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Series Introduction

Over the past 50 years, digital signal processing has evolved as a major
engineering discipline. The fields of signal processing have grown from the
origin of fast Fourier transform and digital filter design to statistical spectral
analysis and array processing, image, audio, and multimedia processing, and
shaped developments in high-performance VLSI signal processor design.
Indeed, there are few fields that enjoy so many applications—signal process-
ing is everywhere in our lives.

When one uses a cellular phone, the voice is compressed, coded, and
modulated using signal processing techniques. As a cruise missile winds along
hillsides searching for the target, the signal processor is busy processing the
images taken along the way. When we are watching a movie in HDTV,
millions of audio and video data are being sent to our homes and received
with unbelievable fidelity. When scientists compare DNA samples, fast pat-
tern recognition techniques are being used. On and on, one can see the impact
of signal processing in almost every engineering and scientific discipline.

Because of the immense importance of signal processing and the fast-
growing demands of business and industry, this series on signal processing
serves to report up-to-date developments and advances in the field. The topics
of interest include but are not limited to the following:

� Signal theory and analysis
� Statistical signal processing
� Speech and audio processing
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� Image and video processing
� Multimedia signal processing and technology
� Signal processing for communications
� Signal processing architectures and VLSI design

We hope this series will provide the interested audience with high-
quality, state-of-the-art signal processing literature through research mono-
graphs, edited books, and rigorously written textbooks by experts in their
fields.
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Preface

Due to the rapidly increasing complexity and heterogeneity of embedded
systems, a single expert can no longer be master of all trades. The era in which
an individual could take care of all aspects (functional as well as nonfunc-
tional) of specification, modeling, performance/cost analysis, exploration,
and verification in embedded systems and software design will be over soon.
Future embedded systems will have to rely on concurrency and parallelism
to satisfy performance and cost constraints that go with the complexity of
applications and architectures. Thus, an expert is familiar with and feels
comfortable at only a few adjacent levels of abstraction while the number of
abstraction levels in between a specification and a system implementation is
steadily increasing. But even at a single level of abstraction, experts will most
likely have good skills only in either computation- or communication-related
issues, as a result of which the notion of separation of concerns will become
crucial. These observations have far reaching consequences. One of them is
that new designmethodologiesmust be devised in which the notions of levels of
abstraction and separation of concerns have grown into fundamental con-
cepts and methods.

An early view on abstraction levels is represented by the Y-chart
introduced by Gajski and Kuhn [1]. This chart gives three model views to
behavioral, structural, and physical—showing levels of abstraction across
which refinements take place. A more recent view on levels of abstraction
and the relation between behavior and structure on these levels is reflected in
the Abstraction Pyramid and the Y-chart approach introduced by Kienhuis
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et al. [2]. The Y-chart approach obeys a separation of concerns principle by
making algorithms, architecture, and mapping manifest to permit quantifi-
cation of choices. When looking more closely at the Gajski Y-chart and the
Kienhuis Y-chart approaches one sees that the approach is invariant to the
levels of abstraction: on each level there is some architecture or component
that is specified in terms of some model(s) of architecture, there are one or
more applications that are specified in terms of some model(s) of computa-
tion, and there are mapping methods that take components of the application
model to components of the architecture model. The Y-chart, on the other
hand, clearly reveals thatmodels andmethodswill be different on each level of
abstraction: refinements take place when going down the abstraction levels, as
a consequence of which the design space is narrowed down step by step until
only a few (Pareto optimal) designs remain.

Another consequence of the larger number of abstraction levels and the
increasing amount of concurrency is that the higher the level of abstraction,
the larger the dimension and size of the design space. To keep such a relation
manageable, it is necessary to introduce parametrized architectures or tem-
plates that can be instantiated to architectures. The types of the parameters
depend on the level of abstraction. For example, on the highest level, a
method of synchronization and the number of a particular type of computing
element may be parameters. Often, the template itself is a version of a plat-
form. A platform is application-domain-specific and has to be defined
through a domain analysis. For example, platforms in the automotive ap-
plication domain are quite different from platforms in the multimedia
application domain. In the former, platforms must match codesign finite
state machine models [3], while in the latter they will have to support dataflow
network or process network models [4].

Roughly speaking, a platform consists of two parts: one that concerns
processing elements, and one that encompasses a communication and storage
infrastructure. This partitioning is compliant with the rule computation vs.
communication separation of concerns rule [5]. The processing elements are
taken from a library—often as intellectual property components—and the
communication and storage infrastructure is obeying certain predefined
construction and operation rules. Specifying a platform is still more of an
art than a science issue.

How could a sound methodology be designed to overcome the many
problems that let to the paradigm change in embedded systems and software
design? There is currently no compelling answer to that question. An in-
creasing number of research groups all over the globe are proposing and
validating prototype methodologies, most of which are embedded in the
SystemC framework. An increasing number of them are advocating a plat-
form-based design approach that relies heavily on models and methods that
can support two major decision steps: exploration on a particular level of
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abstraction to prune the design space, and decomposition and composition to
move down and up the abstraction hierarchy. The view that currently seems
to prevail is a three-layer approach: an application layer, an architecture
layer, and a mapping layer. The application layer and the architecture layer
bear models of application(s) and the architecture, respectively, that match
in the sense that a mapping of the former onto the latter is transparent. The
mapping layer transforms application models into architecture models. Pre-
sent approaches differ in the way the mapping of applications onto an ar-
chitecture is conceived. One approach is to refine the application model to
match the architecture model in such a way that only a system model, i.e., an
implementation of the application, is to be dealt with when it comes to per-
formance/cost analysis or exploration.

Another approach is to adhere strictly to the separation of concerns
principles, implying that application models and architecture models are
strictly separated. In this case, the mapping layer consists of a number of
transformations that convert representations of components of the applica-
tion model to representations of components of the architecture model. For
example, a process in an application modeled as a process network can be
represented by a control data flow graph (symbolically at higher [6] levels of
abstraction and executable at lower levels of abstraction) and transformed
subsequently in the mapping layer to come closer to the architecture process-
ing unit model that supports various execution, synchronization and storage
flavors.

This book offers a dozen essential contributions on various levels of
abstraction appearing in embedded systems and software design. They range
from low-level application and architecture optimizations to high-level mod-
eling and exploration concerns, as well as specializations in terms of appli-
cations, architectures, and mappings.

The first chapter, by Walters, Glossner, and Schulte, presents a rapid
prototyping tool that generates structural VHDL specifications of FIR filters.
The object-oriented design of the tool facilitates extensions to it that in-
corporate new optimizations and techniques. The authors apply their VHDL
generation tool to investigate the use of truncated multipliers in FIR filter
implementations, and demonstrate in this study significant area improve-
ments with relatively small computational error.

The next chapter, by Lagadec, Pottier, and Villellas-Guillen, presents a
tool for generating combinational FPGA circuits from symbolic specifica-
tions. The tool operates on an intermediate representation that is based on a
graph of lookup tables, which is translated into a logic graph to be mapped
onto hardware. A case study of a Reed-Solomon RAID coder–decoder gen-
erator is used to demonstrate the proposed techniques.

The third chapter, by Guevorkian, Liuha, Launiainen, and Lappalai-
nen, develops several architectures for discrete wavelet transforms based on
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their flowgraph representation. Scalability of the architectures is demonstra-
ted in trading off hardware complexity and performance. The architectures
are also shown to exhibit efficient performance, regularity, modularity, and
amenability to semisystolic array implementation.

Chapter 4, by Takala and Jarvinen, develops the concept of stride
permutation for interleaved memory systems in embedded applications. The
relevance of stride permutation to several DSP benchmarks is demonstrated,
and a technique is developed for conflict-free stride permutation access under
certain assumptions regarding the layout of data.

The next chapter, by Pimentel, Terpstra, Polstra, and Coffland, dis-
cusses techniques used for capturing intratask parallelism during simulation
in the Sesame environment for design space exploration. These techniques are
based on systematic refinement of processor models into parallel functional
units, and a dataflow-based synchronization mechanism. A case study of QR
decomposition is used to validate the results.

The next chapter, by Hannig and Teich, develops an approach for
power modeling and energy estimation of piecewise regular processor arrays.
The approach is based on exploiting the large reduction in power consump-
tion for constant inputs to functional units. An efficient algorithm is also
presented for computing energy-optimal space-time mappings.

Chapter 7, by Derrien, Quillou, Quinton, Risset, and Wagner, presents
an interface synthesis tool for regular architectures. Safety of the synthesized
designs is assured through joint hardware/software synthesis from a common
specification. Efficiency of the generated interfaces is demonstrated through
experiments with DLMS filter implementation on a Spyder FPGA board.

In Chapter 8, by Lohani and Bhattacharyya, a model developed for
executing applications with time-varying performance requirements and
nondeterministic execution times on architectures with reconfigurable com-
putation and communication structures. Techniques are developed to reduce
the complexity of various issues related to the model, and a heuristic frame-
work is developed for efficiently guiding the process of runtime adaptation.

The next chapter, by Turjan, Kienhuis, and Deprettere, develops and
compares alternative realizations of the extended linearization model, which
is an approach for reordering tokens when interprocess data arrives out of
order during the execution of a Kahn process network (KPN). The model
involves augmenting Kahn processes with additional memory and a con-
troller in amanner that preserves KPN semantics. The alternative realizations
are compared along various dimensions including memory requirements and
computational complexity.

The next chapter, by Radulescu and Goossens, compares networks-on-
chip with off-chip networks and existing on-chip interconnects. Network-on-
chip services are defined and a transaction model is developed to facilitate
migration to the new communication architecture. Properties of connections
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under the proposed network-on-chip framework include transaction com-
pletion, transaction orderings, performance bounds, and flow control.

Chapter 11, by Stravers and Hoogerbugge, presents an architecture and
programming model for single-chip multiprocessing with high power/per-
formance efficiency. The architecture is based on homogeneous clusters of
processors, called tiles, that form the boundary between static and dynamic
resource allocation. Case studies of an MPEG2 decoder are used to dem-
onstrate the proposed ideas.

The last chapter, by Wong, Vassiliadis, and Cotofana, reviews the
evolution of embedded processor characteristics in relation to programm-
ability and reconfigurability. A case for embedded architectures that integrate
programmable processors and reconfigurable hardware is developed, and a
specific approach is described for achieving this by means of microcode.

We would like to thank all the chapter authors for their outstanding
contributions. We also thank at Marcel Dekker Inc., B. J. Clark for his
encouragement to develop this book and Brian Black for his help with the
production process. Thanks also to all the reviewers for their hard work in
helping to ensure the quality of the book.

Shuvra S. Bhattacharyya
Ed Deprettere
Juergen Teich

REFERENCES

1. Gajski, D. (1987). Silicon Compilers. Addison-Wesley.

2. Kienhuis, B., Deprettere, E. F., van der Wolf, P., Vissers, K. (2002). A meth-
odology to designing embedded systems: the y-chart approach. In: Deprettere,
E. F., Teich, J., Vassiliadis, S., eds. Embedded Processor Design Challenges,
Lecture Notes in Computer Science. Springer.

3. Balarin, F., et al. (1997). Hardware-Software Co-Design of Embedded Systems:
The Polis Approach. Kluwer Academic Publishers.

4. Kienhuis, B., Deprettere, E. F., Vissers, K., van der Wolf, P. (July 1997). An

approach for quantitative analysis of application-specific dataflow architectures.
In: Proceedings of the International Conference on Application Specific Systems,
Architectures, and Processors.

5. Keutzer, K., Malik, S., Newton, R., Rabaey, J., Sangiovanni-Vincentelli, A.
(December 19, 2000). System-level design: orthogonalization of concerns and
platform-based design. IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems.

6. Zivkovic, V., et al. (1999). Fast and accurate multiprocessor exploration with
symbolic programs. Proceedings of the Design, Automation and Test in Europe
Conference.

Copyright  2004 by Marcel Dekker, Inc. All Rights Reserved.



Contents

Series Introduction
Preface

1. Automatic VHDL Model Generation of Parameterized
FIR Filters
E. George Walters III, John Glossner, and Michael J. Schulte

2. An LUT-Based High Level Synthesis Framework for
Reconfigurable Architectures
Loı̈c Lagadec, Bernard Pottier, and Oscar Villellas-Guillen

3. Highly Efficient Scalable Parallel-Pipelined Architectures for
Discrete Wavelet Transforms
David Guevorkian, Petri Liuha, Aki Launiainen, and
Ville Lappalainen

4. Stride Permutation Access in Interleaved Memory Systems
Jarmo Takala and Tuomas Järvinen

5. On Modeling Intra-Task Parallelism in Task-Level Parallel
Embedded Systems
Andy D. Pimentel, Frank P. Terpstra, Simon Polstra, and
Joe E. Coffland

Copyright  2004 by Marcel Dekker, Inc. All Rights Reserved.



6. Energy Estimation and Optimization for Piecewise Regular
Processor Arrays
Frank Hannig and Jürgen Teich

7. Automatic Synthesis of Efficient Interfaces for Compiled
Regular Architectures
Steven Derrien, Anne-Claire Guillou, Patrice Quinton,
Tanguy Risset, and Charles Wagner

8. Goal-Driven Reconfiguration of Polymorphous Architectures
Sumit Lohani and Shuvra S. Bhattacharyya

9. Realizations of the Extended Linearization Model
Alexandru Turjan, Bart Kienhuis, and Ed F. Deprettere

10. Communication Services for Networks on Chip
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1
Automatic VHDL Model Generation
of Parameterized FIR Filters

E. George Walters III
CSE Department, Lehigh University, Bethlehem, Pennsylvania, U.S.A.

John Glossner
Sandbridge Technologies, White Plains, New York, U.S.A.

Michael J. Schulte
ECE Department, University of Wisconsin–Madison, Madison,
Wisconsin, U.S.A.

I. INTRODUCTION

Designing hardware accelerators for embedded systems presents many trade-
offs that are difficult to quantify without bit-accurate simulation and area
and delay estimates of competing alternatives. Structural level VHDLmodels
can be used to evaluate and compare designs, but require significant effort to
generate.

This chapter presents a tool that was developed to evaluate the tradeoffs
involved in using truncated multipliers in FIR filter hardware accelerators.
The tool is based on a package of Java classes that models the building blocks
of computational systems, such as adders and multipliers. These classes
generate VHDL descriptions, and are used by other classes in hierarchical
fashion to generate VHDL descriptions of more complex systems. This chap-
ter describes the generation of truncated FIR filters as an example.

Previous techniques for modeling and designing digital signal process-
ing systems with VHDL were presented in references 1–5. The tool described
in this chapter differs from those techniques by leveraging the benefits of
object oriented programming (OOP). By subclassing existing objects, such as
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multipliers, the tool is easily extended to generate VHDL models that in-
corporate the latest optimizations and techniques.

Subsections A and B provide the background necessary for under-
standing the two’s complement truncated multipliers used in the FIR filter
architecture, which is described in Section II. Section III describes the tool for
automatically generating VHDL models of those filters. Synthesis results of
specific filter implementations are presented in Section IV, and concluding
remarks and given in Section V.

A. Two’s Complement Multipliers

Parallel tree multipliers form a matrix of partial product bits which are then
added to produce a product. Consider an m-bit multiplicand A and an n-bit
multiplier B. If A and B are integers in two’s complement form, then

A ¼ �am�12
m�1 þ

Xm�2

i¼0

ai2
i and B ¼ �bn�12

n�1 þ
Xn�2

j¼0

bj2
j ð1Þ

Multiplying A and B together yields the following expression

A � B ¼ am�1bn�12
mþn�2 þ

Xm�2

i¼0

Xn�2

j¼0

aibj2
iþj �

Xm�2

i¼0

bn�1ai2
iþn�1

�
Xn�2

j¼0

am�1bj2
jþm�1

ð2Þ

The first two terms in Eq. (2) are positive. The third term is either zero

(if bn�1 = 0) or negative with a magnitude of
Pm�2

i¼0 ai2
iþn�1 (if bn-1 = 1).

Similarly, the fourth term is either zero or a negative number. To produce the
product of A � B, the first two terms are added ‘‘as is.’’ Since the third and
fourth terms are negative (or zero), they are added by complementing
each bit, adding ‘‘1’’ to the LSB column, and sign extending with a leading
‘‘1’’. With these substitutions, the product is computed without any sub-
tractions as

P ¼ am�1bn�12
mþn�2 þ

Xm�2

i¼0

Xn�2

j¼0

aibj2
iþj þ

Xm�2

i¼0

bn�1ai2
iþn�1

þ
Xn�2

j¼0

am�1bj2
jþm�1 þ 2mþn�1 þ 2n�1 þ 2m�1

ð3Þ

Figure 1 shows the multiplication of two 8-bit integers in two’s
complement form. The partial product bit matrix is described by Eq. (3),
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and is implemented using an array of AND and NAND gates. The matrix is then
reduced using techniques such as Wallace [6], Dadda [7], or reduced area
reduction [8].

B. Truncated Multipliers

Truncated m � n multipliers, which produce results less than m + n bits
long, are described in [9]. Benefits of truncated multipliers include reduced
area, delay, and power consumption [10]. An overview of truncated multi-
pliers, which discusses several methods for correcting the error introduced
due to unformed partial product bits, is given in [11]. The method used in
this chapter is constant correction, as described in [9].

Figure 2 shows an 8 � 8 truncated parallel multiplier with a correction
constant added. The final result is l-bits long. We define k as the number of
truncated columns that are formed, and r as the number of columns that are
not formed. In this example, the five least significant columns of partial
product bits are not formed (l = 8, k = 3, r = 5).

Truncation saves an AND gate for each bit not formed and eliminates
the full adders and half adders that would otherwise be required to reduce
them to two rows. The delay due to reducing the partial product matrix is
not improved because the height of the matrix is unchanged. However, a
shorter carry propagate adder is required, which may improve the overall
delay of the multiplier.

The correction constant, Cr, and the ‘‘1’’ added for rounding are nor-
mally included in the reduction matrix. In Fig. 2 they are explicitly shown to
make the concept more clear.

A consequence of truncation is that a reduction error is introduced due
to the discarded bits. For simplicity, the operands are assumed to be inte-

Figure 1 8 � 8 partial product bit matrix (two’s complement).
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gers, but the technique can also be applied to fractional or mixed number
systems. With r unformed columns, the reduction error is

Er ¼ �
Xr�1

i¼0

Xi
j¼0

ai�jbj2
i ð4Þ

If A and B are random with a uniform probability density, then the av-
erage value of each partial product bit is 1

4 , so the average reduction error is

Er�avg ¼ � 1

4

Xr�1

q¼0

ðqþ 1Þ2q

¼ � 1

4
ððr� 1Þ � 2r þ 1Þ

ð5Þ

The correction constant, Cr, is chosen to offset Er_avg and is

Cr ¼ �roundð2�rEr�avgÞ � 2r
¼ �round ðr� 1Þ � 2�2 þ 2�ðrþ2Þ� � � 2r ð6Þ

where round (x) indicates x is rounded to the nearest integer.

II. FIR FILTER ARCHITECTURE

This section describes the architecture used to study the effect of truncated
multipliers in FIR filters. Little work has been published in this area, and

Figure 2 8 � 8 truncated multiplier with correction constant.
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this architecture incorporates the novel approach of combining all constants
for two’s complement multiplication and correction of reduction error into a
single constant added just prior to computing the final filter output. This
technique reduces the average reduction error of the filter by several orders
of magnitude, when compared to the approach of including the constants
directly in the multipliers. Subsection A presents an overview of the archi-
tecture, and subsection B describes components within the architecture.

A. Architecture Overview

An FIR filter with T taps computes the following difference equation [12],

y½n� ¼
XT�1

k¼0

b½k� � x½n� k� ð7Þ

where x[ ] is the input data stream, b[k] is the kth tap coefficient, and y[ ] is the
output data stream of the filter. Since the tap coefficients and the impulse
response, h[n], are related by

h½n� ¼ b½n�; n ¼ 0; 1; . . . ;T� 1
0; otherwise

�
ð8Þ

Equation (7) can be recognized as the discrete convolution of the input stream
with the impulse response [12].

Figure 3 shows the block diagram of the FIR filter architecture used in
this chapter. This architecture has two data inputs, x_in and coeff, and
one data output, y_out. There are two control inputs that are not shown,
clk and loadtap.

The input data stream enters at the x_in port. When the filter is ready
to process a new sample, the data at x_in is clocked into the register labeled
x[n] in the block diagram. The x[n] register is one of T shift registers, where
T is the number of taps in the filter. When x_in is clocked into the x[n]
register, the values in the other registers are shifted right in the diagram,
with the oldest value, x[n – T + 1] being discarded.

The tap coefficients are stored in another set of shift registers, labeled
b[0] through b[T – 1] in Fig. 3. Coefficients are loaded into the registers by
applying the coefficient values to the coeaff port in sequence and cycling
the loadtap signal to load each one.

The filter is pipelined with four stages: operand selection, multiplica-
tion, summation, and final addition.

Operand selection. The number of multipliers in the architecture is
configurable. For a filter with T taps and M multipliers, each mul-
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tiplier performs [T/M] multiplications per input sample. The oper-
ands for each multiplier are selected each clock cycle by an operand
bus and clocked into registers.

Multiplication. Each multiplier has two input operand registers,
loaded by an operand bus in the previous stage. Each pair of
operands is multiplied, and the final two rows of the reduction tree
(the product in carry-save form) are clocked into a register where
they become inputs to the multi-operand adder in the next stage.
Keeping the result in carry-save form, rather than using a carry
propagate adder (CPA), reduces the overall delay.

Summation. The multi-operand adder has carry-save inputs from each
multiplier, as well as a carry-save input from the accumulator. After
each of the [T/M] multiplications have been performed, the output of
the multi-operand adder (in carry-save form) is clocked into the CPA
operand register where it is added in the next pipeline stage.

Final addition. In the final stage, the carry-save vectors from the multi-
operand adder and a correction constant are added by a specialized
carry-save adder and a carry-propagate adder to produce a single

Figure 3 Proposed FIR filter architecture with T taps and M multipliers.
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result vector. The result is then clocked into an output register, which
is connected to the y_out output port of the filter.

The clk signal clocks the system. The clock period is set so that the
multipliers and the multi-operand adder can complete their operation within
one clock cycle. Therefore, [T/M] clock cycles are required to process each
input sample. The final addition stage only needs to operate once per input
sample, so it has [T/M] clock cycles to complete its calculation and is gen-
erally not on the critical path.

B. Architecture Components

This section discusses the components of the FIR filter architecture.

1. Multipliers

In this chapter, two’s complement parallel tree multipliers are used to mul-
tiply the input data by the filter coefficients. When performing truncated
multiplication, the constant correction method [9] is used. The output of
each multiplier is the final two rows remaining after reduction of the partial
product bits, which is the product in carry-save form [13]. Rounding does
not occur at the multipliers, each product is (l + k)-bits long. Including the
extra k bits in the summation avoids an accumulation of roundoff errors.
Rounding is done in the final addition stage.

As described in subsection A, the last three terms in Eq. (3) are
constants. In this architecture, these constants are not included in the partial
product matrix. Likewise, if using truncated multipliers, the correction con-
stant is not included either. Instead, the constants for each multiplication
are added in a single operation in the final addition stage of the filter. This is
described later in more detail.

2. Multi-Operand Adder and Accumulator

As shown in Eq. (7), the output of an FIR filter is a sum of products. In this
architecture, M products are computed per clock cycle. In each clock cycle,
the carry-save outputs of each multiplier are added and stored in the accu-
mulator register, also in carry-save form. The accumulator is included in the
sum, except with the first group of products for a new input sample. This is
accomplished by clearing the accumulator when the first group of products
arrives at the input to the multi-operand adder.

The multi-operand adder is simply a counter reduction tree, similar to
a counter reduction tree for a multiplier, except that it begins with operand
bits from each input instead of a partial product bit matrix. The output of
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the multi-operand adder is the final two rows of bits remaining after reduc-
tion, which is the sum in carry-save form. This output is clocked into the
accumulator register every clock cycle, and clocked into the carry propagate
adder (CPA) operand register every [T/M] cycles.

3. Correction Constant Adder

As stated previously, the constants required for two’s complement multi-
pliers and the correction constant for unformed bits in truncated multipliers
are not included in the reduction tree but are added during the final addition
stage. A ‘‘1’’ for rounding the filter output is also added in this stage. All of
these constants for each multiplier are precomputed and added as a single
constant, CTOTAL.

All multipliers used in this chapter operate on two’s complement oper-
ands. From Eq. (3), the constant that must be added for an m � n multiplier
is 2m+n�1 + 2n�1 + 2m�1. With T taps, there are T multiply operations
(assuming T is evenly divisible by M), so a value of

CM ¼ Tð2mþn�1 þ 2n�1 þ 2m�1Þ ð9Þ
must be added in the final addition stage.

The multipliers may be truncated with unformed columns of partial
product bits. If there are unformed bits, the total average reduction error of
the filter is T � Er_avg. The correction for this is

CR ¼ round T � ðr� 1Þ � 2�2 þ T � 2�ðrþ2Þ
� �

� 2r ð10Þ

To round the filter output to l bits, the rounding constant that must be used is

CRND ¼ 2rþk�1 ð11Þ
Combining these constants, the total correction constant for the filter is

CTOTAL ¼ CM þ CR þ CRND ð12Þ
Adding CTOTAL to the multi-operand adder output is done using a spe-

cialized carry-save adder (SCSA), which is simply a carry-save adder opti-
mized for adding a constant bit vector. A carry-save adder uses full adders
to reduce three bit vectors to two. SCSAs differ in that half adders are used
in columns where the constant is a ‘‘0’’ and specialized half adders are used
in columns where the constant is a ‘‘1’’. A specialized half adder computes
the sum and carry-out of two bits plus a ‘‘1’’, the logic equations being

si ¼ aiPbi and ciþ1 ¼ ai þ bi ð13Þ
The output of the SCSA is then input to the final carry propagate

adder.
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4. Final Carry Propagate Adder

The output of the specialized carry-save adder is the filter output in carry-
save form. A final CPA is required to compute the final result. The final
addition stage has [T/M] clock cycles to complete, so for many applications
a simple ripple-carry adder will be fast enough. If additional performance is
required, a carry-lookahead adder may be used. Using a faster CPA does
not increase throughput, but does improve latency.

5. Control

A filter with T taps and M multipliers requires [T/M] clock cycles to pro-
cess each input sample. The control circuit is a state machine with [T/M]
states, implemented using a modulo-[T/M] counter. The present state is
the output of the counter and is used to control which operands are se-
lected by each operand bus. In addition to the present state, the control
circuit generates four other signals: (1) shiftData, which shifts the input
samples (2) clearAccum, which clears the accumulator, (3) loadCpaReg,
which loads the output of the multi-operand adder into the CPA operand
register, and (4) loadOutput, which loads the final sum into the output
register.

III. FILTER GENERATION SOFTWARE

The architecture described in Section II provides a great deal of flexibility in
terms of operand size, the number of taps, and the type of multipliers used.
This implies that the design space is quite large. In order to facilitate the
development of a large number of specific implementations, a tool was de-
signed that automatically generates synthesizable structural VHDL models
given a set of parameters. The tool, which is named filter generation soft-
ware (FGS), also generates test benches and files of test vectors to verify the
filter models.

FGS is written in Java and consists of two main packages. The arith-
metic package, discussed in subsection A, is suitable for general use and is
the foundation of FGS. The fgs package, discussed in subsection B, is spe-
cifically for generating the filters described previously. It uses the arithmetic
package to generate the necessary components.

A. The arithmetic Package

The arithmetic package includes classes for modeling and simulating digital
components. The simplest components include D flip-flops, half adders, and
full adders. Larger components such as ripple-carry adders and parallel
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multipliers use the smaller components as building blocks. These compo-
nents, in turn, are used to model complex systems such as FIR filters.

1. Common Classes and Interfaces

Figure 4 shows the classes and interfaces used by arithmetic subpackages.
The most significant are VHDLGenerator, Parameterized, and Simulator.

VHDLGenerator is an abstract class. Any class that represents a digital
component and can generate a VHDLmodel of itself is derived from
this class. It defines three abstract methods that must be imple-
mented by all subclasses. genCompleteVHDL() generates a complete
VHDL file describing the component. This file includes synthesiz-
able entity-architecture descriptions of all subcomponents used.
genComponentDeclaration() generates the component declaration
that must be included in the entity-architecture descriptions of other
components that use this component. genEntityArchitecture() gen-
erates the entity-architecture description of this component.

Figure 4 The arithmetic package.
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Parameterized is an interface implemented by classes whose instances
can be defined by a set of parameters. The interface includes get
and set methods to access those parameters. Specific instances of
Parameterized components can be easily modified by changing
these parameters.

Simulator is an interface implemented by classes that can simulate their
operation. The interface has only one method, simulate, which ac-
cepts a vector of inputs and return a vector of outputs. These inputs
and outputs are vectors of IEEE VHDL std_logic_vectors [14].

2. The arithmetic.smallcomponents Package

The arithmetic.smallcomponents package provides components such as D
flip-flops and full adders that are used as building blocks for larger com-
ponents such as registers, adders, and multipliers. Each class in this package
is derived from VHDLGenerator enabling each to generate VHDL for use in
larger components.

3. The arithmetic.adders Package

The classes in this package model various types of adders including carry-
propagate adders, specialized carry-save adders, and multi-operand adders.
All components in these classes handle operands of arbitrary length and
weight. This flexibility makes automatic VHDL generation more complex
than it would be if operands were constrained to be the same length and
weight. However, this flexibility is often required when an adder is used with
another component such as a multiplier.

Figure 5 shows the arithmetic.adders package, which is typical of
many of the arithmetic subpackages. CarryPropagateAdder is an abstract
class from which carry-propagate adders such as ripple-carry adders and
carry-lookahead adders are derived. CarryPropagateAdder is a subclass of
VHDLGenerator and implements the Simulator and Parameterized inter-
faces. Using interfaces and an inheritance hierarchy such as this help make
FGS both straightforward to use and easy to extend. For example, a new
type of carry-propagate adder could be incorporated into existing complex
models by subclassing CarryPropagateAdder.

4. The arithmetic.matrixreduction Package

This package provides classes that perform matrix reduction, typically used
by multi-operand adders and parallel multipliers. These classes perform
Wallace, Dadda, and reduced area reduction [6–8]. Each of these classes are
derived from the ReductionTree class.
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5. The arithmetic.multipliers Package

A ParallelMultiplier class was implemented for this chapter and is repre-
sentative of how FGS functions.

Parameters can be set to configure the multiplier for unsigned, two’s
complement, or combined operation. The number of unformed columns, if
any, and the type of reduction, Wallace, Dadda, or reduced area, may also
be specified. A BitMatrix object, which models the partial product matrix,
is then instantiated and passed to a ReductionTree object for reduction.
Through polymorphism (dynamic binding), the appropriate subclass of Re-
ductionTree reduces the BitMatrix to two rows. These two rows can then be
passed to a CarryPropagateAdder object for final addition, or in the case of
the FIR filter architecture described in this chapter, to amulti-operand adder.

The architecture of FGS makes it easy to change the bit matrix,
reduction scheme, and final addition methods. New techniques can be added
seamlessly by subclassing appropriate abstract classes.

6. The arithmetic.misccomponents Package

This package includes classes that provide essential functionality but do not
logically belong in other packages. This includes Bus, which models the
operand busses of the FIR filter, and Register, which models various types

Figure 5 The arithmetic.adders package.
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of data registers. Implementation of registers is done by changing the type of
flip-flop objects that comprise the register.

7. The arithmetic.firfilters Package

This package includes classes for modeling ideal FIR filters as well as FIR
filters based on the truncated architecture described in Section II.

The ‘‘ideal’’ filters are ideal in the sense that the data and tap coef-
ficients are double precision floating point. This is a reasonable approx-
imation of infinite precision for most practical applications. The purpose
of an ideal FIR filter object is to provide a baseline for comparison with
practical FIR filters and to allow measurement of calculation errors.

The FIRFilter class models FIR filters based on the architecture shown
in Fig. 3. All operands in FIRFilter objects are considered to be two’s
complement integers, and the multipliers and the multi-operand adder use
reduced area reduction. There are many parameters that can be set including
the tap coefficient and data lengths, the number of taps, the number of
multipliers, and the number of unformed columns in the multipliers.

8. The arithmetic.testing Package

This package provides classes for testing components generated by other
classes, including parallel multipliers and FIR filters. The FIR filter test class
generates a test bench and an input file of test vectors. It also generates a.vec
file for simulation using Altera Max+Plus II.

9. The arithmetic.gui Package

This package provides graphical user interface (GUI) components for setting
parameters and generating VHDL models for all of the larger components
such as FIRFilter, ParallelMultiplier, etc. The GUI for each component is a
Java Swing JPanel, which can be used in any swing application. These panels
make setting component parameters and generating VHDL files simple and
convenient.

B. The fgs Package

Whereas the arithmetic package is suitable for general use, the fgs package
is specific to the FIR filter architecture described in Section II. fgs includes
classes for automating much of the work done to analyze the use of
truncated multipliers in FIR filters. For example, this package includes a
driver class that automatically generates a large number of different FIR
filter configurations for synthesis and testing. Complete VHDL models are
then generated, as well as Tcl scripts to drive the synthesis tool. The Tcl
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script commands the synthesis program to write area and delay reports to
disk files, which are parsed by another class in the fgs package that
summarizes the data and writes it to a CSV file for analysis by a spreadsheet
application.

IV. RESULTS

Table 1 presents some representative synthesis results that were obtained
from the Leonardo synthesis tool and the LCA300K 0.6 micron CMOS

Table 1 Synthesis Results for Filters with 16-bit Operands, Output Rounded
to 16-bits (Optimized for Area)

Synthesis results Improvement (%)

T M r
Area
(gates)

Total
delay (ns)

A�D product
(gates�ns) Area

Total
delay

A�D
product

12 2 0 16241 40.80 662633 — — —

12 2 12 12437 40.68 505937 23.4 0.3 23.6
12 2 16 10211 40.08 409257 37.1 1.8 38.2
16 2 0 17369 54.40 944874 — — —

16 2 12 13529 54.24 733813 22.1 0.3 22.3
16 2 16 11303 53.44 604032 34.9 1.8 36.1
20 2 0 19278 68.00 1310904 — — —

20 2 12 15475 67.80 1049205 19.7 0.3 20.0
20 2 16 13249 66.80 885033 31.3 1.8 32.5
24 2 0 20828 81.60 1699565 — — —
24 2 12 17007 81.36 1383690 18.3 0.3 18.6

24 2 16 14781 80.16 1184845 29.0 1.8 30.3

12 4 0 25355 20.40 517242 — — —
12 4 12 18671 20.34 379768 26.4 0.3 26.6
12 4 16 14521 20.04 291001 42.7 1.8 43.7
16 4 0 26133 27.20 710818 — — —

16 4 12 19413 27.12 526481 25.7 0.3 25.9
16 4 16 15264 26.72 407854 41.6 1.8 42.6
20 4 0 28468 34.00 967912 — — —

20 4 12 21786 33.90 738545 23.5 0.3 23.7
20 4 16 17636 33.40 589042 38.0 1.8 39.1
24 4 0 29802 40.80 1215922 — — —

24 4 12 23101 40.68 939749 22.5 0.3 22.7
24 4 16 18950 40.08 759516 36.4 1.8 37.5

Filter
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standard cell library. Improvements in area, delay, and area-delay product
for filters using truncated multipliers are given relative to comparable filters
using standard multipliers. Table 2 presents reduction error figures for 16-
bit filters with T taps and r unformed columns. Additional data can be
found in [15], which also provides a more detailed analysis of the FIR filter
architecture presented in this chapter, including reduction and roundoff
error. The main findings were:

1. Using truncated multipliers in FIR filters results in significant
improvements in area. For example, the area of a 16-bit filter with
4 multipliers and 24 taps improves by 22.5% with 12 unformed
columns and by 36.4% with 16 unformed columns. We estimate
substantial power savings would be realized as well. Truncation
has little impact on the overall delay of the filter.

2. The computational error introduced by truncation is tolerable for
many applications. For example, the reduction error SNR for a
16-bit filter with 24 taps is 86.7 dB with 12 unformed columns and
61.2dB with 16 unformed columns. In comparison, the roundoff
error for an equivalent filter without truncation is 89.1dB [15].

3. The average reduction error of a filter is independent of r (for
T > 4), and much less than that of a single truncated multiplier.
For a 16-bit filter with 24 taps and r = 12, the average reduction
error is only 9.18 � 10�5 ulps, where an ulp is a unit of least

Table 2 Reduction Error for Filters with 16-bit Operands, Output Rounded to

16-bits

Filter Reduction error

T r SNRR (dB) jR (ulps) EAVG (ulps)

12 0 l 0 0
12 12 89.70 0.268 �4.57E-5
12 16 64.22 5.040 �4.57E-5

16 0 l 0 0
16 12 88.45 0.310 �6.10E-5
16 16 62.97 5.820 �6.10E-5

20 0 l 0 0
20 12 87.48 0.346 �7.60E-5
20 16 62.00 6.508 �7.60E-5

24 0 l 0 0
24 12 86.69 0.379 �9.18E-5
24 16 61.21 7.143 �9.18E-5
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precision in the 16-bit product. In comparison, the average
reduction error of a single 16-bit multiplier with r = 12 is 1.56 �
10�2 ulps, and the average roundoff error of the same multiplier
without truncation is 7.63 � 10�6 ulps.

V. CONCLUSIONS

This chapter presented a tool used to rapidly prototype parameterized FIR
filters. The tool was used to study the effects of using truncated multipliers in
those filters. It was based on a package of arithmetic classes that are used as
components in hierarchical designs, and are capable of generating structural
level VHDL models of themselves. Using these classes as building blocks,
FirFilter objects generate complete VHDL models of specific FIR filters. The
arithmetic package is extendable and suitable for use in other applications,
enabling rapid prototyping of other computational systems. As a part of
ongoing research at Lehigh University, the tool is being expanded to study
other DSP applications, and will be made available to the public in the near
future.*
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I. INTRODUCTION

A. General Context

It is a fact that integration technology is providing hardware resources at an
exponential rate while the development methods in industry are only pro-
gressing at a linear rate. This can be seen as the repetition of a common situ-
ation where a mature technical knowledge is providing useful possibilities in
excess of current method capabilities. An answer to this situation is to change
the development process in order to avoid work repetition and to provide
more productivity by secure assembly of standard components.

This situation is also known from computer scientists since it was en-
countered earlier in the programming language story [1]. The beginnings of
this story were: (1) symbolic expression of computations (Fortran), (2) struc-
tured programs (Algol), (3) modularity, and code abstraction via interfaces
and hiding (Modula2, object-oriented programming).

Modularity came at an age when efficient engineering of large programs
was the main concern, and when the task of programming was overtaken by
organizational problems. System development can be considered as a new
age for computer architecture design, with hardware description languages
needing to be transcended by a higher level of description to increase pro-
ductivity. Companies developing applications have specific methods for de-
sign and production management in which they can represent their products,
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tools, and hardware or software components. The method that ensures the
feasibility of a product leads technical choices and developments. It also
changes some of the rules in design organization, since most applications are
achieved in a top-down fashion using object models or code generators to
reach functional requirements.

B. Reconfigurable Architectures

FPGAs are one of the driving forces for integration technology progresses,
due to their increasing applications. Like software and hardware program-
ming languages, reconfigurable architectures are sensitive to scale mutations.
As the chip size increases, the characteristics of the application architecture
change with new needs for structured communications, more efficiency on
arithmetic operators, and partial reconfigurability.

The software follows slowly, migrating from HDL (Hardware Descrip-
tion Language) to HLL (High Level Language). Preserving the developments
and providing a sane support for production tools is a major issue. Reconfig-
urable architectures can take benefits from the top-down design style of
subsection A, by a high level of specialization in applications.

C. Madeo

MADEO is a medium term project that makes use of open object modeling to
provide a portable access to hardware resources and tools on reconfigurable
architectures.

The project structure has three parts that interact closely (bottom-up):

1. Reconfigurable architecture model and its associated generic tools.
The representation of practical architectures on a generic model
enables sharing of basic tools such as place and route, allocation,
circuit edition [2]. Mapping a logic description to a particular tech-
nology is achieved using generic algorithms from SIS [3], or PPart
[4]. Specific atomic resources such as memories, sensors or oper-
ators, can be merged with logic, and the framework is extensible.

2. High-level logic compiler. This compiler produces circuits associ-
ated to high level functionalities on a characterization of the above
model. Object-oriented programming is not restricted to a partic-
ular set of operators or types, and then provides the capability
to produce primitives for arbitrary arithmetics or symbolic com-
puting.

The compiler handles an intermediate level, which is a graph
of lookup-tables carrying high-level values (objects). Then this
graph is translated into a logic graph that will be mapped on
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hardware resources. The translatormakes use of values produced in
the high-level environment, which allows implementation of clas-
sical optimizations without attaching semantics to operations at the
language level.

3. System and architecture modeling. The computation architecture in
its static or dynamic aspects is described in this framework. For
instance, these are generic regular architectures with their associ-
ated tools, processes, platform management, and system activity.

The compiler can make use of logic generation to produce
configurations, bind them to registers or memories, and produce a
configured application. The ability to control placing and routing
given by the first part, and synthesis from the second part, allows
building of complex networks of fine- or medium-grain elements.

This chapter focuses on the logic compiler. Historically, this work has
taken ideas from symbolic translation to logic as described in [5] and knowl-
edge on automatic generation of primitives in interpreters [6]. Relation to the
object-oriented environment was described in [7] with limited synthesis ca-
pabilities that are removed in current work. System modeling and program
synthesis has been demonstrated in the case study of a smart sensor camera [8]
based on the same specification syntax as the one used in the current work.

This chapter describes the general principles used for specification and
logic production, then details the transformations that are achieved. An
illustration is given with an example of a coder/decoder family for RAID
(Redundant Array of Inexpensive Disks) systems with quantitative results
in Section V.

II. A FRAMEWORK FOR LOGIC SYNTHESIS

A. Architecture Modeling

Reconfigurable architectures can mix different grains of hardware resources:
logic Elements, operators, communication lines, buses, switches, memories,
processors, and so on.

Most FPGAs (Field Programmable Gate Arrays) provide logic func-
tions using small lookup memories (LUT) addressed by a set of signals. As
seen from the logic synthesis tools, an n-bit wide LUT is the most general way
to produce any logic function of n boolean variables. There are known
algorithms and tools for partitioning large logic tables or networks to target
a particular LUT-based architecture.

LUTs are effectively interconnected during the configuration phase to
form logic. This is achieved using various configurable devices such as
programmable interconnect points, switches, or shared lines. Some commer-
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cial architectures also group several LUTs and registers into cells called
configurable logic blocks (CLB).

Our model for the organization of these architectures is a hierarchy of
geometric patterns of hardware resources. The model is addressed via a
specific grammar [2] allowing the description of concrete architectures. Given
this description, generic tools operate for technology mapping, and placing
and routing logic modules. See Figure 9 shows a view of the generic editor.
Circuits such as operators or computing networks are described by programs
realizing the geometric assembly of such modules and their connections.

Using this framework, few days of work are sufficient to bring up the
set of tools on a new architecture with the possibility to port application
components. On a concrete platform, it is then necessary to build the bit-
stream generation software by rewriting the application descriptions to the
native tools. Two practical examples are the xc6200 that has a public ar-
chitecture and has been addressed directly, the Virtex 1 is addressed through
the JBits API, and other implementations include industrial prototype ar-
chitectures.

If behavioral generators are known to offer numerous benefits over
HDL synthesis, including ease of specifying a specialized design and the abil-
ity to perform partial evaluation [9], they generally remain dependent of some
libraries of modules appearing as primitives [10,11]. Our approach draws at-
tention to itself by relying on a generic back-end tool in charge of the mod-
ules production. There are no commercial tools or library involved in the
flow.

B. Programming Considerations

Applications for fine-grain reconfigurable architectures can be specialized
without compromise and they should be optimized in terms of space and per-
formance. In our view, too much emphasis is placed on the local performance
of standard arithmetic units in the synthesis tools and also in the specifica-
tion languages.

A first consequence of this advantage is the restricted range of basic
types coming from the capabilities of ALU/FPUs or memory address mech-
anisms. Control structures strictly oriented toward sequentiality are another
aspect that can be criticized. As an example, programming for multimedia
processor accelerators remains procedural in spite of all the experiences avail-
able from the domain of data parallel languages. Hardware description
languages have rich descriptive capabilities, however, the necessity to use li-
braries has led the language designers to restrict their primitives to a level
similar to C.

Copyright  2004 by Marcel Dekker, Inc. All Rights Reserved.



Our aim was to produce a more flexible specification level with direct
and efficient coupling to logic. This implies allowing easy creation of specific
arithmetics representing the algorithm needs, letting the compilers automat-
ically tune data width, andmodeling computations based on well-understood
object classes.

The expected effect was an easy production of dedicated support for
processes that need a high-level of availability, or would waste processor
resources in an integrated system. To reach this goal, we used specifications
with symbolic and functional characteristics with separate definition of data
on which the program is to operate.

Sequential computations can be structured in various ways by splitting
programs on register transfers, either explicitly in the case of an architecture
description, or implicitly during the compilation. Figure 1 shows these two
aspects, with a circuit module assembled in a pipeline and in a data-path. In
the case of simple control loops or state machines, high-level variables can be
used to retain the initial state with known values with the compiler retrieving
progressively the other states by enumeration [7]. Figure 2 shows a diagram
where registers are provided to hold state values associated to high-level vari-
ables that could be instance variables in an object.

At this stage, we will consider the case of methods without side-effects
operating on a set of objects. For the sake of simplicity we will rename these

Figure 1 The modules can be either flat or hierarchical. The modules can be com-

posed in order to produce pipelines or can be instantiated during architecture
synthesis.
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methods functions, and the set of objects values. Interaction with external
variables is not discussed there. The input language is Smalltalk-80, and var-
iant VisualWorks, which is also used to build the tools and to describe the
application architectures.

C. Execution Model

The execution model targeted by the compiler is currently a high-level rep-
lication of LUT-based FPGAs. We define a program as a function that needs
to be executed on a set of input values. Thus the notion of program groups the
algorithm and the data description at once. Our program can be embedded in
higher level computations of various kind, implying variables or memories.
Data descriptions are inferred from these levels. The resulting circuit is highly
dependent from the data it is intended to process.

An execution is the traversal of a hierarchical network of lookup tables
in which values are forwarded. A value change in the input of a table implies a
possible change in its output that in turn induces other changes downstream.
These networks reflect the effective function structure at the procedure call
grain and they have a strong algorithmic meaning. Among the different pos-
sibilities offered for practical execution, there are cascaded hash table ac-

Figure 2 State machines can be obtained by methods operating on private vari-
ables having known initial values.
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cesses and use of general purpose arithmetic units where they are detected
to fit.

Translation to FPGAs need binary representation for objects, as shown
in Fig. 6. This is achieved in two ways, by using a specific encoding known to
be efficient, or by exchanging object values appearing in the input and output
for indexes in the enumeration of values. Figure 3 shows a fan-in case with an
aggregation of indexes in the input of function h(). Basically the low-level
representation of a node such as h() is a programmable logic array (PLA),
having in its input the Cartesian product of the set of incoming indexes ( fout
� gout), and in its output the set of indexes for downstream.

Some important results or observations from this exchange are:

1. Data paths inside the network do not depend anymore on data
width but on the number of different values present on the edges.

2. Depending on the interfacing requirements, it will be needed to
insert nodes in the input and output of the network to handle the
exchanges between values and indexes.

3. Logic synthesis tool capabilities are limited to medium-grain
problems. To allow compilation to FPGAs, algorithms must de-
crease the number of values down to nodes that can be easily handled
by the bottom layer (SIS partitioning for LUT-n). Today, this grain
is similar to algorithms coded for 8-bit microprocessors.

4. Decreasing the number of values is the natural way in which
functions operate, since the size of a Cartesian product on a func-
tion input values is the maximum number of values produced in
the output. The number of values carried by edges decreases either

Figure 3 Fan-in from 2 nodes with Card( fout � gout) <Card( fin) � Card(gin).

Copyright  2004 by Marcel Dekker, Inc. All Rights Reserved.



in the hierarchy structure or in a graph flow. There is no possible
divergence and the efficiency of an algorithm can be stated to be its
ability to quickly decrease the data amplitude on which the logic
complexity depends.

D. Type System

Language types appear to the programmers as annotations for checking code
consistency and binding to architecture resources. The system type we are
using does not restrict programming to this kind of binding. It is only
intended to specify any possible set of values appearing in the program input
or inside the computation network. In the object environment, it is supported
by a set of classes supporting operations.

Implicit or explicit collections of values are denoted by intervals or sets.
Class-based types are associated either to classes having a finite number of
instances (booleans, bytes, or small integers), or to user-defined new func-
tionalities, including arithmetics. Unions result from operations on the two
previous types.

