-, By are fuzzy subsets of B then fuzzy
relation R is defined by a set of fuzzy rules as follows:

Ry: IF A] AND IF A2 AND--- AND IF
AKX THEN B;, ALSO

Ry:  IF A} AND IF A2 AND --- AND IF
AKX THEN B, ALSO

R;: IF A} AND IF A? AND ... AND IF
AKX THEN B;, ALSO

Ry: IF A}, AND IF A% AND --- AND IF

AKX THEN By.

Observe, that is this case the fuzzy relation is defined by
R = (4% A%, .. ,AK) — B. If the output B has to be
inferred, then according to the definition of fuzzy implication

B= (A A% ... A®)oR. 1)

Also, using the procedure for building the overall fuzzy
relation

R= R;.

=

Il
-

©

(2

Having fuzzy observations Al, A2, --- , AK and the overall
relation R, one can infer the resulting action B1 by applying
the compositional rule of inference

Bl =(Al, A2, ---, AK)oR

N
=(A41, A2, --- , AK)o | | R;
=1

(A1, A2, -, AK) o R;. 3)

=

1

K3

The membership function of B1 can then computed by the
well-known MAX-MIN operation. Considering the ith rule R;
and the observation A1, the respective action B1 is given by

Bl; = (A1, A2, .-, AK)oR;. C))
So the membership function is given by
#B1,;(b) =MAXMIN [pa1(a1) X peaz(az) X - -
X /"'AK(G’K)7 NR(al) az, *, 0K, b)]
a; € Al as € A2, .-+ | ag € AK
=MINMAX (MIN {MIN

[na1(a1), par(a1)], MIN [paz(as), paz(az)] -
a1 € Al, as € A2, - ,ax € AK; - .-

MIN [,UAK(GK)) /4”AéK (CLK)}, HUB; (b)})
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=MIN [, us, (b)]
b€ Bl &)

where {2; is defined by

Q; =MIN {MAXMIN [p2.41(a1), 141 (a1)]
- MAXMIN [ a2(az), paz(az)] -+
a1 €Al a0 € A2, - - ,ax € AK, -+
MAXMIN [sax (ak), a5 (ax)]}- ©)

Then, the maximum of B, B}, ---, By determines the
final action B1, which is calculated as a union

B1=UY, B1;

=MAX(B1y, Bls, -+, Bly). Q)

2) Alternative Method: This method is based, by analogy
to the previously used technique, on the rule decomposition
into subrelations, and building the fuzzy relation first.

One can assume that the first and subsequent rules can be
decomposed into K separate subrelations as follows:

RF = AF x B; ®)
where ¢ denotes, as usual, the rule number s =1, 2, -+, N,
k denotes the input variable ¥ = 1, 2, --- , K, and [ denotes
the output variable ! = 1,2, ..., L.

Therefore, if one wants to obtain overall, kth subrule, all
contributions have to be unionized

N
R* = | ) R} ()
i=1
or
RF =MAX [R¥(ax, b), RE(ax, b), -+, R (ar, b)]. (10)
In this case, the model’s output Bl related to a set of
inputs (A1, A2, ---, AK) can be obtained using the MIN-
superposition of all K relations between the input A% and the
rule R*
B1=MIN[AloR', A20 R, --- | AK o R¥]
or
B1 =MIN {MAXMIN [A1, R'(aq, b)], ---

MAXMIN [AK, R¥(ak, b)]}. an

D. Multiple-Input Multiple-Output Fuzzy Logic Controller

Let us briefly generalize the results of the discussion of
MISO FLC to the MIMO controller case.

1) Classic Method: Having fuzzy observations Al and
A2, ---, AK and the overall relation R, one can infer the
resulting action B1 by applying the compositional rule of
inference. As a result

Bl =(Al, A2, ---, AK)oR

N
(A1, A2, -+, AK)o | J R;

i=1

N
(A1, A2, .-, AK) o R;.

=1

(12)
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The membership function of B1 can then calculated by the
well-known MAX-MIN operation. Considering the ith rule R;
and the observation Al, the respective action B1 is given by

Bl; = (A1, A2, ---, AK)o R; 13)

where [ = 1,2, ---, L.
Therefore, the corresponding membership function is de-
fined as follows:

i, (b) = MAXMIN [1141(a1) X paz(az) X - X prak(ax)
prlai, ag, -+, by, -+, br)]
ay € Al, as € A2, -+, ax € AK

= MINMAX (MIN {MIN [1141(a1), a1 (a1)]
MIN [p42(a2), paz(a2)], -+
a1 € Al,a2 € A2, --- ,ak € AK, ---
MIN [k (ax), pax (k)]
pR(ay, az, -+ 5 by, ooy br)})

=MIN 2, s (b))

b € Bl (14

where, in this case, Q; is defined in a different way

Q! =MIN {MAXMIN [p41(a1), pas.(a1)]
MAXMIN [pa2(az), pa,(a2)], -
0, €Al gz € A2, --- , ax € AK, ---

MAXMIN [k (ax), kax(ax)]}- (15)

Then the maximum of Bly, Bls, - -+, Bly determines the
final actions B! which can be calculated as a union
N
Bl= | B (16)
i=1
where l=1,2,---, L denotes the output variable.

2) Alternative Method: By decomposing the relations de-
fined in a single rule, the set of K L subrelations can be
obtained for all N rules. With the same strategy we can define
sub-subrelations for each of N rules.

In this way, we obtain K x L subrelations that can be used
to infer the fuzzy results in case the set of input variables is

Al and A2,---, AK. The model’s outputs can be obtained
using MIN-superposition operation through all L relations

Bl =MIN[(Al o R'Y), (A20 R?), ---, (AK o RKY)]
an

BL =MIN[(Al o R'Y), (A20 R?L), --- | (AK o RKL)].
(18)

In this way, we can infer all L-fuzzy outputs by the MIN-.
superposition of all subrules incorporating a respective output
variable. More specifically, one can rewrite (17) and (18) into

B1 =MIN {MAXMIN [A1, R (a1, b1)], -

MAXMIN [AK, R¥(ak, b1)]} (19)
BL =MIN {MAXMIN [A1, R'%(ay, b)), - -
MAXMIN [AK, R¥L(ak, by)]}- (20)
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Schematic diagram of the MIMO classic FLC.

