

METRIC

MIL-HDBK-62
13 September 1996

DEPARTMENT OF DEFENSE
HANDBOOK

DOCUMENTATION OF DIGITAL
ELECTRONIC SYSTEMS WITH VHDL

This handbook is for guidance only.
Do not cite this document as a requirement.

AMSC/NA FSC 5962

DISTRIBUTION STATEMENT A. Approved for public release; distribution is
unlimited.

Thi d t t d ith F M k 4 0 4

MIL-HDBK-62

ii

FOREWORD

1. This handbook is approved for use by all Departments and Agencies of the Department of Defense (DoD).
2. This handbook is for guidance only. This handbook cannot be cited as a requirement. If it is, the contractor

does not have to comply.
3. This handbook was developed to provide guidance to Department of Defense personnel who are writing re-

quests for proposals for military digital electronic systems, DoD contractors who are developing very high-speed
integrated circuit (VHSIC) hardware description language (VHDL) models for the Government, and DoD engi-
neers, scientists, and management or independent validation and verification contractors who are evaluating or re-
viewing models delivered to the Government. It documents the state of the art and existing technologies for VHDL
model development. Addressed in the handbook are which VHDL models are required to be delivered with a con-
tract, which VHDL models should be developed during the different stages of the lifetime of a system, and how
VHDL models can be structured to be consistent with modeling standards.

4. This handbook was developed under the auspices of the US Army Materiel Command’s Engineering Design
Handbook Program, which is under the direction of the US Army Industrial Engineering Activity. Research Triangle
Institute (RTI) was the prime contractor for this handbook under Contract No. DAAA09-86-D-0009. The handbook
was authored by Dr. Geoffrey A. Frank and edited by Ray C. Anderson of RTI. Development of this handbook was
guided by a technical working group that included Mr. Gerald T. Michael, US Army Research Laboratory, chair-
man; Dr. John W. Hines, US Air Force Wright Laboratory; Mr. J. P. Letellier, US Naval Research Laboratory; and
Mr. Michael A. Frye, US Department of Defense, Defense Logistics Agency.

5. Beneficial comments (recommendations, additions, deletions) and any pertinent data that may be of use in im-
proving this document should be addressed to Defense Supply Center Columbus, ATTN: Director-VA, 3990 East
Broad Street, Columbus, OH 43216-5000, by using the Standardization Document Improvement Proposal (DD
Form 1426) appearing at the end of this document or by letter.

The following is included at the request of IEEE:
“The Institute of Electrical and Electronics Engineers, Inc. (IEEE) disclaims any responsibility or liability resulting from

the placement and use in this publication of material extracted from its publications. Information is reprinted with permission
of the IEEE.”

Thi d t t d ith F M k 4 0 4

iii

MIL-HDBK-62

CONTENTS

FOREWORD ...ii
LIST OF ILLUSTRATIONS ..ix
LIST OF TABLES ..xi
LIST OF ABBREVIATIONS AND ACRONYMS...xii

CHAPTER 1
INTRODUCTION

1-1 PURPOSE ... 1-1
1-2 SCOPE .. 1-1
1-3 INTENDED AUDIENCE ... 1-1
1-4 HISTORY, PURPOSE, AND SCOPE OF VHDL ... 1-2

1-4.1 HISTORY OF VHDL ... 1-2
1-4.2 THE PURPOSE OF VHDL .. 1-2
1-4.3 THE SCOPE OF VHDL .. 1-3

1-5 RELATED INDUSTRY STANDARDS .. 1-3
1-6 OVERVIEW ... 1-3
REFERENCES ... 1-4
BIBLIOGRAPHY .. 1-5

CHAPTER 2
HARDWARE DESCRIPTION CONCEPTS

2-1 INTRODUCTION .. 2-1
2-2 LEVELS OF ABSTRACTION IN MODELS OF DIGITAL ELECTRONIC SYSTEMS .. 2-2

2-2.1 OVERVIEW .. 2-2
2-2.2 NETWORK MODELS .. 2-3

2-2.2.1 Performance Models ... 2-3
2-2.2.2 Interface models ... 2-3

2-2.3 ALGORITHMIC MODELS .. 2-4
2-2.4 INSTRUCTION SET ARCHITECTURE MODELS ... 2-4
2-2.5 REGISTER-TRANSFER MODELS ... 2-4
2-2.6 GATE-LEVEL MODELS ... 2-4
2-2.7 USES OF ABSTRACTION AND HIERARCHICAL DECOMPOSITION IN THE DESIGN

PROCESS .. 2-5
2-3 BEHAVIORAL DESCRIPTIONS OF HARDWARE DESIGNS ... 2-5

2-3.1 THE PURPOSE OF BEHAVIORAL DESCRIPTIONS .. 2-5
2-3.2 THE USE OF HIERARCHY IN BEHAVIORAL DESCRIPTIONS ... 2-6
2-3.3 EXAMPLE OF A BEHAVIORAL DESCRIPTION .. 2-7

2-4 STRUCTURAL DESCRIPTIONS OF HARDWARE DESIGNS ... 2-12
2-4.1 THE PURPOSE OF STRUCTURAL DESCRIPTIONS .. 2-12
2-4.2 THE USE OF HIERARCHY IN STRUCTURAL DESCRIPTIONS ... 2-13

2-4.2.1 Hierarchical Decomposition Based on Physical Elements ... 2-13
2-4.2.2 Leaf Modules in a Hierarchical Structural Description .. 2-14

2-4.3 EXAMPLES OF STRUCTURAL DESCRIPTIONS ... 2-14
2-4.3.1 Algorithmic-Level Structural Description .. 2-14
2-4.3.2 Register-Transfer-Level Structural Description ... 2-20

2-5 MIXED ABSTRACTION MODELS ... 2-22
2-5.1 THE PURPOSE OF MIXED LEVEL OF ABSTRACTION MODELS .. 2-22
2-5.2 DESIGNING MODULES FOR MIXED ABSTRACTION MODELS .. 2-22
2-5.3 AN EXAMPLE OF A MIXED LEVEL OF ABSTRACTION MODEL ... 2-23

REFERENCES ... 2-23
BIBLIOGRAPHY .. 2-24

MIL-HDBK-62

iv

CHAPTER 3
VHDL CONCEPTS

3-1 INTRODUCTION .. 3-1
3-2 BASIC VHDL CONCEPTS ... 3-1

3-2.1 VHDL DESIGN ENTITIES .. 3-1
3-2.1.1 Entity Interfaces .. 3-2
3-2.1.2 Architecture Bodies .. 3-3

3-2.2 THE VHDL CONCEPT OF TIME ... 3-4
3-2.3 SIGNALS .. 3-4

3-2.3.1 Signal Assignment Statements ... 3-4
3-2.3.2 Resolution Functions .. 3-5

3-3 VHDL SUPPORT FOR BEHAVIORAL DESIGN ... 3-6
3-3.1 PROCESSES ... 3-6
3-3.2 WAIT STATEMENTS .. 3-7
3-3.3 A BEHAVIORAL DESIGN EXAMPLE .. 3-7

3-4 VHDL SUPPORT FOR STRUCTURAL DESIGN ... 3-8
3-4.1 STRUCTURAL ARCHITECTURE BODIES .. 3-8
3-4.2 COMPONENTS .. 3-8

3-4.2.1 Component Declarations .. 3-8
3-4.2.2 Component Instantiations and Interconnections ... 3-9

3-4.3 A STRUCTURAL DESIGN EXAMPLE ... 3-9
3-5 VHDL SUPPORT FOR DATA ABSTRACTION ... 3-10

3-5.1 USER-DEFINED TYPES ... 3-11
3-5.2 TYPE CONVERSION FUNCTIONS ... 3-11
3-5.3 OVERLOADED OPERATORS ... 3-12

3-6 VHDL SUPPORT FOR ANNOTATING MODELS ... 3-12
3-6.1 ATTRIBUTES ... 3-12
3-6.2 GENERIC CONSTANTS ... 3-13
3-6.3 PHYSICAL TYPES .. 3-13

3-7 ERROR HANDLING WITH VHDL .. 3-14
3-7.1 ASSERTION STATEMENTS .. 3-14
3-7.2 HANDLING SIGNAL ERROR STATES .. 3-15

3-8 VHDL SUPPORT FOR SHARING AND REUSE .. 3-15
3-8.1 VHDL DESIGN LIBRARIES ... 3-16

3-8.1.1 Declaring and Using Libraries .. 3-16
3-8.1.2 Constructing Libraries .. 3-19

3-8.2 VHDL PACKAGES .. 3-20
3-8.2.1 Constructing VHDL Packages .. 3-20
3-8.2.2 Declaring and Using Packages ... 3-20

3-8.3 CONFIGURATION SPECIFICATIONS AND DECLARATIONS .. 3-20
3-8.3.1 Constructing Configuration Specifications and Declarations .. 3-21
3-8.3.2 Using Configuration Specifications and Declarations .. 3-22

REFERENCES.. 3-24
BIBLIOGRAPHY ... 3-24

CHAPTER 4
DoD REQUIREMENTS FOR THE USE OF VHDL

4-1 INTRODUCTION .. 4-1
4-2 MIL-HDBK-454 GUIDELINES FOR THE USE OF VHDL .. 4-1

4-2.1 DOCUMENTATION OF ASICs DEVELOPED FOR THE GOVERNMENT WITH VHDL 4-1
4-2.2 DOCUMENTATION OF QUALIFIED DIGITAL INTEGRATED CIRCUITS WITH VHDL 4-2
4-2.3 THE LIBRARY OF VHDL DESCRIPTIONS OF STANDARD DIGITAL PARTS 4-2
4-2.4 TEST BENCH REQUIREMENTS FOR VHDL DESCRIPTIONS.. 4-2

4-3 OVERVIEW OF THE VHDL DATA ITEM DESCRIPTION .. 4-2
4-3.1 ENTITY INTERFACE REQUIREMENTS .. 4-3

v

MIL-HDBK-62

4-3.1.1 Entity Names .. 4-3
4-3.1.2 Input and Output Definitions .. 4-3

4-3.2 BEHAVIORAL DESCRIPTIONS .. 4-4
4-3.2.1 Functional Decomposition .. 4-4
4-3.2.2 Timing Descriptions ... 4-5

4-3.3 STRUCTURAL DESCRIPTIONS .. 4-5
4-3.3.1 Acceptable Primitive Elements .. 4-5
4-3.3.2 Testability Requirements .. 4-5

4-3.4 TEST BENCH REQUIREMENTS ... 4-6
4-3.4.1 Test Bench Functions ... 4-6
4-3.4.2 Test Bench Relationships to Design Modules .. 4-7

4-3.5 ERROR MESSAGES .. 4-7
4-3.6 DOCUMENTATION FORMAT .. 4-7
4-3.7 REQUIRED ANNOTATIONS OF VHDL MODULES ... 4-8
4-3.8 AN EXAMPLE OF A TAILORED DID .. 4-8

REFERENCES.. 4-8
BIBLIOGRAPHY ... 4-9

CHAPTER 5
 CONSTRUCTION OF BEHAVIORAL VHDL MODELS

5-1 INTRODUCTION .. 5-1
5-2 CREATION OF VHDL BEHAVIORAL MODELS .. 5-1

5-2.1 CONSTRUCTING PERFORMANCE MODELS .. 5-1
5-2.1.2 Modeling Timing in Performance- and Algorithmic-Level Behavioral Models 5-2
5-2.1.3 Example of a Statistics Package and Its Use .. 5-2

5-2.2 CONSTRUCTING ALGORITHMIC MODELS .. 5-6
5-2.2.1 Modeling Algorithms With VHDL Processes .. 5-7
5-2.2.2 An Example of an Algorithmic Model ... 5-7

5-2.3 CONSTRUCTING INSTRUCTION-SET-ARCHITECTURE-LEVEL MODELS 5-11
5-2.3.1 Modeling Processors ... 5-11
5-2.3.2 Modeling Memory .. 5-17
5-2.3.3 Modeling Busses and Bus Controllers .. 5-18

5-2.4 CONSTRUCTING REGISTER-TRANSFER-LEVEL MODELS ... 5-19
5-2.4.1 Synthesis of Designs From RTL Models ... 5-19
5-2.4.2 An Example of a VHDL Register-Transfer-Level Model .. 5-20

5-3 VHDL DID SIMULATION REQUIREMENTS FOR BEHAVIORAL MODELS .. 5-21
5-3.1 CORRECT FUNCTIONAL RESPONSE TO STIMULI ... 5-21
5-3.2 SIMULATION TIMING ... 5-21
5-3.3 ERROR HANDLING .. 5-21

5-4 TIMING IN BEHAVIORAL MODELS .. 5-22
5-4.1 TIMING SHELLS ... 5-22
5-4.2 CLOCK RATES .. 5-24
5-4.3 CRITICAL PATH DELAY TIMES .. 5-24
5-4.4 BEST-CASE, WORST-CASE, AND NOMINAL DELAYS ... 5-24
5-4.5 PARAMETERIZED DELAY MODELS .. 5-24
5-4.6 TIMING DEFINITION PACKAGE ... 5-26
5-4.7 TIMING THROUGH FILE INPUT .. 5-31
5-4.8 MODELING ASYNCHRONOUS TIMING .. 5-32
5-4.9 MODELING SYNCHRONOUS TIMING ... 5-33

5-5 ANNOTATION OF BEHAVIORAL MODELS .. 5-36
5-5.1 DESCRIPTION OF FUNCTION .. 5-36
5-5.2 DESCRIPTION OF RESTRICTIONS .. 5-36
5-5.3 MODELING APPROACH ... 5-36
5-5.4 REVISION HISTORY .. 5-37
5-5.5 BACK ANNOTATION OF TIMING INFORMATION .. 5-37

MIL-HDBK-62

vi

5-6 USE OF STRUCTURAL HIERARCHY IN BEHAVIORAL MODELS .. 5-37
REFERENCES ... 5-38
BIBLIOGRAPHY .. 5-38

CHAPTER 6
CONSTRUCTION OF STRUCTURAL VHDL MODELS

6-1 INTRODUCTION .. 6-1
6-2 CREATION OF STRUCTURAL VHDL MODELS ... 6-1

6-2.1 TRANSLATION OF SCHEMATIC CAPTURE MODELS .. 6-1
6-2.2 SYNTHESIS OF STRUCTURAL MODELS FROM REGISTER-TRANSFER-LEVEL MODELS 6-2
6-2.3 SYNTHESIS OF STRUCTURAL MODELS FROM FINITE STATE MACHINES 6-2
6-2.4 ENHANCEMENT OF GATE-LEVEL MODELS WITH GENERATED STRUCTURE 6-2

6-3 VHDL DID ORGANIZATIONAL REQUIREMENTS FOR STRUCTURAL MODELS ... 6-3
6-3.1 HIERARCHICAL ORGANIZATION OF STRUCTURAL MODELS ... 6-3
6-3.2 ALLOWABLE LEAF-LEVEL MODULES ... 6-4

6-3.2.1 Government-Approved Models .. 6-4
6-3.2.2 Modules With Stimulus-Response Behavior .. 6-4
6-3.2.3 Modules Without Detailed Designs .. 6-4

6-3.3 VHDL DID ANNOTATION REQUIREMENTS FOR STRUCTURAL MODELS 6-5
6-3.3.1 Physical View Requirements .. 6-6
6-3.3.2 Electrical View Requirements .. 6-6
6-3.3.3 Timing View Requirements .. 6-7

6-4 VHDL DID SIMULATION REQUIREMENTS FOR STRUCTURAL MODELS .. 6-9
6-4.1 SUPPORT FOR LOGIC-LEVEL FAULT MODELING ... 6-9
6-4.2 SUPPORT FOR TEST VECTOR GENERATION .. 6-10

6-5 TIMING SPECIFICATIONS FOR STRUCTURAL MODELS .. 6-10
6-6 BACK ANNOTATION OF STRUCTURAL MODELS ... 6-11

6-6.1 BACK ANNOTATION OF TIMING INFORMATION .. 6-11
6-6.2 BACK ANNOTATION OF LAYOUT INFORMATION .. 6-12
6-6.3 BACK ANNOTATION OF TESTABILITY INFORMATION ... 6-12

REFERENCES ... 6-12
BIBLIOGRAPHY .. 6-13

CHAPTER 7
PREPARATION OF VHDL MODELS FOR SIMULATION

7-1 INTRODUCTION .. 7-1
7-2 INTEROPERABILITY OF MODELS ... 7-1

7-2.1 USE OF STANDARD SIGNAL DATA TYPES .. 7-2
7-2.2 TYPE CONVERSION FOR DIFFERENT SIGNAL DATA TYPES .. 7-2
7-2.3 INTEROPERABILITY OF TIMING MODELS .. 7-3
7-2.4 PORTABILITY REQUIREMENTS FOR INTEROPERABLE VHDL MODELS 7-3

7-3 TEST BENCH DEVELOPMENT .. 7-3
7-3.1 WAVES ... 7-4

7-3.1.1 Standard WAVES Packages ... 7-7
7-3.1.2 Local WAVES Packages .. 7-8
7-3.1.3 WAVES Test Suites ... 7-8

7-3.2 DOCUMENTATION OF TEST BENCHES .. 7-10
7-4 TEST VECTOR DEVELOPMENT ... 7-10

7-4.1 BEHAVIOR TESTS .. 7-10
7-4.2 PROPAGATION DELAY TESTS ... 7-11
7-4.3 ERROR CONDITION TESTS .. 7-11

7-4.3.1 Invalid Operating Condition Tests ... 7-12
7-4.3.2 Invalid Input State Tests ... 7-12
7-4.3.3 Timing Constraint Violation Tests ... 7-12

vii

MIL-HDBK-62

7-4.4 INTEROPERABILITY TESTS .. 7-13
7-4.5 ORGANIZATION AND DOCUMENTATION OF TEST VECTORS ... 7-13

7-5 USE OF CONFIGURATION DECLARATIONS TO INSTANTIATE THE TEST BENCH
FOR A MODEL ... 7-14

7-5.1 SELECTION OF ALTERNATIVE DESIGN LIBRARIES ... 7-14
7-5.2 SELECTION OF ALTERNATIVE ARCHITECTURES ... 7-15
7-5.3 BINDING OF GENERICS .. 7-15
7-5.4 PORT MAPPING .. 7-15

7-6 DEFINITION OF SIMULATOR OPTIONS .. 7-15
7-6.1 CONTROL OVER ENVIRONMENTAL PARAMETERS ... 7-16
7-6.2 SELECTION OF DELAY TYPES ... 7-16
7-6.3 CONTROL OVER EXECUTION OF ASSERTIONS ... 7-16
7-6.4 CONTROL OVER PROPAGATION OF UNKNOWN SIGNAL STATES ... 7-16

REFERENCES ... 7-17
BIBLIOGRAPHY .. 7-17

CHAPTER 8
MODELING TESTABILITY WITH VHDL MODELS

8-1 INTRODUCTION .. 8-1
8-2 PURPOSE AND SCOPE OF DESIGN FOR TESTABILITY ... 8-1
8-3 TESTABILITY DESIGN ISSUES ... 8-1

8-3.1 TEST STRATEGIES AND TECHNIQUES FOR MAINTENANCE AND FAULT TOLERANCE 8-2
8-3.2 TESTABILITY MEASURES ... 8-3
8-3.3 TEST STRUCTURE BOUNDARIES .. 8-4
8-3.4 TEST COMPONENTS AND INTERFACES .. 8-6

8-4 MODELING TESTABILITY USING VHDL BEHAVIORAL MODELS ... 8-6
8-4.1 EVALUATING TEST STRATEGIES ... 8-6
8-4.2 MODELING TEST INTERFACES IN VHDL ... 8-7
8-4.3 MODELING TEST CONTROLLER FUNCTIONS .. 8-7
8-4.4 EVALUATION OF TEST COMMUNICATION AND STORAGE REQUIREMENTS FOR BIT 8-7

8-5 MODELING TESTABILITY USING VHDL STRUCTURAL MODELS ... 8-7
8-5.1 DESCRIPTION OF TEST CIRCUITRY GENERATED FROM STRUCTURAL INFORMATION 8-7
8-5.2 SUPPORT FOR FAULT DICTIONARY GENERATION .. 8-8
8-5.3 SUPPORT FOR AUTOMATIC TEST GENERATION .. 8-8
8-5.4 SUPPORT FOR COVERAGE ANALYSIS ... 8-8
8-5.5 SUPPORT FOR TEST TIME COMPUTATION ... 8-8

8-6 ANNOTATION OF VHDL MODELS WITH TESTABILITY INFORMATION .. 8-8
8-6.1 ANNOTATION OF STRUCTURAL MODELS TO IDENTIFY LRUs .. 8-8
8-6.2 ANNOTATION OF STRUCTURAL MODELS TO IDENTIFY FCRs .. 8-9
8-6.3 BACK ANNOTATION WITH COVERAGE INFORMATION ... 8-9

REFERENCES ... 8-9
BIBLIOGRAPHY .. 8-10

CHAPTER 9
PREPARATION OF VHDL MODELS FOR DELIVERY TO THE DoD

9-1 INTRODUCTION .. 9-1
9-2 FILES TO BE INCLUDED IN DELIVERY TAPE ... 9-2

9-2.1 LIST OF FILES ... 9-2
9-2.2 DID OVERVIEW FILE .. 9-2
9-2.3 VHDL ANALYSIS ORDER SPECIFICATION .. 9-2
9-2.4 GOVERNMENT-APPROVED LEAF MODULE VHDL DESCRIPTIONS .. 9-2
9-2.5 REVISED VHDL MODULE LIST .. 9-3
9-2.6 ORIGINAL VHDL MODULE LIST .. 9-3
9-2.7 TEST BENCH CORRELATION LIST .. 9-3
9-2.8 AUXILIARY INFORMATION FILES .. 9-4
9-2.9 VHDL DESIGN UNIT FILES .. 9-4

MIL-HDBK-62

viii

9-3 FILE NAMING CONVENTIONS ... 9-5
9-3.1 NAMING VHDL DESIGN UNIT FILES ... 9-5
9-3.2 NAMING AUXILIARY FILES .. 9-6

9-4 SUGGESTED CODING CONVENTIONS FOR VHDL MODELS ... 9-6
9-4.1 DESIGN ENTITY NAMING CONVENTIONS ... 9-6
9-4.2 PORT-NAMING CONVENTIONS .. 9-7
9-4.3 SIGNAL-NAMING CONVENTIONS ... 9-7
9-4.4 PROCESS AND SUBPROGRAM NAMING CONVENTIONS ... 9-7
9-4.5 COMMENTING CONVENTIONS FOR VHDL ... 9-7

9-4.5.1 Files .. 9-7
9-4.5.2 Packages ... 9-7
9-4.5.3 Entity Interfaces .. 9-7
9-4.5.4 Architecture Bodies .. 9-8
9-4.5.5 Configuration Declarations ... 9-8
9-4.5.6 Internal Comments ... 9-8

REFERENCES ... 9-8
BIBLIOGRAPHY .. 9-8

APPENDIX A ...A-1
APPENDIX B ...B-1
GLOSSARY..G-1
INDEX ... I-1
SUBJECT TERM (KEY WORD) LISTING ..ST-1

ix

MIL-HDBK-62

LIST OF ILLUSTRATIONS

Figure
No. Description Page

2-1 Functional Models, Structural Models, and Levels of Abstraction ... 2-2
2-2 Example Input Image and Edge Magnitude Output of an Edge Detection Processor .. 2-7
2-3 Hierarchy of Functions in a Behavioral Model .. 2-8
2-4 Image Data Abstractions and Functions .. 2-9
2-5 Interface Specifications for an Edge Detection Processor ... 2-10
2-6 Behavioral Model for an Edge Detection Processor .. 2-11
2-7 Example Functions for a Behavioral Model .. 2-12
2-8 Hierarchy of Components in an Algorithmic-Level Structural Model .. 2-15
2-9 A Hardware Block Diagram for the Edge Detection Processor .. 2-16
2-10 Structural Model for an Edge Detection Processor... 2-17
2-11 A Hardware Block Diagram for the Window Processor of the Edge Detection Processor ... 2-17
2-12 VHDL Entity Interface for the Window Processor .. 2-18
2-13 VHDL Structural Architecture Body for the Window Processor .. 2-18
2-14 Interface for the Horizontal Filter .. 2-19
2-15 Behavioral Model for the Horizontal Filter ... 2-19
2-16 Hierarchy of Functions in a Structural Model ... 2-20
2-17 Block Diagram of the Horizontal Filter Processor .. 2-21
2-18 Structural Architecture of the Horizontal Filter ... 2-22
2-19 Hierarchical Organization of a Mixed Level of Abstraction Model .. 2-23
3-1 Design Entities, Entity Interfaces, and Architecture Bodies .. 3-2
3-2 A VHDL Entity Interface Declaration ... 3-3
3-3 Example Signal Assignment Statement ... 3-5
3-4 Example of a Resolution Function ... 3-6
3-5 Example of a Behavioral Model .. 3-7
3-6 A Structural Architecture Body ... 3-10
3-7 An Enumerated Type: The IEEE Std 1164 Unresolved Logic Data Type .. 3-11
3-8 Entity Interface Declaration With Generic Constants and an Attribute ... 3-13
3-9 Architecture Body Using an Attribute ... 3-13
3-10 Example of a Physical Type Declaration ... 3-14
3-11 An Assertion Statement .. 3-14
3-12 An Example of Error Propagation: IEEE Std 1164 AND Operator Table .. 3-15
3-13 Using a Component Library to Configure a Structural Architecture Body ... 3-17
3-14 Use of Library and Use Clauses to Access External Libraries .. 3-17
3-15 Using Different Architecture Bodies to Select Libraries ... 3-18
3-16 Technology-Dependent Architecture Body Using Configuration Specifications .. 3-19
3-17 Use of Configuration Declarations to Select Alternative Design Libraries ... 3-22
3-18 A Reconfigurable Architecture Body .. 3-23
3-19 Use of a Configuration Declaration to Select Design Entities From a Library ... 3-23
3-20 Using a Configuration Declaration to Specify Generic Constant Values .. 3-24
4-1 Logical Structure of a VHDL Test Bench Constructed Using WAVES .. 4-6
5-1 VHDL Package Interface for Statistics for Performance and Algorithmic Models .. 5-3
5-2 The Statistics Package Body for Performance and Algorithmic Models .. 5-4
5-3 VHDL Data Type Definitions for a Performance and Algorithmic Model ... 5-5
5-4 VHDL Entity Interface for a Performance and Algorithmic Model .. 5-5
5-5 VHDL Architecture Body for an Algorithmic Model ... 5-6
5-6 Package Declaration for an Algorithmic Model of an FFT Processor ... 5-8
5-7 Part of the Package Body for an Algorithmic Model of an FFT Processor ... 5-9
5-8 The FFT Procedure in the Package Body for an Algorithmic Model of an FFT Processor .. 5-10
5-9 Package Declaration for an Instruction Set Architecture Processor Model ... 5-12
5-10 Type Conversion Functions for an Instruction Set Architecture Processor Model ... 5-13

MIL-HDBK-62

x

5-11 Operator Overloading Functions for an Instruction Set Architecture Processor Model .. 5-14
5-12 Program Loading Procedure for an Instruction Set Architecture Processor Model .. 5-14
5-13 Entity Interface for an Instruction Set Architecture Processor Model ... 5-15
5-14 Architecture Body for an ISA-Level Processor Model .. 5-15
5-15 Example Instruction Set Architecture Memory Model .. 5-17
5-16 Example State Transition Diagram for a Bus Interface Unit Model .. 5-18
5-17 Entity Interface for an Intel Buffered Latch ... 5-20
5-18 Synthesizable Architecture Body for the Intel Buffered Latch .. 5-20
5-19 Entity Interface and Architecture Body for a Functional Model Without Timing .. 5-22
5-20 Package Declaration for a Model That Uses a Timing Shell ... 5-22
5-21 Function Definition for a Timing Function for a Floating Point Adder .. 5-23
5-22 Entity Interface for a Model That Uses a Timing Shell ... 5-23
5-23 Timing Shell Architecture Body .. 5-24
5-24 Best-, Nominal-, and Worst-Case Timing Curves ... 5-25
5-25 Package Declaration for a Model That Uses Parameterized Timing ... 5-25
5-26 Package Body for a Model That Uses Parameterized Timing ... 5-26
5-27 Entity Interface for a Model That Uses Parameterized Timing ... 5-26
5-28 Architecture Body for a Model That Uses Parameterized Timing .. 5-27
5-29 Package Interface for a Model That Uses a Timing Package .. 5-28
5-30 Package Body for a Model That Uses a Timing Package .. 5-29
5-31 Package Declaration for a Model That Uses File I/O for Timing .. 5-31
5-32 Package Body for a Model That Uses File I/O for Timing .. 5-31
5-33 Entity for a Module That Uses File I/O for Timing ... 5-32
5-34 Potential Asynchronous Timing Constraints ... 5-33
5-35 Potential Synchronous Timing Constraints ... 5-33
5-36 Package Interface That Checks Synchronous Timing Constraints .. 5-34
5-37 Procedure Body That Checks Setup Time Constraints .. 5-34
5-38 Procedure Body That Checks Hold Time Constraints ... 5-35
5-39 Entity Interface That Checks Timing Constraints ... 5-35
5-40 Annotation of a VHDL Package Using Header Comments ... 5-36
6-1 Typical Physical Hierarchy of an Embedded Electronic System .. 6-3
6-2 EIA 567 Physical View Organization .. 6-6
6-3 EIA 567 Electrical View Organization ... 6-7
6-4 EIA Timing View Organization ... 6-7
6-5 VITAL Model Organization .. 6-9
6-6 Extrinsic Timing Delay VHDL Model .. 6-11
7-1 Slice and Frames of a Waveform .. 7-5
7-2 Dependencies Between WAVES Packages ... 7-6
7-3 Partitioning of WAVES Packages into Libraries ... 7-7
7-4 Library Structure of WAVES Packages .. 7-8
7-5 Example WAVES Header File .. 7-9
7-6 Example WAVES External File .. 7-10
8-1 A Taxonomy of Design for Testability Strategies .. 8-2
8-2 A Taxonomy of Test Measures... 8-3
8-3 A Hierarchy of Test Controllers and Busses... 8-4
9-1 Directory Structure and File Names for Sobel Algorithm Library ... 9-5

xi

MIL-HDBK-62

LIST OF TABLES

Table
No. Description Page

2-1 Features of Behavior, Structure, and Timing and Different Levels of Abstraction... 2-3
6-1 Internal (Pin-to-Pin) Delay Specifications... 6-10
8-1 Testability Functions, Components, and Interfaces for a Physical Design Hierarchy .. 8-5

MIL-HDBK-62

xii

A

AC = alternating current

ALU = arithmetic and logic unit

ANSI = American National Standards Institute

ASCII = American standard code for information inter-
change

ASIC = application-specific integrated circuit

ATE = automatic test equipment

ATPG = automatic test pattern generator

B

BIM = bus interface module

BIT = built-in test

BIU = bus interface unit

BSDL = boundary scan definition language

C

CAD = computer-aided design

CAE = computer-aided engineering

CALS = computer-aided acquisition and logistics sup-
port

CDR = Critical Design Review

CDRL = contract data requirements list

COTS = commercial off-the-shelf

CMOS = complementary metal-oxide semiconductor

CPU = central processing unit

CSP = communicating sequential process

D

DASC = Design Automation Standards Committee

DESC = Defense Electronics Supply Center

DID = data item description

DoD = Department of Defense

E

ECAD = electronic computer-aided design

EDIF = electronic design interchange format

EDS = electronic data sheet

EIA = Electronic Industries Association

ESD = electrostatic discharge

EW = electronic warfare

F

FCR = fault containment region

FDIR = fault detection, isolation, and recovery

FFT = fast Fourier transform

FIFO = first in, first out

FSM = finite state machine

H

HSDB = high-speed data bus

HW = hardware

HWCI = hardware configuration item

I

IC = integrated circuit

IEEE = Institute of Electrical and Electronic Engineers

IGES = International Graphics Exchange Standard

IIR = infinite impulse response

I/O = input/output

IPC = Institute for Interconnecting and Packaging
Electronic Circuits

ISA = instruction set architecture

J

JTAG = Joint Test Action Group

L

LRM = language reference manual

LRM = line-replaceable module

LRU = line-replaceable unit

LSSD = level-sensitive scan design

M

MCM = multichip module

MUT = module under test

N

NMOS = negative metal-oxide semiconductor

P

PDR = Preliminary Design Review

PI = processor interface

PLA = programmable logic array

PMS = processor memory switch

Q

QPL = qualified products list

R

R = reset

RAM = random-access memory

RFP = request for proposal

ROM = read-only memory

RTL = register-transfer level

LIST OF ABBREVIATIONS AND ACRONYMS

Thi d t t d ith F M k 4 0 4

xiii

MIL-HDBK-62

S

S = set

SA/0 = stuck at zero

SA/1 = stuck at one

SDF = standard delay format

SPSP = special-purpose signal processor

SW = software

T

TAP = test access port

TIREP = Technology Independent Representation of
Electronic Products

TMS = test mode select

TRR = Test Readiness Review

U

UUT = unit under test

V

VHDL = very high-speed integrated circuit (VHSIC)
hardware description language

VHSIC = very high-speed integrated circuit

VITAL = VHDL initiative toward ASIC libraries

VLSI = very large-scale integrated

VML = VHDL model library

V&V = validation and verification

W

WAVES = Waveform and Vector Exchange Specification

WGP = waveform generator procedure

MIL-HDBK-62

1-1

1-1 PURPOSE

This handbook describes the use of the very high-speed
integrated circuit (VHSIC) hardware description language
(VHDL) to document the design of military digital electron-
ic systems. This handbook is designed to help Government
personnel involved in the acquisition of military digital elec-
tronic systems understand the following issues related to the
use of VHDL models to document military digital electronic
systems:

1. What VHDL models are required to be delivered
with a contract? In particular, this handbook discusses the
guidelines described in MIL-HDBK-454 (Ref. 1) and the
requirements of the VHDL data item description (DID)
(Ref. 2). (The VHDL DID provides comprehensive require-
ments for VHDL models that include the need for extensive
auxiliary and testing support files. This handbook contains
approaches to structuring VHDL models so that DID
requirements and intent can be met without an excessive
number of auxiliary and testing support files. Government
personnel can use information in this handbook to tailor
definitions of items in the DID to fit their project needs.
Contractors can use the information to propose the organi-
zation and content of VHDL models they will deliver to the
Government.)

2. Which VHDL models should be developed during
the different stages of the lifetime of a system? The Depart-
ment of Defense (DoD) requirements now mandate deliv-
ery of VHDL models after a system or chip has been
fabricated and is ready for deployment, but VHDL models
have great potential to support the evaluation of system and
chip designs before fabrication is started. The types of
VHDL models appropriate for delivery early in the system
design process are discussed in this handbook. This infor-
mation may be useful to DoD personnel during the prepara-
tion of requests for proposals (RFPs). This handbook may
also be useful to DoD personnel in preparing phased devel-
opment programs for which multiple awards are made in
the early phases of the program to prepare competing
designs (which should include VHDL models of the
designs).

3. How can VHDL models be structured to be con-
sistent with modeling standards? It is of critical importance
to the DoD that VHDL models of compatible pieces of
hardware are themselves compatible. Because VHDL is
such an expressive language, different descriptions may not
be easily interfaced if standards for defining interfaces are
not observed. Guidelines and reference modeling standards

to ensure compatibility between VHDL models are
described in this handbook. In particular, standards for
descriptions of test vectors such as the Waveform and Vec-
tor Exchange Specification (WAVES) standard (Ref. 3),
standard bus interfaces such as the Institute of Electrical
and Electronics Engineers (IEEE) Standards 1149.1 (Ref. 4)
and 1149.5 (Ref. 5) or test and maintenance, and standard
data-type descriptions such as IEEE Standard 1164 (Ref. 6)
are discussed.

1-2 SCOPE

Use of VHDL to model military digital electronic systems
is described in this handbook. In particular, this handbook
addresses the development of models compliant with the
VHDL DID (Ref. 2) and MIL-HDBK-454 (Ref. 1). Digital
electronics are only part of most military systems. Most
modern weapons platforms use sensors and actuators that
are tightly coupled with the digital electronic systems; how-
ever, the modeling of these sensors and actuators is outside
the scope of this handbook. Many military electronic sys-
tems have both digital and analog components. The model-
ing of only the digital components is discussed in this
handbook. Researchers are currently exploring the use of
VHDL for analog components and considering changes to
the language to allow VHDL to better support modeling of
analog and hybrid components and subsystems. Although
VHDL models are frequently used to provide test beds for
testing software before the hardware is fabricated, this hand-
book does not discuss the issues of developing tests for soft-
ware.

The handbook is not intended to provide a working
knowledge of VHDL. On the other hand, the handbook in-
troduces VHDL terms and concepts so it can serve as a
stand-alone reference document for readers familiar with
VHDL.

1-3 INTENDED AUDIENCE

This handbook is intended for use by DoD personnel who
are writing requests for proposals for digital electronic sys-
tems, DoD contractors who are developing VHDL models to
be delivered to the Government, and DoD personnel or inde-
pendent validation and verification contractors who are
evaluating or reviewing models that have been delivered to
the Government. DoD personnel include people who are
writing RFPs for the development of digital electronic sys-
tems, are serving on proposal review teams, are negotiating
the deliverables and tailoring the DIDs associated with a

CHAPTER 1
INTRODUCTION

The goals, scope, and intended audience of the handbook are described in this chapter. Included are references
to industry standardization efforts related to the goals of this handbook. Also provided is an overview of each
chapter of the handbook.

Thi d t t d ith F M k 4 0 4

1-2

MIL-HDBK-62

contract, are part of Government validation and verification
(V&V) teams, or are in government laboratories tracking the
evolution of technology for the design of digital electronic
systems. VHDL tool vendors or VHDL library vendors may
also find this handbook useful in terms of understanding the
needs of DoD contractors.

Users of this handbook should have some formal training
or some experience with electrical engineering and/or com-
puter science and should have experience reading and writ-
ing VHDL models.

Although the user does not need a complete understand-
ing of VHDL to read this handbook, he or she will need to
understand VHDL to implement the suggestions made in
this handbook and to understand the example VHDL pro-
grams.

1-4 HISTORY, PURPOSE, AND SCOPE OF
VHDL

1-4.1 HISTORY OF VHDL

The VHSIC program was created to ensure that the digital
microelectronic systems in the weapon systems fielded by
the DoD would be at least comparable to state-of-the-prac-
tice commercial technology. Over its 10-yr lifetime this pro-
gram developed tools and technology for the design,
manufacture, and use of state-of-the-art integrated circuits
(ICs).

At the start of the VHSIC program in 1980, the DoD was
already experiencing a problem with the obsolescence of
ICs. VHSIC studies (Ref. 7) indicated that by 1990, 80% of
nonmemory ICs in military electronic systems would be ap-
plication-specific integrated circuits (ASICs). At the same
time the VHSIC studies also indicated that the average life-
time of a fabrication process would be two years. Since the
acquisition process for DoD systems was seven to ten years,
a majority of the ICs in a DoD system would be obsolete be-
fore the system could be fielded.

VHDL began as a research effort under the DoD
VHSIC program to document fully the DoD digital sys-
tems (Ref. 8). As experience with the language was
gained, the language was improved by incorporating addi-
tional features. The language was subsequently standard-
ized by the IEEE and adopted by the American National
Standards Institute (ANSI) as ANSI/IEEE Std 1076-1987
(Ref. 9). This standard was updated in 1994 by IEEE Std
1076-1993 (Ref. 10).

1-4.2 THE PURPOSE OF VHDL

VHDL was developed to provide a standardized language
to describe formally the behavior and structure of DoD dig-
ital electronic systems (Ref. 8). These descriptions serve as
a procurement device by specifying exactly what functions
a new device would have to perform in order to replace an
old device. Through simulation of these descriptions the
ability of the design of a new device to perform the same re-
quired functions as the old device can be more accurately es-

timated before being physically verified. Furthermore, the
VHDL descriptions may contain timing information. As a
result, the performance of competing designs can be com-
pared before the devices are built. This performance simula-
tion provides an ability to perform an impartial assessment
of proposals for integrated circuits and for complex electron-
ic systems containing many ICs.

Because VHDL has been standardized, it is now being
used as the primary hardware description language for com-
mercial computer-aided design (CAD) vendors, and it is
likely that this trend will continue. VHDL is also coming
into use as an exchange standard between tool sets provided
by different vendors.

As previously stated, VHDL was developed to serve the
need of the DoD to document the functionality of digital
electronic systems delivered to it by the defense industry
(Ref. 8). This documentation is required to procure new sys-
tems and to assist in the maintenance of fielded systems.
VHDL provides a powerful, technology-independent way to
describe a wide range of electronic hardware systems from
individual integrated circuits to large multiprocessor sys-
tems. It supports top-down and bottom-up design methodol-
ogies or mixtures of the two.

For new systems a VHDL model can be provided by the
DoD that specifies the exact functional behavior desired of
the system. This description can then be offered to potential
bidders for competitive procurement. Bidders can be re-
quired to submit VHDL models of their proposed designs,
and these can be simulated and compared with the original
DoD model. The VHDL models could be evaluated as part
of the overall proposal evaluation process. This step ensures
that bidders understand the functions the system is to per-
form and that the designs will meet functional requirements.

VHDL also provides important benefits after a system is
fielded. As fielded systems fail and are repaired, additional
spare parts must be acquired as stocks of original spare parts
are exhausted. For electronic systems this need requires that
the DoD provide, among other things, a complete functional
specification of the desired parts to potential bidders. This
functional specification must be technology independent be-
cause it is often impossible or excessively expensive to ac-
quire parts in the original technology; thus it becomes
desirable to reimplement the function in a different technol-
ogy. Technology independence permits the separation of the
behavior function (plus timing) from its implementation,
which makes incorporating new technologies easier.

Until the advent of VHDL there was no standard way to
provide this functional specification. Documentation deliv-
ered with the original systems was usually in a technology-
dependent, proprietary format that was not supportable long
term. This obsolescence raised the cost and technical risk of
reprocuring new parts because using technically obsolete
engineering data is expensive and time-consuming. VHDL
offers the technical means to provide functional, timing, and
other specifications for digital electronic systems in a form
that will be useful long after the original system is delivered.

MIL-HDBK-62

1-3

1-4.3 THE SCOPE OF VHDL

VHDL supports describing hardware at many levels of
abstraction from an entire system composed of individual
racks of equipment down to gate-level descriptions of inte-
grated circuits. VHDL includes primitive functions for gate-
level operations. VHDL supports processes, a rich data ab-
straction facility, and synchronization capabilities for algo-
rithmic descriptions. VHDL allows different levels of
abstraction to be mixed in the same description, and this
flexibility can reduce both the amount of time for simulation
and the introduction of unnecessary detail. VHDL also pro-
vides for the specification of detailed hardware timing re-
quirements. Timing specification is particularly important
when the VHDL description represents a hardware compo-
nent that must be integrated with other components, as is al-
most always the case. VHDL also supports annotating
designs and allows the user to specify physical types and
their units, which can be used as attributes for a design.

The DoD is actively incorporating VHDL requirements
into procedures used to develop military electronic comput-
ers. VHDL is required documentation under Guideline 64 of
MIL-HDBK-454, which defines the requirements for
VHDL descriptions to accompany any digital electronics
that are being added to the DoD qualified products list
(QPL). A data item description, DI-EGDS-80811 (Ref. 2),
defines the detailed characteristics of a VHDL model to be
delivered to the Government. VHDL models of systems will
become part of the Computer-Aided Acquisition and Logis-
tic Support (CALS) Program (Ref. 11) usage guidelines.

1-5 RELATED INDUSTRY STANDARDS

Realizing the benefits for customers of standardized mod-
els and modeling languages, the electronics industry is de-
veloping commercial standards for electronic systems. This
is a continuing process. For example, the IEEE requires up-
dates of its standards every five years.

The DoD recognizes and strongly supports VHDL stan-
dardization efforts, including the following: (1) the IEEE
VHDL (1076) standardization, (2) the IEEE Design Auto-
mation Standards Committee (DASC) standards, (3) the
Joint Test Action Group (JTAG) definition of test interface
standards, including the IEEE 1149.1 boundary scan test bus
and the IEEE 1149.5 test and maintenance bus, as well as the
Boundary Scan Definition Language (BSDL) (Ref. 12), a
VHDL style that describes implementations of IEEE Std
1149.1 boundary scan test circuitry, (4) the IEEE 1164 stan-
dard logic package, and (5) the IEEE 1029.1 WAVES test
vector standards.

The IEEE has adopted and standardized VHDL as IEEE
Std 1076 (Ref. 10). The standard is the

VHDL Language
Reference Manual

 (LRM). The VHDL DID requires the use
of IEEE Std 1076. This handbook uses the VHDL LRM as
its definition of VHDL. IEEE standards are revised approx-
imately every five years; therefore, the IEEE VHDL stan-
dard released in 1988 was revised in 1993. The revised
VHDL standard is the DoD-required standard until it is

again revised. The LRM is described in more detail in Chap-
ter 3.

The IEEE DASC is developing standards to support the
interoperability of VHDL models. One aspect of this effort
is IEEE Std 1164, which defines a standard set of values for
signals that includes values for unknowns and high-imped-
ance values. IEEE Std 1164 is discussed in Chapter 7. A sec-
ond aspect is the VHDL initiative toward ASIC libraries
(VITAL) (Refs. 13 and 14), which is developing a standard
for use in the sign-off process for chip designs by fabrication
vendors.

The JTAG is developing a standard VHDL practice to de-
scribe implementations of the IEEE 1149.1 boundary scan
test circuitry (Ref. 4). This practice provides a method used
to describe modifications to a low-level structural model of
an integrated circuit in order to incorporate the circuitry re-
quired for a boundary scan built-in test capability. The IEEE
1149 series of standards is discussed in Chapter 8.

The WAVES IEEE Std 1029.1 (Ref. 3) is intended to cre-
ate a standard representation of test vectors or waveforms
for electronic devices. It uses features of VHDL to describe
procedures used to generate test vectors and waveforms and
to describe methods used to ensure the output of the module
under test matches the required output. WAVES provides a
common format used to describe test vectors for many dif-
ferent automatic test equipment (ATE) machines and a com-
mon output format for automatic test pattern generation
software. This standard reduces the amount of work required
to interface ATE machines with many VHDL parts models.
MIL-HDBK-454 (Ref. 1) states that the VHDL models de-
livered to the Government should be compatible with
WAVES and requires the use of WAVES for any test vec-
tors or waveforms delivered with the model. The WAVES
standard is discussed in Chapter 7.

1-6 OVERVIEW

In Chapter 2 the use of hierarchies in modeling computer
hardware is discussed, and the concepts of behavioral and
structural models of electronic systems are described. These
concepts are essential to VHDL models compliant with the
VHDL DID. Models with mixed levels of abstraction are
discussed. Also discussed is the use of simulation to support
functional correctness checking and performance evalua-
tion. Examples of these concepts are presented.

In Chapter 3 the use of VHDL to capture the structure and
behavior of electronic computers is discussed. Aspects of
VHDL that support the reuse of VHDL models are present-
ed. The development and use of libraries of VHDL descrip-
tions for reuse of both VHDL programs within a model and
between models, as well as the annotation of VHDL models
with descriptive information, are described.

Chapter 4 discusses two Government documents con-
cerning the use of VHDL: MIL-HDBK-454 (Ref. 1) and the
VHDL DID, DI-EGDS-80811 (Ref. 2). The need for VHDL
descriptions of all application-specific integrated circuits
and all digital electronic components on the DoD qualified

1-4

MIL-HDBK-62

products list is discussed. The required structure and con-
tents of VHDL descriptions provided to the Government, as
defined by the VHDL DID, are presented. In particular, the
requirement for both structural and behavioral models of
each component of an electronic subsystem is described.
This chapter provides guidelines to be used to tailor the
VHDL DID and discusses an example of a tailored VHDL
DID. This chapter also contains required annotations for
VHDL models.

Chapter 5 contains a description of the construction and
use of behavioral VHDL models. Common techniques used
to create behavioral VHDL models, specify the timing for
behavioral models, and annotate behavioral models are de-
scribed. Also discussed are the usefulness of behavioral
models in top-down design and the simulation of models
with mixed levels of abstraction.

Chapter 6 discusses the construction and use of structural
VHDL models. Common techniques used to create structur-
al VHDL models, including automatic synthesis and sche-
matic capture, are described. Applications of structural
models for hybrid model simulation, physical design, test-
ability analysis, and annotation with layout and testability
information are also described in this chapter.

The preparation of VHDL models for simulation is de-
tailed in Chapter 7. The process of configuring a model from
libraries of component descriptions is described. Techniques
that support the interoperability of models are emphasized.
In component libraries these models can be combined freely
to provide hybrid structural and behavioral models of sys-
tems. The development of test benches and test vectors to
check the correctness and completeness of the model rather
than the development of test vectors to check the correctness
of the component design is discussed. Also discussed are the
use of parameterized timing models and the selection of tim-
ing options for simulation.

Chapter 8 discusses issues surrounding VHDL modeling
of the test and diagnostic functions of digital electronic sys-
tems. This chapter describes measures of and techniques for
testability and describes different levels of testability based
on the IEEE 1149 hierarchy of testing interfaces. The use of
behavioral modeling to verify that the test bus and test con-
troller systems respond properly to error conditions detected
by on-chip BIT without requiring gate-level implementation
details is emphasized. The use of detailed structural models
as the starting point for built-in test structure generation,
such as boundary scan, is discussed. This chapter also em-
phasizes that detailed structural models are necessary for
evaluation of many testability measures.

Chapter 9 describes the preparation of a VHDL model for
delivery to the Government. The contents and organization
of the files delivered to the Government, as specified in the
VHDL DID, are described. The files that must be delivered
include not only the VHDL source models but also test vec-

tors, annotations, certain other external files, and documen-
tation. Chapter 9 also includes recommendations for VHDL
model style and recommendations for naming files and or-
ganizing libraries.

REFERENCES

1. MIL-HDBK-454M,

General Guidelines for Electronic
Equipment

, 28 April 1995.

2. DI-EGDS-80811,

VHSIC Hardware Description Lan-
guage (VHDL) Documentation

, 11 May 1989.

3. IEEE Std 1029.1-1992,

Waveform and Vector Exchange
Specification (WAVES)

, IEEE Design Automation
Standards Subcommittee, The Institute of Electrical and
Electronics Engineers, Inc., New York, NY, 1992.

4. IEEE Std 1149.1-1990,

IEEE Standard Test Access Port
and Boundary Scan Architecture

, IEEE Standards
Board, The Institute of Electrical and Electronics Engi-
neers, Inc., New York, NY, May 1990.

5. P. McHugh, “IEEE P1149.5 Module Test and Mainte-
nance Bus”,

IEEE Design and Test of Computers

 (De-
cember 1992).

6. IEEE Std 1164-1993,

IEEE Standard Multivalue Logic
System for VHDL Model Interoperability

, The Institute
of Electrical and Electronics Engineers, Inc., New
York, NY, May 1993.

7.

Very High-Speed Integrated Circuits Final Program Re-
port

, VHSIC Program Office, Office of the Under Sec-
retary of Defense for Acquisition, Washington, DC,
September 1990.

8. J. Hines, “Where VHDL Fits Within the CAD Environ-
ment”,

24th ACM*/IEEE Design Automation Confer-
ence Proceedings

, Miami Beach, FL, June 1987, The
Institute of Electrical and Electronics Engineers, Inc.,
New York, NY.

9. ANSI/IEEE Std 1076-1987,

IEEE Standard VHDL Lan-
guage Reference Manual

, The Institute of Electrical and
Electronics Engineers, Inc., New York, NY, March
1988.

10. ANSI/IEEE Std 1076-1993,

IEEE Standard VHDL
Language Reference Manual

, The Institute of Electrical
and Electronics Engineers, Inc., New York, NY, April
1994.

11. MIL-STD-1840B,

Automated Interchange of Technical
Information

, 1992.

12. K. Parker and S. Oresjo, “A Language for Describing
Boundary Scan Devices”,

Proceedings of the IEEE In-
ternational Test Conference

, Los Alamitos, CA, 1990,
The Institute of Electrical and Electronics Engineers,
Inc., New York, NY.

13. V. Berman, “An Analysis of the VITAL Initiative”,

VHDL Boot Camp

, VHDL International Users’ Fo-
rum, San Jose, CA, October 1993, VHDL Interna-

*Association for Computing Machinery

MIL-HDBK-62

1-5

tional Users’ Forum, c/o Conference Management
Services, Menlo Park, CA.

14. O. Levia and F. Abramson, “ASCI Sign-Off in VHDL”,

VHDL Boot Camp

, VHDL International Users’ Forum,
San Jose, CA, October 1993, VHDL International Us-
ers’ Forum, c/o Conference Management Services,
Menlo Park, CA.

BIBLIOGRAPHY

J. R. Armstrong,

Chip-Level Modeling in VHDL

, Prentice-
Hall, Inc., Englewood Cliffs, NJ, 1988.

D. Coelho,

The VHDL Handbook

, Kluwer Academic Pub-
lishers, Norwell, MA, 1989.

R. Lipsett, C. Schaefer, and C. Ussery,

VHDL: Hardware

Description and Design

, Kluwer Academic Publishers,
Norwell, MA, 1989.

D. Perry,

VHDL

, McGraw-Hill Book Co., Inc., New York,
NY, 1991.

VHSIC Annual Report for 1986

, AD-A191-027, VHSIC
Program Office, Office of the Under Secretary of De-
fense for Acquisition, Washington, DC, December
1986.

VHSIC Annual Report for 1987

, AD-A199-880, VHSIC
Program Office, Office of the Under Secretary of De-
fense for Acquisition, Washington, DC, December
1987.

VHSIC Annual Report for 1988

, AD-A223-725, VHSIC
Program Office, Office of the Under Secretary of De-
fense for Acquisition, Washington, DC, December
1988.

MIL-HDBK-62

2-1

2-1 INTRODUCTION

A hardware design is usually developed by constructing a
series of models that become less abstract (and thus more
implementation specific) as the design process progresses.
This iterative design process is known as top-down design.
The goal of this process is to allow the hardware architect
the flexibility to construct and evaluate models of very dif-
ferent design alternatives rapidly during the early stages of
the design process. In the later stages of the process, the
models become more detailed, more accurate, and more dif-
ficult and expensive to change and evaluate. Thus in these
later stages the architect cannot explore as many options.

Before a hardware design begins the project manager
must specify milestones, i.e., when models of the design are
to be completed, verified, and evaluated. Evaluation occurs
as part of a tradeoff between different designs or as part of
the verification of the correctness of the design. Models may
be verified by simulating the models and comparing the sim-
ulation results with expected results or against each other.
When the project manager specifies the milestones, he or she
must clearly indicate for each milestone the level of abstrac-
tion of the model to be delivered, the approach to verifica-
tion to be used, and the types of evaluations to be performed
on the model. For a military contract these milestones are
specified in the contract data requirements list (CDRL) and
its associated DIDs. This chapter discusses some possible
levels of abstraction that can be provided for hardware mod-
els. This chapter also describes the two types of models
identified in subpar. 10.2.1 of the VHDL DID (Ref. 1): be-
havioral and structural models. Discussion of design meth-
odologies is beyond the scope of this handbook.

Hierarchy is a method of controlling the complexity of
hardware models. A hierarchical description decomposes a
hardware module into modules of lesser complexity and
specifies how these modules are connected together. A mod-
ule represents a logical or a physical part of a larger hard-
ware system. Interconnections represent the electrical
connections between modules that are used to carry informa-
tion. Hierarchies can be organized functionally or physical-
ly. Hierarchy also provides a means for incrementally

developing and validating the design in a top-down fashion.
In a top-down design process the hardware is partitioned
into a collection of interconnected modules, behavioral
models are created for each of the modules, and the com-
plete model is verified. A second iteration of design is per-
formed by partitioning each of the top-level modules into
their components and then verifying the refined model.

Both behavioral and structural models can be developed
for the same digital system. These models serve different
purposes. A behavioral model describes the functions and
timing of the system independently of any specific imple-
mentation. Subpar. 10.2.1 of the VHDL DID (Ref. 1) re-
quires delivery of a behavioral VHDL model of the entire
system and delivery of a behavioral model of each module
of the system. A behavioral model is often classified in
terms of its level of abstraction, which is determined by the
functions it performs, the data types used in the model, and
the level of granularity of the events that determine its tim-
ing.

A structural model describes the physical structure of a
specific implementation by specifying components and their
interconnections. Components are described either structur-
ally or behaviorally. Structural models of components create
another level of hierarchy. A component of a structural mod-
el described behaviorally is called a leaf module. The level
of abstraction of a structural model is the same as the level
of abstraction of its leaf modules if the leaf modules all have
a common level of abstraction. If a structural model has leaf
modules with different levels of abstraction, the structural
model is a mixed level of abstraction model. Subpar. 10.2.1
of the VHDL DID (Ref. 1) requires delivery to the Govern-
ment of a structural VHDL model of a hardware system. The
leaf-level models of the structural model must meet specific
requirements described in the VHDL DID. In the top-down
design process the behavioral models at a given level be-
come the reference models for the various choices of struc-
tural models at that level. These intermediate behavioral
models should be delivered along with the subsequently cre-
ated structural models.

CHAPTER 2
HARDWARE DESCRIPTION CONCEPTS

As digital electronic systems approach complexity levels of hundreds of millions of devices, the hardware archi-
tect needs techniques to reduce the design complexity to an understandable level without eliminating any design
detail. Two mechanisms used to control complexity are hierarchy and abstraction. Techniques that create models
of hardware by using hierarchy and different levels of abstraction are described. The concepts of structural and
behavioral models of digital electronic systems are essential to very high-speed integrated circuit (VHSIC) hard-
ware description language (VHDL) models that comply with the VHDL data item description (DID); these concepts
are described in this chapter. Models with mixed levels of abstraction, in which a hierarchical model of a system
contains behavioral elements at different levels of abstraction, are discussed. Also discussed are the uses of simu-
lation to support functional correctness checking and performance evaluation. Examples of these concepts are pre-
sented.

Thi d t t d ith F M k 4 0 4

MIL-HDBK-62

2-2

2-2 LEVELS OF ABSTRACTION IN MOD-
ELS OF DIGITAL ELECTRONIC SYS-
TEMS

2-2.1 OVERVIEW

Several levels of abstraction are commonly used during
the design of digital electronic systems. There are no hard
and fast boundaries between levels, but standardization ef-
forts and common usage are beginning to develop widely ac-
cepted definitions. For example, Institute of Electrical and
Electronics Engineers (IEEE) Std 1164 (Ref. 2) defines data
types and functions for the gate level of abstraction. The
VHDL initiative toward ASIC libraries (VITAL) (Ref. 3)
defines the level of granularity of timing for this level of ab-
straction.

Fig. 2-1 illustrates the relationship between structural,
functional, and timing representations. Fig. 2-1 also shows
three orthogonal axes of hardware description: functional,
structural, and timing.

In Fig. 2-1 the origin represents little or no fidelity in the
model; the fidelity of the structure, function, and timing as-
pects of the model increase along their respective axes. If
any one of the three axes is deleted, one plane remains. Thus
the three planes that can be created are also important. Be-
havioral models include function and timing but provide no
fidelity in their representation of structure. This lack of
structural fidelity does not mean that the behavioral models
do not have structure but that the structure of a behavioral
model does not faithfully represent the physical structure of
the hardware being modeled. Similarly, performance mod-

els faithfully represent the structure and timing of a hard-
ware system but do not represent the functionality of the
hardware being modeled with any fidelity. The final plane is
that of functional models with structure but without any fi-
delity in the timing of the system. Delta delay models, i.e.,
the delay of an operation is represented with the smallest
possible delay describable in VHDL, are used for this pur-
pose. In a top-down design the designer develops a series of
models of the system with increasing fidelity. Fig. 2-1 is
similar to Gajski’s Y-chart (Ref. 4) but (following the
VHDL DID) does not distinguish between structural and
functional domains. Instead it distinguishes timing as a sep-
arate axis.

Table 2-1 lists some of the levels of abstraction in com-
mon use. (Table 2-1 is similar to other tables in the literature
(Refs. 5, 6, and 7).) In a top-down design process the hard-
ware architect starts at the level of abstraction that makes
sense for the design problem to be solved. Models at lower
levels of abstraction are used for the incremental refinement
of the model. The gate level is the lowest level of abstraction
typically used in a VHDL design. At the lowest level the dig-
ital electronic system is not treated as a digital system at all.
Instead the circuits are modeled as analog devices, and the
waveforms produced by the system are currents and voltag-
es, not logic values. Although there has been experimental
work in modeling analog systems using VHDL, it is not
common practice. Other tools, such as SPICE (a public do-
main integrated circuit simulation program), are used at this
level of modeling.

Figure 2-1. Functional Models, Structural Models, and Levels of Abstraction

MIL-HDBK-62

2-3

TABLE 2-1. FEATURES OF BEHAVIOR, STRUCTURE, AND TIMING AND DIFFERENT
LEVELS OF ABSTRACTION

LEVEL OF
ABSTRACTION

TYPICAL BEHAVIORAL
MODEL FUNCTIONS

TYPICAL STRUCTURAL
MODEL COMPONENTS

TYPICAL TIMING
MEASURES

Network Message send
Message receive

Processors memories
Network elements

Message response time

Algorithmic Signal processing
Primitive operations
(e.g. filter, fast Fourier transform)

Processors
Memories
Busses

Throughput

Instruction Set
Architecture

Instruction level functions
(e.g. Add, Mpy)

Program-accessible registers Instruction times

Register Transfer Register-arithmetic and logic unit
(ALU)

Register operations
(e.g. Load Accumulator)

Registers
Internal busses
ALUs

Clock times

Gate Boolean operations
(e.g. AND, OR, NOT)

Gates
Flip-flops

Gate delays

Analog Differential equations Transistors, resistors, etc Actual time

2-2.2 NETWORK MODELS

The highest level of abstraction represented in Table 2-1
is the network model, also known as a processor memory
switch (PMS) model (Ref. 8). The primitive components of
a structural model at this level of abstraction are processors,
memories, and switches; switches include interface modules
as well as switching components in a switched network or
routing components in a packet switching network. The time
units used are application specific but are related to the re-
sponse time of the hardware to application stimuli and to
throughput rates for application-specific units of work. This
level of model is usually developed in order to make
tradeoffs between alternative system architectures and to as-
sess the risk of a design by finding potential bottlenecks or
weak points in the design. It may also be used as a proof of
concept to demonstrate that an architectural concept is feasi-
ble. This level of model may also be used to specify interface
protocols for components and to demonstrate that the com-
ponents will be able to work together. A model at this level
may become the arbiter for deciding whether variations in
designs will be tolerated.

This is the level of abstraction at which two special forms
of VHDL models are often created and used: performance
models and interface models.

2-2.2.1 Performance Models

Performance models at this level are used to understand
and balance the processing load and the input/output (I/O)

requirements of multiprocessor systems and their intercon-
nects.

Performance models may provide only timing informa-
tion and thus may not simulate the functions of the system.
The designer can use these models to estimate response time
and component utilization and to find potential performance
bottlenecks in a design.

A performance model is useful for demonstrating the fea-
sibility of a system architecture, but it is not a sufficient be-
havioral model for delivery under the terms of the VHDL
DID. However, a contract monitor could require a perfor-
mance model during the concept exploration stage of the de-
velopment of a weapon system.

2-2.2.2 Interface models

Interface models* combine high-level and incomplete
models of the processor and memory components with de-
tailed and complete bus or network interface modules. The
model of a processor used in an interface model is designed
to provide appropriate workloads for the busses or intercon-
nects in terms of the size and frequency of messages sent and
received. On the other hand, the model of the interface is
very detailed, and the function and timing are accurate spec-
ifications of the interface protocol.

Even though an interface model is useful for demonstrat-
ing the compatibility of components, it is not a sufficient be-
havioral model for delivery under the terms of the VHDL
DID. However, a contract monitor could request an interface
model during the concept exploration stage of the develop-
ment of a weapon system.

*These models are also known in industry as bus functional models.

MIL-HDBK-62

2-4

2-2.3 ALGORITHMIC MODELS

An algorithmic model describes the functions of a system
in a “program-like” or algorithmic manner. Because the in-
puts and outputs of an algorithmic model are not usually de-
scribed at the bit level, an algorithmic model will not
necessarily provide a completely accurate model of the ex-
ternal interface to the system. However, it will provide the
same overall functionability as a register-transfer-level
(RTL) or gate-level model. For example, an algorithmic de-
scription of a floating-point processor performs all the func-
tions of the processor but uses a simulator-dependent
representation of the floating point numbers. If the floating
point format of the simulator is different from the floating
point format specified for the system being designed, the al-
gorithmic model may not produce the same answers, even at
the abstract level, as the hardware being designed. However,
the values produced by the simulator would be accurate
enough to evaluate the quality of the design. Thus an algo-
rithmic description can use the primitive data types and op-
erations that the simulator provides as a way to simplify the
description and increase the speed of the simulation at the
cost of precision, accuracy, and the use of formats that are
potentially different from the actual hardware to be devel-
oped.

An algorithmic model can be used to verify that the func-
tions of a digital system are correct, but depending on the
number representation used, it may not provide the bit-accu-
rate results needed to verify outputs from the simulations of
more detailed models.

2-2.4 INSTRUCTION SET ARCHITECTURE
MODELS

An instruction set architecture (ISA) model includes the
complete set of instructions recognized by a given processor
(Ref. 8). An ISA model provides the externally visible state
and functions that the processor can perform. The timing of
an ISA model is typically defined in terms of the times re-
quired to perform each of the instructions of the processor
instruction set. This timing may be expressed in terms of
processor clock cycles or in absolute time, e.g., microsec-
onds. ISA models can support simulated execution of soft-
ware if the compilers and operating system load modules are
available.

An ISA model accurately describes all the functions and
data types provided by the hardware that are accessible to
the user. In particular, a correct ISA model of a programma-
ble device correctly executes any valid program for the de-
vice. Thus an ISA model of a programmable device can be
used to debug software written for that device, and inputs
and outputs of an ISA model can be translated into forms
that are completely compatible with more detailed models.
An ISA model of a programmable subsystem may therefore
be used in combination with more detailed models of other
subsystems. ISA models are appropriate forms of behavioral

models for delivered systems because they are accurate to
the bit level and thus are compatible with both the behavioral
and structural models of all adjacent components.

2-2.5 REGISTER-TRANSFER MODELS

A register-transfer-level model describes the functions
and data types accessible to the user of the system and in-
cludes descriptions of the internal memory (or registers) and
the internal data paths of the hardware. Some registers in a
typical central processing unit (CPU) are accessible to the
programmer and therefore are part of an ISA description, but
some registers may not be directly accessible to the pro-
grammer, such as a memory address register, cache memo-
ry, or microcode instruction register. This internal memory
structure is part of what distinguishes different implementa-
tions of the same architecture and thus is not appropriate in
an ISA model except as an aid to understanding the model.

Register-transfer-level models use arithmetic and logical
operations such as add, subtract, and compare. These opera-
tions access data in registers and return results to registers.
Since the registers are clocked memory elements, the clock
time is the key timing measure.

The register-transfer-level model is a particularly impor-
tant class of models because commercially available hard-
ware synthesis technology can be used to generate detailed
integrated circuit designs from appropriate register-transfer-
level models. Synthesis of gate-level structural models from
register-transfer-level models is discussed in Chapter 6.

2-2.6 GATE-LEVEL MODELS

Gate-level models are the lowest level of abstraction gen-
erally modeled using VHDL. Gate-level models are struc-
tural models constructed with primitive elements (also
known as the leaf-level modules) that represent Boolean log-
ic functions, e.g., AND, OR, NOT, and basic logic functions
such as flip-flops and multiplexors. IEEE Std 1164 (Ref. 2)
provides a standard set of primitive functions and data-type
definitions for gate-level models. The VITAL initiative
(Ref. 3) is working on a standard set of timing definitions for
this level of model. The typical timing measures for this lev-
el of abstraction are gate delays, which are dependent upon
the technology used to implement the design and may also
be parameterized to reflect the ambient temperature of the
device, the power applied to the device, and the layout of the
circuit in terms of both feature size and the lengths of the
wires or vias connecting the circuits. Gate-level models are
considered low-level structural models because the behavior
of the leaf modules in these models is simple and well-un-
derstood. Structural models are discussed in par. 2-4. Gate-
level models are typically technology dependent, particular-
ly with respect to timing. They are the basis for application-
specific integrated circuits (ASIC) foundry sign-off, where
they are used to verify the behavior of the integrated circuits
that will be manufactured.

MIL-HDBK-62

2-5

2-2.7 USES OF ABSTRACTION AND HIERAR-
CHICAL DECOMPOSITION IN THE DE-
SIGN PROCESS

During the process of designing a system, the system may
be represented at several levels of abstraction. “Top-down
design” and “bottom-up design” refer to the sequence in
which models at different levels of abstraction and different
levels of hierarchical decomposition are developed. When a
new model of a design is to be created, the designer can
choose to define a new level of hierarchy or to change the
level of abstraction, or some combination of these approach-
es can be chosen. Top-down design is the process of (1) par-
titioning a module into submodules, (2) defining the
interfaces between the submodules, (3) allocating resources
and requirements to those submodules, (4) verifying that the
partitioned form of the design is consistent with the unparti-
tioned design in both function and performance and that the
resource and requirements constraints have been met, and fi-
nally (5) recursively applying the same process to the com-
ponents. During this process the design evolves from the
highest level of abstraction to the lowest level of abstraction.

This process can be captured in VHDL. To do so, a be-
havioral model of a module is created and annotated with at-
tributes that reflect quantitative resource and requirements
budgets. The partitioning of the module is represented by
converting the behavioral model into a structural model, in
which the components of the structural model define the
submodules and the ports and port mappings specify the in-
terfaces between the submodules. Verification of the design
is done in VHDL through, for example, simulation. VHDL
provides a strong type-checking capability, which aids veri-
fication. VHDL tools can check the consistency of the inter-
faces between submodules at analysis time.

Bottom-up design is the process of creating higher level
models by connecting together known lower level models. A
classic example of bottom-up design is the process of creat-
ing combinational logic functions by connecting gate-level
functions. VHDL supports bottom-up design with structural
models, in which the known lower level models are speci-
fied by component declarations and the interconnections of
the components are specified by the port maps in the com-
ponent instantiation statements.

The process of transforming a model at one level of ab-
straction into a model at a lower level of abstraction is called
synthesis (Ref. 9). Refining the hierarchy of a structural
model is an effective way to transform a high-level model
into a low-level model. For example, an ISA model can be
converted into a register-transfer-level model by creating a
register-transfer-level model for each leaf module in the ISA
description. The program-accessible registers in the ISA
model are defined as physical components, and the internal
busses connecting these registers and the ALU are specified.
The implementation of the instruction fetch and decode
mechanisms and the translation of a logical address to a
physical address is defined in terms of physical components.

Also the RTL model of the ALU is created. Thus a more spe-
cific model is created by replacing the top-level behavioral
model with a structural model or with a model at a lower lev-
el of abstraction. This process is done most easily if the func-
tional hierarchy of the behavioral model is similar to the
physical hierarchy of the implementation. For the Sobel pro-
cessor described in subpar. 2-3.3, the functional decomposi-
tion is consistent with a physical decomposition at the top
level. In particular, the four filter functions also occur as
physical components in the parallel implementation. Syn-
thesis is a difficult process because it is a many-to-many
mapping. For example, a behavioral model may have two
separate functions that compute memory addresses and sum-
ming pixels, but the corresponding RTL model may use the
same ALU for both. On the other hand, calls to the same pix-
el add routine may be allocated to different ALUs to achieve
parallelism.

The most common way to check the functional correct-
ness of a hardware model is through simulation. The VHDL
approach to checking functional correctness uses a test
bench. A test bench is a part of a VHDL model that reads or
generates a set of test vectors and sends them to the module
being tested. The test bench collects the responses made by
the module to the test vectors and checks the results pro-
duced by the module against a specification of correct re-
sults. Simulation can be used in this way to verify that the
model is functionally correct at least to the extent that it pro-
vides correct responses to the input test vectors.

Simulation can also be used to estimate the performance
of the finished hardware. Because a behavioral model often
includes timing information, simulation can be used to veri-
fy that the model performs within its performance limits
over a variety of external test conditions, e.g., changes in
temperature or changes in voltage. The simulation results in
trace files listing the names of signals, the times that the sig-
nals change values, and their new values. These trace files
can be postprocessed to estimate the throughput of the hard-
ware, the delay times from input to output, and the amount
of time that different components are kept busy during the
simulation. Simulation results can be used to identify perfor-
mance problems in the hardware design, such as insufficient
throughput, excessive response time to stimuli, and the pos-
sible race conditions that make the behavior of the hardware
vary erratically.

2-3 BEHAVIORAL DESCRIPTIONS OF
HARDWARE DESIGNS

2-3.1 THE PURPOSE OF BEHAVIORAL DE-
SCRIPTIONS

Behavioral models provide a description of the function
of a hardware system independent of any particular imple-
mentation. A behavioral model is a “black box'' in the sense
that any internal hierarchy or structure is provided as an aid
to description or understanding and is not necessarily meant
to serve as a definition of the organization of any imple-
mentation.

MIL-HDBK-62

2-6

Behavioral models play a key role in top-down system
design and provide an important form of documentation of
a hardware system. Designers can use behavioral models of
subsystems to evaluate the performance and functional cor-
rectness of the system architecture. In these models, timing
budgets are used in the subsystem behavioral model. Simu-
lations of the behavioral models of the subsystems can
demonstrate that the subsystems meet their timing budgets
and therefore demonstrate that the system architecture is
feasible.

Designers can use behavioral models to construct proto-
types of systems before an implementation has been speci-
fied. Prototypes help validate a proposed design by
allowing the designer to understand the functions, timing,
and interactions of the proposed hardware subsystems in a
system context. Behavioral models can help the customer
understand the potential risks associated with particular
implementation decisions. For example, a behavioral model
may indicate which parts of a design are likely to be the
slowest, the largest, or the most complex. These risk indica-
tors can help the customer evaluate proposed implementa-
tions.

Behavioral models also play an important role in the ver-
ification of an implementation by defining correct response
to stimuli. A designer creates a set of functional test stimuli,
or test vectors, and simulates the behavioral model using
the test vectors to generate the correct responses to the test
vectors. The designer then creates an implementation model
and simulates the implementation model using the same test
vectors used to simulate the behavioral model. Finally, the
designer verifies that the implementation model is consis-
tent with the behavioral model by comparing the results
generated by the implementation model with the results
generated by the behavioral model. If the results are equiva-
lent, the implementation model represents a correct imple-
mentation of the functions and timing of the behavioral
model.

Commercial computer-aided design (CAD) tool vendors
currently provide or sell synthesis tools that accept register-
transfer-level behavioral models and generate gate-level
structural models and chip designs including logic designs
and layouts. Research is continuing on raising the level of
abstraction of the input to synthesis tools. Behavioral mod-
els that are compatible with synthesis tools are particularly
valuable to the Department of Defense (DoD) in system
maintenance, upgrade, and replacement of obsolete parts.
For example, if the DoD needs to replace an electronic cir-
cuit that is no longer available and has a complete VHDL
behavioral description of the circuit compatible with a syn-
thesis tool, it may be possible to generate at relatively low
cost a replacement circuit that is optimized and validated
with respect to some currently available fabrication process.

By capturing the system in an implementation-indepen-
dent, simulatable form, behavioral models provide an
important starting point for system upgrades and improve-
ments to add functions, reduce size, weight, or power, and
keep systems up with the state of technology advances.
Behavioral models also provide a model for hardware that
conceals the proprietary implementation details. This capa-
bility allows the implementor to protect the implementation
design while completely describing the system function.

The behavioral model of a proprietary hardware system
may include implementation-specific information such as
timing, power consumption, weight, or heat dissipation
while protecting the implementation details.

Behavioral models at a high level of abstraction are also
usually more efficiently simulated than detailed structural
models. High-level behavioral models can often achieve
simulation times two or three orders of magnitude shorter
than those for detailed structural models. Generally, simula-
tion times are closely related to the number of events sched-
uled by the simulator. Reducing the number of events by a
factor of

N

 is likely to decrease the simulation time by a
factor greater than

N

. This decrease is possible because (1)
VHDL simulators typically store events in queues, (2) sim-
ulation time is the product of the number of events simu-
lated and the average time to insert events in the queue, and
(3) the average insertion time is a function of queue size.
Detailed structural models may require hundreds, thou-
sands, or even millions of events to be scheduled to com-
plete a function; a high-level behavioral block may be able
to compute the same function in a single event. To have a
useful behavioral model of a subsystem that also improves
simulation speed, the model must be compatible with both
structural and behavioral models of all adjacent subsystem
components. Achieving this requirement allows the mod-
eler to mix and match structural and behavioral models in
order to configure a simulation model emphasizing a partic-
ular portion of the system. The modeler uses a detailed
structural model of the part of the system that is of interest
and high-level behavioral models of other parts of the sys-
tem to minimize simulation time. These mixed abstraction
models are described in greater detail in par. 2-5.

