HDL Chip Design

A practical guide for designing, synthesizing and simulating ASICs and FPGAs using VHDL or Verilog

Douglas J Smith

Foreword by Alex Zamfirescu

Doone Publications • « • • • • • • HDL Chip Design

© 1996 by Doone Publications, Madison, AL, USA First printing June 1996, Second printing January 1997, minor revisions Third printing June 1997, minor revisions

All rights reserved. No part of this book may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording or by any information storage and retrieval system, without written permission from the publisher.

ISBN 0-9651934-3-8 Library of Congress Catalog Card Number: 96-84641

Cover graphic designed using ModelView from Intergraph Software Solutions. *Interiordesign*: DoonePublications.

Package STANDARD & package TEXTIO reprinted from IEEE Std 1076-1993 IEEE Standard VHDL Language Reference Manual, Copyright © 1994 by the Institute of Electrical and Electronics Engineers, Inc.

Standard logic Package STD_LOGIC_1164 (IEEE 1164) reprinted from 1164-1993IF<u>FF</u> Standard Multivalue Logic System for VHDL Model Interoperability, Copyright © 1993 by the Institute of Electrical and Electronics Engineers, Inc.

Standard synthesis package NUIMERIC_STD (IEEE 1076.3) reprinted from IEEE Draft Standard P1076.3, dated 1995, Draft Standard VHDL Synthesis Package, Copyright © 1995 by the Institute of Electrical and Electronics Engineers, Inc. This is an unapproved draft of a proposed IEEE Standard, subject to change. Use of information contained in the unapproved draft is at your own risk.

The <u>IFFF</u> disclaims any responsibility or liability resulting from the placement and use in this product. Information is reprinted with the permission of the IEEE.

FOREWORD

The EDA industry is an increasingly challenging area in which to be working. I work at VeriBest Incorporated and have been in the EDA industry for many years, and I am fully aware of the books that are available. This one, however, is unique as it deals extensively with both VHDL and Verilog in a comparative manner and includes many graphic examples of synthesized circuits. Doug Smith, also of VeriBest Inc., has been mastering the valuable art of Hardware Description Language (HDL) chip design for many years in both European and American companies. He has cleverly captured years of design experience within the pages of this book.

The abundant examples throughout show complete functional designs and not just snippets of code. Doug has spent endless months researching HDL and design topics to ensure that people in the EDA industry were in agreement with his methods. I am certainly an advocate of Doug's HDL guide for EDA veterans and first semester EE freshmen alike. His tips on planning and executing HDL designs (including the modeling caveats) are invaluable. Designers can surely benefit by applying his precepts and principles using the techniques emerged from his design experience. You will probably keep this book close to your desk for many projects to come.

Often, worth is measured by magnitude, however this book not only contains more examples than any other previously published work dealing with HDL driven design, but is more comprehensive than any other book of synthesis recipes whatsoever. A technical work must stand or fall by its accuracy and authority; "HDL Chip Design" stands head-and-shoulders over all other books covering this subject.

The authority of this work rests on almost a lifetime of practical experience, through his career. Its accuracy has been verified through machine-processing of all the examples, and by leading industry experts. As a result "HDL Chip Design" is the very best hands-on book you can own today. It will enable you to survive in the competitive world of HDL chip design, and will be a beacon in your quest for perfect HDL design.

IEEE Project 1076.3 (Synthesis Packages) Chariman IEC TC93 Working Group (HDLs) Convenor

ABOUT THE AUTHOR

Douglas Smith was born in England, and began his career with a four year apprenticeship in a company developing and manufacturing radiation monitoring equipment. He received a B.Sc. in Electrical and Electronic Engineering from Bath University, England, in 1981. He worked at a number of companies in England performing digital design and project management of microprocessor based circuit boards and associated ICs. These IC's included PLD, FPGA, gate array ASICs and standard cell ASIC devices for applications such as ring laser gyro control and frequency hopping radios. He then moved into the EDA industry by becoming applications manager and then product marketing manager for all synthesis products at GenRad Ltd. When GenRad exited from the EDA industry he moved to the USA to Intergraph Electronics, now VeriBest Incorporated, where he is now a member of the technical staff. Doug is currently on the two working groups for VHDL and Verilog, whose charter is to develop public domain synthesis interoperability standards for model portability across multiple synthesis tools.

This book is dedicated to my mum and dad, who are far away, but always in my thoughts.

HDL Chip Design

ACKNOWLEDGMENTS

My biggest thanks go to my wife Anne, who apart from looking after two active young children during the day, found time and energy in the evenings to do the drawings and layout the pages of this book.

i thank my daughter Zoe, who at one and a half years, was able to provide some interesting edits to my manuscript. My son, Alexander, at five and a half years, often gave me an excuse to break from writing to play "Power Rangers" or "Cowboys". 1 must also mention my in-laws, Margaret and Godfrey, and thank them for their interest and encouragement; they now know a new definition for a flip-flop.

I also thank Intergraph Electronics, now VeriBest Incorporated, for allowing me the use of their computers and CAE tools to verify the HDL models in this book.

Special thanks are due to the following four individuals, listed in alphabetical order, for their technical reviews. They are each experts in the field of hardware description languages, and the technology employed by synthesis and simulation tools. I especially appreciate their efforts in taking the time out of their already busy schedules.

J. Bhasker (Bhasker)	Lucent Technologies, Bell Laboratories.
Gabe Moretti	VeriBest Incorporated
Jenjen Tiao	Lucent Technologies, Bell Laboratories.
Alex Zamfirescu	VeriBest Incorporated

Finally, I am very grateful to Charles Montgomery for reviewing the text for grammatical errors, and especially ensuring my English spelling was suitably converted to American.

This book is intended for practicing design engineers, their managers who need to gain a practical understanding of the issues involved when designing ASICs and FPGAs, and students alike.

The past 10 years has seen a dramatic change in the way digital design is performed. The need to reduce the time to market, the technology advancements and new innovative EDA software tools, have all helped to fuel this dramatic change. In terms of technology, transistors can be manufactured with submicron channel widths, resulting in reduced size (100 times smaller than the thickness of a human hair) and improved switching speed. This has lead to silicon chips containing a million transistors becoming common, and large complex systems being implemented within them. The need to be able to design chips of such size, in a timely manner, has lead to innovative EDA tools being developed with automatic synthesis tools being the major advancement. The introduction of commercial synthesis tools has enabled top down design methodologies to be adopted, starting with an abstract description of a circuit's behavior written in a hardware description language. More recently, the rate of change has slowed and the introduction of standards has enabled EDA tool vendors to develop integrated design tools and with far less risk.

There are two industry standard hardware description languages VHDL and Verilog, thanks to the efforts of the VI (VHDL International) and OVI (open Verilog International). Both the VI and OVI are industry consortiums of design tool vendors, chip vendors, users (designers) and academia. The VI succeeded in establishing VHDL as an IEEE standard (IEEE 1076) first in 1987 and revised it in 1993 (IEEE 1076-1993). The second to become a standard was Verilog. The OVI established Verilog as an IEEE standard in 1995 (IEEE 1364-1995). Although Verilog became an IEEE standard after VHDL, it has been used by digital designers for far longer.

The benefits of adopting a top-down design methodology, adhering to the use of these standards is that, 1) design source files are transportable between different EDA tools and, 2) the design is independent of any particular silicon vendor's manufacturing process technology.

The emphasis of this book is on digital design using such standards.

BOOK OVERVIEW

VHDL and Verilog are covered equally throughout this book. Code examples show VHDL on the left and Verilog on the right because VHDL became a standard first. All language reserved words are shown emboldened. Also, all HDL code related issues in the text apply equally to VHDL and Verilog unless explicitly stated otherwise. Where synthesized circuits are shown they are a result of synthesizing either the VHDL or Verilog version of the associated model.

This book is divided into 12 chapters, a glossary and two appendices.

Chapter 1, "Introduction", defines what ASIC and FPGA devices are, and the criteria for choosing which to use in a given application. Hardware description languages are defined and a comprehensive listing of comparative features between VHDL and Verilog is given. Electronic Design Automation (EDA) tools are discussed with a particular emphasis on synthesis tools.

Chapter 2, "Synthesis Constraint and Optimization Tutorials", shows the effect of different constraints on the synthesized circuit of a particular design. Also, a typical design constraint scenario is posed and a description of how constraints for it are specified, described. For completeness, command line optimization commands are included for the VeriBest Synthesis tools.

Chapter 3, "Language Fundamentals", introduces the fundamentals of the VHDL and Verilog hardware description languages. Code structure is described by first defining the principle of design units and how they link together. The code structure of subsections within a design unit are described all the way down to subfunctions. Assignments are also defined together with the expressions within them. Includes a fully detailed description of the operands and operators that make up an expression.

Chapter 4, "Design/Modeling Recommendations, Issues and Techniques", is one of the most important chapters to the practicing digital design engineer. It provides a list of recommendations, issues and techniques to consider when designing ASICs or FPGAs, from both a design and HDL modeling perspective.

Chapter 5, "Structuring a Design", is devoted to structuring HDL code and hence inferred hardware structure when modeling at the register transfer level. Code constructs are grouped and discussed separately based on their level of granularity.

Chapter 6, "Modeling Combinational Logic Circuits", shows HDL models of commonly used circuit functions that are implemented using combinational logic only. In most cases different ways of modeling the same circuit is shown. Circuit functions covered include: multiplexers, encoders, priority encoders, decoders, comparators and ALUs.

Chapter 7, "Modeling Synchronous Logic Circuits", shows how D-type latches and D-type flip-flops are inferred in HDL models. Also included, are various models of linear-feedback shift-registers and counters.

Chapter 8, "Modeling Finite State Machines", covers in detail the different aspects of modeling finite state machines. Shown are: good and bad coding styles, when resets are

needed for fail safe behavior, state machines with Mealy or Moore type outputs, state machines with additional synchronous logic modeled in the code of the state machine, and multiple interactive state machines.

Chapter 9, "Circuit Functions Modeled Combinational or Synchronously", describes how shifters, adders, subtractors, multipliers and dividers may be modeled for a combinational or synchronous logic implementation.

Chapter 10, "Tri-State Buffers", contains various examples of how tri-state buffers are inferred.

Chapter 11, "Writing Test Harnesses", describes the structure of a simulation test harness and all related issues. Detailed examples show how input stimuli may be generated, and how outputs from the model under test may be automatically monitored and tested against reference data.

Chapter 12, "Practical Modeling Examples", contains five larger modeling examples. Each example is posed as a problem and solution. The first shows how an internal tristate bus is used to reduce circuit area. The second example is of a digital alarm clock. The third example is a three-way round-robin priority encoder used to arbitrate between three microprocessors accessing the same RAM. The fourth example is of a circuit that computes the greatest common divisor of two inputs. It is modeled at the algorithmic level in C, VHDL and Verilog, and again at the RTL level in VHDL and Verilog, and uses common test data files. Test harnesses for the RTL level models are also shown. The fifth example is a model of an error detection and correction circuit that sits between a microprocessor and RAM. Critical data is stored in the RAM along with parity check bits. When data is retrieved single bit errors are detected and corrected, while double biterrors are simply detected and an interrupt generated.

Glossary, contains the definition of over 200 terms.

Appendix A, "VHDL", contains reference information relating to VHDL: reserved words, predefined attributes, listings of packages STANDARD, TEXTIO, STD_LOG1C_1164 and NUMERIC_STD, and reference information relating to VHDL constructs and where they are used.

Appendix B, "Verilog", contains reference information relating to Verilog: reserved words, compiler directives, system tasks and functions, and reference information relating to VHDL constructs and where they are used.

Disclaimer

Every effort has been made to make this book as complete and as accurate as possible. However, there may be mistakes both typographical and in content. Therefore, this text should be used only as a general guide and not the ultimate reference source on the two languages. Please refer to the respective LRMs for syntax accuracy.

The author and publisher shall not be liable for any direct or indirect damages arising from any use, direct or indirect, of the examples provided in this book.

ABBREVIATIONS & ACRONYMS

The list below contains the abbreviations and airronyms used in this book.

ALU	Arithmetic Logic Unit	LFSR	Linear Feedback Shift Register
AQL	Average Quality Level	LRM	Language Reference Manual
ASIC	Application-Specific Integrated	LSB	Least Significant Bit
	Circuit	LSI	Large-Scale Integration
ATPG	Automatic Test Pattern Generation	LSSD	Level-Sensitive Scan Device
BIST	Built-in Self-Test	MCM	Multichip Module
CAD	Computer Aided Design	MSB	Most Significant Bit
CAE	Computer Aided Engineering	MSI	Medium Scale Integration
CDFG	Control-Data Flow-Graph	NRE	Non-Recurring Engineering
CMOS	Complementary Metal-Oxide	OVI	Open Verilog International
	Semiconductor	PCB	Printed Circuit Board
CPU	Central Processing Unit	PLD	Programmable Logic Design
DFT	Design-For-Test	RAM	Random Access Memory
DOD	Department of Defence	ROM	Read Only Memory
EDA	Electronic Design Automation	RTL	Register Transfer Level
EDAC	Error Detection And Correction	SDI	Scan Data In
FIFO	First-In First-Out	SDF	Standard Delay Format
FPGA	Field Programmable Gate Array	SDO	Scan Data Out
FSM	Finite State Machine	TE	Test Enable
GCD	Greatest Common Divisor	VHDL	VHSIC Hardware Description
GHDL	GenRad's Hardware Description		Language
	Language	VHSIC	Very High Speed Integrated Circuit
HDL	Hardware Description Language	VI	VHDL International
I/O	Input/Output	VITAL	VHDL Initiative Toward ASIC
IC	Integrated Circuit		Libraries
IEEE	IEEE Institute of Electrical and	VL SI	Very-Large-Scale Integration
	Electronics Engineers	(LOI	very Large Seare Integration
JEDEC	Joint Electronic Device Engineering		
	Council		

CONTENTS

Chapter One: Introduction	
Introduction	
ASIC and FPGA devices	
Top-Down Design Methodology	5
Hardware Description Languages (HDLs)	8
Design Automation Tools	
HDL support for synthesis	
Chapter Two: Synthesis Constraint & Optimization	Futorials29
Chapter Two: Synthesis Constraint & Optimization Introduction	Cutorials
Chapter Two: Synthesis Constraint & Optimization Introduction Combinational logic optimization A typical design constraint scenario	Гutorials 30 32
Chapter Two: Synthesis Constraint & Optimization Introduction Combinational logic optimization A typical design constraint scenario Chapter Three: Language Fundamentals	Futorials 30 32
Chapter Two: Synthesis Constraint & Optimization Introduction Combinational logic optimization A typical design constraint scenario Chapter Three: Language Fundamentals Design Entities	Гutorials 30 32 39

VHDL Design Entity	
Verilog Design Entity	
Code Structure	41
Declaration statements	41
Concurrent statements	41
Sequential statements	41
Data Types and Data Objects.	.44
VHDL Data Types	
VHDL Data Objects	
Verilog Data Types	
Verilog Data Objects	
Expressions	48
Operands	
Literal Operands	
Identifier Operands	
Aggregate Operands (VHDL)	
Function Call Operands	
Index & Slice Name Operands	
Qualified Expression Operands (VHDL)	
Type Conversion Operands (VHDL)	
Record & Record Element Operands (VHDL)	
Operators	59
Overloaded Operators (VHDL)	
Arithmetic Operators	63
Sign Operators	64
Relational Operators	
Equality & Inequality Operators	
Logical Comparison Operators	
Logical Bit-wise Operators	
Shift Operators	

Х

HDL Chip Design

Concatenation & Verilog replication Operators
Reduction Operators (Verilog)
Conditional Operator (Verilog)

Chapter Four: Design/Modeling Recommendations, Issues and Techniques Introduction______75

Introduction	
Design and Modeling Recommendations	75
1. Design and process recommendations	
2. Power reduction recommendations	75
3. Design for test (DFT) and test issues	
4. Test harnesses recommendations	
5. General HDL modeling recommendations	
6. Ensuring simulation accuracy	77
7. Improving simulation speed	
8. Synthesis modeling recommendations	
9 Joint simulation and synthesis modeling recommendations	
Simulation Compilation Issues	79
1. Output and buffer port modes (VHDL)	
2. Width qualification of unconstrained arrays (VHDL)	
3. Operators to the left of the assignment operator	
4. Unconstrained subprogram parameters in reusable models (VHDL)	
5. Invisible subprograms from separate packages (VHDL)	
6. Subprogram overloading using type integer and subtype natural (VHDL)	
7. Concatenation in the expression of a subprogram's formal list (VHDL)	
Simulation Run Time Issues	
1. Full sensitivity/event list (VHDL & Verilog)	
2. Reversing a vectored array direction (VHDL & Verilog)	
3. True leading edge detection - wait and if (VHDL)	
4. Order dependency of concurrent statements	
Synthesis Compilation Issues	
1. Non-static data objects and non-static loops (VHDL & Verilog)	
Joint Simulation and Synthesis Issues	
1. When to use others (VHDL) and default (Verilog)	
2. Signal and variable assignments (VHDL)	
3. Blocking and non-blocking procedural assignments (Verilog)	
4. Don't care inputs to a case statement (VHDL & Verilog)	
5. Don't care outputs from a case statement (VHDL & Verilog)	
6. Comparing vector array types of different width (VHDL)	
General Modeling Issues	
1. Using Attributes (VHDL)	
2. Using Packages (VHDL)	
3. Operator and subprogram overloading (VHDL)	
4. Deferred constants (VHDL)	
5. Translation Functions - Extension and Truncation (VHDL)	
6. Resource Sharing	110

Chapter Five: Structuring a Design

Structuring a Design.	
Course Grain	

Configurations (VHDL)	
Entity-architecture/module	
Course/Medium Grain	
For/if-generate (VHDL)	
Block statement (VHDL)	
Medium Grain	
Fine Grain	
Procedure/Task	
Function	

Chapter Six: Modeling Combinational Logic Circuits

Modeling Combinational Logic	
Logical/Arithmetic Equations	
Logical Structure Control	
Multiplexers	
Encoders	141
Priority Encoders	145
Decoders	
Comparators	
ALU	

Chapter Seven: Modeling Synchronous Logic Circuits

Introduction	
Modeling Latch Circuits	
How latches are inferred	
Unintentional latch inference from case statements	
The D - Type Flip - Flop	
VHDL flip-flop inference	
Verilog flip-flop inference	
Linear Feedback Shift Registers	
XOR or XNOR feedback gates	
One-to-many or many-to-one feedback structure	
What taps to use	
Avoid becoming stuck in the prohibited state	
Ensuring a sequence of all 2" values	
Constructing generic n-bit LFSR models	
Counters	
Deciding on a counter's structure and modeling	

Chapter Eight: Modeling Finite State Machines

Introduction	
The Finite State Machine	
The State Table and State Diagram	195
FSM Design and Modeling Issues	
1. HDL coding style	
2. Resets and fail safe behavior	
3. State encoding	
4. Mealy or Moore type outputs	