III. COMPILER FLOW

A. Flat Expressions

In the first stage, let us consider a program where the number of values ap-
pearing in the input of each function call is compatible with an efficient logic
synthesis for an LUT-n FPGA architecture. As each node can be directly
synthesized, we have a flat expression in opposition with hierarchical expres-
sions that will need additional compilation contexts for some of the func-
tion calls.

As a Smalltalk development environment was used, there was an
obvious interest to use this language syntax for programs targeting FPGAs.
Immediate benefits were the reuse of the standard compiler front-end use of
the existing classes.

1. Building the Value Network

The first compilation stage consists in building an acyclic flat graph, which
nodes are lookup tables based on objects and which edges allow values to
pass downstream.

As stated, the syntax tree is produced by the standard compiler. The
directed acyclic graph (DAG) is built by analyzing the syntax tree and vari-
able use. Local variable references are eliminated. At this stage nodes are still
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holding function calls that receive edges from the function parameter list, or
other nodes.

To replace these nodes by lookup tables, the values are propagated
progressively from the function parameter list. A graph traversal is achieved,
building a table for each node with defined inputs.

During this transformation, care must be taken for dependencies in
variable used in fan-out to fan-in subnets. For example, the composition
h[ f(x,y), g(x,z)] has a smaller output than h[ f(x,y), g(t,z)] because of the
dependency on variable x. A number of inputs in the fan-in node h and up-
stream are not useful and can be deleted by constraining the Cartesian prod-
ucts from f and g tables. A lot of conditional computations fall in this case.

2. High Level Optimization and Building the Index Network

After the first stage we have a situation similar to a compiler that has a
language semantic knowledge because the tables have stronger properties
inferred from the message executions. It is time to apply high-level optimi-
zations such as elimination of constant nodes and dead code or subexpression
factorization. This implies backward and forward processing on the DAG.
Immediate benefits were the reuse of the standard compiler front-end. The
compiler flow is shown in Figure 4.

The next transformation is the translation of the DAG by deducing
index-based tables from associations of value tables. This is achieved by
generating an index for values. Care must be taken for class-based types to
preserve their special encoding.

3. LUT-Based Optimizations and Architecture Mapping

Index path optimizations involve the detection of subnets with particular to-
pologies. For example, linear cascade tables can be collapsed into a single

Figure 4 Compiler flow.
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table. For logic translation, each index-based table is given logic synthesis
tools to produce an equivalent binary description. At this stage we must also
take into account the size of LUT memories in the target architecture. The
result is a hierarchical logic description that is a binary equivalent for the high-
level program.

The last stage is to place and route the logic graph using the generic tools
in the framework to produce a hardware module for further system han-
dling and binding.

B. Hierarchical Aspects

In subsection A we supposed that the program could be directly synthesized
at each function call. We now consider the more general case where calls
must be developed to reach this condition.

The logic needed to implement a particular function call depends on the
expressed algorithm, the number of parameters, the number of possible values
for parameters, and the original encoding of values in the higher level en-
vironment. A valuable property of an algorithm is its ability to quickly de-
crease the number of values present on graph edges. This gradual decrease
comes from function calls that are processed in the same way of their root
functionwith every node showing an excessive complexity related to synthesis.

When the compiler reaches a condition where logic tools will be in-
efficient, it creates a new compilation context and processes recursively the
call. The context will return a structured logic description that will be installed
as part of the current level production.

The technical form of a logic description associated to a compiled
program is a hierarchical Berkeley logic interchange format (BLIF) descrip-
tion that can be partially flattened for further logic optimization, and par-
tially placed under control of a floor planner. In this case each developed
function call has its corresponding circuit component assembled in the global
hierarchy.

A more speculative compiler built-in function is type partitioning.
When a data set appears to be much too large, the compiler can divide the
type in order to reach a grain suitable for synthesis. Automatic type division
by the compiler should be considered only as a quick approximation, since the
function algorithms are normally written to manage synthesis complexity at a
high level.

A similar situation is the knowledge of a ‘‘best encoding’’ for values. For
example, the order of elements in a Galois field has an influence on the logic
complexity of basic operators. If these operations are dominant in the code,
type-based rules must be managed by the compiler to prevent a new type
generation in node outputs.

Copyright  2004 by Marcel Dekker, Inc. All Rights Reserved.



IV. EXAMPLE OF SMALL FP MULTIPLIERS

To explain the programming interface related to the compiler work, let us
comment on the case of a multiplier operating on small floating-point
numbers. The numbers are represented as a sign, an exponent, and a frac-
tional part. The multiplication is described in a class supporting secondary
methods for adding exponents, multiplying fractional parts, and normalizing
the result. The algorithm for the multiplication is taken from [12]. It was
developed and verified in the software environment before synthesis. Below is
a Smalltalk-80 code for this.

sign: signA significand: significandA

exponent: exponentA

sign: signB significand: significandB

exponent: exponentB

j sign exp mant shift j
sign := self computeSignFor:signA and: signB.

mant := self computeSignificandsFor:

significandA and: significandB.

shift := self computeMantOffset: mant.

exp := (self computeExponentFor: exponentA and: expo-

nentB) + shift.

mant := self normalizeMant: mant with: shift.
�Array with: sign with: mant with: exp

To produce logic for this program, it is necessary to provide a character-
ization of the objects present in the various fields as boolean or integer
intervals, thus tailoring the arithmetic. Depending on the data amplitude of
the inputs of each node, the compiler either develops them hierarchically or
not. In the first case a new graph is produced which is reachable from the
node. In the second case a table, equivalent to the node, will be directly com-
puted and associated to the node.

Figure 5 shows the multiplier directed acyclic graph (DAG). Light grey
boxes are associated to hierarchical nodes expansing their own DAG, dark
grey boxes are hierarchical nodes flattened due to their small size. Medium
grey boxes are associated to terminal primitives translated directly into
lookup tables.

Figure 6 shows two different aspects of a particular node. The first table
is holding high-level objects, such as rational numbers and the right view
displays the equivalent index table with symbol numbers.

Figure 7 displays a 6-node hierarchical circuit and a flat globally
optimized circuit for the multiplier. In the first case, there was no attempt to
compact the design nor to achieve a flat logic optimization to help readability.
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The technology is LUT4 and the circuits have, respectively, 161 and 138
nodes. The second circuit had 24 nets unrouted due to a choice of low
routability in the FPGA architecture.

V. A RAID ERROR CORRECTION CASE STUDY

The procedure for flat expressions is illustrated by the example of a RAID
correction system. In RAID, system redundancy for error correction is kept
using Reed–Solomon (RS) coding over Galois fields. Here we chose a field
with 24 elements. We will concentrate on the implementation of the encoder/
decoder parts and will talk of n :m RS indicating an RS schema, where m
checksum disks are used as redundancy for n disks of data.

Basically, the encoder part will take n streams to be stored in the data
disks to generate the m streams to be stored in the redundant disks. This
makes for a unique reconfiguration for a given n :m schema.

On the other hand, the decoder part will take the streams stored on disks
and return the original data streams. When all stored streams are available,
the decoders simply return the data from the data disks. However, if one (or

Figure 5 Data-flow graph for the multiplication after removing temporaries and
complexity evaluation.
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Figure 7 Hierarchical and flat circuit for the multiplier.

Figure 6 Values and index lookup tables.
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up to m) disks fails, the original data may need to be reconstructed from the
checksums.

The use of FPGA for encoding/decoding seems appropriate mainly for
two reasons:

There may be little or no performance loss due to error correction. The
cost is paid only when a disk failure happens (transition from work-
ing disk to nonworking disk).

It will provide the system with added flexibility. The ability to mutate
the circuits will allow the same hardware to be used for different
failure schemas.

We have based our case study of the encoding/decoding in a word-by-
word basis. This means that, as we are talking of Galois fields 24, we obtain
circuits that take data from the streams in groups of 4 bits. As the operations
for different words are independent, it is possible to replicate the circuits to
work onmultiple data words simultaneously (at the expense of logic space) to
meet desired performance.

A. Reed–Solomon Coding

Reed–Solomon (RS) coding allows correction of up to m errors using m
checksum words. For a system with n data words allowing error recovery for
m failures, a total of n + m words should be stored. The basic idea of RS
coding is to build a system with n+m rows and n columns. All rows are built
to be independent. Recovery from up tom errors is possible as we can always
take the available words and build a system that is solvable. Solving that
system by any technique (like Gaussian elimination) will provide the original
data words.

1. Encoding

At this point we need to buildm additional independent equations. To achieve
that, we will use the Vandermonde matrix and compute its associated
independent terms that will serve as checksums. This can be done by perform-
ing the following operation (where d1 . . . dn are the data words to encode and
c1 . . . cm its associated checksums):

1 1 1 : : : 1
1 2 3 : : : n
..
. ..

. ..
. ..

.

1 2m�1 3m�1 : : : nm�1

2
664

3
775

d1
d2
..
.

dn

2
6664

3
7775 ¼

c1
c2
..
.

cm

2
6664

3
7775 ð1Þ
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2. Decoding

When retrieving data we know that the following equation must apply:

1 0 0 : : : 0
0 1 0 : : : 0
..
. ..

. ..
. ..

.

0 0 0 : : : 1
1 1 1 : : : 1
1 2 3 : : : n
..
. ..

. ..
. ..

.

1 2m�1 3m�1
: : : nm�1

2
666666666664

3
777777777775

d1
d2
..
.

dn

2
6664

3
7775 ¼

d1
d2
..
.

dn
c1
c2
..
.

cm

2
6666666666664

3
7777777777775

ð2Þ

So in case of an error on a word of data, we can compute its value by
solving a system involving n rows of the equation. This will be possible as long
as we have n valid values in the independent term vector; that is, there are less
than m errors.

3. Arithmetic over Galois fields

This is used as the algebra needed to solve the system, as it is closed over a field
of finite size. For a more detailed description of RS coding using arithmetic
over Galois fields (GF), the reader may refer to Plank’s tutorial [13], on which
we have based our work. Another interesting bibliography comes from C.
Paar et al., for example [14] provides information on GF operator complexity
and implementation on FPGAs.

B. Encoder/Decoder Specifications

Our objective is to obtain configurations for the encoding/decoding using RS
over Galois fields. We are targeting a system that has a reconfigurable part to
do both encoding and decoding. We will need a configuration for the encoder
and several configurations for decoding, one for each working condition (set
of words missing). This can be applicable to RAID systems, where the
working condition (disk failure) can be considered rare, and the cost of
reconfiguration in such a case will have little impact (see Fig. 8).

The specifications have been developed in three steps:

Reed–Solomon specification. The specification generates the equation
2. This is specified as a Smalltalk class that has methods for en-
coding/decoding data. The class was built in order to fix the number
of data and checksum words at instance creation, so it could be used
for any encoding size. The specification was tested by exhaustively
performing error correction using conventional arithmetic.
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Development of Galois field arithmetic class. A Galois field 24 for
Smalltalk has been developed. The operations implemented are
those needed in our problem, following the guidelines shown in [13].
Using Smalltalk’s powerful polymorphic nature, we can apply the
Reed–Solomon class using the new arithmetic. We performed an
exhaustive test of the RS coding using the Galois field arithmetic in
order to test correctness.

Extraction of error correction expressions. Building an arithmetic like
class that records the operations performed, we can build the
expressions for the encoding of checksums, as well as for the decoders
in a given working condition. Those expressions can be packed into
method code that will be compiled to build the configurations.

As a note, the above specifications took a few hours to be done, with no initial
experience on Reed–Solomon coding.

C. Expression Compilation

From the specification, we can take the expressions for the encoders/decoders
and compile them to logic. The steps below show the most important effect of
the implementation as handled in our framework.

Figure 8 Encoding n data slices to n+m disks with one redundant encoder shown.
Decoding from n+m disks to n data slices with one decoder for a broken disk shown.
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Type inference. After building the DAG, all edges are typed. In this
case, the inputs are data and checksum words, all of type GF16.

Constant folding. Due to the generated nature of our expressions, there
are plenty of operations over constants. Those are all removed in
this steps. Also operations wielding a constant result (like multi-
plication by 0) are removed.

Dead code removal. As a result of removing multiplication by 0 opera-
tions, and due to the nature of automatically generated expressions,
it is possible that there are expressions whose result is never used, so
they are removed.

Code factorization. That is, common subexpression elimination.
Operator LUTification. This step is the first one toward architecture
binding. It transforms the symbolic operations into look-up tables
suitable for logic synthesis.

Figure 9 A decoder for an 8-data and two redundancy disks problem placed and

routed on a LUT-2 architecture.
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No-op removal. Unary operators whose output is equivalent to its
input are removed.

Operator fusion. Unary operators are removed by fusing them with its
producer/consumer operators. We assume that this will provide a
better implementation.

Circuit production. Several circuits have been produced to collect prac-
tical information of the results.

D. Encoders/Decoders Statistics

Tables 1 and 2 display, respectively, statistics for the 3 necessary encoders and
all the possible decoders for disk failures. The tables have columns showing
the decrease in the number of GF16 operators, average number of inputs per
operator, and the critical path in the network of operators as a result of each
compiler operation. The meaning of the rows is the observed value after each
optimization operation as described in subsection C.

Correctness has been checked at the logic level by selecting random
random inputs and verifying the output after logic synthesis using an SIS
simulate command.

E. Specific 8:2 Case with Circuit Generation

This time, the case of a RAID systemwith eight data disks and two redundant
disks is considered. These circuits were optimized and mapped to two differ-
ent architectures having 2-LUT (Figure 9) and 4-LUT cells. Table 3 shows the
compared characteristics of the encoder and decoder on these architectures.
Each has a routing channel of size 8 inside the cell patterns, providing a first-
run success. Some parameters are extracted that can be used at a higher level,
as an example for system management of the reconfigurable logic resources,
or for making choices in the compiler generation code strategy. Notice that at

Table 1 Statistics for Encoders-RS4:3

Compiler operation Operators Average input Critical path

Type inference 12 2 6

Constant folding 8 2 5
Dead-code removal 8 2 5
Code factorization 8 2 5

Operator to LUT 8 1.375 5
No-op removal 5 1.67 3.67
Operator fusion 3 2 3
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the end of optimization on LUT, it is easy to generate processor code and
table contents equivalent to the network of reconfigurable logic cells.

The table has two parts for post-assembly optimized logic and simple
structured assembly as it is used for floor planning. The presented character-
istics are:

1. Total circuit area in number of cell patterns
2. Gates used in this area
3. Number of inputs for the circuit
4. Effective number of cells used to implement logic
5. The average of used inputs inmodule cells including the border, and
6. The same measure for cells in (4).

Table 3 Results from Place and Route on Two Architectures

Encoder Decoder

LUT 2 LUT 4 LUT 2 LUT 4

Area (1) 90 56 121 72

Cells used (2) 85 53 119 71
Input cells (3) 32 32 40 40
Internal cells (4) 53 21 79 31

Input average (5) 1.62 2.04 1.67 2.23
Gates input average (6) 2.0 3.62 2.0 3.81
Routing cost (7) 1095 640 1839 1049

Critical path (8) 18 14 19 15
CPU time (9) 43.14 20.34 98.70 34.89
Max struct. area (10) 128 88 208 176
Cells used (11) 109 85 181 170

Internal cells (12) 53 29 79 58

Table 2 Statistics for Decoders-RS4:3

Compiler operation Operators Average input Critical path

Type inference 85.08 2 11.24

Constant folding 11.68 2 7.65
Dead-code removal 11.68 2 7.65
Code factorization 10.41 2 7.65

Operator to LUTs 10.41 1.43 7.65
No-op removal 7.42 1.65 5.75
Operator fusion 4.5 2 3.625
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Notice that (3)+(4)=(2), with (4) being low. The circuit is I/O dominated.
Gates used in (3) disappear when the module is connected to other architec-
ture elements.

Routing cost (7) is an estimation on the number of resources allocated
for connections. Critical path (8) is the maximum number of cells and other
resources allocated in the circuit between an input and an output, with unitary
costs. CPU time (9) provides an idea of the delay to place and route the circuit
on a PC/750Mhz with the Visualworks environment running on Linux.
Figure 9 show a view of a decoder as generated by the tools.

The maximum area occupied by the assembly of elementary modules is
(10) without post-assembly optimization, and without the use of the floor
planner. Themaximum number of cells used in this area is (11), and (12) is the
number of cells used to implement logic in the area. Item (12) is similar to (4).
A good measure of the post-assembly optimization is the respective 46% and
27% logic decreases in the cases of the decoder and encoder. The use of the
floor planner will bring (10) and (11) closer to (1) and (2).

VI. CONCLUSION

Madeo tools for reconfigurable architecture modeling are operational with
practical implementations on commercial FPGAs and prospective FPGA
prototype architectures. This demonstrates the feasibility of a FPGA hard-
ware/software interface standardization in a way similar to microprocessors
and HLL compilers.

The described compiler is still a work in progress. It is possible to
produce an optimized hierarchical logic description suitable for technology
mapping, place, and route. Dependencies in fan-out to fan-in subgraph, re-
jecting unused values from the branches of conditional statements, and
recursive specifications are handled. The main effect of this compiler is to
achieve optimizations mostly at a high level, removing a considerable load on
the logic mapping algorithms. The strength in optimization comes from the
fine knowledge on values being processed, that allows to simplify computa-
tions either at a high level or logic level. The underlying execution model is
understandable for the programmer who has direct feedback for the algo-
rithms.

Related to productivity in developments, our method also allows the
possibility to create specific logic, based on concise behavioral specifications
that are reusable in a variety of situations on different kinds of data. The
compiler is able to allocate medium-grain resources such as memories or
arithmetic operators, based on the architectural model and types propagated
inside the computation graph.
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Finally, we find the object-oriented approach very promising either for
architecture management or high-level synthesis. This encourages more re-
search in this direction for higher scope work in the context of systems on
chips.
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for Discrete Wavelet Transforms
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I. INTRODUCTION

Discrete wavelet transforms (DWTs) have been extensively developed as an
efficient multiresolution analysis tool during the past decade. They provide an
efficient technique for signal/image decomposition into different subbands of
well-defined time-frequency characteristics [1–5]. Wavelets have been studied
and successfully applied to a wide range of applications such as different
branches of image and video processing, numerical analysis, biomedicine,
signal processing techniques, speech compression/decompression, etc. DWT-
based compression methods have become the basis of international standards
such as JPEG 2000.

Sincemany applications need real-time computation ofDWT, a number
of ASIC architectures have already been proposed (see [6–25]) for hardware
implementation of DWTs. Most of the early architectures exploit the recur-
sive pyramid algorithm (RPA) [26], based on the tree-structured filter bank
representation of DWTs (see Fig. 1a). In this representation the input signal is
processed by several ( J) levels of decomposition (octaves), where the input at
every stage is processed by a low-pass and by a high-pass filter, outputs of
which are then downsampled by a factor of two. The length of the processed
signal is twice reduced from level to level. Based on this representation of
DWTs several low-hardware complexity devices have been developed that
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require at least 2N clock cycles (ccs) to compute a DWT of a sequence having
N samples (e.g., the devices proposed in [12–14], the architecture A2 in [15],
etc.). Also a large number of devices, having a period of approximatelyN cc’s,
have been designed (e.g., the three architectures in [14] when they are provided
with a doubled hardware, the architecture A1 in [15], the architectures in [16–
18], the parallel filter in [19], etc.). In order to increase the throughput,
pipelining has been employed to implement these structures where every
DWToctave is implemented in a pipeline stage (pipelining at the octave level).
However, despite the fact that the amount of computations reduces twice
from one stage to the next, these pipelined architectures use the same number
of processing elements (PEs) for every pipeline stage [12], [23–25]). Balancing
of the pipeline stages is achieved by making the clocking fequency twice as
small from stage to stage (see, e.g., [23–25]). This is clearly a pure hardware
utilization of PEs.

Recently, a number of DWT architectures [6–11] have been developed
based on another representation of wavelets, on the lifting scheme where the
filtering and downsampling procedure is replaced by so called lifting steps as
shown in Fig. 1b. This is a more efficient approach and allows reducing the
memory sizes and accesses (which are crucial especially, in the 2–D case) [6–
10], as well as the processing time [11]. However, to the best of our knowledge
no lifting-based DWT architectures that exploit pipelining of DWT octaves

Figure 1 (a) Tree-structured flowgraph representation of a 1-D DWT; (b) lifting
step.
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have been proposed. The reason is, perhaps, the same as for tree-structured
filter bank representation-based architectures. That is, as the length of the
signal is twice reduced from one stage to the next, it is difficult to design a pipe-
lined architecture with well-balanced pipeline stages. Low-balancing between
the pipeline stages leads to under-utilization of the PEs.

As a consequence of under-utilization of PEs, the typical efficiency of
conventional pipelined architectures strongly decreases with the number of
decomposition levels. Approximately 100% of efficiency is achieved only in
conventional architectures that are either nonpipelined or employ only a
restricted (two-stage) pipelining (e.g. those in [17,18]). These architectures, in
addition, suffer from extensive memory (chip area) or control requirements.
The highest throughput achieved in known architectures is N/2 clock cycles
perN-point DWT (see [11]). Similar performance is achieved in highly (about
100%) efficient architectures developed in [27–28] by including approximately
twice the lower number of PEs from stage to stage.

In [29–30], flowgraph representation of DWTs (see examples in Figs. 2
and 3) has been suggested as a useful tool in designing parallel/pipelinedDWT
architectures. In particular, this representation fully reveals parallelism

Figure 2 Flowgraph representation of a DWT (N=16, L=4, J=3).
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inherent to every octave as well as it clearly demonstrates data transfers within
and between octaves. This allows combining pipelining and parallelism to
achieve a higher cost-efficient performance. This means implementing octaves
in a pipelined mode where pipeline stages are parallelized at varying stage-to-
stage levels. Incorporating varying level parallelism within pipeline stages
allows the design of parallel pipelined devices with perfectly balanced pipeline
stages.

In this work, several DWT architectures operating at approximately
100% hardware utilization are proposed, based on the flowgraph represen-
tation of DWTs described in Section II. The proposed structures may be
implemented in different ways. In particular, they are scalable meaning that
they can be implemented with varying levels of parallelism, giving an
opportunity to trade-off between hardware complexity and performance.
Several possible realizations of the proposed general structures are discussed
in Section III. The resulting architectures demonstrate excellent time and
moderate area performance as compared to the conventional DWT archi-
tectures, as follows from the discussion in Section IV. Throughput of the
architectures may vary between NL/2J time units (at the minimum level of
parallelism) up to even one time unit (at the theoretical maximum level of
parallelism) per N-point DWT with J octaves and filters of the length L. The
proposed architectures are regular andmodular, easily controlled, and free of
feedback or a switch. They can be implemented as semisystolic arrays.

II. FLOWGRAPH REPRESENTATION AND PARALLEL
ALGORITHMS FOR DWTs

There are several alternative definitions and representations of DWTs such as
tree-structured filter bank, lattice structure, lifting scheme, or matrix defini-

Figure 3 Compact flowgraph representation of a 1-D DWT (L = 4, J = 3).
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tions [1–11]. In this section, we use the matrix definition of DWTs to arrive at
their flowgraph representation, which has been shown to be very efficient in
designing efficient parallel/pipelined DWT architectures [29–30]. The basic
algorithm for the proposed structures is also described in this section.

Using the matrix definition, a discrete wavelet transform is a linear
transform y=H � x, where x= [x0,..., xN�1]

T and y= [ y0,..., yN�1]
T are the

input and the output vectors of length N =2m, respectively. H is the DWT
matrix of order N x N, which is formed as the product of sparse matrices:

H ¼ H Jð Þ � . . . �H 1ð Þ; 1V JVm; H jð Þ ¼ Dj 0
0 I2m�2m�jþ1

� �

j ¼ 1; . . . ; J ð1Þ

where Ik is the identity (k � k) matrix (k =2m �2m�j+1). Dj is the analysis
(2m�j+1 x 2m�j+1) matrix at stage j having the following structure:

Dj ¼

l1 l2 . . . lL 0 0 . . . 0
0 0 l1 l2 . . . lL . . . 0

O
l3 . . . lL 0 0 . . . l1 l2
h1 h2 . . . hL 0 0 . . . 0
0 0 h1 h2 . . . hL . . . 0

O
h3 . . . hL 0 0 . . . h1 h2

0
BBBBBBBBBB@

1
CCCCCCCCCCA

¼ Pj

l1 l2 . . . lL 0 0 : : : 0
h1 h2 . . . hL 0 0 . . . 0
0 0 l1 l2 . . . lL . . . 0
0 0 h1 h2 . . . hL . . . 0

O

l3 . . . lL 0 0 . . . l1 l2
h3 . . . hL 0 0 . . . h1 h2

0
BBBBBBBBBB@

1
CCCCCCCCCCA

ð2Þ

whereLP=[l1,..., lL] andHP=[h1,..., hL] are the vectors of coefficients of the
low-pass and high-pass filters, respectively, L is the length of the filters*, and
Pj is the matrix of the perfect unshuffle operator of size (2m�j+1 � 2m�j+1).

Adopting the representation from Eqs. (1–2), the DWT is computed in
J stages (also called decomposition levels or octaves), where the jth stage,

* For clarity we assume both filters to have the same length, which is an even number. The

results are easily expanded to the general case of arbitrary filter lengths.
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j=1,..., J, constitutes a multiplication of a sparse matrix H(j) by a current
vector of scratch variables where the first such vector being the input vector x.
The corresponding algorithm can be written as the following pseudocode
wherex( j)LP=[x( j)LP(0),...,x

( j)
LP(2

m�j�1)]T,andx( j)HP=[x( j)HP(0),...,x
( j)
HP(2

m�j�1)]T, j
1)]T, j =1,..., J, are (2m�j � 1) vectors of scratch variables, and the
concatenation of column vectors x1,..., xk is denoted as [(x1)

T,..., (xk)
T]T.

Algorithm 1
1. Set x

ð0Þ
LP ¼ x

ð0Þ
LP 0ð Þ; . . . ; xð0ÞLP 2m � 1ð Þ

h iT
¼ x;

2a. For j =1,..., J compute

x
ðjÞ
LP ¼ x

ðjÞ
LP 0ð Þ; . . . ; xðjÞLP 2m�j � 1

� �h iT
and

x
ðjÞ
HP ¼ x

ðjÞ
HP 0ð Þ; . . . ; xðjÞHP 2m�j � 1

� �h iT
;

where

x
ðjÞ
LP

� �T
; x

ðjÞ
HP

� �T� 	T
¼ Dj � xðj�1Þ

LP ð3Þ

or, equivalently,
2b. For i =0,..., 2m�j � 1,
Form the vector /* subvector of length L of the vector x( j)LP */

x̃¼ x
ðj�1Þ
LP 2ið Þ;xðj�1Þ

LP 2iþ 1ð Þ; . . . ; xðj�1Þ
LP 2iþL� 1ð Þmod 2m�jþ1

� �h �iT
Compute

x
ðjÞ
LP ið Þ ¼ LP � x̃; x

ðjÞ
HP ið Þ ¼ HP � x̃

3. Form the output y = [x( J)LP, x
( J)
HP, x

( J�1)
HP ,..., x(2)HP, x

(1)
HP]

T.

Computation of Algorithm 1 with the matrices Dj of Eq. (2) can be
clearly demonstrated using a flowgraph representation. An example for the
case N =23=8, L =4, J =3 is shown in Fig. 2. The flowgraph consists of J
stages, the j-th stage, j=1,..., J, having 2m�j nodes (depicted as boxes on Fig.
2). Each node represents a basic DWT operation (see Fig. 2b). The ith node, i
=0,..., 2m�j � 1, of the stage j=1,..., J has incoming edges from L circularly
consecutive nodes 2i, 2i+1, (2i+2)mod 2m�j+1,..., (2i+L� 1) mod 2m�j+1

of the preceding stage or (for the nodes of the first stage) from inputs. Every
node has two outgoing edges. An upper (lower) outgoing edge represents the
value of the inner product of the vector of low-pass (high-pass) filter coe-
fficients with the vector of the values of incoming edges. Outgoing values of a
stage are permuted according to the perfect unshuffle operator so that all the
low-pass components are collected in the first half and the high-pass compo-
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nents are collected at the second half of the permuted vector. Low-pass
components are then forming the input to the following stage or (for the nodes
of the last stage) represent output values. High-pass components represent
output values at a given resolution.

Essentially, the flowgraph representation gives an alternative definition
of discrete wavelet transforms which is rather illustrative and easy-to-under-
stand. It has several advantages, at least from an implementation point of
view, as compared to the conventional DWT representations such as the tree-
structured filter bank, lifting scheme, or lattice structure representations [30].

The flowgraph representation, however, of DWTs as presented so far,
has the inconvenience of being very large for bigger values of N. This incon-
venience can be overcome based on the following observation. Assuming J<
log2 N (in most of applications J<< log2 N), one can see that the DWT
flowgraph consists of N/2J similar patterns (see the two shadowed regions on
Fig. 2). Every pattern can be considered as a 2J-point DWT with a specific
strategy of forming the input signals to its every octave. Merging the 2m�J

patterns in one, we can now obtain a compact (or core) flowgraph representa-
tion of DWT. An example of a DWT compact flowgraph representation for
the case J=3,L=4 is shown in Fig. 3. The compact DWTflowgraph has 2J�j

nodes at its j-th, stage, j =1,..., J, where now a set of 2m�J temporarily
distributed values are assigned to every node. Also, every outgoing edge
corresponding to a high-pass filtering result of a node or low-pass filtering
result of the node of the last stage represents a set of 2m�J output values.

Note that the structure of the compactDWTflowgraph does not depend
on the length of theDWTbut only on the number of decomposition levels and
filter length. The DWT length is reflected only in the number of values
represented by every node.

To illustrate the computation represented by the compact flowgraph let
us adopt following notations. Let D̂j be a matrix consisting of the first 2J�j+1

rows and the first 2J�j+1+ L � 2 columns of Dj. Let us also conventionally
divide the vector x( j�1)

LP of Eq. (3) into subvectors x( j�1,s) = x( j�1)
LP (s�2J�j+1:

(s+1) 2J�j+1� 1), s=0,...,�2m�J� 1, where the notation x(a: b) stands for the
subvector of x consisting of the ath to bth components of x. Then the input of
the j-th, j=1,..., J, octave within the s-th pattern of the DWT flowgraph is the
subvector x̂( j�1,s) (0: 2J�j+1+ L � 3) of the vector

x̂ðj�1;sÞ ¼ x
ð j�1;s mod 2m�JÞ
LP

� �T
; . . . ; x

ðj�1; sþQj�1ð Þ mod 2m�JÞ
LP

� �T
" #T

ð4Þ

being the concatenation of the vector x( j�1,s)
LP with the circularly next Qj � 1

vectors where Qj = q�(L � 2)/2J�j+1a. With these notations, the computation
of the compact flowgraph can be described with the following pseudocode.
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Algorithm 2
1. For s =0,..., 2m�J � 1 set x(0,s)LP = x(s� 2J: (s +1)� 2J � 1);
2. For j =1,..., J
For s =0,..., 2m�J � 1
2.1 Set x̂( j�1,s) according to (4)
2.2 Compute

x
ðj;sÞ
LP

� �T
; x

ðj;sÞ
HP

� �T� 	T
¼ D̂j � x̂ðj�1;sÞ 0 : 2J�jþ1 þ L� 3

� �
3. Form the output y ¼ x

ðJ;0Þ
LP

� �T
; . . . ; x

ðJ;2m�J�1Þ
LP

� �T
; x

ðJ;0Þ
HP

� �T
; . . . ;

�

x
ðJ;2m�J�1Þ
HP

� �T
; . . . ; x

ð1;0Þ
HP

� �T
; . . . ; x

ð1;2m�J�1Þ
HP

� �T	T
Implementing the cycle for s in parallel one can easily arrive to a parallel

DWT realization. By exchanging the nesting order of cycles for j and s and
implementing the (nested) cycle for j in parallel it is possible to arrive to a
pipelined DWT realization. Both poorly parallel and poorly pipelined real-
izations would be inefficient since the number of operations is halved fromone
octave to the next one. However, combining the two methods we arrive at a
very efficient parallel-pipelined or partially parallel-pipelined realization. The
following pseudocode presents such parallel-pipelined DWT realization
where we denote

s * jð Þ ¼
Xj

n¼1
Qn ð5Þ

Algorithm 3
1. For s =0,..., 2m�J � 1 set x(0,s)LP = x(s� 2J : (s +1) � 2J � 1);
2. For s= s * (1),..., 2

m�J + s * ( J) � 1, For j= J1,..., J2 do in parallel
2.1 Set x̂( j�1,s�s*( j)) according to (4)
2.2 Compute

x
ð j;s�s* jð ÞÞ
LP

� �T
; x

ð j;s�s* jð ÞÞ
HP

� �T� 	T
¼ D̂j � x̂ j�1;s�s* jð Þð Þ 0 : 2J�jþ1 þ L� 3

� �
3. Form the output (See Step 3 of Algorithm 2.)

Note that computation of Algorithm 3 takes place during the steps s=
s * ( j),..., 2

m�J + s * ( j)� 1. At step s= s * (1),...,s * (2)� 1 computations of
only the first octave are implemented, at step s = s * (2),...,s * (3) � 1
operations of the first two octaves are implemented, etc. In general, at the step
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s = s * (1),...,2m�J + s * ( J) � 1 operations of the octaves j = J1,...,J2 are
implemented where J1 ¼ min j such that s*ðjÞzs < s*ðjÞ þ 2m�J


 �
and J1 ¼

max j such that s * jð ÞV s < s * jð Þ þ 2m�J

 �

:

III. THE PROPOSED DWT ARCHITECTURES

In this section, we present general structures of two types of DWT architec-
tures, referred to as Type 1 and Type 2 core DWT architectures, as well as two
other DWT architectures extended from either core DWT architecture and
referred to as multicore DWT architecture and variable resolution DWT
architecture, respectively. Both types of the core DWT architectures imple-
ment arbitrary discrete wavelet transform with J octaves with low-pass and
high-pass filters having a length L not exceeding a given number Lmax.

The general structure representing both types of core DWT architec-
tures is presented on Fig. 4 where dashed lines depict connections, which are
present in Type 2 architectures but are absent in Type 1 architectures. In both
cases the architecture consists of a data input block and J pipeline stages with
each stage containing a data routing block and a block of processor elements
(PEs) where the data input block implements Step 1 of Algorithm 3, data
routing blocks are responsible for Step 2.1, and blocks of PEs are for
computations of Step 2.2. The two types mainly differ by the possibility of
data exchange between PEs at the same pipeline stage, which are possible in
Type 2 but not in Type 1 architectures.

The data input block of the core DWT architectures of both types may
be realized as word-serial as well as word-parallel. In the former case, the data
input block consists of a single (word-serial) input port that is connected to a
length-2J shift register (dashed lined box in Fig. 4) having a word-parallel
output from every cell. In the latter case, the data input block simply consists
of 2J parallel input ports. In both cases the data input block has 2J parallel
outputs connected to the 2J inputs of the data routing block of the first
pipeline stage.

A. Type 1 Core DWT Architecture

The basic operation of Algorithm 3 (Step 2.2) is equivalent to 2J�j pairs of
vector–vector inner products:

xð j;s�s* jð ÞÞ ið Þ ¼ LP � x̂ j�1;ðs�s* jð ÞÞþð Þ 2i : 2iþ L� 1ð Þ
xð j;s�s* jð ÞÞ iþ 2J�j

� � ¼ HP � x̂ j�1;ð J;s�s* jð ÞÞþð Þ 2i : 2iþ L� 1ð Þ
i ¼ 0; . . . ; 2J�j � 1
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All the inner products may be implemented in parallel. On the other hand,
every vector–vector inner product of length L can be obviously decomposed
into an accumulative sequence ofLp=qL/pa inner products of length p ( pVL).
Algorithm 3 may be modified as follows.

Algorithm 3.1
1. For s =0,..., 2m�J � 1 set x(0,s)LP =x(s � 2J : (s +1) � 2J � 1);
2. For s = s * (1),..., 2m�J + s * ( J) � 1, For j = J1,..., J2 do in
parallel
2.1. Set x̂( j�1,s�s*( j)) according to (4)
2.2. For i =0,..., 2J�j � 1 do in parallel
Set SLP(i) =0, SHP(i) =0;
For n =0,..., Lp � 1 do sequentially

SLP ið Þ ¼ SLP ið Þ þ
Xp�1

k¼0

lnpþkx̂
j�1;s�s* jð Þð Þ 2iþ npþ kð Þ ð6Þ

Figure 4 The general structure of Type 1 and Type 2 core DWT architectures.
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SHP ið Þ ¼ SHP ið Þ þ
Xp�1

k¼0

hnpþkx̂
j�1;s�s* jð Þð Þ 2iþ npþ kð Þ ð7Þ

Set x( j,s�s*( j))
LP (i) = SLP(i); x

( j,s�s*( j))
HP (i) = SHP (i)

3. Form the output (see Step 3 of Algorithm 2).

The general structure of the Type 1 core DWT architecture is presented
in Fig. 4 where the dashed lines should be ignored, that is, there are no
connections between PEs of a single stage. The architecture consists of the
above-described data input block and J pipeline stages. In general, the jth
pipeline stage, j =1,..., J, of the Type 1 core DWT architecture consists of a
data routing block having 2J�j+1 inputs IPS( j)(0),..., IPS( j)(2

J�j+1 � 1)
forming the input to the stage, and 2J�j+1+ p � 2 outputs ODRB( j) (0),...,
ODRB( j) (2

J�j+1+p � 3) connected to the inputs of 2J�j PEs.
Every PE has p inputs and two outputs where pV Lmax is a parameter

describing the level of parallelism of every PE. Consecutive p outputsODRB( j)

(2i), ODRB( j)(2i +1),..., ODRB( j)(2i + p � 1) of the data routing block of the
jth, j=1,..., J, stage are connected to the p inputs of the ith, i=0,..., 2J�j � 1,
PE (PEj,i) of the same stage. First outputs of 2J�jPEs of the jth pipeline stage, j
=1,..., J� 1, form the outputsOPS( j) (0),...,OPS( j)(2

J�j� 1) of that stage and
are connected to the 2J�j inputs IPS( j+1) (0),..., IPS( j+1)(2

J�j � 1) of the data
routing block of the next, ( j +1)st, stage. The first output of the (one) PE of
the last, Jth, stage is the 0th output out(0) of the architecture. Second outputs
of 2J�j PEs of the jth pipeline stage, j=1,..., J, form the (2J�j)th to (2J�j+1 �
1)st outputs out (2J�j),..., out (2J�j+1 � 1) of the architecture.

Let us now describe functionality of the blocks of Type 1 core DWT
architecture. For convenience, we define time unit as the period for PEs to
complete their one operation (i.e., the period between successive groups of p
data to enter to the PE) and let us consider an operation step of the archi-
tecture to consist of Lp time units.

The data input block serially (or in parallel) accepts and in parallel
outputs a group of components of the input vector at the rate of 2J

components per operation step. Thus, the vector x(0,s)LP is formed on the
outputs of the data input block at the step s =0,..., 2m�J � 1.

The data routing block of stage j=1,..., J, is a circuitry which at the first
time unit n=0 of its every operation step accepts in parallel a vector of 2J�j+1

components, and then at every time unit n=0,...,Lp� 1 of that operation step
it outputs in parallel a vector of 2J�j+1+ p � 2 components np, np +1,..., (n
+1) p +2J�j+1 � 3 of a vector being the concatenation (in chronological
order) of the vectors accepted at previous Q̂ j � 1 steps, where

Q̂j ¼ ½ðLmax � 2Þ=2J�jþ1� j ¼ 1; . . . ; J ð8Þ
The functionality of the PEs used in Type 1 core DWT architecture is to

compute two inner products Eqs. (6) and (7) of the vector on its p inputs with

Copyright  2004 by Marcel Dekker, Inc. All Rights Reserved.



two vectors of predetermined coefficients during every time unit and to accu-
mulate the results of both inner products computed during one operation
step. At the end of every operation step, the two accumulated results pass to
the two outputs of the PE and new accumulation starts. Possible structures of
PEs for Type 1 core DWT architectures are presented in Fig. 5 for the case of
arbitrary pp =1, p =2, and p = Lmax, (Fig. 5a–d, respectively). These
structures are for the ‘‘generic’’ DWT implementation independent of filter
coefficients. (They can be easily optimized for specific filter coefficients.) In
particular, correlation between the low-pass and the high-pass filter coeffi-
cientsmay be used in order to reduce hardware requirements. Except this, PEs
implementing the lifting steps (see [4]), similar to those in [10], and [11] may be
used in the proposed architectures.

It is easy to show that the architecture implements computations
according to Algorithm 3.1 though with extra delay when L< Lmax. The
extra delay is the consequence of the flexibility of the architecture for being
capable of implementing DWTs with arbitray filter length L V Lmax while
Algorithm 3.1 presents computation of a DWT with a fixed filter length L. In
fact, the architecture is designed for filter length Lmax but also implements

Figure 5 Possible realizations of the PEs for Type 1 core DWT architecture: (a)
arbitrary p; (b) p =1; (c) p =2; and (d) p = Lmax.
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DWTs with shorter filters with a slightly increased time delay but without
loosing the time period.

Denote

ŝ 0ð Þ ¼ 0; ŝ jð Þ ¼
Xj

n¼1
Q̂n; j ¼ 1; . . . ; J ð9Þ

The delay between input and output vectors is equal to

Td C1ð Þ ¼ 2m�J þ ŝ Jð Þ� �
L=p½ � ð10Þ

time units. The throughput or the time period (measured as the the intervals
between time units when successive input vectors enter to the architecture) is
equal to Tp(C1) time units, where

TpðC1Þ ¼ 2m�J ½L=p� ð11Þ
From Eqs. (10) and (11) we obtain that approximately 100% efficiency

(hardware utilization* is achieved for the architecture both with respect to
time delay and, moreover, time period complexities. A close efficiency is
reached only in a few pipelinedDWT designs (see [17, 27, 28]), but most of the
known pipelined DWT architectures reach much less than 100% average
efficiency. It should also be noted that a time period of at leastO(N) time units
is required by known DWT architectures.

The proposed architecture may be realized with varying level of
parallelism, depending on the parameter p. As follows from Eq. (11) the time
period complexity of the implementation varies between TL(C1) =2m�J and
T1(C1) = L2m�J. Thus, the throughput of the architecture is 2J/L to 2J times
faster than that of the fastest known architectures. The possibility of realiza-
tion of the architecture with a varying level of parallelism also gives an
opportunity to trade–off the time and hardware complexities. It also should
be noted that the architecture is very regular and needs an easy control (which
is, essentially, a clock only) unlike e.g., the architecture of [17]. It does not
contain a feedback, a switch, or long connections dependent on the size of the
input but only connections of the maximum of O(L) length. Thus, it can be
implemented as a semisystolic array.

B. Type 2 Core DWT Architecture

When implementing the basic operations (6) and (7) of Algorithm 3.1, multi-
plicands needed for the time unit n =1,..., Lp � 1 within the branch i=
0,...,2J�j � p/2 � 1 can be obtained from the results obtained at step n � 1

* The efficiency or hardware utilization is E = (T(1) � 100%) / (K � T(K)), where T(1) and T(K)

are the time complexities with one PE and with K PEs, respectively.

Copyright  2004 by Marcel Dekker, Inc. All Rights Reserved.



within the branch i + p/2. With this, the following modification of the basic
algorithm may be derived. Denote

lVk ¼
lk for k ¼ 0; . . . ; p� 1

lk=lk�p; for k ¼ p; . . . ;L� 1
;

(

hVk ¼
hk for k ¼ 0; . . . ; p� 1

hk=lk�p; for k ¼ p; . . . ;L� 1

(

Algorithm 3.2
1. For s =0,..., 2m�J � 1 set x(0,s)LP = x(s� 2J: (s +1)� 2J � 1);
2. For s= s * (1),..., 2

m�J + s * ( J) � 1, For j= J1,..., J2 do in parallel
2.1. Set x̂( j�1,s�s*( j)) according to (4)
2.2. For i =0,..., 2J�j � 1 do in parallel
For k =0,..., p � 1
{set z(i, 0, k) = lkx̂

( j�1,s�s*( j))(2i + k);

Compute SLP ið Þ ¼
Xp�1

k¼0

zLP i; 0; kð Þ; SHP ið Þ ¼
Xp�1

k¼0

zHP i; 0; kð Þ; g
For n =1,..., Lp � 1 do sequentially
For k =0,..., p � 1

set zLP i; n; kð Þ ¼
lVnpþkz iþ p=2; n� 1; kð Þ if i < 2J�j � p=2

;
lnpþkx̂

j�1;s�s* jð Þð Þ 2iþ kð Þ if i z 2J�j � p=2

8<
:

9=
;;

set zHP i; n; kð Þ ¼
hVnpþkz iþ p=2; n� 1; kð Þ if i < 2J�j � p=2

hnpþkx̂
j�1;s�s� jð Þð Þ 2iþkð Þ if i z 2J�j � p=2

8<
:

9=
;

Compute SLP ið Þ ¼ SLP ið Þ þ
Xp�1

k¼0

zLP i; n; kð Þ; SHP ið Þ

¼ SHP ið Þ þ
Xp�1

k¼0

zHP i; n; kð Þ;

Set x( j,s�s*( j))
LP (i) = SLP(i); x

( j,s�s*( j))
HP (i) = SHP(i)

3. Form the output vector (see Step 3 of Algorithm 2).

The general structure of Type 2 core DWT architecture is presented in
Fig. 4, where now the dashed lines that show connections between PEs of one
stage are valid. Except for p inputs and two outputs (later on called main
inputs andmain outputs), every PE now has additional p inputs and p outputs
(later on called intermediate inputs and outputs). The p intermediate outputs
of PEj,i+p/2 are connected to the p intermediate inputs of PEj,i, i=0,..., 2J�j�
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p/2 � 1. Other connections within Type 2 core DWT architecture are similar
to those within Type 1 core DWT architecture.

Functionalities of the blocks of Type 2 core DWT architecture are also
similar to those of Type 1 core DWT architecture. The difference is only in the
functionality of PEs which at every time unit n =0,..., Lp � 1 of every
operation step is to compute two inner products of a vector, say, x, on its p
either main or intermediate inputs with two vectors of predetermined coef-
ficients, say LP’ and HP’ of length p as well as to compute a point-by-point
product of xwith LP’. At the time unit n=0 the vector x is the one formed on
the main p inputs of the PE and at time units n =1,..., Lp � 1 it is the one
formed on the intermediate inputs of the PE. Results of both inner products
computed during one operation step are accumulated and passed to the two
main outputs of the PE while the results of the point-by-point products are
passed to the intermediate outputs of the PE. A possible structure of PEs for
Type 2 core DWT architecture for the case of p =2 is presented in Fig. 6.
Structures for arbitrary p and for p =1, p =2, and p = Lmax, can be easily
designed, similar to those in Fig. 5.

Similar to the case of Type 1 core DWT architecture, one can see that
Type 2 core DWT architecture implements Algorithm 3.2 with time delay and
time period characteristics given by Eqs. (10) and (11). The other character-
istics of these two architectures are also similar. In particular, it is very fast
and it may be implemented as a semisystolic architecture and with varying
level of parallelism giving opportunity of trade-off between time and hard-
ware complexities. The difference between these two architectures is that the
shift registers of data routing blocks of Type 1 core DWT architecture are
replaced with additional connections between PEs within Type 2 core DWT
architecture.

Figure 6 A possible realization of a PE for the Type 2 core DWT architecture;

p =2.
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C. Multicore DWT Architectures

The two types of core DWT architectures described above may be imple-
mented with a varying level of parallelism depending on the parameter p.
Further flexibility in the level of parallelism is achievedwithinmulticoreDWT
architectures by introducing a new parameter r =1,..., 2m�J. The multicore
DWTarchitecture is, in fact, obtained from corresponding (single) core DWT
architecture by expanding it r times. Thus, one can again consider Fig. 4 for
the general structure of multicore architectures but the numbers of PEs at
every pipeline stage should be multiplied by r.

The two types of multicore DWT architectures are r times faster than
the (single)core DWT architectures, that is, a linear speed-up with respect to
parameter r is achieved:

Td C1ð Þ ¼ 2m�J þ ŝ Jð Þ� �
L=p½ �=r ð12Þ

time units and the throughput or the time period is equal to

Tp C1ð Þ ¼ 2m�J L=p½ �=r ð13Þ
time units. Thus further speed-up and flexibility for trade-off between time
and hardware complexities is achieved within multicore DWT architectures.
Architectures are modular and regular and may be implemented as semi-
systolic arrays. As an example of the multicore DWT architecture for the case
of p=L=Lmax and r=2m�J one can consider theDWTflowgraph itself (see
Fig. 2), where nodes (rectangles) should be considered as PEs and small circles
as latches. This example of realization was reported in [29–30], where it was
referred to as fully parallel pipelined (FPP) architecture.