2-3.2 THE USE OF HIERARCHY IN BEHAV-
IORAL DESCRIPTIONS

Because the behavior of a digital electronic system may
be very complex, some form of hierarchy and structure is of-
ten necessary to make a given behavioral model comprehen-
sible to humans. The hierarchy of a behavioral description
should be fashioned to improve understanding rather than to
describe an implementation. For this reason, a modeler
should prefer decomposition of a behavioral model into
functions and subfunctions over physical decompositions
into boards, integrated circuits, registers, and gates. One part
of an object-oriented hierarchy style is a definition of func-
tions that provide all access to a data structure. VHDL pack-
ages are well suited to this style of decomposition. This
approach supports information hiding since the details of the
data structure are not known to the user, only to the develop-
er of the access routines and the data structure. For example,
memory is a data structure that could be modeled in VHDL
using either a very large array or access types. A package of
functions for reading and writing to the memory could be
used to provide the same interface to either implementation
and could be expanded to include functions for computing
the physical address of a word in memory by using the dif-
ferent addressing modes of the processor. Applying object-
oriented techniques to VHDL is currently being researched
(Ref. 10).

MIL-HDBK-62

2-7

In a VHDL context the hierarchy of behavioral models is
specified in terms of the hierarchy of function calls, which
may be used to support object-oriented programming fea-
tures, particularly data abstraction and information hiding.
The hierarchy of function calls also may be used to define a
decomposition of the functional requirements for the sys-
tem being modeled.

Behavioral models of a system may be structured hierar-
chically for the following reasons:

1. Hierarchical models help to simplify and organize a
behavioral model into comprehensible sections. A hierarchi-
cally structured behavioral model reflects good software en-
gineering practice by partitioning the description into simple
functions that may be reused. A good behavioral model em-
phasizes comprehension, even at the cost of some efficiency.
VHDL provides several mechanisms to improve the com-
prehensibility of behavioral models including functions and
the overloading of infix operators so that common mathe-
matical functions can be defined by the user for different
data types. These mechanisms are described in Chapter 3.

2. Hierarchical behavioral models can reuse functions
and procedures. The sharing of functions and procedures
within and between components is an important aspect of
good modeling practice. VHDL provides functions, proce-
dures, and packages containing data-type definitions, func-
tions, and procedures as mechanisms that promote reuse
both within and between processes. These mechanisms are
described further in Chapter 3.

3. Hierarchical models can make use of graphical block
diagrams as an aid to understanding the textual behavioral
model. This approach is particularly valuable when a CAD
tool is used to generate a VHDL behavioral model from a
graphical block diagram.

2-3.3 EXAMPLE OF A BEHAVIORAL DE-
SCRIPTION

In this subparagraph a hierarchical behavioral model of
an edge detection processor, from Ref. 11, is described.
Edge detection is a common filtering procedure used in
many military and civilian image processing systems includ-
ing automatic target recognition systems. Fig. 2-2 shows a

(A) Input Image

(B) Edge Magnitude Output Image

Figure 2-2. Example Input Image and Edge Magnitude Output of an Edge Detection Processor
(Ref. 11)

MIL-HDBK-62

2-8

test input image and the edge magnitude output of such a
system.

Fig. 2-3 shows the hierarchy of function calls for a behav-
ioral model of the edge detection system. At the top of the
hierarchy is the edge detection processor, which is a behav-
ioral model. This process calls six functions: the horizontal
filter, the vertical filter, the left diagonal filter, the right di-
agonal filter, the magnitude function, and the direction func-
tion. The first four of these functions in turn make use of
another function, the weight function.

The behavioral model of the edge detection system makes
use of data abstraction to simplify the modeling of the sys-
tem. The VHDL definitions of the data types for this behav-
ioral model are shown in Fig. 2-4. This VHDL package
declaration describes the pixel data type, the index types that
are used to address pixels in the image, and the data type for
the image, which is defined as a two-dimensional array of
pixels. The directional output of the system is described as
an enumerated type that lists the eight points of the compass.

A scan line is defined as a subtype of the image data type.
Pixels are defined in terms of the built-in data-type integer.
During implementation the definitions of the pixel data type
can be refined to specify the number of bits in the word. Us-
ing data abstraction the developer allows this implementa-
tion decision to be abstracted out of the behavioral model.
Fig. 2-4 also specifies the data types for the parameters of
the functions used to implement the system including the
four filter functions, the magnitude and direction functions,
and the weight function.

Fig. 2-5 specifies the interface to the edge detector in
VHDL, i.e., as an entity interface. The input to the system
is a sequence of pixels that are loaded in scan line order.
The output from the system is a pair containing magni-
tude and direction values for each pixel in the output.
This entity interface is common to both behavioral and
structural architecture bodies and subsequently can be
configured with either.

Figure 2-3. Hierarchy of Functions in a Behavioral Model

MIL-HDBK-62

2-9

package image_processing is
constant num_lines: natural := 512;
constant line_len: natural := 512;
type x_index is range 1 to line_len;
subtype x_out_index is x_index range 2 to line_len - 1;
type y_index is range 1 to num_lines;
subtype y_out_index is y_index range 2 to num_lines - 1;
subtype pixel is integer;
subtype filter_out is integer;
type direction is (N, NE, E, SE, S, SW, W, NW);
type image is array(x_index, y_index) of pixel;
type scan_line is array(image'range(1)) of pixel;
type pix3 is array (1 to 3) of pixel;
function horizontal_filter
 (A: image;
 I: x_index;
 J: y_index)
 return filter_out;
function vertical_filter
 (A: image;
 I: x_index;
 J: y_index)
 return filter_out;
function left_diagonal_filter
 (A: image;
 I: x_index;
 J: y_index)
 return filter_out;
function right_diagonal_filter
 (A: image;
 I: x_index;
 J: y_index)
 return filter_out;
function magnitude
 (H,V,LD,RD: filter_out)
 return pixel;
function direct
 (H,V,LD,RD: filter_out)
 return direction;
function weight
 (X1,X2,X3: pixel)
 return filter_out;
function shift
 (A: pix3;
 B: pixel)
 return pix3;
end image_processing;

Figure 2-4. Image Data Abstractions and Functions

MIL-HDBK-62

2-10

This entity interface references two VHDL libraries:
the IEEE library, which contains the standard logic pack-
age, and an application-specific library called

sobel_algorithm

. This entity interface uses one
package from this second VHDL library, the one contain-
ing data-type definitions and function specifications for
this application. The clock signal uses the

std_ulogic

data type from the IEEE package. Separating the applica-
tion-specific details such as the scan line size and number
of scan lines per image frame into a package makes it
easier to reuse the design entity in different applications.
Collecting these details in one place also makes it easier
to modify the entire design, should that ever be necessary.

Fig. 2-6 describes the behavior of the edge detector in
VHDL. The architecture body contains a single process. The
body of the process consists of two sets of nested loops. The
first set of nested loops creates an internal buffer for a frame
of the image by reading the pixels in scan line order, one pix-
el per clock. The timing of the input is controlled using the

rising_edge

 function that is specified in the IEEE Std

1164 standard logic package (Ref. 2). The second set of nest-
ed loops produces the outputs in scan line order by calling on
functions to compute the output values. The functions called
by the second loop refer to pixels stored in the internal frame
buffer.

The output of pixels in the second loop is delayed by the

pixel_output_delay

, which is a constant in the timing
package. This approach to implementation-independent tim-
ing has its limitations. In this example, this abstract behavior
does not capture some of the benefits of pipelining, in which
some resulting pixels may be sent out of the edge detector be-
fore some input pixels arrive.

Fig. 2-7 describes three of the functions from the image-
processing package that are used by the edge detector: the
horizontal filter, the vertical filter, and the weight function.
The calling relationship between the horizontal and vertical
filters and the weight function shown in Fig. 2-3 is the result
of the weight function calls in the bodies of the horizontal and
vertical filters. The other functions in the image-processing
package (not shown but required) are implemented in a simi-
lar manner.

 -- The sobel algorithm library contains the packages,
 -- entity declarations, and architecture bodies for
 -- the algorithm level model of the sobel processor.
library sobel_algorithm;
use sobel_algorithm.image_processing.all;
use sobel_algorithm.timing.all;
 -- The IEEE library and the 1164 standard logic
 -- package are used in the algorithm model only
 -- for the clock.
library IEEE;
use ieee.std_logic_1164.all;
entity edge_detector is
 port (P: in pixel;
 Clock: in std_ulogic;
 E: out pixel;
 D: out direction);
end edge_detector;

Figure 2-5. Interface Specifications for an Edge Detection Processor

MIL-HDBK-62

2-11

architecture behavior of edge_detector is
begin
 sobel: process
 variable A: image; -- Internal frame buffer for image
 variable H: filter_out; -- Temporary storage for results of
 -- horizontal filter
 variable V: filter_out; -- Temporary storage for results of
 -- vertical filter
 variable LD: filter_out; -- Temporary storage for results of
 -- left diagonal filter
 variable RD: filter_out; -- Temporary storage for results of
 -- right diagonal filter
 begin
 -- Construct a complete image frame by reading
 -- in the pixels in scan line order
 for i in x_index loop
 for j in y_index loop
 wait until rising_edge(Clock);
 A(i,j) := P;
 end loop;
 end loop;
assert (false) report "array read in";
 wait for pixel_output_delay;
 -- For each pixel in the output image
 -- compute the values of all the filters,
 -- then use these filter values to compute
 -- the magnitude and direction outputs
 for i in x_out_index loop
 for j in y_out_index loop
 wait until rising_edge(Clock);
 H := horizontal_filter(A,i,j);
 V := vertical_filter(A,i,j);
 LD := left_diagonal_filter(A,i,j);
 RD := right_diagonal_filter(A,i,j);
 E <= magnitude(H,V,LD,RD);
 D <= direct(H,V,LD,RD);
 end loop;
 end loop;
 end process sobel;
end behavior;

Figure 2-6. Behavioral Model for an Edge Detection Processor

MIL-HDBK-62

2-12

2-4 STRUCTURAL DESCRIPTIONS OF
HARDWARE DESIGNS

2-4.1 THE PURPOSE OF STRUCTURAL DE-
SCRIPTIONS

The primary purpose of a structural model is to capture
the physical organization of a particular implementation. To
capture the physical organization, the hierarchy of a struc-
tural model should follow the hierarchy of the physical de-
sign. Structural models of hardware are traditionally
represented by schematic diagrams of the connections be-
tween physical components. When VHDL is used to repre-
sent structural models, VHDL components are used to
describe the physical components (such as integrated cir-
cuits and boards), and signals are used to describe the elec-
trical connections between physical components. VHDL
uses ports to describe the interfaces between signals and
components. Ports allow the reuse of components in the
same way that formal parameters allow the reuse of func-
tions.

Low-level structural models can provide detailed docu-
mentation of a particular implementation, but because of this
implementation dependence, they are not appropriate for
specifications to be used in the competitive procurement of
new designs.

Structural models may be required in order to allow anal-
ysis of the design that is specific to the implementation. For
example, the VHDL DID requires structural models to have
sufficient detail to support logic-level fault simulation. Fault
sets for digital hardware are typically defined in terms of
failures at the bit level in the gate-level descriptions of the
hardware. To evaluate the effectiveness of a set of test vec-
tors, single-bit faults are injected into a gate-level structural
model during simulation. This faulty simulation output is
then compared to the output of the fault-free model to check
the ability of a test vector to distinguish between the faulty
and flawless models. This process is described in more detail
in Chapter 8.

Gate-level structural models are required to synthesize
built-in test structures. The boundary scan approach requires
that combinational logic be separated from sequential logic
by fully observable and controllable test nodes. Computer-
aided engineering (CAE) tools are emerging that can synthe-
size the boundary scan test nodes and their interconnections
if the system separates combinational and sequential logic at
the gate level. This synthesis and its corresponding
test-vector generation require detailed structural models at
the gate level.

package body image_processing is
function horizontal_filter
 (A: image;
 I: x_index;
 J: y_index)
 return filter_out is
begin
 return weight(A(I-1,J-1), A(I,J-1), A(I+1,J-1))
 - weight(A(I-1,J+1), A(I,J+1), A(I+1,J+1));
end horizontal_filter;
function vertical_filter
 (A: image;
 I: x_index;
 J: y_index)
 return filter_out is
begin
 return weight(A(I-1,J-1), A(I-1,J), A(I-1,J+1))
 - weight(A(I+1,J-1), A(I+1,J), A(I+1,J+1));
end vertical_filter;
function weight
 (X1,X2,X3: pixel)
 return filter_out is
begin
 return X1+ 2 * X2 + X3;
end weight;
function shift
 (A: pix3;
 B: pixel)
 return pix3 is
begin
 return A(2 to 3) & B;
end shift;
–– Other functions are omitted
end image_processing;

Figure 2-7. Example Functions for a Behavioral Model

MIL-HDBK-62

2-13

2-4.2 THE USE OF HIERARCHY IN STRUC-
TURAL DESCRIPTIONS

Hierarchy is important in structural models as a means of
conveying the logical or physical decomposition of the hard-
ware. Subpar. 10.2.3 of the VHDL DID (Ref. 1) requires that
the hierarchy of a structural model follow the hierarchical
organization of the physical design. This organization is use-
ful in several ways. A hierarchical structure that corresponds
to the physical organization supports the design and acquisi-
tion of upgrades by identifying physical interfaces between
components that can be developed separately, and it can
document maintenance issues. For example, a physically
oriented hierarchical model reflects the organization of the
hardware into line-replaceable modules (LRMs). Also a hi-
erarchical structure that corresponds to the physical organi-
zation documents boundaries between different
technologies. A good structural hierarchy reflects the com-
position of boards into an interconnected set of integrated
circuits with specific layout and routing. This partitioning
facilitates the use of appropriate CAD tools for the design of
integrated circuits and the design of boards.

The interconnection of components in a structural model
should represent the physical interconnections. For exam-
ple, each data-carrying wire on the board should have a cor-
responding signal in the VHDL model. The relationship
between signals and wires may not be one-to-one, e.g., a
16-bit bus, which contains 16 individual wires, may be rep-
resented by a single signal in the VHDL model. This corre-
spondence is one way of checking the consistency of the
model with the physical hardware.

The physical hierarchy for a military digital electronic
system has several levels that should be represented in a
structural model. For example, a specification of a military
system written to conform with MIL-STD-490 (Ref. 12)
partitions the system into segments and the segments into
configuration items including hardware configuration items
(HWCIs). The HWCIs are further partitioned into prime
items and critical items. A structural model of a digital elec-
tronic system should be consistent with this partitioning.

Hardware block diagrams and schematic diagrams are
graphical representations of hardware data flow. VHDL pro-
vides mechanisms to represent this same hardware data flow
formally. When a hardware block diagram is used to provide
graphical documentation for a VHDL structural model, the
following guidelines should be observed to make the rela-
tionship between the VHDL model and the block diagram
clear and unambiguous:

1. There should be a one-to-one correspondence be-
tween the blocks in the diagram and component instantia-
tions in the VHDL model.

2. Block names should be directly translatable into
VHDL component instances. Either

InputBus

 or

input_bus

 is acceptable.The VITAL specification rec-
ommends names that use capital letters to separate words
rather than underscores.

3. There should be a one-to-one relationship between
interconnections in the block diagram and signals in the
VHDL source program.

4. If the interconnections in the block diagram are la-
beled, the labels should be directly translatable into VHDL
signal names.

5. All signals referenced in a VHDL process should
have a corresponding interconnect in the block diagram.

Guideline 1 requires distinct instance labels but allows
components to be reused. For example, the edge detection
processor described in subpar 2-3.3 reuses the adder compo-
nent within all of the filters. Guideline 2 encourages the user
to translate automatically graphical block names into in-
stance labels. (The block names may contain blanks that are
translated into underscores in the VHDL source program.)
Guideline 3 encourages the user to implement multibit bus-
ses and interconnects as bit vectors or higher level data
types. For example, the behavioral model of the edge detec-
tion processor uses the integer data type for its signals. In a
structural model these signals are translated into bit vectors.
The use of single signals is essential for the mixed level of
abstraction models described in par. 2-5.

A number of commercial CAD tools have the capabilities
to create schematic representations of VHDL structural
models and to create VHDL structural models directly from
the schematic representation of the CAD tool.

2-4.2.1 Hierarchical Decomposition Based on
Physical Elements

During design the digital electronic system is partitioned
into subsystems. At the top level the system as a whole is de-
scribed. The next level is a partitioning of the system into
subsystems. The structural model should follow the parti-
tioning described for the system into HWCI as described in
the Level A specifications (Ref. 12). A structural model
should preserve the partitioning into HWCIs of the physical
system because it is a standard unit for acquisition.

The structural model should also be consistent with the
physical hardware at the level of the line-replaceable unit
(LRU). LRU partitioning is significant for logistics and sup-
port because it represents the basic unit used to maintain the
system in the field. Any changes in boundaries between
LRUs can have a significant effect on logistics and support;
therefore, the structural model should accurately represent
those boundaries. Furthermore, LRUs are important bound-
aries of the system for diagnostic and testing purposes. Field
maintenance personnel must be able to isolate faults to an in-
dividual LRU. Thus a structural model should be able to
simulate built-in test (BIT) diagnostic capabilities and inter-
faces to external test equipment at the level of its LRUs.

Another level of partitioning that should be represented in
a structural model is the board. Partitioning the structural
model to correspond to the physical partitioning of the hard-
ware into boards assists in the automatic placement and rout-
ing of boards and in the thermal and power analysis of the
boards. Furthermore, delays between boards are likely to be

MIL-HDBK-62

2-14

much greater than delays within a specific board; this differ-
ence must be represented. In some cases the boards may be
LRUs, so the components in the LRU-level partitioning and
the board-level partitioning may be the same.

Partitioning of the structural model should also corre-
spond to the partitioning of a board design into multichip
modules (MCMs) and integrated circuits (ICs) as appropri-
ate. Different CAD tools and optimization criteria may ap-
ply at the MCM/IC level versus the board level, so
partitioning of a structural model to represent MCMs can aid
in the synthesis, analysis, and optimization of a design using
MCMs.

Partitioning of the structural model should also corre-
spond to the partitioning of an MCM design into packaged
very large-scale integrated (VLSI) circuits. Because pack-
aged VLSI circuits are the lowest possible practical level for
repair through replacement, isolation of faults to specific in-
tegrated circuits is an important design consideration. Also,
if the model accurately represents the boundaries of VLSI
circuit packages, VLSI CAD tools can be used to synthesize,
analyze, and optimize VLSI circuits.

Structural models for components of a circuit should also
follow the partitioning used by the CAD tools to design the
circuit. For example, the hierarchy of the structural model of
a VLSI circuit should follow the boundaries of standard cells
or macrocells used by the CAD tool. In general, if a CAD
tool is used to design a circuit and to generate a VHDL mod-
el automatically for the circuit, the generated description fol-
lows the hierarchy of the design. A CAD tool that flattens a
design hierarchy before producing a structural model of the
design should not be used to generate models for delivery to
the Government. Using CAD tools to generate detailed and
hierarchical structural models is a recommended practice
since it reduces costs and helps to keep the model consistent
with the physical hardware.

2-4.2.2 Leaf Modules in a Hierarchical Structural
Description

If a component is represented by a behavioral model and
does not have a structural model, the component is called a
leaf module. Subpar. 10.2.1.1 of the VHDL DID (Ref. 1)
specifies three valid leaf module options:

1. Modules selected from a Government list of valid
uses of leaf modules referenced or contained in the contract

2. Modules corresponding to a collection of hardware
elements that together exhibit a stimulus-response behavior
but whose interaction is best modeled at the electrical or
physical level

3. Modules whose detailed design has not yet been
completed but whose behavior is required as a delivery dis-
closure at specified times during the contract.

The first option for a leaf module allows the contractor to
use models from a Government source of validated models.
The Government requires VHDL models for the electronic
components delivered to it. These requirements are dis-
cussed in Chapter 4. Once these models have been validated,

they can be supplied to contractors for use in VHDL models
of hardware systems that use the products. The Government
and the contractor may also negotiate to include other
VHDL models, such as models not in the qualified products
list (QPL) that are developed by the contractor or by other
Government contractors. These negotiations must be reflect-
ed in the tailored VHDL DID for the specific contract.

The second option identifies a common set of primitive
elements used in designs whose elements are not easily de-
scribed accurately with VHDL behavioral models. As de-
scribed in subpar. 10.2.1.1 of the VHDL DID (Ref. 1), these
elements include digital logic gates, analog circuit blocks,
and power supplies. Functional models of digital logic gates
are defined as part of the IEEE Std 1164 (Ref. 2) specifica-
tion of standard signal formats. This specification includes
truth tables and a resolution function for using a nine-value
state/strength logic system for AND, OR, NOT, NOR,
NAND, and XOR. This functional specification is being
augmented with timing information and standard formats for
back-annotation by the VITAL effort (Ref. 3).

The third option is designed to cover situations in which
the Government wants VHDL models delivered during the
design cycle, i.e., before design of all of the components has
been completed. In this case high-level behavioral models
may be used as leaf modules to specify the current state of
the design. As the design progresses into more detail, these
behavioral models are augmented with structural models.

2-4.3 EXAMPLES OF STRUCTURAL DE-
SCRIPTIONS

In this subparagraph two examples of structural VHDL
models are presented: one at algorithmic level and one at a
register-transfer level. The algorithmic model uses the data-
type definitions and some of the functions of the

sobel_algorithm

 library presented in subpar. 2-3.3.
The entity interface declarations and architecture bodies for
this level of model are included in this library. The register-
transfer-level model uses different data-type definitions, in
which the number of bits in each word is specified. These
definitions and the entity interfaces and architecture bodies
that reference these packages are in the

sobel_structure

 library.

2-4.3.1 Algorithmic-Level Structural Description

Fig. 2-8 shows a hierarchy for an algorithmic structural
model of the edge detection system described in subpar.
2-3.3. This model is at the algorithmic level because the data
types have not yet been refined to bit vectors; therefore, the
inputs and outputs of the model are not bit-for-bit represen-
tations of the inputs and outputs of the real device. However,
the structural model does reveal much of the physical orga-
nization of the system as it will be implemented. As shown
in Fig. 2-8, this model continues to use some of the elements
of the behavioral model, particularly the weight function,
and it uses the data-type definitions previously used in the
behavioral model. This structural model implements the

MIL-HDBK-62

2-15

same function but with different timings due to a pipelined
approach. The top levels of the structural hierarchy reflect
the physical partitioning used in the circuit design. At this
point the filter functions have been converted into design en-
tities, and an additional entity, the memory processor, has
been added to the design.

Structural models are often represented by hardware
block diagrams. A hardware block diagram for the edge de-
tection processor is shown in Fig. 2-9. The components are
represented by rectangles; the interconnects are shown as
lines connecting the components. Attributes may be associ-
ated with the components, interconnects, and interfaces in a
block diagram. Names are usually given to the components
and may also be given to interconnects and interfaces.

Fig. 2-9 shows a top-level hardware block diagram of the
first-level partitioning of the edge detection processor. It
shows three interconnected components: a buffer memory, a
window processor, and a magnitude and direction processor.
The buffer memory loads the image in scan line order, one
pixel at a time. The buffer memory passes three scan lines
parallel to the window processor, as indicated by intercon-
nections

P1

,

P2

, and

P3

.
The window processor computes the horizontal, vertical,

and left and right diagonal filters. The outputs of these filters
are signals labeled

H

 (for horizontal edges),

V

 (for vertical
edges),

LD

(for left diagonal edges), and

RD

 (for right diag-
onal edges). The direction and magnitude processor outputs

E

, the magnitude of the edge (a measure of the level of the

Figure 2-8. Hierarchy of Components in an Algorithmic-Level Structural Model

MIL-HDBK-62

2-16

contrast between the areas separated by the edge), and

D

, the
direction of the edge

.

Fig. 2-10 shows the VHDL structural architecture body
for the edge detector. Similarly to the behavioral architec-
ture for the edge detector shown in Fig. 2-6, this architecture
uses the image-processing package for data-type definitions.
The port maps for the component instantiations reflect the
connections shown in the block diagram, Fig. 2-9.

Just as structural models can be hierarchical, block dia-
grams also demonstrate the hierarchy. Fig. 2-11 depicts a
structural model of the window processor, which is one
component of the edge detection system shown in Fig. 2-9.
Fig. 2-11 shows the data flow for the window processor
component of the edge detector. It has three input ports la-
beled P1, P2, and P3. It has four output ports labeled H, V,
LD, and RD. The input and output interface names are iden-
tical to the corresponding interconnect names in the top-lev-
el block diagram to make the relationship between the
VHDL model and the block diagram clear.

Figs. 2-12 and 2-13, respectively, show the entity inter-
face declaration and the structural architecture body for the
window processor. This VHDL design unit references the
same two libraries as the higher level structural model of the
edge detection processor. The port maps for this model re-
flect the connectivity shown in Fig. 2-11.

Fig. 2-14 shows the entity interface declaration for the
horizontal filter. This same interface could be used with ei-
ther a behavioral or a structural architecture body. Because
the interface uses the

std_ulogic

 data type for the clock,
it references the

std_logic_1164

 package in the

IEEE

library. Similarly, since it uses the algorithmic-level data-
type specifications, it references the

image_processing

 package in the

sobel_algorithm

 library.
Fig. 2-15 shows a behavioral architecture body for the

horizontal filter. Since this behavioral model is designed to
be independent of any particular implementation, no attempt
has been made to optimize the number of computations or
the use of memory. However, the

weight

 and

shift

functions are used to eliminate unnecessary redundancy in
the program and improve readability. Two variables are in-
ternal to the process; they serve as buffers for the input pix-
els from two scan lines. The data in these two buffers are
used as parameters to the weight function. The behavior of
the horizontal filter is described in two parts. The first part
updates the state of the filter, which is defined by the values
of the pixel buffers

NEXT_LINE

 and

LAST_LINE

.
The second part computes the output for the filter as the

difference of the weighted sums of the two input lines. The
function

 weight

 provides a common mechanism for the
computation of the weighted sum. The horizontal filter pro-
cess calls it twice, and the other filters use it as well.

Figure 2-9. A Hardware Block Diagram for the
Edge Detection Processor (Ref. 11)

MIL-HDBK-62

2-17

architecture structure of edge_detector is
 component mem_processor
 port (P: in pixel;
 Clock: in std_ulogic;
 P1, P2, P3: out pixel);
 end component;
 component window_processor
 port (P1, P2, P3: in pixel;
 Clock: in std_ulogic;
 H, V, LD, RD: out filter_out);
 end component;
 component mag_dir_processor
 port (H, V, LD, RD: in filter_out;
 Clock: in std_ulogic;
 E: out pixel;
 D: out direction);
 end component;
 signal P1: pixel; -- Tap onto 1st scan line buffer in Mem Proc
 signal P2: pixel; -- Tap onto 2nd scan line buffer in Mem Proc
 signal P3: pixel; -- Tap onto 3d scan line buffer in Mem Proc
 signal H: filter_out; -- Temp storage for results of horizontal filter
 signal V: filter_out; -- Temp storage for results of vertical filter
 signal LD: filter_out; -- Temp storage for results of left diag filter
 signal RD: filter_out; -- Temp storage for results of right diag filter
begin
 MP: mem_processor port map (P, Clock, P1, P2, P3);
 WP: window_processor port map (P1, P2, P3, Clock, H, V, LD, RD);
 MDP: mag_dir_processor port map (H, V, LD, RD, Clock, E, D);
end structure;

Figure 2-10. Structural Model for an Edge Detection Processor

Figure 2-11. A Hardware Block Diagram for the Window Processor of the Edge Detection
Processor

MIL-HDBK-62

2-18

 -- The sobel algorithm library contains the packages,
 -- entity declarations, and architecture bodies for
 -- the algorithm level model of the sobel processor.
library sobel_algorithm;
use sobel_algorithm.image_processing.all;
use sobel_algorithm.timing.all;
 -- The IEEE library and the 1164 standard logic
 -- package are used in the algorithm model only
 -- for the clock.
library IEEE;
use ieee.std_logic_1164.all;

entity window_processor is
 port (P1: in pixel;
 P2: in pixel;
 P3: in pixel;
 Clock: in std_ulogic;
 H: out filter_out;
 V: out filter_out;
 LD: out filter_out;
 RD: out filter_out);
end window_processor;

Figure 2-12. VHDL Entity Interface for the Window Processor

architecture structure of window_processor is
 component horizontal_filter
 port (P1: in pixel;
 P3: in pixel;
 Clock: in std_ulogic;
 H: out filter_out);
 end component;
 component vertical_filter
 port (P1: in pixel;
 P2: in pixel;
 P3: in pixel;
 Clock: in std_ulogic;
 V: out filter_out);
 end component;
 component left_diagonal_filter
 port (P1: in pixel;
 P2: in pixel;
 P3: in pixel;
 Clock: in std_ulogic;
 LD: out filter_out);
 end component;
 component right_diagonal_filter
 port (P1: in pixel;
 P2: in pixel;
 P3: in pixel;
 Clock: in std_ulogic;
 RD: out filter_out);
 end component;
begin
 HF: horizontal_filter port map (P1, P2, P3, Clock, H);
 VF: vertical_filter port map (P1, P2, P3, Clock, V);
 LDF: left_diagonal_filter port map (P1, P2, P3, Clock, LD);
 RDF: right_diagonal_filter port map (P1, P2, P3, Clock, RD);
end structure;

Figure 2-13. VHDL Structural Architecture Body for the Window Processor

MIL-HDBK-62

2-19

-- The sobel algorithm library contains the packages,
 -- entity declarations, and architecture bodies for
 -- the algorithm level model of the sobel processor.
library sobel_algorithm;
use sobel_algorithm.image_processing.all;
use sobel_algorithm.timing.all;
 -- The IEEE library and the 1164 standard logic
 -- package are used in the algorithm model only
 -- for the clock.
library IEEE;
use ieee.std_logic_1164.all;
entity horizontal_filter is
 port (P1: in pixel;
 P3: in pixel;
 Clock: in std_ulogic;
 H: out filter_out);
end horizontal_filter;

Figure 2-14. Interface for the Horizontal Filter

Figure 2-15. Behavioral Model for the Horizontal Filter

MIL-HDBK-62

2-20

2-4.3.2 Register-Transfer-Level Structural De-
scription

Fig. 2-16 shows the hierarchy of design entities and the
types of their architecture bodies in a register-transfer-level
structural description. Each node in the tree has a corre-
sponding VHDL entity interface and at least one architecture
body. Not all of the VHDL code for the models is shown
here. This model has four levels of hierarchy. At the top of
the hierarchy is the edge detection processor, which has a
structural architecture body. This architecture body uses
three components: the memory processor, the window pro-
cessor, and the direction and magnitude processor. All three
of these components use structural architecture bodies. The
window processor makes use of four filter processors as
components, and the magnitude and direction processor has
two components. All six of these components use structural
architecture bodies. The leaf-level modules in this model are
first-in, first-out (FIFO) buffers, adders, subtractors, delays,
multiplexors, comparators, encoders, and absolute value
processors. These modules use behavioral architecture bod-
ies described at the register-transfer level. Thus this structur-
al model is a register-transfer-level model.

Fig. 2-17 is a block diagram of the structural model of the
horizontal filter whose behavioral description is shown in
Fig. 2-15. The model uses three adders. Delay units are used
to postpone certain signals for one clock cycle. The subtrac-
tor SUB performs a subtraction on the incoming data. The
first adder ADD1 adds the difference between the current in-
puts and the difference between the inputs of the previous
cycle (provided by DELAY1). The second adder ADD2 adds
the current and previous sums. A VHDL structural body cor-
responding to this block diagram is shown in Fig. 2-18.

The leaf nodes shown in Fig. 2-17 are macrocells from a
standard library included with the synthesis tool used to im-
plement the VLSI circuit for the edge detector. The goal of
this design was to minimize the number of cells required to
perform the function. Thus there is little resemblance be-
tween the structural model shown in Fig. 2-17 and the be-
havioral description shown in Fig. 2-15. Algebraic
manipulation of the function described in the behavioral
model verifies the equivalence of this structural model and
the behavioral model.

Figure 2-16. Hierarchy of Functions in a Structural Model

MIL-HDBK-62

2-21

Figure 2-17. Block Diagram of the Horizontal Filter Processor (Ref.
11)

MIL-HDBK-62

2-22

2-5 MIXED ABSTRACTION MODELS

2-5.1 THE PURPOSE OF MIXED LEVEL OF
ABSTRACTION MODELS

Hierarchical models may not have the same level of detail
down the path to each leaf. For example, in the same model
of a computer the central processing unit (CPU) may be
modeled in terms of its instruction-set behavior, whereas an
application-specific integrated circuit (ASIC) may be mod-
eled at the gate level. These mixed-abstraction-level models
allow detailed simulation of part of a system and achieve
high simulation speeds because the high-level behavioral
parts of the model simulate more quickly than the detailed
structural parts.

Given a complete VHDL model database with both be-
havioral and structural architecture bodies for all of the mod-
ules, the architect can configure a model using low-level
structural architectures for some components and high-level
behavioral architectures for the rest of the system. The re-
sulting model achieves higher simulation speed through the
use of the high-level behavioral architecture bodies and yet

provides detailed simulation for the part of the system where
low-level structural architecture bodies are used.

2-5.2 DESIGNING MODULES FOR MIXED
ABSTRACTION MODELS

Subpar. 10.2.1 of the VHDL DID (Ref. 1) requires deliv-
ery of both structural and behavioral models of all modules
other than the leaf modules. Models conforming with this re-
quirement allow users of the models to build and simulate
mixed abstraction versions of the models. The modules of a
model need to be carefully designed if mixed abstraction
versions of the model are to be configured quickly and effi-
ciently. VHDL provides a mechanism to configure mixed
abstraction models, the configuration specification. The
configuration specification describes which representation
of a module is to be used, e.g., for a particular instance of a
module. This mechanism can be used to select behavioral or
structural representations.

Behavioral models must be designed to interface with
structural models of neighboring modules. In particular, the
data types for the external interfaces must be chosen careful-

Figure 2-18. Structural Architecture of the Horizontal Filter

architecture structure of horizontal_filter is
 component subtractor
 port (A1: in pixel;
 A2: in pixel;
 Clock: in std_ulogic;
 DIFF: out filter_out);
 end component;
 component adder
 port (A1: in filter_out;
 A2: in filter_out;
 Clock: in std_ulogic;
 SUM: out filter_out);
 end component;
 component delay
 port (A_IN: in filter_out;
 Clock: in std_ulogic;
 A_OUT: out filter_out);
 end component;
 signal S1: filter_out; -- Connects difference to 1st
 -- delay and 1st adder
 signal S2: filter_out; -- Connects 1st delay to 1st adder
 signal S3: filter_out; -- Connects 1st adder to 2nd delay
 -- and 2nd adder
 signal S4: filter_out; -- Connects 2nd delay to 2nd adder
begin
 SUB: subtractor port map (P1, P3, Clock, S1);
 DELAY1: delay port map (S1, Clock, S2);
 ADD1: adder port map (S1, S2, Clock, S3);
 DELAY2: delay port map (S3, Clock, S4);
 ADD2: adder port map (S3, S4, Clock, H)
end structure;

MIL-HDBK-62

2-23

ly so that structural models can be interfaced at a later stage.
In general, the structural VHDL models use low-level data
types such as the IEEE standard logic types (Ref. 2) as the
data types of their input and output ports. The behavioral
model should be prepared to interface with such data types.
In some cases a single behavioral input or output may corre-
spond to an array of standard logic values.

One VHDL mechanism that supports interfacing behav-
ioral and structural models is the type conversion function.
Type conversion functions can be associated with the ports
of structural models in either component instances or config-
uration specifications. In the early stages of model develop-
ment, the project manager should develop a standard set of
data types for the module interfaces. All models should be
constructed with these standard data types. VHDL provides
a mechanism (the package) to share a single definition of a
data type across all parts of a model.

2-5.3 AN EXAMPLE OF A MIXED LEVEL OF
ABSTRACTION MODEL

The hierarchy of a mixed level of abstraction model is
shown in Fig. 2-19. This model uses the register-transfer-
level behavioral structural models of the components of the
horizontal filter processor in conjunction with ISA-level be-
havioral models of the vertical and diagonal processors and
with algorithmic-level behavioral models of the memory
processor and the magnitude and direction processor. Be-
cause integer formats are used in the behavioral models for
the memory processor and the magnitude and direction pro-
cessor, type conversion functions are required to convert the
integers to and from the 8-bit array inputs and the 12-bit ar-

ray outputs of the structural model of the horizontal proces-
sor.

REFERENCES

1. DI-EGDS-80811, VHSIC Hardware Description Lan-
guage (VHDL) Documentation, Department of De-
fense, Washington, DC, 11 May 1989.

2. IEEE Std 1164-1993, IEEE Standard Multivalue Logic
System for VHDL Model Interoperability
(std_logic_1164), The Institute of Electrical and
Electronics Engineers, Inc., New York, NY, May 1993.

3. IEEE Std 1076.4, IEEE Standard for VITAL Applica-
tion-Specific Integrated Circuit (ASIC) Modeling Spec-
ification, The Institute of Electrical and Electronics
Engineers, Inc., New York, NY, December 1995.

4. D. Gajski and R. Kuhn, “Guest Editors’ Introduction:
New VLSI Tools”, IEEE Computer 16, 11-4 (1983).

5. G. A. Frank, C. U. Smith, and J. L. Cuadralo, “An Ar-
chitecture Design and Assessment System for Software/
Hardware Codesign”, Proceedings of the 22nd Design
Automation Conference, Las Vegas, NV, June 1985, pp.
417-24, IEEE Computer Society Press, Los Alamitos,
CA.

6. J. Schoen, Performance and Fault Modeling With
VHDL, Prentice-Hall, Inc., Englewood Cliffs, NJ,
1989.

7. R. A. Walker and D. E. Thomas, “A Model of Design
Representation and Synthesis”, Proceedings of the
22nd Design Automation Conference, Las Vegas, NV,

Figure 2-19. Hierarchical Organization of a Mixed Level of Abstraction Model

MIL-HDBK-62

2-24

June 1985, pp. 453-9, IEEE Computer Society Press,
Los Alamitos, CA.

8. D. P. Siewiorek, C. G. Bell, and A. Newell, Computer
Structures: Principles and Examples, McGraw-Hill
Book Co., Inc., New York, NY, 1982.

9. J. R. Armstrong and F. G. Gray, Structured Logic De-
sign Using VHDL, Prentice-Hall, Inc., Englewood
Cliffs, NJ, 1993.

10. J. E. DeGroat and G. S. Powley, Jr., “Object-Oriented
Generation of VHDL Synthesizable Architectural
Building Blocks”, VHDL: Champions of the Second
Generation, Proceedings VHDL International Users’
Forum Spring Conference, 2-6 April 1995, San Diego,
CA, VHDL International Users’ Forum, c/o Conference
Management Services, Menlo Park, CA.

11. C. O. Scheper and R. L. Baker, “VHSIC Silicon Com-
piling Tools Applied to Image Processing”, 1987 Digest
of Papers, Government Microcircuit Applications Con-
ference, GOMAC-87 B119187, Orlando, FL, 26-29 Oc-
tober 1987, US Army Laboratory Command, Fort
Monmouth, NJ.

12. MIL-STD-490A, Specification Practices, 4 June 1985.

BIBLIOGRAPHY

A. G. Stanculescu, A. S. Tsay, N. D. Zamfiresccu, and D. L.
Perry, “Switch-Level VHDL Descriptions”, IEEE In-
ternational Conference on Computer-Aided Design, Di-
gest of Technical Papers, 1989, pp. 180-3, IEEE
Computer Society Press, Los Alamitos, CA.

J. R. Armstrong, “Accurate Timing Modeling in Behavioral
Models”, SIGDA Newsletter 18, 72-5 (December
1988).

J. R. Armstrong, Chip-Level Modeling With VHDL, Pren-
tice-Hall, Inc., Englewood Cliffs, NJ, 1989.

D. L. Barton, “Behavioral Descriptions in VHDL”, VLSI
Systems Design 9, 28-33 (June 1988).

M. J. Chung and S. Kim, “An Object-Oriented VHDL De-
sign Environment”, Proceedings of the 27th ACM/IEEE
Design Automation Conference, Piscataway, NJ, 1991,
Institute of Electrical and Electronics Engineers, Inc.,
New York, NY.

A. Dewey, “The VHSIC Hardware Description Language
(VHDL) Program”, ACM IEEE 21st Design Automa-
tion Conference Proceedings 84, Albuquerque, NM,
23-27 June 1984, Institute of Electrical and Electronics
Engineers, Inc., New York, NY.

R. Ernst and J. Bhasker, “Simulation-Based Verification for
High-Level Synthesis”, IEEE Design & Test of Com-
puters 8, 14-20 (March 1991).

F. T. Hady, J. H. Aylor, R. D. Williams, and R. Waxman,
“Uninterpreted Modeling Using the VHSIC Hardware
Description Language (VHDL)”, 1989 IEEE Interna-
tional Conference on Computer-Aided Design, Digest
of Technical Papers, 1989, IEEE Computer Society
Press, Los Alamitos, CA.

P. Hunter, R. Harr, and H. Carter, “General Requirements
for VHDL Behavioral Models”, SIGDA Newsletter 18,
21-33 (December 1988).

M. Neighbors, “Extending the VHDL Simulation Environ-
ment into the Requirements Analysis Level—An Ex-
ample (SINCGARS-ICOM Radio)”, Proceedings of the
Tactical Communications Conference, Vol. 1, Tactical
Communications, Challenges of the 1990s, Fort Wayne,
IN, 24-26 April 1990, pp. 435-53, Institute of Electrical
and Electronics Engineers, Inc., New York, NY.

N. Park and A. Parker, “A Software Package for Synthesis
of Pipelines From Behavioral Specifications”, IEEE
Transactions on Computer-Aided Design 7 (March
1988).

R. A. MacDonald and R. Waxman, “Operational Specifica-
tion of the SINCGARS Radio in VHDL”, Proceedings
of the Tactical Communications Conference, Vol. 1,
Tactical Communications, Challenges of the 1990s,
Piscataway, NJ, 1990, pp. 415-33, Institute of Electrical
and Electronics Engineers, Inc., New York, NY.

R. J. Hookway, “System Simulation Using VHDL”, Auto-
mated Design and Engineering for Electronics-West,
Proceedings of the Technical Sessions, 31 March-2
April 1987, pp. 21-33, Cahners Exposition Group, Ana-
heim, CA.

D. W. Runner and E. H. Warshawsky, “Synthesizing Ada’s
Ideal Machine Mate”, VLSI Systems Design 9, 30, 32-
3, 36, 38-9 (October 1988).

B. R. Stanisic, “VHDL Modeling for Analog-Digital Hard-
ware Designs (VHSIC Hardware Description Lan-
guage)”, IEEE International Conference on Computer-
Aided Design, Digest of Technical Papers, 1989, pp.
184-7, IEEE Computer Society Press, Los Alamitos,
CA.

S. Tandri, M. H. Abd-El-Barr and C. McCrosky, “High-
Level Specification, Simulation and Layout Generation
of Systolic Arrays—A Case Study”, Conference Pro-
ceedings, CCVLSI ’90, Canadian Conference on Very
Large-Scale Integration, pp. 6.6/1-6, Carlton Universi-
ty, Ottawa, Ontario, Canada, 1990.

A. Sama and J. Armstrong, “Behavioral Modeling of RF
Systems With VHDL”, Proceedings of the Spring 1991
VHDL Users’ Group Meeting, 1991, Cincinnati, OH,
VHDL International Users’ Forum, c/o Conference
Management Services, Menlo Park, CA.

MIL-HDBK-62

3-1

3-1 INTRODUCTION

This chapter introduces and defines very high-speed inte-
grated circuit (VHSIC) hardware design language (VHDL)
terminology in a conceptual framework and shows how
VHDL features can be used to describe digital systems. This
chapter discusses how to use VHDL features to describe the
structure, function, and timing of a digital system; how to
annotate models, handle errors, and reuse VHDL code; and
how to manage the configuration of simulation models
through the use of late binding. VHDL terminology intro-
duced in this chapter is used throughout this handbook. The
intent of this chapter is to provide information on what a
contract monitor could or should see in a VHDL hardware
model delivered to the Government, not to provide a detailed
tutorial on VHDL. Detailed VHDL tutorials are listed in the
chapter Bibliography.

The VHSIC hardware description language was devel-
oped to provide a standardized language to describe the be-
havior and structure of Department of Defense (DoD) digital
electronic systems formally (Ref. 1). The language is formal
because it has well-defined syntax and semantics. VHDL
began as a research effort under the DoD VHSIC program
(Ref. 1). As experience with the language was gained, it was
improved over a period of several years by incorporating ad-
ditional features. The language was subsequently standard-
ized by the Institute of Electrical and Electronics Engineers
(IEEE) as Standard (Std) 1076-1987 (Ref. 2). The IEEE re-
quires standards to be recertified approximately every five
years; therefore, an update to VHDL was completed in 1993,
IEEE Std 1076-1993 (Ref. 3). Tool support for the standards
generally lags behind the standardization process, so it is im-
portant for a contract monitor to understand what features of
the latest version of VHDL are used in models and which
tool sets support those features. This understanding is partic-
ularly important if different subcontractors are using differ-
ent VHDL development environments or if the VHDL tool
environment of the contracting or validation and verification
(V&V) organization is different from that of the prime con-
tractor.

3-2 BASIC VHDL CONCEPTS

3-2.1 VHDL DESIGN ENTITIES

The design entity is the primary VHDL concept that rep-
resents a component of an electronic system. This compo-

nent can be either a physical component (such as an
integrated circuit or a printed circuit board) or a logical com-
ponent (such as a memory comprising several circuits on a
board or an arithmetic and logic unit (ALU) occupying only
a portion of an integrated circuit).

In a VHDL model a design entity consists of an entity in-
terface and exactly one of its corresponding architecture
bodies. (One entity interface can have several associated ar-
chitecture bodies.) When a VHDL model is configured, a
specific architecture body is selected for the design entity
through the use of either configuration declarations or con-
figuration specifications. Fig. 3-1 illustrates the relationship
between design entities, entity interfaces, and architecture
bodies.

The VHDL data item description (DID) (Ref. 4) requires
each physical module of an electronic system to be docu-
mented with one or more design entities. The VHDL DID
expects that all physical modules that are not considered
primitive, or leaf, modules should have both a behavioral de-
sign entity and a structural design entity. Primitive, or leaf,
modules are documented with a behavioral design entity.

All design entities for the same hardware component and
at the same level of abstraction should have a common entity
interface. This approach encourages reuse of models be-
cause changes in the design of a particular component can be
encapsulated in the architecture body, without causing
changes in the rest of the VHDL model. For example, con-
sider a VHDL entity interface for a microprocessor such as
a 1750A (Ref. 5). The entity interface for this microproces-
sor may have one architecture body that implements an in-
struction-set-architecture (ISA)-level model of the
microprocessor, another architecture body that provides a
register-transfer-level model, and another architecture body
that provides a gate-level model of the same device. Suppose
that this entity interface is bound to an instance in a larger
model of a board that includes other components for the
main memory system and input/output (I/O) subsystems.
The ISA design entity can be used to verify software written
for the microprocessor or to test the I/O subsystem model.
To verify the test and maintenance functions, the gate-level
design entity can be used. The register-transfer-level design
entity can be used to synthesize a new version of the micro-
processor using new integrated circuit (IC) technology. All
of these design entities can be simulated in the context of the
board model without changing the VHDL code of the board

CHAPTER 3
VHDL CONCEPTS

This chapter presents an overview of VHDL. The use of VHDL to capture the behavior and structure of digital
electronic systems is discussed. Aspects of VHDL that support the reuse of models and source code are presented.
The development and use of VHDL libraries, for reuse of VHDL descriptions both within a model and between mod-
els, and the annotation of VHDL models with descriptive information are described. Also described is structuring
VHDL models to improve their readability and reuse.

Thi d t t d ith F M k 4 0 4

MIL-HDBK-62

3-2

or the design entities selected for the other subsystems pro-
vided they use the same entity interface and the architectures
implement the same behavior.

Division of a design entity into an entity interface and an
architecture body also allows the system designer to delay
the choice of an architecture body until later in the design
process. This approach allows the system designer to make
tradeoffs between different implementations for a device
simply by selecting a different architecture body. VHDL has
mechanisms to select architecture bodies without changing
the contents of any of the entity interfaces or architectures
for the system that uses the component. These mechanisms
are discussed in subpar. 3-8.3. This feature allows a major
reduction of risk because anytime a model is modified, there
is a risk that new errors will be introduced into the model.

3-2.1.1 Entity Interfaces

The entity interface

declaration specifies the interface of
the entity, i.e., the external view of a design entity. This ex-
ternal view includes ports, generic and local constants, at-
tributes, and error checking of the inputs to the design entity.
The entity declaration provides information about this exter-
nal interface to other architectures using the design entity.
This information includes external electrical connections,
which are specified with port declarations, and generic con-
straints, such as the acceptable range of operating tempera-
tures for the device. An entity interface declaration can also
specify a mechanism to detect unacceptable behavior (such
as timing violations) during simulation.

Appropriate entity interface declarations are essential for
interoperability of VHDL models. A contract monitor re-
ceiving a model should assess the likelihood of its reuse and

the changes that may occur in the model when it is reused to
ensure that the model is developed to support that reuse sce-
nario. In particular for an entity interface declaration, this as-
sessment requires choosing the data types used to define the
ports and on the generics to be used in the model.

For a design entity that represents a physical device, the
ports specify the external electrical connections of the de-
vice. For example, if an integrated circuit is being modeled
by a VHDL design entity, the ports of its entity interface de-
scribe the individual pins on the integrated circuit package.
For more abstract models, particularly at the algorithmic
level, these ports may represent the busses that a processing
element accesses. Fig. 2-10 and its related discussion pro-
vide an example of a more abstract port.

A port is defined by a name, a mode, and a type. The port
name is used to identify a particular port; all port names for
an entity interface must be unique with respect to the other
ports of the entity interface. If a physical device is being
modeled, the VHDL DID (Ref. 4) requires a given port name
to correspond to the physical electrical connection of the
component. For example, the number of ports and the port
names for an IC model must correspond to the number of
pins and the pin names of the device being modeled.

The allowable port directions (or modes) are

in

,

out

,

inout

,

buffer

 or

 linkage

. The port modes define the
allowable direction of data flow through a port. They also
determine the sources of the signal connected to that port.
For example, ports labeled

in

 and

 inout

 are sinks for a
signal; ports labeled

out

,

inout

, and

buffer

 are sources.
Ports labeled

buffer

 or

linkage

 provide other special
functions not germane to this discussion; the reader is re-

Figure 3-1. Design Entities, Entity Interfaces, and Architecture Bodies

MIL-HDBK-62

3-3

ferred to the

VHDL Language Reference Manual

 (Ref. 3) or
VHDL texts such as those cited in the Bibliography for more
information.

VHDL has mechanisms to define the type of a port and to
check the consistency between the type of the port and the
type of its associated signal. This latter mechanism assures
that incompatible types are not connected. Ports can have
default values, which are used when an instance of an input
port is left unconnected or when an output port is undriven.

Fig. 3-2 shows the entity interface declaration for the
edge detection processor discussed in subpar. 2-4.3. This en-
tity interface has four ports named

P

 (for input of image pix-
els),

Clock

 (for synchronization),

E

 (for output of the edge
image), and

D

 (for output of the edge direction information).
Ports

 P

 and

Clock

 are

in

 ports and ports

E

 and

 D

 are

out

ports. The type of input port

P

 and output port

E

 is

pixel

,
a user-defined type specified in the package

image_processing

 in the library

sobel_algorithm

. The type of input port

Clock

 is

std_ulogic

, an IEEE Std 1164 type (Ref. 6), which is
specified in the package

std_logic_1164

 in the library

IEEE

. Edge detector is a simple entity interface declaration
not containing any of the other possible declarations or any
error-checking statements. These additional capabilities are
discussed in pars. 3-6 and 3-7.

3-2.1.2 Architecture Bodies

An architecture body describes the relationships between
the inputs and outputs of the corresponding entity declara-
tion. Such relationships may include both function and tim-
ing. Multiple architecture bodies can be associated with a
particular entity interface, although only one can be associ-
ated with a given instance of an entity interface. This in-
stance-by-instance binding capability provides flexibility in
the construction and use of hardware descriptions and elim-
inates the risk that would result from having to change entity

interfaces every time a different architecture is used. Since
different architecture bodies for a component can be selected
without modifying the code for the architectures that use the
component, the risk that would result from requiring modi-
fications of the architectures is eliminated. Furthermore, dif-
ferent architecture bodies can be selected without requiring
that the architectures be reanalyzed, i.e., recompiled, and
this procedure can significantly reduce the time to prepare a
model for simulation.

A good design is modularized to support design tradeoffs
and to anticipate possible changes in the design so they are
appropriately partitioned into design entities. Good parti-
tioning allows changes to be implemented by substituting
different architecture bodies without any modification of the
associated entity interface. One situation in which changes
are expected is during top-down development of a hardware
module. The level of detail in a top-down design changes, so
different architecture bodies can reflect the addition of dif-
ferent levels of detail to the design. For example, two archi-
tecture bodies may perform exactly the same logical
function but differ in their timing and implementation. Pars.
2-3 and 2-4 describe different architecture bodies for the
same entity declaration. One is a behavioral model; one is a
structural model.

One frequently used testing methodology uses two mod-
els that process the same inputs; their outputs are compared
for equality. These two models should have the same entity
interface but different architecture bodies. One architecture
body is considered the reference model; its outputs are the
standard to which the outputs of the second architecture
body are compared. In a top-down development process the
reference architecture body usually represents a more ab-
stract view of the system, and the one being tested represents
a more detailed view. Research is being performed to devel-
op functional verification tools that provide an alternative to
simulation for this verification (Ref. 7).

Figure 3-2. A VHDL Entity Interface Declaration

MIL-HDBK-62

3-4

An architecture body contains both declarations and
statements. These statements may include processes, com-
ponent instantiations, and concurrent signal assignment
statements. These kinds of statements execute concurrently
and use the signals declared either in the architecture body
or as the ports of the entity interface. Such signals exchange
information and synchronize the actions of the architecture.

Depending upon the statements it contains, an architec-
ture body is considered to have one of three styles: behavior-
al, structural, or mixed. The behavioral style is normally
constructed using processes and concurrent signal assign-
ment statements and includes signals for communication be-
tween processes and variables for communication within
each process. In a behavioral style, each process provides a
sequential execution paradigm. Behavioral models con-
structed using the concurrent signal assignment as the pri-
mary construct are sometimes called data flow style models.
The structural style uses only component instantiations to
specify design entities at the next lower level of the hierar-
chy and connects these components using signals. The leaf,
or primitive, elements of a structural model are the lowest
level of the design hierarchy and are always written in a be-
havioral style. The mixed style combines processes and
component instances in the same architecture.

These styles of VHDL models are designed to support
models that serve different purposes. Chapter 2 discusses the
purposes of behavioral and structural models at different
levels of abstraction. In pars. 3-3 and 3-4 the key VHDL
concepts for these styles and the roles of these styles in sup-
port of the purposes of structural and behavioral models, as
described in Chapter 2, are discussed.

3-2.2 THE VHDL CONCEPT OF TIME

A VHDL simulation is the computation of a series of
events sequenced by time. In VHDL an event is a change in
the value of a signal. Thus each event is associated with a
signal and has a value (the new value of the signal) and a
time. The interval between events can be very large or very
small, so simulation time can be advanced by arbitrary
amounts. VHDL models are usually simulated by a discrete
event simulator in order to cope with variably sized time
steps.

A VHDL simulation is a two-step process (Ref. 8). First,
all signal values are updated. After the signal values are up-
dated, the processes that are sensitive to changes in the sig-
nal values are executed. After all processes have been
executed, the process repeats and signal values are updated.
This cycle is repeated and terminates only when the simula-
tor runs out of events, the simulation time advances to the
maximum possible value, or the simulation is stopped by the
user or by an error.

The run time of most VHDL simulators is determined
largely by the number of events in a simulation. Reducing
the number of events required in a simulation is likely to re-
duce its run time. Thus a behavioral model with a few large
processes and a small number of signals usually executes

faster than a structural model with many component instan-
tiations and many signals. Using more abstract signal data
types also reduces the number of events. For example, if a
signal has a data type of a 32-bit integer, a simple event rep-
resents a new 32-bit value. On the other hand, if the same 32-
bit integer is represented as 32 one-bit signals, up to 32
events may be required to represent the same change in val-
ue.

3-2.3 SIGNALS

In VHDL, signals

provide a means of communication be-
tween and processes, concurrent signal assignments, and
components. During simulation, changes in signal values
may activate processes or signal assignment statements,
which in turn compute new values for signals.

The declaration of a signal specifies its type. The type of
a signal must be consistent with the type of any port to which
the signal is connected. Also the type of a signal must be
consistent with the value on the right-hand side of a signal
assignment statement.

To ensure interoperability of VHDL models, the signal
type declarations should be made available to those entities
connected by the signals. A necessary condition for interop-
erability of design entities is that the user can connect two
design entities together with one or more signals. VHDL
type checking can be used to ensure that models meet at least
this interoperability condition. A valuable technique to en-
sure interoperability is the use of packages to encapsulate
signal type definitions and their associated functions and
make them globally available. This approach has been taken
in IEEE Std 1164 (Ref. 6), which defines a standard set of
types for signals in logic-level models. The specification of
signal data types that are used by multiple design entities is
an important early milestone for a VHDL system design.

3-2.3.1 Signal Assignment Statements

Signal assignment statements are the VHDL constructs
that specify the future values of signals and the times at
which those values are to be assigned. Computation of the
future values of signals is the essence of the function of the
model; computation of the times at which the signal will as-
sume those values is the essence of the timing of the model.

VHDL has two different kinds of signal assignment state-
ments: sequential and concurrent. These two types of signal
assignment statements are valid in different contexts: se-
quential signal assignment statements are valid only inside a
process or subprogram, whereas concurrent signal assign-
ment statements are valid in concurrent contexts, such as
within an architecture or block statement.

Simulation events in VHDL are generated by signal as-
signment statements. Execution of a signal assignment state-
ment causes one or more transactions

to be scheduled for the
future. Each transaction has a time and a value that repre-
sents a possible value of the signal at a specified time in the
future. These transactions are stored in queues called driv-
ers. VHDL uses a concept called a driver to capture the pos-

MIL-HDBK-62

3-5

sible future values of a signal. As simulation time advances,
transactions are removed from the queue as their times pass
from the future to the present and become the present driving
value of the driver.

A signal assignment statement edits the transactions in
the associated driver. Editing refers to transactions being
added to, deleted from, or inserted into the driver queue. The
interaction of signal assignment statements and drivers is
called propagation. VHDL supports two models of signal
value propagation: inertial delay (the default) and transport
delay. These two models allow users to model accurately
certain physical properties of hardware. In the transport de-
lay model each signal value, no matter how short its dura-
tion, is propagated. This approach is important for modeling
edge triggered devices, in which a short-duration pulse may
cause the device to change state. Inertial delays are intended
to model circuits for which an input must persist for some
minimum time before the circuit responds. If the input has a
shorter duration than the minimum inertial delay, the circuit
does not respond.

Each concurrent signal assignment statement has a
unique driver, but all sequential signal assignment state-
ments writing to the same signal in the same process share
the same driver. The user should be careful not to make in-
valid assumptions about the editing rules for sequential sig-
nal assignment statements sharing the same driver because
these editing rules are different from those for concurrent
signal assignment statements, which have different drivers.
See, for example, Ref. 8, pp. 70-82, for a detailed discussion.

Fig. 3-3 shows a sequential signal assignment statement
extracted from the horizontal filter shown in Fig. 2-15. In
this case the value of the signal

H

 is specified by a complex
expression that averages elements of the three element buff-
ers

 LAST_LINE

and

NEXT_LINE

. The time that

H

 as-
sumes this value is the current simulation time plus the value
of

pixel_output_delay

.
The timing of a component is likely to change based on a

number of factors, such as the operating temperature of the
component or the technology with which the component is
implemented. To ensure reuse of the VHDL model of a com-
ponent, the timing information should be parameterized so
that changes in these external factors can be made without
requiring changes to the VHDL model. As shown by exam-
ination of Fig. 2-5 and its reference to a timing package, the
delay in Fig. 3-3 is parameterized by using a deferred con-
stant. An alternative approach is to use generics and pass the
delay information down the hierarchy of design entities.
These approaches are discussed subpars. 3-6.1 and 3-6.2.
Standardization of the timing of components is most ad-

vanced at the gate level; standards such as VHDL initiative
toward ASIC libraries (VITAL) (Ref. 9) and EIA 567-A
(Ref. 10) are included. Par. 6-5 and subpar. 6-3.3.3 describe
mechanisms used to parameterize timing information in
models at the gate level.

3-2.3.2 Resolution Functions

 A signal

S

 may have several drivers, one for each concur-
rently executing source of future values for

S

. All of the se-
quential signal assignment statements within a single
process share the same driver for

S

, and each driver main-
tains a queue of possible future values for its associated sig-
nal. These future values are time stamped. The contents of
these queues must be merged to determine the future value
of the signal. VHDL includes a mechanism, referred to as a
resolution function, that determines how conflicts in future
values of a signal are resolved. Whenever a new value needs
to be assigned to

S

 (and

S

 has multiple sources of values), a
resolution function is called to compute the value of the sig-
nal based on the current values of the sources of the signal.
These resolution functions are defined by the user. The res-
olution function returns a value that is then assigned as the
driving value of the signal. When a signal is declared, a res-
olution function may be associated with that signal. If no
resolution function is associated with the signal, the signal is
considered unresolved. For example, the input port

Clock

for the edge detector design entity whose interface is shown
in Fig. 3-2 is an unresolved data type

std_ulogic

. The
“u” in the name indicates an unresolved data type. An unre-
solved data type is used for efficiency reasons because there
is only one driver for the

Clock

 signal.
Fig. 3-4 shows an example resolution function called a

“wired-and” resolution function. It is associated with a four-
value logic data type called

MVL

. This resolution function
returns a

'0'

whenever any of its inputs are

'0'

, it returns
an

'X'

 if there is an

'X'

 input but no

'0'

 input, it returns
a

'Z'

if all inputs are

'Z'

, and it returns a

'1'

 otherwise.
The input to a resolution function is always a vector, and a
resolution function must be able to respond properly to a
zero length vector, which may occur if all inputs are discon-
nected.

One or more resolution functions is a necessary part of
any data type definition designed to specify signals. A reso-
lution function may be defined for a data type

T that is used
for signals. When a data type declaration for signals is used
to ensure interoperability of models, it should be equipped
with a resolution function. This action guarantees that the
declaration can be used in situations in which signals have
multiple drivers. If a signal has a single driver, it may be de-

Figure 3-3. Example Signal Assignment Statement

MIL-HDBK-62

3-6

clared as an unresolved signal. Unresolved signals typically
require less simulation overhead than resolved signals and
are therefore more efficient. A typical abstract data type for
signals is provided in both a resolved and unresolved form.
IEEE Std 1164 (Ref. 6) includes a resolution function in its
VHDL package specifying the data types for logic-level sig-
nals.

3-3 VHDL SUPPORT FOR BEHAVIORAL
DESIGN

One of the most powerful features of VHDL is its ability
to support abstract, technology-independent descriptions of
hardware in the form of behavioral models. Behavioral mod-
els model the function and timing of an electronic system.
VHDL has features that allow creation of implementation-
independent behavioral architecture bodies.

VHDL provides support for behavioral modeling with
both concurrent and sequential execution modes. A behav-
ioral architecture body may contain multiple processes, all
of which execute concurrently. However, statements within
a given process are executed sequentially.

3-3.1 PROCESSES
Processes are the VHDL construct that supports sequen-

tial modes of execution. A process contains a sequence of

statements executed sequentially when the process is acti-
vated.

Control constructs, which may occur in processes, in-
clude loops, conditionals, and assignment statements. As-
signment statements in processes include variable
assignment statements and sequential signal assignment
statements. Sequential signal assignment statements allow
processes to update signal values over time.

Processes cannot be nested, but the function of a process
can be organized hierarchically through the use of functions
and subroutines. Communication between statements within
a process and between a process and the functions and sub-
routines that it calls can be accomplished using variables. In
most simulations, assignment to variables is much more ef-
ficient than assignment to signals, so the use of variables is
preferred to the use of signals. The current value of a signal
can also be assigned to a variable as a way to communicate
from the external environment into a process. Communica-
tion from a process to its external environment is accom-
plished through signal assignments.

A process may have an explicit sensitivity list, which
specifies a list of signals such that the change in value of any
signal on the list will cause the process to be activated. Wait
statements in a process specify when the process will be sus-
pended and when it will resume. A process must have either
a sensitivity list or a wait statement.

Reprinted with permission. Copyright  by Paul J. Menchini.

Figure 3-4. Example of a Resolution Function (Ref. 11)

MIL-HDBK-62

3-7

The state of a process, as defined by its variables, persists
through a simulation. In contrast, variables local to a subrou-
tine are not persistent and are reinitialized each time the sub-
routine is called.

3-3.2 WAIT STATEMENTS
Wait statements provide a mechanism used to suspend a

process and may be used to synchronize processes. When a
wait statement is executed, execution of the process contain-
ing the wait statement is suspended until the conditions of
the wait statement are satisfied. When the conditions are
met, execution of the process resumes.

The optional clauses of a wait statement (sensitivity
clause, condition clause, and timeout clause) provide a vari-

ety of ways to control execution of a process. The sensitivity
clause of a wait statement contains a list of signals referred
to as a sensitivity list. Changes in the current values of sig-
nals on the list may (depending upon the condition clause of
the wait statement) cause the process to resume execution. A
wait statement with a timeout clause can be used to intro-
duce timing delays into functional models. See subpar. 2-3.3
for discussion of some of the limitations of this approach in
defining timing.

3-3.3 A BEHAVIORAL DESIGN EXAMPLE
Fig. 3-5 shows a behavioral architecture body for the edge

detection processor described in subpar. 2-3.3 and shown in

Figure 3-5. Example of a Behavioral Model

MIL-HDBK-62

3-8

Fig. 2-6. The entity interface declaration for this design en-
tity is shown in Fig. 3-2.

This architecture body consists of a single process. The
process contains two major nested loops. In both loops, the
for loop control structure is used. The first loop uses a wait
statement to synchronize loading pixel values from the input
signal P into the variable A. The wait statement has in its
condition clause the second input signal Clock. The wait
statement uses the rising_edge routine from the IEEE
std_logic_1164 package to catch the rising edge of the
clock signal.

The second loop computes and outputs the pixel values.
The output is accomplished by signal assignment statements
assigning values to the output signals E and D. These signal
assignment statements also specify the timing in a parame-
terized way through the use of the constant
 pixel_output_delay. The wait statement in the loop
synchronizes the output of pixels with the clock and pre-
vents the values from overwriting each other.

Between the two loops is a separate wait statement that
causes the delay associated with computing the output pixel
values. An assertion statement (discussed in subpar. 3-7.1) is
used to assist debugging by printing a message when input
of the image is complete.

This architecture body uses the package of data type def-
initions and function specifications in the package
image_processing, shown in Figs. 2.4 and Fig. 2.7.
References to the image_processing package in the
sobel_algorithm library are allowed because the entity
interface shown in Fig. 3-2 includes library and use
statements referring to this library and package, and these
references are inherited by the architecture body. Use of this
package allows the system to be parameterized in several
ways. For example, the number of pixels in the image can be
changed without changing the architecture body. Similarly,
the number of bits of precision in a pixel can be changed, or
the data type for a pixel could be changed from integer to an
unsigned natural number or a bit vector.

This behavioral model uses functions to achieve a hierar-
chical organization. The calling hierarchy for this model is
shown in Fig. 2-3.

This behavioral model specifies both the function and
timing of the system. The timing information is introduced
through the wait statements in the input and output loops
and the wait statement between the two loops. The timing
information is parameterized because the delays are speci-
fied with constants. The value of the
pixel_output_delay constant is specified in the
timing package.

3-4 VHDL SUPPORT FOR STRUCTURAL
DESIGN

Structural models can be used to model the actual or pro-
posed physical structure of a digital system. VHDL structur-
al architecture bodies support hierarchy by allowing a design

entity to bind other design entities to instances of its compo-
nents. The generic maps of component instantiation state-
ments allow attribute values to flow down through the
structural hierarchy with appropriate modifications at each
level.

3-4.1 STRUCTURAL ARCHITECTURE
BODIES

A structural architecture uses only component instances
and their interconnections to define its structure. The com-
ponents are bound to design entities during elaboration. This
binding provides support for hierarchical structural models.

A VHDL structural description can be visualized as an
unpopulated board. The component declarations define a
parts list for the board and specify the pins on those parts. In
this analogy the ports specified in the declaration of compo-
nent C define the pins of C. The component instances are
sockets whose pins are wired to the traces on the board. The
port maps of component instantiation statements define the
wiring of the pins to the traces. The traces can be internal
signals that are traces local to the board or interface signals
that connect to the board edge connector through the ports
specified in the entity declaration to onboard socket pins.

Lower level design entities represent the devices to be
plugged into the sockets. “Binding” is the act of doing so.
The design entity to be bound to a component may be select-
ed on an instance-by-instance basis by means of a configu-
ration.

The major language features supporting structural de-
scriptions are component declarations and component in-
stantiations. These features are described in subpar. 3-4.2.

3-4.2 COMPONENTS
In VHDL, components represent the outlines of individu-

al hardware entities from which a larger design entity is
composed. Before a component can be used in a model, it
must be declared with a component declaration statement. A
component is incorporated into a model by means of the
component instantiation statement. Multiple component in-
stantiation statements may refer to the same component dec-
laration, just as a typical hardware board may use many
copies of the same circuit.

The link between physical components and the corre-
sponding components in the VHDL model can be reinforced
through the naming of components and the annotation of
component instances. VHDL allows different attribute val-
ues to be associated with different instances of the same
component. The EIA 567 standard (Ref. 10) describes the
concept of an electronic data sheet, in which a data sheet is
associated with each component in the “parts list”. At-
tributes in the electronic data sheet are used to compute tim-
ing for elements of the model. This concept is described in
more detail in par. 3-6 and Chapter 5.

3-4.2.1 Component Declarations
Component declarations can be thought of as defining an

inventory of components, which can be reused as many

MIL-HDBK-62

3-9

times as necessary in the model. Component declarations
specify and name the ports and generic constants of compo-
nents. A port clause in a component declaration serves to de-
clare the ports of the component. It must contain the names,
directions, types, and default values, if any, of the ports in
the component. VHDL analyzers check that component in-
stances refer to components that have been declared and that
the port map for the instance is consistent with the parts of
the component declaration. This consistency checking helps
to catch errors in VHDL models during the model develop-
ment process.

Component declarations can be placed in packages, and
this placement allows them to be reused. This approach is
particularly valuable if a common or prescribed parts list is
required across multiple hardware modules.

3-4.2.2 Component Instantiations and Intercon-
nections

A component that has previously been declared can be
used in an architecture body via a component instantiation
statement. A component instantiation statement gives the
component instance a unique name and associates the ports
of the component with the signals that convey information
to and from the component. Use of component instantiations
results in a structural model that is a network of components
connected by signals.

Component instantiation statements provide three types
of associations: (1) associating a design entity (with a partic-
ular architecture body) with the component instance, (2) as-
sociating ports in the entity interface with locally declared
signals, and (3) associating the values of generic constants
with the generics defined in the entity interface. These asso-
ciations can occur in two places: in the structural architec-
ture body (This is a form of early binding or “hard wiring”
of the information.) or in a separate configuration declara-
tion (This is a form of late binding.). An early binding can
be changed only by editing and analyzing the architecture
body, whereas a late binding can be changed without editing
the architecture body. The use of external configuration dec-
larations is discussed in subpar. 3-8.3.

Signals are associated with the ports of a component in-
stance in the port map of the component instantiation state-
ment. When the same signal is used in multiple port maps, a
signal net is defined. The direction information in the port
declaration of the component determines the sources and
sinks for the net.

Component declarations (and their corresponding instan-
tiations) in VHDL are placeholders. The design entities used
to model the components cannot be specified in either the
component declaration or the component instantiation. This
lack of dependency supports top-down model development
because the lower level design entities need not be defined
and analyzed before the higher level design entities are cre-
ated. However, when both levels of design entities are de-
fined and a configuration specification is used to associate
the lower level design entity with the component instance at

a higher level, the consistency-checking capabilities of
VHDL ensure the consistency of the models. This consisten-
cy allows a behavioral model of a component to be replaced
by a structural model by changing and reanalyzing the con-
figuration information.

3-4.3 A STRUCTURAL DESIGN EXAMPLE
Fig. 3-6 contains a structural architecture body for the

horizontal filter described in subpar. 2-4.3.2. The entity in-
terface declaration corresponding to this architecture body is
shown in Fig. 2-14. This architecture body has three input
ports, P1 and P3 of type pixel and Clock of type
std_ulogic. It has a single output port H of type
filter_out.

This example illustrates several points. It shows the use of
component and signal declarations, the use of component in-
stantiations, and the association of signals with the ports of
a component.

The architecture body in Fig. 3-6 declares three compo-
nents: an adder, a subtractor, and a delay. In each of these
three components the port list names the ports and defines
the direction and the data type of the ports. The data types
are specified in the image_processing package in the
sobel_structure library. The image-processing pack-
age is shown in Fig 2-4, and the package body is illustrated
in Fig. 2-7.

The particular design entity, i.e., an entity interface and a
corresponding architecture body, to be bound to each in-
stance is selected in a separate configuration specification.
The use of configuration specifications adds flexibility by
deferring selection of particular versions until the model is
ready to be simulated. Configuration specifications and dec-
larations are discussed in subpar. 3-8.3.

The architecture body in Fig. 3-6 declares four signals:
S1, S2, S3, and S4. These signals are used to carry infor-
mation among the component instances in the model. All
four signals have the same user-defined type,
filter_out. This type is used for all in ports and out
ports of the components except for the data input ports of the
subtractor component and for the Clock ports on the
adder and delay components.

The begin in Fig. 3-6 designates the start of the execut-
able statement part of the architecture body. This part con-
tains the component instantiation statements that describe
the structure of the architecture body. Each component in-
stance has a label, which must be unique within a particular
architecture body. After the label is the name of the compo-
nent being instantiated. This model shows that a single com-
ponent can be replicated as many times as needed, e.g., there
are two instances of delay and two instances of adder.
Each replication, however, must have a unique instance la-
bel. The instance labels for the adders are ADD1 and ADD2.

Lastly, each component instance is connected to the sig-
nals by associating each signal with a particular port in the
order in which the ports are listed in the component declara-
tion. This association could also be done by name, which

MIL-HDBK-62

3-10

would allow the signal port pins to be listed in an arbitrary
order. The sources and sinks for the signals are implied by
the port list in the entity declaration and the port lists in the
component declarations. For example, Clock is a signal
with an external source and five sinks, one for each compo-
nent instance. Similarly, S1 has as its source the port
DIFF in the instance with label SUB and has as its sinks the
port A1 of ADD1 and the port of A_IN of DEL1. Also H has
the port SUM of ADD2 as its only source and has one or more
external sinks.

3-5 VHDL SUPPORT FOR DATA AB-
STRACTION

Data abstraction is the practice of extracting the essential
characteristics of data by creating user-defined data types
and disregarding certain implementation details. Data ab-
straction is a powerful tool used to control the complexity of
models. It allows a complex data structure to be defined in a
single place in the code and thereby assures consistency in
the definition throughout a model. It also is a tool to ensure
consistent definitions of the operations on a user-defined
data type. These aspects are critical to the interoperability of
models.

Data abstraction is also a powerful tool used to isolate
changes and thereby reduces the risk associated with mass
changes in software. A single data type may have many dif-
ferent implementations at different levels of abstraction.
These implementation details should be hidden from those
users who do not have a need to know the structure. Thus,
when the implementation of the data type changes, the
changes in the VHDL code can be isolated to that section of
the code which provides the implementation details. For ex-
ample, the data type pixel has different representations at
different levels of abstraction in the edge detector model. In
the algorithm-level model pixel is defined as an integer. In
the gate-level model pixel is defined as a bit vector with
a specific number of bits.

Data abstraction is implemented in VHDL with user-de-
fined types. A user-defined data type consists of a type def-
inition together with the definitions of the functions that act
on the data type. Examples of abstract data types include the
direction and image types defined in Fig. 2-4.

VHDL has capabilities that allow the user to create new
data types, and it has capabilities to overload subprogram
and enumeration literal names. VHDL also enhances in-
teroperability by supporting the definition and use of type

Figure 3-6. A Structural Architecture Body

MIL-HDBK-62

3-11

conversion functions to interface design entities that were
written using different interface data types.

3-5.1 USER-DEFINED TYPES
VHDL has two mechanisms that allow the user to create

new scalar types, and it has two methods used to create com-
posite types.

The user can create a new scalar type in VHDL by defin-
ing an enumerated type or by defining a physical type. Phys-
ical types are described in subpar. 3-6.3. An enumerated
type is defined by listing all of the possible values of an ob-
ject of that type. An example of an enumerated type is the
IEEE Std 1164 std_ulogic type, which consists of nine
possible values, as shown in Fig. 3-7. Enumerated types
have an explicit ordering specified by the order in which
they are listed in the declaration. Variables and signals can
have values that are enumerated types and can be assigned
values that are enumerated types. Values of enumerated
types can be compared using the relational operators =, /=,
<, <=, >, and >=. For example, 'X' < 'Z' because 'X' is
listed before 'Z' in the declaration in Fig. 3-7.