Summarizing, the alternative method of inference offers two
major advantages over the classic one. They are:

¢ compact knowledge base where all rules are accessed

simultaneously; o

* higher sensitivities for the input variables changes.

On the other hand, one can point out the disadvantage,
which may play role especially with some classes of
knowledge-base tuning algorithms, that is, the unavailability
of individual rules. Obviously, as practice shows, the ideal
algorithm fulfilling all different kinds of requirements is likely
not to be found.

E. Hardware Implementation Issues

Hardware implementation of FLC raises several practical
difficulties that can be clearly visible by investigating cost
functions and overall delays for various hardware configura-
tions.

As a general case, we compare implementations of the
described MIMO FLC models based on the criteria derived
from the set of characteristic parameters. We use the formula
parametrized by the following parameters:

¢ number of input variables/inputs (K);

« number of output variables/outputs (L);

* number of linguistic rules in the knowledge base (INV);

* number of binary vectors characterizing the membership

function (n);

» number of bits in a single binary vector (m).

1) Hardware Characteristics: In the subsequent sections,
we analyze only the most general case of FL.C implementation:
MIMO. The SISO, DISO, or MISO can be easily inferred

from such analysis by applying simplifying assumptions to
the MIMO case. ‘

i) MIMO classic implementation: The MIMO FLC
model presented in Section III-D-1, can be mapped into
a hardware model in a variety of ways. One of the
straightforward ways consists of direct mapping of the
inference algorithm into hardware. Observe, that we focus
our discussion on the inference engine instead of fuzzifier and
defuzzifier. In the subsequent analysis, we assume that the
fuzzifier and defuzzifier units have a certain implementation;
however, for the purpose of fair comparison of classic and
improved FLC implementations they are functionally identical.

The block diagram of the classic implementation of the is
illustrated in Fig. 3.

In case of MIMO FLC, the inference engine is constructed
of N MIN units and N MAX units performing the antecedent
part of rules for a single input. These pieces of hardware
is then multiplied by the number of inputs (K). MIN unit
must perform the minimum operation on n m-bit vectors as
assumed earlier. Then, the MAX unit determines the maximum
value represented by one of these n m-bit vectors. To do the
minimum, the antecedent membership functions (representing
the values of input linguistic variables) must be stored and -
ready to enter the MIN units. These functions, as another
n m-bit vectors are stored in the rule base memory.

Proceeding with fuzzy inference, the consequent member-
ship functions (representing the values of output linguistic
variables) are entered into N MIN units along with N m-bit
vectors generated in cumulative MIN units. Cumulative MIN
units compute the minimum membership values fror all K
inputs for a particular rule. These cumulative units are built of
N K-input MIN units and they are located between antecedent
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Fig. 4. Schematic diagram of the MIMO improved FLC.

and consequent parts of the scheme. Consequent membership
functions are stored in the rule base memory. Consequent MIN
units perform the same type operation as antecedent MIN units.
The results of consequent” MIN units are unionized by means
of multi—input MAX unit. Such a unit is usually implemented
as a MAX unit binary tree, which in this case contains N — 1
MAX units. Finally, the unified defuzzifier generates a crisp
output of the FLC, separately for each of L outputs.

Taking a MIMO scheme shown in Fig. 3 into consideration
one can derive a cost function H as:

Hyxicy = KHruzz + KN (Huvax + nHwvin)
+ L(N — l)nHMAX + N(K — 1)HMIN
+ LNnHyin + KLnmHwveMm

+ LHpErruzz @n

where: Hygnrc) is a total hardware cost of a FLC with
K inputs, L outputs, and N rules implemented with classic
method, Hyyygyz is the hardware cost of the fuzzifier unit,
Hyn is the hardware cost of the basic minimum unit, Hyax
is the hardware cost of the basic maximum unit, Hpgpruzz is
the hardware cost of the defuzzifier unit, and Hyigy is the
hardware cost of the memory cell.

As far as the overall input-to-output delay time is concerned
(Tin-ouT), the estimation can be derived from the scheme
presented in Fig. 3, by introducing additional delay on the
multi-input MIN unit. As a result, the following equation can
be obtained:

Tin-out =Truzz + 27MIN + (0 = 1)7vax + (n — 1)7viN
+ (N — 1)Tmax + TDEFUZZ (22)

where Tpyzyz is the delay time of the fuzzifier unit, Tvn is
the delay time of the basic minimum unit, T\ax is the delay
time of the basic maximum unit, Tperuzz is the delay time of
the defuzzifier unit; for simplicity, it is assumed that the rule-
base memory can be accessed concurrently with the inference
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process and, therefore, there is no additional delay introduced
by the memory-read operation.

ii) MIMO alternative implementation: Analyzing  the
FLC analytical model presented in Section III-D-2, it is
clear that we can map it into a hardware scheme that differs
substantially from the schemes proposed to date. One of the
possible implementations is illustrated in Fig. 4. '

As can be noticed from the scheme contained but not shown
in Fig. 4, the FLC is mapped into the fuzzifier, inference en-
gine, and defuzzifier as usual. However, we have to point a few
distinct differences as opposed to the classic implementation.
First of all, in this case learning the overall rule can be done
off-line in the part of the scheme contained not shown in
Fig. 4. That is a dramatic difference as opposed to classic
implementation because a ready-to-use subrule can be stored
in the memory. Second, the multiple-MIN unit performing the
minimum operation on the overall rule and the incoming fuzzy
vector can be viewed as (n — 1) ordinary MIN units working
concurrently. Also, the final MAX unit can be decomposed in
the same way as a chain of (n — 1) ordinary MAX units.

If we closely look at the rule learning module, we can notice
that the process can be implemented with a two MIN units
and a single MAX unit plus register storing the temporary
result from the MAX unit. Because the learning process can
be performed off line, the extensive (parallel) hardware is not
necessary. )

As we see in Fig. 4, the FLC is mapped into the typical
functional blocks. But in this case, the difference is that K
memory units for each of L output variables have to be
provided.

