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FOREWORD

1. This handbook is approved for use by all Departments and Agencies of the Department of Defense (DoD).

2. This handbook is for guidance only. This handbook cannot be cited as a requirement. If it is, the contractor
does not have to comply.

3. This handbook was developed to provide guidance to Department of Defense personnel who are writing re-
guests for proposals for military digital electronic systems, DoD contractors who are developing very high-speed
integrated circuit (VHSIC) hardware description language (VHDL) models for the Government, and DoD engi-
neers, scientists, and management or independent validation and verification contractors who are evaluating or re-
viewing models delivered to the Government. It documents the state of the art and existing technologies for VHDL
model development. Addressed in the handbook are which VHDL models are required to be delivered with a con-
tract, which VHDL models should be developed during the different stages of the lifetime of a system, and how
VHDL models can be structured to be consistent with modeling standards.

4. This handbook was developed under the auspices of the US Army Materiel Command’ s Engineering Design
Handbook Program, which isunder the direction of the US Army Industrial Engineering Activity. Research Triangle
Institute (RTI) was the prime contractor for this handbook under Contract No. DAAA09-86-D-0009. The handbook
was authored by Dr. Geoffrey A. Frank and edited by Ray C. Anderson of RTI. Development of this handbook was
guided by a technical working group that included Mr. Gerald T. Michael, US Army Research Laboratory, chair-
man; Dr. John W. Hines, US Air Force Wright Laboratory; Mr. J. P. Letellier, US Naval Research Laboratory; and
Mr. Michael A. Frye, US Department of Defense, Defense L ogistics Agency.

5. Beneficial comments (recommendations, additions, deletions) and any pertinent data that may be of useinim-
proving this document should be addressed to Defense Supply Center Columbus, ATTN: Director-VA, 3990 East
Broad Street, Columbus, OH 43216-5000, by using the Standardization Document Improvement Proposa (DD
Form 1426) appearing at the end of this document or by letter.

Thefollowing isincluded at the request of |EEE:
“The Institute of Electrical and Electronics Engineers, Inc. (IEEE) disclaims any responsibility or liability resulting from
the placement and use in this publication of material extracted from its publications. Information is reprinted with permission
of the IEEE.”



MIL-HDBK-62

CONTENTS
FOREWORD ....outiitetiiisieteite sttt ettt bbbt e b b st e b bt E 48 e b e R £ £ 48 E b £ e A e b b e £ b E e R e e A E b b e A e nE b b e Rt e e b b e aese et b e bt ne e b b ii
LIST OF ILLUSTRATIONS ... cetutiieetetttre sttt sttt ettt se b bt se b b s e b b e st s £ bk e s £ £ 8 eb s e st s e b eb s e ne s b b e st ne e b b e b et e b b e b et se s b ene s iX
LIST OF TABLES ... .ottt bbbt h b4 E £ b1 £ £ b e s £ £ E bR e A E b b s A e A b e st e bbb et e e b b e st st et be s Xi
LIST OF ABBREVIATIONS AND ACRONY MS....oiiiiiirisieientrisieteese sttt bbbttt eb e Xii
CHAPTER 1
INTRODUCTION
LoD PURPOSE ...ttt bbbt e b b2 £ bR E 8 b e R4 e E b e h £ £ b b e Rt e E A b e b e e rE e b e bt e e b b et e b b eb e e e b 1-1
1-2 SCOPE ..ottt ettt b et b bt E b bt e A b e R4 E S E R R £ SRR R £ R AR SR oA AE Ak R £ R R R AR R R R e e R b e R et E R b et s R bR e nrena 1-1
1-3 INTENDED AUDIENCE ..ottt ettt bbbt e e b bt st s b bt n bbb e nn b 1-1
1-4 HISTORY, PURPOSE, AND SCOPE OF VHDL ...c.cctiiiiirisieietisisie ettt ettt 1-2
1-4.1 HISTORY OF VHDL ..ottt ettt b et b bt s e bt e e e 1-2
1-4.2 THE PURPOSE OF VHDL ..ottt ettt eb et b st sn b nn e 1-2
1-4.3 THE SCOPE OF VHDL ..ottt sttt sttt skt b ettt b et e s b e e e 1-3
1-5 RELATED INDUSTRY STANDARDS ..ottt sttt sttt st b bt st s et bt n b b ne st 1-3
1-6 OVERVIEW ..ottt b bbb £ £ bR 1 £ 8k e h £ £ b bt R £ E b e bt e e E e b ekt e e b b et e b e b eb e e e b 1-3
REFERENGCES ..ottt stttk se £ b et £ b b £ R 128 b e R 1E 8 beh £ £ b e b e Rt e E e A e b eh e n e e b ek et e e b e b e nt e b e b ebe e nn b 1-4
BIBLIOGRAPHY ..ttt ettt b e e b et £ b bR 42 £ bR 4 e bk h £ £ b b e Rt £ A b e Rt e E e b e bt e e b b et e b e b eb e e nnena 1-5
CHAPTER 2
HARDWARE DESCRIPTION CONCEPTS
2-1  INTRODUGCTION ...oiitctiitiistetetseseeteieseses ettt seesese st se b bt se s b e b et e s e e b eh e e sE e b eb e e s e e b ek e Rt e e b e b e Rt e s e e b e b et ne s b ek et e s b b ene e es 2-1
2-2 LEVELSOF ABSTRACTION IN MODELSOF DIGITAL ELECTRONIC SYSTEMS .....ccoiiiiirneeneresieieeens 2-2
2-2.1  OVERVIEW ..ttt bbb b b e bkt e bbbt e b b et st bkt b b s 2-2
2-2.2 NETWORK MODELS ..ottt ettt b et bbbkt b bt e bkt b et es 2-3
2-2.2.1  PerformanCe MOUELS ........ccoiiiiriiieree sttt r e bt e b et sr e r e r e r e nr e e re e 2-3
2-2.2.2  INEITACEMOUEIS ..ottt b e bt et r et r et r e r e r e re e 2-3
2-2.3 ALGORITHMIC MODELS ...ttt sttt bbbt eb ettt b et 2-4
2-24 INSTRUCTION SET ARCHITECTURE MODELS ......ccccoiiiietinriirenres et 2-4
2-25 REGISTER-TRANSFER MODELS .......ocooiiiiirieieitrerieie ettt 2-4
2-2.6 GATE-LEVEL MODELS ..ottt bbbttt b b 2-4
2-2.7 USESOF ABSTRACTION AND HIERARCHICAL DECOMPOSITION IN THE DESIGN
PROGCESS ..ottt bbbt b bt £ b bt e £ b b e 1E bk e e b b e Rt e bbb e e s e b b e st re e bk e st n bbb es 2-5
2-3 BEHAVIORAL DESCRIPTIONS OF HARDWARE DESIGNS ......ccooiiiiiiirneteenes e 2-5
2-3.1 THE PURPOSE OF BEHAVIORAL DESCRIPTIONS .....ccoiiiiirieireninesie et 2-5
2-3.2 THEUSE OF HIERARCHY IN BEHAVIORAL DESCRIPTIONS ......ccooiiinrneetriieesesesieeeeseseene s 2-6
2-3.3 EXAMPLE OF A BEHAVIORAL DESCRIPTION ....coociiririsieitinirieieiesenes ettt es 2-7
2-4 STRUCTURAL DESCRIPTIONS OF HARDWARE DESIGNS ......ccooiiiiiiricieeresiei et 2-12
2-41 THE PURPOSE OF STRUCTURAL DESCRIPTIONS .....ccooiiiiirieieienrieieieeses et 2-12
2-4.2 THE USE OF HIERARCHY IN STRUCTURAL DESCRIPTIONS ......ccoiiintrnieetreriieiese e 2-13
2-4.2.1 Hierarchica Decomposition Based on Physical EIements ... 2-13
2-4.2.2 Leaf Modulesin aHierarchical Structural DESCIIPLION .........ccceoeriieirireri et 2-14
2-4.3 EXAMPLES OF STRUCTURAL DESCRIPTIONS ......ociitiiiieittnirieieieseres et b e es 2-14
2-4.3.1 Algorithmic-Level Structural DESCIIPLION ........ooeieriiriiieieeeeeee ettt s enea 2-14
2-4.3.2 Register-Transfer-Level Structural DESCIIPLION ........co.iouerieiieiiieeeeeerere st s enea 2-20
2-5 MIXED ABSTRACTION MODELS ......cocuiitiiiieiiirisieitesere sttt b ettt b b 2-22
2-51 THE PURPOSE OF MIXED LEVEL OF ABSTRACTION MODELS .......cccovieinirineeereeeeesesieieees 2-22
2-5.2 DESIGNING MODULES FOR MIXED ABSTRACTION MODELS .......ccccciirneieiiriieeesesieieesesieieeees 2-22
2-53 AN EXAMPLE OF A MIXED LEVEL OF ABSTRACTION MODEL ......cccooiiieiiirieeereseeeesesieieees 2-23
REFERENGCES ..ottt ettt ettt bbbt s e £ b2 £ b £ R 428 e b e R4 e 8 beh £ £ £ b b e Rt e E A b eh e e E e b e bt e e b e b et e s b e b ebe e nnena 2-23
BIBLIOGRAPHY ..ottt b e e b et £ h £ £ 8 b R4 e E b e R £ £ b bt Rt E A bRt e e e e e b ekt e e b b et e b e b eb e e nn b 2-24



MIL-HDBK-62

CHAPTER 3
VHDL CONCEPTS
1 R 1 I I 1 L I ST 31
3-2 BASIC VHDL CONCEPTS ...ttt ittt b ettt bbb bt bbb et b e st b et e ket b et e b et e b e e e bt ne et 31
3-2.1 VHDL DESIGN ENTITIES ....oicitiiiieteieneeisteeeeseseetese st eseseseesesesessssssesesesseseesessesesensssesssensssssesensssssesensnsnes 31
3-2.1. 1 ENLLY INTEITACES ...ttt b e e b e e b e s b e b b e e et b et bt b et ettt e b e 32
3-2.1.2  ArChItECIUNE BOMIES .....eeeieiieeiteete ettt bbbt st b et b et b ettt ne b e 33
3-22 THEVHDL CONCEPT OF TIME ..ottt ettt ettt se s sese e s stesene e sesenenees 34
1 TS €] N 0 OSSR 34
3-2.3.1  Signal ASSIGNMENE SEBEEIMENES ....coviiiiiiriitereeie ettt b e ettt e b et sb et sb e e sttt ne st e neebe e 34
3-2.3.2  RESOIULION FUNCLIONS ...ttt s bbbttt b et e bt be e 35
3-3 VHDL SUPPORT FOR BEHAVIORAL DESIGN ....ccoooiiiiiiieirieirieesiesieesie ettt 3-6
3-3.1 PROGCESSES ...ttt sttt sttt ettt es e ae s st st e e ses e e s e e e e s e e se b et et e et eRe e s e e s nbeneseebetene e eeeseneneen 3-6
I I A o IS I Y1 = N ST 3-7
3-3.3 A BEHAVIORAL DESIGN EXAMPLE .....ociiiiiiiiietne ettt sttt sttt b e ebe e 3-7
3-4 VHDL SUPPORT FOR STRUCTURAL DESIGN ....ocoeiiiiiiieirieerieeniesieesie ettt 3-8
3-41 STRUCTURAL ARCHITECTURE BODIES ........ccoottiiiitiiniesienesie ettt ebe e ebe e 3-8
3-4.2  COMPONENTS ...ttt sttt ese e seeaes e st s e e tesese e s e s eae e s e eees e e se e b e b eneae e teseseneseesesenesesbeteneaeseeseneneen 3-8
3-4.2.1  ComMPONENE DECIAIELIONS ......cueivieitieeiereete st re ettt sttt b e s b e s eb e e bt e bt s b st b et st et st e e sb e e ebe e 3-8
3-4.2.2 Component Instantiations and INEErCONNECIIONS .........ccivierierirereee et 39
3-4.3 A STRUCTURAL DESIGN EXAMPLE ...ttt ebe e 39
3-5 VHDL SUPPORT FOR DATA ABSTRACTION ...ttt st 3-10
3-5.1 USER-DEFINED TYPES ....ooiicitiieetrt ettt sttt s a s ne et e e st s ese e e e s ese e sesbeteneeessesenenees 311
3-52 TYPE CONVERSION FUNCTIONS ..ottt sttt sttt sttt st s ebesaeb e s sttt e et seebenesbeseas 311
3-5.3 OVERLOADED OPERATORS ..ottt sttt ettt sttt st b et b et be s be s ebe e bt e bt st se st e st st et sb et ebeneebenea 312
3-6 VHDL SUPPORT FOR ANNOTATING MODELS .......oociiiiiieerierieesesie ettt 312
00 NN B 11 L1 = O ST 312
3-6.2 GENERIC CONSTANTS ...ttt sttt sttt sttt b et bt b e e b se b s e eb e se bt s e e bt s b e bt s b e st et e st sb et et e neebenea 3-13
3-6.3  PHYSICAL TYPES ..ottt ettt sttt ettt et st s e e e e s e e st et e e et esese e e e s es e e seebebeneaesteteneneen 3-13
3-7 ERROR HANDLING WITH VHDL ..ottt e st se st e st se e e ssesenesessesenesessessnensees 314
3-7.1 ASSERTION STATEMENTS ..ottt sttt et s e et te et sese e et ese e seebetenesesteseneneen 314
3-7.2 HANDLING SIGNAL ERROR STATES ..ottt sttt ere sttt sttt st sbe e b neebe e 3-15
3-8 VHDL SUPPORT FOR SHARING AND REUSE ........coiiiieeres et e 3-15
3-8.1 VHDL DESIGN LIBRARIES ......cooiiiteiiteirietteeereetete st et sese s eesssesesesteseesessesesenessssesenesessesenessssesesensaes 3-16
3-8.1.1 Declaring and USING LIDIarES ........coveuiriiirieerieierieerieer ettt sttt st 3-16
3-8.1.2 CONSIIUCHING LIDIAITES .....cueieiiitiiitereete sttt st sttt b ettt ne b e 319
3-8.2  WHDL PACKAGES ...ttt sttt sttt se st a s e e e e e et e e se s e et e e e e b ese e s e e anbe e seebebene e seesenenesen 3-20
3-82.1 ConStructing VHDL PaCKBOES ........coviuirieiirieierieierieieriee ettt sttt sttt sb e b e 3-20
3-8.2.2 Declaring and USING PACKBOES .......cccoiriiiriiiirieiie sttt sttt sb e e 3-20
3-8.3 CONFIGURATION SPECIFICATIONS AND DECLARATIONS .....ociiiiieierieerieeseesie e 3-20
3-8.3.1 Constructing Configuration Specifications and Declarations ............ccoeereereeneinennenesenese e 3-21
3-8.3.2 Using Configuration Specifications and DeClarations ............cccoveereereenieenieereeseeseese e 3-22
REFERENGCES...... .ottt ittt sestete st st tete e et seseseseseeseseseseeseae e s e seseaese s esenesesseeeseaeseebeseneseeseseneaessnteseaeseeseseneaessesenesssnsas 3-24
BIBLIOGRAPHY ...ttt ettt ettt et ese e se e et e st seseetese e s e e e s eaese s eseae 1o e eeeseae s e b eseneseeseseneee e et eseaessebeseneasssesnnesssnens 3-24
CHAPTER 4
DoD REQUIREMENTSFOR THE USE OF VHDL
N V(@ 1O L 3 TS 4-1
4-2 MIL-HDBK-454 GUIDELINES FOR THE USE OF VHDL .....ccoiiiiiiiiietrietseese ettt 4-1
4-21 DOCUMENTATION OF ASICs DEVELOPED FOR THE GOVERNMENT WITH VHDL .......ccocveennee. 4-1
4-22 DOCUMENTATION OF QUALIFIED DIGITAL INTEGRATED CIRCUITSWITH VHDL .......ccccceuee. 4-2
4-23 THE LIBRARY OF VHDL DESCRIPTIONS OF STANDARD DIGITAL PARTS ....cccoiiiirrireerieenenes 4-2
4-2.4 TEST BENCH REQUIREMENTS FOR VHDL DESCRIPTIONS........cocotoiiiriireeeieeesee e 4-2
4-3 OVERVIEW OF THE VHDL DATA ITEM DESCRIPTION ...c.oiiiiiiiietrieie ettt s 4-2
4-3.1 ENTITY INTERFACE REQUIREMENTS ......coooiiiiiiieririeiee sttt st se e s seesenens 4-3



MIL-HDBK-62

4-3.1. 1 ENHLY NBIMES ...oecteiiiiieieieirii ettt b bbbt E b b et e bk et b b et bbbt se b b st e b s 4-3
4-3.1.2 Input and OULPUL DEFINITIONS ....cc.eiueiuirtirieiierieeree ettt bbb e b et e e ebessesaesbenras 4-3
4-3.2 BEHAVIORAL DESCRIPTIONS ....c.oiiiiitiiiririeittsit ettt sttt ettt sttt st enesne 4-4
4-3.2.1 FUNCtioNal DECOMPOSITION ......eiuiitiriiitirtente sttt ettt sb et be bbb e e e et e se e e e e et et eaeebeeaeeaesbennas 4-4
4-3.2.2  TiMIiNG DESCIIPLIONS ......oouiriiiiitirtertertieteste ettt sttt ebe st s bt ebesbesaesbe st e st see e e besee e ene e e e neeneebesaeenesbenees 4-5
4-3.3 STRUCTURAL DESCRIPTIONS ..ottt ettt st ss bbb 45
4-3.3.1 Acceptable Primitive EIEBMENES ...ttt st e sb e 4-5
4-3.3.2 Testability REQUITEIMENLS ......ccoiiiiiiiietirie ettt sb e bbbt e e et se e e e e e e e e e st ebeeaesneebeneas 4-5
4-3.4 TEST BENCH REQUIREMENTS ..ottt ettt sttt 4-6
4-3.4.1 TESE BENCN FUNCLIONS ....oouiiiiiiiiiitiite ittt sb e bbbt e b et et et e e e neeb e beeaesbennas 4-6
4-3.4.2 Test Bench Relationshipsto DeSign MOTUIES ... 4-7
4-35 ERROR MESSAGES ...ttt e bbbttt e bbbt et b et b e 4-7
4-3.6 DOCUMENTATION FORMAT ..ottt sttt sttt ettt sttt bbbt n e 4-7
4-3.7 REQUIRED ANNOTATIONS OF VHDL MODULES .......cccciiieitrrieetseie sttt 4-8
4-3.8 AN EXAMPLE OF A TAILORED DID ...c.octiiiiiiiriieieerisie ettt s 4-8
REFERENGCES...... .ottt ettt b et s£ £ b st s 2 £ b a1 £ £ e b e R 1E 48 beh e e E b bt Rt E e A e b e b e ae s e e b e b et e e e b ebene b e e b ebe e et 4-8
BIBLIOGRAPHY ..ottt ettt b et £ bt e £ £ bR 4 e E b b E b e R4 £ 4 A b e b e e b e bt s e b b e st e e e b eb e e e b 4-9
CHAPTERS
CONSTRUCTION OF BEHAVIORAL VHDL MODELS
5-1  INTRODUGCTION ...iiiiitiiisteteesisteteteseses ettt et se e s st se st b et se b b et e seebeh e e se e b e b et s e e b eb e Rt e e b b e bt e s e b e b e st ne e b et ene e s b b eneneen 51
5-2 CREATION OF VHDL BEHAVIORAL MODELS .......ociiitiriieiei ittt 5-1
5-21 CONSTRUCTING PERFORMANCE MODELS ......ccoiiiitririeiierieieeseses et 5-1
5-2.1.2 Modeling Timing in Performance- and Algorithmic-Level Behavioral Models ..........cccceevecivieeciecenee. 5-2
5-2.1.3 Example of a Statistics Package and ItSUSE .......ccoiiiiiiieee e 5-2
5-2.2 CONSTRUCTING ALGORITHMIC MODELS ......ccooiieiiiirieitenirieieieseses et 5-6
5-2.2.1 Modeling Algorithms With VHDL PrOCESSES .......ccveieriieieitieieeiteeieesteesteseestesseestesseessesssassesssessesnnssneenes 5-7
5-2.2.2 An Example of an AlgorithmiC MOEl ..........coooii e 5-7
5-2.3 CONSTRUCTING INSTRUCTION-SET-ARCHITECTURE-LEVEL MODELS .........ccooooiniinreiceens 5-11
5-2.3.1 MOGENG PrOCESSOIS ......eeviiieeiieiee st sttt ettt ete e te st et s e st e et e saesaeesreeneesaeentesseenteesaenteeseansesseenseennesreaneas 5-11
5-2.3.2 MOGENG MEMOIY ..ottt e e e e st e s te s e e s teeaaesteentesteenseeteenteaneantesseensesnnesneaneas 5-17
5-2.3.3 Modeling Busses and BUS CONIOIEIS ........ccueciieiieiicieic ettt ettt 5-18
5-24 CONSTRUCTING REGISTER-TRANSFER-LEVEL MODELS ........cccoiiiineeeerieeesesieieeses e 5-19
5-24.1 Synthesisof Designs FFOM RTL MOGEIS ......ocouiiiieiieicc ettt s 5-19
5-24.2 AnExampleof aVHDL Register-Transfer-Level MOdel ... 5-20
5-3 VHDL DID SIMULATION REQUIREMENTS FOR BEHAVIORAL MODELS .......cocoiiiirieeirenieeesesieieeens 5-21
5-3.1 CORRECT FUNCTIONAL RESPONSE TO STIMULI ..cotiiiiieiiiirieieerreeeeeses et 5-21
5-3.2 SIMULATION TIMING ..ottt ettt ekttt b ket e b b es 5-21
5-3.3 ERROR HANDLING ...ooiitiitriitetetiitie ettt ettt bbb bbbttt b b 5-21
5-4 TIMING IN BEHAVIORAL MODELS ..ottt bbb bbb 5-22
5-4.1 TIMING SHELLS ...ttt bbbkt b bbbt b ket b b s 5-22
5-4.2  CLOCK RATES ...ttt sttt b bbbt e b bt e bbbkt e bbb e e e b b et st bt et e bbb e s 5-24
5-4.3 CRITICAL PATH DELAY TIMES ..ottt 5-24
5-4.4 BEST-CASE, WORST-CASE, AND NOMINAL DELAY'S ..ottt 5-24
5-45 PARAMETERIZED DELAY MODELS .......ctitiiitiitrsiecen ettt bbbt 5-24
5-4.6 TIMING DEFINITION PACKAGE .....c.octiiiiitiririeiet ettt ettt b s 5-26
5-4.7 TIMING THROUGH FILE INPUT ...ttt bbbttt 5-31
5-4.8 MODELING ASYNCHRONOUS TIMING ...coiiiiiiiiiirinieieisisieitiesesisie ettt 5-32
5-4.9 MODELING SYNCHRONOUS TIMING ....cootirieieiririnieienesisie ettt eb bbb es 5-33
5-5 ANNOTATION OF BEHAVIORAL MODELS ..ottt bbb 5-36
5-5.1 DESCRIPTION OF FUNCTION ...ccociiieiiiiiiiieitienireeietestsisie e sssse et s seses e sese s sessesesessssssessnsns 5-36
5-5.2 DESCRIPTION OF RESTRICTIONS ..ottt ettt sttt eb et b et ene s 5-36
5-5.3 MODELING APPROACH ..ottt stttk bbbttt bbb b s 5-36
5-54 REVISION HISTORY ...ttt et b et b ket e bbb bt b bt e bt s 5-37
5-55 BACK ANNOTATION OF TIMING INFORMATION .....cciieiiinirinieieniresieienesesie e siese s es 5-37