D. Variable Resolution DWT Architectures

The above-described architectures implement DWTs with the number of
octaves not exceeding a given number J. They may implement DWTs with
smaller than J number of octaves though with some loss in hardware uti-
lization. The variable resolution DWT architecture implements DWTs with
arbitrary number J’ of octaves whereas the efficiency of the architecture re-
mains approximately 100% whenever J’ is larger than or equal to a given
number Jmin.

The general structure of the variable resolution DWT architecture is
shown in Fig. 7a. It consists of a coreDWTarchitecture corresponding to Jmin

DWT octaves and an arbitrary serial DWT architecture, for, instance, an
RPA-based one [14–17], [19 20], [22]. The core DWT architecture implements
the first Jmin octaves of the J’-octave DWT. The low-pass results from the
out(0) of the core DWT architecture are passed to the serial DWT architec-
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ture. Then the serial DWT architecture implements the last J’ � Jmin octaves
of the J’-octave DWT. Since the core DWT architecture may be implemented
with a varying level of parallelism it can be balanced with the serial DWT
architecture in such away that approximately 100%of hardware utilization is
achieved whenever J’z Jmin.

To achieve the balancing between the two parts, the core DWT
architecture must implement a Jmin-octave N-point DWT with the same
throughput or faster as the serial architecture implements (J’ � Jmin)-octave
M-point DWT (M = (N/2Jmin)). Serial architectures found in the literature
implement an M-point DWT, either in 2M time units [14,15], or in M time
units [14–19], correspondingly employing either L or 2L basic units (BUs,
multiplier-adder pairs). They can be scaled down to contain an arbitrary
number KV 2L BUs so that an M-point DWT would be implemented in M
[2L/K] time units. Since the (Type 1 or Type 2) core DWT architecture im-
plements a Jmin-octaveN-point DWT inN [L/p] /2Jmin time units the balancing
condition becomes [L/p]V [2L/K], which will be satisfied if p = [K/2]. With
this condition the variable resolution DWT architecture will consist of totally
A BUs,

A ¼ 2p 2Jmin � 1
� �þ K ¼ K2Jmin ; if K is even

kþ 1ð Þ2Jmin � 1; if K is odd

�

and will implement a JV-octave N -point DWT in Td time units, where

Td ¼ N q2L=Ka =2Jmin

Figure 7 The variable resolution DWT architecture: (a) based on a single core
DWT architecture; (b) based on a multicore DWT architecture.
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A variable resolution DWT architecture based on a multicore DWT
architecture may also be constructed (see Fig. 7b), where now a data routing
block is inserted between the multicore and serial DWT architectures. The
functionality of the data routing block is to accept in parallel and to output
serially digits at the rate of r samples per operation step. The balancing
condition in this case is rp=qK/2a. The area–time characteristics are similar to
those for the single core based architectures.

IV. CONCLUSIONS AND A SUMMARY OF THE
PERFORMANCE

Table 1 presents a comparative performance of the proposed architectures
with some conventional architectures. In this table, as it is commonly ac-
cepted in the literature, the area of the architectures was counted as the
number of used multiplier-adder pairs which are the basic units in DWT

Table 1 Comparative Performance of Some DWT Architectures

Architecture

Area. A

(No. of BUs) Period, Tp AT 2
p

Architectures in [14], [15] L 2N 4N2L
Architectures in [14]–[19] 2L N 2N2L

lifting-based [11]
(specific filters)

c4 aðLÞNPJ
j¼1 2

1�j;
aðLÞ ¼ 1; 2

c4N2 or c 16N2

Architectures in [12],[24] JL N JN2L

Architectures of [27],[28]
X4Lor

J
j¼1½L=2j�2� N/2 cN2L

FPP DWT [29]–[30]

(pipelined)

2NL(1 � 1/2J) 1 (per vector) 2NL(1 � 1/2J)

LPP DWT [29]–[30] 2L (2J�1) N/2J N2L(2J � 1)/22J�1

c N2L/2J�1

Single core DWT
(Type 1 or 2)

2p (2J�1) N qL/pa/2J cN2p(L/p)2 /2J�1

Single core DWT, p=1 2 (2J � 1) NL/2J cN2L2/2J

Single core DWT

p=Lmax (L V Lmax)

2Lmax (2
J � 1) N/2J cN2Lmax/2

J�1

Multicore DWT 2pr (2J � 1) (N[L/p]) / (r2J) c(N2p[L/p]2) / (r2J�1)
Multicore DWT, r=4,

p=1

8 (2J � 1) NL/2J+2 cN2L2/2J+1

Multicore DWT r=4,
p=Lmax (L V Lmax)

2rLmax (2
J � 1) N/(r2J) c(N2Lmax) / (r2

J�1)

Variable resolution single core
DWT p z qK/2a, (K V 2L)

2p (2Jmin � 1)
+ Kc K2Jmin

Nq2L/Ka /2Jmin

c2NL(K2Jmin)
c N2L2

K2Jmin�2
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architectures. The time unit is counted as the time period of onemultiplication
since this is the critical pipeline stage. Characteristics of the DWT architec-
tures proposed in this chapter (the last seven rows in Table 1), are given for
arbitrary realization parameters Lmax, p, and r as well as for some examples of
parameter choices. It should be mentioned that the numbers of BUs used in
the proposed architectures assume the PE examples of Figs 5 and 6 (where PE
with p inputs contains 2p BUs). However, PEs could be further optimized to
involve a lower number of BUs.

As follows from Table 1, the proposed architectures, compared to the
conventional ones, demonstrate excellent time characteristics at moderate
area requirements. Advantages of the proposed architectures are best shown
when considering the performances with respect to AT2

p criterion, which is
commonly used to estimate performances of high-speed oriented architec-
tures. Architectures presented in the first two rows of Table 1 are either non-
pipelined or restricted (only two-stage) pipelined ones and they operate at
approximately 100% hardware utilization as is the case for our proposed
architectures. So their performance is ‘‘proportional’’ to the performance of
our architectures, which, are however, much more flexible in the level of
paralielism resulting in a wide range of time and area complexities.

The best performance was achieved with the lifting-based architecture
[11] (the third row of Table 1), which is specifically optimized for filters used in
the JPEG2000 image compression standard and gives slightly better than
‘‘proportional’’ performance as compared to the proposed architectures. It
should be noted, however that this architecture is also nonpipelined and
utilizes PEs extensively optimized for the specific set of filters (in particular,
the lifting scheme utilizes the correlation between the low- and high-pass fil-
ter coefficients). Actually, similar PEs may also be used in the proposed ar-
chitectures, resulting in less area requirements. The fourth row of Table 1
presents J-stage pipelined architectures with a poor hardware utilization and
consequently a poor performance. The fifth and sixth rows of Table 1 present
architectures from our previous publications, which are J-stage pipelined and
achieve 100% hardware utilization and good performance but do not allow a
flexible range of area and time complexities as the architectures proposed in
this chapter.
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4
Stride Permutation Access in
Interleaved Memory Systems

Jarmo Takala and Tuomas Järvinen
Tampere University of Technology, Tampere, Finland

Over the years several techniques have been proposed to increase data trans-
fer rates between memory and computational resources in processor archi-
tectures. This performance bottleneck can be avoided by allowing several
simultaneous accesses to the memory, which implies that the memory system
should have several ports. Multiported memories can be used but they are an
expensive solution especially when the number of ports is large.

A more area-efficient method is to use several independent memory
banks or modules, which can be accessed in parallel. The principal problem in
such memory systems is to distribute data over multiple modules in such a
way that parallel access is possible. However, there is no general purpose so-
lution to the distribution problem and several methods have been proposed,
which assume that parallel accesses are most likely to be made subsections of
data arrays.

This chapter focuses on parallel access with a specific access order, stride
permutation, which has several applications in the field of digital signal
processing (DSP). The organization of the remainder of this chapter is, in
Section I, we describe two principal types of interleaved memory systems:
time and space-multiplexed systems. Access schemes are discussed in Section
II. The principles of low-order interleaving, row rotation, and linear transfor-
mation are provided. Section III considers one specific access pattern, stride
access, which is one of the basic access patterns discussed in several research
papers. Requirements for supporting multiple strides in a general case is
given. In Section IV, stride permutation access is described with the aid of the
definition of stride permutation. Some of its properties are given and moti-
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vation for developing an access scheme for this access pattern is provided by
describing some of its applications. In Section V, a conflict-free access scheme
for stride permutation access is presented. The used assumptions are given,
the scheme is described in detail and validated through simulations, and an
implementation is presented. A summary is provided in Section VI.

I. INTERLEAVED MEMORY SYSTEMS

One well-established technique for increasing the data transfer rate between
memory and computational resources is memory interleaving where data is
distributed over multiple independent memory modules. In general, such
memory systems exploit either time or space multiplexing [1]. Time-multi-
plexed memories are used in vector machines to match the processor cycle
time and memory access time. Memory accesses will require t cycles to com-
plete, and this delay is hidden by sending t access requests to the memory
system over a single bus at consecutive cycles. Each request is sent into a
different memory module. If the operands lie in the same memory modules,
the next access can be performed after t cycles. The principal block diagram of
a time-multiplexed memory system can be seen in Fig. 1a. Space-multiplexed
memories are used in SIMD processing (i.e., several access requests are sent to
the memory system over multiple buses, thus the memory latency is not
hidden). The memory system requires an interconnection network to provide
a communication path from processing units to different memory modules.
The principal block diagram of a space-multiplexed memory system is illus-
trated in Fig. 1b.

In both the previous systems, the memory bandwidth is increased by
allowing several simultaneous memory accesses to be directed to different
memory modules. If Q accesses can be distributed over Q modules such that
all the modules are referenced, Q-fold speedup can be achieved. Unfortu-

Figure 1 Interleaved memory systems: (a) time-multiplexed and (b) space-
multiplexed. (Mk: memory module. PEk: processing element.)
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nately the operands to be accessed in parallel often lie in the same memory
module thus the parallel access can not be performed resulting in perform-
ance degradation. Such a situation is referred to as a conflict. The principal
problem in interleaved memory systems is to find a method to distribute data
over the memory modules in such a way that conflicts are avoided. For this
research problem, a traditional assumption has been that the parallel ac-
cesses are most likely to be made to subsections of matrices (e.g., rows, col-
umns, or diagonals). Several methods suggest that the number of memory
modules Q is larger than the processing elements P (i.e., number of simulta-
neous accesses). In this chapter, we consider only matched memory systems
where the number of memory modules equals the number of processing ele-
ments, P = Q.

While the memory interleaving has gained popularity in the super-
computer area, it has received a little consideration in embedded systems. In
general, studies in supercomputing are based on static stream models (i.e.,
assumption that the memory accesses are most likely to access a section of a
data array). However, in real-time embedded systems, the data streams are
affected by dynamic behaviors, (e.g., program execution, cache behavior, and
access scheduling). Such a characteristic is considered in approach, reported
in [2], where the memory organization is optimized before scheduling and
synthesis of data paths and controllers. The method minimizes the number of
memory modules, may use different word widths in each module, and results
in a memory organization containing parallel memory modules but those are
not necessarily interleaved. A design method for embedded systems based on
interleaved memories is reported in [3]. In principle, the objective is to im-
prove data access locality by applying several transformations to the given
application (e.g., for data layout and loops). Next the number of memory
modules is estimated and the application can be compiled to the resulting
architecture. In [4], a memory synthesis method for interleaved memories is
proposed. The method is targeted to application-specific processors, thus the
order of memory accesses is known before and the address generators can be
optimized for the given accesses.

II. ACCESS SCHEME

The method of distributing data over modules is referred to as an access
scheme, which is a function mapping addresses into storage locations. When
an N-element array is distributed over Qmemory modules, an access scheme
performs two mappings; it maps a dlog2Ne-bit address a = (an�1, an�2, . . . ,
a0)

T into a dlog2Qe-bit module address, m, and into a row address, r, defining
the storage location in the selected memory module.
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The most simple access scheme is to obtain row and module addresses
by extracting fields from the address a, i.e.,

r ¼ ba=Qc ð1Þ
m ¼ a mod Q ð2Þ

Such a scheme, low order interleaving, is illustrated in Fig. 2a. This scheme
performs well in linear access but the performance is degraded when other
types of access patterns are used [5].

In order to support a larger set of access patterns, the row rotation
(alternatively skewed) scheme was introduced in [6]. Formally, address
mapping can be described as follows

r ¼ ba=Qc ð3Þ
m ¼ ðaþ ba=NcÞmod Q ð4Þ

When Q = 2q, the module address is formed simply by extracting two log2
Q-bit fields from the address a and adding the fields together as shown in
Fig. 2b.

Often a prime number of memory modules is used since it typically
results in a larger set of conflict-free access patterns. The inflexibility of the
traditional row rotation schemes is illustrated by the following theorem [7].

Theorem 1. An N�Nmatrix, N=2n, cannot be stored into N memory
modules by any row rotation scheme such that all the rows, columns, and diag-
onals can be accessed conflict-free.

The prime number of modules implies that the address computation
needs a modulo operation of a number, which is not a power-of-two. Such an
operation requires large circuitry. Furthermore, prime number of memory
modules often results in low memory utilization, (i.e., not all the memory
locations are allocated) [8].

In [9], row rotation scheme was generalized as a periodic storage
scheme, which supports irregular and overlapped access patterns. A row ro-
tation scheme supporting power-of-two number ofmemorymodules was pro-
posed in [10], where the principal idea was to partition the scheme into several
sub schemes (i.e., a different sub scheme is applied to each part of the entire
data vector). This results in a need to support several schemes instead of a
single scheme.

In [11], a scheme was introduced where the address mapping is a linear
transformation based on modulo-2 arithmetic. This implies that the arith-
metic is realized with bit-wise exclusive-OR (XOR) operations, thus modulo
operations are not needed and carry delay of adders used in row rotation
scheme is avoided. Linear transformation schemes are often called as XOR

Copyright  2004 by Marcel Dekker, Inc. All Rights Reserved.



Figure 2 Examples of access schemes for a 32-element vector on a 4-module sys-

tem: (a) low order interleaving; (b) row rotation; and linear transformations accord-
ing to method (c) in [5] and (d) in [14].
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schemes. The address mappings in linear transformation can be expressed
with binary transformation matrices as

r ¼ Ka ð5Þ
m ¼ Ta ð6Þ

It should be noted that in this representation the least significant bit of a is in
the bottom of the vector. Matrices K and T are the row and module trans-
formation matrix, respectively.

Often K consists of ones in the main diagonal thus the row address r is
obtained simply by extracting the (n � q) most significant bits of the address
a, i.e.,

r ¼ ðan�1; an�2; . . . ; aqÞT ð7Þ
The module transformation matrix T is often expressed in the following

form

m ¼ Ta ¼ ðTHjTLÞa ð8Þ
where TL is the rightmost q � q square matrix in T and TH is the remaining
q � (n � q) matrix in T. An example of linear transformation is depicted in
Fig. 2c and the corresponding matrix T is

T ¼ 0 1 0 1 0
0 0 1 0 1

� �
ð9Þ

In general, linear transformations have two advantages over row
rotation schemes: the computation of module address is independent of the
number of memory modules and the scheme has flexibility in performing
address mappings [5]. These schemes have been analyzed in several papers
and the basic requirement for the data distribution was derived in [12] as
follows.

Theorem 2. An interleaved memory system has a unique storage loca-
tion for each addressed element iff the matrix TL has full rank.

In [13], it was suggested that T should have full rank and, in particular, the
main diagonal of T should consist of 1s. Missing 1s in the main diagonal may
result in poor performance for linear access. In addition, off-diagonal 1s
complicate the construction of address generators.

III. STRIDE ACCESS

One specific, often used access pattern is stride access where indices in
consecutive accesses differ by a constant S resulting in a sequence of addresses
(i, i+ S, i+ 2S, i + 3S, . . . , i+ (S - 1)S) for some starting address i. When
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such an access is performed in parallel, every Sth element of an array is
accessed concurrently. Stride accesses occur often in application programs,
especially in matrix computations (e.g., when accessing rows and columns of
a matrix). It is also often used in image processing where the image data is
accessed in the form of rectangles, grids, or chessboards. When a vector x=
(x0, x1,. . .)

T is accessed with stride S in a system containing Q memories and
processing elements, a single parallel access is referencing to the elements (xi,
xi+S, xi+2S,. . ., xi+(Q�1)S)

T.
In [14], a linear transformation for matched systems is reported, which

supports several power-of-two strides. The proposed module transformation
matrix forms a recursive pattern of repeating triangles. Such a matrix can be
generated with a recursive rule: each element is XOR of its neighbors to the
right and above. For example, when mapping a 32-element array over four
modules, the module transformation matrix T is the following:

T ¼ 1 1 1 1 1
1 0 1 0 1

� �
ð10Þ

The contents of the memories in this case are illustrated in Fig. 2d. The
proposed realization of the module address generator is based on matrix
multiplication as seen in the Fig. 2d. The implementation is complex,
especially if several array lengths need to be supported.

A linear transformation scheme supporting linear and single stride
accesses is reported in [13]. Conflict-free stride access can be performed for
any array length and any initial address. The implementation is extremely
simple requiring only bit-wise XOR operations and a shifter for address field
extraction. Support for several strides is considered in [5] and strides of form
a2s are supported. However, the number of memory modules needs to be
greater than the number of parallel accesses. In [15], linear transformations in
matched and unmatched systems were discussed.

In [5], stride accesses were investigated with the aid of transformation
periodicity referring to the minimum period of the sequence of module
numbers generated when consecutive addresses were used as the input
sequence. This results in the following requirement.

Theorem 3. In matched memory system, S = 2s stride access over Q =
2q memories is conflict-free iff the linear transformation matrix T is

a) periodic SQ and
b) (a + iS)T mod Q = (a + jS)T mod Q iff i mod Q = j mod Q.

Condition (a) guarantees that the access is conflict-free regardless of the
array length and initial address of the array. Condition (b) defines that each
memory module is referenced only once in Q parallel accesses. It can be
shown that under the previous constraints a conflict-free access scheme sup-
porting several strides cannot be designed [13].
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IV. STRIDE PERMUTATION ACCESS

Stride permutations can be described with the aid of matrix transpose; stride-
by-S permutation of an N-element vector can be performed by dividing the
vector into S-element subvectors, organizing them into S � (N/S) matrix
form, transposing the obtained matrix, and rearranging the result back to the
vector representation [16]. This interpretation implies that the stride S must
be a factor of vector length, i.e., N rem S = 0 where rem denotes remainder
after division. Another interpretation is to use indexing functions as used in
the following formal definition.

Definition 1 (Stride permutation). Let us assume a vector X = (x0,
x1, . . . , xN-1)

T. Stride-by-S permutation reorders X as vector Y, Y= (xfN,S(0)
,

xfN,S(1)
, . . . , xfN,S(N-1))

T, where the index function fN,S(i) is given as

fN;SðiÞ ¼ ð iS mod NÞ þ biS=Nc;
N rem S ¼ 0 i ¼ 0; 1; . . . ;N� 1 ð11Þ

where b � c is the floor function.

The stride permutation can also be expressed in matrix form as Y =
PN,SX where PN,S is stride-by-S permutation matrix of order N defined as

iff½PN;S�mn ¼
1; n ¼ ðmS mod NÞ þ bmS=Nc
0; otherwise

�

m; n ¼ 0; 1; . . . ;N� 1 ð12Þ
For example, the permutation matrix P8,2 associated to stride-by-2 per-
mutation of an 8-element vector is the following (blank entries represent
zeroes):

P8;2 ¼

1
1

1
1

1
1

1
1

0
BBBBBBBBBB@

1
CCCCCCCCCCA

In this chapter, we limit ourselves to practical cases where the stride and
array lengths are powers-of-two, N = 2n, S = 2s. Some properties of stride
permutations in such cases are in the following.
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Theorem 4. (Factorization of stride permutations). Let ab V N, then

PN;ab ¼ PN;aPN;b ¼ PN;bPN;a ð13Þ
The proof for the previous theorem can be found (e.g., from [17]).

Corollary 1 (Periodicity). Stride permutations are periodic with the
following properties.

(1) Period of P2n,2s is lcm(n,s)/s where lcm(a,b) denotes the least
common multiple of n and s. In other words,

I2n ¼ C
lcmðn;sÞ=s

l
P2n;2s ð14Þ

(2) Consecutive stride permutations always result in a stride permutation:

P2n;2aP2n;2b ¼ P2n;2ðaþbÞ mod n ð15Þ

Proof. Property (2) If a + b > n, the left side of Eq. (15) can be written
as P2n,2kn+(a+b) mod n = P2n,2knP2n2(a+b) mod n where k > 1 is an integer. By
substituting2n forS inEq.(11),wefindthatP2n,2n=P2n,1=I2n.Therefore,P2n,2kn

P2n,2kn = I2n and the result follows. Property (1) Let us assume that period of
P2n,2s is k, thus ks mod n = 0, i.e., ks is a multiple of n. This implies that k is
a multiple of n/s, i.e., k = mn/s. k has to be integer, thus s has to be a factor
of mn. The smallest number fulfilling the requirement is lcm(n,s) and,
therefore, k = lcm(n,s)/s.

Stride permutations have several practical applications. For example,
the previously discussed matrix transpose interpretation of stride permuta-
tion implies that anN�Nmatrix in a vector form can be transposed by reor-
dering the N2-element vector according to stride-by-N permutation, PN2 ;N :
Therefore, anN�Nmatrix stored into a memory array can be transposed by
accessing its elements in stride-by-N order.

The well-known perfect shuffle permutation is a special case of stride
permutation: stride-by-N/2 permutation of an N-point sequence, PN,N/2.
Perfect shuffle has close relation to several practical algorithms; e.g.,
Cooley-Tukey radix-2 fast Fourier transform (FFT) algorithm can be
scheduled into a form where the interconnections between the processing
columns of the signal flow graph are perfect shuffles. Radix-2 algorithms
can also be derived into a form where the topology is according to stride-by-
2 permutation as illustrated in Fig. 3a. In radix-4 algorithms, the inter-
connections can be stride-by-4 permutations as depicted in Fig. 3b. Fast
algorithms for other discrete trigonometric transforms with corresponding
topology exist, (e.g., for discrete sine, cosine, and Hartley transforms)
[18,19].
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Stride permutations can also be found in trellis coding and especially in
Viterbi algorithms used for decoding convolutional codes. Convolutional
encoders are often described with the aid of a shift register model (illustrated
in Fig. 4). The state of the encoderXt at a given time instant t is defined by the
contents of the shift register. In 1/n-rate codes, a single bit is fed into the shift
register at a time, thus there are two possible state transitions. This results in a
trellis diagram where the transition form a perfect shuffle as depicted in Fig.
4a. In 2/n-rate codes, two bits enter the shift register at a time, thus four
state transitions are possible, which results in a stride-by-4 permutation in
the interconnection as shown in Fig. 4b.

The previous examples show that stride permutations have practical
and important applications in the fields of digital signal processing and
telecommunications. Applications in these areas are often hard real-time
constrained and realized in systems with relatively low clock frequencies (e.g.,
for extending battery life). Therefore, parallel implementations are preferred,
which implies also the need to access several operands simultaneously to
increase the memory bandwidth.

Typical realization for all the previous applications are recursive, i.e.,
small kernels operate over a data array and the results of an iteration are used
as operands in the next iteration. In addition, read operations are performed
in different order than write operations; e.g., in the Viterbi decoding of code
illustrated in Fig. 4a, operands are read in perfect shuffle order (P16,8) and the

Figure 3 Signal flow graphs of FFT algorithms: (a) radix-2 and (b) radix-4 algo-

rithm. (Fk: k-point FFT.)
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results are stored in linear order (P16,1). In order to minimize memory con-
sumption, the results should be stored into the same memory locations where
the operands were obtained. However, after the first iteration the results will
be in perfect shuffle order PN,N/2, not in linear order, PN,1, as intended orig-
inally. According to Corollary 1, the next read access should be performed in
PN,N/2 order to compensate the previous additional reordering. Respectively,
the next read should be according to PN,N/8. Eventually we find that log2 N
different strides are needed (i.e., all the strides of power-of-two from 1 toN/2).

The need for an access scheme for stride permutations can be illustrated
with an example by referring to Fig. 2. In this example, a 32-element array (0,
1, . . . , 31) is distributed over four memory modules. The possible stride
permutation accesses in this case are P32,1, P32,2, P32,4, P32,8, and P32,16. The
low-order interleaving in Fig. 2a allows only conflict-free access for linear
access, P32,1, and all the others introduce conflicts. The row rotation and
linear transformation schemes in Fig. 2b and 2c, respectively, provide
conflict-free access for P32,1, P32,2, and P32,4. By noting that the elements 0,

Figure 4 Single-shift register convolutional encoders and allowed state transitions:
(a) 1/n-rate code and (b) 2/n-rate code. (xt: input at time instant t. Xt: state at time

instant t. yt: output at time instant t. D: bit register.)
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8, and 16 are stored into the same module, we find that accesses P32,8 and
P32,16 introduce conflicts. Especially the perfect shuffle access P32,16 is
difficult: the accesses should be performed in the following order: ([0, 16, 1,
17], [2, 18, 3, 19], [4, 20, 5, 21], [6, 22, 7, 23], [8, 24, 9, 25], [10, 26, 11, 27], [12,
28, 13, 29], [14, 30, 15, 31]). The linear transformation scheme in Fig. 2d
has conflict only in this access pattern.

In the previously reported access schemes, stride access has been defined
to access every kth element, while in stride permutation access the pattern
wraps into the beginning of the array. Especially in perfect shuffle accessPN,N/

2, elements with distances of 1 and N/2 need to be accessed, which is not
supported by stride access. This illustrates the principal difference between
the stride access and stride permutation access.

V. CONFLICT-FREE PARALLEL MEMORY ACCESS
FOR STRIDE PERMUTATION

The previous discussion shows that there is a need to perform several memory
accesses in parallel. In particular, it was found that when an N-element data
array is accessed according to a stride permutation, there will be a need to
support several strides. Often the array lengths are powers-of-two and in such
cases all the power-of-two strides from 1 to N/2 are needed. Furthermore, in
practical systems, the numbers of system elements (e.g., processing elements
or memory modules), is often a power-of-two.

In this section, we present a conflict-free parallel access scheme support-
ing various stride permutation accesses to a data array in matched memory
systems. The proposed method is based on linear transformations since they
suit systems better with a power-of-two number of memory modules.
Although Theorem 3 suggests that a conflict-free access scheme supporting
multiple strides cannot be designed, we may, however, relax the constraints.

A. Assumptions

In order to derive a stride permutation access scheme, we make the following
assumptions; (a) the array length is constant and power-of-two, N = 2n; (b)
the array is stored in n-word boundaries; (c) the number of memory modules
is a power-of-two,Q=2q; and (d) the strides in stride permutation access are
powers-of-two, S = 2s.

Assumption (a) implies that constraints on the initial address need to be
set resulting in assumption (b). Such a constraint has already been used in
several commercial DSP processors for performing circular addressing [20].
Assumption (c) is actually a practical assumption in digital systems. Assump-
tion (d) implies that the address mapping should produce a q-bit memory
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module address and an (n� q)-bit row address. All these assumptions may be
considered practical.

B. Access Scheme

We may develop an access scheme for stride permutation by using the
previously discussed principle for generating the row address; according to
Eq. (7), row address r = (rn-q-1, rn-q-2, . . . , r0)

T is obtained by extracting the
(n � q) most significant bits from the address:

ri ¼ aiþq; i ¼ 0; 1; . . . ; n� q� 1 ð16Þ

The previous assumptions define that transformation matrices will be specific
for each array length N and number of modules Q. However, the stride is no
longer a parameter for the matrix. Therefore, we introduce a new notation for
the linear transformation matrix: TN,Q, which defines clearly the array length
and number of modules.

The discussion in Section 2 related to the example in Fig. 2 implies that
the periodicity of the linear transformation scheme used in the example is not
large enough. This can be clearly seen by comparing the order of elements in
each row; the ordering repeats after the fourth column (i.e., the period is 16).
This is already reflected by the fact that the module address is generated by
using four bits from the address.

The periodicity can be increased by adding the number of bits affecting
the module address. This was already suggested in [15] for unmatched
memory systems but the additional bit fields are only copied, not included
into the bit-wise XOR operations. A special case of perfect shuffle access is
discussed in [21], where two elements are accessed from a two-memory
system, Q = 2. In such a case, the module address is defined by the parity
of the address, thus the transformationmatrixT2n;2 is a vector of n elements of
1s. This implies that the additional bits should be included into the bit-wise
XOR operations (i.e., each row in TN,Q should contain multiple 1s).

The use of diagonals were suggested in [13], thus the obvious solution
would be to add diagonals to T. Let us illustrate this approach with an
example of a 64-element array is distributed over four memory modules. In
such a case, the transformation matrix T64,4 would be the following:

T64;4 ¼ 1 0 1 0 1 0
0 1 0 1 0 1

� �
ð17Þ

This will result in the storage depicted in Fig. 5 and it is easy to see that all the
stride permutation accesses with power-of-two strides from 1 to 32 are
conflict-free. Performed computer simulations verified that the transforma-
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tion matrix can be designed by filling the matrix with q� q diagonals in cases
where n rem q = 0; transformation matrices Tk2q;2q can be obtained by con-
catenating k identity matrices Iq.

The next question is how thematrix is formedwhen n rem q p 0. For this
purpose, additional 1s need to be included into TN,Q. In [13], such 1s were
added as diagonals or antidiagonals off the main diagonals. In the approach
proposed in [12], the main diagonals may contain 0s thus the additional 1s are
spread over the matrix to fulfil the full rank requirement. This results in the
fact that rows may contain large number of ones, thus the number of bits
needed in XOR-operations is increased. The effect is even worse in the
approach used in [14], where the rows may contain different numbers of 1s;
one row is full of 1s, another contains only a single 1. This is extremely un-
comfortable from the implementation point of view when several array
lengths need to be supported since the transformation matrix will be different
for different array lengths. In such a case, the number of bits that have XOR
together varies from 1 to n.

The previous discussion implies that the additional bits should be
concentrated to the right part of TN,Q (i.e., to AL in the original matrix T in
Eq.(8).) Such an arrangement eases the configuration of the address gener-
ation when the array length changes. If the 1s are in matrix AH, the address
bits ai, which need to be included into XOR operations may change and

Figure 5 Access scheme for 64-element array on a 4-module system corresponding
to the transformation matrix in Eq. (17): (a) module address generation and (b)
contents of memory modules.
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require multiplexing. Now, if all the configurations are performed for the
least significant bits of a, these are always in the same position independent of
the array length.

Therefore, in cases where n rem q p 0, we fill the transformation matrix
with diagonals starting from the right lower corner and, if there is not enough
space available in the left of the matrix, a partial diagonal is placed. The
remaining partial diagonal wraps back to the right and filling begins from the
rightmost column of TN,Q in a row, which is above the row where the last
1 in the leftmost column was placed. If the diagonal will hit the top row,
it will be continued from the bottom row in the preceding column. A total of
(n + q � gcd( q, n mod q)) ones will be used in T2n;2q , where gcd(�) is the
greatest common denominator. The entire access scheme can be formalized
as follows:

mi ¼ P
ln;qðiÞ

k¼0
aðjqþiÞ mod n; i ¼ 0; 1; . . . ; q� 1

ln;qðiÞ ¼ bðnþ q� gcdðq; n mod qÞ � i� 1Þ=qc ð18Þ
where P denotes the bit-wise XOR operation. The row address is obtained
according to Eq. (16).

This approach provides a solution to the example shown in Fig. 2 and
the transformation matrix T32,4 is

T32;4 ¼ 0 1 0 1 1
1 0 1 0 1

� �
ð19Þ

The contents of the memory modules stored according to T32,4 is illus-
trated in Fig. 6. Once again it can be seen that the stride permutation access is
supported for all the strides of power-of-two from 1 to 16.

Figure 6 Access scheme for 32-element array on a 4-module system corresponding
to the transformation matrix in Eq. (19): (a) module address generation and (b)
contents of memory modules.
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C. Validation

The presented access scheme was verified with computer simulations by
generating storage organizations and verifying that each access is conflict-
free. For a given array lengthN=2n, the number of memory modulesQ was
varied to cover all the possible numbers of power-of-two (i.e.,Q=20,21, . . . . ,
2n-1). For each parameter pair (N,Q), all the stride permutation accesses were
performedwith strides covering all the possible powers-of-two: S=20,21, . . . ,
2n-1 and each parallel access was verified to be conflict-free. The power-of-two
array lengths were iterated from 21 to 220. The extensive simulation did not
find any conflicts and, therefore, we can state that the presented access scheme
provides conflict-free parallel stride permutation access in practical cases (i.e.,
array lengths up to 220), for all the possible power-of-two strides on matched
interleaved memory systems where the number of memory modules is a
power-of-two.

D. Address Generation

Before going into implementations, we may investigate the structure TN,Q

when N is varied. In practical systems, Q is constant; the number of memory
modules is only a design time parameter. For example, module transforma-
tion matrices for 16- and 64-module systems are illustrated in Fig. 7 and a few
observations can be made from the structure of these matrices.

First, the matrices contain two principal diagonal structures: concate-
nated diagonals from the bottom-right corner to left and additional off-
diagonals. The concatenated diagonals imply that the address a should be
divided into q-bit fields and bit-wise XOR is performed between these fields.
Since the concatenated diagonals in matrix for a shorter array is included in a
matrix for longer arrays, several array lengths can be supported easily;
shorter arrays can be supported by feeding 0s to the most significant address
bits.

The second observation is that the off-diagonals affect at most the q� 1
least significant bits of address a. In fact, Eq. (18) dictates that the number of
1s in off-diagonals is q � gcd( q, n mod q). In addition, the structure of off-
diagonals depends on the relation between n and q but, since, in practice, q is
constant, the structure depends on array length. However, there are only q
different structures; the off-diagonal structure has periodic behavior when the
array length is increasing. In Fig. 7, one complete period is shown andT8192,64

would have the same off-diagonal structure as T128,64.
The structure of off-diagonals implies that several array lengths can be

supported if a predetermined control word configures additional hardware to
perform the functionality of the off-diagonals. Such a configuration is
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actually simple by noting that the form of off-diagonals in different array
lengths indicates rotation of least significant bits in a. The number of bits
rotated is dependent on the relation between n and q.

According to the previous observations, the computation of the module
address m can be interpreted as follows. First, the address a is divided into q-
bit fields, F i, starting from the least significant bit of a, i.e., F i = (aiq+q-1,
aiq+q-2, . . . , aiq+1, aiq)

T. If e = n mod q > 0, the most significant bits e of a
exceeding the q-bit block border are extracted as a bit vector L, i.e.,

Figure 7 Transformation matrices for module address generation in (a) 16- and (b)
64-module systems.
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L ¼ ðan�1; an�2; . . . ; an�eÞT ð20Þ
Next, a q-bit field X = (xq-1, xq-2, . . . , x0) is formed by extracting the

( q � gcd(q,e)) least significant bits of the address a and placing zeroes to the
most significant bits;

X ¼ ð0; . . . ; 0; aq�gcdðq;eÞ � 1; . . . ; a1; a0ÞT ð21Þ
The bit vectorX is rotated g=(n - qmod q) bits to the left to obtain a bit

vector O = (oq�1, . . . , o0)
T, i.e.,

O ¼ rotðn�qÞ mod qðXÞ ð22Þ
where rotg(�) denotes g-bit left rotation (circular shift) of the given bit vector,
i.e.,

rotgððak�1; ak�2; . . . ; a0ÞTÞ ¼
ðak�g�1; ak�g�2; . . . ; a0; ak�1; . . . ; ak�gþ1; ak�gÞT ð23Þ

Finally the module address m is obtained by performing bit-wise XOR
operation between the vectors Fi, X, and L:

mi ¼
oiPðPtn=qb�1

j¼0 ajqþiÞ; i z e

liPoiPðPtn=qb�1
j¼0 ajqþiÞ; i < e

(
ð24Þ

A principal block diagram of the module address generation according
to the previous interpretation is illustrated in Fig. 8. This block diagram
contains a rotation unit shown in Fig. 9, which computes the vector O. This
unit obtains q � 1 least significant bits of a as an input and the gcd(q,e) � 1
most significant bits of input are zeroed, thus the q� gcd(q,e) least significant
bits are passed through to form a q-bit vector X = (0, . . . , 0, aq-gcd(q,e)�1,
aq�gcd(q,e)�2, . . . , a1, a0)

T. These bits can be selected with the aid of a bit
vector f= ( fg�2, . . . , f1, f0))

T, where the q� gcd( q,e) least significant bits are
1s and the gcd( q,e) � 1 most significant bits are 0s. A bit-wise AND
operation is performed with the input vector and the obtained vector X is
then rotated g bits to the left and the q-bit vector O is obtained.

The main advantage of this scheme can be seen from the block diagram
in Fig. 8. In the address generation, each individual XOR is performed on, at
most, (bn/qc + 2) bit lines while in other schemes, e.g., in [14], some XORs
require all the n address bits. which complicates implementation when several
array lengths need to be supported.

The support for different array lengths in the implementation requires
only a single predetermined control word defining the bit selection and ro-
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tation. This control word needs to be modified only when the length of the
array to be accessed is changed. There is no need to store the complete
transformation matrix as in some proposed realizations, e.g., in [14].

VI. SUMMARY

In this chapter, we briefly reviewed the principal access schemes for inter-
leaved memory systems for increasing the data transfer rate between memory

Figure 8 Principal block diagram of module address generation. (Rctrl: rotation
control. FSctrl: field selection control.)
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and computational resources. Such schemes were studied extensively in the
supercomputer area but only a few studies considered the technique of em-
bedded systems. An introduction to stride access was given and it was found
that a conflict-free access scheme supporting several strides is not possible
without including initial constraints. We defined stride permutation access
and gave examples of its applications. It was shown that stride permutations
are found in several DSP applications where small kernels are iterated, thus a
special addressing scheme supporting the access pattern provides advantage
especially when long arrays are used.

In this chapter, a conflict-free stride permutation access scheme for
matched memory systems was presented. It was assumed that 2n data
elements are distributed over 2q independent memory modules. The used
assumptions dictate that the array length is constant and the initial address is
zero. In this case, all the possible power-of-two stride permutation accesses
are conflict-free, which was verified with computer simulations. The module
address generation is simple and requires only bit-wise XOR operations.

It was shown that several array lengths can be supported by including a
q-bit left shifter into the module address generator. In this case, all additional
operations are performed on the q � 1 least significant bits of the address
independent on the array length. The presented scheme can support different
initial addresses but arrays need to be stored into n-word boundaries. How-
ever, this is not a strict requirement and such a restriction is already present in
some addressing modes in commercial DSP processors. This access scheme
can be used in application-specific array processors where operands need to

Figure 9 Principal block diagram of rotation unit in module address generation.
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be reordered according to stride permutation. In such cases, multiported
memories or double buffering can be avoided when an interleaved memory
system is used.
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I. INTRODUCTION

Modern embedded systems, like those for media and signal processing, often
have a heterogeneous system architecture, consisting of components in the
range from fully programmable processor cores to dedicated hardware com-
ponents. Increasingly, these components are integrated as a system-on-chip
exploiting task-level parallelism in applications. Due to the high degree of
programmability that is usually provided by such embedded systems, they
typically allow for targeting a whole range of applications with varying de-
mands. All of the above characteristics greatly complicate the design of these
embedded systems, making it more and more important to have good tools
available for exploring different design choices at an early stage in the design.

In the context of the Artemis project (ARchitectures and meThods for
Embedded MedIa Systems) [20], we are developing an architecture work-
bench that provides modeling and simulation methods and tools for the ef-
ficient design space exploration of heterogeneous embedded multimedia
systems. This architecture workbench should allow for rapid performance
evaluation of different architecture designs, application to architecture map-
pings, and hardware/software partitionings and it should do so at multiple
levels of abstraction and for a wide range of multimedia applications.
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In this chapter, our focus is on a prototype modeling and simulation
environment called Sesame [19]. According to the Artemis modeling method-
ology [20], this environment uses separate application models and architec-
ture models, and an explicit mapping step to map an application model onto
an architecture model. This mapping is realized by means of trace-driven co-
simulation, where the execution of the application model generates applica-
tion events that represent the application workload imposed on the archi-
tecture. Application models consist of communicating parallel processes,
thereby expressing the task-level parallelism available in the applications. By
mapping the event traces generated by different application model processes
onto the various system architecture components, this task-level parallelism is
exploited at the architectural level. In addition, the underlying architecture
may also exploit intra-task parallelism inside a single trace. This chapter
presents the newly added techniques Sesame applies to model architectures
that exploit such intra-task parallelism.Moreover, using a case study with the
QRdecomposition algorithm as application, we demonstrate the effectiveness
of our modeling methodology.

The remainder of this chapter is organized as follows. Section II briefly
describes related work in the area of modeling and simulation of complex em-
bedded systems. Section III gives a general overview of the Sesame modeling
and simulation environment, while in Section IV we present a more detailed
description of Sesame’s synchronization layer. In Sections V and VI, we
describe the methods applied to model intra-task parallelism and discuss their
impact on Sesame’s synchronization and architecture model layers. Section
VII presents some validation results we obtained from the case study with the
QR decomposition application. Finally, Section VIII discusses several open
issues and Section IX concludes the chapter.

II. RELATED WORK

Various research groups are active in the field of modeling and simulating
heterogeneous embedded systems, of which some are academic efforts (e.g.,
[6,12,10]) and others commercial [9] and industrial efforts (e.g., [5]). Many
efforts in this field co-simulate the software parts, which are mapped onto a
programmable processor, with the hardware components and their interac-
tions together in one simulation. Because an explicit distinction is made be-
tween software and hardware simulation, it must be knownwhich application
components will be performed in software and which ones in hardware before
a system model is built. This significantly complicates the performance
evaluation of different hardware/software partitioning schemes since a new
system model may be required for the assessment of each partitioning.
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A number of exploration environments, such as VCC [1], Polis [4] and
eArchitect [2], facilitatemore flexible system-level design space exploration by
providing support for mapping a behavioral application specification to an
architecture specification.Within theArtemis project, however, we try to push
the separation of modeling application behavior and modeling architectural
constraints at the system level to even greater extents. To this end, we apply
trace-driven co-simulation of application and architecture models. As was
shown in [19], this leads to efficient exploration of different design alternatives
while also yielding a high degree of reusability. The work of [16] also used a
trace-driven approach, but this was done to extract communication behavior
for studying on-chip communication architectures. Rather than using the
traces as input to an architecture simulator, their traces were analyzed stat-
ically. In addition, a traditional hardware/software co-simulation stage is
required in order to generate the traces.

Finally, the Archer project [23] shows a lot of similarities with our work.
This is due to the fact that both our work and Archer are spin-offs from the
Spade project [18]. A major difference is, however, that Archer follows an
entirely different application-to-architecture mapping approach. Instead of
using event-traces, it maps symbolic programs, which are derived from the
application model, onto architecture model comonents.

III. THE SESAME MODELING AND SIMULATION
ENVIRONMENT

The Sesame modeling and simulation environment [19], which builds upon
the ground-laying work of the Spade framework [18], facilitates the perfor-
mance analysis of embedded systems architectures in a way that directly
reflects the so-called Y-chart design approach [14]. In Y-chart based design, a
designer studies the target applications, makes some initial calculations, and
proposes an architecture. The performance of this architecture is then
quantitatively evaluated and compared against alternative architectures.
For such performance analysis, each application is mapped onto the archi-
tecture under investigation and the performance of each application–archi-
tecture combination is evaluated. Subsequently, the resulting performance
numbers may inspire the designer to improve the architecture, restructure the
application(s), or modify the mapping of the application(s).

In accordance to the Y-chart approach, Sesame recognizes separate
application and architecture models within a system simulation. An applica-
tionmodel describes the functional behavior of an application, including both
computation and communication behavior. The architecture model defines
architecture resources and captures their performance constraints. Essential
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in this modeling methodology is that an application model is independent
from architectural specifics, assumptions on hardware/software partitioning,
and timing characteristics. As a result, a single application model can be used
to exercise different hardware/software partitionings and can bemapped onto
a range of architecture models, possibly representing different system archi-
tectures or simply modeling the same system architecture at various levels of
abstraction. After mapping, an application model is co-simulated with an
architecture model allowing for evaluation of the system performance of a
particular application, mapping, and underlying architecture.

For application modeling, Sesame uses the Kahn process network
(KPN) model of computation [13] in which parallel processes—implemented
in a high-level language—communicate with each other via unbounded
FIFO channels. In the Kahn paradigm, reading from channels is done in a
blocking manner, while writing is nonblocking. The computational behavior
of an application is captured by instrumenting the code of each Kahn process
with annotations which describe the application’s computational actions. The
reading from or writing to Kahn channels represents the communication
behavior of a process within the application model. By executing the Kahn
model, each process records its actions in order to generate a trace of appli-
cation events, which is necessary for driving an architecture model. Initially,
the application events typically are coarse-grained, such as execute(DCT) or
read(pixel-block, channel_id), and they may be refined as the underlying
architecture models are refined.We note that in the remainder of this chapter,
computational application events will be referred to as execute events.

To execute Kahn application models, and thereby generating the ap-
plication events that represent the workload imposed on the architecture,
Sesame features a process network execution engine supporting Kahn
semantics. This execution engine runs the Kahn processes as separate threads
using the Pthreads package. For now, there is a limitation that the Kahn
processes need to be written in C++. In the near future, C and Java support
will be added. The structure of the application models (i.e., which processes
are used in the model and how they are connected to each other) is described
in a language called Y-chartModeling Language (YML) [8]. This is an XML-
based language that is similar to Ptolemy’s MoML [17] but is slightly less
generic in the sense that YML only needs to support a few simulation do-
mains. As a consequence, YML only supports a subset of MoML’s features.
However, YML provides one additional feature in comparison to MoML as
it contains built-in scripting support. This allows for loop-like constructs,
mapping and connectivity functions, and so on, which facilitate the descrip-
tion of large and complex models.

The performance of an architecture can be evaluated by simulating the
performance consequences of the incoming execute and communication
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events from an application model. This requires an explicit mapping of the
processes and channels of a Kahn application model onto the components of
the architecture model. The generated trace of application events from a
specific Kahn process is therefore routed toward a specific component inside
the architecture model by using a trace-event queue. This is illustrated in
Fig. 1. Since the application-model execution engine and the architecture
simulator run as separate processes,* these trace-event queues are currently
implemented via Unix named-pipes. Alternative implementations of the
queues, such as using shared memory, are envisioned in the future. If two
or more Kahn processes are mapped onto a single architecture component
(e.g., when several application tasks are mapped onto a microprocessor),
then the events from the different trace-event queues need to be scheduled.
The next section explains how this is done.

An architecture model solely accounts for architectural (performance)
constraints and therefore does not need to model functional behavior. This is
possible because the functional behavior is already captured in the application
model, which subsequently drives the architecture simulation. An architec-
ture model is constructed from generic building blocks provided by a library.

Figure 1 Mapping a Kahn application model onto an architecture model.

*Running the application-model execution engine as a separate process also makes it easy to

analyze the application model in isolation. This can be beneficial as it allows for investigation of

the upper bounds of the performance andmay lead to early recognition of bottlenecks within the

application itself.
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This library contains template performance models for processing cores,
communication media (like busses) and different types of memory. These
template models can be freely extended and adapted. All architecture models
in Sesame are implemented using a small but powerful discrete-event simu-
lation language, called Pearl, which provides easy construction of the models
and fast simulation [19]. The structure of architecture models—specifying
which building blocks are used from the library and the way they are con-
nected—is also described in YML.

IV. THE SYNCHRONIZATION LAYER

When multiple Kahn application model processes are mapped onto a single
architecture model component, the event traces need to be scheduled. For
this purpose, Sesame provides an intermediate synchronization layer, which
is illustrated in Fig. 2. This layer guarantees deadlock-free scheduling of the
application events and forms the application and architecture dependent
structure that connects the architecture-independent application model with
the application-independent architecture model. The synchronization layer,

Figure 2 The three layers within Sesame: the application model layer, the archi-
tecture model layer, and the synchronization layer which interfaces between appli-
cation and architecture models.
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which can be automatically generated from the YML description of an
application model, consists of virtual processor components and FIFO
buffers for communication between the virtual processors. There is a one-
to-one relationship between the Kahn processes in the application model and
the virtual processors in the synchronization layer. This is also true for the
Kahn channels and the FIFO channels in the synchronization layer, except
for the fact that the buffers of the latter channels are limited in size. Their size
is parameterized and dependent on the modeled architecture. A virtual
processor reads in an application trace from a Kahn process and dispatches
the events to a processing component in the architecture model. The map-
ping of a virtual processor onto a processing component in the architecture
model is parameterized and thus freely adjustable. Currently, this virtual
processor to architectural processor mapping is specified in the YML de-
scription of the architecture model. We are working, however, toward an
approach in which this mapping is specified in a separate YML mapping
description.