As a result, the hardware cost for the improved MIMO FLC
controller can be estimated by:

Hgniy = K Hruzz + K LHynn®
+ KLnHyax + KLn*mHvem
+ KnHwax +nLHuiN

+ LHpgruzz + KLHREG- (23)
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Fig. 5. Graphical representation of hardware cost for the classic implementation of FLC. Three surfaces are computed for the following number of

ruless N = 10, N = 50, and N = 100.
As far as the overall delay time is concerned, the estimation

can be described by the following:

Tin-out = Truzz + T™vIN + (7 — 1)TMax

+ (K — 1)7viN + ToEFUZZ- (24)

Note that the above result is obtained under the assumption
that building the knowledge base is performed off-line. Addi-
tionally, the multi-input MIN realization was taken as a worst
case (chain of MIN units) and that gives the (K —1)myn term.

iit) Hardware cost: Comparing the classic and alterna-
tive approaches of FLC implementation, in terms of hardware
cost we can conclude what follows.

Assuming the same cost for the fuzzifier and the defuzzi-
fier modules, the total hardware cost of the classic FLC
linearly depends on the number of rules V. Due to its
characteristic feature, the improved FL.C hardware cost
does not depend on the number of rules.

The hardware cost for both implementations depends on
the number of input and the number of output variables.
The hardware cost for both implementations depends on
the number of binary vectors characterizing the mem-
bership function of the input and the output variables.
The hardware cost for both implementations does not
depend on the number of membership functions in the
input and the output universe of discourses.

Let us graphically illustrate the above conclusions. An
illustrative comparison of the hardware costs for classic and
improved FLC’s is depicted in Fig. 5. In order to fairly com-
pare the hardware cost for both implementations, the following
assumptions are made while computing the presented graphs.

» The MIN and MAX units hardware cost is assumed to

be an arbitrary unit.

* The fuzzification unit hardware cost is assumed to be ten

arbitrary units. '

* The defuzzification unit hardware cost is assumed to be

hundred arbitrary units.

For the classic implementation of FLC, the size of fuzzy
variable representation is assumed to be n x m = 16 * 4 bits.
The z-y axes represent the number of input variables (K)
and the number of output variables (L), respectively. Three
surfaces are plotted for N = 10, N = 50, and N = 100 rules.

The second graph for the classic FLC implementation,
delineated in Fig. 6, shows how the representation of the fuzzy
number changes the overall hardware cost. Three surfaces
plotied in Fig. 6 represent the different binary vector sizes
characterizing the membership function: n = 16, n = 32, and
n = 64, while m = 4. Also, the number of rules is set to
be N = 50.

The same strategy is used to illustrate the hardware cost
for the improved method of FLC implementation (Fig. 7).
The same assumptions hold, however, due to the inherent
features, the graph conditions are slightly different. As above,
the z—y axes plane represents the number of input variables
(K) and the number of output variables (L), respectively. The
surfaces are computed for different sizes of fuzzy variable
representation: » * m = 16 % 4 bits, n * m = 32 * 8 bits,
and n * m = 64 16 bits. (As shown earlier, the hardware
cost of improved implementation FL.C does not depend on the
number of rules NV).

It is interesting to investigate the hardware costs of both
methods of FLC implementation with the similar conditions.
The compound graph, delineated in Fig. 8, shows the hardware
cost in arbitrary units of the classic FLC and improved FLC.
The shown surfaces are computed in such a way that for the
classic FL.C a typical number of rules is set to N = 100. The
surfaces are computed for fuzzy variable representation of the
size of n * m = 16 * 4 bits. The z-axis represents the number
of input variables K and the y-axis represents the number of
output variables L.

The last comparison is extremely interesting (see Fig. 8).
It shows that for the typical number of rules (N = 100),
the hardware cost of the improved FLC is lower than that of
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Fig. 6. Graphical representation of hardware cost for classic implementation of FLC. Three surfaces are computed for the following number of binary
vectors characterizing the membership function: n = 16, n = 32, and n = 64 (N = 50).
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Fig. 7. Graphical representation of hardware cost for the improved implementation of FLC. Three surfaces are computed for fuzzy data matrices of:

n*xm =

the classic FLC implementation. Such a conclusion is valid
for the number of inputs ranging from zero to approximately
thirty and for the number of outputs ranging from zero to
approximately fifteen. If the system is more sophisticated the
hardware cost of improved FLC grows over that of the classic
FLC implementation. However, in most practical applications,
the number of rules is the key limiting factor for the particular
FLC implementation. Therefore, we have to keep in mind that

16 % 4 bits, n *x m = 32 * 8 bits, and n * m = 64 * 16 bits.

for the improved FLC the hardware cost does not depend on
the number of rules, and that is what makes this solution even
more attractive over the classic one.

iv) Performance: We will compare the performance of
the two FLC implementations by means of the introduced
overall delay from input to output. Analyzing the formula
given by (22) and (24), and assuming the same performance
of the typical functional units, one can conclude what follows:
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Fig. 9. Graphical representation of the classic FLC delay time.

The performance of the classic FLC does depend on the
number of input variables, the number of rules, and the
number of binary vectors characterizing the membership
function.

The performance of the alternative FLC depends on the
number of binary vectors characterizing the membership
function, and the number of input variables (through the
multi-input MIN unit). However, it does not depend on
the number or rules NI,

Performance comparison can also be illustrated using ap-
propriate graphs. In this case we show the delay time of
FLC implemented with the classic method. The following
assumption are made for the delay time computations.

¢ The MIN and the MAX units delay time is assumed to

be arbitrary unity.

;

—
th
<

1.

8

Arbitrary Input-Output Delay Time

3

Nusmber of Inputs (K)

Number of
Binary Vectors (n)

Fig. 10. Graphical representation of improved FLC delay time.

e The fuzzification unit delay time is assumed to be ten
arbitrary units. .

o The defuzzification unit delay time is assumed to be fifty

arbitrary units.