MIL-HDBK-62

5-6 USE OF STRUCTURAL HIERARCHY IN BEHAVIORAL MODELS .......cccceoinreieitnnieeeseeeeses e 5-37
REFERENGCES ...ttt ettt bbbt s£ £ b et 2 £ b8 E bR 1E 18 beh e E b bt R e £ e A b b e e e e b ek et e e b e b e ne b e e b eb e e e b 5-38
BIBLIOGRAPHY ..ottt etttk b etk h e E £ bR 4 £ E bR £ E bt Rt £ A b b e E b e bt e e b b ene b b e b eb e e e b 5-38
CHAPTER 6
CONSTRUCTION OF STRUCTURAL VHDL MODELS
B-1  INTRODUGCTION ...ooiiiuiiiriiteiitieseetetesires ettt et seeses et e b b et se s b e b et e s e b eh e e se e b e b e e s e e b b e Rt e e b b e Rt e s e b e b et st s b e b et e s b b ene e es 6-1
6-2 CREATION OF STRUCTURAL VHDL MODELS ......ocoiiiiririieteitenietee sttt 6-1
6-2.1 TRANSLATION OF SCHEMATIC CAPTURE MODELS ......cooiiiiiinrseeene e 6-1
6-2.2 SYNTHESIS OF STRUCTURAL MODELS FROM REGISTER-TRANSFER-LEVEL MODELS ........... 6-2
6-2.3 SYNTHESIS OF STRUCTURAL MODELS FROM FINITE STATE MACHINES ..o 6-2
6-24 ENHANCEMENT OF GATE-LEVEL MODELSWITH GENERATED STRUCTURE ........cccovneinienn. 6-2
6-3 VHDL DID ORGANIZATIONAL REQUIREMENTS FOR STRUCTURAL MODELS ... 6-3
6-3.1 HIERARCHICAL ORGANIZATION OF STRUCTURAL MODELS .......ccccooiieetrnieeeresieeeeseseeieeees 6-3
6-3.2 ALLOWABLE LEAF-LEVEL MODULES .......coocitiettne et 6-4
6-3.2.1 Government-ApPProved MOEIS ..o et be e sae 6-4
6-3.2.2 Modules With Stimulus-ReSpONSE BENAVIOL .......ccuoiuiiiieieiererene e snea 6-4
6-3.2.3 Modules Without Detaill€d DESIQNS ........ccceivieiierieieciesteeee et te e tesra et e ss e te e e sseennesneennas 6-4
6-3.3 VHDL DID ANNOTATION REQUIREMENTS FOR STRUCTURAL MODELS ........ccovirenrnieieeenes 6-5
6-3.3.1 PhySiCal VIEW REQUITEIMENLS .......coiiiiiitiitirie sttt st sbe bbbt s ee e et bese e s e e e e e e esessesaesaen 6-6
6-3.3.2 Electrical View REQUITEIMENTS ........ccciiiiiririiiiriese ettt sae e sae bt e et bese e s e e e e e e e sessesaenneas 6-6
6-3.3.3 Timing View REQUITEIMENES ......coiiiiiii ittt ettt ebesbesae b 6-7
6-4 VHDL DID SIMULATION REQUIREMENTS FOR STRUCTURAL MODELS ......ccoiiiinreeereseeesesieeeeens 6-9
6-4.1 SUPPORT FOR LOGIC-LEVEL FAULT MODELING ....ccocietiririieienreeieienenes et 6-9
6-4.2 SUPPORT FOR TEST VECTOR GENERATION ..ottt 6-10
6-5 TIMING SPECIFICATIONS FOR STRUCTURAL MODELS .....c.ooiiiiitiriicerreei e 6-10
6-6 BACK ANNOTATION OF STRUCTURAL MODELS .......coiiieiitieteere et 6-11
6-6.1 BACK ANNOTATION OF TIMING INFORMATION .....ccsiieiiiniriniienirisieieneses et ssere e sene s 6-11
6-6.2 BACK ANNOTATION OF LAYOUT INFORMATION ...ccociiuiiririnieieniresieieneses et be e ssene s 6-12
6-6.3 BACK ANNOTATION OF TESTABILITY INFORMATION ...ccooiiiiiinirinieienenesiereeesisieie e eees 6-12
REFERENGCES ..ottt etttk se 4 b2 b b £ R 42 £ b e R 1e 8 beh £ £ b e b e R e e e A e b eR e e e r e e b e bt et e e b e b et e s b e b ebe e nn b 6-12
BIBLIOGRAPHY ..ttt bbbt £ h a4 £ 8 b R4 e b bR £ £ b bt Rt e £ A bRt e e e b e b et e e b e b et e b e b eb e e nn b 6-13
CHAPTER 7
PREPARATION OF VHDL MODELSFOR SIMULATION
T-1 INTRODUGCTION ...oiiiiuiiiiieieittieseetetesesee ettt e e ses et se st bt se s b b et s s e e b eh e e se e b b e e 1e e b ek e Rt e e b e b e Rt e s e e b e b et ne e b e b et e s b b ene e es 7-1
7-2 INTEROPERABILITY OF MODELS ...ttt sttt sttt 7-1
7-2.1 USE OF STANDARD SIGNAL DATA TYPES ..ottt 7-2
7-2.2 TYPE CONVERSION FOR DIFFERENT SIGNAL DATA TYPES .....ooooieiinneeeriieeesesie e 7-2
7-2.3 INTEROPERABILITY OF TIMING MODELS ......ccootiieiniisieitenriiee ettt 7-3
7-24 PORTABILITY REQUIREMENTS FOR INTEROPERABLE VHDL MODELS ........cccocoovieennrieieeens 7-3
7-3 TEST BENCH DEVELOPMENT ..ottt stttk bbb bbb b s 7-3
T-3. 1 WAVES ..ottt bbb bt E bR £ A b b E Rk e R bR e bR e Rkttt b e 7-4
7-3.1.1  Standard WAVES PECKAJES .......ceeriririeiiiirieieienises ettt sttt bbbt et n b s 7-7
7-3.1.2 L OCE WAVES PECKAGES .....c.eiereeieiiiisietitsesie ettt sttt st b ettt b s 7-8
7-3.1.3 WAVESTESE SUITES ...cueiieeiiiririetet ittt bbbt b et bbbt bbbt b bbb s 7-8
7-3.2 DOCUMENTATION OF TEST BENCHES .......cocitiiiieitrineiterieiee et 7-10
7-4 TEST VECTOR DEVELOPMENT ..ottt sttt bbbttt 7-10
T-4.1 BEHAVIOR TESTS ...ttt ettt sttt b etk b bt b ket b b st e b bt ne e bkt b et aes 7-10
7-4.2 PROPAGATION DELAY TESTS ..ttt ettt bbbttt b b s 7-11
7-4.3 ERROR CONDITION TESTS ..ottt sttt sttt b ettt b b es 7-11
7-4.3.1 Invalid Operating ConditioN TESES .......ciiiiiiiiriire et et ae e nbea 7-12
7-4.3.2 1INVl INPUL SEBEE TESES ...ttt sttt sttt b e b bbb b s e et et e se e e e e e e et eseesenaenaea 7-12
7-4.3.3 Timing Constraint Violalion TESES ......cccecceiieieiieiiseesieeee et esteseesre e e e ete s e tesraebesss e beesaenseennesneennas 7-12

Vi



MIL-HDBK-62

7-4.4 INTEROPERABILITY TESTS ..ot e s
7-45 ORGANIZATION AND DOCUMENTATION OF TEST VECTORS ........ccoooiiiiiiiine e
7-5 USE OF CONFIGURATION DECLARATIONS TO INSTANTIATE THE TEST BENCH
FOR A MODEL ...t e bbb e bbb se e s E b b e e s b e sbesrenn s
7-5.1 SELECTION OF ALTERNATIVE DESIGN LIBRARIES .......ccoociiiiiiiin e
7-5.2 SELECTION OF ALTERNATIVE ARCHITECTURES ......cccooiiiii e
7-5.3 BINDING OF GENERICS ........cooiiiiiii e s s
7-54 PORT MAPPING ...t e e s e e b e sre
7-6 DEFINITION OF SIMULATOR OPTIONS ......ooiiiiiiiitie st s s
7-6.1 CONTROL OVER ENVIRONMENTAL PARAMETERS ..o
7-6.2 SELECTION OF DELAY TYPES ..o e s
7-6.3 CONTROL OVER EXECUTION OF ASSERTIONS .......ooiiiiirn e
7-6.4 CONTROL OVER PROPAGATION OF UNKNOWN SIGNAL STATES ......ccoooiiiiieeieeeeeies
REFERENGCES ..ottt st b e b e s b e e b e e b s R SR e R s b se e s e e e e e e be e b e s b e b sre
BIBLIOGRAPHY e e b e bbb R s R e R s b se e b et nre

CHAPTER 8
MODELING TESTABILITY WITH VHDL MODELS

8-1 INTRODUCTION ..ottt e et h e bbb e bR se e b e b e s e e e e b e e e erenr s
8-2 PURPOSE AND SCOPE OF DESIGN FOR TESTABILITY oo
8-3 TESTABILITY DESIGN ISSUES ...t e e
8-3.1 TEST STRATEGIES AND TECHNIQUES FOR MAINTENANCE AND FAULT TOLERANCE ...........
8-3.2 TESTABILITY MEASURES ...t e s
8-3.3 TEST STRUCTURE BOUNDARIES .......coooiiiiii e
8-34 TEST COMPONENTSAND INTERFACES .......i oo
8-4 MODELING TESTABILITY USING VHDL BEHAVIORAL MODELS .......ccoooiiiiiii e
8-41 EVALUATING TEST STRATEGIES ...
8-4.2 MODELING TEST INTERFACES IN VHDL ....cooiiiiiiiiie e
8-4.3 MODELING TEST CONTROLLER FUNCTIONS ......coiiiieeeeee e
8-44 EVALUATION OF TEST COMMUNICATION AND STORAGE REQUIREMENTS FORBIT .............
8-5 MODELING TESTABILITY USING VHDL STRUCTURAL MODELS ........cccooiiiiiii e
8-5.1 DESCRIPTION OF TEST CIRCUITRY GENERATED FROM STRUCTURAL INFORMATION ..........
8-5.2 SUPPORT FOR FAULT DICTIONARY GENERATION ....ccccciiiiiiiininres e
8-5.3 SUPPORT FOR AUTOMATIC TEST GENERATION ..ot
8-54 SUPPORT FOR COVERAGE ANALYSIS ..o
8-5.5 SUPPORT FOR TEST TIME COMPUTATION ...ttt
8-6 ANNOTATION OF VHDL MODELSWITH TESTABILITY INFORMATION ......cooooiniiiiineiiee e,
8-6.1 ANNOTATION OF STRUCTURAL MODELSTO IDENTIFY LRUS......ccooviiiiinie s
8-6.2 ANNOTATION OF STRUCTURAL MODELSTO IDENTIFY FCRS .....cccviiiiiiiine e
8-6.3 BACK ANNOTATION WITH COVERAGE INFORMATION ......cciiiiiririiinin s
REFERENGCES ... .ottt st b b e e b e b e e b e s R SR e R b se et e e e e s e s be e b e s b e b sre
BIBLIOGRAPHY . e e bbb e h e bR s R e R s b se e b e e et nre

CHAPTER 9
PREPARATION OF VHDL MODELSFOR DELIVERY TO THE DoD

O-1  INTRODUCTION ..ottt e et h e bbb e b b se e b e b e e e e e e b e e b e srenrs
9-2 FILESTOBEINCLUDED IN DELIVERY TAPE ...t
-2 1 LIST OF FILES ... e s e sre
9-2.2 DID OVERVIEW FILE ..o e e e
9-2.3 VHDL ANALY SIS ORDER SPECIFICATION ....ociiiiiiiiiie e
9-24 GOVERNMENT-APPROVED LEAF MODULE VHDL DESCRIPTIONS ......cccooiiiiiiiieeeeeeenens
9-25 REVISED VHDL MODULE LIST oo e s
9-2.6 ORIGINAL VHDL MODULE LIST ..ottt s s
9-2.7 TEST BENCH CORRELATION LIST ..ot s
9-2.8 AUXILIARY INFORMATION FILES ......ooiiiii e
9-2.9 VHDL DESIGN UNIT FILES ..o e s



MIL-HDBK-62

9-3 FILENAMING CONVENTIONS ..ottt ettt ettt e s s be e be e st e e b et e sensesessenestens 9-5
9-3.1 NAMING VHDL DESIGN UNIT FILES ..ottt sttt sttt et nesse e 9-5

9-3.2 NAMING AUXILIARY FILES ....ootiiiiieti ettt sttt st saese sttt e e sbe e ebenente e 9-6

9-4 SUGGESTED CODING CONVENTIONS FOR VHDL MODELS ......cccooiiiieerieesees e 9-6
9-4.1 DESIGN ENTITY NAMING CONVENTIONS.......ccceotieirieisieisiesesiesesteseeteseereseesesassessesesseessenessesessesessesens 9-6

9-4.2 PORT-NAMING CONVENTIONS ......coociietiieetirietesiee st sieesteeste s tesesteseeteseesesaesesaesessesessenessanessesessesensesens 9-7

9-4.3 SIGNAL-NAMING CONVENTIONS ....coiiiciiciiieiiiecrietste sttt sttt saetesaesesae s ste e sbenesbeneesesensesens 9-7

9-4.4 PROCESS AND SUBPROGRAM NAMING CONVENTIONS .....cocoviiireetereeienieie sttt sesse e 9-7

9-45 COMMENTING CONVENTIONS FOR VHDL ...cooiiiiiiiiiiieisieisie ettt sttt et et nens 9-7
LS T R 1 =TSRSS 9-7

ST 0 - o (<R SSS 9-7

O0-4.5.3  ENULY INEEITACES ...ocvecie ettt et et ae s s e e e ate s ae e te st e enteese e st e eneanteeneanneennesneeneas 9-7

9-4.5.4  AIChItECIUrE BOMIES .......eeuiiieeie ettt ettt et st e s s reeaae s te e te st e enteeseenteeneenseereeaneennesneeneas 9-8

9-4.55 Configuration DECIAIALIONS ..........c.cieiieeiieeiesieeie et e et este e s e e ae e e tesre e tesseenteeseatesseenseennesneenes 9-8

9-4.5.6  INLEINAl COMIMENLS .....ocuiiiiiiieiieiiesesee st et e s ee e et e et et e e e e te et e saesaeesreeseesteestesseensesseenseeseensesneenseennesneanes 9-8
REFERENGCES ..ottt st tees et te st teseetesaesessesessesessase st ese et eneese e e s e ss e R e e e e b e sees e e es e s en e s e ne b ene e b e e eb e s ebeseebenbebenennentnnes 9-8
211 S L@ A = TSRS 9-8
APPENDIX A ottt sttt sttt sttt sttt sttt et ket E et e Ee e e Rt eA e Rt eA e Rt A e R e e R e R e R e R e e R e e eEenEeEenEeEeneeReneeRenReReeteneeteneete e ete e eteneas A-1
F N 13 G 2 ST B-1
L@ 5L SRR G-1
INDEX .ottt ettt ettt se ettt et e st es b et s e e e s et e se e e st e e st s e e st b e st £ e n e R e At R e At e R e £ e R e A e Rt R e Rt A e Rt R e e e R e e R et e R e R e Rebe R Ee Rt Ee e Ee e tens I-1
SUBJECT TERM (KEY WORD) LISTING .....ctiiiiiisiiirieisteseste et sae sttt sse s sesesaesesaesessenessnsessnnsnsenes ST-1

viii



MIL-HDBK-62

LIST OF ILLUSTRATIONS

Figure

No. Description Page
2-1 Functiona Models, Structural Models, and Levels of ADSIFaCtiON ..........ccoceiiriiiiinene e 2-2
2-2 Example Input Image and Edge Magnitude Output of an Edge Detection ProCeSSOr .........ccccoeveeervenieneserenesieniees 2-7
2-3 Hierarchy of Functionsin aBehavioral MOUE ..ottt 2-8
2-4  Image Data Abstractions @and FUNCLIONS .........c.cceiiiiiieie ettt st e st e e sr et e e reensesneenneenes 2-9
2-5 Interface Specifications for an EAge DEteCtion PrOCESSOT ...........cceiriiririrenenere et 2-10
2-6 Behavioral Model for an Edge DeteCtion PrOCESSOK ...........cciiieriieiesiieiesteeeesreeseesteesaesaeesaesaeetesseetesssensesseensesssessesnes 2-11
2-7 Example Functionsfor aBehavioral MOEL ..o bbb e 2-12
2-8 Hierarchy of Componentsin an Algorithmic-Level Structural Model ... 2-15
2-9 A Hardware Block Diagram for the Edge DeteCtion PrOCESSOK .........ccccevievieieeieeseerieseesiesieetesteetesree e ense e sne s 2-16
2-10 Structural Model for an EAge DEteCtiON PrOCESSON .......c..ccveiiiieiieiesteeee e eeesteesaeseeesaesreestesae e tesseetessaentesseensesneensesnes 2-17
2-11 A Hardware Block Diagram for the Window Processor of the Edge Detection Processor .........cccecvvvevieeienieciveneeene 2-17
2-12 VHDL Entity Interface for the WinCQOW PrOCESSOK .........ccveciiiieiiiiiesie st ettt s e sae st te st e e sra e te s enbeeneanneenes 2-18
2-13 VHDL Structura Architecture Body for the Window ProCESSOL .........ccecveviiiieiie et 2-18
2-14 Interface for the HOMZONEAl FIITEN .........ooiiieiie e ettt a e s b b e b b e 2-19
2-15 Behavioral Model for the HOrzontal FIITEr ..ot e 2-19
2-16 Hierarchy of FUNCtiONSiN @ Structural MOGEL ..........c.ooiiiieecce ettt st e enne s 2-20
2-17 Block Diagram of the HOrizontal Filter PrOCESSOF ........cccccciiieiiiiieiiiceeste et eres st e e e e sae st e e s e tesraansesneanneenes 2-21
2-18 Structural Architecture of the HOrizontal FilTer ..o e e e 2-22
2-19 Hierarchical Organization of aMixed Level of Abstraction Model ..o 2-23
3-1 Design Entities, Entity Interfaces, and ArchiteCture@ BOIES ..........coovuveiiiiciie e 32
3-2 A VHDL Entity INterface DECIAIALION .........ccccceieeiieiiee e eteete ettt ste st e sre e e e ae e e aesae e e steentesseentesreenseennanseenes 33
3-3 Example Signal ASSIgNMENt SEAEEMENL .........coiiiiiiiie ettt et e et se b aesaesbesbesaesbe b ee 35
3-4 Example of aRESOIULION FUNCLION .....c.coiiiiiiiiiiiitee ettt bbbt be b bt b sbesbesaesbe b s 3-6
3-5 Example of aBehavioral MOGE ..o bbb st be bbbt b e sbesae b e b s 3-7
3-6 A Structural ArChiteCtUrE BOOY ........cccciiieiiiiie ittt ettt s e e e se e e s te e e e s ae e testeeste st e enteeraenseeneenseanes 3-10
3-7 An Enumerated Type: The IEEE Std 1164 Unresolved LOgiC Data TYPE .....ccoereriirerieriereeieree e e 311
3-8 Entity Interface Declaration With Generic Constants and an AttribULe ..........cceece e 3-13
3-9 Architecture Body USING @n AtLHDULE ..........ooiiieiee ettt sttt s re et e e e enes 3-13
3-10 Example of aPhysical TYPE DECIAIaLiON .......ccciiiiriirie ettt et ae b b sae b b e 3-14
3-11 AN ASSETION SEBLEMENT ...ttt e e ettt e it eb e e b e aeshe e b e bese e e e bese e e e n e e s e e aeebeebeebeeaeebesbesaesbe b es 3-14
3-12 An Example of Error Propagation: IEEE Std 1164 AND Operator Table ... 3-15
3-13 Using a Component Library to Configure a Structural Architecture Body ..........ccocovererenenenereeceeeesesese e 3-17
3-14 Useof Library and Use Clausesto Access EXternal Libraries ........cccocceiiiciiecie st 3-17
3-15 Using Different Architecture Bodiesto SEleCt Lilbraries ........coocvieiiieice et 3-18
3-16 Technology-Dependent Architecture Body Using Configuration SPecifiCations ...........c.ccoeeverereeenienenesenese e 3-19
3-17 Use of Configuration Declarations to Select Alternative Design Libraries .........cccocevviceeveveeveseese e 3-22
3-18 A Reconfigurable ArChiteCtUrE@ BOAY ........cceoiuiiiiiiieiice ettt ettt st e te st et esre et e sreeneesneenneenes 3-23
3-19 Use of a Configuration Declaration to Select Design Entities From aLibrary ... 3-23
3-20 Using a Configuration Declaration to Specify Generic Constant VAlUES ..........ccoevirenenirieiieseeeeeesesesiese e e 3-24
4-1 Logica Structure of aVHDL Test Bench Constructed USINg WAVES ..ot 4-6
5-1 VHDL Package Interface for Statistics for Performance and Algorithmic Models ........cccooevevevicesicececee 5-3
5-2 The Statistics Package Body for Performance and Algorithmic MOdElS .......ocoovvieeie i 5-4
5-3 VHDL Data Type Definitions for a Performance and Algorithmic Model ... 5-5
5-4 VHDL Entity Interface for a Performance and Algorithmic MOdel ..o 5-5
5-5 VHDL Architecture Body for an AIgorithmiC MOAEl ...........ocueiiiiiiicee e 5-6
5-6 Package Declaration for an Algorithmic Model of an FFT ProCESSOF ........cccviieiieieerie et 5-8
5-7 Part of the Package Body for an Algorithmic Model of an FFT ProCessor .........cccceeveieeveveere e 5-9
5-8 The FFT Procedure in the Package Body for an Algorithmic Model of an FFT Processor .........ccccovveeveeienieciesnene, 5-10
5-9 Package Declaration for an Instruction Set Architecture Processor Model ..o 5-12
5-10 Type Conversion Functions for an Instruction Set Architecture Processor Model ..........cooeeieiiiininencnene e 5-13