VHDL includes four built-in enumerated types:
character, boolean, bit, and severity_level.
VHDL includes additional built-in logical operators for the
boolean and bit enumerated types: and, or, nand,
nor, not, xor. The severity_level built-in type is
described in par. 3-7.

A composite type is created by aggregating simpler types.
There are two kinds of composite types: arrays and records.
An array type is created by aggregating a collection of ele-
ments of the same subtype. The elements of an array are se-
lected by using an index. For example, a bit vector is created
by aggregating a homogeneous array of bits. A record type
is created by aggregating a heterogeneous collection of ele-
ments, each of which must be named at analysis time. A bus
with multiple control, address, and data lines can be created
by aggregating a type for the control lines (which may again
be a composite type), a type for the address lines, and a type
for the data lines.

VHDL also supports access types, which are similar to
the pointer data types of C and PL/I. However, signals can-
not be declared as access types. VHDL also supports file
types for use in the input of test vector files and in the output
of messages and trace data. Signals also may not be a file
type.

Subtypes are another option available to the user. A
VHDL subtype inherits the operations defined for the parent
type but restricts the possible values of variables, constants,
or signals declared as the subtype. Error messages are gen-
erated when an operation produces a value that is not within
the subtype. For example, an array type may be defined with
an unrestricted, i.e., integer, range. A subtype of the array
may be defined as having a restricted range, e.g., “0 to 10”.

Subtypes are an important mechanism used to define la-
beled types without also defining the functions allowed for
the data type. As such, they are a relatively simple method
of using a VHDL analyzer to support consistency checking.

3-5.2 TYPE CONVERSION FUNCTIONS
Type conversion functions provide a mechanism used to

make incompatible design entities work together. For exam-
ple, type conversion functions may be required to make
models at different levels of abstraction interoperate. If one
design entity uses integer types for its I/O ports and another
design entity uses bit vectors, type conversion functions can
be used to make these two design entities interoperate.

Type conversions can be specified in component instanti-
ation statements. A port map specification in a component
instantiation statement can list a type conversion function
applied to a signal rather than listing only a signal as being
connected to the port. This procedure allows late binding of
type conversion to a signal. The IEEE Std 1164 package
(Ref. 6) includes type conversion functions for some com-
monly used logic types. These functions are included in the
IEEE Std 1164 package to support the interoperability of
1164-compatible models with models that were not built
with the full 1164 logic set. Similarly, the IEEE synthesis
package (Ref. 12) provides type conversion functions used

Copyright  1993. IEEE. All rights reserved.

Figure 3-7. An Enumerated Type: The IEEE Std 1164 Unresolved Logic Data Type (Ref. 6)

MIL-HDBK-62

3-12

to convert twos complement and sign-magnitude integers
into bit vectors and vice versa.

3-5.3 OVERLOADED OPERATORS
An operator is a computation that is a recognized part of

the VHDL language. Binary operators (operators with two
operands) typically use the infix notation, e.g., A + B, rath-
er than the more general function notation, e.g., +(A,B).
The VHDL language comes with a set of operators that are
defined on the built-in data types of the language. An over-
loaded operator is an operator that performs functions de-
pending upon the type of its operands. For example, the
addition operator may be overloaded to perform integer ad-
dition if its operands are integers and real addition if its op-
erands are real numbers. Operator overloading increases the
readability of VHDL models and allows the same operations
on different types to be identically named.

The IEEE Std 1164 package (Ref. 6) includes definitions
of the overloaded operators “and”, “nand”, “or”, “nor”,
“xor”, and “not”. The package provides overloading for
situations in which both operands are either std_ulogic
or both are std_logic.

3-6 VHDL SUPPORT FOR ANNOTATING
MODELS

Annotation is the practice of incorporating information
into the model that may not be directly related to the func-
tion of the model but that can provide a more accurate de-
scription of a particular implementation. An example is the
temperature range over which the device is expected to op-
erate.

Information that is not used during simulation can also be
incorporated into a VHDL model as a form of documenta-
tion that can be processed by VHDL analyzers. This kind of
information can be used by external tools that can extract it
from the VHDL description.

The major VHDL features that support design annotation
are constants, attributes, and physical types. VHDL allows
the user to define attributes, to associate attributes with
VHDL signals, design entities, and components, and to use
attribute values to compute the function and timing of
VHDL components. VHDL supports the definition of data
types called physical types, which are designed to support
the definition of attributes. VHDL allows the user to define
physical types and units and relations between units of the
same physical type. VHDL includes a single built-in physi-
cal type, the type time. VHDL allows constants to be defined
and shared by multiple design units through the use of pack-
ages, it supports deferred definition for constant values, and
it supports parameterized models through the use of gener-
ics.

Because user-defined attributes are constants, they can be
assigned values at elaboration time by generics, just as other
constants can. Attributes have the advantage of being at-

tached to specific objects; constants are not. Constants can
have their value definitions deferred and can be collected
into packages; therefore, it is easier to access common con-
stant values from multiple design entities.

The approach taken by VITAL (Ref. 9) and EIA 567 (Ref.
10) is to use constants defined in packages, and part of the
constant record structure is the link back to the originating
part, not attributes. Attributes are used for purposes other
than back annotation, e.g., the VITAL_Level attribute as-
sociated with an architecture body. One of the things that
VHDL 93 (Ref. 3) provides to make attributes easier to use
is the built-in path attribute. This attribute simplifies finding
a specific instance in which an attribute value needs to be
set.

For constants or attributes to be used effectively to docu-
ment a model, they must be used consistently throughout the
model. The EIA 567 (Ref. 10) defines a set of constants for
device models and functions that use these constants to de-
fine and check the timing of the models. The EIA constants
describe an electronic data sheet, which has three views:
physical, electrical, and timing. Each of these views is spec-
ified with a VHDL package that defines a collection of data
types including, in particular, data types for the constants.

3-6.1 ATTRIBUTES
Attributes are the primary VHDL construct that supports

the annotation of models with user-specified data. This in-
formation might include vendor part numbers, drawing
numbers, power dissipation, or almost any other information
a user might want to include. VHDL includes predefined at-
tributes that provide information about named entities. Of
particular value in this regard are attributes describing the
state of signals, such as stable or event.

The value of an attribute is accessible to the VHDL de-
sign unit in which the attribute is declared; tools have been
developed that interact with VHDL analyzers to access and
manipulate these values. Attribute values can be used to
compute the timing or modify the function of a design entity.
Attributes have types, which are assigned by attribute decla-
rations. Because VHDL provides an extensive facility with
which to define and check types, the VHDL type mechanism
provides great flexibility in including additional information
and checking the consistency of the information added to a
VHDL description. Attributes that are not predefined are
constants, but they may be given values by generics after
analysis. Generics are discussed in subpar. 3-6.2.

Attributes should be distinguished from comments as a
form of documentation. VHDL allows comments, but
VHDL analyzers ignore the text of comments. Thus a
VHDL analyzer has no control over the consistency of infor-
mation in comments. However, VHDL attributes are parsed
and type checked by VHDL analyzers. VHDL analyzers will
also compute the value of attribute expressions that are as-
signed values at analysis time.

MIL-HDBK-62

3-13

3-6.2 GENERIC CONSTANTS
Generic constants are an important mechanism used to

parameterize VHDL models. Parameterized models are eas-
ier to reuse because they are designed to support some level
of change external to the model. Generic constants are elab-
oration-time parameters. Since their values are constant dur-
ing simulation, they do not imply the performance penalty
associated with run-time parameters. Both the EIA 567 (Ref.
10) and VITAL (Ref. 9) use generics to define the value of
timing parameters.

VHDL expressions can include generic constants whose
values are fixed when the model is elaborated. The value of
a generic constant is specified when it is used in a compo-
nent instantiation statement or when its design entity is ref-
erenced in a configuration specification. The use of
configuration declarations to set generic constant values is
shown in subpar. 3-8.3.2.

Configuration declarations provide a mechanism within
VHDL to do back annotation (Ref. 13). The VHDL structur-
al model is analyzed, and netlists are extracted from the an-
alyzed model. External timing tools are used to analyze the
netlist and compute timing values based on factors such as
parasitic capacitance. The external tool then generates a con-
figuration declaration containing the timing information it
has computed. When the model is ready for simulation, the
configuration declaration is elaborated so that the timing at-
tributes of the model are assigned the values computed by

the external tool.
Fig. 3-8 illustrates the use of generic constants and at-

tributes in an entity interface. In this example an attribute is
declared as part of an entity interface declaration. The value
of the attribute is computed from the values of generic con-
stants that are inherited either from a component instantia-
tion or a configuration specification.

In Fig. 3-8 a function derate is assumed to take the ge-
neric constants base_delay and temperature as ar-
guments and return the appropriate value. This function is
called when the model is elaborated. The delay computed by
this function has been parameterized in terms of the two pa-
rameters, base_delay and temperature.

An architecture body for the interface of Fig. 3-8 is shown
in Fig. 3-9. This body uses the attribute with the name
fcn_delay and is associated with the entity interface
t_or for the time delay in the signal assignment statement.

The attribute value has been used in the signal assignment
statements in place of a fixed time value. Thus, the same
entity-architecture pair can be reused many times with pos-
sibly different values for the generic constants without re-
writing the VHDL source code.

3-6.3 PHYSICAL TYPES
Physical types represent measurable physical quantities.

VHDL provides facilities to define physical types and to
check that those types are used consistently in the model. A
physical type definition is characterized by an integer range

Figure 3-8. Entity Interface Declaration With Generic Constants and an Attribute

Figure 3-9. Architecture Body Using an Attribute

MIL-HDBK-62

3-14

and a base unit of measurement. Secondary units of mea-
surement may also be declared for a physical type, along
with an equation defining the relationship of the secondary
unit of measurement to some primary unit of measurement.
VHDL comes equipped with a single built-in physical type:
time.

Fig. 3-10 illustrates the declaration of a physical type,
which in this case is a type measuring distance. The base unit
of measurement is the angstrom; other secondary units of
measurement are also specified in both metric and English
units.

Physical types provide a powerful mechanism to increase
the understandability and consistency of attribute defini-
tions. The EIA 567 (Ref. 10) physical and electrical views
use physical types extensively to create an electronic data
sheet. The EIA 567 physical and electrical views are dis-
cussed in more detail in subpar. 6-3.3.

Copyright  1993. IEEE. All rights reserved.

Figure 3-10. Example of a Physical Type
Declaration (Ref. 3)

3-7 ERROR HANDLING WITH VHDL
When a model is used as part of a larger system, it is pos-

sible that some of its operating conditions may be violated.
For example, a timing violation may be observed that may
cause incorrect operation of the circuit. Users should be in-
formed of these violations so the incorrect operating condi-
tion can be corrected. The VHDL DID (Ref. 4) requires
certain types of error checking; subpar. 7-4.3 describes these
requirements in more detail.

VHDL provides a special mechanism to detect errors: as-
sertion statements. Another way to flag errors is to extend
the data types for signals to include error states. These ap-
proaches are described in the following subparagraphs.

3-7.1 ASSERTION STATEMENTS
Assertion statements are one mechanism to detect and re-

port errors. Assertion statements provide a relatively simple
way to check some of the behavioral or operating conditions
of a model and can be used to check signal timing at the ports
of an entity interface. For example, assertion statements may
be used in entity interfaces, architecture bodies, and subpro-
gram bodies. Assertion statements appear in any sequential
or concurrent statement part. One use of passive processes is
to encapsulate assertion statements. Passive processes can
be defined in packages and can be made available for use in
multiple design entities.

As shown in Fig. 3-11, an assertion statement consists of
a condition, an optional report clause, and an optional sever-
ity clause. The condition must evaluate to a Boolean value.
If the condition of an assertion statement evaluates to
FALSE, the report string is displayed with the designated se-
verity. The report clause string is displayed in an implemen-
tation-dependent fashion. There are four possible values of
a severity code: note, warning, error, and
failure.The action of the simulator for each level of se-
verity is implementation dependent, and some simulators al-
low the user to specify the action to be taken and/or the
severity level that will terminate the simulation. Synthesis
tools may use the assertion conditions as invariants.

A concurrent assertion statement executes when a signal
that is referenced in the condition section of the assertion

Reprinted with permission. Copyright  by Paul J. Menchini.

Figure 3-11. An Assertion Statement (Ref. 11)

MIL-HDBK-62

3-15

statement changes value. Sequential assertion statements in
processes or subprograms are executed in the order in which
they appear. Assertion violations are reported with either a
default or a user-specified message.

Fig. 3-11 shows an example of an assertion statement for
an R(reset)S(set) flip-flop. This type of flip-flop cannot tol-
erate '1' values on both the S (set) and R (reset) inputs at
the same time. The assertion statement
CheckInputConstraint is designed to detect this
anomaly.

More elaborate error detection can be done with passive
processes. Assertion statements can invoke functions in
their condition or in their report and severity expressions.
However, assertions do not provide the same degree of com-
putational sophistication that is available in a passive pro-
cess since functions do not maintain state between calls.
Passive processes do retain state and therefore can provide
testing of assertions that require some history to be main-
tained.

Both VITAL (Ref. 9) and EIA 567 (Ref. 10) provide
functions designed to check timing and to be used in the con-
dition parts of assertion statements.

3-7.2 HANDLING SIGNAL ERROR STATES
VHDL allows designers to specify any logic level con-

vention desired. To help detect and propagate errors, logic
level conventions are often extended to include signal error
states. This approach has been used in IEEE Std 1164 (Ref.
6), which includes the 'X' and 'W' states to mark errors
and 'U' to mark uninitialized objects, as shown in Fig. 3-7.
Because any logic level may appear as a signal value during
the course of a simulation, it is important that processes us-
ing std_logic signals be able to handle all possible signal
levels, including signal error states. Furthermore, error
states should be propagated to the outputs so that when an
error occurs, it can be detected at the external boundary of
the system. One method used to provide these error handling

capabilities is to overload the operators for the normal func-
tions. This approach has been used in IEEE Std 1164 (Ref.
6); Fig. 3-12 illustrates this approach. The figure shows the
logic table for the logical and function. The results for and
applied to the values '0' and '1' match the traditional def-
inition, but the definition has been extended to deal with all
nine values defined in the IEEE Std 1164 data type
std_ulogic (Fig. 3-7). This table for the and function
should be compared with the table for the WiredAnd reso-
lution function shown in Fig. 3-4, which also propagates its
error states.

Effective use of packages to encapsulate error state data
types and functions can prevent the need to change VHDL
models that use the logic, as discussed in subpar. 3-8.2.

3-8 VHDL SUPPORT FOR SHARING AND
REUSE

VHDL was developed with many features that support
sharing and design reuse. These features help to minimize
effort duplication and to ensure that consistent models are
used throughout a design. Sharing and reuse are supported in
VHDL by VHDL design libraries, packages, and configura-
tion declarations.

VHDL libraries impose a structure on the models avail-
able to the user. VHDL libraries store design units that can
be made available to the user. The user must indicate which
libraries are used by a model. Depending upon the imple-
mentation, the library may also be useful for configuration
management and access control.

Packages provide a mechanism to collect VHDL source
statements for some common purpose. Such statements in-
clude data type declarations, attribute declarations, and sub-
program declarations. These declaration statements can then
be included in other VHDL design units. The package pro-
vides a common location for the source code so that revi-
sions need to be made only once. Revisions of the package

Copyright  1993. IEEE. All rights reserved.

Figure 3-12. An Example of Error Propagation: IEEE Std 1164 AND Operator Table (Ref. 6)

MIL-HDBK-62

3-16

are then automatically used whenever a design unit that ref-
erences the package is subsequently analyzed.

Configuration declarations provide a feature for late bind-
ing of architecture bodies to entity interfaces and late bind-
ing of values to generic constants. Because the configuration
declarations can exist as separate files, they can reduce edit-
ing of other design units and thus reduce risk.

3-8.1 VHDL DESIGN LIBRARIES
VHDL libraries are used to store information that can be

used (or reused) to construct new VHDL models and to pro-
vide a mechanism to partition a large design into manage-
able pieces. A library may contain a collection of frequently
used parts, data and function definitions common to all
VHDL design units in a model, or data and function defini-
tions common to a particular model. Libraries have names
that can be referenced via a VHDL library clause to make
the contents of a library accessible. The contents of libraries
may be made available for reference by use clauses or may
be referenced directly using expanded names.

VHDL design libraries are the repository of VHDL de-
sign units. Existing design units can be referenced in a
VHDL description by using expanded name of the library
unit. The use clause makes the contents of a design unit vis-
ible, just as the library clause makes the library itself vis-
ible. The use clause provides a “shortcut” so a user does not
have to repeat the expanded name of the library unit in every
reference.

VHDL requires that an entity interface declaration ent
must be analyzed, i.e., compiled, before any architecture
body is associated with it. However, a VHDL design unit
that references an entity interface declaration does not have
to be modified or even reanalyzed when the architecture
body is changed. Separating the analysis of entity interface
declarations from the analysis of associated architecture
bodies is a major risk reduction factor because anytime a
program is modified, there is a significant possibility errors
will be introduced. It is also a significant factor in reducing
the time required to analyze a large model. Thus a well-de-
signed VHDL model takes advantage of design entities as a
mechanism to modularize the model as well as a mechanism
to document the relationship between physical components
and the VHDL model.

VHDL has two predefined libraries: work and std. Li-
brary work is the library specified by the user into which li-
brary units are analyzed. It usually contains the library units
of a model under construction. The name work is intended
as a temporary name for the current library. When the cur-
rent library has been developed, it should be given a name,
and appropriate references to this library should be inserted
in the source code for the design units in the library. Library
std contains the predefined VHDL packages standard
and textio, which provide definitions and functions
needed for all VHDL models. Packages associated with oth-
er IEEE standards are in other libraries, such as the ieee li-
brary being used by IEEE Std 1164 (Ref. 6).

The binding of library names to external storage is imple-
mentation dependent and therefore may vary from vendor to
vendor and from design environment to design environment.
This dependency results from variations in the file-naming
conventions in different operating systems. One common
implementation-dependent restriction on file names is the
length of the name. To support portability of libraries, it is
recommended that library names be no longer than eight
characters.

Standards organizations are creating and populating their
own libraries. For example, IEEE Std 1164 (Ref. 6) has de-
fined a package called std_logic_1164, which is stored
in the library ieee. Another example is IEEE Std 1029.1,
the Waveform and Vector Exchange Specification
(WAVES) standard (Ref. 14), which uses four libraries: (1)
a WAVES standard library, (2) a library that contains code
specific to particular automated test equipment (ATE), (3)
the work library, which is where the module under test is
stored, and (4) a local standard library. The partitioning of
design units into the WAVES library is described in subpar.
7-3.1.

3-8.1.1 Declaring and Using Libraries
Libraries are referenced in a VHDL description in

library and use clauses, and they may also be refer-
enced in expanded names. The library clause specifies
the particular libraries, and the use clause specifies what li-
brary units or declarations within a library are to be directly
visible to the unit in which the clause occurs.

Each design unit implicitly contains the following context
clause:
library std,work; use std.standard.all;

Because the current design unit is initially placed in the
work library, it needs to have access to other design units in
the same library. This implicit context clause provides this
access and also makes the VHDL library std available. As
mentioned in the previous paragraph, the std library con-
tains predefined VHDL standard packages, such as
textio.

A library clause and a use clause in a design unit context
clause are shown in Fig. 3-13. In this example four libraries
are named. Two libraries are implicitly named: work (the
default working library) and std (the VHDL standard li-
brary), and two libraries are explicitly named: ieee (which
contains the IEEE Std 1164 data type definitions) and
custom (a library of predefined gate-level models). In li-
brary std there is a package named standard, the con-
tents of which are made visible by the implicit use clause
use std.standard.all. In addition, the IEEE Std
1164 definitions in library ieee are made visible by the use
clause use ieee.std_logic_1164.all;.

In Fig. 3-13 the design unit is the architecture body
structure of the design entity imply. The custom li-
brary contains models for the components that are used in
this architecture body. The configuration specifications bind
the component declarations of c_or and c_inv to specific

MIL-HDBK-62

3-17

design entities specifying both the entity interfaces
ttl_invert and ttl_or in the library custom and the
architecture bodies (both of which are named behavior).
The component instantiations connect the external ports of
imply (called A and Y) and the internal signal of imply

(called nota) to the ports of the components as named in
the entity declarations in the library custom. Fig. 3-14 il-
lustrates how the library clauses, use clause, and configura-
tion specifications in Fig. 3-13 link these design units
together to create a VHDL model.

Figure 3-13. Using a Component Library to Configure a Structural Architecture Body

Figure 3-14. Use of Library and Use Clauses to Access External Libraries

MIL-HDBK-62

3-18

Fig. 3-15 and Fig. 3-16 show the use of configuration
specifications to select from libraries appropriate design en-
tities and their architecture bodies for components in a struc-
tural model. Selection of appropriate architecture bodies is a
key step in configuring a VHDL model. A single entity in-
terface can have several associated architecture bodies. Dif-
ferent architecture bodies can represent different
implementations of the same entity interface. Selecting an
architecture body is a means of trading off or evaluating al-

ternative implementations. Different architecture bodies
may represent different levels of abstraction of a design en-
tity. In this case selecting an architecture body determines
the level of abstraction to be used for a particular compo-
nent. Subpar. 10.2.1 of the VHDL DID requires both behav-
ioral and structural models for all modules that are not leaf
modules. Thus selecting an architecture for each component
is an essential step in configuring a DID-compliant VHDL
model.

Figure 3-15. Using Different Architecture Bodies to Select Libraries

MIL-HDBK-62

3-19

3-8.1.2 Constructing Libraries
Setting up a VHDL library system involves an implemen-

tation-dependent procedure used to establish library names
and their correspondence to external storage. Once a design
library lib has been established, the VHDL analyzer adds
design units to lib by binding lib to the library work.
When all of the design units in lib have been analyzed,
work on a new library can proceed by changing the binding
of library work.

The VHDL source code for a design unit is usually stored
in a text file. The VHDL analyzer parses the VHDL source
code contained in the file and checks that it conforms to the
language definition. The VHDL analyzer also builds an in-
ternal representation of the design unit and maintains a di-
rectory of the VHDL libraries and their contents.

Design units are divided into two classes: primary units
and secondary units. Primary units specify interfaces. They
include entity declarations, package declarations, and con-
figuration declarations. Secondary units are the bodies asso-
ciated with primary units, and they include architecture
bodies and package bodies. All secondary units associated
with a primary unit prim must be kept in the same library
as prim.

For a VHDL analyzer to process a design unit ent, it

must have previously analyzed all design units referenced by
ent. In particular, secondary units must be analyzed after
their corresponding primary units have been analyzed, and
every design unit must be analyzed after all design units to
which it refers. Thus a set of VHDL libraries (a model data-
base) may have a complex set of dependencies that deter-
mines at least a partial order in which design units must be
analyzed. This analysis order should be specified for a user
in order to recreate a VHDL simulation model from the
VHDL source code. The VHDL DID (Ref. 4) requires that
this analysis order be provided with models delivered to the
Government. The WAVES (Ref. 14) header file also re-
quires this information.

The organization of design units into libraries is an impor-
tant part of the configuration management of a VHDL de-
sign database. The partitioning of design units in a design
database into libraries is usually done for one of two reasons.
The first reason is to control read and write access to ele-
ments of a particular library. Write access is particularly im-
portant to establish who has the right to change the contents
of a library. For example, if a large project has several teams,
each team may have a separate library in which it is allowed
to store modules. In fact, there may be separate libraries for
different levels of confidence. Each user has a work library,

Figure 3-16. Technology-Dependent Architecture Body Using Configuration Specifications

MIL-HDBK-62

3-20

and the team may have a team library. After unit testing, a
design unit may be promoted from the user’s work library to
a common team library. After integration testing across all
of the units for which the team is responsible, the library
units in the team library may be promoted to a project li-
brary. The promotion of team library units becomes a formal
milestone in the project schedule.

A second approach to partitioning design units into librar-
ies is to collect design units that represent a particular design
approach into a library. The goal of this approach is to iso-
late a set of changes (or differences) to a specific library.
This approach is taken in WAVES (Ref. 14), in which all of
the design units specific to a particular type of automatic test
equipment are stored in a single library. If a design database
contains multiple types of ATE, it will have multiple librar-
ies, each containing different versions of the same design
units.

3-8.2 VHDL PACKAGES
Packages in VHDL provide a way to share information,

both within a single model and across models. A package
may contain type declarations, attribute declarations, sub-
program declarations, and other declarations. A package
should be written and analyzed only once. Once analyzed,
the information in a package is available for use by other
VHDL library units within the same library and in external
libraries, as shown in Fig. 3-14.

A VHDL package consists of two parts: the package dec-
laration and the package body. The information in a package
declaration can be used by the analyzer to check for certain
types of errors, e.g., type mismatch errors. The package
body contains the specifications of the values of any con-
stants not defined in the package declaration and the bodies
of any subprograms declared in the package declaration. The
package body is analyzed separately from the package dec-
laration.

The standards efforts related to VHDL make extensive
use of VHDL packages as a way to use VHDL analyzers to
enforce compliance with the standards. The IEEE Std 1164
(Ref. 6) uses a package to specify an abstract data type for
extended logic. EIA 567 (Ref. 10) uses three packages to de-
fine its electronic data sheet. The textio package in the
predefined VHDL standard library contains a collection of
utility functions for textual input and output. The WAVES
standard (Ref. 14) also uses packages to define standard data
types.

3-8.2.1 Constructing VHDL Packages
Packages are particularly important as ways to define ab-

stract data types such as the IEEE Std 1164 (Ref. 6) extended
logic. The IEEE Std 1164 package declaration defines its
logic data type as an enumerated type, as shown in Fig. 3-7.
The package declares a resolution function, overloaded op-
erators, and type conversion functions. Its package body
provides the semantic definitions of the functions and oper-
ators. Fig. 3-12 shows a table of constants that is declared in

the 1164 package body. This table is interpreted by the body
of the and function. The IEEE Std 1164 allows alternative
implementations of its package body in order to provide
greater execution efficiency.

3-8.2.2 Declaring and Using Packages
The information in a package can be made visible selec-

tively, or all of the information can be made visible with a
use clause. The data type definitions for image and
filter_outin Fig.3-5 are made visible by the use clause
usesobel_algorithm.image_processing.all; in
Fig. 3-2. This same use clause makes such functions as
horizontal_filter (which are stored in the package
image_processing) accessible to the process. Similar-
ly, the constant pixel_output_delay is defined in the
package timing. The packages image_processing
and timing are stored in the library
sobel_algorithm.

Packages are an important mechanism of back annota-
tion. EIA 567 (Ref. 10) specifies the package declarations;
the user provides the package bodies as a form of back an-
notation. This structure makes extensive use of deferred
constants to implement back annotation. A deferred constant
is a constant with a package declaration whose value is spec-
ified in the package body. Any design unit that references a
package has an analysis dependency on only the package
declaration, not on the package body. As long as the package
declaration has been analyzed, the package body can be con-
structed and analyzed at the user’s leisure. (Of course, the
package body must exist by the time the model is elaborat-
ed.) Thus a user can construct a VHDL structural model by
referencing the constant in the package declaration, extract
the netlist from the structural model, process the netlist with
an external tool that generates the package body (including
the value of the constant), analyze the generated package
body, and then simulate the system using the back-annotated
constant value. This EIA 567-compliant approach is de-
scribed in more detail in subpar. 6-3.3.

VHDL places some restrictions on the use of deferred
constants for back annotation. In particular, a package dec-
laration can have only one associated package body, which
must reside in the same library as the package declaration. In
contrast, one entity declaration may have many architecture
bodies, all of which must reside in the same library. For ex-
ample, in a library there cannot exist a single timing view
package declaration and separate package bodies for mini-
mum time, maximum time, and nominal time. The EIA 567
standard (Ref. 10) includes all three times in a single pack-
age.

3-8.3 CONFIGURATION SPECIFICATIONS
AND DECLARATIONS

Before a model can be simulated, the exact configuration
of library units included in the simulation must be specified.
That is, each component instance in the model must have a
specific design entity (both entity declaration and architec-

MIL-HDBK-62

3-21

ture body) associated with it. Furthermore, all generic con-
stants must be given a value. These associations can be made
with VHDL configuration specifications or with declara-
tions.

The ability to configure a model permits creation of many
variations on a basic model without having to rewrite the
VHDL source code. Different configurations are useful for
exploring alternative implementations of functions, for in-
corporating different levels of abstraction into a simulation
model, and for changing the values of parameters. Configu-
ration specifications and declarations can be used to change
the values of parameters by specifying values for generic
constants.

3-8.3.1 Constructing Configuration Specifica-
tions and Declarations

A specific configuration (binding) can be provided either
in the block in which the component instance appears or in
a separate configuration declaration. Using a configuration
specification “hard-wires” a body-particular design entity to
a component instance. This method is useful when no alter-
native configurations are available or desirable. A change in
the configuration in this case requires a modification to the
source code containing the instance and its subsequent re-
analysis. In contrast, use of a configuration declaration al-
lows deferral of the final configuration decisions until after
analysis of the instance. For example, when a VHDL model
is used to document existing hardware, it may be desirable
to use configuration specifications to define the timing infor-
mation. If a VHDL model is used during the design of a
component, i.e., when changes in layout and timing are fre-
quent, the use of generics and configuration declarations
may be preferred to reduce analysis time.

One way to specify timing information is through use of
configuration specifications combined with use of deferred
constants. VHDL constrains the way deferred constants can
be used to define values for global parameters. Within a sin-
gle library each package declaration has at most one body.
Thus if different values are required for deferred constants,
packages with the same interface but different bodies must
be installed in different libraries.

There are two approaches to using these libraries in a
structural model. The first approach, shown in Fig. 3-15,
uses a single design entity for a system and separate structur-
al architecture bodies. Each of the structural architecture
bodies references the same package name but in a different
technology library. The second approach, shown in Fig. 3-
17, uses a single architecture body and two configuration
declarations to associate design units from one or another of
the libraries with the components of the body.

Fig. 3-15 illustrates the first approach with the imply
function described in subpar. 3-8.1.1. Fig. 3-15 shows two
technology libraries each containing a package of timing in-
formation and design entities that reference the IEEE stan-
dard logic package stored in a third library. Two design
entities c_inv and c_or are shown in each library. Also
shown is a work library containing a higher level entity in-
terface (in this case, logical function imply) and two struc-
tural architecture bodies for the entity. The two architecture
bodies use different contexts, i.e., different library and
use clauses, to bind design entities to the component in-
stances in the common architecture. The arrows represent
the combination of library and use clauses. Fig. 3-16
shows the VHDL source code for one of these architecture
bodies.

The two timing packages in the different libraries declare
the same constants with the same types, but they assign dif-
ferent values to the constants. To make this division clear,
the constants can be deferred so that the package declara-
tions are identical and the differences occur only in the pack-
age bodies. The timing packages could also contain different
derating functions for the different technologies. Because
the two packages have the same names and the same con-
stants and the design entities have the same names and the
same port types and interfaces, entities in the nmos and
cmos libraries can be used interchangeably, but they will
have different timings.

These technology-dependent timing packages can be
shared by many architectures and thus can provide a very
compact representation of technology-dependent timing.
Technology-dependent packages can also be used to define
type conversion functions for appropriate subsets of the
IEEE Std 1164 logic package or to define conversion func-
tions to map the IEEE Std 1164 logic values to higher level
data types.

Fig. 3-17 illustrates the second approach, in which there
is only one architecture body, but two configuration declara-
tions are used to select the appropriate libraries. In this ap-
proach the library clauses that reference the technology
libraries are in the configuration declarations rather than be-
ing in the structural architecture body.

Because structural VHDL models can be constructed hi-
erarchically, configuration declarations can also be con-
structed hierarchically. The nesting of block configurations
reflects the hierarchy of the model being configured. The hi-
erarchy can also be described piecemeal by having a config-
uration declaration reference another configuration decla-
ration within the binding indication of a component config-
uration. In this case the hierarchy of dependencies of the
configuration declarations reflects the hierarchy of the con-
figured model.

MIL-HDBK-62

3-22

3-8.3.2 Using Configuration Specifications and
Declarations

Configuration specifications can be used within an archi-
tecture body (or block statement) when it is desired to spec-
ify a unique configuration for the architecture (or block).
Once a component instance has been configured this way, it
cannot be reconfigured without modifying the source code
of the architecture body or block. A configuration declara-
tion should be used when the overall model configuration
may change during the course of model development and
simulation. Fig. 3-13 illustrates the use of configuration
specifications inside an architecture body. Fig. 3-16 shows
the architecture body, which uses configuration specifica-

tions to include the negative metal-oxide semiconductor
(NMOS) technology-specific timing information. In this ar-
chitecture body the nmos library is specified. Furthermore,
the configuration specifications require that the specific de-
sign entities in the nmos technology library be used for all
instances of the c_or and c_inv components. Because the
two architectures for imply have the same structure, these
bindings could be delayed until elaboration, as discussed in
subpar. 3-6.2. If the two architectures have different internal
structures, this method of selection is necessary.

Fig. 3-18 shows a different version of the architecture
body for imply that is designed for use with a separate con-
figuration declaration. A corresponding configuration decla-
ration is shown in Fig. 3-19.

Figure 3-17. Use of Configuration Declarations to Select Alternative Design Libraries

MIL-HDBK-62

3-23

Both of the examples shown in Figs. 3-15 and 3-17 use
deferred constants to provide the timing information. This
practice allows determination of the timing values to be de-
ferred until the package bodies are analyzed. An alternative
approach that provides greater flexibility is the use of gener-
ic constants for timing information. For example, the archi-
tecture body shown in Fig. 3-18 can be used with the
configuration declaration shown in Fig. 3-19.

The configuration declaration shown in Fig. 3-19 speci-
fies the library, entity, and architecture body for each com-
ponent instance of the architecture body reconfig. The
outer FOR loop specifies the architecture body; the inner
FOR loops specify the design entities to be used for each of
the component instances. This configuration declaration
contrasts with the configuration declaration in Fig. 3-20, in

which the inner FOR loops specify values for generics as
well as the design entities.

In Fig. 3-20 it is assumed that a design library named
timed exists and that this library contains the parameter-
ized design entities like the t_or entity shown in Fig. 3-9.
These design entities provide parameterized timing by using
generic constants. The configuration declaration in Fig. 3-20
selects the entity interface and architecture body, and it de-
fines the values of the generics of the design entities. These
values can be back annotated. In particular, this configura-
tion declaration can be created after the structural architec-
ture for imply and the entity interfaces and architecture
bodies in the library timed have been analyzed. A tool can
be used to generate the configuration declarations shown in
Fig. 3-20.

Figure 3-18. A Reconfigurable Architecture Body

Figure 3-19. Use of a Configuration Declaration to Select Design Entities From a Library

MIL-HDBK-62

3-24

REFERENCES

1. J. Hines, “Where VHDL Fits Within the CAD Environ-
ment”, 24th ACM/IEEE Design Automation Conference
Proceedings, Miami Beach, FL, June 1987, pp. 491-4,
Association of Computing Machinery, Baltimore, MD.

2. ANSI/IEEE Std 1076-1987, IEEE Standard VHDL
Language Reference Manual, The Institute of Electrical
and Electronics Engineers, Inc., New York, NY, 31
March 1988.

3. ANSI/IEEE Std 1076-1993, IEEE Standard VHDL
Language Reference Manual, The Institute of Electrical
and Electronics Engineers, Inc., New York, NY,  Sep-
tember 1993.

4. DI-EGDS-80811, VHSIC Hardware Description Lan-
guage (VHDL) Documentation, Department of De-
fense, Washington, DC, 11 May 1989.

5. MIL-STD-1750A, Military Standard Sixteen-Bit Com-
puter Instruction Set Architecture, 15 December 1989.

6. IEEE Std 1164-1993, IEEE Standard Multivalue Logic
System for VHDL Model Interoperability
(std_logic_1164), The Institute of Electrical and
Electronics Engineers, Inc., New York, NY,  May
1993.

7. P. Wilsey, D. Benz, and S. Pandey, “A Model of VHDL
for the Analysis, Transformation, and Optimization of
Digital System Designs”, Conference on Hardware De-
scription Languages (CHDL ‘95), pp. 611-6, August
1995.

8. R. Lipsett, C. Schaefer, and C. Ussery, VHDL: Hard-
ware Description and Design, Kluwer Academic Pub-
lishers, Norwell, MA, 1989.

9. IEEE Std 1076.4-1995, IEEE Standard for VITAL Ap-
plication-Specific Integrated Circuit (ASIC) Modeling
Specification, The Institute of Electrical and Electronics
Engineers, Inc., New York, NY, December 1995.

10. EIA 567-A, VHDL Hardware Component Modeling

and Interface Standard, Electronic Industries Associa-
tion, Washington, DC, March 1994.

11. P. Menchini, Top-Down Design With VHDL, First An-
nual Rapid Prototyping of Application (ARPA)-Specif-
ic Signal Processors (RASSP) Conference, Arlington,
VA, August 1994, ARPA Electronic Systems Technol-
ogy Office, Arlington, VA.

12. IEEE Std 1076.3, IEEE Standard for VHDL Language
Synthesis Package, (Draft Standard), The Institute of
Electrical and Electronics Engineers, Inc., New York,
NY, September 1995.

13. O. Levia and F. Abramson, “ASIC Sign-Off in VHDL”,
VHDL Boot Camp, Proceedings of the Fall VIUF, San
Jose, CA, October 1993, VHDL International Users’
Forum, c/o Conference Management Services, Menlo
Park, CA.

14. IEEE Std 1029.1-1991, Waveform and Vector Ex-
change Specification, The Institute of Electrical and
Electronics Engineers, Inc., New York, NY, 1991.

BIBLIOGRAPHY

J. R. Armstrong and F. G. Gray, Structured Logic Design
Using VHDL, Prentice-Hall, Inc., Englewood Cliffs,
NJ, 1993.

J. Ashenden, The VHDL Cookbook, University of Adelaide,
Adelaide, South Australia, 1990.

J. M. Berge, A. Fonkua, S. Maginot, and J. Roulliard, VHDL
’92: New Features of the VHDL Hardware Description
Language, Kluwer Academic Publishers, Norwell, MA,
1994.

J. M. Berge, A. Fonkua, S. Maginot, and J. Roulliard, VHDL
Designer’s Reference, Kluwer Academic Publishers,
Norwell, MA, 1992.

J. Bhasker, A VHDL Primer, Prentice-Hall, Inc., Englewood
Cliffs, NJ, 1994.

S. Carlson, Introduction to HDL-Based Design Using
VHDL, Synopsis, Inc., Mountain View, CA.

Figure 3-20. Using a Configuration Declaration to Specify Generic Constant Values

MIL-HDBK-62

3-25

D. Coelho, The VHDL Handbook, Kluwer Academic Pub-
lishers, Norwell, MA, 1989.

B. Cohen, VHDL Coding Styles and Methodologies: An In-
Depth Tutorial, Kluwer Academic Publishers, Norwell,
MA, 1995.

A. Dewey, Analysis and Design of Digital Systems With
VHDL, Addison-Wesley Publishing Company, Inc.,
Piscataway, NJ, 1992.

A. Dewey, “The VHSIC Hardware Description Language
(VHDL) Program”, ACM IEEE 21st Design Automa-
tion Conference Proceedings 84, Piscataway, NJ, 1984,
Association of Computing Machinery, Baltimore, MD.

Enabling Design Creativity, Proceedings of the VHDL In-
ternational Users’ Forum Fall 1991 Meeting, Newport
Beach, CA, October 1991, VHDL International Users’
Forum, c/o Conference Management Services, Menlo
Park, CA.

R. Harr and A. Stancluescu, Eds., Applications of VHDL to
Circuit Design, Kluwer Academic Publishers, Norwell,
MA, 1989.

S. Leung and M. A. Shanblatt, ASIC System Design With
VHDL: A Paradigm, Kluwer Academic Publishers,
Norwell, MA, 1989.

R. Lipsett, C. Schaefer, and C. Ussery, VHDL: Hardware
Description and Design, Kluwer Academic Publishers,
Norwell, MA, 1989.

Z. Navabi, VHDL: Analysis and Modeling of Digital Sys-

tems, McGraw-Hill Book Co., Inc., New York, NY,
1993.

D. Perry, VHDL, McGraw-Hill Book Co., Inc., New York,
NY, 1991.

J. Schoen, Performance and Fault Modeling With VHDL,
Prentice-Hall, Inc., Englewood Cliffs, NJ, 1989.

Standard No. 1076-CONC-1990, The Sense of VASG, 1990.
(This publication is the companion document to IEEE
Std 1076-1987.)

Using VHDL for Electronic Product Design, Proceedings of
the VHDL Users’ Group Spring 1991 Meeting, Cincin-
nati, OH, April 1991, VHDL International Users’ Fo-
rum, c/o Conference Management Services, Menlo
Park, CA.

Using VHDL in System Design, Test, and Manufacturing,
Proceedings of the Spring 1992 VHDL International
Users’ Forum, Scottsdale, AZ, May 1992, VHDL Inter-
national Users’ Forum, c/o Conference Management
Services, Menlo Park, CA.

VHDL Boot Camp, Proceedings of the Fall 1993 VHDL In-
ternational Users’ Forum, San Jose, CA, October 1993,
VHDL International Users’ Forum, c/o Conference
Management Services, Menlo Park, CA.

VHDL: Windows of Opportunity, Proceedings of the VHDL
Users’ Group Fall 1990 Meeting, Oakland, CA, Octo-
ber 1990, VHDL International Users’ Forum, c/o Con-
ference Management Services, Menlo Park, CA.

MIL-HDBK-62

4-1

4-1 INTRODUCTION

The two primary documents that describe the require-
ments of very high-speed integrated circuit (VHSIC) hard-
ware description language (VHDL) models to be delivered
to the Government are MIL-HBK-454 (Ref. 1) and the
VHDL Data Item Description (DID), DI-EGDS-80811(Ref.
2). MIL-HDBK-454 describes the criteria for selection and
application of various types of electronic equipment. In par-
ticular, Guideline 64 of MIL-HDBK-454 describes such cri-
teria for microelectronic devices and provides guidance to
deliver VHDL models of application-specific integrated cir-
cuits (ASIC) and microelectronic circuits used in board de-
signs. Further, these models should comply with
requirements stated in the VHDL DID. The VHDL DID lays
out comprehensive requirements for VHDL models and the
necessary auxiliary and testing support files.

VHDL is also required by MIL-STD-1840 (Ref. 3) for the
exchange of digital data relating to electrical or electronic
applications. MIL-STD-1840 requires one or more of the
following formats:

1. Electronic Design Interchange Format (EDIF)
(Ref. 4)

2. VHDL (Ref. 5)
3. International Graphics Exchange Standard (IGES)

(MIL-D-28000) (Ref. 6)
4. Institute for Interconnecting and Packaging Elec-

tronic Circuits (IPC) (Ref. 7).
Subpar. 4.4.11.2 of MIL-STD-1840 cites the VHDL DID

(Ref. 2) and Electronic Industries Association standard EIA-
567 (Ref. 8) as the application protocols used to organize
and write the VHDL code. Though MIL-HDBK-454, the
VHDL DID, and MIL-STD-1840 require the use of VHDL,
they provide little or no practical guidance on the organiza-
tion of VHDL models and support files.

This chapter contains approaches to structuring the
VHDL models so that DID requirements and intent can be
met with appropriate auxiliary and testing support files.
These approaches are written to readily support the tailoring
of items in the DID to fit project requirements and the struc-
turing of VHDL models so that they can be delivered to the
Government at an affordable cost.

4-2 MIL-HDBK-454 GUIDELINES FOR
THE USE OF VHDL

MIL-HDBK-454 describes the common guidelines to be
used in military specifications for electronic equipment. It
contains 78 individual guidelines covering a variety of is-
sues relating to electronic equipment. Guideline 64 of
MIL-HDBK-454 (Ref. 1) covers microelectronic devices
and recommends delivery of VHDL models for microelec-
tronic circuits under specific situations. Microelectronic cir-
cuits include monolithic integrated circuits, hybrid
integrated circuits, and multichip modules.

Subpar. 4.1.3 of Guideline 64 of MIL-HDBK-454 (Ref.
1) describes a sequence of choices to be used to acquire mi-
croelectronic circuits. Subpar. 4.5.1 of Guideline 64 recom-
mends delivery of structural and behavioral models for
ASICs and cites the VHDL DID (Ref. 2). Otherwise, a non-
standard part approval must be requested. MIL-HDBK-454
lays out the requirements for the documentation and testing
of nonstandard and standard parts on the Qualified Products
List and of other microcircuits.

Subpar. 4.5.3 of Guideline 64 recommends documenta-
tion of digital qualified devices used in board-level applica-
tions with behavioral VHDL descriptions. These behavioral
descriptions must enable test generation and support fault
detection/isolation to the circuit pins.

4-2.1 DOCUMENTATION OF ASICs DEVEL-
OPED FOR THE GOVERNMENT WITH
VHDL

One form of a nonstandard microelectronic circuit used
increasingly in military electronic systems is an ASIC. An
ASIC is any microcircuit customized to perform a specific
function. By dedicating all resources on the device to a spe-
cific function, ASICs provide high throughput for a given
level of power, weight, and size. The rapidly increasing ca-
pability of electronic computer-aided design (ECAD) tools
has made it possible to design and fabricate ASICs at a rea-
sonable cost. However, the small number of copies of ASICs
makes them especially vulnerable to becoming unavailable
due to a lack of production facilities. The existence of both
behavioral and structural VHDL models for ASICs means

CHAPTER 4
DoD REQUIREMENTS FOR THE USE OF VHDL

In this chapter the two primary Government documents concerning the use of VHDL are discussed: (1)
MIL-HDBK-454 and (2) the VHDL DID, DI-EGDS-80811. The need for VHDL descriptions of all application-spe-
cific integrated circuits (ASICs) and all qualified digital electronic integrated circuits in board-level designs is dis-
cussed. The DID-required structure and contents of VHDL descriptions provided to the Government are presented.
In particular, the requirement for both structural and behavioral models of each component of a digital electronic
subsystem is described. This chapter also describes the required annotations to VHDL models.

Thi d t t d ith F M k 4 0 4

4-2

MIL-HDBK-62

that ECAD capabilities can be used either to reengineer the
function of the ASIC for new fabrication technologies or to
transfer the design automatically to a new manufacturer’s
production line.

Subpar. 4.5.1 of MIL-HDBK-454 (Ref. 1) recommends
that the circuit design of digital microelectronic ASICs de-
veloped be documented with behavioral and structural
VHDL descriptions. The behavioral VHDL description
must model both the function and timing of the microcircuit
at the ports of the model. The behavioral VHDL model must
be sufficiently detailed to permit its use within a larger
VHDL model for test generation and fault grading of the
larger model.

Subpar. 4.5.4 of MIL-HDBK-454 (Ref. 1) recommends
that the test vectors and test waveforms for digital ASICs be
documented and delivered to the Government in Waveform
and Vector Exchange Specification (WAVES) format.

In an information section par. 5.6 of MIL-HDBK-454
(Ref. 1) references the VHDL DID (Ref. 2) as a guideline to
be used to prepare the VHDL documentation of an ASIC.

Although MIL-HDBK-454 does not provide specific
guidance on structural models, the information can be in-
ferred from the VHDL DID (Ref. 2). As a guideline, the
structural model of digital microcircuits should be suffi-
ciently detailed to support fault coverage analysis based on
the equivalence classes of single, permanent, stuck-at-zero,
and stuck-at-one faults on all lines (i.e., interconnects). In
general, this requirement implies a structural model that is
decomposed into gate-level primitive modules and atomic
storage functions, such as flip-flops. However, large regular
structures, such as read-only memories (ROMs) and ran-
dom-access memories (RAMs), can be treated as atomic
structures provided they are tested using the appropriate al-
gorithms.

Subpar. 4.5.4 of Guideline 64 of MIL-HDBK-454 recom-
mends that the ASIC test stimuli be written and documented
in Waveform and Vector Exchange Specification (WAVES)
(Ref. 9).

Chapter 7 describes the WAVES standard and how to im-
plement a VHDL test bench using WAVES.

4-2.2 DOCUMENTATION OF QUALIFIED
DIGITAL INTEGRATED CIRCUITS
WITH VHDL

Subpar. 4.5.3 of Guideline 64 of MIL-HDBK-454 recom-
mends documentation with VHDL descriptions of micro-
electronic circuits used in board-level designs. These
descriptions must fully define the functions of the device
and must include timing of the device at the input/output (I/
O) ports in sufficient detail to support test generation, fault
detection, and fault isolation to the device when board or
subsystem simulation is performed. The behavioral VHDL
model recommended by MIL-HDBK-454 should be suitable
for use as a leaf module in a VHDL model of a system using
the modeled device.

4-2.3 THE LIBRARY OF VHDL DESCRIP-
TIONS OF STANDARD DIGITAL PARTS

Under the auspices of the Defense Electronics Supply
Center (DESC), the Department of Defense (DoD) has start-
ed building a library of interoperable VHDL descriptions of
microelectronic circuits. This VHDL model library (VML)
acts as a standardization vehicle and is available to Govern-
ment contractors to enable them to design systems quickly.
As a result, the DoD will receive more VHDL designs for fu-
ture use. Validated models placed in the VML will be a re-
source to aid design engineers in system upgrades or to
provide logistical support after system delivery. The VML
can be accessed through the World Wide Web at http://
kirk.desc.dla.mil or via anonymous ftp at kirk.desc.dla.mil.

DoD project managers who are receiving VHDL models
should contact DESC to alert them to the existence of the
models, they should work with DESC on the specification
and validation of these models, and they should send a copy
of the VHDL models to DESC. DoD project managers who
are tailoring the VHDL DID and defining acceptable
leaf-level modules should contact DESC to find out whether
the VML has VHDL models that could be used by the pro-
gram. The VHDL DID (Ref. 2) requires Government ap-
proval of leaf-level models used in higher level VHDL
models. In the future the VML may provide a source for
such leaf-level models.

The models in such a library must have sufficient accura-
cy and quality to allow their use as formal models for parts
of Government-procured systems. To deal with this issue,
the US Air Force has published a procedure for validating
VHDL models (Ref. 10). DESC is evaluating these valida-
tion techniques in order to use them to screen models deliv-
ered to the DESC VHDL model library. The validation
process traces its requirements back to MIL-HDBK-454 and
to the VHDL DID.

4-2.4 TEST BENCH REQUIREMENTS FOR
VHDL DESCRIPTIONS

VHDL has popularized the concept of a test bench, a col-
lection of VHDL modules that apply stimuli to a module un-
der test (MUT). Test benches may also compare the
response of the MUT with the expected output and report
any differences between observed and expected responses.
WAVES provides mechanisms for generating VHDL test
benches and for using a standard format for the external
files. WAVES is described in more detail in Chapter 7.

4-3 OVERVIEW OF THE VHDL DATA
ITEM DESCRIPTION

The VHDL Data Item Description, DI-EGDS-80811
(Ref. 2), provides a definition of the Department of Defense
requirements for a delivered VHDL model. The DID can be
tailored for particular contracts to meet the unique require-
ments of a specified program. This tailoring specifies the

MIL-HDBK-62

4-3

models to be developed and delivered, and it may further de-
fine some of the basic terms used in the DID, such as
“stand-alone modules”. The DID can be tailored by rewrit-
ing its sections.

Appendix B contains an example of a tailored VHDL
DID, including both the text of the initial DID and the
changes that were made to it.

The VHDL DID requires delivery of a hierarchy of
VHDL module descriptions. This hierarchy must be consis-
tent with the hierarchy of the physical hardware (Ref. 2, sub-
par. 10.2.1), as described in Chapter 2. A VHDL module is
defined by the DID as a deliverable item that includes sever-
al files and VHDL design units. The DID requires one
VHDL module to be defined for the entire system and one
for each physical electronic unit, such as an assembly, sub-
assembly, or integrated circuit. VHDL modules should also
be defined for important subsections or groupings of com-
plex physical units. For each VHDL module of the design,
the VHDL DID requires an associated VHDL entity inter-
face, one or more behavioral bodies, and (except for leaf
modules) a structural body. Furthermore, the VHDL DID re-
quires a VHDL test bench for each stand-alone module.

An important aspect of tailoring the VHDL DID to a spe-
cific project is specifying the hierarchy of VHDL modules
that will be delivered. Each of these VHDL modules re-
quires its own test bench and its own structural and behav-
ioral models. Within the VHDL modules the contractor is
encouraged to use VHDL hierarchies to clarify the design.

Subpar. 10.2.2.3 of the VHDL DID requires that operat-
ing conditions for the physical hardware module be charac-
terized in the corresponding VHDL entity interface.
Operating characteristics include temperature range, logic
level definitions (which relate the logic values used in the
simulation to voltage levels in the physical design), power
and heat dissipation, and radiation hardness. The VHDL
DID also requires that VHDL packages be used to encapsu-
late this information when it can be reused across multiple
VHDL modules. This use of packages is consistent with
standards such as Institute of Electrical and Electronics En-
gineers (IEEE) 1164 (Ref. 11), WAVES (IEEE 1029.1)
(Ref. 9), EIA-567 (Ref. 8), and VITAL (Ref. 12). One area
of tailoring of the DID relates to the use of these standards.
MIL-HDBK-454 (Ref. 1) specifies the use of WAVES. The
computer-aided acquisition and logistics support (CALS)
standard, MIL-STD-1840 (Ref. 3), specifies the use of EIA-
567. A tailored DID can refer to other standards, such as
IEEE 1164 (Ref. 11), IEEE 1149.1 (Ref. 13), and VITAL
(Ref. 12).

Development of models without the use of standards runs
the risk of reducing the interoperability and reuse potential
of the models. Requiring the use of standards after model de-
velopment has begun is very expensive. Also model devel-
opers should use standard packages so that models will work
together when they are integrated.

4-3.1 ENTITY INTERFACE REQUIREMENTS

Subpar. 10.2.2 of the VHDL DID (Ref. 2) defines the re-
quirements for the declaration of design entities as follows:
“The entity declaration shall include an interface declaration
which describes the input and output ports of the system.
The entity declaration shall also describe timing and electri-
cal requirements for the behavior of the device and allow-
able operating conditions. The entity declaration shall also
include explanatory comments.”.

These comments should identify the corporate and indi-
vidual authors of the entity interface, the date and time of the
last revision of the design interface, and identification of the
device being modeled. The entity interface declaration
should include references to VHDL libraries and packages
that are required by every body for the interface. Libraries
and packages specific to a particular architecture should not
be included.

The entity interface can also include assertions about the
interface, including relationships between the input and out-
put ports and conditions on the value and timing of the entry
and exit of input and output data. Assertions should be used
to describe requirements on the module, and the timing de-
lays in the behavioral bodies should capture the actual be-
havior of the physical device. If a behavioral body is used to
describe a design for which no corresponding physical hard-
ware exists, the behavioral body must be clearly commented
to indicate the source of the timings.

4-3.1.1 Entity Names

Subpar. 10.2.2.4 of the VHDL DID (Ref. 2) requires that
names for the VHDL entities be traceable to the names of the
corresponding physical electronic components whenever
such a correspondence exists. Similarly, the names of archi-
tecture bodies for a design entity should reflect a distin-
guishing implementation characteristic of that architecture
body, such as the level of abstraction, the technology used to
implement the component, or the manufacturer. This trace-
ability is important for verification that the model is com-
plete, i.e., each physical hardware component is instantiated
in the VHDL design. Appropriate naming also aids verifica-
tion that the VHDL model design hierarchy is consistent
with the physical design hierarchy. Appropriate names for
entity interfaces also aid maintenance of the model, particu-
larly when upgrades are made to physical components. A
well-structured VHDL model of a system allows changes to
be isolated to those parts of the model that correspond to the
physical components being upgraded and perhaps to config-
urations of those components.

4-3.1.2 Input and Output Definitions

Subpar. 10.2.2.1 of the VHDL DID (Ref. 2) requires that
each entity interface shall describe all input and output ports.
In particular for very large-scale integrated (VLSI) circuits,
there should be a port declared for each pin of the circuit.
This requirement is driven by the needs of WAVES (Ref. 9).

4-4

MIL-HDBK-62

To use WAVES Level 1 to describe the test bench for a mod-
el, each input and output port must correspond to a single pin
on the physical component. To support traceability between
a VHDL model of the hardware and the physical hardware
module, the labels used for the ports should support trace-
ability to the corresponding bus, connector, or pins in the
physical hardware whenever such a correspondence exists.
These labels may be augmented by attributes, comments, or
port maps. A port map can be used to link specific pins to an
element of a bit vector. This link is particularly valuable for
circuit pins to busses.

Building models with close relationships between VHDL
ports and physical hardware pins is essential if the WAVES
test bench is to be used for both testing the VHDL models
and driving automatic test equipment (ATE). This traceabil-
ity between the VHDL model and the physical hardware
also allows better verification of the completeness of the
VHDL model, either through manual review of the VHDL
source code or through partially automated verification
matching VHDL port names or port attributes against the net
list of the physical hardware. When VHDL-based synthesis
tools are used, this verification may be unnecessary. The
synthesized VHDL model then becomes the standard de-
scription of the net list.

A set of standards that defines the possible types for all in-
put, bidirectional, and output ports of the system should be
set up for the entire system model. These standards should
be consistent with the WAVES logic values and value dic-
tionary for the entire system. This approach supports the in-
teroperability of structural and behavioral models of
different hardware modules and thus allows the Government
and the contractor to build and simulate mixed abstraction
models of the system.

4-3.2 BEHAVIORAL DESCRIPTIONS

Subpar. 10.2.1 of the VHDL DID (Ref. 2) requires deliv-
ery of a behavioral VHDL model of every physical electron-
ic unit of the hardware system. As required by subpar. 10.2.3
of the VHDL DID, these behavioral models are required to
express the timing and functional characteristics of the cor-
responding physical unit. Behavioral models are intended to
serve several purposes: to provide simulation facilities for
testing software written to execute on the hardware, to pro-
vide executable specifications for different physical imple-
mentations of the same hardware function, and to provide
the reader of a VHDL model with a readable description of
the system that reflects the partitioning decisions made dur-
ing the design of the hardware module.

A behavioral VHDL model should accurately represent
the visible interface, particularly for programmable devices.
Thus behavioral models describing existing programmable
hardware should accurately represent the instruction set and
visible registers of the device being modeled. Furthermore,
test and maintenance functions of the physical unit available
to the user shall be included in the body. These requirements
allow the model to be used to verify that system test pro-

grams and fault detection, isolation, and recovery algorithms
are functioning. In general, these requirements do not permit
the effectiveness of fault detection and isolation algorithms
to be determined because evaluating effectiveness usually
requires detailed structural information. Subpar. 10.2.3.3 of
the VHDL DID states that structurally dependent signal val-
ues, such as scan path signatures, shall not be specified in
behavioral bodies.

One important form of DID tailoring is the task of defin-
ing the set of modules for which behavioral models are to be
delivered. Because the development costs of behavioral
models can be a significant part of the entire cost of devel-
oping VHDL deliverables, the contractor and the contract-
ing agency should decide early in the project on the set of
behavioral models to be delivered. The contracting agency
needs to ensure that the behavioral models represent those
parts of the system for which different implementations may
be needed due either to competing designs or to the evolu-
tion of technology over time. For example, because small-
volume ASIC production poses a risk of obsolescence, sub-
par. 4.5.1 of Guideline 64 in MIL-HDBK-454 (Ref. 1) rec-
ommends both structural and behavioral models of all
ASICs. Similarly, if the contracting agency expects that part
of a system now implemented with several circuits is likely
to be implemented in the future with a single circuit, it may
insist on a behavioral model of that part of the system. If the
contracting agency has plans to allow competitive bidding
for a subsystem as part of a later stage in development, it
should require a behavioral model of the subsystem since
that behavioral model can be used as an executable specifi-
cation of the subsystem.

The contracting agency should also verify that the combi-
nation of behavioral and structural models provides enough
options for mixed abstraction models. These models allow
detailed but acceptably rapid simulation of designated por-
tions of the system. Thus part of the process of tailoring the
VHDL DID for a specific program should include definition
of scenarios used to simulate the system. Each scenario
should identify the purpose of the scenario and the structure
of the mixed abstraction model to be simulated. For exam-
ple, a gate-level model of an entire multiprocessor is not an
appropriate mechanism to use to debug software. In this
case, a high-level behavioral model of the entire system or a
high-level structural model that uses behavioral models of
all of the processing elements, busses, and memories is more
appropriate.

4-3.2.1 Functional Decomposition

Subpar. 10.2.3.1 of the VHDL DID (Ref. 2) allows de-
composition of a behavioral model to ease simulation and
increase the clarity of the model. Structural decomposition
of behavioral bodies shall be used only to show functional
partitions that are not represented in the physical partitioning
of the hardware. For example, a behavioral body of a central
processing unit (CPU) can be structurally partitioned into an
arithmetic and logic unit (ALU) and several registers. How-

MIL-HDBK-62

4-5

ever, the physical design may not follow this logical parti-
tioning; instead it may partition the CPU into several bit
slices, each containing one or more bits of the ALU and the
same number of bits of each of the registers. In this case, de-
composition into an ALU and several registers is an appro-
priate functional decomposition of the CPU because
partitioning the functions of the ALU and the registers adds
to the clarity of the model. Furthermore, execution of a sin-
gle ALU process may be significantly faster than performing
several operations on signals and ALU bit slices.

Subpar. 10.2.3.1 of the VHDL DID (Ref. 2) discourages
delivering structural models at the Boolean logic level as be-
havioral models. Thus the use of structural VHDL models
generated as output from schematic capture systems may be
inappropriate as a behavioral model, as is the output of syn-
thesis tools. These structural models do not serve any of the
purposes of a behavioral model. In particular, they do not
provide fast simulation or technology independence; they
are not as readable as more abstract behavioral models,
which are often maintained to document system design de-
cisions.

4-3.2.2 Timing Descriptions

Subpar. 10.2.3.2 of the VHDL DID (Ref. 2) requires that
signal delays at the output ports of VHDL modules accurate-
ly model the timing behavior of the physical units corre-
sponding to the VHDL modules. The VHDL DID also
requires that best-case, worst-case, and nominal output de-
lays be included in the model.

The VHDL DID also encourages the use of more elabo-
rate timing models that, for example, consider environmen-
tal factors such as supply voltage, temperature, or output
loading. A unified approach should be developed for the in-
vocation of appropriate timing models during simulation.
The electronic data sheet (EDS) approach to capturing this
information has been included in the EIA-567 standard (Ref.
8). The VITAL initiative is also developing approaches to
providing best-case, worst-case, and nominal timing models
that take into account environmental factors. Approaches
used to define such timing models are also discussed in pars.
5-4 and 6-5 and subpars. 6-3.3.3 and 6-6.1 of this handbook.

4-3.3 STRUCTURAL DESCRIPTIONS

Subpar. 10.2.4 of the VHDL DID (Ref. 2) requires struc-
tural VHDL models to be sufficiently detailed and accurate
to permit logic-level fault modeling and test vector genera-
tion. For a hierarchy of VHDL design entities to correspond
to the physical hierarchy of the modeled system as subpar.
10.2.1 of the VHDL DID requires, the structural partitioning
of the model must correspond to the physical partitioning of
the hardware. Additional structural partitioning may be used
to aid understanding of the system or to support effective
built-in test techniques. Subpar. 10.2.4.1 of the VHDL DID
states, “The naming of components and signals in structural
VHDL models shall be the same, or be traceable to, their
electronic schematic counterparts.”.

4-3.3.1 Acceptable Primitive Elements

Subpar. 10.2.1.1 of the VHDL DID (Ref. 2) restricts the
choice of primitive or leaf-level components in VHDL mod-
els to one of three alternatives:

1. “Modules selected from a Government list of
leaf-level modules referenced or contained in the contract.”

2. “Modules corresponding to a collection of hardware
elements which together exhibit a stimulus-response behav-
ior, but whose interaction is best modeled at the electrical or
physical level. Examples of such modules are digital logic
gates, analog circuit blocks, and power supplies.”

3. “Modules whose detailed design has not yet been
completed, but whose behavior is required as a delivery dis-
closure at specified times during the contract.”.

The first alternative allows use of a Government-ap-
proved library of reusable VHDL descriptions. It is also a
mechanism to ensure consistent descriptions of the same
physical hardware design, and it encourages reuse of stan-
dard models whenever possible and thus reduces the valida-
tion efforts and increases the reuse of models. This
alternative is an important consideration in tailoring the DID
for a specific contract. For example, if the hardware design
is using a specific commercial off-the-shelf (COTS) hard-
ware component that has been militarized, the contractor
and the contracting agency can agree to use a commercially
available VHDL model of that component in their VHDL
model of the system should such a model exist.

The second alternative allows the use of standard descrip-
tions at the gate level, and the use of a standard logic pack-
age such as IEEE Std 1164 (Ref. 11) is strongly
recommended.

The third alternative is designed to allow top-down devel-
opment of VHDL models in parallel with the design of the
system. In this situation the contractor and the contracting
agency should agree on what leaf-level modules are to be de-
livered at each milestone in the contract. These delivery
milestones are usually scheduled to coincide with program
reviews such as the Preliminary Design Review and the Crit-
ical Design Review.

4-3.3.2 Testability Requirements

Subpar. 10.2.4 of the VHDL DID (Ref. 2) requires that
the structural models be sufficiently detailed and accurate to
permit logic-level fault modeling and test vector generation.
Subpar. 10.2.4 also requires any structure created to support
testing and maintenance, such as scan paths (Ref. 13), to be
included in such a VHDL description. Modern synthesis
tools are becoming sophisticated enough to generate the
built-in test circuitry when given logic-level models and
some guidance (Ref. 14). Circuit designers still need to par-
tition the logic into appropriate blocks for automatic test pat-
tern generation. VHDL design hierarchies provide a
mechanism for this partitioning if the synthesis tools are so-
phisticated enough to use the information.

4-6

MIL-HDBK-62

4-3.4 TEST BENCH REQUIREMENTS

A key part of a VHDL simulation package is the test
bench. A test bench provides stimuli to the hardware module
being simulated, checks the responses generated by the
hardware module, and reports any discrepancies between
the expected responses and the actual responses.

The test bench is used for verification and assessment of
the VHDL description; hence subpar. 10.2.5.1 of the VHDL
DID defines requirements on the design and implementation
of the test bench. It requires configuration information nec-
essary to simulate the module under test (MUT) to be deliv-
ered with the test bench. The WAVES header file provides
this kind of configuration information. A VHDL configura-
tion declaration is also needed to link the appropriate archi-
tecture bodies with their entity interfaces and to specify
values of generics. However, a VHDL configuration decla-
ration does not specify which source code versions of the de-
sign units are stored in which design libraries. This
information is included in a WAVES header file. The
WAVES header file also relates a given external file, i.e., a
file not containing VHDL source code, to the test it imple-
ments.

4-3.4.1 Test Bench Functions

Subpar. 10.2.5.1 of the VHDL DID requires test benches
to apply stimuli to a MUT and to compare the responses gen-
erated by the MUT with expected responses. The test bench

must also report any differences between observed and ex-
pected responses. The VHDL DID also requires that the test
bench and VHDL configuration information needed to inte-
grate and simulate the model of the MUT with its test bench
be included in the delivered package. Subpar. 10.2.5.2 of the
VHDL DID also requires VHDL test benches to be
cross-referenced to the contractually required hardware test
plans, specifications, and drawings. The WAVES header
file can and should relate the VHDL test bench model, the
VHDL model of the MUT, and the external files of test vec-
tors to the test plan or test procedure. This cross-referencing
is another important reason to tailor the VHDL DID. Each
test planned for the actual hardware should have a corre-
sponding test bench. The WAVES header file and the
VHDL configuration declaration for the VHDL test bench
provide the corresponding information. The same VHDL
test bench and configuration may be used for several tests
with different external files corresponding to different test
vector sets planned for the hardware. The capability of
WAVES to drive both the VHDL test bench and the ATE for
the actual hardware makes management of configuration
and correlation of tests easier.

Fig. 4-1 shows the organization of a typical test bench. Its
components are labeled using the WAVES naming conven-
tion. The waveform generator procedure (WGP) produces
the stimuli for the MUT. Fig. 4-1 also shows the use of an
auxiliary file as a source of data for stimuli generation. Dif-

Figure 4-1. Logical Structure of a VHDL Test Bench Constructed Using WAVES

MIL-HDBK-62

4-7

ferent tests can use different auxiliary files. Subpar. 10.2.5.1
of the VHDL DID requires that these auxiliary files be doc-
umented as part of the VHDL delivery item. The comparator
shown in the figure compares the expected responses sup-
plied by the WGP with the expected responses. In this exam-
ple, the expected responses are stored in auxiliary files in a
manner similar to the stimuli, but other organizations are
possible. The comparator function must generate reports
that indicate significant differences between the expected
and the actual responses. The comparator must consider any
tolerances or don’t-care conditions for the output of the
MUT and the timing of the expected values input.

4-3.4.2 Test Bench Relationships to Design Mod-
ules

Subpar. 10.2.5 of the VHDL DID requires that test bench-
es be provided for “each VHDL module required by the con-
tract to be simulatable as a stand-alone module”. A tailored
DID must specify which VHDL design entities represent
stand-alone modules, which require their own test benches
and a behavioral VHDL model. Subpar. 10.2.5.1 of the
VHDL DID requires that every VHDL module of the hard-
ware hierarchy be simulatable as a stand-alone module. Be-
cause the development of test bench software represents a
significant cost, the choice of which VHDL modules must
be simulatable as stand-alone modules is a critical tailoring
of the DID for a specific contract. Candidates for these mod-
ules include hardware modules that are likely to be replaced
as a result of preplanned program improvements or modules
for which separate subcontracts are going to be let.

The hierarchy of test benches required by the VHDL DID
provides a mechanism for the bottom-up validation of the
model. Each low-level module can be tested individually
with its own test bench. Then the low-level modules are in-
tegrated by a higher level structural design entity or hierar-
chy of design entities, and the resulting model is tested with
its test bench. If necessary, the higher level test bench can
use the corresponding behavioral model as the reference
point to detect any differences between the behavioral and
structural models.

Alternatively, the behavioral model can be used to gener-
ate the expected values for the output pins. These values,
captured in an external file, can be combined with the inputs
to form waveforms for both input and output pins of the
MUT. In such an approach the behavioral model is not need-
ed as part of the comparator function, but an external file
combining stimuli and expected responses for the MUT is
generated instead. An alternative format for a test bench has
the behavioral model of the MUT running in parallel with a
structural model of the MUT that is to be tested. The behav-
ioral model of the MUT is combined with a compare func-
tion to serve as the comparator in Fig. 4-1.

Subpar. 10.2.5 of the VHDL DID also requires that the
test bench design entities must be clearly distinguished from
VHDL modules representing the MUT. The convention in
WAVES is to use the suffix “.wav” for the test bench source

code and to use distinct libraries for test bench entities and
MUT entities. However, in some cases behavioral models of
components of the system being designed are used as part of
the test bench. For example, if a structural model of a signal
processor using raw sensor data in external files is being
tested, the designer may want to use behavioral models of
the system bus interface unit (BIU) to handle the input of the
sensor data into the signal processor local memory. Thus the
behavioral model of the BIU is part of the MUT in one situ-
ation and is part of the test bench in another. In such cases
the library organization should follow the physical organiza-
tion of the entire hardware system. The configuration decla-
ration for the test bench reveals which components are being
used for the test bench and which are part of the MUT.

4-3.5 ERROR MESSAGES

Subpar. 10.2.6 of the VHDL DID requires that error mes-
sages generated either in the VHDL description of the MUT
or in the test bench identify the requirement that has been vi-
olated together with the name of the VHDL design unit in
which the error occurred. Subpar. 10.2.2.2 of the VHDL
DID requires any violations of timing or electrical require-
ments, such as setup and hold times or power supply voltage
extremes, to generate error messages. The VHDL assertion
statement provides a means to add such conditions to a mod-
el.

4-3.6 DOCUMENTATION FORMAT

Par. 10.3 of the VHDL DID describes a set of at least
eight files constituting a delivery to the Government. This
description assumes that over the life of a system design sev-
eral versions of the VHDL model for a system will be deliv-
ered to the Government.

The first file contains the names of all files of the deliver-
able VHDL documentation named in accordance with the
originating host operating system (including the first file).
Each record should contain exactly one file name.

The second file is a high-level prose overview of the
VHDL deliverable. This file must cite contract, item num-
ber, and contract data requirements list (CDRL) sequence
number and summarize the organization and content of the
set of files.

The third file specifies the sequence used to analyze the
VHDL design units delivered. The sequence must be consis-
tent with the order of analysis rules in the

VHDL Language
Reference Manual

 (Ref. 5). A WAVES header file satisfies
this requirement.

The fourth file is a list of the VHDL modules selected for
use in the model and appearing in the Government-approved
list of leaf-level modules. Because these files have already
been approved by the Government, they do not need to be
verified as part of the model acceptance procedure. Thus this
list is used to reduce the workload of the Government re-
viewers of the models.

The fifth file is a list of VHDL modules that have been
previously accepted by the Government but have been re-
vised. Only those files that have been changed since the last

4-8

MIL-HDBK-62

delivery to the Government need to be identified in this list.
For the first delivery of a model to the Government, this file
should be empty.

The sixth file is a list of VHDL modules that originate
with this delivery. For example, if this is the first time that a
model is being delivered to the Government, all the VHDL
modules are listed in this file. If since the last delivery of the
model to the Government, the model hierarchy has been ex-
tended to include more detail, this file will identify the new
VHDL modules. For example, if a behavioral model of a
component has been augmented with a structural model that
references several new behavioral models, these structural
and behavioral models will be referenced in this list as will
the new structural model.

The seventh file associates VHDL modules with their
corresponding test benches. For each VHDL module there is
a list of corresponding test benches. For each test bench
there is a list of VHDL entities comprising that test bench.
This list includes not only the VHDL entity for the MUT but
also all of the VHDL entities that are components of the
MUT and all of the VHDL entities that are part of the test
bench external to the MUT.

The files after the seventh specified file contain VHDL
design units and auxiliary files. The auxiliary files proceed
VHDL design units. Auxiliary files include WAVES header
files, WAVES external files, timing files (such as the stan-
dard delay format (SDF) files used by VITAL (Ref. 12)),
and external environment parameter files (such as data files
for behavioral models). VHDL MUT descriptions must be
distinguished from VHDL test bench descriptions.

The delivery medium is another place where tailoring of
the VHDL DID is important. Par. 7.3 of the VHDL DID de-
fines the preferred media as nine-track magnetic tape, 1600
bits per inch, unlabeled, with 80-character records and 24
records per block. An identifying label must be attached to
the tape reel, and a hardcopy of Files 1 and 2 must be includ-
ed with the tape. Because of the wide variety of computer
systems in existence, the Government may want to specify
other magnetic media or other delivery format.

4-3.7 REQUIRED ANNOTATIONS OF VHDL
MODULES

The VHDL DID requires explanatory comments to make
the intent of a VHDL module clear. The following informa-
tion is required:

1. Any factors restricting the general use of the VHDL
module to represent the modeled hardware. For example, if
nonstandard signal state/strength definitions are used, they
should be noted in the explanatory comments.

2. General approaches taken to modeling, particularly
decisions regarding model fidelity. Model fidelity informa-
tion includes information about the timing models used and
any variance in exact function from the subject hardware
(such as the use of host-dependent floating point formats for
calculations).

3. Any further information the originating organization

considers vital to subsequent users of the descriptions. For
example, if the source code for the VHDL module has been
structured to support a particular synthesis tool, this fact
should be noted with the version of the tool.

VHDL modules selected from the list of Government-ap-
proved modules and VHDL modules that have been previ-
ously accepted by the Government require documentation of
the originator or source of the VHDL model, a DoD-ap-
proved identifier if such an identifier exists, and a design
unit name or revision identifier.

A revision history must be maintained for design units
that have been accepted by the Government. The design re-
vision history is included as comments in the design unit.
The revision history must include the dates of revisions, the
performing individual and organization, the rationale for the
revision, a description of what part of the design unit re-
quired revision, and the testing done to validate the revised
model. Revision histories should also be maintained for aux-
iliary files using the same format as the VHDL design units
where possible.

4-3.8 AN EXAMPLE OF A TAILORED DID

Appendix B, “Example of a Tailored DID”, includes an
example of a DD Form 1423 used to tailor the VHDL DID.
This form describes a contract data requirement. Seven re-
marks are listed that specify the deliverables for the VHDL
DID and reference the VHDL DID paragraph numbers. This
modified form of the DID specifies a series of six versions
of the model to be delivered. (These versions are called “lev-
els” in DD Form 1423.)

Four behavioral model versions are required: an architec-
tural level model, two application level models, and a bus
functional model, which is a mixed abstraction level model.

Two structural model versions are required: a structural
model whose leaf-level entities are integrated circuits and a
structural model at the register transfer level of abstraction.

The tailoring also requires that the models of input stimuli
and output results be specified in IEEE Std 1029.1 format
(WAVES).

REFERENCES

1. MIL-HDBK-454M,

General Requirements for Elec-
tronic Equipment

, 28 April 1995.