Similarly as for hardware cost function, three graphs are
presented. First graph, illustrated in Fig. 9, shows the overall
delay time for classic MIMO FLC. The z-axis denotes the
number of binary vectors in the fuzzy variable representation
(n) and the y-axis denotes the number of rules (V).

For the purpose of comparison, the overall delay time for
the improved FLC is shown in Fig. 10. Here, The z-axis
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Fig. 11. Graphical comparison of the overall delay time for the classic and the improved implementations of FLC. The improved FLC delay surfaces

are computed for K = 10, K = 50, and K = 100.

denotes the number of binary vectors in the fuzzy variable
representation (n) but the y axis denotes the number of inputs
(K).

It is also interesting, how does the comparison of the overall
performances for classic and improved FL.C implementations
look like. To do so, the compound graph illustrated in Fig. 11
is computed.

As can be seen from graph illustrated in Fig. 11, the delay
time, as a function of the number of binary vectors (n), of the
improved FLC (K = 10) is always less than respective delay
time for the classic FLC. However, for K > 10 the delay
time of the improved FLC is greater than that of the classic
FLC depending on the number of binary vectors. For K = 50,
the delay time of the improved FLC is less than that of the
classic FLC if the number of binary vectors n > 32, while for
K = 100, the delay time of the improved FLC is less than
that of classic one if the number of binary vectors n > 64.

It is worth noting, that if the performance (delay time ratio)
between MIN/MAX units and fuzzification or defuzzification
units change significantly, then most likely the whole con-
troller performance is dominated not by the inference engine
delay. In such a case, the defuzzifier or fuzzifier units may set
the limits in terms of the longest delay times.

As observed from the literature and the current market
most of the fuzzy logic based controllers feature the pipeline
architecture, The key difference between our FLC and existing
ones lies in the fact that the structure is fully parallel as
opposed to serial or semi-serial data processing in the exist-
ing implementations. Therefore, the proposed architecture is
superior over the existing implementations even if all of them
would including pipeline. As we mentioned before, the overall
delay time for the proposed architecture, in most cases, would
be less than the same time for classic implementations.

Summarizing, for the small number of input variables, the
improved FLC always benefits from a high speed over the

classic FLC despite the number of binary vectors. Furthermore,
for a large number of input variables (K > 10), there
exists the boundary number of binary vectors that determines
profitability of the improved FLC (see Fig. 11 for details). It
always has to be kept in mind, however, that the delay time of
the improved FLC does not depend on the number of rules N
and, if so, it may be the better choice for most of the practical
control applications as oppose to the classic configuration.

v) Maximum clock frequency:  The maximum clock fre-
quency for the FLC scheme is limited by the slowest unit.
Most likely, the slowest unit in the controller is the defuzzi-
fier. As we described at the beginning of this paper, the
defuzzification involves a substantial number of additions and
divisions (depending on the method), and that is the major
problem when considering the real hardware implementation.
Obviously, the pipeline technique helps improving the speed,
but still the defuzzifier will eventually determine the maximum
clock frequency for the FLC device.

vi) Rule memory: Comparing the classic and alternative
approaches in terms of the rule base memory size one can
conclude the following:

The memory size for both implementations depends
on the number of binary vectors characterizing the
membership function, the number of bits in a single
vector, the number of input variables, and the number of
output variables. However, it has to be stressed that for
improved FLC, the memory size depends quadratically
on the number of binary vectors characterizing the
membership function (n2), while for classic FLC this
relation is linear.

The proposed alternative FLC architecture, however, re-
quires the same amount of memory for any number of rules
that is needed to store the single rule. This is the feature
that cannot be questioned or even approached with a classic
implementation.
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2) Rules for Choosing the FLC Configuration: In the sum-
mary, we provide some general rules for choosing a specific
approach to the hardware implementation of FLLC’s based on
the issues discussed in Sections III-E iii)—vi).

However, before we go to specific conclusions, we need
to discuss one very important issue which is insufficiently
addressed in literature. This is an issue of compatibility
between the external (Boolean) representation of the input
variable and its respective internal representation. This issue
is, in our opinion, one of the major ones in planning and/or
designing fuzzy logic based digital systems. Assume that
the input variable that represents the measurement value is
converted into a digital representation of b-bit word. Also
assume, the internal representation of the fuzzy variable is,
as we introduced earlier, n * m. If the number 2? is equal to n,
then there only question is how accurate is the quantization of
the unit interval represented by m bits for certain applications.
Also, if these numbers are close (2° and n differ by one or
two bits) the transformation accuracy can be. easily found
out. If for some reason 2® and n are completely different,
then in reality such case leads to the unintentional loss of
processor accuracy. In most cases 2° > n, resulting in the
rough discretization by means of establishing 7 intervals of
the size of 2°/n bits. This clearly means that no matter what
is the “real” input value within the single 2°/n interval, it is
internally represented by a single bit! This leads to the conclu-
sion that internal and external fuzzy variable representations
have to be balanced to keep the desired/planned accuracy.
Otherwise, despite a high-measurement/conversion precision,
the computed output contains abnormally high error and may
cause further problems in a real application (especially in a
control area).

Depending on the specific area of application, one can
choose the best FL.C hardware implementation considering the
following recommendations.

* For real-time control applications, where the performance
plays the most important role and high hardware cost may
be accepted, the best solution is the improved configura-
tion of FLC. This approach provides the performance that
is not dependent on the number of inputs nor the number
of outputs; however, the hardware cost depends on these
two parameters.

» For moderate performance applications where the min-
imum hardware cost has to be maintained, the classic
approach seems to be the best. If one can implement
the proposed improvements (see for example [8]) to
minimize the hardware cost and maximize performance,
the resulting FLC hardware may be quite attractive.

¢ For the applications to simple control systems (e.g., SISO
or DISO), the improved FLC implementation is more
beneficial, because it offers better performance while
keeping comparative hardware costs to the classic one.
In such cases, the improved solution offers even more
flexibility providing a possibility for on-line rule learning,
for the cost of additional hardware.