5-11
5-12
5-13
5-14
5-15
5-16
5-17
5-18
5-19
5-20
5-21
5-22
5-23
5-24
5-25
5-26
5-27
5-28
5-29
5-30
5-31
5-32
5-33
5-34
5-35
5-36
5-37
5-38
5-39
5-40
6-1
6-2
6-3
6-4
6-5
6-6
7-1
7-2
7-3
7-4
7-5
7-6
8-1
8-2
8-3
9-1

MIL-HDBK-62

Operator Overloading Functions for an Instruction Set Architecture Processor Model ..........ccoeoeiiiiininiininenes 5-14
Program Loading Procedure for an Instruction Set Architecture Processor Model ..........ccovocvvvvece e, 5-14
Entity Interface for an Instruction Set Architecture Processor MOE! ..........ccooveiiiieeii e 5-15
Architecture Body for an |SA-Level Processor MOGE ........c.ccveiiiieiiciese ettt e 5-15
Example Instruction Set Architecture Memory MOGE! .........coooiiiiiie e s 5-17
Example State Transition Diagram for a Bus Interface Unit MOdel ... 5-18
Entity Interface for an Intel BUFfered LatCh .............ooiveii et s 5-20
Synthesizable Architecture Body for the Intel Buffered LatCh .........ccocvveiicicci e 5-20
Entity Interface and Architecture Body for a Functional Model Without Timing ........cccceeveveevvicevesce s 5-22
Package Declaration for aModel That UsesaTiming Shell ..........coooiiiiicececce e 5-22
Function Definition for a Timing Function for a Floating POiNt AEr ........c.ccveeiieiiciece e 5-23
Entity Interface for aModel That UsesaTiming ShEll .......cooiioiiie et s 5-23
Timing Shell ArChiteCIUIE BOOY .........ccviieiiiie ettt et e s ae e s teeae s aeetesteentesteenseereenteeneeseenes 5-24
Best-, Nominal-, and Worst-Case TIMING CUINVES ........ccoieeieiieieieesieseesesaes e saesseesesseessssseessesseessesssessessesssessssssenns 5-25
Package Declaration for aModel That Uses Parameterized TiMiNg ......ccocoveceieeiesierieceesic e ee s eeesneens 5-25
Package Body for aModel That Uses Parameterized TiMiNG ......ccccovivieieriesecieseeieseesieseeseesee e sae e saesseessesseens 5-26
Entity Interface for aModel That Uses Parameterized TIMING .......cccooveeeiirieneciececeseeste e s saesneens 5-26
Architecture Body for aModel That Uses Parameterized TimiNg .......cccoovevivieeieieeie et 5-27
Package Interface for aModel That Uses a Timing Package ........ccccovevieiiiiesicieseee et 5-28
Package Body for aModel That Uses a Timing PaCkage .........ccoveiieiiiieiecesece ettt st nre s 5-29
Package Declaration for aModel That Uses File /O for TIMING ......ccovvoueierieseeiesiee et ae s s sreens 5-31
Package Body for aModel That UseS File 1/O fOr TIMING .....cccveviiieiiie ettt sre e st ae e sreens 5-31
Entity for aModule That UseS File [/O fOr TIMING .....cccuviieie ittt ae e enaenreens 5-32
Potential Asynchronous TimiNg CONSITAINTS ......ccccuiiieiieiieie et e e re e e s reeseesaeesressaesressaesresseansenns 5-33
Potential Synchronous TiMiNg CONSIFAINTS .......cccvecuiiieeiiiecre st e e re et e s reesaesaeesresaaestessaesressnansenns 5-33
Package Interface That Checks Synchronous Timing CONSITAINES .........c.ccveievieeiiisieic e s 5-34
Procedure Body That Checks Setup Time CONSLIAINTS ......c.ioieierieieireee ettt s see s 5-34
Procedure Body That Checks Hold Time CONSIFAINES ........ccccviievieiieieiiesesees e ete st et e reeae e seesaeesaesaestessae e enaenseens 5-35
Entity Interface That Checks Timing CONSITAINES ......cccviieiiiie e srese e sre e e sreeae e enaenreens 5-35
Annotation of aVHDL Package Using Header COMIMENES ........cccveiieieiicee ettt sttt e nne s 5-36
Typical Physical Hierarchy of an Embedded EIECtroniC SYSIEM .......cocoiiiiiiiineie s 6-3
EIA 567 PhysiCal VIeW OrganiZaLION .........ccccccveieeiiieeieeseesieseesiesee e sseestessaestesssessesssesseessesseessesssessssssessessesssesssnssenns 6-6
EIA 567 Electrical VIiew OFganiZaLiON ...........cccueeeeuiieeiieseesieseesesees e ssaestesseesseessesseessesseesssseessessesssesssessessesssesssnssenns 6-7
EIA Timing VIeW OrganiZation ...........ccecueiieeieseeiiseeseeseeste st esesees e ssaestessaessesssessessssaseesesseessesseessessesssessesssessannsenns 6-7
A A BN S Y, FaTo (= @ o=z (] o SRS 6-9
Extrinsic Timing Delay VHDL MOGE .......coo ittt ettt s sa e s s tesnaesbessaesreennenreens 6-11
Slice and Frames Of @WAVEFOIN ........oiuiiieee et ettt he bbbt b e b e e e et ne e e e e e e e eneas 7-5
Dependencies BEtWeen WAV ES PACKAgES ........cccoiiiiiiiiiiieie ettt sttt ebe s sbe st e e e 7-6
Partitioning of WAVES PackageS inNtO LIDIariEs .......cveiiiieie ettt sttt ae e enaenneens 7-7
Library Structure Of WAV ES PACKAOES ........ccveiieiiiicie st sie sttt st sae et este et e seeaesseessesaeessesnaessesseessesssensenns 7-8
EXaMPIE WAVES HEAAEYN Fl@ ...t bbbttt b et ae b st e e nas 7-9
EXaMPIe WAVES EXIEINGl FIlE ...ttt ettt b et ae bbb e nas 7-10
A Taxonomy of Design for Testahility SIrat@QiES........cciviieiiiieieceere e e b e e nre s 8-2
A Taxon0mMY Of TESE MEASUIES........cccueieieeiteiieesteete st e e s e e te st e et e ete e teeseessesseessesseesseaaeesseesaesseensesteensenteenseaseanseaneensennes 8-3
A Hierarchy of Test CONtrollerS and BUSSES..........cceiiiiieiicie ettt ettt ae s steste e tesra e besreentesneenneenes 84
Directory Structure and File Names for Sobel Algorithm Library ..o 9-5



MIL-HDBK-62

LIST OF TABLES
Table
No. Description Page
2-1 Features of Behavior, Structure, and Timing and Different Levels of Abstraction...........ccccceceveeievicceseccc e, 2-3
6-1 Internal (Pin-to-Pin) Delay SPECITICAIONS........ccuiiiiiireii ettt b b ettt se et e e se e sne e 6-10
8-1 Testability Functions, Components, and Interfaces for a Physical Design Hierarchy ..., 8-5

Xi



MIL-HDBK-62

LI1ST OF ABBREVIATIONSAND ACRONYMS

A

AC = dternating current

ALU = arithmetic and logic unit

ANSI = American National Standards I nstitute
ASCIl = American standard code for information inter-

change

ASIC = application-specific integrated circuit

ATE = automatic test equipment
ATPG = automatic test pattern generator

B

BIM = businterface module
BIT = built-in test
BIU = businterface unit
BSDL = boundary scan definition language

C
CAD = computer-aided design
CAE = computer-aided engineering
CALS = computer-aided acquisition and logistics sup-
port
CDR = Critical Design Review
CDRL = contract data requirements list
COTS = commercial off-the-shelf
CMOS = complementary metal-oxide semiconductor
CPU = central processing unit
CSP = communicating sequential process

D
DASC = Design Automation Standards Committee
DESC = Defense Electronics Supply Center
DID = dataitem description
DoD = Department of Defense

E
ECAD = electronic computer-aided design
EDIF = electronic design interchange format
EDS = electronic data sheet
EIA = Electronic Industries Association
ESD = electrostatic discharge
EW = electronic warfare

F

FCR = fault containment region
FDIR = fault detection, isolation, and recovery
FFT = fast Fourier transform

Xii

FIFO
FSM

HSDB
HW
HWCI

IEEE
IGES
IR
110
IPC

JTAG

LRM
LRM
LRU
LSSD

MCM
MUT

NMOS

PDR

Pl
PLA
PMS

QPL

RFP
ROM
RTL

= firstin, first out
= finite state machine

H
= high-speed data bus
= hardware
= hardware configuration item

I
= integrated circuit
= Ingtitute of Electrical and Electronic Engineers
International Graphics Exchange Standard
infinite impul se response
input/output

Ingtitute for Interconnecting and Packaging
Electronic Circuits

= instruction set architecture

J
= Joint Test Action Group

L
= language reference manual
= line-replaceable module
= line-replaceable unit
= |evel-sensitive scan design
M

multichip module
module under test

N
negative metal-oxide semiconductor

P
= Preliminary Design Review
= processor interface
= programmable logic array
= processor memory switch

Q
qualified products list

R
= reset
random-access memory
request for proposal
read-only memory
register-transfer level



S =set
SA/0 = stuck at zero
SA/1 = stuck at one
SDF = standard delay format
SPSP = special-purpose signal processor
SW = software

TAP = test access port

TIREP = Technology Independent Representation of
Electronic Products

TMS = test mode select
TRR = Test Readiness Review

MIL-HDBK-62

UUT = unit under test

Y
VHDL = very high-speed integrated circuit (VHSIC)
hardware description language
VHSIC = very high-speed integrated circuit
VITAL = VHDL initiative toward ASIC libraries
VLSl = very large-scale integrated
VML = VHDL modd library
V&V = validation and verification

w

WAVES = Waveform and Vector Exchange Specification

WGP = waveform generator procedure

Xiii



MIL-HDBK-62

CHAPTER 1
INTRODUCTION

The goals, scope, and intended audience of the handbook are described in this chapter. Included are references
to industry standardization efforts related to the goals of this handbook. Also provided is an overview of each

chapter of the handbook.

1-1 PURPOSE

This handbook describes the use of the very high-speed
integrated circuit (VHSIC) hardware description language
(VHDL) to document the design of military digital electron-
ic systems. This handbook is designed to help Government
personnel involved in the acquisition of military digital elec-
tronic systems understand the following issues rel ated to the
use of VHDL modelsto document military digital electronic
systems:

1. What VHDL models are required to be delivered
with a contract? In particular, this handbook discusses the
guidelines described in MIL-HDBK-454 (Ref. 1) and the
requirements of the VHDL data item description (DID)
(Ref. 2). (The VHDL DID provides comprehensive require-
ments for VHDL models that include the need for extensive
auxiliary and testing support files. This handbook contains
approaches to structuring VHDL models so that DID
requirements and intent can be met without an excessive
number of auxiliary and testing support files. Government
personnel can use information in this handbook to tailor
definitions of items in the DID to fit their project needs.
Contractors can use the information to propose the organi-
zation and content of VHDL models they will deliver to the
Government.)

2. Which VHDL models should be developed during
the different stages of the lifetime of a system? The Depart-
ment of Defense (DoD) requirements now mandate deliv-
ery of VHDL models after a system or chip has been
fabricated and is ready for deployment, but VHDL models
have great potential to support the evaluation of system and
chip designs before fabrication is started. The types of
VHDL models appropriate for delivery early in the system
design process are discussed in this handbook. This infor-
mation may be useful to DoD personnel during the prepara-
tion of requests for proposals (RFPs). This handbook may
also be useful to DoD personnd in preparing phased devel-
opment programs for which multiple awards are made in
the early phases of the program to prepare competing
designs (which should include VHDL models of the
designs).

3. How can VHDL models be structured to be con-
sistent with modeling standards? It is of critical importance
to the DoD that VHDL models of compatible pieces of
hardware are themselves compatible. Because VHDL is
such an expressive language, different descriptions may not
be easily interfaced if standards for defining interfaces are
not observed. Guidelines and reference modeling standards

to ensure compatibility between VHDL models are
described in this handbook. In particular, standards for
descriptions of test vectors such as the Waveform and Vec-
tor Exchange Specification (WAVES) standard (Ref. 3),
standard bus interfaces such as the Institute of Electrical
and Electronics Engineers (IEEE) Standards 1149.1 (Ref. 4)
and 1149.5 (Ref. 5) or test and maintenance, and standard
data-type descriptions such as IEEE Standard 1164 (Ref. 6)
are discussed.

1-2 SCOPE

Useof VHDL to model military digital el ectronic systems
is described in this handbook. In particular, this handbook
addresses the development of models compliant with the
VHDL DID (Ref. 2) and MIL-HDBK-454 (Ref. 1). Digital
electronics are only part of most military systems. Most
modern weapons platforms use sensors and actuators that
aretightly coupled with the digital electronic systems; how-
ever, the modeling of these sensors and actuators is outside
the scope of this handbook. Many military electronic sys-
tems have both digital and analog components. The model-
ing of only the digital components is discussed in this
handbook. Researchers are currently exploring the use of
VHDL for analog components and considering changes to
the language to allow VHDL to better support modeling of
analog and hybrid components and subsystems. Although
VHDL models are frequently used to provide test beds for
testing software before the hardware i s fabricated, this hand-
book does not discusstheissues of devel oping tests for soft-
ware.

The handbook is not intended to provide a working
knowledge of VHDL. On the other hand, the handbook in-
troduces VHDL terms and concepts so it can serve as a
stand-alone reference document for readers familiar with
VHDL.

1-3 INTENDED AUDIENCE

This handbook isintended for use by DoD personnel who
are writing requests for proposals for digital electronic sys-
tems, DoD contractorswho are developing VHDL modelsto
be delivered to the Government, and DoD personnel or inde-
pendent validation and verification contractors who are
evaluating or reviewing models that have been delivered to
the Government. DoD personnel include people who are
writing RFPs for the development of digital electronic sys-
tems, are serving on proposal review teams, are negotiating
the deliverables and tailoring the DIDs associated with a

1-1
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contract, are part of Government validation and verification
(V&V) teams, or arein government | aboratoriestracking the
evolution of technology for the design of digital electronic
systems. VHDL tool vendors or VHDL library vendors may
a so find this handbook useful in terms of understanding the
needs of DoD contractors.

Users of this handbook should have some formal training
or some experience with electrical engineering and/or com-
puter science and should have experience reading and writ-
ing VHDL models.

Although the user does not need a complete understand-
ing of VHDL to read this handbook, he or she will need to
understand VHDL to implement the suggestions made in
this handbook and to understand the example VHDL pro-
grams.

1-4 HISTORY, PURPOSE, AND SCOPE OF
VHDL

1-41 HISTORY OF VHDL

The VHSIC program was created to ensure that the digital
microelectronic systems in the weapon systems fielded by
the DoD would be at least comparable to state-of-the-prac-
tice commercial technology. Over its 10-yr lifetime this pro-
gram developed tools and technology for the design,
manufacture, and use of state-of-the-art integrated circuits
(ICs).

At the start of the VHSIC program in 1980, the DoD was
already experiencing a problem with the obsolescence of
ICs. VHSIC studies (Ref. 7) indicated that by 1990, 80% of
nonmemory ICsin military electronic systemswould be ap-
plication-specific integrated circuits (ASICs). At the same
time the VHSIC studies also indicated that the average life-
time of a fabrication process would be two years. Since the
acquisition process for DoD systemswas seven to ten years,
amagjority of the ICsinaDoD system would be obsolete be-
fore the system could be fielded.

VHDL began as a research effort under the DoD
VHSIC program to document fully the DoD digital sys-
tems (Ref. 8). As experience with the language was
gained, the language was improved by incorporating addi-
tional features. The language was subsequently standard-
ized by the IEEE and adopted by the American National
Standards Institute (ANSI) as ANSI/IEEE Std 1076-1987
(Ref. 9). This standard was updated in 1994 by IEEE Std
1076-1993 (Ref. 10).

1-42 THE PURPOSE OF VHDL

VHDL was devel oped to provide a standardized language
to describe formally the behavior and structure of DoD dig-
ital electronic systems (Ref. 8). These descriptions serve as
a procurement device by specifying exactly what functions
a new device would have to perform in order to replace an
old device. Through simulation of these descriptions the
ability of the design of anew deviceto perform the samere-
quired functions asthe old device can be more accurately es-

timated before being physically verified. Furthermore, the
VHDL descriptions may contain timing information. As a
result, the performance of competing designs can be com-
pared before the devices are built. This performance smula-
tion provides an ability to perform an impartial assessment
of proposalsfor integrated circuitsand for complex electron-
ic systems containing many ICs.

Because VHDL has been standardized, it is now being
used as the primary hardware description language for com-
mercial computer-aided design (CAD) vendors, and it is
likely that this trend will continue. VHDL is also coming
into use as an exchange standard between tool sets provided
by different vendors.

As previoudly stated, VHDL was developed to serve the
need of the DoD to document the functionality of digital
electronic systems delivered to it by the defense industry
(Ref. 8). Thisdocumentation isrequired to procure new sys-
tems and to assist in the maintenance of fielded systems.
VHDL provides a powerful, technology-independent way to
describe a wide range of electronic hardware systems from
individual integrated circuits to large multiprocessor sys-
tems. It supports top-down and bottom-up design methodol-
ogies or mixtures of the two.

For new systems a VHDL model can be provided by the
DoD that specifies the exact functional behavior desired of
the system. This description can then be offered to potential
bidders for competitive procurement. Bidders can be re-
quired to submit VHDL models of their proposed designs,
and these can be simulated and compared with the original
DoD model. The VHDL models could be evaluated as part
of the overall proposal evaluation process. This step ensures
that bidders understand the functions the system is to per-
form and that the designs will meet functional requirements.

VHDL also provides important benefits after a system is
fielded. Asfielded systems fail and are repaired, additional
spare parts must be acquired as stocks of original spare parts
are exhausted. For electronic systems this need requires that
the DoD provide, among other things, a complete functional
specification of the desired parts to potential bidders. This
functional specification must be technol ogy independent be-
cause it is often impossible or excessively expensive to ac-
quire parts in the origina technology; thus it becomes
desirable to reimplement the function in a different technol-
ogy. Technology independence permits the separation of the
behavior function (plus timing) from its implementation,
which makes incorporating new technologies easier.

Until the advent of VHDL there was no standard way to
provide this functional specification. Documentation deliv-
ered with the original systems was usually in a technology-
dependent, proprietary format that was not supportable long
term. This obsolescence rai sed the cost and technical risk of
reprocuring new parts because using technically obsolete
engineering data is expensive and time-consuming. VHDL
offersthe technical meansto provide functional, timing, and
other specifications for digital electronic systemsin aform
that will be useful long after the original systemisdelivered.
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1-43 THE SCOPE OF VHDL

VHDL supports describing hardware at many levels of
abstraction from an entire system composed of individual
racks of equipment down to gate-level descriptions of inte-
grated circuits. VHDL includes primitive functions for gate-
level operations. VHDL supports processes, a rich data ab-
straction facility, and synchronization capabilities for algo-
rithmic descriptions. VHDL allows different levels of
abstraction to be mixed in the same description, and this
flexibility can reduce both the amount of timefor simulation
and the introduction of unnecessary detail. VHDL aso pro-
vides for the specification of detailed hardware timing re-
quirements. Timing specification is particularly important
when the VHDL description represents a hardware compo-
nent that must be integrated with other components, asisal-
most always the case. VHDL aso supports annotating
designs and allows the user to specify physica types and
their units, which can be used as attributes for a design.