2. DI-EGDS-80811,

VHSIC Hardware Description Lan-
guage (VHDL) Documentation

, Department of De-
fense, Washington, DC, 11 May 1989.

3. MIL-STD-1840B,

Automated Interchange of Technical
Information

, 1992.

4. EIA-548,

Electronic Design Interchange Format
(EDIF)

, Electronic Industries Association, Washington,
DC, 1989.

5. IEEE Std 1076-1993,

IEEE Standard VHDL Language
Reference Manual

, The Institute of Electrical and Elec-
tronics Engineers, Inc., New York, NY, April 1994.

MIL-HDBK-62

4-9

6. MIL-D-28000A,

 Digital Representation for Communi-
cation of Product Data: IGES Application Subsets and
IGES Application Protocols

, 14 December 1992.

7. IPC-D-351,

 Printed Board Drawings in Digital Form

,
Institute for Interconnecting and Packaging Electronic
Circuits (IPC), 1989.

8. EIA-567-A,

VHDL Hardware Component Modeling
and Interface Standard

, Electronic Industries Associa-
tion, Washington, DC, March 1994.

9. IEEE Std 1029.1-1991,

Waveform and Vector Ex-
change Specification

, The Institute of Electrical and
Electronics Engineers, Inc., New York, NY, 1991.

10.

VHDL Model Verification and Acceptance Procedure

,
Rome Laboratories/ERDD, Department of the Air
Force, Griffiss Air Force Base, Rome, NY, March 1992.

11. IEEE Std 1164-1993,

 IEEE Standard Multivalue Logic
System for VHDL Model Interoperability

, The Institute
of Electrical and Electronics Engineers, Inc., New
York, NY, May 1993.

12. IEEE Std 1076.4-1995,

IEEE Standard for VITAL Ap-
plication-Specific Integrated Circuits (ASIC)

, The Insti-
tute of Electrical and Electronics Engineers, Inc., New
York, NY, 1996.

13. IEEE Std 1149.1-1990,

IEEE Standard Test Access
Port and Boundary-Scan Architecture

, The Institute of
Electrical and Electronics Engineers, Inc., New York,
NY, May 1990.

14. J. Hallenbeck, J. Cybrynski, N. Kanopoulos, T. Markas,
and N. Vasanthavada,

The Test Engineer’s Assistant, A
Support Environment for Hardware Design for Test-
ability

,

IEEE Computer Society Press, Los Alamitos,
CA, April 1989.

BIBLIOGRAPHY

MIL-H-38534B,

General Specification for Hybrid Micro-
circuits

, 7 July 1993.

MIL-STD-883D,

Test Methods and Procedures for Micro-
electronics

, 15 November 1991.

MIL-M-38510J,

General Specification for Microcircuits

, 15
November 1991.

MIL-I-38535B,

General Specification for Integrated Cir-
cuits (Microcircuits) Manufacturing

, 1 June 1993.

MIL-HDBK-59A,

Computer-Aided Acquisition and Logis-
tic Support

, 28 September 1990.

 V. Berman, “An Analysis of the VITAL Initiative”,

VHDL
Boot Camp

, Proceedings of the VHDL International
Users’ Forum Fall Conference, 11-13 October 1993,
San Jose, CA, VHDL International Users’ Forum., c/o
Conference Management Services, Menlo Park, CA.

O. Levia and F. Abramson, “ASIC Sign-Off in VHDL”,

VHDL Boot Camp

, Proceedings of the VHDL Interna-
tional Users’ Forum Fall Conference, 11-13 October
1993, San Jose, CA, VHDL International Users’ Fo-
rum, c/o Conference Management Services, Menlo
Park, CA.

MIL-HDBK-62

5-1

5-1 INTRODUCTION

The very high-speed integrated circuit (VHSIC) hardware
description language (VHDL) data item description (DID)
(Ref. 1) describes two uses for behavioral models: (1) as ab-
stract models for hardware modules that have not yet been
completely designed and (2) as accurate documentation for
hardware modules that already exist. For the first use the
goal is to capture the functionality of a component in a man-
ner that is as free of implementation decisions as possible.
For the second use the goal is to develop an accurate model
of the function and timing of the corresponding hardware
module that can be clearly understood and rapidly simulat-
ed.

An implementation-free behavioral model is very useful,
particularly in the early stages of a design process. Such a
behavioral model can be used to validate internal and exter-
nal interfaces, functional partitioning, and the synchroniza-
tion of components. Behavioral models can be reviewed and
simulated by independent validation and verification groups
if required and can be used to develop functional tests for
system integration. Behavioral models can also be used to
verify the functionality of more detailed designs.

Behavioral models at different levels of abstraction are
used in different ways. For example, an algorithmic model
may be used as part of a system-level simulation to validate
the partitioning and allocation of functions to the hardware
modules, an instruction set architecture (ISA) model may be
used to verify that the software will execute on the hardware,
and a register-transfer-level model may be used as the start-
ing point for the synthesis of an application-specific inte-
grated circuit (ASIC).

In this chapter approaches to developing VHDL behav-
ioral models at the algorithmic level, ISA level, and
register-transfer level are discussed. This discussion focuses
on methods used to capture functions and timing at these
levels and to use VHDL models for validation and verifica-
tion. Included in the discussion are common approaches to
behavioral modeling in VHDL, the development of timing
specifications for behavioral models, and the annotation of
behavioral models.

5-2 CREATION OF VHDL BEHAVIORAL
MODELS

The development of a behavioral VHDL model should be
approached with its intended use in mind. The intended use

of the model influences the level of abstraction of the model,
which in turn affects the size, complexity, and cost of the re-
sulting model. The intended use also influences the external
support needed, such as test data generation and analysis.
The intended use of the model should be examined to ensure
that resources devoted to developing the model are expend-
ed as productively as possible.

The level of abstraction selected for the model should be
the highest possible that meets the goals of the modeling ef-
fort. More abstract models generally are more concise, easi-
er to read and comprehend, quicker to develop, and faster to
simulate.

This paragraph discusses creating VHDL models for
three levels of abstraction: algorithmic, instruction set archi-
tecture, and register transfer. It also discusses performance
models, which are typically used to model real-time systems
at very abstract levels for purposes of design tradeoffs.

5-2.1 CONSTRUCTING PERFORMANCE
MODELS

Performance models are used at a high level to understand
the timing requirements of a system. The system designer
can use these models to estimate system response time and
component utilization and to find potential performance bot-
tlenecks in a design. The issues associated with constructing
performance models are directly related to the issues of in-
corporating timing into functional models in order to create
behavioral models as required by the VHDL DID. The most
common reason to develop performance models or to in-
clude timing in algorithmic models is to support several
types of analysis:

1. A performance- or algorithmic-level behavioral
model can be used to detect inappropriate sequences of
events. For example, a processor should not start sending
messages across a bus before the bus interface unit (BIU)
has been initialized.

2. An algorithmic model can be used to estimate the
throughput of the hardware system if the throughput of a
system is a measure of the number of output units generated
in a given time unit. For example, an image-processing sys-
tem may be required to generate 30 frames a second.

3. A performance- or algorithmic-level behavioral
model can be used to compute the utilization of hardware
modules. This computation can be used to determine poten-
tial bottlenecks in the design. These bottlenecks are high-
risk areas of the design because if they do not meet their per-

CHAPTER 5
 CONSTRUCTION OF BEHAVIORAL VHDL MODELS

The construction and use of behavioral VHDL models are described. Common techniques used to create behav-
ioral VHDL models, develop timing specifications for behavioral models, and annotate behavioral models are pre-
sented. Also discussed is the usefulness of behavioral models in top-down design and mixed-abstraction-level model
simulation.

Thi d t t d ith F M k 4 0 4

MIL-HDBK-62

5-2

formance requirements, the entire system will not be able to
meet its performance goals. Measures of utilization include
bus utilization, and estimates of bus utilization can be useful
in determining the required bandwidth of the actual busses
or networks of the system.

4. A performance- or algorithmic-level behavioral
model can be used to estimate response time. For example,
an electronic warfare (EW) system must be able to generate
jamming emissions within a specific time upon detecting an
enemy radar. An algorithmic VHDL model of an EW system
provides information about the time interval between receiv-
ing an enemy radar pulse and generating jamming emis-
sions.

5. A performance- or algorithmic-level behavioral
model can be used to determine that the hardware system
will keep up with the input data rate. For example, a radar-
processing unit must be able to process radar frames at the
pulse frequency rate of the transmitter; otherwise, it will lose
input data.

This subparagraph describes techniques that use VHDL
to model timing at the algorithmic level and to capture asso-
ciated design metrics. The approaches described here are ap-
propriate for VHDL performance models or algorithmic-
level behavioral models created during top-down design.

5-2.1.2 Modeling Timing in Performance- and
Algorithmic-Level Behavioral Models

In performance- and algorithmic-level behavioral mod-
els, “time” often refers to the time that a module is expected
to be busy working on a specific function, not to the inertial
delay of an electrical circuit or the setup and hold times re-
quired for a latch. For example, performance modeling early
in a development cycle usually requires that estimates be
made of the execution time of important system processes or
functions. These estimates can be based on models of algo-
rithmic complexity and the amount of data that must be pro-
cessed, domain-specific knowledge of process timing
characteristics, or timing budgets assigned by system engi-
neers. A system function is modeled to use all of its input da-
ta, to process that data for some length of time, and then to
produce its outputs. VHDL models can be constructed to re-
flect this pattern. Furthermore, the time a module is busy
performing a function often can be computed from one or
more of the parameters of the function. For example, the
busy time for a fast Fourier transform on an ASIC with a sin-
gle multiplier requires 4(

N

/2)log

2

(

N

) multiplier cycles.
VHDL provides two mechanisms to introduce timing effects
within a process: the delay clause on a signal assignment
statement and the wait statement. Both of these mechanisms
allow the delay to be parameterized, so the actual delay on a
specific execution of the statement may vary. Signal assign-
ment statements are discussed in subpar 3-2.3.1. Wait state-
ments are discussed in subpar. 3-3.2. From the point of view
of behavioral modeling, there are several issues to consider
before choosing to use either a delay clause or a wait state-
ment to introduce timing delays:

1. If a wait statement is used, the process will not re-
spond to changes in its input signals during the interval the
process is waiting. This unresponsiveness can cause unex-
pected and undetected losses of data, which are difficult to
debug.

2. In a process use of signal assignment statements in
a loop is risky unless there is a wait statement in the loop or
the delay times vary on each execution of the loop. Other-
wise, the output values on the signal will be overwritten.

3. A combination of wait statements and delays on sig-
nal assignment statements can be used in a behavioral model
of a pipelined system to model the difference between laten-
cy and throughput. A system with a long pipeline (such as a
pipelined floating point unit or a systolic array) may have a
short time between inputs (a measure of throughput) but a
very long latency. A wait statement can be used to define the
minimum time between inputs, whereas the signal assign-
ment delay can be used to capture the long latency time from
the input of datum to the corresponding output.

If the delay expression in either the wait statement or the
signal assignment statement is parameterized, the process is
much easier to reuse. For example, the delay expression can
be parameterized to adjust the timing delay on the size or
value of an input or to allow the same model to be used to
collect timing data about the best-, worst-, and average-case
performance of the component being modeled.

There are three approaches used to collect statistics about
algorithmic models:

1. A statistics package can be used to collect and re-
duce performance data during the simulation. This approach
requires that calls to statistics-gathering functions be built
into the algorithmic model.

2. Simulator controls can be used to produce trace da-
ta. This approach is likely to produce very large files of raw
data that trace the necessary signal values and cause addi-
tional file input/output (I/O). Some VHDL simulation envi-
ronments provide the postprocessing capabilities required to
analyze trace data and produce statistics. However, if the
simulation environment is used in this way, the underlying
VHDL model may not be portable because not all simulation
environments provide for the postprocessing of simulation
trace data.

3. Statistical analysis functions can be built into the
test bench for the module. The approach taken to statistics
collection depends on exactly what information is needed
and how much support the simulation environment provides
for data collection and analysis. This approach requires that
all of the information required for timing assessment is
available to the test bench, such as internal signals that con-
nect components.

5-2.1.3 Example of a Statistics Package and Its
Use

As discussed in Chapter 2, the timing measures used at
the algorithmic level are different than those used at the gate
level. As a result, test bench or model infrastructure should

MIL-HDBK-62

5-3

include VHDL code that collects and condenses timing data
into useful forms. This example describes a statistics pack-
age that collects and condenses information on-line and
shows how to use data-dependent delays to model the exe-
cution time of an algorithm. It also shows how VHDL code
can be developed and reused to collect statistics and provide
data types for statistics that are shared between design enti-
ties. This sharing is necessary to describe the signals that
provide the communication between design entities.

The example consists of two packages and a single design
entity. The design entity calls a procedure to compute values
using a fast Fourier transform (FFT).

The first package, of which the VHDL package interface
is shown in Figs. 5-1 and the statistics package body is
shown in Fig. 5-2, contains declarations and procedures
used to collect statistics about a process during execution.

The following statistics are included:
1. The current simulation time
2. The minimum busy time of the process over all in-

vocations
3. The maximum busy time of the process over all in-

vocations
4. The average busy time of the process across all in-

vocations
5. The total busy time of the process
6. The utilization of the process.

This statistics package can be used by multiple design enti-
ties.

The second package, shown in Fig. 5-3, describes the data
type for signals providing input into and output from the
FFT design entity. The input to the VHDL design entity is
assumed to be a record having fields that provide informa-
tion on how much data are to be processed. This information

Figure 5-1. VHDL Package Interface for Statistics for Performance and Algorithmic Models

MIL-HDBK-62

5-4

Figure 5-2. The Statistics Package Body for Performance and Algorithmic Models

MIL-HDBK-62

5-5

is used to compute the execution time of the process.
Fig. 5-4 shows the entity interface for a hardware module

FFT that uses both the data type and statistics packages. In
addition, a generic scale factor

unit_delay

 is declared.
This scale factor is used to scale the performance of the al-
gorithm when different implementations (with different
clock speeds) are being evaluated.

The algorithm described in Fig. 5-5 is executed in four
stages. In the first stage the data are input and the results
computed. In the second stage the timing delay for the pro-
cess is calculated based on the information in the input data.
Next the process waits for the computed busy time. Finally,
the process outputs its result data and calls the

compute_stats

 procedure in the statistics package to
compute and print certain statistics.

Figure 5-3. VHDL Data Type Definitions for a Performance and Algorithmic Model

Figure 5-4. VHDL Entity Interface for a Performance and Algorithmic Model

MIL-HDBK-62

5-6

5-2.2 CONSTRUCTING ALGORITHMIC
MODELS

Algorithmic models are models in which the function to
be performed is described in a program-like manner inde-
pendently of any particular hardware implementation. De-
tails such as the timing and control of input/output
operations or the specifics of internal data sequencing may
not be specified.

In an algorithmic VHDL model the structure of the
VHDL code may bear no relationship to the corresponding
physical hardware. However, there should be a documented
correspondence between the entity interface of the VHDL
model and the corresponding physical hardware. For exam-
ple, if the algorithmic model has ports with record data
types, as is shown in Figs. 5-3 and 5-4, the correspondence
between the pins of the physical hardware and the bit-level
representation of the records may be fairly complex, and

there may be other differences. For example, the algorithmic
model of a microprocessor may not simulate the instruction-
processing cycle; the “software” executed by the processor
is part of the behavior of the microprocessor model. In this
case the physical hardware pins required to fetch instruc-
tions may not be represented in the algorithmic model at all.

An algorithmic VHDL model can be used effectively in
several ways:

1. To verify that the function required of the hardware
module being designed has been completely and unambigu-
ously specified

2. To help to relate system functional requirements to
hardware design parameters. For example, algorithmic mod-
els can be used to evaluate word length effects on truncation
errors and error propagation in mathematical processing
functions such as matrix inversion or infinite impulse re-
sponse (IIR) filters. An algorithmic model of a distributed

Figure 5-5. VHDL Architecture Body for an Algorithmic Model

MIL-HDBK-62

5-7

Kalman filter implemented with multiple ASICs could be
extremely valuable in verifying that the multichip system ar-
chitecture will provide the needed tracking accuracy.

3. To help to partition a hardware system into compo-
nents, and allocate system functions to the hardware compo-
nents. An algorithmic model can be used to verify that a
given partitioning and allocation can collectively perform
the functions required of the system. For example, an algo-
rithmic model could be used to determine that the address
generation function for the memory of a systolic array is
consistent with the data addressing the requirements of the
array.

4. To perform function vs throughput or latency
tradeoffs for a system. For example, if an iterative refine-
ment algorithm is used to compute the least squared error in
a set of overdetermined equations, a behavioral model may
be used to trade off between how many iterations are com-
puted and how long these computations take.

5. To support testing of other models. For example, a
detailed VHDL model may be built of a processor interface
(PI) bus interface unit for a multiprocessing system. A
VHDL model of the BIU may be tested by using algorithmic
models for the processors that drive the BIU. This approach
is the key concept behind the development of interface mod-
els; the interfaces and interconnections between the major
components are modeled in detail, but the full functionality
of the processors is not modeled. In this case, the processor
models act as workload generators to produce realistic pat-
terns of messages sent across the bus.

Algorithmic models are not usually sufficient as docu-
mentation of a developed hardware module because algo-
rithmic models rarely provide both the complete bit-level
accuracy on outputs and accuracy in timing required to doc-
ument a completed hardware module.

5-2.2.1 Modeling Algorithms With VHDL Pro-
cesses

The major VHDL constructs suitable for an algorithmic
description include processes, functions, and procedures.
These constructs form the basis for describing behavior in-
dependently of specific hardware details.

As discussed in subpar. 3-3.1, the process is the natural

VHDL construct for algorithmic models. The VHDL con-
structs that can occur inside a process include all of the con-
trol structures of a modern programming language, e.g., C,
Ada, and Pascal. These control structures include variable
assignment statements, looping constructs, if-then-else con-
structs, and case statements. Other VHDL constructs that are
legal inside a process include functions and procedures.
Functions and procedures allow modelers to encapsulate be-
havior and reuse the same behavior in different places in the
model. A VHDL function or procedure also can call other
functions or procedures and result in even greater modulari-
ty. Functions and procedures can be declared and defined in
packages, and the packages can then be referenced by any
design unit. Library and use clauses are used in design units
to access the package.

Signals are the interfaces between processes. Processes
execute independently of each other. Thus multiple process-
es in an algorithmic model can be used to represent the par-
allelism in the hardware. A process communicates with
other processes by writing to and reading from signals. A
process is activated and starts execution when a signal to
which it is sensitive changes value. A process suspends its
execution by executing a wait statement. The process re-
sumes when the condition on the wait statement has been
met. Wait statements can also be used to synchronize pro-
cesses. A signal can be used as a semaphore by having dif-
ferent processes write to the signal and by waiting on
specific states of the signal.

5-2.2.2 An Example of an Algorithmic Model

In this subparagraph an algorithmic model of the FFT
function described in the performance model shown in sub-
par. 5-2.1.3 is presented. The algorithmic model of the FFT
function makes use of data abstraction to simplify the mod-
eling of the system. The VHDL definitions of the data types
and the procedures for this behavioral model are shown in
Fig. 5-6. This VHDL package declaration describes the
complex data type and one- and two-dimensional arrays of
real and complex data. The package includes two versions of
the FFT routine: one that operates on signals for use in struc-
tural models and one that uses variables and can be used in
a behavioral model.

MIL-HDBK-62

5-8

This VHDL package specifies the data types for the FFT
procedures in terms of the built-in type

real

. The complex
data type is defined as a VHDL record that has real and
imaginary components. When the design is refined and the
model is converted from the algorithmic level to ISA or reg-
ister-transfer level, several issues must be addressed includ-
ing (1) the number of bits in each word and (2) the
organization of elements in a record, particularly the align-
ment of these elements. These issues can be resolved by
changing the package declaration and package body without
changing the code in the architecture bodies. Thus, by using

packages to implement abstractions, the developer allows
word size and alignment decisions to be abstracted out of the
behavioral model.

Fig. 5-7 contains part of the package body for the package
declaration of Fig. 5-6. The addition and multiplication op-
erators are overloaded to define addition and multiplication
operations for the complex data type. The package body also
declares two constants,

math_pi

 and

half_pi

, used to
calculate the weighting factors. Because these two constants
are declared in the package body rather than in the package
declaration, they are not visible outside the package body.

Reprinted with permission. Copyright



 by Virginia Polytechnic Institute and State University.

Figure 5-6. Package Declaration for an Algorithmic Model of an FFT Processor (Ref. 2)

MIL-HDBK-62

5-9

Fig. 5-8 contains the procedure body for the

fft_sig

procedure declared in Fig. 5-6. This code is part of the pack-
age body described in Fig. 5-7. The code uses a series of
loops to rearrange the data, compute the weighting factors,

and then compute the intermediate values. The code also al-
lows a final pass that uses the second parameter of the pro-
cedure to normalize the output.

Reprinted with permission. Copyright



 by Virginia Polytechnic Institute and State University.

Figure 5-7. Part of the Package Body for an Algorithmic Model of an FFT Processor (Ref. 2)

MIL-HDBK-62

5-10

Reprinted with permission. Copyright



 by Virginia Polytechnic Institute and State University.

Figure 5-8. The FFT Procedure in the Package Body for an Algorithmic Model of an FFT Processor
(Ref. 2)

MIL-HDBK-62

5-11

5-2.3 CONSTRUCTING INSTRUCTION-SET-
ARCHITECTURE-LEVEL MODELS

ISA models accurately describe the functions, data types,
and registers of a processor accessible to the programmer.
An example is an ISA model of a microprocessor. As the mi-
croprocessor executes its instructions, the contents of its
memory and registers change. The correct ISA modeling of
such a programmable device requires that, given the same
memory contents for both data and instruction as an actual
device, the execution of the ISA model must accurately re-
produce the same changes in memory contents as the actual
device. ISA models usually represent data and instructions
with bit-for-bit fidelity with respect to the data and instruc-
tions of the actual device. ISA models must also provide a
higher level of timing fidelity than algorithmic or perfor-
mance models. Usually, ISA models must provide accurate
times to perform an instruction and update the associated
registers and memories. ISA models may have to provide ac-
curate timing at clock boundaries. This requirement is par-
ticularly true for pipelined programmable processors in
which the execution of multiple instructions may be over-
lapped.

An ISA VHDL model can be used in several ways:
1. To document the functions and timing of an existing

hardware module
2. To support verification of software through simula-

tion of the hardware
3. To provide timing estimates for specific software

workloads. Although an algorithmic-level model may be
used to estimate software performance by counting opera-
tions, an ISA model provides specific information by inter-
preting the actual software instructions and adding up their
execution times.

4. To support verification of a hardware implementa-
tion of a standard architecture. For example, an ISA model
of the 1750A standard military computer architecture (Ref.
3) can be used in combination with a validation suite to test
that a hardware design accurately implements the standard
architecture (Ref. 4).

In many military electronic system development projects,
the hardware is developed concurrently with the software.
This concurrency of development means the hardware may
not be available when software is ready for testing. An ISA
model allows software developers to test portions of their
code via simulation before the hardware is ready. Thus soft-
ware errors can be found and corrected earlier in the design
cycle, to save time and money.

The most common configuration for a programmable
hardware system includes one or more processors, one or
more memories (storing the program and its data), and one
or more busses to provide the communication paths among
the elements. A complete ISA model has all of these mod-
ules explicitly modeled at the ISA level, but simulations are
often performed in which some of the modules are repre-
sented by algorithmic models. In the following subpara-
graphs issues relating to modeling these types of hardware

modules are discussed.

5-2.3.1 Modeling Processors

An ISA model of a processor faithfully interprets the in-
struction stream input to the model. The ISA model of the
processor must explicitly represent all of the internal regis-
ters of the processor accessible to any instruction. A register
is accessible if an instruction can directly set or read the val-
ue of the register. For example, the instruction address reg-
ister for a processor may be set by a program that executes a
jump instruction. In contrast, a microcode address register is
not set explicitly by any instruction and need not be included
in an ISA model.

An ISA model must mimic the transformations of the pro-
cessor to the accessible registers and the external interfaces
at the bit level. The external interface of the processor, e.g.,
bus interface, I/O channel interface, etc., must be explicitly
modeled at the bit level. The timing of an ISA model should
be accurate at instruction boundaries or clock edges. In pipe-
lined architectures, in which there is a significant amount of
overlap between instruction execution, accurate representa-
tion of memory and registers may be required at the clock
boundaries. This level of timing accuracy is not required in
an algorithmic model.

The complexity of an ISA model is related to the number
of components used in the VHDL model. More complex
models take longer to build and verify. If a processing ele-
ment including processor, memory, and bus interface is
modeled as a single unit, the interface between the proces-
sor, memory, and bus interface unit can be modeled behav-
iorally. However, if a model separates the processor,
memory, and bus interface into separate modules, their inter-
faces must be modeled accurately and explicitly. If the pro-
cessing element uses virtual memory, the memory
management process has to be modeled accurately as a sep-
arate function in the more fine grained model.

The code in Figs. 5-9, 5-10, 5-11, 5-12, 5-13, 5-14, and 5-
15 constitutes an ISA model of a very simple processor. The
processor has nine instructions and three registers accessible
to the programmer: the program counter, the accumulator,
and an index register. These registers are explicitly repre-
sented in the model as VHDL variables whose types specify
the structure of the registers.

Fig. 5-9 contains the package declaration for a set of data
types, constants, functions, and a procedure used to imple-
ment this ISA model. The first data type

word

 specifies the
word used by the processor. The functions

ToInt

 and

ToWord

 define the representation of integers in this proces-
sor as a sign-magnitude format. Integers are the only data
type that this processor uses.

The “opcode” constants define the formats for the instruc-
tion set of the processor. There is also an enumerated data
type for the instruction set

op_code

. One of the functions
included in the package is

DeCode

, which decodes instruc-
tions read from memory into the

op_code

 enumerated
type.

MIL-HDBK-62

5-12

Figs. 5-10, 5-11, and 5-12 contain the contents of the
package body associated with the package declaration
shown in Fig. 5-9. Fig. 5-10 contains the type conversion
functions

ToInt

,

ToWord

, and

 DeCode

. To make these
routines robust and thus easily able to deal with changes in
the word size of the processor, extensive use has been made
of built-in attributes associated with VHDL arrays. The loop

ranges are all described in terms of the

RANGE

 attribute. The

NEXT

 statements are used to detect when the sign bit of the
word has been detected and thus causes the body of the loop
to be skipped. Note also that the

CASE

 statement used in the

DeCode

 function is not valid in VHDL 1987 (Ref. 5), be-
cause the constants are not locally static. An

IF

 statement
can be used instead.

Figure 5-9. Package Declaration for an Instruction Set Architecture Processor Model

MIL-HDBK-62

5-13

Figure 5-10. Type Conversion Functions for an Instruction Set Architecture Processor Model

MIL-HDBK-62

5-14

Fig. 5-11 contains the operator overloading functions for
the ISA model. These functions overload the traditional ad-
dition and subtraction operators so that they are defined for
the

word

 format used in this processor. This implementa-
tion converts the inputs to these functions into

integer

type, performs the operation, and then converts the result
back to

word

 format. These functions could be made more
robust by adding error handling for overflow and underflow
conditions. An alternative implementation approach uses the
operator overloading and the conversion functions in the
proposed synthesis standard (Ref. 6).

Fig. 5-12 contains the procedure for loading the program

into memory. This procedure uses the VHDL type of

FILE

and some of the built-in functions used to detect the end of
file condition. In this model the memory is declared as a
fixed size array. The size of the memory is specified by a ge-
neric whose value is set in the entity interface declaration
shown in Fig. 5-13. The memory is initialized from an exter-
nal file that contains the program to be executed.

Fig. 5-13 contains the entity declaration for the ISA mod-
el. There is no port clause in the entity interface for the ISA
model because this is the highest level entity in the simula-
tion. The generic associated with the entity specifies the
memory size. The memory is not modeled as a separate de-

Figure 5-11. Operator Overloading Functions for an Instruction Set Architecture Processor Model

Figure 5-12. Program Loading Procedure for an Instruction Set Architecture Processor Model

MIL-HDBK-62

5-15

Figure 5-13. Entity Interface for an Instruction
Set Architecture Processor Model

Figure 5-14. Architecture Body for an ISA-Level Processor Model

sign entity. If it were, it would need to be instantiated and
connected to the processor by signals. This approach, in
which the memory is not a separate component, simplifies
the model and improves its simulation performance.

Fig. 5-14 contains the architecture body for the ISA mod-
el. At the start of simulation, the stored program is loaded
into the simulated memory. Once the program has been
loaded into memory, execution begins. Each instruction cy-

(cont’d on next page)

MIL-HDBK-62

5-16

Figure 5-14. (cont’d)

MIL-HDBK-62

5-17

cle and instruction is read from memory, decoded, and exe-
cuted. When a “halt” instruction is executed, the model stops
simulating.

5-2.3.2 Modeling Memory

Memory, in the sense of a large, contiguous array of stor-
age registers, can be modeled in several ways. In an algorith-
mic model the simplest way is to use an array of the
appropriate size and type. Instructions and data are stored in
the array and accessed using the appropriate index into the
array. A read is modeled by indexing into the array and using
the contents as required by the model; a write is modeled by
assigning a new value to the location in the array indicated
by the index.

Because modern computers have very large memories,
this simple model can occupy very large amounts of the
memory in the computer used to simulate the model without
making efficient use of this memory. An alternative ap-

proach is to build a virtual memory model in which only the
pages of memory that have been read or written are actually
maintained by the model. VHDL access types provide a con-
venient mechanism to implement this type of virtual memo-
ry. The memory process maintains a list of pointers to pages
of memory, maps the addresses received as part of read or
write commands into references to specific pages, and then
operates on the specific page. If an address is received that
is not in the address space of any of the current pages, a new
page is created and added to the list.

An instruction set architecture memory model includes
explicit memory control signals, such as read and write lines
and address and data lines. It also has timing delays and log-
ic conventions appropriate to the model. An example of this
type of memory model is shown in Fig. 5-15. This VHDL
model makes use of an array to represent the memory but
provides a faithful representation of the external memory in-

Figure 5-15. Example Instruction Set Architecture Memory Model

MIL-HDBK-62

5-18

terface. The entity interface declaration in Fig. 5-15 makes
use of the IEEE standard logic package (Ref. 7) to model the
read/write (

R_W

) pin and uses the definition of the word size
and the memory array from the

isa_pkg

 package.
In this memory model there is one control signal

R_W

,
and it indicates whether the memory operation is a read
(when

'1'

) or write (when

'0'

). The memory array is im-
plemented as a variable by the declaration of memory. An
additional feature of this model is its use of the generic pa-
rameter “memsize”, which has a default value of 256. The
use of a generic allows users to model a memory of any size
without rewriting the memory model.

The “address” input signal is declared as type

word

, con-
sistent with the ISA processor model. The memory model is
made robust by use of an assertion statement to ensure that
the integer used to index the memory array is within the
range of the memory array. If an address value is received
that is out of the specified range, the assertion violation is
raised.

5-2.3.3 Modeling Busses and Bus Controllers

A VHDL bus has a meaning different than the hardware
meaning of a bus as a collection of electrical signals, a pro-
tocol to acquire and release the bus resource, and a protocol
to transfer data across the bus. A VHDL signal that has the

signal kind of “bus” floats to a user-determined value when
it is disconnected from all of its drivers, and thus it does not
preserve the value last driven on it as a VHDL register signal
does. This subparagraph describes how to model a bus used
to transfer data among hardware components.

A traditional bus is often implemented with a component
referred to as a bus interface unit, or bus controller. Hard-
ware units that use the bus do so with the BIU. The BIU is
responsible for implementing the details of the bus protocols
and for transferring data and other information between the
units on the bus.

The protocol for a traditional bus is often specified with a
state transition diagram. Transitions in the state transition di-
agram represent actions on the bus such as data transfer,
control signaling, and error conditions.

Fig. 5-16 shows the state transition diagram for the test
access port (TAP) controller for the Institute of Electrical
and Electronics Engineers (IEEE) 1149.1 boundary scan test
bus (Ref. 8). The ellipses in the figure represent the states of
the finite state machine. The lines represent transitions from
one state to another. The value adjacent to each state transi-
tion line is the value present on the test mode select (TMS)
input signal. Changes in these values cause the state machine
to move to another state. A VHDL description of this BIU
has been developed (Ref. 9).

Copyright



 1990. IEEE. All Rights Reserved.

Figure 5-16. Example State Transition Diagram for a Bus Interface Unit Model (Ref. 8)

MIL-HDBK-62

5-19

5-2.4 CONSTRUCTING REGISTER-TRANS-
FER-LEVEL MODELS

Register-transfer-level (RTL) models explicitly represent
the internal registers, data path elements, and control mech-
anisms in a hardware component. Design decisions about
the number and kinds of registers, the structure of internal
data paths, and the data transformation functions are reflect-
ed in an RTL model.

Just as the major elements of an ISA model are proces-
sors, memories, and busses, the major elements of an RTL
model are registers, combinational logic, internal busses,
and clocks. Individual elements of an RTL model, such as an
arithmetic and logic unit (ALU), may be modeled behavior-
ally. The scope of an RTL model is generally a chip.

A register transfer level model can be used effectively in
several ways:

1. To support synthesis of very large-scale integrated
(VLSI) circuit designs. This ability is particularly important
because synthesis tools can adapt a design to different fabri-
cation technologies. If synthesizable models are available
for parts when they become obsolete, then new circuit de-
signs can be created for current fabrication technologies.

2. To check that the logical decomposition of the hard-
ware design into register-transfer-level elements is function-
ally consistent with a higher level behavioral design, such as
an ISA model. For example, an RTL model can be used to
decide whether a microcoded processor architecture will
work or whether custom combinational logic is required.

3. To verify that the clocking scheme, sequencing, and
control of a synchronous system work correctly together.
Determining whether a single-phase clock is good enough
(or that a two-phase clock is required) is one such question.

4. To analyze the performance of a particular register-
transfer-level partitioning. For example, does a replicated
bit-slice circuit have enough performance with its interchip
carry lines, or is a family of custom chips required to reduce
interchip communication?

5. To test microcode for microprogrammable proces-
sors. The existence of a VHDL simulation model allows mi-
crocode developers to debug and optimize their code before
the actual hardware is available. If a VHDL model at the reg-
ister-transfer level is used as the functional specification of
a processor and is used to develop microcode, the microcode
and the VHDL model can be used to help verify the correct
functionality of the new hardware when it becomes avail-
able.

In an RTL model written in VHDL, signals are used to
represent specific hardware registers. The types associated
with the signals reflect the format of the data stored in the
register. The flow of data through the system is represented
by bit-level control signals acting on multiplexors. Func-
tions are synchronized with clocks, and signals are used ex-
plicitly to distribute clocks to the components.

5-2.4.1 Synthesis of Designs From RTL Models

Register-transfer-level models are a particularly impor-
tant class of models because commercially available hard-
ware synthesis technology can be used to generate detailed
integrated circuit designs from appropriate register-transfer-
level models. Use of synthesis tools is an important method
used to design application-specific integrated circuits.

Standards are being developed to support the use of
VHDL for synthesis. Currently, each synthesis tool has its
own packages and data types. The IEEE has a working
group and a draft standard (Ref. 8), which is to be imple-
mented through a set of guidelines for models and through a
collection of VHDL packages.

The proposed standard includes two packages:

NUMERIC_BIT and NUMERIC_STD. These packages have
the same list of functions, but these functions differ in their
target data types. The NUMERIC_BIT package defines
functions for the NUMERIC_BIT data type; the
NUMERIC_STD package defines functions for the IEEE
std_ulogic data type. Each package defines two addi-
tional data types: one for vectors representing signed arith-
metic values and one for vectors representing unsigned
arithmetic values. Each package defines a comprehensive
set of arithmetic, logical, relational, and shift functions that
operate on these data types. The packages also include type
conversion functions between the signed and unsigned data
types and vectors of BIT, BOOLEAN, and IEEE Std 1164
std_ulogic data types.

The proposed standard defines functions used to detect
rising and falling edges of signals that have a data type
named NUMERIC_BIT. The NUMERIC_BIT data type de-
scribes vectors whose elements are of type BIT, a VHDL
built-in type. Simulations based on the NUMERIC_BIT data
type ordinarily require less execution time because they do
not have to deal with operands containing metalogical val-
ues. The functions that detect rising and falling edges of
NUMERIC_BIT signals are meant to be complementary to
the functions that detect rising and falling edges in the IEEE
standard logic package (Ref. 9).

The proposed standard provides an interpretation of the
BIT and BOOLEAN data types of VHDL (Ref. 10). This in-
terpretation defines how synthesis tools should handle the
logic values of literals after named constants have been re-
placed by their values. The proposed standard describes how
the metalogical values, i.e., the values 'U', 'X', 'Z', and
'-', of the IEEE std_ulogic data type should be han-
dled by relational operators such as '<', '>', '=', '/='.

Additionally, the proposed standard defines a standard
matching function that provides don't care or wild card test-
ing of values based on the IEEE std_ulogic data type.
This matching function returns 'FALSE' whenever either
of the arguments contains a metalogical value other than
'-', the don't care value. The function returns 'TRUE'
when 'H' is compared with '1' or when 'L' is compared
with '0'.

MIL-HDBK-62

5-20

5-2.4.2 An Example of a VHDL Register-Trans-
fer-Level Model

Figs. 5-17 and 5-18 show a behavioral model of an Intel
8212 buffered latch described at a register-transfer level that
has been used as a test input for a synthesis system (Ref. 11).
The I8212 has control inputs DS1 (named NDS1), DS2,
MD, and STRB. These inputs are used to control device se-
lection, data latching, output buffer state, and service flip-

flop. When NDS1 is low and DS2 is high, the device is se-
lected. When MD is high, the chip is in output mode, and the
output buffers are enabled. When MD is '0', the chip is in
input mode, and the STRB is used to latch data and to reset
the service request flip-flop SRQ. SRQ is set when NDS1 is
low or the device is selected. When MD is '0', the output
buffers are enabled whenever the device is selected.

Reprinted with permission. Copyright  by VHDL International

Figure 5-17. Entity Interface for an Intel Buffered Latch (Ref. 11)

Reprinted with permission. Copyright  by VHDL International.

Figure 5-18. Synthesizable Architecture Body for the Intel Buffered Latch (Ref. 11)

MIL-HDBK-62

5-21

5-3 VHDL DID SIMULATION REQUIRE-
MENTS FOR BEHAVIORAL MODELS

The VHDL DID (Ref. 1) requires that all VHDL behav-
ioral models exhibit certain responses to stimuli, timing, and
error handling characteristics. These requirements are dis-
cussed in the next three subparagraphs.

5-3.1 CORRECT FUNCTIONAL RESPONSE
TO STIMULI

The VHDL DID requires that behavioral models correct-
ly express the function of their corresponding physical units.
VHDL supports the verification of a model, typically via
simulation. VHDL models are typically simulated in the
context of a test bench.

Subpar. 10.2.5 of the VHDL DID (Ref. 1) requires VHDL
test benches for each VHDL module. Part of the develop-
ment of an effective test bench is creating test vectors to pro-
vide stimulus for the model. Another part of the
development of an effective test bench is defining the cor-
rect responses to the test vectors. During the top-down de-
velopment of a design, a high-level behavioral model can be
used to generate the correct responses to a set of test vectors.
When a less abstract model is subsequently developed, the
responses of the low-level model can be verified by compar-
ison with the results produced by the high-level behavioral
model.

Some standard strategies are used to generate test vector
sets for behavioral models. At the algorithmic level the fol-
lowing approaches can be used:

1. The test vectors should exercise all of the functions
of the hardware module. For example, if the hardware mod-
ule is programmable, each instruction should be tested.

2. The test vector set should include sequences of vec-
tors that represent normal operational sequences of the sys-
tem. If the model is general enough to accurately model
system startup and shutdown, these transient modes of oper-
ation should also be tested.

3. The test vectors should include stress tests that re-
flect severe or unusual loads on the system but loads that are
within the specifications for the hardware. These tests may
include timing stress tests.

4. The test vectors should include invalid inputs that
are “almost” valid inputs. These vectors test the error-han-
dling ability of the model.

5. The input data should be divided into equivalence
classes in which elements within each class are handled sim-
ilarly. The simplest form of equivalence class partitioning
on a data input is to divide it into classes of valid and invalid
inputs. The test vector set should include representatives of
each equivalence class. The number of equivalence classes
may be chosen to reflect the time and resources available for
testing. It is not practical to test most interesting functions
exhaustively because of their internal complexity.

 At the ISA level a similar set of guidelines for test vectors
can be used. All of the instructions of a programmable pro-
cessor should be tested. Normal sequences of instructions

should also be tested. Equivalence classes for different input
and output data formats also should be considered.

For VHDL behavioral models based on finite state ma-
chines, there are several more formal strategies used to gen-
erate test vectors. One strategy is based on testing the
reachability of all of the states in the model. As a minimum,
a sequence of test vectors should be defined that drives the
model into every state.

Another strategy is to test the liveness of the model. This
strategy says that except for certain specified terminal states,
it should be possible to get from any given state to any other
state. Another check for finite state machine-based models is
a static check.

The code should be reviewed to make sure that any in-
valid states or invalid inputs are detected and appropriate er-
ror messages are generated. In the model in Fig. 5-15
whenever an out-of-range memory address is encountered,
an error is asserted and a message is generated. Because the
number of possible states of a processor may be very large,
it may be necessary to define equivalence classes on states
and test only some of the representative states in each class.
For example, a tester may not distinguish between the data
values in registers of a processor and instead may define
only states based on the current instruction being processed.

When a hierarchical model is developed, a bottom-up
testing strategy is recommended. Once the testing of indi-
vidual submodels is complete, the entire model should be
tested by executing tests designed to exercise all of the major
functional groups as they work together. To assist in bottom-
up testing, submodels should test their inputs and gracefully
handle invalid inputs.

5-3.2 SIMULATION TIMING
Subpar. 10.2.3.2 of the VHDL DID requires that VHDL

models exhibit correct timing behavior at the external inter-
face including best, worst, and nominal output delays. Cor-
rect timing behavior should be monitored by individual
VHDL modules, i.e., VHDL modules should test for invalid
timing conditions on their inputs, such as inputs violating
setup and hold conditions.

The VHDL language provides powerful facilities to de-
tect improperly timed signals. These include assertion state-
ments, passive processes and subprograms, and built-in
attributes for signals. These mechanisms can be used to ex-
amine the timing relationships among the signals associated
with an interface. If a timing violation is discovered by these
checks, the module can indicate that the violation has oc-
curred. Checks on these timing constraints can be imple-
mented with passive processes (Ref. 12). This topic is
discussed in detail in par. 5-4.

5-3.3 ERROR HANDLING
Subpar. 10.2.2.2 of the VHDL DID (Ref. 1) requires that

“timing and electrical requirements (e.g., setup and hold
times or power supply voltage extremes) shall be expressed
in such a manner as to cause the simulator to generate error
messages should the requirement be violated during a simu-
lation.”.

MIL-HDBK-62

5-22

The assertion statement provides a way for model writers
to issue messages when an error occurs. These messages
should pinpoint the location of the error. The VHDL DID re-
quires that these messages identify the design entity, pro-
cess, procedure, or function in which the error occurred. In
the case of components used many times within a model, the
simulator must provide contextual information on exactly
which component instance raised the exception.

Since not all errors require that the simulation be halted,
some means must be available to categorize the severity of
errors. VHDL provides this means with the severity clause
of the assertion statement, which allows users to specify the
severity of different errors. The action taken by the simulator
can then depend on the severity of the error encountered.

The assertion statement may not be powerful enough for
a model builder’s needs; consequently, VHDL provides pas-
sive processes in which arbitrary computations can be per-
formed. A passive process is a process that neither directly
or indirectly, i.e., in a procedure called by the process, as-
signs to signals.

Passive processes, like any other process, can have a sen-
sitivity list so more complex timing relations among signals
can be examined. Appropriate messages can be written to
external files, displayed immediately to users, or both.

5-4 TIMING IN BEHAVIORAL MODELS

5-4.1 TIMING SHELLS
It is often useful to separate the description of timing and

function in behavioral models, especially in the early stages
of the model development cycle. With this separation of
concerns it is possible to modify timing and behavioral mod-
els (semi-)independently. This separation is particularly use-
ful if the timing requirements external to an entity are known
but the behavior is not finalized. This separation of concerns
can be achieved in VHDL through the use of a timing shell.

A timing shell is used to define delays for signal assign-
ments in behavioral models independently of the
function-computing part of the model. Figs. 5-19, 5-20, 5-
21, 5-22, and 5-23 describe a timing shell and a functional
entity that when combined provide a behavioral model. This
example shows how tradeoffs can be performed by using
different timing shells with the same function to represent
different implementations.

The example included here is a floating point adder. Fig.
5-19 shows the functional entity including both its entity in-
terface declaration and a functional architecture body. It
uses the built-in floating point addition function to compute
the result, and it uses unit delay, i.e., the signal assignment
statement in the architecture body has no delay clause.

Fig. 5-20 contains the package declaration for a set of
functions that supports the computation of the delay for an
implementation of the floating point adder. In this example,
it is assumed that the floating point addition is done by an
ALU with a simple shifter that can shift a word only one bit
to the left or right per clock cycle. Therefore, the delay for a
floating point addition is dependent upon the inputs, as well
as on the time for a clock cycle.

Fig. 5-21 shows the body of the timing delay function.
This timing function assumes that the ALU can perform a
fixed point addition in one cycle, can compute the number of
shifts required to align the inputs or to align the output in one
cycle, and can shift a word one bit per clock cycle. The pack-
age includes functions to determine the amount of alignment

Figure 5-19. Entity Interface and Archi-
tecture Body for a Functional Model
Without Timing

Figure 5-20. Package Declaration for a Model That Uses a Timing Shell

MIL-HDBK-62

5-23

required by computing the exponent (base 2) of the inputs
and the result. The number of shifts required to align the in-
puts is the difference between the maximum input exponent
and the minimum input exponent. The number of shifts re-
quired to align the output is the difference between the max-
imum exponent of the aligned input and the result and the
minimum exponent of the aligned input and the result.

Fig. 5-22 shows the entity interface declaration of the be-
havioral model, i.e., the model that uses the timing shell in
combination with the functional entity to model both func-

tion and timing. This entity declaration includes a generic
that defines the clock cycle time.

Fig. 5-23 shows the architecture body of the timing shell
entity. A configuration specification links the functional en-
tity described in Fig. 5-19 to the component instance in this
architecture. The architecture body contains a component
instance whose port map links the functional output to the
internal signal OutVal. A concurrent signal assignment
statement is used to delay the output of the result by the time
computed using the function SimpleShiftDelay.

Figure 5-21. Function Definition for a Timing Function for a Floating Point Adder

Figure 5-22. Entity Interface for a Model That Uses a Timing Shell

MIL-HDBK-62

5-24

 An alternative implementation of the floating point adder
that uses a barrel shifter would have a different delay func-
tion, but it would provide the same result value. This differ-
ence could be implemented with a different architecture
body for TimedFPAdd, which uses a different delay func-
tion. A further refinement is to use the same name for delay
functions for different implementations. The different delay
functions are placed in different libraries. The same archi-
tecture body could be used for the different implementa-
tions, and the appropriate delay function would be selected
using a configuration declaration, as described in par. 3-8.

5-4.2 CLOCK RATES
In algorithmic and ISA VHDL models, a common ap-

proach to specifying the timing of a synchronous hardware
module is to specify the time for an operation in terms of the
number of clock cycles required to complete the operation
and then to measure the clock rate for the module. This ap-
proach has been taken in the architecture body in Fig. 5-5.
More accurate timing may be available after the hardware
has been designed and the microcode (if any) has been writ-
ten.

5-4.3 CRITICAL PATH DELAY TIMES
Clock rates are critical to determining the performance of

synchronous hardware modules. A register-transfer level or
more detailed model can be used to predict the clock rate of
a system by calculating the critical path times between reg-
isters or latches. The nature of semiconductor devices means
that the critical path depends not only on the number of lev-
els of logic between latches but also upon the data flowing
through the network and the time it takes for devices to
change output signal states and strengths. Thus, if the clock
rate is being pushed to the limits of the technology, detailed
analysis of the structure and physical layout of critical paths
is needed.

In VHDL models error messages generated by setup or
hold violations can be used to detect excessive clock rates.
However, this approach requires a set of test vectors that
force worst-case dynamic situations. Most computer-aided
engineering (CAE) environments include tools that statical-
ly analyze worst-case timing. Generally, these tools are driv-
en by a gate-level netlist and other data dependent on the

implementation technology. The VITAL timing approach
(Ref. 13) allows back annotation of worst-case timing infor-
mation through the use of standard delay format (SDF) files.

5-4.4 BEST-CASE, WORST-CASE, AND NOM-
INAL DELAYS

The VHDL DID (Ref. 1) requires that all VHDL models
incorporate worst-case, nominal-case and best-case timing
delays at the model interface. Providing several delay mod-
els allows designers to evaluate the performance of the de-
sign under adverse as well as optimistic operating
conditions. Simulating a system in which different compo-
nents operate under different conditions may show anoma-
lies that do not occur under more typical operating
conditions. This kind of simulation provides useful informa-
tion on the components likely to have problems when incor-
porated into a larger system.

Fig. 5-24 shows timing curves for a component as a func-
tion of either temperature or voltage. Tmin and Vmin are the
minimum expected operating temperature and supply volt-
age, Vnom is the nominal operating voltage at the nominal
operating temperature of 27°C, and Tmax and Vmax are the
maximum expected operating temperature and supply volt-
age. tmax, tnom, and tmin are the maximum, nominal, and min-
imum delays, respectively, that correspond to each of the
temperature and voltage combinations. There is a range of
delay times at any temperature and voltage combination be-
cause of slight variations in timing from component to com-
ponent.

The diamonds and the ovals in the figure indicate mea-
sured times that are available for the component. The ovals
indicate the timing measurements from the illustrated set of
measurements that must be included in the VHDL timing
model. The diamonds indicate optional timing values; better
VHDL models consider a wider range of environmental fac-
tors.

5-4.5 PARAMETERIZED DELAY MODELS
Parameterized delay models permit more elaborate tim-

ing models to be constructed. In real hardware, timing de-
lays are often functions of environmental factors such as
supply voltage, output loading, or temperature. If these ef-
fects can be modeled, timing models can be constructed that

Figure 5-23. Timing Shell Architecture Body

MIL-HDBK-62

5-25

cover a broad range of environmental conditions rather than
just those for which measurements have been taken.

These kinds of timing models can be constructed in
VHDL by including environmental factors in delay calcula-
tions. Mechanisms used to supply environmental informa-
tion include generics, special signals to represent
environmental factors (e.g., temperature or radiation dos-
age), and computations performed by the design entities that
evaluate these factors on an ongoing basis. An example

shown in Figs. 5-25, 5-26, 5-27, and 5-28 adjusts the timing
delay on an output signal as a function of the input voltage.

The package declaration for this example is Fig. 5-25. In
the package declaration the voltage is declared as a physical
type, and a subtype is declared that specifies the possible
range of supply voltages. The three possible options for de-
lay values are described in terms of an enumerated type
delay_case.

Figure 5-24. Best-, Nominal-, and Worst-Case Timing Curves (Ref. 14)

Figure 5-25. Package Declaration for a Model That Uses Parameterized Timing

MIL-HDBK-62

5-26

Fig. 5-26 shows the corresponding package body includ-
ing the definition of the derating function. The derating
function uses voltages within an acceptable range to com-
pute a multiplicative factor that ranges from 0.8 to 1.2. This
derating function can be reused in other parts of the model
as required.

An acceptable range for the operating voltage is deter-
mined by an assertion statement in the entity interface
shown in Fig. 5-27. Voltages outside this range cause an ex-
ception. This assertion statement ensures that the parameters
for the derating function are within the acceptable range for

the function. In this design entity the supply voltage is de-
fined as a signal.

Fig. 5-28 shows the architecture body for the entity. The
parameterized delay function is called in the AFTER clause
of each of the signal assignment statements in the single pro-
cess which comprises the architecture body.

5-4.6 TIMING DEFINITION PACKAGE
Since a simple model may be reused many times to con-

struct a more complex model, it is desirable to provide the
timing information so it can be shared by all instances of the

Figure 5-26. Package Body for a Model That Uses Parameterized Timing

Figure 5-27. Entity Interface for a Model That Uses Parameterized Timing

MIL-HDBK-62

5-27

model. This approach ensures that all instances are operating
with the same information and simplifies changing the tim-
ing information for all instances, if necessary. The VHDL
package provides this mechanism.

All timing information related to a particular model can
be provided in a package (or packages), which is then used
by the VHDL model. (This approach is described in subpar.
3-8.3.2.) The information in this package is shared by all in-
stances of the model that uses this package. Any changes to
the timing of the model can be made in one place and auto-
matically propagated to all instances of the model.

Although timing information could be hard-wired into the
model itself, this practice is not desirable. Timing informa-
tion is dependent on the details of specific implementation
of the function. If timing information is incorporated in a
package, different timing values can be used with the same
VHDL model to account for different implementation tech-
nologies.

Figs. 5-29, 5-30, and 5-31 show the use of a timing pack-
age to provide the timing for a simple ALU. The timing data
are defined with deferred constants. This approach allows
the timing of the behavioral model to be changed without
changing the text of the architecture body for the behavioral
model. In this case the timing package is specific to the be-
havioral model because the matrix of times is specified in
terms of a specific set of signals in the model. Furthermore,
this example is specific to a particular technology, namely,
complementary metal-oxide semiconductor (CMOS).

Fig. 5-29 is the package declaration. In this package a

four-dimensional matrix of delays is declared. The four di-
mensions are

1. The mode of the chip (which is determined from the
input data to the chip)

2. The signal name
3. The supply voltage
4. The operating temperature.

The use of the signal name as a dimension of the table
makes the table specific to a particular implementation of
the chip in terms of the internal interconnections. The volt-
age levels and operating temperatures are declared as enu-
merated types. Thus they can take on a small number of
discrete values. This approach is in contrast with the derat-
ing function described in Fig. 5-28, which provides timings
for a continuous range of voltages.

A function is declared in the package that computes the
mode of the chip from the input values. The package also in-
cludes a declaration of the possible modes of the chip as an
enumerated type. Thus all the dimensions of the delay ma-
trix are defined by enumerated types.

Fig. 5-30 shows the corresponding package body. The
timing information shown in this package is implemented as
a deferred constant. To change technologies, only the pack-
age body needs to be changed and reanalyzed. No other
component of the model needs to be changed to include new
timing information.

The Electronic Industries Association (EIA) has devel-
oped a more general table (Ref. 16) for output timings of sin-
gle-level logic where the times depend upon the time
required for the signal to change strengths and states.

Figure 5-28. Architecture Body for a Model That Uses Parameterized Timing

MIL-HDBK-62

5-28

Reprinted with permission. Copyright  by James P. Hanna

Figure 5-29. Package Interface for a Model That Uses a Timing Package (Ref. 15)

MIL-HDBK-62

5-29

Figure 5-30. Package Body for a Model That Uses a Timing Package (Ref. 15)

(cont’d on next page)

MIL-HDBK-62

5-30

Reprinted with permission. Copyright  by James P. Hanna.

Figure 5-30. (cont’d)

MIL-HDBK-62

5-31

5-4.7 TIMING THROUGH FILE INPUT
Another way to incorporate timing information into a

simulation model is to read the timing information from ex-
ternal data files using the VHDL file I/O capability. This ap-
proach allows modification of the timing behavior at any
time during a simulation. The example in Figs. 5-31, 5-32,
and 5-33 shows the “latch” model described in Figs. 5-27
and 5-28, but its timing information now comes from an ex-
ternal file.

Fig. 5-31 shows a package declaration similar to that in
Fig. 5-29. In this package a file is declared of records; each
record contains a signal name and a delay value. An array of
delays, similar to the matrix of delays defined in Fig 5-29, is
also declared in this package, and this package declares the
function that reads the file and fills the array of delays.

Fig. 5-32 shows the corresponding package body. It con-
tains the definition of the function that reads the delay infor-
mation from the file.

Figure 5-31. Package Declaration for a Model That Uses File I/O for Timing

Figure 5-32. Package Body for a Model That Uses File I/O for Timing

MIL-HDBK-62

5-32

Fig. 5-33 contains the entity interface and the architecture
body for the latch model that uses the file I/O package to ob-
tain its timing information. The generic delay_model de-
clared in the entity interface is used to select the best-,
nominal-, or worst-case timing. The code in the architecture
body is identical to that in Fig. 5-28 except that the AFTER
clauses now contain an array reference rather than a function
call. In this example the timing information is loaded from
an external file into an array at the start of the simulation.

5-4.8 MODELING ASYNCHRONOUS TIMING
VHDL provides for the creation of accurate timing mod-

els. In particular, small timing glitches can be modeled.
Glitches are short-duration output pulses caused by rapid
changes in input signal values. Including timing information
with this level of detail is possible in VHDL, but it is usually
inappropriate, particularly in behavioral models.

VHDL provides control of such timing details with two
kinds of delay: transport and inertial signal. A signal assign-
ment statement containing the word “transport” transmits
the value of the input signal to the output signal regardless
of its duration.

The use of transport delay is particularly inappropriate in
behavioral models in which the glitches generated may not
correspond to those in the actual hardware. These glitches
are particularly risky in behavioral models if they are caused
by rare timing conditions and are not revealed by standard
behavioral test vectors.

Inertial delay can be used in signal assignment statements
to prevent a model from generating glitches. Inertial signal
assignment statements (the default in VHDL) do not trans-
mit changes in signal values with a duration less than that
specified by the time of the first waveform in the signal as-
signment statement. Thus glitches are prevented from prop-
agating through the model. Details of the VHDL delay
mechanism are discussed in subpar. 3-2.3.1.

Asynchronous timing constraints are timing constraints
that are applied to single bit signals in isolation. Fig. 5-34
shows some general timing constraints on asynchronous
timing of single bit signals. In the figure, thmin and thmax rep-
resent the minimum and maximum intervals a signal can be
high, and tlmin and tlmax represent the minimum and maxi-
mum intervals a signal can be low.

The values for these constraints can be implemented as
constants stored in a timing package. Checking of these con-
straints, required by the DID (Ref. 1), can be implemented
through functions declared in a timing package and invoked
by assertions associated with individual input ports or by
passive process in the design entity if more sophisticated
timing checks are needed.

Timing values may apply globally, may be associated
with a specific technology, or may be associated with a spe-
cific hardware component. If the values are global or are as-
sociated with a specific technology, they can be defined in a
global package. Generics that describe the technology can
be used to select the appropriate constraints.

Figure 5-33. Entity for a Module That Uses File I/O for Timing

MIL-HDBK-62

5-33

5-4.9 MODELING SYNCHRONOUS TIMING
A synchronous timing constraint is a timing constraint

that is applied to single-bit signals with respect to a second
synchronizing signal. Fig. 5-35 shows some general con-
straints on synchronous timing of single-bit signals. The fig-
ure illustrates two types of synchronous timing constraints:
setup time constraints and hold time constraints. These con-
straints are computed by comparing a synchronizing signal
(Clk in Fig. 5-35) with another single-bit signal (D in Fig.
5-35). Checking of these constraints, as required by the DID
(Ref. 1), can be implemented through functions declared in
a timing package and invoked by assertions associated with
clock inputs and individual data input ports.

The values for these constraints may apply globally, or
they may be associated with a specific technology, or they
may be measured for a specific hardware component. If the
values are global or they are associated with a specific tech-
nology, they can be defined in a global package. Generics
that describe the technology can be used to select the appro-
priate constraints. If they are measured for a specific hard-
ware component, they may be defined as generics in the
corresponding entity interfaces.

Figs. 5-36, 5-37, and 5-38 show a package containing re-
usable procedures used to check setup and hold times of a
single-bit signal against a reference signal, such as a clock.
Fig. 5-36 contains the package declaration, which declares

Figure 5-34. Potential Asynchronous Timing Constraints (Ref. 14)

Reprinted with permission. Copyright  by Menchini and Associates.

Figure 5-35. Potential Synchronous Timing Constraints (Ref. 17)

MIL-HDBK-62

5-34

two timing check functions: CheckSetupTime and
CheckHoldTime. There is a subtle difference in the argu-
ments for the two timing check functions. The reference sig-
nal input to CheckHoldTime is delayed by the hold time
amount. This delay is the reason for the different argument
sets in Fig. 5-37. Both of these procedures take the constraint
value as their fourth parameter.

Fig. 5-37 shows the procedure body for the

CheckSetupTime procedure declared in Fig. 5-36. This
procedure uses the built-in textio package, in which the
type of line is defined as an access type, which points to a
string. This procedure uses the write function of textio
to build up the errmsg (error message) string. This string
is output by the assertion statement and then deallocated so
that a new message can be constructed. The procedure also
uses the built-in attribute last_event to get the time

Figure 5-36. Package Interface That Checks Synchronous Timing Constraints

Figure 5-37. Procedure Body That Checks Setup Time Constraints

MIL-HDBK-62

5-35

when the checked signal last changed state. This time is
compared with the setup time to ensure that the reference
signal allows enough setup time for the checked signal. The
wait statement ensures that the comparison is made only
when the reference signal transitions to the state specified by
ref_edge.

Fig. 5-38 shows the procedure body for the

CheckHoldTime procedure declared in Fig. 5-36. Simi-
larly to CheckSetupTime, this procedure uses the
write function of textio to build up the errmsg string
and uses the built-in attribute last_event to get the time
when the checked signal last changed state.

Fig. 5-39 shows an example of the entity interface for a
simple multiplexor. The entity interface uses the timing

Figure 5-38. Procedure Body That Checks Hold Time Constraints

Figure 5-39. Entity Interface That Checks Timing Constraints

MIL-HDBK-62

5-36

checks provided in the package shown in Figs. 5-36, 5-37,
and 5-38. The timing checks are included in the entity inter-
face declaration, not in the architecture body. Thus these
timing checks are applied to all of the multiplexor imple-
mentations.

5-5 ANNOTATION OF BEHAVIORAL
MODELS

The VHDL DID requires that models include explanatory
comments that clarify the intent of the model. These com-
ments must also include the following (taken directly from
the VHDL DID (Ref. 1) subpar. 10.2.7):

“a. Any factors restricting the general use of this de-
scription to represent the subject hardware.

b. General approaches taken to modeling and partic-
ularly decisions regarding modeling fidelity.

c. Any further information which the originating ac-
tivity considers vital to subsequent users of the descrip-
tions.”
This kind of information can be included in a model by using
VHDL comments.

Fig. 5-40 shows the header for a VHDL design unit that
includes a comprehensive set of annotations (Ref. 18).

Further guidance on documenting revisions to models
that have already been delivered to the Government is pro-
vided in Ref. 18, which is included as Appendix A.

5-5.1 DESCRIPTION OF FUNCTION
A description that clarifies the intent of the model should

include a narrative discussion of the overall function of the
model and a description of its inputs and outputs.

The description should also include information on any
interface timing constraints and information on the proper
sequencing of control and data signals, i.e., the interface pro-
tocol, needed to ensure proper operation.

Generics of the model also should be explained. The data
sheets supplied with hardware components provide proper
guidance for the documentation of a model.

If an understanding of the details of internal algorithms is
important to the proper use of a model, these details should
be explained. Examples in which the algorithm is important
include numerical algorithms for which accuracy depends
on input values.

5-5.2 DESCRIPTION OF RESTRICTIONS
Any restrictions on using a model should be explained in

the comments. Restrictions include operating speeds,
bounds of generics, and other limitations. To the extent pos-
sible, any limitations should be enforced by using appropri-
ate language features such as subtypes and assertions. Using
these language features makes the model self-checking.

5-5.3 MODELING APPROACH
The VHDL DID requires that the “general approaches

taken to modeling, particularly decisions regarding model-
ing fidelity”, be described in the comments. The general ap-
proaches to modeling should describe the level of
abstraction of the model (ISA, RTL, etc.), the typical use of
the model, the logic conventions used, any external compo-
nents needed to use the model, any documents needed to
supplement the model (such as an explanation of the instruc-
tion set), and any industrial or military standards the model
is intended to meet. The intent of these comments is to pro-

Figure 5-40. Annotation of a VHDL Package Using Header Comments

MIL-HDBK-62

5-37

vide the user with the information needed to use the model
effectively.

Modeling fidelity should also be addressed, particularly
in the area of timing models. The types of timing errors that
are checked should be described, as well as the time scales
associated with events within the model. Variations of inter-
nal timing with external conditions, if any, or the provision
and use of different timing models should also be described.

Any other information the model builder considers useful
should also be included. Such information includes any as-
sumptions made about the simulation environment, such as
the location and names of data files needed for the simula-
tion of the model. Other information also includes version
numbers of design entities used in the model that were sup-
plied by outside vendors or information on the structure of
the VHDL design library needed to compile the model suc-
cessfully, and the compilation order for the library units of
the model if this order is not obvious from the model itself.

5-5.4 REVISION HISTORY
A model may be revised or corrected over time. These

changes should be documented in the model. This documen-
tation should include the date the revision was made (as es-
tablished by the revision control procedures of the
developing organization), a brief description of the nature
and purpose of the revision, and the organization and person
responsible for the revision. This information should be in-
cluded in one location in the module so that the entire revi-
sion history is available for review.

If the revision is a major change to the model and affects
its externally visible functionality, the change should also be
reflected in the module documentation.

5-5.5 BACK ANNOTATION OF TIMING IN-
FORMATION

As a hardware design becomes increasingly detailed, in-
creasingly accurate and detailed timing information be-
comes available either from simulation results or an analysis
of the actual hardware. Because these values are usually not
extracted from the VHDL model, it is often desirable to up-
date the VHDL model with this more accurate timing infor-
mation. This process is referred to as “back annotation”.
This updated timing information can be incorporated into
the VHDL model using any of the mechanisms that handle
timing information discussed in earlier paragraphs.

A timing package can be produced that includes the new
timing data. If the timing information is represented as a de-
ferred constant, only the package body needs to be modified
and reanalyzed. The new timing information takes effect the
next time the model is elaborated. Alternatively, a file is
constructed that contains the timing information needed by
the model. This information is read into the simulation as re-
quired. This method has the advantage of not requiring that
the model be reanalyzed or reelaborated when the timing in-
formation changes.

5-6 USE OF STRUCTURAL HIERARCHY
IN BEHAVIORAL MODELS

As described in subpar. 5-2.2.1, VHDL provides func-
tions and procedures as methods for the functional decom-
position of behavioral models. As shown in subpar. 2-3.2
and illustrated in Fig. 2-3, the calling structure of functions
and procedures defines a hierarchy for behavioral models.

VHDL also provides two ways to create hierarchies using
structural decomposition:

1. Structural decomposition through the use of compo-
nent instantiations in architecture bodies, which may in turn
have architecture bodies that use component instantiations

2. Nested blocks, which, in concert with guard signals,
let designers decompose and isolate specific behaviors to
specific blocks.

The VHDL DID (Ref. 1) requires that the “structural de-
composition of behavioral bodies shall be used only when
necessary to show functional partitions which are not clear
from the partitions of the corresponding structural body”.
The DID discourages the use of structural decomposition in
behavioral bodies in order to

1. Reduce the implementation bias in a behavioral
model

2. Encourage delivery of behavioral models that simu-
late quickly

3. Prevent the delivery of a gate-level structural model
to fulfill the requirement for a behavioral model.

The VHDL DID does not prohibit the use of structural de-
composition. The use of structural decomposition is negotia-
ble and is an important opportunity to tailor the DID. The
issue of structural decomposition in behavioral models is di-
rectly related to the issue of specifying the VHDL modules
that are delivered. Each VHDL module should be delivered
with a behavioral model, a structural model, and a test
bench. If the behavioral model of a VHDL module includes
multiple design entities, structural decomposition has been
used in it.

The use of structural decomposition where the decompo-
sition is implementation dependent is discouraged. The
VHDL DID cites the example of a processor that is imple-
mented from bit-slice components, and the structural model
has a design entity that represents a bit slice, and the behav-
ioral architecture body has separate component instances for
each individual slice that makes up the processor. This is an
implementation-dependent decomposition because a differ-
ent implementation that does not use bit-slice components
would not have the same set of components, and this decom-
position does not help the reader understand the functional
partitioning of the processor, i.e., the instructions of the pro-
cessor. On the other hand, partitioning of the architecture
into a fixed point processor and a floating point coprocessor
does assist the reader in understanding the functional parti-
tioning of the processor and therefore might be acceptable to
the Government.

MIL-HDBK-62

5-38

REFERENCES

1. DI-EGDS-80811, VHSIC Hardware Description Lan-
guage (VHDL) Documentation, Department of De-
fense, Washington, DC, 11 May 1989.

2. Ram Gummaddi, Methodology for Structured VHDL
Model Development, Master’s Thesis, Bradley Depart-
ment of Electrical Engineering, Virginia Polytechnical
and State University, Blacksburg, VA, April 1995.

3. MIL-STD-1750A, Sixteen-Bit Computer Instruction Set
Architecture, 15 December 1989.

4. P. J. Hayes and A. M. Andrews, “Multiprocessor Per-
formance Modeling With ADAS”, Proceedings of
AIAA Computers in Aerospace VII Conference, pp.
335-40, Burlingame, CA, October 1989, American In-
stitute of Aeronautics and Astronautics, Washington,
DC.

5. IEEE Std 1076-1987, IEEE Standard VHDL Language
Reference Manual, The Institute of Electrical and Elec-
tronics Engineers, Inc., New York, NY, March 1988.

6. IEEE Std 1076.3 (Draft), IEEE Standard for VHDL
Language Synthesis Package, The Institute of Electrical
and Electronics Engineers, Inc., New York, NY, Sep-
tember 1995.

7. IEEE Std 1164-1993, IEEE Standard Multivalue Logic
System for VHDL Model Interoperability, The Institute
of Electrical and Electronics Engineers, Inc., New
York, NY, May 1993.

8. IEEE Std 1149.1-1990, IEEE Standard Test Access
Port and Boundary Scan Architecture, The Institute of
Electrical and Electronics Engineers, Inc., New York,
NY,  May 1990.

9. P. M. Campbell, M. Vai, and Z. Navabi, “Implementa-
tion of the IEEE Std 1149.1-1990 in VHDL”, Using
VHDL in System Design, Test, and Manufacturing:
Proceedings of the Spring VIUF, pp. 151-60, Scotts-
dale, AZ, May 1992, VHDL International, Santa Clara,
CA.

10. ANSI/IEEE Std 1076-1993, IEEE Standard VHDL
Language Reference Manual, The Institute of Electrical
and Electronics Engineers, Inc., New York, NY, April
1994.

11. J. Roy and R. Vemuri, “DSS: A Distributed Synthesis
System for VHDL Specifications”, Using VHDL for
Electronic Product Design, Proceedings of the VHDL
Users’ Group, Spring 1991 Conference, Cincinnati,
OH, April 1991, VHDL International, Santa Clara, CA.

12. R. Lipsett, C. Schaefer, and C. Ussery, VHDL: Hard-
ware Description and Design, Kluwer Academic Pub-
lishers, Norwell, MA, 1989.

13. IEEE Std 1076.4-1995, IEEE Standard for VITAL Ap-
plication-Specific Integrated Circuit (ASIC) Modeling

Specification, The Institute of Electrical and Electronics
Engineers, Inc., New York, NY, December 1995.

14. L. Feingold, F-22 Very High-Speed Integrated Circuit
(VHSIC) Hardware Description Language (VHDL)
Model Specification, Document No. 5PTA3009, Gener-
al Dynamics Corporation, San Diego, CA, March 1992.

15. J. Hanna, Rome Laboratory, Griffiss Air Force Base,
Rome, NY, Private communication, May 1992.

16. EIA 567-A, VHDL Hardware Component Modeling
and Interface Standard, Electronic Industries Associa-
tion, Washington, DC, May 1994.

17. P. Menchini, Top-Down Design With VHDL, Tutorial,
First Annual Rapid Prototyping of Application-Specific
Signal Processors (RASSP) Conference, Arlington,
VA, August 1994, ARPA Electronic Systems Technol-
ogy Office, Arlington, VA.

18. Rome Laboratories/ERDD, VHDL Model Verification
and Acceptance Procedure, Technical Report, Depart-
ment of the Air Force, Griffiss Air Force Base, Rome,
NY, March 1992.

BIBLIOGRAPHY

R. E. Anderson, A. Coppola, J. S. Freedman, and M. A.
Perkowski, “VHDL Synthesis of Concurrent State Ma-
chines to a Programmable Logic Device”, Using VHDL
in System Design, Test, and Manufacturing, Proceed-
ings of the Spring 1992 VHDL International Users’ Fo-
rum, Scottsdale, AZ, May 1992, VHDL International
Users’ Forum, c/o Conference Management Services,
Menlo Park, CA.

J. R. Armstrong and F. G. Gray, Structured Logic Design
Using VHDL, Prentice-Hall, Inc., Englewood Cliffs,
NJ, 1993.

J. Bhasker, A VHDL Synthesis Primer, Star Galaxy Publish-
ing, Allentown, PA, 1996.

S. Carlson, Introduction to HDL-Based Design Using
VHDL, Synopsis, Inc., Mountain View, CA.

M. Cohen, “Graphical Behavior Capture to VHDL”, Using
VHDL in System Design, Test, and Manufacturing, Pro-
ceedings of the Spring 1992 VHDL International Users’
Forum, Scottsdale, AZ, May 1992, VHDL International
Users’ Forum, c/o Conference Management Services,
Menlo Park, CA.

A. Dewey, Analysis and Design of Digital Systems With
VHDL, Addison-Wesley, Piscataway, NJ, 1992.

R. Lipsett, C. Schaefer, and C. Ussery, VHDL Modeling for
Digital Design Synthesis, Kluwer Academic Publishers,
Norwell, MA, 1989.

Y. Hsu, K. F. Tsai, J. T. Liu, and E. S. Lin, VHDL: Hard-
ware Description and Design, Kluwer Academic Pub-
lishers, Norwell, MA, 1995.

MIL-HDBK-62

5-39

R. A. MacDonald and R. Waxman, “Operational Specifica-
tion of the SINCGARS Radio in VHDL”, Proceedings
of the Tactical Communications Conference, Vol. 1,
Tactical Communications: Challenges of the 1990s, pp.
415-33, 1990, Piscataway, NJ, The Institute of Electri-
cal and Electronics Engineers, Inc., New York, NY.

Z. Navabi, VHDL: Analysis and Modeling of Digital Sys-
tems, McGraw-Hill Book Company, Inc., New York,
NY, 1993.

M. S. Romdhane, V. K. Madisetti, and J. W. Hines, Quick-
Turnaround ASIC Design in VHDL: Core-Based Be-
havioral Synthesis, Kluwer Academic Publishers, Nor-
well, MA, 1996.

A. Sama and J. Armstrong, “Behavioral Modeling of RF
Systems With VHDL”, Using VHDL for Electronic
Product Design, Proceedings of the Spring 1991 VHDL
Users’ Group Meeting, Cincinnati, OH, 1991, VHDL
International Users’ Forum, c/o Conference Manage-
ment Services, Menlo Park, CA.

J. Schoen, Performance and Fault Modeling With VHDL,
Prentice-Hall, Inc., Englewood Cliffs, NJ, 1989.

Enabling Design Creativity, Proceedings of the VHDL Fall
1991 International Users’ Forum, Newport Beach, CA,
October 1991, VHDL International Users’ Forum, c/o
Conference Management Services, Menlo Park, CA.

Using VHDL in System Design, Test, and Manufacturing,
Proceedings of the Spring 1992 VHDL International
Users’ Forum, Scottsdale, AZ, May 1992, VHDL Inter-
national Users’ Forum, c/o Conference Management
Services, Menlo Park, CA.

VHDL Boot Camp, Proceedings of the Fall 1993 VHDL In-
ternational Users’ Forum, San Jose, CA, October 1993,
VHDL International Users’ Forum, c/o Conference
Management Services, Menlo Park, CA.

VHDL: Windows of Opportunity, Proceedings of the VHDL
Users’ Group Fall 1990 Meeting, Oakland, CA, Octo-
ber 1990, VHDL International Users’ Forum, c/o Con-
ference Management Services, Menlo Park, CA.

Using VHDL for Electronic Product Design, Proceedings of
the VHDL Users’ Group Spring 1991 Meeting, Cincin-
nati, OH, April 1991, VHDL International Users’ Fo-
rum, c/o Conference Management Services, Menlo
Park, CA.

MIL-HDBK-62

6-1

6-1 INTRODUCTION

Structural models are the preferred mechanism for hierar-
chical decomposition in very high-speed integrated circuit
(VHSIC) hardware description language (VHDL). Structur-
al models allow a design to be partitioned into different
physical or functional groupings. As discussed in Chapter 3,
structural models are used at any level of abstraction. Both
structural and behavioral models are used early in the hard-
ware design cycle (when physical design has not been com-
pleted) and after design and fabrication have been completed
(when the model provides accurate, machine-readable docu-
mentation of the completed design). Furthermore, no struc-
tural model is complete without behavioral models as its leaf
components. Thus there are both structural and behavioral
aspects to any complete VHDL description. The focus of
this chapter is on detailed gate-level structural VHDL mod-
els used to document existing hardware components. This
approach complements the one used in Chapter 5, in which
the focus is on abstract VHDL models used to document de-
signs that are in progress. As discussed in pars. 2-5 and 3-4,
structural models can support simulation of mixed-abstrac-
tion-level models. Detailed structural models support design
techniques such as logic synthesis and testability analysis.
Structural models also provide a mechanism for reusing
VHDL models. Reuse is supported by component instantia-
tion and binding.