* Properly match the internal and external variable rep-
resentation to avoid building undesirably computation
erTors.
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IV. VLSI IMPLEMENTATION OF DIGITAL FLC:;
A CASE STUDY

This section discusses some implementation issues related
to the digital FLC’s. It is organized as follows. First, fuzzy
technology constraints are discussed. Second, design trade-
offs are considered along with some VLSI implementation
constraints. Finally, a scaled down version of the direct data
stream (DDS) controller is discussed in detail.

There are two different versions of a fuzzy logic controller
that could be useful in most practical implementations: a stand
alone (SA) controller, or another one (HC) which works along
with an appropriate host computer. Moreover, a flexible FL.C
must also be a scalable one in a sense that it is possible to apply
the device to problems with different data sizes. Flexibility
of the FLC often requires that the scalability feature is also
available. :

VLSI implementation raises several practical difficulties;
however, for the clarity of the discussion we will consider
only a stand alone version of digital FLC. Next sections briefly
overview major issues that have to be resolved during the
design process. Generally, these issued are specific to VLSI
design discipline and the thorough discussion is omitted.

i) Technology and package: The choice of CMOS/
BiCMOS technology seems to be the most adequate for the
digital FL.C’s and leads to a variety of available processes
that begin from a minimum feature size of 0.35 um to a
minimum feature size of 1.0 ym. The standard technologies
that are used for microprocessor fabrications seem suitable to
fabricate state-of-the-art fuzzy controllers. Such technologies
varies in details but generally feature n-well CMOS process
with four metallization levels and 3.3-V power supply voltage.

Depending on the bus and chip size, the package can
have from 100 to 400 hundred pins. Moreover, due to a
recent trend in packaging a hybrid multichip module (MCM)
implementation is perfectly feasible. Such implementation
does not limit the size (to a certain extent) of the internal fuzzy
variable representation due to the fact that fuzzy variables are
not affect I/O’s.

ii) Chip area and number of transistors: A chip size
and resulting package are strictly determined by four factors:
the number of inputs, the number of outputs, the number of
rules that can be processed, and the capacity of the on-chip
memory.

The maximum chip area of approximately 100 mm? to
200 mm? can contain from about 1-3.5 million transistors
fabricated with contemporary CMOS technology (minimum
feature size of 0.35 um). Such a device can accommodate
approximately as much as 64 KB of internal memory (SRAM)
for storing the rules. :

iii) Clock strategy and clock distribution: Clock genera-
tors and drivers .are the most difficult functional blocks to
design. With the assumed CMOS/BiCMOS technology, cur-
rently the maximum . achievable clock frequency varies from
100 MHz to 200 MHz. The special phase-looked loop (PLL)
technique must be used to properly distribute the clock signals
over the entire chip.

iv) Rule memory: A global rule for the entire linguistic
model provides extremely efficient memory utilization. In fact,
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Fig. 12. The functional block diagram of direct data steam architecture FLC.

depending on the specific implementation from a few KB to
several KB of memory is needed to store a rule base. In case
of lack of on-chip memory, external one can be added.

v) Parallel and pipeline architecture: It is known that
parallel architecture of the datapath increases the overall speed.
For example, four parallel data paths will increase the original
speed of operation by a factor of four. Because of such
advantage, this technique is most appropriate for digital FLC’s
along with the pipeline technique. Contemporary processors
feature the pipeline structure of up to eight stages.

vi) Fuzzifier implementation: Depending on the imple-
mentation, the fuzzifier can be built as a simple converter of
input Boolean code (from A/D converter) into internal vector
representing the input variable. Another, more realistic version
of the fuzzifier contains a membership function generator, that
generates the appropriate shape membership function for input
variable.

These implementations are, however, relatively simple com-
paring to defuzzifiers.

vii) Defuzzifier implementation: The defuzzifier is prob-
ably the most controversial functional block of the whole fuzzy
controller. This is because it transforms the internal fuzzy
representation of a variable into an external crisp result.

Presented in Section II-C defuzzifiers are used in practical
FLC realizations and they usually involve functional blocks
that are computationally expensive (adders, multipliers, di-
viders). These blocks are especially difficult to implement with
digital technique.

1) Direct Data Stream Architecture: From the general dis-
cussion on FL.C models and hardware implementation, we now
turn to a presentation of a paradigm of massively paraliel
MIMO digital FLC.

The MIMO FLC model cab be fully described by a set
of equations similar to those given for MISO system (see
Section III-C-2). One can see that, to achieve parallel evalua-
tion of all output components, each subrule must be processed
independently. Therefore, K * L processing elements are
needed to evaluate all B; components simultaneously.

It is interesting to note that in contrast to classic approach,
compound rules are created vertically instead of horizontally.
If we use a single processing element (PE) to perform opera-
tions responsible for a single subrule R(*"), then the hardware
implementation shown in Fig. 12 follows naturally the general
scheme illustrated in Fig. 4.

"Each processing element is responsible for evaluation a
single sub-rule A* o R(*)). In other words, it acts as a separate
SISO FLC equipped with its own rule-base memory that
locally stores the subrule R(FY),

Because a hardware implementation of such an element
is described in [45], we now focus on the whole MIMO
FLC system. Assume that K * L processing elements (PE)
are available; then, by directing the stream of input data
vertically, i.e., simultaneously to each PE, the output steams
in a horizontal busses are available. Such a scheme can be
easily implemented in hardware. Due to this feature, we called
this architecture direct data stream (DDS [45]). The DDS
functional block implementation is illustrated in Fig. 12.

One of the most important issue of DDS architecture is
how to solve the problem of learning subrules and how to
store them in local memories. To do this, input data channels
are used to provide input membership functions (MBFix)
along with separate channels providing output membership
functions (MBFgour). Then each PE performs a composi-
tional rule of inference MAX-MIN obtaining the desired
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subrule, and then stores it in local memory (see Fig. 12 for
details).

i) High-level simulation: The vehicle used to test the
models described earlier, e.g., classic and DDS architecture
FLC’s, on the high level of abstraction was the inverted
pendulum. Seven control rules are used to control pendulum.
The universe of discourse was discretized into 64 elements and
the degree of membership was quantized into 16 intervals.
In this example two inputs and single output are used and
parameters from the input are passed to the VHDL model.