HDL Chip Design

6. Interactive state machines 201 Chapter Nine: Circuit Functions modeled Combinationally or Synchronously Shifters 273 Combinational Shifters 273 Synchronous Shifters 279 Combinational adders and subtractors 279 Combinational adders and subtractors 279 Combinational versus synchronous 286 Multipliers and Dividers 286 Combinational versus synchronous 286 Multiplier and Divider Algorithms 287 Chapter Ten: Tri-State Buffers 315 Modeling Tri-State Buffers 315 Chapter Eleven: Test Harnesses 323 Introduction 323 Configurations (VHDL) 323 Assertion Statement (VHDL) 324 Aspecial Simulation Constructs - System Tasks & Functions (Verilog) 324 Hardware Model Under Test. 325 1. Vectors generation (Stimulus & Reference) 325 1. Vectors generating clock signals 335 1. Vectors generating signals with a few transitions (resets) 327 J. Generating Signals with a few transitions (resets) 337 d). Generating signals with a few transitions (rese	5. Sequential next state or output logic	200
Chapter Nine: Circuit Functions modeled Combinationally or Synchronously Shifters 273 Combinational Shifters 273 Synchronous Shifters 273 Synchronous Shifters 279 Combinational Shifters 279 Combinational adders and subtractors 279 Combinational adders and subtractors 280 Multipliers and Dividers 286 Combinational versus synchronous 286 Combinational versus synchronous 286 Multiplier and Divider Algorithms 287 Chapter Ten: Tri-State Buffers 315 Modeling Tri-State Buffers 315 Chapter Eleven: Test Harnesses 323 Introduction 323 Configurations (VHDL) 323 Assertion Statement (VHDL) 324 Apecial Simulation Constructs - System Tasks & Functions (Verliog) 324 Hardware Model Under Test. 325 Vector Generating (Signals with a few transitions (resets) 327 O. Relative or absolute time generated signals. 327 O. Relative or absolute time generated signals. 327 O. Relative or absolute time generated signals	6. Interactive state machines	
Chapter Nine: Circuit Functions modeled Combinationally or Synchronously Synchronous Shifters 273 Combinational Shifters 273 Synchronous Shifters 273 Adders and Subtractors 279 Combinational adders and subtractors 279 Sequential adders and subtractors 280 Multipilers and Dividers. 286 Combinational versus synchronous 286 Combinational versus synchronous 286 Multipilers and Divider Algorithms 287 Chapter Ten: Tri-State Buffers 315 Chapter Eleven: Test Harnesses 315 Introduction 323 Configurations (VHDL) 324 Assertion Statement (VHDL) 324 Assertion Statement (VHDL) 325 Vector Generation (Stimulus & Reference) 325 1. Vectors generated on-the-fly 326 b) Generating signals with a few transitions (resets) 327 c). Relative or absolute time generated signals 327 c). Relative or absolute time generated signals 335 f). Example where all vector sgenerated on-the-fly 338 d). Repetitive stimulus using loops <td< td=""><td></td><td></td></td<>		
Shifters 273 Combinational Shifters 273 Synchronous Shifters 278 Adders and Subtractors 279 Combinational adders and subtractors 279 Sequential adders and subtractors 286 Combinational adders and subtractors 286 Combinational versus synchronous 286 Combinational versus synchronous 286 Chapter Ten: Tri-State Buffers 287 Modeling Tri-State Buffers 315 Chapter Eleven: Test Harnesses 315 Introduction 323 Configurations (VHDL) 323 Assertion Statement (VHDL) 324 Special Simulation Constructs - System Tasks & Functions (Verilog) 324 Hardware Model Under Test. 325 1. Vectors generated on-the-fly 326 a). Generating (Simulus & Reference) 325 1. Vectors generated on-the-fly 326 a). Generating signals with a few transitions (resets) 327 c). Relative or absolute time generated signals 327 d). Repetitive stimulus using loops 334 e). Tri-state buffers for bidirectional signals 335 f). Example where all vectors generated on-the-fly 336 1. Tri-state buffers for bidirectional signals 335	Chapter Nine: Circuit Functions modeled Combinationally or	Synchronously
Combinational Shifters. 273 Synchronous Shifters. 276 Adders and Subtractors. 279 Combinational adders and subtractors. 279 Sequential adders and subtractors. 280 Multipliers and Dividers Synchronous. 286 Combinational versus synchronous. 286 Multiplier and Divider Algorithms. 287 Chapter Ten: Tri-State Buffers 315 Chapter Ten: Tri-State Buffers. 315 Chapter Eleven: Test Harnesses Introduction. 323 Configurations (VHDL). 323 Assertion Statement (VHDL). 323 Assertion Statement (VHDL). 323 Assertion Statement (VHDL). 324 Special Simulation Constructs - System Tasks & Functions (Verilog). 324 Hardware Model Under Test. 325 Vector Generating clock signals. 326 b) Generating signals with a few transitions (resets). 327 c). Relative or absolute time generated signals. 327 c). Relative or absolute time generated on-the-fly. 336 2. Vectors stored in a array. 339 3. Reading test vector system files. 341 Comparing Actual and Expected Results. 344 Chapter Twelve: Practical Modeling Examples 1. Tri-State Pipeline Stage for Area Efficiency. 347 2. Digital Alarm Clock. 350 3. Three-Way-Round-Robin Arbiter. 354 4. Greatest Common Divisor (GCD). 361 S. Error Detection and Correction (EDAC). 361 Chapter Actual Actual Expected Results. 346 Chapter Twelves. YHDL Reserved Words. 395 Prodefined Attributes. 3	Shifters	
Synchronous Shifters. 278 Adders and Subtractors. 279 Sequential adders and subtractors. 280 Multipliers and Dividers. 286 Combinational versus synchronous. 286 Combinational versus synchronous. 286 Multiplier and Divider Algorithms. 287 Chapter Ten: Tri-State Buffers 315 Modeling Tri-State Buffers. 315 Chapter Eleven: Test Harnesses 323 Introduction. 323 Assertion Statement (VHDL). 323 Assertion Constructs - System Tasks & Functions (Verliog). 324 Special Simulation Constructs - System Tasks & Functions (Verliog). 324 Hardware Model Under Test. 325 1. Vectors generated on-the-fly. 326 a). Generating clock signals. 326 b). Generating signals with a few transitions (resets). 327 c). Relative or absolute time generated signals. 327 d). Repetitive stimulus using loops. 334 e). Tri-state buffers for bidirectional signals. 335 f). Example where all vectors generated on-the-fly. 336 g). Example where all vectors generated on-the-	Combinational Shifters	
Adders and Subtractors 279 Combinational adders and subtractors 280 Multipliers and Dividers 286 Combinational versus synchronous 286 Combinational versus synchronous 286 Multiplier and Divider Algorithms 287 Chapter Ten: Tri-State Buffers 315 Modeling Tri-State Buffers 315 Chapter Eleven: Test Harnesses 315 Introduction 323 Configurations (VHDL) 323 Assertion Statement (VHDL) 324 Special Simulation Constructs - System Tasks & Functions (Verilog) 324 Hardware Model Under Test. 325 Vector Generation (Stimulus & Reference) 325 1. Vectors generated on -the-fly 326 a). Generating clock signals. 327 c). Relative or absolute time generated signals 327	Synchronous Shifters	
Combinational adders and subtractors	Adders and Subtractors	
Sequential adders and subtractors 280 Multipliers and Dividers 286 Combinational versus synchronous 286 Multiplier and Divider Algorithms 287 Chapter Ten: Tri-State Buffers 315 Modeling Tri-State Buffers 315 Chapter Eleven: Test Harnesses 323 Introduction 323 Configurations (VHDL) 323 Assertion Statement (VHDL) 324 Special Simulation Constructs - System Tasks & Functions (Verilog) 324 Vector Generation (Stimulus & Reference) 325 1. Vectors generated on-the-fly 326 a). Generating clock signals 326 b). Generating signals with a few transitions (resets) 327 c). Relative or absolute time generated signals 327 d). Repetitive stimulus using loops 334 e). Tri-state buffers for bidirectional signals 335 f). Example where all vectors generated on-the-fly 336 2. Vectors stored in an array. 339 3. Reading test vector system files. 341 Comparing Actual and Expected Results. 344 Chapter Twelve: Practical Modeling Examples <td< td=""><td>Combinational adders and subtractors</td><td></td></td<>	Combinational adders and subtractors	
Multipliers and Dividers 286 Combinational versus synchronous 286 Multiplier and Divider Algorithms 287 Chapter Ten: Tri-State Buffers 315 Modeling Tri-State Buffers 315 Chapter Eleven: Test Harnesses 315 Introduction 323 Configurations (VHDL) 324 Assertion Statement (VHDL) 324 Assertion Statement (VHDL) 324 Hardware Model Under Test 325 Vector Generation (Stimulus & Reference) 325 1. Vectors generated on-the-fly 326 a). Generating signals with a few transitions (resets) 327 c). Repetitive stimulus using loops 334 e). Th-state buffers for bidirectional signals 335 f). Example where all vectors generated on-the-fly 336 2. Vectors stored in an array. 339 3. Reading test vector system files 341 Comparing Actual and Expected Results 344 Chapter Twelve: Practical Modeling Examples 341 1. Tri-State Pipeline Stage for Area Efficiency 347 4. Greatest Common Divisor (GCD) 361 5. Error	Sequential adders and subtractors	
Combinational versus synchronous. 286 Multiplier and Divider Algorithms. 287 Chapter Ten: Tri-State Buffers 315 Chapter Eleven: Test Harnesses 323 Configurations (VHDL). 323 Assertion Statement (VHDL). 323 Assertion Statement (VHDL). 324 Hardware Model Under Test. 325 Vector Generation (Stimulus & Reference). 325 Vector Generating clock signals. 326 b). Generating clock signals. 327 c). Relative or absolute time generated signals. 335 f). Example where all vectors generated on-the-fly. 336 c). Vectors store in an array. 339 3. Reading test vector system files. 344 Comparing Actual and Expected Results. 344 Chapter Twelve: Practical Modeling Examples 1. Tri-State Differs for Area Efficiency. 347 c). Digital Alarm Clock. 350 S. Three-Way-Round-Robin Arbiter. 354 4. Greatest Common Divisor (GCD). 360 S. Three-Way-Round-Robin Arbiter. 354 4. Greatest Common Divisor (GCD). 360 S. Predefined Attributes. 395 Fredefined Attributes. 395 Chapter TWelve: Practical Modeling Examples 1. Tri-State Differs for Area Efficiency. 361 S. Error Detection and Correction (EDAC). 369 Served Words. 395 Fredefined Attributes. 396 Chapter Area State Stat	Multipliers and Dividers	
Multiplier and Divider Algorithms 287 Chapter Ten: Tri-State Buffers 315 Chapter Eleven: Test Harnesses 315 Introduction 323 Configurations (WHDL) 323 Assertion Statement (VHDL) 324 Special Simulation Constructs - System Tasks & Functions (Verilog) 324 Hardware Model Under Test. 325 Vector Generation (Stimulus & Reference) 325 1. Vectors generated on-the-fly 326 a). Generating signals with a few transitions (resets) 327 c). Relative or absolute time generated signals. 327 d). Repetitive stimulus using loops 334 e). Tri-state buffers for bidirectional signals. 335 f). Example where all vectors generated on-the-fly. 336 2. Vectors stored in an array. 339 3. Reading test vector system files 341 Comparing Actual and Expected Results. 344 Chapter Twelve: Practical Modeling Examples 344 1. Tri-State Pipeline Stage for Area Efficiency 347 2. Digital Alarm Clock. 350 3. Three-Way-Round-Robin Arbiter. 354 4. Greatest Common Divisor	Combinational versus synchronous	
Chapter Ten: Tri-State Buffers 315 Modeling Tri-State Buffers 315 Chapter Eleven: Test Harnesses 323 Introduction 323 Configurations (VHDL) 324 Special Simulation Constructs - System Tasks & Functions (Verilog) 324 Hardware Model Under Test. 325 Vector Generation (Stimulus & Reference) 325 1. Vectors generated on-the-fly 326 a). Generating signals with a few transitions (resets) 327 c). Relative or absolute time generated signals. 327 d). Generating signals with a few transitions (resets) 335 f). Example where all vectors generated on-the-fly 336 f). Example where all vectors generated on-the-fly 336 g). Example where all vectors generated on-the-fly 336 g). Example where all vectors system files 341 Comparing Actual and Expected Results 344 Chapter Twelve: Practical Modeling Examples 347 1. Tri-State Pipeline Stage for Area Efficiency 347 glossary 379 Appendix A: VHDL 359 Reserved Words 395 Spredefined Attributes	Multiplier and Divider Algorithms	
Modeling Tri-State Buffers 315 Chapter Eleven: Test Harnesses 323 Introduction 323 Configurations (VHDL) 323 Assertion Statement (VHDL) 324 Special Simulation Constructs - System Tasks & Functions (Verilog) 324 Hardware Model Under Test 325 Vector Generation (Stimulus & Reference) 325 1. Vectors generated on-the-fly 326 a). Generating clock signals 326 b). Generating signals with a few transitions (resets) 327 c). Relative or absolute time generated signals 327 d). Repetitive stimulus using loops. 334 e). Tri-state buffers for bidirectional signals 335 f). Example where all vectors generated on-the-fly. 336 2. Vectors stored in an array. 339 3. Reading test vector system files. 341 Comparing Actual and Expected Results. 344 Chapter T welve: Practical Modeling Examples 347 1. Tri-State Pipeline Stage for Area Efficiency. 347 2. Digital Alarm Clock. 350 3. Three-Way-Round-Robin Arbiter. 354 4. Greatest Common Divisor (GCD) <td>Chapter Ten: Tri-State Buffers</td> <td></td>	Chapter Ten: Tri-State Buffers	
Chapter Eleven: Test Harnesses 323 Introduction 323 Configurations (VHDL) 323 Assertion Statement (VHDL) 324 Special Simulation Constructs - System Tasks & Functions (Verilog) 324 Hardware Model Under Test. 325 Vector Generation (Stimulus & Reference) 326 a). Generating clock signals. 326 b). Generating signals with a few transitions (resets) 327 c). Relative or absolute time generated signals. 327 d). Repetitive stimulus using loops. 334 e). Tri-state buffers for bidirectional signals. 335 f). Example where all vectors generated on-the-fly. 336 2. Vectors stored in an array. 339 3. Reading test vector system files. 341 Comparing Actual and Expected Results. 344 Chapter Twelve: Practical Modeling Examples 354 1. Tri-State Pipeline Stage for Area Efficiency. 354 2. Digital Alarm Clock. 350 3. Three-Way-Round-Robin Arbiter. 354 4. Greatest Common Divisor (GCD) 369 Glossary 379 Appen dix A: VHDL 395 <td>Modeling Tri-State Buffers</td> <td></td>	Modeling Tri-State Buffers	
Chapter Eleven: Test Harnesses 323 Introduction 323 Configurations (VHDL) 323 Assertion Statement (VHDL) 324 Special Simulation Constructs - System Tasks & Functions (Verilog) 324 Hardware Model Under Test 325 Vector Generation (Stimulus & Reference) 325 1. Vectors generated on-the-fly 326 a). Generating clock signals. 327 c). Repetitive stimulus using loops. 327 d). Repetitive stimulus using loops. 334 e). Tri-state buffers for bidirectional signals. 335 f). Example where all vectors generated on-the-fly. 336 2. Vectors stored in an array. 339 3. Reading test vector system files. 341 Comparing Actual and Expected Results. 344 Chapter Twelve: Practical Modeling Examples 347 1. Tri-State Pipeline Stage for Area Efficiency. 347 gligatal Alarm Clock. 350 3. Three-Way-Round-Robin Arbiter. 354 4. Greatest Common Divisor (GCD) 369 Glossary 379 Appendix A: VHDL 395 Reserved Words. </td <td></td> <td></td>		
Configurations (VHDL) 323 Assertion Statement (VHDL) 324 Special Simulation Constructs - System Tasks & Functions (Verilog) 324 Hardware Model Under Test. 325 Vector Generation (Stimulus & Reference) 325 1. Vectors generated on-the-fly 326 a). Generating clock signals. 326 b). Generating signals with a few transitions (resets) 327 c). Relative or absolute time generated signals. 327 d). Repetitive stimulus using loops. 334 e). Tri-state buffers for bidirectional signals. 335 f). Example where all vectors generated on-the-fly. 336 2. Vectors stored in an array. 339 3. Reading test vector system files. 341 Comparing Actual and Expected Results. 344 Chapter Twelve: Practical Modeling Examples 347 1. Tri-State Pipeline Stage for Area Efficiency. 347 2. Digital Alarm Clock. 350 3. Three-Way-Round-Robin Arbiter. 354 4. Greatest Common Divisor (GCD) 361 5. Error Detection and Correction (EDAC) 369 Glossary. 379 Appen dix A: VHDL </td <td>Chapter Eleven: Test Harnesses</td> <td>333</td>	Chapter Eleven: Test Harnesses	333
Assertion Statement (VHDL). 324 Assertion Statement (VHDL). 324 Special Simulation Constructs - System Tasks & Functions (Verilog). 324 Hardware Model Under Test. 325 Vector Generation (Stimulus & Reference). 325 1. Vectors generated on-the-fly. 326 a). Generating signals with a few transitions (resets). 327 c). Relative or absolute time generated signals. 327 d). Repetitive stimulus using loops. 334 e). Tri-state buffers for bidirectional signals. 335 f). Example where all vectors generated on-the-fly. 336 2. Vectors stored in an array. 339 3. Reading test vector system files. 341 Comparing Actual and Expected Results. 344 Chapter Twelve: Practical Modeling Examples 344 Chapter Twelve: Practical Modeling Examples 344 Glossary. 359 Glossary. 369 Glossary. 379 Appendix A: VHDL 345 Reserved Words. 345 Predefined Attributes 345	Configurations (VHDI)	
Special Simulation Constructs - System Tasks & Functions (Verilog) 324 Hardware Model Under Test. 325 Vector Generation (Stimulus & Reference) 326 a). Generating clock signals. 326 b). Generating signals with a few transitions (resets) 327 c). Relative or absolute time generated signals. 327 d). Repetitive stimulus using loops. 334 e). Tri-state buffers for bidirectional signals. 335 f). Example where all vectors generated on-the-fly. 336 2. Vectors stored in an array. 339 3. Reading test vector system files. 344 Chapter Twelve: Practical Modeling Examples 347 1. Tri-State Pipeline Stage for Area Efficiency. 347 2. Digital Alarm Clock. 350 3. Three-Way-Round-Robin Arbiter. 354 4. Greatest Common Divisor (GCD) 361 5. Error Detection and Correction (EDAC) 369 Glossary. 379 Appendix A: VHDL 395 Reserved Words. 395 Predefined Attributes 395	Assortion Statement (VHDL)	
Special Simulation Constructs - System Tasks & Functions (Veniog) 324 Hardware Model Under Test. 325 Vector Generation (Stimulus & Reference) 326 a). Generating clock signals. 326 b). Generating signals with a few transitions (resets) 327 c). Relative or absolute time generated signals. 327 d). Repetitive stimulus using loops. 334 e). Tri-state buffers for bidirectional signals. 335 f). Example where all vectors generated on-the-fly. 336 2. Vectors stored in an array. 339 3. Reading test vector system files. 341 Comparing Actual and Expected Results. 344 Chapter Twelve: Practical Modeling Examples 347 1. Tri-State Pipeline Stage for Area Efficiency. 347 2. Digital Alarm Clock. 350 3. Three-Way-Round-Robin Arbiter. 354 4. Greatest Common Divisor (GCD) 369 Glossary. 379 Appendix A: VHDL 395 Reserved Words. 395 Predefined Attributes. 395	Special Simulation Constructor System Tasks & Eurotions (Varilag)	
Vector Generation (Stimulus & Reference)	Hardware Model Linder Test	
1. Vectors generated on-the-fly. 326 a). Generating clock signals. 326 b). Generating signals with a few transitions (resets). 327 c). Relative or absolute time generated signals. 327 d). Repetitive stimulus using loops. 334 e). Tri-state buffers for bidirectional signals. 335 f). Example where all vectors generated on-the-fly. 336 2. Vectors stored in an array. 339 3. Reading test vector system files. 341 Comparing Actual and Expected Results. 344 Chapter Twelve: Practical Modeling Examples 347 2. Digital Alarm Clock. 350 3. Three-Way-Round-Robin Arbiter. 354 4. Greatest Common Divisor (GCD). 361 5. Error Detection and Correction (EDAC). 369 Glossary. 379 Appendix A: VHDL 379 Appendix A: VHDL 395 Reserved Words. 395 Predefined Attributes. 395	Vactor Generation (Stimulus & Deference)	
a). Generating clock signals. 326 b). Generating signals with a few transitions (resets). 327 c). Relative or absolute time generated signals. 327 d). Repetitive stimulus using loops. 334 e). Tri-state buffers for bidirectional signals. 335 f). Example where all vectors generated on-the-fly. 336 2. Vectors stored in an array. 339 3. Reading test vector system files. 344 Comparing Actual and Expected Results. 344 Chapter Twelve: Practical Modeling Examples 347 1. Tri-State Pipeline Stage for Area Efficiency. 347 2. Digital Alarm Clock. 350 3. Three-Way-Round-Robin Arbiter. 354 4. Greatest Common Divisor (GCD). 361 5. Error Detection and Correction (EDAC). 369 Glossary. 379 Appendix A: VHDL 395 Reserved Words. 395 Predefined Attributes. 395	1 Vectors departed on the fly	
a). Generating clock signals.	a) Concrating clock signals	
b). Generating signals with a new transitions (resets)	a). Generating clock signals	
c). Relative of absolute time generated signals.	b). Generaling signals with a rew transitions (resets)	
a). Repetitive stimulos using roops. 334 e). Tri-state buffers for bidirectional signals. 335 f). Example where all vectors generated on-the-fly. 336 2. Vectors stored in an array. 339 3. Reading test vector system files. 341 Comparing Actual and Expected Results. 344 Chapter Twelve: Practical Modeling Examples 347 2. Digital Alarm Clock. 350 3. Three-Way-Round-Robin Arbiter. 354 4. Greatest Common Divisor (GCD). 361 5. Error Detection and Correction (EDAC). 369 Glossary. 379 Appendix A: VHDL 395 Reserved Words. 395 Predefined Attributes 396	d) Repetitive stimulus using leaps	
f). Example where all vectors generated on-the-fly. 336 f). Example where all vectors generated on-the-fly. 336 2. Vectors stored in an array. 339 3. Reading test vector system files. 341 Comparing Actual and Expected Results. 344 Chapter Twelve: Practical Modeling Examples 347 2. Digital Alarm Clock. 350 3. Three-Way-Round-Robin Arbiter. 354 4. Greatest Common Divisor (GCD). 361 5. Error Detection and Correction (EDAC). 369 Glossary. 379 Appendix A: VHDL 395 Reserved Words. 395 Predefined Attributes. 396	a). Tri stata buffare for bidirectional signals	
1). Example where all vectors generated on-the-hy. 330 2. Vectors stored in an array. 339 3. Reading test vector system files. 341 Comparing Actual and Expected Results. 344 Chapter Twelve: Practical Modeling Examples 347 1. Tri-State Pipeline Stage for Area Efficiency. 347 2. Digital Alarm Clock. 350 3. Three-Way-Round-Robin Arbiter. 354 4. Greatest Common Divisor (GCD). 361 5. Error Detection and Correction (EDAC). 369 Glossary. 379 Appendix A: VHDL 395 Predefined Attributes. 395	f) Example where all vectors generated on the fly	326
3. Reading test vector system files	1). Example where all vectors generated on-the-hy	
Comparing Actual and Expected Results	2. Vectors stored in an analy.	
Comparing Actual and Expected Results	5. Reduiling lest vector system mes.	
Chapter Twelve: Practical Modeling Examples 347 1. Tri-State Pipeline Stage for Area Efficiency. 347 2. Digital Alarm Clock. 350 3. Three-Way-Round-Robin Arbiter. 354 4. Greatest Common Divisor (GCD). 361 5. Error Detection and Correction (EDAC). 369 Glossary. 379 Appendix A: VHDL 395 Reserved Words. 395 Predefined Attributes. 396	Companing Actual and Expected Results	
1. Tri-State Pipeline Stage for Area Efficiency	Chapter Twelve: Practical Modeling Examples	
2. Digital Alarm Clock	1. Tri-State Pipeline Stage for Area Efficiency	
3. Three-Way-Round-Robin Arbiter	2. Digital Alarm Clock	350
4. Greatest Common Divisor (GCD)	3. Three-Way-Round-Robin Arbiter	
5. Error Detection and Correction (EDAC)	4. Greatest Common Divisor (GCD)	
Glossary	5. Error Detection and Correction (EDAC)	
Appendix A: VHDL Reserved Words	Glossary	
Reserved Words	Appendix A: VHDL	
Predefined Attributes396	Reserved Words	395
	Predefined Attributes	

Package STANDARD - for language defined types and functions	
Package TEXTIO - for language defined file manipulation	
Package STD_LOGIC_1164 - IEEE 1164 for standard logic operations	
Package NUMERIC_STD - IEEE 1076.3 - standard for use with synthesis	
VHDL Constructs	413

Appendix B: Verilog

Reserved Words	
Compiler Directives	
System Tasks and Functions	
Verilog Constructs	
Index	

EXAMPLES

Chapter Four: Design/Modeling Recommendations, Issues and Techniques

Example 4.1 Non-Static Slice	
Example 4.2 Non-Static Loop	
Example 4.3 Signal assignments & delta delay iterations (VHDL)	
Example 4.4 Variable assignments & delta delay iterations (VHDL)	
Example 4.5 Signal and variable assignments (VHDL)	
Example 4.6 Signal and variable assignments in a for loop (VHDL)	
Example 4.7 Blocking & non-blocking procedural assignments (Verilog)	
Example 4.8 Blocking & non-blocking assignments in a for loop (Verilog)	
Example 4.9 Effect of "don't care" output values	
Example 4.10 Comparing vectors of different width return a boolean FALSE	
Example 4.11 Type related VHDL attributes - 'base, 'left, 'right, 'high, and 'low	
Example 4.12 Array related VHDL attributes - 'range, 'reverse_range and 'length	
Example 4.13 Signal related VHDL attributes - 'stable and 'event	
Example 4.14 Data types defined in a package	
Example 4.15 Overloaded "+" operator	
Example 4.16 Overloaded subprogram	
Example 4.17 Using a deferred constant (VHDL)	
Example 4.18 Translation Functions	
Example 4.19 Automatic resource sharing	111

Chapter Five: Structuring a Design

shapter rive. Structuring a Design	
Example 5.1 Structural configuration for simulation using a configuration	
Example 5.2 Course grain structuring - multi-level components	
Example 5.3 Course grain structuring - components connected via split busses	
Example 5.4 Course/medium grain structural replication - for/if-generate (VHDL)	121
Example 5.5 Course/medium grain structuring using blocks (VHDL)	
Example 5.6 Fine grain structuring - procedure/task	
Example 5.7 Fine grain structuring - function	
Example 5.8 Fine grain structuring - separate subprograms	

Chapter Six: Modeling Combinational Logic Circuits

Example 6.1	Equations mode	eled using cont	tinuous assignment	ts133	3
-------------	----------------	-----------------	--------------------	-------	---

HDL Chip Design

Example 6.2 Parentheses used to control logical structure	
Example 6.3 One bit wide 2-1 multiplexer	
Example 6.4 Modeling styles of a 4-1 multiplexer	
Example 6.5 Two bit wide 8-1 multiplexer using case	
Example 6.6 An 8-3 binary encoder	
Example 6.7 An 8-3 binary priority encoder	
Example 6.8 A 3-8 binary decoder	
Example 6.9 A 3-6 binary decoder with enable	
Example 6.10 Four bit address decoder	
Example 6.11 Generic N to M bit binary decoder	
Example 6.12 Simple comparator	
Example 6.13 Multiple comparison comparator	
Example 6.14 An arithmetic logic unit	

Chapter Seven: Modeling Sequential Logic Circuits

Example 7.2 Modeling latches with preset and clear inputs167Example 7.3 Multiple gated enable latch168Example 7.4 Latch inference from nested if statements168Example 7.5 Inadvertent latch inference from a case statement170Example 7.6 Latch inference from nested case statements171Example 7.7 Flip-flops (+ve/-ve clocked) - VHDL attributes and function calls174Example 7.8 Various flip-flop models175Example 7.9 Combinational logic between two flip-flops178Example 7.10 One-to-many 8-bit LFSR modified for 2^n sequence values182Example 7.12 5-bit Up-by-one down-by-two counter187Example 7.13 Divide by 13 clock divider using an LFSR counter188Example 7.14 Divide by 16 clock divider using an asynchronous (ripple) counter190	Example 7.1 Simple and multiple latch inference using if statements	
Example 7.3 Multiple gated enable latch168Example 7.4 Latch inference from nested if statements168Example 7.5 Inadvertent latch inference from a case statement170Example 7.6 Latch inference from nested case statements171Example 7.7 Flip-flops (+ve/-ve clocked) - VHDL attributes and function calls174Example 7.8 Various flip-flop models175Example 7.9 Combinational logic between two flip-flops178Example 7.10 One-to-many 8-bit LFSR modified for 2^n sequence values182Example 7.11 Generic n-bit LFSR184Example 7.12 5-bit Up-by-one down-by-two counter187Example 7.13 Divide by 13 clock divider using an LFSR counter188Example 7.14 Divide by 16 clock divider using an asynchronous (ripple) counter190	Example 7.2 Modeling latches with preset and clear inputs	167
Example 7.4 Latch inference from nested if statements168Example 7.5 Inadvertent latch inference from a case statement170Example 7.6 Latch inference from nested case statements171Example 7.7 Flip-flops (+ve/-ve clocked) - VHDL attributes and function calls174Example 7.8 Various flip-flop models175Example 7.9 Combinational logic between two flip-flops178Example 7.10 One-to-many 8-bit LFSR modified for 2^n sequence values182Example 7.11 Generic n-bit LFSR184Example 7.12 5-bit Up-by-one down-by-two counter187Example 7.13 Divide by 13 clock divider using an LFSR counter188Example 7.14 Divide by 16 clock divider using an asynchronous (ripple) counter190	Example 7.3 Multiple gated enable latch	
Example 7.5 Inadvertent latch inference from a case statement.170Example 7.6 Latch inference from nested case statements.171Example 7.7 Flip-flops (+ve/-ve clocked) - VHDL attributes and function calls.174Example 7.8 Various flip-flop models.175Example 7.9 Combinational logic between two flip-flops.178Example 7.10 One-to-many 8-bit LFSR modified for 2^n sequence values.182Example 7.11 Generic n-bit LFSR.184Example 7.12 5-bit Up-by-one down-by-two counter.187Example 7.13 Divide by 13 clock divider using an LFSR counter.188Example 7.14 Divide by 16 clock divider using an asynchronous (ripple) counter.190	Example 7.4 Latch inference from nested if statements	
Example 7.6 Latch inference from nested case statements171Example 7.7 Flip-flops (+ve/-ve clocked) - VHDL attributes and function calls174Example 7.8 Various flip-flop models175Example 7.9 Combinational logic between two flip-flops178Example 7.10 One-to-many 8-bit LFSR modified for 2^n sequence values182Example 7.11 Generic n-bit LFSR184Example 7.12 5-bit Up-by-one down-by-two counter187Example 7.13 Divide by 13 clock divider using an LFSR counter188Example 7.14 Divide by 16 clock divider using an asynchronous (ripple) counter190	Example 7.5 Inadvertent latch inference from a case statement	170
Example 7.7 Flip-flops (+ve/-ve clocked) - VHDL attributes and function calls.174Example 7.8 Various flip-flop models.175Example 7.9 Combinational logic between two flip-flops.178Example 7. 10 One-to-many 8-bit LFSR modified for 2^n sequence values.182Example 7. 11 Generic n-bit LFSR184Example 7. 12 5-bit Up-by-one down-by-two counter.187Example 7. 13 Divide by 13 clock divider using an LFSR counter.188Example 7. 14 Divide by 16 clock divider using an asynchronous (ripple) counter.190	Example 7.6 Latch inference from nested case statements	171
Example 7.8 Various flip-flop models175Example 7.9 Combinational logic between two flip-flops178Example 7. 10 One-to-many 8-bit LFSR modified for 2^n sequence values182Example 7.11 Generic n-bit LFSR184Example 7.12 5-bit Up-by-one down-by-two counter187Example 7.13 Divide by 13 clock divider using an LFSR counter188Example 7.14 Divide by 16 clock divider using an asynchronous (ripple) counter190	Example 7.7 Flip-flops (+ve/-ve clocked) - VHDL attributes and function calls	174
Example 7.9 Combinational logic between two flip-flops.178Example 7. 10 One-to-many 8-bit LFSR modified for 2^n sequence values.182Example 7.11 Generic n-bit LFSR.184Example 7.12 5-bit Up-by-one down-by-two counter.187Example 7.13 Divide by 13 clock divider using an LFSR counter.188Example 7.14 Divide by 16 clock divider using an asynchronous (ripple) counter.190	Example 7.8 Various flip-flop models	175
Example 7. 10 One-to-many 8-bit LFSR modified for 2^n sequence values182Example 7. 11 Generic n-bit LFSR184Example 7. 12 5-bit Up-by-one down-by-two counter187Example 7. 13 Divide by 13 clock divider using an LFSR counter188Example 7. 14 Divide by 16 clock divider using an asynchronous (ripple) counter190Example 7. 15 Divide by 12 clock divider using an asynchronous (ripple) counter101	Example 7.9 Combinational logic between two flip-flops	
Example 7.11 Generic n-bit LFSR184Example 7.12 5-bit Up-by-one down-by-two counter187Example 7.13 Divide by 13 clock divider using an LFSR counter188Example 7.14 Divide by 16 clock divider using an asynchronous (ripple) counter190Evample 7.15 Divide by 12 clock divider using an asynchronous (ripple) counter101	Example 7. 10 One-to-many 8-bit LFSR modified for 2 ⁿ sequence values	
Example 7. 12 5-bit Up-by-one down-by-two counter187Example 7. 13 Divide by 13 clock divider using an LFSR counter188Example 7. 14 Divide by 16 clock divider using an asynchronous (ripple) counter190Example 7. 15 Divide by 12 clock divider using an asynchronous (ripple) counter101	Example 7.11 Generic n-bit LFSR	
Example 7.13 Divide by 13 clock divider using an LFSR counter	Example 7.12 5-bit Up-by-one down-by-two counter	
Example 7.14 Divide by 16 clock divider using an asynchronous (ripple) counter	Example 7.13 Divide by 13 clock divider using an LFSR counter	
Example 7 15 Divide by 12 cleak divider using an exaphrencus (ripple) counter 101	Example 7.14 Divide by 16 clock divider using an asynchronous (ripple) counter	
Example 7. 15 Divide by 13 clock divider using an asynchronous (hpple) counter	Example 7.15 Divide by 13 clock divider using an asynchronous (ripple) counter	