6-2 CREATION OF STRUCTURAL VHDL
MODELS

The VHDL structural model of a hardware module con-
sists of

1. An interface description, which describes the exter-
nally accessible signals, generic constants, and timing re-
quirements of the module

2. Component declarations, which identify the types
of components used in the model. Each component may be
described by either a behavioral VHDL model or another
level of structural model

3. Signal declarations, which name all of the signals
that interconnect the components of the module

4. Component instances, in which the ports of the
components (each of which corresponds to a pin or a set of
pins on the actual hardware component) are tied to the sig-

nals that connect the components, tied to external signals de-
clared in the interface, or left open.

Although the components of a structural model can repre-
sent abstract functional blocks, the VHDL data item descrip-
tion (DID) (Ref. 1) requires that VHDL structural models
represent the physical or logical organization of the hard-
ware. During the early stages of design, different structural
models may be generated and evaluated; each of these rep-
resents different partitioning of the model. However, when
an existing design is documented, the structural decomposi-
tion of the VHDL model should match the physical or logi-
cal organization of the hardware.

VHDL structural models can be constructed in several
ways. They can be developed by manually writing the ap-
propriate VHDL description. This approach is very tedious
and error-prone for all but the simplest models. A detailed
gate-level VHDL structural model generated in this way
should be checked very carefully to assure that it is an accu-
rate representation of the hardware and that it is internally
consistent. A common alternative is to use a schematic cap-
ture system to create diagrams of interconnected compo-
nents and then generate a structural VHDL description from
the netlist.

Gate-level models can also be created automatically.
Logic synthesis tools are commercially available that gener-
ate gate-level models from behavioral models written in re-
stricted forms of VHDL.

Another form of generation involves modification of an
existing gate-level design by adding built-in test (BIT) cir-
cuitry. This approach allows the designer to focus on parti-
tioning the design into testable islands of logic rather than
working on the details of integrating BIT components into
an existing design.

6-2.1 TRANSLATION OF SCHEMATIC CAP-
TURE MODELS

Modern computer-aided engineering (CAE) tools support
the capture of hierarchical structural models as schematic di-
agrams and the translation of schematic diagrams into
VHDL structural models. A schematic capture tool usually
works from a library of primitive elements that serve as the
leaf-level modules in the design. Such libraries usually in-
clude the basic logic gates and higher level entities. These
entities represent standard macrocells used in chip designs.

CHAPTER 6
CONSTRUCTION OF STRUCTURAL VHDL MODELS

This chapter discusses common approaches to creating structural models, VHDL DID requirements on structur-
al models, timing specifications for detailed gate-level structural models, and annotation of structural models based
on the physical measurements of existing hardware, on switch level or analog analysis, or on simulation of a com-
ponent design. Common techniques used to create structural VHDL models, including automatic synthesis and
schematic capture, are discussed. Applications of structural models for physical design and testability analysis are
described. Annotation of structural models with layout and testability information is described.

Thi d t t d ith F M k 4 0 4

MIL-HDBK-62

6-2

The library may also contain existing chips for circuit board
design. The designer can usually assemble structural models
and add them to the library for reuse. Sophisticated schemat-
ic capture tools provide icons for the elements of the library
and allow the user to define icons for his or her designs.

These schematics can then be translated into VHDL
structural models for simulation or for export for other uses.
Each of the primitive elements in the schematic capture tool
library has an associated structural or behavioral VHDL
model that implements the function of the primitive. The
netlist for the schematic is converted into a structural VHDL
model, and the components of the structural VHDL model
are the library elements.

A key issue for schematic capture systems is the choice of
signal states and strengths to be used. Most non-VHDL CAE
tools use a state/strength model compatible with their partic-
ular simulator and analysis tools. Also many tools can export
VHDL models that use Institute of Electrical and Electronics
Engineers (IEEE) Std 1164 logic values. For the resulting
models to be interoperable, schematic capture tools used to
build structural VHDL models for delivery to the Govern-
ment should support at least a subset of IEEE Std 1164 (Ref.
2). If the tool supports only a subset of IEEE Std 1164, a set
of type conversion functions should be provided to map the
IEEE Std 1164 logic values onto that standard subset. The
IEEE standard logic package contains definitions of several
subtypes, such as

X01

,

X01Z

, and

UX01

. It also defines
type conversion functions for these subtypes. Use of type
conversion functions for interoperability is discussed in sub-
par. 7-2.2.

Although use of schematic capture tools provides greater
productivity for engineers generating gate-level VHDL
models and eliminates syntax errors in the models, it still re-
quires human interaction to place every instance of a com-
ponent in the model. Furthermore, these models must be
verified against more abstract functional or behavioral mod-
els to ensure that the logic does implement the intended
function.

6-2.2 SYNTHESIS OF STRUCTURAL MOD-
ELS FROM REGISTER-TRANSFER-
LEVEL MODELS

Logic synthesis uses abstract VHDL descriptions to gen-
erate lower level, functionally equivalent structural descrip-
tions that can be implemented directly as very large-scale
integrated (VLSI) circuits. Logic synthesis saves a substan-
tial amount of design time and effort and reduces the risk of
design errors introduced through manual translation of an
abstract design to a detailed design. Logic synthesis tools are
now available in many CAE environments.

The VHDL features in models used for logic synthesis are
restricted. These restrictions are tool specific and change as
synthesis technology improves. Most synthesis tools accept
as input a register-transfer-level model, as described in sub-
par. 5-2.4. Other restrictions may include limited data types,
stereotypical use of processes and other constructs to define

finite state machines (FSMs) and registers, or the required
use of explicit configuration information. Because subsets
vary, the documentation of the particular tool must be con-
sulted for more specific information. Most tools also use
comments of special form to guide synthesis. A draft stan-
dard (Ref. 3) is emerging that defines a standard set of data
types and functions for use by synthesis tools. This standard
is discussed in subpar. 5-2.4.1.

6-2.3 SYNTHESIS OF STRUCTURAL MOD-
ELS FROM FINITE STATE MACHINES

The finite state machine is another abstract functional
hardware representation commonly used to describe behav-
ior. Finite state machines are useful to model control se-
quencers and communication protocols. FSMs can be used
in VHDL at several levels of abstraction from high-level ab-
stract behavioral models to register-transfer models. The
complexity of large FSMs can be controlled through the use
of hierarchical models (Ref. 4) or through the use of commu-
nicating sequential processes (CSPs) (Refs. 5 and 6).

Because the mathematical attributes of FSMs are well un-
derstood, they are a natural starting point for logic synthesis.
Synthesis tools can take advantage of the mathematical na-
ture of FSMs to produce very compact and fast circuits. Cer-
tain forms of VLSI circuits are naturally suited to the
implementation of FSMs, such as programmable logic ar-
rays (PLAs).

Some CAE systems provide graphical tools for the defi-
nition and simulation of FSMs (Refs. 7 and 8). FSMs are
easily translated into VHDL, and many CAE systems per-
form this translation. CAE vendors are beginning to link
tools for the construction, debugging, and simulation of
FSMs to tools that synthesize circuit designs from VHDL
descriptions of the FSMs. In these integrated tool sets
VHDL plays a key role as an intermediate form between the
FSM and the circuit layout.

6-2.4 ENHANCEMENT OF GATE-LEVEL
MODELS WITH GENERATED STRUC-
TURE

The use of built-in test circuitry is essential to achieving
the testability of both military circuit boards and VLSI cir-
cuits. When a test operation is required for a hardware com-
ponent, normal interconnects are disabled, and the BIT
circuitry provides the control and observation of the signals
to be tested. Some CAE tools provide a mechanism to aug-
ment a logic design BIT circuitry automatically. Thus a de-
signer can focus on the development of a functional design,
then partition the design into appropriate islands of logic for
testability purposes, and have the additional structure auto-
matically generated. Par. 8-4 describes approaches to BIT
and discusses related IEEE standards, and par. 8-5 describes
an approach used to enhance structural models with BIT.

An important part of accurately modeling existing hard-
ware is representation of its BIT circuitry. Subpar. 10.2.4 of
the VHDL DID (Ref. 1) requires that structural models in-
clude the physical implementation accurately enough to per-

MIL-HDBK-62

6-3

mit logic fault modeling and test vector generation. It also
requires that structural models represent structures created
to support testing and maintenance, such as scan paths. As a
result, CAE tools should be chosen that generate the BIT cir-
cuitry and include the generated BIT circuitry in the VHDL
models produced by the tool.

6-3 VHDL DID ORGANIZATIONAL RE-
QUIREMENTS FOR STRUCTURAL
MODELS

6-3.1 HIERARCHICAL ORGANIZATION OF
STRUCTURAL MODELS

The VHDL DID (Ref. 1) requires that the structural hier-
archy of VHDL modules be “analogous to the physical hier-

archy of the hardware being documented”. The VHDL DID
also states, “One VHDL module shall be defined for the en-
tire system and one for each physical electronic unit (assem-
bly, subassembly, integrated circuit, etc.) of the hardware
system. VHDL modules should also be defined for impor-
tant subsections or groupings of complex physical units
(e.g., macrocells of a chip or boards defining a processor).”.
For this correspondence to be traceable, the VHDL DID re-
quires that the entity interface modeling the hardware com-
ponent include a component identification based on the part
number of the corresponding hardware component. In addi-
tion, the ports of the VHDL design entities must correspond
to pins or connectors of the physical hardware.

Fig. 6-1 shows a typical physical design hierarchy for an
embedded electronic system such as is used by the Army.

Figure 6-1. Typical Physical Hierarchy of an Embedded Electronic System

MIL-HDBK-62

6-4

The system consists of a number of assemblies that can be
removed for repair. The assemblies are connected by cables.
A VHDL description of this system written to conform with
the VHDL DID includes design entities for the assemblies.
The ports of each of these design entities describe cable con-
nections required to connect the assembly to the other as-
semblies in the system.

Within an assembly are a set of boards that can be re-
moved and either replaced or repaired at a second level of
maintenance. The boards are connected by a backplane that
is internal to the assembly. A VHDL description of an as-
sembly written to conform to the VHDL DID includes de-
sign entities for the boards. The ports of these design entities
describe the types of connectors that connect the boards to
the backplane.

Attached to the board is a set of chips that can be removed
and replaced at a third level of maintenance. The chips are
connected by metal traces etched into the boards. A VHDL
description of a board written to conform with the VHDL
DID includes design entities for each of the chips. The ports
of these design entities describe the pins on the chip. For
back-annotation purposes each pin may require a separate
port. A “shell” design entity may be required in order to con-
vert the connector ports into the wires for the pins. In this en-
tity, signals connect the connector port bit vector to the
single-bit ports of the chip model.

The chips may be further partitioned into macrocells con-
nected by runs of metal or polysilicon. A VHDL description
of a chip written to conform to the VHDL DID could include
design entities describing the macrocells or islands of logic
within the chip. At the next level of detail are logic gates,
which are the lowest level of detail that can be represented
reasonably in VHDL.

6-3.2 ALLOWABLE LEAF-LEVEL MODULES

The VHDL DID specifies the following as leaf-level
modules for which no VHDL structural body is required:

1. Government-approved leaf modules
2. Modules that exhibit a stimulus-response behavior

but whose internal structure is not properly modeled in a dig-
ital format

3. Modules whose detailed design has not yet been
completed when the VHDL model is required to be deliv-
ered.

These three cases are discussed in the following subpara-
graphs.

6-3.2.1 Government-Approved Models

The VHDL DID allows VHDL modules selected from a
Government list of VHDL modules to be used as leaf-level
modules. The DID also requires that the contract include a
list of Government-approved leaf-level modules. One mech-
anism used to approve multiple modules is to approve the
use of all VHDL modules in a given model library. Model
libraries facilitate the hardware design process by providing
reusable, pretested components from which new hardware

designs can be built. Many commercially available model li-
braries exist that provide functionally complete, fully timed
simulation models of existing components. Typically, these
models have been developed or approved by the manufac-
turer of the component. An important aspect of tailoring the
VHDL DID for a specific program is specifying the models
and libraries the contractor can use to develop VHDL de-
scriptions. Also the Defense Electronics Supply Center
(DESC) of the Defense Logistics Agency is collecting
VHDL descriptions in its VHDL Model Library (See sub-
par. 4-2.3.).

The use of Government-approved high-level leaf mod-
ules serves many purposes. Use of previously developed
high-level leaf modules can dramatically reduce the time to
build and validate models of existing parts. Use of approved
models also eliminates differences in simulation results due
solely to differences in the VHDL models of the compo-
nents. This similarity is particularly important with respect
to timing, i.e., differences in the timing from one model to
another may change the outcome of system race conditions.

For different models to interoperate they must be written
with the same logic-level conventions or have translation
routines to convert between the different conventions. In-
teroperability is an important consideration when the list of
Government-approved, leaf-level models is generated. In-
teroperability issues and approaches are described in par. 7-
2.

6-3.2.2 Modules With Stimulus-Response Behav-
ior

Subpar. 10.2.1.1, Item (b) of the VHDL DID (Ref. 1) al-
lows the use of behavioral models for “...a collection of
hardware elements which together exhibit a
stimulus-response behavior, but whose interaction is best
modeled at an electrical or physical level.”. The DID gives
as examples digital logic gates, analog circuit blocks, and
power supplies. Depending upon the complexity of a mem-
ory chip (in terms of fault tolerance and testability),
high-level models may also be appropriate for random ac-
cess and read-only memory circuits.

Behavioral models are appropriate to model analog de-
vices, where necessary, because the discrete event approach
of VHDL is inappropriate. Research is continuing on inte-
grating analog circuit models into VHDL (Refs. 9 and 10).
If this work is successful, the DID may, in the future, require
use of VHDL or extensions to VHDL when analog systems
or hybrid analog-digital systems are modeled.

6-3.2.3 Modules Without Detailed Designs

An important aspect of the use of VHDL during the de-
sign of a new hardware system is documentation of the de-
sign during the early stages of the life cycle of the system.
VHDL behavioral models can be used to document design
requirements and expected performance as a system is being
developed. Behavioral models can also be used as simulat-
able specifications for more detailed designs.

MIL-HDBK-62

6-5

VHDL models may be required at the Preliminary Design
Review (PDR) and the Critical Design Review (CDR) as
simulatable documentation of the design. For these early
milestones the Government may want to specify that behav-
ioral models are acceptable leaf modules, even though they
do not support the logic-level fault modeling or automatic
test vector generation. This approach encourages top-down
design by the contractors and gives the Government simulat-
able documentation of a design as the work progresses.

For example, a program is developing a multiprocessor
architecture using off-the-shelf 1750A processors, PIbus in-
terface modules (PIbus BIMs), and high-speed data bus in-
terface modules (HSDB BIMs), and a to-be-developed
special-purpose signal processor (SPSP). VHDL models are
to be delivered at the PDR, CDR, and Test Readiness Re-
view (TRR). By the time of the PDR the architecture of the
multiprocessor to the level of the number of busses, the
number of data processors, and the number of signal proces-
sors should be known. The architecture can be defined with
a structural model that uses Government-approved models
for the existing components. The model for the SPSP deliv-
ered at the PDR is a model for a part without a detailed de-
sign, i.e., a high-level behavioral model. The model includes
the interface to the rest of the system and communicates with
the rest of the system through the detailed bus and BIM
models. This level of model is appropriate for interface sim-
ulation, which is an appropriate verification step for the
PDR. At this stage the VHDL model of the SPSP may also
include some high-level timing estimates for critical func-
tions and thus could be used as evidence that the resulting
multiprocessor system will meet its timing requirements, at
least for some critical subset of the system applications. At
this point the entire SPSP may be represented by a single be-
havioral body. During the design process, changes in the
number of components and the network topology must be
reflected in the structural model of the multiprocessor.

The model delivered at the CDR extends the PDR model.
The SPSP model should be extended to an instruction set ar-
chitecture (ISA) or register-transfer-level (RTL) model.
This VHDL model can be used for software design and ver-
ification; therefore, software and hardware design can con-
tinue in parallel. The CDR model allows more accurate
timing analysis than the earlier version and supports com-
plete functional verification, particularly if the entire in-
struction set of the SPSP is modeled. At this point the VHDL
model of the SPSP should be extended to provide some in-
ternal structure. The VHDL model delivered at the start of
fabrication should be a register-transfer model suitable for
synthesis of the SPSP logic design.

The results of simulating both the CDR VHDL model and
the PDR VHDL model on the same test sets should be com-
pared to verify that the CDR VHDL model is a correct im-
plementation of the PDR VHDL model. In practice, there
may be so many design changes between the two reviews
that comparisons may be very difficult to make. For exam-
ple, refined area estimates for system ASICs may force a

new partitioning of hardware, or they may force a change in
algorithms. Either of these changes could make comparisons
between the models difficult. However, the CDR VHDL
model should be simulated with the same test sets used to
simulate the PDR VHDL model. Also the contract should
specify which VHDL models are to be maintained through-
out the life of the project. If the PDR VHDL model is select-
ed to be maintained, changes in the design should be
reflected in both the PDR VHDL model and the CDR VHDL
model so comparisons between the models should be
straightforward. This technique is regression testing and is
very valuable in ensuring that later levels of design do not
introduce new problems into the design.

The model delivered for the TRR reflects the detailed
gate-level design of the SPSP. The Test Readiness Review
verifies that the model is complete and detailed enough to
support analysis of test vectors. The model is now complete
except possibly for timing information. Timing information
should be provided through analysis and testing of the actual
hardware and should be accumulated during the integration
of the system.

6-3.3 VHDL DID ANNOTATION REQUIRE-
MENTS FOR STRUCTURAL MODELS

The VHDL DID (Ref. 1) requires that structural models
be annotated for three reasons:

1. To provide traceability between the physical hard-
ware and the VHDL model (DID subpar. 10.2.2.4)

2. To capture timing and electrical requirements for
the hardware in the model (DID subpar. 10.2.2.2)

3. To capture the acceptable operating conditions of
the system (DID subpar. 10.2.2.3).

Traceability ensures that the VHDL model accurately
documents the actual hardware. Without traceability it is dif-
ficult to use the VHDL model to evaluate possible upgrades
or changes to the system because it is difficult to relate those
components of the hardware to the corresponding compo-
nents of the VHDL model. Similarly, traceability allows
analysis of simulation results (such as the utilization of de-
sign entities) to be related back to the hardware components.

Timing and electrical requirements document the accept-
able range of timing and electrical parameters, e.g., clock
frequency and pin voltage levels, for the components of the
hardware system. According to subpar. 10.2.2.2 of the
VHDL DID (Ref. 1), these documented ranges must interact
with the simulation in the sense that if during a simulation
the operating conditions of a component go outside the ac-
ceptable range, an error message is generated. The operating
conditions interact with simulation in that operating condi-
tion parameters are used to calculate timing values for the
components.

A mechanism useful to organizing the annotation of de-
tailed models of physical components is an electronic data
sheet (EDS). This is the approach taken by the Electronic In-
dustries Association (EIA) in EIA-567 (Ref. 11). The elec-
tronic data sheet consists of several views of a hardware
system. A view of a hardware module is a set of logically re-

MIL-HDBK-62

6-6

lated data representing the significant characteristics of the
module within the scope of the data. The EIA approach fully
documents the relationships among the physical design, the
electrical characteristics, and the system timing directly in
the VHDL model. These relationships are captured in
VHDL and in three interdependent views in the EDS for any
hardware module: a physical view, an electrical view, and a
timing view.

The VHDL initiative toward ASIC libraries (VITAL)
standard (Ref. 12) uses a different approach in which the
timing information is generated by external tools in the form
of a timing file that is used to generate generics. This ap-
proach is described in subpar. 6-6.1.

These two standards are being made compatible. They
both use generics to put the timing information into the mod-
els. Different configuration declarations can be used to de-
fine the values for generics. An EIA configuration
declaration references the information in the EDS packages;
a VITAL configuration declaration is generated using data
in an standard delay format (SDF) file.

The purpose of the EDS is to capture information tradi-
tionally supplied by a manufacturer but in a manner that is
more easily created, verified, and used. Data missing from
the manufacturer’s data sheet should be calculated and in-
serted into the EDS and then annotated to distinguish it from
data supplied by the manufacturer. Equations used to calcu-
late the missing data must be included in the package.

In the EIA approach the three views of an EDS are repre-
sented as a collection of VHDL packages. Each view has a
primary package containing declarations of data characteriz-
ing the view. These packages are used throughout a VHDL
model. There may be other packages in a view that are spe-
cific to a technology but used by all models using that tech-
nology. Technology-specific packages are used particularly
in the timing view.

There are specific packages for each component in the
VHDL design library. These packages are used, for exam-
ple, in the physical view to provide traceability between the
VHDL component and the corresponding physical compo-
nent.

6-3.3.1 Physical View Requirements

In the EIA approach to defining an EDS, each VHDL
module has a collection of constants describing the physical
view of the system. Fig. 6-2 shows the hierarchical organi-
zation of constants characterizing the physical view of a

VHDL module and providing traceable linkages between a
VHDL model and its corresponding hardware component
and interconnections. As shown in Fig. 6-2, the constants are
divided into two categories: the electrostatic discharge
(ESD) limit and the pin to signal mapping. The

ESD_LIMIT

 constant has the type

VOLTAGE

. Component
identification is handled through entity-naming conventions
and through header comments. The pin to signal mapping in-
formation is defined through two data structures: an enumer-
ated type

PIN_LIST_PV

, which lists the pins, and an array
of records

PIN_TO_SIGNAL_RECORDS

, which is indexed
by

PINT_LIST_PV

. Each element of

PIN_TO_SIGNAL_RECORDS

 is a record containing two
strings: one containing the name of the pin and one contain-
ing the name of the signal. These strings are both deferred
constants, so if different packaging options exist for the
component, different package bodies can be used to define
the mapping.

This physical view information is described in a VHDL
model using one package for the entire model and another
package for each component.

Pin-out constants are associated with the port declarations
in the entity declaration. These constants are sufficient to
satisfy the VHDL DID requirements in subpar. 10.2.2.1 that
the VHDL entity declaration port declarations “...shall in-
clude information which relates each input or output port to
a package pin number or connector pin number whenever
such a correspondence exists.”.

The package defining the timing view may depend upon
the packages defining the electrical and the physical views.
The combination of electrical, timing, and physical views
constitutes the electronic data sheet for the physical compo-
nent. The VHDL structural model then uses these constants
to define the timing and error handling characteristics of the
models.

6-3.3.2 Electrical View Requirements

As shown in Fig. 6-3, the electrical view of a component
consists of two parts:

1. The signal characteristics, which characterize each
input port of the component by its input threshold voltages
and leakage currents, each output port by its output drive
voltage and current and alternating current (AC) test load,
and all ports by their capacitive loads

2. The power characteristics, which describe the max-
imum and minimum operating voltages and the maximum

Figure 6-2. EIA 567 Physical View Organization (Ref. 11)

Reprinted with permission. Copyright



 by Electronic Industries Association.

MIL-HDBK-62

6-7

power supply current for each power pin of the component.
The drive capabilities of each output pin are described in

terms of two pairs, each consisting of a voltage and a cur-
rent. The first pair

V

oh

 and

I

oh

 is the voltage and current gen-
erated when the output port is sustaining a high signal value.
The second pair

V

ol

and

I

ol

is the voltage and current gener-
ated when the output port is sustaining a low signal value.

Similarly, the input pin threshold voltages and leakage
currents are specified in terms of two pairs, each also con-
sisting of a voltage and a current. The first pair

V

ih

 and

I

ih

 is
the threshold voltage and the leakage current received when
the input pin is presented with a high signal value. The sec-
ond pair

V

il

and

I

il

is the threshold voltage and the leakage
current received when the input pin is presented with a low
signal value. The pin load is used to calculate the net depen-
dent load due to the number of receivers and drivers.

6-3.3.3 Timing View Requirements

As shown in Fig. 6.4, the EIA timing view for a compo-
nent consists of two parts: a set of timing constraints that are
defined for each input pin and a set of parameters that de-
fines both internal and external delays. The external delays
are further subdivided into input wire and output load de-
lays.

The constraints are used to generate timing error messag-
es and actions. According to the EIA guidelines, each input
pin should have a subset of the four timing constraints de-
fined. If there is no additional signal that acts as a clocking
signal, then asynchronous timing constraints are specified.
As described in subpar. 5-4.8, the EIA pulse width and cycle
time define how long a signal can stay at a particular signal
state. If that time is exceeded, the VHDL model should gen-
erate an error message, and if a timing flag has been set, the

Figure 6-3. EIA 567 Electrical View Organization (Ref. 11)

Figure 6-4. EIA Timing View Organization (Ref. 11)

Reprinted with permission. Copyright



 by Electronic Industries Association.

Reprinted with permission. Copyright



 by Electronic Industries Association.

MIL-HDBK-62

6-8

signal should be set to '

X

'. If there is a clocking signal asso-
ciated with the input pin, the setup and hold times for the in-
put pin with respect to the clocking signal should be
specified as constraints, as described in subpar. 5-4.9.
Again, if a setup or hold timing constraint is violated, the
VHDL model should generate an error message, and if a
timing flag has been set, the appropriate signal should be set
to '

X

'. Timing flags are described in subpar. 7-6.3.
The timing delay parameters are used to capture internal

pin-to-pin delays, input wire delays, and output capacitance
loading delays.

Another approach to documenting the timing behavior of
a VHDL model is provided by the VITAL specification
(Ref. 12). A VITAL-compliant model uses generics to doc-
ument the timing data and a set of VITAL timing functions
and model primitives to implement the timing behavior. The
actual timing data can be imported into the model from an
external file, which complies with the VITAL standard de-
lay file format.

The VITAL specification provides a detailed procedure
used to develop models suitable for hardware acceleration
and back annotation of timing information. VITAL uses ge-
neric parameters to pass timing information into the VHDL
model. VITAL-compliant models perform no environmen-
tally dependent delay calculations themselves. All such de-
lay information is calculated outside the model and passed
into the model using an SDF file.

The timing information in the SDF file is used to set the
generic parameter values prior to simulation. The simulation
environment is responsible for inserting the SDF timing in-
formation into the model.

VITAL-compliant models require strict adherence to
naming conventions, model organization, and use of the
VITAL primitive library. The advantage of using VITAL
is that compliant models produce the same result regard-
less of the simulator on which they are executed, particu-

larly if the simulator has hardware acceleration. Gate-
level models to be used for final timing verification
should be VITAL compliant.

The timing behavior can be documented either by produc-
ing a VHDL source code model that has been back annotated
from the SDF file or by including the SDF file itself as part
of the documentation package. A self-contained VHDL
model has the benefit of not requiring external files and,
therefore, the resulting configuration management issues of
linking versions of external files with versions of design en-
tities using those files. Including the SDF file and the default
generic VHDL model has the advantage of easier incorpora-
tion of different timing behaviors into the same basic model.

Fig. 6-5 illustrates the two alternative approaches used in
VITAL-compliant architecture bodies. The VITAL Level 1
architecture uses either a VITAL process model or a VITAL
primitive concurrent procedure call approach. Both ap-
proaches use a wire delay block and a negative constraint
block. The VITAL process is a timing shell approach which
separates the function (in the functionality section) from the
timing (in the path delay section). The VITAL primitive
concurrent procedure call approach allows the delays to be
distributed across multiple components of the model.

A detailed structural model constructed in compliance
with the VITAL specification primarily documents the de-
tailed internal timing of the component. It does not provide
a simpler external “data sheet” view of the timing require-
ments of the interface. However, a data sheet view of timing
could be developed from a VITAL-compliant timing model.

A model that documents the low-level behavior of an
ASIC will most likely use the VITAL approach to timing.
Such models benefit from hardware acceleration and simu-
lator optimization because they are usually complex and are
used for final timing verification prior to fabrication. VITAL
was developed specifically to address the acceleration and
verification needs of ASIC designs.

MIL-HDBK-62

6-9

6-4 VHDL DID SIMULATION REQUIRE-
MENTS FOR STRUCTURAL MODELS

The VHDL DID specifies the level of fidelity required in
gate-level structural models in terms of two requirements on
the functionality of the models: models must support
logic-level fault modeling and test vector generation. These
requirements, combined with the requirement that the struc-
tural model accurately represents the physical hardware,
both in its hierarchy of components and in its interconnec-
tions, specify a level of fidelity that is required in the model.
These requirements are driven by a need to support the
maintenance of hardware through the development of diag-
nostic aids such as test vectors.

6-4.1 SUPPORT FOR LOGIC-LEVEL FAULT
MODELING

The VHDL DID requires gate-level structural models to
support logic-level fault modeling. The common approach
to logic-level fault modeling inserts faults into the VHDL
model of the circuit. These inserted faults represent failures
in the gates or their interconnections. For fault modeling to
represent physical faults effectively in particular intercon-
nects of a device, there must be a one-to-one correspondence
between the internal signals in the VHDL model and the
physical wires on the modeled printed circuit board or the
polysilicon or metal run in a VLSI circuit.

Copyright



 1995. IEEE. All rights reserved.

Figure 6-5. VITAL Model Organization (Ref. 12)

MIL-HDBK-62

6-10

6-4.2 SUPPORT FOR TEST VECTOR GENER-
ATION

The VHDL DID requires gate-level structural models to
support test vector generation. Typically, a test vector gen-
eration tool either works with a static representation of the
circuit and creates test vectors from the structure of the cir-
cuit or the test vector generator uses fault simulation to grade
the test vectors and assure that the test vector set is comple-
mentary (i.e., each test vector detects at least one fault not
detected by any others) and complete (i.e., the test vectors
detect a sufficient percentage of the faults that have been
modeled). In either case the tool must have a detailed and ac-
curate model of the physical interconnection of gate-level
primitives.

To make use of test vectors generated using a VHDL
structural model, the test vectors should be compatible with
Waveform and Vector Exchange Specification (WAVES)
(Ref. 13). Test vectors generated in the WAVES format can
be used directly by WAVES-compatible automatic test
equipment (ATE).

Test vectors are an important part of the documentation of
a hardware component. The VHDL DID requires test bench-
es for each VHDL module. One of the essential components
of a test bench is a collection of test vectors that apply stim-
uli to the circuit and define the expected response.

6-5 TIMING SPECIFICATIONS FOR
STRUCTURAL MODELS

The EIA approach to timing specifications allows three
types of delays in a model: input wire delay, output load de-
lay, and internal (pin-to-pin) delays. The input wire delay
and the output load delay are functions of the component
layout. Input wire delay is implemented using VHDL trans-
port delays. An input wire delay is associated with each in-
put port. Output load delays are associated with

output

,

buffer

, and

inout

 ports. Internal pin-to-pin delays are

defined in terms of the transitions in the state of output sig-
nals. Table 6-1 shows the names of the constants for the dif-
ferent possible transitions between signal strengths. The
values of these timing constants may vary among various
semiconductor fabrication technologies. In some cases a
specific port will not support particular transitions; thus a
subset of all of these constants would be applied.

Fig. 6-6 shows a VHDL implementation of a primitive
OR function that uses the input timing delays. Each input
port has its own process and a corresponding internal signal.
The process delays the input according to an input wire de-
lay function, which is based on the current and new values
of the input signal. The function computing this delay uses
atable lookup scheme to provide the delay values; the tables
are defined in the package body of the package containing
the function. As a result, it is easy to substitute different
package bodies that provide different times without reana-
lyzing the entire model. This approach has the problem that
the delays are not specific to the circuit design, but all sig-
nals using the same technology get the same delay. An alter-
native approach uses generics to describe the delays and has
the local processes select the appropriate generic delay using
a sequence of if statements (Ref. 14). This approach is well
suited to back annotation.

TABLE 6-1. INTERNAL (PIN-TO-PIN)
DELAY SPECIFICATIONS (Ref. 11)

TO
FROM

'U' 'X' '0' '1' 'Z'

'U'

NA* NA

txl txh txz

'X'

NA NA

txl txh txz

'0'

NA

tlx

NA

tlh tlz

'1'

NA

thx thl

NA

thz

'Z'

NA

tzx tzl tzh

NA

*NA = not applicable

MIL-HDBK-62

6-11

6-6 BACK ANNOTATION OF STRUCTUR-
AL MODELS

Detailed gate-level models are natural targets for back an-
notation. The extraction of a netlist from a gate-level VHDL
model is straightforward. The analysis of the netlist and cal-
culation of timing and electrical information from the netlist,
perhaps augmented with layout information, is a common
capability in modern CAE tools.

The primary emphasis of back annotation is on providing
more accurate timing and electrical information. The focus
for electrical information has been on the computation of ca-
pacitive loads on the output ports of components. This infor-
mation is then used to compute timing information.

6-6.1 BACK ANNOTATION OF TIMING IN-
FORMATION

Back annotation of timing information is one of the most
common ways to provide detailed timing for models, and it
can take advantage of the many timing analysis capabilities
of modern CAE tools.

Two methods of back annotation have been used for
VHDL models: external input files (Ref. 15) and generation
of configuration declaration combined with generics (Ref.
14). The VITAL specification (Ref. 12) uses an external file,
the standard delay file, to provide timing data generated ex-
ternally to the model. VITAL-compliant models provide a
rigid naming convention for timing-related generics in the
model. This convention allows the information in the SDF
file to be properly associated with the corresponding gener-
ic.

Figure 6-6. Extrinsic Timing Delay VHDL Model

MIL-HDBK-62

6-12

6-6.2 BACK ANNOTATION OF LAYOUT IN-
FORMATION

Back annotation of layout information can be particularly
important when VHDL models are used as the interface be-
tween high-level synthesis tools and layout tools (Ref. 16).
Typical layout information for VLSI circuits includes
lengths of runs, numbers of metal and polysilicon levels, and
area requirements. Similar information, such as the number
of levels of printed circuits, the number of chips on the
board, and the required board size, is used for printed circuit
board models. The layout tool can annotate the VHDL mod-
el with layout information. Synthesis tools can then use this
information. The designer can explore different ways of ex-
pressing the behavior in VHDL, which may result in differ-
ent synthesized models.

6-6.3 BACK ANNOTATION OF TESTABILITY
INFORMATION

Back annotation can be used to support testability analy-
sis. This form of back annotation may be useful for the de-
sign and optimization of the built-in test capabilities of a
hardware system. The appropriate metrics and BIT tech-
niques are discussed in par. 8-3 of this handbook. As part of
the work on WAVES, a general fault dictionary language is
being developed (Ref. 17). This language can be translated
into annotations for VHDL models. With this fault dictio-
nary defined, individual signals can be labeled with the ap-
propriate set of tests.

REFERENCES

1. DI-EGDS-80811,

VHSIC Hardware Description Lan-
guage (VHDL) Documentation

, Department of De-
fense, Washington, DC, 11 May 1989.

2. IEEE Std 1164-1991,

IEEE Standard Logic Package

,
The Institute of Electrical and Electronics Engineers,
Inc., New York, NY, October 1991.

3. IEEE Std 1076.3 (Draft),

IEEE Standard for VHDL
Language Synthesis Package

, The Institute of Electrical
and Electronics Engineers, Inc., New York, NY, Sep-
tember 1995.

4. D. Harel, “Statecharts: A Visual Formalism for Com-
plex Systems”, Science of Computer Programming

8

,
231-74 (August 1987).

5. C. Hoare, “Communicating Sequential Processes”,
Comm. of ACM 12

10

, 666-77 (August 1978).

6. P. M. Campbell, M. Vai, and Z. Navabi, “Implementa-
tion of IEEE Std 1149.1-1990 in VHDL”,

Using VHDL
in System Design, Test, and Manufacturing: Proceed-
ings of the Spring 1992 VHDL International Users’ Fo-
rum

, Scottsdale, AZ, May 1992, VHDL International
Users’ Forum, c/o Conference Management Services,
Menlo Park, CA.

7. P. Clemente, P. Runstadler, L. Specter, and K. Walsh,

“From Statecharts to Hardware FPGA and ASIC Syn-
thesis”,

Using VHDL in System Design, Test, and Man-
ufacturing: Proceedings of the Spring 1992 VHDL
International Users’ Forum

, Scottsdale, AZ, VHDL In-
ternational Users’ Forum, c/o Conference Management
Services, Menlo Park, CA.

8. M. Cohen, “Graphical Behavior Capture to VHDL”,

Using VHDL in Design, Test, and Manufacturing: Pro-
ceedings of the Spring 1992 VHDL International Users’
Forum

, Scottsdale, AZ, May 1992, VHDL International
Users’ Forum, c/o Conference Management Services,
Menlo Park, CA.

9. H. Tahawy, D. Rouquier, and D. Rodriguez, “Toward
Analog-VHDL: Some of the Problems for Mixed Sim-
ulation”,

Using VHDL in System Design, Test, and
Manufacturing: Proceedings of the Spring 1992 VHDL
International Users’ Forum

, Scottsdale, AZ, May 1992,
VHDL International Users’ Forum, c/o Conference
Management Services, Menlo Park, CA.

10. J. Dube and Z. Navabi, “Behavioral VHDL Transistor
Models”,

Using VHDL in System Design, Test, and
Manufacturing: Proceedings of the Spring 1992 VHDL
International Users’ Forum

, Scottsdale, AZ, May 1992,
VHDL International Users’ Forum, c/o Conference
Management Services, Menlo Park, CA.

11. EIA 567-A, VHDL Hardware Component Modeling
and Interface Standard, Electronic Industries Associa-
tion, Washington, DC, March 1994.

12. IEEE Std 1076.4-1995, IEEE Standard for VITAL Ap-
plication-Specific Integrated Circuit (ASIC) Modeling
Specification, The Institute of Electrical and Electronics
Engineers, Inc., New York, NY,  December 1995.

13. IEEE Std 1029.1-1991, Waveform and Vector Ex-
change Specification, The Institute of Electrical and
Electronics Engineers, Inc., New York, NY, 1991.

14. S. Turner, “Back Annotation for VHDL Structural
Models”, VHDL Windows of Opportunity: Proceedings
of Fall 1990 VHDL Users’ Group Forum, Oakland, CA,
October 1990, VHDL International Users’ Forum, c/o
Conference Management Services, Menlo Park, CA.

15. V. Berman and C. Ussery, “A Proposed Back Annota-
tion File Format for VHDL”, Using VHDL in System
Design, Test, and Manufacturing: Proceedings of the
Spring 1992 VHDL International Users’ Forum,
Scottsdale, AZ, May 1992, VHDL International Users’
Forum, c/o Conference Management Services, Menlo
Park, CA.

16. K. Kumar, M. Tovey, S. Sawant, and P. George, “Using
VHDL Beyond Synthesis”, Using VHDL in System De-
sign, Test, and Manufacturing: Proceedings of the
Spring 1992 VHDL International Users’ Forum,
Scottsdale, AZ, May 1992, VHDL International Users’
Forum, c/o Conference Management Services, Menlo
Park, CA.

MIL-HDBK-62

6-13

17. K. J. Parella and A. Wilmot, “Fault Detection and Lo-
calization”, Using VHDL in System Design, Test, and
Manufacturing: Proceedings of the Spring 1992 VHDL
International Users’ Forum, Scottsdale, AZ, May 1992,
VHDL International Users’ Forum, c/o Conference
Management Services, Menlo Park, CA.

BIBLIOGRAPHY

J. R. Armstrong, Chip-Level Modeling With VHDL, Pren-
tice-Hall, Inc., Englewood Cliffs, NJ, 1989.

J. R. Armstrong and F. Gail Gray, Structured Logic Design
With VHDL, Prentice-Hall, Inc., Englewood Cliffs, NJ,
1993.

J. Hallenbeck, J. Cybrynski, N. Kanopoulos, T. Markas, and
N. Vasanthavada, “The Test Engineer’s Assistant, A
Support Environment for Hardware Design for Test-
ability”, IEEE Design & Test of Computers, IEEE Com-
puter Society Press, Los Alamitos, CA, April 1989.

R. E. Harr and A. G. Stanculescu, Eds., Applications of
VHDL to Circuit Design, Kluwer Academic Publishers,
Norwell, MA, 1991.

IEEE Std 1149.1-1990, IEEE Standard Test Access Port and

Boundary Scan Architecture, The Institute of Electrical
and Electronics Engineers, Inc., New York, NY, May
1990.

S. S. Leung and M. A. Shanblatt, ASIC System Design With
VHDL: A Paradigm, Kluwer Academic Publishers,
Norwell, MA, 1989.

O. Levia and F. Abramson, “ASIC Sign-Off in VHDL”,
VHDL Boot Camp, Proceedings of the Fall VIUF, San
Jose, CA, October 1993, VHDL International Users’
Forum, c/o Conference Management Services, Menlo
Park, CA.

R. Lipsett, C. Schaefer, and C. Ussery, VHDL: Hardware
Description and Design, Kluwer Academic Publishers,
Norwell, MA, 1989.

Z. Navabi, S. Day, and M. Massoumi, “Investigating Back
Annotation of Timing Information into Data Flow De-
scriptions”, Using VHDL in System Design, Test, and
Manufacturing: Proceedings of the Spring VHDL Inter-
national Users’ Forum, Scottsdale, AZ, May 1992,
VHDL International Users’ Forum, c/o Conference
Management Services, Menlo Park, CA.

A. Rushton, VHDL for Logic Synthesis, McGraw-Hill Book
Co., Inc., New York, NY, 1994.

MIL-HDBK-62

7-1

7-1 INTRODUCTION

A key advantage of documenting hardware with very
high-speed integrated circuit (VHSIC) hardware design lan-
guage (VHDL) is that VHDL models of hardware systems
can be simulated. Previous chapters have discussed model
development; the emphasis of this chapter is on preparation
of VHDL models for simulation. The target audience of this
chapter is the user of a VHDL model, i.e., the person respon-
sible for verifying, validating, and using the model to sup-
port decision making. This chapter discusses five aspects of
the preparation of VHDL models for simulation:

1. The assembly and integration of a complete test
bench, including the test bench components and the unit un-
der test (UUT). This aspect includes the steps necessary to
ensure the interoperability (par. 7-2) of all of the compo-
nents of the test bench, particularly the UUT.

2. The development of test benches (par. 7-3) that pro-
vide the stimulation for the UUT and check to ensure that the
results produced by the UUT are correct

3. The development of test vectors (par. 7-4), which
are the stimulation data for the UUT and also may specify
the correct result values

4. The configuration of a complete test bench (par. 7-
5), including the test bench components and the UUT

5. The definition of simulator options (par. 7-6), which
control the execution of the simulation and the trace data
generated as a side effect. The choice of simulator options
can have a very significant effect on the time required for the
simulation, the amount of disk space required for the simu-
lation, and the kind of data available to support decision
making after the simulation has run, including decisions
about the validity of the model.

The VHDL data item description (DID) (Ref. 1) refers to
the required simulation capabilities and constraints that must
be considered when preparing a model for simulation. Sub-
par. 10.2.2 of the DID requires VHDL modules to produce
error messages detecting timing and electrical faults. Sub-
par. 10.2.5 of the DID requires VHDL modules to be accom-
panied by appropriate test benches. Subpar. 10.2.5.2 of the
DID requires test benches to be traceable to test plans for the
physical hardware, where possible. Subpar. 10.2.5.3 of the
DID requires test benches to be supplied for each VHDL
module of the hardware hierarchy.

7-2 INTEROPERABILITY OF MODELS

The preparation of a VHDL model for simulation may in-
volve assembling several component models so that when
the assembled model is simulated, it will produce valid out-
puts. This preparation requires that the component models
be interoperable. In this paragraph preventative methods
used to ensure interoperability and methods used to combine
components that are not directly interoperable are discussed.
Interoperability involves ensuring that component models
can be connected together through common type definitions
for signals connecting components and that components op-
erate in a common semantic environment. Essential to en-
suring a common semantic environment is ensuring a
consistent timing model for the entire environment.

Two scenarios for the use of VHDL models illustrate this
need. In the first scenario a prime contractor for a hardware
system has its subcontractors design the components of the
system and produce gate-level VHDL models of the compo-
nents as documentation of the designs. This prime contractor
also develops test benches and test vector sets to validate the
subcontractors’ designs and to ensure that the system works
properly as a whole. All of the models developed by the sub-
contractors must work together correctly. The component
models at the same level of abstraction must interoperate,
and the best approach to ensuring this interoperability is to
use a standard signal definition as described in subpar. 7-2.1.
If this is not possible, type conversion functions may be used
in some situations to provide interoperability. Use of type
conversion functions is described in subpar. 7-2.2.

For the second scenario the Government has developed
(or had developed for it) a high-level-of-abstraction test
bench and high-level-of-abstraction models of all of the
components of an existing hardware system that is going to
have some of its components upgraded. This test bench and
the models of the components that are not going to be up-
graded will be used for functional testing of gate-level de-
signs of the components that are going to be upgraded. This
test bench and the high level models of the components that
are not being upgraded must be interoperable with the gate-
level models of the components being upgraded. This sce-
nario is an example of a situation in which component mod-
els at different levels of abstraction must interoperate.

To allow for configuration of mixed-abstraction-level
models, the following approach is recommended:

CHAPTER 7
PREPARATION OF VHDL MODELS FOR SIMULATION

In this chapter the preparation of VHDL models for simulation is described, as is the process of configuring a
model from libraries of component descriptions. Emphasized are techniques that support the interoperability of
models in component libraries so they can be combined freely to provide mixed-abstraction-level models. The de-
velopment of test benches and test vectors to check the correctness and completeness of the model are discussed.
Also discussed are the use of parameterized timing models and the selection of timing options for simulation.

Thi d t t d ith F M k 4 0 4

MIL-HDBK-62

7-2

1. Define a standard set of data types for signals at the
lowest common level of abstraction needed. Standards for
the data types of signals are discussed in subpar. 7-2.1.

2. Define and acquire or implement a set of type con-
version functions that allow higher level of abstraction
components to communicate with lower level of abstraction
components and vice versa. Type conversion functions are
discussed in subpar. 7-2.2.

3. Even though the port data types for models of the
same component at different levels of abstraction are differ-
ent, maintain a one-to-one correspondence between the
number of ports in models at different levels of abstraction.
An example of this problem is discussed in subpar. 7-2.2.

4. When configuring the mixed-abstraction-level
models, use the type conversion components in configura-
tion declarations to remap interfaces at different levels of
abstraction so that the entire mixed-abstraction-level model
can be compiled and simulated without recompiling the
component models.

Configuring some mixed-level-of-abstraction models
may require more than just the use of type conversion in
port maps. For example, embedding a functional model
with no timing in a behavioral system model that is model-
ing the timing may require construction of a timing shell.
(Timing shells are described in subpar. 5-4.1.) The concept
of a shell may be required to configure a system model
when the VHDL component models at different levels of
abstraction do not have the same number of ports. For
example, if a high-level component model has a single port
for the address bus but a gate-level model of the same com-
ponent has separate ports for each of the bits of the address
bus, then a shell will be needed to interface the gate-level
model of this component with high-level models of other
components.

7-2.1 USE OF STANDARD SIGNAL DATA
TYPES

The VHDL language requires that the type of a port be
consistent with the type of the signal connected to the port,
i.e., all of the ports connected to a signal must be consistent.
A minimal requirement for interoperability between two
component models is the ability to connect the ports of the
two components with signals. Use of standard data types for
signals and ports is the most common approach to achieving
interoperability of VHDL models at the same level of ab-
straction. These standard data types are supported by stan-
dard semantics as implemented by resolution functions and
(for logical types) by definitions of the basic logic functions.
The standard for models at the gate level of abstraction is In-
stitute of Electrical and Electronics Engineers (IEEE) Stan-
dard 1164, the standard logic package (Ref. 2). The IEEE
1164 standard logic data type uses a VHDL package to en-
capsulate a data type definition, a resolution function, and
several common type conversion functions. The emerging
standard for register-transfer-level models is IEEE Std
1076.3 (Ref. 3), the logic synthesis package. These packages
provide type conversion functions for related data types and
thus support interoperability with other similar models.

These standards are described in more detail in Chapters 5
and 6.

7-2.2 TYPE CONVERSION FOR DIFFERENT
SIGNAL DATA TYPES

Type conversion functions provide a way to connect
VHDL models of components whose ports are not syntacti-
cally consistent. Type conversion functions are often needed
in mixed-level-of-abstraction models because the data types
for signals at different levels of abstraction are usually dif-
ferent.

Packages provide a natural mechanism for collecting type
conversion functions. An early step in the top-down design
of a computer is definition of the basic data types, e.g., char-
acter, integer, floating point, instruction, and address, that
are supported by the computer. The definitions of these data
types can be formalized in VHDL by creating a package de-
fining the formats of these data types and including the cor-
responding type conversion functions that convert these data
types into bit arrays. The IEEE synthesis package, IEEE Std
1076.3 (Ref. 3), provides a generic set of such definitions in-
cluding signed, sign-magnitude, and twos-complement for-
mats whose word size is parameterized.

Different types in the same network can be converted by
using type conversion functions in the port maps of compo-
nent instantiation statements or binding indications. This
technique is particularly useful for connecting structural
models whose components use different signal types. Type
conversion functions can also be used for variables in the pa-
rameter association lists of subprogram calls. This technique
allows a user to assemble high-level behavioral models from
subprograms that use different interface types.

To make use of type conversion functions in port-map-
ping statements, there must be a one-to-one correspondence
between the signals and the ports, even though the data types
of the signals and the ports are different. One interoperabil-
ity problem for mixed-level-of-abstraction models is repre-
sentation of busses at different levels of abstraction. High-
level models typically represent an entire bus as a single sig-
nal. At the highest level such a bus may resemble a VHDL
composite data type with fields for control, address, and da-
ta. These formats vary from one bus to another. Conversion
routines can be developed to convert the bus data type into
an array of standard logic values and to convert from an ar-
ray of standard logic values back into the bus data type. Fig.
5-10 shows a VHDL package body that includes conversion
functions that convert an integer value into an array of bit-
level values and back.

If simulating VHDL models in combination with other,
independently developed VHDL models is to be worth-
while, each model must process the full range of possible in-
put values including error states. If a model does not process
all possible inputs appropriately, the simulation of the whole
system will fail, or worse, the results of system simulation
will not be accurate. Therefore, if it is necessary to develop
type conversion functions, these functions should be tested

MIL-HDBK-62

7-3

to ensure that if they aggregate lower level of abstraction
data types, they accurately handle cases in which the value
of a lower level of abstraction data type is an error state. For
example, if one bit of an address field of a bus has an

'X'

value, then what is the aggregate value of the bus? If the def-
inition of the bus includes parity bits, then the existence of
an

'X'

 value may not propagate through the type conver-
sion. In an algorithmic-level model the parity decoding may
not be modeled. If this algorithmic-level model of one com-
ponent is connected to a register-transfer-level model of a
bus interface unit (BIU), the effects of parity decoding
would have to be handled by the type conversion function.
The purpose of this example is to point out the potential dif-
ficulties of error propagation in mixed-level-of-abstraction
models and the roles that type conversion functions may
have to play in such models, not to encourage the use of type
conversion functions to model hardware functions.

7-2.3 INTEROPERABILITY OF TIMING
MODELS

Subpar. 10.2.3.2 of the VHDL DID requires that VHDL
models provide accurate timing information in the form of
signal delays at the output ports of all VHDL entities. This
requirement implies that VHDL models must have a com-
mon timing framework. If there is a common timing frame-
work, different architecture bodies for components of a
structural model can be interchanged and still provide accu-
rate timing information for the structural model.

VHDL includes a predefined set of time units as part of a
built-in physical data type, which is discussed in subpar.
3-6.2. VHDL converts time units to a common base so that
different time units can be intermixed freely. In high-level
models the time delay for an operation may be a complex
computation based on parameters such as clock speed, clock
cycles per instruction, and word size. If models are being
combined into a system model for simulation, it is important
to verify that the same parameters are being used in the same
way in all the components. For example, are word sizes stat-
ed in terms of bits or bytes?

As described in Chapter 6, the VHDL initiative toward
application-specific integrated circuit (ASIC) libraries (VI-
TAL) package (Ref. 4) provides a standard representation
for timing and back annotation for gate-level models. VI-
TAL is consistent with the IEEE Std 1164 standard logic
package (Ref. 2). Electronic Industries Association (EIA)
567 (Ref. 5) includes a VHDL package that describes a stan-
dard timing view. This timing view relates the physical char-
acteristics of the hardware and the implementation
technology of the hardware to delays for logic functions.
This standard is consistent with IEEE Std 1164.

7-2.4 PORTABILITY REQUIREMENTS FOR
INTEROPERABLE VHDL MODELS

A critical Government requirement is that VHDL models
be portable to different simulation environments. This re-
quirement allows contractors to select the most competitive

computer-aided engineering (CAE) system for their needs
and allows the Government to simulate models that may
have been developed on a number of CAE systems. Also this
requirement allows the Government to provide selected
VHDL models to contractors as leaf modules or as specifi-
cations for redesign of existing systems. Sharing of models
will be practical only if the models are portable to any envi-
ronment that may be used by a contractor.

Although the VHDL DID does not have any explicit port-
ability requirements, several of its requirements are de-
signed to ensure portability of models from one simulation
environment to another. Par. 10.3 of the DID requires that
files containing VHDL source code delivered to the Govern-
ment be in full compliance with the current IEEE VHDL
standard (Ref. 6). Most CAE systems support VHDL IEEE
Std 1076 fully. Some CAE systems have specific subsets
that can be mapped to their proprietary, high-performance
simulator or silicon compiler. A few vendors have even ex-
tended VHDL to add features or capabilities. These exten-
sions, however, are not portable and must not be used in
documentation delivered to the Government. A contractor
may wish to restrict a model to a specific subset of the stan-
dard that is sufficiently expressive and is compatible with
the subsets required for proprietary tools in the contractor’s
tool suite. If the contractor is importing VHDL models, the
design engineer needs tools that support the IEEE VHDL
standard fully. A superset of standard IEEE VHDL should
never be used.

One portability issue is data. The most portable way
to represent data is to use American standard code for
information interchange (ASCII) numbers and use the
functions in the VHDL

TEXTIO

 package for input/out-
put (I/O). However, this approach may require much
more space and execution time than formatted I/O of
VHDL composite data types. Therefore, to achieve port-
ability of the ASCII representation and the speed and
space reductions of formatted I/O, the ASCII data may
be provided along with a conversion function that pro-
duces the equivalent data ready for formatted I/O.

The VHDL model verification procedure (Ref. 7) has
been developed to establish guidelines and procedures to en-
sure that VHDL models are compliant with the VHDL DID.
These procedures involve inspection of the package re-
ceived from the contractor as well as compilation and simu-
lation of the model. (Ref. 8)

7-3 TEST BENCH DEVELOPMENT

The VHDL DID uses a test bench to provide the external
stimuli for a model and to collect and evaluate the responses
generated by the model.

“A VHDL test bench is a collection of VHDL modules
which apply stimuli to a module under test (MUT), compare
the MUT’s response with an expected output, and report any
differences between observed and expected responses dur-
ing simulation.” (subpar. 10.2.5.1 of Ref. 1)

MIL-HDBK-62

7-4

A VHDL model delivered to the Government must be ac-
companied by a test suite, i.e., a collection of operating con-
dition specifications, test benches, and associated test
vectors that, taken together, test the VHDL model of the
hardware under a variety of conditions. The same test bench
can be configured to use different sets of test vectors or op-
erating conditions to achieve different test purposes. The test
plan for the model should specify these configurations.

The VHDL DID contains the requirements of the con-
tents of the test suite. Subpar. 10.2.5.3 of the DID requires
test benches to be provided for each VHDL module in the
model hierarchy. Subpar. 10.2.5 of the DID requires that
VHDL modules written and delivered to serve as part of
one or more test benches be clearly distinguished from
VHDL modules that represent part of the hardware design.
Guidelines for tailoring the VHDL DID are discussed in
subpar. 4-3.4.2.

MIL-HDBK-454 (Ref. 9) recommends additional
requirements for the test benches and test vectors delivered
to the Government. The use of VHDL to document ASICs
in accordance with the DID is recommended in subpar.
4.5.1. These models should allow test vector generation and
fault isolation to the integrated circuit pins. Subpar. 4.5.3
states that the same level of VHDL modeling for qualified
integrated circuits in board-level applications should be
used. Subpar. 4.5.4 of Guideline 64 of MIL-HDBK-454
advises the use of the Waveform and Vector Exchange
Specification (WAVES) (Ref. 10) for documentation of test
vectors.

The VHDL model verification procedure (Ref. 7)
describes the procedure the Government can use to verify
that a model meets all requirements.

7-3.1 WAVES

WAVES (Ref. 10) is designed to describe highly struc-
tured sets of test vectors, discrete event simulator trace out-
put, and automatic test equipment (ATE) input. WAVES is
designed to facilitate exchange of this information between
design environments and automatic test equipment. Thus
test vectors developed to validate VHDL models can also be
used to drive the test equipment used to validate the hard-
ware. WAVES is a subset of VHDL and uses only the se-
quential statements. WAVES has standardized on two levels
of test benches: Level I and Level II. WAVES Level II is a
subset of VHDL in that it does not allow arbitrarily complex
types as the types of signals. WAVES Level I is a subset of
WAVES Level II. Although WAVES is a subset of VHDL,
the value of an event is given more structure in WAVES
than in VHDL, so WAVES is more restrictive.

WAVES is built around two key concepts: the concept of
an event and the concept of a waveform. As in the VHDL
concept of events, a WAVES event has an associated time,
signal, and value. The time of a WAVES event is the time at
which the value of the signal changes.

The value of a WAVES Level I event has four separate
components: a state, a strength, a direction, and a relevance.
The state is the logic value of the signal; it is either low, mid-
band, or high. The strength is the ability of a driver to force

the signal to be resolved to the driver’s state regardless of
conflicting states from other drivers. The possible values for
the strength of an event are disconnected, capacitive, resis-
tive, drive, and supply. These values are ordered—discon-
nected is the weakest, and supply, the strongest. WAVES
does not specify a physical interpretation of the strength val-
ues, i.e., WAVES does not define the impedance levels as-
sociated with particular strengths. The direction of an event
denotes whether the event represents a stimulus to the MUT
or an expected response from the MUT. The relevance is
used to indicate the significance of the event to the simula-
tion. The possible values for the relevance of an event are re-
quired, predicted, observed, and unknown. A required event
is one that is part of the specification and that the MUT must
match in order to meet the specifications. A predicted event
is a response that has been calculated or expected as part of
the specification, but is not required of the MUT. An ob-
served event is a response from a MUT that is not part of the
specification for the behavior of the MUT; it is not a predict-
ed or required event. Other events are unknown events; typ-
ically, an unknown relevance would be associated with a
don’t care event. Each of the four components of the value
of a WAVES Level I event may have one of two additional
values: unspecified or unknown. Unspecified is typically
used to indicate that the value of an event is missing from the
waveform specification but could be determined from the
MUT, whereas unknown is used to indicate that the value
cannot be determined, e.g., an unstable output from a MUT.
Unspecified may be used to indicate that an input to a MUT
has not been initialized.

WAVES uses two different methods to specify times: de-
lay time and event time. Event time is defined as an offset
from either the current time or some specified event, a delay
time is defined as an offset from the previous event on a
specified pin, such as the clock. In WAVES the time of a re-
sponse event may have an associated tolerance. A response
time may be specified as a nominal response time, a lower
tolerance on a response time, or an upper tolerance on a re-
sponse time. Just as it allows a tolerance in the timing of a
response event, WAVES allows a tolerance in the value of a
response. In particular, WAVES allows a set of values to be
associated with a single response event. Sets of event values
may be used to represent uncertainty and to aid mapping be-
tween different state/strength systems.

A WAVES waveform is a sequence of time-ordered
events across a set of signals. A waveform can specify both
stimulus and response values. A waveform describes the
testing of a MUT in that if the stimuli in the waveform are
applied to the MUT, the responses generated by the MUT
are associated with the responses of the waveform. A VHDL
implementation of a WAVES test bench supports simulation
of a VHDL model of the waveform. Such a simulation can
verify that the MUT responds to the stimuli as the waveform
predicts.

A waveform in WAVES is usually organized in terms of
slices, as shown in Fig. 7-1. A WAVES slice is a specifica-

MIL-HDBK-62

7-5

tion of a portion of a waveform that occurs in a fixed period
of time across all signals of the MUT. Different slices of a
waveform may have different periods of time, but the period
of time during a slice is the same for all signals of the MUT.
In Fig. 7-1 the first slice has a period of 450 ns. A frame is
the set of events defined within a slice for a single signal.
Frames may be used like macros to capture multiple events
and assign them to a single pin code. Six frames are shown
in Fig. 7-1 for the six pins on the MUT. Five of the frames
have two events defined in them, each of which specifies a
new logic value and a time (in terms of the offset from the
start of the frame).

The period of a slice is the time from the beginning of the
slice to the end of the slice. The times for events occurring
within a slice are defined as offsets from the starting time of
the slice. A slice may contain events that are defined after
the end of its period but never before the beginning of its pe-
riod. A waveform is constructed of concatenated slices so
that the end of the period of one slice is the beginning of the
period for the succeeding slice.

WAVES provides VHDL procedures and types used to

build events, frames from events, and slices from frames.
These procedures and types are specified in the WAVES
standard package.

A WAVES data set consists of a header file, WAVES
files (which contain WAVES-specific VHDL design units),
and external files (which contain test vector data in ASCII
format). A WAVES data set includes a package that defines
a procedure which generates a waveform. A waveform is
generated by building slices, applying those portions of slic-
es with direction

stimulus

 to the MUT, and then sam-
pling the MUT responses to those portions of the slices with
direction

response

. Slices provide a way to build hierar-
chical test pattern descriptions that are consistent with mod-
ern ATE.

Fig. 7-2 shows how the three components of a WAVES
data set interact with the module under test. The WAVES
comparator function, part of the WAVES data set, is imple-
mented in VHDL and is executed under the control of the
waveform generator procedure (WGP). WAVES uses three
operations in the WGP to interact with the waveform: apply,
tag, and match. The apply operation adds events to the wave-

C. R. Unkle and W. G. Swavely



 1994 IIT Research Institute

Figure 7-1. Slice and Frames of a Waveform (Ref. 11)

MIL-HDBK-62

7-6

form and advances the current time. Events in the waveform
with times less than the current time are unchangeable, but
events with times in the future are considered pending and
will be superseded if an event is applied with an earlier time.
The tag operation adds a textual annotation to the waveform
at the current time. The match operation samples the actual
response of the MUT, compares it with the expected re-
sponse (as specified in the slice by events with direction re-
sponse), and produces a flag value of true or false depending
upon whether the response exactly matched one of the val-
ues in the value set for the event labeled

response

.
A primary function of WAVES is to provide a standard

format for describing all information relevant to test patterns
and to extract appropriate views of that information in forms
that can be used either by the model of the MUT or by ATE.
As shown in Fig. 7-2, the WAVES packages can import test
vectors in a common format from one or more optional ex-
ternal files and then translate this information for use as
stimuli for the MUT and for comparison with MUT respons-
es. The external files are optional because a waveform gen-
erator procedure does not have to read its data from an
external file. A major part of the design of a WAVES data
set is determining the VHDL type definitions and function
definitions that correctly implement these views, and much
of this effort is reusable if the definitions are packaged ap-
propriately.

A WAVES data set is implemented as a collection of
VHDL packages, VHDL design entities, and external files.
To support portability of a WAVES data set, a data set is or-
ganized as a collection of files. Each WAVES file contains
one or more packages, but all packages in the same file are

analyzed into the same library. In general, WAVES declara-
tions may be split up into multiple files. In this way, differ-
ent declarations can be analyzed and stored in different
libraries.

Every WAVES data set must contain at least five declara-
tions:

1.

Logic Value

. An enumerated type naming all possi-
ble signal values that can appear in a waveform, i.e., can be
either applied to the external inputs of the MUT or sensed as
external outputs of the MUT. In Level I WAVES each port
of the MUT is assumed to have values that range across an
enumerated type.

 2.

Value Dictionary

.

A function that translates the
logic value names into event values

 3.

Pin Codes

.

All of the characters used in the MUT
to describe the value of any signal in the test bench at any
time and contained in a string. Pin codes are used in external
WAVES files and in table lookups in the WAVES functions
and procedures.

4.

Test Pins

. Values of an enumerated type naming all
signals to which the waveform will be applied. In WAVES
the term “pin” is used to refer to any external signal of the
MUT that is to be stimulated or compared with known out-
puts.

5.

Waveform Generator Procedure

.

 The procedure
that generates a waveform, annotates the waveform, and
monitors the response of the MUT to the waveform. A
WAVES data set may have more than one waveform gener-
ator procedure.

A WAVES data set must contain a minimum of three
files: a header file and two files containing declarations and

Figure 7-2. Dependencies Between WAVES Packages

MIL-HDBK-62

7-7

function definitions. Within a single WAVES data set there
may be multiple files, each containing a different waveform
generator procedure. The names of the WGPs may be the
same, but in this event the WGPs must be placed in different
libraries. There may also be one or more external files con-
taining test vector sets. These vectors are stored in a com-
mon format, as defined by WAVES.

The order of analysis of the WAVES packages is deter-
mined by the dependencies of the objects in the packages.
Fig. 7-3 shows dependencies among and between the pack-
ages. Packages are indicated by rectangles, and the name of
the package appears in a box in the upper left-hand corner.
Other names in the rectangle are names of objects or types
declared in the package. These latter declarations are the
source of the dependencies. The lists of objects in packages
shown in Fig. 7-3 are not necessarily complete; other ob-
jects, subprograms, or types may be declared in these pack-
ages. A trapezoid represents a VHDL procedure; the name is
inside the trapezoid.

7-3.1.1 Standard WAVES Packages

The standard WAVES packages provide a collection of
functions used to construct waveforms. They also include
the different variations on the apply, tag, and match func-

tions. There are three standard WAVES packages:

WAVES_STANDARD

,

WAVES_INTERFACES

, and

WAVES_OBJECTS

.

WAVES_STANDARD

 is stored in its own library, which is
also called

WAVES_STANDARD

. This package provides def-
initions for WAVES constants, data types, and functions
that do not change between WAVES data sets.

The

 WAVES_OBJECTS

 package contains declarations
of the some of the basic objects used by WAVES, including

delay_time

,

time_data

,

file_slice

,

pinset

,
and

pin_code_string

. The

time_data

 object holds a
frame set array and is a parameter to the apply operation
used by WGPs.

The

WAVES_INTERFACES

 package contains declara-
tions of the other objects used by WAVES. Its declarations
include events and event values.

The

WAVES_OBJECTS

 and

WAVES_INTERFACES

packages must be analyzed using information that is specific
to both the MUT and the required test outputs, e.g., to the
types of operations supported by a particular ATE. The user
must edit these design units to include the appropriate con-
text clauses, i.e.,

library

 and

use

 clauses. Dependencies
of these design units are shown in Fig. 7-3; a library struc-
ture is shown in Fig. 7-4.

Figure 7-3. Partitioning of WAVES Packages into Libraries

MIL-HDBK-62

7-8

7-3.1.2 Local WAVES Packages

WAVES files may be reused at two different levels: the
source code form of a WAVES package may be reused, or a
WAVES package may be analyzed once and then referenced
by multiple WAVES header files. The

WAVES_OBJECTS

package must be reanalyzed whenever the MUT module
description changes because it depends upon the test pins
description. However, this package may be reused without
reanalysis if the external interface of the MUT does not
change. The

WAVES_STANDARDS

 package is an example
of a package that is analyzed once and then reused without
reanalysis.

To make the most efficient use of a WAVES test bench,
the user must carefully plan the partitioning of the declara-
tions into packages and WAVES files in a way that mini-
mizes the amount of reanalysis. Fig. 7-4 shows a
partitioning of these declarations into libraries and pack-
ages. This partitioning assigns packages with similar rea-
sons for change to the same library. The ATE library
contains the pin codes definition, which is derived from the
requirements of the ATE equipment. The ATE library also
contains the WPG specific to that ATE structure and the
WAVES packages that are dependent upon the pin code
information. Different ATE systems require different ATE
libraries if the pin codes for the ATE systems are different.
If no ATE device has been selected, an ATE library should

be constructed using whatever pin codes make sense to the
user. When an ATE system is chosen, this library should be
updated. The

Local_Standard

 library contains the
logic value and value dictionary declarations because those
are likely to be used across several MUTs. For example, the
local standard library could include logic value and value
dictionary definitions that are appropriate to the IEEE Std
1164 logic package.

7-3.1.3 WAVES Test Suites

Several different WAVES packages must be developed
for a specific module and a specific type of test equipment.
The module-specific declarations include the test pins and
the logic values. These declarations and their partitioning
into packages are shown in Fig. 7-4.

Two sets of files are specific to a particular MUT and to
a particular test case: the WAVES header file and the exter-
nal test vector files. Each WAVES data set has a unique
header file. The header file identifies the data set, describes
the other files in the data set and their intended use (includ-
ing the target library for VHDL packages), identifies VHDL
libraries and packages that already have been analyzed for
use in the test bench, and defines the order of analysis of the
VHDL source code files comprising the WAVES test suite.
Fig. 7-5 shows an example header file.

Figure 7-4. Library Structure of WAVES Packages

MIL-HDBK-62

7-9

The first part of the header file identifies the data set by
brief text strings associated with the following WAVES
keywords:

1.

Title

.

This field provides a brief description of the
data set. Different releases of the same data set normally
keep the same title.

2.

Author

. This field contains the name of the organi-
zation and the name of the individual or individuals within
the organization who developed the data set. It defines the
responsible organization and specifies one or more points of
contact who are the best sources of technical information
about the data set.

3.

Date

. This field contains release information for
configuration management purposes. The data should
uniquely distinguish this release from all other releases of
the same data set.

4.

Origin

.

This field is used to indicate the source of
the model of the MUT and also “soft standards” that have
been agreed upon by the producers and users of a WAVES
data set. The DoD contracting agency and the contractor
should agree in advance on what information is allowed in
the origin field of a WAVES data set delivered to the Gov-
ernment.

5.

Device Id

. The device identification field identifies
the target MUT of the data set.

These fields are required. After the identification section
of the header file, the WAVES files are specified in the order
in which they are to be analyzed. A WAVES header file can
specify several different types of files and different uses of

those files. WAVES file name commands are included in the
header file to associate the name of a WAVES file in the host
operating system and the target VHDL library for all pack-
ages contained in the WAVES file. WAVES units are used
to refer to standard WAVES packages. WAVES unit com-
mands are included in the header file to indicate the order in
which standard WAVES packages are to be analyzed and to
indicate the VHDL library in which the analyzed package
should be stored. A WAVES header file may also include
VHDL

library

 and VHDL

use

 clauses. These clauses
provide the context for analyzing later packages, and reduce
the time and effort required to prepare the data set for simu-
lation. A WAVES header file may also include references to
external files. External file name commands associate a log-
ical name for the file used in the WAVES packages with the
host operating system name for the file.

A WAVES external file uses a standard format for test
vectors to be stored as data files. The WAVES external file
format is very flexible. Comments in an external file are de-
limited at the start by a ‘%’ and at the end by the end of the
line. An external file contains a sequence of WAVES slices.
WAVES slices are separated by semicolons. A WAVES
slice contains four fields. The description of a WAVES slice
in an external file consists of a subset of the first three of
these fields. In an external file, the fields are separated by a
colon. These four fields are possible:

1.

codes

. The codes field is typically used to hold a pin
code string for an apply operation.

2.

fs time

. The file slice time is typically used to define
the period for a slice.

Figure 7-5. Example WAVES Header File

MIL-HDBK-62

7-10

3.

fs integer

. The file slice integer is typically used to
select a slice period from an array of possible slice periods.
For example, the file slice integer can be used to index into
an array of slice times with tolerances for output ports.

4.

end of file

. The end of file field is a Boolean flag that
is set to true if the last attempt to read a slice from the exter-
nal file caused an end of file condition. When the end of file
flag is true, all other fields are invalid.

Typically, a WAVES slice is used to drive all of the MUT
input ports at the same time. This is the approach that is tak-
en in the external file shown in Fig. 7-6.

7-3.2 DOCUMENTATION OF TEST BENCHES

Subpar. 10.2.5.2 of the VHDL DID (Ref. 1) requires all
test benches to be cross-referenced to physical hardware test
plans, specifications, and drawings, when possible.

The WAVES header file format, as discussed in subpar.
7-3.1.3, specifically addresses several of these DID require-
ments. The device ID field links the test bench to the identi-
fication of the physical device whose model is being tested.
If the waveform generator procedure is designed for a spe-
cific ATE system and the WGP is stored in an ATE-specific
library, the header file listing the file dependencies will indi-
cate the ATE system used to test the physical device. Fur-
thermore, WAVES allows the same external file to drive
both the VHDL test bench and the test of the physical device
by the ATE. Thus configuration management of the external
files and appropriate naming conventions for external
WAVES files provide another link between VHDL simula-
tions and physical device simulations. The origin field may
be used to link a specific test as defined by the WAVES
header file to a specific physical hardware test plan. The ref-
erence to the MUT VHDL description should be specific
enough to link the VHDL test to a specific version of the
physical hardware, as modeled by a specific MUT VHDL

description.
Subpar. 10.2.5 of the VHDL DID (Ref. 1) requires all

VHDL test benches to be clearly distinguished from VHDL
modules that represent the hardware design. Recommended
file-naming conventions are provided in Chapter 9.

A hierarchical directory structure should be used to orga-
nize the source code and auxiliary files. There should be a
separate directory for each component, and all files relating
to a specific component, such as alternative architecture
bodies, test benches, auxiliary files of test vectors, and con-
figuration declarations, should be stored in the directory for
that component.

7-4 TEST VECTOR DEVELOPMENT

Test cases for VHDL models fit into two categories. The
first category, which is supported by WAVES, specifies the
tests needed to demonstrate the functionality of the physical
device represented by the VHDL model. The second catego-
ry of tests demonstrates that the VHDL model also meets the
requirements of the DID, e.g., by providing error messages
upon detection of timing and electrical faults. This category
of test is not supported by WAVES. Although the contractor
is responsible for test vectors that test both the functionality
of the model and the physical hardware, the contractor, an
independent model verifier, or the Government is responsi-
ble for creating test vectors that verify that the VHDL model
complies with the properties required by the VHDL DID.

7-4.1 BEHAVIOR TESTS

Subpar. 10.2.5 of the VHDL DID (Ref. 1) requires that
the test vectors supplied with the test bench test the intended
behavior of the MUT. These functional tests must be equiv-
alent to the physical tests performed on the physical device.
These behavior tests should verify that the models act the
same as the physical device on startup, on recovery from er-

Figure 7-6. Example WAVES External File

MIL-HDBK-62

7-11

rors, prior to an enable, and during a restart. The test vectors
developed to test the behavior of a VHDL model should de-
termine whether the VHDL model omits any functions spec-
ified for the hardware. The test vectors should also
determine whether the VHDL model incorrectly implements
any specified functions. These tests verify that the results
produced by the model are consistent with the specification
for the physical hardware and should not differ significantly
from the results produced by the physical hardware. The ac-
ceptable tolerance for deviation between the timing and val-
ues of responses generated by the MUT and the expected
responses should be specified as part of the test sets. For ex-
ample, WAVES allows don’t care as the value for expected
responses and allows tolerances to be specified for the tim-
ing.

Subpar. 10.2.3.3 of the VHDL DID requires that the val-
ues of signals depending upon the structure of the hardware,
e.g., a scan path, be absent from behavioral bodies. A recom-
mended approach to describing such functions in a behavior-
al model is that the behavioral body should respond with a
note-level assertion indicating that the structure determining
the signal value is not implemented in the model when the
system is placed in a mode in which valid output is expected
on a structurally dependent output signal and that any valid
signal value should be generated. This approach allows
functional tests of the processing of structurally specific BIT
data but does not provide feedback on quality measures of
the BIT implementation, such as coverage. This approach
also allows tests of the diagnostic modes of a system to be
developed early in a top-down development process and re-
fined as the design detail is added.

For structural models the behavior tests should test that
the diagnostic and test modes of the system, such as scan
paths, have been implemented correctly. If structural models
are available, it should be possible to verify estimates of
BIT, such as coverage. In a top-down development process
the structural models are not available until late in the devel-
opment process.

7-4.2 PROPAGATION DELAY TESTS

It is strongly recommended that a test bench submitted to
the Government include test vectors that test the intended
propagation delay from the inputs to the outputs of the
MUT. Propagation delay tests must provide information on
best-, worst-case, and nominal delays to ensure the design
will operate as required throughout the operating range.
These test vectors and their associated test benches should
provide mechanisms to compare the delays reported by a
VHDL simulation with the delays measured on a physical
device. For simple devices these test vectors can be created
by hand. For example, the worst-case timing for a ripple-car-
ry adder occurs when the carry signal ripples through all
stages. Similarly, the best-case timing occurs when no carry
occurs between any stages. Critical path analysis may be
used for more complex systems to determine the best- and
worst-case times. Sensitivity analysis may be required to de-

termine how changes in the input test vectors change best-
or worst-case delay times. Nominal delays may require
some statistical analysis of input signal patterns.