As can be seen from Fig. 2, multiple virtual processors can be mapped
onto a single processor in the architecture model. In this scheme, execute
events are directly dispatched by a virtual processor to the processor model.
The latter subsequently schedules the events originating from different virtual
processors according to some given policy (FCFS by default) and models
their timing consequences. For communication events, however, the appro-
priate buffer at the synchronization layer is first consulted to check whether or
not a communication is safe to take place so that no deadlock can occur. Only
if it is found to be safe (i.e., for read events the data should be available and for
write events there should be room in the target buffer), then communication
events may be dispatched to the processor component in the architecture
model. As long as a communication event cannot be dispatched, the virtual
processor blocks. This is possible because the synchronization layer is, like
the architecture model, implemented in the Pearl simulation language and
executes in the same simulation-time domain as the architecture model. As a
consequence, the synchronization layer accounts for synchronization delays
of communicating application processes mapped onto the underlying archi-
tecture, while the architecture model accounts for the computational latencies
and the pure communication latencies (e.g., bus arbitration and transfer la-
tencies). Each time a virtual processor dispatches an application event (either
computation or communication) to a processor in the architecture model, it
is blocked in simulated time until the event’s simulation at the architecture
level has finished.

The idea of concentrating synchronization behavior in a synchroniza-
tion layer and separating it from (the latencies caused by) data transmission
behavior is somewhat similar to the synchronization graph concept of [21].

Copyright  2004 by Marcel Dekker, Inc. All Rights Reserved.



However, our synchronization layer seems to be more flexible since it is
dynamically scheduled and behaves like a ‘‘Kahn’’ process network in which
the FIFO buffers are bounded. As a consequence of the dynamic scheduling
of the synchronization layer and the architecture model (remember that they
both are executed in the same discrete-event simulation domain), dynamics at
the architecture level such as contention can easily be taken into account
within the synchronization layer.

V. MODELING INTRA-TASK PARALLELISM

Initially, Sesame only modeled the architecture’s processing cores as black
boxes which sequentially simulate the timing consequences of the incoming
(linear) trace of application events. However, the architecture under inves-
tigation may also want to exploit intra-task parallelism which is present in a
single event trace from aKahn application process. For example, a processing
element may have multiple communication units that perform independent
reads and writes in parallel, or it may have multiple execution units for
concurrently processing independent computations. To support the modeling
and simulation of such intra-task parallelism, we extended Sesame’s model
library with component models that allow for refining the virtual processors
in the synchronization layer and the processor components within the archi-
tecture models.

Figure 3 shows how a virtual processor in the synchronization layer, like
the ones depicted in Fig. 2, is refined. The virtual processor component now

Figure 3 Refining a virtual processor in the synchronization layer.
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acts as the front-end to a range of (virtual) functional units. These functional
units consist of read, write, and execution units that can operate in parallel.
The new virtual processor component has a symbolic-instruction window of
parameterizable size in which it stores incoming application events and with
which it analyzes them for parallel execution. According to the event type
(execute event type, channel from/to which is read/written, etc.), the virtual
processor dispatches incoming events to the appropriate functional unit. The
number of entries in the symbolic-instruction window limits the number of
outstanding (dispatched but not finished) events in the virtual processor. A
window size of one implies sequential handling of the application events. In
Fig. 3, the arrows from the functional units back to the virtual processor refer
to the acknowledgments the functional units transmit whenever the simu-
lation of an event has finished.

The read and write units are connected via buffers* with other virtual
processors (as discussed in Section IV), in order to establish the modeling of
synchronizations between Kahn application processes in accordance to their
mapping onto the underlying architecture. Thus, the read and write units do
not dispatch a communication event to the architecture model unless it is safe
to do so (i.e., the event cannot cause a deadlock). In addition, the execution
and write units do not dispatch their incoming application events to the
architecture model before all dependencies for these events are resolved. We
will elaborate on this issue in the next section, which discusses the internal
synchronizations within a refined virtual processor component.

Figure 4 illustrates how the refined virtual processors can be mapped
onto a processor component in the architecture model, which has been
refined as well. The read units from the virtual processors that are mapped
onto the same processor at the architecture level, are connected to the read
units of the processor in the architecture model. Likewise, the virtual exe-
cution units are connected to the execution units of the processor architec-
ture model, and so on. The functional units in the architecture model may
again be black-box models which sequentially account for the timing con-
sequences of the incoming application events dispatched by the synchroni-
zation layer. Alternatively, they may also be further refined. For example, a
refined execution unit may model internally pipelined execution of execute
events. Furthermore, in the example of Fig. 4 all communication units in
the architecture model are connected to a bus model. In reality, commu-
nication units within the architecture model may have different connec-
tions with each other (directly across a bus or via shared memory, point-to-
point, etc.).

* Per read or write unit, there may be multiple buffers connected.
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VI. DATAFLOW FOR FUNCTIONAL UNIT
SYNCHRONIZATION

To properlymodel parallel execution of application events from a single event
trace, the dependencies between the events should be taken into account. For
example, an execution unit in the synchronization layer may only dispatch an
execute event to the execution unit in the architecture model when the read
events it depends on have been simulated and delivered the required input for
the execute. Likewise, a write event may be dispatched to the architecture
model when it is safe to do so and when the read/execute events it depends on
have been simulated.

Consider the example in Fig. 5a in which a virtual processor is shown
for a processor architecture with a pipeline of two read units, one execution
unit, and two write units. In this example, the trace generating Kahn process
reads/writes from/to two channels, which are mapped onto separate read and
write units. The execute events in this example are dependent on the two
preceding read events, while the two write events are dependent on the
preceding execute event. In Fig. 5b the resulting (intra-task) pipeline parallel-
ism is illustrated where communication is overlapped with computation.

Figure 4 Mapping multiple-refined virtual processors onto a refined processor ar-

chitecture model.

Copyright  2004 by Marcel Dekker, Inc. All Rights Reserved.



The synchronization between the functional units in order to resolve
dependencies is done via buffered token channels. In Fig. 5a, for example, the
read units have a token channel to the execution unit. A read unit sends a
token along its token channel whenever a read event is finished (i.e., has been
simulated at architecture level). The size of the token channel’s buffer de-
termines how far the read unit can run ahead, or in other words, the amount of
internal buffering a read unit has. If the token channel’s buffer is full, then the
read unit stalls until the execution unit has removed one or more tokens from
the channel’s buffer. During such a stall, a read unit cannot handle new read
events.

In our example, the execution unit reads the tokens generated by the
read units. Associated with each execute event type, there are two bitmaps.
The first describes on which token channels the particular execute event is
dependent (i.e., which read units produce data needed by the execute event).

Figure 5 Dataflow-based synchronization to resolve dependencies between func-
tional units in a virtual processor. The architecture shown in (a) exploits pipeline

parallelism, which is illustrated in (b).
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The second bitmap describes which functional units are dependent on the
execute event. So, it relates to output token channels.

The execution unit must have received a token from all of the required
token channels, implying that dependencies have been resolved, before the
execute event may be dispatched to the architecture model. Likewise, after an
execute event has been simulated at the architecture level, the execution unit
sends tokens along the required output token channels (as specified by the
second bitmap). As a consequence, the write units, which are waiting for
tokens from the execution unit, are enabled to dispatch dependent write
events to the architecture model. To summarize, synchronizations due to
dependencies between functional units in the synchronization layer are
handled using the dataflow principle with token transmissions between the
functional units. To be more specific, this dataflow mechanism adheres to
integer-controlled dataflow [7]. Of course, the placement of token channels
between functional units and their buffer sizes are freely adjustable. For the
time being, however, we slightly restricted the choice of functional units as we
currently assume that there can be only one execution unit per processor. In
Section VIII, we come back to this issue and indicate how our modeling
concepts may be extended to support multiple execution units per processor.

To give an impression of what the implemented models look like, Fig. 6
shows the Pearl code for a read unit from the synchronization layer (the
variable declarations have been omitted). As Pearl is an object-based lan-
guage and architecture components are modeled by objects, the code shown
in Fig. 6 embodies the class of read unit objects.

Figure 6 Pearl code for a read unit object from the synchronization layer.
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In its main loop, the read unit object waits for (using the block ()

primitive) either one of two methods called: sig_room or read. The
sig_room method is called whenever there is room for a new token in the
token buffer that is associated with the read unit.Multiple calls to this method
are queued by the Pearl runtime system. The read method is called when a
read event needs to be processed by the unit. This method first checks if there
is room in the token buffer by waiting until there is at least one call to the
sig_roommethod queued up. It then synchronously (!) calls the getmethod
in the input buffer object that is connected to the read unit. This means that
the read unit will block in virtual time until it receives an acknowledgment
from the input buffer object, signaling the end of the data retrieval. Hereafter,
the execution unit is signaled by means of an asynchronous method call (!!) to
inform it on the availability of the data (i.e., a token is sent). Finally, the
virtual processor is signaled that the read unit is ready to receive a new read
request. A more thorough explanation of the code is beyond the scope of this
chapter. Therefore, the interested reader is referred to [19] for a more detailed
discussion of a Pearl code sample.

In our implementation, it is straightforward to change the policy
defining when token buffers can be read from or written to. More specifically,
a functional unit can wait until all of its required tokens are available before it
retrieves the tokens from the buffers or it can retrieve a required token
whenever it becomes available. In the latter case, the producer of the token
may be unblocked earlier and thereby allowing it to proceed with processing
new application events.

We note that the synchronizations between functional units are only
performed in the synchronization layer and are not needed within the under-
lying architecture model. This is because once application events are dis-
patched from the synchronization layer to the architecture model, they are
safe to simulate (i.e., they cannot cause deadlocks and their dependencies have
been resolved). This scheme nicely fits our approach, in which all synchroni-
zation overheads are accounted for in the synchronization layer.

VII. A CASE STUDY: QR DECOMPOSITION

To validate the previously presented concepts on how to model the exploi-
tation of intra-task parallelism, we performed a case study using a set of
application model instances of the well-understood QR decomposition al-
gorithm. These application models were the result of the Compaan work
[15] done at Leiden University. The Compaan tool is able to automatically
generate Kahn application models from nested-loop programs written in
Matlab, which in our case is the QR decomposition algorithm. In addition, it
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can perform code transformations such as loop unrolling to increase task-
level parallelism inside applications [22].

The Kahn application models generated by the Compaan tool are
suitable for a direct implementation in hardware on an FPGA. For this
purpose, application models are translated into VHDL [11]. This gives us the
unique opportunity to validate our abstract architecture models against an
actual FPGA implementation. In the VHDL implementation of a Kahn ap-
plication model, pre-defined node components are connected in a network.
This is done according to the connections between the processes in the ap-
plication model. The node components, which represent the functional be-
havior of the Kahn processes in the application model, are implemented in a
pipelined fashion that is similar to the one shown in Fig. 5. Conceptually, this
means that each node component contains a number of read and write units
and a single execution unit. So, besides exploiting task-level parallelism by the
VHDL network of node components, each node component also exploits
intra-task parallelism using its internally pipelined architecture.

Regarding the QR application, we studied five different instances of its
application model generated by Compaan. In each instance, the loops in the
code were unrolled a different number of times. This loop unrolling creates
newKahn processes, thereby increasing the task-level parallelism available in
the application [22]. In Figure 7a, theMatlab code for the QR decomposition
algorithm—which is based on the iterative Givens Rotations method—is
shown. Figure 7b depicts the Kahn applicationmodel Compaan generates for
thisMatlab code when loop unrolling is turned off. Note that the Kahnmodel
does contain processes for input and output routines (e.g., X_in), which were
omitted in Figure 7a. Additional information on the Kahn application model
of the QR decomposition algorithm can be found in [11]. For each of the
application model instances, we described the structure of the application
model in YML to be able to run the model with Sesame’s application-model
execution engine. As a sidenote, it is worth mentioning that the generation of
these YML descriptions of the application model instances is performed fully
automatically by means of a visitor tool.

Our Sesame architecture model, onto which the QR application model
instances are mapped, is similar to the VHDL implementation of a Kahn
application model in the sense that it also consists of processor components
connected in a network with a topology identical to that of the application
model. Each processor component is modeled with our refined (virtual)
processor model (see Section V) and uses the pipelined architecture as shown
in Figure 5a. Between processor components in the architecture model there
are point-to-point FIFO channels.

Recall that the structure of Sesame’s architecture models is described in
YML. Because of YML’s built-in scripting support, this allowed us to
construct a generic reusable template for the refined (virtual) processor
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model. The processor network in the architecture model was thus obtained by
repetitively instantiating this template with possibly different parameters and
linking these processor instances together according to the topology of the
application model. This topology information was derived from our YML
description of the Kahn application model.

A. Experiments

Our first experiments were performed using a Sesame synchronization layer
and architecture model with the following characteristics. The size of the
FIFO buffers is 256 elements, which guarantees deadlock-free execution of
the studied applicationmodel instances [11]. The functional units of processor
components as well as the FIFObuffers aremodeled as black boxes. Read and
write operations to the FIFO buffers take three cycles each as specified in [11],
while all execute events* are handled in a single cycle. The latter reflects the
performance of a fully utilized internal execution pipeline with a single-cycle

Figure 7 In (a), the Matlab code for the QR decomposition is shown, while (b)
depicts the Compaan–generated Kahn process network without loop unrolling.

* In the QR application model, the execute events consist of vectorize and rotate operations.
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throughput.Moreover, the token channels between the functional units at the
synchronization layer have single-entry buffers. This means that the read and
execution units cannot produce more than one result before consumption
(i.e., they have only limited internal buffering).

In Figure 8a, the performance of the FPGA implementation (modeled
in VHDL) of the five QR application instances—with loop unroll factors of
one to five—is shown. The figure also shows the performance estimates of our
black-box Sesame model for these application model instances. These results

Figure 8 Validation results of our Sesame models for the QR decomposition

application against the results from an actual FPGA implementation. The graph in
(a) shows the (estimated) performance for five application instances with different
loop unroll factors. The table in (b) shows the differences (in %) between estimates
from our models and the FPGA numbers.
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are referred to as the basemodel in Fig. 8. As shown in Fig. 8b, the black-box
model yields an average error of 36% and a worst-case error of 40% with
respect to the performance results of the FPGA implementation. The Sesame
(base) performance estimates show the correct trend behavior but are con-
sistently more pessimistic than those for the FPGA.

According to [11], the FPGA buffer implementation is based around a
dual-ported RAM, where our base model uses single-ported buffers. This
explains why the results of the base model are pessimistic. As a next step, we
‘‘opened up’’ the black-box FIFO model and adapted it to include dual-
ported behavior. To this end, we modeled three variants of dual-ported FIFO
buffers. Two of these variants represent implementation extremes, while the
third one reflected the performance behavior of the actual FPGA implemen-
tation. The results of these three dual-ported FIFO models are also shown in
Fig. 8. The curve labeled perfect dual-ported shows the performance estimates
when modeling the FIFO buffers as being perfectly dual-ported. The latter
means that read and write operations on a buffer can be performed entirely in
parallel, even when the buffer is empty. So, when receiving a read request in
the empty buffer state, the read is blocked until a write request comes in, after
which the incoming (written) data is immediately forwarded to the reading
party. Consequently, both read and write latencies are entirely overlapped.

At the other extreme, the curve labeled slow dual-ported in Fig. 8 shows
the Sesame performance estimates when modeling dual-ported FIFO buffers
that are entirely sequential at the empty state. So, when receiving a read
request in the empty buffer state, the read is blocked until a write has occurred
and finished writing its data into the buffer (in our model, this takes three
cycles).

Finally, the curve labeled refined dual-ported, shows the Sesame results
when incorporating more detailed knowledge of the actual FPGA buffer
implementation into our model. Details of the FPGA implementation in-
dicated that a monolithic three-cycle read/write latency for the FIFO buffers
does not reflect the actual behavior. In reality, the throughput at both sides of
a FIFO buffer is one operation per three cycles, while the read latency turned
out to be only one cycle. In our refined dual-ported model we have therefore
split the three cycle delay into three one-cycle delays and placed them at the
appropriate places according to specification of the FPGA buffer implemen-
tation. This means that we refined the timing within our model while keeping
its abstract structure intact.

Three important conclusions can be drawn from the results in Fig. 8.
First, the results reconfirm the modeling flexibility of Sesame. This is be-
cause we were able to model the three dual-ported buffer designs by changing
less than ten lines in the code of the base model. Second, the results from the
‘‘perfect’’ and ‘‘slow’’models—representing the two FIFO buffer implemen-
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tation extremes—immediately indicate that the average accuracy of Sesame’s
performance estimates must lie in the range of�21% and+32%. In fact, our
‘‘refined’’ model demonstrates how close our performance estimates can
approximate reality since it yields an average error of only 3.5% and a worst
case error of 4.7%. Knowing that Sesame targets performance evaluation in
an early design stage and therefore models at a high level of abstraction, these
accuracy numbers are very promising. Third, our results indicate that the
studied hardware implementations of the QR decomposition application are
highly sensitive to different FIFO buffer designs. Since the performance
estimates of the ‘‘perfect’’ buffer model show a speedup of 68% over the
results of the ‘‘slow’’ buffer model, the handling of the empty state in the
FIFO buffer seems to be an important design issue.

Since Sesame targets performance evaluation in an early design stage
(where the design space that needs to be explored typically is very large) the
required modeling effort and the simulation speed of Sesame is worth
noting. The architecture models in this case study, including the compo-
nents in the synchronization layer, consist of less than 400 lines of Pearl
code. It takes Sesame about 16 seconds on a 333MHz Sun Ultra 10 to
perform the architecture simulation for all five application model instances
in one batch.

VIII. DISCUSSION

So far, we have assumed that in the set of functional units of a refined (virtual)
processor there is only one execution unit. Processing cores, however, may
have multiple execution units that can perform computations in parallel. We
are currently investigating whether or not our dataflow approach is sufficient
for dealing with dependencies between execution units. In any case, for such
inter-execution dependencies we need to extend our dataflow scheme such
that tokens are typed, as in the tagged-token model [3]. With typed tokens, an
execution unit can differentiate between the production of results from dif-
ferent execute event types. To support such typed tokens, the bitmaps need to
be extended from single-bit values to multiple-bit values to be able to specify
which token types are required for an application event.

Moreover, we currently use static bitmaps per execute event type. We
found, however, that this causes problems when, for example, execute events
of the same type require data from different read units in different stages of the
application model’s execution. This can be solved by dynamically adding the
bitmap information to the execute events in the traces.

We also intend to investigate whether (aspects from) thework of [23] can
be integrated into Sesame since their mapping approach facilitates easier
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exposure and specification of intra-task parallelism. This could make the use
of explicit bitmaps for execute events entirely redundant.

IX. CONCLUSIONS

In this chapter, we presented the techniques applied by the Sesame modeling
and simulation environment to model intra-task parallelism exploited at the
architecture level for task-parallel applications. To this end, our processor
models were refined to the level of functional units that can operate in parallel
and are synchronized to resolve dependencies by means of a dataflow mech-
anism. Using a case study, in which we were able to compare our simulation
results with the results from an actual FPGA implementation, we demon-
strated that our modeling methodology is flexible and shows good accuracy.
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6
Energy Estimation and Optimization
for Piecewise Regular Processor
Arrays

Frank Hannig and Jürgen Teich
University of Paderborn, Paderborn, Germany

I. INTRODUCTION

Today, low power has become an important design criterion due to all the
mobile phones and portable computers. These devices must handle increas-
ingly computational-intensive algorithms like video processing (MPEG4) or
other digital signal processing tasks (3G), but they are limited in their power
budget. The next generation of ULSI chips will allow implementation arrays
of hundreds of 32-bit microprocessors and more on a single die. Thus, par-
allelization techniques and compilers will be of utmost importance in order
to map computational-intensive algorithms efficiently to these processor
arrays.

In this context, this chapter deals with the specific problem of esti-
mating the power consumption when mapping a certain class of loop-like
computations called piecewise regular algorithms [28] onto a dedicated
processor array. This work may be classified to the area of loop paralleliza-
tion in the polytope model [10,19].

The rest of the chapter is structured as follows. In Section II, a brief
survey of previous work on low power is presented. Section III introduces the
class of algorithms we are dealing with. In Section IV, we examine the power
consumption of functional units in dependence on their input activity. After-
wards, an energy estimation methodology (when mapping regular algorithms
to processor arrays) is described. The methodology and some results are
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discussed in Section V. In Section VI, a methodology to find energy optimal
space-time mappings is proposed. Future extensions and concluding remarks
are presented in Section VII.

II. RELATED WORK

A lot of previous work in the area of low power design during high-level syn-
thesis has dealt with the issue of power estimation. Various methodologies for
generating accurate models for datapath power consumption were presented.

In general these power estimation techniques can be divided into
simulative and non-simulative categories. The non-simulative method in
[20] estimated the power consumption from an information theoretical point
of view. In [18], the authors described a strategy called a dual bit type (DBT)
model where not only the random activity of the least significant bits but
also the correlated activity of the most significant bits is taken into account.
The method in [12] proposed a modeling approach for functional units that
are typically used in digital signal processing systems, such as adders, multi-
pliers, and delay elements. Thereby, a 4-dimensional table-based [11] macro
model was used by the authors.

The work of Chandrakasan et al. [3] focuses on transformations at the
algorithmic and the architectural level to obtain low power designs. In [2],
transformations for nested-loop programs are discussed. In [4,22,23,25], sev-
eral scheduling and binding techniques for low power are studied. Some
energy estimation techniques for processor arrays with hierarchical memory
structures are outlined in [8].

In [7] the authors present an approach for energy/power estimation of
partioned processor arrays. They focused on finding energy optimal tile sizes
and clusterings.

However, to the best of our knowledge, our work presented here is the
first that considers the relationship between space-time mappings of com-
putation intensive algorithms and power/energy consumption.

This work is a continuation of the works in [14] and [15]. Here, we
specify a power–consumption model used in the methodology described
afterwards for energy estimation and optimization of piecewise regular pro-
cessor arrays.

III. NOTATION AND BACKGROUND

A. Algorithms

The class of algorithms we are dealing with in this chapter is a class of
recurrence equations defined as follows.
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Definition III.1 (Piecewise regular algorithm). A piecewise regular
algorithm contains N quantified equations

S1½I�; . . . ;Si½I�; . . . ;SN½I�
Each equation Si[I] is of the form

xi½I� ¼ fið. . . ; xj½I� dji�; . . .Þ
where Ia Ii p Zn, xi[I] are indexed variables, fi are arbitrary functions, dji a
Zn are constant data dependence vectors and ‘‘. . .’’ denote similar arguments.
The domains are called index spaces and, in our case, are defined as follows.

Definition III.2 (Linearly bounded lattice). A linearly bounded lattice
denotes an index space of the form.

I ¼ fIaZn j I ¼ Mjþ c ^ Ajzbg
where j a Zl, M a Zn� l, c a Zn, A a Zm� l and b a Zm. {j a Zl | Aj z b}
defines an integral convex polyhedron or in case of boundedness a polytope in
Zl. This set is affinely mapped onto iteration vectors I using an affine trans-
formation (I = Mj + c).

Throughout this chapter, we assume that the matrix M is square and
invertible. Then, each vector j is uniquely mapped to an index point I.
Furthermore, we require that the index space is bounded.

For illustration purposes throughout this chapter, the following exam-
ple is used.

Example III.1. The well-known matrix multiplication algorithm com-
putes the product C = A � B of two matrices A a RN1�N3 and B a RN3�N2 and
is defined as follows.

cij ¼
XN3

k¼1

aikbkj b1ViVN1 ^ 1VjVN2:

A corresponding piecewise regular algorithm is given by:

Input operations

a½i; 0; k�paik 1V i VN1 ^ 1V k VN3

b½0; j; k�pbkj 1V j VN2 ^ 1V k VN3

c½i; j; 0�p0 1V i VN1 ^ 1V j VN2

Computations

a½i; j; k�pa½i; j� 1; k� bði j kÞT ¼ I a I
b½i; j; k�pb½i� 1; j; k� bði j kÞT ¼ I a I
z½i; j; k�pa½i; j; k� � b½i; j; k� bði j kÞT ¼ I a I
c½i; j; k�pc½i; j; k� 1� þ z½i; j; k� bði j kÞT ¼ I a I
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Output operations

cij pc½i; j;N3� 1V i VN1 ^ 1V j VN2

The data dependence vectors are

daa ¼ ð0 1 0ÞT; dbb ¼ ð1 0 0ÞT; dcc ¼ ð0 0 1ÞT;
daz ¼ ð0 0 0ÞT; dbz ¼ ð0 0 0ÞT; dzc ¼ ð0 0 0ÞT

The index space is given by

I ¼ I ¼
i
j
k

0
@

1
A a Z3 j

1 0 0
�1 0 0
0 1 0
0 �1 0
0 0 1
0 0 �1

0
BBBBBB@

1
CCCCCCA

I z

1
�N1

1
�N2

1
�N3

0
BBBBBB@

1
CCCCCCA

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

Computations of piecewise regular algorithms may be represented by
a dependence graph (DG). The dependence graph of the algorithm of
Example III.1 is shown in Fig. 1a. The dependence graph expresses the
partial order between the operations. Each variable of the algorithm is
represented at every index point I a I by one node. The edges correspond
to the data dependencies of the algorithm. They are regular throughout the
algorithm (i.e., a[i,j,k] is directly dependent on a[i,j�1,k]). The dependence
graph specifies implicitly all legal execution orderings of operations: if there
is a directed path in the dependence graph from one node a[J] to a node
z[K] where J, K a I , then the computation of a[J] must precede the
computation of z[K].

Henceforth, and without loss of generality,* we assume that all indexed
variables are embedded in a common index space I . Then, the corresponding
dependence graphs can be represented in a reduced form.

Definition III.3 (Reduced dependence graph). A reduced dependence
graph (RDG) G = (V, E, D) of dimension n is a network where V is a set of
nodes and E p V � V is a set of edges. To each edge e = (vi, vj) there is as-
sociated a dependence vector dij a D o Zn.

The RDG of the matrix multiplication algorithm is shown in Fig. 1a. Each
node v in the graph corresponds to one equation in the section computations
of the algorithm.

*All methods described can also be applied to each quantification individually.
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B. Space-Time Mapping

Linear transformations, as in Eq. (1), are used as space-time mappings [16,21]
in order to assign a processor index p a Zn�1 (space) and a sequencing index
t a Z (time) to index vectors I a I .

p
t

� �
¼ TI ¼ Q

E

� �
I ð1Þ

In Eq. (1), Q a Z(n�1)�n and E a Z1�n. The main reasons for using linear
allocation and scheduling functions is that the data flow between PEs is local
and regular, which is essential for low-power VLSI implementations. The
interpretation of such a linear transformation is as follows: The set of
operations defined at index points E � I = const are scheduled at the same

Figure 1 In (a), an index space and the reduced dependence graph is shown. Some
possible mappings are depicted in (b).
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time step. The index space of allocated processing elements (processor space)
is denoted by Q and is given by the set Q = {p | p = Q � I ^ I a I}. This set
can also be obtained by choosing a projection of the dependence graph
along a vector u a Zn, i.e., any coprime* vector u satisfying Q � u = 0 [16]
describes the allocation equivalently.

Allocation and scheduling must satisfy that no data dependencies in
the DG are violated. This is ensured by the following causality constraint,
E � dij z 0 b(vi, vj) a E. A sufficient condition for guaranteeing that no two
or more index points are assigned to a processing element at the same time
step is given by

rank
Q
E

� �
¼ n ð2Þ

Using the projection vector u satisfying Q � u = 0, this condition is equiva-
lent to E � u p 0 [28].

Definition III.4 (Iteration interval). [30]. The iteration interval p of
an allocated and scheduled piecewise regular algorithm is the number of time
instances between the evaluation of two successive instances of a variable
within one processing element.

Definition III.5 (Block pipelining period). [17]. The block pipelining
period of an allocated and scheduled piecewise regular algorithm is the time
interval between the initiations of two successive problem instances and is
denoted by b.

Let us consider the matrix multiplication algorithm introduced in Example
III.1 as a problem instance. The whole matrices A and B have to be read into
the processor array before the next pair can be read, the time between these
input operations is the block pipelining period b. Let E be the schedule
vector. Then, the block pipelining period b may be computed as follows.

b ¼ max
I1a I

fE � I1g � min
I2a I

fE � I2g ¼ max
I1;I2a I

fEðI1 � I2Þg

IV. POWER MODELING AND ENERGY ESTIMATION

In digital CMOS circuits, the dominant source of power consumption is
switching power [26]. The average power consumed by a CMOS gate can be
computed using the following equation,

* A vector x is said to be coprime if the absolute value of the greatest value of the greatest

common divisor of its elements is one.
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Psw ¼ 1

2
CLV

2
ddNf

where CL is the gate output load capacitance, Vdd is the supply voltage, f is
the clock frequency, and N is the average or expected number of output
transitions per clock cycle.

Due to the influence of the switching activity on the power consump-
tion, our main idea is to exploit the fact that power consumption is dras-
tically reduced when some inputs of a functional unit remain unchanged for
n > 1 clock cycles.

Here, we want to discuss the impact of the space-time mapping on the
power and energy consumption respectively of the resulting processor array.
Our approach identifies regions with decreased switching activity of func-
tional units’ input operands and takes these power savings into account. An
estimation methodology is presented in the following. This methodology
estimates for a given piecewise regular algorithm and a space-time mapping
T the average power consumption of the entire array.

Briefly described, this methodology can be subdivided into two
hierarchical estimation steps,

PE-level power estimation, and
array-level power estimation.

A. PE-Level Power Estimation

A diagram of the internal structure of a typical processor element is shown
in Fig. 2. It consists of a core where all the functional units are located, a
controller, and some delay registers. In Section V, we quantify typical per-

Figure 2 Schematically internal structure of one processor element.
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centages of power consumption for the functional units PFU, the control
structures PCtrl, and the registers PRg, and these parts’ proportion of the
overall power consumption of one processing element. The power consump-
tion of one PE can be approximated as follows.

PFUðE; uÞ ¼ PFUðuÞ þ PCtrlðEÞ þ PRgðEÞ
For characterization of the functional units (adders, multipliers, etc), stan-
dard register-transfer level power estimation tools from Synopsys [27] are
used.

In Table 1, the average power consumption of some 16-bit functional
units are listed (A = ripple-carry adder, B = carry-save array multiplier,
C = carry-save array multiplier with two pipeline stages, and D = Wallace-
tree multiplier with three pipeline stages). Each functional unit has two
input operands. The value of one operand is assumed to be constant for n
clock cycles; the other can change randomly in every clock cycle. These
values are shown in Fig. 3a for the 16-bit ripple-carry adder and Fig. 3b for
the multipliers, respectively. The curves are derived by regression, where the
function is of type P = a0 + a1e

�n + a2ne
�n + a3n

2e�n. The regression is
good enough to have less than 2% error. Since we are only interested in
integer multiples of the clock cycle for n, the derived models may be stored
in a table without too much effort.

It can be seen from these figures that the power consumption of a
functional unit depends heavily on the number of cycles of one input operand
stays constant. A good estimation methodology, therefore, should exploit
this observation for obtaining accurate estimations and from studying the
influence of space-time mappings on the resulting power consumption.

Table 1 Average Power Consumption of Different Functional Units

n Pavg,A Pavg,B Pavg,C Pavg,D

1 26.97 AW 204.2 AW 212.0 AW 319.6 AW
2 22.33 AW 155.4 AW 164.0 AW 225.0 AW
3 18.82 AW 138.6 AW 145.6 AW 190.1 AW
4 16.99 AW 129.6 AW 137.3 AW 175.1 AW
5 16.31 AW 125.4 AW 133.8 AW 164.3 AW
6 15.68 AW 120.5 AW 128.4 AW 159.4 AW
7 15.48 AW 119.5 AW 125.2 AW 153.3 AW
8 15.29 AW 116.8 AW 124.4 AW 151.6 AW
9 15.09 AW 116.3 AW 123.7 AW 147.8 AW
10 14.89 AW 115.5 AW 122.7 AW 145.8 AW
l0 8.49 AW — — —
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Figure 3 Average power consumption of some 16-bit functional units when one
operand is constant for n clock cycles and the other can change randomly in every

clock cycle.
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B. Array-Level Power Estimation

Based on the class of piecewise regular algorithms, we want to estimate the
power consumption for a given space-time mapping T=(Q E)T. It is obvious
that the cost (number of processor elements) and the latency is influenced
by the space-time mapping. In earlier work [13], we described how to deter-
mine the cost and the latency as a measure of performance. Here, we briefly
outline the main ideas. If we assume that processor arrays are resource-
dominant, we are able to approximate the cost as being proportional to the
processor count. Ehrhart polynomials [6,9] may be evaluated to count the
number of points (processor elements, #PE) in the projected index space.

The latency is determined by solving a minimization problem, which
may be formulated as a mixed-integer linear program (MILP) [29,30]. Also,
modified low power scheduling and binding techniques as in [23,25] can be
applied to compute a suited schedule.

Here, we discuss the impact of the space-time mapping on the power
and energy consumption, respectively, of the resulting processor array. Our
approach identifies regions with decreased switching activity of functional
units’ input operands and take these power savings into account. An
estimation algorithm is presented on the following pages. The algorithm
estimates for a given RDG G, an index space I , a space-time mapping T, the
number of processor elements #PE, and the block pipelining period b, the
average power consumption Parray of the entire array. The processor count
#PE and the block pipelining period b of the array may be computed as
described earlier in this chapter.

Once the average power consumption Parray of the entire processor
array is estimated, the energy consumption (per problem instance) is
computed as follows,

E ¼ b � Parray

POWER ESTIMATION

1 IN: RDG G, I , T =
Q

E

� �
, #PE, and b

2 OUT: Parray
3 BEGIN

4 PPE p 0

5 FOR all nodes v a G DO

6 Pv,1 p lookUpPower(v,1)

7 PPE p PPE + Pv,1

8 ENDFOR

9 Parray p #PE � PPE
10 FOR all edges e a G DO

11 d is dependence vector of edge e

12 node v p source(e)
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13 node w p target(e)

14 IF (v = w) THEN

15 IF (Sv is propagation equation) THEN

16 IF (Q � d = 0) THEN

17 FOR all adjacent edges eV of v

18 d V is dependence vector of edge eV
19 IF (d V = 0) THEN

20 w p target(eV)
21 Pw,1 p lookUpPower(w, 1)

22 Pw,b p lookUpPower(w, b)
23 Parray p Parray - #PE � (Pw,1 - Pw,b)

24 ENDIF

25 ENDFOR

26 ENDIF

27 ELSE

28 (k, m) p getOperandFixedCycles(T, v)

29 Pw,1 p lookUpPower(w, 1)

30 Pw,k p lookUpPower(w, k)

31 Parray p Parray - m � (Pw,1 - Pw,k)

32 ENDIF

33 ENDIF

34 ENDFOR

35 END

In our experiments, we assumed that the iteration period k is one and that
each RDG node is mapped onto a dedicated resource (no resource sharing
of functional units). Our estimation algorithm can be subdivided into two
phases. In the first phase, the worst case power consumption is computed
(i.e., when the switching activity of all functional units’ input operands is
highest). Therefore, the power consumption PPE of one processor element is
determined by summation of the power consumption Pvi,1

of all of its FUs

PPE ¼
X
bviaV

Pvi;1

The one in the term Pvi1
denotes that operands can change in every

clock cycle.
Subsequently, the power consumption of the entire array is obtained

by extrapolation of this value. In the second phase of the algorithm, array
regions with lower switching activity are detected. Therefore, the whole
reduced dependence graph is traversed to examine self-loops* (see line 14).

*A self-loop is an edge where source and target node are the same.
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These self-loops correspond to inputs of a processor element. If these inputs
remain unchanged for more than one period, the switching activity is
decreased and consequently also the power. It remains to be determined
how many clock cycle inputs are constant and how many processor elements
are affected. Two cases can be differentiated.

1. Propagation equations mapped onto itself. Propagation equations
are used only to distribute data from one processor to another.
Due to the regularity and locality of the considered processor
arrays, they occur very commonly. If such a propagation equa-
tion is mapped onto itself (Q � d = 0, see line 16) no data trans-
port is needed (i.e., the data remains in one processor element
unchanged for b cycles until the next problem instance is fed into
the array). Thus, the switching activity of all adjacent nodes vi
(functional units) in the same processor element is reduced.
Therefore, the estimation value of the average power consump-
tion is corrected (decreased) by Pvi1

-Pvi,b. As a propagation
equation has global influence, the activity is reduced in every
processor element (#PE).

2. Other self-loops. These are the remaining inputs which may be
constant for k clock cycles. Let the number of processor elements
with these constant inputs be denoted m. Let I in1

be the input index
space of variable ini. Transforming this index space by Q and
counting the number of points in the transformed space, gives m.

m ¼j fI a Zn�1 j I ¼ Q � Iin1 ^ Iin1a I in1g j
This counting problem is similar to the earlier problem described
and can be obtained by a geometrical approach [5]. The number of
integral points can be determined by consideration if the given
projection vector u (Q � u= 0) enters a facet of the index space I in1

and how thick this facet must be until two points projected onto
each other. Algebraically, the thickness is derived from the value of
the inner product of the normal vector of a facet and the projection
vector. The union of thick facets can be a nonconvex polytope. The
number of integral points inside this (non-)convex polytope is de-
termined by the use of Ehrhart polynomials [6].

Once k and m are determined (see line 28, function get

OperandFixedCycles), the overall estimated power consump-
tion value can be improved by subtracting m� (Pin1,1

�Pin1,k
).

In the next section the overall algorithm is explained and quantitative
results are discussed.
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V. EXPERIMENTS

Reconsider the introductory Example III.1. As an allocation, we chose a 16-
bit ripple-carry adder for the addition and a three-stage pipelined Wallace-
tree multiplier for the multiplication. The input operations a and b were
mapped each to one resource of type input. The execution times of these
operations are zero. This is equivalent to a multicast without delay to a set
of processors. Furthermore, let u = (1 0 0)T be the chosen projection vector.
Then, after scheduling and cost calculus, we obtain the schedule vector E =
(1 0 1) and as cost #PE= N2 �N3. Now, with this information we are able to
estimate the power consumption by applying the proposed algorithm. First,
the worst-case power consumption is determined (i.e., the switching activity
of functional units’ when input operands change each cycle). Second, in the
main part of the algorithm, two types of equations with lower input activity
are detected and the overall power consumption is refined.

The processor array for a projection in direction u= (1 0 0)T is shown
in Fig. 4. Due to this projection, the variable b is mapped onto itself. From
this it follows tht one operand of the multiplication remains unchanged for
some time. At the beginning of a computation, the whole matrix B is input
simultaneously to the array, whereas the matrix A is fed sequentially row by
row from the left side into the array. Since the matrix A has N1 rows, one
operand of the multiplier is fixed for b= N1 clock cycles, which significantly
reduces the power consumption in the multipliers by 45% (see Table 1). On
account of the design regularity the power savings can multiplied by #PE
(line 23 of the algorithm). The second point where less power is consumed is
the constant input variable c. One input of the adders in the lower row of the

Figure 4 Processor array for u= (1 0 0)T, N1 = 4, N2 = 5, and N3 = 2.

Copyright  2004 by Marcel Dekker, Inc. All Rights Reserved.



processor array is permanently zero. These partial regions with reduced
power consumption in the array are determined by the function getOper-

andFixedCycles. In addition to the time (k=l) where one input
remains unchanged, the number m=N2 of processors with reduced switch-
ing activity is returned.

In Table 2, the power consumption for different projection vectors is
shown, where for illustration purposes, the upper boundaries of the index
space are set to N1 = 4, N2 = 5, and N3 = 2. In the table, Psim is the exact
value obtained by simulation of the entire array. The worst case extrap-
olation (line 4–9 in the algorithm) is denoted by Pext. The power consump-
tion of our estimation algorithm is labeled with Pest. Where the simple
extrapolation method has errors up to 81%, our approach is very accurate
with errors less than 5%.

Furthermore, the energy values per matrix multiplication in the table
show the significant influence of the chosen space-timing mapping. Different
mappings can lead to energy consumptions that can differ up to a factor of
two.

A. Quantification of the Power Consumption Inside One
Processor Element

In this subsection, we quantify the percentages of power consumption for
the functional units PFU, the control structures PCtrl, and the registers PRg.
In Table 3, the proportions of these parts to the overall power consump-
tion of one processing element for the three unit vector mappings are
depicted. For the matrix multiplication algorithm the major part of the
power consumption is caused by the functional units, this part is around
90%. Where the power consumption of the registers is only 4.1–6.6% of
the total power consumption of one processor element. It should be re-
called that the iteration interval is only one and no resource sharing is used
since at each index point only one multiplication and one addition has to
be performed.

Table 2 Average Power and Energy Consumption of Different Mappings

u
Psim

[AW]
Pext

[AW]
Errext
[%]

Pest

[AW]
Errest
[%]

Esim

[pJ]
Eest

[pJ]

(1 0 0)T 2020 3466 71.6 1928 �4.6 80.8 77.1
(0 1 0)T 1530 2773 81.2 1456 �4.8 76.5 72.8
(0 0 1)T 7260 6931 �4.5 6931 �4.5 145.2 138.6
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The second example is a piecewise regular algorithm for LU decom-
position. In Fig. 5, a piecewise regular processor array for the LU decom-
position is schematically shown. This array can be subdivided into three
pieces, where the Parts A and B also change their functionality over the time.

Since the Part B and C divisions are performed the percentage of
functional unit of the overall power consumption is greater than for the Part
A. The percentages for the different parts of the LU decomposition array are
listed in Table 3.

Figure 5 Sketch of piecewise regular processor array for LU decomposition.

Table 3 Percentages of Power Consumption for Functional Units, Control Struc-

tures, and Registers

Algorithm u PFU[%] PCtrl[%] PRg[%]

Matrix multiplication (1 0 0)T 87.8 5.7 6.6
Matrix multiplication (0 1 0)T 86.6 7.1 6.3

Matrix multiplication (0 0 1)T 91.8 4.1 4.1
LU decomposition (A) (1 0 0)T 78.5 9.2 12.3
LU decomposition (B, C) (1 0 0)T 88.0 6.1 5.9

Copyright  2004 by Marcel Dekker, Inc. All Rights Reserved.



VI. DETERMINATION OF ENERGY-OPTIMAL SPACE-TIME
MAPPINGS

In the previous section we showed that different space-time mappings have a
great influence on energy consumption. In this section we want to make use
of this fact to determine energy-optimal space-time mappings.

The algorithm proposed in Section IV.B determines for an arbitrary
given space-time mapping T ¼ Q

E

� �
, Ta Zn�n the power consumption. Since

T can equivalently described by a schedule vector E a Z1�n and a projection
vector ua Znwe have 2n parameters of possible space-time mappings. In [13],
we presented efficient pruning techniques for the search of optimal space-
time mappings (projection vectors). Here, we summarize the main ideas: (1)
only consider co-prime projection vectors u, and (2) only consider co-prime
vectors that have the properties that at least two points in I are projected
onto each other. This leads to a search space of co-prime vectors in a convex
polytope called difference-body of points in I . Finally, in this reduced search
space, we can exploit symmetry to exclude search vectors v= � vV such that
typically, only few projection vector candidates v have to be investigated.
Ehrhart polynomials [6,9] may be evaluated to count the number of points in
the projected index space. Let |U| be the number of projection vector
candidates and for each projection vector u a U the minimal latency was
determined by solving a mixed integer linear program (MILP) [13,29,30].
Then, we must also estimate for |U| space-time mappings the power
consumption. Since the set U can still be very large we propose an efficient
heuristic methodology to find an energy-optimal space-time mapping in the
following.

ENERGY OPTIMIZATION

1 IN: RDG G, I
2 OUT: Eopt, Topt
3 BEGIN

4 U p Ø

5 FOR all edges e a G DO

6 d is dependence vector of edge e

7 IF (d p 0 ^ d p U) THEN

8 use d as projection vector and construct Q from it

9 #PE p determineNoOfPEs(d)

10 (E, b) p minimizeLatency(G, I, d)

11 Parray p powerEstimation(G, I, T, #PE, b)
12 E p b � Parray
13 IF (E < Eopt) THEN

14 Eopt p E
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15 Topt p T

16 ENDIF

17 U p U [ d

18 ENDIF

19 ENDFOR

20 END

To obtain energy-optimal space-time mappings we use the same observation
when identifying regions with decreased switching activity of functional
units’ input operands to get an accurate power estimation, therefore, self-
loops are examined. When such a self-loop is projected onto itself the
switching activity may be reduced because if it is a matter of (a) propagation
equation mapped onto itself, the data propagated remains in one processor
element unchanged for b clock cycles or (b) other self-loops, the data re-
mains unchanged for m clock cycles in dependence on the input space size.
Due to these observations we need only to examine projections (mappings)
which project one (or more) self-loops onto itself, Energy-optimal space-
time mappings can be determined by the above algorithm.

Since a given algorithm consists of N quantified equations in the worst
case, only N times the energy must be estimated. Once the power tables of
the functional units are generated, this can be done within seconds.

VII. CONCLUSIONS AND FUTURE WORK

A first study of a matrix multiplication algorithm has shown great impact in
a chosen mapping on the average energy consumption. The resulting array
and the accuracy (errors <5%) of our estimation approach is superior when
compared with RTL power estimation tools from Synopsys [27].

Furthermore, our methodology is independent of the problem (array)
size, since, an estimation with Synopsys design tools has linear time and
memory complexity in dependence on the number of processor elements.
Power estimation for large processor arrays using the Synopsys design tools
rapidly become crucial since memory usage is growing to GBytes and esti-
mation time to several hours. Exact comparisons of the complexity and also a
quantification of the percentages of power consumption of the functional
units, the controller, and the registers with respect to the overall power con-
sumption of one processing element were presented also. First experiments of
matrix multiplication and LU decomposition have shown that since all data is
stored locally inside PE’s registers, the part of the register power consumption
averages fromf4–12% of the overall power consumption. Furthermore, we
presented a fast heuristic algorithm to find energy-optimal space-time map-
pings.
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Our new estimation methodology is currently integrated into the
PARO design system and can be used during the process of automated
synthesis of regular circuits. PARO is a design system project for modeling,
transforming, optimization, and processor synthesis for the class of piece-
wise linear algorithms [1,24].

In the future, we would like to use the estimation technology presented
here and extend it also to reduced (i.e., partioned arrays). First results on the
computation of power in reduced size arrays have been recently presented in
[7]. We want to combine our knowledge about the influence of a chosen
mapping on the average energy consumption with this work.
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I. INTRODUCTION

The technological road map for embedded system design foresees important
changes in the design methodologies. Interface protocol-based and platform-
based designs [30] are becoming mandatory because the complexity of the
designs increases very fast, and time to market requirements are shorter and
shorter. It is well-known, however, that technology improvements do not
affect uniformly all elements of a chip: memories, buses, and power supply
integration do not follow Moore’s law. Thus, the main focus in hardware
design has moved from performance and parallelism to other concerns such
as the optimization of memory size, hierarchy and traffic, the elimination of
the bus bandwidth bottleneck, and the minimization of power consumption.
Power-aware design can be considered as today’s most important problem,
but with the emergence of network on chip [7], interfacing blocks of In-
tellectual Property (IP) efficiently becomes a major issue. This chapter ad-
dresses the latter problem.

Many designs rely on bus protocols to interface IP, for example AMBA

or CORE-connected bus. This tendency is amplified by the spreading of the
platform-based design methodology, which imposes the use of particular
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buses on the chip. But the gap between the design clock cycles and bus clock
cycles increases and therefore, the speed at which data can be fed into a
design becomes the major bottleneck for performance. Thus, a good design
must be delivered with an interface protocol that uses the bus bandwidth
efficiently. Such an interface is most often designed by hand, but clearly, auto-
matic generation of interfaces must be considered. This research is mainly
concerned with efficient bus protocol interface definition for highly parallel
design. Note here that some attempts to plug Field Programmable Gate
Arrays (FPGA) chips directly to memories have been made [16]. In such a
framework, the interface synthesis may be very different from the one
presented here. However, one part of the present work—how to extract
interface information from high-level specifications—remains valid, even if it
must be retargeted.