Chapter Eight: Modeling Finite State Machines

Example 8.1 Bad and good coded models of a three state FSM(FSM1)	
Example 8.2 One bad and four good models of an FSM	
Example 8.3 FSM with inputs or state value as the primary branch directive	
Example 8.4 FSM reset configurations	
Example 8.5 Angular position FSM using Gray and Johnson state encoding	
Example 8.6 FSM state encoding formats - Blackjack Game Machine	
Example 8.7 FSMs with a Mealy or Moore output	
Example 8.8 FSM with a Mealy and a Moore Output	
Example 8.9 FSM with sequential next state logic	
Example 8.10 FSM with sequentiol output logic	
Example 8.11 FSM with sequential next and output state logic - Blackjack	
Example 8.12 Unidirectional interactive FSMs	
Example 8.13 Two interactive FSM's controlling two rotors	

Chapter Nine: Circuit Functions modeled Combinationally or Sequentially

Example 9.1 Combinational logic shifter	.274
Example 9.2 Combinational logic shifter with shift in and out signals	.276

Example 9.3 Combinational barrel shifter	
Example 9.4 Shift registers	
Example 9.5 Comment directives for Carry-Look-Ahead and Ripple-Carry adders	
Example 9.6 Combined adder and subtractor with detailed structure	
Example 9.7 Serial adder/subtractor	
Example 9.8 Signed combinational multiplier using shift and add algorithm	
Example 9.9 Generic sequential shift and add multiplier	
Example 9.10 Generic (n x m) bit sequential multiplier using Booth's Algorithm	
Example 9.11 10-bit divide by 5-bit combinational logic divider	
Example 9.12 Generic sequential divider	

Chapter Ten: Tri-State Buffers

Example 10.1 Modeling tri-state buffers	
Example 10.2 Tri-state buffers using case& VHDL selected signal assignment	317
Example 10.3 Tri-state buffers using continuous signal assignments	
Example 10.4 Synchronously clocked tri-state buffers from concurrent and	
sequential statements	319

All examples are available on disk, see order form at rear of book for details.

1 Introduction

Chapter 1 Contents

Introduction	3
ASIC&FPGAdevices	3
Top-DownDesignMethodology	5
HardwareDescriptionLanguages(HDLs)	8
DesignAutomationTools	14
HDL Support for Synthesis	

Introduction

Traditionally, digital design was a manual process of designing and capturing circuits using schematic entry tools. This process has many disadvantages and is rapidly being replaced by new methods.

System designers are always competing to build cost-effective products as fast as possible in a highly competitive environment. In order to achieve this, they are turning to using top-down design methodologies that include using hardware description languages and synthesis, in addition to just the more traditional process of simulation. A product in this instance, is any electronic equipment containing Application-Specific Integrated Circuits (ASICs), or Field-Programmable Gate-Arrays (FPGAs).

In recent years, designers have increasingly adopted top down design methodologies even though it takes them away from logic and transistor level design to abstract programming. The introduction of industry standard hardware description languages and commercially available synthesis tools have helped establish this revolutionary design methodology. The advantages are clear and engineers' design methods must change. Some of the advantages are:

- increased productivity yields shorter development cycles with more product features and reduced time to market, reduced Non-Recurring Engineering (NRE) costs, design reuse is enabled, increased flexibility to design changes, faster exploration of alternative architectures faster exploration of alternative technology libraries, enables use of synthesis to rapidly sweep the design space of area and timing, and to automatically generate testable circuits,
- better and easier design auditing and verification.

This book uses the two industry standard hardware description languages VHDL and Verilog. Both languages are used world wide and have been adopted by the Institute of Electrical and Electronic Engineers (IEEE). The particular language versions used in this book are IEEE 1076 '93 for VHDL and IEEE 1364 for Verilog. All models have been verified using the simulation and synthesis tools developed by VeriBest Incorporated. Where synthesized logic circuits are shown they have been optimized for area unless explicitly specified otherwise.

ASIC and FPGA devices

Standard "off-the-shelf" integrated circuits have a fixed functional operation defined by the chip manufacturer. Contrary to this, both ASIC and FPGAs are types of integrated circuit whose function is not fixed by the manufacturer. The function is defined by the designer for a particular application. An ASIC requires a final manufacturing process to customize its operation while an FPGA does not.

ASICs

An application-specific integrated circuit is a device that is partially manufactured by an ASIC vendor in generic form. This initial manufacturing process is the most complex, time consuming, and expensive part of the total manufacturing process. The result is silicon chips with an array of unconnected transistors.

HDLChipDesign

The final manufacturing process of connecting the transistors together is then completed when a chip designer has a specific design he or she wishes to implement in the ASIC. An ASIC vendor can usually do this in a couple of weeks and is known as the turn-round time. There are two categories of ASIC devices; Gate Arrays and Standard Cells.

Gate Arrays

There are two types of gate array; a channeled gate array and a channel-less gate array. A channeled gate array is manufactured with single or double rows of basic cells across the silicon. A basic cell consists of a number of transistors. The channels between the rows of cells are used for interconnecting the basic cells during the final customization process. A channel-less gate array is manufactured with a "sea" of basic cells across the silicon and there are no dedicated channels for interconnections. Gate arrays contain from a few thousand equivalent gates to hundreds of thousands of equivalent gates. Due to the limited routing space on channeled gate arrays, typically only 70% to 90% of the total number of available gates can be used.

The library of cells provided by a gate array vendor will contain: primitive logic gates, registers, hard-macros and soft-macros. Hard-macros and soft-macros are usually of MSI and LSI complexity, such as multiplexers, comparators and counters. Hard macros are defined by the manufacturer in terms of cell primitives. By comparison, soft-macros are characterized by the designer, for example, by specifying the width a particular counter.

Standard cell

Standard cell devices do not have the concept of a basic cell and no components are prefabricated on the silicon chip. The manufacturer creates custom masks for every stage of the device's process and means silicon is utilized much more efficiently than for gate arrays.

Manufacturers supply hard-macro and soft-macro libraries containing elements of LSI and VLSI complexity, such as controllers, ALUs and microprocessors. Additionally, soft-macro libraries contain RAM functions that cannot be implemented efficiently in gate array devices; ROM functions are more efficiently implemented in cell primitives.

FPGAs

The field-programmable gate array is a device that is completely manufactured, but that remains design independent. Each FPGA vendor manufactures devices to a proprietary architecture. However, the architecture will include a number of programmable logic blocks that are connected to programmable switching matrices. To configure a device for a particular functional operation these switching matrices are programmed to route signals between the individual logic blocks.

The choice of ASIC or FPGA

The nonrecurring engineering (NRE) costs involved with customizing an ASIC is currently somewhere in the region of \$20,000 to more than \$100,000. However, after this initial outlay the unit cost for production devices might only be about \$10. This is much cheaper than the production costs of FPGA devices that are typically \$150 to \$250 per device. The advantage of FPGAs is that they are quick and easy to program (functionally customize). Also, FPGAs allow printed circuit board CAD layout to begin while the internal FPGA design is still being completed. This procedure allows early hardware and software integration testing. If system testing fails, the design can be modified and another FPGA device programmed immediately at relatively low cost. For these reasons, designs are often targeted to FPGA devices first for system testing and

for small production runs. The design is then retargeted to an ASIC for larger scale production.

Design trade-offs must be considered when retargeting FPGAs to ASICs. For example, a long hold time may never appear in an ASIC because of the improved speed of operation.

Top-Down Design Methodology

In an ideal world, a true top-down system level design methodology would mean describing a complete system at an abstract level using a Hardware Description Language (HDL) and the use of automated tools, for example, partitioners and synthesizers. This would drive the abstract level description to implementation on PCBs or MCMs (Multichip Modules) which contain: standard ICs, ASICs, FPGA, PLDs and full-custom ICs. This ideal is not fulfilled, however, EDA tools are constantly being improved in the strive towards this vision. This means designers must constantly take on new rolls and learn new skills. More time is now spent designing HDL models, considering different architectures and considering system test & testability issues. Practically no time is spent designing at the gate level.

Technology advancements over the last six years or so has seen a tenfold increase in the number of gates that an ASIC can contain: 100K gates is now common. This has increased the complexity of standard ICs and ASICs and resulted in the concept, "system on a chip". A top-down design methodology is the only practical option to design such chips.

Any ASIC or FPGA designs in a hardware development project are usually on the critical path of the development schedule. Traditionally, such designs have been produced by entering them as circuit diagrams using a schematic entry tool. In rare cases for reasons of cost, this may still be a viable design method for small devices such as PLDs. Provided the budget is available for simulation and synthesis tools, a top-down design approach using a Hardware Description Language (HDL), is by far the best design philosophy to adopt.

The saying, "a picture paints a thousand words", seems to go against the grain of using HDLs instead of schematics. This is evident in the popularity of graphical front end input tools which output HDL models. However, there are many advantages of adopting a top-down design methodology as summarized in the introduction on page 3.

Imagine using schematics to design a 100k gate ASIC; a small design change could result in major time consuming changes to the schematics. The philosophy of using a hardware description language to develop electronic hardware is similar to that of a software development project using a high-level programming language such as C.

The levels of hierarchical refinement of electronic hardware in a top-down design process, is shown in Figure 1.1. It indicates how synthesis is the key link in this process.

Figure 1.1 Hierarchical refinement of electronic hardware in a top down design environment

Figure 1.2.

A top-down design methodology takes the HDL model of hardware, written at a high level of behavioral abstraction (system or

algorithmic), down through intermediate

levels, to a low (gate or transistor) level;

Figure 1.2 Behavioral level of abstraction pyramid

6

The term behavior represents the behavior of intended hardware and is independent of the level of abstraction by which it is modeled. A design represented at the gate level still represents the behavior of hardware intent. As hardware models are translated to progressively lower levels they become more complex and contain more structural detail. The benefit of modeling hardware at higher levels of behavioral abstraction is that designers are not overwhelmed with large amounts of unnecessary detail and the complexity of the design task is reduced.

Hardware structure is ignored when modeling hardware at the two high levels of behavior. However, when modeling hardware at the RTL level it is essential to keep the hardware intent in mind at all times. Figure 1.3 shows how the different behavioral levels of abstraction overlap between the different design domains of pure abstraction, structural decomposition and physical implementation.

Figure 1.3 Design domain for different levels of design abstraction

Figure 1.4 Typical ASIC design flow using simulation and RTL level synthesis.

A typical ASIC design flow using simulation and RTL level synthesis is shown in Figure 1.4. The same test vectors are used to verify the RTL and synthesized netlist level models. The netlist level corresponds to the gate level, but may also include larger macro cells, or even bigger mega cells. By comparing the simulation results at each level, netlist level testing can be automated.

Hardware Description Languages (HDLs)

What is an HDL?

A Hardware Description Language (HDL) is a software programming language used to model the intended operation of a piece of hardware. There are two aspects to the description of hardware that an HDL facilitates; true abstract behavior modeling and hardware structure modeling.

Abstract behavior modeling. A hardware description language is declarative in order to facilitate the abstract description of hardware behavior for specification purposes. This behavior is not prejudiced by structural or design aspects of the hardware intent.

Hardware structure modeling. Hardware structure is capable of being modeled in a hardware description language irrespective of the design's behavior.

The behavior of hardware may be modeled and represented at various levels of abstraction during the design process. Higher level models describe the operation of hardware abstractly, while lower level models include more detail, such as inferred hardware structure.

History of VHDL

1980

The USA Department of Defense (DOD) wanted to make circuit design self documenting, follow a common design methodology and be reusable with new technologies. It became clear there was a need for a standard programming language for describing the function and structure of digital circuits for the design of integrated circuits (IC's). The DOD funded a project under the Very High Speed Integrated Circuit (VHSIC) program to create a standard hardware description language. The result was the creation of the VHSIC hardware description language or VHDL as it is now commonly known.

1983

The development of VHDL began under the VHSIC contract with a joint effort by IBM, Texas Instruments and Intermetrics. These companies pooled their experiences of high level languages and top-down design techniques to jointly develop the new language together with associated simulation tools.

VHDL provided government contractors with a standard method of communicating that facilitated top-down design techniques, and addressed the concern of how to upgrade systems when technologies became obsolete.

1987

Two significant things happened. First, the DOD mandated that all digital electronic circuits be described in VHDL, and second, the Institute of Electrical and Electronics Engineers (IEEE) ratified it as IEEE Standard 1076. The success of VHDL was now assured.

The F-22 advanced tactical fighter aircraft was one of the first major government programs to mandate the use of VHDL descriptions for all electronic subsystems in the project. Different subcontractors designed various subsystems, and so the interfaces between them were crucial and tightly coupled. The VHDL code was self-documenting and formed the basis of the top-down strategy. The success of this project helped establish VHDL and top-down design methodology.

Now that VHDL was an industry standard, Electronic Design Automation (EDA) vendors could start developing tools for it with considerably less risk. However, demand was low and the investment needed to develop commercial quality tools was high, so few tools were developed. This initial lack of tools meant VHDL was slow to be adopted commercially.

1993

The VHDL language was revised to IEEE 1076'93.

1996

Both commercial simulation and synthesis tools became available adhering to IEEE 1076 '93 standard. This enabled designers to start using this version of the standard in a top-down design methodology. A VHDL package for use with synthesis tools become part of the IEEE 1076 standard, specifically it is IEEE 1076.3. This will greatly improve the portability of designs between different synthesis vendor tools. Another part of the standard, IEEE 1076.4 (VITAL), has been completed and sets a new standard for modeling ASIC and FPGA libraries in VHDL. This will make life considerably easier for ASIC vendors, EDA tool vendors and designers.

History of Verilog

1981

A CAE software company called Gateway Design Automation was founded by Prabhu Goel. One of Gateway's first employees was Phil Moorby, who was an original author of GenRad's Hardware Description Language (GHDL) and HILO simulator.

1983

Gateway released the Verilog Hardware Description Language known as "Verilog HDL" or simply "Verilog" together with a Verilog simulator.

1985

The language and simulator were enhanced; the new version of the simulator was called "Verilog-XL".

1983 to 1987

Verilog-XL gained a strong foothold among advanced, high-end designers for the following reasons:

- The behavioral constructs of Verilog could describe both hardware and test stimulus.
- The Verilog-XL simulator was fast, especially at the gate level and could handle designs in excess of 100,000 gates.
- The Verilog-XL simulator was an "interpreter" (interpretive software executes source code directly instead of pre-compiling the source code into intermediate "object" code). The interpretive nature of Verilog-XL gave hardware design engineers something they wanted and needed with an easy way to interactively debug their hardware designs. With Verilog-XL, engineers could do more than just model and simulate, they could also troubleshoot a design the same way they would troubleshoot real hardware on a breadboard.

1987

Verilog-XL was becoming more popular. Design sizes of a single chip began to exceed the

realistic capacity of many other simulator products. Gateway began to aggressively pursue ASIC foundry endorsement. Another start-up company, Synopsys, began to use the proprietary Verilog behavioral language as an input to their synthesis product. At the same time, the IEEE released the "VHDL" standard, drawing attention to the possibilities of "top down design" using a behavioral Hardware Description Language and synthesis. All of these factors combined to increase the use and acceptance of Verilog-XL.

December 1989

Cadence bought Gateway.

Early 1990

Cadence split the Verilog Hardware Description Language (HDL) and the Verilog-XL simulator into separate products, and then released the Verilog HDL to the public domain. Cadence did this partly to compete with VHDL, which was a nonproprietary HDL, and mostly because Verilog users wanted to share models and knowledge about Verilog, which was not easy with a proprietary language. At this time the "Open Verilog International" (OVI) was formed to control the language specification. OVI is an industry consortium comprised of both Verilog users and CAE vendors.

1990

Nearly all ASIC foundries supported Verilog and most used Verilog-XL as a "golden" simulator. This is one that a chip vendor will use to sign-off a chip against, and guarantee that a manufactured chip will meet the same timing as that of the simulated model.

1993

Of all designs submitted to ASIC foundries in this year, 85% were designed and submitted using Verilog. (Source EE Times.)

December 1995

The Verilog language was reviewed and adopted by the IEEE as IEEE standard 1364.

VHDL/Verilog compared e contrasted

Each of the following paragraphs in this section compares and contrasts one aspect of the two languages and are listed in alphabetical order.

Capability

Hardware structure can be modeled equally effectively in both VHDL and Verilog. When modeling abstract hardware, the capability of VHDL can sometimes only be achieved in Verilog when using the PLI. The choice of which to use, is therefore, not based solely on technical capability but on:

- personal preferences,
- EDA tool availability,
- commercial, business and marketing issues.

The modeling constructs of VHDL and Verilog cover

Figure 1.5 HDL modeling capability

a slightly different spectrum across the levels of behavioral abstraction; see Figure 1.5.

Compilation

VHDL. Multiple *design units* (entity-architecture pairs), that reside in the same system file, may be separately compiled if so desired. However, it is good design practice to keep each design unit in its own system file.

Verilog. The Verilog language is still rooted in its native interpretative mode. Compilation is a means of speeding up simulation, but has not changed the original nature of the language. As a result care must be taken with both the compilation order of code written in a single file and the compilation order of multiple files. Simulation results can change by simply changing the order of compilation.

Data types

VHDL. A multitude of language or user-defined data types can be used. This may mean dedicated conversion functions are needed to convert objects from one type to another. The choice of which data types to use should be considered wisely, especially enumerated (abstract) data types. This will make models easier to write, clearer to read and avoid unnecessary conversion functions that can clutter the code. VHDL may be preferred because it allows a multitude of language or user defined data types to be used.

Verilog. Compared to VHDL, Verilog data types are very simple, easy to use and very much geared towards modeling hardware structure as opposed to abstract hardware modeling. Unlike VHDL, all data types used in a Verilog model are defined by the Verilog language and not by the user. There are net data types, for example wire, and a register data type called reg. A model with a signal whose type is one of the net data types has a corresponding electrical wire in the implied modeled circuit. Objects of type reg are updated under the control of the procedural flow of constructs that surround them. Verilog may be preferred because the simplicity of its data types.

Design reusability

VHDL. Procedures and functions may be placed in a package so that they are available to any *design unit* that uses them.

Verilog. There is no concept of packages in Verilog. Functions and procedures used within a model <u>must</u> be defined in the module statement with which it will be used. To make functions and procedures generally accessible from different module statements they must be placed in a separate system file and included using the 'include compiler directive.

Easiest to Learn

Starting with zero knowledge of either language, Verilog is probably the easiest to grasp and understand. This assumes the Verilog compiler directive language for simulation and the PLI language is not included. If these languages are included they can be looked upon as two additional languages that need to be learned.

VHDL may seem less intuitive at first for two primary reasons. First, it is very strongly typed; a feature that makes it robust and powerful for the advanced user after a longer learning phase. Second, there are many ways to model the same circuit, especially those with large hierarchical structures.

Forward and back annotation

A spin-off from Verilog is the Standard Delay Format (SDF). This is a general purpose format used to define the timing delays in a circuit. The format provides a bidirectional link between chip layout tools, and either synthesis or simulation tools in order to provide more accurate timing representations. The SDF format is now an industry standard in its own right.

High level constructs

VHDL. There are more constructs and features for high-level modeling in VHDL than there are in Verilog. Abstract data types can be used along with the following statements:

- package statements for model reuse,
- configuration statements for configuring design structure,
- generate statements for replicating structure,
- generic statements for generic models that can be individually characterized, for example, bit width.

All these language statements are useful in synthesizable models.

Verilog. Except for being able to parameterize models by overloading parameter constants, there is no equivalent to the high-level VHDL modeling statements in Verilog.

Language Extensions

The use of language extensions will make a model nonstandard and most likely not portable across other design tools. However, sometimes they are necessary in order to achieve the desired results.

VHDL. Has an attribute called 'foreign that allows architectures and subprograms to be modeled in another language.

Verilog. The Programming Language Interface (PLI) is an interface mechanism between Verilog models and Verilog software tools. For example, a designer, or more likely, a Verilog tool vendor, can specify user defined tasks or functions in the C programming language, and then call them from the Verilog source description. Use of such tasks or functions make a Verilog model nonstandard and so may not be usable by other Verilog software tools. Their use is not recommended.

Libraries

VHDL. A library is a storage area in the host environment for compiled entities, architectures, packages and configurations. Useful for managing multiple design projects.

Verilog. There is no concept of a library in Verilog. This is due to its origins as an interpretive language.

Low Level Constructs

VHDL. Simple two input logical operators are built into the language, they are: NOT, AND, OR, NAND, NOR, XOR and XNOR. Any timing must be separately specified using the **after** clause. Separate constructs defined in IEEE 1076.4 (VITAL) must be used to define the cell primitives of ASIC and FPGA libraries.

Verilog. The Verilog language was originally developed with gate level modeling in mind, and so has very good constructs for modeling at this level <u>and</u> for modeling the cell primitives of ASIC

and FPGA libraries. Examples include User Defined Primitives (GDP), truth tables and the specify block for specifying timing delays across a module.

Managing large designs

VHDL. Configuration, generate and package statements, together with the generic clause, all help manage large design structures.

Verilog. There are no statements in Verilog that help manage large designs.

Operators

The majority of operators are the same between the two languages. Verilog does have very useful unary reduction operators that are not predefined in VHDL. A loop statement can be used in VHDL to perform the same operation as a Verilog unary reduction operator. VHDL has the mod operator that is not found in Verilog.

Parameterizable models

VHDL. A specific bit width model can be instantiated from a generic n-bit model using the generic clause. The generic model will not synthesize until it is instantiated and the value of the generic given.

Verilog. A specific width model can be instantiated from a generic n-bit model using overloaded parameter values. The generic model must have a default parameter value defined. This means two things. In the absence of an overloaded value being specified, it will still synthesize, but will use the default parameter settings. Also, it does not need to be instantiated with an overloaded parameter value specified, before it will synthesize.

Procedures and tasks

VHDL allows concurrent procedure calls; Verilog does not allow concurrent task calls.

Readability

This is more a matter of coding style and experience than language feature. VHDL is a concise and verbose language; its roots are based on Ada. Verilog is more like C because its constructs are based approximately 50% on C and 50% on Ada. For this reason a C programmer may prefer Verilog over VHDL. Although a programmer of both C and Ada may find the mix of constructs somewhat confusing at first. Whatever HDL is used, when writing or reading an HDL model to be synthesized, it is important to think about hardware intent.

Structural replication

VHDL. The generate statement replicates a number of instances of the same *design unit* or some sub part of a design, and connect it appropriately.

Verilog. There is no equivalent to the generate statement in Verilog.

Test harnesses

Designers typically spend about 50% of their time writing synthesizable models and the other 50% writing a test harness to verify the synthesizable models. Test harnesses are not restricted to the synthesizable subset and so are free to use the full potential of the language. VHDL has generic and configuration statements that are useful in test harnesses, that are not found in Verilog.

Verboseness

VHDL. Because VHDL is a strongly typed language, models must be coded precisely with defined and matching data types. This may be considered an advantage or disadvantage. However, it does mean models are often more verbose, and the code often longer, than its Verilog equivalent.

Verilog. Signals representing objects of different bits widths may be assigned to each other. The signal representing the smaller number of bits is automatically padded out to that of the larger number of bits, and is independent of whether it is the assigned signal to or not. Unused bits will be automatically optimized away during the synthesis process. This has the advantage of not needing to model quite so explicitly as in VHDL, but does mean unintended modeling errors will <u>not</u> be identified by an analyzer.