The DoD is actively incorporating VHDL requirements
into procedures used to develop military electronic comput-
ers. VHDL isrequired documentation under Guideline 64 of
MIL-HDBK-454, which defines the requirements for
VHDL descriptions to accompany any digital electronics
that are being added to the DoD qualified products list
(QPL). A data item description, DI-EGDS-80811 (Ref. 2),
defines the detailed characteristics of a VHDL model to be
delivered to the Government. VHDL models of systemswill
become part of the Computer-Aided Acquisition and Logis-
tic Support (CALS) Program (Ref. 11) usage guidelines.

1-5 RELATED INDUSTRY STANDARDS

Realizing the benefitsfor customers of standardized mod-
els and modeling languages, the electronics industry is de-
veloping commercial standards for electronic systems. This
is acontinuing process. For example, the IEEE requires up-
dates of its standards every five years.

The DaD recognizes and strongly supports VHDL stan-
dardization efforts, including the following: (1) the IEEE
VHDL (1076) standardization, (2) the IEEE Design Auto-
mation Standards Committee (DASC) standards, (3) the
Joint Test Action Group (JTAG) definition of test interface
standards, including the IEEE 1149.1 boundary scan test bus
and the |EEE 1149.5 test and maintenance bus, aswell asthe
Boundary Scan Definition Language (BSDL) (Ref. 12), a
VHDL style that describes implementations of IEEE Std
1149.1 boundary scan test circuitry, (4) the IEEE 1164 stan-
dard logic package, and (5) the IEEE 1029.1 WAVES test
vector standards.

The IEEE has adopted and standardized VHDL as IEEE
Std 1076 (Ref. 10). The standard is the VHDL Language
Reference Manual (LRM). The VHDL DID requiresthe use
of IEEE Std 1076. This handbook uses the VHDL LRM as
its definition of VHDL. |EEE standards are revised approx-
imately every five years; therefore, the IEEE VHDL stan-
dard released in 1988 was revised in 1993. The revised
VHDL standard is the DoD-required standard until it is

againrevised. The LRM isdescribed in more detail in Chap-
ter 3.

The IEEE DASC is developing standards to support the
interoperability of VHDL models. One aspect of this effort
is|EEE Std 1164, which defines a standard set of values for
signals that includes values for unknowns and high-imped-
ancevalues. |IEEE Std 1164 isdiscussed in Chapter 7. A sec-
ond aspect is the VHDL initiative toward ASIC libraries
(VITAL) (Refs. 13 and 14), which is developing a standard
for usein the sign-off processfor chip designsby fabrication
vendors.

The JTAG isdeveloping astandard VHDL practiceto de-
scribe implementations of the IEEE 1149.1 boundary scan
test circuitry (Ref. 4). This practice provides a method used
to describe modifications to alow-level structural model of
an integrated circuit in order to incorporate the circuitry re-
quired for aboundary scan built-in test capability. The IEEE
1149 series of standards is discussed in Chapter 8.

The WAVESIEEE Std 1029.1 (Ref. 3) isintended to cre-
ate a standard representation of test vectors or waveforms
for electronic devices. It uses features of VHDL to describe
procedures used to generate test vectors and waveforms and
to describe methods used to ensure the output of the module
under test matches the required output. WAVES provides a
common format used to describe test vectors for many dif-
ferent automatic test equipment (ATE) machines and acom-
mon output format for automatic test pattern generation
software. This standard reducesthe amount of work required
to interface ATE machines with many VHDL parts models.
MIL-HDBK-454 (Ref. 1) states that the VHDL models de-
livered to the Government should be compatible with
WAVES and requires the use of WAVES for any test vec-
tors or waveforms delivered with the model. The WAVES
standard is discussed in Chapter 7.

1-6 OVERVIEW

In Chapter 2 the use of hierarchiesin modeling computer
hardware is discussed, and the concepts of behavioral and
structural models of electronic systems are described. These
concepts are essential to VHDL models compliant with the
VHDL DID. Models with mixed levels of abstraction are
discussed. Also discussed isthe use of simulation to support
functional correctness checking and performance evaua-
tion. Examples of these concepts are presented.

In Chapter 3 the use of VHDL to capture the structure and
behavior of electronic computers is discussed. Aspects of
VHDL that support the reuse of VHDL models are present-
ed. The development and use of libraries of VHDL descrip-
tions for reuse of both VHDL programs within a model and
between models, as well asthe annotation of VHDL models
with descriptive information, are described.

Chapter 4 discusses two Government documents con-
cerning the use of VHDL: MIL-HDBK-454 (Ref. 1) and the
VHDL DID, DI-EGDS-80811 (Ref. 2). The need for VHDL
descriptions of all application-specific integrated circuits
and all digital electronic components on the DoD qualified
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products list is discussed. The required structure and con-
tents of VHDL descriptions provided to the Government, as
defined by the VHDL DID, are presented. In particular, the
requirement for both structural and behavioral models of
each component of an electronic subsystem is described.
This chapter provides guidelines to be used to tailor the
VHDL DID and discusses an example of atailored VHDL
DID. This chapter also contains required annotations for
VHDL models.

Chapter 5 contains a description of the construction and
use of behavioral VHDL models. Common techniques used
to create behavioral VHDL models, specify the timing for
behavioral models, and annotate behavioral models are de-
scribed. Also discussed are the usefulness of behavioral
models in top-down design and the simulation of models
with mixed levels of abstraction.

Chapter 6 discusses the construction and use of structural
VHDL models. Common techniques used to create structur-
a VHDL models, including automatic synthesis and sche-
matic capture, are described. Applications of structural
models for hybrid model simulation, physical design, test-
ability analysis, and annotation with layout and testability
information are also described in this chapter.

The preparation of VHDL models for simulation is de-
tailed in Chapter 7. The process of configuring amodel from
libraries of component descriptionsis described. Techniques
that support the interoperability of models are emphasized.
In component libraries these models can be combined freely
to provide hybrid structural and behavioral models of sys-
tems. The development of test benches and test vectors to
check the correctness and completeness of the model rather
than the development of test vectorsto check the correctness
of the component design isdiscussed. Also discussed arethe
use of parameterized timing models and the selection of tim-
ing options for simulation.

Chapter 8 discusses issues surrounding VHDL modeling
of the test and diagnostic functions of digital electronic sys-
tems. This chapter describes measures of and techniques for
testability and describes different levels of testability based
on the |IEEE 1149 hierarchy of testing interfaces. The use of
behavioral modeling to verify that the test bus and test con-
troller systems respond properly to error conditions detected
by on-chip BIT without requiring gate-level implementation
detailsis emphasized. The use of detailed structural models
as the starting point for built-in test structure generation,
such as boundary scan, is discussed. This chapter also em-
phasizes that detailed structural models are necessary for
evaluation of many testability measures.

Chapter 9 describesthe preparation of aVHDL model for
delivery to the Government. The contents and organization
of the files delivered to the Government, as specified in the
VHDL DID, are described. The files that must be delivered
include not only the VHDL source models but also test vec-
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tors, annotations, certain other external files, and documen-
tation. Chapter 9 also includes recommendations for VHDL
model style and recommendations for naming files and or-
ganizing libraries.
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CHAPTER 2
HARDWARE DESCRIPTION CONCEPTS

As digital electronic systems approach complexity levels of hundreds of millions of devices, the hardware archi-
tect needs techniques to reduce the design complexity to an understandable level without eliminating any design
detail. Two mechanisms used to control complexity are hierarchy and abstraction. Techniques that create models
of hardware by using hierarchy and different levels of abstraction are described. The concepts of structural and
behavioral models of digital electronic systems are essential to very high-speed integrated circuit (VHSC) hard-
ware description language (VHDL) modelsthat comply with the VHDL data item description (DID); these concepts
are described in this chapter. Models with mixed levels of abstraction, in which a hierarchical model of a system
contains behavioral elements at different levels of abstraction, are discussed. Also discussed are the uses of sSimu-
lation to support functional correctness checking and perfor mance evaluation. Examples of these concepts are pre-

sented.

2-1 INTRODUCTION

A hardware design is usually developed by constructing a
series of models that become less abstract (and thus more
implementation specific) as the design process progresses.
This iterative design process is known as top-down design.
The goal of this process is to allow the hardware architect
the flexibility to construct and evaluate models of very dif-
ferent design alternatives rapidly during the early stages of
the design process. In the later stages of the process, the
models become more detailed, more accurate, and more dif-
ficult and expensive to change and evaluate. Thus in these
later stages the architect cannot explore as many options.

Before a hardware design begins the project manager
must specify milestones, i.e., when models of the design are
to be completed, verified, and evaluated. Evaluation occurs
as part of atradeoff between different designs or as part of
the verification of the correctness of the design. Models may
be verified by simulating the model s and comparing the ssim-
ulation results with expected results or against each other.
When the project manager specifiesthe milestones, heor she
must clearly indicate for each milestonethe level of abstrac-
tion of the model to be delivered, the approach to verifica
tion to be used, and the types of evaluationsto be performed
on the model. For a military contract these milestones are
specified in the contract data requirements list (CDRL) and
its associated DIDs. This chapter discusses some possible
levels of abstraction that can be provided for hardware mod-
els. This chapter also describes the two types of models
identified in subpar. 10.2.1 of the VHDL DID (Ref. 1): be-
haviora and structural models. Discussion of design meth-
odologies is beyond the scope of this handbook.

Hierarchy is a method of controlling the complexity of
hardware models. A hierarchical description decomposes a
hardware module into modules of lesser complexity and
specifies how these modul es are connected together. A mod-
ule represents a logical or a physical part of a larger hard-
ware system. Interconnections represent the electrical
connections between modulesthat are used to carry informa-
tion. Hierarchies can be organized functionally or physical-
ly. Hierarchy also provides a means for incrementally

developing and validating the design in atop-down fashion.
In a top-down design process the hardware is partitioned
into a collection of interconnected modules, behavioral
models are created for each of the modules, and the com-
plete model is verified. A second iteration of design is per-
formed by partitioning each of the top-level modules into
their components and then verifying the refined model.

Both behavioral and structural models can be devel oped
for the same digital system. These models serve different
purposes. A behavioral model describes the functions and
timing of the system independently of any specific imple-
mentation. Subpar. 10.2.1 of the VHDL DID (Ref. 1) re-
quires delivery of a behavioral VHDL model of the entire
system and delivery of a behavioral model of each module
of the system. A behavioral model is often classified in
terms of itslevel of abstraction, which is determined by the
functions it performs, the data types used in the model, and
the level of granularity of the events that determine its tim-
ing.

A structural model describes the physical structure of a
specificimplementation by specifying components and their
interconnections. Components are described either structur-
ally or behaviorally. Structural models of components create
another level of hierarchy. A component of astructural mod-
€l described behaviorally is called aleaf module. The level
of abstraction of a structural mode! is the same as the level
of abstraction of itsleaf modulesif the leaf modulesall have
acommon level of abstraction. If astructural model has |eaf
modules with different levels of abstraction, the structural
model isamixed level of abstraction model. Subpar. 10.2.1
of the VHDL DID (Ref. 1) requires delivery to the Govern-
ment of astructural VHDL model of ahardware system. The
leaf-level models of the structural model must meet specific
requirements described in the VHDL DID. In the top-down
design process the behavioral models at a given level be-
come the reference models for the various choices of struc-
tural models at that level. These intermediate behavioral
models should be delivered along with the subsequently cre-
ated structural models.
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2-2 LEVELSOF ABSTRACTION IN MOD-
ELSOF DIGITAL ELECTRONIC SYS-
TEMS

2-21 OVERVIEW

Several levels of abstraction are commonly used during
the design of digital electronic systems. There are no hard
and fast boundaries between levels, but standardization ef-
fortsand common usage are beginning to develop widely ac-
cepted definitions. For example, Institute of Electrical and
Electronics Engineers (IEEE) Std 1164 (Ref. 2) defines data
types and functions for the gate level of abstraction. The
VHDL initiative toward ASIC libraries (VITAL) (Ref. 3)
definesthe level of granularity of timing for thislevel of ab-
straction.

Fig. 2-1 illustrates the relationship between structural,
functional, and timing representations. Fig. 2-1 also shows
three orthogonal axes of hardware description: functional,
structural, and timing.

In Fig. 2-1 the origin represents little or no fidelity in the
model; the fidelity of the structure, function, and timing as-
pects of the model increase along their respective axes. If
any one of the three axesis deleted, one plane remains. Thus
the three planes that can be created are also important. Be-
havioral models include function and timing but provide no
fidelity in their representation of structure. This lack of
structural fidelity does not mean that the behavioral models
do not have structure but that the structure of a behavioral
model does not faithfully represent the physical structure of
the hardware being modeled. Similarly, performance mod-

els faithfully represent the structure and timing of a hard-
ware system but do not represent the functionality of the
hardware being modeled with any fidelity. Thefinal planeis
that of functional models with structure but without any fi-
delity in the timing of the system. Delta delay models, i.e.,
the delay of an operation is represented with the smallest
possible delay describable in VHDL, are used for this pur-
pose. In atop-down design the designer develops a series of
models of the system with increasing fidelity. Fig. 2-1 is
similar to Gagski’'s Y-chart (Ref. 4) but (following the
VHDL DID) does not distinguish between structural and
functional domains. Instead it distinguishes timing as a sep-
arate axis.

Table 2-1 lists some of the levels of abstraction in com-
mon use. (Table 2-1issimilar to other tablesin the literature
(Refs. 5, 6, and 7).) In atop-down design process the hard-
ware architect starts at the level of abstraction that makes
sense for the design problem to be solved. Models at lower
levels of abstraction are used for the incremental refinement
of themodel. The gatelevel isthe lowest level of abstraction
typically usedinaVHDL design. At thelowest level thedig-
ital electronic systemisnot treated asadigital system at all.
Instead the circuits are modeled as analog devices, and the
waveforms produced by the system are currents and voltag-
es, not logic values. Although there has been experimental
work in modeling analog systems using VHDL, it is not
common practice. Other tools, such as SPICE (a public do-
main integrated circuit simulation program), are used at this
level of modeling.

Function
DELTA
DELAY
BEHAVIORAL MODELS
MODELS Fidelity
Fidelity Structure
Fidelity
PERFORMANCE
MODELS
Timing

Figure2-1. Functional Models, Structural Models, and L evels of Abstraction
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TABLE 2-1. FEATURES OF BEHAVIOR, STRUCTURE, AND TIMING AND DIFFERENT
LEVELSOFABSTRACTION

LEVEL OF
ABSTRACTION

TYPICAL BEHAVIORAL
MODEL FUNCTIONS

TYPICAL STRUCTURAL
MODEL COMPONENTS

TYPICAL TIMING
MEASURES

Network Message send Processors memories Message response time
Message receive Network elements

Algorithmic Signal processing Processors Throughput
Primitive operations Memories
(e.g. filter, fast Fourier transform) Busses

Instruction Set Instruction level functions Program-accessible registers | Instruction times

Architecture (e.g. Add, Mpy)
Register Transfer Register-arithmetic and logic unit Registers Clock times
(ALV) Internal busses

Register operations ALUs
(e.g. Load Accumulator)

Gate Boolean operations Gates Gate delays
(e.g. AND, OR, NOT) Flip-flops

Analog Differential equations Transistors, resistors, etc Actua time

2-22 NETWORK MODELS

The highest level of abstraction represented in Table 2-1
is the network model, also known as a processor memory
switch (PMS) model (Ref. 8). The primitive components of
astructural model at thislevel of abstraction are processors,
memories, and switches; switchesincludeinterface modules
as well as switching components in a switched network or
routing componentsin a packet switching network. Thetime
units used are application specific but are related to the re-
sponse time of the hardware to application stimuli and to
throughput rates for application-specific units of work. This
level of model is usually developed in order to make
tradeoffs between alternative system architectures and to as-
sess the risk of a design by finding potential bottlenecks or
weak pointsin the design. It may also be used as a proof of
concept to demonstrate that an architectural concept isfeasi-
ble. Thislevel of model may also be used to specify interface
protocols for components and to demonstrate that the com-
ponents will be able to work together. A model at this level
may become the arbiter for deciding whether variations in
designswill be tolerated.

Thisisthelevel of abstraction at which two special forms
of VHDL models are often created and used: performance
models and interface models.

2-2.2.1 Performance Models

Performance models at this level are used to understand
and balance the processing load and the input/output (1/0)

requirements of multiprocessor systems and their intercon-
nects.

Performance models may provide only timing informa-
tion and thus may not simulate the functions of the system.
The designer can use these modelsto estimate responsetime
and component utilization and to find potential performance
bottlenecks in a design.

A performance model is useful for demonstrating the fea-
sibility of a system architecture, but it is not a sufficient be-
havioral model for delivery under the terms of the VHDL
DID. However, a contract monitor could require a perfor-
mance model during the concept exploration stage of the de-
velopment of aweapon system.

2-2.2.2 Interface models

Interface models* combine high-level and incomplete
models of the processor and memory components with de-
tailed and complete bus or network interface modules. The
model of aprocessor used in an interface model is designed
to provide appropriate workloads for the busses or intercon-
nectsin termsof the size and frequency of messages sent and
received. On the other hand, the model of the interface is
very detailed, and the function and timing are accurate spec-
ifications of the interface protocol.

Even though an interface model is useful for demonstrat-
ing the compatibility of components, it isnot asufficient be-
haviora model for delivery under the terms of the VHDL
DID. However, acontract monitor could request aninterface
model during the concept exploration stage of the develop-
ment of aweapon system.

*These models are also known in industry as bus functional models.
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2-23 ALGORITHMIC MODELS

An algorithmic model describes the functions of asystem
in a“program-like” or algorithmic manner. Because the in-
puts and outputs of an algorithmic model are not usually de-
scribed at the bit level, an agorithmic model will not
necessarily provide a completely accurate model of the ex-
ternal interface to the system. However, it will provide the
same overall functionability as a register-transfer-level
(RTL) or gate-level model. For example, an algorithmic de-
scription of afloating-point processor performs all the func-
tions of the processor but uses a simulator-dependent
representation of the floating point numbers. If the floating
point format of the simulator is different from the floating
point format specified for the system being designed, the a-
gorithmic model may not produce the same answers, even at
the abstract level, asthe hardware being designed. However,
the values produced by the simulator would be accurate
enough to evaluate the quality of the design. Thus an algo-
rithmic description can use the primitive data types and op-
erations that the simulator provides as away to simplify the
description and increase the speed of the simulation at the
cost of precision, accuracy, and the use of formats that are
potentialy different from the actual hardware to be devel-
oped.

An algorithmic model can be used to verify that the func-
tions of a digital system are correct, but depending on the
number representation used, it may not provide the bit-accu-
rate results needed to verify outputs from the simulations of
more detailed models.

2-24 INSTRUCTION SET ARCHITECTURE
MODELS

An instruction set architecture (ISA) model includes the
complete set of instructions recognized by a given processor
(Ref. 8). An ISA model provides the externaly visible state
and functions that the processor can perform. The timing of
an |SA moded is typically defined in terms of the times re-
quired to perform each of the instructions of the processor
instruction set. This timing may be expressed in terms of
processor clock cycles or in absolute time, e.g., microsec-
onds. ISA models can support simulated execution of soft-
wareif the compilers and operating system load modules are
available.

An ISA model accurately describes al the functions and
data types provided by the hardware that are accessible to
the user. In particular, acorrect ISA model of aprogramma-
ble device correctly executes any valid program for the de-
vice. Thus an ISA model of a programmable device can be
used to debug software written for that device, and inputs
and outputs of an ISA model can be translated into forms
that are completely compatible with more detailed models.
An ISA model of a programmable subsystem may therefore
be used in combination with more detailed models of other
subsystems. | SA models are appropriate forms of behavioral

models for delivered systems because they are accurate to
thebit level and thus are compatiblewith both the behavioral
and structural models of all adjacent components.

2-25 REGISTER-TRANSFER MODELS

A register-transfer-level model describes the functions
and data types accessible to the user of the system and in-
cludes descriptions of the internal memory (or registers) and
the internal data paths of the hardware. Some registersin a
typical central processing unit (CPU) are accessible to the
programmer and therefore are part of an |SA description, but
some registers may not be directly accessible to the pro-
grammer, such as a memory address register, cache memo-
ry, or microcode instruction register. This internal memory
structure is part of what distinguishes different implementa-
tions of the same architecture and thus is not appropriate in
an 1SA model except as an aid to understanding the model.

Register-transfer-level models use arithmetic and logical
operations such as add, subtract, and compare. These opera-
tions access data in registers and return results to registers.
Since the registers are clocked memory elements, the clock
timeisthe key timing measure.

The register-transfer-level model is a particularly impor-
tant class of models because commercialy available hard-
ware synthesis technology can be used to generate detailed
integrated circuit designs from appropriate register-transfer-
level models. Synthesis of gate-level structural models from
register-transfer-level modelsis discussed in Chapter 6.

2-26 GATE-LEVEL MODELS

Gate-level models arethe lowest level of abstraction gen-
eraly modeled using VHDL. Gate-level models are struc-
tural models constructed with primitive elements (also
known asthe | eaf-level modul es) that represent Boolean log-
icfunctions, e.g., AND, OR, NOT, and basic logic functions
such as flip-flops and multiplexors. |EEE Std 1164 (Ref. 2)
provides a standard set of primitive functions and data-type
definitions for gate-level models. The VITAL initiative
(Ref. 3) isworking on astandard set of timing definitionsfor
thislevel of model. Thetypical timing measuresfor thislev-
el of abstraction are gate delays, which are dependent upon
the technology used to implement the design and may also
be parameterized to reflect the ambient temperature of the
device, the power applied to the device, and the layout of the
circuit in terms of both feature size and the lengths of the
wires or vias connecting the circuits. Gate-level models are
considered low-level structural models because the behavior
of the leaf modules in these models is smple and well-un-
derstood. Structural models are discussed in par. 2-4. Gate-
level models are typically technology dependent, particul ar-
ly with respect to timing. They are the basis for application-
specific integrated circuits (ASIC) foundry sign-off, where
they are used to verify the behavior of the integrated circuits
that will be manufactured.
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2-2.7 USESOF ABSTRACTION AND HIERAR-
CHICAL DECOMPOSITIONIN THE DE-
SIGN PROCESS

During the process of designing asystem, the system may
be represented at several levels of abstraction. “ Top-down
design” and “bottom-up design” refer to the sequence in
which models at different levels of abstraction and different
levels of hierarchical decomposition are developed. When a
new model of a design is to be created, the designer can
choose to define a new level of hierarchy or to change the
level of abstraction, or some combination of these approach-
es can be chosen. Top-down design isthe process of (1) par-
titioning a module into submodules, (2) defining the
interfaces between the submodules, (3) allocating resources
and requirements to those submodules, (4) verifying that the
partitioned form of the design is consistent with the unparti-
tioned design in both function and performance and that the
resource and requirements constraints have been met, and fi-
nally (5) recursively applying the same process to the com-
ponents. During this process the design evolves from the
highest level of abstraction to thelowest level of abstraction.