To be complete, the analysis of technological evolution should include
trends in the electronic design automation (EDA) tools. Currently the soft-
ware technology provides satisfying tools for logic synthesis (i.e., synthesis
from RTL specification). But trends lead toward providing higher level
design methodologies, using new languages (SystemC for instance) and new
methodologies (UML specifications for instance). The research presented here
belongs to a specific domain that aims at compiling loops to hardware [26,
13,10,2]. In this field, interfacing is also a major issue because applications
operate on large data sets (usually streams in signal processing or images in
multimedia), which must be efficiently brought onto the chip. Again, design
automation is a major issue and the approach proposed in this chapter focus
on automatic interface design for architectures compiled from loops nest
specifications.

Based on the work done around the MMALPHA tool [10,8], we propose
a solution to this problem for linear regular arrays. In this chapter, we
introduce the concept of application interface, which can be seen as the
application-dependent part of the interface for linear systolic arrays. As all
highly pipelined designs share many properties, it is possible to define a
generic application interface (i.e., an interface skeleton that is valid for all
linear arrays and that can be easily parameterized for each application
implemented). The experiments we report are oriented toward an FPGA
platform, but the concepts can be used for interfacing IPs on a SoC,
provided the IP has features that we will describe.

The underlying interface architecture that we consider is composed
of a bus (with fixed bandwidth and throughput, possibly including a faster
DMA mode) and of a FIFO that interconnects the bus and the application.
The FIFO allows data to be buffered when an interruption occurs on the
bus. The bus and the FIFO form what we call the hardware interface. On
top of the hardware interface is built an application interface whose role
is to rearrange the data between the hardware interface and the application.
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This part of the interface is application-dependent and can be automati-
cally produced by the same kind of tools that generate the hardware of the
application.

This chapter is organized as follows. In Section II, we present briefly
the MMALPHA environment. After a short description in Section III of the
DLMS application that serves as an illustration, we explain in Section IV
the model of our application architecture. Section V details the various
elements of the interface we target. In Section VI, we describe how data
transfers are structured in phases and patterns in order to obtain efficient
communications. The generation of the interface, both software and hard-
ware, is presented in Section VII. We then describe in Section VIII the use of
our interface generator to automatically implement a DLMS filter on a
FPGA board. Finally, we present in Section IX related work and we form
conclusions in Section X.

II. THE MMALPHA SYSTEM

MMALPHA is a programming environment for transforming Alpha programs
into parallel architectures based on research on automatic systolic synthesis
[25]. Alpha [19,15] is a functional language that was designed to express
both recurrence equation specifications and hardware descriptions of sys-
tolic arrays. MMALPHA was used to design applications pertaining to signal
processing, multimedia, and bioinformatics [21,20].

MMALPHA targets both Asics and FPGAs. The final output of the
compilation process is a synthesizable VHDL program that can be compiled
with vendor tools. The interest of targeting FPGAs stems from the obser-
vation that regular designs are well-suited to the internal architecture of
most FPGAs, which are made of locally connected configurable logic blocs
(CLB).

The design flow with MMALPHA is illustrated in Fig. 1. A computation-
intensive part of a program (usually a loop) is translated into Alpha and is
then transformed using MMALPHA into a parallel hardware description at
register transfer level (RTL). This RTL description comprises three parts:

The hardware part, written in VHDL represents the implementation of
the loop on the FPGA.

The software part replaces the loop in the original program.
The hardware/software part handles the communication of data
between the host and the FPGA.

Figure 2 shows an example of the Alpha program for a delayed least
mean square adaptive filter that we shall describe in detail in Section III.
Such a program, called a system, represents a set of recurrence equations
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that allows iterative algorithms to be easily represented. Here, this system
named firr is parameterized by the size N of the filter, the number of delays
D, and the number of input samples M. It has two inputs, x and d, and
produces one output y. Local variables W, Y, and E define the intermediate
equations necessary to compute y.

Each equation of this program is an indexed expression whose index
space is an integral polyhedron, that is to say, a set of integer coordinate
points delimited by linear inequalities. Expressions are indexed by affine
combinations of indices and of parameters. Operators (e.g., +, *, etc.) com-
bine expressions as collections of data. Case expressions (see, for example,
the definition of W ) allow variables to be defined by different expressions on
different polyhedral regions of the index space.

The synthesis process consists of applying a set of transformations,
such as the ones mentioned in Fig. 1. Uniformization allows affine index ex-
pressions to be replaced by translations, thus removing potential broadcasts
of the target architecture. Scheduling and mapping assign to each expres-

Figure 1 Design flow with MMALPHA. Square shaded boxes represent programs of
various languages and round boxes represent transformations.
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sion an execution time and processor. Finally, an RTL description is gen-
erated by translating the scheduled and placed Alpha code in an HDL
language such as VHDL.

III. THE DLMS EXAMPLE

In this section, we detail the delayed least mean square algorithm (DLMS)
for channel error correction in signal processing applications. This algo-
rithm is used throughout this chapter to illustrate our method.

Least mean squares adaptive filters are commonly used in signal pro-
cessing applications such as echo cancellation, system identification, speech
coding, and channel equalization [11]. Unlike fixed coefficient finite impulse

Figure 2 Alpha program for a DLMS filter.
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response (FIR) or infinite impulse response (IIR) digital filters, the coef-
ficients of adaptive digital filters such as the LMS filter are adapted at each
iteration to obtain better convergence properties. It is well known that recur-
sive or adaptive digital filters are difficult to pipeline due to the presence of
a feedback loop. However, it is possible to obtain a pipelined implementa-
tion by inserting delays in the recursive loop of the coefficient update part.
The corresponding algorithm is thus called a delayed least mean square
(DLMS) algorithm.

By assuming that the adaptive digital filter is an FIR filter whose im-
pulse response is denoted by wi (n), the output signal y (n) is given by

yðnÞ ¼ xTðnÞwðnÞ ¼
XN�1

i¼0

xðn� iÞwiðnÞ ð1Þ

with x(0) = 0 and w(0) = 0 (bold variables denotes N-vectors: x(n) = (x(n�
N � 1), . . . , x(n)) and w(n) = [w0(n), . . . , wN�1(n)]). The weight update
equations of the DLMS [12] are given by

wðnþ 1Þ ¼ wðnÞ þ l eðn�DÞxðn�DÞ ð2Þ
eðnÞ ¼ dðnÞ � yðnÞ ð3Þ

where d(n) is the desired signal.
A possible VLSI implementation of the DLMS [12] is represented in

Fig. 3. The RTL description of this architecture can be derived automati-
cally from program of Fig. 2 with the MMALPHA software as shown in [10].

Figure 3 Snapshot (at t = n – N + D) of the architecture obtained for the DLMS

after MMALPHA design process. N is the number of taps of the filter, D is the number
of delays in the feedback loop.
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At the end of the synthesis process, the architecture presented in Fig.
3 is expressed as an ALPHARD program, which is a subset of Alpha, and the
mapping between the functional specification and the hardware imple-
mentation is obtained by means of the program of Fig. 4. More precisely,
the input flow x and the coefficient vector d of the initial firr algorithm
are mapped to new variables x_mirr1, x_mirr2, and the d_mirr1, and
the architecture itself represented by an instantiation of another Alpha
program called firrModule (by a use statement), which returns an output
stream Y1. This stream is assigned to the output variable y of program
firr. All inputs and outputs of firrModule are indexed by t and p, which
represent respectively the time and the processor number to which these
streams are assigned.

Figure 4 The part of the ALPHARD program (firr system, also called ALPHARD

interface) which maps the functional specification (input x and d, result y) to the
architecture (firrModule system also called ALPHARD module). This program has

three parameters: N is the number of taps of the filter, D is the number of delays
along the feedback loop, and M is the number of input samples of the filter (for
simulation purposes). This system contains the information about the date and

place where data should be entered (here for example, input in the first processor:
p = 0, and output in the last processor: p = N � 1).
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IV. APPLICATION ARCHITECTURE MODEL

This section models the interface we want to synthesize. We first state the
assumptions that we make regarding the type of application hardware that
we want to interface. Then we detail the information that is needed for
interfacing correctly the application architecture (e.g. firrModule in the
DLMS application) with its host architecture. Then we abstract this
architecture by a number of features that will constitute the input to
interface generation.

A. Assumptions

Our assumptions regarding the application architecture concern four
aspects: a virtual clock, the model of linear array, inputs and outputs, and
the bit width of streams.

1. Virtual Clock

The application architecture is a globally synchronous digital circuit in which
all registers are controlled by a common virtual clock. This virtual clock
regulates the operation of the architecture, and can be frozen if, for instance,
the host is not ready to send input data or to read output data. This
assumption significantly reduces the control complexity inside the interface.
Indeed, the designer can assume that as soon as the clock of the architecture
is running, input data arrive as needed, and output data are captured by the
bus when they are produced. In our experimental designs, which targets
FPGA chips, the virtual clock is naturally implemented using the clock
enable signal of the FPGA. We also assume that the operation of the archi-
tecture begins on a start signal.

From now on, we call virtual date of a computation the number of
virtual clock cycles elapsed between the computation and the starting time
of the algorithm.

2. Linear Arrays

The architecture must be a linear (1-dimensional) array. Inputs and outputs
are continuous streams of data, which means that all input or output
streams have a virtual starting date and a virtual ending date, and no
interruption occurs between these dates. It should be noticed that this
assumption prevents one from interfacing partitioned arrays [4], and 2-
dimensional arrays. In partitioned arrays, data arrive in burst mode (i.e.,
uninterrupted streams of data separated by long empty periods), and do not
meet our assumption of continuous streams. However, the interface pro-
posed in this chapter could be easily extended to cover this case because
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these bursts of data are known statically [5]. In MMALPHA, architectures can
be generated for any 2-dimensional regular array, but in practice, interfacing
a 2-dimensional array requires a more complex architecture, since more than
one data must be provided during one virtual clock cycle. This problem is
beyond the scope of this chapter.

3. Inputs and Outputs

Any given input stream (resp. output stream) must arrive in (resp. leave) a
given fixed processor, called connection processor of the stream. Notice that
this processor may be different for each input or output stream. This as-
sumption is most often met by the type of architecture that we are dealing
with, and is easy to enforce if not.

4. Width of Streams

We assume that the bit width of the streams is a divisor of the data bus
width. As the bus is usually 32- or 64-bit wide, the bit width of variables
must be a power of two (if it is not, the protocol will choose the smallest
power of two greater than the actual bit width, thus reducing the efficiency
of the interface).

B. Information Needed for the Interface

If the above assumptions are met, then the interface of the architecture can
be determined from the following information.

The number of input and output streams. In our example, the
firrModule system has four inputs (d_mirr1, y_mirr1,

x_mirr1, x_mirr2) and one output (Y1).
The name, bit width, connection processor, virtual starting and ending
time of each stream. For instance input stream x_mirr1 is 16-bit
wide and is input in processor p = 0. The starting time is t = �N +
D + 1 and the ending time is t = �N + M + 1.

All this information can be extracted from the ALPHARD interface shown in
Fig. 4 (see, for example, the declaration of the x_mirr1 variable in Fig. 4).

V. INTERFACE MODEL

The previous section described what we want to interface as well as the
information needed to define this interface. We now explain in more detail
our interface model. Fig. 5 presents a typical interface architecture, in the
case of the FPGA Spyder board [28]. The application hardware, here a
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DLMS filter circuit, is mapped on the FPGA. The host and the DLMS are
interconnected by means of a PCI bus. A PCI bridge consisting of FIFO
allows for a smooth synchronization between the PCI bus and the applica-
tion hardware.

In this section, we detail the elements of this interface: the low-level
interface, the application interface, and the software and hardware parts of
the application interface.

A. Low-Level Interface and Application Interface

From now on, the interface is logically divided into two parts: the low-level
interface and the application interface.

The low-level interface behaves logically as a FIFO. A parameter of
the low-level interface is the FIFO bit width, which we assume to be a power
of 2. Notice that the implementation of the low-level interface can take
different forms, depending on the target platform. In the case shown in Fig.
5, the FIFOs of the low-level interface are implemented using the memory of

Figure 5 Standard architecture of the interconnection between a board and the

host (taken from a Spyder board [28]), together with a logical view of the FIFO
mechanism used between the bus and the application architecture.
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the Spyder board. Most commercially available FPGA boards provide a
similar low-level interface [1,3].

The application interface is the part of the interface that sends input
data to (resp. gets output data from) the application IP from (resp. to) the
host in order to implement a correct execution of the algorithm. The appli-
cation interface is naturally divided into the input interface, which sends data
to the array, and the output interface, which receives data from the array.
These two parts are very similar, and from now on we only deal with the
input interface.

B. Software and Hardware Parts

The application interface is naturally divided into a software part and a
hardware part. The software part is composed of a program that sends data
to the FIFO. The hardware part is more complex: it is the demultiplexing
system that gets the words out of the FIFO and sends them into the array.
Of course, these two parts must be compatible (i.e., the data should be taken
by the hardware part in the same order as they are produced by the software
part). This is why we propose to generate the software and the hardware
simultaneously from the interface ALPHARD program shown in Fig. 4.

VI. STRUCTURING STREAMS

To generate the application interface, we structure the input and output
streams using two notions: phases and patterns.

A. Phases

A phase is a sequence of successive virtual clock ticks during which all inputs
and outputs of the architecture are the same. For instance, one can see in the
programofFig. 4 that between clock cycles t=�N+2=�8 and t=�N+
D = 2, only the x_mirr2 stream enters the array. Hence the period of time

/0 ¼ ft j �Nþ 2 V t V�NþDg ð4Þ
is a phase.

Finding the phases of the program of Fig. 4 can be done with the help
of elementary computations on polyhedra. The algorithm is the following.

1. Compute the time domain of each input and output variable (i.e.,
the period of time during which this variable is alive). This is
obtained by projecting the space-time domains (see Fig. 4) of these
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variables on the time index t. Since we assume that inputs and
outputs consist of uninterrupted streams of data, for each input or
output variable m, the result is a set of intervals of the form {t j lm V
t V um}. Note that projections of polyhedra can be computed using
the Polylib library [29].

2. Sort the lower and upper bounds of these time domains. The result
is an ordered list of dates (bi)i=1, . . . such that bi V bi+1.

3. The phases are the intervals {t j bi V t < bi+1} for all i.

For instance, after projecting the domains of variables x_mirr2 and
x_mirr1 in the program of Fig. 4, we obtain the time domains

ft j �Nþ 2 V t V�NþMþ 1g
and

ft j �NþDþ 1 V t V�NþMg
As the calculation of all other variables starts later, the first phase is

/0 ¼ ft j �Nþ 2 V t V�NþDg
In practice, we constrain phases to meet an additional requirement: the

number of bits that are sent during a phase must be a multiple of the bus
width. Indeed, during a phase, data is sent to the FIFO word by word, each
word having the size of the FIFO width. For instance the x_mirr2 variable
being 16-bit wide, and assuming the FIFO to be 32-bit wide, two x_mirr2

data can be placed in one FIFO word (remember that we assume the bit
width of all streams to be a divisor of the FIFO width). Thus, we require the
length of a phase to be a multiple of the FIFO width

data width ratio. If this condition is not
fulfilled, one can always split the phase in two subphases, with one meeting
this condition and the other having less bits than one FIFO word.

This requirement forces us to fix the value of the parameters at this
stage. In our example (32-bit wide FIFO and 16-bit wide variable), the ratio
FIFO width
data width is 2, and phase /0 in Eq. (4) contains D � 1 virtual clock cycles.
If D is even, this interval must be divided into two phases: phase /1 = {t j �
N + 2 V t V � N + D � 1} and phase /2 = {t j t = � N + D}. This
situation is illustrated in Fig. 6, which shows the phases of the program of
Fig. 4, for N= 10, D= 12, andM= 100. We can see that /1 = {t j � 8 V t
V 1} and /2 = {t j t = 2}.

B. Patterns

Inside each phase, a pattern describes the order in which data are sent to the
FIFO. A pattern is repeated cyclically during one phase. Recall that each
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FIFO word contains only values related to one variable. For instance,
during phase /3 of Fig. 6, one can choose to fill a FIFO word with two
x_mirr1 data and then the next FIFO word with two x_mirr2 data and
repeat this pattern three times so that six data of each stream are sent. A
pattern is therefore simply an ordered list of variables that will be sent
through the bus to the application interface. In the case of phase /3, the
pattern is (x_mirr1, x_mirr2). In this particular case, the pattern is
simple since x_mirr1 and x_mirr2 have the same bit width.

In general, the choice of a pattern must be done in such a way that
deadlock situations may not occur due to a lack of memorization resources
in the interface.

Let us assume that the IP to be interfaced has two input signals A and
B during a particular phase. Denote respectively BWA and BWB the bit
width of A and B, and assume that BWA = 16 and BWB = 2. Let BW = 32
be the bus width. Denote respectively NDA and NDB the number of data
contained in one bus word for each variable. Then NDA = BW

BWA
= 2 and

NDB = BW
BWB

= 16. Assume that the interface has only one BW bits word of
memory available to store each variable (this assumption is reasonable in
order to keep the interface simple).

To start the computations of the phase, the bus must send to the FIFO
one bus word containing A values (i.e., 2 values) followed by one bus word
containing B values (i.e., 16 values). These values will feed the IP architec-
ture during two virtual clock cycles. If the next word sent by the bus was

Figure 6 The phases of the program of Fig. 4 for parameter values N = 10, D =

12, and M = 100.
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composed of B values, then the IP would be blocked, as the interface would
not be able to store this second word before getting the next A value. Thus,
the next data on the bus must be an A as well as the next six following bus
words. In the end, we have the pattern BAAAAAAAA, which must be
cyclically repeated during the whole phase. Note that the pattern
ABAAAAAAA is also valid, and the solution is therefore not unique.

Two methods can be used to compute a dealock-free pattern. First,
one can enumerate the patterns, which amount to simulating the process
described in the previous paragraph. This method may be effective, as the
pattern length is less than 64, and as we assumed the bit width of variables to
be less than 32. Second, a formula describing valid patterns can be obtained
by the following algorithm, which we call the parallel pattern method.

Assume that each variable has its own bus, instead of sharing a com-
mon bus between the interface and the IP. Then, a parallel pattern is a list
of dates when each variable can be sent to its bus. [In such a model (in
the previous example), an A word and a B word could be sent in parallel.]
A method to generate deadlock-free patterns consist of finding a parallel
pattern and then in serializing it without introducing deadlock.

To find parallel patterns, the method is as follows.

1. Compute the parallel pattern length PPL. This length is the smallest
number of data that can be sent cyclically to the bus without
deadlock. It can be proved that this value is

PPL ¼maxVNDV

minVNDV

where NDV is the number of data contained in one bus word for
variable V. For instance in the above example, PPL = 16/2 = 8.
Indeed, A is repeated 8 times in the valid patterns mentioned for
the example, and this value is always an integer because we assume
that the bit width are powers of 2. The pattern cycle length (PCL),
that is to say, the number of virtual clock cycles executed by the IP
during one pattern, is therefore

PCL ¼ PPL�min
V

NDV¼max
V

NDV

2. For each variable V, PCL
NDV

bus words must be sent during the pattern
of length PPL. It is easy to see that these words must be regularly
spaced. The time delay between two consecutive bus words of var-
iable U is thus

PPL

PCL=NDU

¼ NDU

minVNDV
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and these data must be sent at time steps:

0;
NDU

minVðNDVÞ ; 2� NDU

minVðNDVÞ ;
: : :;

PCL

NDU
� 1

� �

� NDU

minVðNDVÞ
Using this method, we obtain a parallel order for sending the data

to the bus. In our example, we have PPL ¼ 8; NDA

minðNDA; NDBÞ ¼ 1 and
NDB

minðNDA; NDBÞ ¼ 8, so that the parallel order is

where j means no data is sent.
From a parallel pattern, one easily obtains a sequential pattern by

interleaving the branches of the parallel pattern in such a way that the par-
tial order imposed by the parallel pattern is satisfied. In our example, the
initial A and B may be sent in any order, which leads to one of the two
solutions ABAAAAAAA or BAAAAAAAA as proposed previously. This
also shows that these are the only valid solutions.

VII. GENERATING THE INTERFACE

As seen in the previous section, the interface model is abstracted by the
description of its phases and, for each phase, of its patterns. We now explain
how the software and the hardware part of the interface are generated from
these informations.

A. Generating the Software Part

The software part of the application interface is a C program that the host
runs in order to send data to the input FIFO or read data from the output
FIFO through the PCI bus. The exact behavior of the C code is completely
specified by the phase and pattern information. However, during the gen-
eration of the C code, many details must be handled carefully, like the con-
version between the ALPHA variable indexing and the implementation in
memory (array starting at index 0) for instance. All technical difficulties have
been solved in the ALPHA to C compiler and are described elsewhere [24].

Time steps 0 1 2 3 4 5 6 7
Dates for A A A A A A A A A
Dates for B B j j j j j j j
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The software part is therefore produced by a C program, which was
obtained by retargeting the Alpha to C compiler.

Fig. 7 shows a part of the C program that was generated to perform
inputs and outputs of phases /6, /7, and /8 of Fig. 6. Each call to
WriteFifo or ReadFifo activates a function of a low-level communica-
tion library. Note that the t index corresponds precisely to the t index of the
ALPHA program of Fig. 4 as well as to the t coordinate of Fig. 6, thus the
designer can easily understand what is going on during the execution of the
software interface.

Notice that in this C program, inputs and outputs are interleaved,
hence the FIFO is not really needed (a FIFO of size one would be sufficient).
Inserting a FIFO between the architecture and the host is however useful in
order to interface the IP to a more general system. Instead of single C pro-
gram, another possibility would be to have inputs and outputs handled by
two different processes running in parallel on the host.

Figure 7 C code generated for phases /6, /7, and /8 of Fig. 6 (for a 32-bit wide
FIFO). Array _d_mirr1 stores the values of the d_mirr1 variable of the ALPHA

program.
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B. Generating the Hardware Part: Principles

The hardware part is generated in VHDL and is synthesized for the FPGA
chip. The architecture of the hardware part is illustrated in Fig. 8.

The hardware part is divided into the input interface and the output
interface, which are almost symmetrical. The main difference is that the
interface is started with a start signal (set up by the user, here indicating
the virtual date t = �8), while the output interface is started by a start_

out signal set up automatically (here at virtual date t = 10).
We detail the organization of the input interface represented in Fig. 8.

Consider an input, say input I1, of the architecture, and let WI1 be the bit
width of I1. This input is connected to a load32 component which is
parameterized by the bit width WI1 of I1. The load32 component contains
a shift register that allows 32 bits to be read in parallel from the FIFO and
WI1 bits to be output during 32/WI1 clock cycles.

Each load32 component is connected to the Input_Interface

component. The Input_Interface component receives data from the
FIFO and stores them in the appropriate load32 shift register.

The control of this architecture is provided by a hierarchical two-level
finite state machine. The states of first level are the phases of the interface,
and the states of the second level are the variable names which define the
patterns inside a phase. Switching from one phase to another is done by
counting the number of elapsed virtual clock cycles (for example, we see on
Fig. 6 that phase /1 must last 10 virtual clock cycles). An efficient control of
the load32 shift register allows the loading of a new FIFO word to be
overlapped with the output of the last data word to the application archi-
tecture. Thus, provided that the FPGA clock frequency is high enough, the
array is fed at the throughput allowed by the bus. Usually, the FPGA clock
is fast enough to cope with the bus bandwidth, since the application design

Figure 8 Hardware part of the application interface for the DLMS.
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is highly pipelined. However, one can imagine extreme situations where this
is not the case. For example, if the input data was only 2 bit wide, the FPGA
clock frequency would have to be 16 times the bus clock frequency, which is
not very realistic. Note that the operation of the interface and of the
application architecture is frozen when the FIFO is empty.

C. Efficient Synthesis of the Hardware Part

The originality of our approach lies in the fact that we designed a family of
interfaces that can be parameterized for different IPs provided they respect
the model of Section IV. Most of the produced VHDL code is generic (i.e.,
identical for all IP, and, for each IP, a configuration file which drives the
control of the IP is generated). In this section, we show how to efficiently
implement this genericity in VHDL. Indeed, the performance of the final IP
is greatly influenced by the quality of the interface description.

The VHDL program describes a finite state machine which is identical
for all application architectures meeting the assumption of section IV (see
Appendix IX). The information on one phase (i.e., pattern, duration, active
variables, etc.) is stored in a VHDL record. The finite state machine uses
an array of records whose size is the number of phases (here 10 phases).
With this implementation, one can gather all the application-dependent
information in one configuration file. This file is built by extracting in-
formation from the interface program of Fig. 4 using the same function for
finding the phases and pattern as the one used during the C code generation
for the software part. Thus, and this is a very important feature of our
methodology, compatibility between the software part and the hardware
part is very easy to ensure as they both derive from the same source code
(program of Fig. 4 with the same function used for common information).
This way of representing the finite state machine simplifies the automatic
generation of the VHDL interface program for all applications. Moreover it
guarantees a very efficient synthesis with the vendor’s tools.

VIII. EXPERIMENTS

The automatic interface generation was implemented and tested with a
Spyder-X2 PCI board [28] based on a Xilinx Virtex 800 device (as shown in
Fig. 5). In this architecture the host processor communicates with the FPGA
through a PCI interface using memory-mapped or DMA transfers. The
observed bandwidth between the host CPU and the FPGA is 8 MB/s at
most.
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The VHDL for the DLMS was synthesized automatically from an
ALPHA specification down to ALPHARD (see [10]). An important issue during
the design process was functional simulation. Thanks to the flexibility of the
MMALPHA environment, we were able to use the same data from high-level
simulation down to the detailed VHDL simulation, thus speeding up the
design time and allowing fast back annotation from hardware simulation to
the high-level synthesis process.

The application interface was generated automatically from the
ALPHARD interface for the DLMS algorithm (Fig. 4) for the following values
of the parameters: N = 10, D = 12, and M = 100. The width of the
interface FIFO was 32 bits. The synthesis was realized with the SYNPLIFY

software [27]. Table 1 gives the number of look-up tables necessary for the
synthesis of the DLMS alone, of the DLMS and the interface without the
FIFO, and of the total design. The clock cycle, as estimated by the synthesis
tool, is also given. Finally, the throughput of the interface is evaluated from
the cycle time and the number of data that is produced by the architecture
during each cycle. More precisely, the DLMS produces one, 16-bit y_mirr
value during each cycle. The table also shows the maximum throughput of
the PCI bus of the board, as observed for several designs.

One may draw some conclusions from this table.

First, the hardware interface is not a limiting factor of speed for this de-
sign. Indeed, the clock cycle is increased only by 1 ns by the FIFO.

Second, the PCI bus is clearly the limiting factor of the interface: there
is a factor of 8 in the best case between the bandwidth of the bus and
the bandwidth that could be achieved by the design. As expected, the
design of such a high-performance device is therefore limited by the
communication with the host.

Table 1 Result of the Interface Generation for the DLMS Algorithm

Design
Number
of LUT

Clock
cycle (ns)

Throughput
(MB/s)

DLMS 5938 (31%) 30 66.67 MB/s
DLMS + interface 6501 (34%) 30 66.67 MB/s
DLMS + interface + Fifos 6928 (36%) 31 64.5 MB/s
PCI bus (Max) — — 8 MB/s

Parameters: N=10, D=12, and M=100. This table gives the number of look-up tables (LUT)

occupied by the design, in the Virtex XCV800 chip (the percentage of total LUTs used in a

Virtex XCV800 is given between parentheses), the clock cycle estimated by the synthesis tools,

and the (one-way) throughput of the interface. The maximum observed throughput of the PCI

bus of the Spyder board is given for comparison.
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Notice that this interface could have been optimized since the x_mirr1
and x_mirr2 streams are a time shift of one another, thus only one of the
two streams needed to be sent through the bus. Moreover, the y_mirr1

stream should, in practice, be taken at the output of the architecture and not
sent from the host (the values sent were obtained during simulations). We
kept this nonoptimized implementation for our experiments in order to
validate the interface protocol on a nontrivial example.

IX. RELATED WORK AND DISCUSSION

Most of the research on FPGA design focuses on the efficiency of the design
itself rather than the efficiency of the interface of the design. Tests are usu-
ally made with data already in the on-board memory or with data arriving
directly on board via an analog/digital converter. Among others, references
[14,9] describe manually written interfaces.

Approaches dealing with automatic generation of interfaces can be
classified into two categories: co-design methods and high-level synthesis
methods.

Co-design methods deal with very general types of applications and,
therefore, communication is usually implemented using a high-level syn-
chronization mechanism that leads to complex protocols (for instance,
remote procedure call in CoWare [6]). Many FPGA compilation projects
rely on control-dominated models like Petri nets [31,18], or communicating
sequential processes [22]. The advent of real-time operating systems (RTOs)
can also be a solution but efficiency will probably be degraded.

In high-level synthesis methods, attempts have been made to automate
interface generation. These attempts, as in the work presented here, restrict
the types of interfaced architectures. In Pico [26], the interface problem is
solved at run time by a bus arbiter, but since the target architecture has only
a small number of processors, the efficiency of the interface is not the major
issue. Artemis [23,13] relied on the Spade methodology [17] to implement
efficiently communicating Kahn process networks on buses.

The methodology that we propose for the interface generation presents
several novelties. First, dynamic control is as low as possible. Indeed, it is
restricted to ensuring a correct behavior when an external event such as a bus
interruption occurs. Therefore, the efficiency of the interface can be statically
predicted. Second, the design is safe because the interface is compiled together
with the architecture, and moreover, the hardware and software parts are
derived from the same ALPHARD program and using the same tool. Third,
our method provides the user with simulation facilities that are available
as part of the MMALPHA tool. Finally, our model is generic and it is not only
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an implementation dedicated to the MMALPHA design flow, but can be applied
to any compiled architecture that meets the characteristics of our model.

X. CONCLUSION

In this chapter, we presented a tool for synthesizing interfaces for linear
regular architectures. Our model of interface is bus-based and can cope with
interruptions in the flow of data arriving from the host. Our interface is
application-dependent, and is generated automatically from a high-level
description of the application, as obtained using the MMALPHA tool. Both
the software part and the hardware part of the interface are generated from
the same description, using the same set of tools, therefore ensuring these
parts to be coherent. The synthesis of the interface structures the data com-
munications into phases and patterns, and generates a C program to be run
on the host, and a VHDL program to be synthesized on the hardware plat-
form. We have tested this interface generator on a DLMS algorithm auto-
matically compiled on a Spyder FPGA board and we have shown that the
interface allows high performances to be reached for this application.

XI. APPENDIX: VHDL CODE OF THE
APPLICATION-DEPENDENT INTERFACE

This part of the program stores into an array (Input_PhaseTable) the
information about input phases (i.e., phases where input variables are con-
cerned). Input_ToPhase is a function that fills the record with the input
values.

constant Input_Nb_I0_Port: integer := 4;

-- Total number of input phases

constant Input_NbPhase: integer :=9;

-- Maximum number of variables in pattern

constant Input_MaxStep: integer := 18;

-- Maximum size of a pattern

constant Input_MaxLength: integer := 5;

-- Max Number of virtual clock cycles in a phase

constant Input_MaxCount: integer := 79;

subtype Input_TI0_select is

std_logic_vector(Input_Nb_I0_Port-1 downto 0);
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subtype Input_TStep is integer range 0 to Input_MaxStep;

subtype Input_TLength is integer range 0 to Input_

MaxLength;

subtype Input_TCount is integer range 0 to Input_MaxCount;

-- Record used to store all Phase Information

Type Input_TPhaseInfo is record

-- offset of the pattern in the pattern table

Offset : Input_TStep;

-- Length of the pattern of the phase

PatternLength : Input_TLength;

-- Which ports are active in the phase

ActivePorts : Input_TIO_select;

-- how may virtual clock cycles in the phase

NbArrayCycles : Input_TCount;

end record;

type Input_TPhaseTable is array (0 to Input_NbPhase)

of Input_TPhaseInfo;

constant Input_PhaseTable : Input_TPhaseTable :=

(

-- Offset PatternLength PhaseLength NBCycle Activity

0 => Input_ToPhase (0, 1, 4, (others => ’0’)),

1 => Input_ToPhase (1, 1, 10, Input_Portx_mirr2),

2 => Input_ToPhase (2, 1, 1, Input_Portx_mirr2),

3 => Input_ToPhase (3, 2, 6, Input_Portx_mirr1 or

Input_Portx_mirr2),

4 => Input_ToPhase (5, 2, 1, Input_Portx_mirr1 or

Input_Portx_mirr2),

5 => Input_ToPhase (7, 2, 2, Input_Portx_mirr1 or

Input_Portx_mirr2),

6 => Input_ToPhase (9, 4, 78, Input_Portd_mirr1 or

Input_Porty_mirr1 or

Input_Portx_mirr1 or Input_

Portx_mirr2),

7 => Input_ToPhase (13, 4, 1, Input_Portd_mirr1 or

Input_Porty_mirr1 or

Input_Portx_mirr1 or Input_

Portx_mirr2),

8 => Input_ToPhase (17, 1, 1, Input_Portx_mirr2),

9 => Input_ToPhase (0, 1, 4, (others=>’0’))

);
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I. INTRODUCTION

There have been many advancements in recent years on architectures for
reconfigurable processing engines (e.g. see [5,10,11]). With the increasing
degree of reconfigurability in processing architectures, it is useful to view
embedded multiprocessor systems as polymorphous computing architectures
(PCAs), in which configurable attributes of the architecture and software are
adapted in response to dynamically changing needs. Such attributes may
include items such as inter-processor message routing, caching policies,
scheduling policies, processor voltages, resource allocation to computing
units, and synchronization protocols. A PCA can be a particularly useful
platform for developing a computing system where applications and per-
formance requirements change at run-time as one can adaptively configure
the PCA to suit the dynamic constraints and objectives.

This chapter takes a step toward bridging techniques for scheduling
and system synthesis with reconfigurable processing platforms and the dy-
namically-changing application requirements that drive these platforms. We
first formulate the problem of executing application dataflow graphs on a
polymorphous computing architecture such that specified performance re-
quirements are satisfied, where the requirements may vary over time and the
application may have tasks with non-deterministic execution times (e.g., due
to data dependencies or unpredictable events such as cache misses and inter-
rupts). We analyze key properties of this problem and the complexity of some
relevant sub-problems. We then develop a flexible heuristic framework for
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guiding the run-time configuration adaptation process and show through sim-
ulation experiments that this approach can efficiently handle both dynamics
in performance requirements and dynamics in task execution time behavior.

In the application model addressed in this chapter, computational
tasks (actors), which are represented by dataflow graph vertices, in the appli-
cation are allowed to have stochastic execution times with static distribu-
tions or distributions that may vary slowly over time. The computing unit is
a reconfigurable multiprocessor architecture, and the objective is to find a
mapping of the actors in the application onto the processors in the multi-
processor and the configuration that the architecture should assume such that
performance-related constraints (e.g., constraints on power, resource usage
or throughput) are satisfied and objectives (e.g., maximizing throughput or
minimizing latency) are optimized effectively. Furthermore, the constraints
and objectives may vary over time, and thus, overall solution quality can be
viewed in terms of how efficiently reconfiguration of the architecture tracks
changes in the applications requirements. Henceforth, we will refer to this
problem as the polymorphous computing architecture mapping (PCA map-
ping) problem. As can be seen, the PCA mapping problem is quite general
in nature and even very restricted special cases can be proved to be NP-
complete.

The approach suggested in this chapter is correspondingly general and
can handle diverse applications and performance requirements. All the re-
ported experiments were performed on an abstraction of the Raw architec-
ture [10] that incorporates salient features of the architecture such as the
programmability of interconnects between processors. For experiments, the
self-timed execution of applications on this abstracted Raw architecture was
simulated using the interprocessor communication (IPC) graph model [9].

The emphasis in this chapter is on coordination of the on-line con-
figuration management process for reconfigurable networks of processors,
rather than the development of specialized configuration optimization tech-
niques (such as fixed-objective scheduling and allocation), which are already
in abundance in the literature (e.g., see [9] for a survey). Our work is
complementary to such existing efforts and also to work on multiprocessor
system synthesis (e.g., see [1,2]), which can be used to derive the store of pre-
computed configurations that is input to the techniques developed in this
chapter.

II. PROBLEM FORMULATION

A set of relevant metrics, such as latency, throughput, average power, peak
power, and number of resources, is denoted by M. If a certain metric ap-
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pears as a constraint with a value to be satisfied when the application exe-
cutes, then this metric is referred to as a constraint metric and the value as a
constraint value for that particular metric. A constraint value belongs to the
set of real numbers. A pair of constraint metrics and constraint values is
called a constraint pair. A sequence of constraint pairs, in turn, is referred to
as a constraint vector, and is denoted by

V ¼ ½ðm1; c1Þ; ðm1; c2Þ; . . . ; ðmK; cKÞ� ð1Þ
where m1, m2,. . ., mK represent any metrics in M, and c1, c2,. . ., cK represent
the corresponding constraint values, for K e {0, N}, where N is the number
of all constraint pairs. This (possibly empty) sequence of constraint pairs in
a constraint vector is prioritized such that (mi, ci) is a higher priority
constraint pair than a constraint pair (mj, cj) if I < j, for i, j e {1,2,. . .,K}
in a constraint vector V = [(m1, c1), (m1, c2),. . ., (mK, cK)]. A metric mR that
is to be optimized after all constraints have been satisfied is called a residual
objective. A goal g is an ordered pair (V, mR), where V is a constraint vector
and mR is a residual objective. If there is no residual objective, then the goal
is composed of only a constraint vector and can be represented by (V, ?).
Here, the symbol ? represents the absence of a residual objective. Also,
without loss of generality, the metrics are such that the associated optimi-
zation problems are to minimize the respective metric (i.e., a lower value of a
metric is always better than a higher value). Metrics for which higher values
are more desirable must thus be transformed into corresponding metrics for
which lower values are better. For example, in iterative applications, the
throughput (average rate of completion of application iterations) can be re-
cast as the average iteration period, which is the reciprocal of the throughput.

Example 1. Consider a set of relevant metrics M = {L,P,T}, where L is the
latency, P is the average power consumption, and T is the average iteration
period. Consider the goal

g ¼ ½ðL; 50Þ; ðP; 100Þ; ðL; 40Þ; ðP; 70Þ;T�
In g, the constraint pair (L,50) has higher priority than the constraint pair
(P,100), which in turn has higher priority than the constraint pair (L,40).
The metric T is the residual objective.

This definition of reconfiguration goals as prioritized lists with op-
tional residual objectives leads to a view of dynamic reconfiguration as a
sequence of one-dimensional optimization problems. This simplification is
useful because run-time adaptation techniques must be of relatively low com-
plexity, and thus, one-dimensional optimization is a better match. Addition-
ally, it allows us to leverage existing libraries of single-dimensional synthesis
techniques, which are more abundant than multidimensional techniques.
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Third, it provides an intuitive and unambiguous format for designers to
prioritize multidimensional application requirements. Note, however, that
this formulation applies only to run-time reconfiguration, and multi-dimen-
sional optimization techniques, such as SPEA-based methods [12], can be
used off-line in arbitrary ways to compute caches of pre-computed config-
urations. Use of such caches will be discussed further in Sections III–V.

For example, in Example 1, we initially have an unconstrained latency
optimization problem (since the first constraint involves latency). As we
adapt the system configuration with techniques that address this problem,
we will in general improve the latency. Once the latency improves to 50 time
units, the current constraint is satisfied, and we switch to a power-optimi-
zation problem subject to a constraint of L = 50. The optimization process
may continue in this manner until the last constraint is satisfied (in this case,
P = 70), at which point run-time adaptation stops (if there is no residual
objective) or reaches a terminal mode of optimizing the residual objective
subject to all constraints in the constraint vector. This mode then continues
until the system shuts down or the application goal changes.

Mapping an application to amultiprocessor architecture includes defin-
ing a task-to-processor mapping along with defining the configuration of the
reconfigurable architecture. In this chapter, the scope of the word configura-
tion is expanded to also include themapping of the application onto the recon-
figurable architecture. Therefore, a configuration consists of two components,
(1) task-to-processor mapping, and (2) configuration of the architecture.
Thus, the word configuration is used in the above sense, unless stated other-
wise. A given application, goal, and resource set define an instance of the PCA
mapping problem. Input to the model is an instance that may change with
time. We define the design space as the set of all feasible combinations of an
instance and a configuration. The solution space for a feasible instance is the
set of all feasible configurations for that instance. Latency, average iteration
period, average power, and peak power are some of the commonly encoun-
tered metrics. With many metrics of simultaneous relevance, the goal space is
too vast to be fully explored before run-time, and run-time adaptation of
configurations is generally advantageous.

Figure 1 illustrates a general model for solving the PCA mapping algo-
rithm with a combination of off-line and on-line techniques. The main com-
ponents of the model are the off-line component, the configuration store (CS),
and the on-line component. The off-line component, whose objective is to
pre-compute a set of efficient candidate mappings for various run-time sce-
narios, can be constructed using existing methods for scheduling, system
synthesis, and multi-objective optimization. The focus of this chapter is
thus on the on-line refinement component and its interaction with the con-
figuration store.
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For a given instance, not every configuration is suitable as some
configurations may violate constraints or may not adequately address resid-
ual objectives. As the goal changes for a given application, the system needs
to derive a suitable adaptation of the run-time configuration. Optimally
solving this problem is undecidable in many contexts. Also, reconfigurability
of the architecture and the stochastic variance of execution times greatly
complicates the solution space consisting of all possible configurations for the
input of a goal and a given application. Since computing a suitable config-
uration is performed during the execution of an application, one can not
apply exhaustive or relatively sophisticated search strategies as those tech-
niques will take away excessive computational resources away from the
application itself. To address this trade-off (thoroughness of dynamic opti-
mization vs. resources drained from the application), our model of the PCA
mapping problem also accounts for the time spent in computing efficient
adaptations of mappings at run-time on the basis of feedback obtained from
execution and identification of bottlenecks, and thus always tries to move

Figure 1 An overview of the system-level reconfiguration framework studied in

this chapter.
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toward an optimal solution. This is taken care of in the on-line refinement
part of the model, which consists of low-complexity algorithms that find
and refine configurations for a given instance. It also consists of feedback
units shown by the ‘‘Identify bottlenecks’’ block in Fig. 1 that takes feedback
from the execution of the configurations and modifies the configurations so
as to better suit the active goal. TheOnlineStats unit in the on-line refinement
part of the model stores short-term statistics that can be used by on-line
algorithms.

A configuration store is used to store high-quality points in the design
space that have been explored so that one can use them later as need be. Thus,
a configuration store keeps tuples of the form {App,g,c}, where App repre-
sents an application, g represents a goal for that application, and c represents
a configuration that satisfies the goal g. Henceforth, storing a configuration in
the configuration store and storing a goal in the configuration store have been
used interchangeably to mean storing a tuple of the above stated form in the
configuration store, unless stated otherwise. The off-line refinement part of
Fig. 1 consists of high-complexity algorithms that yield better solutions. It is
acceptable for them to be of high-complexity as they are used off-line, and do
not compete for resources with the application. In Fig. 1, the STATS unit
stores statistics about the application (e.g., distributions of execution times
for different actors frequencies of occurrence of some particular regions of
the goal space, etc.). Off-line algorithms use these statistics to explore the
solution space for input instances. As soon as the goal or application changes,
an initial configuration is found using the on-line configuration management
component in conjunction with the configuration store. On-line algorithms
keep improving the configuration that is being executed, using the feedback
from the execution. In the meantime, off-line algorithms may keep exploring
areas of the design space and merge the relevant information into the
configuration store (for use in the selection of future initial configurations).

III. CONFIGURATION MANAGEMENT MODEL

The overview of our PCA system synthesis model shows that it is very
adaptive in nature and thus is suitable for applications with stochastic exe-
cution times and time-varying goals. This section develops further details of
this model.

A. Evaluation of Configurations and Goals

It is useful to define some measure of how well a given configuration exe-
cutes for a particular instance. This evaluation measure should allow
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unambiguous comparison between two configurations based on the cur-
rent goal.

Suppose we are given a goal g = [V,mR], where

V ¼ ½ðm1; c1Þ; ðm1; c2Þ; . . . ; ðmK; cKÞ� ð2Þ
We define the quality of a system configuration Cwith respect to goal g,

denotedQg(C) (or simplyQ(C) if g is understood) as the ordered pairQ(C) =
(k,v), where k+ 1 is the index of first unsatisfied constraint in the constraint
vector of g (i.e., the lowest-index constraint in g that is not satisfied by the
configuration), and v is the value obtained for the metric mk+1. If config-
uration C satisfies all n constraints in the constraint vector of g, then we say
that C satisfies g, and in this case, Q(C) = (n + 1, vR), where vR is the value
obtained for the residual objective mR if mR p ? or vR = �l if mR = ?.

In summary, the quality of a configuration measures a configuration
with respect to a given goal, and given a goal and two configuration C1 and
C2 with qualities Q(C1) = (k1,v1) and Q(C2) = (k2,v2) for that instance,
respectively, C1 has higher quality than C2 if

ðk1 > k2Þ or ððk1 ¼ k2Þ and ðv1 < v2ÞÞ: ð3Þ

B. Configuration Store

A configuration store serves as a repository of alternative configurations. A
configuration store can be divided into several sub-stores (sub-CSs), one for
each relevant application. Each sub-CS has some configurations stored in it,
one for a specific combination of goal and resource set. In the later part of this
section, we assume that we are dealing with a fixed application and a fixed
resource set, unless stated otherwise. This does not detract from the applica-
bility of the ideas developed later as they can be generalized to include various
applications and resource sets using the hierarchical model of configuration
store explained above.

Assuming a fixed application and resource set, selecting the goals
whose corresponding configurations should be stored in the configuration
store depends on various factors such as the size of the configuration store,
the optimality of the stored configuration, computational resources drained
from the application during execution by the on-line refinement algorithms,
and the expected or observed frequency of specific goals.

C. Acceptability of Configurations

Notions of acceptability and cover emerge naturally from this concept of
configurations stores, and guide the construction and adaptation of the
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configuration store in our model. For example, one can envision the recon-
figuration process as selecting an acceptable configuration and gradually
tightening the notion of acceptability to guide the on-line refinement process.
The following definition makes these notions precise.

Definition 1 Given two goals g1 and g2, we say that g1 is acceptable
for g2, denoted g1 ! g2, if a configuration that satisfies g1 is an acceptable
implementation for g2. If g1 ! g2, we also say that g1 covers g2. Given a set
A of goals and a specific goal g, the space of g over A (or simply, the space
of g, if A is understood) is { gVqAjg ! gV}. Thus, the space of a goal g is the
set of goals that are acceptably implemented by any configuration that
satisfies g. The space of a goal g is represented by space( g).

The following result, proved and elaborated in [7], shows that the
acceptability of configurations is a particularly well-behaved relation if it is a
partial order.

Theorem 1 If we have a finite set A of relevant goals, and the
acceptability relation is a partial order, then there exists a unique, minimal
set of goals { g1,g2,. . .,gn} such that

[n
i¼1

spaceðgiÞ ¼ A ð4Þ
and this set of goals can be computed in polynomial time in jAj, the number
of relevant goals.

Definition 2 Dominance relation: A point peRn dominates a point
qeRn if pi V qibi = 1,. . .,n, where pi and qi denote the ith components of p
and q, respectively.

One can see that the dominance relation is a partial order [4]. We can
have an acceptability relation between goals based on the dominance
relation where a goal g1 is acceptable for a goal g2 if the constraint vector
of the goal g1 dominates the constraint vector of the goal g2, and the residual
objectives for both goals are same. The following example illustrates an
acceptability relation that is not a partial order.

Example 2 Suppose that we have a single constraint metric, which is
the average iteration period T of the system. Thus, the constraint associated
with a goal g can be expressed as the desired average iteration period T( g).
Suppose that in a particular implementation context, the acceptability
relation g1 ! g2 is defined by T( g1) � T( g2) V DT for some positive real
number DT. Thus, a configuration for g1 can be worse than what is desired
under g2, and still be acceptable for g2, as long as the deviation does not
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exceed the threshold DT. Suppose also that the goals g1, g2, and g3 have
desired average iteration period values of

Tðg1Þ ¼ 5;Tðg2Þ ¼ 5� 3DT

4
and Tðg3Þ ¼ 5� 3DT

2
ð5Þ

One can then see that g1 ! g2 and g2 ! g3 but g1 is not acceptable for g3.
Therefore, this acceptability relation is not transitive and thus is not a
partial order.

An acceptability relation between goals based on the dominance rela-
tion or any other partial order leads to valuable properties such as that ex-
posed by Theorem 1. Also, the dominance relation is a natural candidate
for an acceptability relation among goals, as a configuration correspond-
ing to the dominating goal can be used in place of a configuration corre-
sponding to the dominated goal without violating any constraints. This
motivates our use of the dominance relation in managing configuration
stores. One can observe that our approaches of defining a goal and the
quality of a configuration are all consistent with acceptability based on the
dominance relation.