As noted in subpar. 5-4.4, variations in environmental
factors such as power, voltage, and temperature should be
considered when defining best- and worst-case delay times.
If best-case, nominal, and worst-case delay times are defined
for a range of environmental conditions, the tests should
check the extremes of the ranges. If best- and worst-case de-
lay times are dependent upon specific environmental condi-
tions, the test bench that tests these times must specify the
appropriate environmental factors. To obtain tests that re-
flect best- and worst-case delay times, it may be necessary
to run tests on several combinations of environmental con-
ditions. For example, the best-case times may occur when
the component is run in a low-temperature, high-voltage en-
vironment. The worst-case times may occur when the com-
ponent is run in a high-temperature, low-voltage
environment. From these tests, test vectors for best- and
worse-case timing that reflect a range of environmental con-
ditions can be extracted.

Propagation delay tests for high-level models of program-
mable electronic systems depend not only on the physical
environment but also on the software executing on the hard-
ware (Ref. 12). Performance models, described in subpar. 2-
2.2.1, are often used to compute propagation delays in these
types of systems. Very often mixed-level-of-abstraction
models are used. (The processors are modeled at a very ab-
stract level, and the system interconnection hardware is
modeled at a detailed level.) It is very difficult to obtain test
data to drive propagation delay tests for high-level models,
and it is difficult to verify that the best- and worst-case times
are what they are claimed to be. Annotation of test data ex-
plaining why a certain test configuration and input data pro-
duce worst-case timing is an important part of the
documentation. An important source of such test data is tests
of previous systems or regression test data that capture se-
quences of events that have caused trouble during integra-
tion and test of the system. If such data is obtained, the
source of the data and the reason for inclusion in the test set,
e.g., reference to a specific problem report, should be docu-
mented.

7-4.3 ERROR CONDITION TESTS

A complete test suite must test that the model responds
appropriately to invalid usage. Error condition tests promote
effective reuse of the components by warning the user of the
model if the planned use violates the operating constraints of
the model.

Subpar. 10.2.6 of the VHDL DID (Ref. 1) specifies the
minimum contents but not the format of error messages.
Each error message must identify the requirement or con-
straint that has been violated and the name of the VHDL de-
sign unit in which the error occurred, i.e., where the
violation was detected. In some cases static analysis of the
VHDL code may be sufficient to determine whether a model

MIL-HDBK-62

7-12

meets these conditions. In other cases, tests may be required
to determine whether error messages provide this informa-
tion. For example, a static analysis can determine whether an
assertion statement in a design entity interface identifies its
enclosing design entity. However, a test may also be re-
quired to determine whether the assertion statement correct-
ly identifies the component instance in which the error
occurred.

7-4.3.1 Invalid Operating Condition Tests

Subpar. 10.2.2.2 of the VHDL DID (Ref. 1) requires that
external error conditions on a MUT, such as electrical con-
straint violations and timing violations, should be reported.
If the operating conditions are static and are not changed by
elaboration of the VHDL model, a static analysis should be
sufficient. However, if the operating conditions for an entity
are determined by calculations made during elaboration,
e.g., if the operating conditions are computed from generics,
tests may have to be performed to determine whether invalid
operating conditions are checked by the model. If, however,
the operating conditions vary as a function of the test inputs,
the test vectors will have to be more complex. In either of
these cases it is important that the test vectors used to pro-
duce reports of invalid operating conditions be linked to the
configuration declaration (or equivalent documentation),
which specifies the generics that cause the error message.

7-4.3.2 Invalid Input State Tests

VHDL models should be robust enough to respond appro-
priately to invalid states of input signals. The VHDL model
verification procedure (Ref. 7) recommends tests of the abil-
ity of the VHDL model of the MUT to respond to invalid in-
puts. These tests must be either delivered with the model or
developed by the verifier. Invalid states of input signals
would include error values associated with the input data
types. For example, the

'U'

 and

 'X'

 values of the IEEE
1164 (Ref. 2) standard logic package can be considered in-
valid input states. A set of test vectors that contains invalid
input values for the MUT should be provided. These tests
are part of ensuring that a VHDL model of a component is
interoperable with VHDL models of other components.
They are also used to ensure that invalid inputs are properly
propagated through the model.

Invalid input state tests are particularly important if the
model of the component will be used in a mixed-level-of-ab-
straction model of a system, in which these tests can be used
to verify the robustness of the type conversion functions. In
particular, if the type for a port can express unknown, unini-
tialized, or don’t care values, the model must react appropri-
ately to those values either by issuing a warning or an error
message or by propagating the error value through the sys-
tem. If error values are not properly propagated, the user
may not be able to isolate design faults in systems using the
MUT as a component.

It is a good design practice to provide models with the ca-
pability to warn the user when invalid inputs occur. If the in-
valid input indicates a design error, these warnings can be

used to isolate the error to another component. However,
sometimes an assertion statement on an input port may pro-
duce a false alarm. If an invalid value occurs on an input port
that is currently a don’t care input to the function of the com-
ponent, then an error message produced at the input port
would be a false alarm. In such situations the user should be
able to mask these messages by setting a simulation option.

IEEE Std 1164 (Ref. 2) extends the basic logic values of

'0'

 and

 '1' to include additional signal states, such as
'X' for unknown and 'U' for uninitialized. The definition
of this set of logic values is shown in Fig. 3-7. The standard
also includes definitions for all of the basic logical operators
that cover propagation of error inputs including unknown,
uninitialized, and don’t care values. Fig. 3-12 shows how the
logical AND function has been extended to handle invalid
signal states. A logic state of 'U' for one input propagates
to the output in every case except when the other input is
'0'. Similarly, a logic state of 'X' for one input propagates
to the output in every case except when the other input is
'0' or 'U'. Models built using these logical operation def-
initions handle any standard logic input consistently. The
IEEE Std 1164 also includes a definition for a resolution
function that handles error propagation as described in sub-
par. 3-2.3.2.

Using IEEE Std 1164 types is an effective approach to de-
tect invalid input states in gate-level models. To support use
in mixed-level-of-abstraction models, high-level models
must also be able to deal with unknown, uninitialized, and
don’t care inputs by either generating an error message or
propagating appropriate values to the output ports. For ex-
ample, consider a test bench for a bus interface module
(BIM). Suppose that the bus consists of three subsignals: a
control signal, an address signal, and a data signal. During
arbitration for control of the bus (which involves exchanges
of information on the control signal), the BIM may receive
and generate don’t care values on the data signal. When an
input data signal arrives with an unknown value for one bit,
the BIM should not propagate this value to the control sig-
nal, but it may generate an error message to indicate that it
has received a bad input signal. However, this unknown val-
ue may not represent a design error, so it should be possible
for the user to turn off the error message. On the other hand,
during data transmission the occurrence of an unknown val-
ue on the data signal does represent an invalid input and
should cause an error message and propagation of the error
value across the bus. This example indicates that error prop-
agation is data dependent, which means that test data are re-
quired to ensure that invalid values are propagated when
they should be propagated and that the model does not gen-
erate false alarms by propagating invalid values when it
should not.

7-4.3.3 Timing Constraint Violation Tests
VHDL models delivered to the Government should be

tested to ensure that they create error messages whenever
timing violations occur. This testing can be performed at two

MIL-HDBK-62

7-13

levels: by statically checking that timing constraints have
been declared and are used in the model and by creating test
vectors that force a range of timing violations. One simple
form of such a test is to increase the setup and hold times un-
til errors occur. A more interesting test is to increase the
clock speed. (This test can, of course, be performed only if
the clock is a signal external to the hardware component be-
ing modeled or if the clock generator can be externally con-
trolled.) This test may cause a range of timing errors that
should be reported by the model. The VHDL model verifi-
cation procedure recommends that if the developer does not
supply test vectors that

1. Violate the timing and voltage specifications
2. Attempt to perform illegal model operations
3. Test the functionality of the unit at its operational

limits,
the verifier should develop and apply them.

Both the EIA 567 standard (Ref. 5) and the VITAL stan-
dard (Ref. 4) include timing violation checks in the VHDL
packages that implement their standards.

The EIA 567 timing violation works with two generics re-
quired for each entity: MGENERATION, which is used to de-
termine whether messages are to be generated whenever
violations are detected, and XGENERATION, which is used
to determine whether the unknown value 'X' should be as-
signed to any signal at which a timing violation is detected.
When MGENERATION is TRUE, messages are generated
through assertion statements or are written to files using
TEXTIO functions. If both MGENERATION and
XGENERATION are FALSE, no timing checks are per-
formed. These two generics should be set at simulation time.
The VITAL package also provides simulation options to
control the generation of messages and the performance of
timing checks.

7-4.4 INTEROPERABILITY TESTS
Tests to ensure interoperability should verify that all

VHDL design entities correctly process test vectors contain-
ing representative combinations of data input values, includ-
ing error values, uninitialized values, and don’t care values.
Tests to ensure interoperability should also verify that all
VHDL design entities correctly process any environmental
and physical data including data inside and outside the ac-
ceptable ranges for the components of the system; the mod-
els should produce appropriate timing and delay values
dependent on these environmental conditions. Finally, tests
to ensure interoperability should verify that the model is por-
table over some range of simulation environments. Portabil-
ity test values may be selected based on differences in
representation of data types in different simulation environ-
ments. Portability tests may also include tests of simulation
control options. Portability issues include directory, path,
and file-naming conventions. If model portability is impor-
tant, the range of target environments on which the model
needs to be tested should be specified. If model portability is
not a primary concern, verification that the model is written

in standard VHDL may suffice. For example, if the model is
to be archived when delivered, the model should operate
correctly at least in the archive environment. Similarly, if the
model is going to be validated through analysis and simula-
tion (as opposed to just inspected), the validation environ-
ment should be specified in a tailored DID. In general,
ensuring portability to future environments is not possible.
However, ensuring that the model has been written in IEEE
Std 1076 VHDL (Ref. 6) provides a good basis for portabil-
ity.

7-4.5 ORGANIZATION AND DOCUMENTA-
TION OF TEST VECTORS

To obviate documentation and traceability problems, the
test vectors should be divided into separate files, and each
file should address a specific set of requirements. The test
bench should label the output so that examination of the re-
ports generated by the test bench indicates the environment
assumptions, the hardware model configuration, and the test
vectors used in the run. This can be accomplished if the en-
vironmental assumptions, the hardware model configura-
tion, and the test vector file name(s) are defined by a
configuration declaration and the test bench prints the name
of the configuration declaration. This use of a configuration
declaration is discussed in par. 7-5.

The test bench and the test vector files should be com-
mented to show their purpose. As shown in Fig. 7-5,
WAVES (Ref. 10) allows comments in external files. VHDL
model files, including design entities and test benches,
should have header comments at the front of the file. The
following format for header comments has been tailored to
deal with test vector sets:

1. Design Unit Name Identifier. This should indicate
the corresponding test bench and the VHDL name of the
MUT.

2. Identification of Originator or Source. This should
name the person responsible for creating the test vector set
and also the corporate source if the originating person is an
employee.

3. DoD-Approved Identifier. If an identifier for the
physical hardware exists, it should be used for this field. If
the physical hardware does not have an identifier, the spon-
soring agency for the VHDL code development should cre-
ate an identifier.

4. Revision History. At a minimum, indicate whether
the test vector set has been delivered before. If it has, indi-
cate

a. The dates of the revisions
b. The individual and organization making the revi-

sion
c. The purpose of the revision
d. The part of the test vector file modified.

5. Test Vector Set Purpose. This part of the header
comment should relate the test vectors back to requirements
stated in the VHDL DID or to functional or timing tests
specified for the physical hardware.

MIL-HDBK-62

7-14

6. General Approach. This part of the header com-
ment should deal with issues such as timing tolerances al-
lowed for the comparison of MUT responses and expected
responses. This section should also indicate how the test
vectors were generated: Are they randomly generated ac-
cording to a distribution, hand coded, or automatically gen-
erated by an automatic test pattern generator (ATPG)?

7. Additional Information for Users. This part of the
header comment should include information about how to
modify the set of test vectors in response to changes in the
module design or how to adapt the test vectors to different
environments.

8. Restrictions. This part of the header comment
should describe restrictions on the use of the test vector set
and identify any part of the test bench or module description
that, if changed, would make the set of test vectors ineffec-
tive.

9. Assumptions. This part of the header comment
should describe assumptions made during creation of the
tests.

10. Previous Approval. This part of the header com-
ment should indicate whether the test vector set has been ac-
cepted previously by the DoD.

7-5 USE OF CONFIGURATION DECLA-
RATIONS TO INSTANTIATE THE
TEST BENCH FOR A MODEL

To be prepared for simulation, the model must be config-
ured from a potentially complex database that contains these
items:

1. At least one test bench for the model
2. One or more sets of test vectors
3. At least one architecture body for the model
4. At least one design entity for each component in-

stantiated in the model
5. Optional packages specifying global data types,

constants, and subprograms
6. One or more configuration declarations configuring

the model or pieces of it.
VHDL allows a great deal of flexibility in configuring a

specific model for simulation. A configuration declaration
can be used to

1. Select libraries to be used as sources for packages
and design entities. This choice allows the compilation units
to be collected into libraries.

2. Select architecture bodies for components. VHDL
allows several architecture bodies to be associated with a
single entity interface. Through the use of configuration dec-
larations or configuration specifications, an appropriate ar-
chitecture body can be selected for each component
instance.

3. Specify values for generics. Defining the values of
key generics in a configuration declaration provides an audit
trail to the values and makes the simulation repeatable.

4. Define port maps, particularly to specify type con-

version functions. The combination of the selection of archi-
tecture bodies and the choice of type conversion functions is
a key part of the construction of a mixed-level-of-abstraction
model from a design database in which components are
modeled at multiple levels.

Effective use of configuration declarations can provide
significant assistance in the configuration management of
models. However, care must be taken to centralize the late
binding decisions in the configuration declaration rather
than distribute this information throughout the different
compilation units. For example, if the same test bench can be
used with different external data files, the names of the data
files should be defined in the configuration declaration rath-
er than in the architecture body of the design entity that reads
the file.

The purpose of the model affects decisions about what as-
pects of the model can be changed in a configuration decla-
ration. For example, during the design of an ASIC, when the
timing parameters are changing frequently as the layout of
the circuit changes, the VITAL (Ref. 4) approach of using
generics for the timing is appropriate. If a VHDL model of
the ASIC is built as documentation after the design is com-
plete, then the validated timings may be permanently bound
into the VHDL architecture body of the ASIC model. This is
a situation in which configuration specifications may be
made in an architecture body rather than in a configuration
declaration. Configuration specifications are typically used
in an architecture body to specify a more permanent binding.

During the specification and design of a VHDL model,
decisions must be made about what aspects of the model are
likely to change and what aspects are not likely to change,
and these decisions should be reflected in the organization of
the VHDL code. These decisions should be made by consid-
ering the way the model will be configured for simulation.
For example, if the model is to be simulated several times
during testing, the different configurations required for test-
ing should be considered.

7-5.1 SELECTION OF ALTERNATIVE DE-
SIGN LIBRARIES

Selection of appropriate design libraries is a key step in
preparing a model for simulation. Alternative design librar-
ies provide a mechanism to encapsulate information about
technology or common data types, constants (such as timing
constants), and functions (such as derating functions) in
packages. Alternative design libraries also provide a way to
describe alternative implementations of design entities to-
gether with the packages of data types and constants appro-
priate for the elements of that library. For example, in
subpar. 7-3.1 different libraries for different ATE systems
are suggested for WAVES (Ref. 10).

VHDL constrains the way deferred constants can be used
to define values for global parameters. Within a single li-
brary each package declaration has at most one body. Thus,
if different values are required for deferred constants, pack-
ages with the same interface but different bodies must be in-

MIL-HDBK-62

7-15

stalled in different libraries. Alternatively, the package body
can be reanalyzed between simulations. This approach has
the disadvantage that the different sets of values for the con-
stants are not maintained in the VHDL libraries but must be
maintained as source code files. Thus they create another
level of configuration management.

7-5.2 SELECTION OF ALTERNATIVE AR-
CHITECTURES

Selection of appropriate architectures is a key step in con-
figuring a VHDL model. A single entity interface can have
several associated architecture bodies. Different architec-
tures can represent different implementations of the same
entity interface, so selecting an architecture is a means of
trading off or evaluating alternative implementations. Dif-
ferent architectures may represent different levels of ab-
straction of a design entity, so selecting an architecture
determines the level of abstractions to be used for a particu-
lar component. Subpar. 10.2.1 of the VHDL DID (Ref. 1) re-
quires both behavioral and structural models for all modules
that are not leaf modules. Therefore, selecting an architec-
ture for each component is an essential step in configuring a
DID-compliant model for simulation.

7-5.3 BINDING OF GENERICS
Defining the value of generics is another important step in

preparing a model for simulation. Generics can be assigned
values hierarchically: a parent structural architecture re-
ceives values of generics, computes the values of the gener-
ics of its components, and then assigns those values to the
components through a generic map. This process can be con-
tinued down the hierarchy so that values trickle down
through the design hierarchy. Generics can be assigned val-
ues in architectures or in entity interfaces, which is an early
binding of values.

Generic constants provide a way for the late binding of
parameter values through the use of configuration declara-
tions. These constants are particularly valuable for setting
the value of tradeoff parameters or parameters used in sensi-
tivity analyses. Generic constants can be used in combina-
tion with constants declared in packages, and a few may be
used to determine the values of many model characteristics.
For example, in EIA 567 (Ref. 5) a single generic constant
is used to select among minimum, nominal, and maximum
timing options. The value of this constant can be used to
look up timing information stored in a table or tables; the
values selected from these tables may set many timing val-
ues. Alternatively, a generic constant may be a complex
structure containing the values for many model parameters.
The latter approach is the preferred mechanism for back an-
notation, particularly if the tables of parameters cannot be
precalculated.

EIA 567 (Ref. 5) requires that at least a minimal set of ge-

nerics be provided for each design entity. VITAL (Ref. 4)
also uses generics to provide control. The parameter
TimingChecksOn activates timing checks and the
VITAL parameter XGenerationOn performs a similar
function to the EIA XGENERATION parameter. A VITAL-
compliant model uses generics to implement
back-annotation of timing information. VITAL has estab-
lished a mapping mechanism between standard delay format
(SDF) information and the names of ports and generics of a
design entity. This mapping assumes a specific naming con-
vention consistent with the SDF file.

7-5.4 PORT MAPPING
As discussed in subpar. 7-2.2, the use of type conversion

functions may be required to construct mixed-level-of-ab-
straction models and also to configure models that are not
immediately interoperable. The port-mapping capabilities of
VHDL configuration declarations allow these conversions
to be specified without rewriting and reanalyzing the VHDL
source code for the two components being connected.

Type conversion functions may be specified in port maps
in architecture bodies as well as in configuration declara-
tions. The use of type conversion functions in the configura-
tion declarations separates the configuration issues from the
interconnect issues and allows more reuse of structural ar-
chitecture bodies without reanalysis.

7-6 DEFINITION OF SIMULATOR OP-
TIONS

A VHDL model has been configured when all component
instances are bound to specific design entities. During the
binding of VHDL component instances, the modeler has
also selected test bench design entities that will drive the
simulation. Selection of the test bench design entities deter-
mines some of the simulation parameters, but other deci-
sions still need to be made.

The mechanisms used to control simulation are not spec-
ified in the VHDL Language Reference Manual (Ref. 6).
Some simulators allow these parameters to be set as a part of
the simulation. In other cases these simulation parameters
may have to be included in a package body dedicated to sim-
ulation control, and others may have to be specified as ge-
nerics in configuration declarations. The option to set
simulation parameter values in configuration declarations is
strongly preferred over entering them manually during elab-
oration of the model. Simulations requiring manually en-
tered parameters are not automatically reproducible and are,
therefore, less valuable as elements of a test suite. Manual
entry of parameters can be very time-consuming when a bat-
tery of tests is conducted. The following subparagraphs de-
scribe some of the parameters that need to be set and some
possible ways of controlling them.

MIL-HDBK-62

7-16

7-6.1 CONTROL OVER ENVIRONMENTAL
PARAMETERS

Subpar. 10.2.2.3 of the VHDL DID (Ref. 1) mandates
capture of physical and electronic parameters of the hard-
ware, such as temperature range, power dissipation, and ra-
diation. The same subparagraph encourages the use of
packages to describe common operating conditions across
components of the hardware system. Subpar. 10.2.3.2 of the
DID recommends the use of timing models that consider en-
vironmental parameters, and subpar. 10.2.2.2 requires error
messages to be generated when the values of these parame-
ters are outside their acceptable range.

Each simulation has a particular value for each of these
environmental parameters. These parameters are best de-
clared in packages, such as the physical and electrical views
described in EIA 567 (Ref. 5). The values of these parame-
ters should be defined in the corresponding package bodies.
Thus the parameters become deferred constants. When the
values of deferred constants are changed for a particular
simulation, only the body of the package needs to be reana-
lyzed; the VHDL design units that use the package need not
be reanalyzed. Thus the use of deferred constants for simu-
lation parameters is strongly recommended.

The VITAL standard (Ref. 4) does not include environ-
mental parameters in its models. Instead, it requires that all
computations of delay times be performed externally to the
model and imported either as generics or SDF files.

7-6.2 SELECTION OF DELAY TYPES
One important simulation option is selection of the type

of delay to be used in the simulation. Subpar. 10.2.3.2 of the
VHDL DID (Ref. 1) requires VHDL models delivered to the
Government to support at least three timing delay options:
worst-case, best-case, and nominal. The VITAL standard
(Ref. 4) and EIA 567 (Ref. 5) have different approaches to
the selection of timing information.

EIA 567 defines a data type, called
operating_point_type, which is an enumerated type
with three values: minimum, nominal, and maximum.
Each entity interface must have a generic constant of type
operating_point_type. The value of this generic is
used to select the timing model used within the model.

The VITAL standard requires all timing calculations be
performed “off-chip”. All load-dependent or environmental-
ly dependent timing data are calculated outside the VITAL
model and then provided to it as actual values to the model
via generic maps or a standard delay format. The DID re-
quirement can be satisfied for a VITAL model with three
separate configuration declarations, each including generic
maps with different values, or through three separate SDFs.

Generics should be used when different values of simula-
tion options are used in different parts of the model, particu-
larly when different instances of the same component model
require different values. These simulation options can be
used directly in the behavioral architecture of the leaf mod-

ules of the simulation, or they may be passed down to the
leaf modules through generics.

7-6.3 CONTROL OVER EXECUTION OF AS-
SERTIONS

Subpar.10.2.2.2 of the VHDL DID (Ref. 1) requires error
messages to be generated by models when conditions such
as violations of setup and hold time constraints occur. Con-
current assertion statements are a natural mechanism to sup-
port such tests. However, because these assertions are
checked whenever any signal referenced in the assertion
condition changes value, simulation of a model with asser-
tions can be much slower than simulation without assertions.

Both VITAL (Ref. 4) and EIA 567 (Ref. 5) use multiple
generics to control error handling. In EIA 567 these are
called MGENERATION and XGENERATION (See subpar.
7-4.3.3.). The VITAL standard uses two generics,
TimingChecksOn and XGenerationOn.

For models at higher levels of abstraction, either new ge-
nerics must be defined for control of assertions or the exist-
ing generics must be reinterpreted for the needs of more
abstract models. The latter approach is probably better suit-
ed to modeling at mixed levels of abstraction.

7-6.4 CONTROL OVER PROPAGATION OF
UNKNOWN SIGNAL STATES

IEEE Std 1164 (Ref. 2) defines the propagation of un-
known values in its definition of its logic functions. Both VI-
TAL (Ref. 4) and EIA 567 (Ref. 5) standards follow IEEE
Std 1164 in supporting the propagation of unknown signal
states. However, the VITAL and EIA 567 standards differ in
the approaches they take to convert the detection of timing
errors into reports and to generate unknowns.

The VITAL standard includes a timing check procedure
called VitalTimingCheck. This routine is overloaded
so that the output variable Violation is either of type
BOOLEAN or of type X01. If the Violation variable is of
type BOOLEAN, then it can be used in an IF statement or an
assertion statement. If the Violation variable is of type
X01, then it can be ored with a variable of the
std_ulogic type to propagate the error. VITAL does not
support generation of unknown signal states without the as-
sociated generation of error messages, so it should always be
possible to determine where an unknown value is generated.
VITAL addresses the issues of simulation speed through the
use of native mode implementations of logic primitives with
timing checks rather than through the elimination of timing
checks. Although VITAL includes VHDL source code de-
scriptions of its primitive library and timing check functions,
it assumes that the simulation vendors will implement these
primitives as an integral part of their simulators. Thus the
VHDL source code is intended as an executable specifica-
tion.

EIA 567 does not include any timing check routines as
part of the standard package; definition of these routines is
left to the user. EIA 567 does require that error checks be in-
cluded in EIA-567-compliant models. If the EIA 567 gener-

MIL-HDBK-62

7-17

ic XGENERATION is TRUE, then when a timing error is
detected, an unknown signal state is output. EIA 567 re-
quires timing checks to be suppressed during simulation
when both the XGENERATION and the MGENERATION ge-
nerics are FALSE.

As in the case of control over the execution of assertions,
models at higher levels of abstraction should define new ge-
nerics for control over error propagation or reinterpret the
VITAL and EIA 567 generics. In subpar. 7-2.2 support for
error propagation through the use of type conversion func-
tions in mixed-level-of-abstraction models is discussed.
Those type conversion functions could be adapted to take
into account the XGENERATION generic. A configuration
declaration could select the appropriate type conversion
function based on the value of the XGENERATION generic.

REFERENCES

1. DI-EGDS-80811, VHSIC Hardware Description Lan-
guage (VHDL) Documentation, Department of De-
fense, 11 May 1989.

2. IEEE Std 1164-1993, IEEE Standard Multivalue Logic
System for VHDL Model Interoperability, The Institute
of Electrical and Electronics Engineers, Inc., New
York, NY, May 1993.

3. IEEE Std 1076.3 (Draft), IEEE Standard for VHDL
Language Synthesis Package, The Institute of Electrical
and Electronics Engineers, Inc., New York, NY, Sep-
tember 1995.

4. IEEE Std 1076.4-1995, IEEE Standard for VITAL Ap-
plication-Specific Integrated Circuit (ASIC) Modeling
Specification, The Institute of Electrical and Electronics
Engineers, Inc., New York, NY, December 1995.

5. EIA 567-A, VHDL Hardware Component Modeling
and Interface Standard, Electronics Industry Associa-
tion, Washington, DC, March 1994.

6. ANSI/IEEE Std 1076-1993, IEEE Standard VHDL
Language Reference Manual, The Institute of Electrical
and Electronics Engineers, Inc., New York, NY, Sep-
tember 1993.

7. Rome Laboratories/ERDD, VHDL Model Verification
and Acceptance Procedure, Technical Report, Depart-
ment of the Air Force, Griffiss Air Force Base, Rome,
NY, March 1992.

8. M. T. Pronobis, “VHDL—Windows of Opportunity”,
VHDL Model Verification, VHDL Users’ Group, Oak-
land, CA, October 1990.

9. MIL-HDBK-454, General Guidelines for Electronic
Equipment, 28 April 1995.

10. IEEE Std 1029.1-1991, Waveform and Vector Ex-

change Specification, The Institute of Electrical and
Electronics Engineers, Inc., New York, NY, 1991.

11. B. Johanson and J. P. Hanna, Learning to Use WAVES
by Example, Tutorial C, VHDL International Users’ Fo-
rum, VHDL International, San Jose, CA, October 1993.

12. B. E. Clark, and G. A. Frank, “System Modeling for
V&V”, Proceedings of the 2nd Annual International
NCOSE Symposium, Seattle, WA, July 1992, National
Council on System Engineering, Seattle, WA.

BIBLIOGRAPHY

J. R. Armstrong, Chip-Level Modeling With VHDL, Pren-
tice-Hall, Inc., Englewood Cliffs, NJ, 1989.

J. R. Armstrong and F. G. Gray, Structured Logic Design
Using VHDL, Prentice-Hall, Inc., Englewood Cliffs,
NJ, 1993.

R. Lipsett, C. Schaefer, and C. Ussery, VHDL: Hardware
Description and Design, Kluwer Academic Publishers,
Norwell, MA, 1989.

O. Levia, F. Abramson, “ASIC Sign-Off in VHDL”, VHDL
Boot Camp, VHDL International Users’ Forum, San Jo-
se, CA, October 1993.

S. Turner, “Back Annotation for VHDL Structural Models”,
VHDL—Windows of Opportunity, VHDL Users’
Group, Oakland, CA, October 1990.

V. Berman, “An Analysis of the VITAL Initiative”, VHDL
Boot Camp, VHDL International Users’ Forum, San Jo-
se, CA, October 1993.

V. Berman and C. Ussery, “A Proposed Back Annotation
File Format for VHDL”, Using VHDL in System De-
sign, Test, and Manufacturing, VHDL International Us-
ers’ Forum, Scottsdale, AZ, May 1992.

Enabling Design Creativity, VHDL International Users’ Fo-
rum, Newport Beach, CA, October 1991.

Using VHDL in System Design, Test, and Manufacturing,
VHDL International Users’ Forum, Scottsdale, AZ,
May 1992.

VHDL Boot Camp, Proceedings of the Fall 1993 Confer-
ence, San Jose, CA, October 1993, VHDL Internation-
al, Santa Clara, CA.

VHDL Users’ Group Fall 1990 Meeting, VHDL Users’
Group, Oakland, CA, October 1990.

Using VHDL for Electronic Product Design, VHDL Users’
Group, Cincinnati, OH, April 1991.

Z. Navabi, S. Day, and M. Massoumi, “Investigating Back
Annotation of Timing Information into Data Flow De-
scriptions”, Using VHDL in System Design, Test, and
Manufacturing, VHDL International Users’ Forum,
Scottsdale, AZ, May 1992.

MIL-HDBK-62

8-1

8-1 INTRODUCTION

The very high-speed integrated circuit (VHSIC) hardware
description language (VHDL) Data Item Description (DID)
(Ref. 1) requires two kinds of models: behavioral and struc-
tural. The VHDL DID also states specific requirements for
the modeling of testability in both of these models. Testabil-
ity is any design characteristic that contributes to fault mask-
ing, detection, isolation, or containment. Subpar. 10.2.3 of
the VHDL DID requires, “Test and maintenance functions
which are part of the physical unit and are available to the
user shall be included in the behavioral body.”. However,
the VHDL DID states in subpar. 10.2.3.3, “Signal values
which are dependent upon a particular structural implemen-
tation, such as scan path signatures, shall not be specified in
the behavioral module.”. One of the purposes of this chapter
is to recommend methods to meet both of these require-
ments, which may at first seem to be contradictory. The crux
of the issue is the extent to which test and maintenance fea-
tures can be described in a manner that is implementation in-
dependent because the goal of a VHDL behavioral model is
to provide the user with a model that is free of implementa-
tion dependencies. Such models can be used as the specifi-
cation for multiple implementations.

Test and maintenance issues are critical to specifying how
detailed a VHDL structural model must be to meet VHDL
DID requirements. Subpar. 10.2.4 of the VHDL DID re-
quires, “Structural bodies shall represent the physical imple-
mentation accurately enough to permit logic fault modeling
and test vector generation. Structure which is created to sup-
port testing and maintenance such as scan paths shall be in-
cluded in the VHDL structural description.”. This chapter
discusses the level of detail required in a structural model to
support this requirement based on the standard fault models
used for test vector generation.

8-2 PURPOSE AND SCOPE OF DESIGN
FOR TESTABILITY

Testability features of electronic systems include fault
masking, detection, containment, or isolation. Fault detec-
tion and isolation are critical to maintenance of military
electronic systems. A major function of hardware mainte-
nance is the detection and isolation of a fault to a line-re-

placeable unit (LRU) and subsequent replacement of the
LRU. From the Government point of view, the primary goal
for modeling testability and fault tolerance circuitry in
VHDL models is to validate that a design provides the test-
ability required to maintain fielded systems. Testability is an
aspect of design for maintainability.

In a fault-tolerant system either faults are automatically
masked so that they cannot corrupt the system or the system
provides automatic fault detection, isolation, and recovery
(FDIR). FDIR reconfigures the system by switching in a
built-in spare in place of the faulty subsystem. Design for
testability of a fault-tolerant system must support FDIR.
Fault containment circuitry is used to prevent corruption of
data outside the LRU, especially outside the digital part of
the electronics. For example, failure of flight control circuit-
ry should not cause sudden, drastic changes in the control
surfaces of a wing.

The scope of design for testability includes fault models,
hardware design models, test strategies, and test techniques.
This chapter focuses on the stuck-at-zero (SA/0) and the
stuck-at-one (SA/1) fault models, particularly for use with
logic-level structural models. Other, more complex models
are appropriate for more detailed electronic hardware mod-
els, such as switch-level models. High-level behavioral
VHDL models and logic-level structural VHDL models of
the hardware are considered.

8-3 TESTABILITY DESIGN ISSUES

During design for maintainability the system must be par-
titioned into physical components referred to as LRUs,
which can be tested and replaced as necessary at appropriate
logistical levels, e.g., in the field or at the depot.

Once the replaceable units have been identified, appropri-
ate fault detection and isolation strategies must be selected
and techniques chosen to implement those strategies. The
testability design must provide the fault detection and isola-
tion strategies required by the maintainability design.
VHDL can provide the simulation capabilities necessary to
assess the success of the fault detection and isolation strate-
gies.

A critical issue of the testability design is what are the ac-
ceptable measures of cost and effectiveness, both for the

CHAPTER 8
MODELING TESTABILITY WITH VHDL MODELS

The modeling of testability information using VHDL, testability measures, and techniques is described. A hier-
archy and the functions of test components are described, and the IEEE Stds 1149.5 and 1149.1 test interfaces are
discussed. The use of behavioral modeling is recommended to verify that the test bus and test controller systems
interface correctly without regard for the contents of the information sent across the bus. The use of detailed struc-
tural models is recommended as the starting point for generation of built-in test structures, such as boundary scan.
This chapter emphasizes that detailed structural models are necessary to evaluate many testability measures.

Thi d t t d ith F M k 4 0 4

8-2

MIL-HDBK-62

tests themselves and the additional circuitry and equipment
necessary to implement the tests. Subpar. 8-3.2 describes
measures of cost and effectiveness and indicates the infor-
mation needed to estimate those measurements. The result-
ing cost information may be back annotated into the VHDL
model to allow reassessment of design decisions made as
part of design for testability (See par. 8-6 for annotation.).

8-3.1 TEST STRATEGIES AND TECHNIQUES
FOR MAINTENANCE AND FAULT
TOLERANCE

Fig. 8-1 shows a taxonomy of design for testability strat-
egies. This taxonomy can also be used as a decision tree for
the selection of test strategies. Test strategies can be divided
into on-line and off-line approaches. On-line test strategies
include all strategies that allow the system to provide its nor-
mal services while testing occurs. Off-line test strategies in-
clude all strategies that require the system to suspend its
normal services in order to perform test functions. On-line
approaches can be divided into concurrent and background
processing. Concurrent strategies are those for which the test
functions are carried out concurrently with the normal func-
tions of the test component. Background strategies are those
that require the component being tested to suspend its nor-
mal processing, even though the system as a whole contin-
ues to provide its normal services. Background tests are

typically scheduled when the component is idle, or they are
scheduled as background tasks to be performed by the pro-
cessor and compete at a low priority with other tasks as-
signed to the processor. Because on-line processing occurs
while the system is in service, it uses primarily built-in test
techniques, in which the test functions are provided by the
system.

Off-line test strategies are designed to support fault detec-
tion and isolation while the system is not in service. These
strategies may either employ built-in test techniques or ex-
ternal test equipment. Off-line, built-in test techniques are
the same as those used in nonconcurrent background testing.
Off-line, built-in test features of a very large-scale integrated
(VLSI) circuit may be used both for off-line testing of the
complete LRU and for nonconcurrent, background testing of
the circuit while the rest of the LRU is still on-line. Design
of test strategies for external testing depends upon the selec-
tion of the interface with external test equipment. External
testing strategies also emphasize how the information col-
lected during testing is presented to the field or depot main-
tenance technician.

External test strategies focus on the choice of automatic
test equipment, on the partitioning of responsibilities be-
tween built-in test equipment and external test equipment,
and on the interface between the built-in test (BIT) and au-

Figure 8-1. A Taxonomy of Design for Testability Strategies (Ref. 16)

MIL-HDBK-62

8-3

tomatic test equipment (ATE). WAVES (Ref. 3) provides a
means of expressing test vectors in a form that can be used
by multiple ATE vendors. WAVES is also used to design
VHDL test benches, and it is recommended by MIL-
HDBK-454 (Ref. 4).

Diagnostic decision support strategies relate to the parti-
tioning of responsibilities between BIT and ATE. One im-
portant aspect of this partitioning is deciding which
equipment is going to log the test information and how much
information is to be preserved. At the lowest level, BIT tech-
niques such as signature analysis and circular self-test re-
duce the amount of data that needs to be stored. With or
without data compression, a lot of information has to be
maintained. Ideally, maintenance personnel would like to
know everything about the state of the hardware just before
the fault occurred. During design for maintainability, how-
ever, tradeoffs must be made to balance the need for this in-
formation with the space, sensors, and circuitry required to
capture the information.

Different test strategies are needed for different compo-
nents of a hardware system. For example, a concurrent test
strategy, e.g., a coding technique such as parity or Hamming
code, is typically used to test the busses and memories of an
electronic system. A nonconcurrent strategy, e.g., a scan
path technique such as level-sensitive scan design (LSSD),
may be used for the arithmetic and logic unit (ALU) of the
same system. The testability design of the system must ad-

dress how these component (e.g., bus, memory, or ALU)
testing techniques can be integrated into the test strategy for
an entire system consisting of many components.

8-3.2 TESTABILITY MEASURES

Measures of the testability of a design are critical to en-
sure that cost-effective testability features have been intro-
duced into the design. Testability measures must be assessed
in terms of the following issues:

1. What is the cost of evaluating the measure?
2. What system testability techniques and strategies

are effectively evaluated by the measure?
3. What types of models (particularly structural or be-

havioral) are required to allow accurate estimates of a mea-
sure?

4. What types of tools and procedures are currently
available to evaluate a measure? What VHDL models can be
used to provide this information, or which VHDL models
should be annotated with analysis results from external
tools?

Fig. 8-2 shows a taxonomy of testability measures. The
top-level division is between performance and cost mea-
sures. The second-level split is between spatial and temporal
measures, with the concept of fault isolation measures also
being applied to the performance measures. Watterson et al
(Ref. 5) provide more detail on the techniques used to esti-
mate these measures.

Figure 8-2. A Taxonomy of Test Measures

8-4

MIL-HDBK-62

8-3.3 TEST STRUCTURE BOUNDARIES

Subpar. 10.2.1 of the VHDL DID (Ref. 1) requires the hi-
erarchy of VHDL design entities in a model to reflect the
physical design hierarchy of the hardware being modeled.
Five levels in a typical physical design hierarchy are shown
in Table 8-1: system/subsystem, LRU, fault containment re-
gion (FCR), board, and integrated circuit. The LRU level is
the critical physical partitioning from the maintenance point
of view. Levels above the LRU are involved in diagnosing
problems within LRUs and with isolating faults to specific
LRUs. Fault containment regions are not necessarily physi-
cal boundaries, but they are important electrical boundaries
for fault-tolerant systems. Table 8-1 describes the test func-
tions associated with each of these levels and the corre-
sponding test components and their interfaces and provides

a list of references for information on test techniques used at
these levels and information on corresponding test compo-
nents and interfaces. The test components and interfaces de-
scribed in Table 8-1 are also shown in Fig. 8-3.

Because fault containment regions require a concurrent
testing or fault-masking strategy, fault containment is typi-
cally implemented in the hardware with software support.
As a result of this implementation the design of the hardware
requires tradeoffs between the size of the fault containment
region, the test time, and the area overhead for fault contain-
ment. High-level structural VHDL models can be used to
capture the data required for such analyses. High-level be-
havioral models that provide timing information can be used
to assess the concurrent testing or fault-masking overhead
and its impact on system performance.

Figure 8-3. A Hierarchy of Test Controllers and Busses

MIL-HDBK-62

8-5

*SW = software
HW = hardware

Table 8-1. TESTABILITY FUNCTIONS, COMPONENTS, AND INTERFACES
FOR A PHYSICAL DESIGN HIERARCHY

PHYSICAL DESIGN
HIERARCHY LEVEL

FUNCTIONS
TYPICAL

IMPLEMENTATION
APPROACH (SW vs HW)*

RELATED TEST
COMPONENTS

AND
TEST INTERFACES

REFERENCES

System and/or Sub-
system

1. Error logging
2. Communication with

external ATE
3. Support for system

reconfiguration
4. Management of spare

LRUs
5. Scheduling of test func-

tions
6. Management of LRU test

sets
7. Interpretation of LRU

test results

High-level software on a
general-purpose processor

System maintenance
controller

System maintenance
bus

(Ref. 6)
(Ref. 7)
(Ref. 8)
(Ref. 9)
(Ref. 2)

Line-Replaceable Unit
(LRU)

1. Communication with
system maintenance con-
troller

2. Storage of LRU status
3. Management of spare

components
4. Fault isolation to LRU

components
5. Management of compo-

nent tests
6. Management of compo-

nent test data
7. Interpretation of compo-

nent test results

Microcode software on ded-
icated hardware (e.g.,
microcontroller)

LRU test controller
Backplane test bus

controller

(Ref. 10)
(Ref. 11)

Fault Containment
Region (FCR)

1. Fault containment
2. Error reporting

Dedicated hardware with
software monitoring

Voter
Error-correcting

coder/decoder
Parity/error code

lines on busses

(Ref. 7)
(Ref. 9)
(Ref. 2)

Board 1. Communication with
LRU controller

2. Management of spare
ICs on board

3. Isolation of faulty ICs
4. Management of IC tests
5. Management of IC test

data
6. Interpretation of IC test

results

Microcode software on a
dedicated controller

Boundary scan paths

Board test controller
Backplane test bus

(1149.5)
Chip test bus

(1149.1)

(Ref. 12)
(Ref. 13)
(Ref. 14)
(Ref. 10)

Integrated Circuit 1. Communication with
board controller

2. Fault detection
3. Fault containment
4. Fault masking

Dedicated controller
Boundary scan paths signa-

ture analysis

Test access port
(TAP)

Chip test bus
(1149.1)

(Ref. 15)
(Ref. 16)
(Ref. 5)
(Ref. 17)

8-6

MIL-HDBK-62

8-3.4 TEST COMPONENTS AND INTER-
FACES

Fig. 8-3 shows a typical test system hierarchy. This hier-
archy follows the format introduced by Lien and Breuer
(Ref. 11). It addresses four levels in the physical design hi-
erarchy: system/subsystem, LRU, board, and integrated cir-
cuit. Three levels of test busses are identified: system
maintenance bus, backplane test bus, and chip test bus. The
software/hardware interaction at the system maintenance
controller is indicated by the connection between the operat-
ing system and the system maintenance controller. A similar
relationship is shown between the LRU module executive
and the LRU test controller.

8-4 MODELING TESTABILITY USING
VHDL BEHAVIORAL MODELS

The Department of Defense (DoD) requires VHDL mod-
els to be delivered with certain hardware components. This
requirement encourages effective reuse of those components
in DoD systems and allows replacement of those compo-
nents as technology advances. The DoD also views VHDL
as a formal description of the design of a hardware system.
This paragraph discusses the possible roles of VHDL mod-
els in supporting design for testability as the design evolves.

Subpar. 10.2.3 of the VHDL DID requires behavioral
models of hardware to model the diagnostic and test func-
tions of the hardware. This paragraph describes capabilities
that can be included in behavioral VHDL models responsive
to the DID.

8-4.1 EVALUATING TEST STRATEGIES

Use of VHDL to explore design for testability tradeoffs is
still a research area. However, many VHDL capabilities
make it an attractive tool for supporting such tradeoffs. Dur-
ing the hardware design process, VHDL models can be used
to explore possible partitionings of systems into LRUs and
fault containment regions. A scenario for this use of VHDL
is to generate a VHDL model reflecting a partitioning and
then to evaluate the testability effectiveness measures (such
as coverage) and the testability cost measures (such as area
overhead, interconnect overhead, and test time) for that
model. If the evaluation produces results that do not meet the
effectiveness or cost requirements, the partitioning is re-
vised and the process is repeated. Evaluation of coverage
may not be possible during the early stages of design. How-
ever, the time required to execute the tests could be evaluat-
ed with high-level behavioral VHDL models if the number
and lengths of test vectors are known or estimated. Intercon-
nect overhead and parts count overhead can be extracted
from a board-level VHDL structural model; area overhead is
more difficult. If the hardware system consists primarily of
existing components, information about coverage for the
components, information about number and sizes of test
vectors for the components, and information about area
overhead for testing of the components can be used to eval-
uate different ways of organizing the testing process.

Developing a test strategy involves dividing the system
into partitions, each of which uses a single test strategy. The
appropriate test strategy for each partition is then selected. A
decision process for determining a test strategy can be de-
scribed in terms of answering a series of questions:

1. How much fault tolerance is required in the parti-
tion? (The answer will determine the minimum level of con-
current BIT required for the partition.)

2. Which of the test and diagnosis functions of the par-
tition will be performed internally by BIT, and which of
these functions will be performed externally by ATE?

3. What test mode will be used: concurrent or noncon-
current?

4. What type of redundancy will be used for a concur-
rent mode partition: data, hardware, or temporal?

5. What type of test set will be used for a nonconcur-
rent mode partition: functional, deterministic, or pseudoran-
dom?

6. Which specific test techniques will be used to im-
plement the strategy that has been selected?

The results of these decisions can be captured in a VHDL
model, and tradeoffs can be made by analysis of information
in the VHDL model and by simulation.

Test functions at the system/subsystem level are usually
performed by a combination of software and hardware. The
need to use both software and hardware together poses a
problem for behavioral VHDL models. Algorithmic VHDL
models can be used to demonstrate system FDIR concepts
during the early stages of system design. Performance mod-
els for reconfiguration may be needed for fault-tolerant sys-
tems (Refs. 8 and 18). Algorithmic VHDL models can be
used as part of system interface models to demonstrate that

1. Faults detected by BIT can be logged.
2. Faults detected by BIT can be used by FDIR.
3. FDIR can be performed within the time constraints

imposed by fault tolerance requirements.
4. Hardware fault containment functions provide the

necessary warnings about errors and perform appropriate
fault-masking functions.

5. System controllers can configure subsystems for
nonconcurrent background tests. When background tests are
run on a module or subsystem, their execution should not
corrupt the state of the system, i.e., the module under test
(MUT) should be isolated from the rest of the system for
testing. System controllers are also responsible for resetting
the MUT to an appropriate state to continue processing after
nonconcurrent background tests.

Building test benches that demonstrate these fault detec-
tion and fault tolerance functions also clearly defines the
role the executive software of the system must play in pro-
viding system-level fault tolerance, testability, and error
containment.

An important benefit achieved using behavioral VHDL
models and simulation is verification that the testability con-
cept of a system is correct, i.e., that

MIL-HDBK-62

8-7

1. Faulty components can be isolated and their faults
contained.

2. Spare components can be configured into the sys-
tem.

3. Test vectors can be stored in the system as required
and can be distributed to the components that use those tests.

4. Test results are communicated to the system main-
tenance controller or to ATE.

5. Appropriate error logs are maintained.
For VHDL behavioral models of existing hardware, this

handbook recommends that the model support this function-
ality.

8-4.2 MODELING TEST INTERFACES IN
VHDL

Behavioral models should be able to verify that when
properly interconnected, their test busses and interfaces are
able to communicate correctly. For example, test busses
such as the Institute of Electrical and Electronics Engineers
(IEEE) 1149.1 and 1149.5 specify a set of instructions to be
communicated through those busses. Behavioral models of
modules should be able to interpret those instructions and re-
spond appropriately.

A chip test bus is the interface between the board or LRU
controller and the VLSI circuits. IEEE Std P1149.1 (Ref. 19)
defines this interface, as well as a standard set of compo-
nents. The bus provides a serial port for loading test vectors
from the controller into a chip and for unloading test results
from the chip to the controller. The serial path minimizes the
number of pins on the chip dedicated to test functions. Be-
havioral models of the IEEE Std 1149.1 test access port
(TAP) controller exist (Ref. 20), and models are being de-
veloped for the IEEE 1149.5 backplane test bus (Ref. 10).
Both of these bus structures define a set of test instructions
supported by the bus and its controllers.

VHDL models can be used to evaluate different strategies
for interconnecting test subsystems proposed in a hardware
design. If the VHDL models of the test and maintenance
busses and their interfaces include timing information, the
VHDL model can be used to explore test times for different
configurations of modules and test busses.

8-4.3 MODELING TEST CONTROLLER
FUNCTIONS

An example of a test controller in a VLSI circuit is the
IEEE Std 1149.1 TAP controller. An example of a board-
level test controller is the controller for the IEEE 1149.5
backplane test bus. Both of these controllers execute a re-
quired set of functions as well as some additional functions
specific to the structural implementation of the module. A
behavioral model of the test controller must be able to inter-
pret the required functions and respond appropriately.

A behavioral model should produce results that represent
both correct and incorrect functioning of the model. The
former is used to verify that the system-level diagnostic and

maintenance functions operate correctly with a fault-free
module. The latter is used to verify that the system responds
with appropriate fault isolation and reconfiguration com-
mands to a faulty module. One mechanism that can be used
is to load test responses from an auxiliary file. The response
of the MUT to a specific test is ascertained by table lookup.

At the highest levels of the hardware design hierarchy, the
test control functions may be implemented by software that
is part of the normal function of the module. Modeling these
functions in VHDL is beyond the scope of the VHDL DID
(Ref. 1). In this case, it is very valuable for a VHDL model
of the fault detection, isolation, reconfiguration, and recov-
ery process to be generated from a software or system-level
description to verify the system has the desired fault toler-
ance.

Behavioral VHDL models of the IEEE Std 1149.1 TAP
exist (Ref. 20), and computer-aided design (CAD) tool ven-
dors are beginning to generate test structures that are com-
patible with the 1149.1 standard (Refs. 21, 22, 23, and 24).

8-4.4 EVALUATION OF TEST COMMUNICA-
TION AND STORAGE REQUIRE MENTS
FOR BIT

One important aspect of design for testability that is mea-
surable using behavioral VHDL models is the storage re-
quirements for test vectors and error logs that must be
maintained by the hardware system. Error logs are registers
accessible to the user and therefore must be represented in
the behavioral model of the component. If test vectors are
downloaded and stored inside the hardware system, memo-
ries used to store the test vectors must also be modeled.

If test vectors and error logs are included in the behavioral
models and the test access ports on the devices are also mod-
eled, the times required to load and run the tests and extract
the results can be analyzed. This analysis is useful when
evaluating proposed test systems.

8-5 MODELING TESTABILITY USING
VHDL STRUCTURAL MODELS

8-5.1 DESCRIPTION OF TEST CIRCUITRY
GENERATED FROM STRUCTURAL IN-
FORMATION

Subpar. 10.2.4 of the VHDL DID (Ref. 1) requires that
structural VHDL models delivered to the Government must
include test circuitry. This circuitry includes scan paths such
as the data registers in an IEEE-Std-1149.1-compatible de-
sign. Several commercial computer-aided engineering
(CAE) tools now automatically generate scan path circuitry
when given a gate-level circuit and partitioning assistance.
Other forms of generated test circuitry include built-in logic
blocks, pseudorandom test vector generators, and test signa-
ture analyzers. Description of such circuitry is essential for
logic-level fault modeling and for test vector generation.

8-8

MIL-HDBK-62

8-5.2 SUPPORT FOR FAULT DICTIONARY
GENERATION

A fault dictionary is a collection of information about the
potential electrical faults in a module and includes

1. The type of fault, e.g., stuck-at-zero, stuck-at-one,
short, or open

2. The location of fault in the module
3. The origin of fault, e.g., predicted by the fault sim-

ulator or discovered by the test engineer.
Fault dictionaries are used to evaluate the quality of test

vectors. During this evaluation process, additional informa-
tion may be attached to a fault dictionary. For example, in-
formation about the test vectors that detect a given fault may
be attached to the fault dictionary, e.g.,

1. The identity of the test vectors that discover the
fault

2. The way that the fault manifests itself, e.g., the pin
that contains the error or the change in the compressed test
signature that results from the error

3. The ambiguity group associated with the particular
fault and the particular test vector.

The IEEE P1029.2 committee is developing a standard
fault dictionary language (Ref. 25). This language will be
compatible with VHDL and with WAVES. This proposed
standard is described in terms of VHDL packages and syn-
tactic and semantic rules for analyzing such packages.

The VHDL DID requires that VHDL structural models
model the physical implementation closely enough to sup-
port gate-level fault modeling. The creation and mainte-
nance of a fault dictionary for the fault universe of the
component is essential for fault modeling. A fault dictionary
is separate from the VHDL structural model but uses the
VHDL structural model to define the locations of the fault.
The structural model must be detailed enough so each fault
can be precisely located and the effects of the faults can be
simulated.

8-5.3 SUPPORT FOR AUTOMATIC TEST
GENERATION

In order to generate test vectors automatically, an auto-
matic test pattern generator (ATPG) must define a fault uni-
verse and then construct test vectors covering that universe.
To define a fault universe, the ATPG must have a detailed
(at least gate-level) structural model of the hardware to be
tested. The faults are defined as failures of the components
connecting signals in the structural model.

8-5.4 SUPPORT FOR COVERAGE ANALYSIS

Coverage of a test vector set is defined as the probability
that at least one vector in the set will discover a fault given
that some fault has occurred. For deterministic test vector
sets a test vector

t

 is said to detect a fault

f

 in a circuit

c

 if
when

t

 is applied to

c

 with fault

f

, the output is different from
the output when

t

 is applied to

c

 without fault

f

. Under the
assumptions that all faults are considered equally likely for

deterministic test vector sets, the coverage of a test vector set
can be estimated for a particular fault universe as the number
of distinct faults detected by the test vector set divided by the
number of distinct faults in the fault universe.

There are several fault simulation tools available that
work with VHDL models. These tools generally work with
models that assume unit delays, specific logic primitives,
and specific signal values. The tool sets that contain these
fault simulation tools convert the VHDL gate-level structur-
al models into simple gate-level models using special for-
mats and then perform fault simulation on the internal
models. For example, parallel fault simulation runs many
test vectors through the same circuit at the same time. By
packing 32 cases into a single word and using the wordwide
bit vector logic available in most ALUs parallel simulation
can provide speedups of close to 32 over sequential fault
simulation.

8-5.5 SUPPORT FOR TEST TIME COMPUTA-
TION

Test time is a critical factor in real-time, fault-tolerant
systems and is a significant factor in system availability.
VHDL gate-level structural models can provide important
information related to computing the test time. For example,
the test time for a component using scan paths is a function
of the product of the number of test vectors and the lengths
of the scan paths. If VHDL structural models are used to cre-
ate the test vectors for the system, the auxiliary files contain-
ing test vectors should be included with the VHDL
deliverables. These auxiliary files can be used to determine
the number of test vectors. The VHDL structural models
contain the scan paths, so they can be used to determine the
number of cells in the scan paths. Also VHDL gate-level
structural models can be simulated to provide information
about the test time for a hardware module.

8-6 ANNOTATION OF VHDL MODELS
WITH TESTABILITY INFORMATION

8-6.1 ANNOTATION OF STRUCTURAL MOD-
ELS TO IDENTIFY LRUs

The concept of a line-replaceable module is a critical ele-
ment of a system logistics strategy. An LRU is a physically
separate element; therefore, as required by the VHDL DID
(in subpar. 10.2.1), each LRU must be represented as a sep-
arate design entity. This handbook recommends that each
design entity that represents an LRU be so annotated. This
annotation could be a comment in the entity interface, but
making the annotation into an attribute could provide future
support for computer-assisted analysis such as LRU counts
or costing analysis. Also this annotation provides important
design information and should discourage anyone redesign-
ing or modifying the system from making changes that could
compromise the ability of the test system to isolate faults to
the LRU.

MIL-HDBK-62

8-9

8-6.2 ANNOTATION OF STRUCTURAL MOD-
ELS TO IDENTIFY FCRs

The concept of fault containment regions is critical to
fault-tolerant systems since they mark boundaries where
mechanisms have been placed to prevent errors from propa-
gating out of the FCR. Unlike LRUs, there is no DID re-
quirement that an FCR represent a separate physical entity.

Because fault containment regions require a concurrent
testing or fault-masking strategy, fault containment is typi-
cally implemented in the hardware with software support.
This means that the design of the hardware requires
tradeoffs between the size of the fault containment region,
the test time, and the area overhead for fault containment.
High-level structural VHDL models can be used to capture
the data required for such analyses. High-level behavioral
models that provide timing information can be used to assess
the concurrent testing or fault-masking overhead and its im-
pact on system performance.

This handbook recommends that signals or entities repre-
senting the boundary of an FCR be annotated to specify that
the signal or entity represents an FCR boundary. It may also
be possible to define assertions to verify that faults are con-
tained. These tests provide important design information
that can reduce the risk that a redesign will inadvertently
damage the fault containment capabilities of the system.

8-6.3 BACK ANNOTATION WITH COVER-
AGE INFORMATION

The engineer using a VHDL model as the starting point
for the redesign of a system requires information about the
cost and effectiveness of testability.

Because coverage information is a combination of infor-
mation about the module under test and the test vectors, it
should be included in the fault dictionary. The VHDL DID
does not specifically require delivery of a fault dictionary.
However, it does require delivery of both the VHDL model
that describes the MUT and the test bench needed to drive
the VHDL model, including the test vectors. This handbook
recommends that the fault dictionary, including information
about test vector coverage, be included in the delivery pack-
age. This information should include the target fault models
and coverage information for each LRU.

REFERENCES

1. DI-EGDS-80811,

VHSIC Hardware Description Lan-
guage (VHDL) Documentation

, Department of De-
fense, Washington, DC, 11 May 1989.

2. D. P. Siewiorek and R. S. Swarz,

The Theory and Prac-
tice of Reliable System Design

, Digital Equipment Cor-
poration, Bedford, MA, 1982.

3. IEEE Std 1029.1-1991,

Waveform and Vector Ex-
change Specification

, The Institute of Electrical and
Electronics Engineers, Inc., New York, NY, 1991.

4. MIL-HDBK-454,

General Guidelines for Electronic
Equipment

, 28 April 1995.

5. J. W. Watterson, M. Royals, and N. Kanopoulos,

Chip-
Level Testability Requirements Guidelines

, Technical
Report RTI/4968/01F prepared for the US Air Force,
Rome Air Development Center, Rome, NY, by Re-
search Triangle Institute, Research Triangle Park, NC,
November 1991.

6. R. S. Mejzak and Lt K. T. Schmierer, “JIAWG Module
Fault Coverage Metrics Methodology”,

Proceedings of
the IEEE/AIAA 10th Digital Avionics Systems Confer-
ence

, Los Angeles, CA, October 1991, Institute of Elec-
trical and Electronics Engineers, Inc., New York, NY,
and American Institute of Aeronautics and Astronau-
tics, Washington, DC.

7. R. E. Harper,

Critical Issues in Ultrareliable Parallel
Processing

, Technical Report CSDL-T-944, Charles
Stark Draper Laboratory, Inc., Cambridge, MA, June
1987.

8. B. E. Clark, J. T. Morrison, F. G. Gray, and T. White,

A
Model of the Ada Avionics Real-Time System: An Ex-
ample of the Benefits of the Hardware/Software Code-
sign Approach in Development of Real-Time Systems

,
Technical Report WL-TR-92-1022, US Air Force,
Wright Laboratory, Dayton, OH, March 1992.

9. D. A. Rennels and J. A. Rohr, “Fault-Tolerant Parallel
Processors for Avionics With Reduced Maintenance”,

Proceedings of the IEEE/AIAA/NASA 9th Digital Avi-
onics Systems Conference

, Virginia Beach, VA, Octo-
ber 1990, Institute of Electrical and Electronics
Engineers, Inc., New York, NY, and American Institute
of Aeronautics and Astronautics, Washington, DC.

10. P. McHugh, “IEEE P1149.5, Module Test and Mainte-
nance Bus”,

IEEE Design and Test of Computers

 (De-
cember 1992).

11. J. C. Lein and M. A. Breuer, “A Universal Test and
Maintenance Controller for Modules and Boards”,

IEEE Transactions on Industrial Electronics

36

, 231-
40 (May 1989).

12. M. M. Pradhan, R. E. Tulloss, H. Bleeker, and F. P. M.
Beenker, “Developing a Standard for Boundary Scan
Implementation”,

IEEE International Conference on
Computer Design: VLSI in Computers and Processors

,
IEEE Computer Society Press, Los Alamitos, CA,
1987.

13. IBM, Honeywell, and TRW, “Element Test and Main-
tenance Bus (ETM-Bus), Preliminary Specification”,

VHSIC Phase 2 Interoperability Standards

, VHSIC
Program Office, Washington, DC, September 1985.

14. L. Avra, “A VHSIC ETM-Bus-Compatible Test and
Maintenance Interface”,

Proceedings of the IEEE Inter-
national Test Conference

, IEEE Computer Society
Press, Los Alamitos, CA, 1987.

15. C. M. Maunder and R. E. Tulloss, Eds., Chapter 3, “The
Test Access Port and Boundary-Scan Architecture”,

8-10

MIL-HDBK-62

The Development of IEEE Std 1149.1

, IEEE Computer
Society Press, Los Alamitos, CA, 1990, pp. 23-30.

16. J. W. Watterson, J. J. Hallenbeck, G. A. Frank, D. L.
Franke, and J. B. Clary,

Tools and Techniques for As-
sessment of VHSIC On-Chip Self-Test and Self-Repair

,
Technical Report RTI/2086/01-1F, by Research Trian-
gle Institute, Research Triangle Park, NC, for US Air
Force, Rome Air Development Center, Griffiss Air
Force Base, NY, February 1985.

17. IBM, Honeywell, and TRW, “TM-Bus Specification,”

VHSIC Phase 2 Interoperability Standards

, V. 3.0,
VHSIC Program Office, Washington, DC, November
1987.

18. M. J. Strickland and D. L. Palumbo, “Fault Tolerant
System Performance Modeling,”

AIAA/AA/ASEE Air-
craft Design, Systems and Operations Conference

,
American Institute of Aeronautics and Astronautics,
Washington, DC, 1988.

19. IEEE Std. 1149.1-1990,

IEEE Standard Test Access
Port and Boundary-Scan Architecture

, The Institute of
Electrical and Electronics Engineers, Inc., New York,
NY, May 1990.

20. P. M. Campbell, M. Vai, and Z. Navabi, “Implementa-
tion of IEEE Std 1149-1-1990 in VHDL”,

Using VHDL
in System Design, Test, and Manufacturing

, Proceed-
ings of the VHDL International Users’ Forum Spring
Conference, Scottsdale, AZ, May 1992, VHDL Interna-
tional Users’ Forum, c/o Conference Management Ser-
vices, Menlo Park, CA.

21. Mentor Graphics Corporation, “Mentor Graphics Sys-
tems—1076”,

Supplier Directory

, VHDL International
Users’ Forum, c/o Conference Management Services,
Menlo Park, CA, May 1992.

22. Gen Rad, Inc., “System HILO 4: HiDesignA”,

Supplier
Directory

, VHDL International Users’ Forum, c/o Con-
ference Management Services, Menlo Park, CA, May
1992.

23. DAZIX, An Intergraph Company, “DAZIX Synthesis
Toolset: High-Level Implementation Tools for Today’s
Top-Down Design”,

Supplier Directory

, VHDL Inter-
national Users’ Forum, c/o Conference Management
Services, Menlo Park, CA, May 1992.

24. Racal-Redac, “SilcSyn VHDL Synthesis”,

Supplier Di-
rectory

, VHDL International Users’ Forum, c/o Confer-
ence Management Services, Menlo Park, CA, May
1992.

25. K. J. Parella and A. Wilmot, “Fault Detection and Lo-
calization”,

Using VHDL in System Design, Test, and
Manufacturing

, Proceedings of the VHDL International
Users’ Forum Spring Conference, Scottsdale, AZ, May
1992, VHDL International Users’ Forum, c/o Confer-
ence Management Services, Menlo Park, CA.

BIBLIOGRAPHY

W. C. Carter, J. R. Dunham, J. Laprie, T. Williams, W. E.
Howden, and B. Smith,

Design for Validation: An Ap-
proach to Systems Validation

, Final Report, Task As-
signment No. 7 NAS1 17964, Research Triangle
Institute, Research Triangle Park, NC, 1987.

J. B. Clary, R. K. Joobbani, and F. M. Smith,

Development
of a Methodology for Verifying Military Computer
Family Built-In Test Performance Specifications

, Re-
search Triangle Institute, Research Triangle Park, NC,
September 1980.

SDIO BM/C

3

 Processor and Algorithm Working Group,

Ap-
plication of Fault Tolerance Technology; Volume I:
Design of Fault-Tolerant Systems; Volume II: Manage-
ment Issues, Contractor Milestones and Evaluation;
Volume III: Tools for Design and Evaluation of Fault-
Tolerant Systems; Volume IV: System Security and Its
Relationship to Fault Tolerance

, Rome Air Develop-
ment Center, Rome, NY, October 1987.

L. S. DeBrunner, F. G. Gray, and R. L. Baker, “A Method-
ology for Comparing Fault-Tolerant Computers”,

Pro-
ceedings of the AIAA/IEEE 8th Digital Systems
Avionics Conference

, San Jose, CA, 17-20 October
1988, American Institute of Aeronautics and Astronau-
tics, Washington, DC, and The Institute of Electrical
and Electronics Engineers, Inc., New York, NY.

“

Test: Faster, Better, Sooner”,

Proceedings of the 1991
IEEE International Test Conference,

Nashville, TN,
October 1991, IEEE Computer Society Press, Los
Alamitos, CA.

E. Yourdan,

Design of On-Line Computing Systems

, Pren-
tice-Hall International, Englewood Cliffs, NJ, 1972.

MIL-HDBK-62

9-1

9-1 INTRODUCTION

If very high-speed integrated circuit (VHSIC) hardware
description language (VHDL) models are to serve their in-
tended purpose, they must be delivered to the Government
in a consistent form and with all supporting documents and
files. As a design progresses, a series of models is delivered
to the Government; each model represents a refinement of
the previous version. The final, delivered model represents
the final hardware design. Each of these models is delivered
to the Government in accordance with the data item descrip-
tion (DID).

Par. 10.3 of the VHDL DID (Ref. 1) requires that all in-
formation required to document and test a model must be de-
livered with the model. This information includes textual
documentation, supporting VHDL model libraries, test
benches, test data, and the model itself. The DID requires
that these items be packaged into text files and delivered on
magnetic tape. Because of the variety of magnetic tapes in
existence, the Government may wish to tailor the DID to
specify an alternate tape size and format, e.g., 8-mm Unix tar
tape, from that stated in the DID.

The DID specifies the contents of the files on the tape, but
it does not specify which, if any, higher level file structure
(such as file names and directory structures) should be in-
cluded. Thus, if the files are delivered on unlabeled ASCII
magnetic tapes as recommended by the DID, no file- or
directory-name information is included. Therefore, it is not
possible to connect the contents of a file directly to its orig-
inal host file name. Even though the VHDL DID requires
that a list of host file names be provided, without some con-
vention it is not possible to associate this host name with a
given VHDL source file on the tape, as par. 10.3 of the
VHDL DID also requires.

Par. 7.3 of the VHDL DID allows the Government agency
receiving the models to specify the machine format of the
tape for the deliverables so directory structures and names
can be negotiated. Because of the generality of the DID for-
mat specification, it is recommended that each VHDL source
file contain its host file name as a comment at the top of the
file. The host file name should specify the directory hierarchy
above the file to the level of directories included in the tape.
For example, consider a directory (called

model

) containing
four subdirectories:

1. A utilities directory,

utilities

2. A structure directory,

structure

3. A leaf cell directory,

leaf_cells

4. A component specification directory,

comp_lib

.
Then a file named

memory_arch.vhdl

, which contains
the architecture body for a memory component (one of the
leaf cells), would have the comment

File: model/leaf_cells/memory_arch.vhdl

VHDL specifies the library as the unit of organization for
VHDL models; VHDL source files are analyzed into these
libraries. Although the VHDL DID does not explicitly re-
quire specification of the library structure, the names of the
libraries and the library units they contain need to be provid-
ed in the documentation so that a model can be successfully
recovered from the contents of the tape. It is recommended
that the directory structure reflect the VHDL library struc-
ture, so all files containing VHDL source code for units in a
particular library should be in the same directory. It is also
recommended that each VHDL source file contain the name
of the library into which it should be analyzed as a comment
at the top of the file. To continue the example, suppose that
the directory structure described reflects the target library
structure; the VHDL model includes four libraries:

Utilities, Structure, LeafCells,

 and

CompLib

Therefore, the source code file named

memory_arch.vhdl

 would have the comment

Library: LeafCells

The Waveform and Vector Exchange Specification
(WAVES) header file provides information about the rela-
tionship between VHDL units, the files that contain their
source code, and the VHDL libraries in which they reside.
For each file delivered with the model, there is a specifica-
tion of the type of the file (either external, WAVES standard,
or VHDL) and a specification of the associated library. An
example of a WAVES header file is shown in Fig. 7-3.

These recommendations require tailoring of the VHDL
DID. Additional recommendations relating to file-, entity-,
signal-, port-, and package-naming conventions are included
in this chapter and also require tailoring of the VHDL DID
should the Government want to specify these details. If the
Government anticipates a need for interoperability between
components of the model or use of packages in other mod-
els, these issues should be spelled out in the tailored DID.

CHAPTER 9
PREPARATION OF VHDL MODELS FOR DELIVERY TO THE DoD

This chapter describes the preparation of a VHDL model for delivery to the Government. The contents and or-
ganization of the files delivered to the Government as specified in the VHDL DID are described. The files that must
be delivered include not only the VHDL source programs but also test vectors, annotations, other external files, and
documentation. This chapter also recommends VHDL naming conventions.

Thi d t t d ith F M k 4 0 4

9-2

MIL-HDBK-62

9-2 FILES TO BE INCLUDED IN DELIV-
ERY TAPE

Par. 10.3 of the VHDL DID requires files to be parti-
tioned into two basic types: VHDL design files conforming
in all respects to the

VHDL Language Reference Manual

(Ref. 2) and other files containing auxiliary information
needed to document various aspects of the design and its op-
eration. Par. 7.3 of the VHDL DID also describes the tech-
nical requirements for the layout of the delivery tape.

In general, it is recommended that only one design unit be
included in each VHDL file; however, there are exceptions
that should be made. For small packages the package decla-
ration and the package body may be included in the same
file, particularly if few changes in the package body without
corresponding changes in the package declaration are antic-
ipated. All design units in the same file should belong in the
same VHDL library.

Par. 10.3 of the VHDL DID requires that design units new
to a delivery not be contained in a file that has been previ-
ously delivered to the Government. The VHDL DID re-
quires that the files be delivered in a specific order as
described in the following subparagraphs.

The Navy Technology Independent Representation of
Electronic Products (TIREP) project (Ref. 3) has produced a
complete example of a VHDL model and its supporting in-
formation. The TIREP VHDL model conforms to the re-
quirements of the VHDL DID and makes use of WAVES
(Ref. 4). It also applies an early version of Electronic Indus-
tries Association (EIA) 567 (Ref. 5), and makes recommen-
dations for changes in EIA-567 (Ref. 6).

9-2.1 LIST OF FILES

Subpar. 10.3.a of the VHDL DID requires that the first
file included on the delivery tape contain, in order, the
names of all of the files included in this delivery. Each file
name should be followed by the name of the design unit con-
tained in the file, and there should be one record or line for
each file. It is recommended that the order in which the files
are listed match the order in which the files occur on the
tape.

This handbook recommends that this file be given an
easily recognized name when practical, e.g.,

<model

_

name>.toc

, for this table of contents. This
convention makes it easy to find the file after it has been
copied from the tape into the host file system.

9-2.2 DID OVERVIEW FILE

Subpar. 10.3.b of the VHDL DID requires the second file
on the tape contain a high-level, prose overview of the na-
ture of the VHDL model. This overview should cite (1) the
contract number that required the development of the model,
(2) the contract line item, and (3) the contract data require-
ments list (CDRL) sequence number. The overview should
also summarize the organization and content of the set of
files.

Information on the purpose, level of abstraction, or any is-

sues related to fidelity or other special considerations or lim-
itations of the model, should also be included in this file. If
the models use special or unusual algorithms, either a dis-
cussion of their operation should be included or a reference
should be made to a readily available report or other docu-
ment describing the algorithm.

It is recommended that information about the library
structure be included in this overview to explain the ratio-
nale behind the partitioning of design units into libraries.
This handbook also recommends that this file be given a
name that reflects the purpose of the file. For example, the
UNIX tradition is to call such a file

 README

. Other choices
for this file name are

<model_name>.cdrl

 or

<model_name>.readme

.

9-2.3 VHDL ANALYSIS ORDER SPECIFICA-
TION

Subpar. 10.3.c of the VHDL DID requires that the third
file on the tape describe the required order of analysis of the
files included in the delivery.

This handbook recommends that when practical, the file
specify the name of the library in which a VHDL design unit
should be stored. The WAVES header file (Ref. 4) is an ex-
ample of a file format that meets this recommendation. An
example of a WAVES header file is shown in Fig. 7-5. The
WAVES header file has three columns. The first column
specifies the type of file:

WAVES_FILENAME

 (i.e., a test
bench component),

WAVES_UNIT

 (i.e., a WAVES standard
file), or

EXTERNAL_FILENAME

 (i.e., an auxiliary file).
The second column gives the file name. The third column
specifies the VHDL library into which the design unit con-
tained in the file is to be analyzed.

A good naming convention helps to verify that the analy-
sis order is correct, e.g., that package declarations are ana-
lyzed before package bodies. A suggested naming
convention is described in par. 9-3.

It is also recommended that the file describing the order
of analysis be given a name that reflects the purpose of the
file, e.g.,

<model_name>.order

.

9-2.4 GOVERNMENT-APPROVED LEAF
MODULE VHDL DESCRIPTIONS

Subpar. 10.3.d of the VHDL DID requires that the fourth
file on the tape contain a list of the VHDL leaf-level design
entities used in the model that are supplied by or approved
by the Government. This list should include the name of the
Government organization supplying (or authorizing the use
of) each design entity. This name should be first in the file
and should include enough information to enable a future
user to contact the supplying organization, if necessary. The
supplying organization may authorize the use of files with-
out actually supplying the VHDL source code; in such cases
the supplying Government organization should be listed first
in the file, and the sources of the files used as leaf modules
should be specified in the actual files.

The VHDL Model Library being developed by the De-
fense Electronics Supply Center (DESC) is a potential

MIL-HDBK-62

9-3

source for leaf-level design entities. It should be contacted
for information on available models and the standards re-
quired to support interoperability with models in their li-
brary. Subpar. 4-2.3 describes the DESC efforts to develop
this library. Par. 4-2 provides more information on the types
of models required by MIL-HDBK-454 (Ref. 7). These
models are candidates for leaf-level entities to be supplied
by the Government.

Subpar. 10.2.8 of the VHDL DID requires the following
documentation for design units used in the model but not de-
veloped as part of the effort:

1. Identification of originator or source
2. Department of Defense (DoD)-approved identifier

(if one exists)
3. The design unit name
4. The design unit revision identifier.

The primary consideration for the definition of libraries
should be configuration management, particularly in terms
of who has read and write privileges for it. Each library
should have a single organization responsible for it. If a
VHDL model is being developed by a team, each library un-
der construction should have one person responsible for its
contents. A secondary consideration is the cohesiveness of
the units in a library. The goal is to limit the number of de-
sign units that have to access the library, to ensure that the
design units that access a library use most of the units in the
library, and to be able to describe the contents of the library
succinctly.

A Government agency should supply acceptable
leaf-level design entities and any appropriate VHDL pack-
ages already organized into libraries. The agency may spec-
ify commercial standard packages, e.g., Institute of
Electrical and Electronics Engineers (IEEE) 1164, that are
provided as part of commercial tool sets. The description
should include the host file name if the models were sup-
plied in source form. The description should also include the
name of the library unit contained in the file, its classifica-
tion (i.e., package declaration, package body, entity declara-
tion, architecture body, configuration declaration), and some
indication of its revision level, if available.

 It is recommended that some file, preferably this one, in-
clude descriptions of all VHDL libraries containing library
units either not developed by the contractor or maintained by
some organization other than the developer. Such libraries
include libraries containing standards such as IEEE Std
1164 (Ref. 8), WAVES (Ref. 4), or EIA-567 (Ref. 6).

It is also recommended that this file be given a name that
reflects its purpose, e.g.,

<model_name>.leaf

.

9-2.5 REVISED VHDL MODULE LIST

Subpar. 10.3.e of the VHDL DID requires that the fifth
file on the tape contain a list of the VHDL design units that
are revisions of design units previously delivered to and ac-
cepted by the Government.

As a model is refined during the design cycle, it is neces-
sary to deliver revisions of design units previously accepted

by the Government. Whenever possible, the file name for
these revised design units should be the same as the name of
the previously delivered version. For example, if an archi-
tecture body is modified but the entity interface is not
changed, the body retains the same design unit name and
should keep the same file name that was used when it was
delivered previously. The text of the modified design unit
should include additional information about the revision, as
described in subpar. 9-2.9.