Design Automation Tools

Software tools used to assist in the design of hardware come under one of two categories; Computer Aided Design (CAD) or Computer Aided Engineering (CAE). Tools used to design circuit board related hardware come under the category of computer aided design, while tools used for chip design come under the category of computer aided engineering. However, this distinction is not clear cut, for example, a simulator can be used. to simulate both boards and integrated circuits (chips). Only tools needed for chip design are discussed in this book.

Simulation

Simulation is the fundamental and essential part of the design process for any electronic based product; not just ASIC and FPGA devices. For ASIC and FPGA devices, simulation is the process of verifying the functional characteristics of models at any level of behavior, that is, from high levels of abstraction down to low levels. The basic arrangement for simulation is shown in Figure 1.6.

Figure 1.6 Basic simulation arrangement

A simulator, in this context, is a CAE software tool that simulates the behavior of a hardware model. Simulators use the timing defined in an HDL model before synthesis, or the timing from the cells of the target technology library, after synthesis. A simulator may be a basic functional simulator, a detailed dynamic timing analysis simulator, or both. Dynamic timing analysis is used in simulation to evaluate timing delays through the model more accurately than if static timing analysis were used. Static timing analysis is used by synthesis tools during optimization by simply extracting delays from the cells of the technology library. However, static timing analysis has difficulty with:

- multiple clocks and complex clocking schemes,
- asynchronous circuits and interfaces with asynchronous circuits,
- transparent latches,
- identifying and ignoring false paths.

Dynamic timing analysis is more accurate as illustrated in Figure 1.7. From Figure 1.7a), let Yl be at logic 1 with all other wires at logic 0. If the delay of Bufl is large and ambiguous relative to that of FI and FF2, then a rising edge on the clock produces the timing diagram shown in Figure

1.7b). The term ambiguous in this context, means the delay of Bufl may have a wide range of values determined by both the static and dynamic characteristics of the circuit. There is an apparent hazard for FF2 because it appears that the edge on signal BufClock may occur either before or after Yl changes value. However, when the common ambiguity due to Bufl's delay is removed it is clear that the edge on BufClock comes first; therefore, there is no hazard, and Y2 changes cleanly to logic 1 as shown.

Figure 1.7 Example showing need for dynamic timing analysis

Fault Simulation

Definition. Fault simulation is the simulation of the model of a digital circuit with particular input stimuli (vectors), and with typical manufacturing faults injected into that model. Fault simulation applies equally to integrated circuits (ICs) and printed circuit boards (PCBs).

Fault simulation is necessary for the following reasons:

- to identify areas of a circuit that are not being functionally tested by the functional test vectors, that is, certain internal nodes may not be toggled during functional simulation testing,
- to check the quality of test vectors and their ability to detect potential manufacturing defects,
- to perform board and in-circuit chip testing for both production and repair testing.

Fault simulation is particularly important for ASIC devices. However, it is still important for both anti-fuse programmable FPGAs and static RAM (SRAM) based programmable FPGAs.

The ability of manufacturing test vectors to test a device is called fault coverage and is measured as a percentage of the number of faults detected against the number of faults considered, that

fault coverage
$$=\frac{\text{faults detected x 100}}{\text{faults considered}}$$
 (typically 70% to 99.9%)

Another important measurement in detecting defective manufactured parts is the Average Quality Level (AQL) which is a measure of the manufacturing yield. It is a ratio of defective parts shipped and the total number of parts shipped, that is,

AQL = (defective parts shipped) /(total number of parts shipped) (typically 0.1% to 5%)

The fault coverage and AQL measurements together determine the potential number of faulty chips that will go undetected. Figure 1.8 shows the relationship between AQL and fault coverage, while Figure 1.9 identifies the percentage of undetected faulty chip. Figure 1.10 provides percentage figures for undetectable fault chips.

Figure 1.8 Log graph of AQL versus fault coverage

Figure 1.9 Undetectable faulty chips from AQL and fault coverage

Fault simulation is a very CPU intensive back-end design process and can lead to unexpected delays in getting a product to market. The short life cycle of many products containing ASIC or FPGA devices can mean that the cost of delays dwarf the cost of field repair; even at 5% AQL.

The need to perform fault simulation has become increasingly important for several reasons. One of the main reasons is that early fault detection reduces costs Figure 1.10 Percentage figures for considerably; see Figure 1.11. The vast increase in the undetectable faulty chips

number of gates on a chip, the increased gate to pin ratio, and the reduced timing of submicron transistor technology, have all increased the need for fault simulation.

Some of the advantages of using fault simulation are:

- greater confidence that the design is correct.
- only way of verifying the quality of production test vectors,
- gives early warning of any production problems,
- the only way of testing integrated circuits with a high gate to pin ratio,
- greater confidence that the final system will work,
- less failures in the field,
- reduced cost and time in the long run,
- retained company image and reputation,
- easier to repair and replace units.

		Yield											
		0	10	20	30	40	50	60	70	80	90	100	
age	0	100	90	80	70	60	50	40	30	20	10	0	
	10	100	89	78	67	57	47	37	27	18	9	0	
	20	100	87	76	65	54	44	34	25	16	8	0	
	30	100	86	73	62	51	41	32	23	14	7	0	
	40	100	84	70	58	47	37	26	20	13	6	0	
	50	100	81	66	53	42	33	25	17	11	5	0	
	60	100	78	61	48	37	28	21	14	9	4	0	
	70	100	72	54	41	31	23	16	11	6	3	0	
	80	100	64	44	31	23	16	11	7	4	2	0	
	81	100	63	43	30	22	15	11	7	4	2	0	
	82	100	61	41	29	21	15	10	7	4	1	0	
	83	100	60	40	28	20	14	10	6	4	1	0	
	84	100	59	39	27	19	13	9	6	3	1	0	
	85	100	57	37	25	18	13	9	6	3	1	0	
	86	100	55	35	24	17	12	8	5	3	1	0	
	87	100	53	34	23	16	11	7	5	3	1	0	
	86	100	51	32	21	15	10	7	4	2	1	0	
	69	100	49	30	20	14	9	6	4	2	1	0	
	90	100	47	28	18	13	9	6	4	2	1	0	
	91	100	44	26	17	11	8	5	3	2	0	0	
	92	100	41	24	15	10	7	5	3	1	0	0	
	93	100	38	21	14	9	6	4	2	1	0	0	
	94	100	35	19	12	8	5	3	2	1	0	0	
	95	100	31	16	10	6	4	3	2	1	0	0	
	96	100	26	13	8	5	3	2	1	0	0	0	
	97	100	21	10	6	4	2	1	1	0	0	0	
	98	100	15	7	4	2	1	1	0	0	0	0	
	99	100	8	3	2	1	0	0	0	0	0	0	
	100	100	0	0	0	0	0	0	0	0	0	0	

Figure 1.11 Relative cost of not finding faults early

Another advantage for PCB testing is:

• bed of nails not needed for PCB testing.

The industry accepted fault coverage for good yield is 95%. However, a chip designer with test vectors that give a 95% fault coverage cannot determine the percentage of potentially faulty chips that will go undetected. The reason for this is chip vendors do not like to divulge their yield figures. For example, if the fault coverage is 98%, but the manufacturers AQL is 40%, then 2% of the chips will have faults that are not detected.

Fault simulators first simulate the model of a chip without any faults; this is known as the fault free model. Typical manufacturing defects are then injected into the model and the simulation rerun. If the output vectors from the two simulation runs are different then the particular fault is detectable. The process then continues by injecting other faults throughout the model. Because of the vast number of potential faults that need to be modeled, it is easy to see why fault simulation run times are so long.

There are three main algorithms used by fault simulators; they are:

- serial,
- parallel,
- concurrent.

Serial. Serial fault simulation is the simplest. Two copies of the same circuit are stored in memory, a fault is injected into one of them, both circuits are simulated and their output is compared.

Parallel. Parallel fault simulation uses several complete copies of the circuit; one is good and the others have one fault injected into each of them. Each model is simulated concurrently on the same machine or distributed across multiple machines. The parallel algorithm method must continue until every parallel fault is detected whereas the serial algorithm can stop immediately when the fault is detected.

Concurrent. The concurrent algorithm method is the most powerful. It simulates one good and one bad model, with the bad model containing hundreds or thousands of injected faults. At the point a good and bad simulation differ the algorithm copies each fault to a separate machine and simulates them separately. It is faster and requires much less memory than the serial or parallel algorithm method.

Traditionally, fault simulators have simulated defects that cause stuck-at-logic-0 or stuck-at-logic-1 faults. Because of the speed and critical timing of silicon chips manufactured with submicron transistor channel widths, new fault simulators are adding the ability to perform delay fault testing. The risk is that critical timing from time optimized circuits may have longer delays in the manufactured chip than are expected. Both gate delay faults and path delay faults are considered.

Register Transfer Level Synthesis

Definition. Register transfer level synthesis is the process of translating a register transfer level model of hardware, written in a hardware description language at the register transfer level, into an optimized technology specific gate level implementation; see Figure 1.12.

Figure 1. 12 Synthesis equals translation and optimization

A register transfer level synthesis software tool automates this part of the ASIC and FPGA design process and forms the central link in a top-down design methodology. Synthesis is by far the quickest, and most effective means of designing and generating circuits. A typical synthesis process flow using a synthesis tool is shown in Figure 1.13. It shows an initial translation to a netlist without optimization. In practice, fundamental high-level optimization is performed, but is transparent to the user. This provides the starting point on the area-time curve for optimization. Figure 1.13 shows a design optimized three times with three different constraint settings to yield three different points on the area-time curve. The typical optimization methodology is to optimize for area first, and then only optimize for timing if any timing constraints are not met. Hierarchical blocks in a large design are normally optimized starting from the lower level blocks in a *bottom-up* process.

Figure 1.13 Translation and optimization process flow using RTL level synthesis

Synthesis consists of multiple stages of translation and optimization. It takes a design through three main internal levels of intermediate refinement (abstraction); see Figure 1.14.

Figure 1.14 RTL synthesis internal translation and optimization processes

Automatic optimization occurs at each of these intermediate levels and is guided by user defined constraints. Constraints provide the goals that the optimization and translation processes try to meet. Current synthesis tools typically allow constraints to be set for minimal area and minimal timing delay. Power and testability constraints may also be available. In the future, layout and packaging constraints may also be available.

Minimal and maximal. The words minimal and maximal are used instead of minimum and maximum because optimization by a synthesis tool is a heuristic process. Optimization uses different algorithms on a trial and error basis to find a circuit implementation that best fits the constraints. A circuit optimized for minimum area will have minimum area based on what the optimizer can find. This may not always be the absolute minimum circuit that could be produced if the design were carefully designed by hand.

There is a correlation between minimal area and minimal power. A circuit that is optimized for minimal area is often the one that consumes minimal power for a given frequency. For this reason, the majority of synthesis tools do not optimize separately for minimal power. It is up to the designer to accurately specify constraints to trade off the two conflicting requirements of minimal area and maximal speed. The circuit version optimized for minimal area will not be the fastest. Similarly, the version of a circuit optimized to operate as fast as possible will not be implemented and have minimal area. However, the spread of possible area and timing implementations of different circuits is unique. It is possible that a circuit version optimized for minimal area also operates the fastest.

The types of optimizations that occur at each translated level of synthesis are now discussed.

RTL level optimization

Code related processing is first performed when a model is synthesized (compiled). Some examples are:

- expansion subprograms are in-line expanded,
- constant folding constants are folded together, for example, A + 3 + 2 becomes A + 5,
- loop unrolling loop statements are unrolled to a series of individual statements,
- dead code removal any unused (dead) code is discarded,
- bit minimization for example, VHDL state encoding or assignments of different width in Verilog.

A control-data flow-graph (CDFG) format is often used by synthesis tools for the highest internal representation of a design. A CDFG is a graphical means of representing hardware structure, an example of which is shown in Figure 1.15. Optimization of a CDFG facilitates high level (architectural) synthesis techniques and includes synchronous logic optimization techniques such as: scheduling, resource binding, data path structuring and partitioning.

Figure 1.15 Control-data flow-graph

Logic level optimization representation of high level structure

Once synthesis has translated a design to the logic level, all registered elements are fixed and only combinational logic is optimized. Optimization at this level involves restructuring boolean equations according to the rules of boolean logic. Combinational logic is, therefore, optimized on a much finer grain basis than at the RTL level. The types of boolean optimization include: minimization, equation flattening, equation factorization and optimization. The synthesis algorithms used to perform these operations operate on a multiple level (equation) and multiple output basis. The algorithms have multiple dimensions and are much more complex than the manual process of using a two dimensional Karnaugh map to optimize a single equation with a single

Figure 1.16 Example of the logic level implied optimization of boolean equations

output. An example of what happens during logic level optimization is shown in Figure 1.16.

Flattening. The conversion of multiple boolean equations into a two level sum-of-products form is called flattening. All intermediate terms are removed.

Factoring. The factorization of boolean equations is the process of adding intermediate terms. This adds implied logic structure which both reduces the size of the circuit and reduces large fan-outs.

Factoring is a varied design and constraint

dependent process. Adding structure adds levels of logic which tends to make a smaller, but slower operating circuit. Mote, it is possible a circuit optimized for minimal area also has minimal timing delays.
Gate level optimization

Once synthesis has translated a design to the gate level, area and timing information is extracted from the cells of the targeted technology library for fine grain local optimization of cell primitives. Gate level optimization is a process of looking at a local area of logic containing a few cells and trying to replace them by other cells from the technology library that fit the constraints better. It then looks at another local area with an overlap with the first local area. If the effort level for such an optimization is increased the optimizer will typically look at a slightly larger local area each time. For a flat level ASIC containing 50,000 to 100,000 equivalent gates, it is easy to see how such optimizations can last many hours. An example of what happens during gate level optimization is shown in Figure 1.17.

Figure 1.17 Example of gate level optimization

Test Synthesis

Definition. Test synthesis is the modification of a chip design to make both the chip, and the system (PCB) where it will reside, more testable, and the Automatic Test Pattern Generation (ATPG) of test vectors.

The process of modifying a design to make a circuit more testable is called Design For Test (DFT). There are many DFT techniques that can be implemented in both the HDL model before synthesis and circuit after synthesis; test synthesis tools can assist on both accounts.

Traditionally, the issue of how to test manufactured chips has been a back end process. However, due to the number of gates implemented in chips today, it is necessary to consider testability issues up front when designing and writing HDL code. If the up front issue of test is ignored, and a test synthesis tool is not available, then RTL level synthesis may be a fast and efficient means of producing untestable logic.

The use of test synthesis for DFT techniques and ATPG will reduce the time it takes to generate manufacturing test vectors from months to days. Design for test techniques known as "ad-hoc" are typically not supported by synthesis tools, but are a result of careful design practices. Examples include: redundancy removal, avoiding asynchronous logic, avoiding large fan-in and Built-in Self-Test (BIST), etc. DFT features of test synthesis tools are aimed at improving signal controllability and observability of internal circuit nodes. Operations performed by test synthesis after RTL/logic synthesis are as follows:

- full internal scan,
- partial internal scan,
- boundary scan.

For ASICs, these tasks are often performed by the ASIC vendor.

Internal scan

The use of internal scan cells enables ATPG tools to easily generate a near 100% fault coverage on the combinational logic. Internal scan is the replacement of latches and flip-flops by their scan equivalent latch or flip-flop. Each scan cell has a scan data input (SDI), a scan data output (SDO) and a test enable input (TE). Groups of these cells are then connected in chains of equal or similar length. The TE input is used to put the register element in test mode. There are three parts to the test mode. First, on successive clock cycles data is scanned from an input pin of the chip to the input of the scan cell ready to be clocked in on the next rising edge of the clock signal. Second, the scanned in data is clocked into the register element. Third, data on the output of the register is scanned through the scan chain on successive clock cycles to an output pin on the chip. An example of internal scan is shown in Figure 1.18. It shows a synchronous sequential circuit before and after inserting a scan chain. The synchronous circuit would be quite difficult to test without scan cells. With scan cells, access from the pins of the chip to the scan cells reduces the test problem to a combinational logic problem which is easily resolved by FPGA tools.

Figure 1.18 Internal scan - automatically implemented by test synthesis

There are three types of scan replacement dependent upon the technology library being used; they are SCAN, MUXED and LSSD (Level-sensitive scan-design); see Figure 1.19.

Figure 1.19D-type flip-flop scan replacements

SCAN. If the technology library contains scan cells, sequential logic cells will be replaced by their scan equivalent. Many ASIC vendors provide SCAN equivalent cells whose timing and area overhead are minimal. The percentage increase in gate count as a result of changing D-type flip-flops with their scan equivalents are shown in Figure 1.20.

MUXED. A multiplexer is inserted before the data input to the sequential cell. This may be the only method available if the ASIC library does not contain scan equivalent cells. The disadvantage is the area overhead

of using a multiplexer, but may be reduced during *Figure 1. 20 Silicon area percentage* optimization with other logic. *increase when using scan cells*

LSSD. A sequential logic cell is replaced with an equivalent LSSD cell, which uses two non overlapping clocks (Clock-A and Clock-B), to drive the scan operation of the circuit. Example LSSD replacements are double-latch, clocked and auxiliary clock.

Full internal scan. Every single register element in a circuit is replaced by its scan equivalent. The disadvantage, which often outweighs the advantage, is that chip area increases significantly.

Partial internal scan. This is the same as full scan except that only certain register elements arc replaced by their scan equivalent. In this case a test synthesis tool will perform controllability and observability checks on each node and intelligently decides which registers should be scan type registers. Compared to full scan, silicon area overhead is reduced, but ATPG tools have a harder job generating test vectors with a near 100% fault coverage. Also, more test vectors will be needed.

Boundary scan

The purpose of boundary scan is to make the PCB on which the chip will reside more testable not to make the chip more testable. A printed circuit board in this context could be any type of board, for example, surface mount, wire bonded, etc. Boundary scan is an IEEE standard (IEEE 1149). All input and output cells of an ASIC are replaced with their scan equivalent cell and

connected together to form a single chain around the chip, and controlled by а dedicated controller called a Test Activity Port (TAP) Controller; Figure 1.21. ASIC vendors often have TAP cells in their technology library. Designers can do one of two things. One, instantiate the boundary scan related cells in the HDL code and simulate to

Figure 1.21 Boundary scan - automatically implemented by test synthesis

ensure it does not affect circuit operation. Two, take a low risk chance that it will not affect circuit operation and let the ASIC vendor perform automatic boundary scan insertion.

HDL Support for Synthesis

Certain constructs in a hardware description language are either ignored or are not supported by synthesis tools. The reason for this is that some constructs have no direct hardware correlation or the hardware intent is extremely abstract. For example, timing related constructs are ignored as the timing should come from the cells of the technology specific library. Constructs that are not supported typically include floating point arithmetic operators, loop statements without a globally static range and file manipulation related constructs. There is no standard for which constructs are supported and those that are not supported. As a consequence, the supported subset of constructs may be different for different synthesis tools. A VHDL working group has been set up to formalize an industry standard subset of constructs that should be supported by synthesis tools, with the intention of making designs portable. Effort is ongoing under the OVI to define an industry standard subset of Verilog constructs for synthesis. The main point is that there are differences, but these differences are not the deciding factor on selecting which synthesis tool to use. It is far better to write code that is independent of the synthesis tool being used. All synthesis models in this book are independent of the synthesis tool except where indicated otherwise.

2 Synthesis Constraint & Optimization Tutorials

Chapter 2 Contents

Introduction	
Combinational Logic Optimization	
A Typical Design Constraint Scenario	

Chapter Two: Synthesis Constraint & Optimization Tutorials

Introduction

This chapter graphically describes some of the types of constraints used by synthesis and how they affect resulting optimized circuits. Constraints represent desired circuit characteristics, that is, design goals for the optimizer to attempt to achieve. Different constraints cause different optimized circuits to be generated, but with the same functionality. There is no industry standard for how constraints are specified so the format is likely to be different for different synthesis tools. Constraints are typically set through a graphical user interface or via the command line. This chapter includes the command syntax for the VeriBest Synthesis tools.

Constraints fall into one of two categories:

- global,
- circuit specific.

Global default constraints. Once global constraints have been set, they apply equally to all designs by default, that is, without needing to be explicitly defined for each individual design. Example constraints are:

- library process factor,
- operating voltage,
- operating temperature.

Circuit specific constraints. Circuit specific constraints are specific to one particular design. Possible examples are:

- 1) area
 - maximum area,
- 2) timing
 - input and output loading,
 - input maximum fan-out constraints,
 - input driving capability,
 - input arrival times,
 - output driving capability constraints,
 - output arrival time constraints,
 - minimum clock frequency.
- 3) power

• maximum power

- 4) testability (test synthesis)
 - replacement scan cell types
 - maximum scan cell length
 - full or partial scan
 - boundary scan

The most common constraints used in RTL level synthesis tools today are area and timing.

Area. An area constraint is a number corresponding to the desired maximum area of a specified design module, and may, or may not, contain hierarchical structure. The area number will have units corresponding to the units defined in the cells of the technology library, for example, equivalent gates, grids or transistors. The units will depend upon the type of ASIC or FPGA.

Timing. Timing constraints tell the synthesis tool when signal values arrive and when they need to arrive at specific points in time. The static timing analyzer in the synthesis tool will extract timing information from the technology library in order to compute actual path delays. This includes the setup and hold times of registered elements and signal delays through combinational logic, given specific global constraints. Signal path delays in the model are computed and

compared with desired timing constraints, whereby automatic optimization is performed as necessary in order to improve timing characteristics. Typically, a designer will want to progressively increase timing optimization effort levels in order to progressively trade off area for improved timing, depending on the type of ASIC or FPGA. Note that timing constraints, or any constraints for that matter, should not be more restrictive than are necessary.

Combinational Logic Optimization

A combinational logic circuit conforming to the function table, Table 2.1, is shown optimized with different constraints set. The VHDL and Verilog models are coded using a case statement.

	A	B	G	D	ŶÌ	Y2
ſ	0	0	0	0	1	0
1	õ	Ō	õ	1	1	0
	Ó	Ó	1	0	1	Ō
1	0	0	1	1	1	0
	0	1	0	0	1	0
ł	0	1	0	1	1	0
1	0	1	1	0	1	0
ł	0	1	1	1	ז	0
	1	0	0	0	1	0
	1	0	0	1	0	1
	1	0	1	0	0	1
	1	0	1	1	1	1
	1	1	0	0	1	0
	1	1	0	1	1	0
	1	ľ	٦	0	1	0
	1	1	1	1	1	0

Table 2.7 Function table ofcombinational logic

HDL of combinational logic function

TIDE OF COMDINATIONAL TOGIC TUNCTION	
VHDL	Verilog
library IEEE; use IEEE.STD_Logic_1164.all, IEEE.Numeric_STD.all; entity COMB_1 is port(A,B, C, D: in std_logic; Y1. Y2: out std_logic); end entity COMB_1; architecture LOGIC of COMB 1 is begin process (A. B, C, D) variable ABCD: unsigned(3 downto 0); begin ABCD := unsigned'(A & B & C & D); case ABCD Is when "0000" => Y1 <= '1'; Y2 <= '0'; when "0001" => Y1 <= '1'; Y2 <= '0'; when "0011" => Y1 <= '1'; Y2 <= '0'; when "011" => Y1 <= '1'; Y2 <= '0'; when "011" => Y1 <= '1'; Y2 <= '0'; when "0110" => Y1 <= '1'; Y2 <= '0'; when "1010" => Y1 <= '1'; Y2 <= '0'; when "1010" => Y1 <= '1'; Y2 <= '0'; when "1011" => Y1 <= '1'; Y2 <= '0'; when "1011" => Y1 <= '1'; Y2 <= '0'; when "100" => Y1 <= '1'; Y2 <= '0'; when "1100" => Y1 <= '1'; Y2 <= '0'; when "1100" => Y1 <= '1'; Y2 <= '0'; when "1110" => Y1 <= '1'; Y2 <= '0'; when "1111" => Y1 <= '1'; Y2 <= '0'; when others => Y1 <= '0'; Y2 <= '0'; end case; end process; end architecture LOGIC;	<pre>module COMB 1 (A, B, C, D, Y1. Y2); input A, B, C. D; outputY1, Y2; reg Y1,Y2; always @(A or B or C or D) begin case ({A, B, C, D})</pre>

The model is first synthesized (translated) and then optimized four times with four different design constraint configurations set. They are:

- minimal area irrespective of timing delays,
- minimal area, but with low drive inputs,
- maximal speed irrespective of area,
- maximal speed, but with low drive inputs.

The affect of these constraints on the circuit is shown in Figure 2.1.

Figure 2.1 Combinational logic function optimized with different constraints

A typical design constraint scenario

This tutorial considers a typical design scenario for which constraints must be specified and may represent part of a design or large project which has been partitioned among several designers. The following timing paths are considered and shown graphically in Figure 2.2.

- begin at registers outside the design being optimized,
- begin at registers inside the design being optimized,
- begin outside the design being optimized, but not at registers,
- end at registers outside the design being optimized,
- end at registers inside the design being optimized,
- end outside the design being optimized, but not at registers.

Figure 2.2 Specifying design constraints

Timing constraints represent specific points in time. Therefore, in order to correctly constrain the design the optimizer must be told the times at which signals t2, t8 and t12 arrive, and the times when signals t5, t9 and t13 need to arrive. In this example, signal delays through "logic clouds" Delay1 to Delay6 are fixed, that is, they are outside the designer's control; only the logic in Logic1 to Logic4 is being optimized.

The assumed environment for the design is described in Figure 2.2. Example constraint commands are shown for the VeriBest synthesis tools. Vendor specific constraints are an obstacle to portability.