The VHDL model was compiled using Mentor Graphics
VHDL compiler [37], and simulated by QuickSim H [36].
The comparison of the DDS architecture and a classic FLC
was done using VHDL models written for both controller
structures. Setting the parameters of the similar controller
elements at the same values enabled the unified comparison
of the performance provided by both models. The final results
show unquestionable speed-up of the DDS architecture (up to
33% faster, for the clock frequency of 50 MHz) controller
over the classic FL.C. In practical implementations, however,
the compromise between the performance and the cost of the
hardware implementation has to be carefully considered.

For more details on VHDL simulation of FLC’s see [3].

By proposing highly parallel architecture, the DDS FLC
achieves very high performance even with larger number of
inputs and outputs. The performance will not significantly
decrease due to its distributed structure. Also, the number of
linguistic rules does not affect the overall speed. The size of
the local memory (subrule RAM) depends on the granularity
of the input/output universe of discourse due to the fact that
all subrules are compressed by means of a union operation
and stored in the local memory. As a result, each subrule
is processed separately and independently of other subrules.
Furthermore, for the given architecture (fixed number of inputs
and fixed number of outputs) the hardware size does not
increase as the number of rules increases.

ii) VLSI implementation: Encouraged by the high level
modeling/simulation results, the single processing element
(PE) of digital inference engine featuring the DDS architecture
for FL.C was designed and simulated.

This section outlines the research that lead to the creation
of a high-performance, scalable fuzzy logic inference-engine
circuits with a state of the art CMOS VLSI design system
from Mentor Graphics Corporation. Several Mentor Graphics
GDT Designer’s tools were used over the course of the
development and implementation of this circuit; the universal
graphic editor, Led [29], for example, aided in logic gate-level
design, and the mixed-signal, multilevel simulator, Lsim [12],
verified the circuit’s functionality and its speed. Furthermore,
the automatic placement and routing tool for standard cells
AutoCells [1], provided a fast and professional means to design
the timing-driven, standard cell-based circuit layout.

Although, the technology that was used in this project is n
well, 1.2 um standard CMOS, the GDT-based design features
scalability. In other words, this project can be transferred into
CMOS processes with different feature sizes. It is important
to stress this fact, because at the end of this section we use
some feature characteristics of our design for the feasibility
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study of the complete FLC featuring the state-of-the-art CMOS
technology.

In the subsequent sections we review some of the major
building blocks for the fuzzy logic processing element.

MIN-MAX Unit Construction: Similar to atithmetic binary
addition circuits that rely on special functions to generate
information about carry propagation and carry generation,
the minimum function must quickly generate (or propagate)
information from the high-order bits of a fuzzy word to
its lower bits. Research into addition circuit methodology
revealed carry generate (a carry is unconditionally generated
out of an addition of bits) and carry propagate (only a carry
into the addition will result in a carry out) can be used in
conjunction with specialized look ahead circuits to implement
addition of binary numbers in a highly efficient manner. An
addition function “carry ahead” information from low-order
bits to higher order bits. A minimum function, on the other
hand, must “carry back” information from the higher order
bits (which determine the minimum word) to the lower order
bits (which must follow the higher order bits).

As the experience shows, four-bit word fuzzy vectors pro-
vide the most beneficial trade-off between the complexity of
larger circuits and the relative uselessness of smaller word
sizes. To efficiently implement a four-bit MIN circuit, one is
to make a decision at each pair of input bits whether A < B,
B < A, or A == B. But information about the higher order
bits must be available too.

There have been published results in this specific area
including, among others, our former publication [2]. Therefore,
the design details are not discussed in this paper. Instead,
the gate-level schematic diagram of the improved version,
comparing to that published in [2], of the four-bit MIN/MAX
unit is illustrated in Fig. 13.

The circuit shown in Fig. 13 has an-average delay time,
simulated from the layout representation, of approximately 5
ns for the technology that we used. This is due to the improved
design of the carry propagation section as opposed to previous
scheme [2].

The MIN/MAX gate-level implementation was used to
automatically generate the layout (shown in Fig. 14). The
layout was used to extract parameters for ADEPT-mode Lsim
simulation that features the accuracy comparable with SPICE.
The results from Lsim simulation are- illustrated in Fig. 15.

PE Construction: The construction of the single-processing
element follows the functional structure that realizes fuzzy
inference algorithm. The straightforward approach is used to
design the structure of a single PE. The reason for that is that,
first, we should verify the advantage of the DDS structure at
the architectural level and then the single PE can be improved.
In fact, one can propose the implementation of the single
PE very different from what we discuss in. this paper. Our
main goal is obviously the overall performance of the whole
inference engine.

The functional diagram of the single PE is shown in Fig. 16.

To preserve the proper functionality of the entire inference
engine, the single processing element should be able to eval-
uate the fuzzy subrule dedicated to it. From the algorithmic
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Fig. 13. Schematic diagram of the improved version of four-bit MIN unit.

Fig. 14. Automatically generated layout of four-bit MIN unit.

point of view, it can be done by means of MIN-MAX com- The input variable from the input bus, already fuzzified, in
position. And, in fact, that is how it is currently implemented. a form of a fuzzy vector (of a size n x m) is not used to
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Fig. 16. Functional diagram of the single-processing element for DDS
architecture inference engine.

evaluate rule antecedent as opposed to the classic method.
Instead, the input membership function (M Bin) as well as
the output membership function (M BoyT) by means of the
three dimensional subrule are stored in-the local memory (M).
Structurally, it is equivalent to creating a three-dimensional
MIN (n * n x m) function followed by a binary tree of MAX
units. The gate level implementation follows the algorithm
described in Section III-D-2. As a result the block diagram of
the single PE, illustrated in Fig. 17, has 16 % 16 four-bit MIN
units at the input layer followed by the tree of MAX units. The
MAX tree is organized into four layers just before 16 four-bit
outputs are generated.