This process can be captured in VHDL. To do so, a be-
havioral model of amoduleis created and annotated with at-
tributes that reflect quantitative resource and requirements
budgets. The partitioning of the module is represented by
converting the behavioral model into a structural model, in
which the components of the structural model define the
submodules and the ports and port mappings specify thein-
terfaces between the submodules. Verification of the design
isdonein VHDL through, for example, simulation. VHDL
provides a strong type-checking capability, which aids veri-
fication. VHDL tools can check the consistency of theinter-
faces between submodules at analysis time.

Bottom-up design is the process of creating higher level
modelsby connecting together known lower level models. A
classic example of bottom-up design is the process of creat-
ing combinational logic functions by connecting gate-level
functions. VHDL supports bottom-up design with structural
models, in which the known lower level models are speci-
fied by component declarations and the interconnections of
the components are specified by the port maps in the com-
ponent instantiation statements.

The process of transforming a model at one level of ab-
straction into amodel at alower level of abstractioniscalled
synthesis (Ref. 9). Refining the hierarchy of a structural
model is an effective way to transform a high-level model
into a low-level model. For example, an ISA model can be
converted into a register-transfer-level model by cresting a
register-transfer-level model for each leaf moduleinthe ISA
description. The program-accessible registers in the 1SA
model are defined as physical components, and the internal
busses connecting these registersand the AL U are specified.
The implementation of the instruction fetch and decode
mechanisms and the trandlation of a logical address to a
physical addressisdefined interms of physical components.

Alsothe RTL model of the ALU iscreated. Thusamore spe-
cific model is created by replacing the top-level behavioral
model with astructural model or withamodel at alower lev-
el of abstraction. Thisprocessisdone most easily if thefunc-
tional hierarchy of the behavioral model is similar to the
physical hierarchy of theimplementation. For the Sobel pro-
cessor described in subpar. 2-3.3, the functional decomposi-
tion is consistent with a physical decomposition at the top
level. In particular, the four filter functions also occur as
physical components in the parallel implementation. Syn-
thesis is a difficult process because it is a many-to-many
mapping. For example, a behavioral model may have two
separate functionsthat compute memory addresses and sum-
ming pixels, but the corresponding RTL model may use the
sameALU for both. On the other hand, callsto the same pix-
el add routine may be allocated to different ALUsto achieve
parallelism.

The most common way to check the functional correct-
ness of ahardware model isthrough simulation. The VHDL
approach to checking functional correctness uses a test
bench. A test bench isapart of aVHDL model that reads or
generates a set of test vectors and sends them to the module
being tested. The test bench collects the responses made by
the module to the test vectors and checks the results pro-
duced by the module against a specification of correct re-
sults. Simulation can be used in this way to verify that the
model isfunctionally correct at |east to the extent that it pro-
vides correct responses to the input test vectors.

Simulation can also be used to estimate the performance
of the finished hardware. Because a behavioral model often
includes timing information, simulation can be used to veri-
fy that the model performs within its performance limits
over a variety of externa test conditions, e.g., changes in
temperature or changesin voltage. The simulation resultsin
trace fileslisting the names of signals, the times that the sig-
nals change values, and their new values. These trace files
can be postprocessed to estimate the throughput of the hard-
ware, the delay times from input to output, and the amount
of time that different components are kept busy during the
simulation. Simulation results can be used to identify perfor-
mance problems in the hardware design, such asinsufficient
throughput, excessive response time to stimuli, and the pos-
sible race conditions that make the behavior of the hardware
vary erraticaly.

2-3 BEHAVIORAL DESCRIPTIONS OF
HARDWARE DESIGNS

2-31 THE PURPOSE OF BEHAVIORAL DE-
SCRIPTIONS

Behavioral models provide a description of the function
of a hardware system independent of any particular imple-
mentation. A behavioral model isa“black box" in the sense
that any internal hierarchy or structureis provided as an aid
to description or understanding and is not necessarily meant
to serve as a definition of the organization of any imple-
mentation.
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Behavioral models play a key role in top-down system
design and provide an important form of documentation of
a hardware system. Designers can use behavioral models of
subsystems to evaluate the performance and functional cor-
rectness of the system architecture. In these models, timing
budgets are used in the subsystem behavioral model. Simu-
lations of the behavioral models of the subsystems can
demonstrate that the subsystems meet their timing budgets
and therefore demonstrate that the system architecture is
feasible.

Designers can use behavioral models to construct proto-
types of systems before an implementation has been speci-
fied. Prototypes help validate a proposed design by
allowing the designer to understand the functions, timing,
and interactions of the proposed hardware subsystems in a
system context. Behavioral models can help the customer
understand the potential risks associated with particular
implementation decisions. For example, a behavioral model
may indicate which parts of a design are likely to be the
slowest, the largest, or the most complex. Theserisk indica-
tors can help the customer evaluate proposed implementa-
tions.

Behavioral models also play an important role in the ver-
ification of an implementation by defining correct response
to stimuli. A designer creates a set of functional test stimuli,
or test vectors, and simulates the behavioral model using
the test vectors to generate the correct responses to the test
vectors. The designer then creates an implementation model
and simulates the implementation model using the same test
vectors used to simulate the behavioral model. Finally, the
designer verifies that the implementation model is consis-
tent with the behaviora model by comparing the results
generated by the implementation model with the results
generated by the behavioral model. If the results are equiva
lent, the implementation model represents a correct imple-
mentation of the functions and timing of the behavioral
model.

Commercial computer-aided design (CAD) tool vendors
currently provide or sell synthesis tools that accept register-
transfer-level behavioral models and generate gate-level
structural models and chip designs including logic designs
and layouts. Research is continuing on raising the level of
abstraction of the input to synthesis tools. Behavioral mod-
els that are compatible with synthesis tools are particularly
valuable to the Department of Defense (DoD) in system
maintenance, upgrade, and replacement of obsolete parts.
For example, if the DoD needs to replace an electronic cir-
cuit that is no longer available and has a complete VHDL
behavioral description of the circuit compatible with a syn-
thesis toal, it may be possible to generate at relatively low
cost a replacement circuit that is optimized and validated
with respect to some currently available fabrication process.

By capturing the system in an implementation-indepen-
dent, simulatable form, behavioral models provide an
important starting point for system upgrades and improve-
ments to add functions, reduce size, weight, or power, and
keep systems up with the state of technology advances.
Behavioral models also provide a model for hardware that
concesl s the proprietary implementation details. This capa-
bility allows the implementor to protect the implementation
design while completely describing the system function.

2-6

The behavioral model of a proprietary hardware system
may include implementation-specific information such as
timing, power consumption, weight, or heat dissipation
while protecting the implementation details.

Behavioral models at a high level of abstraction are also
usually more efficiently smulated than detailed structural
models. High-level behavioral models can often achieve
simulation times two or three orders of magnitude shorter
than those for detailed structural models. Generally, smula-
tion times are closely related to the number of events sched-
uled by the simulator. Reducing the number of events by a
factor of N is likely to decrease the simulation time by a
factor greater than N. This decrease is possible because (1)
VHDL simulators typically store events in queues, (2) sim-
ulation time is the product of the number of events simu-
lated and the average time to insert events in the queue, and
(3) the average insertion time is a function of queue size.
Detailed structural models may require hundreds, thou-
sands, or even millions of events to be scheduled to com-
plete a function; a high-level behavioral block may be able
to compute the same function in a single event. To have a
useful behavioral model of a subsystem that also improves
simulation speed, the model must be compatible with both
structural and behavioral models of all adjacent subsystem
components. Achieving this requirement allows the mod-
eler to mix and match structural and behavioral models in
order to configure a simulation model emphasizing a partic-
ular portion of the system. The modeler uses a detailed
structural model of the part of the system that is of interest
and high-level behavioral models of other parts of the sys-
tem to minimize simulation time. These mixed abstraction
models are described in greater detail in par. 2-5.

2-3.2 THE USE OF HIERARCHY IN BEHAV-
IORAL DESCRIPTIONS

Because the behavior of a digital electronic system may
be very complex, someform of hierarchy and structureis of-
ten necessary to make a given behavioral model comprehen-
sible to humans. The hierarchy of a behavioral description
should be fashioned to improve understanding rather than to
describe an implementation. For this reason, a modeler
should prefer decomposition of a behavioral model into
functions and subfunctions over physical decompositions
into boards, integrated circuits, registers, and gates. One part
of an object-oriented hierarchy style is a definition of func-
tionsthat provide all accessto adata structure. VHDL pack-
ages are well suited to this style of decomposition. This
approach supportsinformation hiding since the details of the
data structure are not known to the user, only to the develop-
er of the access routines and the data structure. For example,
memory is a data structure that could be modeled in VHDL
using either avery large array or accesstypes. A package of
functions for reading and writing to the memory could be
used to provide the same interface to either implementation
and could be expanded to include functions for computing
the physical address of aword in memory by using the dif-
ferent addressing modes of the processor. Applying object-
oriented techniques to VHDL is currently being researched
(Ref. 10).
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InaVHDL context the hierarchy of behavioral modelsis
specified in terms of the hierarchy of function calls, which
may be used to support object-oriented programming fea-
tures, particularly data abstraction and information hiding.
The hierarchy of function calls also may be used to define a
decomposition of the functional requirements for the sys-
tem being modeled.

Behavioral models of a system may be structured hierar-
chically for the following reasons:

1. Hierarchical models help to simplify and organize a
behavioral model into comprehensible sections. A hierarchi-
cally structured behavioral model reflects good software en-
gineering practice by partitioning the descriptioninto smple
functions that may be reused. A good behavioral model em-
phasi zes comprehension, even at the cost of some efficiency.
VHDL provides several mechanisms to improve the com-
prehensibility of behavioral models including functions and
the overloading of infix operators so that common mathe-
matical functions can be defined by the user for different
data types. These mechanisms are described in Chapter 3.

2. Hierarchical behavioral models can reuse functions
and procedures. The sharing of functions and procedures
within and between components is an important aspect of
good modeling practice. VHDL provides functions, proce-
dures, and packages containing data-type definitions, func-
tions, and procedures as mechanisms that promote reuse
both within and between processes. These mechanisms are
described further in Chapter 3.

3. Hierarchical models can make use of graphical block
diagrams as an aid to understanding the textual behavioral
model. This approach is particularly valuable when a CAD
tool is used to generate a VHDL behavioral model from a
graphical block diagram.

2-3.3 EXAMPLE OF A BEHAVIORAL DE-
SCRIPTION
In this subparagraph a hierarchical behavioral model of
an edge detection processor, from Ref. 11, is described.
Edge detection is a common filtering procedure used in
many military and civilian image processing systemsinclud-
ing automatic target recognition systems. Fig. 2-2 shows a

fEp— e —

(B) Edge Magnitude Outpuf Image

Figure 2-2. Example Input Image and Edge Magnitude Output of an Edge Detection Processor

(Ref. 11)
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test input image and the edge magnitude output of such a
system.

Fig. 2-3 showsthe hierarchy of function callsfor abehav-
ioral model of the edge detection system. At the top of the
hierarchy is the edge detection processor, which is a behav-
ioral model. This process calls six functions. the horizontal
filter, the vertical filter, the left diagonal filter, the right di-
agonal filter, the magnitude function, and the direction func-
tion. The first four of these functions in turn make use of
another function, the weight function.

The behavioral model of the edge detection system makes
use of data abstraction to simplify the modeling of the sys-
tem. The VHDL definitions of the data types for this behav-
ioral model are shown in Fig. 2-4. This VHDL package
declaration describesthe pixel datatype, theindex typesthat
are used to address pixelsin theimage, and the data type for
the image, which is defined as a two-dimensional array of
pixels. The directional output of the system is described as
an enumerated type that lists the eight points of the compass.

Left
Diagonal
Filter

Vertical
Filter

Horizontal
Filter

Weight
Function

Edge Detection
Processor
(Behavioral)

A scan line is defined as a subtype of the image data type.
Pixels are defined in terms of the built-in data-type integer.
During implementation the definitions of the pixel datatype
can be refined to specify the number of bitsin the word. Us-
ing data abstraction the developer allows this implementa-
tion decision to be abstracted out of the behavioral model.
Fig. 2-4 aso specifies the data types for the parameters of
the functions used to implement the system including the
four filter functions, the magnitude and direction functions,
and the weight function.

Fig. 2-5 specifies the interface to the edge detector in
VHDL, i.e, as an entity interface. The input to the system
is a sequence of pixels that are loaded in scan line order.
The output from the system is a pair containing magni-
tude and direction values for each pixel in the output.
This entity interface is common to both behavioral and
structural architecture bodies and subsequently can be
configured with either.

Right
Diagonal
Filter

Direction
Function

Magnitude
Function

Figure 2-3. Hierarchy of Functionsin a Behavioral Model
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package i mage_processing is

constant numlines: natural := 512;

constant line_len: natural := 512;

type x_index is range 1 to line_len;

subtype x_out_index is x_index range 2 to line_len - 1
type y_ index is range 1 to numlines;

subtype y out_index is y_index range 2 to numlines - 1;
subtype pixel is integer;

subtype filter_out is integer

type direction is (N, NE, E, SE, S, SW W NW;

type image is array(x_index, y_index) of pixel

type scan_line is array(inmage' range(1)) of pixel

type pix3 is array (1 to 3) of pixel

function horizontal _filter

( A image;
. x_index;
J: y_index )

return filter_out;
function vertical _filter

( A image;
I : x_index;
J: y_index )

return filter_out;
function | eft_diagonal filter

( A image;
| : x_index;
J: y_index )

return filter_out;
function right_diagonal _filter

( A image;
. x_index;
J: y_index )

return filter_out;
function nagnitude

( HV,LD,RD: filter_out)

return pixel
function direct

( HV,LD,RD: filter_out)

return direction;
function wei ght

( X1, X2, X3: pixel)

return filter_out;
function shift

( A pixs3;

B: pixel)

return pixs3;

end i mage_processi ng;

Figure 2-4. Image Data Abstractions and Functions
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The sobel
-- entity declarations,
-- the algorithmlevel

i brary sobel al gorithm

nodel

algorithmlibrary contains the packages,
and architecture bodies for
of the sobel

processor.

use sobel al gorithminmage processing.all;

use sobel algorithmtimng.all;

-- The IEEE library and the 1164 standard | ogic

for the cl ock

l'ibrary | EEE

use ieee.std logic _1164.all;
entity edge detector is

port (P: i n pixel;
A ock: in std_ul ogic;
E: out pixel;
D out direction );

end edge_det ector;

package are used in the al gorithm node

only

Figure2-5. Interface Specificationsfor an Edge Detection Processor

This entity interface references two VHDL libraries:
the |EEE library, which contains the standard logic pack-
age, and an application-specific library caled
sobel _al gorithm This entity interfface uses one
package from this second VHDL library, the one contain-
ing data-type definitions and function specifications for
this application. The clock signal uses the st d_ul ogi c
data type from the |EEE package. Separating the applica-
tion-specific details such as the scan line size and number
of scan lines per image frame into a package makes it
easier to reuse the design entity in different applications.
Collecting these details in one place also makes it easier
to modify the entire design, should that ever be necessary.

Fig. 2-6 describes the behavior of the edge detector in
VHDL. The architecture body containsasingle process. The
body of the process consists of two sets of nested loops. The
first set of nested loops creates an internal buffer for aframe
of theimage by reading the pixelsin scan line order, one pix-
el per clock. The timing of the input is controlled using the
ri si ng_edge function that is specified in the IEEE Std
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1164 standard logic package (Ref. 2). The second set of nest-
ed loops produces the outputs in scan line order by calling on
functions to compute the output values. The functions called
by the second loop refer to pixels stored in the internal frame
buffer.

The output of pixelsin the second loop is delayed by the
pi xel _out put _del ay, which isaconstant in the timing
package. This approach to implementation-independent tim-
ing hasits limitations. In this example, this abstract behavior
does not capture some of the benefits of pipelining, in which
some resulting pixels may be sent out of the edge detector be-
fore some input pixels arrive.

Fig. 2-7 describes three of the functions from the image-
processing package that are used by the edge detector: the
horizonta filter, the vertical filter, and the weight function.
The calling relationship between the horizontal and vertical
filters and the weight function shown in Fig. 2-3 isthe result
of theweight function callsin the bodies of the horizontal and
vertical filters. The other functions in the image-processing
package (not shown but required) are implemented in asimi-
lar manner.
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archi tecture behavior of edge detector is

begi n

sobel : process

variable A inmage; -- Internal frane buffer for inage

variable H filter _out; -- Tenporary storage for results of
-- horizontal filter

variable V: filter _out; -- Tenporary storage for results of
-- vertical filter

variable LD filter _out; -- Tenporary storage for results of
-- left diagonal filter

variable RD: filter _out; -- Tenporary storage for results of

-- right diagonal filter

begi n

-- Construct a conplete inmage frame by reading
-- in the pixels in scan |ine order
for i in x_index |oop
for j in y_index |oop
wait until rising_edge(d ock);
Al j) =P
end | oop;
end | oop;

assert (false) report "array read in";

wait for pixel output del ay;
-- For each pixel in the output inage
-- conpute the values of all the filters,
-- then use these filter values to conpute
-- the nmagnitude and direction outputs
for i in x_out_index |oop

for j in y_out_index |oop

ma|t until rising_edge(d ock);

H := horizontal fl|ter(AI,j)

V :=wvertical filter(Ai,j);

LD : = | eft _di agonal fllter(A i, 1),
RD := right _diagonal filter(Ai,j);

E <= magnitude(H V, LD, RD);
D <=direct(H VLD RD);
end | oop;
end | oop;

end process sobel;
end behavi or;

Figure 2-6. Behavioral Model for an Edge Detection Processor

2-11
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package body inmage _processing is
function horizontal _filter

( A image;
. x_index;
J: y_index )
return filter_out is
begi n
return weight( A(l-1,J3-1), A(l,J-1),
- weight (A(1-1,J3+1), A(l,J+1),
end horizontal _filter;
function vertical _filter
( A image;
. x_index;
J: y_index )
return filter_out is
begi n
return weight( A(l-1,J3-1), A(l-1,J),
- weight (A(lI+1,J3-1), A(l+1,J),

end vertical _filter;
function wei ght

( X1, X2, X3: pixel)

return filter_out
begi n

return X1+ 2 * X2 + X3;
end wei ght;
function shift

( A pix3;

B: pixel)

return pix3 is
begi n

return A(2 to 3) & B;
end shift;
—— Other functions are onitted
end i mage_processi ng;

is

A(l+1,J-1))
A(l+1,J+1));

A(l-1,J+1)
A(l+1,J+1) );

Figure 2-7. Example Functionsfor a Behavioral Model

2-4 STRUCTURAL DESCRIPTIONS OF
HARDWARE DESIGNS

2-41 THE PURPOSE OF STRUCTURAL DE-
SCRIPTIONS

The primary purpose of a structural model is to capture
the physical organization of a particular implementation. To
capture the physical organization, the hierarchy of a struc-
tural model should follow the hierarchy of the physical de-
sign. Structural models of hardware are traditionally
represented by schematic diagrams of the connections be-
tween physical components. When VHDL is used to repre-
sent structural models, VHDL components are used to
describe the physical components (such as integrated cir-
cuits and boards), and signals are used to describe the elec-
trical connections between physical components. VHDL
uses ports to describe the interfaces between signals and
components. Ports allow the reuse of components in the
same way that formal parameters allow the reuse of func-
tions.

Low-level structural models can provide detailed docu-
mentation of aparticular implementation, but because of this
implementation dependence, they are not appropriate for
specifications to be used in the competitive procurement of
new designs.

Structural models may be required in order to allow anal-
ysis of the design that is specific to the implementation. For
example, the VHDL DID requires structural modelsto have
sufficient detail to support logic-level fault simulation. Fault
sets for digital hardware are typicaly defined in terms of
failures at the bit level in the gate-level descriptions of the
hardware. To evaluate the effectiveness of a set of test vec-
tors, single-bit faults are injected into a gate-level structural
model during simulation. This faulty simulation output is
then compared to the output of the fault-free model to check
the ability of atest vector to distinguish between the faulty
and flawlessmodels. This processisdescribed in more detail
in Chapter 8.

Gate-level structural models are required to synthesize
built-in test structures. The boundary scan approach requires
that combinational logic be separated from sequentia logic
by fully observable and controllable test nodes. Computer-
aided engineering (CAE) tools are emerging that can synthe-
size the boundary scan test nodes and their interconnections
if the system separates combinational and sequential logic at
the gate level. This synthesis and its corresponding
test-vector generation require detailed structural models at
the gate level.