Defining clock waveforms

The first step in correctly constraining this design is to define clock waveforms and associate them with the clock signals of the design. For VeriBest the commands are:

```
set waveform name=clockwave definition=(>(u10 d10))
apply waveform name=clockwave signal=Clock1
apply waveform name=clockwave signal=Clock2 delay=5
```

This example does not show two registers with logic between them wholly contained in the design being optimized. These clock constraints are enough to automatically constrain such logic.

Input constraints

Input constraints are usually the easiest to specify; it is the delay outside the circuit being optimized that is being specified. The following constraints specify the point in time that signals t2, t8 and tl2 arrive and are shown graphically in Figure 2.3.

1. Constraint for t2

When a signal originates at a register outside the design, the delay should be specified with respect to the clock that controls the register. For signal t3, the delay is calculated as follows:

arrival_time(t2) - delay_outside_circuit = delay(FF_clock_output) + delay(Delayl) = 1.2 ns + 1.0 ns = 2.2 ns

The VeriBest command is:

set arrival_time data=t2 clock_source=Clock1 edge=R rise=2.2 fall=2.2

This provides the optimizer with enough information to constrain the logic in *logic1*. The clock waveform has already been specified and the optimizer can determine the setup time for the register from the technology library. Thus, the logic in logic1 has the following timing requirement.

max_delay(Logicl) = clock_period - FF_setup_time - external-delay = 20 ns - 0.4 ns - 2.2 ns = 17.4 ns

2. Constraint for t8

The constraint for t8 is specified in the same way as for t2. The delay calculation is:

arrival_time(t8) = delay_outside_circuit = delay(FF_clock_output) + delay(Delay3) = 1.2 ns + 3.0 ns = 4.2 ns

The VeriBest command is:

set arrival_time data=t8 clock_source=Clock2 edge=R rise=4.2 fall=4.2

Unlike the previous constraint, this does not provide the optimizer with enough information to constrain the internal logic. Additional information is needed to constrain the logic in Logic3; specifically the optimizer must know the time that data must arrive at t9, which has not yet been specified.

Constraint for t12

The path to tl2 does not originate at a register so the constraint specification becomes very simple. The delay calculation is:

arrival_time(tl2) - delay_outside_circuit = delay(Delay5) - 5.0 ns

The VeriBest command is:

set arrival_time data=t12 rise=5.0 fall=5.0

Like signal t8, this does not provide enough information to constrain Logic4; the optimizer must know the time that data must arrive at signal t13.

Figure 2.3 Graphical representation of input constraints

Output constraints

Output constraints are slightly more complicated. Constraints specifying the point in time that signals t5, t9 and t13 must arrive are described. Figure 2.4. shows a graphical representation of the combined input and output constraints.

1. Constraint for t5

When a signal is ultimately driving a register outside the design, the same type of calculation must be performed as was performed for Logic1. The constraint value is the clock period minus both the setup time for the external register and the delay through the external combinational logic (Delay2).

required_time(t5) = clock_edge(Clockl) - FF_setup_time - external_delay = 20 ns - 0.4 ns - deIay(Delay2) = 20 ns - 0.4 ns - 2.0 ns =17.6 ns

The VeriBest command is:

set required time_time data=t5 clock_cource= Clock1 edge=R rise=l 7.6 fall=17.6

2. Constraint for t9

To constrain t9, a similar calculation must be performed as was performed for t5:

required_time(t9) = clock_edge(Clockl) - FF_setup_time - external_delay = 20 ns - 0.4 ns - delay(Delay4) = 20 ns - 0.4 ns - 4.0 ns = 15.6 ns

The VeriBest command is:

set required time_time data=r9 clock_source= ClockI edge=R rise=15.6 fall=15.6

From this specified required time and the specified arrival time for signal t8, the optimizer will automatically calculate how much time is left for the internal logic in Logic3. Now, because the arrival time for t8 is specified with respect to Clock2, which is not at time 0ns, the arrival time of

the clock edge must be added into the equation. This is determined as follows:

 $\begin{array}{l} \max_delay(Logic3) = required_time(t9) - real_arrival_time(t8) \\ = 15.6 \ ns - (edge_time(Clock2) + specific_arrival_time(t8)) \\ = 15.6 \ ns - (5.0 \ ns + 4.2 \ ns) \\ = 15.6 \ ns - 9.2 \ ns \\ = 6.4 \ ns \end{array}$

3. Constraint for t13

As the path from t13 does not end at the register, the constraint specification becomes very simple. The delay calculation is:

required_time(tl3) = required_time(tl4 - delay(Delay6) = 19 ns - 6.0 ns = 13 ns

The VeriBest command is:

set required time_time data=t13 rise=13.0 fall=13.0

From this specified required time and the specified arrival time for signal tl2, the optimizer will automatically calculate how much time is left for the internal logic in Logic4. This is determined as follows:

 $max_delay(Logic4) = required_time(t13) - arrival_time(t12)$ = 13.0 ns - 5.0 ns = 8.0 ns

Figure 2.4 Graphical representation of combined input and output constraints

3 language Fundamentals

Chapter 3 Contents

Design Entities	39
VHDL Design Entity	
Verilog Design Entity	
Code Structure	41
Declaration statements	
Concurrent statements	
Sequential statements	
Data Types and Data Objects	
VHDL Data Types	
VHDL Data Objects	
Verilog Data Types	
Verilog Data Objects	
Expressions	
Operands	
Literal Operands	
Identifier Operands	
Aggregate Operands (VHDL)	
Function Call Operands	
Index & Slice Name Operands	
Qualified Expression Operands (VHDL)	
Type Conversion Operands (VHDL)	
Record & Record Element Operands (VHDL)	
Operators	
Overloaded Operators (VHDL)	
Arithmetic Operators	63
Sign Operators	
Relational Operators	64
Equality & Inequality Operators	
Logical Comparison Operators	
Logical Bit-wise Operators	
Shift Operators	
Concatenation & Verilog Replication Operators	
Reduction Operators (Verilog)	
Conditional Operator (verilog)	

Design Entities

When designing and modeling digital systems in VHDL or Verilog it is necessary to partition the design into natural abstract blocks known as components. Each component is the instantiation of a *design entity*, which is normally modeled in a separate system file for easy management and individual compilation by simulation or synthesis tools, for example. A total system is then modeled using a hierarchy of components known as a *design hierarchy* that has individual subcomponents (subdesign entities) being brought together in a single higher level component (design entity). When the coded models of design entities are to be synthesized, an assumption made throughout this book, the designer should partition the system into suitably sized design entities, that when synthesized will yield up to a maximum of about 5000 equivalent gates. An equivalent gate equates to the size of a two input NAND gate. There is no absolute rule about what is the most optimal sized circuit to synthesize and optimize, but anything from 2000 to 5000 equivalent gates typically gives good optimal results without being too CPU intensive.

Design entities are quite different in VHDL and Verilog.

VHDL design entities

Design entities are constructed in VHDL using five different types of *design units* as depicted in Figure 3. 1. The entity declaration, package declaration and configuration declaration are primary design units and are visible within a library. A library is a storage area of the host environment for compiled design units. The architecture and package body declarations are secondary design units because they are not visible within a library. A *design entity* consists of two design units; an entity-architecture pair. An entity provides the port information of a particular design entity, while the architecture provides the functional body description of a design entity. This design entity can use common design data which is stored in a package. The package and possible package body contain globally available design data, for example, data types and subprograms, that can be made available for use by any other design units as required. A package may have a package body for the declaration of the subprogram etc. A package body has the same name as its corresponding package.

Figure 3.7 VHDL Design Units

The five kinds of VHDL design units are:

Entity declaration. An entity declaration describes the interface of a design entity through which it communicates with other design entities in the same environment. The interface typically includes all input, output and bidirectional signals defined in the port declaration section plus any model parameterizing parameters defined using generic declarations.

Architecture body. An architecture body describes the functional composition of a design. Multiple architecture bodies can describe different architecture versions of the same design entity. In this context different architecture versions have matched signal names to a single entity. For example there may be two slightly different RTL models of the same circuit, in different architecture bodies, or there may be another at the gate level resulting from synthesis.

Configuration declaration. A configuration declaration is a primary design unit used to bind entity statements to particular architecture bodies to form components of a design. A single configuration can specify multiple entity-architecture bindings throughout a design hierarchy. Configurations allow the late binding of components after multiple architecture bodies have been written and compiled. It is possible to have more than one configuration declaration for an entity, each of which defines a different set of bindings for components.

Package declaration. A package declaration is a repository for storing commonly used declarations that can be made globally accessible across multiple design units. Example declarations are data types, constants and subprograms. A package declaration has an associated package body if subprograms (functions and procedures) are declared.

Package body: A package body is always associated with a package declaration of the same name and contains the subprogram bodies of functions and procedures declared in the package declaration.

Verilog design entities

In Verilog, a *design entity* has only one *design unit;* the module declaration as depicted in Figure 3.2.

Figure 3.2 Verilog design entity

Module declaration. The module declaration is the only design unit (*design entity*) in Verilog. It describes both a design's interface to other designs in the same environment, and its functional composition. All declarations used within a model must be declared locally within the module. However, the compiler directive 'include, is often used to reference a separate system file. This directive is replaced with the contents of the file it references when compiled by a simulator, synthesizer, or other similar tool. This is very useful for writing generic Verilog code in a separate file that can be referenced from the code in any other Verilog file.

Code Structure

A *design unit* may instantiate other design units, which in turn may instantiate other design units in a hierarchial manner. This hierarchical code structure should mimic inferred hardware structure when hardware structure is being modeled, see Chapter 5.

Coded statements within a design unit fall into one of three categories: declaration, concurrent or sequential. Appendix A includes the syntax of VHDL statements and Appendix B includes the syntax of Verilog statements.

Declaration statements

These statements declare objects for use in concurrent and sequential statements.

VHDL. In VHDL, the component of a sublevel design unit must be declared before it can be instantiated. Similarly subprograms must be declared before they can be used. A subprogram in VHDL is a **procedure or function**. A declaration statement is placed before the **begin** clause in an **architecture, block, process, procedure or function** statement, see Figure 3.3.

Verilog. In Verilog a design unit, that is, a **module** statement, does not need to be declared; nor do subprograms, that is, a **task or function**. There is no dedicated declarative region in a **module**, sequential block, concurrent block, **task or function**, see Figure 3.4.

Concurrent statements

These are statements that are executed in parallel, that is, at the same time. They operate independently of all other concurrent statements. When modeling hardware structure they represent independent sections of the circuit being modeled. Each concurrent statement is executed asynchronously with all other concurrent statements.

VHDL. The **block** and **process** are concurrent statements. Signal assignments and **procedure** calls are concurrent provided they do not reside in a **process** statement. Similarly a **function** call is concurrent provided it is called from within the expression of a concurrent signal assignment.

Verilog. The continuous assignment and **always** statement are concurrent. A continuous assignment uses the reserved word **assign** to assign data objects of any of the net data types. A **task** cannot be called concurrently, see Figure 3.5.

Sequential statements

Sequential statements are statements that are executed depending upon the procedural flow of constructs that surround them.

VHDL. Sequential statements reside after the begin clause in a process; again see Figure 3.3.

Verilog. Sequential statements reside in an **always** statement, **that** may, **or** may not, contain sequential **begin-end** procedural blocks. The assigned objects are of type **reg** or **integer**, again see Figure 3.4.

Figure 3.3 VHDL - subprogram declarations in a design or library unit

Figure 3.4 Verilog - subprogram declarations in a design unit

Figure 3.5 VHDL - process statements in a design unit & subprogram calls in a design or library unit

Figure 3.6 Verilog - subprogram calls and sequential or concurrent blocks in a design unit

Data Types and Data Objects

Models in either language pass data from one point to another using data objects. Each data object has a collection of possible values known as a *value set*. A data type defines this value set. The concept of the data type and data object is quite different between the two languages as explained below.

VHDL		Verilog		
Data types	Data Objects (of a data type)	Data	a types	Data Objects (of the data type)
Scalar types enumeration integer physical \$ floating point Composite types array record access (pointers)	constant variable signal file	01X by ti	Z (defined ne language)	signal nets wire tri wired nets wand triand wor trior trior trireg tri0 tri1 supply nets
These data types and d supported by synthesis too	ata objects are not ols.			supply0 supply1 register parameter integer time \$ memory (array)

Figure 3.7 VHDL and Verilog data types and data objects

The data types and data objects that are indicated in Figure 3.7 as not being supported by synthesis tools, or are not needed in a simulation test harness, are not discussed further.

There are 8 kinds of VHDL data types defined by the language. It is not until a VHDL data object of one of these types is declared in a model, using a type or subtype declaration, that the value set is defined. Therefore, the value set is always defined in a model using a type declaration along with the object kind, **constant, variable, signal** or **file.**

In Verilog, the language itself defines a single base data type which has the following four value, value set.

0 - represents a logic zero, or false condition

- 1 represents a logic one or true condition
- X represents an unknown logic value
- Z represents high-impedance state

Data objects of this type are declared in a model to have a single element, or an array of elements, of this type, for example,

wire W1; wire (31:0) W2;

There are more kinds of data objects in Verilog than there are VHDL, and relate closely to the detailed hardware structure being modeled.

44

Individual VHDL and Verilog data types and objects are described below.

VHDL data types

Enumeration data type. An enumerated data type contains a set of user defined values. Each value may be an identifier, for example, Red, Multiply or character literal, for example, '0', '1', 'U', 'Z'. The syntax of an enumerated type declaration is:

type enum_type_name is (enum_value {, enum_value});

where enum_type_name enum_value example is the identifier name of the enumerated data type is an identifier or character literal

type Rainbow is (Red, Orange, Yellow, Green, Blue, Indigo, Violet);

The order in which enumerated values are declared determines the numerical order of numbers assigned to them by a synthesis tool. The binary numbers assigned to the above example would be: "

These assigned numbers enable relational operators to be used on enumerated data types; for example,

if (Red < Orange) then

An attribute is often provided by synthesis tools to provide a means of specifying particular enumerated values to the set of identifiers or character literals. For example, the synthesis tools from VeriBest Incorporated defines an attribute called ENUM_TYPE_ENCODING, which can be used to ensure objects of type rainbow use Gray coded assigned values, as follows:

attribute ENUM_TYPE_ENCODING: string; attribute ENUM_TYPE_ENCODING of rainbow: type is "000001011010110111101100";

Integer data type. An integer type declaration defines a range of integer numbers. The actual range should always be specified; otherwise, the language default of $(2^{31} + 1)$ to $(2^{31} - 1)$ is used (IEEE 1076 '93). This is excessive and when synthesized will yield much more logic than is necessary. This leaves the optimizer with the task of optimizing away all the redundant logic.

Syntax: type type_name_identifier is range integer_range;

where type_name_identifier is the identifier name of the data type integer_range is the defined subrange of integers example type CountValue is range 0 to 15; type Twenties is range 20 to 29; type Thirties is range 39 downto 30;

There is no difference between using to or downto when declaring an integer range.

Note that when a synthesis tool synthesizes and assigns the necessary number of bits for an integer range it counts from zero. This means the signal of type Thirties synthesizes to six bits (0-

39) and is not normalized to four bits for an integer range of ten (30-39). Therefore, it makes sense to always specify integer ranges beginning from zero.

Composite data type. Composite data types are used to define collections of values (elements] which together constitute an array or record. Individual elements of an array must belong to the same type while record elements may be of a different type.

Composite array data type. Array types are useful for modeling linear structures such as RAMS and ROMS. Elements of an array may be of any type provided all the elements are of the same type. An element is a constituent part of a type, for example, the constrained array type below has 8 (0 to 7) constituent elements. The range of the array is specified with an upper and lower bound integer separated with the word **to** or **downto.** It is possible to specify arrays of arrays to any dimension, however, only one or two dimensions are supported by synthesis tools. Multidimensional arrays of three or more are not needed for modeling physical hardware.

The declaration of an array data type may specify a specific range, in which case it is said to be constrained. It is possible not to specify a range of an array type. This has the advantage of deferring the declaration of its range until a signal or variable of that type is declared.

example type unsigned is array (natural range <>) of std_logic; - unconstrained array type unsigned is array (natural range 7 downto 0) of std_logic; - constrained array

Composite record data type. Record types are useful for modeling data packets. A record may contain values which belong to the same or different type. Assignments to individual elements in the record are made using the record identifier name and element name separated by a period (.).

example type FloatPointType is record Sign: std_logic; Exponent: unsigned(0 to 6); Fraction: unsigned(24 downto 1); end record:

VHDL Data Objects

Constant. A constant holds one specific value of the specified type. Once declared, the value of a constant cannot change.

```
example constant DataWidth: integer: = 24;
constant Stop: unsigned(I downto 0): = "00";
```

Variable. A variable holds any single value from the values of the specified type. Often used to hold temporary values within a process and need not relate to a node in the implied circuit.

example variable ThreeBits: unsigned (0 to 2);

Signal. A signal holds a <u>list of values</u> which includes its current value and a set of possible future values that are to appear on the signal.

example signal RegB, RegQ: unsigned (A'length -1 downto 0);

File. A file refers to a system file and contains a sequence of values of a specified type. File objects are not supported by synthesis tools, but are very useful in test harnesses. Values are written to, or read from, a file using procedures.

example file VectorFile: text open read_mode is "./vectorfile.vec";

46

Verilog data types

The Verilog language defines the only allowable data type. It has the value set $\{0, 1, X, Z\}$ as described earlier.

Verilog data objects

Net and Register data objects. If a net (wire, wand, wor), or register (reg) data objects are declared without a range, then by default, they are one bit wide and referred to as a scalar. If a range is declared, it has multiple bits and is known as a vector. A vector may be referenced in its entirety, in part, or each individual bit as desired. Met and register data objects are described below.

Net. The synthesizable net data objects indicated in Figure 3.7, represent and model the physical connection of signals. A net object must always be assigned using a *continuous assignment* statement. An *assignment* in Verilog is the basic mechanism for assigning values to net and register data types. In particular, a continuous assignment statement assigns values to any of the *net* data types and so makes a connection to an actual wire in the inferred circuit.

- wire: Models a wire which structurally connects two signals together.
- wor. Models a wired OR of several drivers driving the same net. An OR gate will be synthesized.
- wand: Models a wired AND of several drivers driving the same net. An AMD gate will be synthesized.
- example wire Netl;

wire (2:0) Net234;

Register. The register (**reg**) data object holds its value from one *procedural assignment* statement to the next and means it holds its value over simulation delta cycles. A procedural assignment is an assignment for a register data type and does <u>not</u> imply a physical register will be synthesized, although it is used for this purpose. It is used to assign values under trigger conditions such as **if** and **case** statements. A procedural assignment stores a value in a register data type and is held until the next procedural assignment to that register data type.

example reg (3:0) Y1, Y2;

Parameter. A parameter data object defines a constant. Only integer (and not real) parameter constants should be used with synthesis. Like all other data types, their position defines whether they are global to a **module** or local to a particular **always** statement.

example parameter A = 4'b 1011, B = 4'b 1000; parameter Stop = 0. Slow = 1. Medium = 2, Fast = 3;

Integer. Integer data objects are used to declare general purpose variables for use in loops; they have no direct hardware intent and hold numerical values. No range is specified when an integer object is declared. Integers are signed and produce 2's complement results.

example integer N;

Expressions

An expression comprises of operators and operands, see Figure 3.8, and are covered separately in the following two sections.

Figure 3.8 Expression consisting of operands and operators

Operands

Data objects form the operands of an expression and it is their value that is used by operators in an expression. There are more kinds of VHDL operands than there are in Verilog. All Verilog and most VHDL operands are supported by synthesis tools, see Figure 3.9.

VHDL Operands	
Literals	
abstract	
string (bit & character)	
enumeration	
numeric	ĺ
physical	
real	
Identifiers	
entity	
architecture	
configuration	
constant	
signal	
variable	
subprogram	
Index & Slice Names	
Function Calls	
Record & Record Fields	
Aggregates	
Qualified Expressions	
Type Conversion	+/+ 006
Allocators	synmes

Verilog Operands
Literals
string (bit & character)
numeric
real
Identifiers
module
parameter
wire
register
macros (text substitutions)
Index & Slice Names
Function Calls

+/+ does not make sense to use when modeling for synthesis and so not supported by synthesis tools.

Figure 3.9 VHDL and Verilog Operands

Literal Operands

A literal is a constant-valued operand. Only string, enumeration and numeric literals can be used in synthesizable models and are described below.

String Literals. A string literal is a one dimensional array of characters enclosed in double quotes (" ") for both languages. There are two kinds:

- 1. Character string literals. These are sequences of characters and are useful when designing simulatable test harnesses around a synthesizable model. example "ABC"
- 2. Bit string literals (VHDL): These apply to VHDL only and represent binary (B), octal (O) or hexadecimal (X) based numbers. The string is prefixed by a "B", "O" or "X" depending on the base required and may be in upper or lower case as shown below.

B"1010" O"57" X"9FDE" or x"9FDE"

Enumeration Literals (VHDL). Enumeration literals are the individual values of an enumerated iata type. An enumerated literal may be an identifier, a character or a mixture of both. The /HDL language predefines the following enumeration types: BIT, BOOLEAN, CHARACTER and SEVERITY_LEVEL (see package STANDARD in Appendix A.)

Numeric Literals

VHDL. Numeric literals may be of type integer, real or physical. Only integer numeric literals should be used with synthesis. Integer numeric literals are the values of integer constants. They may be defined in the default base 10 or any other base from 2 to 16. Underscores may separate individual digits without changing the meaning of the numeric literal.

example	314159
	3_14159
	2#1010_0101#
	8#57#
	16#9FDE#

example

Verilog. Numeric literals are simple constant numbers that may be specified in binary, octal, decimal or hexadecimal. The specification of its size is optional as Verilog calculates size based on the longest operand value in an expression, and corresponding assigned value in an assignment.

example	12'b0011_0101. 1100 2'0 57	12-bit sized binary constant number
	3_14159	default decimal number
	4'h 9FDE	4 digit hexadecimal number

Literal operands

Identifier Operands

An identifier is used to give a name to a data object so that it may be easily referenced in an HDL model. They are the most commonly used type of operand. The value of the named object is returned as the operand value.

VHDL identifiers consists of letters, digits and underscores (_). Verilog identifiers have these plus the dollar sigh (\$).

As VHDL is case insensitive, upper and lower case identifier names are treated as being the same identifier. Verilog is case sensitive, so upper and lower case identifier names are treated as being different identifiers.

50

Aggregate Operands (VHDL)

A VHDL aggregate is a set of one or more elements of an array or record separated by commas and enclosed within parentheses, for example, ('0', '1', A, B). The syntax of an aggregate operand is:

```
type_name'((choice =>) expression {, (choice =>), expression})
where:
    type_name- is any constrained array or record type
    choice - is optional and used for explicit named notation
    expression - is the value of the particular element
example unsigned'('0', '1', A, B)
```

Aggregate operands can, therefore, be considered as array or record operands. Synthesis tools typically support both array and record aggregates. An aggregate may also be **the** target of a signal or variable in an assignment statement.

```
example (A, B, C) <= unsigned'("101");
```

An example of aggregate array operands is shown below. The three 4-bit outputs Yl, Y2, Y3, plus the four combined bits of Y3A, Y3B, Y3C and Y3D, all contain the same value.

Aggregate operands

Function Call Operands

Function calls, which must reside in an expression, are operands. The single value returned from a function is the operand value used in the expression.

Function call operands

A VEDA	Mar Alexandre Constant and a constant of the c	
library IEEE;		
use IEEE. STD_Logic_1164. all;		
entity FUNCTION CALLS is	module FUNCTION CALLS (A1, A2, A3, A4, B1,	B2, Y1, Y2):
port (A1. A2, A3, A4, B1, B2: in std_logic;	input A1, A2, A3, A4, B1, B2;	,.
Y1, Y2, Y3: out std_logic);	output Y1, Y2;	
end entity FUNCTION_CALLS;		
	reg Y1, Y2;	
architecture LOGIC of FUNCTION_CALLS is	i function Est	
	function Fn1;	
function Fn1 (F1, F2, F3, F4: std_logic) return std_logi	is Input F1, F2, F3, F4;	
variable Result: std_logic;	begin	
begin	Fn1=(F1 & F2) (F3 & F4);	
Result:= (F1 and F2) or (F3 and F4);	end	
return Result;	endfunction	`
end function Fn1; con	nued	continued

Chapter Three: Language Fundamentals

Function call operands

Index and Slice Name Operands

An index named operand specifies a single element of an array. For synthesis the array may be of type constant, variable or signal. A slice named operand is a sequence of elements within an array and is identified in VHDL using to or downto, and in Verilog using the colon ":".

Index and slice name operands

	We and the second s
library IEEE; use IEEE.STD_Logic_1164.ail, IEEE.Numeric_STD.ail;	
entity INDEX_SLICE_NAMES is port (A, B: in unsigned(5 downto 0); Y: out unsigned(11 downto 0)); end entity INDEX_SLICE_NAMES; architecture DATA_FLOW of INDEX_SLICE_NAMES is constant C: unsigned(2 downto 0) := "100"; begin	module INDEX_SLICE_NAMES (A, B, Y); input (5:0) A, B; output (11:0) Y; parameter C = 3'b100; reg (11:0) Y;
process (A. B) begin Y(2 downto 0) Y(3) <= A(0 to 2); Swap bits. Y(3) <= A(3) and B(3); Y(5 downto 4) <= (A(5) and B(5))&(A(4) or B(4)); Y(8 downto 6) Y(11 downto 9) <= C; end process: 3-bit sice Index	always @(A or B) begin Y(2:0) = A(0:2); Swap bits Y(3) = A(3) & B(3); Y(5:4) = {A(5) & B(5), A(4) B(4)}; Y(8:6) = B(2:0); Y(11:9) = C; end 3-bit size index.