It is also recommended that the file describing the
revised design units be given a name that reflects the pur-
pose of the file, e.g.,

<model_name>.revised

.

9-2.6 ORIGINAL VHDL MODULE LIST

Subpar. 10.3.f of the VHDL DID requires that the sixth
file on the tape contain a list of VHDL source code design
units newly created for this delivery. Par. 10.3 of the VHDL
DID also requires that these VHDL design units be placed in
files other than those containing design units previously ac-
cepted by the Government.

It is recommended that the list of design units be grouped
by libraries. It is also recommended that the list of VHDL
design units have a description for each design unit. This de-
scription should include the host file name, the name of the
design unit, the class of the design unit (i.e., package decla-
ration, package body, entity declaration, architecture body,
or configuration declaration), and some indication of its re-
vision level or history. Further, it is recommended that the
file describing the original design units be given a name that
reflects the purpose of the file, e.g.,

<model_name>.original

.

9-2.7 TEST BENCH CORRELATION LIST

Subpar. 10.2.5.3 of the VHDL DID requires that every
design entity be accompanied by an associated test bench.
This association may not necessarily be one-to-one. The
same test bench may be used to test several hardware mod-
ule design entities, and several test benches may be required
to test a single design entity fully. A test bench may consist
of a hierarchy of VHDL design entities. Configuration dec-
larations may be used to combine design entities into a test
bench or to specify generic constant values. For example, a
test bench may have as a generic constant the file name for
the external file containing the test vectors. The same test
bench runs different tests merely by changing the value of
the generic constant. The different values of the generic con-
stant may be defined in different configuration declarations.

The configuration declarations may also be used to select
the architecture body for the module under test (MUT). This
way, the same test bench can be used to test both the behav-
ioral and structural models of the MUT using the same test
vectors. Alternatively, the test bench may have several dif-
ferent architecture bodies that are used for different tests. In
this case, a configuration specification in the top-level archi-
tecture body of the test bench defines the value of the gener-
ic constant. The same configuration specification can
specify which architecture body is to be used for the MUT.

9-4

MIL-HDBK-62

A VHDL model (often a behavioral model) of a system
component may be used as part of a test bench used to test
another system component. For example, a test bench may
use both a behavioral and a structural model in back-to-back
configurations to verify that the structural model produces
the same results as the behavioral model.

Subpar. 10.3.g of the VHDL DID requires that the sev-
enth file on the tape indicate which test bench is associated
with which VHDL model. This file should contain a list of
pairs of names; each name should specify both a design en-
tity and either an architecture body or a configuration decla-
ration. The name of the test bench should specify a
configuration of the root entity interface of the test bench,
and the name of the VHDL model should specify a configu-
ration of the root entity interface of the MUT model hierar-
chy. For example, consider a test bench for Test A of the
behavioral model of a board maintenance controller for
which the root entity of the test bench hierarchy is called

TestBench

, and the configuration declaration associated
with the

TestBench

 entity is called

TestA

. The root en-
tity of the board maintenance controller is called

BoardMaintenanceController

, and the behavioral
architecture body for this entity is called

Behavior

. A line
in the association file states

TestBench(TestA) tests
BoardMaintenanceController(Behavior)

.
It is recommended that each of these pairs be accompa-

nied by a description of how the test data for the test bench
were generated (e.g., internally generated, WAVES test da-
ta, or other external files), how test bench options and pa-
rameters affect the nature and scope of testing, and any
assumptions or requirements needed to operate the test
benches. This description might include assumptions on the
location of test data files or other operating-system-specific
requirements.

It is also recommended that the seventh file be given a
name that reflects the purpose of the file, e.g.,

<model_name>.test

.

9-2.8 AUXILIARY INFORMATION FILES

Subpar. 10.3.h of the VHDL DID requires that the files
following the seventh file be the auxiliary files and VHDL
source files. The auxiliary files should precede the VHDL
files. The auxiliary files include supporting files such as test
data machine code for programmable processor models, oth-
er memory initialization data, and environmental parameter
data. Fig. 7-5 shows an example of a WAVES external file,
which is an auxiliary file. It is recommended that the file
name for an auxiliary file indicate that the file is an auxiliary
file, not a VHDL source file. Use of an appropriate file name
suffix, such as

<file name>.dat

 or

<file name>.ext

, is recommended. In particular, the
extension

vhdl

 or

vhd

 should not be used for auxiliary
files.

ASCII format auxiliary files are preferred because these
files are portable from one VHDL environment to another.

If the model developer is creating a new format for an exter-
nal file, (particularly ASCII files, which can be read using
TEXTIO), the formats should allow comments such as the
header comments in the WAVES external file shown in Fig.
7-5. Performance reasons and file sizes may force the use of
non-ASCII files. For example, synthetic aperture radar files
can require several hundred megabytes of data for a small
number of frames. Using the TEXTIO capabilities of VHDL
may pose a considerable performance burden for large data
files; therefore, the model developer may prefer to use the
implementation-dependent binary file I/O built into the lan-
guage. Use of this may save time and space at the cost of
portability. Thus the model developer must supply a mecha-
nism to convert the non-ASCII files into a usable format.
The VHDL DID does not require ASCII auxiliary files. The
VHDL DID must be tailored to specify a mechanism that en-
sures the portability of auxiliary data.

9-2.9 VHDL DESIGN UNIT FILES

Subpar. 10.3.h of the VHDL DID requires that VHDL
source code files follow the auxiliary files on the tape. These
files should contain all the new and revised VHDL design
units as identified in the fifth and sixth files described in sub-
pars. 9-2.5 and 9-2.6.

The VHDL model verification procedure (Appendix B
and Ref. 9) recommends that each design unit, i.e., entity
declaration, architecture body, package declaration, package
body, and configuration declaration, contain a header file in-
cluding the following information:

1. The design unit name
2. The design unit revision identifier (e.g., Version 2.3)
3. The design unit file name
4. Identification of the originator or source of the

VHDL including both individual and organization
5. DoD-approved identifier for the design unit, if one

exists (e.g., the contract data requirements list (CDRL) data
item number).
These recommendations are consistent with the require-
ments stated in subpar. 10.2.8 of the VHDL DID.

Subpar. 10.2.7 of the VHDL DID requires that the follow-
ing documentation be included in explanatory comments
augmenting the formal VHDL text:

1. Any factors restricting the general use of this de-
scription to represent the subject hardware

2. General approaches taken to modeling, particularly
decisions regarding model fidelity

3. Any additional information the originating organiza-
tion considers vital to subsequent users of the descriptions.
These comments are intended to clarify the intent of the
VHDL model.

Subpar. 10.2.8.1 of the VHDL DID requires that each re-
vised design unit have comments including the following in-
formation, which must be included for each revision:

1. The date of the revision
2. The individual and organization making the revision
3. The reason for the revision

MIL-HDBK-62

9-5

4. Identification of the part or parts of the original de-
sign unit that changed

5. A description of the testing done to verify that the re-
vised design unit is correct.

9-3 FILE NAMING CONVENTIONS

The purpose of file-naming conventions is to aid a user in
selecting a file. In particular, the file name should give an in-
dication of the type of VHDL design unit contained in the
file and an indication of the purpose of the design unit, e.g.,
modeling a particular physical hardware component, stan-
dard package, or test bench module. File-naming conven-
tions must be considered in the context of directory
structures. Much of the information that could be put in the
file name can be inferred from the directory path to the file;
redundant information should be avoided. Some popular op-
erating systems place limits on the length of the file name
(e.g., 8 characters) and on the length of the suffix (e.g. 3
characters) and may not discriminate between upper- and
lowercase letters in a file name, or they may allow only up-
percase letters. In the interest of portability it is recommend-
ed that file names should not use mixes of upper- and
lowercase letters. It is also recommended that directory
structures be used to keep file names short.

Thus a directory structure starts with the directory for the
entire library. This directory has subdirectories for packages
and entities, and each design entity has its own subdirectory.
The design entity subdirectory contains the entity interface
declaration and multiple architecture bodies for the entities.
The WAVES standard places the test bench components in
different libraries than the design entity for the module un-
der test (MUT), so test bench components are stored in a test
bench library subdirectory of the design entity directory.
Fig. 9-1 shows a directory structure and file names for the al-
gorithm library (which holds an algorithmic-level model)
for the sobel edge detector described in Chapter 2. The path
name for the horizontal filter test bench entity interface dec-
laration is

alg_lib/entities/h_filt/t_b_lib/iface.vhd

. The
path name contains the information needed to identify the
file and to work out where the unit should be placed in the
VHDL library structure.

9-3.1 NAMING VHDL DESIGN UNIT FILES

The syntax for file-naming conventions used in this sub-
paragraph is to surround the part of a name that changes on
instantiation with left and right brackets. Thus the specifica-
tion of

<package_name>.vhd

 for a package declaration
could be instantiated as

std_logic_1164.vhd

, which
indicates a package declaration named

std_logic_1164

.
The VHDL model verification procedure (Ref. 9) recom-

mends the following naming convention for files containing
individual VHDL design units:

1.

<package_name>.vhd

 for package declarations

2.

<package_name>_body.vhd

 for package bodies
3.

<model_name>_e.vhd

 for entity declarations
4.

<model_name>_a_str.vhd

 for structural archi-
tecture bodies

5.

<model_name>_a_beh.vhd

 for behavioral archi-
tecture bodies

Figure 9-1. Directory Structure and File
Names for Sobel Algorithm Library

9-6

MIL-HDBK-62

6.

<model_name>_testbench.vhd

 for test bench
models.

Because of the previous discussions about directory
structures, it is recommended that the file names be further
defined as follows:

1. <library_dir>/pkgs/
<package_abrv>_p.vhd

for general-purpose package declarations that are applied to
multiple MUTs and test benches

2.

<library_dir>/pkgs/
<package_abrv>_b.vhd

for bodies of general-purpose packages that are applied to
multiple MUTs and test benches

3.

<library_dir>/entities/
<entity_dir>/iface.vhd

for entity interface declarations
4.

<library_dir>/entities/
<entity_dir>/<arch>_a.vhd

for architecture bodies
5.

<library_dir>/entities/
<entity_dir>/t_b_lib/<test>_i.vhd

for test bench entity interface declarations
6.

<library_dir>/entities/
<entity_dir>/t_b_lib/<test>_a.vhd

for test bench architecture bodies
7.

<library_dir>/entities/
<entity_dir>/t_b_lib/<test>_p.vhd

 for test bench package declarations that are specific to a par-
ticular entity and test

8.

<library_dir>/entities/
<entity_dir>/t_b_lib/<test>_b.vhd

for test bench package bodies that are specific to a particular
entity and test.

This handbook recommends that configuration declara-
tions be given names of the form

<library_dir>/entities/<entity_dir>/
<config>_c.vhd

and that test bench configuration declarations be given
names of the form
<library_dir>/entities/<entity_dir>/

t_b_lib/<test>_c.vhd.
This handbook also recommends that configuration dec-

larations be given names of the form
 <entity_name>_config_<config_name>.vhd.

9-3.2 NAMING AUXILIARY FILES
Specific environments may have special naming conven-

tions for simulation output files. If the contractor and the re-
ceiving Government agency have the same VHDL
environment, they can simply use the naming conventions of
the environment. Otherwise, it is recommended that the
name <model_name>_<test_set_name>.trace
be used for trace files. If the VHDL models use file input/
output (I/O) to load tables or initialize memories, these files
should be given explanatory names, such as

<model_name>_<function_name>.program for
the machine language instructions for a programmable hard-
ware system or
<model_name>_<function_name>.table for the
table of coefficients for a function implemented by table
lookup.

9-4 SUGGESTED CODING CONVEN-
TIONS FOR VHDL MODELS

Because VHDL is a programming language intended to
communicate design information, it is important that this in-
formation be presented as clearly as possible. Clarity can be
improved by establishing certain programming conventions.
These conventions can also help to establish that a VHDL
description accurately reflects the function and structure of
a hardware system.

9-4.1 DESIGN ENTITY NAMING CONVEN-
TIONS

VHDL entity interfaces intended to represent the final
form of an actual hardware system should have the same
names as the actual hardware components. The VHDL name
for components that have names composed of more than one
word should be constructed by substituting underscores
(“_”) for the spaces between the individual words of the
hardware component name. Alternatively, uppercase letters
can be used to mark the beginnings of words. For example,
a model of the board maintenance controller could be named
board_maintenance_controller or
BoardMaintenanceController. The VHDL initia-
tive toward ASIC libraries (VITAL) (Ref. 10) encourages
the latter approach. Different styles may be used in different
parts of the model as long as a clearly defined protocol for
naming is specified. For example, all uppercase letters may
be used for VHDL-reserved words, underscores may be
used in external standards such as IEEE Std 1164 (Ref. 8),
and capitalization may be used for names created by the
model builder.

VHDL entity interfaces that do not represent actual hard-
ware should have names that are descriptive of the functions
they perform.

Architecture bodies should also be descriptively named.
It should be possible to tell from the name whether the body
is behavioral or structural, and it should be possible to tell
which implementation of the entity has been modeled, par-
ticularly if more than one implementation will reside in the
library. From a configuration management viewpoint, im-
plementation from different vendors may need to reside in
separate directories.

Component instance labels should be chosen to show the
connection with the parent component and should describe
the role the component is playing. For example, if an archi-
tecture always uses a particular I860 for an address genera-
tor and other I860s for other purposes, the address generator
role should be indicated by giving the address generator

MIL-HDBK-62

9-7

component instance the label I860AG. If the component in-
stances are generated by a schematic capture tool, the sche-
matic capture tool may have its own rules for defining
component instance labels. In this case, the roles of the com-
ponent instances need to be indicated for diagnostic reasons
and to improve readability. This information can be docu-
mented with generic constants that specify attribute values
associated with the component instances.

9-4.2 PORT-NAMING CONVENTIONS
Port names for entity interfaces that represent hardware

should have the same names as the pins on the actual hard-
ware. If a pin name starts with a digit, the port name should
consist of the interconnect name prefixed with a letter. For
example, if the pin name is 123, the corresponding signal
may be named P123. If the hardware pin names have more
than one word, the corresponding VHDL name should be
formed by concatenation and capitalization of the words as
described in subpar. 9-4.1.

A major style issue arises around the declaration of ports
that represent a multiline bus. From the viewpoint of top-
down design, there may be a desire to have a single port de-
clared a composite or abstract type. To support back annota-
tion, there may be a need to have a separate port for each bit
of the multiline bus. It is possible to create a “wrapper” en-
tity that converts a model using separate ports for each bit
into a single port with a composite or abstract type. Names
for separate single bit ports that make up a multiline bus
should be chosen to indicate their role in the bus. For exam-
ple, the port name for address bus bit 3 could be
AddressBus3.

Port names that do not represent actual hardware should
be descriptive of their function or usage.

9-4.3 SIGNAL-NAMING CONVENTIONS
Signal names for models that represent hardware should

be the same as the names of the electrical interconnections
in the hardware. If an interconnect name starts with a digit,
the signal name should consist of the interconnect name pre-
fixed with a letter, as described in subpar. 9-4.2. If an inter-
connect name consists of more than one word, the
corresponding VHDL name should be formed by concatena-
tion and capitalization of the words, as described in subpar.
9-4.1.

Names of signals that do not represent hardware should
be descriptive of their function or usage. For example, a per-
formance model may have a globally declared signal called
statistics, which is used by the test bench to collect
statistics.

9-4.4 PROCESS AND SUBPROGRAM NAM-
ING CONVENTIONS

Process labels and subprogram names should be descrip-
tive of the function performed by the process or subprogram.
Labels should be active instead of passive, e.g.,
generate_next_address instead of
address_generator. The names of conversion func-

tions should indicate both the source and result types of the
function as is done in IEEE Std 1164 (Ref. 8).

9-4.5 COMMENTING CONVENTIONS FOR
VHDL

The inclusion of comments in a VHDL description can
enhance understanding of the model. Comments should de-
scribe the contents of files.

Because different organizations will have different cod-
ing conventions, it is not the intent of this subparagraph to
give detailed guidance on the exact format of comments.
The guidelines that follow are intended to be suggestive of
the kinds of information that should be included in com-
ments. Other information can be included as required.

More detailed requirements can be specified either by tai-
loring the VHDL DID or by requiring that VHDL models be
developed in accordance with a development plan approved
by the Government.

9-4.5.1 Files
VHDL source files should not contain more than one li-

brary unit, although it may be desirable to combine a pack-
age declaration and its package body when the combination
is relatively short. Files containing VHDL source code
should have the following comments at the beginning of the
text file:

1. A brief description of the overall purpose of the li-
brary units contained within the file

2. A list of the library units, by name, contained within
the file

3. The date the final form of the file was created for de-
livery to the Government

4. The name of the organization that created the file
5. The contract number(s) under which the contents of

the file were created.

9-4.5.2 Packages
Each package declaration should have a brief description

of the purpose and contents of the package. This description
should include the following information:

1. A functional description of the package contents
2. The date the final form of the package was created

for delivery to the Government
3. The name of the organization that created the pack-

age.
This information should be included at the beginning of

the package text file.

9-4.5.3 Entity Interfaces
Each entity interface should have brief description that

contains the following information:
1. A description of the function the design entity per-

forms
2. Description of the generic constants: names, mean-

ings, and ranges
3. Description of the ports
4. Description of errors checked for by the entity inter-

face

9-8

MIL-HDBK-62

5. The date the final form of the entity interface was
created for delivery to the Government

6. The name of the organization that created the entity
interface.

9-4.5.4 Architecture Bodies
Each architecture body should have a brief description

that contains the following information:
1. A description of the style of architecture body: struc-

tural, behavioral, data flow, or a mixture
2. An indication of the level of abstraction employed:

algorithmic, instruction set architecture, register-transfer
level, or gate level

3. An indication of the complexity of the timing model
employed: zero delay, fixed delays, parameterized delays,
etc.

4. Description of any internal error checking
5. A reference to the corresponding CDRL number and

the intention of the body to serve the requirements of the
VHDL DID (Ref. 1), e.g., does the body serve as a behavior-
al or structural body in the sense of the DID

6. The date the final form of the architecture body was
created for delivery to the Government

7. The name of the organization that created the archi-
tecture body.

This description should come immediately before the
declaration of the architecture body.

9-4.5.5 Configuration Declarations
Each configuration declaration should have a brief de-

scription that contains the following information:
1. A description of the purpose of this particular con-

figuration declaration
2. A description of any specific operating conditions

for which this configuration declaration is intended
3. The date the final form of the configuration declara-

tion was created for delivery to the Government
4. The name of the organization that created the config-

uration declaration.
This description should come immediately before the

declaration of the configuration declaration.

9-4.5.6 Internal Comments
In addition to the comments previously mentioned, each

VHDL description should include comments to help users
understand the internal operation of the model. These com-
ments can be either in-line or block.

Each subprogram and process should have comments that
describe the operation, expected inputs and outputs, and er-
ror conditions associated with the process or subprogram.

Assertion statements should have comments that describe
the error conditions detected.

All type and object declarations or groups of related dec-
larations should have comments explaining the purpose of
the declarations.

Finally, executable sections of a model should have com-
ments explaining the operation of the model.

REFERENCES

1. DI-EGDS-80811, VHSIC Hardware Description Lan-
guage (VHDL) Documentation, Department of De-
fense, Washington, DC, 11 May 1989.

2. IEEE Std 1076-1987, IEEE Standard VHDL Language
Reference Manual, The Institute of Electrical and Elec-
tronics Engineers, Inc., New York, NY, 31 March 1988.

3. C. Rogers et al, A VHDL Modeling Guide, Draft Report
TP-804, Technology Independent Representation of
Electronic Products (TIREP) Project, NAWC-AD,
NSWC, Navy Research Laboratory, Indianapolis, IN,
May 1994.

4. IEEE Std 1029.1-1991, Waveform and Vector Ex-
change Specification, The Institute of Electrical and
Electronics Engineers, Inc., New York, NY, 1991.

5. F-22 Very High-Speed Integrated Circuit (VHSIC)
Hardware Description Language (VHDL) Model Spec-
ification, Technical Report 5PTA3009, General Dy-
namics Corporation, San Diego, CA, March 1992.

6. EIA 567-A, VHDL Hardware Component Modeling
and Interface Standard, Electronic Industries Associa-
tion, Washington, DC, March 1994.

7. MIL-HDBK-454, General Guidelines for Electronic
Equipment, 28 April 1995.

8. IEEE Std 1164-1993, IEEE Standard Multivalue Logic
System for VHDL Model Interoperability, The Institute
of Electrical and Electronics Engineers, Inc., New
York, NY, May 1993.

9. VHDL Model Verification and Acceptance Procedure,
Technical Report, Rome Laboratories/ERDD, Griffiss
Air Force Base, Rome, NY, March 1992.

10. IEEE Std 1076.4, IEEE Standard for VITAL Applica-
tion-Specific Integrated Circuit (ASIC) Modeling Spec-
ification, The Institute of Electrical and Electronics
Engineers, Inc., New York, NY, December 1995.

BIBLIOGRAPHY

J. R. Armstrong, Chip-Level Modeling With VHDL, Pren-
tice-Hall, Englewood Cliffs, NJ, 1989.

J. R. Armstrong and F. G. Gray, Structured Logic Design
Using VHDL, Prentice-Hall, Englewood Cliffs, NJ,
1993.

P. J. Ashenden, The VHDL Cookbook, University of Ade-
laide, Adelaide, South Australia, 1992.

J. Bergeron, “Guidelines for Writing VHDL Models in a
Team Environment”, VHDL Boot Camp, Proceedings
of the Fall 1993 VIUF Conference, San Jose, CA, Octo-
ber 1993, VHDL International Users’ Forum, c/o Con-
ference Management Services, Menlo Park, CA.

D. Coelho, The VHDL Handbook, Kluwer Academic Pub-
lishers, Norwell, MA, 1989.

B. Doray and P. Yousefpour, “Issues in Writing Large Mod-

MIL-HDBK-62

9-9

els in VHDL”, VHDL Boot Camp, Proceedings of the
Fall 1993 VIUF Conference, San Jose, CA, October
1993, VHDL International Users’ Forum, c/o Confer-
ence Management Services, Menlo Park, CA.

Randolph Harr and Alec Stancluescu, Eds., Applications of
VHDL to Circuit Design, Kluwer Academic Publishers,
Norwell, MA, 1989.

R. Lipsett, C. Schaefer, and C. Ussery, VHDL: Hardware
Description and Design, Kluwer Academic Publishers,
Norwell, MA, 1989.

D. Perry, VHDL, McGraw-Hill Book Co., Inc., New York,
NY, 1991.

J. Schoen, Performance and Fault Modeling With VHDL,
Prentice-Hall, Englewood Cliffs, NJ, 1989.

MIL-HDBK-62

A-1

*MIL-STD-454 has been superseded by MIL-HDBK-454,

General Guidelines for Electronic Equipment

, 28 April 1995.

A-0 PREFACE

This Appendix is a procedure developed by the Depart-
ment of Defense (DoD) to verify VHDL models. This

VHDL
Model Verification and Acceptance Procedure

 was devel-
oped at the US Air Force Rome Laboratories, Griffiss Air
Force Base, Rome, NY, through the coordinated efforts of a
triservice working group and industry consultants. This Ap-
pendix is the procedure as originally published by Rome
Laboratories in November 1992 as Version 1.0 and updated
3 February 1995; it is unchanged by the author or editors of
this handbook. References in the procedure to documents or
standards that have been updated or superseded as of the
date of publication of this handbook are footnoted, and the
current reference is given in the footnote.

The intent of use of the very high-speed integrated circuit
(VHSIC) hardware description language (VHDL) and the

Waveform and Vector Exchange Specification

 (WAVES)
within the DoD is to reduce the life cycle cost associated
with unit or device development, testing, maintenance, and
reprocurement. To achieve this goal, the DoD now suggests,
as specified in MIL-HDBK-454, that all electronic devices
delivered be documented in VHDL and their test vectors be
in WAVES format. The need to establish a single model as
the simulatable representation of an electronic unit in order
to eliminate duplication and assure common simulation re-
sults is recognized by DoD and industry. Procurement per-
sonnel need to verify that such a model accurately represents
the unit or device specification. In addition, this document
provides VHDL model developers a means by which to
evaluate their models against a set of criteria that the Gov-
ernment will use to evaluate whether a VHDL model has
captured the necessary design information.

The verification procedure consists of six paragraphs.
The first paragraph, “Scope”, provides an overview of the
motivation behind the DoD requirement for VHDL models.
This paragraph also addresses models that will be archived
and the minimal simulation environment needed for model
evaluation. The second paragraph, “Referenced Docu-
ments”, explains the order of precedence for reference doc-
uments in determining the functionality, timing, and
operation of the electronic device. Next is “Initial Inspec-
tion”, which is a visual examination of the delivered files for
proper documentation and format. The final three para-
graphs, “Detailed Inspection”, “Testing and Data Analysis”,
and “The Final Report”, include a detailed examination and
execution of VHDL source code, library components, head-
er information, and a report that discusses the findings.

A-1.0 SCOPE

The Department of Defense (DoD) is engaged in a num-
ber of programs which require VHDL models of ASICs and
systems. Specifically, the details of the deliverable VHDL
models are expressed in a combination of documents such as
MIL-STD-454*, the VHDL Data Item Description
(VHDL-DID (DI-EGDS-80811)) and any additional re-
quirements specified in any given Contract Deliverable Data
Items (“CDRLs” or “data items”).

VHDL data items capture the behavior and structure of an
electronic system, subsystem, or device. The primary pur-
pose of these data items is to document hardware designs in
a machine executable, simulatable, and hierarchical format.
VHDL models themselves must be inspected to insure that
they meet the requirements specified in the contract or
VHDL DID, as applicable. The VHDL DID may be tailored
by the contract requirements for some applications.

For acceptance, VHDL simulation models provided to the
Government as CDRLs must satisfy some known accep-
tance and verification criteria and procedure. These criteria
and procedures are the purpose of this document.

The verification procedure includes model evaluation for
compliance with the VHDL DID, inspection and testing of
the code for VHDL correctness, verification of models
against the supplied WAVES test vectors, verification of the
models against the functionality of the described part, and
verification of the model against the part specifications.
Such verification methodologies require an in-depth knowl-
edge of VHDL simulation, electronics hardware functional-
ity, and electronics test.

This document shall be used as the procedure document
for the verification of VHDL simulation models supplied to
the Government under contract, for certification and qualifi-
cation under the new Qualified Manufacturers List (QML),
or as part of Line Replaceable Module (LRM) acceptance.

A-2.0 REFERENCED DOCUMENTS

The first step in model verification is to obtain a set of
specifications and references concerning the device or sys-
tem being modeled. This information is then used by the in-
dividuals performing this verification and acceptance
procedure to educate themselves as to the functionality, tim-
ing and operation of the electronic system. Expert level un-
derstanding of the system’s design, functionality and timing
are essential prerequisites of the verifier.

APPENDIX A
 VHDL MODEL VERIFICATION PROCEDURE

Thi d t t d ith F M k 4 0 4

A-2

MIL-HDBK-62

A-2.1 Order of Precedence

The order in which the publications are listed below shall
be the order of precedence in the event that one publication
modifies the specifications or statements of a document at a
higher level of precedence, i.e., requirements under par. A-
2.2.2 override conflicting requirements at par. A-2.2.3 and
so on).

A-2.2 System Specifications

Any or all of the foregoing specifications may contain
block diagrams, timing charts, truth tables, stimulus
response vectors, schematics and any additional informa-
tion.

A-2.2.1 Standard IC Data Books/Specifications

The verifier shall obtain a copy of the commercially avail-
able device or system data book or specification if one is
available from the manufacturer.

A-2.2.2 ASIC Design Specification

For each ASIC undergoing verification and acceptance
under this procedure, a detailed design specification shall be
obtained.

A-2.2.3 System Level Specifications

For systems incorporating more than one of any combina-
tion of ASICs or standard ICs, a detailed system specifica-
tion shall be obtained.

A-2.2.4 Hardware Test Plan

For any system, subsystem, board or ASIC undergoing
verification under this procedure, a detailed test plan shall be
obtained for each design unit undergoing verification.

A-2.3 IEEE Publications

The following Institute of Electrical and Electronics En-
gineers (IEEE) publications are referenced either explicitly
or implicitly within this document. The verifiers should
make each of these documents available to themselves for
reference. Copies of the standards may be obtained from
IEEE Standards Sales, 445 Hoes Lane, P.O. Box 1331, Pis-
cataway, NJ 08855-1331.

A-2.3.1 IEEE Std 1076-1987

*

IEEE Standard VHDL Language Reference Manual
(VHDL-LRM), 1988, The Institute of Electrical and Elec-
tronics Engineers, Inc., 345 East 47th Street, New York,
NY.

A-2.3.2 IEEE Std 1029.1-1992

IEEE Standard (Waveform and Vector Exchange Specifi-
cation) Language Reference Manual, 1991, The Institute of
Electrical and Electronics Engineers, Inc., 345 East 47th
Street, New York, NY.

A-2.4 Government Documents

The following US Government standards are referenced
either explicitly or implicitly within this document. The ver-
ifiers shall make each of these documents available to them-
selves for reference. Copies of the standards may be
obtained from the US Government by contacting:

Naval Publications and Printing Service Office
700 Robbins Ave.
Philadelphia, PA 19111-5094

A-2.4.1 Military or Contract Specification

The verifier shall obtain a copy of any applicable military
or contract specification in addition to those mentioned
above under which the VHDL model(s) have been devel-
oped. For some items, more than one specification (SMD,
SCD, commercial, etc.), may be required, in which case it
must be determined which specification the model is sup-
posed to represent. Also, many specifications may differ by
timing alone so that one model with different timing pack-
ages may satisfy several different military specifications (or
“dash numbers”). In addition, the same part may occur in
different packages.

A-2.4.2 MIL-STD-454M,

Requirement 64 to be
published April 1991**

A-2.4.3 DI-EGDS-80811,

VHSIC Hardware De-
scription Language (VHDL) Data Item
Description

A-2.5 Verification Procedure

To facilitate the performance of this verification proce-
dure, the verifier shall follow the instructions provided in par
A-6.0.

Note 1: Hereafter MODEL shall refer to the VHDL code
delivered to represent a digital electronic unit, device, or
component. The MODEL may be described as a high level
(behavioral) model or as a gate level model or as a combina-
tion of behavior and structure (mixed model).

Note 2: The intended unit, device, or component for
which the MODEL was developed will hereafter be called
the REFERENCE. The REFERENCE item may be hard-
ware, or if no hardware exists it will be the specifications for
the intended unit, device, or component.

A-3.0 INITIAL INSPECTION
A-3.1 Documentation Files Required Under

DID DI-EGDS-80811

The verifier shall determine that the contractor has pro-
vided all of the system specifications, hardware test plans,
and any additional documentation required for the verifier to
determine the functionality and timing of the system, sub-

*IEEE Std 1076-1987 has been superseded by ANSI/IEEE Std 1076-1993,

IEEE Standard VHDL Language Reference Manual

, September
1993.

**MIL-STD-454 has been superseded by MIL-HDBK-454,

 General Guidelines for Electronic Equipment

, 28 April 1995.

MIL-HDBK-62

A-3

system or device undergoing verification.
This section explains which items are to be “visually” in-

spected to determine whether all the required deliverables
are present, in the proper order, and that they meet certain
criteria specified in the VHDL DID.

The following eight auxiliary information files shall pre-
cede VHDL design files.

A-3.1.1 Table of Contents File

Inspect that this file contains the names of each of the
VHDL files delivered; one file name per record and nothing
else (pad with trailing blanks). (DID requirement 10.3a)

The file should be an ASCII file. Comments should begin
with the character #. ONLY one file per line.

Note 3: From a model style guide perspective, the devel-
opers should be encouraged to deliver the models in the fol-
lowing format:

<package>.vhd

 for package decla-
rations,

<package>_body.vhd

 for the corresponding
package body,

<modelname>_e.vhd

 for model entities,

<modelname>_a_str.vhd

 for structural architectures,

<modelname>_a_beh.vhd

 for behavioral architec-
tures,

<modelname>_c_str.vhd

 for structural configu-
rations,

<modelname>_c_beh.vhd

 for behavioral
configurations, and

<modelname>_testbench.vhd

for test benches. This
information is provided as a guide, not a requirement. The
developer is encouraged to follow a similar file naming
methodology.

Note 4: In addition, it is suggested that each model’s en-
tity, architectures, test benches and configurations be locat-
ed in its own subdirectory under the name of the model. The
same holds true for packages. In addition, all simulation
scripts and results can be located in the same subdirectories
as the models to which they pertain.

A-3.1.2 CDRL File

Inspect that this file contains a high-level prose descrip-
tion of the VHDL deliverables. The description shall contain
the following: (a) contract, (b)line item, (c) Contract Data
Requirements list sequence number, and (d) a summary of
the organization and content of the set of files. (DID require-
ment 10.3b)

A-3.1.3 Analysis File

Inspect that this file contains a specification of the order
of analysis of the VHDL design units. Verify that the order
of analysis is consistent with the rules of VHDL, (DID re-
quirement 10.3c) (i.e., Packages compiled before their cor-
responding bodies, which in turn are compiled before the
entities/architectures, and configurations which reference
them).

A-3.1.4 Leaves File

Inspect that this file contains the list of unmodified
VHDL leaf-level models that have been provided by the
Government, and referenced within any VHDL files. (DID
requirement 10.3c)

A-3.1.5 Modifications File

Inspect that this file contains the list of modules previous-
ly accepted by the Government and subsequently modified.
(DID requirement 10.3e)

A-3.1.6 Deliverables Files

Inspect that this file contains a list of VHDL modules that
originate with this VHDL delivery. (DID requirement 10.3f)

A-3.1.7 Test Bench Association File

Inspect that this file contains a list that associates VHDL
modules with their corresponding test benches. (DID re-
quirement 10.3g)

A-3.1.8 Auxiliary Information File(s)

Inspect that this file(s) contains any additional informa-
tion concerning the VHDL descriptions and VHDL design
files. Inspect that the contents of the auxiliary files do not
contain any complete VHDL design units. (DID require-
ment 10.3h)

A-3.2 Conformance to IEEE VHDL-1076

The verifier is instructed to compile (analyze) the VHDL
files on a fully compliant VHDL IEEE-1076 analyzer, in the
order specified in the Analysis File delivered under par. A-
3.1.3. Each of the files shall analyze with no errors. Certain
analyzers will issue warnings. The verifier shall make a
record of the execution of the analyzer and specifically note
any errors or warnings indicated.

A-4.0 DETAILED INSPECTION

The second phase of the verification process is a detailed
inspection of entities, architectures, configurations and other
support modules delivered.

A-4.1 Comment Banner

In order to assist the model verifier, a comment section is
required to precede each VHDL module. The comment sec-
tion should contain the following information:

1. Design unit name identifier
2. Identification of originator or source
3. DoD approved identifier (if one exists)
4. Whether model has been previously delivered
5. General approaches taken to modeling, and particu-

lar decisions regarding Modeling fidelity
6. Any further information vital to subsequent users of

the descriptions
7. Any factors restricting the general use of this de-

scription to represent the actual hardware
8. Any assumptions taken in developing the model
9. Previous approval of the module by the DoD.

A-4.1.1 Comment Banner With Revision Infor-
mation

If the module is a previously approved module and has
been revised with this delivery, the following information
shall also be included:

A-4

MIL-HDBK-62

1. The date of revisions
2. The performing individual and organization
3. The rationale for the revision
4. A description of which part of the original design

unit which required modification
5. A description of the testing done to verify the re-

vised model.

A-4.1.2 Comments

While it is difficult to determine quantitatively that the
model author has sufficiently commented the VHDL code, a
usual rule of thumb is to have an approximate 20% comment
overhead.

A-4.1.3 Inspection for Orthogonality

The files shall be inspected to ensure that each file is ei-
ther a VHDL design file, whose entire contents conform to
the requirements of the VHDL Language Reference Manu-
al, or an auxiliary information file containing no VHDL de-
sign units. (DID requirement 10.3)

A-4.1.4 Inspection for Incremental Information

The files shall be inspected to ensure that new design
units are not contained in the same file as design units that
have been previously accepted by the Government. (DID re-
quirement 10.3)

Note 5: A previously accepted module can be checked to
ensure that it has not been altered by using a text comparison
to discover any differences between the archived module
and the delivered module. Differences other than variable
names and comments should be examined for their effect on
module functionality, these differences should be noted in
the final report.

A-4.2 Model Evaluation and Inspection

The procedure described in this section should apply to
entities, architectures, and configurations of the model. All
material in par. A-4.1 pertains to each module of the VHDL
deliverables.

A-4.2.1 Entity Declaration (DID Conformance)

Each entity declaration shall be inspected for the specifi-
cations listed in this section. In addition, if the entity is con-
tained in a separate file, then the procedures pertaining to
revision information and comments (par. A-4.1) shall also
apply.

A-4.2.1.1 Entity Declaration

The entity declaration for each entity shall include:
1. An interface declaration
2. Timing and electrical requirements for the behavior

of the device
3. Allowable operating conditions
4. Component identification
5. Explanatory comments.

 (DID requirement 10.2.2.)

A-4.2.1.2 Entity Interface Declaration

The interface declaration for each entity shall be inspect-
ed to assure:

1. That a description has been included for every port
that exists on the device

2. The inclusion of information relating each input and
output port to a package pin number or connector pin num-
ber whenever such a correspondence exits.

(DID requirement 10.2.2.1.)
Note 6: If a condition should arise such that the name of

the port violates the rules of VHDL, an appropriate alterna-
tive name should have been selected and commented as
such.

Note 7: There are a number of ways in which this infor-
mation may be obtained including (1) comments, (2) port at-
tributes, or even (3) the instantiation of a “packaging” entity
whose port names correspond to the pin numbers of the
packaging of the device, i.e.,

Pin_23

 as a port name (DID
requirement 10.2.2.1).

A-4.2.1.3 Entity Naming Conventions

The entity declaration shall be inspected to ensure that the
names for VHDL entities are traceable to the names of their
physical electronic counterparts whenever such a correlation
exists. (DID requirement 10.2.2.4)

A-4.2.1.4 Timing Electrical Requirements

The model shall be inspected to ensure that timing and
electrical requirements are expressed in such a manner as to
cause the simulator to generate error messages upon viola-
tion of a specification during simulation. (DID requirement
10.2.2.2)

The specifications may include the following:
1. Timing specifications such as setup, hold, pulse

width, periodicity, and release or recovery times, among
others.

2. Electrical specifications such as maximum fanout
DC load, maximum fanout capacitive load, maximum drive
current limits, voltage range, temperature range.

3. Additional timing considerations such as required
number of clock cycles for correct reset to occur.

A-4.3 Architectures

Each architecture shall be inspected for the specifications
listed in this section. In addition, if the architecture is con-
tained in a separate file, then the procedures pertaining to re-
vision information and comments shall apply as well.

A-4.3.1 Hierarchy

Inspect that the models delivered are written with a “rea-
sonable” level of hierarchy. The model shall be inspected to
ensure that structural decomposition of behavioral bodies is
used only when necessary to show functional partitions of
the corresponding structural body. Ease of simulation and
clarity of behavior shall be considered when determining the
appropriate level of hierarchical decomposition. (DID re-
quirement 10.2.3.1)

MIL-HDBK-62

A-5

A-4.3.1.1

The model shall be inspected to ensure that the hierarchy
of VHDL modules is analogous to the physical hierarchy of
the hardware being documented. The model shall be inspect-
ed to ensure that one VHDL module is defined for the entire
system, and one for each physical electronic unit (assembly,
subassembly, integrated circuit, etc.) of the hardware sys-
tem, and that VHDL modules are defined for important sub-
sections or groupings of complex physical units (e.g.,
macrocells of a chip or boards defining a processor). (DID
requirement 10.2.1)

Note 8: As a guide, an ASIC should have a minimum of
three (3) levels of hierarchy: (1) A behavioral model of the
ASIC at the pin boundary level (no structural subarchitec-
tures), (2) a level representing the ASIC’s block diagram
(which includes structural subarchitectures), where the
structural subarchitectures are written as behavioral models,
and lastly (3) a detailed, gate-level architecture, where all of
the components are leaf-level models.

A-4.3.2 Physical Correspondence

Inspect that the model’s architecture is written and com-
mented sufficiently well such that the internal signal names
and hierarchical component names reasonably match the
names of the physical implementation. (DID requirement
10.2)

A-4.3.3 Signal Delays

Inspect that all signal delays accurately model the behav-
ior of the device specification. At a minimum, the models
shall be coded to incorporate a means of evaluating mini-
mum, typical, and maximum timing delays. More elaborate
timing models which take into account other variables such
as supply voltage or output loading may also be used. (DID
requirement 10.2.3.2)

Note 9: Determining that the model “accurately” models
the timing of a specification is a difficult task. Certain areas
to look for include:

1. All possible input to output pin asynchronous
“cause-effect” paths have a corresponding delay path. This
delay path may, in addition, be level sensitive.

2. Determine how the model should respond under
conditions when simultaneous events could trigger events
that preempt previous timing events causing the output to
change to a new state at the wrong time.

3. Normally, inertial delay should be used. However,
certain conditions, such as glitch detection, require a trans-
port delay mechanism.

A-4.4 Behavioral Subarchitecture

Each behavioral subarchitecture shall be inspected to en-
sure that it meets the specifications listed in this section.

A-4.4.1 Visibility of Internal Registers

The model shall be inspected to ensure that all user pro-
grammable operations and registers are clearly identifiable

in the simulation model. The model verifier shall make a
checklist of the programmable operations and registers for
later use. (DID requirement 10.2.3)

A-4.4.2 Test and Maintenance Functions

Inspect that, if test or maintenance functions are available
to the user of the actual component, the model includes a de-
scription of the test functions. (DID requirement 10.2.3)

A-4.4.2.1 Test and Maintenance Functions for Be-
havioral Models

Detailed structural scan signature paths shall not be spec-
ified. However, the entity interface of the device should in-
clude the scan test port declarations. The model shall be
inspected to ensure that signal values which are dependent
on a particular structural implementation, such as scan path
signatures, are not specified in the behavioral body. (DID re-
quirement 10.2.3.3)

Note 10: In addition, the behavioral model, when placed
into a test mode, should respond with a NOTE level asser-
tion stating that the scan structure has not been implemented
in the model.

A-4.5 Structural Subarchitecture

Each structural subarchitecture shall be inspected to en-
sure that it meets the specifications listed in this section.

A-4.5.1 Test and Maintenance Functions

Inspect that, if test or maintenance functions are available
to the user of the actual component, the model includes a de-
scription of the test functions. (DID requirement 10.2.3)

A-4.5.2 Test and Maintenance Functions for
Structural Models

The model shall be inspected to ensure that structure
which is created to support testing and maintenance (such as
scan path signatures) is included in the VHDL structural de-
scription. (DID requirement 10.2.4)

Detailed structural scan path signatures shall be specified.

A-4.5.3 Correspondence to Actual Implementa-
tion

The model shall be inspected to ensure that the structural
bodies represent the physical implementation. The details of
the model at this level should enable logic fault modeling
and test vector generation to be performed, not necessarily
within a VHDL environment (DID requirement 10.2.4)

A-4.5.4 Traceability

The model shall be inspected to ensure that the names of
components and signals are the same as, or traceable to, their
electrical schematic counterparts, for ease of schematic
drawing correlation, and within the constraints of the lexical
rules of VHDL. (DID requirement 10.2.4.1)

A-4.5.5 Leaf-Level Modules

The model shall be inspected to ensure that each leaf level
module can be classified in one of the following categories:

A-6

MIL-HDBK-62

1. Modules selected from a Government list of leaf
level modules

2. Modules corresponding to a collection of hardware
elements which together exhibit a stimulus-response behav-
ior, but whose interaction is best modeled at the electrical or
physical level. Examples of such modules are digital logic
gates, analog circuit blocks, and power supplies.

3. Modules whose detailed design has not yet been
completed, but whose behavior is required as an interim con-
tractual deliverable. (DID requirement 10.2.1.1)

A-4.6 Dataflow Subarchitecture

Each of the procedures defined in and above shall be ap-
plied to dataflow modeling subarchitectures as well.

A-4.7 Inclusion of Packages

The model shall be inspected to ensure that VHDL pack-
age declarations are used whenever operating conditions are
common across a class of similar components. (DID require-
ment 10.2.2.3).

Note 11: Operating conditions are the physical and elec-
tronic environment in which components are designed to op-
erate, such as temperature range, signal excursions, logic
level definitions, maximum power dissipation, and radiation
hardness.

A-4.7.1 Traceability

Inspect that all such specifications are traceable back to
the physical device specifications. (DID requirement
10.2.2.3)

A-4.8 Test Benches

A-4.8.1 Check for Existence of Corresponding
Test Bench

Every VHDL module shall be simulatable as a stand-
alone model and hence a corresponding VHDL test bench is
required for every VHDL module of the hierarchy. (DID re-
quirement 10.2.5.3)

A-4.8.2 WAVES Conformance Requirements

The test vectors shall be inspected to determine that they
have been written in the WAVES format.

A-4.8.3 Distinguishable from the Module

The test benches shall be inspected to ensure that they are
clearly distinguishable from the VHDL modules represent-
ing the design itself. (DID requirement 10.2.5)

A-4.8.4 Test Bench Comments

The test bench shall be inspected for explanatory com-
ments. Refer to pars. A-4.1 and A-4.1.2. (DID requirement
10.2.7)

A-4.8.5 Test Vector(s) Description

A detailed description of the purpose of each test bench
shall be included. (DID requirement 10.2.7)

A-4.8.6 Assertion Reports

The test bench shall be inspected to assure that it stimu-
lates the Module Under Test (MUT) and reports any discrep-
ancies with expected response during simulation. (DID
requirement 10.2.5.1)

A-4.8.6.1 Assertion Messages

For each error message, inspect that it identifies the re-
quirement that has failed, and that the error message in-
cludes the name of the violating VHDL design entity. (DID
requirement 10.2.6)

A-4.8.7 Sufficiency of Configuration Information

Inspect the test bench to assure that sufficient configura-
tion information is present to facilitate the test.

A-4.8.8 Test Requirements Correlation

The VHDL test benches, the hardware test drawings, and
test plans shall be inspected to ensure that they are
cross-referenced to any required hardware test plans as nec-
essary. (DID requirement 10.2.5.2)

A-4.8.9 Necessary Tests

Each test bench shall be inspected to ensure that the
WAVES test vectors used within it are necessary to simulate
the correct behavior of the VHDL module to which it corre-
sponds. (DID requirement 10.2.5)

A-4.8.10 Sufficient Tests

Each test bench shall be inspected to ensure that the
WAVES test vectors used within it are sufficient to simulate
the correct behavior of the VHDL module to which it corre-
sponds. This includes a sufficient set of test vectors to vio-
late all timing constraints. (DID requirement 10.2.5)

A-4.9 Configurations

Note 12: While there are no specific procedures to verify
configurations, the following issues should be pointed out:

1. Default Bindings. When default bindings are used,
a comment stating such is useful.

2. Open Associations. When open ports or design
units are encountered in the configuration, a comment
should be made as to the purpose of the open association.

Note 13: Type Conversions. When type conversion func-
tions are used to map data from one VHDL model to anoth-
er, a comment should state if the mapping is identical or not.
If the mapping is not identical, then the comment should
state whether any unmapped signal values are likely and to
which state they are being mapped.

A-5.0 TESTING AND DATA ANALYSIS

A-5.0.1

Verifying the correct behavior of a VHDL simulation
model is a complex undertaking. The verifier needs a de-
tailed understanding of the device that has been modeled.
All sources of information concerning the device’s opera-
tion shall be obtained and used to determine what testing is

MIL-HDBK-62

A-7

required to verify that the delivered VHDL simulation mod-
el operates correctly and if the delivered test suite is suffi-
cient to meet those requirements. The intent of the
verification is to detect errors or omissions in the functional-
ity, timing, style or content of the VHDL simulation model.
The mechanics of the verification procedure are dependent
on the amount of design detail available for the REFER-
ENCE and the amount of design detail available for the
MODEL.

A-5.0.2 Execution of the Test Suite

Simulation results must match those indicated by the
specification for items such as best-case, worst-case, and
nominal output delays versus temperature and voltage rang-
es. Error messages caused by timing violations shall be in-
spected to ensure that they correctly identify the requirement
which has been violated and the name of the VHDL design
unit in which the error has occurred.

A-5.0.3 The Testing Procedure

The test procedure consists of:
1. Comparing the operation of the MODEL to the

specifications of the REFERENCE
2. Comparing the operation of the MODEL to the op-

eration of the intended REFERENCE.

A-5.1 Definitions for Testing

A-5.1.1 Test Bench

A VHDL module that applies WAVES stimuli to a mod-
ule under test (MUT) compares the MUTs response and the
WAVES expected output, and reports any differences be-
tween observed and expected responses during simulation.
Each configuration should have a corresponding test bench
which is clearly distinguishable from the MUT modules.

A-5.1.2 Test Suite

A collection of one or more test benches to which is asso-
ciated a corresponding MODEL.

A-5.1.3 Test Bench Configuration Sets

Determine that a test bench configuration set has been
made available for every combination of entity, architecture,
and test bench such that a test bench configuration exists for
each pair, i.e., MODEL-structural view + Test 1,
MODEL-behavioral view + Test 1, etc. (DID requirement
10.2.5.1)

A-5.1.4 Commercial Model REFERENCE

For commercially available integrated circuits, the DID
specifies that the VHDL test case shall correspond to an
equivalent hardware test plan. If no such test plan exists, as
in the case of a model of a standard IC device, then the REF-
ERENCE shall be the actual device.

A-5.2 Execution of Test Suite
Each test bench shall be executed and the results of the

simulation runs recorded. (DID requirement 10.2.5.1)

A-5.2.1 Behavioral and Structural Verification
Run every test bench configuration set and record the re-

sults. (DID requirement 10.2.5.1)

A-5.2.2 Automatic Checking
The simulation results shall be analyzed to ensure that

each VHDL test bench does correctly apply stimuli to the
MODEL, compares the MODEL’s response to an expected
WAVES output, and reports any differences between ob-
served and expected responses during simulation. (DID re-
quirement 10.2.5.1)

This involves monitoring the test bench and the MODEL
during simulation to insure that the proper functions in the
MODEL are activated by the test bench and that the proper
responses occur in the MODEL and are properly monitored
by the test bench. The comments provided with the test
bench defines what should happen with each test bench.

A-5.2.4 Augmentation of Test Vectors
The model developer shall provide WAVES test vectors

designed to check functionality and timing with a comment
provided for each vector or set of vectors describing the as-
sociated function being tested. The model verifier shall de-
velop a set of test vectors that violate the timing and voltage
specifications, attempt to perform illegal model operations
and test its functionality at its operational limits should such
test not be provided by the developer. Any additional vectors
developed to augment the test vector set shall be document-
ed in the final report. The MUT shall then be simulated and
the results analyzed.

A-5.2.3 Determination of REFERENCE Test
Goodness

Referring back to the REFERENCE specifications and
the hardware test plan, perform the following tasks:

A-5.2.5 REFERENCE Test Coverage Determina-
tion

Determine if there exists any REFERENCE behavior
specified in the functional specification that is not tested by
a test bench. This involves comparing the functional speci-
fication with the test bench descriptions to identify test
bench omissions. (DID requirement 10.2.5.3).

A-5.2.9 Augmentation of Test Benches
If in the opinion of the verifier, additional test benches are

warranted, then the verifier may write those test benches and
document the purpose of each test.

A-5.2.10 Simulation
The VHDL modules shall be simulated on any available

IEEE-1076 compliant simulator using the supplied test vec-
tor set in the WAVES format.

A-8

MIL-HDBK-62

A-5.3 Results Analysis

A-5.3.1 Result Documentation
Document every test performed under this section. Note

any errors or omissions and write additional test benches as
deemed necessary.

A-5.3.2 MODEL Functionality Omissions
Look for REFERENCE behavior specified in the func-

tional specification that is not modeled at all in the MODEL.
This involves comparing the functional specification with
the MODEL to identify MODEL omissions.

A-5.3.3 MODEL Functionality Errors
Look for REFERENCE behavior specified in the func-

tional specification that has been modeled in error in the
MODEL. This involves comparing the functional specifica-
tion with the MODEL to identify MODEL errors. REFER-
ENCE behavior includes timing behavior and functional
behavior.

A-5.3.4 MODEL Timing Performance
Check for proper modeling and testing of best, worst and

nominal output delays. (DID requirement 10.2.2.2).

A-5.3.4.1
Among other timing tests situations to look for, the fol-

lowing is a list of timing conditions commonly found in
commercial device models:

1. Setup, hold, recovery, and release time specifica-
tions

2. Periodicity, pulse-width and cycle-count specifica-
tions

3. Timing variations due to voltage, temperature or
loading.

 (DID requirement 10.2.3.2)
Note 14: Performing this procedure involves monitoring

the MODEL during simulation to insure that the proper tim-
ing relationships exist in the MODEL and that they are acti-
vated by the test bench. The comments provided with the
test bench define what should happen with each test bench.

A-5.3.5 Timing Violation Error Reports
The error messages caused by the timing violation shall

be inspected to ensure that they correctly identify the re-
quirement which has been violated and the name of the
VHDL design unit in which the error occurred. Applicable
VHDL design units include: entity declarations, architec-
tures, package declarations, package bodies, and configura-
tions. (DID requirement 10.2.6).

OPEN ISSUE: An alternative to verifying timing with
simulation is to verify timing with a timing analysis tool.

A-5.3.6 MODEL Programmable Operations Per-
formance

Check for proper operation of all user programmable op-
erations (instructions, registers, etc.) (DID requirement
10.2.3).

Note 15: This check involves comparing the REFER-
ENCE specification with the MODEL to identify MODEL
errors or omissions. In addition, common areas to investi-
gate include instruction operation in all addressing modes,
explicit use of illegal opcodes, and determination that in-
structions execute in proper time sequence with the correct
cycle count among other test.

A-5.3.7 MODEL Test and Maintenance Func-
tions

Check for proper operation of all test and maintenance
functions that are available to the user. (DID requirement
10.2.3)

A-5.4 REFERENCE Implemented in Hard-
ware

A correlation between the actual hardware and the VHDL
model to ensure correctness is the next step of the testing
process. The same WAVES test vectors used to stimulate the
MODEL are used to test the corresponding hardware. At this
level, discrepancies indicate a failure in the model’s descrip-
tion, an incorrect test vector set, or hardware that fails to
meet the specification.

This procedure shall be applied when the actual hardware
component is considered to be of higher quality than the
VHDL model. This is normally the case whenever a
third-party develops a behavioral model of a commercial
digital integrated circuit from the description contained in a
nonproprietary data book or data sheet.

A-5.4.1 Hardware Test Fixture
Construct or mount the REFERENCE into a hardware

test fixture. (For a commercial component, this is usually a
hardware modeler interfaced to a digital simulator.) Develop
a means of applying the test patterns generated by the test
suite to the REFERENCE. (In a typical VHDL-based simu-
lator with a hardware modeler interface, this step requires
the writing of a configuration design unit binding the formal
component instantiation to the physical device through the
hardware modeler software interface protocol.)

A-5.4.2 Verification Procedure
Repeat par. A-5.2 through par. A-5.3.7 with the physical

REFERENCE.

A-5.4.3 Test Response Comparisons
Compare the responses of the REFERENCE against the

response of the MODEL.

A-5.4.3.1 Comparison Considerations
The intent of comparing the responses of the MODEL

with the responses of a REFERENCE is to insure the MOD-
EL reflects the behavior of the REFERENCE both function-
ally and to some allowable timing tolerance. Because many
differences may exist between the two, special care needs to
be taken to insure a valid comparison.

MIL-HDBK-62

A-9

A-5.4.4 Different Levels of Abstraction
By itself, different levels of modeling abstraction be-

tween the REFERENCE and the MODEL should not
present additional problems. The REFERENCE operation
may be encapsulated in a written specification, a high level
(behavioral) model, a gate level model or by the hardware;
the MODEL may be described as a high level (behavioral)
model or as a gate level model. But the VHDL DID only
mandates that physical I/O pins, timing characteristics on I/
O pins, and user accessible hardware objects be clearly iden-
tifiable and hence comparable. Other internal objects may or
may not match across the two models and certainly should
not be used as a basis for comparison.

A-5.4.5 Data Sampling
While there will be differences in the details, both models

are intended to represent a common behavior. Keeping in
mind the issues presented below, a reasonable comparison is
possible.

The comparison is only as good as the data being com-
pared. Getting good data is a function of proper sampling.
Proper sampling is determined by the amount of timing de-
tail incorporated into the REFERENCE and the MODEL.
Sampling rates, times and locations are determined by the
REFERENCE or MODEL with the least accurate timing for
pin to pin comparisons. For internal comparisons, sampling
rates, times and locations are determined by the REFER-
ENCE or MODEL with the most abstract description.

A-5.4.6 Strobing Intervals/Time Offset
If both models contain accurate timing information, sam-

pling can occur at regular timed intervals, for instance: every
5 ns. This interval is determined by the level of accuracy re-
quired in the comparison and the allowable timing toleranc-
es. Data collection must be offset far enough from sample
initiation to guarantee valid data in the presence of any mod-
eled or physical delays and any timing ambiguity due to tim-
ing tolerances.

If one of the models does not contain detailed timing in-
formation, then sampling must be initiated with system
clocks (synchronous design) or control signals (asynchro-
nous designs). Data collection must be offset far enough
from sample initiation to guarantee valid data in the pres-
ence of any modeled or physical delays and any timing am-
biguity due to timing tolerances.

If both models contain accurate functional information,
sampling can also occur at any internal location; for instance
at every register. These locations are determined by the level
of accuracy required in the comparison. If one of the models
does not contain detailed functional information, then sam-
pling is only useful where there are common objects.

A-5.4.7 Cycle Count
Certain processors require a number of clock cycles in or-

der to perform a given function (i.e., multiplication in 154
clocks on a MC68000). Check that the MODEL matches the
REFERENCE with respect to cycle counts.

A-5.4.8 Timing Tolerance Windows
Certain REFERENCE specifications indicate that the

MODEL shall respond to a stimulus within a certain relative
time interval with respect to the stimulus or a gating clock
signal. Check that the test bench has been written in such a
way as to determine that the response transition occurs with-
in that timing window and that the test bench issues an error
if the response (a) fails to occur, (b) fails to provide the cor-
rect value during the time window, or (c) occurs outside of
the time window.

A-5.4.9 Discrepancies
Document any errors or omissions and write additional

test benches as necessary.

A-5.4.10 Justifiable Discrepancies
Make a list of justifiable discrepancies indicating the dis-

crepancy along with an explanation of why the discrepancy
is acceptable.

A-5.5 Simulation Values
If the REFERENCE and the MODEL have different val-

ue systems, a mapping from one to the other must be de-
fined. This mapping will be used during the comparison
process to insure response equality.

Consider the case where the REFERENCE uses a three
state ('U', '0', '1'), two strength ('W', 'S') value
system and the MODEL uses a five value system ('U',
'0', '1', 'Z', '-'). The mapping might be some-
thing like ('W', 'U') -> 'U', ('S', 'U') -> 'U',
('W', '0') -> 'Z', ('S', '0') -> '0', ('W',
'1') -> 'Z', ('S', '1') -> '1'. (There is no map-
ping to '-'.)

Keeping in mind the issues of data sampling below, the
comparison procedure uses the mapping defined above to
determine when responses in the REFERENCE are equiva-
lent to responses in the MODEL. If the MODEL ever exhib-
its a '-' during the comparison process, special analysis is
probably called for to determine what is happening. The ex-
istence of the '-' does not automatically imply model dif-
ferences.

A-5.6 Model Initialization
Situations may occur where it may appear that things can

be more complicated than is actually the case. Because the
models are supposed to be equivalent, the external stimulus
that initializes the REFERENCE and the MODEL are iden-
tical. After that stimulus has been applied, the two models
must be in identical states or the models aren’t equivalent.
The question remains: how to compare states for identity?

Consider the case where an initialization sequence con-
sists of holding a reset line active and then applying 5 clock
pulses. Upon completion of the initialization sequence, all
state machines should be at their starting state, all registers
should be cleared and all output busses should be tristated.
A comparison of the two models is constrained in both space
and time because of the way the specification is defined and

A-10

MIL-HDBK-62

because of what the DID allows.
The state machines in the two models cannot be observed

and compared because they do not represent user-accessible
features. The DID does not require that internal hardware
objects be modeled to any standard or that they must behave
in any set way. Only the subset of registers that is “user pro-
grammable” may be observed and compared for the same
reason. Nothing in either of the models (registers, busses,
etc.) may be compared during the reset sequence, only after
it is completed. The specification and the DID make no
statement about the behavior of the circuit or the models dur-
ing the reset sequence. Because of the data sampling issues
below, there may need to be some additional delay before
the comparison sample is taken because of pin switching de-
lays.

A-5.7 Unjustifiable Discrepancies
Make a list of unjustifiable discrepancies indicating the

discrepancy along with an explanation of why the discrepan-
cy is unacceptable.

A-5.8 I/O Pin Differences
There are two possibilities here. One possibility is that a

pin is present in one model and absent in the other. For in-
stance: a high level model has no scan out pin because that
behavior wasn’t modeled. An “equivalent” low level model
has a scan out pin. The other possibility is that a pin is
present in both models but behaves differently due to “level
of abstraction” issues. While it may seem there are extenu-
ating circumstance here, there really are not. In neither case
are these models equivalent. The DID requires pin for pin
compatibility.

A-6.0 VERIFICATION REPORT
 A final report shall be written detailing the results of this

Model Verification Procedure. The report shall contain the
following sections.

A-6.1 Contents and Organization of the Re-
port

A-6.1.1 Final Report Header
Contains essential information regarding the hardware

being modeled and the modeling environment. (See Tab A.)

A-6.1.2 Verification Procedure Checklist
Assures that the model has been inspected against each

item of the procedure. (See Tab B.)

A-6.1.3 Final Report Format
Explains the expected deliverable format of the final re-

port. (See Tab C.)

Tab A: Final Report Header
Report Name:

Verificator Name:

Model Name:

Model Version:

Model Vendor:

Authorizing Requester:

Analyzer Vendor Name:

Analyzer Model:

Analyzer Version:

Simulator Vendor Name:

Simulator Version:

Hardware Modeler Vendor:

Hardware Modeler Model:

Hardware Modeler Version:

Source of REFERENCE data:

List of additional HW / SW used for this test:

List of auxiliary test benches:

Instructions to the Verificator:

Tab B: Verification Procedure Checklist
The verificator shall check that each task item has been

completed as described in the Verification Procedure.

A-2.0 REFERENCED DOCUMENTS

A-2.2 System Specifications

A-2.2.1 Standard IC Data Books/Specifications

A-2.2.2 ASIC Design Specification

A-2.2.3 System Level Specifications

A-2.2.4 Hardware Test Plan

A-2.3 IEEE Publications

A-2.3.1 IEEE Standard VHDL Language Reference Man-
ual (VHDL-LRM) Exchange Specification

A-2.3.2 IEEE Standard VHDL View of WAVES (Wave-
form and Vector Exchange Specification)

A-2.4 Government Documents

A-2.4.1 Military or Contract Specification

A-2.4.3 DI-EGDS-80811 VHSIC Hardware Description
Language (VHDL) Data Item Description

A-2.4.4 TISSS Specification

A-3.0 INITIAL INSPECTION

A-3.1 Documentat ion Files Required under DID
DI-EGDS-80811

A-3.1.1 Table of Contents File

A-3.1.2 CDRL File

A-3.1.3 Analysis File

A-3.1.4 Leaves File

A-3.1.5 Modifications File

A-3.1.6 Deliverables Files

A-3.1.7 Test Bench Association File

A-3.1.8 Auxiliary Information File(s)

MIL-HDBK-62

A-11

A-3.2 Conformance to IEEE VHDL-1076

A-4.0 DETAILED INSPECTION

A-4.1 Comment Banner

A-4.1.1 Comment Banner with Revision Information

A-4.1.2 Comments

A-4.1.3 Inspection for Orthogonality

A-4.1.4 Inspection for Incremental Information

A-4.2 Model Evaluation and Inspection

A-4.2.1 Entity Declaration DID Conformance

A-4.2.1.1 Entity Declaration

A-4.2.1.2 Entity Interface Declaration

A-4.2.1.3 Entity Naming Conventions

A-4.2.1.4 Timing Electrical Requirements

A-4.3 Architectures

A-4.3.1 Hierarchy

A-4.3.2 Physical Correspondence

A-4.3.3 Single Delays

A-4.4 Behavioral Subarchitecture

A-4.4.1 Visibility of Internal Registers

A-4.4.2 Test and Maintenance Functions

A-4.4.2.1 Test and Maintenance Functions for Behav-
ioral Models

A-4.5 Structural Subarchitecture

A-4.5.1 Test and Maintenance Functions

A-4.5.2 Test and Maintenance Functions for Structural
Models

A-4.5.3 Correspondence to Actual Implementation

A-4.5.4 Traceability

A-4.5.5 Leaf-Level Modules

A-4.6 Dataflow Subarchitecture

A-4.7 Inclusion of Packages

A-4.7.1 Traceability

A-4.8 Test Benches

A-4.8.1 Check for Existence of Corresponding Test
Bench

A-4.8.3 Test Bench Comments

A-4.8.4 Test Vector(s) Description

A-4.8.5 Assertion Reports

A-4.8.5.1 Assertion Messages

A-4.8.6 Sufficiency of Configuration Information

A-4.8.7 Test Requirements Correlation

A-4.8.8 WAVES Conformance Requirements

A-4.8.9 Necessary Tests

A-4.8.10 Sufficient Tests

A-4.9 Configurations

A-5.0 TESTING AND DATA ANALYSIS

A-5.2 Execution of Test Suite

A-5.2.1 Behavioral and Structural Verification

A-5.2.2 Automatic Checking

A-5.2.3 Determination of REFERENCE Test Goodness

A-5.2.4 Augmentation of Test Vectors

A-5.2.5 REFERENCE Test Coverage Determination

A-5.2.6 Augmentation of Test Bench(es)

A-5.2.7 Simulation

A-5.3 Results Analysis

A-5.3 1 Result Documentation

A-5.3.2 MODEL Functionality Omissions

A-5.3.3 MODEL Functionality Errors

A-5.3.4 MODEL Timing Performance

A-5.3.5 Timing Violation Error Reports

A-5.3.6 MODEL Programmable Operations Performance

A-5.3.7 MODEL Test and Maintenance Functions

A-5.4 REFERENCE Implemented in Hardware

A-5.4.1 Hardware Test Fixture

A-5.4.2 Verification Procedure

A-5.4.3 Test Response Comparisons

A-5.4.4 Different Levels of Abstraction

A-5.4.5 Data Sampling

A-5.4.6 Strobing Intervals/Time Offset

A-5.4.7 Cycle Count

A-5.4.8 Timing Tolerance Windows

A-5.4.9 Discrepancies

A-5.4.10 Justifiable Discrepancies

A-5.5 Simulation Values

A-5.6 Model Initialization

A-5.7 Unjustifiable Discrepancies

A-5.8 I/O Pin Differences

Tab C: Delivery of the Final Report
The Verification Report, along with the Verification

Checklist, shall be filed in ASCII version and be appended
to the final tape provided for acceptance. In addition, a writ-
ten copy of the following shall be provided to the Program
Office requiring the acceptance.

Certification of Verification
THIS VERIFICATION PROCEDURE has hereby been

performed in accordance with the Verification Procedure at-
tached hereto.

WHEREAS, Verificator hereby certifies that the Mod-

A-12

MIL-HDBK-62

el(s) under consideration have been evaluated in accordance
with the verification procedures set forth in the Verification
Procedure document; and

WHEREAS, the Verificator hereby represents that any
discrepancies found have been indicated in an accompany-
ing Verification Report attached to this Checklist; and

NOW THEREFORE, the verificator certifies that such
tests were performed as required by affixing his or her sig-
nature below.

 Verificator Signature:

 Date:

MIL-HDBK-62

B-1

B-0 PREFACE

This Appendix contains examples of a completed con-
tract data requirements list (CDRL), DD Form 1423-1, and
a completed tailored data item description (DID), DI-
EGDS-80811.

The CDRL is an actual CDRL developed by the US Army
Research Laboratory and is the CDRL of the DID developed
by the Naval Research Laboratory that is used as an exam-

ple. The CDRL and the tailored DID are presented exactly
as used in contractual requirements documents for the deliv-
ery of very high-speed integrated circuit (VHSIC) hardware
description language (VHDL) documentation. Some docu-
ments referenced in the tailored DID have been updated or
superseded. Anyone developing a DID and using this DID as
an example must verify the current version of any document
referenced in this example.

APPENDIX B
CONTRACT DATA REQUIREMENTS LIST AND DATA ITEM

DESCRIPTION

Thi d t t d ith F M k 4 0 4

B-2

MIL-HDBK-62

MIL-HDBK-62

B-3

B-4

MIL-HDBK-62

Block 7, Application/Interrelationship (Continued)

7.3 The DD Form 1423 (Block 16) should contain the re-
quirements for preparation of the deliverable VHDL docu-
mentation. The preferred means of delivering all VHDL
documentation should be machine readable ASCII files con-
tained on the specific magnetic media and in the machine
format required by the Government Activity user. ASCII
files are defined as those satisfying character set require-
ments of the VHDL Language Reference Manual. Require-
ments for prepara t ion of de l iverable hard copy
(printed-paper media) documentation should also be provid-
ed on the DD Form 1423 (Block 16). The preferred docu-
mentation shall be comprised of:

a. Nine-track magnetic tape, 1600 bits per inch, unla-
beled, 80-character records, and a blocking factor of 1920
(i.e., 24, 80-character records per block). A label containing
text identifying the tape contents shall be affixed to the tape
reel.

b. Hard copy (printed on paper) containing the machine
loading instructions and the contests of the file 1 and file 2
on the tape (Section 10.3).

Block 10, Preparation Instructions (Continued)

10.2.1.1. Allowable leaf level modules. Leaf level modules
are VHDL modules for which no VHDL structural body is
required. The only permitted leaf level modules are:

a. Modules selected from a Government list of leaf level
modules referenced or contained in the contract.

b. Modules corresponding to a collection of hardware el-
ements which together exhibit a stimulus-response behavior,
but whose interaction is best modeled at the electrical or
physical level. Examples of such modules are digital logic
gates, analog circuit blocks, and power supplies.

c. Modules whose detailed design has not yet been com-
pleted but whose behavior is required as a delivery disclo-
sure at specified times during the contract.

10.2.2 Entity declaration The entity declaration for each
module shall include an interface declaration, timing and
electrical requirements for the behavior of the device, allow-
able operating conditions, component identification, and ex-
planatory comments.

10.2.2.1 Interface declaration The interface declaration for
each entity shall describe all input and output ports. The in-
terface description shall include information which relates
each input and output port to a package pin number or con-
nector pin number whenever such a correspondence exists.
This information may be in the form of port attributes or port
mapping statements which relate functional port names with
connector pin numbers.

10.2.2.2 Timing and electrical requirements Timing and
electrical requirements (e.g., setup and hold times or power
supply voltage extremes) shall be expressed in such a man-
ner as to cause the simulator to generate error messages
should the requirement be violated during a simulation.

Block 10, Preparation Instructions (Continued)

10.2.2.3 Operating conditions Operating conditions are the
physical and electronic environment in which physical com-
ponents are designed to operate, such as temperature range,
signal excursions, logic level definitions, maximum power
dissipation, radiation hardness, etc. VHDL package decla-
rations should be used whenever operating conditions are
common across a class of similar components.

10.2.2.4 Entity naming conventions Names for VHDL en-
tities shall be traceable to the names of physical electronic
counterparts whenever such a correlation exists.

10.2.3 Behavioral body A behavioral body is an abstract,
high-level, VHDL description which expresses the function
and timing characteristics of the corresponding physical
unit. All user programmable registers should be clearly
identifiable in the simulation model. Test and maintenance
functions which are part of the physical unit and are avail-
able to the user shall be included in the behavioral body.
Data flow, procedural and structural constructs may be used
for expressing behavior.

10.2.3.1 Decomposition of behavioral bodies Structural
decomposition of behavioral bodies shall be used only to
show functional partitions which are not clear from the par-
titions of the corresponding structural body. When deter-
mining the appropriate level of hierarchical decomposition,
ease of simulation and clarity of behavior should be kept in
mind. For example, it may be appropriate to decompose a
computer which is made up of several bit-slice microproces-
sors into composite arithmetic logic units and register files
which span portions of several chips. However, decompos-
ing it into Boolean logic primitives (e.g., AND and OR op-
erators) would neither clarify the behavior of the system nor
make it easy to simulate.

10.2.3.2 Timing characteristics Signal delays at output
ports of the VHDL modules shall accurately model the be-
havior of the physical units corresponding to the VHDL
modules. Best, worst, and nominal outputs delays shall all
be included. More elaborate timing models which take into
account other variables such as supply voltage or output
loading may also be used.

MIL-HDBK-62

B-5

10.2.3.3 Structurally dependent signal values Signal values
which are dependent on a particular structural implementa-
tion, such as scan path signatures, shall not be specified in
the behavioral module.

10.2.4 Structural body A structural VHDL body is com-
posed exclusively of interconnected lower level compo-
nents. Structural bodies shall represent the physical
implementation accurately enough to permit logic fault
modeling and test vector generation. Structure which is cre-
ated to support testing and maintenance such as scan paths
shall be included in the VHDL structural description.

10.2.4.1 Structural naming conventions For ease of sche-
matic drawing correlation, and within the constraints of the
lexical rules of VHDL, names for components and signals
shall be the same as, or traceable to, their electrical schemat-
ic counterparts.

10.2.5 VHDL simulation support VHDL test benches
which simulate the correct behavior of each VHDL module
required by the contract to be simulatable as a stand alone
module shall be furnished and clearly distinguished from the
VHDL modules representing the design itself.

10.2.5.1 VHDL test benches A VHDL test bench is a col-
lection of VHDL modules which apply stimuli to a module
under test (MUT), compare the MUT's response with an ex-
pected output, and report any differences between observed
and expected responses during simulation. VHDL configu-
ration information required to simulate the MUT shall be in-
cluded with the test bench.

10.2.5.2 Test requirement correlation VHDL test benches
shall be cross-referenced to the contractually required hard-
ware test plans, specifications and drawings.

10.2.5.3 VHDL test bench completeness Every VHDL
module of the hardware hierarchy shall be simulatable as a
stand alone module and hence a corresponding VHDL test
bench is required for every VHDL module of the hierarchy.

10.2.6 Error messages Error messages generated anywhere
in either the VHDL description of the actual hardware or the
test bench should identify the requirement which has been
violated and the name of the VHDL design unit in which the
error occurred. Applicable VHDL design units include: en-
tity declarations, structural and behavioral bodies, package
declarations, package bodies, and configurations.

10.2.7 Annotations VHDL design units shall include ex-
planatory comments which augment the formal VHDL text

to make the intent of the VHDL model clear. The following
information is required:

a. Any factors restricting the general use of this descrip-
tion to represent the subject hardware.

b. General approaches taken to modeling and particular-
ly decisions regarding modeling fidelity.

c. Any further information which the originating activity
considers vital to subsequent users of the descriptions.

10.2.8 Reference to origin Included in the VHDL documen-
tation shall be a list of VHDL modules new with this deliv-
erable and a list of VHDL modules that have been used
without change from VHDL documentation previously ac-
cepted by the Government under this contract or VHDL
modules selected from the list of Government VHDL mod-
ules referenced in the contract. Those modules included
from previously existing descriptions shall include:

a. identification of originator or source
b. DoD approved identifier (if one exists)
c. design unit name/revision identifier

10.2.8.1 Revision management VHDL design units, once
accepted by the Government, shall be revised only with the
approval of the Contracting Officer. A design unit revision
history shall be included in comments in each revised design
unit (Refer to 10.3, h). The revision history shall include:
the date of revisions, the performing individual and organi-
zation, the rationale for the revision, a description of where
the original design unit required modification and the testing
done to validate the revised model.

10.3 VHDL documentation format Each file delivered un-
der contract shall be either a VHDL design file, whose entire
contents conform to the requirements of the VHDL Lan-
guage Reference Manual (including the definition of com-
ments), or an auxiliary information file, containing no
VHDL design units. Design units which are new with this
contractual deliverable shall not be contained in the same
design file with design units which have been previously ac-
cepted by the Government. The sequential order of the files
of the deliverable shall be:

a. File 1: Names of all files of the deliverable VHDL
documentation, named in accordance with the originating
host operating system; one file name per record and nothing
else (pad with trailing blanks).

b. File 2: High-level prose overview of the VHDL
description that cites contract, line item, Contract Data
Requirements List sequence number, and summarizes the
organization and content of the set of files.

c. File 3: Specification of a sequence for analyzing the
VHDL design units of the deliverable that is consistent with
the order of analysis rules in the VHDL Language Refer-
ence Manual.

d. File 4: List of VHDL modules which were selected

B-6

MIL-HDBK-62

from the Government list of leaf level modules.
e. File 5: List of VHDL modules which are revisions

of modules previously accepted by the Government.
f. File 6: List of VHDL modules which originate with

this VHDL delivery.
g. File 7: List which associates VHDL modules with

their corresponding test benches.
h. File 8 et seqq.: Auxiliary information files concern-

ing the VHDL descriptions and VHDL design files. Auxil-
iary information files shall precede VHDL design files.