2-12
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2-42 THE USE OF HIERARCHY IN STRUC-
TURAL DESCRIPTIONS

Hierarchy isimportant in structural model s as a means of
conveying thelogical or physical decomposition of the hard-
ware. Subpar. 10.2.3 of the VHDL DID (Ref. 1) requiresthat
the hierarchy of a structural model follow the hierarchical
organization of the physical design. Thisorganizationisuse-
ful in several ways. A hierarchical structurethat corresponds
to the physical organization supports the design and acquisi-
tion of upgrades by identifying physical interfaces between
components that can be developed separately, and it can
document maintenance issues. For example, a physicaly
oriented hierarchical model reflects the organization of the
hardware into line-replaceable modules (LRMs). Also a hi-
erarchical structure that corresponds to the physical organi-
zation documents boundaries  between  different
technologies. A good structural hierarchy reflects the com-
position of boards into an interconnected set of integrated
circuits with specific layout and routing. This partitioning
facilitates the use of appropriate CAD toolsfor the design of
integrated circuits and the design of boards.

The interconnection of componentsin a structural model
should represent the physical interconnections. For exam-
ple, each data-carrying wire on the board should have a cor-
responding signal in the VHDL model. The relationship
between signals and wires may not be one-to-one, e.g., a
16-bit bus, which contains 16 individual wires, may be rep-
resented by asingle signal in the VHDL model. This corre-
spondence is one way of checking the consistency of the
model with the physical hardware.

The physical hierarchy for a military digital electronic
system has several levels that should be represented in a
structural model. For example, a specification of a military
system written to conform with MIL-STD-490 (Ref. 12)
partitions the system into segments and the segments into
configuration items including hardware configuration items
(HWCIs). The HWCIs are further partitioned into prime
items and critical items. A structural model of adigital elec-
tronic system should be consistent with this partitioning.

Hardware block diagrams and schematic diagrams are
graphical representations of hardware dataflow. VHDL pro-
vides mechanismsto represent this same hardware data flow
formally. When ahardware block diagram isused to provide
graphical documentation for a VHDL structural model, the
following guidelines should be observed to make the rela-
tionship between the VHDL model and the block diagram
clear and unambiguous:

1. There should be a one-to-one correspondence be-
tween the blocks in the diagram and component instantia-
tionsin the VHDL model.

2. Block names should be directly trandatable into
VHDL component instances. Either | nput Bus or
i nput _bus is acceptable.The VITAL specification rec-
ommends names that use capital letters to separate words
rather than underscores.
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3. There should be a one-to-one relationship between
interconnections in the block diagram and signals in the
VHDL source program.

4. If the interconnections in the block diagram are la-
beled, the labels should be directly trandatable into VHDL
signal names.

5. All signals referenced in a VHDL process should
have a corresponding interconnect in the block diagram.

Guideline 1 requires distinct instance labels but allows
components to be reused. For example, the edge detection
processor described in subpar 2-3.3 reuses the adder compo-
nent within all of thefilters. Guideline 2 encourages the user
to trandlate automatically graphical block names into in-
stance labels. (The block names may contain blanks that are
translated into underscores in the VHDL source program.)
Guideline 3 encourages the user to implement multibit bus-
ses and interconnects as bit vectors or higher level data
types. For example, the behavioral model of the edge detec-
tion processor uses the integer data type for itssignals. In a
structural model these signals are translated into bit vectors.
The use of single signalsis essential for the mixed level of
abstraction models described in par. 2-5.

A number of commercial CAD tools have the capabilities
to create schematic representations of VHDL structural
models and to create VHDL structural models directly from
the schematic representation of the CAD tool.

2-4.2.1 Hierarchical Decomposition Based on
Physical Elements

During design the digital electronic system is partitioned
into subsystems. At thetop level the system asawholeisde-
scribed. The next level is a partitioning of the system into
subsystems. The structural model should follow the parti-
tioning described for the system into HWCI as described in
the Level A specifications (Ref. 12). A structural model
should preserve the partitioning into HWClIs of the physical
system because it is a standard unit for acquisition.

The structural model should also be consistent with the
physical hardware at the level of the line-replaceable unit
(LRU). LRU partitioning is significant for logistics and sup-
port because it represents the basic unit used to maintain the
system in the field. Any changes in boundaries between
LRUs can have a significant effect on logistics and support;
therefore, the structural model should accurately represent
those boundaries. Furthermore, LRUs are important bound-
aries of the system for diagnostic and testing purposes. Field
maintenance personnel must be abletoisolate faultstoanin-
dividual LRU. Thus a structural model should be able to
simulate built-in test (BIT) diagnostic capabilities and inter-
facesto external test equipment at the level of its LRUSs.

Another level of partitioning that should be represented in
a structural model is the board. Partitioning the structural
model to correspond to the physical partitioning of the hard-
wareinto boards assistsin the automatic placement and rout-
ing of boards and in the thermal and power analysis of the
boards. Furthermore, delays between boards are likely to be
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much greater than delays within a specific board; this differ-
ence must be represented. In some cases the boards may be
LRUSs, so the componentsin the LRU-level partitioning and
the board-level partitioning may be the same.

Partitioning of the structural model should also corre-
spond to the partitioning of a board design into multichip
modules (MCMs) and integrated circuits (1Cs) as appropri-
ate. Different CAD tools and optimization criteria may ap-
ply a the MCM/IC level versus the board level, so
partitioning of astructural model to represent MCMscan aid
inthe synthesis, analysis, and optimization of adesign using
MCMs.

Partitioning of the structural model should also corre-
spond to the partitioning of an MCM design into packaged
very large-scale integrated (VLSI) circuits. Because pack-
aged VLS circuits are the lowest possible practical level for
repair through replacement, isolation of faultsto specific in-
tegrated circuits is an important design consideration. Also,
if the model accurately represents the boundaries of VLS
circuit packages, VLS| CAD toolscan be used to synthesize,
analyze, and optimize VLSI circuits.

Structural models for components of acircuit should also
follow the partitioning used by the CAD toolsto design the
circuit. For example, the hierarchy of the structural model of
aVLSl circuit should follow the boundaries of standard cells
or macrocells used by the CAD tool. In generd, if a CAD
tool isused to design acircuit and to generate aVHDL mod-
el automatically for the circuit, the generated description fol-
lows the hierarchy of the design. A CAD tool that flattensa
design hierarchy before producing a structural model of the
design should not be used to generate modelsfor delivery to
the Government. Using CAD tools to generate detailed and
hierarchical structural models is a recommended practice
sinceit reduces costs and hel ps to keep the model consistent
with the physical hardware.

2-4.2.2 Leaf ModulesinaHierarchical Structural
Description

If acomponent is represented by a behavioral model and
does not have a structural model, the component is called a
leaf module. Subpar. 10.2.1.1 of the VHDL DID (Ref. 1)
specifies three valid leaf module options:

1. Modules selected from a Government list of valid
uses of leaf modules referenced or contained in the contract

2. Modules corresponding to a collection of hardware
elements that together exhibit a stimulus-response behavior
but whose interaction is best modeled at the electrical or
physical level

3. Modules whose detailed design has not yet been
completed but whose behavior is required as a delivery dis-
closure at specified times during the contract.

Thefirst option for aleaf module allows the contractor to
use models from a Government source of validated models.
The Government requires VHDL models for the electronic
components delivered to it. These requirements are dis-
cussed in Chapter 4. Once these model s have been validated,
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they can be supplied to contractorsfor usein VHDL models
of hardware systemsthat use the products. The Government
and the contractor may aso negotiate to include other
VHDL models, such as models not in the qualified products
list (QPL) that are developed by the contractor or by other
Government contractors. These negotiations must be reflect-
ed inthetailored VHDL DID for the specific contract.

The second option identifies a common set of primitive
elements used in designs whose elements are not easily de-
scribed accurately with VHDL behavioral models. As de-
scribed in subpar. 10.2.1.1 of the VHDL DID (Ref. 1), these
elements include digital logic gates, analog circuit blocks,
and power supplies. Functional models of digital logic gates
are defined as part of the IEEE Std 1164 (Ref. 2) specifica-
tion of standard signal formats. This specification includes
truth tables and a resolution function for using a nine-value
state/strength logic system for AND, OR, NOT, NOR,
NAND, and XOR. This functional specification is being
augmented with timing information and standard formatsfor
back-annotation by the VITAL effort (Ref. 3).

The third option is designed to cover situations in which
the Government wants VHDL models delivered during the
design cycle, i.e., before design of al of the components has
been completed. In this case high-level behaviora models
may be used as leaf modules to specify the current state of
the design. As the design progresses into more detail, these
behavioral models are augmented with structural models.

2-43 EXAMPLESOF STRUCTURAL DE-
SCRIPTIONS

In this subparagraph two examples of structural VHDL
models are presented: one at algorithmic level and one at a
register-transfer level. The algorithmic model uses the data-
type definitions and some of the functions of the
sobel _al gorithmlibrary presented in subpar. 2-3.3.
The entity interface declarations and architecture bodies for
thislevel of model are included in thislibrary. The register-
transfer-level model uses different data-type definitions, in
which the number of bits in each word is specified. These
definitions and the entity interfaces and architecture bodies
that reference these packages are in the
sobel _structure library.

2-4.3.1 Algorithmic-Levd Structural Description
Fig. 2-8 shows a hierarchy for an algorithmic structural
model of the edge detection system described in subpar.
2-3.3. Thismodel isat the algorithmic level becausethe data
types have not yet been refined to bit vectors; therefore, the
inputs and outputs of the model are not bit-for-bit represen-
tations of theinputs and outputs of thereal device. However,
the structural model does reveal much of the physical orga-
nization of the system asit will be implemented. As shown
inFig. 2-8, thismodel continuesto use some of the elements
of the behavioral model, particularly the weight function,
and it uses the data-type definitions previously used in the
behavioral model. This structural model implements the
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Edge Detection
Processor
(Structural)

Memory Processor
(Behavioral)

Window Processor
(Structural)

Direction and
Magnitude Processor
(Behavioral)

Vertical
Filter
(Behavioral)

Horizontal
Filter
(Behavioral)

Left
Diagonal Filter
(Behavioral)

Right
Diagonal Filter
(Behavioral)

Weight
(Function)

Figure 2-8. Hierarchy of Componentsin an Algorithmic-Level Structural Model

same function but with different timings due to a pipelined
approach. The top levels of the structural hierarchy reflect
the physical partitioning used in the circuit design. At this
point the filter functions have been converted into design en-
tities, and an additional entity, the memory processor, has
been added to the design.

Structural models are often represented by hardware
block diagrams. A hardware block diagram for the edge de-
tection processor is shown in Fig. 2-9. The components are
represented by rectangles; the interconnects are shown as
lines connecting the components. Attributes may be associ-
ated with the components, interconnects, and interfacesin a
block diagram. Names are usually given to the components
and may also be given to interconnects and interfaces.
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Fig. 2-9 shows atop-level hardware block diagram of the
first-level partitioning of the edge detection processor. It
shows three interconnected components: a buffer memory, a
window processor, and amagnitude and direction processor.
The buffer memory loads the image in scan line order, one
pixel at atime. The buffer memory passes three scan lines
parallel to the window processor, as indicated by intercon-
nections P1, P2, and P3.

The window processor computes the horizontal, vertical,
and |eft and right diagonal filters. The outputs of thesefilters
are signals labeled H (for horizontal edges), V (for vertical
edges), LD (for left diagonal edges), and RD (for right diag-
onal edges). The direction and magnitude processor outputs
E, the magnitude of the edge (a measure of the level of the
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contrast between the areas separated by the edge), and D, the
direction of the edge

Raster_In

8

Memory Processor

o ¢]
oo
o ¢]

P1| P2| P3

Window
Processor
12 12 12 12
H \Y LD RD

Direction and
Magnitude Processor

D E

Figure2-9. A HardwareBlock Diagram for the
Edge Detection Processor (Ref. 11)
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Fig. 2-10 shows the VHDL structural architecture body
for the edge detector. Similarly to the behavioral architec-
ture for the edge detector shown in Fig. 2-6, thisarchitecture
uses theimage-processing package for data-type definitions.
The port maps for the component instantiations reflect the
connections shown in the block diagram, Fig. 2-9.

Just as structural models can be hierarchical, block dia-
grams also demonstrate the hierarchy. Fig. 2-11 depicts a
structural model of the window processor, which is one
component of the edge detection system shown in Fig. 2-9.
Fig. 2-11 shows the data flow for the window processor
component of the edge detector. It has three input ports la
beled P1, P2, and P3. It has four output ports labeled H, V,
LD, and RD. Theinput and output interface names are iden-
tical to the corresponding interconnect namesin the top-lev-
el block diagram to make the relationship between the
VHDL model and the block diagram clear.

Figs. 2-12 and 2-13, respectively, show the entity inter-
face declaration and the structural architecture body for the
window processor. This VHDL design unit references the
sametwo libraries asthe higher level structural model of the
edge detection processor. The port maps for this model re-
flect the connectivity shown in Fig. 2-11.

Fig. 2-14 shows the entity interface declaration for the
horizonta filter. This same interface could be used with ei-
ther a behavioral or a structural architecture body. Because
theinterface usesthest d_ul ogi ¢ datatypefor the clock,
it referencesthe st d_I ogi c_1164 package inthe | EEE
library. Similarly, since it uses the algorithmic-level data-
type specifications, it references the
i mage_pr ocessi ng packagein the
sobel _al gorit hmlibrary.

Fig. 2-15 shows a behavioral architecture body for the
horizontal filter. Since this behavioral model is designed to
be independent of any particular implementation, no attempt
has been made to optimize the number of computations or
the use of memory. However, the wei ght and shi ft
functions are used to eliminate unnecessary redundancy in
the program and improve readability. Two variables are in-
ternal to the process; they serve as buffers for the input pix-
els from two scan lines. The data in these two buffers are
used as parameters to the weight function. The behavior of
the horizontal filter is described in two parts. The first part
updates the state of the filter, which is defined by the values
of the pixel buffers NEXT_LI NE and LAST_LI NE.

The second part computes the output for the filter as the
difference of the weighted sums of the two input lines. The
function wei ght provides a common mechanism for the
computation of the weighted sum. The horizontal filter pro-
cess callsit twice, and the other filters use it aswell.
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architecture structure of edge _detector is
conponent nmem processor
port ( P: in pixel
d ock: in std_ulogic;
P1, P2, P3: out pixel );
end conponent;
conponent w ndow_processor
port ( Pl, P2, P3: in pixel
d ock: in std_ulogic;
H V, LD, RD: out filter_out );
end conponent;
conponent nmag_dir_processor
port ( H V, LD, RD: in filter_out;

d ock: in std_ulogic;

E: out pi xel

D' out direction );
end conponent;
signal P1: p|xel -- Tap onto 1st scan line buffer in Mem Proc
signal P2: pixel; -- Tap onto 2nd scan line buffer in Mem Proc
si gnal P3: pixel; -- Tap onto 3d scan line buffer in Mem Proc
signal H filter _out; -- Tenp storage for results of horizontal filter
signal V: filter_out; -- Tenp storage for results of vertical filter
signal LD: filter out; -- Tenp storage for results of left diag filter
signal RD: filter _out; -- Tenp storage for results of right diag filter

begi n
MP:  nmem processor port map (P, O ock, P1, P2, P3);
WP:  wi ndow _processor port map (P1, P2, P3, dock, H V, LD, RD;
MDP: nag_dir_processor port map (H, V, LD, RD, Cock, E D;
end structure;
Figure2-10. Structural Model for an Edge Detection Processor
P1 P2 P3
8
1 8 e 8

@
Y / / Y / Y Y
Vertical Horizontai .
Filter Filter D Filter
12 12 T 12 T 12
\Y H LD RD

Figure 2-11. A Hardware Block Diagram for the Window Processor of the Edge Detection
Pr ocessor
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-- The sobel algorithmlibrary contains the packages,

-- entity declarations, and architecture bodies for

-- the algorithmlevel nodel of the sobel processor.
library sobel _algorithm

use sobel _al gorithm i mage_processing. all;

use sobel _algorithmtimng.all;
-- The | EEE library and the 1164 standard | ogi c
-- package are used in the algorithmnodel only
-- for the clock.

l'ibrary | EEE;

use ieee.std logic 1164.all;

entity wi ndow processor is
port ( PI1: in pixel;
pP2: in pixel;
P3: in pixel;
Clock: in st d_ul ogi c;
H: out filter_out;
V: out filter out;
LD: out filter_out;
RD: out filter_out );

end wi ndow_processor;

Figure2-12. VHDL Entity Interface for the Window Processor

architecture structure of w ndow processor is
conponent horizontal filter
port ( PL1: in pixel;
P3: in pixel;
Cl ock: in std_ulogic;
H: out filter_out );
end conponent;
conponent vertical filter
port ( PL1: in pixel;
P2: in pixel;
P3: in pixel;
CI ock: in std_ulogic;
out filter_out );

end conponent

conponent | eft_di agonal filter
port ( P1: in pixel;
pP2: in pixel;
P3: in pixel;
Clock: in std_ulogic;
LD: out filter_out );
end conponent;
conponent right_di agonal _filter
port ( PI1: in pi xel ;
P2: in pixel;
P3: in pixel ;
C ock: in std_ulogic;
RD: out filter_out );
end conponent;
begi n
HF:  horizontal filter port map (P1l, P2, P3, dock, H);
VF: vertical _filter port map (P11, P2, P3, dock, V);
LDF: left_diagonal filter port map (P1, P2, P3, dock, LD);
RDF: right _diagonal filter port map (P1, P2, P3, Cock, RD);

end structure;

Figure2-13. VHDL Structural Architecture Body for the Window Processor
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-- The sobel algorithmlibrary contains the packages,
-- entity declarations, and architecture bodies for
-- the algorithmlevel nodel of the sobel processor.
i brary sobel al gorithm
use sobel al gorithminmage processing.all;
use sobel algorithmtimng.all;
-- The IEEE library and the 1164 standard | ogic
-- package are used in the algorithmnodel only
-- for the clock.
l'ibrary | EEE
use ieee.std logic _1164.all;
entity horizontal filter is

port ( Pl: i n pixel;
P3: i n pixel;
G ock: in std_ul ogic;
H: out filter_out );

end horizonial_filter;

Figure2-14. Interfacefor the Horizontal Filter

architecture behavior of horizontal filter is

variable NEXT LINE: pix3; -- a 3 stage buffer of pixels
-- from the next scan line
variable LAST LINE: pix3; -- a 3 stage buffer of pixels
-- from the last scan line
begin
h filter: process
begin
wait until rising edge (CLOCK) ;
NEXT LINE := shift (NEXT LINE,P3);
LAST LINE := shift(LAST_LINE,Pl);

H <= weight(LAST_LINE(l), LAST LINE(2), LAST LINE(3))
- weight (NEXT_LINE (1), NEXT LINE(2), NEXT LINE(3))
after pixel output delay;
end process h filter;
end behavior;

Figure 2-15. Behavioral Model for the Horizontal Filter
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2-4.3.2 Register-Transfer-Level Structural De-
scription

Fig. 2-16 shows the hierarchy of design entities and the
types of their architecture bodies in aregister-transfer-level
structural description. Each node in the tree has a corre-
sponding VHDL entity interface and at | east one architecture
body. Not all of the VHDL code for the models is shown
here. This model has four levels of hierarchy. At the top of
the hierarchy is the edge detection processor, which has a
structural architecture body. This architecture body uses
three components: the memory processor, the window pro-
cessor, and the direction and magnitude processor. All three
of these components use structural architecture bodies. The
window processor makes use of four filter processors as
components, and the magnitude and direction processor has
two components. All six of these components use structural
architecture bodies. The leaf-level modulesin thismodel are
first-in, first-out (FIFO) buffers, adders, subtractors, delays,
multiplexors, comparators, encoders, and absolute value
processors. These modules use behavioral architecture bod-
ies described at the register-transfer level. Thusthis structur-
al model is aregister-transfer-level model.

Edge Detection
Processor
(Structural)

Window Processor

Memory Processor (Structural)

(Structural)

Fig. 2-17 isablock diagram of the structural model of the
horizontal filter whose behavioral description is shown in
Fig. 2-15. The model usesthree adders. Delay units are used
to postpone certain signals for one clock cycle. The subtrac-
tor SUB performs a subtraction on the incoming data. The
first adder ADD1 adds the difference between the current in-
puts and the difference between the inputs of the previous
cycle (provided by DELAY1). The second adder ADD2 adds
the current and previoussums. A VHDL structural body cor-
responding to this block diagram is shownin Fig. 2-18.

The leaf nodes shown in Fig. 2-17 are macrocells from a
standard library included with the synthesistool used to im-
plement the VLSI circuit for the edge detector. The goal of
this design was to minimize the number of cells required to
perform the function. Thus there is little resemblance be-
tween the structural model shown in Fig. 2-17 and the be-
haviora description shown in Fig. 2-15. Algebraic
manipulation of the function described in the behaviora
model verifies the equivalence of this structural model and
the behavioral model.