IV. ON-LINE CONFIGURATION MANAGEMENT

In this section, we define an on-line configuration management framework
called CMF that defines how to choose an initial configuration for a partic-
ular instance, and how the on-line adaptation for that configuration should
proceed. We also formulate problems related to storage of configurations in
the configuration store. These problems and our models to solve them pro-
vide fundamental analysis of the complexity of configuration management
and provide feasible, low-complexity solutions to this problem.

A pseudocode outline of the CMF approach is shown in Fig. 2. The
objective is to provide a framework that imposes minimal constraints on
how reconfiguration is actually performed, while providing systematic sup-
port for managing the reconfiguration process in terms of configuration
stores, performance constraints, and optimization objectives. CMF is a
meta-algorithm because specific details of the architecture, the application,
and the on-line adaptation algorithms are left unspecified, and can be
customized based on the relevant classes of applications and architectures.
This meta-algorithm maintains a current objective at all times, where the goal
is always to improve the current objective without violating any of the
previously satisfied constraints. The function onLineAdaptation takes an
objective metric, a constraint value, and a configuration as inputs, and keeps
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refining the configuration in an effort to continually improve its quality (as
defined in Section III). This function would typically be called within an
enclosing loop that performs any system-dependent re-initialization and re-
invokes the function immediately after the previous invocation of the
function terminates (observe that the function terminates when the current
goal is changed).

Figure 2 The CMF framework for goal-driven reconfiguration. Details of the ad-
justAdaptation phase are elaborated in Fig. 3.
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Pseudocode for the related functions is given in Fig. 4. We have im-
plemented CMF, and simulation results pertaining to it are discussed in
Section V.

A. Issues Related to Configuration Management

Before proceeding with discussion of our experiments with CMF, we first
study some fundamental versions of the problems related to configuration
management, discuss their complexity, and relate aspects of them to well-
studied problems. Two related problems regarding the size of the config-
uration store are as follows.

P1. Find the minimum size configuration store and the goals whose
configurations should be stored in it such that all relevant goals are covered.

P2. If one has a well-defined measure of ‘‘distance’’ between goals
and the goal space is a metric space [3], then for a given fixed size config-
uration store, find the goals whose configurations should be stored such that
the sum of the distances of those goals that are not present in the config-
uration store, from the distance-wise nearest goal present in the configu-
ration store, is minimum.

The following definitions are be helpful to analyze the complexity of
problem P1 and P2.

Definition 3 For a directed graph G(V,E), a subset D of V is a
dominating set if bveV, either veD or there exists ueD, such that (u, v)eE.

Figure 3 Sketch of the adjustAdaptation block for the CMF framework of Fig. 2.
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Definition 4 Minimum dominating set problem. Given a directed
graph, find a minimum dominating set of the graph.

Definition 5 k-median problem. In the k-median problem, we are given
a set of potential facility locations F. Any open facility can provide an
unlimited amount of a certain commodity. There is a set of clients or demand
points D that require service; client jeD has a positive demand of commodity
dj that must be shipped from one of the open facilities. If a facility at location
ieF is used to satisfy the demand of client jeD, the service or transportation
cost incurred is proportional to the distance cij from i to j. This distance

Figure 4 Definition of functions promoteConstraint and demoteCon-
straint from Fig. 2.
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function c is non-negative, symmetric, and satisfies the triangle inequality.
The goal is to determine k potential facility locations at which to open
facilities and an assignment of clients to these facilities so as to minimize
the overall service cost.

Definition 6 Facility location problem. In the facility location problem,
we are given a set of potential facility locations F; building a facility at
location ieF has an associated non-negative fixed cost fi; and any open facility
can provide an unlimited amount of a certain commodity. There is a set of
clients or demand points D that require service; client jeD has a positive
demand of commodity dj that must be shipped from one of the open facilities.
If a facility at location ieF is used to satisfy the demand of client jeD, the
service or transportation cost incurred is proportional to the distance cij from i
to j. The distance function c is non-negative, symmetric, and satisfies the
triangle inequality. The goal is to determine a subset of the set of potential
facility locations at which to open facilities and an assignment of clients to
these facilities so as to minimize the overall total cost.

P1 and P2 can be viewed, respectively, in terms of the well-known prob-
lems of minimum dominating sets and k-medians. To reduce P1 from the
minimum dominating set problem [4], for every vertex in the dominating set
problem, instantiate a goal, and for every edge, instantiate a condition that
the goal corresponding to the source vertex is acceptable to the goal cor-
responding to the sink vertex. The problem P1 related to this set of goals and
the acceptability relation among goals is equivalent to the given minimum
dominating set problem instance. The vertices in the given minimum dom-
inating set problem instance, corresponding to the goals that should be
stored in the configuration store (found by solving P1) constitute a minimum
dominating set for the given minimum dominating set problem instance.
This can be used to show that the problem P1 is NP-hard (see [7] for more
details). However, if the acceptability relation is a partial order, then the
minimum dominating set can be found in polynomial time by picking up
all the vertices with no incoming edges in the graph of the minimum domi-
nating set problem. This is in accordance with Theorem 1 and further under-
scores the advantage of using acceptability relations that are partial orders.

If the associated distance function is defined between any two goals
and the goal space is a metric space, then problem P2 can be modeled in
terms of the k-median problem [2,6], as shown in [7]. For the simple case of a
two-dimensional goal space, a polynomial-time approximation algorithm
with a 3-approximation factor exists for the k-median problem [2].

Configuration management problems P1 and P2 can be viewed as
extreme cases in the sense that in one of them we want to cover all feasible
goals without considering how large the minimum size configuration store
would be (P1), and in the other case, we have a fixed-size configuration store
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and we are trying to find out the maximum number of goals that can be
covered using that configuration store even though that number could be
much less than the total number of relevant goals (P2). A more elaborate
formulation would be one in which we have to pay extra cost for increasing
the size of the configuration store, but in doing so we would gain some
additional service by being able to store more goals in the configuration
store. This way we can explore various trade-offs between the size of the
configuration store versus the number of goals stored in a well-defined way.
For the specific case when a distance function is defined between any two
goals and the goal space is a metric space, these trade-offs can be explored
by modeling this problem as a facility-location problem [3,6,8], as explained
in [7]. A polynomial time algorithm with an approximation guarantee of
1.74 exists for the facility location problem [3].

V. ON-LINE ADAPTATION

In this section, we focus on the metrics of average iteration period and power
consumption, and develop low-complexity, on-line strategies based on heu-
ristics for average iteration period optimization and power optimization as
implementations of the function onLineAdaptation in Fig. 2. Note that the
average iteration period optimization is analyzed to throughput optimization
as average iteration period is defined as the reciprocal of throughput. The
objective is to demonstrate the efficacy of theCMFmodel and show that it can
produce efficient tracking of time-varying application requirements.

The approach of taking feedback from the execution of the applica-
tion makes these on-line methods able to handle even applications with sto-
chastic execution times that have time-varying distributions, in addition to
applications with fixed execution times and applications with stochastic
attributes that have stationary distributions. In general, this on-line refine-
ment formulation can thus be viewed as an approach to tracking the dy-
namics of the goal and the characteristics of the application.

To experiment with CMF, we used a simple heuristic based on load
balancing [13] to optimize average iteration period during online adaptation.
Pseudocode for this heuristic is represented by function adaptT in Fig. 5. In
the pseudocode, moveTask(c,n) is a function that chooses n tasks from a
maximally loaded processor in a configuration c and, randomly, moves them
to appropriate locations on a minimally loaded processor, and returns the
modified configuration. Randomization in choosing tasks from the max-
imally loaded processor provides a low-complexity approach to increase the
explored region of the design space and to calibrate the configuration to
dynamic application characteristics. The function executeT(c,l) is a function
that executes the application according to configuration c for a time interval
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of length l, and returns the average iteration period of the application during
that interval. The value of l depends on the non-determinacy of the applica-
tion. We define the non-determinacy of an application in the following way.

Let the number of possible execution times taken by an actor i be
denoted by ni. We denote the set of ni possible execution times taken by an
actor i as {ti1, ti2, . . . , tini}. The probability of occurrence of a possible
execution time tik for actor i, is denoted by pik, for all k = 1, . . . , ni. The

Figure 5 An online adaptation approach for throughput optimization.
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degree of non-determinacy E is a measure of the overall amount of non-
determinacy in the application, specifically, in the actor execution times, and
is defined as

k ¼
P

i

Pni
k¼1fpikðtik � ti;meanÞ2g

n o
P

ifti;meang2
ð6Þ

where ti,mean denotes the mean execution time of actor i, and is defined as

ti;mean ¼
Xni
k¼1

tik

 !
=ni ð7Þ

Generally, the more non-deterministic the application is, the longer it needs
to be executed to determine an accurate value of average iteration period.

The function adaptT returns a configuration that it deems most
appropriate for average iteration period maximization. Note that if moving
any single task from the maximally loaded processor to the minimally
loaded processor does not improve performance then the heuristic chooses a
pair of tasks to be moved to another processor. This approach of progres-
sively increasing the number of tasks to be moved continues whenever all
combinations for a particular number of tasks have been exhausted. Thus
this approach attempts to make small low-complexity changes first and if
that does not improve performance, the approach gradually reaches toward
higher-complexity changes. The higher complexity changes are larger in
number than small, low-complexity changes, and help the system in escap-
ing from local minima.

In our experiments, inter-processor communication (IPC) per time unit
during the execution is taken as an estimate for relative power consumption.
Since IPC consumes relatively large amounts of power, it is a reasonable
approximation for comparing the power consumption levels of alternative
configurations on a homogeneous multiprocessor. To find a configuration
that reduces the power consumption, we use an approach (called adaptPower)
similar to the adaptT approach used for average iteration period optimiza-
tion, except that the probability of a task on a maximally loaded processor
being transferred to a minimally loaded processor depends upon the IPC
associated with that task. The higher the IPC associated with a task, the
higher its chances are of being transferred to another processor.

VI. EXPERIMENTAL RESULTS

An on-line adaptation scheme for refining a given goal is specified in Fig. 6,
and it is represented as function onlineAdaptation in the CMF pseudocode
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of Fig. 2. In Fig. 6, the appropriate online optimization strategy, such as
the adaptT or adaptPower approaches discussed above, is selected depend-
ing on the current optimization objective and system state. Typically, this
strategy will be drawn dynamically from a library of simple, low-complexity
techniques.

Table 1 shows the performance of our implementation of CMF using
the heuristics developed in Section V for average iteration period optimiza-
tion and power optimization based on various goals applied to several DSP
benchmarks, including fast Fourier transform, filter bank, music synthesis,
and measurement applications. The starting configuration that is refined is
found by using standard critical path scheduling. The critical path length is
computed in terms of average execution times of actors. The set of relevant
metrics M for our experiments is M = {T,P}, where T denotes the average
iteration period of the execution and P denotes the average power consump-
tion. Experiments are reported for the following eight goals.

g1 ¼ fðP; 0:270Þ; ðT; 265Þ; ðP; 0:250Þ; ðT; 255Þ;Pg
g2 ¼ fðT; 260Þ; ðP; 0:240Þ;Tg
g3 ¼ fðP; 0:125Þ; ðT; 180Þ;Pg
g4 ¼ fðT; 165Þ; ðP; 0:110Þ; ðT; 160Þ;Pg
g5 ¼ fðT; 360Þ; ðP; 0:160Þ; ðT; 355Þ; ðP; 0:155Þ; ðT; 350Þ;Pg

Figure 6 On-line adaptation scheme. This is an elaboration of function onLine

Adaptation, which is described in Fig. 2. It is effectively a wrapper for specialized
reconfiguration optimizations.
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g6 ¼ fðT; 345Þ;Pg
g7 ¼ fðT; 215Þ; ðP; 0:040Þ;Tg
g8 ¼ fðP; 0:053Þ; ðT; 215Þ; ðP; 0:050Þ; ðT; 210Þ;Pg
In Table 1, the column entitled ‘‘Goal’’ represents the goal that is ap-

plied to the application. Also, for a non-negative integer k, column mk
denotes the value of a metric of the best configuration found by the on-line
adaptation scheme, after k configurations have been assessed by executing
them for some time. For the same experiments that are reported in Table 1,
Table 2 shows the times at which different constraints associated with the
applied goals are satisfied. For a given goal that is applied to an application,

Table 1 Experimental Results for CMF

Application E Goal Metric m0 m10 m20 m30 m40 m50 m60

fft1 0 g1 T 278 278 278 278 256 254 254

P .273 .269 .269 .269 .204 .226 .226

fft1 .359 g2 T 309 256 251 251 251 252 259

P .242 .282 .278 .278 .278 .257 .221

qmf 0 g3 T 145 242 198 198 186 170 170

P .133 .117 .098 .098 .088 .096 .096

qmf .256 g4 T 142 164 162 162 153 153 153

P .136 .127 .110 .110 .110 .110 .1100

karp 0 g5 T 395 353 346 342 342 342 342

P .131 .158 .156 .148 .148 .148 .148

karp .309 g6 T 450 352 300 342 342 346 346

P .115 .155 .159 .151 .151 .148 .148

meas 0 g7 T 220 212 201 184 184 184 184

P .054 .075 .059 .021 .021 .021 .021

meas .405 g8 T 185 218 212 212 212 210 196

P .064 .018 .037 .037 .037 .019 .040

Table 2 Results for CMF Tracking an Applied Goal

Application E Goal n1 n2 n3 n4 n5

fft1 0 g1 1 37 39 42 —
fft1 .359 g2 7 56 — — —
qmf 0 g3 8 48 — — —

qmf .256 g4 0 13 36 — —
karp 0 g5 4 7 9 28 28
karp .309 g6 16 — — — —
meas 0 g7 8 28 — — —

meas .405 g8 3 17 17 48 —
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ni denotes the number of configurations that were executed in order to assess
them before the ith constraint in the applied goal was satisfied. One can see
that in these experiments, CMF is able to meet the constraints specified in
the given goals within a reasonable number of configurations.

VII. CONCLUSION

In this chapter, we have developed a framework called CMF for on-line
adaptation of system wide configurations of embedded multiprocessors. The
objective was to provide a framework that imposed minimal constraints on
how reconfiguration is actually performed (i.e., the specific optimization
algorithms that are used during offline and online configuration synthesis),
while providing systematic support for managing the reconfiguration pro-
cess in terms of configuration stores, performance constraints, and optimi-
zation objectives. The CMF approach was shown to be effective through
analysis and experimental results on several DSP benchmarks, which dem-
onstrated the ability of CMF to systematically adapt system configurations
toward progressively better solutions for a variety of goals, even in the
presence of significant uncertainties in task execution times.
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Leiden, The Netherlands

I. INTRODUCTION

An appealing and fruitful methodology to deal with exploration or designing
applications–architectures pairs has become known as the Y-chart approach,
[1]. This approach embraces two fundamental notions: the separation of
concerns and the abstraction hierarchy. The concerns are: the application, the
architecture, and the mapping. The abstraction hierarchy, introduced in [2] as
the abstraction pyramid, bridges—whether for exploration or synthesis pur-
poses—the gap between high-level application specification and low-level
architecture specification by defining a number of abstraction levels and a
corresponding stack of Y-charts. At each level, application models, architec-
ture models, and mapping models must match to make exploration and
synthesis feasible.

Several research groups around the globe are currently experimenting
with this methodology, some explicitly and others implicitly. They are,
naturally, all focusing on different application domains that lead to different
views on this methodology. Applications in the realm of automotive, multi-
media, and communications have different requirements, constraints, and
boundary conditions which result in different challenges.

The Leiden Embedded Research Group focuses on applications that
can be specified as parameterized affine nested loop programs (NLPs). The
group has been developing and implementing the Compaan tool chain to
translate such applications from their imperative language specification into

Copyright  2004 by Marcel Dekker, Inc. All Rights Reserved.



Kahn process networks (KPN) [3]. The application specification language is
Matlab or C, and the tool-chain is a compiler through which a range of KPNs
can be obtained for any given application specified as a parameterized NLP.

The processes in the Compaan-generated KPNs are not (completely)
specified in an imperative model of computation because the distance
between that model and the models in which architecture components—in
particular the processing units—are specified is too large. This is not specific
to the application domain for which Compaan is an appropriate translation
tool set; it is a problem that is revealed wherever the Y-chart methodology is
used. Of course, the processes in KPNs may be specified in terms of more
than one model of computation. For example, one could be obtained for the
control data flow graphs model [4] or for one or more dataflow network
models [5].

The Process Network Model (PN) in Compaan is the Kahn process
network (KPN) model [6], which consists of concurrent autonomous pro-
cesses that communicate in a point to point fashion over unbounded FIFO
channels using a blocking–read synchonization. The strength of a process
network is that it uses no global memory and no global scheduler. This makes
KPN very appealing for further implementation into hardware [7].

In the Compaan KPN processes, each process executes an internal
function following a local schedule. At each execution (also referred to as
iteration) this function reads/writes data from/to different FIFOs. An input
port domain (IPD) of a process is the union of the iterations at which the
process’s function reads data from the same FIFO. An output port domain
(OPD) of a process is the union of the iterations at which the function writes
data to the same FIFO. Each FIFO uniquely relates an input port to an out-
put port forming to an instance of the classical producer/consumer pair [8].

One of the tools in the Compaan tool chain is Panda. Panda accepts as
input the description of a polyhedron reduce dependence graph (PRDG) and
transforms this PRDG into a process network. This transformation is done in
a number of steps. One of the steps involved is linearization, in which a high
dimensional data structure (e.g., matrix A[i,j]) is linearized into a single linear
stream of data. In case of Kahn process networks, the linearization model is a
FIFO buffer as shown in Fig. 1. In the top part of this figure, a producer and
consumer process communicate the data array A [i,j] using global memory. In
the linearization step, this communication is replaced with a FIFO buffer,
leading to the producer/consumer processes given in the lower part of Fig. 1.
Observe that in the top part, the indices i and j are used to addressmatrix A. In
the bottom part, the reference to A has been eliminated. The for-loops only
describe an order and data produced by the function and is placed on the
FIFO buffer. There are cases, however, in which a FIFO as the linearization
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model (LM) no longer holds. If the order data produced is different from the
order data needed to be consumed, a FIFO buffer no longer is enough. In [9],
we proposed an extension to the LM, which we called the extended lineariza-
tion model (ELM). This model includes an additional reordering mechanism
that consists of a controller unit and some reordering memory. The ELM
preserves the semantics of the KPN model. As we will show in this chapter,
the ELM can be realized in different ways and each realization has its own
strength and weakness. Based on these realizations, alternative hardware/
software mappings of the Compaan-generated network onto different plat-
forms are feasible.

II. IN ORDER/OUT OF ORDER CASE

Consider the two KPN processes in Fig. 2 with node domains P = {p, I} and
C= {c, K}, respectively that are collections of atomic nodes p(i, j) and c(x,y)
defined on the domains I={(i,j)j 3V jVN^ 1V iVN� 2} andK={(x,y)j 2
V x V N � 1 ^ 2 V y V N � 1}, respectively. In the first process one of the
OPDs is O = {out, J} that is a collection of atomic output ports out(i,j)
defined on the domain J={(i,j)j 3V jVN ^ i+2V j^ 1V iVN� 2}. In the
second process one of the IPDs is I={in,L} that is a collection of atomic input

Figure 1 The standard linearization model.
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ports in(x,y) defined on the domain L= {(x,y)j 2V xV N ^ xV y ^ 2V yV
N}. There is a mapping M (i = x � 1; j = y + 1;) relating these two port
domains. Thus, these two ports form a producer/consumer pair. A token
produced by the atomic node p(i,j) is put on the FIFO channel reserved for the
edge domain (O, I) through the atomic output port out(i,j), and will be
consumed by the atomic node c(x, y) through the atomic input port in(i+1,
j-1) that gets the token from this channel.

Since the KPN processes are sequential processes, no two atomic ports
in a port domain are active at the same time. That is, there is an order among
the atomic output ports in an output port domain, and there is an order
among the atomic input ports in the corresponding input port domain. In [9],
we defined the rank function that expresses in a pseudo-polynomial form this
order of execution in a particular domain. The rank function is derived using
the Ehrhart theory that expresses the number of integral points inside of a
polytope as a pseudo-polynomial expression [10]. A pseudo-polynomial is a
polynomial with periodic coefficients. This theory has been extended recently

Figure 2 A producer and consumer process. Of the producer we show the output

port domains (OPDs) and of the consumer, we show the input port domains (IPDs).
Each OPD is uniquely connected to another IPD via a FIFO. Over this FIFO, tokens
are communicated that adhere to the mapping given by the mapping matrix M. In

this example, OPD1 is connected to IPD2 via FIFO1. The producer/consumer with
the FIFO form an instance of the classical consumer/producer pair.
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for parameterized polytopes [11]. As a consequence, the expression of the
rank function is, in general, a set of pseudo-polynomial expressions depend-
ing on the parameters. Examples of the rank functions will be shown later
when various realizations of the ELM are discussed.

In Compaan, the sequential ordering of atomic nodes firing in a node
domain is in lexicographical order, which means these nodes are scheduled
according to a loop nest. The ordering in which tokens are put on a channel is
the same as the order in which atomic nodes are fired. Because the channel is a
FIFO channel, a consumer can only get the tokens from the channel in the
same order. This represents the in-order case. However, depending on the
lexicographical schedule of the consumer’s atomic nodes, the consumption of
the channel tokens may follow a different order than the order in which these
tokens were put on the channel. This represents the out-of-order case. Towork
correctly in the out-of-order case, a consumer needs a mechanism to restore
the consumption order. This mechanism relays the use of private reordering
memory for temporary storage of tokens. Once stored, the tokens can be con-
sumed in the correct order. This reorder mechanism is modeled as the ELM.

III. THE EXTENDED LINEARIZATION MODEL

The main elements in the extended linearization model are the local reorder-
ing memory and the controller. Because tokens can no longer be read directly
from the FIFO, as they may arrive in the wrong order, they are delivered by
the controller to the function unit. In this way, the controller takes care of
supplying tokens to the consumer function in the right order. In Fig. 3, a

Figure 3 The extended linearization model.
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schematic representation is given of the ELM. It shows the consumer process
(A), the reorder memory (B), and the controller (C).

A. The Process Description (A)

The process description in the ELM is different from the process description
when using the LM. Instead of getting tokens directly from a FIFO, the
function gets tokens from the controller. Thus function call fifo.Get (see
the lower part of Fig. 1) is replaced with the call to the controller function
getFrom.

B. The Memory (B)

The memory stores tokens allowing the controller to reorder tokens into the
order required by the consumer process. Two kinds of memory are possible:
random access memory (RAM) and content addressable memory (CAM).
The two kinds of memory differ in the way they are addressed. The im-
plementation of the controller depends on the type of the memory.

C. The Controller (C)

The controller converts the sequence tokens are produced into the sequence
they have to be consumed. The controller performs this reordering by ad-
dressing the reordering memory (B). This functionality is exposed externally
to the consumer process by the function getFrom(x,y) that returns the token
to function FC for an arbitrary iteration point (x,y).

The behavior of the controller is shown in pseudo code in Fig. 4.
The getReadAddress (x,y) determines the memory address of the token
needed at the iteration (x,y). Next, the controller checks whether the token is
already available at that address by calling the function emptyMem. If the
token is present, it is read from that address by calling the function read-

Figure 4 The components in the controller.
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FromMem. Otherwise, the controller starts to read tokens from the FIFO and
stores them in the memory until the desired token arrives at the address of
interest. The procedure of reading from FIFO is initiated using the function
call readFromFifo. Storing tokens into the memory implies that for each
token read from the FIFO, a certain address is generated. Depending on the
type of memory used, different procedures are available to generate this
address. These procedures are realized as the function getWriteAddress inside
the function readFromFifo.

IV. REALIZATIONS OF THE EXTENDED LINEARIZATION
MODEL

The ELM can be realized in four different ways as shown in Fig. 5. The
realizations differ by the way the function getReadAddress and function
getwriteAddress are implemented and by the type of memory used as re-
ordering memory. To compare the four different realizations, the following
three characteristics are relevant.

The complexity of the addressing mechanism. The computational
complexity of the controller functions getReadAddress and getWrite
Address.

The dimension of the reordering memory. The number of the storage
locations needed to perform the reordering.

The generality of the realization. The class of algorithms for which
Compaan can derive KPNs.

To introduce the four realizations, we use as an example the producer/con-
sumer pair given in Fig. 6. The graphical representation of the domain de-
scriptions of the producer/consumer pair is shown in the top part of Fig. 7.
Because the order in which the producer provides data is different from the
order the consumer consumes, an ELM realization is needed in the lineariza-
tion of the producer/consumer pair.

Figure 5 Four model instances.
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V. PSEUDO-POLYNOMIAL REALIZATION

The pseudo-polynomial realization is based on the fact that the order of the
iterations inside an OPD can be expressed as a pseudo-polynomial, which is
the rank function discussed earlier in this chapter. In general, the getReadAd-
dress function of the controller is a pseudo-polynomial function. In Fig. 7, the
iteration points of the OPD are perfectly enclosed by a shape that we call the

Figure 7 The pseudo-polynomial realization.

Figure 6 Running example.
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linearization shape. The pseudo-polynomial expression is computed by cal-
culating the rank function inside the linearization shape. This consists of
adding several pseudo-polynomials P1, P2, . . . Pn, where n is equal to the
dimension of the linearization shape. For our running example, the rank is the
sum of the two pseudo-polynomials P1 and P2:

rankði; jÞ ¼ P1ði; jÞ þ P2ði; jÞ
P1ði; jÞ ¼ ði� 1Þ * Nþ ð�1=4Þ * i2 � 2 * iþ ½2; 9=4�i
P2ði; jÞ ¼ jþ ð�1=2Þ * iþ ½�3;�7=2�i

rankði; jÞ ¼ �1=4 * i2 þ ðN� 5=2Þ * iþ jþ ½�1;�5=4�i �N

ð1Þ

To obtain the getReadAddress function, the rank needs to be composed with
the mapping M(x,y) and the result is equal to:

getReadAddressðx; yÞ ¼ rankði; jÞBMðx; yÞ ¼ �1=4 * x2

þ ðN� 5=2Þ * xþ y� ½1; 5=4�x �N
ð2Þ

The rank polynomial contains all the information needed by the Consumer
process to reorder the token correctly. For this realization, tokens are written
into the reorder memory following the sequence into which they arrive from
the FIFO. Therefore, the function getWriteAddress is a simple increment. The
dimension of the reorderingmemory is equal to the number of iteration points
in the OPD. For the producer/consumer of Fig. 6, the dimension is equal to
(N � 3) * (N + 4)/2. The computational complexity of addressing the re-
ordering memory can be quite large. It requires the evaluation of a pseudo-
polynomial expression like, for example, the one given in equation 2. In
general, the pseudo-polynomial realization is valid only for the cases when an
OPD is a polytope. Under certain conditions, the realization can be extended
for cases an OPD is not a polytope [12].

VI. LINEAR REALIZATION

The linear realization is based on the classical linearization of an n-dimen-
sional array into a one-dimensional array [13,14]. The classical linearization
shows that a rectangular shape can be addressed using a simple polynomial.
Inspired by this concept, we relax the linearization shape to the smallest rect-
angular that includes the producer domain (OPD). Consequently, the get-
ReadAddress that results is always a simple linear function. The rectangular
linearization shape is shown in Fig. 8, and the rank function is as follows:

rankði; jÞ ¼ ðN� 3Þ * ði� 1Þ þ j� 4 ð3Þ
The getReadAddress function is obtained by composing the rank function
with the mapping function M(x,y), and the final polynomial expression is
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getReadAddressðx; yÞ ¼ rankpði; jÞBMðx; yÞ
¼ ðN� 3Þ * ðx� 1Þ þ y� 4

ð4Þ

The consecutive order inside the linearization shape, however, can get
disturbed. This happens when an OPD doesn’t have a rectangular shape and
therefore, more iteration points are enclosed by the linearization shape than
necessary. As a consequence, these additional iteration points are also ranked
by the rank function, disturbing the consecutive order. Looking at Fig. 8, we
see that after iteration 10 follows iteration 11. However, iteration 11 does not
belong to the OPD. The next iteration belonging to the OPD has rank 12 and
thus the order becomes 10, 11, 12. Consequently, the controller cannot rely
any longer exclusively on the order tokens are read from the FIFO; the elev-
enth token read from the FIFO should be written at the address 12. There-
fore, the controller cannot use a simple increment for the getWriteAddress
function.

Figure 8 The linear realization.
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To recreate the correct sequence of addresses, the controller relays on a
function that assigns to incoming tokens the correct order number inside the
OPD. This function is called the recover function. This function reimplements
at the consumer side the logic used to schedule the iteration points inside the
OPD.

The advantage of this realization, is that the function used to address the
reordering memory is always a linear expression depending on the coordi-
nates of the consumer iteration point. A disadvantage is that need for the
recover function. Moreover, the extra iteration points enclosed by the
linearization shape result in empty memory slots (represented by the ‘‘Nulls’’
in the memory in Fig. 8). In the example, the memory requirement is equal to
the dimension of the linearization shape, i.e., to (N � 3) * (N + 2), but only
half of this space is actually used.

Figure 9 The segment realization.
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VII. SEGMENT REALIZATION

The pseudo-polynomial realization results in good memory usage, but the
addressing formula can be very complex because of the irregularities it con-
tains as expressed by the periodic coefficients. On the other hand, linear real-
ization results in simple addressing but potentially wastes a lot ofmemory.We
now present the segment realization that combines the best features of the two
approaches discussed so far: simple addressing mechanism and efficient
memory usage.

The segment realization is based on the fact that pseudo-polynomials
can be decomposed into a linear part and a nonlinear part as shown in Fig. 10.
The linear part describes the consecutive order, the nonlinear part described
the nonconsecutive order. At the producer side, the order changes at iteration
points, at which the innermost nested loops start to iterate again from their
lower bound value. We say that a nonlinearity occurred at iteration point (IP)
and using the notion of these IPs, the segment realization computes the value
of the pseudo-polynomial using a segment number and a segment displacement
as is shown in Fig. 10. How the segment number and displacement are
computed is explained later in the chapter. Because the segment number and
displacement are pre-computed, a pseudo-polynomial can not be evaluated in

Figure 10 Computation of a pseudo-polynomial using a segment number and a
segment displacement stored in the segment memory.
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a parameterized way, as is possible in the pseudo-polynomial realization.
Thus, parameter values in a NLP must be fixed in order to use the segment
realization.

Writing data into the reordering memory occurs in the same way as in
the pseudo-polynomial realization. The controller writes tokens in the
reordering memory as they arrive from the FIFO. The detection of the IPs
at which the consecutive order get disturbed, is done by the recover function
that duplicates the producer for-loops at the consumer side. With each
occurrence of an IP, a segment number and segment displacement is associated.
Each such number pair is used by the controller to determine the value of the
pseudo-polynomial. Let’s see how writing and reading takes place in the
segment realization. The writing is implemented in the getWriteAddress and
the reading is implemented in the getReadAddress.

Writing a token happens in the following way. Initially, the controller
contains an internal counter that is set to zero. The recover function keeps
track of whether the order is linear or nonlinear. If the order is linear, a token
is read from the FIFO and the internal counter is incremented by one. If the
order is non-linear, the controller allocates a new entry in the segment
memory. It writes in the entry the current value of the iterator in the segment
displacement field and the currently value of the counter in the segment
number field.

In Fig. 9, the producer starts at iteration (1,4), which immediately
results in an IP for iterator i. Consequently, an entry is allocated in the
segment memory at address 0. The counter has a value of 0 and the
iterator is equal to 4, leading to entry (0,4) at address 0. Next, iterator i
moves consecutive to iteration (1,8). At the next iteration of i, an IP occurs
again. A new entry is generated at address 1. The counter value is equal to
5 and the value of i is again 4, leading to the (5,4) entry at address 1 and
so one.

For a particular iteration point of the consumer, the controller deter-
mines the address from where data has to be consumed using a three-step
procedure. The three steps are

Step1: ði; jÞ ¼ Map B ðx; yÞ
Step2: Segment ¼ SegmentMemoryði� istartÞ
Step3: address ¼ SegmentNumber þ j� SegmentDisplacement

ð5Þ

In Fig. 9, the producer starts from the iteration (istart, jstart), which is equal to
(1,4). Suppose the consumer wants to obtain the token for iteration (4,6). In
Step 1, the iteration is mapped in an iteration at the producer and is equal to
(4,6) (i.e., the mapping is identity). In Step 2, the segment is found associated
with this iteration. In Step 2, istart is equal to 1 and i is equal to 4. Thus, the
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segment number is 3, which is address 3 in the segment memory were entry
(14,5) is stored. In Step 3, the address in the reordering memory is calculated
as 14 + 6 � 5 = 15. At address 15, the token is stored that was generated at
the 16th iteration by the producer. This is the token needed by iteration (4,6)
of the consumer as can be verified by inspection in Fig. 9. The memory size of
this realization is equal with the size of the data memory plus the size of the
segment memory. In our example the size of the datamemory is N2/2 + 1/2N
� 6 (the same as the memory size from the pseudo-polynomial realization)
and the size of the segmentmemory is N + 2. Thus, the total memory size is
equal to N2/2 + 3/2N � 4.

VIII. CAM REALIZATION

The content addressable memory (CAM) realization uses CAM as reordering
memory. In CAM, a key is used instead of an address to access the content of
the memory. The entry used in the CAM realization is given in Fig. 11. It
shows that each entry in the CAM consists of a key, the token associated with
the key, and a field called multiplicity. We explain later what the term mul-
tiplicity means. The CAM approach works, because to each token produced
at the producer OPD an unique key can be associated. The controller can
reproduce this key to obtain the token the consumer requires at a particular
iteration.

For the CAM realization, the function getReadAddress generates a key
instead of an address. The generation of the unique key can be done in
different ways. We compute the rank function inside the producer based on a
node domain instead of anOPD.Another possibility would have been to use a
classical linearization polynomial. In general, the shape of a node domain
results in a simple polynomial instead of a pseudo-polynomial and is therefore
easily calculated. Using the rank, a unique number is associated that is equal
to the order of the iteration insidethe node domain of the producer. To

Figure 11 The CAM entry.

Copyright  2004 by Marcel Dekker, Inc. All Rights Reserved.



illustrate this, consider again the producer/consumer pair from Fig. 6.
Suppose that the node domain is defined as

C ¼ fði; jÞj 1V iVN ^ 1V jVNþ 2g
Then the rank is given by

rankði; jÞ ¼ i * Nþ j

By composing the rank with the mapping M(x,y) we obtain the getReadAd-
dress function:

getReadAddressðx; yÞ ¼ x * Nþ y ð6Þ
For a given iteration point (x,y) of the Consumer process, the getRead-

Address function determines the unique key for that iteration using eq. 6. For
this key, the controller checks (using function EmptyMem) if a token already
exists in the CAMby searching all keys for amatch. If nomatch can be found,
the token is not stored yet.

If the key exists, the token associated with the key is retrieved from the
CAM by function readFromMem. If the token doesn’t exist, the controller
keeps loading data from the FIFO into the CAM. This happens in function
ReadFromFifo. To each token the controller loads, it attaches an unique key
given by the function getWriteAddress andmultiplicity number. Loading data
from FIFO stops upon arrival of the token for which the key (as given by
getWriteAddress) is the same as the key the controller is searching for (as given
by getReadAddress). The function getWriteAddress is based on a recover
function similarly to the recover function from the linear realization.

In general, a token is read only once by the consumer process. There are
cases inwhich the same token is readmore than once by the consumer process.
This called a broadcast. A read from a FIFO is destructive and in case of a
broadcast, this would mean that a token needs to be sent over the FIFO as
many times as needed, or that a token needs to be stored in memory and read
from memory as many times as needed. In the CAM realization, we
implemented the latter option as it is more efficient.

To keep track of how many times a token is to be read, we have intro-
duce the notion of multiplicity [12], which indicates how many times a
particular token needs to be read by the consumer process. Each time a token
is consumed, its multiplicity is decremented. When the multiplicity reaches
zero, no other iterationwill need that token and it can be erased. That location
can be reused by other tokens. Thus, using multiplicity, the controller is able
to free memory locations and consequently, this realization uses the smallest
possible amount of memory. The memory size (MS) of the CAM is given by
the next formula

MS ¼ max
ðx;yÞ2C

ðreadðx; yÞ � rankConsumerðx; yÞÞ þ 1 ð7Þ
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where C represents a sub-domain of the consumer domain where no two
points read the same token. In the case from Fig. 6, C is the whole consumer
domain. The read function is the same as the getReadAddress function from
the pseudo-polynomial realization:

readðx; yÞ ¼ �1=4 * x2 þ ðN� 5=2Þ * xþ y� ½1; 5=4�x �N ð8Þ
and the rankConsumer is the function that gives the order of the consumer
iteration points:

rankConsumerðx; yÞ ¼ y2 � 7yþ xþ 11 ð9Þ
According to Eqs. 8 and 9 it results with

MS ¼ max
ðx;yÞ2C

ð�1=4 * x2 þ ðN� 7=2Þx� y2 þ 8y�N� ½11; 45=4�xÞ

The maximum of this formula inside the C domain can be derived using
analitycal methods. In our case for N = 8, we have MS = 10. For more
informations about the read and the rank function, we refer to [9]. The key to
efficient memory usage is the ability to compute the multiplicity for a token.
However, this multiplicity is again computed using the Ehrhart theory and
may again be a pseudo-polynomial.

IX. COMPARING THE DIFFERENT REALIZATIONS

In the previous sections, we have shown four different realizations for ELM.
Each realization has its strength in terms of efficiency of memory usage and
computational complexity of address the memory. In this section we offer
general remarks about the different realizations and summarize the strengths
and weaknesses.

A. General Remarks

1. Linearization Shapes

In the realizations, the linearization shape of the OPD determines the com-
plexity of the getReadAddress implementation. We indicated that when
rectangles are enforced, simple polynomials result. There are application
domains where the rectangular shape is the natural linearization shape, for
example, in imaging. In those cases, the linear realization does not have the
disadvantage of memory wastes and the need for a recover function. On the
other hand, we found more complex linearization shapes in advanced signal
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2. Parameterized Versus Static Realizations

We solved the linearization under the assumption that we want to keep the
problem parameterized in the original parameters of the loo-bounds of the
parameterizedNLPs. If, however, we need to provide a realization for specific
values of these parameters, we can use a much simpler realization of the
controller. The segment realization already shows that. In general, if we can
evaluate the getReadAddress a priori, the controller becomes a simple look-
up table.

3. RAM versus CAM

RAM is the most commonly used form of memory. It is simple, cheap, and
widely available on FPGAs. But more and more, CAMs are also becoming
available. Today, there are FPGA platforms available on the market that
supports CAM blocks with high speed search time [15].

4. Dense Polytopes

In the examples shown so far, we assumed that all nodes in the OPD and IPD
can be enclosed by a linearization shape. There are cases, however, in which
we can find the exact shape, but still not all points are part of the enclosure.
We refer to these points as holes and they are introduced when a four-loop is
used with a stride other than one, or when linear expresions are used that
contain operators like mod, div, floor, ceil, max, or min. The holes affet the
generality of the realizations presented in this chapter. Not all of the discussed
realizations can handle holes. For example, if a linearization shape encloses
holes, these holes also get ranked, thereby disturbing the consecutive order.

5. Recover Function

In three of the presented realizations, the function getWriteAddress is based
on the recover function. For each token read from the FIFO, this function
recovers the iteration at which this token was produced inside the IPD.
Basically such a function duplicates the control from the IPD as a finite state
machine, which can be computationally expensive.

Instead of using the recover function at the consumer, another approach
would be to tag the tokens produced at the OPDwith additional information.
In this way, the controller and memory have the same function as the
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matching unit found in classical Dataflow architectures [16]. The problem in
these matching units was to find a lower bound on its memory, such that a
program would not deadlock. We have shown in Eq. 7 that we can determine
a lower bound on the memory such that no deadlock occurs given the class of
parameterized NLPs.

6. Practical Limitations

The pseudo-polynomial realization depends very much on the ability to
calculate the rank functions. We rely on the polylib library [17], to compute
the rank function. Although this library has proven to be quite stable and
useful, this implementation of the Ehrhart theory is not always able to
compute the rank function. By selecting the linear, segment, or CAM
realization, we are always able to come up with a representation of a KPN.

B. Summary

We have presented four different realizations for ELM. In Fig. 12, we
compare these realizations for the producer/consumer given in Table 1. The
table shows the memory requirements in a symbolic way for parameterN and
when N = 8, the computational complexity of addressing the memory (as
done by function getReadAddress), whether a recover function is needed, and
finally the generality of the approach. We can see that the segment realization
uses more memory than the pseudo-polynomial realization because the
segment part consumes some memory. The advantage of the segment
realization is that the controller can fill the memory in the same order tokens
arrive. The segment realization uses less memory than the linear realization.
The computational complexity of addressings, in the segment or pseudo-
polynomial cases, is less for the segment realization although in both cases a
pseudo-polynomial is evaluated. Finally, we observe that the CAM realiza-

Table 1 Comparison of ELM realizations

Linearization
model Memory size N=8

Computational
complexity Recover Generality

Pseudo N2/2 + 1/2 � N � 6 30 C1 No No

Linear N2 � N � 6 50 C2 � C1 Yes Yes
Segment N2/2 + 3/2 � N � 4 40 C3 f C2 Yes Yes
CAM max(read – rank) 10 C4 f C2 Yes Yes
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tion uses the least amount of memory but may require a relatively complex
addressingmechanism since the CAMrealization requires the computation of
unique keys.

X. CONCLUSIONS

In this chapter, we presented the extended linearization model (ELM). This
model was introduced to solve out-of-order communications of tokens
between a producer and a consumer process. The ELM adds to a process
some additional memory and a controller without violating the Kahn Process
Network semantics; we still use a FIFO between a producer and consumer.
The controller uses the local memory to reorder the tokens in the order the
consumer expects the tokens. In the realization of the ELM, the implementa-
tion of the controller is the difficult part.

To implement the controller, we make a lot of use of the rank function.
This function assigns to an arbitrary iteration a unique rank number that
indicates when it is produced. The rank function is in general a pseudo-
polynomial. We exploit the ability to derive such polynomial at compile time
to find realizations for the ELM at compile time. In the realizations, we
assumed that we only exchange tokens over a FIFO without any additional
information. We did not assume tagging of tokens.

When realizing the ELM, we have seen that four different realizations
exist. The first realization is the pseudo-polynomial realization. It uses
exclusively pseudo-polynomials to solve the reordering case. The advantage
is that we can sove the reordering in a parameterized way. Because in the most
general case pseudo-polynomials are involved, the implementation can be
computationally complex. Also, the pseudo-polynomial can, in practice, not
always be calculated. If we relax the linearization shape to the smallest
rectangular that encloses all iterations, we obtain a more simple implementa-
tion. However, this might be at the expense of inefficient memory usage. If we
want to avoid complex addressing and efficient memory usage, the segment
realization is a good choice, although the solution is no longer parameterized.
Finally, we showed that we can use a key instead of an address to retrieve the
proper tokens. The calculation of this key is, in general, a simple polynomial
that is easy to realize. Also, the CAM realization requires the least amount of
memory to solve the reordering of tokens.

The KNPs derived by Compaan can be simulated using the YAPI
framework [18] or by using the PN-domain in Ptolemy II [19]. In both cases,
we must implement the presented realizations in software. We are currently
able to implement in software, at compile time, the pseudo-polynomial, and

Copyright  2004 by Marcel Dekker, Inc. All Rights Reserved.



CAM realization. For these realizations, we have shown that we can derive
correct implementations. We verified this by running Compaan on a set of
applications written as parameterized NLPs.
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I. INTRODUCTION

Networks on chip (NoC) have received considerable attention recently as a
solution to the interconnect problem in highly-complex chips [3–5,7–9,15,
20,23]. The reason is two-fold. First, NoCs help resolve the electrical prob-
lems in new deep-submicron technologies, as they structure and manage
global wires [3–5,7,8]. At the same time they share wires, lowering their
number and increasing their utilization [7,8]. NoCs can also be energy efficient
and reliable [4], and are scalable compared to buses [9]. Second, NoCs also
decouple computation from communication, which is essential in managing
the design of billion-transistor chips [14,23] NoCs achieve this decoupling
because they are traditionally designed using protocol stacks [22], which
provide well-defined interfaces separating communication service usage from
service implementation [5,23].

Using networks for on-chip communication when designing systems on
chip (SoC), however, raises a number of new issues that must be taken into
account. This is because, in contrast to existing on-chip interconnects (e.g.,
buses, switches, or point-to-point wires), where the communicating modules
are directly connected, in a NoC the modules communicate remotely via
network nodes. As a result, interconnect arbitration changes from centralized
to distributed, and issues like out-of order transactions, higher latencies, and
end-to-end flow control must be handled either by the intellectual property
(IP) block or by the network.
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Most of these topics have already been the subject of research in the field
of computer networks [25] and parallel machine interconnect networks [6].
However, on-chip networks have different properties (e.g., tighter link syn-
chronization) and constraints (e.g., higher memory cost) leading to different
design choices, which ultimately affect the network services.

In this chapter, we compare NoCs and off-chip networks showing both
their similarities and differences. We also explore the differences between
NoCs and existing on-chip interconnects. We present an interface that takes
these issues into consideration. Our interface is aimed at being similar to a
split-transaction bus interface, such as VCI [26], OCP [17] or DTL [18], to
allow simple, low-cost wrappers to bus interfaces, and to allow backward
compatibility with existing IPs. Our interface uses a request-response proto-
col that provides basic read and write operations. But it extends bus interfaces
to fully exploit the power of our NoC [8,20,21]. For example, it offers connec-
tion-based communication where end-to-end flow control and time-related
guarantees (e.g., bounded latency) can be requested.

The chapter is organized as follows. In the next two sections we compare
NoC properties with those of off-chip networks and buses, respectively. In
Section IV, we define the services that we offer in our network. Finally, we
present our conclusions.

II. NETWORKS BROUGHT ON CHIP

Networks have been the subject of research for decades, both in the context of
local and wide-area networks (computer networks) [25], and as an intercon-
nect for parallel machines [6]. Both are very much related to on-chip net-
works, and many of the results in those fields are also applicable on chip.
However, NoC premises are different from off-chip networks and, therefore,
most of the network design choices must be re-evaluated.

NoCs differ from off-chip networks mainly in their constraints and
synchronization. Typically, resource constraints are tighter on chip than off
chip. Storage (i.e., memory) and computation resources are relatively more
expensive, whereas the number of point-to-point links is larger on chip than
off chip [7].

Storage is expensive, because general-purpose on-chip memory, such as
RAMs, occupy a large area. Having the memory distributed in the network
components in relatively small sizes is even worse, as the overhead area in the
memory then becomes dominant.

For on-chip networks, computation also comes at a relatively high cost
compared to off-chip networks. An off-chip network interface usually con-
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tains a dedicated processor to implement the part of the protocol stack to
relieve the host processor from the communication processing. Including a
dedicated processor in a network interface may be not feasible on chip, as the
size of the network interface will become comparable to, or larger than, the IP
to be connected to the network. Moreover, running the protocol stack on the
IP itself may also not be feasible, because often these IPs have one dedicated
function only, and do not have the capabilities to run a network protocol
stack. A cost-effective solution would be to have a dedicated-hardware im-
plementation of the protocol stack.

The number of wires and pins to connect network components is an
order of magnitude larger on chip than off chip [7]. If they are not used
massively for other purposes than NoC communication, they allow wide
point-to-point interconnects (e.g., 300-bit links) [7,15]. This is not possible off-
chip, where links are relatively narrower: 8–16 bits.

On-chip wires are also relatively shorter than off chip [7], allowing a
much tighter synchronization than off chip. This allows a reduction in the
buffer space in the routers because the communication can be done at a
smaller granularity. In the current semiconductor technologies, wires are
also fast and reliable, which allows simpler link–layer protocols (e.g., no need
for error correction, or retransmission). This also compensates for the lack
of memory and computational resources.

In the rest of this section, we list five network issues that have a direct
impact on the NoC cost: reliable communication, deadlock, data ordering,
network flow control and buffering strategy, and time-related guarantees. For
each of them, we discuss the differences and similarities for on- and off-chip
networks.

1. Reliable Communication

A consequence of the tight on-chip resource constraints is that the network
components (i.e., routers and network interfaces) must be fairly simple to
minimize computation and memory requirements. Luckily, on-chip wires
currently provide a reliable communication medium, which can help to
avoid the considerable overhead incurred by off-chip networks for provid-
ing reliable communication. Data integrity can be provided at low cost at
the data link layer. However, data loss also depends on the network
architecture. In most computer networks data is simply dropped if con-
gestion occurs in the network [6,25]. On-chip, dropping data may lead to a
too costly implementation of reliable communication. We show below that
a network that does not drop data can be a much lower-cost solution, at the
peril of introducing the possibility of deadlock.