Modifications

1. Performance/un-interpreted/archictural model views
at the first level of VHDL module hierarchy (10.2.1) decom-
position. This view shall contain timing-only behavior for
leaf level entities (10.2.1.1) such as processor nodes, buses/
interconnects, inputs, and outputs. This view documents the
view required by a system engineer to make high level
choices relative to the type of processor, number of proces-
sors, and the type of network required.

2. Application model view at the second level of VHDL
module hierarchy (10.2.1) decomposition. This view shall
describe the full functional behavior (10.2.3) with
multi-component electronic modules as the leaf level enti-
ties (10.2.1.1). This view documents the functionality of the
module such that the system engineer can 1.) choose from a
model library the module with the appropriate functionality,
2.) integrate the described module’s behavior with the be-
havioral descriptions of other modules in the system, 3.) can
perform integrated hardware and software diagnostics of the
system software, and 4.) can investigate and analyze the im-
pact of replacing the module during a model year upgrade.

3. Application model view at the third level of VHDL
module hierarchy (10.2.1) decomposition. This view shall

describe the full functional behavior (10.2.3) with
multi-component electronic modules as the leaf level enti-
ties (10.2.1.1). This view documents the functionality of the
integrated circuits such that the application engineer can 1.)
choose from a model library the integrated circuits with the
appropriate functionality, 2.) combine individual integrated
circuit models into a composite model of an electric module,
and 3.) perform integrated hardware and software diagnos-
tics on programmable integrated circuits, and 4.) investigate
and analyze the impact of replacing an individual integrated
circuit during a model year upgrade.

4. Bus functional views shall be documented at the sec-
ond and third level of decomposition (i.e., module and inte-
grated circuit level) to include interface declaration, pin
timing and electrical information, and operating conditions
of all the interfaces (10.2.2.1, 10.2.2.2, and 10.2.2.3). This
view documents the information required by the electronic
module and/or board designer to determine if he has correct-
ly interconnected the integrated circuits on the module.

5. Structural views (10.2.4) of multi-component elec-
tronic modules with individual integrated circuits as the leaf
level entities. This view documents the information re-
quired to describe to the module’s test engineers, model year
upgrade engineers, and maintenance technicians how the
components on the module are interconnected.

6. Structural views (10.2.4) of all integrated circuits de-
signed by the RASSP program with register-transfer level
cells as the leaf level entities. This view documents infor-
mation that may be used by the model year upgrade engi-
neers to re-implement the integrated circuit in a newer
technology.

7. IEEE 1029.1 (Waveform and vector exchange specifi-
cation) waves compatible views of input stimulus and output
results (10.2.5) for all VHDL test benches at all levels of
VHDL module decomposition. This view documents the in-
formation necessary to show the correct functionality of the
models to anyone utilizing them.

MIL-HDBK-62

G-1

Algorithmic Model

. A high-level behavioral model written
as “a prescribed set of well-defined rules or processes
for the solution of a problem in a finite number of steps;
for example, a full statement of an arithmetic procedure
for evaluating sin(

x

) to a stated precision.”. [IEEE] The
inputs and outputs of an algorithm model may not be
exactly identical to the realized hardware at the bit level
but will provide the same overall functionality as the fi-
nal system. Moreover, an algorithmic model may not
support all of the diagnostic functions of the final real-
ized hardware.

Application-Specific Integrated Circuit (ASIC)

. A micro-
electronic device customized for a particular applica-
tion. Customization of a microcircuit may include
programming of programmable read-only memories
(PROMs), electrically programmable read-only memo-
ries (EPROMs), electrically erasable programmable
read-only memories (EEPROMs), and ultraviolet eras-
able programmable read-only memories (UVE-
PROMs). It also includes customized circuit designs
such as sea of gates, programmable logic arrays (PLAs),
programmable logic devices (PLDs), gate arrays, and
microelectronic devices designed using standard cells
or silicon compilation. [MIL-HDBK-454]

Apply

. The WAVES operation that schedules events to a
waveform and advances the current time for the wave-
form.

Architecture Body

. A VHDL design unit used to define the
behavior or structure of a design entity. There is only
one entity declaration permitted for a given architecture
body; however, multiple architecture bodies may be
generated for a single entity declaration.

ASCII File

. The American Standard Code for Information
Interchange (ASCII) defines a character set that is used
by VHDL’87 for source programs. Any file written in
that character set is considered an ASCII file. VHDL’93
uses ISO 8859-1 as its character set.

Assertion Statement

.

 A VHDL statement used to check that
a specified condition in a VHDL model is true and re-
ports an error if it is not. [VHDL’93 LRM]

Attribute

. A named characteristic that can be associated with
VHDL items including types, ranges, signals, and func-
tions. Attributes are used to annotate designs with infor-
mation in addition to timing, structure, and function.
Some attributes are predefined. VHDL provides at-
tribute specifications to specify the values of attributes,
and user-defined attributes are supported by VHDL.

Back Annotation

. The process of assigning values to at-
tributes as the result of the use of an external assessment
tool or when the parameters of an abstract model are up-
dated with accurate values obtained from more detailed
models. Back annotation is frequently used to refer to
the process of refining delay values based on detailed
calculations of fan-out, capacitive loading, and other
physical factors. The term is from the process of creat-
ing the model and declaring its attributes, then export-
ing the model to the external assessment tool, and then
replacing the attribute values of the model with the
more accurate values obtained from the assessment
tool.

Behavioral Model

. An abstract, high-level VHDL descrip-
tion that expresses the function and timing characteris-
tics of the corresponding physical unit independently of
any particular implementation. A behavioral model is a
model whose inputs, outputs, functional performance,
and timing are known but whose internal implementa-
tion is not further defined. [IEEE] Behavioral models
are also called black box models or input/output mod-
els. “Behavioral model” is also a general term for any
VHDL model that is not a structural model.

Block Statement

.

A VHDL statement that defines an inter-
nal block representing a portion of a design. Blocks may
be hierarchically nested to support design decomposi-
tion. [VHDL’93 LRM]

GLOSSARY*

*Some definitions extracted from authoritative sources are annotated with an abbreviation of the source in brackets following the extracted
portion. The following abbreviations are used:

[EIA] = EIA-567-A,

VHDL Hardware Component and Modeling Interface Standard

, Electronic Industries Association, Washington, DC,
March 1994.

[IEEE] = IEEE Std 100-1992,

The New IEEE Standard Dictionary of Electrical and Electronics Terms

, The Institute of Electrical and Elec-
tronics Engineers, Inc., New York, NY, January 1993.

[VHDL’93 LRM] = IEEE Std 1076-1993,

IEEE Standard VHDL Language Reference Manual

, The Institute of Electrical and Electronics
Engineers, Inc., New York, NY, April 1994.

[MIL-HDBK-454] = MIL-HDBK-454,

General Guidelines for Electronic Equipment

, 28 April 1995.
[WAVES] = IEEE Std 1029.1-1991,

Waveform and Vector Exchange Specification

, The Institute of Electrical and Electronics Engineers, Inc.,
New York, NY, 1991.

[Lipsett] = R. Lipsett, C. Schaefer, and C. Ussery,

VHDL: Hardware Description and Design

, Kluwer Academic Publishers, Norwell, MA,
1989.

[VLSI] = Joseph DiGiacomo,

VLSI Handbook: Silicon, Gallium Arsenide, and Superconductor Circuits

, McGraw-Hill Book Co., Inc., New
York, NY, 1989.

Thi d t t d ith F M k 4 0 4

G-2

MIL-HDBK-62

Boards

. Physical electronic units designed for easy replace-
ment in a system. Boards are typically the finest grained
form of a line-replaceable unit (LRU) found in a mili-
tary electronic system. An example of a board is the
standard electronic module E (SEM-E) package, which
is a 6-in. by 5.6-in. board that is approximately 0.10 in.
thick.

Boundary Scan

. A method of component testing that in-
volves the inclusion of a shift register stage (contained
in what is called a boundary scan cell) adjacent to each
component pin. The boundary scan cells are connected
into a serial shift register chain around the border of the
design, and the path is provided with serial input and
output connections and appropriate clock and control
signals. [IEEE 1149.1] A component designed with
boundary scan cells for each of its ports is tested by
shifting test vectors into the boundary scan override in-
put ports, executing the function of the component, and
then shifting out results from each of the boundary scan
output ports.

Boundary Scan Description Language (BSDL)

. A subset
of VHDL that defines formats for attributes of VHDL
design entities. These attributes contain much of the in-
formation required to analyze boundary scan BIT de-
signs.

Built-In Self-Test (BIST)

. Any test technique that allows a
unit to test itself with little or no need for external test
equipment or manual test procedures. A unit may be an
integrated circuit, board, or system, and the definition
implies that the testing process of input stimulation and
output response evaluation is integral to the unit being
tested.

Built-In Test (BIT)

. Any test approach using built-in test
equipment or self-test hardware or software to test all or
part of the unit itself.

Bus

. A signal line or a set of lines used by an interface sys-
tem to connect a number of devices and transfer infor-
mation. [IEEE]

Bus Signal

. In VHDL, a guarded signal that returns to a de-
fault value (specified by the resolution function of the
signal) whenever all of its drivers are disconnected.

Bus Controller

. Sometimes referred to as a bus interface
module, this controller is an electronic component that
monitors, provides, and controls access to the bus by
one or more processors or I/O devices. A bus controller
monitors the status of the bus to determine whether to
receive an incoming message and vies for control of the
bus with other controllers to send out messages.

Bus Functional Model

.

See

 Bus Interface Model.

Bus Interface Model

. A model of the operation of a compo-
nent with respect to any busses to which it is connected.
A bus interface model combines an incomplete model
of the processor and the memory portions of a compo-

nent with an accurate model of the function and timing
of the bus or network interface protocol.

Circuit-Level Model

. A model that represents a system in
terms of transistors or other elements such as switches
or gain blocks. It models the electrical behavior of the
system at a lower level than the gate level but at a higher
level than a full analog model. Circuit-level models
consider multiple (but discrete) signal strengths rather
than treating signal values as Boolean values or as con-
tinuous values.

Combinational Logic

. A logic function where a combina-
tion of input values always produces the same combina-
tion of output values. (The terms “combinative” and
“combinatorial” have also been used to mean combina-
tional.)

Compatibility

. 1. The degree to which models may be inter-
connected and used together in the same simulation
without modification. 2. The degree to which a VHDL
model can be used by or operated on by simulation,
analysis, or design tools, such as synthesis tools. [IEEE]

Complete Model

. A VHDL model that defines the interface
and behavior of a design and includes an electronic data
sheet, a test bench, and other supporting information
that explicitly describes the characteristics of the de-
sign.

Compliant Model

. A VHDL model that meets the require-
ments of the VHDL data item description (DID).

Component

. Any logically separable hardware unit. Com-
ponents can be combined to form a higher level compo-
nent by being interconnected; thus components are
nodes in the design hierarchy. The VHDL DID requires
that VHDL model components correspond to physical
or logical components.

Concurrent Statement

. A VHDL statement that executes
asynchronously with no defined order relative to other
statements. [VHDL’93 LRM]

Data Flow Model

. A model where the architecture is ex-
pressed in terms of data transfer, use, and transforma-
tion. [IEEE] A data flow model typically uses
concurrent signal assignment statements to compute the
output signal values directly from the input signals.

Data Set

. A named collection of similar and related data
records. A WAVES data set is the complete set of files
needed to build a WAVES waveform description. A
data set consists of a header file, one or more waves
files, and zero or more external files. [WAVES]

Declaration

. A VHDL construct that defines a declared en-
tity (such as an entity, object, subprogram, configura-
tion, or package) and associates an identifier with it.
[VHDL’93 LRM] This association is in effect within a
region of text called the scope of the declaration. Within
the scope of a declaration there are places in which it is
possible to use the identifier to refer to the associated

MIL-HDBK-62

G-3

declaration. At such places the identifier is said to de-
note the associated declaration.

Delay Model

. An algorithm used by a VHDL simulator to
update the transaction queue for a signal driver.

Delay Time

. The time between activation of a VHDL signal
assignment statement and the time the updated signal
value is scheduled to appear on the signal.

Design Entity

. An entity declaration together with an asso-
ciated architecture body. [VHDL ’93 LRM] Different
architecture bodies associated with the same entity dec-
laration are different design entities. Different design
entities may share the same entity interface but employ
different architecture bodies and thus describe different
components with the same interface or different views
of the same component.

Design File

. A text file containing the source code form of
one or more VHDL design units.

Design Hierarchy

. The complete representation of a design
that results from the successive decomposition of a de-
sign entity into subcomponents and the binding of those
subcomponents to other design entities that may be de-
composed in a similar manner. [VHDL ’93 LRM]

Design Library

. A host-dependent storage facility where in-
termediate form representations of analyzed VHDL de-
sign units are stored. [VHDL’93 LRM] Models
contained in a design library may not be available in
source form because of licensing and proprietary data
restrictions.

Design Unit

. Any block of VHDL code that can be indepen-
dently analyzed and stored in a design library. A design
unit is an entity declaration, an architecture body, a con-
figuration declaration, a package declaration, or a pack-
age body. [VHDL’93 LRM]

Direction

. A component of a WAVES event that indicates
whether the event represents a value that is to be driven
by the waveform, i.e., is a stimulus, or the event is an
expected value coming from the module under test, i.e.,
is a response. WAVES allows two possible values for
the direction of an event: stimulus and response.

Driver

. A VHDL mechanism for creating new values for
signals. A driver holds the projected output waveform
of a signal. [VHDL’93 LRM] A driver consists of a set
of time/value pairs that holds the value of each transac-
tion and the time at which the transaction should occur.
[Lipsett] The value of a signal is a function of the cur-
rent values of its drivers. [VHDL’93 LRM]

Edge Detection System

. An electronic system that inputs
digital images and detects edges in the image, in which
an edge is associated with each significant change in in-
tensity between neighboring pixels of the image.

Electrical View

. A view of a VHDL model that specifies the
voltage and current characteristics for each pin of a
component. [EIA]

Electronic Data Sheet

. A set of VHDL packages that de-

scribe the parameters, data types, physical types, and
functions required for the views of a component sup-
ported by EIA-567, such as an electrical view, a timing
view, and a physical view.

Entity Declaration

. A declaration that defines the interface
between a given design entity and the environment(s) in
which it is used. It may also specify declarations and
statements that are part of the interface. A given entity
declaration may be shared by many design entities; each
of which has a different architecture. Thus an entity
declaration can potentially represent a class of design
entities, each with the same interface.

Error

. A condition that renders a VHDL source description
illegal. If the error is detected at the time of analysis of
the design unit containing the error, the detection pre-
vents the creation of a library unit for the given source
description. A run-time error causes a simulation to ter-
minate.

Event

. In VHDL, a change in the current value of a signal,
whereas a WAVES event is the occurrence of an event
value at some specified time. A WAVES event has
three components: an event value, an event time, and an
associated signal on which the event occurs.

Event Value

. A WAVES data structure that has four compo-
nents: a state, a strength, a direction, and a relevance. A
WAVES event value defines the requirements upon the
waveform passing through the unit under test (UUT) at
an instant in time.

Fabrication Process

. The collection of mechanical and
chemical processes used to create an integrated circuit.
These fabrication processes have associated rules con-
straining the performance and the geometry of circuits
developed using the processes.

File Slice

. A record in a WAVES external file that describes
one or more events occurring at the same time.

Fragment of VHDL

. A collection of VHDL source state-
ments that do not constitute a complete VHDL design
unit that can be separately compiled.

Frame

.The set of events in WAVES defined within a slice
for a single signal. A frame represents a list of zero or
more events.

Functionally Correct

.

 A design is said to be functionally
correct if it provides the correct outputs for all possible
inputs. It must be assumed that there are no physical
faults in the manufactured system and that no errors are
caused by timing problems.

Gate-Level Model

. A model that describes a system in terms
of Boolean logic functions and simple memory devices,
such as flip-flops.

Generic

. A VHDL interface constant whose value is not
fixed until elaboration. A generic is declared in the
block header of a block statement, a component decla-
ration, or an entity declaration. Generics provide a
mechanism for communicating static information into a

G-4

MIL-HDBK-62

block. Unlike constants, the value of the generic can be
supplied externally in a component instantiation state-
ment or in a configuration specification. [VHDL’93
LRM]

Guard

.

See

 Guard Expression.

Guard Expression

.

A Boolean-valued expression associat-
ed with a block statement that controls assignments to
guarded signals within the block. A guard expression
defines an implicit signal that may be used to control the
operation of certain statements within the block. [VH-
DL’93 LRM]

Guarded Signal

. A signal declared as a register of a bus.
Such signals have special semantics when their drivers
are updated from within a guarded signal assignment
statement. [VHDL’93 LRM] There are two forms of
guarded signals: bus signals and register signals.

Header File

. A WAVES file that specifies how the data set
is to be assembled from the WAVES files and the exter-
nal files and defines the order of analysis for the
WAVES files and standard WAVES units. [WAVES]
A WAVES header file identifies the WAVES data set,
describes the other files in the data set and their intend-
ed use (including the target libraries for VHDL packag-
es), identifies VHDL library and packages that already
have been analyzed and will be used in the test bench,
and defines the order of analysis for the VHDL source
code.

Hierarchical Decomposition

. A type of modular decompo-
sition in which a system is broken down into a hierarchy
of components through a series of top-down refine-
ments. [IEEE]

Hierarchy

. A structure in which components are ranked into
levels of subordination, each component has zero, one,
or more subordinates, and no component has more than
one superordinate component. [IEEE]

Implementation Model

. A model that reflects the design of
a specific physical implementation of a hardware com-
ponent. Usually, an implementation model is parti-
tioned into several submodels, and each submodel
corresponds to a unique physical subcomponent of the
component.

Inertial Delay

. A VHDL delay model used for switching cir-
cuits. A pulse whose duration is shorter than the switch-
ing time of the circuit will not be transmitted. Inertial
delay is the default delay mode for VHDL signal assign-
ment statements. [VHDL’93 LRM] An inertial delay
model removes spikes in the driving value of the target
signal driven by an inertially delayed signal assignment.

Infix Operator

. A built-in arithmetic, relational, concate-
nate, or logical function that is represented syntactically
by a symbol or reserved word appearing between its two
operands in an expression. For example, the addition
operator + is an infix operator that appears between its
two operands, as in the expression A + B. VHDL

built-in operators can be overloaded so that they operate
on different types in addition to their native definition.

Initial Value Expression

. An expression that specifies the
initial value to be assigned to a variable, signal, or con-
stant.

Instruction Set Architecture (ISA)

. A model of the com-
plete set of instructions recognized by a given proces-
sor. An ISA model describes the externally visible state
of a programmable processor and the functions the pro-
cessor performs. An ISA model of a processor executes
any machine program for that processor and gives the
same results as the physical machine as long as all input
stimuli are sent to the ISA model simulation on the
same simulated clock cycle as they arrive at the real
processor.

Integrated Circuit

. A combination of interconnected com-
ponents constructed on a continuous substrate.

Interchangeable

. Two VHDL models of the same module
are said to be interchangeable if one model can be sub-
stituted for the other as the description of a component
in a larger system model without introducing errors into
the system.

Interconnection

. A mechanism used for electrical commu-
nication between two components; it may also be a
model of such a mechanism.

Interface

. A model that describes a shared boundary or
means of transmitting information between units. For
example, the interface for a VHDL design entity de-
scribes the ports that connect external signals to the in-
ternal functions of the component modeled by the
entity. The interface for a VHDL package describes the
functions and data structures that can be accessed by a
user of the package.

Interface Declaration

. In VHDL, a declaration that declares
the aspects of a VHDL design unit visible to other units
using the declared unit.

Interoperable

. Two VHDL models of different modules are
said to be interoperable if they can be connected togeth-
er as components of a larger system model without in-
troducing errors into the system model or into
simulations of the system model.

Leaf Module

. A design entity for which no VHDL structural
architecture body is required. As such, it is a leaf node
in the hierarchy of components. Examples of possible
leaf modules for a structural VHDL model include pow-
er supplies, analog circuit blocks, and digital logic
gates. In general, a leaf module will be a behavioral
model.

Line-Replaceable Unit (LRU)

. A hardware component of a
system that can be replaced in the field if it is found to
be faulty.

Logic-Level Model

.

 See

 Gate-Level Model.

Logic-Level Fault Modeling

. Models that represent Bool-
ean “stuck-at” values, stuck-at-0 and stuck-at-1. This

MIL-HDBK-62

G-5

modeling is used to test how effectively test vectors de-
tect logic-level faults.

Logic Value

. For WAVES, a VHDL enumerated type that
names all possible signal values that either can be ap-
plied to the external inputs of the MUT or can be sensed
as external outputs of the MUT.

Match

. The WAVES operation that samples the actual re-
sponse of the MUT (or its model), compares it with the
expected response, and produces a flag depending on
whether the response was within the tolerances speci-
fied by the WAVES waveform generator procedure.

Microelectronic Devices

. Monolithic integrated circuits, hy-
brid integrated circuits, radio frequency (RF) and mi-
crowave (hybrid/integrated) circuits, multichip micro-
circuits, and microcircuit modules. [MIL-HDBK-454]

Model Reference Library

. An implementation-dependent
storage facility for a set of executable models that can
be simulated in a VHDL simulation environment. Mod-
els contained in a model reference library may not be
provided in source form because of licensing and pro-
prietary data restrictions. Such restricted models are to
be avoided in DoD system designs because they may
make the described equipment unsupportable in the
long term.

Module

. A synonym for a component.

Module Under Test (MUT)

. The component of a test bench
that is being tested.

Object

. A VHDL object contains a value of a given type.
There are four classes of objects in VHDL’93: con-
stants, signals, variables, and files.

Operating Condition

. The physical and electronic environ-
ment in which physical components are designed to op-
erate, such as temperature range, signal excursions,
logic-level definitions, maximum power dissipation,
and radiation hardness. An operating condition for a
VHDL model is defined in terms of a set of parameters
that specify the aspects of the environment and a specif-
ic set of values for those parameters.

Operating Point

. A specific simulation condition selected
from minimum, maximum, and nominal. [EIA] An op-
erating point specifies the values for the operating con-
dition parameters used in a simulation.

Package

. A VHDL design unit that contains declarations
and definitions. Packages are used to encapsulate defi-
nitions of data types, constants, type conversion func-
tions, and utility functions so that these common
definitions can be reused throughout a model or across
several models.

Partitioning

. The process of decomposing a component into
its subcomponents.

Performance

. A collection of measures of the quality of a
design that relate to the timeliness with which the sys-
tem reacts to stimuli. Measures associated with perfor-
mance include utilization, throughput, and latency

(response time).

Performance Model

. A model with incomplete numerical
and internal state precision used early in the design cy-
cle to estimate utilization, throughput, and latency.

Period

. The time from the beginning of a WAVES slice to
the end of the slice.

Physical View

. A view that specifies the relationship be-
tween the component model and the physical packaging
of the component, such as relating port definitions in the
component model to the signal and power pins in the
physical implementation of the component.

Pin

. An electrical connection to a physical component. Pins
are classified as signal pins, power pins, or unconnected
pins. [EIA]

Port

. A VHDL signal that provides a channel for dynamic
communication between a module and its environment.
A port is a signal declared in the interface list of an en-
tity declaration, in the header of a block statement, or in
the interface list of a component declaration. In addition
to the characteristics of signals, ports also have an asso-
ciated mode that constrains the directions of data flow
allowed through the port. [VHDL’93 LRM]

Port Interface List

. A list of ports that declares the inputs
and outputs of a block, component, or design entity. It
consists entirely of interface signal declarations.

Power Pin

. An electrical connection through which electri-
cal power is supplied for the operation of a physical de-
vice. Power pin specification is necessary for the
procurement of physical components, but it is not nec-
essary for simulation in VHDL models. [EIA]

Prime Item. A configuration item is a technically complex
item such as an aircraft, missile, launcher equipment,
fire control equipment, radar set, or training equipment.
A prime item requires a B1-level specification for de-
velopment. The criteria used to consider a configuration
item a prime item are described in MIL-STD-490.

Primitive Data Types. A data type that is one of the data
types predefined by VHDL. The VHDL primitive data
types are INTEGER, REAL,TIME, CHARACTER, BIT,
BOOLEAN, and SEVERITY_LEVEL.

Primitive Module. A leaf-level module in a design hierar-
chy.

Printed Circuit Boards. Boards used to mount components.
A conductor pattern in, or attached to, the surface of the
printed circuit board provides point-to-point electrical
connections for the components mounted on the board.
[IEEE]

Process. The basic mechanism in VHDL used to describe
behavior. All concurrent signal assignment statements
can be represented as equivalent processes.

Processor. A hardware component that has the ability to fol-
low a program or list of instructions stored in a memory
(RAM or ROM), which allows it to perform some de-
tailed set of tasks. At the simplest level the instructions

G-6

MIL-HDBK-62

may be just a set of parameters. At the most complex
level, the instructions may be a compiled Ada program.

Processor-Memory-Switch-Level Model. A model that de-
scribes a system in terms of processors, memories, and
their interconnections, e.g., busses or networks.

Programmable Device. A hardware component whose be-
havior can be altered after manufacturing of the device.
Programmable devices include processors (whose be-
havior can be changed by changing the program in
memory), programmable logic arrays (PLAs), and field
programmable gate arrays (FPGAs).

Prototype. An initial or early version of a system in a nonde-
ployable form and usually created to validate certain as-
pects of the design. It may not have all of the
functionality, appearance, or internal complexity of the
expected final design. For example, a computer simula-
tion of a hardware component may be considered a pro-
totype in which all physical and timing characteristics
are not represented, but the functional characteristics
are represented.

Race Condition. Occurs when the behavior of a device de-
pends on the relative arrival order of signal values at a
particular component of the device. Such differences
may occur because two or more values are ultimately
derived from the same signal by computations having
potentially different delays.

Register Signal. A guarded VHDL signal that retains its last
driven value whenever all of its drivers are disconnect-
ed.

Register-Transfer-Level Model. A model that describes a
system in terms of registers, combinational circuitry,
low-level busses, and control circuits.

Relevance. The component of a WAVES event value that is
used to indicate the significance of the event to the sim-
ulation. The possible values for a WAVES event rele-
vance are predicted, observed, and required.

Resolution Function. A user-defined function used to com-
pute the value of a signal that has multiple drivers. A
resolution function is required whenever a signal has
multiple drivers. The resolution function determines the
value of the resolved signal as a function of the collec-
tion of inputs from the signal’s multiple sources. [VH-
DL’93 LRM] It is invoked whenever the value of any
drivers of the signals changes.

Scope. The range of VHDL text to which a declaration ap-
plies. For example, the scope of a declaration of an in-
ternal variable in a process includes only that process.

Schematic Capture. The process of electronically drawing
and storing a schematic diagram. The schematic capture
database can be used with simulation to verify design
accuracy. [VLSI]

Sequential Logic. A logic relation in which the combination
of outputs of the relation is determined not just by the
combination of current input values but also by the his-

tory of previous inputs to the relation.

Sequential Statement. A VHDL statement that occurs in the
body of a process and is executed in the order in which
it appears in the program and as controlled by the con-
trol statements of the process. Sequential statements are
not executed concurrently.

Signal. A VHDL object with a present value, a past history
of values, and a possible set of future values. Signals are
objects declared by signal declarations or port declara-
tions and are the mechanisms used in VHDL to connect
entities. VHDL processes or signal assignment state-
ments create the possible future values of signals. Those
connections to a signal that edit the future value of a sig-
nal are called drivers. A signal may have multiple driv-
ers, each with a current value and projected future
values.

Signal Pin. An electrical connection through which a com-
ponent exchanges information with other components
of the system. Specification of signal pins is necessary
for both procurement and simulation. [EIA]

Signal State. The state of a WAVES event value determined
by the logic level of the associated signal. A WAVES
event can specify one of three logic levels: low, mid-
band, and high. The midband value is used to indicate
uncertainty about the value of the signal at the given
time. A VHDL signal does not distinguish between state
and strength, but data types can be defined for signals
that do make this distinction.

Signal State/Strength Value. In VHDL, the encoding of the
signal state and strength into a single value. The possi-
ble state/strength values for a VHDL signal can be de-
scribed by an enumerated data type for the signal. IEEE
Standard 1164 defines a standard enumerated type in its
std_logic_1164 package. In WAVES, signal state
and strength are treated separately.

Signal Strength. The ability of the specific WAVES signal
driver to force a logic level in the face of conflicting
logic levels from other signal sources. A WAVES event
can specify signal strength as disconnected, capacitive,
resistive, drive, or supply.

Simulation. The process of applying stimuli to a model over
simulated time and producing the corresponding re-
sponses from the model at the simulated times at which
those responses would occur in an effort to predict how
the modeled system will behave.

Simulation Condition. A description of characteristics of
the model used for a specific simulation. For example,
a simulation condition would specify whether mini-
mum, maximum, or nominal timing was to be used for
the simulation and whether assertions on ports would be
executed.

Simulation Model. A model that behaves or operates like a
given system when provided a set of controlled inputs.
[IEEE] A VHDL model that has been prepared for sim-

MIL-HDBK-62

G-7

ulation. A VHDL simulation model has been elaborat-
ed, the values of all generic constants are set, the
configuration has been determined and implemented,
and all instances of each specific component have been
created.

Slice. A specification of a portion of a WAVES waveform
that is created by a single apply operation. A slice oc-
curs in a fixed period of time across all signals of the
module under test.

Specification. 1. A document that specifies in a complete,
precise, verifiable manner the requirements, design, be-
havior, or other characteristics of a system or compo-
nent and often the procedures used to determine
whether these provisions have been satisfied. [IEEE] 2.
A VHDL specification associates additional informa-
tion with a previously declared named entity. There are
three kinds of specifications: attribute specifications,
configuration specifications, and disconnection specifi-
cations. [VHDL’93 LRM]

Static Analysis. Any kind of analysis of a VHDL model that
does not require simulation. Static analysis can be used
to check type or that all guarded signals are resolved.

Status. An optional field in a WAVES header file that de-
scribes the status of the test set.

Structural Body. A body of a design entity that is composed
exclusively of interconnected lower level components.

Structural Model. A model of the physical or logical struc-
ture of a system. A structural model may be hierarchi-
cal, i.e., a module in a structural model may itself be a
structural model. A structural model describes a system
purely in terms of its components and the interconnec-
tion of these components.

Synthesis. The process of creating a representation of a sys-
tem at a lower level of design abstraction from a higher
level (more abstract) representation. The synthesized
representation should have the same function as the
higher level representation; it should also meet all con-
straints specified to the synthesizer.

Tag. The WAVES operation that adds a textual annotation
to the waveform at the current time.

Testability. The degree to which the design of a system or
component facilitates the establishment of test criteria
and the performance of tests to determine whether those
criteria have been met. [IEEE]

Test Bench. A collection of VHDL modules that apply stim-
uli to a module under test (MUT), compare the response
of the MUT with the expected output, and report any
differences between observed and expected responses
during simulation.

Test Controller. An electronic circuit dedicated to control-
ling the testing of its host system and to collecting and
storing or reporting the results of the test.

Test Generation. The process of developing a set of test
stimuli, expected responses, and a control program. The

control program administers the tests to a module under
test (MUT) and compares the responses of the MUT to
the expected responses.

Test Interface. A collection of input/output (I/O) ports and
a protocol for communication through those ports in
which the information that is communicated is test data,
commands, and results.

Test Pin. In WAVES, an external signal of the module under
test to be stimulated or compared with known outputs.

Test Vector. A set of values for all of the external input sig-
nals of a module under test. Inputs are driven with the
value, whereas outputs are tested against the given val-
ue.

Throughput. The total capability of a system or component
to process or transmit data during a specified time peri-
od. [IEEE] For example, to require that an edge detec-
tion system have a throughput rate of 30 images a
second means that the system must be able to consume
30 images a second and produce representations of the
edges in each of the images consumed, again at a rate of
30 images a second.

Timing Budget. A hierarchical set of throughput limits or re-
sponse time limits that partition the timing requirements
for a system into timing requirements for the compo-
nents of the system.

Timing View. A view that specifies the signal propagation
and timing constraints associated with each signal pin
as a function of the operating point. [EIA]

Trace. In WAVES, a sequence of WAVES events that cap-
tures the interaction between a WAVES data set and its
environment. [WAVES]

Trace File. An output of a simulation that contains one
record per event and is sorted by the times of the events.
For each event the time the event took place, the signal
whose change in values caused the event, the new value
of the signal, and sometimes the VHDL process causing
the change in value are included. Some VHDL simula-
tion systems provide these transparently and automati-
cally.

Transaction. An element of a driver that holds a single time
and value pair. The time represents the simulation time
when the value will become the current value of the
driver. A transaction is the result of the execution of a
signal assignment statement affecting the associated
driver and does not necessarily represent a change to the
value of a signal. [VHDL’93 LRM]

Transport Delay. A VHDL delay model in which all inter-
mediate driving values of a signal, regardless of their
duration, are preserved. A transport delay is used by the
driver of a signal driven by a transport-delayed signal
assignment. Transport delay is characteristic of hard-
ware devices (such as transmission lines) that have al-
most infinite frequency response.

Type. An association of a name with a set of values and a set

G-8

MIL-HDBK-62

of operations. The set of operations includes the basic
operations and predefined operators, as well as the ex-
plicitly declared subprograms that have a parameter or
a result of the type.

Type Checking. The process of checking that the types of
values transmitted between entity ports, subprogram
parameters, expression operands, and objects are syn-
tactically consistent. For example, type checking veri-
fies that the types of values assigned to a signal by all of
the signal assignment statements are the same.

Use Clause. A clause that implicitly associates the local
VHDL name for a named design unit with the library in
which that design unit resides.

Validation. The process of evaluating a model during or at
the end of a development process to determine whether
it satisfies the specified functional, performance, and in-
terface requirements. [IEEE]

Value Dictionary. A WAVES function that translates the
logic values created by the module under test into event
values.

Variable. A VHDL object that holds data. It has only a sin-
gle value that is the current value at any time, which
may be changed by assignment. A variable is in contrast
with signal drivers, which have a present value, a past
history of values, and several future values stored in
transactions.

Verification. The process of determining whether the prod-
ucts of a given phase of the development cycle fulfill all
of the requirements established during the previous
phase. [IEEE]

Verification and Validation. The process of determining
whether the requirements for a system or component are
complete and correct, the products of each development
phase fulfill the requirements or conditions imposed by
the previous phase, and the final system or component
complies with the specified requirements. [IEEE]

VHSIC Hardware Description Language (VHDL). An
IEEE standard language to describe digital electronic
systems.

Very High-Speed Integrated Circuit (VHSIC) Program.
A program that developed technology (including the
VHDL) for the design and manufacture of high-
speed digital integrated circuits with 1.25 (Phase I)
and 0.5 (Phase II) micrometer feature sizes for mili-
tary applications. Many Phase I VHSICs incorporate
built-in test capabilities, and Phase II VHSICs com-
ply with VHSIC interoperability standards.

View. A set of logically related data that represents the sig-
nificant characteristics of a component with respect to
the logical scope of the data. For a VHDL model of a
component, a view is typically represented by a set of
VHDL packages containing declarations of data, which
characterize a view.

Wait Statement. A mechanism within the VHDL to syn-
chronize activities in different processes. A wait state-
ment describes a condition on input signals of a process.
Only when those conditions are met will sequential ex-
ecution of the process continue. A wait statement causes
a process to suspend until the conditions given in the
wait statement are satisfied, at which point the process
resumes sequential execution.

Waveform. 1. A VHDL waveform is a series of
time-ordered transactions; each of which represents the
value of the driver of a signal. [VHDL’93 LRM] 2. A
WAVES waveform is a sequence of time-ordered
events across a set of signals [WAVES].

Waveform and Vector Exchange Specification (WAVES).
The Waveform and Vector Exchange Specification is a
standard method used to describe highly structured sets
of test vectors, discrete event simulator output, and au-
tomatic test equipment input. WAVES is designed to fa-
cilitate the exchange of information between design
environments and automatic test equipment. WAVES is
expressed as a subset of IEEE Std 1076 VHDL.

Waveform Generator Procedure (WGP). The procedure in
a WAVES data set that generates a waveform and mon-
itors the response of the module under test to the wave-
form.

MIL-HDBK-62

I-1

A

1750A processor, 6-5

Access control, 3-15

Access type, 3-11

Address generation, 5-7

Algorithmic model, 5-2—5-3, 5-6, 5-7

applications, 5-1—5-2
busy time, 5-2
definition, 2-4
example of, 2-4
parameterized models, 5-2
statistics capture, 5-6
timing, 5-2
timing scale factor, 5-3—5-5
use of signals, 5-7
use of wait statements, 5-7—5-8

Ambiguity group, 8-8

Analysis of VHDL source code

error checking, 3-20
example, 3-19
order of analysis, 3-11, 4-7—4-8

Analyzer, 3-12

consistency checking, 3-19
Annotation, 1-44, 5-36

definition, 3-12
example, 3-12
from physical measurements, 6-1
functional description, 5-36
layout, 1-4
model restrictions, 5-36—5-37
revisions, 5-37
testability, 1-4
VHDL constructs supporting, 3-12

Application-specific integrated circuit, 1-2, 1-3, 2-4, 4-1

definition, 4-1
design documentation, 4-1
obsolescence, 4-4
structural model guidelines, 4-1—4-2
test documentation with WAVES, 4-2
test vectors, 4-2

Architecture body, 3-1—3-4

comments, 9-3, 9-5, 9-8
example, 3-7—3-8, 3-22—3-23

Architecture body name, 9-6, 9-8

programming conventions, 9-8
Area overhead, 8-4, 8-6, 8-9

Array type

definition, 3-11
example, 3-11

Assertion statements, 4-7, 5-21—5-22, 5-26, 5-36—5-37

definition, 3-14—3-15

example, 3-8, 3-15
execution, 3-15
purpose, 3-14
report clause, 3-14
severity, 3-15
where used, 3-14

Attribute, 3-12

built-in, 3-12
declaration, 3-12
example of use, 3-12
purpose, 3-12
user-defined, 3-12
value, 3-12

Automatic test equipment (ATE), 1-3, 4-4, 6-10, 7-4—7-8,
8-2, 8-3, 8-6, 8-7

Auxiliary file, 4-6—4-7, 4-8

B

Back annotation, 2-14, 3-12, 3-13, 6-11—6-12

Background test strategy, 8-2

Backplane test bus, 8-6—8-7

Behavioral model, 1-3, 1-4, 2-5—2-12, 3-6—3-8, 5-1, 5-21

definition, 2-1, 2-5
development costs, 4-4
documentation, 2-6
example, 3-7—3-8
test generation strategies, 5-21

Behavioral model of programmable devices, 4-4

modeling of system test functions, 8-4, 8-6, 8-7, 8-9
protection of proprietary information, 2-6
purpose, 4-4
use of for functional correctness, 2-6

for leaf modules, 4-2
for performance feasibility, 2-6
for prototyping, 2-6
for verification, 2-6
hierarchy in, 2-6—2-7
in test benches, 4-7

VHDL constructs supporting, 3-6
VHDL entity declaration, example, 2-10
VHDL package declaration, example, 2-8

Binding

definition, 3-8
example, 3-9—3-10
in a configuration specification, 3-8
library names to external storage, 3-16

Block statement, 3-22

Bottom-up design

definition, 2-5
example of, 2-5

Bottom-up validation, 4-7

INDEX

Thi d t t d ith F M k 4 0 4

I-2

MIL-HDBK-62

Boundary scan path, 1-3, 4-5, 8-8

Built-in test, 1-4, 8-2, 8-3, 8-6

structural model generation, 1-4, 4-5
Bus, modeling of multibit busses, 2-13

Bus interface model, 2-31, 5-7

definition, 2-3
use of for interoperability tests, 2-3

Bus interface unit, 5-18

C

CAE tools

for logic synthesis, 6-2
for schematic capture, 6-1—6-2

Chip test bus, 8-6, 8-7

Circuit-level model, 2-2

Circular self-test, 8-3

Comments, 4-8, 9-4, 9-7

Component

declaration, 3-8, 3-9
declaration, in a package, 3-9
definition, 3-8
instantiation, 3-8—3-9, 3-20

Composite type

definition, 3-11
example, 3-11

Concurrent built-in test, 8-6

Concurrent test strategy, 8-2, 8-3

Concurrent testing, 8-4, 8-6, 8-9

Configuration declaration comments, 9-3, 9-8

Configuration management,

Configuration specification, 3-9

changing parameter values, 3-21
example, 3-21—3-22
in a block statement, 3-21
in an architecture body, 3-21, 3-22
purpose, 3-20
used with deferred constants, 3-21

Configuration declaration, 4-6—4-7

changing parameter values, 3-21
example, 3-13, 3-21—3-22
for back annotation, 3-13
nested, 3-22
purpose, 3-16, 3-20
use of libraries, 3-21

Constant, 3-12

deferred, 3-5, 3-12, 3-2
example of use, 3-7—3-8
in a package, 3-12

Contract data requirements list, B-2

Context clause example, 3-16, 3-21

Cost measures, 8-1, 8-2, 8-3, 8-6

Critical Design Review, 4-5, 6-5

D

Data abstraction, 2-7

definition, 3-10
purpose, 3-10
VHDL constructs supporting, 3-10—3-11

Data redundancy, 8-6

Delay model

inertial, definition, 3-5
transport, definition, 3-5

Delivery tape file order, 9-2

Design entity

definition, 3-1
purpose, 3-1

Design entity interface

comments, 9-7—9-8
Design unit, 3-16, 4-8

primary units, 3-19
secondary units, 3-19

Design unit file, 9-4—-9-6

Design for maintainability, 8-1

Design for testability, 8-2, 8-6

Deterministic testing, 8-6

Diagnostic decision support, 8-3

Discrete event simulator, 3-4

Documentation of VHDL models, 4-7

DoD-approved identifier, 9-2—9-4

E

Edge detector

behavioral architecture body, 2-8, 2-10
behavioral hierarchy, 2-7, 2-8
data type VHDL package, 2-10
input, 2-7
output, 2-7
structural hierarchy, 2-14, 2-20
VHDL package body, example, 2-10

EIA 567, 3-5, 3-12, 4-3, 4-5, 5-27, 6-5—6-6, 7-12, 9-2, 9-3

application example, 9-2
consistent with IEEE 1164, 7-3
electronic data sheet, 3-8, 3-13, 4-5
environmental parameters, 7-13
generation of unknown signal state parameter, 7-17
generics, 3-14, 7-3

MGENERATION

, 7-13
operating point selection, 7-1
timing check functions, 3-15
timing check routines, 7-12, 7-16
timing view, 7-3
timing violation, 7-13
unknown generation, 7-12
use of physical types, 3-14

XGENERATION

, 7-13, 7-15
Electrical view, 3-12

MIL-HDBK-62

I-3

Electronic data sheet, 3-8, 3-20, 4-5

use of physical types, 3-14
Entity declaration, purpose, 3-2

Entity interface, 3-1

Entity name, programming conventions, 9-7

Enumerated type, 3-10—3-11

built-in, 3-11
definition, 3-11

Environmental parameter data, 9-5

Error

detection with passive processes, 3-15
propagation, 3-15
signaling severity of, 5-22

Error logging, 8-6, 8-7, 8-8

Error handling, 5-21—5-22

Error recovery, 8-1

Event

definition, 3-4
generation, 3-4

Executable specification, 4-4

External test strategies, 8-2—8-3

F

Fault containment, 8-1, 8-4, 8-6, 8-9

Fault coverage, 8-6, 8-8, 8-9

Fault detection, 8-1—8-4, 8-6

Fault dictionary, 8-8, 8-9

Fault isolation, 8-1—8-4, 8-6, 8-7, 8-8

Fault masking, 8-4, 8-6, 8-8, 8-9

Fault model, 8-1, 8-8

logic level, 6-9—6-10
stuck-at-zero, stuck-at-one, 8-1, 8-8

Fault recovery, 8-1, 8-6

Fault simulation, 8-8

Fault tolerance, 8-2—8-3, 8-6, 8-9

Fault universe, 8-8

Fault-tolerant system, 8-1

File type, 3-11

File-naming conventions, 9-6—9-7

analysis order specification, 9-2
architecture body, 9-8
coefficient tables, 9-8
configuration declarations, 9-3, 9-8
design entity declaration, 9-6
DID overview, 9-2
file list, 9-2
leaf module list, 9-3
machine language program, 9-8
original modules list, 9-3
package body, 9-7

package declaration, 9-7
revised modules list, 9-3
test bench, 9-6, 9-7
test benches list, 9-4
trace file, 9-8

Function, 5-7

Functional testing, 1-4, 8-6

G

Gate-Gate level model, 1-4, 2-4, 2-12

definition, 2-4
example of, 2-4

Generic, 3-5, 3-12

example, 3-13, 3-23
in a component instantiation statement, 3-8, 3-13
in a configuration specification, 3-13
purpose, 3-13
value, 3-13

Government standards documents, 1-3

computer-aided acquisition and logistic support.

See

MIL-STD-1840.
general recommendation 64 of MIL-HDBK-454.

 See

MIL-HDBK-454.
VHDL data item description, DI-EGDS-80811.

See

VHDL DID.
Guidelines for

assertions, 4-3
explanatory comments, 4-3
hardware block diagrams, 2-13
partitioning structural models, 2-13—2-14
test plans, 4-6—4-7
library names, 3-16
port types, 4-4
timing models, 4-5
use of IEEE 1164, 4-5

H

Hamming code, 8-3

Hardware redundancy, 8-6

Header file, 9-4

Hierarchical decomposition, 5-37

Hierarchy, definition, 2-1, 2-6

High-speed data bus, 6-5

I

IEEE Design Automation Standards Committee, DASC, 1-3

IEEE 1029.1.

 See

 Waveform and Vector Exchange Specifi-
cation.

IEEE 1029.2, 8-8

IEEE 1076.3, synthesis package

type conversion functions, 3-11-3-12
IEEE 1076.4, Standard for VITAL ASIC Modeling Specifi-

cations.

See

 VITAL.

I-4

MIL-HDBK-62

IEEE 1076-1987,

VHDL Language Reference Manual

, 1-2,
1-3

IEEE 1076-1993,

VHDL Language Reference Manua

l, 1-2,
1-3, 3-12

IEEE 1149, test interfaces, 1-3, 1-4, 4-3

IEEE 1149.1, boundary scan test circuitry, 1-3, 5-18, 8-7

IEEE 1149.5, module test and maintenance bus, 1-3, 8-7

IEEE 1164, standard logic package, 1-3, 3-15, 3-16, 3-20,
4-3, 4-5

data types, 2-2, 2-4, 3-11
error states, 3-15
example of use, 3-8, 3-21
extended logic, 3-20
invalid signal states, 7-12
library IEEE, 3-16
logic function models, 2-14
logic state/strengths, 2-14
overloaded operators, 3-12, 3-15
propagation of unknown values, 7-12, 7-16
resolution function, 3-5—3-6
type conversion functions, 3-113-12

IGES, 4-1

Industry standards documents, 1-3

boundary scan test circuitry.

See

 IEEE 1149.1.
module test and maintenance bus.

See

 IEEE 1149.5.
standard logic package.

See

 IEEE 1164.
VHDL, IEEE 1076.

 See

VHSIC Hardware Descrip-
tion Language (VHDL).

WAVES, IEEE 1029.1.

See

 WAVES.
Information hiding, 2-6

Instruction set architecture model, 5-11—5-18, 5-36

applications, 5-11
bus, 5-18
bus interface unit, 5-19
definition, 2-4
example, 5-11, 5-18, 5-19
in a mixed-level-of-abstraction model, 2-23
memory model, 5-18
processor, 5-11
processor model, 5-11
software testing, 5-11

Interconnect overhead, 8-6

Interface models, 2-3

Interoperability, 1-4

of gate-level models, 3-11
of structural and behavioral models, 4-4
of VHDL models, 3-5, 3-9—3-11, 4-3

J

Joint Test Action Group (JTAG), 1-3

L

Leaf-level modules, 4-7—4-8, 9-2—9-3

definition, 2-1, 2-4, 2-14
Level of abstraction, 2-1— 2-3

Library clause, 3-16

example, 3-16, 3-22
implicit context clause, 3-16

Library structure, 9-2

Library, 4-6

predefined, STD, 3-16
predefined, WORK, 3-16
purpose, 3-15
setup, 3-19

WAVES_STANDARD

, 7-7
Line-replaceable unit, 8-1, 8-2, 8-4, 8-6, 8-8, 8-9

Logic-level fault modeling, 4-5

M

Maintenance

depot, 8-3
field, 8-1, 8-3

Memory model, 5-17—5-18

Memory initialization data, 9-6

Microcircuit design library, 4-5

MIL-HDBK-454, 1-3, 4-1, 4-2, 4-4, 7-3, 7-4, 8-3, 9-3

acquisition of microelectronic circuits, 4-1
behavioral model, 4-2
general recommendation 64, 1-1, 1-3, 4-1
guidelines for ASICs, 4-1
guidelines for microelectronic devices, 4-1
requirements for test documentation, 7-3, 7-4
use of WAVES, 4-3

MIL-STD-1840, 4-1

EDIF option, 4-1
EIA 567 requirements for VHDL code, 4-1
IGES option, 4-1
IPC option, 4-1
use of EIA 567, 4-3
VHDL DID requirements for VHDL code, 4-1
VHDL option, 4-1

Mixed level of abstraction

configured with a VHDL configuration declaration, 2-
22

design considerations, 2-22
example of, 2-23
for high-speed simulation, 2-23, 4-4
use of composite signals, 2-13
using type conversion functions for, 2-23
VHDL models, 1-3, 2-23, 4-4

Model revision information, 9-4

Model reference library, 6-4

Module under test, 4-2, 4-6

MIL-HDBK-62

I-5

N

Network model, 2-3

Nonconcurrent background testing, 8-6

Nonconcurrent testing, 8-3, 8-6

O

Object declaration

comments, 9-8
Object-oriented model, 2-6

use of VHDL packages for, 2-6
Off-line test strategies, 8-2

On-line test strategies, 8-2

Operating condition, 3-5

violation, 3-14
Operator

definition, 3-12
logical, 3-10—3-11
overloaded, 3-12, 3-15
relational, 3-10—3-11

Overloaded operator

definition, 3-12
example, 3-12
for error state propagation, 3-15

P

Package

body, 3-20
declaration, 3-20, 9-2, 9-7
example of use, 3-8
predefined,

STANDARD

, 3-16
predefined,

TEXTIO

, 3-16
purpose, 3-15, 3-20

Parity code, 8-3

Partitioning, 3-16

functional, 4-4—4-5
logical, 4-4—4-5
of structural VHDL models, 2-12
physical, 4-4—4-5

Parts obsolescence, 1-2

Parts count overhead, 8-6

Performance model

for load balancing, 2-3
to estimate response time, 2-3
use of, 1-3

Physical type, 3-11, 3-12, 5-25

built-in, 3-12, 3-14
declaration, example of, 3-14
definition, 3-13—3-14
purpose, 3-13
user-defined, 3-12

Physical view, 3-12

declaration, 3-9
default value, 3-9
direction, 3-2, 3-9
hierarchy, 6-3
list, 3-9
map, 3-9
name, 3-2, 3-9
purpose, 3-1
type, 3-9

PIbus, 6-5

Port-naming conventions, 9-7

Preliminary Design Review, 4-5, 6-5

Primitive library, 6-11

VHDL models of primitives, 6-2

Process, 5-7

activation, 3-6
definition, 3-6
example, 3-7
passive, 3-15, 5-21—5-22
purpose, 3-6

Process name

programming conventions, 9-8
Processor memory switch model, 2-3, 4-4

Programmable device, 2-4

Prototype, 2-10

Pseudorandom testing, 8-6

Q

Qualified parts, behavioral model guidelines, 4-22

R

Race condition, 2-5

Reconfiguration, 8-1, 8-6, 8-7

Record type

definition, 3-11
example, 3-11

Register-transfer-level model, 5-19, 5-36

applications, 5-19
definition, 2-4
in a mixed-level-of-abstraction model, 2-20
modeling registers with signals, 5-19
primitive elements, 5-19

Resolution function

definition, 3-5—3-6
example, 3-5

Reuse of models, 1-3, 3-5, 3-15, 4-3, 4-5

VHDL constructs supporting, 3-15
Revision history, 4-8

S

Scalar type, 3-11

Scan path, 8-1, 8-8

I-6

MIL-HDBK-62

Scan path test technique, 8-3

Schematic capture, 1-4

for productivity, 6-2
library updates for reuse, 6-2
standard logic package, 6-2
verification, 6-2

Sensitivity list

for a process, 3-6
for a wait statement, 3-7

Signal

assignment, efficiency, 3-6
declaration, example of, 3-9
error states, 3-14—3-15
of kind bus, 5-18
in algorithmic models, 2-15—2-16, 5-7
in register-transfer-level models, 2-20
representing electrical connections, 2-12
resolution function.

See

 Resolution function.
type, 3-4

Signal assignment statement, 3-4—3-5

concurrent, 3-4, 3-5
concurrent, example, 3-13
driver, 3-4—3-5
event generation, 3-4
guarded, 5-37
propagation, 3-5
sequential, 3-5, 3-6—3-8
transaction, 3-4

editing, 3-5
removal, 3-5

Signal delay

inertial, 5-32
transport, 5-32

Signal-naming conventions, 9-7

Signals, 3-4—3-6

Signature analysis, 8-3

Simulation

efficiency, 2-6
for functional correctness, 2-5
for performance analysis, 2-5
for performance evaluation, 2-5
process, 3-4

Software development plan, 9-8

Standard delay file format, 7-15

Structural architecture body

definition, 3-8
example, 3-9
purpose, 3-8
use of libraries, 3-21

Structural decomposition, 5-37

Structural models, 1-4, 2-14—2-22, 6-2

component declaration, 6-1—6-2
component instantiations, 6-1

construction, 6-1
definition, 2-1
example, 3-9, 5-37
gate-level models, 6-1
interface description, 6-1
high level, 8-4, 8-8
logic level, 8-1, 8-8
manual construction, 6-1
reuse mechanisms, 6-1
schematic capture, 6-1
signal declaration, 6-1

Stuck-at-zero, 8-1, 8-8

Subfunction testing, 5-21

Subprogram comments, 9-88

Subtype, 3-11

Supporting fault coverage analysis, 4-2

VHDL constructs supporting, 3-8
VHDL DID requirements, 6-1

Synthesis, 1-4

definition, 2-5
example of, 2-5
to replace obsolete parts, 2-5
tools, 4-4, 4-5

System maintenance controller, 8-6

Systolic array, 5-6—5-7

T

Temporal redundancy, 8-6

Test and maintenance, 8-7

Testability, 1-4

definition of, 8-1
Test bench, 1-4, 4-2, 4-6—4-7, 4-8, 5-21, 8-3, 8-6, 8-9, 9-

3—9-4

configuration declarations, 9-6
comparator function, 4-7
definition of, 4-2, 4-6
hierarchy, 9-6
module association, 9-4
organization, 4-6—4-7
purpose, 4-6
use of auxiliary files, 9-4

Test bus, 1-4

Test controller, 1-4, 8-7

Test data, 9-4

generation of, 5-1
Test documentation, 7-4, 7-10, 7-13

Test functions, 8-1, 8-6

Testing

behavioral model, 5-21
test generation strategies, 5-21

Test logging, 8-3

Test time, 8-4, 8-6, 8-8

Test vector,1-4, 8-8, 8-9

MIL-HDBK-62

I-7

generation of, 4-5, 6-10, 8-1, 8-8
Test Readiness Review, 6-5

Test response compression, 8-3

Text file

comments, 9-7
Timing, 1-4, 5-37, 6-6, 6-10

asynchronous timing constraints, 5-32
back annotation of data, 5-37
behavior, 4-5
best-case, 4-5
best-case/worst-case analysis, 5-24
check function, 3-15
data from external files, 5-31
definition packages, 5-26—5-27
environmental factors, 5-25
example, 5-31, 5-36
external file input, 5-31
external interface, 5-21
glitches, 5-32
improper signal, 5-21—5-22
minimum, maximum, and nominal timing delays, 5-

24
model fidelity, 5-36—5-37
nominal, 4-5
package, example of, 5-27

technology-dependent, 3-21
use of, 3-21

parameterized, 3-5, 3-8
parameterized delay model, 1-4, 5-24—5-26
setup and hold checking, 5-34—5-36
simulation options, 1-4
synchronous timing constraints, 5-33—5-34
violation, 3-14, 4-7, 5-21—5-22
worst-case, 4-5

Timing shells, 5-22

example, 5-22, 5-27
package interface, 5-22—5—23, 5-27

Timing view, 3-12

Top-down design

definition, 2-5
partitioning, 2-1
use of behavioral models, 2-1
use of structural models, 2-1
leaf-level modules, 4-5

Type

access.

See

Access Type.
array.

 See

 Array Type.
conversion function, 3-11-3-12
enumerated.

See

 Enumerated Type.
file, 3-11
physical.

See

 Physical Type.
record.

See

 Record Type.
scalar.

See

 Scalar Type.
user-defined, definition of, 3-10

user-defined, example, 3-9, 3-11, 3-12
Type conversion function, 3-11—3-12

example of use, 3-11
purpose, 3-11

U

Uninterpreted models, 5-1

Use clause, 3-16

example, 3-16
implicit context clause, 3-16

V

Variable, 3-6—3-7

assignment, efficiency, 3-6
example of use, 3-7—3-8
in algorithmic models, 2-16

Verification and acceptance procedure, 7-3, 7-8, A-1

Very High-Speed Integration Circuit (VHSIC) Program, 1-4

VHDL design entity, 8-8

VHDL design unit

name, 9-4
revision identifier, 9-4, 9-5
source, 9-4

VHDL DID, 1-1, 1-3, 1-4, 2-1, 4-1, 4-2, 4-3, 7-1, 9-4, 9-8

acceptable leaf modules, 2-1, 2-14
behavioral model requirement, 2-1
guidelines for structural models, 4-2
par. 7.3, 9-1, 9-3
par. 10.3, 4-7
structural model requirement, 2-1
subpar. 10.2.2.1, 4-3
subpar. 10.2.2.2, 4-7, 7-12
subpar. 10.2.2.3, 4-3, 7-16
subpar. 10.2.2.4, 4-3
subpar. 10.2.3, 2-12, 4-4, 8-1, 8-6
subpar. 10.2.3.1, 4-4, 4-5
subpar. 10.2.3.2, 4-5, 7-3, 7-16
subpar. 10.2.3.3, 4-4, 8-1, 7-11
subpar. 10.2.4, 4-15, 4-5, 8-1, 8-7
subpar. 10.2.4.1, 4-5
subpar. 10.2.5, 4-7, 7-10
subpar. 10.2.5.1, 4-6—4-7
subpar. 10.2.5.2, 4-6, 7-10
subpar. 10.2.5.3, 9-3
subpar. 10.2.6, 4-7, 7-11
subpar. 10.2.7, 9-4
subpar. 10.2.8, 9-3, 9-4
subpar. 10.2.8.1, 9-4
subpar. 10.3, 9-1, 9-2
subpar. 10.3.a, 9-2
subpar. 10.3.b, 9-2
subpar. 10.3 c, 9-2
subpar. 10.3.d, 9-2
subpar. 10.3.e, 9-3

I-8

MIL-HDBK-62

subpar. 10.3.f, 9-3
subpar. 10.3.g, 9-4
subpar. 10.3.h, 9-4
subpar. 10.2.2, 4-3
subpar. 10.2.1.1, 2-14, 4-5
subpar. 10.2.1, 2-2, 4-3, 4-4, 4-5, 7-15, 8-4, 8-8
tailored, example, B-3
tailoring, 4-2— 4-4, 4-6

VHDL model

use of, 1-2, 1-4
model verification procedure, 7-3

VHDL model library, 4-2, 4-5

for microelectronic circuits, 4-2
goals, 4-2
model accuracy, 4-2

VHDL model validation procedure, 4-6, A-1

VHDL module, definition of, 4-3

VHSIC Hardware Description Language (VHDL), 1-3

Language Reference Manual

, 1987 edition, 1-2, 1-3
1993 edition, 1-2, 1-3, 3-12
purpose of, 1-2
scope of, 1-1, 1-3
use of, 1-1
use of for analog components, 1-1

VITAL, 1-3, 2-2, 3-5, 3-12, 6-8

approach to environment parameters, 7-16
back-annotation of timing information, 7-3, 7-15
delay selection approach, 7-16
for back annotation, 2-14
generics, 3-13
standard delay file (SDF), 4-8
timing check procedure, 3-15, 7-15, 7-16
timing for gate-level models, 2-4, 2-14
timing models, 4-5, 6-6
timing violation checks, 7-13
violation variable, 7-16

XGenerationOn

, 7-15, 7-16

W

Wait statement

definition, 3-7
example, 3-7
in algorithmic models, 5-7—5-8
purpose, 3-7

Waveform and Vector Exchange Standard (WAVES), 1-3,
3-16, 3-20, 4-1— 4-4, 4-8, 6-10, 7-4—7-10, 8-3, 8-8, 9-
1, 9-2, 9-3, 9-5

application example, 9-2
apply operation, 7-5—7-6
comparator function, 7-5
data set, 7-5—7-6, 7-8
data set files, 7-6—7-7
declarations, 7-6
definition, 7-4
event, 7-4
event time, 7-4
external file, 4-6, 4-8
file-naming conventions, 4-7
files, minimum requirements, 7-6, 7-9
for test documentation, 7-4
header file, 3-19, 4-6, 4-7—4-8, 7-9, 9-1, 9-2, 9-4
library names, 3-16

guidelines, 7-8, 7-9
structure, 7-7, 7-8, 7-14

logic value, 7-4, 7-6, 7-8
match operation, 7-6
pin codes, 7-6, 7-8
slice, 7-4—7-5
tag operation, 7-6
test bench, 7-4, 7-8, 7-10
test bench simulation, 7-4
test pins, 7-6
timing tolerance, 7-4
unknown value, 7-4
unspecified value, 7-4
value, 7-4

dictionary, 7-6
direction, 7-4
relevance, 7-4
set, 7-4
state, 7-4
strength, 7-4

waveform, 7-4, 7-5
waveform generator procedure, 4-6, 7-5, 7-6—7-7

WAVES packages, 7-6, 7-7—7-8

partitioning, 7-8

WAVES_INTERFACES

, 7-7

WAVES_OBJECTS

, 7-7

WAVES_STANDARD

, 7-7

MIL-HDBK-62

ST-1

ASIC
Computer
Computer aided design
Design
Hardware simulation
Integrated circuits
Microelectronics
Modeling

Models
Simulation
VLSI
Very high speed integrated circuits
VHSIC
VHSIC hardware description language
Waveform and vector exchange specification
WAVES

SUBJECT TERM (KEY WORD) LISTING

Custodians
Army—ER
Navy—EC

Air Force—11
DLA-DH

Review Activities:
Air Force 17,19

Preparing activity:
DLA-ES

(Project 5962-1236)

Thi d t t d ith F M k 4 0 4

STANDARDIZATION DOCUMENT IMPROVEMENT PROPOSAL

INSTRUCTIONS

1. The preparing activity must complete blocks 1, 2, 3, and 8. In block 1, both the document number and revision letter
should be given.

2. The submitter of this form must complete blocks 4, 5, 6, and 7.

3. The preparing activity must provide a reply within 30 days from receipt of the form.

NOTE: This form may not be used to request copies of documents, nor request waivers, or clarification of requirements on
current contracts. Comments submitted on this form do not constitute or imply authorization to waive any portion of the
referenced document(s) or to amend contractual requirements.

Defense Supply Center Columbus

96/09/13

2. DOCUMENT DATE

(YYMMDD)

1. DOCUMENT NUMBER

3. DOCUMENT TITLE

4. NATURE OF CHANGE

(Identify paragraph number and include proposed rewrite, if possible. Attach extra sheets as needed.)

5. REASON FOR RECOMMENDATION

6. SUBMITTER

a. NAME

(Last, First, Middle Initial)

b. ORGANIZATION

c. ADDRESS

(Include Zip Code)

d. TELEPHONE

(Include Area

Code)

7. DATE SUBMITTED

(YYMMDD)

a. NAME

8. PREPARING ACTIVITY

b. TELEPHONE

(Include Area Code)

(1) Commercial (2) DSN

c. ADDRESS

(Include Zip Code)

IF YOU DO NOT RECEIVE A REPLY WITHIN 45 DAYS, CONTACT:
Defense Quality and Standardization Office
5203 Leesburg Pike, Suite 1403, Falls Church, VA 22041-3466
Telephone (703) 756-2340 AUTOVON 289-2340

DD Form 1426, OCT 89

Previous editions are obsolete.

198/290

Director-VAS
3990 East Broad Street
Columbus, OH 43216-5000

614-692-0536 850-0536

MIL-HDBK-62

DOCUMENTATION OF DIGITAL ELECTRONIC SYSTEMS WITH VHDL

Thi d t t d ith F M k 4 0 4

	Cover Page
	Foreword
	Table Of Contents
	List Of Illustrations
	List Of Tables
	List Of Abbreviations And Acronyms
	Ch.1 - Introduction
	1-1 Purpose
	1-2 Scope
	1-3 Intended Audience
	1-4 History, Purpose, And Scope Of VHDL
	1-4.1 History Of VHDL
	1-4.2 The Purpose Of VHDL
	1-4.3 The Scope Of VHDL

	1-5 Related Industru Standards
	1-6 Overview
	References
	Bibliography

	Ch.2 - Hardware Description Concepts
	2-1 Introduction
	2-2 Levels Of Abstraction In Models Of Digital Electronic Systems
	2-2.1 Overview
	2-2.2 Network Models
	2-2.2.1 Performance Models
	2-2.2.2 Interface Models

	2-2.3 Algorithmic Models
	2-2.4 Instruction Set Architecture Models
	2-2.5 Register-Transfer Models
	2-2.6 Gate-Level Models
	2-2.7 Uses Of Abstraction And Hierarchical Composition In The Design Process

	2-3 Behavioral Description Of Hardware Designs
	2-3.1 The Purpose Of Behavioral Descriptions
	2-3.2 The Use Of Hierarchy In Behavioral Descriptions
	2-3.3 Example Of Behavioral Description

	2-4 Structural Description Of Hardware Designs
	2-4.1 The Purpose Of Structural Descriptions
	2-4.2 The Use Of Hierarchy In Structural Descriptions
	2-4.2.1 Hierarchical Decomposition Based On Physical Elements
	2-4.2.2 Leaf Modules In A Hierarchical Structural Description

	2-4.3 Examples Of Structural Descriptions
	2-4.3.1 Algorithic-Level Structural Description
	2-4.3.2 Register-Transfer-Level Structural Description

	2-5 Mixed Abstraction Models
	2-5.1 The Purpose Of Mixed Level Of Abstraction Models
	2-5.2 Designing Modules For Mixed Abstraction Models
	2-5.3 An Example Of Mixed Level Of Abstraction Model

	References
	Bibliography

	Ch.3 - VHDL Concepts
	3-1 Introduction
	3-2 Basic VHDL Concepts
	3-2.1 VHDL Design Entities
	3-2.1.1 Entity Interfaces
	3-2.1.2 Architecture Bodies

	3-2.2 The VHDL Concept Of Time
	3-2.3 Signals
	3-2.3.1 Signal Assignment Statements
	3-2.3.2 Resolution Functions

	3-3 VHDL Support For Behavior Design
	3-3.1 Processes
	3-3.2 Wait Statements
	A Behavioral Design Example

	3-4 VHDL Support For Structural Design
	3-4.1 Structural Architecture Bodies
	3-4.2 Components
	3-4.2.1 Component Declarations
	3-4.2.2 Component Instantiations And Interconnections

	3-4.3 A Structural Design Example

	3-5 VHDL Support For Data Abstraction
	3-5.1 User-Defined Types
	3-5.2 Type Conversion Functions
	3-5.3 Overloaded Operations

	3-6 VHDL Support For Annotating Models
	3-6.1 Attributes
	3-6.2 Generic Constants
	3-6.3 Physical Types

	3-7 Error Handling With VHDL
	3-7.1 Assertion Statements
	3-7.2 Handling Signal Error States

	3-8 VHDL Support For Sharring And Reuse
	3-8.1 VHDL Design Libraries
	3-8.1.1 Declaring And Using Libraries
	3-8.1.2 Constructing Libraries

	3-8.2 VHDL Packages
	3-8.2.1 Constructing VHDL Packages
	3-8.2.2 Declaring And Using Packages

	3-8.3 Configuration Specifications And Declarations
	3-8.3.1 Constructing Configuration Specifications And Declarations
	3-8.3.2 Using Configuration Specifications And Declarations

	References
	Bibliography

	Ch.4 - DoD Requirements For The Use Of VHDL
	4-1 Introduction
	4-2 Mil-Hdbk-454 Guidelines For The Use Of VHDL
	4-2.1 Documentation Of ASICs Development For The Government With VHDL
	4-2.2 Documenation Of Qualified Digital Integrated Circuits With VHDL
	4-2.3 The Library Of VHDL Descriptions Of Standard Digital Parts
	4-2.4 Test Bench Requirements For VHDL Descriptions

	4-3 Overview Of The VHDL Data Item Description
	4-3.1 Entity Interface Requirements
	4-3.1.1Entity Names
	4-3.2.2 Input and Output Definitions

	4-3.2 Behavioral Descriptions
	4-3.2.1 Functional Decomposition
	4-3.2.2 Timing Descriptions

	4-3.3 Structural Descriptions
	4-3.3.1 Acceptable Primitive Elements
	4-3.3.2 Testability Requirements

	4-3.4 Test Bench Requirements
	4-3.4.1 Test Bench Functions
	4-3.4.2 Test Bench Relationship To Design Modules

	4-3.5 Error Message
	4-3.6 Documentation Format
	4-3.7 Required Annotations Of VHDL Modules
	4-3.8 An Example Of A Tailored DID

	References
	Bibliography

	Ch.5 - Construction Of Behavioral VHDL Models
	5-1 Introduction
	5-2 Creation Of VHDL Behavioral Models
	5-2.1 Constructing Performance Models
	5-2.1.2 Modeling Timing In Performance And Algorithmic-Level Behavioral Models
	5-2.1.3 Example Of A Statistics Package And Its Use

	5-2.2 Constructing Algorithmic Models
	5-2.2.1 Modeling Algorithms With VHDL Processes
	5-2.2.2 An Example Of An Algorithic Model

	5-2.3 Constructing Instruction-Set-Architecture-Level Models
	5-2.3.1 Modeling Processors
	5-2.3.2 Modeling Memory
	5-2.3.3 Modeling Busses And Bus Controllers

	5-2.4 Constructing Register-Transfer-Level Models
	5-2.4.1 Synthesis Of Designs From RTL Models
	5-2-4.2 An Example Of A VHDL Register-Transfer-Level Model

	5-3 VHDL DID Simulation Requirements For Behavioral Models
	5-3.1 Correct Functional Response To Stimuli
	5-3.2 Simulation Timing
	5-3.3 Error Handling

	5-4 Timing In Behavioral Models
	5-4.1 Timing Shells
	5-4.2 Clock Rates
	5-4.3 Critical Path Delay Times
	5-4.4 Best-Case, Worst-Case, And Nominal Delays
	5-4.5 Parameterized Delay Models
	5-4.6 Timing Definition Package
	5-4.7 Timing Through File Input
	5-4.8 Modeling Asynchronous Timing
	5-4.9 Modeling Synchronous Timing

	5-5 Annotation Of Behavioral Models
	5-5.1 Description Of Function
	5-5.2 Description Of Restrictions
	5-5.3 Modeling Approach
	5-5.4 Revision History
	5-5.5 Back Annotation Of Timing Information

	5-6 Use Of Structural Hierarchy In Behavioral Models
	References
	Bibliography

	Ch.6 - Construction Of Structural VHDL Models
	6-1 Introduction
	6-2 Creation Of Structural VHDL Models
	6-2.1 Translation Of Schematic Capture Models
	6-2.2 Synthesis Of Structural Models From Register-Transfer-Level Models
	6-2.3 Synthesis Of Structural Models From Finite State Machines
	6-2.4 Enhancement Of Gate-Level Models With Generated Structure

	6-3 VHDL DID Organizational Requirements For Structural Models
	6-3.1 Hierarchical Organization Of Structural Models
	6-3.2 Allowable Leaf-Level Modules
	6-3.2.1 Government-Approved Models
	6-3.2.2 Modules With Stimulus-Response Behavior
	6-3.2.3 Module Without Detailed Designs

	6-3.3 VHDL DID Annotation Requirements For Structural Models
	6-3.3.1 Physical View Requirements
	6-3.3.2 Electrical View Requirements
	6-3.3.3 Timing View Requirements

	6-4 VHDL DID Simulation Requirements For Structural Models
	6-4.1 Support For Logic-Level Fault Modeling
	6-4.2 Support For Test Vector Generation

	6-5 Timing Specifications For Structural Models
	6-6 Back Annotation Of Structural Models
	6-6.1 Back Annotation Of Timing Information
	6-6.2 Back Annotation Of Layout Information
	6-6.3 Back Annotation Of Testability Information

	References
	Bibliography

	Ch.7 - Preparation Of VHDL Models For Simulation
	7-1 Introduction
	7-2 Interoperability Of Models
	7-2.1 Use Of Standard Signal Data Types
	7-2.2 Type Conversion For Different Signal Data Types
	7-2.3 Interoperability Of Timing Models
	7-2.4 Portability Requirements For Interoperable VHDL Models

	7-3 Test Bench Development
	7-3.1 WAVES
	7-3.1.1 Standard WAVES Packages
	7-3.1.2 Local WAVES Packages
	7-3.1.3 WAVES Test Suites

	7-3.2 Documentation Of Test Benches

	7-4 Test Vector Development
	7-4.1 Behavior Tests
	7-4.2 Propagation Delay Tests
	7-4.3 Error Condition Tests
	7-4.3.1 Invalid Operating Condition Tests
	7-4.3.2 Invalid Input State Tests
	7-4.3.3 Timing Constraint Violation Tests

	7-4.4 Interoperability Tests
	7-4.5 Organization And Documentation Of Test Vectors

	7-5 Use Of Configuration Declarations To Instantiate The Test Bench For A Model
	7-5.1 Selection Of Alternative Design Libraries
	7-5.2 Selection Of Alternative Architectures
	7-5.3 Binding Of Generics
	7-5.4 Port Mapping

	7-6 Definition Of Simulator Options
	7-6.1 Control Over Environmental Parameters
	7-6.2 Selection Of Delay Types
	7-6.3 Control Over Execution Of Assertions
	7-6.4 Control Over Propagation Of Unknown Signal States

	References
	Bibliography

	Ch.8 - Modeling Testability With VHDL Models
	8-1 Introduction
	8-2 Purpose And Scope Of Design For Testability
	8-3 Testability Design Issues
	8-3.1 Test Strategies And Techniques For Maintenance And Fault Tolerance
	8-3.2 Testability Measures
	8-3.3 Test Structure Boundaries
	8-3.4 Test Components And Interfaces

	8-4 Modeling Testability Using VHDL Behavioral Models
	8-4.1 Evaluating Test Strategies
	8-4.2 Modeling Test Strategies In VHDL
	8-4.3 Modeling Test Controller Functions
	8-4.4 Evaluation Of Test Communication And Storage Requirements For Bit

	8-5 Modeling Testability Using VHDL Structural Models
	8-5.1 Description Of Test Circuitry Generated From Structural Information
	8-5.2 Support For Fault Dictionary Generation
	8-5.3 Support For Automatic Test Generation
	8-5.4 Support For Coverage Analysis
	8-5.5 Support For Test Time Computation

	8-6 Annotation Of VHDL Models With Testability Information
	8-6.1 Annotation Of Structural Models To Identify LRUs
	8-6.2 Annotation Of Structural Models To Identify FCRs
	8-6.3 Back Annotation With Coverage Information

	References
	Bibliography

	Ch.9 - Preparation Of VHDL Models For Delivery To The DoD
	9-1 Introduction
	9-2 Files To Be Included In Delivery Tapes
	9-2.1 List Of Files
	9-2.2 DID Overview File
	9-2.3 VHDL Analysis Order Specification
	9-2.4 Government-Approved Leaf Module VHDL Descriptions
	9-2.5 Revised VHDL Module List
	9-2.6 Original VHDL Module List
	9-2.7 Test Bench Correlation List
	9-2.8 Auxiliary Information Files
	9-2.9 VHDL Design Unit Files

	9-3 File Naming Conventions
	9-3.1 Naming VHDL Design Unit Files
	9-3.2 Naming Auxiliary Files

	9-4 Suggested Coding Conventions For VHDL Models
	9-4.1 Design Entity Naming Conventions
	9-4.2 Port-Naming Conventions
	9-4.3 Signal-Naming Conventions
	9-4.4 Process And Subprogram Naming Conventions
	9-4.5 Commenting Conventions For VHDL
	9-4.5.1 Files
	9-4.5.2 Packages
	9-4.5.3 Entity Interfaces
	9-4.5.4 Architecture Bodies
	9-4.5.5 Configuration Declarations
	9-4.5.6 Internal Comments

	References
	Bibliography

	Appendix A - VHDL Model Verification Procedure
	Appendix B - Contract Data Requirements List And Data Item Description
	Glossary
	Index
	Key Word Listing
	DD Form 1426