To optimize the performance of the overall PE, the scheme
was divided into five-level pipeline structure. The single
MIN/MAX unit forms a single level. As a result, it is expected
that the PE can be run from the clock of a frequency of
f 100 MHz. (The maximum delay time on a single
MIN/MAX unit simulated from the layout is 7.15 ns).

TABLE I
BASIC CHARACTERISTICS OF A SINGLE PROCESSING
ELEMENT FOR DDS ARCHITECTURE FLC

Description
Technology 1.2um CMOS
Number of Transistors (Approximate) 225,000
Input-Output Delay Time (Simulated) 7.15ns
Format of Input Variable 16*4
Format of Output Variable 16%4
CLK Frequency (Simulated) 100 MHz

The single-processing element was simulated and tested for
possible errors and glitches. The results of the simulation are
illustrated in Fig. 18.

Table I presents the single PE statistics for the CMOS
technology used in this project.

Observe, that in this case the average delay time is limited
by two factors: technology in use and the construction scheme
of ‘the single pipeline layer. Later, we investigate the design
of the full FLC based on the advanced CMOS technology that
affects all device’s functional elements including PE’s.

PE Simulation: The single-processing element gate-level
design was developed, verify, and tested. The testing and
simulation was performed using a multilevel simulator Lsim
[12]. After the simulation results were satisfactory, the layout
of the single PE was automatically generated with AutoCells
[1]. This layout was optimized using the built-in optimization
tools. After several iterations, the compaction and the routing
were sufficient. ) '



PATYRA et al.: DIGITAL FUZZY LOGIC CONTROLLER

1
S——— " «1"
e

T 1 e
—amss—n ]
~s— ]
~ssnsssss—" 1]
~s— ]
~ammsssssssssmn| ]| - :‘
—m]l:
O
——

455

P—"
- [ BT

Fig. 17. Block diagram of the single PE.

Finally, the net list was generated exactly from the final
version of the layout and simulated with the Lsim confirming
the previous gate-level simulation results.

The results of the final simulations are presented in Fig. 18.

The PE was simulated with a clock (clk and clk.b) of
f = 100 MHz (see the display window 3 in Fig. 18). The
Display Window 1 illustrates some intermediate results
and the Display Window 2 shows the input variables and
output buses. The testing procedure was set in such a way
that first the subrule base was loaded into the memory and
then the PE was simulated The input stimuli were set so that
the input variable truncates the generic triangle membership
function at the maximal value for each cycle. As seen from
the Display Window 2 in Fig. 18, the output is truncated
exactly on the maximal value of the input. The output variable
is correctly generated every clock cycle. That means that
every 10 ns, the valid fuzzy data is available at the output
of the processing element. In terms of the estimated data-
delay time, Tin-out = 50 ns for the five-levels pipeline PE
implementation.

DDS Relation to Other Digital FLC’s: Recently, few arti-
cles were published reporting successful design and develop-
ment of fuzzy inference processors (see for example [9], [10],
[38], and [39]).

The fuzzy logic processor, developed at Mitsubishi Electric
Co. [38] and [391, is based on the modified representation of

the fuzzy variables. The processor has 12-bit input and 16-bit
output interfaces and can process 20 000 fuzzy logic inference
rules for DISO system with twenty rules at the frequency of
f = 20 MHz.

At this processor, the membership function is represented
by means of six fields (of different size) within 16-bit vector.
These parameters fully characterize the trapezoidal-like shape
of the membership function. The first field specifies the
center position of the membership function, the second field
specifies the width of the top side of the trapezoid, the third
field defines the scale factor for the horizontal direction, the
fourth field defines the inclination, the fifth field specifies the
function shape, and finally the sixth one- (optional) allows
for changing the shape of the oblique sides by referring
to a look-up table. Moreover, the processor is programmed
with a intuitive programming language. Program Sequencer
interprets the instructions and controls the execution of the
program over the ALU, antecedent unit, and consequent unit.
With the exception of membership function representation
and microprogramming, the inference processor resembles the
configuration developed by Watanabe et al. [60].

The inference processor developed at Siemens AG [9], is an
eight-bit processor with the maximum frequency of operation
of f = 20 MHz. The chip has fuzzy core module and on-chip
memory (ROM for storing the application specific rule base
and SRAM for storing temporary results). Also, the processor



has a specially designed defuzzification unit [11] that utilizes a
faster defuzzification method than that used to date. Moreover,
only the active rules are processed. The internal fuzzy data bus
is 15-bits wide; however, the resolution of inputs and outputs
can be modified to meet the specific application requirements.

This. chip can also be classified as a classic architecture
FLC. The processing time, depending strongly on the number
of input variables, the number of output variables, and the
number of rules, varies from 9 u’s (FLC system with 80 rules,
four inputs, and one output) to 471 u’s (FLC system with 1024
rules, eight inputs, and two outputs).

Single-Chip FLC—Feasibility Study: In this section, we
discuss a feasibility of a single-chip FLC implementation
using currently available 0.35 pm CMOS technology.

We start our analysis from the data taken from the National
Technology Roadmap for Semiconductors [48]. These data
provided for the year 1995 estimate the number of transistors
for automated layout application specific IC’s at approximately
2500 000/cm?. Also, the on-chip clock frequency (from f =
150 MHz to f = 300 MHz), power supply (3.3 V).

Keeping in mind the number of transistors (225 000) for a
single PE that we developed and described in the previous
section, let us perform a design experiment leading toward the
single-chip implementation of a full FLC. The maximum (av-
erage) number of transistors per chip limits the configuration
of a single-chip DDS architecture FL.C. Our analysis shows
that four input two output MIMO system with other necessary
functional blocks is feasible. Such a system requires eight
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Fig. 18. Results from the gate-level simulation of the single-processing element.

processing elements (PE’s), four fuzzifiers, two defuzzifiers,
and eight memory blocks, as well as the control unit and clock
distribution unit. As in out PE implementation, we ‘assume
the internal fuzzy data representation of n *m = 16 * 4 bits. |
Planning a reasonable accuracy of the whole FLC, with respect
to the internal fuzzy data representation, the input variable size
can be set to six bits; this is equivalent to the 32 intervals to be
transformed into internal 16 intervals. Because the defuzzifi-
cation unit is not our primary goal in this research, we assume
that 16 bits should provide sufficient accuracy at the output.