Copyright  2004 by Marcel Dekker, Inc. All Rights Reserved.



2. Deadlock

Computer network topologies have generally an irregular (possibly dynamic)
structure, which can introduce buffer cycles. In such topologies, packet drop-
ping at the network nodes may be required to avoid deadlocks.

Deadlock can also be avoided without dropping data, for example by
introducing constraints either in the topology or routing. Fat-tree topologies
have already been considered for NoCs, where deadlock is avoided by bounc-
ing back packets in the network in case of buffer overflow [9]. Tile-based
approaches to system design [7,15,24] use mesh or torus network topologies,
where deadlock can be avoided using, for example, a turn-model routing al-
gorithm [6].

An alternative solution for deadlock in NoCs, which takes into con-
sideration that modules connecting to the network are either masters (initi-
ating requests and receiving responses), or slaves (receiving requests and
sending back responses), is to maintain separate virtual networks (with sepa-
rate buffers) for requests and responses [6].

3. Data Ordering

In a network, data sent from a source to a destination may arrive out of order
due to reordering in network nodes, following different routes, or retrans-
mission after dropping. For off-chip networks out-of-order data delivery is
typical. However, for NoCs where no data is dropped, data can be forced
to follow the same path between a source and a destination (deterministic
routing) with no reordering. This in-order data transportation requires less
buffer space, and reordering modules are no longer necessary.

4. Network Flow Control and Buffering Strategy

Network flow control and buffering strategy have a direct impact on the
memory utilization in the network. Wormhole routing requires only a flit
buffer (per queue) in the router, whereas store-and-forward and virtual-cut-
through routing require at least the buffer space to accommodate a packet [6].
Consequently, on-chip, wormhole routing may be preferred over virtual-cut-
through or store-and-forward routing. Similarly, input queuing may be a
lower memory cost alternative to virtual-output-queuing or output-queuing
buffering strategies, because it has fewer queues. Dedicated (lower cost) FIFO
memory structures also enable on-chip usage of virtual-cut-through routing
or virtual-output-queuing for a better performance [20]. However, using vir-
tual-cut-through routing and virtual-output-queuing at the same time is still
too costly [20].
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5. Time-Related Guarantees

Off-chip networks typically use packet switching and offer best-effort services.
Contention can occur at each network node, making latency guarantees very
hard to offer. Throughput guarantees can still be offered using schemes such
as rate-based switching [27] or deadline-based packet switching [19], but with
high buffering costs.

An alternative to provide such time-related guarantees is to use time-
divisionmultiple access (TDMA) circuits, where every circuit is dedicated to a
network connection. Circuits provide guarantees at a relatively low memory
and computation cost. Network resource utilization is increased when the
network architecture allows any leftover guaranteed bandwidth to be used by
best-effort communication [10,20,21].

III. FROM BUSES TO NOCs

Introducing networks (Fig. 1) as on-chip interconnects radically changes the
communication as compared to direct interconnects such as buses or switches
(Fig. 2). This is because of the multi-hop nature of a network, where commu-
nication modules are not directly connected, but separated by one or more
network nodes. This is in contrast with the prevalent existing interconnects
(i.e., buses) where modules are directly connected. The implications of this
change reside in the arbitration (whichmust change from centralized to distri-
buted), and in the communication properties (e.g., ordering, or flow control).

In this section, we list some of these topics, and outline the differences
between NoCs and buses. We refer mainly to buses as direct interconnects
because currently they are the most used on-chip interconnect. Most of the

Figure 1 A network interconnect example. Figure 2 A bus interconnect example.
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bus characteristics also hold for other direct interconnects (e.g., switches [16]).
Multilevel buses are a hybrid between buses and NoCs. For our purposes,
depending on the functionality of the bridges, multilevel buses behave either
like simple buses [2] or like NoCs.

1. Programming Model

The programming model of a bus typically consists of load and store oper-
ations which are implemented as a sequence of primitive bus transactions.
Bus interfaces typically have dedicated groups of wires for command, address,
write data, and read data [1,12,13,17,18,26].

A bus is a resource shared bymultiple IPs. Therefore, before using it, IPs
must go through an arbitration phase, where they request access to the bus,
and block until the bus is granted to them.

A bus transaction involves a request and possibly a response. Mod-
ules issuing requests are called masters, and those serving requests are called
slaves. If there is a single arbitration for a request–response pair, the bus is
called nonsplit. In this case, the bus remains allocated to the master of the
transaction until the response is delivered, even when this takes a long time.
Alternatively, in a split bus, the bus is released after the request to allow trans-
actions from different masters to be initiated. However, a new arbitration
must be performed for the response such that the slave can access the bus [11].

For both split and nonsplit buses, both communication parties have
direct and immediate access to the status of the transaction. In contrast,
network transactions are one-way transfers from an output buffer at the
source to an input buffer at the destination that causes some action at the
destination, the occurrence of which is not visible at the source [6]. The effects
of a network transaction are observable only through additional transactions.
A request–response type of operation is still possible, but requires at least two
distinct network transactions. Thus, a bus-like transaction in a NoC will
essentially be a split transaction.

2. Transaction Ordering

Traditionally, all transactions on a bus are ordered (Peripheral VCI [26],
AMBA [1], DTL [18], or CoreConnect PLB andOPB [12, 13]). This is possible
at low cost, because the interconnect, being a direct link between the com-
municating parties, does not reorder data. However, on a split bus, a total
ordering of transactions on a singlemaster may still cause performance penal-
ties, when slaves respond at different speeds. To solve this problem, recent ex-
tensions to bus protocols allow transactions to be performed on connections.
Ordering of transactions within a connection is still preserved, but between
connections there are no ordering constraints (e.g., OCP [17], or Basic VCI
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[26]). A few of the bus protocols allow out-of-order responses per connection
in their advanced modes (e.g., Advanced VCI [26]), but both requests and
responses arrive at the destination in the same order as sent.

In a NoC, ordering becomes weaker. Global ordering can only be
provided at a very high cost due to the conflict between the distributed nature
of the networks, and the requirement of a centralized arbitration necessary for
global ordering.

Even local ordering, between a source–destination pair, may be costly.
Data may arrive out of order if it is transported over multiple routes. In
such cases, to still achieve an in-order delivery, data must be labeled with se-
quence numbers and reordered at the destination before being delivered.

3. Atomic Chains of Transactions

An atomic chain of transactions is a sequence of transactions initiated by a
single master that is executed on a single slave exclusively. That is, other
masters are denied access to that slave, once the first transaction in the chain
claimed it. This mechanism is widely used to implement synchronization
mechanisms between master modules (e.g., semaphores).

On a bus, atomic operations can easily be implemented, as the central
arbiter will either lock the bus for exclusive use by the master requesting the
atomic chain, or not grant access to a locked slave. In the former case, the
duration the resources are locked is shorter because once a master has been
granted access to a bus, it can quickly perform all the transactions in the chain
(no arbitration delay is required for the subsequent transactions in the chain).
Consequently, the locked slave and the bus can be opened again in a short
time. This approach is used inAMBAandCoreConnect. In the latter case, the
bus is not locked, and can still be used by other modules, however, at the price
of a longer locking duration of the slave. This approached is used in VCI and
OCP.

In aNoC, where the arbitration is distributed, masters do not know that
a slave is locked. Therefore, transactions to a locked slave may still be
initiated, even though the locked slave cannot accept them. Consequently,
to prevent deadlock, these other transactions must be either dropped, or
transactions in the atomic chain must be able to bypass them to be served.
Moreover, the duration a module is kept locked is much longer in case of
NoCs, because of the higher latency per transaction.

4. Deadlock

In buses, deadlock is generally not an issue. Deadlock can still occur at the
application level (e.g., an atomic chain of transactions that locks the bus, but
never unlocks it), but this is not caused by the interconnect itself.
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In a network, deadlock becomes a more important issue, and special
care must be taken in the network design to avoid deadlock. Deadlock is
mainly caused by cycles in the buffers. To avoid deadlock, either network
nodes must drop packets when their buffers are filled, or routing must be
cycle-free. In a NoC, we believe the latter is preferable, because of its lower
cost in achieving reliable communication (see Section II).

A second cause of deadlock is atomic chains of transactions. The reason
is that while a module is locked, the storing transactions of the queue get filled
with transactions outside the atomic transaction chain, blocking access of the
transaction in the chain to reach the locked module. If atomic transaction
chains must be implemented (to be compatible with processors allowing this,
such as MIPS), the network nodes should be able to filter the transactions in
the atomic chain, or be allowed to drop those blocking them.

5. Media Arbitration

An important difference between buses and NoCs is the medium arbitration
scheme. In a bus, master modules request access to the interconnect and the
arbiter grants access for the whole interconnect at once. Arbitration is cen-
tralized as there is only one arbiter component. It is also global as all the
requests as well as the state of the interconnect are visible to the arbiter.
Moreover, when a grant is given, the complete path from the source to the
destination is exclusively reserved.

In a nonsplit bus, arbitration takes place once when a transaction is
initiated. As a result, the bus is granted for both request and response. In a
split bus, requests and responses are arbitrated separately.

In a NoC arbitration is also necessary, as it is a shared interconnect.
However, in contrast to buses, the arbitration is distributed, because it is
performed in every router, and is based only on local information. Arbitration
of the communication resources (links, buffers) is performed incrementally as
the request or response advances [20].

6. Destination Name and Routing

For a bus, the command, address, and data are broadcasted on the inter-
connect. They arrive at every destination, only one of which activates, based
on the broadcasted address, and executes the requested command. This is
possible because all modules are directly connected to the same bus.

In a NoC, it is not feasible to broadcast information to all destinations,
because it must be copied to all routers and network interfaces. This floods the
network with data. The address is better decoded at the source to find a route
to the destinationmodule. A transaction address has, therefore, two parts: (1)
a destination identifier, and (2) an internal address at the destination.
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7. Latency

Transaction latency is caused by two factors: (1) the access time to the bus,
which is the time until the bus is granted, and (2) the latency introduced by the
interconnect to transfer the data.

For a bus, where the arbitration is centralized, the access time is
proportional to the number of masters connected to the bus. The transfer
latency itself typically is constant and relatively low, because the modules are
linked directly. However, the speed of transfer is limited by the bus speed,
which is relatively low.

In a NoC, arbitration is performed at each router for the following link.
The access time per router is short. Both end-to-end access time and transport
time increase proportionally to the number of hops betweenmaster and slave.
However, network links are unidirectional and point to point and, thus can
run at higher frequencies than buses, thus lowering the latency.

From a latency prospective, using a bus or a network is a trade-off
between the number of modules connected to the interconnect (which affects
access time), the speed of the interconnect, and the network topology.

8. Data Format

In most modern bus interfaces the data format is defined by separate wire
groups for the transaction type, address, write data, read data, and return
acknowledgments/errors (e.g., VCI, OCP, AMBA, DTL, or CoreConnect).
This is used to pipeline transactions. For example, concurrently with sending
the address of a read transaction, the data of a previous write transaction can
be sent, and the data from an even earlier read transaction can be received.
Moreover, having dedicated wire groups simplifies the transaction decoding;
there is no need for a mechanism to select between different kinds of data sent
over a common set of wires.

Inside a network, there is typically no distinction between different
kinds of data. Data is treated uniformly and passed from one router to
another. This is done to minimize the control overhead and buffering in
routers. If separate wires would be used for each of the above-mentioned
groups, separate routing, scheduling and queuing would be needed, and the
cost of routers would increase proportionally.

In addition, in a network at each layer in the protocol stack, control
information must be supplied together with the data (e.g., packet type,
network address, or packet size). This control information is organized as
an envelope around the data. That is, first a header is sent, followed by the
actual data (payload), followed possibly by a trailer. Multiple envelopes may
be provided for the same data with each carrying the corresponding control
information for each layer in the network protocol stack [6,25].
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9. Buffering and Flow Control

Buffering data of a master (output buffering) is used both for buses and NoCs
to decouple computation from communication. However, for NoCs output
buffering is also needed to marshal data, which consists of (1) (optionally)
splitting the outgoing data into smaller packets that are transported by the
network, and (2) adding control information for the network around the data
(packet header). To avoid output buffer overflow the master must not initiate
transactions that generate more data than the currently available space.

Similarly to output buffering, input buffering is also used to decouple
computation from communication. In a NoC, input buffering is also required
to unmarshal data.

In addition, flow control for input buffers differs for buses and NoCs.
For buses, the source and destination are directly linked and destination can,
therefore, signal directly to a source that it cannot accept data. This infor-
mation can even be available to the arbiter such that the bus is not granted
to a transaction trying to write to a full buffer.

In a NoC, however, the destination of a transaction cannot signal
directly to a source that its input buffer is full. Consequently, transactions to a
destination can be started, possibly from multiple sources, after the destina-
tion’s input buffer has filled up. Several policies can be adopted when an input
buffer is full. One policy is not to accept additional incoming transitions and
to store them in the network. However, this approach can easily lead to net-
work congestion, as the data could eventually be stored all the way to the
sources, blocking the links in between. Another policy is to accept incoming
transactions at a full destination and drop some data in the input buffer.
Congestion is avoided but data is lost and this is undesirable.

To avoid input buffer overflow, connections can be used together with
end-to-end flow control. At connection set up between a master and one or
more slaves, buffer space is allocated at the network interfaces of the slaves,
and the network interface of the master is assigned credits reflecting the
amount of buffer space at the slaves. The master can only send data when it
has enough credits for the destination slave(s). The slaves grant credits to the
master when they consume data.

IV. THE ÆTHEREAL APPROACH

As described in the previous two sections, NoCs have different properties
from both existing off-chip networks and existing on-chip interconnects. As a
result, existing protocols and service interfaces cannot be adopted directly to
NoCs, but must take the characteristics of NoCs into account. For example, a
protocol such as TCP/IP assumes the network is loss and includes significant
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complexity to provide reliable communication. Therefore, TCP/IP is not
suitable in aNoCwherewe assume data transfer reliability is already solved at
a lower level. On the other hand, existing on-chip protocols such as VCI,
OCP, AMBA, DTL, or CoreConnect are also not directly applicable. For
example, they assume ordered transport of data: if two requests are initiated
from the same master, they will arrive in the same order at the destination.
This does not hold automatically for NoCs. Atomic chains of transactions
and end-to-end flow control also need special attention in a NoC interface.

Our objectives when defining the services of our on-chip network (called
Æthereal) are the following. First, the services abstract from the network
internals as much as possible. This is a key ingredient in tackling the challenge
of decoupling the computation from communication [14,23], which allows IPs
(the computation part), and the interconnect (the communication part) to be
designed independently from each other. As a consequence, our services are
positioned at the transport layer in the ISO-OSI referencemodel [25], which is
the first layer to be independent of the implementation of the network.

Second, we aim at aNoC interface as close as possible to a bus interface.
NoCs can then be introduced nondisruptively: existing IPs, methodologies,
and tools can continue to be used with minor changes. As a consequence, we
use a request–response interface similar to interfaces for split buses [1,12,13,
17,18,26].

Third, our interface extends traditional bus interfaces to fully exploit the
power of NoCs. For example, we offer connection-based communication,
which does not only relax ordering constraints (as for buses), but also enables
new communication properties such as end-to-end flow control based on
credits, or guaranteed throughput [8,20,21]. All these properties can be set for
each connection individually.

A. The Æthereal Connection and Transaction Model

IPs interact with our network [8,20,21] at so-called network interfaces (NI).
NIs provide network interface parts (NIPs) through which the communica-
tion services are accessed. As shown in Fig. 3, a NI can have several NIPs, to
which one or more IPs (computation elements or memories, but not inter-
connection elements) can be connected. Similarly, an IP can be connected to
more than one NI and NIP.

Figure 3 Examples of links between NIs and IPs.
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Communication between NIPs is performed on connections. Connec-
tions are introduced to describe and identify communication with different
properties, such as guaranteed throughput, bounded latency and jitter,
ordered delivery, or flow control. For example, to distinguish and indepen-
dently guarantee communication of 1Mbs and 25Mbs, two connections can
be used. Two NIPs can be connected by multiple connections, possibly with
different properties. Connections (as defined here) are similar to the concept
of threads and connections from OCP and VCI. Where OCP and VCI
connections are used only to relax transaction ordering, we generalize from
only the ordering property to include configuration of buffering and flow
control, guaranteed throughput, and bounded latency per connection.

Æthereal connectionsmust be createdwith the desired properties before
being used. This may result in resource reservations inside the network (e.g.,
buffer space, or percentage of the link usage per time unit). If the requested
resources are not available, the network will refuse the request. After usage,
connections are closed, which leads to freeing the resources occupied by that
connection.

To allow more flexibility in configuring connections and, thus better
resource allocation per connection, the outgoing and return parts of con-
nections are configured independently. For example, a different amount of
buffer space can be allocated in the NIPs at master and slaves, or different
bandwidths can be reserved for requests and responses.

Depending on the requested services, the time to handle a connection
(i.e., creating, closing, modifying services) can be short (e.g., creating/closing
an unordered, lossy, best-effort connection) or significant (e.g., creating/clos-
ing a multicast guaranteed-throughput connection). Consequently, connec-
tions are assumed to be created, closed, or modified infrequently, coinciding
(e.g., with reconfiguration points) when the application requirements change.

Communication takes place on connections using transactions, consist-
ing of a request and possibly a response. The request encodes an operation
(e.g., read, write, flush, test and set, nop) and possibly carries outgoing data
(e.g., for write commands). The response returns data as a result of a
command (e.g., read) and/or an acknowledgment.

Connections involve at least two NIPs. Transactions on a connection
are always started at one and only one of the NIPs, called the connection’s
active NIP (ANIP). All the other NIPs of the connection are called passive
NIPs (PNIP).

There can be multiple transactions active on a connection at a time, but
more generally than for split buses. That is, transactions can be started at the
ANIP of a connection while responses for earlier transactions are pending. If
a connection has multiple slaves, multiple transactions can be initiated
towards different slaves. Transactions are also pipelined between a single
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master–slave pair for both requests and responses. In principle, transactions
can also be pipelined within a slave, if the slave allows this.

A transaction is composed of the following messages (see Fig. 4):

A command message (CMD) is sent by the ANIP, and describes the
action to be executed at the slave connected to the PNIP. Examples
of commands are read, write, test and set, and flush. Commands are
the only messages that are compulsory in a transaction. For NIPs
that allow only a single command with no parameters (e.g., fixed-
size address-less write), we assume the command message still exists,
even if it is implicit (i.e., not explicitly sent by the IP).

An out data message (OUTDATA) is sent by the ANIP following a
command that requires data to be executed (e.g., write, multicast,
and test-and-set).

A return data message (RETDATA) is sent by a PNIP as a consequence
of a transaction execution that produces data (e.g., read, and test-
and-set).

A completion acknowledgment message (RETSTAT) is an optional mes-
sage that is returnedbyPNIPwhen a commandhas been completed. It
may signal either a successful completion or an error. For trans-
actions including both RETDATA and RETSTAT the twomessages can be
combined in a single message for efficiency. However, conceptually,
they exist both to: RETSTAT to signal the presence of data or an error,
and RETDATA to carry the data. In bus-based interfaces RETDATA and
RETSTAT typically exist as two separate signals [1,12,13,17,18,26].

Messages composing a transaction are divided in outgoing messages,
namely CMD andOUTDATA and responsemessages, namely RETDATA, RETSTAT.
Within a transaction, CMD precedes all othermessages, and RETDATA precedes
RETSTAT if present. These rules apply both between master and ANIP, and
PNIP and slave. Examples of transactions are shown in Fig. 5.

We classify connections as follows (see Fig. 6).

A simple connection is a connection between one ANIP and one PNIP.
A narrowcast connection is a connection between one ANIP and one

or more PNIPs, in which each transaction that the ANIP initiates is
executed by exactly one PNIP. An example of the narrow-cast con-
nection is shown in Fig. 7, where the ANIP performs transactions

Figure 4 Transaction composition.
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on an address space that is mapped on two memory modules.
Depending on the transaction address, a transaction is executed on
only one of these two memories.

A multicast connection is a connection between one ANIP and one or
more PNIPs, in which the sent messages are duplicated and each
PNIP receives a copy of those messages. In a multicast connection no
returnmessages are currently allowed, because of the large traffic they
generate (i.e., one response per destination). It could also increase the
complexity in the ANIP because individual responses from PNIPs
must be merged into a single response for the ANIP. This requires
buffer space and/or additional computation for the merging itself.

B. Connection Properties

In this subsection we elaborate on the features that can be configured for a
connection: guaranteed message integrity, guaranteed transaction comple-
tion, various transaction orderings, guaranteed throughput, bounded latency
and jitter, and connection flow control.

Figure 5 Transaction examples.

Figure 6 Connection types. Figure 7 A narrowcast connection.
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1. Data Integrity

Data integritymeans that the content ofmessages is not changed (accidentally
or not) during transport. We assume that data integrity is already solved at a
lower layer in our network, namely at the link layer, because in current on-
chip technologies data can be transported uncorrupted over links. Conse-
quently, our network interface always guarantees that messages are delivered
uncorrupted at the destination.

2. Transaction Completion

A transaction without a response (e.g., a posted write) is said to be complete
when it has been executed by the slave. As there is no response message to the
master, no guarantee regarding transaction completion can be given.

A transaction with a response (e.g., an acknowledged write) is said to be
complete when a RETSTAT message is received from the ANIP*. The trans-
action may either (1) be executed successfully, in which case a success
RETSTAT is returned, (2) fail in its execution at the slave, in which case an
execution error RETSTAT is returned, or (3) fail because of buffer overflow in
a connection with no flow control, in which case it reports an overflow
error. We assume that when a slave accepts a CMD requesting a response,
the slave always generates the response.

In our network, routers do not drop data [21]. Therefore, messages are
always guaranteed to be delivered at the NI. For connections with flow con-
trol, NIs also do not drop data. Therefore, message delivery and, thus, trans-
action completion to the IPs is guaranteed automatically in this case.

However, if there is no flow control, messages may be dropped at the
network interface in case of buffer overflow (see the paragraph on end-to-
end flow control below). All of CMD, OUTDATA, and RETDATAmay be dropped
at the NI. To guarantee transaction completion, RETSTAT is not allowed to be
dropped. Consequently, in the ANIPs enough buffer space must be provided
to accommodate RETSTAT messages for all outstanding transactions. This is
enforced by bounding the number of outstanding transactions.

3. Transaction Ordering

Across different connections no ordering of transactions is defined at the
transport layer.

*Recall that when data is received as a response (RETDATA), a RETSTAT (possibly implicit) is

also received to validate the data.
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There are several points in a connection where order of transactions can
be observed (see Fig. 8): (1) the order in which the master presents CMD

messages to the ANIP, (2) the order in which the CMDs are delivered to the
slave by the PNIP, (3) the order in which the slave presents the responses to
the PNIPs, and (4) the order the responses are delivered to the master by the
ANIP.Note that not all of (2), (3), and (4) are always present.Moreover, there
are no assumptions about the order in which the slaves execute transactions;
we can only observe the order of the responses. We consider the order of the
transaction execution by the slaves to be a system decision and not a part of
the interconnect protocol.

At both ANIP and PNIPs, outgoing messages belonging to different
transactions on the same connection are allowed to be interleaved. For
example, two write commands can be issued, and only afterwords their data.
If the order of OUTDATA messages differs from the order of CMD messages,
transaction identifiers must be introduced to associate OUTDATAS with their
corresponding CMD.

Outgoing messages can be delivered by the PNIPs to the slaves (see Fig.
8b) as follows.

Unordered, which imposes no order on the delivery of the outgoing
messages of different transactions at the PNIPs.

Ordered locally, where transactions must be delivered to each PNIP in
the order they were sent (Fig. 8a), but no order is imposed across
PNIPs. Locally ordered delivery of the outgoing messages can be
provided either by an ordered data transportation, or by reordering
outgoing messages at the PNIP.

Ordered globally, where transactions must be delivered in the order
they were sent, across all PNIPs of the connection. Globally ordered
delivery of the outgoing part of transactions require a costly
synchronization mechanism.

Figure 8 Message ordering is observable at a, b, c, and d.
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Transaction response messages can be delivered by the slaves to the
PNIPs (see Fig. 8c) as follows.

Ordered, when RETDATA and RETSTAT messages are returned in the
same order as the CMDS were delivered to the slave (Figure 8b).

Unordered, otherwise.

When responses are unordered, there must be a mechanism to identify the
transaction to which a response belongs. This is usually done using tags
attached to messages for transaction identification (similar to tags in VCI).

Response messages can be delivered by the ANIP to the master (see Fig.
8d) as follows.

Unordered, which imposes no order on the delivery of responses. Here
also, tags must be used to associate responses with their correspond-
ing CMDS.

Ordered locally, where RETDATA and RETSTAT messages of transactions
for a single slave are delivered in the order the original CMDS were
presented by the master to the ANIP (Fig. 8a). Note that there is no
ordering imposed for transactions to different slaves within the same
connection.

Globally ordered, where all responses in a connection are delivered to
the master in the same order as the original CMDS. When transac-
tions are pipelined on a connection, then globally ordered delivery
of responses require reordering at the ANIP.

All 3 � 2 � 3 = 18 combinations between the above orderings are
possible. Out of these, we define and offer the following two.

An unordered connection is a connection in which no ordering is
assumed in any part of the transactions. As a result, the responses must be
tagged to be able to identify to which transaction they belong. Implementing
unordered connections has low cost, however, they may be harder to use, and
introduce the overhead of tagging.

An ordered connection is defined as a connection with local ordering
for the outgoing messages from PNIPs to slaves (Fig. 8b), ordered responses
at the PNIPs (Fig. 8c), and global ordering for responses at the ANIP
(Fig. 8d). We choose local ordering for the outgoing part because global or-
dering has a too high cost and few uses. The ordering of responses is selected
to allow a simple programming model with no tagging. Global ordering at
the ANIP is possible at a moderate cost, because all the reordering is done
locally in the ANIP.

A user can emulate connections with global ordering of outgoing and
return messages at the PNIPs, using nonpipelined acknowledged transac-
tions, at the cost of high latency.
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4. Connection Latency, Throughput, and Jitter

In our network, throughput can be reserved for connections in a time-division
multiple access (TDMA) fashion, where bandwidth is split in fixed-size slots
on a fixed timeframe. Bandwidth, as well as bounds on latency and jitter, can
be guaranteed when slots are reserved. They are all defined in multiples of the
slots. Throughput, latency and jitter can all be configured independently for
the request and response parts of a connection.

Fully guaranteed-throughput connections (i.e., providing throughput
guarantees on both request and return parts of the connection) can overbook
resources in some cases. For example, when an ANIP opens a guaranteed-
throughput read connection, it must reserve slots for the read command
messages and for the read data messages. The ratio between the two can be
very large (e.g., 1:100), which leads either to a large number of slots, or
bandwidth, being wasted for the read command messages.

To resolve this problem, the request part of a connection can be best
effort, while the response can have guaranteed throughput (or vice versa). For
the example mentioned above, one can use best-effort read messages, and
guaranteed-throughput read-data messages. No global connection guaran-
tees can be offered in this case, but the overall throughput can be higher and
more stable than in the case of using only best-effort traffic.

5. Connection Flow Control

As mentioned earlier, our network guarantees that messages are delivered to
the NI. Messages sent from one of the NIPs are not immediately visible at the
other NIP, because of the multi-hop nature of networks. Consequently,
handshakes over a network would allow only a single message be transmitted
at a time. This limits the throughput on a connection and adds latency to
transactions. To overcome this problem, and achieve better network utiliza-
tion, the messages must be pipelined. In this case, if the data is not consumed
at the PNIP at the same rate it arrives, either flow control must be introduced
to slow down the producer, or datamay be lost because of limited buffer space
at the consumer NI.

We introduce end-to-end flow control at the level of connections, which
requires buffer space to be associated with connections. End-to-end flow
control ensures that messages are sent over the network only when there is
enough space in the NIP’s destination buffer to accommodate them.

End-to-end flow is optional (i.e., to be requested when connections are
opened) and can be configured independently for the outgoing and return
paths. When no flow control is provided, messages are dropped when buffers
overflow. Multiple policies of dropping messages are possible, as in off-chip
networks. Possible scenarios include the oldest message is dropped (milk
policy), or the newest message is dropped (wine policy) [25].
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We opt for a credit-based flow control. Credits are associated with the
empty buffer space at the receiver NI. The sender’s credit is lowered as data is
sent. When the PNIP delivers data to the slave, credits are granted to the
sender. If the sender’s credit is not sufficient to send some data, the NI at the
sender stalls the sending.

C. Use Cases

To illustrate the need for differentiated services on connections, we consider
two examples of traffic. We describe the properties they would use over an
Æthereal connection to meet their traffic requirements.

Video processing streams typically require a lossless, in-order video
streamwith guaranteed throughput, but possibly allow corrupted samples.An
Æthereal connection for such a stream would require the necessary through-
put, ordered transactions, and flow control. If the video stream is produced by
the master, only write transactions are necessary. In this case, with a flow-
controlled connection there is no need to also require transaction completion,
because messages are never dropped, and the write command and its data are
always delivered at the destination. Data integrity is always provided by our
network, even though it may not be necessary in this case.

Another example is that of cache updates which require uncorrupted,
lossless, low-latency data transfer, but ordering and guaranteed throughput
are less important. In this case, a connection would not require any time
related guarantees, because even though an average low latency is required, a
guarantee on low latency is not critical. Low latency can be obtained even
with a best-effort connection. The connection would also require flow con-
trol and guaranteed transaction completion to ensure lossless transactions.
However, no ordering is necessary, because this is not important for cache
updates, and allowing out-of-order transactions can reduce the response time.

V. CONCLUSIONS

In this chapter, we compared networks on chip (NoC) to off-chip networks
(e.g., computer networks) and existing on-chip interconnects (e.g., buses).We
showed that NoCs have many similarities with off-chip networks. However,
they also differ, especially in their resource constraints. For example on a chip,
memory and computation resources are more expensive, while there are more
wires. This makes NoC architectures different from off-chip networks, and
requires rethinking of network services.

We also compared NoCs to existing on-chip interconnects, such as
buses and switches. By directly connecting IP blocks, existing on-chip
interconnects can offer tight coupling between masters and slaves, and global
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arbitration. In NoCs, masters and slaves are completely decoupled, and
the arbitration is distributed over the network nodes. This makes it harder
to provide guarantees, such as bandwidth lower bounds, and transaction
orderings.

We defined a set of NoC services that abstract from the network details.
Using these services in IP design decoupled computation and communication.
We used a request–response transaction model to be close to existing on-chip
interconnect protocols. This eases the migration of current IPS to NoCs. To
fully utilize the NoC capabilities, such as high bandwidth and transaction
concurrency, our services provide connection-oriented communication. Con-
nections can be configured independently with different properties. These
properties include transaction completion, various transaction orderings,
bandwidth lower bounds, latency and jitter upper bounds, and flow control.

Our NoC services are a prerequisite for service-based system design,
which makes applications independent of NoC implementations, makes
designs more robust, and enables architecture-independent quality-of-service
strategies.
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Tiensyrjä, Hemani, A. (2002). A network on chip architecture and design
methodology. In: ISVLSI.

16. Leijten, J. A., van Meerbergen, J. L., Timmer, A. H., Jess, J. A. (1997). Prophid,
a data-driven multi-processor architecture for high-performance DSP. In:
ED&TC.

17. OCP International Partnership (2001). Open Core Protocol Specification.
18. Philips (2001). DTL Protocol Specification. Rev. 2.I.
19. Rexford, J. (1999). Tailoring Router Architectures to Performance Requirements

in Cut-Through Networks. PhD thesis, Univ. Michigan.
20. Rijpkema, E., Goossens, K., Rădulescu, A., Dielissen, J., van Meerbergen, J.,

Wielage, P.,Waterlander, E. (2003). Trade offs in the design of a router with both
guaranteed and best-effort services for networks on chip. DATE.

21. Rijpkema, E., Goossens, K., Wielage, P. (2001). A router architecture for
networks on silicon. In: PROGRESS.

22. Rose, M. T. (1990). The Open Book: A Practical Perspective on OSI. Prentice Hall.

23. Sgori, M., Sheets, M., Keutzer, K., Malik, S., Rabaey, J., Sangiovanni-
Vincentelli, A. (2001). Addressing the system-on-a-chip interconnect woes
through communication-based design. In: DAC.

24. Stravers, P., Hoogerbrugge, J. (2001). Homogeneous multiprocessing and the
future of silicon design paradigms. In: VLSI-TSA.

25. Tanenbaum, A. S. (1996). Computer Networks. Prentice Hall.

26. VSI Alliance (2000). Virtual Component Interface Standard.
27. Zhang, H. (1995). Service disciplines for guaranteed performance service in

packet-switching networks. Proc. of the IEEE 83(10):1374–1396.

Copyright  2004 by Marcel Dekker, Inc. All Rights Reserved.



11
Single-Chip Multiprocessing
for Consumer Electronics

Paul Stravers and Jan Hoogerbugge
Philips Research Laboratories, Eindhoven, The Netherlands

I. INTRODUCTION

The consumer and telecom semiconductor industry is facing two challenges
that need immediate attention. The first challenge is to keep up with the ever-
increasing pace of product launches. The globalized economy increases the
pressure of competitors while bored consumers have acquired a taste for
action and sensation that needs regular reinforcement with new gadgets.
Because the markets are unpredictable, a large share of product launches will
turn out as failures, but the small fraction that does turn into a success can be
sold in high volume and with high margin.

The second challenge for the semiconductor industry is to control the
ever-increasing design complexity of chips, where Moore’s law rules, dic-
tating transistor counts running into the hundreds of millions. These engi-
neering projects must take on a wide range of problems, including failing
design automation tools and strategies, unqualified engineers, insufficient cir-
cuit simulation resources, and serious issues with project quality and man-
agement.

The aggregate of these challenges raises a very serious issue for the
industry, namely how to deliver these extremely complex products to a fast-
moving, competitive, and globalized market. In fact it seems plausible that
only a handful of semiconductor companies will be able to successfully tackle
this problem. The ones that do not will be confined to niche markets and low-
margin products.
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II. MOTIVATION

We propose to take on the challenges with a chip architecture that trivially
scales with Moore’s law due to its regular, homogeneous morphology. In the
past, similar proposals failed or were confined to niche markets, mainly
because they lacked computational efficiency in a sufficiently wide range of
applications. To avoid this trap, we relied on a technology trend that relates
the amount of silicon area spent on memory to silicon area spent on com-
puting logic. This trend can be exploited to achieve high computational effi-
ciency throughout the design hierarchy, while preserving the homogeneous
regularity at the top level of chip architecture.

Embedded computer chips exhibit a trend where with every new gener-
ation an increasing percentage of the chip area is dedicated to memory, while
an ever-decreasing percentage of the chip area is dedicated to computational
structures. This observation can be rationalized as follows. It has long been
known that a balanced computer system is equipped with an amount of
memory that is proportional to the computational power of the processing
unit [1]. Richard Case observed thatmainframe computers follow the rule of 1
memory byte per instruction per second. Like Moore’s law, Case’s ratio has
no rigorous foundation but it has held remarkably well over the four decades
since it was first postulated.

To see how Case’s ratio affects the ratio of computational resources to
memory resources on a chip, we note that each new generation of semi-
conductor process technology reduces the area of both computational and
memory structures by a factor A, while increasing the maximum achievable
clock frequency of a chip by a factor S.

We introduce q, the ratio of memory areaM to compute areaC. For the
left-hand side of Fig. 1 this number is

qt0 ¼
Mt0

Ct0

ð1Þ

After some time s= t1 � t0 a new process generation is introduced and
we scale both Ct0

and Mt0
by a factor A. We maintain the property of a

balanced computing system bymatching the now S times faster compute logic
to an S times larger memory. The result is depicted on the right-hand side of
Fig. 1 where we find

qt1 ¼
SðMt0=AÞ
Ct0=A

¼ Sqt0 ð2Þ

Assuming that new technology generations come at more-or-less regu-
lar intervals s, as was the case with CMOS-technology up to now, we find

qt ¼ q0S
qt=s ð3Þ
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Note that independent from its initial value, qt increases exponentially over
time as long as new silicon process generations are introduced with S > 1.
For CMOS-technology in the past decade, the value of S has been close to 1.4
and the value of s has been close to 2 years.

Eq. 3 points to the conclusion that in the future memory will increas-
ingly dominate the available silicon area, while compute logic will evolve into
a small fraction of the available area. Because the compute logic is getting so
small and the memories so big, the average wiring distance between the two is
becoming relatively large, resulting in reduced system performance and
increased power consumption. This problem can be addressed by clustering
the chip space, where each cluster contains a share of the compute logic
connected to a share of the memory. The clusters are small enough that their
electrical properties are not dominated by the effect of long wires.

An equally important consequence of a high memory-to-compute ratio
is the observation that compute logic is very cheap in terms of area and
therefore we can afford to include compute logic on the chip and then not use
it. This means that a cluster can be equipped with a large number of special
purpose hardware functions that achieve high computational efficiency in
different but narrow application domains.

For example, a cluster could be equipped with hardware functions that
perform video stream processing, plus hardware to perform telecom filtering
operations, plus hardware to perform graphics manipulations, plus some
general purpose DSP and microcontrollers, and so on. Clusters have the
ability to enable or disable each hardware function after manufacturing.
Later, when an application is mapped onto the chip it may turn out that the
memory consumption of the application’s algorithm only allows the use of the
telecom filters in a particular cluster, plus one DSP and nothing else. In this
case all other hardware functions in the cluster simply remain unused.

Figure 1 Effect of technology scaling on the memory-to-compute ratio.
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Because of the high memory-to-compute ratio, wasting most of the compute
resources this way is not very expensive. On the other hand, the most valuable
resource in a cluster ismemory, so the applicationmust be distributed over the
clusters in a way that maximizes the memory utilization.

The advantage of such an organization is that we have field program-
mable hardware without the usual drawback of low computational efficiency.
The computational efficiency is not quite as high as it would have been in a
dedicated solution because we have introduced the overhead of a configurable
switch that is needed to connect the subset of selected hardware functions to
the memory and to each other.

Finally, because every cluster on the chip is capable of efficiently
executing a wide range of algorithms, there is no good reason why one cluster
would need to be equipped with a different set of hardware functions than any
other cluster. If all clusters are designed equal we arrive at the homogeneous
morphology that is so desirable for trivial design scalingwhen new technology
generations are introduced.

An additional but important benefit of a homogeneous architecture is
redundancy. If a certain chip was designedwith n clusters, then if one cluster is
nonfunctional because of fabrication faults, we still have a chip with the same
functionality as the fault-free chip. The only difference is that the chip with
defects has a lower computational power. This need not be a problem because
we only match the chip with an application after fabrication. The faulty chips
are only used for applications that do not demand the highest available
performance.

From an economic point of view this redundancy means that faulty
chips still have a high economic value. The yield of a large homogeneous
multiprocessor can be close to 100%, even if traditional yield models would
have predicted a low yield for chips of that same large size.

III. ARCHITECTURE

The observations made in the previous section suggest a regular structure of
communicating tiles (the uniform clusters). Each tile can be configured to
execute a set of tasks. Assignment of tasks to tiles is statically determined, but
within a tile tasks can dynamically arbitrate for resources such asmemory and
the special purpose coprocessors. Section IV discusses the programming
paradigm from which the tasks are derived.

The details of a suitable inter-tile communication infrastructure is one
of our main research topics. In our CAKE project (Computer Architecture
for a Killer Experience, referring to the sensation that CAKE applications
induce in the user’s mind) we mostly concentrated on a two-dimensional
torus, see Fig. 2.
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As discussed above, the size of the tiles should be small enough so that
they do not suffer too much from long intra-tile wiring. But the tiles should be
large enough to host a significant number of hardware functions to achieve
high levels of computational efficiency on a wide range of applications.

Figure 3 depicts a typical tile design. The blocks labeled SPF represent
the special purpose hardware functions that are key to the computational
efficiency of CAKE chips. Section V discusses the interaction of the SPF
coprocessors and software tasks running on the CPU. There are multiple
memory banks to increase the concurrency and improve throughput. All

Figure 2 Homogeneous network of tiles.

Figure 3 Typical architecture of a tile.
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communication with other tiles on the chip is done by the router. The NIC is
the network interface controller, responsible for the OSI network and trans-
port layers in the communication protocol.

Although CAKE is agnostic with respect to CPU instruction set archi-
tectures, it does require that the CPU support the same bus standard and the
same cache coherence protocol. The CAKE instances that we studied include
a mix of low-power MIPS, mid-range MIPS, and high-performance Trime-
dia [2] CPU. Both MIPS and Trimedia support the same data types and data
alignment (e.g. 32-bit integer, 8-bit integer, etc.), which makes it easy to
communicate across the various instruction set domains without the over-
head of an architecture-independent data interchange format. For example,
it is perfectly all right to share a semaphore between a MIPS task and a
Trimedia task, and therefore a state change in the MIPS domain can unblock
a process in the Trimedia domain with no need for pesky interrupts.

IV. PROGRAMMING

Today’s compiler technology is far from being capable to map sequential
application code written in C or C++ efficiently on a highly parallel archi-
tecture as the CAKE architecture. Therefore, parallelism must be expressed
explicitly in the application code.

CAKE supports various parallel programming paradigms. The most
popular are POSIX threads (also known as pthreads) and YAPI process
networks [3]. Pthreads is an industry standard for parallel programs but it is
only useful for software applications. Process networks have not evolved yet
into an industry standard, but they allow the specification of mixed hard-
ware–software systems.

For complex consumer applications CAKE supports mixed program-
ming paradigms: at the highest hierarchical level the application expresses
task level parallelism using YAPI process networks. Going down in the
hierarchy each YAPI process can contain a complete YAPI subgraph, or it
can contain multiple POSIX threads, or it can contain a simple sequentially
executing process.

In this chapter we concentrate onYAPI process networks. AYAPI case
study is presented in Section VI. A case study with pthreads is presented in
Section VII.

A. Process Networks

YAPI process networks are a derivative of Kahn process networks [4]. A
Kahn process network is a directed graph where nodes correspond to se-
quential processes and edges correspond to FIFOs. All sequential processes
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run in parallel and only communicate and synchronize with each other by
reading from or writing to FIFOs. Processes block when reading from an
empty FIFO.

In the original Kahn definition, FIFOs are infinitely large, so processes
can never block a write operation. Since this is a little impractical for an
embedded system with limited resources, YAPI limits the FIFO size and
consequently introduces block-on-write. Unfortunately this also introduces
the possibility of artificial deadlock. This is a state where the process network
does not make progress, not because of a true deadlock but simply because a
critical process is blocked while attempting to write to a full FIFO. CAKE
remedies this situation by detecting artificial deadlocks at run-time and then
enlarging the critical FIFO [5].

The process network programming paradigm is a simple and convenient
method to code signal processing applications. A signal processing applica-
tion is decomposed in well-defined computations. These computations
become processes that read their operands from incoming FIFOs, compute
results, write these results to outgoing FIFOs, and typically repeat this in an
endless loop.

Because interactionwith the environment is simple andwell-defined, the
code that implements these computations lends itself for reuse in other
applications. Many semiconductor companies have attempted to introduce
the concept of core reuse, where dedicated hardware cores can be reused in
many projects. However, in practice this goal is only achieved as long as only
a few reusable cores are integrated in a system; typically a reusable core
comes with a fat user manual and complex rules for interaction (e.g., a device
driver is needed and interrupt lines and DMA channels, etc.). This complex-
ity makes it very hard to build systems with more than several tens of such
‘‘reusable’’ cores. Yet the technology curve continues to provide ever-larger
numbers of transistors on a chip and, therefore, the current approach to core
reuse is doomed. The properties of process networks make them much better
suited for reuse than VLSI cores.

Note that Kahn process networks are different from dynamic data flow
networks. In particular, an actor in a DDF network has a more explicit
input/output behavior when compared to a Kahn process. Although in gen-
eral DDF networks are more expressive than Kahn networks, their drawback
is the need for explicit implementation choices in the design of the actors. For
example, actors that are more powerful thanKahn processes typically need to
maintain an explicit internal state machine. Kahn processes on the other hand
contain fewer of such implementation choices and therefore can be consid-
ered more abstract and therefore more suitable to behavioral specifications.

In the past the abstract nature of Kahn processes has been problematic
because it often leads to inefficient implementations. The CAKE architecture
and its run-time system have been carefully tuned to efficiently perform
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process context switches and to support an abundance of low-cost, high-speed
semaphore operations, all of which are critical to the efficient execution of
Kahn process networks.

To illustrate this, it only takes 96 cycles from the moment that a process
starts a write () operation to the moment that the next process starts
running on that same processor. In those 96 cycles, semaphore operations,
state saving, schedule activity and state loading take place.

Coding YAPI applications for CAKE is done through a library of C++
classes. For example, a new process foo is created by deriving foo from the
YAPI Process base class. Besides being available for the CAKE architec-
ture, YAPI implementations are also available for workstations so that ap-
plications can be developed and tested on workstations before being ported
to CAKE.

B. Implementation

Mapping of CAKE applications consists of mapping processes on processors.
Objectives are load balancing and minimizing communication. Mapping of
CAKE applications is a two-stage activity: first processes are mapped on tiles,
and second, processes within tiles must be mapped on processors. Tile
allocation is performed statically, while processor allocation within a tile is
performed dynamically. The motivation for this is that dynamic tile alloca-
tion is considered to be too complex in the absence of a high-bandwidth
shared memory between the tiles. Furthermore, dynamic processor alloca-
tion is feasible and typically gives better load balancing than static processor
allocation.

In order to perform a good tile allocation, the CAKE application is
profiled and the computational load of every process and the communication
load through every FIFO is measured. The result is a process network with
weights assigned to processes and FIFO. This is the input of the tile allo-
cator together with a description of the target CAKE architecture. The tile
allocator solves a combinatorial optimization problem where the execution
time, determined by the heaviest loaded tile or inter-tile link, is minimized.

Processor allocation, or process scheduling, is performed dynamically.
Every tile has a pool of ready processes, of which the processors repeatedly
take a process and execute it until it blocks on a FIFO operation. Whenever
the process is unblocked, it may be rescheduled on another processor.
Measures are taken to prevent that processes move too frequently between
processors, which would result in excessive cache coherence traffic between
the processors.

Process scheduling and FIFO operations are implemented very effi-
ciently. The efficiency determines how fine-grain processes can communicate
with each other. In the CAKE implementation it only takes 97 RISC in-

Copyright  2004 by Marcel Dekker, Inc. All Rights Reserved.



structions to resume a runable process after another process blocked on a
FIFO operation.

FIFOs consist of buffer space, a read pointer, a write pointer, a
semaphore data corresponding to the number of valid elements in the buffer,
and a semaphore room corresponding to the number of free spaces in the
buffer. The semaphores are used to implement blocking on reading from an
empty FIFO and writing to a full FIFO. Read and write operations on an
intra-tile FIFO operate directly on the FIFO as shown below.

template<class T> void FIFO: :write(T value) {

P(room); buffer [wptr++] = value; V(data);

}

template<class T> void FIFO: :read(T &value) {

P(data); value = buffer [rptr++]; V(room);

}

In the case of inter-tile FIFOs, the room semaphore is stored at the
writer-side, while the other FIFO data items are stored at the reader-side. A
write operation performs a P operation on room before it sends an active
message [6] containing the data to be written to the reader-side. The active
message handler stores the data in the buffer space and performs a V op-
eration on data. A read operation performs a P operation on data reads
data from the buffer space and sends an active message to the writer-side.
This active message performs a V operation on room. These active messages
back to the writer-side implement flow-control between writer and reader.
Active messages of successive reads can be combined in order to reduce
communication.

V. COPROCESSOR CONTROL

As described in the introduction, processes are either running on a program-
mable processor or they run on a dedicated coprocessor. Which option to
chose for every process is the classical hardware/software codesign question.
In designing the FIFO communication protocol we also asked the question of
what to do in hardware and what in software in order to obtain a flexible,
powerful, cost-efficient, and easy-to-design system.We wanted to do things in
software that is complex to do in hardware or when there is no real need to do
it in hardware. Applying this to FIFO communication leads to the following
division: buffer access, pointer increments, and pointer wrap-around tests in
hardware and semaphore operations in software. It is desirable to perform
semaphore operations in software because of their complexity (waking up
sleeping processes for example).
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Figure 4 focuses on the SPF (coprocessor) part of CAKE. This con-
sists of a multitude of special purpose hardware (labeled SPF in the figure),
plus a controller CPU. The controller CPU performs semaphore operations
on behalf of the coprocessors. To this end control messages are exchanged
between the controller CPU and the coprocessors by means of a dedicated
ring network.