Index and slice name operands

Qualified Expression Operands (VHDL)

A qualified expression operand is used to explicitly state the type or subtype of the operand itself. The operand may be a complete expression in its own right or an aggregate. By using qualified operands, any possible ambiguities in an operands type is resolved. This includes the use of an enumerated literal or aggregate, where their type is not known from the context in which they are used.

Syntax of a qualified expression operand:

type_name' (expression) or type_name' aggregate

The two models, VHDL 1 and VHDL 2, show examples of qualified expression operands (VHDL 1) and qualified aggregate expressions (VHDL 2).

VHDL 1. Two enumerated data types, PrimeColorType and RainbowType have been declared in the package, ColorsPKG, and are used by two identically named functions, ColorTest, defined in the package body. The model, QUALIFIED_EXPRESSION, has a total of six calls to the two functions. The problem is that, because the enumerated literals of the enumerated data type overlap (Red, Green and Blue), when one of these overlapping literals is used in a function call to ColorTest, there is no way of deducing which of the two functions should be used. Therefore, when enumerated literals Red, Green and Blue are used, they must be qualified as shown. Function calls which pass any of the enumerated literals; Orange, Yellow, Indigo or Violet to the function, do not need to be qualified. Such a function call must use the first ColorTest function which uses the data type RainbowType.

VHDL 2. The package BusTypes defines three unsigned subtypes (Bus4, Bus6 and Bus8) consisting of 4, 6 and 8-bits, respectfully. The model, QUALIFED_ACGREGATE, infers two adders assuming the synthesis tool's automatic resource sharing option is used. The plus (+) operator, which infers an adder, has left and right operands of 8 and 4-bits each, and is assigned to the 8-bit output Y1. The right hand operand is a 4-bit qualified aggregate. The second plus operator inferring a second adder has 8 and 6-bit inputs respectively and has an 8-bit output Y2. The plus operator's right hand operand is an aggregate and is required to be either 4 or 6-bits wide. Only the two most significant bits of this right hand operand needs to be explicitly defined: all other

bits have a default assignment using the others clause. The problem is two fold; 1) unless the operand is qualified, it will not be of type unsigned as required by the "+" operator and 2) it would not be of the correct bit width.

Qualified expressions Qualified aggregates VHDL 2 VHDL 1 package ColorsPKG is library IEEE; type PrimeColorType is (Red, Green, Blue); use IEEE. STD Logic 1164. all, IEEE. Numeric STD. all; type RainbowType is (Red, Orange, Yellow, Green, Blue, Indigo, Violet); package BusTypes is end package ColorsPKG; subtype Bus4 is unsigned(3 downto 0); subtype Bus6 is unsigned (5 downto 0); subtype Bus8 is unsigned (7 downto 0); package body ColorsPKG is function ColorTest(Color: RainbowType) end package BusTypes; return RainbowType is begin library IEEE: if (Color = Red) then use IEEE.STD_Logic_I164.all, IEEE.Numeric_STD.all; return Violet: usework.BusTypes.all; else return Color: entity QUALIFIED_AGGREGATE is end if; port (A1, A2, B, C, D, E: in std_logic; end ColorTest; Data1, Data2: in unsigned(7 downto 0); function ColorTest(Color: PrimeColorType) Y1. out Bus4 return PrimeColorType is Y2: out Bus6) end entity QUALIFIED_AGGREGATE; begin if (Color = Red) then return Blue; architecture DATA_FLOW of QUALIFIED_AGGREGATE is else begin return Color; end if; process (A1, A2, B, C, D, E) end ColorTest: begin end package body ColorsPKG; $i\bar{f}$ (A1 ='1') then Y1 <= Data1 + Bus4'(B or C,B and C,others =>not D); library IEEE: Y2 <= Data2 + Bus6'(B or C,B and C,others =>not D); use IEEE. STD_Logic_I164all, IEEE. Numeric_STD.all; elsif (A2 = '1') then Y1 <= Data1 + Bus4'(B, C, others => D); use work. Colors PKG. all: Y2 <= Data2 + Bus6'(B, C, others => D); else entity QUALIFIED EXPRESSION is Y1 <= Data1 + Bus4'(others => not E); port (A1. A2: in std_logic; Y2 <= Data2 + Bus6'(others => not E); Y1: out PrimeColorType; end if; Y2: out RainbowType); end process; end entity QUALIFIED_EXPRESSION; architecture LOGIC of QUALIFIED EXPRESSION is end architecture DATA_FLOW; begin process (A1, A2) begin if(A1=T) then Y1 <= ColorTest(PrimeColorType'(Red)); Y2 <= ColorTest(indigo); elsif (A2 = '1') then Y1 <= ColorTest(PrImeColorType'(Green)); Y2 <= ColorTest(RainbowType'(Green)); else Y1 <= ColorTest(PrimeColorType'(Blue)); Y2 <= ColorTest(Yellow); end if: end process; end architecture LOGIC;

Type Conversion Operands (VHDL)

Because VHDL is a strongly typed language the need to change an operand's type within an expression is sometimes an unavoidable necessity. Type conversion operands change the type of the returned operand.

The type of the originating expression is implicit. The closely related types that may be converted are:

- 1. *Abstract numeric types of type integer*. Includes floating point numbers and are not supported for synthesis.
- 2. *Particular kinds of array types*. Array types that have the same dimensionality and where each element is of the same type, can be converted. Array types that have the same dimensionality and where each element is a closely related property of the array types, can be converted.

Such operands usually contain a function call to a type conversion function; this is always the case for models that are to be synthesized. Type conversions that are used in synthesizable models typically do not infer logic.

VHDL 1 (Non-synthesizable). A type conversion can be modeled very efficiently using a lookup table defined in a constant. The problem is, that this constant array is typically not supported by synthesis tools. VHDL 1 has been included for completeness, but is not synthesizable by commercial synthesis tools. The constant To_Prime is used to convert data objects of type RainbowType to type PrimeColorType and vice versa for the constant To_Rainbow. Mote that if this particular model were synthesizable To_Rainbow would not infer logic while To_Prime would.

Non-synthesizable conversion functions

```
VHDL 1
package ColorTypePackage is
   type PrimeColorType is (Red, Green, Blue);
   type RainbowType is (Red, Orange, Yellow, Green, Blue,
                          Indigo, Violet);
   type ParrofR is array (PrimeColorType) of RainbowType;
   type RarrofP is array (RainbowType) of PrimeColorType;
   Constant To_Rainbow:
     ParrofR:=(Red => Red, Green => Green, Blue => Blue);
   Constant To_Prime:
     RarrofP:=(Red => Red, Green => Green, Blue => Blue,
                Orange => Red, Yellow => Red,
                Indigo => Blue, Violet => Blue);
end package ColorTypePackage;
library IFFF
use IEEE. STD_Logic_1164. all, IEEE. Numeric_STD. all;
use work. ColorTypePackage.all;
entity TYPE_CONVERSION_NON_SYNTH is
  port (Convert: in std_logic;
                 in PrimeColorType;
        A1:
        A2:
                 in RainbowType;
        Y1:
                 out PrimeColorType:
                 out RainbowType):
        Y2.
end entity TYPE_CONVERSION_NON_SYNTH;
architecture LOGIC of TYPE CONVERSION NON SYNTH is
begin
  process (A1, A2)
  begin
     if (Convert = T) then
        Y1 <= To Prime(A2);
        Y2<=To Rainbow(A1);
     else
        Y1<=A1;
        Y2 <= A2;
     end if;
  end process;
end architecture LOGIC;
```

Chapter Three: Language Fundamentals

VHDL 2. Commonly used type conversion functions are typically placed in packages for global use. Standard packages like the IEEE 1164 package STD_Logic_1164, contains commonly needed conversion functions that can be called at will. The model TYPE_CONVERSION identifies a situation where tri-state buffers are being modeled, but the input values A and B are of type bit and bit_vector. As these bits do not contain a tri-state value, that is Z, it must be converted to a type that does, in this case std_logic_vector. It uses function calls to the functions To_stdulogic and To_stdulogicvector which are defined in package STD_Logic_1164.

Record and Record Element Operands (VHDL)

A record is used to group objects of the same or different type. A record type declaration defines the different types that can be used in a particular record. Each element of a record is referred to as a field. The whole record or a particular element within a record can be used as an operand in an expression, the syntax of which is shown below. The period (.) is used to separate record names and record element names when referencing record elements.

record_name		(record)
record_name.	field_name	(record field)

The two following two examples demonstrate record and record elements assignments and their use as operands. By defining record types in a separate package, signals using these types can appear in the interface list of entity statements.

Two examples of record and record element operands

VHDL	VHDL
<pre>library IEEE; uselEEE.STD_logic_1164.all, IEEE.Numeric_STD.all; package RecordTypes is type R1_Type is record</pre>	library IEEE; use IEEE. STD_Logic_1164. all, IEEE. Numeric_STD. all; package RecordPKG is type FloatPointType is record Sign: std_logic; Exponent: unsigned(6 downto 0); Fraction: unsigned(23 downto 0); end record; end package RecordPKG; library IEEE; use IEEE. STD_Logic_1164. all, IEEE. Numeric_STD. all; use Version Record PKC oll;
entity RECORDS is port(Al. A2: in std_logic; B1, B2: in integer range 0 to 7; C: in R1_Type; Y: out R2_Type); end entity RECORDS; architecture RTL of RECORDS is signal M: R1_Type; begin	entity RECORDS_FLOATING_POINT is port (Si: in std_logic; Ex: in unsigned(6 downto 0); Fr: in unsigned(23 downto 0); A, B: in std_logic; FI, F2: in FloatPointType; Y1: out unsigned(31 downto 0); Y2: out Std_logic; Y3: out FloatPointType); end entity RECORDS_FLOATING_POINT;
<pre>process (A1, A2, B1, B2, C) begin</pre>	architecture RTL of RECORDS_FLOATING_POINT is begin process (Si, Ex, Fr) variable F: FloatPointType; begin F.S i g n :=Si; F.Exponent:=Ex; F.Fraction:=Fr; Y1<=F.Sign & F. Exponent & F. Fraction; end process; process (A, F1, F2) begin if (F1 = F2) then Y2 <= A; Y3 <= F1;//record operands else Y2 <= B; Y3 <= F2;//record operands end fr; end process; end architecture RTL'
Operators

Operators perform an operation on one or more operands within an expression. An expression combines operands with appropriate operators to produce the desired functional expression.

VHDL Operators. There are seven functional groups of VHDL operators, see Table 3. 1. Operators within a particular group have the same level of precedence when used within an expression. Starting from the top, each group of operators has precedence over the next.

Verilog Operators. The Verilog operators are shown in Table 3.2. Although not all operators can be used in the same expressional part of code, where they can, they are shown in descending order of precedence. Operators with equal precedence are shown grouped. There are nine functional groups of operators. The group to which each operator belongs is indicated in the third column of the table. The group to which each operator belongs does not govern precedence.

VHDL and Verilog Operators. A comparison of VHDL and Verilog operators is shown in Table 3.3. Operators are categorized into functional groups and are not in precedence order. Where there is no equivalent operator in the other language the entry in the table is left blank.

The models in the remaining sections in this chapter show use of all VHDL and Verilog operators. Like all models in this book they are geared towards being simulated, synthesized and then resimulated using the synthesized gate level netlist.

Overloaded Operators (VHDL)

VHDL operators that operate on single bit values are defined by the VHDL language to operate on objects of type bit only. A data type (signal or variable) of type bit is defined to have one of two values 0 or 1. The only multi-valued data types defined by the VHDL language is of type integer. For this reason, overloaded VHDL operators from the IEEE 1076.3 synthesis package Numeric_STD are used.

Type std_logic is used for single bit data types, which can have one of nine possible values {U, X, 0, 1, Z, W, L H, -}. Data type, std_logic, is defined in the IEEE library package STD_Logic_1164 along with all the appropriate overloaded language operators.

For multiple bit data types, types unsigned and signed are used and are defined in both IEEE 1076.3 synthesis packages Numeric_bit and Numeri_STD. Types unsigned and signed are defined in Numeric_bit to be a one dimensional array of values of type bit. Types unsigned and signed are defined in Numeric_STD to be a one dimensional array of values of type std_logic. For this reason, only package Numeri_STD is used throughout this book.

VHDL Operator	Operation	Operand Type Left Right	Result Type
Miscellaneous Operators	exponential absolute value	any integer INTEGER any floating point INTEGER any numeric type any numeric type	same as left same as left some numeric type
Arithmetic (multiplying) Operators * / mod rem Unary Arithmetic (sign) Operators	multiplication division modulus remainder	any integer same type any floating point same type any integer same type any floating point same type any integer same type any integer same type	same type same type same type same type same type same type
+ -	identity negation	any numeric type any numeric type any numeric type any numeric type	same type same type
Adding Operators + - &	addition subtraction concatination	any numeric typesame typeany numeric typesame typeany array typesame array typeany array typethe element typethe element typeany array typethe element typethe element typethe element typethe element type	same type same type same array type same array type same array type any array type
Shift Operators SII srl sla sra rol ror	logical shift left logical shift right arithmetic shift left arithmetic shift right logical rotate left logical rotate right	One dimensional INTEGER array of bit or boolean One dimensional INTEGER array of bit or boolean	same as left same as left same as left same as left same as left same as left
Relational Operators = /= < >	equality inequality less than less than or equal to greater than greater than or equal to	any type any type any scalar type or discrete array type	BOOLEAN BOOLEAN BOOLEAN BOOLEAN BOOLEAN
Logical Operators not and or nand nor xor xor	logical NOT logicalAND logicalOR logical NAND logical NOR logicalXOR logicalXNOR	BOOLEAN, BIT or BIT VECTOR BOOLEAN, BIT or BIT_VECTOR BOOLEAN, BIT or BIT VECTOR BOOLEAN, BIT or BIT VECTOR BOOLEAN, BIT or BIT VECTOR BOOLEAN, BIT or BIT VECTOR BOOLEAN, BIT or BIT VECTOR	same as left same as left same as left same as left same as left same as left same as left

Table 3.1 VHDL Operators

Chapter Three: Language Fundamentals

Verilog Operator	Name	Functional Group
0	bit-select or part-select	
()	parenthesis	
& ~& - ^ ~^ or ^~	logical negation negation reduction AND reduction OR reduction NAND reduction NOR reduction XOR reduction XNOR	Logical Bit-wise Reduction Reduction Reduction Reduction Reduction
+	unary (sign) plus unary (sign) minus	Arithmetic Arithmetic
{}	concatenation	Concatenation
{{}}	replication	Replication
/ %	multiply divide modulus	Arithmetic Arithmetic Arithmetic
+	binary plus binary minus	Arithmetic Arithmetic
<< >>	shift left shift right	Shift Shift
< A =: < =:	greater than greater than or equal to less than less than or equal to	Relational Relational Relational Relational
!=	logical equality logical inequality	Equality Equality
!==	case equality case inequality	Equality Equality
&	bit-wise AND	Bit-wise
^ ^~ or ~^	bit-wise XOR bit-wise XNOR	Bit-wise Bit-wise
	bit-wise OR	Bit-wise
&&	logical AND	Logical
II	logical OR	Logical
?:	conditional	Conditional

Table 3.2 Verilog Operators

Operation	Ope VHDL	rator Verilog
Arithmetic Operators exponential multiplication division addition subtraction modulus remainder absolute value	** / + mod rem abs	/ + - %
Unary Arithmetic (Sign) Operators identity negation	+ -	+ -
Relational Operators less than less than or equal to greater than greater than or equal to	< > >=	< 4 > >
Equality Operators equality inequality	= /=	== !=
Logical Comparison Operators NOT AND OR	not and or	! &&
Logical Bit-wise Operators unary negation NOT binary AND binary OR binary nAND binary NOR binary XOR binary XNOR	not and or nand nor xor xnor	& ^~ or ~^
Shift Operators logical shift left logical shift right arithmetic shift left arithmetic shift right logical rotate left logical rotate right	sll srl sla sra rol ror	« »
Concatenation & Replication Operators concatenation replication	&	{} {()}
Reduction Operators AND OR NAND NOR XOR XNOR		& -& ~ ^~or~^
Conditional Operator conditional		?:

Table 3.3 (Comparison	of VHDL	and Verilog	g Operators
-------------	------------	---------	-------------	-------------

Arithmetic Operators

There are eight VHDL arithmetic operators, but only five of them are found in Verilog; see Table 3.3. The five common operators are shown in the first example, while the second example shows the three remaining VHDL operators.

Sign Operators

These operators simply assign a positive (+) or negative (-) sign to a singular operand. Usually no sign operator is defined, in which case the default"+" is assumed.

Sign operators

VHDL	Verilog
library IEEE; use IEEE.STD_Logic_1164.all, IEEE.Numeric_STD.all;	module SIGN (A, B, Y1, Y2, Y3); input (2:0) A, B; output (3:0) Y1. Y2. Y3;
entity SIGN is port (A, B: in unsigned(2 downto 0); Y1. Y2. Y3: out unsigned(3 downto 0));	reg (3:0) Y1, Y2, Y3;
end entity SIGN; architecture RTL of SIGN is	always @(A or B) begin
begin process (A, B)	Y1 = +A / -B; Y2 = -A + -B;
begin Y1<= +A / (-B);	Y3 = A* -B; end
Y2 <= (-A) + (-B); Y3 <= A * (-B);	endmodule
end process; end architecture RTL;	

Relational Operators

Relational operators compare two operands and returns an indication of whether the compared relationship is true or false.

VHDL. The two operands need not be of the same type and the result need not be of type boolean; it depends on the overloading. The comparison of enumeration types is performed according to the positional ordering of each element in the enumeration type declaration. Record or array types compare corresponding elements of each operand.

Verilog. The result of a comparison is either 0 or 1. It is 0 if the comparison is false and 1 if the comparison is true.

Relational operators

VHDL	Verilog
library IEEE; use IEEE. STD_Logic_1164. all, IEEE. Numeric_STD. all;	
entity RELATIONAL_OPERATORS is port (A, B: in unsigned(2 downto 0); Y1,Y2,Y3: out boolean; Y4: out std_logic); end entity RELATIONAL_OPERATORS; architecture LOGIC of RELATIONAL_OPERATORS is based on the statement of the s	module RELATIONAL_OPERATORS (A, B, Y1. Y2. Y3. Y4); input (2: 0) A. B; output Y1. Y2, Y3, Y4; reg Y1. Y2, Y3, Y4;
process (A. B) begin	always @(A or B) begin
Y1<=A <b; -less="" than<br="">Y2<=A<=B; -Less than or equal to Y3<=A>B: - Greater than</b;>	$\overline{Y}1 = A < B;$ // Less than Y2 = A <= B; // Less than or equal to Y3 = A > B; // Greater than
<pre>if (A >= B) then - Greater than or equal to Y4<='1'; else</pre>	If (A >= B); // Greater than or equal to Y4= 1; else
Y4 <= '0'; end if:	Y4 = 0; end
end process; end architecture LOGIC;	endmodule

Relational operators

Equality E Inequality Operators

Equality and inequality operators are used in exactly the same way as relational operators and return a true or false indication in exactly the same way as relational operators, depending on whether any two operands are equivalent or not.

Equality operators

Equality operators

Logical Comparison Operators

Logical comparison operators are used in conjunction with relational and equality operators as described in the previous two sections. They provide a means to perform multiple comparisons within a single expression.

Logical comparison operators

VHDL	Verilog
library IEEE; use IEEE. STD_Logic_1164. all, IEEE. Numeric_STD. all;	
entity COMPARISON is port (A, B, C. D. E. F: in unsigned(2 downto 0); Y: out std_logic); end entity COMPARISON; architecture LOGIC of COMPARISON is begin	<pre>module COMPARISON (A. B. C. D. E. F. Y); input (2: 0) A, B, C, D, E, F; output Y; reg Y;</pre>
<pre>process (A, B, C, D, E, F) begin if ((A = B) and ((C > D) or not (E <= F))) then Y <='1'; else Y <='0'; endif; end process;</pre>	always @(A or B or C or D or E or F) begin if((A==B)&&((C>D) !(E<=F))) Y=1; else Y=0; end
end architecture LOGIC;	enamoaule

Logical comparison operators

Logical Bit-wise Operators

Logical bit-wise operators take two single or multiple bit operands on either side of the operator and return a single bit result. The only exception is the NOT operator, which negates the single operand that follows. Note that Verilog does not have the equivalent of a NAND or NOR operator, though their function is implemented in the following Verilog model by negating the AND and OR operators so that the VHDL and Verilog models remain identical.

Bit-wise logical operators

Shift Operators

Shift operators require two operands. The operand before the operator contains data to be shifted and the operand after the operator contains the number of single bit shift operations to be performed.

In this instance, the two models are not identical because the Verilog model does not include the two rotate and two arithmetic shift operators. These operators do not exist in Verilog, however, their function can be implemented with little extra code, see shifters in Chapter 9.

Shiftoperators

VHDL	Verilog
library IEEE; use IEEE. STD logic 1164. all. IEEE. Numeric STD. all:	
entity SHIFT is port (A: in unsigned(7 downto 0); Y1. Y2. Y3, Y4, Y5, Y6: out unsigned(7 downto 0)); end entity SHIFT;	module SHIFT (A, Y1. Y2); input (7:0) A; output (7:0) Y1, Y2; parameter B = 3; reg(7:0) Y1, Y2;
architecture LOGIC of SHIFT is constant B: integer:= 3; begin process (A. B) begin Y1 <= A sll B; - Logical shift left Y2 <= A srl B:Logical shift right Y3 <= A rol B; Logical rotate left Y4 <= A ror B; - Logical rotate right Y5 <= A sla B; - Arithmetic shift left Y6 <= A sra B; - Arithmetic shift right end process; end architecture LOGIC;	always @(A) begin Y1 = A < <b; left<br="" logical="" shift="">Y2 = A>> B; // Logical shift right end endmodule</b;>
sature of Starty Synthesiz	zed Circuit
A17-11 1	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	A(3) Y4[7] A(7) Y6(7) A(4) Y4[6] A(3) Y5(6) Y6(7) A(5) Y4(5) A(2) Y5(5) Y6(4) A(5) Y4(5) A(2) Y5(5) Y6(4) A(2) Y4(3) A(2) Y5(3) A(4) Y6(2) A(2) Y4(2) Y5(2) A(4) Y6(2) A(2) Y4(1) Y5(1) A(3) Y6(0) A(2) Y4(1) Y5(1) A(3) Y6(0) A(2) Y4(1) Y5(1) A(3) Y6(0) A(3) Y6(0) Y5(7.0) Y5(7.0) Y5(7.0) Y3(7.0) Y3(7.0) Y3(7.0) Y3(7.0)

Concatenation & Verilog replication Operators

VHDL. The concatenation operator "&" is an infix operator that combines (concatenates) the bits of the single or multiple bit operands either side of the operator. The operands must be one dimensional.

Verilog. The concatenation operator" {, }" combines (concatenates) the bits of two or more data objects. These objects may be scaler (single bit) or vectored (multiple bit). Multiple concatenations may be performed with a constant prefix and is known as replication. Replication in this way is not supported in VHDL.

Concatenation & Veriloa replication operators

Reduction Operators (Verilog)

Verilog has six reduction operators, VHDL has none built-in. The operators accept a single vectored (multiple bit) operand, performs the appropriate bit-wise reduction operation on all bits of the operand, and returns a single bit result. For example, the four bits of A are ANDed together to produce Yl. The equivalent of these Verilog operators can be achieved in VHDL by using a **loop** statement as indicated in the model, or by using a function (AND_REDUCE in the VeriBest synthesis tools).

Verilog reduction operators and VHDL coded equivalent

VHDL	Verilog
library IEEE; use IEEE.STD_Logic_1164.all,IEEE.Numeric_STD.all;	
entity REDUCTION_OPERATORS is port (A: in unsigned(3 downto 0); Y1, Y2, Y3, Y4, Y5, Y6: out std_logic); end entity REDUCTION_OPERATORS;	module REDUCTION (A, Y1, Y2, Y3, Y4, Y5. Y6); input (3:0) A; output Y1, Y2, Y3, Y4, Y5, Y6; reg Y1, Y2, Y3, Y4, Y5, Y6;
architecture LOGIC of REDUCTION_OPERATORS is begin	
process (A) variable YI_var, Y2_var, Y3_var, Y4_var, Y5_var, Y6_var: std_logic;	always @(A) begin

Verilog reduction operators and VHDL coded equivalent

Conditional Operator (Verilog)

Only Verilog has a conditional operator and consists of the symbols "?" and ":". An expression using the conditional operator evaluates the logical expression before the "?". If the expression is

VHDL	Verilog
entity CONDITIONAL is	module CONDITIONAL (Time, Y);
Y: out integer range 0 to 7); Y: out integer range 0 to 7); end entity RECORDS:	output [2:0] Y;
	reg [2:0] Y;
architecture LOGIC of CONDITIONAL is	parameter Zero = 3'b 000;
begin	parameter TimeOut = 3'b 110;
process (Time)	
constant Zero: integer range 0 to 7 := 0;	always @(Time)
constant TimeOut: integer range 0 to 7 := 6;	Y = (Time I= TimeOut) ? Time +1 : Zero;
begin	
if (Time /= TimeOut) then	endmodule
Y <= Time + 1;	I wo parts to the
else	conditional operator.
Y <= Zero:	
end if;	
end process;	
end architecture LOGIC;	

4 Design/modeling Recommendations. Issues and Techniques

Chapter 4 Contents

Introduction	75
Design and Modeling Recommendations	
1. Design and process recommendations	
2. Power reduction recommendations	
3. Design-for-test (DFT) and test issues	75
4. Test harnesses recommendations	
5. General HDL modeling recommendations	
6. Ensuring simulation accuracy	
7. Improving simulation speed	
8. Synthesis modeling recommendations	
9 Joint simulation and synthesis modeling recommendations	
Simulation Compilation Issues	
1. Output and buffer port modes (VHDL)	
2. Width qualification of unconstrained arrays (VHDL)	
3. Operators to the left of the assignment operator	
4. Unconstrained subprogram parameters in reuseable models (VHDL)	81
5. Invisible subprograms from separate packages (VHDL)	
6. Subprogram overloading using type integer and subtype natural (VHDL)	
7. Concatenation in the expression of a subprogram's formal list (VHDL)	
Simulation Run Time Issues	
1. Full sensitivity/event list (VHDL & Verilog)	
2. Reversing a vectored array direction (VHDL & Verilog)	
3. True leading edge detection - wait and if(VHDL)	84
4. Order dependency of concurrent statements	
Synthesis Compilation Issues	85
1. Non-static data objects and non-static loops (VHDL & Verilog)	
Joint Simulation and Synthesis Issues	87
1. When to use others (VHDL) and default (Verilog)	87
2. Signal and variable assignments (VHDL)	89
3. Blocking and non-blocking procedural assignments (Verilog)	94
4. Don't care inputs to a case statement (VHDL & Verilog)	
5. Don't care outputs from a case statement (VHDL & Verilog)	
6. Comparing vector array types of different width (VHDL)	
General Modeling Issues	99
1. Using Attributes (VHDL)	
2. Using Packages (VHDL)	
3. Operator and subprogram overloading (VHDL)	
4. Deferred constants (VHDL)	
5. Translation Functions - Extension and Truncation (VHDL)	
6. Resource Sharing	

Introduction

This is an important chapter dealing with design and modeling recommendations, issues and techniques that designers should be aware of, in order to produce good, well structured and efficient models from both a simulation and synthesis view point. They are finite in number and once understood will make modeling more productive and enjoyable.