Hereafter, eight PE’s plus four Fuzzifiers, and two Defuzzi-
fiers contain approximately 1 850 000 transistors. If we assume
that each PE has its own subrule memory, then eight 32 Kbits
SRAM modules seems reasonable. Note, that 32K is much
more that is required for the analyzed case (in fact, 1K is the
minimum size for the compound subrule) and, therefore, there
is a room for storing some alternative rule bases. This means
that the specific FLC device can be used to control various
different processes by accessing the appropriate subrule stored
in its RAM. Including control unit, clock distribution unit, and
buffers, the overall number of transistors for the single chip
FLC is approximately 2 150000. That matches the data pro-
vided for the considered technology. Based on the discussed
assumption, the whole chip features can be estimated and the
compound statistics is provided in Table II.

As listed in Table II, the chip frequency may varies from
f =150 MHz to f = 300 MHz depending on the style of the
design (i.e., moderate versus aggressive).
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Fig. 19. Block Diagram of the 4/2 MIMO FLC implementation featuring a DDS architecture.

TABLE I
SINGLE CHIP IMPLEMENTATION OF DIGITAL Four-INpuT-Two-OutPur FLC
Description Feature
Technology 0.35um CMOS
Chip Frequency (Estimated) 150MHz-300MHz
Number of Input Variables four (6 bits)
Number of Qutput Variables two (16 bits)
Number of Pins (Estimated) 240 (Control and buses included)
Power Supply 3.3v
I/O Data Bus Width 128 (2*64 bits)
On-Chip SRAM eight 32Kbits
Number of Transistors (Estimated) | 2,150,000
Chip Size (Estimated) 10*10mm?

One of the possible functional implementations of the full
FLC chip is shown in Fig. 19. Observe, that the I/O data bus
can be used to provide membership functions (M By and
M Bouyr) that are not currently stored in the subrule RAM.
Normally, if the inference in on hold the PE is capable of
learning/tuning the stored subrule using the proposed inference
engine.

For the block diagram illustrated in Fig. 19, with a proper
pipeline, the output can be generated every clock cycle. That
is equivalent to the input-output delay time varied from ap-
proximately Tin-ouT = 49 ns to Tin-ouT = 21 ns (for seven
pipeline levels) depending on the actual clock frequency. As
our simulation shows, the array of eight processing elements
is capable of producing the result within a single-clock cycle.
Due to the lack of extensive computations, the fuzzifier unit
can also be designed in this way. The only remaining issue is
with the defuzzifier unit.

As reported in the literature, there have not been any
efficient and, at the same time precise, defuzzification methods
developed to date. Probably one of the fastest methods consists
of using just a look-up table for an arbitrary division of two
binary numbers. Even though the final result cannot be reached
within a single-clock cycle. The appropriate pipeline structure
is required to obtain a result every clock cycle. Our research
on high-performance defuzzifier unit shows that it is possible
to obtain a crisp result every clock cycle; however, the design
has not been completed yet. ;

Another very attractive method is to use an artificial neural
network (ANN) as a defuzzifier unit [21]. The ANN, properly
trained (off-line) and already preprogrammed can provide,
without extensive number crunching, a defuzzified response
within a single-clock cycle.

V. SUMMARY

High performance FLC are essential for real time fuzzy
control systems. To meet this challenge, we propose the
improved method of creating the fuzzy controller model. Based
on this model, we designed the highly parallel, pipelined
inference engine to be used in digital fuzzy control systems.

As our simulation shows, the inference engine featuring
directed data stream (DDS) architecture for a fuzzy con-
trol hardware accelerator, appropriately pipelined, reaches
the frequency of operation of at least 100 MHz (using a
moderate n-well CMOS technology with 1.2 pym feature size)
and, therefore, possesses the ability to work in a real-time
environment. The architecture provides a novel strategy for
multidimensional fuzzy model building, and enables fuzzy
inferences to be performed in a single-processing unit of a
hardware accelerator—an ability not common in previously
published architectures. Moreover, the fuzzy model’s building
capability is embedded in the architecture, which we saw
in the direct data stream architecture. This architecture is
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advantageous because performance of a fuzzy controller-ought-

not depend on the number of rules, or on the number of inputs
and outputs. Therefore, the speed of the pipelined inference
engine is limited only by the speed of a functional element in
a single pipeline stage.

Summarizing, we proposed a DDS architecture for FLC’s
that is superior over the existing ones for the following
reasons:

» ability to handle, practically, unlimited number of rules;

« performance is not a function of the number of rules, the
number of inputs, nor the number of outputs;

o functional flexibility obtained by storing the different rule
bases in the memory of an appropriate size;

* modularity that comes fromthe fact that there are basi-
cally three different functional blocks used to build a full
version of fuzzy controller;

+ design flexibility measured by the time to obtain the

design of a complete FLC with different configuration

using PE, fuzzifier, and defuzzifier as basic building
blocks;

¢ performance desensitization to the problem of computing
the nonactive rules.

Another feature of a directed data stream is a rule-base
building ability which can be done uvsing the functionality
of existing processing elements. By the appropriate directing
of input/output membership functions, the PE can learn the
desired subrule and store it in the local memory. On line,
dynamic rule building is also possible, as suggested in [45].

In this paper, we also studied a case design of the complete
FLC using a state-of-the-art 0.35 ym CMOS technology. As
we show, the implementation of a four-input two-output FLC
with 8 * 32 Kb memory is feasible as a single-chip solution.
Such a device may run with a clock frequency of up to 300
MHz depending on the circuit/layout design strategy. As a
result, the studied architecture may be a perfect solution for
sophisticated, real-time control systems with a large number of
control rules and a flexible on-line rule base building/tuning.
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