Direction and
Magnitude Processor
{Structural)

Horizontal Vertical
Filter Filter

(Structural) (Structural)

Left Diagonal

{Structural)

Right Diagonal Direction
Filter Processor
(Structural) (Structural)

Magnitude
Processor
(Structural)

FIFO Buffer
(Behavioral)

Adder
(Behavioral)

Subtractor
(Behavioral)

Delay
{Behavioral)

Absolute Value
{Behavioral)

Multiplexor
(Behavioral)

Comparator
(Behavioral)

Encoder
(Behavioral)

Figure 2-16. Hierarchy of Functionsin a Structural Model
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Figure 2-17. Block Diagram of the Horizontal Filter Processor (Ref.
11)
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architecture structure of horizontal filter is
conponent subtractor
port ( AL: in pixel;
A2: in pixel;
Cock: in std_ulogic;
DIFF: out filter_out );
end comnponent;
conmponent adder
port ( AL: in filter_out;
A2: in filter_out;
Cock: in std_ulogic;
SUM out filter_out );
end comnponent;
component del ay
port ( AIN in filter_out;
Cock: in std_ulogic;
A QUT: out filter_out );
end comnponent;
signal Sl1: filter_out; -- Connects difference to 1st
-- delay and 1st adder
signal S2: filter_out; -- Connects 1st delay to 1st adder
signal S3: filter_out; -- Connects 1lst adder to 2nd del ay
-- and 2nd adder
signal S4: filter_out; -- Connects 2nd delay to 2nd adder
begi n
SUB: subtractor port map (P11, P3, Cock, Sl);
DELAY1: delay port map (S1, Cock, S2);
ADD1: adder port map (S1, S2, Cock, S3);

DELAY2: delay port map (S3, Cock, $4);
adder port map (S3, S4, d ock,

ADD2:
end structure;

H)

Figure2-18. Structural Architecture of the Horizontal Filter

2-5 MIXED ABSTRACTION MODELS

2-5.1 THE PURPOSE OF MIXED LEVEL OF
ABSTRACTION MODELS

Hierarchical models may not have the same level of detail
down the path to each leaf. For example, in the same model
of a computer the central processing unit (CPU) may be
modeled in terms of its instruction-set behavior, whereas an
application-specific integrated circuit (ASIC) may be mod-
eled at the gate level. These mixed-abstraction-level models
allow detailed simulation of part of a system and achieve
high simulation speeds because the high-level behavioral
parts of the model simulate more quickly than the detailed
structural parts.

Given a complete VHDL model database with both be-
havioral and structural architecture bodiesfor al of the mod-
ules, the architect can configure a model using low-level
structural architectures for some components and high-level
behavioral architectures for the rest of the system. The re-
sulting model achieves higher simulation speed through the
use of the high-level behavioral architecture bodies and yet

provides detailed simulation for the part of the system where
low-level structural architecture bodies are used.

2-5.2 DESIGNING MODULESFOR MIXED
ABSTRACTION MODELS

Subpar. 10.2.1 of the VHDL DID (Ref. 1) requires deliv-
ery of both structural and behavioral models of all modules
other than the leaf modules. Models conforming with thisre-
quirement allow users of the models to build and simulate
mixed abstraction versions of the models. The modules of a
model need to be carefully designed if mixed abstraction
versions of the model are to be configured quickly and effi-
ciently. VHDL provides a mechanism to configure mixed
abstraction models, the configuration specification. The
configuration specification describes which representation
of amodule isto be used, e.g., for aparticular instance of a
module. This mechanism can be used to select behavioral or
structural representations.

Behaviora models must be designed to interface with
structural models of neighboring modules. In particular, the
datatypesfor the external interfaces must be chosen careful-
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ly so that structural models can be interfaced at alater stage.
In generadl, the structural VHDL models use low-level data
types such as the IEEE standard logic types (Ref. 2) as the
data types of their input and output ports. The behaviora
model should be prepared to interface with such data types.
In some cases asingle behavioral input or output may corre-
spond to an array of standard logic values.

One VHDL mechanism that supports interfacing behav-
ioral and structural models is the type conversion function.
Type conversion functions can be associated with the ports
of structural modelsin either component instances or config-
uration specifications. In the early stages of model develop-
ment, the project manager should develop a standard set of
data types for the module interfaces. All models should be
constructed with these standard data types. VHDL provides
a mechanism (the package) to share a single definition of a
datatype across al parts of a model.

2-53 AN EXAMPLE OF A MIXED LEVEL OF
ABSTRACTION MODEL

The hierarchy of a mixed level of abstraction model is
shown in Fig. 2-19. This model uses the register-transfer-
level behavioral structural models of the components of the
horizontal filter processor in conjunction with I1SA-level be-
havioral models of the vertical and diagonal processors and
with algorithmic-level behaviora models of the memory
processor and the magnitude and direction processor. Be-
cause integer formats are used in the behavioral models for
the memory processor and the magnitude and direction pro-
cessor, type conversion functions are required to convert the
integers to and from the 8-bit array inputs and the 12-bit ar-

Memory Processor
{Behavioral)

ray outputs of the structural model of the horizontal proces-
sor.
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CHAPTER 3
VHDL CONCEPTS

This chapter presents an overview of VHDL. The use of VHDL to capture the behavior and structure of digital
electronic systems is discussed. Aspects of VHDL that support the reuse of models and source code are presented.
The devel opment and use of VHDL libraries, for reuse of VHDL descriptions both within a model and between mod-
els, and the annotation of VHDL models with descriptive information are described. Also described is structuring

VHDL models to improve their readability and reuse.

3-1 INTRODUCTION

This chapter introduces and defines very high-speed inte-
grated circuit (VHSIC) hardware design language (VHDL)
terminology in a conceptual framework and shows how
VHDL features can be used to describe digital systems. This
chapter discusses how to use VHDL featuresto describe the
structure, function, and timing of a digital system; how to
annotate models, handle errors, and reuse VHDL code; and
how to manage the configuration of simulation models
through the use of late binding. VHDL terminology intro-
duced in this chapter is used throughout this handbook. The
intent of this chapter is to provide information on what a
contract monitor could or should see in a VHDL hardware
model delivered to the Government, not to provide adetailed
tutorial on VHDL. Detailed VHDL tutorialsare listed in the
chapter Bibliography.

The VHSIC hardware description language was devel-
oped to provide a standardized language to describe the be-
havior and structure of Department of Defense (DoD) digital
electronic systemsformally (Ref. 1). Thelanguageisformal
because it has well-defined syntax and semantics. VHDL
began as a research effort under the DoD VHSIC program
(Ref. 1). Asexperience with the language was gained, it was
improved over aperiod of several years by incorporating ad-
ditional features. The language was subsequently standard-
ized by the Institute of Electrical and Electronics Engineers
(IEEE) as Standard (Std) 1076-1987 (Ref. 2). The |IEEE re-
quires standards to be recertified approximately every five
years, therefore, an update to VHDL was completed in 1993,
|EEE Std 1076-1993 (Ref. 3). Tool support for the standards
generally lags behind the standardization process, soitisim-
portant for a contract monitor to understand what features of
the latest version of VHDL are used in models and which
tool sets support those features. Thisunderstanding is partic-
ularly important if different subcontractors are using differ-
ent VHDL development environments or if the VHDL tool
environment of the contracting or validation and verification
(V&V) organization is different from that of the prime con-
tractor.

3-2 BASIC VHDL CONCEPTS

3-21 VHDL DESIGN ENTITIES

The design entity is the primary VHDL concept that rep-
resents a component of an electronic system. This compo-

nent can be either a physica component (such as an
integrated circuit or aprinted circuit board) or alogical com-
ponent (such as a memory comprising several circuits on a
board or an arithmetic and logic unit (ALU) occupying only
aportion of an integrated circuit).

InaVHDL model adesign entity consists of an entity in-
terface and exactly one of its corresponding architecture
bodies. (One entity interface can have several associated ar-
chitecture bodies.) When a VHDL model is configured, a
specific architecture body is selected for the design entity
through the use of either configuration declarations or con-
figuration specifications. Fig. 3-1 illustrates the relationship
between design entities, entity interfaces, and architecture
bodies.

The VHDL dataitem description (DID) (Ref. 4) requires
each physical module of an electronic system to be docu-
mented with one or more design entities. The VHDL DID
expects that all physica modules that are not considered
primitive, or leaf, modules should have both abehavioral de-
sign entity and a structural design entity. Primitive, or leaf,
modules are documented with a behavioral design entity.

All design entities for the same hardware component and
at the samelevel of abstraction should have acommon entity
interface. This approach encourages reuse of models be-
cause changesin the design of a particular component can be
encapsulated in the architecture body, without causing
changes in the rest of the VHDL model. For example, con-
sider a VHDL entity interface for a microprocessor such as
a1750A (Ref. 5). The entity interface for this microproces-
sor may have one architecture body that implements an in-
struction-set-architecture  (ISA)-level model  of the
microprocessor, another architecture body that provides a
register-transfer-level model, and another architecture body
that providesagate-level model of the samedevice. Suppose
that this entity interface is bound to an instance in a larger
model of a board that includes other components for the
main memory system and input/output (1/0) subsystems.
The | SA design entity can be used to verify software written
for the microprocessor or to test the I/O subsystem model.
To verify the test and maintenance functions, the gate-level
design entity can be used. The register-transfer-level design
entity can be used to synthesize a new version of the micro-
processor using new integrated circuit (IC) technology. All
of these design entities can be simulated in the context of the
board model without changing the VHDL code of the board
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Signals

!7\!\ [B]

Port (A.in bit; B:out bit)
Entity Interface

B <= A after T;
Architecture Body

VHDL Design Entity

L

Port (B:in bit; A:out bit)
Entity Interface

A <= B after S;
Architecture Body

VHDL Design Entity

Figure 3-1. Design Entities, Entity Interfaces, and Architecture Bodies

or the design entities selected for the other subsystems pro-
vided they use the same entity interface and the architectures
implement the same behavior.

Division of a design entity into an entity interface and an
architecture body also allows the system designer to delay
the choice of an architecture body until later in the design
process. This approach allows the system designer to make
tradeoffs between different implementations for a device
simply by selecting adifferent architecture body. VHDL has
mechanisms to select architecture bodies without changing
the contents of any of the entity interfaces or architectures
for the system that uses the component. These mechanisms
are discussed in subpar. 3-8.3. This feature allows a major
reduction of risk because anytime amodel is modified, there
isarisk that new errors will be introduced into the model.

3-2.1.1 Entity Interfaces

The entity interface declaration specifies the interface of
the entity, i.e., the external view of adesign entity. This ex-
ternal view includes ports, generic and local constants, at-
tributes, and error checking of theinputsto the design entity.
The entity declaration providesinformation about this exter-
nal interface to other architectures using the design entity.
This information includes external electrical connections,
which are specified with port declarations, and generic con-
straints, such as the acceptable range of operating tempera-
tures for the device. An entity interface declaration can also
specify a mechanism to detect unacceptable behavior (such
as timing violations) during simulation.

Appropriate entity interface declarations are essential for
interoperability of VHDL models. A contract monitor re-
ceiving amodel should assessthe likelihood of its reuse and

the changes that may occur in the model when it isreused to
ensure that the model is devel oped to support that reuse sce-
nario. In particular for an entity interface declaration, thisas-
sessment requires choosing the data types used to define the
ports and on the generics to be used in the model.

For a design entity that represents a physical device, the
ports specify the external electrical connections of the de-
vice. For example, if an integrated circuit is being modeled
by aVHDL design entity, the ports of its entity interface de-
scribe the individual pins on the integrated circuit package.
For more abstract models, particularly at the algorithmic
level, these ports may represent the busses that a processing
element accesses. Fig. 2-10 and its related discussion pro-
vide an example of amore abstract port.

A port is defined by a name, amode, and atype. The port
name is used to identify a particular port; all port names for
an entity interface must be unique with respect to the other
ports of the entity interface. If a physical device is being
modeled, theVHDL DID (Ref. 4) requiresagiven port name
to correspond to the physical electrical connection of the
component. For example, the number of ports and the port
names for an IC model must correspond to the number of
pins and the pin names of the device being modeled.

The allowable port directions (or modes) are i n, out
i nout , buffer or I i nkage. The port modes define the
allowable direction of data flow through a port. They also
determine the sources of the signal connected to that port.
For example, ports labeled i n and i nout are sinks for a
signal; portslabeled out ,i nout ,andbuf f er aresources.
Ports labeled buf f er or | i nkage provide other special
functions not germane to this discussion; the reader is re-
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ferred to the VHDL Language Reference Manual (Ref. 3) or
VHDL texts such asthose cited in the Bibliography for more
information.

VHDL has mechanismsto define the type of aport and to
check the consistency between the type of the port and the
type of its associated signal. This latter mechanism assures
that incompatible types are not connected. Ports can have
default values, which are used when an instance of an input
port is left unconnected or when an output port is undriven.

Fig. 3-2 shows the entity interface declaration for the
edge detection processor discussed in subpar. 2-4.3. Thisen-
tity interface has four ports named P (for input of image pix-
els), d ock (for synchronization), E (for output of the edge
image), and D (for output of the edge direction information).
Ports Pand Cl ock arei n portsand portsEand Dareout
ports. The type of input port P and output port E is pi xel ,
a user-defined type specified in the package
i mage_pr ocessi ng inthelibrary
sobel _al gorithm The type of input port C ock is
st d_ul ogi c, an IEEE Std 1164 type (Ref. 6), which is
specified in the package st d_| ogi ¢_1164 in the library
| EEE. Edge detector is asimple entity interface declaration
not containing any of the other possible declarations or any
error-checking statements. These additional capabilities are
discussed in pars. 3-6 and 3-7.

3-2.1.2 Architecture Bodies

An architecture body describes the rel ationships between
the inputs and outputs of the corresponding entity declara-
tion. Such relationships may include both function and tim-
ing. Multiple architecture bodies can be associated with a
particular entity interface, although only one can be associ-
ated with a given instance of an entity interface. This in-
stance-by-instance binding capability provides flexibility in
the construction and use of hardware descriptions and elim-
inatestherisk that would result from having to change entity

interfaces every time a different architecture is used. Since
different architecture bodiesfor acomponent can be selected
without modifying the code for the architectures that use the
component, the risk that would result from requiring modi-
fications of the architecturesis eliminated. Furthermore, dif-
ferent architecture bodies can be selected without requiring
that the architectures be reanalyzed, i.e., recompiled, and
this procedure can significantly reduce the time to prepare a
model for simulation.

A good design is modularized to support design tradeoffs
and to anticipate possible changes in the design so they are
appropriately partitioned into design entities. Good parti-
tioning allows changes to be implemented by substituting
different architecture bodies without any modification of the
associated entity interface. One situation in which changes
are expected is during top-down development of a hardware
module. Thelevel of detail in atop-down design changes, so
different architecture bodies can reflect the addition of dif-
ferent levels of detail to the design. For example, two archi-
tecture bodies may perform exactly the same logical
function but differ in their timing and implementation. Pars.
2-3 and 2-4 describe different architecture bodies for the
same entity declaration. Oneis abehavioral model; oneisa
structural model.

One frequently used testing methodology uses two mod-
elsthat process the same inputs; their outputs are compared
for equality. These two models should have the same entity
interface but different architecture bodies. One architecture
body is considered the reference model; its outputs are the
standard to which the outputs of the second architecture
body are compared. In atop-down development process the
reference architecture body usually represents a more ab-
stract view of the system, and the one being tested represents
amore detailed view. Research is being performed to devel-
op functional verification tools that provide an alternative to
simulation for this verification (Ref. 7).

-- The sobel algorithm library contains the packages,
-- entity declarations, and architecture bodies for
-- the algorithm level model of the sobel processor.

library sobel algorithm;

use sobel algorithm.image processing.all;

-- The IEEBE library and the 1164 standard logic
-- package are used in the algorithm model only

-- for the clock.
library IEEE;
use ieee.std logic_1164.all;
entity edge detector is

port (P: in pixel;
Clock: in std ulogic;
E: out pixel;
D: out direction );

end edge_ detector;

Figure 3-2. A VHDL Entity Interface Declaration
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An architecture body contains both declarations and
statements. These statements may include processes, com-
ponent instantiations, and concurrent signal assignment
statements. These kinds of statements execute concurrently
and use the signals declared either in the architecture body
or asthe ports of the entity interface. Such signals exchange
information and synchronize the actions of the architecture.

Depending upon the statements it contains, an architec-
ture body is considered to have one of three styles: behavior-
a, structural, or mixed. The behaviora style is normally
constructed using processes and concurrent signal assign-
ment statements and includes signals for communication be-
tween processes and variables for communication within
each process. In abehavioral style, each process provides a
sequential execution paradigm. Behavioral models con-
structed using the concurrent signal assignment as the pri-
mary construct are sometimes called data flow style models.
The structural style uses only component instantiations to
specify design entities at the next lower level of the hierar-
chy and connects these components using signals. The leaf,
or primitive, elements of a structural model are the lowest
level of the design hierarchy and are always written in a be-
havioral style. The mixed style combines processes and
component instances in the same architecture.

These styles of VHDL models are designed to support
modelsthat serve different purposes. Chapter 2 discussesthe
purposes of behavioral and structural models at different
levels of abstraction. In pars. 3-3 and 3-4 the key VHDL
concepts for these styles and the roles of these stylesin sup-
port of the purposes of structural and behavioral models, as
described in Chapter 2, are discussed.

322 THE VHDL CONCEPT OF TIME

A VHDL simulation is the computation of a series of
events sequenced by time. In VHDL an event isachangein
the value of a signal. Thus each event is associated with a
signal and has a value (the new value of the signal) and a
time. The interval between events can be very large or very
small, so simulation time can be advanced by arbitrary
amounts. VHDL models are usually simulated by a discrete
event simulator in order to cope with variably sized time
steps.

A VHDL simulation is a two-step process (Ref. 8). First,
all signal values are updated. After the signal values are up-
dated, the processes that are sensitive to changes in the sig-
nal values are executed. After all processes have been
executed, the process repeats and signal values are updated.
This cycleisrepeated and terminates only when the simula-
tor runs out of events, the simulation time advances to the
maximum possiblevalue, or the simulation is stopped by the
user or by an error.

The run time of most VHDL simulators is determined
largely by the number of eventsin a simulation. Reducing
the number of eventsrequired in asimulationislikely to re-
duce its run time. Thus a behavioral model with afew large
processes and a small number of signals usually executes

faster than a structural model with many component instan-
tiations and many signals. Using more abstract signal data
types also reduces the number of events. For example, if a
signal has adatatype of a 32-bit integer, asimple event rep-
resentsanew 32-bit value. On the other hand, if the same 32-
bit integer is represented as 32 one-bit signals, up to 32
events may be required to represent the same change in val-
ue.

3-2.3 SIGNALS

In VHDL, signals provide a means of communication be-
tween and processes, concurrent signal assignments, and
components. During simulation, changes in signal values
may activate processes or signal assignment statements,
which in turn compute new values for signals.

The declaration of asignal specifiesitstype. The type of
asignal must be consistent with thetype of any port to which
the signal is connected. Also the type of a signal must be
consistent with the value on the right-hand side of a signa
assignment statement.

To ensure interoperability of VHDL models, the signal
type declarations should be made available to those entities
connected by the signals. A necessary condition for interop-
erability of design entities is that the user can connect two
design entities together with one or more signals. VHDL
type checking can be used to ensure that models meet at least
this interoperability condition. A valuable technique to en-
sure interoperability is the use of packages to encapsulate
signal type definitions and their associated functions and
make them globally available. This approach has been taken
in IEEE Std 1164 (Ref. 6), which defines a standard set of
types for signals in logic-level models. The specification of
signal data types that are used by multiple design entitiesis
an important early milestone for aVHDL system design.

3-2.3.1 Signal Assignment Statements

Signal assignment statements are the VHDL constructs
that specify the future values of signals and the times at
which those values are to be assigned. Computation of the
future values of signals is the essence of the function of the
model; computation of the times at which the signal will as-
sume those values is the essence of the timing of the model.

VHDL hastwo different kinds of signal assignment state-
ments: sequential and concurrent. These two types of signal
assignment statements are valid in different contexts: se-
guential signal assignment statementsarevalid only inside a
process or subprogram, whereas concurrent signal assign-
ment statements are valid in concurrent contexts, such as
within an architecture or block statement.

Simulation events in VHDL are generated by signal as-
signment statements. Execution of asignal assignment state-
ment causes one or more transactionsto be scheduled for the
future. Each transaction has a time and a value that repre-
sents a possible value of the signal at a specified timein the
future. These transactions are stored in queues called driv-
ers. VHDL uses aconcept called adriver to capture the pos-
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sible future values of asignal. As simulation time advances,
transactions are removed from the queue as their times pass
from the future to the present and become the present driving
value of the driver.

A signal assignment statement edits the transactions in
the associated driver. Editing refers to transactions being
added to, deleted from, or inserted into the driver queue. The
interaction of signal assignment statements and drivers is
called propagation. VHDL supports two models of signal
value propagation: inertial delay (the default) and transport
delay. These two models allow users to model accurately
certain physical properties of hardware. In the transport de-
lay model each signal value, no matter how short its dura-
tion, is propagated. This approach isimportant for modeling
edge triggered devices, in which a short-duration pulse may
cause the device to change state. Inertial delays are intended
to model circuits for which an input must persist for some
minimum time before the circuit responds. If the input has a
shorter duration than the minimum inertial delay, the circuit
does not respond.

Each concurrent signal assignment statement has a
unique driver, but al sequential signal assignment state-
ments writing to the same signal in the same process share
the same driver. The user should be careful not to make in-
valid assumptions about the editing rules for sequential sig-
nal assignment statements sharing the same driver because
these editing rules are different from those for concurrent
signal assignment statements, which have different drivers.
See, for example, Ref. 8, pp. 70-82, for adetailed discussion.

Fig. 3-3 shows a sequential signal assignment statement
extracted from the horizontal filter shown in Fig. 2-15. In
this case the value of the signal His specified by a complex
expression that averages elements of the three element buff-
ers LAST_LI NE and NEXT_LI NE. The time that H as-
sumesthisvalueisthe current simulation time plusthe value
of pi xel _out put _del ay.

The timing of acomponent islikely to change based on a
number of factors, such as the operating temperature of the
component or the technology with which the component is
implemented. To ensure reuse of the VHDL model of acom-
ponent, the timing information should be parameterized so
that changes in these external factors can be made without
requiring changes to the VHDL model. As shown by exam-
ination of Fig. 2-5 and its reference to atiming package, the
delay in Fig. 3-3 is parameterized by using a deferred con-
stant. An aternative approach isto use generics and passthe
delay information down the hierarchy of design entities.
These approaches are discussed subpars. 3-6.1 and 3-6.2.
Standardization of the timing of components is most ad-

vanced at the gate level; standards such as VHDL initiative
toward ASIC libraries (VITAL) (Ref. 9) and EIA 567-A
(Ref. 10) are included. Par. 6-5 and subpar. 6-3.3.3 describe
mechanisms used to parameterize timing information in
models at the gate level.