First, a summary of modeling recommendations is given followed by more detailed issues and techniques.

Design and Modeling Recommendations

1. Design and process recommendations:

- Adopt a top-down design and modeling methodology and bottom-up optimization strategy by hierarchical block.
- Define a design's requirement specification as tightly as practically possible in terms of input, output, associated timing and functionality before writing HDL models. It is very easy to design the "wrong thing right".
- It is good design practice to use global clock and reset signals where possible.
- Consider testability issues early in the total system design process, otherwise synthesis can be a fast and efficient means of producing large amounts of untestable logic. Techniques to consider are boundary scan, internal scan (full or partial) and BIST, for example LFSRs. Full scan is often too expensive in terms of area and possibly timing, therefore a mixture of partial scan and BIST techniques is often the most suitable compromise.

2. Power reduction recommendations:

- Use dynamic power management to:
 - a) switch circuits to a low frequency standby mode, when applicable, and wake them up again using interrupts.
 - b) disable the clock to inactive parts of a circuit and activate only when needed to process data.
- Use weak drivers on tri-state busses.

3. Design-for-test (DFT) and test issues

- Avoid asynchronous feedback.
- Remove any race conditions.
- Split large counters.
- Use spare pins to aid controllability and observability of internal circuit nodes.
- Make the circuit easy to initialize to a known state.

- Use scan testing where appropriate on register elements that are clocked off the same clock.
- Run fault simulation on areas of the circuit not covered using scan techniques. Examples include gated clocks or possibly an asynchronous interface to a microprocessor.
- Use test vector comparison techniques during simulation to ensure test insertion does not alter the functionality of the design.
- Break the scan chain into several small chains of similar length. Use any spare pins to increase the number of scan chains and reduce their length. This will reduce the number of test vectors and also test cycles on a chip tester. Chip vendors normally base their test costs on the number of clock cycles. Minimizing the length of scan chains will help minimize this cost. If extra pins are not available consider using a pin to put the chip in test mode and multiplex functional input and output pins with test pins to include scan-in and scan-out test functions.

4. Test harness recommendations:

- Use test harnesses only when necessary to verify functional behavior. With experience test harnesses will not be necessary at lower levels of hierarchy.
- Exploit the full richness of constructs in the hardware description language being used.

5. General HDL modeling recommendations

- Before attempting to code a model at the register transfer level, determine a sound architecture and partition accordingly.
- Write HDL code to reflect the architectural partitioning of a design. Partitioning should be sufficiently course grained to allow the synthesis tool sufficient scope to perform efficient logic optimization. A synthesis tool can typically synthesize circuits containing up to 5,000 equivalent gates fairly well. Above 5,000 equivalent gates, the algorithms used by synthesis tools do not always yield such optimal results and can be excessively CPU intensive. More detailed structural partitioning should be achieved using the concurrent statements **process** (VHDL)/always (Verilog); this does not mean describing down to the gate level.
- Only include timing in a model when critical at interfacing boundaries. Timing should come from the technology cells mapped to by the synthesis tool.
- While VHDL is a strongly typed language, Verilog is not. This allows the freedom of assigning signals of different width to each other in Verilog. For this reason, be more diligent when using Verilog as Verilog compilers cannot detect unintentional bit width mismatches. If widths do not match in Verilog, either bits are chopped off or extra bits are filled with logic 0s.
- When writing HDL code keep in mind:
 - the hardware intent, and
 - the synthesis modeling style and its associated restrictions.
- Use subprograms wherever possible to help structure a design making the code shorter and

easier to read. A primary advantage of using subprograms is code reuse.

- Make models generic as far as possible for model reuse. This means having parameterizable bit widths.
- Do not repeat identical sections of code in different branches of the same conditional statement; they should be moved out of the conditional expression. Similarly, loop invariant signals should not be contained in a loop. Although this may seem obvious, it is a mistake often made and slows simulation time.
- Be aware that Verilog is case sensitive so identifiers "A" and "a" are different, while VHDL is case insensitive so identifiers "A" and "a" are treated as being the same. Note that, character literals in VHDL, "A" and "a" are different.
- Make use of abstract data types to make models easier to read and maintain. This means using the VHDL enumerated data types and the Verilog 'define compiler directives to represent data values. Although Verilog does not allow enumerated data types, use of the 'define compiler directive can be very powerful in many different ways, not just for abstract data type values.
- Use meaningful signal names. For active low control signals use <signal_name>_n for a clearer understanding of its functionality and easier debugging, for example, Reset_n would be active when at logic 0.
- Use comments liberally. A header should describe the functionality of the module and each signal declaration should have a comment describing what it does.

6. Ensuring simulation accuracy

• *VHDL & Verilog.* Ensure the sensitivity list of **process** statements (VHDL) and the event list of **always** (Verilog) statements are complete.

7. Improving simulation speed

- *VHDL & Verilog. Use a* **process** (VHDL) or **always** (Verilog) statement in preference to concurrent signal assignments. This reduces the number of signals a simulator must continually monitor for changes and so improves simulation time.
- *VHDL & Verilog.* Design models to minimize the number of signals in the sensitivity list of **process (VHDL)/always** (Verilog) statements. Less signals to monitor will improve simulation speed.
- •*VHDL & Verilog.* Do not model many small **process (VHDL)/always** (Verilog) statements. It takes time to activate and deactivate them. If there are many registers being clocked from the same clock source it is better to put them in one process rather than in separate ones.
- *VHDL*. Do not use the **block** statement in RTL modeling for synthesis. Use a **process** instead. There is no advantage to be gained from using the block statement and is always active during simulation.

- *VHDL*. Convert vectored data types, for example signed and unsigned, to integer data types when convenient to do so.
- VHDL. Use variables instead of signals in a process wherever possible.
- *VHDL*. Use 'event in preference to 'stable when using objects of type bit; the 'stable attribute looks for a level so is always active during simulation. However, it is better to use the functions, rising_edge and falling_edge, in preference to 'event to detect edge transistions. These functions are defined in the IEEE 1076.3 packages Numeric_Bit and Numeric_STD respectively.

8. Synthesis modeling recommendations

- *VHDL & Verilog.* When modeling purely combinational logic, ensure signals are assigned in every branch of conditional signal assignments.
- *VHDL & Verilog.* For combinational logic from a **case** statement, ensure that either default outputs are assigned immediately before the **case** statement or that the outputs are always assigned regardless of which branch is taken through the **case** statement. This will avoid latches being inferred. The **others** (VHDL) default **case** branch is <u>optional</u> to ensure all branch values are covered. The **default** (Verilog) default **case** branch is <u>essential</u> to ensure all branch values are covered and avoid inferring latches.
- *VHDL & Verilog.* Data objects assigned from within a **for** loop should be assigned a default value immediately before the **for** statement.
- *VHDL. Use* **case** statements in preference to if statements containing **else-if** clauses where applicable for efficient synthesized circuits. The if statement operates on a priority encoded basis. (Unlike VHDL, the Verilog **case** statement is often interpreted by synthesis tools as being priority encoded like the if statement.
- *VHDL*. Do not use unbounded integer data types. They default to the maximum range defined by the language which, for IEEE 1076 '93, is 32-bit. This gives the synthesizer more work to do in optimizing away the extra and redundant logic.
- •*VHDL*. Standardize on using the IEEE packages STD_Logic_ll64 and Numeric_STD as the basic minimum. Use types std_logic for single bit values, and either signed or unsigned for vector array types.
- *VHDL*. Only use 'event for the edge detection of two value object types such as bit and boolean. To use 'event with multi-valued data types, such as std_logic **the** attribute 'last_value must also be used to detect a true rising edge from logic 0 to 1, and not unknown X to 1 for example. The problem is 'last_value is not supported by synthesis tools.
- VHDL. Use parentheses in expressions to provide a finer grain structural control.
- VHDL. Use only variable assignments within a for-loop statement wherever possible.
- *VHDL*. There is no need to use the wait statement to infer flip-flops. The if statement can do all that the wait statement does and has the added advantage of allowing purely combinational logic and separate sequential logic to be modeled in the same process.

- *Verilog.* Do not attempt to model synchronous logic in a **task.** A **task** can only be called from within a procedural block, which for synthesis means a sequential **begin-end** block. A **begin-end** block can only reside inside an **always** statement which must contain a **posedge or negedge** construct in the sensitivity list, in order to model synchronous logic. Because synthesis tools do not support nested edge-triggered constructs, a **task** cannot be used to model synchronous logic.
- 9. Joint simulation and synthesis modeling recommendations:
 - *VHDL & Verilog.* Keep loop invariant assignments outside **for** loop statements, otherwise, models will take longer to simulate and will synthesize unneeded repeated blocks of logic which must then be optimized away by the optimizer.

Simulation Compilation Issues

This section contains simulation compilation issues related only to VHDL because it is a strongly typed language and there are many more issues to discuss. Verilog types are very straight forward and even allow objects of different bit width to be assigned to each other; again, diligence is needed because a Verilog compiler will not detect objects having a different bit width than intended.

1. Output and buffer port modes (VHDL)

Problem. A model containing ports of mode (direction) **out** can only be written to (assigned) within the model itself, they cannot be read as shown by signal Sum in the model below.

```
library EEE:
use IEEE STD_LOGIC_1164.all; IEEE. NUMERIC_STD.all;
entity ACCUMULATOR is
   port (Clock, Reset, Enable: in std_logic;
Data: in unsigned(2 downto 0);
Sum: out unsigned(5 downto 0)); - Sum is of type out
endentity ACCUMULATOR;
architecture RTL of ACCUMULATOR is
begin
      process (Clock)
      begin
          rising_edge(Clock) then
           if (\tilde{Reset} = 1) then
              Sum <= (others <= '0');
           elsif (Enable = '1') then
                 Sum <= Sum + ("000" & Data); - Error (Sum being read. i.e. on right hand side of expression)
           else
                 Sum \le Sum + 1;
                                                  - Error (Sum being read, i.e. on right hand side of expression)
           end if:
        endif;
     end process;
end architecture RTL:
```

Solution. Port signals could be defined to be of mode **buffer.** However, this would lead to problems when used hierarchically as signals of mode **buffer** may only be connected to other port signals of mode **buffer** in a component instantiation. This would mean objects of mode **buffer** would

have to be replicated throughout the design hierarchy. This would cause problems at higher levels of hierarchy as local **buffer** ports will need to be connected to ports of mode **out**.

Port signals of type **inout** could be defined, however, this would also lead to problems and confusion throughout the design hierarchy due to their resolution.

The preferred solution is to declare and use an intermediate variable because its value can be read, and then assign their variable directly to a port of mode **out**.

```
process (Clock)
variable Sum_v: unsigned(5 downto 0); - intermediate variable declaration
begin
if rising_edge(Clock) then
    if (Reset = '1') then
        Sum_v <= (others <= '0');
    elsif (Enable = '1') then
        Sum_v: = Sum_v + ('000" & Data); -- intermediate variable assignment
    else
        Sum_v: = Sum_v + 1; -- intermediate variable assignment
    end if:
    end if;
    Sum <= Sum_v,
end process;</pre>
```

2. Width qualification of unconstrained arrays (VHDL)

Problem. Sometimes the resulting type from an expression cannot be determined from the context from which it is used. Examples are:

• when individual bits are concatenated together to form a **case** statement's choice value. **case** (A & B & C) **is** - Error, will not analyze

The reason this does not analyze is that (A & B & C) is an unconstrained array and the VHDL language states that all arrays must be constrained.

• when literal values are used in overloaded subprogram calls in such a way that it is not clear which subprogram should be used.

```
function FN1 (A: in bit; out integer);
function FN1 (A: in std_logic; out integer);
Y <= FN1 ('1', N); - Error, will not analyze
```

The literal ('1') is a value of both type bit and std_logic and so both functions match the parameter profile.

Solution. Qualify an expression with its desired type as shown below. Qualification is also useful for type checking and does not imply any type conversion.

subtype unsigned_3bit is unsigned(0 to 2);	 must use "to" and not "downto"
case unsigned_3bit'(A & B & C) is	 case choice value is qualified
Y<= FNI(unsigned'(1), N);	- bit literal is qualified for the function call

Notice the type declaration has an increasing range (0 to 2) and not a decreasing range (2 downto 0). This is necessary as a compiler will read a qualified expression from left to right; the use of **downto** will result in an analysis error.

3. Operators to the left of the assignment operator

Problem. Operators cannot be used on the left side of an assignment.

ShiftRegA & ShiftRegB <= shift_left((ShiftRegA & ShiftRegB), 1);

Solution. Declare an extra variable that will hold the desired expression from the left hand side of the assignment and assign it to this extra variable.

```
variable ShiftRegAB: unsigned(A'left + B'left-1 downto 0);
ShiftRegA <= ShiftRegAB(A'left + B'left -1 downto B'left);
ShiftRegB <= ShiftRegAB(B'left -1 downto 0);
ShiftRegAB <= shift_left(ShiftRegAB, 1);</pre>
```

4. Unconstrained subprogram parameters in reusable models (VHDL)

Problem. It is good practice to model subprograms for reuse using unconstrained parameters. However, if a subprogram uses the **others** clause as an aggregate assigned to an object, that is, of an unconstrained array type, compilation will cause an analysis error.

Solution. Declare a fixed range subtype wherever the subprogram is used (called). It must always have the same name, but will have a different range as desired for its particular use. Use this subtype to qualify the range of the unqualified aggregate in the body of the subprogram itself. Code segments overleaf replace those of the models above.

	nna a - Stain en agus anns an taon an tao an tao anns an tao an Iomraidh anns an tao anns a Iomraidh anns an tao anns a		
when "00" when "01" when "10"	=> Y<=A; => Y<=B; => Y<=C;	subtype FixedColorSets is C begin	colorSets(1 to Ylength);
when thers whon others end case;	-> Y <= FixedColorSets (others => Red); -> Y <= FxedColorSets'(others => Violet)	Aggregates are now qualified:	defined having d fixed range.

5. Invisible subprograms from separate packages (VHDL)

Problem. If two or more subprograms having the same name and parameter type profile are declared in separate packages, they cannot both be given the same scope. In such a case, a compiler would not know which subprogram to use from a subprogram call. The effect of this is that the subprogram name is not directly visible making it appear not to exist.

use work. ASIC_cells. all; use work. FPGA_cells. all;

Y1 <= AND3_OR2(A, B); - analysis error (AND3_OR2 defined in both packages)

Solution. Use a selected name.

Y1 <= work. FPGA_cells. AND3_OR2(A, B);

6. Subprogram overloading using type integer and subtype natural (VHDL)

Problem. Multiple subprogram declarations which have similar parameter type profiles, that differ only by an integer and natural data type, will not analyze when compiled. This is because type natural is a subtype of type integer and means subprograms are indistinguishable.

function to_stdlogicvector(A: integer) return std_logic_vector; function to_stdlogicvector(A: natural) return std_logic_vector;

Solution. Use different named functions to make them distinct.

function to_stdlogicvector_int(A: integer) return std_logic_vector; function to_stdlogicvector_nat(A: natural) return std_logic_vector;

7. Concatenation in the expression of a subprogram's formal list (VHDL)

Problem. The concatenation operator (&) can be used in the expression for the inputs of a subprogram call's parameter list. However, it cannot be used for output and bidirectional parameters.

- subprogram declaration procedure ALU1(A, B: unsigned(31 downto 0); Y: unsigned(31 downto 0));

- illegal procedure call ALUI(DataBusl_16bit & DataBus2_16bit. DataBus3_16bit & DataBus4_16bit, ResultBus1_16bit & ResultBus2_16bit); - error (output concatenation)

Solution. Perform the concatenation inside the body of the procedure. 82

Simulation Run Time Issues

This section covers modeling issues affecting simulation results only. A separate section covers modeling issues affecting both simulation and synthesis results.

1. Full sensitivity/event list (VHDL & Verilog)

A *sensitivity list* is a list of signals in a VHDL process statement that a simulator monitors for changes. If a change occurs, in one or more of these signals, then the **process** will be executed. Similarly an *event list* is a list of signals in a Verilog **always** statement that a simulator monitors for changes. If the **process or always** statement infers only flip-flop(s) with associated combinational logic on their input or output there is no need to include all input signals in the sensitivity/event list. Only the clock signal and any asynchronous reset is needed. On the other hand, if only combinational logic is being modeled then all input signals to the **process/always** statement <u>must</u> be included in the sensitivity/event list.

Problem. A signal is inadvertently omitted from the sensitivity list. This will not affect the synthesized circuit at all, but may yield unexpected and misleading simulation results. The reason for this is that the **process or always** statement will not always be triggered into being executed, so assignments within the **process or always** statement will not be updated. In the code below D is missing from the sensitivity/event list.

VHDL:	Verilog:
process (Sel, A, B, C)	always @(Sel or A or B or C)
begin	begin
if (Sel = '1') then	if (Sel)
Y <= (Á and B) or (C and D);	Y=A+B;
end if;	else
end process:	Y=C+D;
-	end

Solution. Ensure all signals are included in the sensitivity list when modeling combinational logic.

<u>MHDL:</u>	Verilog:
process (Sel, A, B, C, D)	always @(Sel or A or B or C or D)

2. Reversing a vectored array direction (VHDL & Verilog)

Problem. If an object is declared in one direction and assigned in the opposite direction the bits will be reversed and connected accordingly. This will not give simulation or synthesis compilation errors, but simulation results may be different than expected and lead to unnecessary confusion.

<u>M-DL:</u> entity REVERSE_RANCE is port (A, B: in unsigned(7 downto 0); end entity REVERSE_RANCE;	<u>/erilog:</u> module REVERSE_RANGE (A, B, Y); input (7:0) A B; output (0: 7) Y; reg (0: 7) Y;
architecture LOGIC of REVERSE_RANCE is	109(0.1)1,
Y <= A and B; - Y(0) is A(7) ANDed with B(7) end LOGIC;	assign $Y = A \& B$; //Y(0) is A(7) AND ed with B(7) endmodule

Solution. Standardize on using vector arrays defined with a descending range and finishing at bit 0 wherever possible. This will avoid the possibility of trying to access bits of an array that do not exist. Also, objects and slices of objects can be assigned with ease.

3. True leading edge detection - wait and if (VHDL)

Problem. The edge detection of a data object whose type has more than two values must detect the current <u>and</u> previous value in order to detect a true '0' to '1' transition and not, for example, an 'X' to '1'. If this is not the case, the model will not simulate correctly. In the code below a transition from any of the other 8 values of std_logic to '1' would be considered a rising edge.

```
- Enable is of type std_logic {U, X, 0, 1, Z, W, L, H, -}
process (Enable. A. B. C, D)
begin
   wait until (Clock = '1');
                                   - wait causes the execution of the whole process to halt.
   if (Enable = '1') then
                                   - Its execution is resumed when the wait expression becomes true.
     Y<= (A and B) or (C and D);
  end if:
end process;
- Clock is of type std_logic {U, X, 0, 1, Z, W, L, H, -}
process (Clock)
begin
   if (Clock'event and Clock = '1') then
     Y<= (A and B) or (C and D);
  end if;
end process;
```

Solution. The model should contain an additional check to ensure that the clock signal really did transition from '0' to '1' and not from some other value to '1', for example, 'X' to '1'.

wait until (Clock = '1' and Clock'last_value = '0');

if (Clock'event and Clock = '1' and Clock'last_value = '0') then

Note that this solves a simulation problem, but the attribute last_value is not supported for synthesis. For this reason, functions rising_edge or falling_edge should be used from the IEEE 1076.3 synthesis package Numeric_STD, as is the case throughout this book.

4. Order dependency of concurrent statements

Problem. The order of concurrent statements in VHDL or Verilog never affects how a synthesizer synthesizes a circuit. However, it can effect simulation results as demonstrated by the following two **process** statements in VHDL and two **always** statements in Verilog. This problem rarely arises in VHDL due to the concept of simulation delta delays which are intended to make the order in which all current statements are executed irrelevant. However, order dependency of **process** statements can be an issue when using shared variables as shown. The problem for both the VHDL and Verilog model is that when a rising edge occurs on Clock (VHDL shared variable or Verilog register type), Y1 is assigned a value in the first concurrent statement CONCURRENT_1, but is also used in the second, CONCURRENT_2. If CONCURRENT_1 is executed first by a simulator, then the simulation results will not match that of the synthesized circuit. If CONCURRENT_2 is executed first then they will match that of the synthesized circuit.

Chapter Four: Design/Modeling Recommendations, Issues and Techniques

in which order the concurrent statements will be executed by a simulator, as is the intent. This is a more common problem in Verilog as there is no concept of simulation delta delays.

Solution. <u>VHDL</u>: Do not use shared variables in models that are to be synthesized. The problem model above would work fine if Yl was changed from a shared variable to a signal. The process statements may be more conviently combined as shown below, although this is not necessary provided Yl is a signal. <u>Verilog</u>: The always statements must be combined as shown so that the sequential order in which Yl and Y2 are assigned is controlled during simulation. The synthesized circuit is the same.

Synthesis Compilation Issues

1. Non-static data objects and non-static loops (VHDL & Verilog)

All multiple bit data objects must have a statically determinable number of bits at synthesis compile time. (Data objects are VHDL signals or variables, or Verilog variables.) Also, all for loop statements must also have a statically determinable range at synthesis compile time. If either of these conditions are not statically determinable, a synthesis tool does not know how much logic to synthesize and an appropriate error message will be returned. This is not a problem for simulation. Example 4.1 shows a non-statically determinable slice, while Example 4.2 shows a non-statically determinable loop.

Example 4.1. Non-Static Slice

The slice of signal A and constant AllOnes, that is R downto 0, is variable at compile time because R may be any integer value between 0 and 15.

Non-static slice - not synthesizable

VHDL		Verilog
library IEEE; use IEEE.STD_Logic_I164.all.IEEE.Numeric_STD.all;		
entity NON_STATIC_SLICE is port (A: in unsigned(15 downto 0); R: in integer range 0 to 15: Y: out std_logic); end entity NON_STATIC_SLICE;	R is a signal used to determine the slice of A. It is therefore non-static and will not synthesize.	module NON_STATIC_SLICE (A, R, Y); input [15:0] A; input [3:0] R; output Y; percenter[15:0] AllOpera = 16 th 1;
architecture LOGIC of NON_STATIC_SLICE is constant AllOnes: unsigned(15 downto 0):= (others => '1');		reg Y;
process (A) begin		always @(A) if (A[R:0] == AllOnes[R:0])
if (A(R downto 0) = AllOnes(R downt Y<= '1'; else	to 0)) then	Y = 1; else Y = 0;
Y <= 0; end if; end process; end architecture LOGIC;		endmodule

Example 4.2. Non-Static Loop

Input R is of type integer ranged between 0 and 7. The value of R is used as a loop variable which determines the number of bits of inputs A and 8 should be ANDed together. As R is not determinable at compile time, a synthesis tool cannot determine how many corresponding bits of A and B to logically AMD together.

Non-static slice - not synthesizable

VHDL	Verilog
library IEEE; use IEEE.STD_Logic_1164.all, IEEE.Numeric_STD.all;	
entity NON_STATIC_LOOP is port (A, B: in unsigned(7 downto 0); R: in integer range 0 to 7; Y: out unsigned(7 downto 0)); end entity NON_STATIC_LOOP;	module NON_STATIC_LOOP (A, B, R, Y); input [7:0] A, B; input [2:0] R; output [7:0] Y;
architecture LOGIC of NON_STATIC_LOOP is begin process (A) variable R_Var: Integer range 0 to 7; begin $Y \le (others => '0');$ $R_Var:=R;$ for N In 0 to R_Varloop $Y(N) \le A(N)$ and B(N); end loop; end process; end architecture LOGIC:	reg [7.0] Y, integer N; always @(A) Y = 8'b 0; for (N=0; N <r'; +="" 1)<br="" n="N">Y[N] = A[N] & B[N]; end endmodule</r';>

Joint Simulation and Synthesis Issues

This section covers issues affecting both simulation and synthesis results.