The pseudo code for writing data to a FIFO on a coprocessor looks as
follows (note that this pseudo code is implemented as part of the coprocessor
hardware).

void write(fifo, val)

{

while (room_available = 0)

room_available = get_room (fifo);

store(wptr++, val);

if (wptr == buffer_end)

wptr = buffer_begin;

room_available–;

data_produced++;

if (data_produced == data_produced_limit)

{

put_data(fifo, data_produced);

data_produced = 0;

}

}

To avoid that a coprocessor must request the controller for two sema-
phore operations (a P and a V) on every read or write, we maintain two

Figure 4 The coprocessor control infrastructure.
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counters for a write port to a FIFO. First, room_available contains the
number of free spaces that we can write to before we ask the controller for
free space. Second, data_produced contains the number of data values
that we have written to the FIFO buffer but have not been reported to the
controller yet.

Now back to the pseudo code for writing to a FIFO from a coprocessor
above. First we check the room_available counter. If it is zero we ask the
controller for room. Because the controller may return that no room is
available, we keep asking until get_room returns non-zero. Next, we store
the data in memory, increment the write pointer and test for wrap around.
After decrementing room_available and incrementing data_produced
counters, we test whether enough data has been produced to inform this to
the controller by means of a put_data message. The put_data message
gets as argument how many data have been produced.

The pseudo code for reading from a FIFO is similar to the code for
writing. Instead of get_room and put_data messages, the coprocessor
sends get_data and put_room messages to the controller.

Now the software that runs on the controller. The controller has to
accept four types of messages: get_room, get_data, put_room, and
put_data. get_room is implemented as follows.

int get_room(struct FIFO *fifo)

{

return sem_reset(&fifo->room);

}

get_room calls sem_reset with the room semaphore of the FIFO as
argument. sem_reset resets the value of the semaphore to zero and returns
the previous value of the semaphore. This value is returned to the coprocessor
that sent the get_room message.

put_data is implemented as follows. It increments the data semaphore
of the FIFO by the specified value. Vn(s, n) is semantically equivalent to doing
n times V(s).

void put_data(struct FIFO *fifo, int count)

{

Vn(&fifo->data, count);

}

The implementation of get_data and put_room are similar to
get_room and put_data respectively.

The CAKE coprocessors improve on the described communication
scheme by requesting data/room to the coprocessor before the data_

available / room_available have become zero. This hides the latency
of the get_data / get_room message.
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VI. CASE STUDY: PROCESS NETWORKS

An important aspect of application development for the CAKE architecture
is the design of process networks. Typically an application can be expressed
as many different process networks, all of which are functionally equivalent
but with varying degrees of exposed parallelism. In this section we describe
experiences in the development of a YAPI MPEG2 decoder for CAKE.

One of themost important lessons that we learned is to avoid tight cycles
in the process network graph. An extreme example is shown in Fig. 5. If
process A is sending commands to process B, process B is sending results back
to A, and A is waiting while B executes the commands, then the parallelism is
effectively less than one (i.e., less than one process will be running at a time).
One way to improve this situation is to allow for multiple outstanding com-
mands. An alternative solution is to merge processes A and B.

Another important aspect of mapping applications on the CAKE
architecture is to introduce data parallelism next to task parallelism. Consider
the top process network fragment of Fig. 6. If the IDCT process turns out to
be a performance bottleneck, we can create multiple IDCT processes each
handling a share of the data to be processed. In this example each IDCT
process has its own input and output FIFO and the IQ and ADD processes
write to and read from three FIFOs in a round robin fashion. Alternative
solutions with shared FIFOs with multiple readers and/or writers are also
possible.

Figure 7 shows the performance of the MPEG2 decoder after applying
the transformations discussed above. The speedup of an 8-CPU configura-
tion is 5.4. Moving to a 16-CPU configuration does not improve the speedup
much and should therefore be considered a waste of resources.

Figure 7 shows the phenomenon that speedup benefits more from an
increased number of CPUs per tile than it benefits from an increased number
of tiles. For example, the speedup of a ‘‘4 tiles� 1 CPU’’ configuration is 2.6,
compared to 3.5 for a ‘‘1 tile � 4 CPUs’’ configuration. At first it seems that
this is caused by the fact that the ‘‘4� 1’’ configuration only uses the message
passing network to communicate among the CPUs, while the ‘‘1 � 4’’ con-
figuration only uses shared memory for communication.

Figure 5 A tight cycle in a process network.
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Figure 7 Speedup of the YAPI MPEG2 application.

Figure 6 Introducing data parallelism.
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However, we found that the difference in speedup can mainly be
attributed to the different scheduling opportunities in the two configura-
tions. The static allocation of YAPI tasks to a tile prevents that a ready-
to-run task on tile A can execute on an idle processor of tile B. As a
consequence the ‘‘4 � 1’’ configuration experiences idle CPU cycles even at
times when ready-to-run tasks are waiting on tiles with a busy CPU. In
contrast, the dynamic scheduler running on the ‘‘1 � 4’’ configuration can
keep all 4 CPUs busy as long as there are at least 4 ready-to-run tasks in the
YAPI application graph.

VII. CASE STUDY: MULTITHREADING

The case study in the previous section exploits simple task-level parallelism by
pipelining various MPEG2 functions (e.g., we pipelined IQ, IDCT and
ADD). But it appears that this direction is not very promising because the
degree of pipelining (and hence the potential for parallelism) is not high (i.e.,
at most 3 or 4). With additional data parallelism as shown in Fig. 6 the degree
of parallelism improved to 6 or 7.

In this second case study we focused almost completely on data
parallelism for high definition (HD) video decoding. To reduce synchroniza-
tion overhead we wanted to increase the granularity of the parallel tasks. In
addition, we studied how difficult it is to express data parallelism with
industry standard POSIX threads. Supporting industry standard program-
ming interfaces is important because it opens up the CAKE architecture to a
large installed base of applications.

We downloaded the original nonthreaded MPEG2 decoder from the
mpeg.org website. We then studied the MPEG2 algorithm, looking for
opportunities to introduce parallelism.

A. Code Changes for Multi-Threading

Each 1920 � 1088 MPEG2 high definition picture is composed of at least 68
slices [7]. Intended as a provision for easy transmission error recovery, each
slice can be processed independently from all other slices in the same picture.
Moreover, the start of a new slice in the picture data is announced by a unique
bit pattern called the start code.

So our strategy for a multi-threaded MPEG2 decoder is the following.
The main thread handles all the higher layers of theMPEG2 stream, down to
the picture data. The original function to handle the picture data looks as
follows.
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while(next_start_code()) /* search for unique start

code */

slice ();

Instead of handling slices sequentially, we wanted to handle them con-
currently, processing each slice in its own thread.

while (next_start_code()) {

context [i] = copy_context ();

create_thread(slice, &context [i]);

++i;

}

wait_for_all_unfinished_threads();

The slice () function refers to global state, and sometimes it even
updates global state. For example, while scanning through the compressed
video input buffer, it updates the ‘‘current position’’ pointer. Clearly, with
multiple slice () threads running concurrently there aremultiple ‘‘current’’
positions at the same time. Therefore each thread maintains its own context,
a struct with all state variables that must be kept local to the thread. The
slice () context is initialized by the main thread simply by copying its own
context as it appears when it detects a new slice header in the video input
stream. This is the function of copy_context (). The context structs exist
in the name space of the main thread, and they are recycled after a slice ()

thread dies.
Some references to previously global variables in slice () must now

be converted to references in the thread context. The hardest part really is
finding out what globals are potentially modified by slice (). In our
experiment we did this by reasoning about the MPEG2 algorithm, but there
are also tools in development at Philips Research, Eindhoven to perform such
analysis automatically.

In the case of the global input buffer, it requires nontrivial intervention
to make it thread-safe. The problem with the original code is that it has only
one buffer and just after the last byte is consumed the buffer is refilled with the
next block of input data. This is not acceptable because it is very likely that
there are still other threads with a ‘‘current position’’ pointer that refer to the
old data.

Our solution to this problem is simple: we replace the existing input
buffer with a linked list of buffer segments. Only the main thread can allocate
and fill new segments; the slice () threads only follow the links. The main
thread only recycles a buffer segment after it is sure that all threads referring to
that segment have died. The code for the new buffer scheme is less than 75
lines.
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B. Measurements

We run the multi-threaded application on a single CAKE tile with a variable
number of Trimedia [2] processors.

The success of our effort is measured with two metrics. The first is
speedup as a function of the number of Trimedia CPUs (see Fig. 8). The
secondmetric is the penalty incurred formaking the original code thread-safe.
This is measured as the quotient of the execution times of the thread-safe code
and the original code, both running on a single Trimedia. This number is 1.08.

Figure 8 shows an almost linear speedup for multiprocessors with up to
9 Trimedias. Beyond that point the graph quickly levels off, and in fact it never
exceeds a speedup larger than 10. In the next section we analyze the cause of
this behavior and we suggest a simple remedy.

Figures 9 and 10 show thread activity during the first three pictures of
the HD stream. They clearly show the slice () threads running concur-
rently during picture data. The concurrency disappears completely between
subsequent pictures, as shown by the steep V-shapes at 1/3 and 2/3 of the time
line. Note that themain thread is not shown in the figures, which explains why
only 7 threads are active with 8 CPUs. Toward the end of each picture the
main thread is blocked (waiting for threads to finish) so then all 8 CPUs can
run slice () threads.

Figure 8 Speedup with no optimizations.
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Figure 9 Thread concurrency with 8 CPUs.

Figure 10 Thread concurrency with 12 CPUs.
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C. Interpretation

Beyond 10-way multiprocessing the main thread becomes the bottleneck. It
cannot find new slices fast enough to keep all CPUs busy all the time. The
critical loop in themain thread looks like this (with CPU cycle consumption in
comments).

while (next_start_code()) { /* 200k */

context [i] = copy_context(); /* 4k */

create_thread(slice, &context [i]); /* 1k */

++i;

}

Clearly the bottleneck is a very inefficient implementation of next_
start_code (): it consumes 45 cycles to scan a single byte from the com-
pressed video input buffer! With a little bit of care it is possible to reduce this
number to only 2 or 3 cycles per byte (20x improvement!).

When next_start_code () is fixed, the next thing to look at is
copy_context (). A close examination shows that in fact 90% of the con-
text struct that we copy needs no initialization at all, and so it is possible to
reduce this function to less than 500 cycles.

As a consequence, the optimized main loop is able to start a new thread
every 12.5k cycles (11k + 0.5k + 1k), a 16x improvement. In that case the
main loop can keep up with a real-time HD video stream using only 26 MHz
of a Trimedia CPU (coming from 400MHz in the unoptimized version).With
the bottleneck out of the way, the speedup curve of Fig. 8 is much improved,
making 20-way multiprocessing and beyond a realistic option from the
algorithmic point of view.

As explained in Section III, technology constraints limit the size of a
tile. In particular, with today’s 90 nm technology, a tile with 20 Trimedias
and associated memory is not technically feasible. A much more realistic
choice is 8 Trimedias per tile. Therefore the unoptimized version of the multi-
threaded MPEG2 decoder already provides sufficient parallelism for con-
temporary CAKE instances.

VIII. CONCLUSIONS

A configurable homogeneous multiprocessor is an extremely versatile chip
that can be used to host a wide range of applications for the digital consumer,
telecom terminals, networking andASICmarkets. UsingYAPI as amodeling
language, many different applications can be mapped onto the exact same
configurable chip.
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There aremany advantages to such a platform, including high computa-
tional efficiency and very high performance levels, full programmability for a
short time-to-market, no mask costs, and no test chip tape-outs until a prod-
uct succeeds in a high volume market, and high yield because partially
defective die are tolerated.
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Processors
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I. INTRODUCTION

A technology turning point that made embedded consumer electronics sys-
tems an everyday reality had to be the advent of microprocessors. The tech-
nological developments that allowed single-chip processors (micropro-
cessors) made embedded systems inexpensive and flexible. Consequently,
microprocessor-based embedded systems were introduced into many new
application areas. Currently, embedded programmable microprocessors, in
one form or another (from 8-bit micro-controllers to 32-bit digital signal
processors and 64-bit RISC processors), are everywhere in consumer elec-
tronic devices, home appliances, automobiles, network equipment, industrial
control systems, and so on. Interestingly, we are utilizing more than several
dozens of embedded processors in our day-to-day lives without actually
realizing it. For example, in modern cars such as the Mercedes S-class or
the BMW 7-series, we can find over 60 embedded processors that control a
multitude of functions (e.g., the fuel injection and the anti-lock braking
system [ABS], that guarantee a smooth and foremost safe drive). Further-
more, the employment of embedded microprocessors appears to grow in an
exponential curve.

In this chapter, we describe several characteristics of embedded
processors and investigate how these characteristics have changed over time
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driven by market requirements such as smaller time-to-market windows and
reduced development costs. Subsequently, we discuss two widely employed
strategies to meet such market requirements, namely programmability and
reconfigurability. Finally, we present a possible future direction in embed-
ded processor design that merges both strategies and thereby providing
flexibility in both software and hardware design at the same time.

This chapter is organized as follows. Section II introduces a definition
of embedded systems, discusses the ensuing characteristics of embedded
systems, and provides an in-depth discussion of traditional embedded
processor characteristics. Section III discusses the need for programmability
and several examples of such an approach. Section IV discusses how the use
of reconfigurability affected the embedded processor characteristics. Section
V describes a possible future direction in embedded processor design that
combines programmability and reconfigurability. Furthermore, we show an
example of such an approach called the microcoded reconfigurable embed-
ded processor, also called the MOLEN processor. Section VI concludes by
stating several key observations discussed in this chapter.

II. TRADITIONAL EMBEDDED PROCESSOR
CHARACTERISTICS

An embedded processor is a specific instance of embedded systems in general
and therefore adhere to the characteristics of embedded systems. Since no
generally accepted definition of embedded systems exists, we establish our
own definition in order to facilitate the discussion on embedded system
characteristics and subsequently on embedded processor design issues.

Definition: Embedded systems are (inexpensive) mass-produced ele-
ments of a larger system providing a dedicated, possibly time-con-
strained, service to that system.

Before we highlight the main characteristics of embedded systems, we
would like to comment on our one-sentence definition of them. In most
literature, the definition of embedded systems only states that they provide a
dedicated service—the nature of the service is not relevant in this context—
to a larger (embedding) system. Consequently, when we refer to embedded
systems as mass-produced elements, we draw the separation line between
application-specific systems and embedded systems. We are aware that the
separation line is quite thin in the sense that embedded systems are mostly
indeed application-specific systems. However, we believe that application-
specific systems produced in low volumes can not be considered to be
embedded systems, because they represent a niche market for which com-
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pletely different requirements are valid. For example, cost is unimportant in
a low-volume production scenario contrary to the paramount importance to
achieve low cost for embedded systems. Finally, we include the possibility
for time-constrained behavior in our definition, because even though it is
not characteristic to all embedded systems it constitutes a particularity of a
very large class of them, namely real-time embedded systems.

Clearly, the precise requirements of an embedded system are deter-
mined by its immediate environment. The immediate environment of an
embedded system can be either other surrounding embedded systems in the
larger embedding system or even the world in which the larger system is
placed. We can classify the embedded system requirements into:

Functional requirements are defined by the services that the embedded
system must perform for and when interacting with its immediate
environment. Such services possibly include data gathering and ex-
erting control to their immediate environment. This implies that
some kind of data transformation must be performed within the
embedded system itself.

Temporal requirements are the result of the time-constrained behavior
of many embedded systems, thereby introducing deadlines (ex-
plained later) for the service(s).

Dependability requirements relate to the reliability, maintainability,
and availability of the embedded system in question.

In the light of the previously stated embedded systems definition and
requirements, we briefly point out what we think are the main characteristics
of more traditional embedded processors. Furthermore, we discuss in more
detail the implications that these characteristics have on the specification and
design processes of embedded processors. The first and probably the most
important characteristic of embedded processors is that they are application-
specific. Given that the service (or application in processor terms) is known a
priori, the embedded processor can be and should be optimized for its
targeted application. In other words, embedded processors are definitely not
general-purpose processors that are designed to perform reasonably for a
much wider range of applications. Moreover, the fact that the application is
known beforehand opens the road for hardware/software co-design (i.e., the
cooperative and concurrent design of both hardware and software compo-
nents of the processor). The hardware/software co-design style is very much
particular to embedded processors and has the goal of meeting the processor
level objectives by exploiting the synergism of hardware and software.

Another important characteristic of embedded processors is their static
structure. When considering an embedded processor, the end-user has very
limited access to programming. Most of the software is provided by the
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processor integrator and/or application developer, reside on ROM memo-
ries, and run without being visible to the end-user. The end-user can neither
change nor reprogram the basic operations of the embedded processor, but is
usually allowed to program the embedded system by re-arranging the
sequence of basic operations.

Embedded processors are essentially nonhomogeneous processors and
this characteristic is induced by the heterogeneous character of the process
within which the processor is embedded. Designing a typical embedded
processor does not only mix hardware design with software design, but it
also mixes design styles within each of these categories. To put more light on
the heterogeneity issue, we depicted in Fig. 1 an example of a signal pro-
cessing embedded processor. The heterogeneous character can be seen in
many aspects of the embedded processor design as follows.

Both analog and digital circuits may be present in the system.
The hardware may include microprocessors, microcontrollers, digital
signal processors, and application-specific integrated circuits.

The topology of the system is rather irregular.
The software may include various software modules as well as a
multitasking real-time operating system.

Generally speaking, the intrinsic heterogeneity of embedded processors
largely contributes to the overall complexity and management difficulties
of the design process. However, one can say that heterogeneity is, in the case
of embedded processor design, a necessary evil. It provides better design
flexibility by providing a wide range of design options. In addition, it allows

Figure 1 Signal processing embedded processor example. (From Ref. 7.)
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each required function to be implemented on the most adequate platform
that is deemed necessary to meet the posed requirements.

Embedded processors are mass-produced application-specific elements
separating them from other low-volume produced application-specific pro-
cessors. Embedded processors represent a much larger market segment in
which embedded processor vendors face fierce competition in order to gain
market capitalization. Consequently, this environment imposes a different
set of requirements on the embedded processor design. For example, such
requirements involve the cost/performance sensitivity of embedded proces-
sors and make low cost almost always an issue.

A large number of embedded processors perform real-time processing,
introducing the notion of deadlines. Roughly speaking, deadlines can be
classified into hard and soft real-time deadlines. Missing a hard deadline can
be catastrophic, while missing a soft deadline only results in nonfatal
glitches at most. Both types of deadlines are known a priori much like the
functionality is known beforehand. Therefore, deadlines determine the
minimum level of performance that must be achieved. When facing hard
deadlines, special attention must also be paid to other components within
the larger embedding system that are connected to the embedded processor
in question since they can negatively influence its behavior.

III. THE NEED FOR PROGRAMMABILITY

In the early 1990s, we witnessed a trend in the embedded processor market
that was reshaping the characteristics of traditional embedded processors as
introduced in Section II. Driven by market forces, the lengthy embedded
processor design cycles had to be shortened in order to keep up with or
stay in front of competitors and costs had to be reduced in order to stay
competitive. More specifically, the cost of an embedded processor can be
largely divided into production costs (closely related to the utilized manu-
facturing technology) and development costs (closely related to overall
design cycle). It must be clear that the production costs remain constant
for each produced embedded processor due to the fact that the embedded
processor design must be fixed before entering production. Since we focus
on embedded processor design and not on manufacturing, the issues
concerning production costs are left out of the ensuing discussion. However,
we must note that the complexity of the final embedded processor design
certainly has an impact on production costs. The impact is exhibited by
requiring more steps in the manufacturing process and/or a more expensive
manufacturing process altogether. On the other hand, the development costs
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on a per embedded processor basis can be reduced by amortizing the costs
over a higher production volume. Certainly, this greatly depends on the
market demand and the established market capitalization. Alternatively
and maybe more beneficial is to reduce the design cycle and therefore its
associated costs altogether. In this section, by highlighting the traditional
embedded processors design, we discuss ‘‘large scale’’ programmability that
has been used to address the issues of lengthy design cycles and the asso-
ciated development costs. One could argue that programmability has always
been part of embedded processors. However, programmability introduced
in this section significantly differs from the limited (low-level) program-
mability of traditional embedded processors.

The heterogeneity of embedded systems demands a multitude of em-
bedded processors to be designed for a single system. This was further
strengthened by the fact that semiconductor technology at the time did not
allow large chips to be manufactured. Subsequently, the design of embedded
processors required lengthy design cycles and especially lengthy verification
cycles for the chips and their interfaces. On the other hand, one can argue
that an advantage is that subsequent system design cycles could significantly
be reduced to only one or a few embedded processors that needed to be
redesigned. This delicate balance between long initial design cycles and
possibly shortened subsequent design cycles was disturbed when advances in
semiconductor technology allowed increasingly more gates to be put on a
single chip. As a result, more functionality migrated from a multitude of
embedded processors into a single one. The resulting design of more com-
plex and larger embedded processors did not have a great effect on the initial
design cycles. However, the length of subsequent redesign cycles increased
since the utilization of optimized circuits meant that subsequent designs
were not necessarily easier than the initial ones.

In the search for design flexibility in order to decrease design cycles and
reduce subsequent design costs, functions were separated into time-critical
functions and non-time-critical ones. The embedded processors design
paradigm had shifted from one that was based on the functional require-
ments to one that is based on the temporal requirements. The collection of
non-time-critical functions could then be performed by a single chip (pos-
sibly implemented in a slower technology in order to reduce cost). The
remaining time-critical functions are to be implemented in high-speed
circuits achieving maximum performance. The main benefit of this approach
is that the larger and (possibly) slower chips can be reused in subsequent
designs resulting in shorter subsequent design cycles. While this design para-
digm was born out of market needs (i.e., to reduce design cycles and de-
velopment costs), it is well-known in the design of general-purpose purpose
processors. In the general-purpose processor design paradigm, the processor
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design can be divided into three distinct fields architecture,* implementation,
and realization [5].

In Section II, we stated that more traditional embedded processors
were application-specific and static in nature. However, in this section we
also stated that increasingly more functionality is embedded into a single
embedded processor. Is such a processor still application-specific and can
we still call such a processor an embedded processor? The answer to this
question is affirmative since such a processor is still embedded if the other
constraints (mass-produced, providing a dedicated service, etc.) are
observed. Given that increasing functionality usually implies more exposure
of the processor to the programmer, embedded processors have indeed
become less static as they can now be reused for other application areas due
to their programmability. In light of this all, two scenarios in the design of
programmable embedded processors can be distinguished:

1. Adapt an existing general-purpose architecture and implement it.
This scenario reduces development costs albeit such architectures
must usually be licensed. Furthermore, since such architectures
were not adapted to embedded processors, some development
time is still needed to modify such architectures.

2. Build a new embedded processor architecture from scratch. In this
scenario, the embedded processor development takes longer, but
the final architecture is more focused on the targeted applica-
tion(s) and thus possibly achieves better performance than already
existing general-purpose architectures. Actually, the goal is to
develop an architecture for a collection of similar applications
(called application domain) such that processors can be produced
once and reused when placed in different environments. This
reduces the overall system cost since the development costs are
amortized over a higher number of embedded processors.

Several examples of the first scenario can be found. A well-known
example is the MIPS architecture [13], which has been adapted resulting in
several embedded processor families. In this case, the architecture has been
increasingly adapted toward embedded processors by MIPS Technologies,
Inc., which develops the architecture independently from other embedded
systems vendors. Another well-known example is the ARM architecture [21]
found in many current embedded processors. It is a RISC architecture that
was intended for low-power PCs (1987) at first, but it has been quickly

*The architecture of any computer system is defined as the conceptual structure and functional

behavior as seen by its immediate user.
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adapted to become an embeddable RISC core (1991). Since then the
architecture was modified and extended several times in order to optimize
it for its intended applications. The most well-known version is the Strong-
ARM core, which was jointly developed by Digital Semiconductor and
ARM. This core was intended to provide great performance at an extreme
low-power. The most recent and extended implementation of this architec-
ture was developed by Intel called the Intel PCA Application Processor [14].
Other examples of general-purpose architecture that have been adapted
include: IBM PowerPC [16], Sun UltraSPARC [25], and the Motorola 68k/
Coldfire [18]. An example of the second scenario is the Trimedia VLIW
architecture [22] from Trimedia Technologies, Inc., which was originally
developed by Philips Electronics, N.V. Its application domain is multimedia
processing and processors based on this architecture can be found in
television sets, digital receivers, and other digital video editing boards. It
contains a VLIW processor core that performs non-time-critical functions
and also controls the specialized hardware units that are intended for
specific real-time multimedia processing.

Summarizing, the characteristics mentioned in Section II can be easily
reflected in the three design stages: architecture, implementation, and real-
ization. The characteristic of embedded processors being application-spe-
cific processors is exhibited by the fact that the architecture only contains
those instructions that are really needed to support the application domain.
The static structure characteristic exhibits itself by having a fixed architec-
ture, a fixed implementation, and a fixed realization. The heterogeneity
characteristic exhibits itself by the utilization of a programmable proces-
sor core with other specialized hardware units. Such specialized hardware
units can possibly be implemented on the same chip as the programmable
processor core. Extending this principle further, the heterogeneity of the
embedded processor also exhibits itself in the utilization of different func-
tional units in the programmable processor core. The mass-produced charac-
teristic is exhibiting itself in the realization process by only utilizing proven
technology that therefore should be available, cheap, and reliable. The re-
quirement of real-time processing exhibits itself by requiring architectural
support for frequently used operations, extensively parallel and/or pipelined
(if possible) implementations, and realizations incorporating adequately
high-speed components.

IV. EARLY TIME RECONFIGURABILITY

In the mid-1990s, we witnessed a second trend in the embedded processors
design next to programmability that was likewise reshaping the design meth-

Copyright  2004 by Marcel Dekker, Inc. All Rights Reserved.



odology of embedded processors and consequently redefined some of their
characteristics. Traditionally, the utilization of application-specific inte-
grated circuits (ASICs) was commonplace in the design of embedded proces-
sors resulting in lengthy design cycles. Such an approach requires several roll-
outs of embedded processor chips in order to test/verify all the functional,
temporal, and dependability requirements. Therefore, design cycles of 18
months or longer were commonplace rather than exceptions. A careful step
toward reducing such lengthy design cycles is to utilize reconfigurable
hardware, also referred to as fast prototyping. The utilization of reconfigu-
rable hardware allows embedded processor designs to be mapped early on in
the design cycle to reconfigurable hardware, in particular field-program-
mable gate arrays (FPGAs), giving rise to three advantages. First, the map-
ping requires considerably less time than a chip roll-out and thereby shortens
the development time. Second, the embedded processor functionality can be
tested in an earlier stage and allows more design alternatives to be explored.
Third, the number of (expensive) chip roll-outs is also reduced and thereby
further reduces the development costs. However, the reconfigurable hard-
ware was initially limited in size and speed. The limited size meant that only
partial designs could be tested. Consequently, roll-out of the complete em-
bedded processor design (implemented in ASICs) were still required in order
to verify the overall functionality and performance.

In recent years, reconfigurable hardware technology has progressed
at a fast pace, arriving at the point where embedded processor designs re-
quiring millions of gates can be implemented on such structures. Moreover,
the existing performance gap betwen FPGAs and ASICs is rapidly decreas-
ing. Due to these technological developments, the role of reconfigurable
hardware in embedded processor design has changed considerably. In the
following paragraphs, we revisit the traditional embedded processor char-
acteristics mentioned in Section II and investigate whether they still hold for
the case of FPGA-based embedded processors.

Application-specific Embedded processors built utilizing reconfigur-
able hardware are still application-specific in the sense that the implemen-
tations are still targeting such applications. Utilizing such implementations
for other purposes will prove to be very difficult or even impossible, because
the required performance levels most certainly can not be achieved.

Static structure From a pure technical perspective, the structure of a
reconfigurable embedded processor is not static since its functionality can be
changed during its lifetime. However, in most cases the design implemented
in reconfigurable hardware remains fixed between maintenance intervals.
Therefore, from the user’s perspective the structure of the embedded
processor is still static. In the next section, we explore the possibility that
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the functionality of an embedded processor needs to be changed even during
run-time. In this case, the static structure can be perceived from a higher
perspective, namely the reconfigurable hardware is designed to support only
a fixed (or static) set of implementations.

Heterogeneous This characteristic is still very much present in the case
of reconfigurable embedded processors. We have added additional
technology into the mix in which embedded processors can be realized. For
example, the latest FPGA offering from both Altera, Inc. (Stratix [2]) and
Xilinx, Inc. (Virtex II [29]) integrates memory, logic, I/O controllers, andDSP
blocks on a single chip.

Mass-produced This characteristic is still applicable to current recon-
figurable embedded processors. Early on, reconfigurable hardware was ex-
pensive resulting in its sole utilization for fast prototyping purposes. As the
technology progressed, reconfigurable hardware became cheaper and this
opened the possibility of actually shipping reconfigurable embedded proces-
sors in final products. An important enabling trend (next to reduced cost) that
must not be overlooked is that reconfigurable hardware has also become
more reliable both in production and during operation.

Real-time In the beginning, we witnessed the incorporation of recon-
figurable hardware only for non-’time-critical’ functions. As the technology
of reconfigurable hardware continues to progress and make reconfigurable
hardware much faster, we are also witnessing their incorporation in actual
products where real-time performance is required, such as multimedia
decoders.

V. FUTURE EMBEDDED PROCESSORS

In Sections III and IV, we argued that both programmability and reconfig-
urability have been introduced into the embedded processor design trajec-
tory born out of the need to reduce design cycles and reduce development
costs. In short, programmability allows the utilization of high-level pro-
gramming languages (like C) and makes it easier to support applications on
embedded processors. Reconfigurability allows designs to be tested early on
in terms of functionality and diminishes the need for expensive chip roll-
outs. Merging both strategies is a logical and evolutionary step in embedded
processor design and has enormous potential, especially when considering
that the performance of FPGA is nearing that of ASIC. More precisely, we
believe that the merging encompasses the augmentation of a programmable
processor (core) with reconfigurable hardware, possibly replacing fixed
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(ASICs) hardware. We foresee that such an augmentation will provide
several advantages:

Improved performance compared to a software-only implementation,
because (tuned) specialized hardware implemented on the FPGA
can exploit the parallelism of the supported function and allow the
utilization of other performance-increasing techniques.

Rapid application development since the mentioned augmentation
introduces the possible utilization of high-level programming and
high-level hardware description languages in the design trajectory.

Design flexibility is achieved by allowing design space exploration in
both hardware and software due to the possible utilization of high-
level hardware description programming and hardware description
languages.

These advantages and enabling FPGA technologies have even resulted
in programmable processor cores that are under consideration to be
implemented in the same FPGA structures (e.g., Nios from Altera [1] and
MicroBlaze from Xilinx [30]). However, the utilization of programmable
embedded processors that are augmented with reconfigurable hardware also
poses several issues that must be addressed:

Long reconfiguration latencies. In run-time reconfiguration, such la-
tencies may greatly penalize the performance, because any compu-
tation must be halted until the reconfiguration has finished.

Limited opcode space. The initiation and control of the reconfigura-
tion and execution of various implementations on the reconfigurable
hardware require the introduction of new instructions. This puts
much strain on the opcode space.

Complicated decoder hardware. The multitude of new instructions
greatly increases the complexity of the decoder hardware.

In the following, we introduce and discuss one possible approach [24]
in merging programmability with reconfigurability in the design of embed-
ded processors. The approach utilizes microcode to alleviate the above-
mentioned problems. Microcode consists of a sequence of (simple) micro-
instructions that, when executed in a certain order, performs ‘‘complex’’
operations. This approach allows ‘‘complex’’ operations to be performed on
much simpler hardware. In this section, we consider the reconfiguration
(either off-line or run-time) and execution processes as complex operations.
The main benefits of our approach can be summarized as follows:

Reduced reconfiguration latencies. Microcode used to control the re-
configuration process allows itself to be cached on-chip. This results
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in faster access times to the reconfiguration microcode and thus in
turn reduces the reconfiguration latencies.

Reduced opcode space requirements. By only pointing to microcode
(explained later), we only require (at most) three new instructions to
support any current and future operations.

Reduced decoder complexity. By introducing only a few instructions,
no complex instruction decoding hardware is required.

In Section A, we revisit microcode from its beginnings to its current
implementation within a high-level microprogrammed machine. In Section
B, we discuss in-depth our proposed MOLEN embedded processor. Finally,
in Section C we briefly highlight several other approaches in this field that
are comparable in one way or another.

A. Revisiting Microcode

Microcode, introduced in 1951 by Wilkes [26], constitutes one of the key
computer engineering innovations. Microcode de facto partitioned com-
puter engineering into two distinct conceptual layers, namely, architecture
and implemention. This is in part because emulation allowed the definition
of complex instructions that may have been technologically not implement-
able (at the time they were defined), thus projecting an architecture to the
future. That is, it allowed computer architects to determine a technology-
independent functional behavior (e.g., instruction set) and conceptual
structures providing the following possibilities:

Define the computer’s architecture as a programmer’s interface to the
hardware rather than to a specific technology dependent realization
of a specific behavior.

Allow a single architecture to be determined for a ‘‘family’’ of im-
plementations giving rise to the concept of compatibility. Simply
stated, it allowed programs to be written for a specific architecture
once and run at ‘‘infinitum’’ independent of the implementations.

Since its beginning, as introduced by Wilkes, microcode has been a
sequence of micro-operations (microprograms). Such a microprogram con-
sists of pulses for operating the gates associated with the arithmetical and
control registers. Figure 2 depicts the method of generating this sequence of
pulses. First, a timing pulse initiating a micro-operation enters the decoding
tree and, depending on the setup register R, an output is generated. This
output signal passes to matrix A, which in turn generates pulses to control
arithmetical and control registers, thus performing the required micro-
operation. The output signal also passes to matrix B, which in its turn
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generates pulses to control the setup register R (with a certain delay). The
next timing pulse will therefore generate the next micro-operation in the
required sequence due to the changed register R.

Over the years, Wilkes’s model has evolved into a high-level micro-
programmed machine as depicted in Fig. 3. In this figure, the memory
address register (MAR) is used to store the memory address in the main
memory from which data must be loaded and to which data is stored. The
memory data register (MDR) stores the data that is communicated to or
from the main memory. Furthermore, the control store contains micro-
instructions (representing one or more micro-operations) and the sequencer
determines the next microinstruction to execute. The control store and the
sequencer correspond to Wilkes’s matrices A and B respectively. The
machine’s operation is as follows:

1. The control store address register (CSAR) contains the address of
the next microinstruction located in the control store. The micro-
instruction located at this address is then forwarded to the micro-
instruction register (MIR).

2. The MIR decodes the microinstruction and generates smaller
micro-operation(s) accordingly that need to be performed by the
hardware unit(s) and/or control logic.

3. The sequencer utilizes status information from the control logic
and/or results from the hardware unit(s) to determine the next

Figure 2 Wilkes’ microprogram control model [26].
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microinstruction and stores its control store address in the CSAR.
It is also possible that the previous microinstruction influences
the sequencer’s decision regarding which microinstruction to select
next.

It should be noted that in microcoded engines not all instructions
access the control store. As a matter of fact, only emulated instructions have
to go through the microcode logic. All other instructions will be executed
directly by the hardware (following path (a) in Fig. 3). That is, a microcoded
engine is as a matter of fact a hybrid of the implementation having emulated
instructions and hardwired instructions. We must note that contrary to
some beliefs, from the moment it was possible to implement instructions,
microcoded engines have always had a hardwired core that executes RISC
instructions.

B. Microcoded Reconfigurable MOLEN Embedded Processor

In this section, only a brief description of the MOLEN embedded processor
is given. For a more detailed description we refer to [24,28]. In its most
general form, the proposed machine organization augmented with a recon-
figurable unit is depicted in Fig. 4. In this organization, instructions are
fetched from the main memory and are temporarily stored in the ‘‘instruc-
tion fetch’’ unit. Subsequently, these instructions are fetched by the
‘‘arbiter,’’ which decodes them before issuing them to their corresponding

Figure 3 A high-level microprogrammed machine.
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execution units. Instructions that have been implemented in fixed hardware
are issued to the ‘‘core processing units’’ (i.e., the regular functional units
such as ALUs, multipliers, and divider). Instructions that have been imple-
mented in reconfigurable hardware are issued to the ‘‘reconfigurable unit.’’
Similar to other load/store architectures, the proposed machine organiza-
tion executes data that is stored in the register file and prohibits direct mem-
ory data accesses by hardware units other than the load/store unit(s).
However, there is one exception to this rule, the custom configured unit
(CCU), which embodies the actual reconfigurable hardware (e.g., FPGA), is
also allowed direct memory data access via the ‘‘data fetch/store’’ unit (rep-
resented by a dashed two-ended arrow). This enables the CCU to perform
much better when streaming data accesses are required (e.g., in multimedia
processing). Finally, we introduced the exchange registers (XREGS) which
are utilized to accommodate a more extensive argument passing mechanism
(compared to registers which are restricted in number and size) between the
complex implementations configured on the CCU and the application code
which embeds such implementations.

The reconfigurable unit consists of a custom configured unit (CCU),
which could be for example be implemented by a field-programmable gate
array (FPGA), and the UA-code unit. An operation, which can be as simple
as an instruction or as complex as a piece of code, performed by the
reconfigurable unit is divided into two distinct process phases: set and
execute. The set phase is responsible for configuring the CCU enabling it

Figure 4 The MOLEN machine organization.
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to perform the required operation(s). Such a phase may be subdivided into
two sub-phases: partial set ( p-set) and complete set (c-set). The p-set
sub-phase is envisioned to cover common functions of an application or set
of applications. More spefically, in the p-set sub-phase the CCU is partially
configured to perform these common functions. While the p-set sub-phase
can possibly be performed during the loading of a program or even at chip
fabrication time, the c-set sub-phase is performed during program execu-
tion. In the c-set sub-phase, the remaining part of the CCU (not covered in
the p-set sub-phase) is configured to perform other less common functions
and thus completing the functionality of the CCU. The configuration of the
CCU is performed by executing reconfiguration microcode (either loaded
from memory or resident) in the UA-code unit. Reconfiguration microcode is
generated by translating a reconfiguration file into microcode. In the case
that partial reconfigurability is not possible or not convenient, the c-set
sub-phase can perform the entire configuration. The execute phase is re-
sponsible for actually performing the operation(s) on the (now) configured
CCU by executing (possibly resident) execution microcode stored in the qA-
code unit.

In relation to these three phases, we introduce three new instructions:
c-set, p-set, and execute. Their instruction format is given in Fig. 5. We
must note that these instructions do not specifically specify an operation and
then load the corresponding reconfiguration and execution microcode.
Instead, the p-set, c-set, and execute instructions directly point to the
(memory) location where the reconfiguration or execution microcode is
stored. In this way, different operations are performed by loading different
reconfiguration and execution microcodes. That is, instead of specifying new
instructions for the operations (requiring instruction opcode space), we
simply point to (memory) addresses. The location of the microcode is
indicated by the resident/pageable-bit (R/P-bit) which implicitly determines
the interpretation of the address field (i.e., as a memory address a (R/P=1)
or as a U-CONTROL STORE address qCS-a (R/P=0) indicating a location
within the ql-code unit). This location contains the first instruction of the
microcode which must always be terminated by an end_op microinstruction.

Figure 5 The p-set c-set, and execute instruction formats.
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The qA-code unit. The ql-code unit can be implemented in con-
figurable hardware. Since this is only a performance issue and not a con-
ceptual one, it is not considered in further detail. In this presentation, for
simplicity, we assume that the qA-code unit is hardwired. The internal orga-
nization of the ql-code unit is given in Fig. 6. In all phases, microcode is
used to perform either reconfiguration of the CCU or control the execution
on the CCU. Both types of microcode are conceptually the same and no dis-
tinction is made between them in the remainder of this section. The ql-code
unit comprises twomain parts: the SEQUENCER and the q-CONTROLSTORE. The
SEQUENCER mainly determines the microinstruction execution sequence and
the q-CONTROL STORE is mainly used as a storage facility for microcodes. The
execution of microcodes starts with the SEQUENCER receiving an address from
the ARBITER and interpreting it according to the R/P-bit. When receiving a
memory address, it must be determined whether the microcode is already
cached in the q-CONTROL STORE or not. This is done by checking the RESI-

DENCE TABLE which stores the most frequently used translations of memory
addresses into q-CONTROL STORE addresses and keeps track of the validity of

Figure 6 ql-code unit internal organization.
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these translations. It can also store other information: least recently used
(LRU) and possibly additional information required for virtual addressing
support. In the remainder we assume that the system only allows for real ad-
dressing for simplicity of discussion. In the cases that a qCS-a is received or a
valid translation into a UCS-a is found, it is transferred to the ‘‘determine next
microinstruction’’ block. This block determines which (next) microinstruc-
tion needs to be executed.

When receiving address of first microinstruction: Depending on the R/
P-bit, the correct qCS-a is selected, i.e., from instruction field or
from RESIDENCE TABLE.

When already executing microcode: Depending on previous micro-
instruction(s) and/or results from the CCU, the next microinstruc-
tion address is determined.

The resulting qCS-a is stored in the q-control store address register (qCSAR)
before entering the q-CONTROL STORE. Using the qCS-a, a microinstruction is
retrieved from the q-CONTROL STORE and then stored in the microinstruction
register (MIR) before it controls the CCU reconfiguration or before it is exe-
cuted by the CCU.

The q-CONTROL STORE comprises two section,* namely a set section
and an execute section. Both sections are further divided into a fixed part
and pageable part. The fixed part stores the resident reconfiguration and
execution microcode of the set and execute phases, respectively. Resident
microcode is commonly used by several invocations (including reconfigura-
tions) and it is stored in the fixed part so that the performance of the set and
execute phases is possibly enhanced. Which microcode resides in the fixed
part of the q-CONTROL STORE is determined by performance analysis of vari-
ous applications and by taking into consideration various software and hard-
ware parameters. Other microcodes are stored in memory and the pageable
part of the q-CONTROL STORE acts like a cache to provide temporal storage.
Cache mechanisms are incorporated into the design to ensure the proper
substitution and access of the microcode present in the q-CONTROL STORE.

C. Other Reconfigurability Approaches

In the previous subsection, we introduced a machine organization where the
hardware reconfiguration and the execution of the reconfigured hardware was
done in firmware via the q-microcode (an extension of the classical microcode
to include reconfiguration and execution for resident and non-resident

*Both sections can be identical, but are probably only differing in microinstruction word sizes.
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microcode). The microcode engine was extended with mechanisms that allow
for permanent and pageable reconfiguration and execution microcode to
coexist. We also provided partial reconfiguration possibilities for ‘‘off-line’’
configuration and prefetching of configurations. Regarding related work, we
considerd more than 40 machine proposals. We report here a number of
them that somehow use some partial or total reconfiguration prefetching. It
should be noted that our scheme is rather different in principle from all
related work as we use microcode, pageable/fixed local memory, hardware
assists for pageable reconfiguration, partial reconfigurations, etc. As it will be
clear from the short description of the related work, we differentiated from
them in one or more mechanisms.

The programmable reduced instruction set computer (PRISC) [19]
attaches a programmable functional unit (PFU) to the register file of a pro-
cessor for application-specific instructions. Reconfiguration is performed
via exceptions. In an attempt to reduce the overhead connected with FPGA
reconfiguration, Hauck proposed a slight modification to the PRISC archi-
tecture in [11]: an instruction is explicitly provided to the user that behaves like
a NOP if the required circuit is already configured on the array, or is in the
process of being configured. By inserting the configuration instruction before
it is actually required, a so-called configuration prefetching procedure is
initiated. At this point the host processor is free to perform other computa-
tions, overlapping the reconfiguration of the PFU with other useful work.
TheOneChip introduced byWittig and Chow [27] extends PRISC and allows
the PFU for implementing any combinational or sequential circuits, subject
to its size and speed. The system proposed by Trimberger [23] consists of a
host processor augmented with a PFU, reprogrammable instruction set
accelerator (RISA), much like the PRISC mentioned above. Concerning
the management and control of the reprogramming procedure, Trimberger
mentions that the RISA reconfiguration is under control of a hardwired
execution unit. However, it is not obvious if an explicit SET instruction is
available. The reconfigurable multimedia array coprocessor (REMARC)
proposed by Miyamori and Olukotun [17] augments the instruction set of
a MIPS core. As the coprocessor does not have a direct access to the main
memory, the host processor must write the input data to the coprocessor data
registers, initiate the execution, and finally read the results from the co-
processor data registers. An explicit reconfiguration instruction is provided.
Garp, designed by Hauser and Wawrzynek [12], is another example of a
MIPS-derived custom computing machine (CCM). The FPGA-based co-
processor has direct access to the standard memory. The MIPS instruction
set is augmented with several nonstandard instructions dedicated to loading
a new configuration, initiating the execution of the newly configured com-
puting facilities, moving data between the array and the processor’s own
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registers, saving/retrieving the array states, branching on conditions pro-
vided by the array and so on. The coprocessor is aimed to run autonomously
with the host processor. In the OneChip-98 introduced by Jacob and Chow
[15], the computing resources are loaded on demand when a miss is detected.
Alternatively, the resources are preloaded by using compiler directives. Sev-
eral comments regarding these assertions are noteworthy. If an on-demand
loading strategy is employed, then the user has no control on the reconfigu-
ration procedure. In the preloading strategy, an explicit reconfiguration
instruction is provided to the user and the reconfiguration procedure is indeed
under the control of the user. PRISM (processor reconfiguration through
instruction-set metamorphosis) one of the earliest proposed CCM [3,4], was
developed as a proof-of-concept system, in order to handle the loading of
FPGA configuration, the compiler inserts library function calls into the
program stream [4]. From this description, we can conclude that an explicit
reconfiguration procedure is available. Gilson [8] CCM architecture consists
of a host processor and two or more FPGA-based computing devices. The
host controls the reconfiguration of FPGAby loading new configuration data
through a host interface into the FPGA configuration memory. The recon-
figuration process can be performed such that when one computing device
is being reconfigured and, therefore, is idle, the others continue executing.
The write into the configuration memory instruction can play the role of
an explicit reconfiguration instruction. Therefore, a preloading strategy is
employed. Schmit [20] proposes a partial run-time reconfiguration mecha-
nism, called pipeline reconfiguration or striping, by which the FPGA is
reconfigured at a granularity that corresponds to a pipeline stage of the
application being implemented. An application that has been broken up into
pipeline stages can be mapped to a striped FPGA. The pipeline stages are
known as stripes; the stages of the application are called virtual stripes; and the
hardware stages at which the virtual stages are loaded into are called physical
stripes. The PipeRench coprocessor developed by a team with Carnegie
Mellon University [6,9] focused on implementing linear (1-D) pipelines of
arbitrary length. PipeRench is envisioned as a coprocessor in a general-
purpose computer, and has direct access to the same memory space as the
host processor. The virtual stripes of the application are stored into an on-
chip configuration memory. A single physical stripe can be configured in one
read cycle with data stored in such a memory. The configuration of a stripe
takes place concurrently with execution of the other stripes. The reconfig-
urable data path architecture (rDPA) is also a self-steering autonomous
reconfigurable architecture. It consists of a mesh of identical data path units
(DPU) [10]. The data-flow direction through the mesh is only from west and/
or north to east and/or south and is also data-driven. A word entering rDPA
contains a configuration bit which is used to distinguish the configuration
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information from data. Therefore, a word can specify either a SET or an
EXECUTE instruction, the arguments of the instructions being the configura-
tion information or data to be processed. A set of computing facilities can be
configured on rDPA.

VI. CONCLUSIONS

In this chapter we described several characteristics of embedded processors
that were logically deduced from characteristics of embedded systems in gen-
eral. Driven by market requirements, two strategies were followed in order
to reduce design cycles and development costs. First, programmability was
introduced as a means to combine all non-time-critical functions to be per-
formed by a ‘‘general purpose’’ -like embedded processor. Such an embedded
processor could then be reused in subsequent designs and, thereby, greatly
reduce design cycles. Second, reconfigurability was initially only utilized for
fast prototyping. Over time, technological advances in reconfigurable hard-
ware in terms of size and performance have led to the fact the reconfigurable
embedded processors are actually incorporated in shipped embedded sys-
tems. We believe that the future of embedded processor design lies in the
merging of both strategies. Programmability allows the utilization of high-
level programming languages (like C) and, thereby, easies application devel-
opment. The utilization of reconfigurable hardware combines design flexi-
bility and fast prototyping. At the same time, the processing performance of
reconfigurable hardware is nearing that of application-specific integrated
circuits. Finally, we highlighted one possible framework in which future em-
bedded processor design can be performed. The proposed MOLEN embed-
ded processor combines software programming (by utilizing a programmable
processor core) with hardware programming (utilizing microcode to control
the reconfigurable hardware). Such an approach provides possibilities in
combatting several issues associated with reconfigurable hardware.
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