3-2.3.2 Resolution Functions

A signal S may have several drivers, onefor each concur-
rently executing source of future valuesfor S. All of the se-
guential signal assignment statements within a single
process share the same driver for S, and each driver main-
tains a queue of possible future values for its associated sig-
nal. These future values are time stamped. The contents of
these queues must be merged to determine the future value
of the signal. VHDL includes a mechanism, referred to as a
resolution function, that determines how conflicts in future
values of asignal areresolved. Whenever anew value needs
to beassigned to S (and S has multiple sources of values), a
resolution function is called to compute the value of the sig-
nal based on the current values of the sources of the signal.
These resolution functions are defined by the user. The res-
olution function returns a value that is then assigned as the
driving value of the signal. When asignal isdeclared, ares-
olution function may be associated with that signal. If no
resolution function is associated with the signal, the signal is
considered unresolved. For example, the input port Cl ock
for the edge detector design entity whose interfaceis shown
in Fig. 3-2 is an unresolved data type st d_ul ogi c. The
“u” in the name indicates an unresolved data type. An unre-
solved data typeis used for efficiency reasons because there
isonly one driver for the Cl ock signal.

Fig. 3-4 shows an example resolution function called a
“wired-and” resolution function. It is associated with afour-
value logic data type called MVL. This resolution function
returnsa' 0' whenever any of itsinputsare' 0' , it returns
an' X' if thereisan' X' inputbutno' O' input, it returns
a'z' ifalinputsare’ Z' ,anditreturnsa’ 1' otherwise.
The input to a resolution function is always a vector, and a
resolution function must be able to respond properly to a
zero length vector, which may occur if al inputs are discon-
nected.

One or more resolution functions is a necessary part of
any data type definition designed to specify signals. A reso-
[ution function may be defined for adatatype T that is used
for signals. When a data type declaration for signalsis used
to ensure interoperability of models, it should be equipped
with a resolution function. This action guarantees that the
declaration can be used in situations in which signals have
multiple drivers. If asignal hasasingle driver, it may be de-

H <= weight (LAST LINE(1l), LAST LINE(2), LAST LINE(3))
- weight (NEXT_LINE (1), NEXT LINE(2), NEXT LINE(3))

after pixel output delay;

Figure 3-3. Example Signal Assignment Statement
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TYPE MVL IS ( 'X', -- Forcing Unknown
', -- Forcing O
', -- Forcing 1
'Z', -- High Impedance

)

TYPE MVL Vector IS ARRAY (NATURAL RANGE <> ) OF MVL;

-- resolution function

FUNCTION WiredAnd (Inputs: MVL Vector) RETURN MVL IS

7

TYPE LogicTable IS ARRAY (MVL,MVL) OF MVL;
CONSTANT AndTable: LogicTable :=
( -- 'x* o' 1 gz
('x', 'o0', 'X', 'X'), -- 'x!
(ro', 'o', '0', '0'), -- 'O
('x*, '0', '1', '1'), -- r1°
('x', o', '1', 'Z'), -- 'Z"
)i
VARIABLE Result: MVL := '1';
BEGIN
FOR 1 IN Inputs'range LOOP
Result := AndTable(Result, Inputs(i))
IF Result = '0' THEN
RETURN '0';
END IF;
END LOOP;

RETURN Result;
END WiredAnd;

Reprinted with permission. Copyright O by Paul J. Menchini.

Figure 3-4. Example of a Resolution Function (Ref. 11)

clared as an unresolved signal. Unresolved signals typically
require less simulation overhead than resolved signals and
are therefore more efficient. A typical abstract data type for
signalsis provided in both a resolved and unresolved form.
IEEE Std 1164 (Ref. 6) includes a resolution function in its
VHDL package specifying the datatypesfor logic-level sig-
nals.

3-3 VHDL SUPPORT FOR BEHAVIORAL
DESIGN

One of the most powerful features of VHDL isits ability
to support abstract, technol ogy-independent descriptions of
hardwarein theform of behavioral models. Behavioral mod-
els model the function and timing of an electronic system.
VHDL has features that allow creation of implementation-
independent behavioral architecture bodies.

VHDL provides support for behavioral modeling with
both concurrent and sequentia execution modes. A behav-
ioral architecture body may contain multiple processes, all
of which execute concurrently. However, statements within
agiven process are executed sequentially.

3-31 PROCESSES

Processes are the VHDL construct that supports sequen-
tial modes of execution. A process contains a sequence of

statements executed sequentially when the process is acti-
vated.

Control constructs, which may occur in processes, in-
clude loops, conditionals, and assignment statements. As-
signment statements in processes include variable
assignment statements and sequential signal assignment
statements. Sequential signal assignment statements allow
processes to update signal values over time.

Processes cannot be nested, but the function of a process
can be organized hierarchically through the use of functions
and subroutines. Communication between statementswithin
a process and between a process and the functions and sub-
routinesthat it calls can be accomplished using variables. In
most simulations, assignment to variables is much more ef-
ficient than assignment to signals, so the use of variablesis
preferred to the use of signals. The current value of a signal
can also be assigned to a variable as a way to communicate
from the external environment into a process. Communica-
tion from a process to its external environment is accom-
plished through signal assignments.

A process may have an explicit sensitivity list, which
specifiesalist of signals such that the changein value of any
signal on thelist will cause the processto be activated. Wait
statementsin a process specify when the processwill be sus-
pended and when it will resume. A process must have either
asenditivity list or await statement.



MIL-HDBK-62

The state of aprocess, as defined by its variables, persists
through asimulation. In contrast, variableslocal to asubrou-
tine are not persistent and are reinitialized each time the sub-
routineis called.

3-32 WAIT STATEMENTS

Wait statements provide a mechanism used to suspend a
process and may be used to synchronize processes. When a
walit statement is executed, execution of the process contain-
ing the wait statement is suspended until the conditions of
the wait statement are satisfied. When the conditions are
met, execution of the process resumes.

The optional clauses of a wait statement (sensitivity
clause, condition clause, and timeout clause) provide a vari-

architecture behavior of edge detector is

begin
sobel: process
variable A: image; --
variable H: filter out; --

variable V: filter out; --

variable LD: filter out; --
variable RD: filter out; --

begin

Internal frame buffer
Temporary storage for
horizontal filter
Temporary storage for
vertical filter
Temporary storage for
left diagonal filter
Temporary storage for
right diagonal filter

ety of waysto control execution of aprocess. The sensitivity
clause of await statement contains a list of signals referred
to as a sensitivity list. Changes in the current values of sig-
nals on the list may (depending upon the condition clause of
the wait statement) cause the processto resume execution. A
wait statement with a timeout clause can be used to intro-
ducetiming delaysinto functional models. See subpar. 2-3.3
for discussion of some of the limitations of this approach in
defining timing.

3-3.3 A BEHAVIORAL DESIGN EXAMPLE

Fig. 3-5 showsabehavioral architecture body for the edge
detection processor described in subpar. 2-3.3 and shown in

for image
results of

results of
results of

results of

-- Construct a complete image frame by reading
-- in the pixels in scan line order

for i in x _index loop
for j in y index loop

wait until rising edge (Clock) ;

A(i,])

end loop;
end loop;

(false) report "array read in";

wait for pixel output delay;

P;

assert

-- For each pixel in the output image

-- compute the values of all the filters,
-- then use these filter values to compute
-- the magnitude and direction outputs

for i in x out index loop
for j in y out index loop

wait until rising edge (Clock) ;

H = horizontal filter(A,i,j);
\Y = vertical filter(A,i,j);
LD := left diagonal_ filter(A,i,]j);
RD := right diagonal filter(A,i,j);
E <= magnitude (H,V,LD,RD) ;
D <= direct(H,V,LD,RD);
end loop;
end loop;

end process sobel;
end behavior;

Figure 3-5. Example of a Behavioral M odel
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Fig. 2-6. The entity interface declaration for this design en-
tity isshownin Fig. 3-2.

This architecture body consists of a single process. The
process contains two major nested loops. In both loops, the
f or loop control structureis used. Thefirst loop usesawait
statement to synchronize loading pixel values from theinput
signal P into the variable A. The wait statement has in its
condition clause the second input signal C ock. The wait
statement uses theri si ng_edge routine from the IEEE
std_| ogi c_1164 packageto catch the rising edge of the
clock signal.

The second loop computes and outputs the pixel values.
The output is accomplished by signal assignment statements
assigning values to the output signals E and D. These signal
assignment statements also specify the timing in a parame-
terized way through the use of the constant

pi xel _out put _del ay. The wait statement in the loop
synchronizes the output of pixels with the clock and pre-
vents the values from overwriting each other.

Between the two loops is a separate wait statement that
causes the delay associated with computing the output pixel
values. An assertion statement (discussed in subpar. 3-7.1) is
used to assist debugging by printing a message when input
of the image is complete.

This architecture body uses the package of data type def-
initions and function specifications in the package
i mage_processi ng, shown in Figs. 2.4 and Fig. 2.7.
References to the i mage_pr ocessi ng package in the
sobel _al gori t hmlibrary are allowed because the entity
interface shown in Fig. 3-2 includes | i brary and use
statements referring to this library and package, and these
references areinherited by the architecture body. Use of this
package alows the system to be parameterized in severa
ways. For example, the number of pixelsintheimage can be
changed without changing the architecture body. Similarly,
the number of bits of precision in apixel can be changed, or
the datatype for apixel could be changed from integer to an
unsigned natural number or a bit vector.

This behavioral model uses functions to achieve a hierar-
chical organization. The calling hierarchy for this model is
shownin Fig. 2-3.

This behavioral model specifies both the function and
timing of the system. The timing information is introduced
through the wai t statements in the input and output loops
and thewai t statement between the two loops. The timing
information is parameterized because the delays are speci-
fied with constants. The value of the
pi xel _out put _del ay constant is specified in the
ti m ng package.

3-4 VHDL SUPPORT FOR STRUCTURAL
DESIGN

Structural models can be used to model the actual or pro-
posed physical structure of adigital system. VHDL structur-
al architecture bodies support hierarchy by allowing adesign

entity to bind other design entities to instances of its compo-
nents. The generic maps of component instantiation state-
ments alow attribute values to flow down through the
structural hierarchy with appropriate modifications at each
level.

341 STRUCTURAL ARCHITECTURE
BODIES

A structural architecture uses only component instances
and their interconnections to define its structure. The com-
ponents are bound to design entities during elaboration. This
binding provides support for hierarchical structural models.

A VHDL structural description can be visualized as an
unpopulated board. The component declarations define a
partslist for the board and specify the pins on those parts. In
this analogy the ports specified in the declaration of compo-
nent C define the pins of C. The component instances are
sockets whose pins are wired to the traces on the board. The
port maps of component instantiation statements define the
wiring of the pins to the traces. The traces can be internal
signals that are traces local to the board or interface signals
that connect to the board edge connector through the ports
specified in the entity declaration to onboard socket pins.

Lower level design entities represent the devices to be
plugged into the sockets. “Binding” is the act of doing so.
The design entity to be bound to acomponent may be select-
ed on an instance-by-instance basis by means of a configu-
ration.

The maor language features supporting structural de-
scriptions are component declarations and component in-
stantiations. These features are described in subpar. 3-4.2.

342 COMPONENTS

In VHDL, components represent the outlines of individu-
a hardware entities from which a larger design entity is
composed. Before a component can be used in a model, it
must be declared with acomponent declaration statement. A
component is incorporated into a model by means of the
component instantiation statement. Multiple component in-
stantiation statements may refer to the same component dec-
laration, just as a typical hardware board may use many
copies of the same circuit.

The link between physical components and the corre-
sponding componentsin the VHDL model can be reinforced
through the naming of components and the annotation of
component instances. VHDL allows different attribute val-
ues to be associated with different instances of the same
component. The EIA 567 standard (Ref. 10) describes the
concept of an electronic data sheet, in which a data sheet is
associated with each component in the “parts list”. At-
tributesin the electronic data sheet are used to compute tim-
ing for elements of the model. This concept is described in
more detail in par. 3-6 and Chapter 5.

3-4.21 Component Declarations
Component declarations can be thought of as defining an
inventory of components, which can be reused as many
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times as necessary in the model. Component declarations
specify and name the ports and generic constants of compo-
nents. A port clause in acomponent declaration servesto de-
clare the ports of the component. It must contain the names,
directions, types, and default values, if any, of the portsin
the component. VHDL analyzers check that component in-
stances refer to components that have been declared and that
the port map for the instance is consistent with the parts of
the component declaration. This consistency checking helps
to catch errorsin VHDL models during the model develop-
ment process.

Component declarations can be placed in packages, and
this placement allows them to be reused. This approach is
particularly valuable if a common or prescribed partslist is
required across multiple hardware modules.

3-4.2.2 Component Instantiations and I ntercon-
nections

A component that has previously been declared can be
used in an architecture body via a component instantiation
statement. A component instantiation statement gives the
component instance a unigue name and associates the ports
of the component with the signals that convey information
to and from the component. Use of component instantiations
resultsin astructural model that isanetwork of components
connected by signals.

Component instantiation statements provide three types
of associations: (1) associating adesign entity (with apartic-
ular architecture body) with the component instance, (2) as-
sociating ports in the entity interface with locally declared
signals, and (3) associating the values of generic constants
with the generics defined in the entity interface. These asso-
ciations can occur in two places: in the structural architec-
ture body (Thisis aform of early binding or “hard wiring”
of the information.) or in a separate configuration declara-
tion (Thisis aform of late binding.). An early binding can
be changed only by editing and analyzing the architecture
body, whereas alate binding can be changed without editing
the architecture body. The use of external configuration dec-
larations is discussed in subpar. 3-8.3.

Signals are associated with the ports of a component in-
stance in the port map of the component instantiation state-
ment. When the same signal is used in multiple port maps, a
signal net is defined. The direction information in the port
declaration of the component determines the sources and
sinks for the net.

Component declarations (and their corresponding instan-
tiations) in VHDL are placeholders. The design entities used
to model the components cannot be specified in either the
component declaration or the component instantiation. This
lack of dependency supports top-down model development
because the lower level design entities need not be defined
and analyzed before the higher level design entities are cre-
ated. However, when both levels of design entities are de-
fined and a configuration specification is used to associate
the lower level design entity with the component instance at

a higher level, the consistency-checking capabilities of
VHDL ensurethe consistency of the models. This consisten-
cy allows abehavioral model of acomponent to be replaced
by a structural model by changing and reanalyzing the con-
figuration information.

343 A STRUCTURAL DESIGN EXAMPLE

Fig. 3-6 contains a structural architecture body for the
horizontal filter described in subpar. 2-4.3.2. The entity in-
terface declaration corresponding to thisarchitecture body is
shown in Fig. 2-14. This architecture body has three input
ports, P1 and P3 of type pi xel and Cl ock of type
std_ul ogic. It has a single output port H of type
filter_out.

Thisexampleillustrates several points. It showsthe use of
component and signal declarations, the use of component in-
stantiations, and the association of signals with the ports of
a component.

The architecture body in Fig. 3-6 declares three compo-
nents. an adder, a subtractor, and a delay. In each of these
three components the port list names the ports and defines
the direction and the data type of the ports. The data types
are specified inthe i mage_pr ocessi ng package in the
sobel _struct ure library. The image-processing pack-
age is shown in Fig 2-4, and the package body isillustrated
inFig. 2-7.

The particular design entity, i.e., an entity interface and a
corresponding architecture body, to be bound to each in-
stance is selected in a separate configuration specification.
The use of configuration specifications adds flexibility by
deferring selection of particular versions until the model is
ready to be simulated. Configuration specifications and dec-
larations are discussed in subpar. 3-8.3.

The architecture body in Fig. 3-6 declares four signals:
S1, S2, S3, and S4. These signals are used to carry infor-
mation among the component instances in the model. All
four signals have the same user-defined type,
filter_out. Thistype is used for al in ports and out
ports of the components except for the datainput ports of the
subt ract or component and for the Cl ock ports on the
adder and del ay components.

Thebegi n in Fig. 3-6 designates the start of the execut-
able statement part of the architecture body. This part con-
tains the component instantiation statements that describe
the structure of the architecture body. Each component in-
stance has alabel, which must be unique within a particular
architecture body. After the label is the name of the compo-
nent being instantiated. This model showsthat asingle com-
ponent can be replicated as many times as needed, e.g., there
are two instances of del ay and two instances of adder .
Each replication, however, must have a unique instance la-
bel. The instance labels for the adders are ADD1 and ADD2.

Lastly, each component instance is connected to the sig-
nals by associating each signal with a particular port in the
order in which the ports are listed in the component declara-
tion. This association could also be done by name, which
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architecture structure of
component subtractor

horizontal filter is

port { Al: in pixel;
A2: in pixel;
Clock: in std ulogic;
DIFF: out filter out );
end component;
component adder
port ( Al: in filter out;
A2: in filter out;
Clock: in std ulogic;
SUM: out filter out );
end component;
component delay
port ( A IN: in filter out;
Clock: in std ulogic;
A OUT: out filter out );
end component;
signal S1: filter out; -- Connects difference to 1lst delay and 1lst adder
signal S2: filter out; -- Connects 1st delay to 1lst adder
signal S83: filter out; -- Connects 1lst adder to 2nd delay and 2nd adder
signal S4: filter out; -- Connects 2nd delay to 2nd adder
begin
SUB: subtractor port map (Pl1, P3, Clock, S1);
DEL1: delay port map (S1, Clock, S2);
ADD1: adder port map (S1, S2, Clock, S3);
DEL2: delay port map (S3, Clock, S4);
ADD2: adder port map (S3, S4, Clock, H);

end structure;

Figure 3-6. A Structural Architecture Body

would allow the signal port pins to be listed in an arbitrary
order. The sources and sinks for the signals are implied by
the port list in the entity declaration and the port listsin the
component declarations. For example, Cl ock is a signa
with an external source and five sinks, one for each compo-
nent instance. Similarly, S1 has asits source the port

DI FF inthe instance with label SUB and has asiits sinks the
port Al of ADD1 and the port of A_| Nof DEL1. Also Hhas
the port SUMof ADD2 asits only source and has one or more
external sinks.

3-5 VHDL SUPPORT FOR DATA AB-
STRACTION

Data abstraction is the practice of extracting the essential
characteristics of data by creating user-defined data types
and disregarding certain implementation details. Data ab-
straction isapowerful tool used to control the complexity of
models. It allows acomplex data structure to be defined in a
single place in the code and thereby assures consistency in
the definition throughout a model. It also is atool to ensure
consistent definitions of the operations on a user-defined
datatype. These aspects are critical to the interoperability of
models.

3-10

Data abstraction is aso a powerful tool used to isolate
changes and thereby reduces the risk associated with mass
changes in software. A single data type may have many dif-
ferent implementations at different levels of abstraction.
These implementation details should be hidden from those
users who do not have a need to know the structure. Thus,
when the implementation of the data type changes, the
changesin the VHDL code can be isolated to that section of
the code which provides the implementation details. For ex-
ample, the datatype pi xel has different representations at
different levels of abstraction in the edge detector model. In
the algorithm-level model pi xel isdefined asaninteger. In
the gate-level model pi xel isdefined as abit vector with
a specific number of bits.

Data abstraction is implemented in VHDL with user-de-
fined types. A user-defined data type consists of atype def-
inition together with the definitions of the functions that act
on the datatype. Examples of abstract datatypesinclude the
di recti onandi nagetypesdefined in Fig. 2-4.

VHDL has capabilities that allow the user to create new
data types, and it has capabilities to overload subprogram
and enumeration literal names. VHDL also enhances in-
teroperability by supporting the definition and use of type



MIL-HDBK-62

conversion functions to interface design entities that were
written using different interface data types.

3-5.1 USER-DEFINED TYPES

VHDL has two mechanisms that allow the user to create
new scalar types, and it has two methods used to create com-
posite types.

The user can create anew scalar typein VHDL by defin-
ing an enumerated type or by defining aphysical type. Phys-
ical types are described in subpar. 3-6.3. An enumerated
type is defined by listing al of the possible values of an ob-
ject of that type. An example of an enumerated type is the
IEEE Std 1164 st d_ul ogi ¢ type, which consists of nine
possible values, as shown in Fig. 3-7. Enumerated types
have an explicit ordering specified by the order in which
they are listed in the declaration. Variables and signals can
have values that are enumerated types and can be assigned
values that are enumerated types. Values of enumerated
types can be compared using the relational operators =, / =,
<,<=,>,and>=. Forexample,' X < ' Z' because' X' is
listed before' Z' inthe declaration in Fig. 3-7.

VHDL includes four built-in enumerated types:
character, bool ean,bit,andseverity | evel.
VHDL includes additional built-in logical operators for the
bool ean and bit enumerated types. and, or, nand,
nor, not, xor. Theseverity_ | evel built-intypeis
described in par. 3-7.

A compositetypeiscreated by aggregating simpler types.
There are two kinds of composite types. arrays and records.
An array type is created by aggregating a collection of ele-
ments of the same subtype. The elements of an array are se-
lected by using an index. For example, abit vector is created
by aggregating a homogeneous array of bits. A record type
is created by aggregating a heterogeneous collection of ele-
ments, each of which must be named at analysistime. A bus
with multiple control, address, and data lines can be created
by aggregating atype for the control lines (which may again
be acomposite type), atype for the address lines, and atype
for the data lines.

VHDL aso supports access types, which are similar to
the pointer data types of C and PL/I. However, signals can-
not be declared as access types. VHDL aso supports file
typesfor useintheinput of test vector filesand in the output
of messages and trace data. Signals also may not be a file
type.

Subtypes are another option available to the user. A
VHDL subtype inherits the operations defined for the parent
type but rest