1. When to use others (VHDL) and default (Verilog)

It is important to know when and how to use the others clause (VHDL) and default clause (Verilog); they can affect simulation results and synthesized circuits greatly. They define a default branch condition in multi-way branch statements which for VHDL means a case statement or selected signal assignment, and for Verilog just a case statement. When to use these clauses in the two languages is similar, but there are subtle differences and are described separately below.

There are many examples throughout this book showing use of the others and default clauses; the description below references specific examples.

a) Others clause in a VHDL case statement.

The VHDL Language Reference Manual (LRM), states that a case statement must have each value of the base type of the expression represented once, and only once, in the set of choices, and that no other value is allowed. This means, if a designer does not want to explicitly define every choice value, then it is necessary to always use a "when others =>..." type statement. If modeling combinational logic, and do not want to explicitly specify every case branch condition, use for example:

when others \Rightarrow Y \ll '000000''; (See Example 6.9 - binary decoder)

Or use the following statement with assigned "don't care" output values, provided the case expression is of a type that includes a "don't care" value, for example, signed or unsigned. This has the advantage of minimizing inferred combinational logic.

when others => Y <= 'XXX', -X = don't care (See Example 6.6 - binary encoder)

If it is necessary to automatically infer latches from a case statement, and hold the last output value defined in one of the explicitly defined choice values, the **null** default branch condition could be used, for example,

when others \Rightarrow Y<=null; (See Examples 7.5 and 7.6)

The **null** construct means "do nothing", Y is not updated and a latch is inferred provided all choice values have not been explicitly defined in the case statement. Note that by using a case statement and not an if statement to infer a latch or latches, the latch enable signal is implied by the model and does not explicitly exist in the model. This is not recommended.

If a case statement resides in a synchronous part of code inferring flip-flops, either of the above three branch conditions can be used; the assigned output from a case statement will be held regardless.

b) Others clause in a VHDL selected signal assignment

The VHDL selected signal assignment is very similar to the case statement; in fact the LRM states that a selected signal assignment must have an exact equivalent case statement. This means, all the above conditions for using the others clause in a **case** statement apply equally to a selected signal assignment. A selected signal assignment is a concurrent statement residing

outside a process, while the **case** statement is a sequential statement that must reside inside a **process** statement. The examples referenced above for **case** statements also have equivalent models using selected signal assignments.

c) The default clause in a Verilog case statement

The Verilog **case** statement uses the **default** clause to define a default branch for a choice case expression, much like the **others** clause does in VHDL. The difference in Verilog is that all case choice values do not need to have a branch defined in order to be Verilog LRM compliant. However, when modeling combinational logic, and all **case** expression choice values have already been explicitly defined, it is still necessary to use a **default** clause to define a branch, which assigns an output value, to avoid inferring a latch. There is one exception to this, and that is if an output signal assignment is included immediately before the case statement, see Example 8.2 FSM_GOOD2. For example, by defining the output to be at logic 0 before the **case** statement, there is no need to assign it in all the other branches when the required output is to be at logic 0.

For Verilog LRM compliance a **case** statement need not have a branch for each choice value. However, a good coding standard should be used and do the same as in VHDL, that is, define a branch for each **case** expression value once, and only once, either explicitly, or implicitly using the **default** clause.

Example default clauses corresponding to the VHDL others clause above, are shown below.

Define a default output value, for example

default: Y = 6b 0; (See Example 6.9 - binary decoder)

Define a don't care default output value, and minimize inferred combinational logic, for example

default: Y = 3b X; (See Example 6.6 - binary encoder)

The **null** clause in VHDL is the same as the semi colon (;) in Verilog. The following **default** statement, therefore, says "do nothing - output not assigned" for the default choice value, and can be used to infer latches.

default:;

(See Examples 7.5 and 7.6)

2. Signal and Variable Assignments (VHDL)

There are four kinds of data objects in VHDL; signal, variable, constant and file. Only signals, variables and constants are relevant for synthesis. Signals may be considered synthesized directly in hardware, that is, they have hardware intent and are always associated with one or more drivers; each driver holds the signal's projected waveform of values. Variables and constants provide containers for values used in the computation of signal values.

The important points to remember about variables and signals are:

- 1) variables are updated immediately, that is, before any delta delay in which the assignment is executed. There is no concept of delta delays for variables.
- 2) signal assignments cause an event to be scheduled in a future cycle. This cycle could be the second, third, fourth etc. delta delay in the same simulation time unit or at some scheduled simulation time in the future.

Signal assignments can explicitly specify a zero delay, or, as is normally the case, a delay is not specified, for example,

Y<=Aafter0ns;

Y <= A; - (0 ns assumed by default)

The signal driver does not update the signal value until at least one delta delay after the assignment was evaluated by the simulator within the current simulation time step. If a signal assignment contains a delay value of more than zero, for example,

Y<=Aoffer2ns;

then the event is scheduled to occur at the appropriate time step in the future.

The delta delay and signal updating during simulation (VHDL)

During simulation, the scheduling and assigning of signals at each simulation cycle, a delay period known as a simulation *delta*. When a signal's predicted value matures the driver holding that value becomes the active value. This activity will cause the following to occur in order.

- 1. All driver contributions to a signal are resolved to a single value. This identifies what drives that particular signal if there is more than one driver. Signals and ports will be updated immediately with new values or will retain their old value.
- 2. The effect of changed signal values are propagated from the port signals down through the circuit network.
- 3. Signal events for which a **process** is sensitive will cause the **process** to be triggered into being executed. This means signals and variables within a **process** may also be updated and is dependent upon the path taken through the sequential statements within the **process**.

Example 4.3 shows scheduled signal assignments during simulation. Example 4.4 shows both signal assignments scheduled during simulation. Example 4.5 shows the effect of modeling combinational and synchronous logic using signals and variables.

Note: The number of deltas needed to compute the new signal's current value might be different in the pre and post synthesis models, especially when resources like adders and multiplexers are shared. Sometimes statements that are executed in one delta in the RTL model have to be executed in two different deltas when simulating the synthesized gate level model.

Signals & variables in loops (VHDL)

Both signal and variable assignments are acceptable within a VHDL loop. However, it is better to use only variable assignments because; 1) simulation will be faster and 2) the resulting synthesized circuit is more easily predicted, see Example 4.6.

Example 4.3. Signal assignments and delta delay iterations (VHDL)

The coded order of successive signal assignments does not matter whether they are: 1) concurrent or 2) sequential assignments within a **process** in the branch of an **if** or **case** statement. All signal assignments will be scheduled and updated as necessary. Note, this assumes the process sensitivity is complete. Figure 4. 1 shows that three delta delay cycles are needed for all signals to become stable. There are two assignments, that is, two drivers to the signal Y2. This means the synthesis tool must be guided as to how to synthesize the desired wired logic. For example, it could be implemented as a wired tri-state, wired AND or wired OR. The synthesized circuit shows a wired OR.

Signalassignmentsrequiring3simulationdeltadelayiterators

configured for WIRED-OR log

Example 4.4 Variable assignments and delta delay iterations (VHDL)

In this example variable assignments are included within a **process.** The first assignment is an assignment to variable Varl, while the third assignment is the second variable assignment to Var2 and uses Varl in its expression. For synthesis, it would not matter if the assignments to Varl and Var2 were swapped over, that is,

Var2 := Var1 and D; Y1 <= not Var2; Var1 := A and B and C; Var1 := A

as there is no conflict and the synthesis tool is able to correctly interpret their values in the computation of signal Y1. However, this is not recommended as it <u>does</u> matter for simulation. A simulator will assign values to both variables in the sequential order in which they appear in the code prior to any simulator delta delay. There is no concept of a delta cycle for variables. This means Varl is old when used in the equation for the assignment of Y1. The position of the signal assignment to signal Y1 can appear anywhere in the model because it will be scheduled to be updated in the first delta cycle of the simulator, that is, after the variables have been assigned values.

The ordering effect of variables is shown again by the two successive variable assignments to the same variable Var3. This time the order is important for simulation and synthesis. The second variable assignment overrides the first and provides the computed value that is assigned to the signal Y2. The synthesized circuit therefore leaves input E unconnected.

Example 4.5 Signal and variable assignments (VHDL)

Four process statements show the effect of modeling combinational and synchronous logic using signals and variables. The model is similar to Example 4.7 showing Verilog blocking and non-blocking procedural assignments. Assignments to a variable always occur instantaneously, that is, they cannot be scheduled to occur at some simulation time in the future. However, a variable does holds its value over simulation time steps. A variable assignment containing an **after** clause will yield syntax errors. The four processes included in this example are:

Notice one flip-flop is synthesized from

- 1. VARIABLE_COMB Combinational logic using a variable.
- 2. SIGNAL_COMB Combinational logic using only signals.
- 3. VARIABLE_SYNCH Synchronous logic using a variable.
- 4. SIGNAL_SYNCH Synchronous logic using only signals.

Signal and varaiable assignments

President and a WHDL the single signal assignment in the third process (VARIABLE_SYNCH), while two library IEEE: flip-flops are synthesized from the two use IEEE.STD_Logic_1164.all, IEEE.Numeric_STD.all; signal assignments in the fourth process entity SIGNAL_VARIABLE is port (Clock, A1, B1, C1, A2, B2, C2, A3, B3, C3, A4, B4, C4; in std_logic; (SIGNAL_SYNCH). Signals M2 and M4 Y1, Y2, Y3, Y4: out std_logic); are local to their respective processes end entity SIGNAL_VARIABLE; to reduce simulation time. architecture RTL of SIGNAL VARIABLE is begin A1 61 B1 ... VARIABLE COMB: C1process (A1, B1, C1) M1 variable M1: std_logic; Y1 beain 1 M1 := A1 and B1; Y1 <= M1 or C1 after 1 ns; end process VARIABLE_COMB; A2 1 SIGNAL_COMB: process (A2,B2,C2,M2) 62 _ signal M2: std_logic; C2ſ М2 beain M2 <= A2 and B2 after 3 ns: Y2 Y2 <= M2 or C2 after 1 ns; 3 1 end process SIGNAL_COMB; VARIABLE_SYNCH: process (Clock) Clock variable M3: std_logic; ſ B3 A3 _ begin B3 __ C3 If rising_edge(Clock) then сэ 🗐 M3 := A3 and B3: MÐ. ſ Y3 <= M3 or C3 after 1 ns; ¥3 1 1 1 end if; Delays do not end process VARIABLE_SYNCH; represent delays through AND SIGNAL_SYNCH: and OR gates. process (Clock) **B4** signal M4: std_logic; A4 _ 1 B4 _ beain C4_ ſ if rising_edge(Clock) then M4 M4 <= A4 and B4 after 3 ns; Y4 <= M4 or C4 after 1 ns;4 **[3**] Ш end if: end process SIGNAL SYNCH; end architecture RTL:

Example 4.6 Signal and variable assignments in a for loop (VHDL)

This example demonstrates the effect of using signal or variable assignments in a for loop when modeling synchronous logic. For demonstration purposes, the intended model is of a simple shift register feeding a separate buffering output register. The model synthesizes to the exact same circuit as Example 4.8, showing the effect of Verilog blocking and non-blocking signal assignments.

First process statement (VARIABLE_FOR)

The first process uses a for loop containing a variable assignment which shifts the bits of the intended shift register, PipeA. Signal PipeA is then assigned to YA. When a compiler (simulator or synthesizer) unrolls the loop, the assignments are:

PipeA(3):= PipeA(2); PipeA(2):= PipeA(1); PipeA(1):= PipeA(0); PipeA(0):= Data; YA<= PipeA;

When PipeA(2) is assigned to PipeA(3) it takes the old value of PipeA(2) which is the same as Data due to the consecutive variable assignments. (Remember a variable can only hold its current value.) This means the value of PipeA(2 downto 0) will always be the same as Data, and PipeA(3) will be a clocked version of the Data. The 4-bit signal YA is the clocked version of PipeA. Notice that if the loop range direction was changed the result would be different as shown.

3. Blocking and non-blocking procedural assignments (Verilog)

There are two types of procedural assignment in Verilog, blocking and non-blocking. Depending on which are used in a sequential procedural block, that is, between reserved words begin and end, simulation and synthesis results may be different. This is demonstrated in Example 4.7.

Blocking procedural Assignments

A blocking procedural assignment must be executed before the procedural flow can pass to the subsequent statement. This means that any timing delay associated with such statements is related to the time at which the previous statements in the particular procedural block are executed. Successive blocking procedural assignments in an edge triggered always statement do not infer successive stages of synchronous logic (flip-flops); they act like a VHDL variable.

Non-Blocking procedural Assignments

A non-blocking procedural assignment is scheduled to occur without blocking the procedural flow to subsequent statements. This means the timing in an assignment is relative to the absolute time at which the procedural block was triggered into being executed. As synthesis tools ignore all timing from the model, and non-blocking signal assignments are scheduled to occur at the same time, successive assignments in an edge triggered always statement will each infer synchronous logic (flip-flops).

Example 4.7 Blocking and non-blocking procedural assignments (Verilog)

The model in this example contains blocking and non-blocking procedural assignments with timing in sequential procedural blocks. Each block belongs to an always statement and infers either combinational logic, or combinational and sequential logic. The simulated waveform and synthesized circuit is shown for each of the four sequential always blocks. Timing delays for the *Blocking and non-blocking signal assignments* two edge triggered always statements are

Example 4.8 Blocking and non-blocking assignments in a for loop (Verilog)

This example reveals the effect of using blocking and non-blocking procedural assignments in an edge triggered **always** statement which contains a **for** loop when attempting to model synchronous logic. Again, for demonstration purposes, the intended model is of a simple shift register feeding a separate buffering output register without using the ">>" and "<<" operators. (A shift register is best modeled using the operators ">>" and "<<", see Chapter 9.)

The model synthesizes to the exact same circuit as Example 4.6, which showed the effect of VHDL signal and variable assignments in a **for** loop.

First always statement (BLOCKING_FOR)

The first **always** statement incorporates a **for** loop containing a blocking procedural assignment which shifts the bits of the intended shift register, PipeA. Variable PipeA is then assigned to YA When a compiler (simulator or synthesizer) unrolls the loop, the assignments are:

PipeA(3) = PipeA(2); PipeA(2) = PipeA(1); PipeA(1) = PipeA(0); PipeA(0) = Data; YA = PipeA;

When PipeA(2) is assigned to PipeA(3) it takes the old value of PipeA(2) which is the same as Data due to the consecutive blocking assignments. This means the value of PipeA(2:0) will always be the same as Data, and PipeA(3) will be a clocked version of the Data. The 4-bit signal YA is the clocked version of PipeA. Notice that if the loop range direction were changed the result would be different as shown.

Second always statement (NON_BLOCKING_FOR)

The **for** loop in the second sequential **always** block uses non-blocking procedural assignments that, when unrolled, are executed concurrently after a positive edge clock. This means it makes no difference whether the loop range is descending (N = 3; N \ge 1; N = N - 1) or ascending (N = 1; N \le 3; N = N + 1), a shift register is inferred as intended, followed by a 4-bit buffer register.

4. "Don't Care" inputs to a case statement (VHDL & Verilog)

Both VHDL and Verilog support "don't care" input values to a case statement when specifying branch conditions.

VHDL

The data type std_logic has a value, '-' to represent "don't care" conditions. However, the values of std_logic (U, X, 0, 1, Z, W, L, H and -) are just an enumeration. This means simulators and synthesizers treat '-' as a logic value and not a true "don't care" in terms of logic reduction. The following attempt of modeling a leading '1' priority encoder demonstrates this effect.

```
- A is of type unsigned.
case A is
  when"l -" => Y<=3;
when "01--" => Y<=2;
when "001-" => Y<= 1;
                                  - "Don't Care" inputs do not typically yield
                                  - an efficiently synthesized circuit.
   when others =>Y<=0;
end case:
```

The circuit must be modeled differently to synthesize a priority encoder circuit. The case statement above, is shown remodeled in three different ways below. The first method uses an if statement. It is the better method as the code is straight forward and does not produce excessive amounts of initial synthesized logic that must then be optimized away by the optimizer. The second method works fine, but an optimizer will typically have more redundant logic to remove. This problem becomes more acute for larger bit width inputs. The third method tests each bit in turn, just like the first if statement, but maintains a case statement mentality by nesting multiple case statements. Nesting case statements in this way is clumsy and not recommended.

A is of type unsigned if(A(3) = '1') then Y <= 3; elsif (A(3 downto 2) = "01") then Y <= 2; elsif (A(3 downto 1) ="001")then Y <= 1; else Y <= 0; end if;	- A is of type integer case A is when 8 to 16 => Y <= 3; when 4 to 7 => Y <= 2; when 2 to 3 => Y <= 1; when others => Y <= 0; end case;	- A is of type unsigned case A(3) is when '1'=> Y<=3; when '0' => case A(2) is when '1' => Y<= 2; when '0' => case A(1)is when '1' => Y<= 1; when others => Y<= 0; end case;
		end case; when others => Y<=0; end case; when others => Y <= 0; end case;

There are three types of Verilog case statement; case, casex and casez. The case statement does not allow case branch conditions to be specified that contain "don't care" values. The other two case statements, casex and casez, are intended to be used with "don't care" input branch values specified, and must be represented in either binary or hexadecimal format. The difference between casex and casez is that casex allows "X", "?" or 'Z' to represent a "don't care" input value, while **casez** allows just"?" or 'Z' to be used. For this reason there is no need to ever use **casez**. Do not use 'Z' with **casex or casez** as it can easily be confused with a high impedance value.

Don't cares in the case expression or case item expression are ignored for the comparison.

casex (A)

endcase

5. "Don't care" output values from a case statement (VHDL & Verilog)

By using "don't care" output values wisely, synthesis tools are typically able to make the decision as to whether they should be a logic 0 or logic 1 in order to minimize logic.

Example 4.9 Effect of "don't care" output values

Two **case** statements are modeled in this example. The first assigns values to Y1 and does not use a "don't care" default condition, but has a default of logic 0 value assigned. The second **case** statement assigns values to Y2 and is functionally the same as the first, but this time the Verilog model does use a "don't care" default condition. The Karnaugh maps, Figure 4.3, indicates the benefit exploited by a synthesis tool when "don't

care" conditions are used.

The VHDL version of the model uses the std_logic data type which has a "don't care" value (-). However this is a "don't care" in terms of a simulation logic value and not a "don't care" in terms of logic reduction. The VHDL input to synthesis tools typically do not support "don't care" values as good as Verilog input. Only the Verilog model in this example uses a logic reduction "don't care".

Case statement with or without a "don't care" output

6. Comparing Vector Array Types of Different Width (VHDL)

The expression in an If statement compares the values of multiple pairs of data objects. Each comparison returns a boolean TRUE or FALSE depending upon whether the comparison is true or not. The types being compared need not be of the same type. As a 7-bit unsigned data type object is not the same as an 8-bit unsigned data type object, their comparison always returns a FALSE condition as defined by the VHDL LRM, see the following example.

Example 4.10 Comparing vectors of different width return a boolean FALSE

The **if** expression contains the comparison (S1 = S2). Signal S1 is a four bit value while S2 is a three bit value and so a boolean FALSE is always returned. Similarly the comparison (S5 = "11") is comparing a value with a two bit value and also always returns a boolean FALSE. Signals S3 and S4 are the same so the comparison (S3 = S4) is fine, but because it is being ANDed with the result of (S5 = "11"), which is always FALSE, the returned value from ((S3 = S4) **and** (S5 = "11")) will always be FALSE. Therefore, the complete if expression, that is, $((S1 = S2) \text{ or } ((S3 = S4) \text{$ **and } (S5 = "11")))**, will always be FALSE and means the synthesized circuit will contain no logic and B will be permanently connected to Y.

Multiple compares in an if statement

```
VID STREET
library IEEE;
use IEEE. STD_LogicJ164all, IEEE. Numeric_STD. all;
entity COMP_DIFF_WIDTH is
            S1:
                    in unsigned(3 downto 0);
  port (
        S2. S3, S4. S6: in unsigned(2 downto 0);
                     in std_logic;
out std_logic);
        A, B:
        Y٠
end entity COMP_DIFF_WIDTH;
architecture COND_DATA_FLOW of COMP_DIFF_WIDTH is
begin
  process (S1, S2, S3, S4, S5, A, B)
  begin
     if ((S1 = S2) or ((S3 = S4) and (S5 = "11"))) then
        Y<=A:
     else
        Y<=B:
     end if
  end process;
end architecture COND_DATA_FLOW;
            Part all and a state of the state of the
            в
                                       Y
```

General Modeling Issues

1. Using Attributes (VHDL)

All attributes predefined by the VHDL language are listed in Appendix A. Mot all attributes make sense or are needed for models that are to be synthesized; attributes typically supported by synthesis tools are shown in Table 4. 1. Attributes not supported by synthesis tools either relate to timing or are not necessary to model the physical structure of logic. There is no concept of attributes in Verilog.

The syntax when using a VHDL attribute is

object'attribute

(User-defined constant attributes are allowed in VHDL, but are not supported by synthesis tools.

Examples 4.11, 4.12 and 4.13 show models using type, array and signal related attributes respectively, that are typically supported by synthesis tools.

Attribute	Kind	Prefix	Returned result type	Returned result
Type related	_			
Tbase Tleft Tright Thigh Tlow	type value value value value	any type or subtype any scalar type or subtype T any scalar type or subtype T any scalar type or subtype T any scalar type or subtype T	base type of T same type as T same type as T same type as T same type as T	left bound of T right bound of T upper bound of T lower bound of T
AVange[(N)]	range	any array object A	type of the Nth index of A	range A'left(N) to A'right(N) if A ascending or A'left(N) downto A'right(N) if A is descending.
range((N)]	range	any array object A	type of the Nth index of A	range A'right(N) downto A'left(N) if A ascending for the Nth index. A'right(N) downto A'left(N) if A is
A'length[(N)]	range	any array object A	universal integer	descending. number of values in the Nth index range of N.
Signal related	_			
S'stable	signal	any signal S	boolean	TRUE when event not occured, otherwise FALSE
S'event	Function	any signal S	boolean	TRUE when an event has occured, otherwise FALSE

Table 4.7. VHDL Predefined attributes generally supported by synthesis tools

Example 4.11 Type related VHDL attributes - 'base, 'left, 'right, 'high and 'low

The first process uses predefined VHDL attributes 'left, 'right, 'high and 'low. Attribute 'left returns the left bound of signals A or B while attribute 'right returns the right bound of signals A or B. Attributes 'high and 'low return the upper and lower bounds of signals A or B regardless of whether their range is declared using **to** or **downto**.

The second **process** uses the 'base attribute. One enumerated data type, RainbowType, and two enumerated subtypes of RainbowType, that is, LowMidRangeColorType and MidRangeColorType are defined in a separate package. The two subtypes are of the base type RainbowType. The range for the for loop uses type MidRangeColorType, however, because the 'base attribute is used the actual range is of the base type RainbowType, that is, Red to Violet.

Use of type related attributes

VHDL	Synthesized Circuit
package ColorTypePackage is type RainbowType is (Red. Orange, Yellow, Green, Blue, Indigo, Violet) subtype LowMidRangeColorType is RainbowType range Red to Green subtype MidRangeColorType is RainbowType range Yellow to Blue; end package ColorTypePackage;	
library IEEE; use IEEE.STD_Logic_1164.all, IEEE.Numeric_STD.all; use work.ColorTypePackage.all;	
entity ATTRBUTES_TYPES is port (A: in unsigned(3 downto 0); B: in unsigned(0 to 3); LowMidRangeColor: in LowMidRangeColorType; MidRangeColor: in MidRangeColorType; Y1: out unsigned(3 downto 0); Y2: out unsigned(3 downto 0); end entity ATTRBUTES_TYPES: out std_logic);	
architecture LOGIC of ATTRIBUTES_TYPES is begin	A(3:0)
process (A, B) begin $YI(0) \le A(A'left)$ and $B(B'left)$; -T'left $Y1(1) \le A(A'right)$ or $B(B'right)$; -T'right $YI(2) \le A(A'high)$ nand $B(B'high)$;T'high $YI(3) \le A(A'low)$ nor $B(B'low)$; -T'low end process;	
process (LowMidRangeColor, MidRangeColor) begin	YIDa
for N in MidRangeColorType'base'left to - T'base & T'left MidRangeColorType'base'right loop - T'base & T'right if (LowMidRangeColor = MidRangeColor) then Y2<='1'; else Y2 <= '0'; end if; end loop; end process;	
end architecture LOGIC;	

Chapter Four: Design/Modeling Recommendations, Issues and Techniques

Example 4.12 Array related VHDL attributes - 'range, 'reverse_range and 'length

This model uses two generics Width1 and Width2 which make it generic for different bit width bus signals. This particular model is configurable in that it will synthesize to one of two different types of circuit depending upon whether the value of Width1 and Width2 are the same or not. The length attribute is used to determine if the value of Widthl and Width2 are the same, that is signals A and B are of the same width. If they are the same, then the model will synthesize to a circuit that counts the number bits of A and B that are of the same value. The 'range attribute is used to provide the loop variables in the for loop; the result is output on signal Y. The first synthesized circuit shows the case when Widthl = Width2 = 6.

If Widthl and Width2 do not have the same value, a completely different circuit is synthesized; in this case a priority encoder. It uses the 'reverse_range attribute in a for loop so that it starts from the most significant bit and counts down. By doing this the exit statement is used to exit the loop plated attribute **4**1significant

Use of array related attributes	when	the	_first most significant
VHDL library IEEE; use IEEE. STD_Logic_1164. all, IEEE. Numeric_STD. a			bit having a value of logic 1 is found. The advantage of modeling in this way is a slightly
entity ATTRIBUTES_ARRAY is generic (Width 1, Width2: natural); port (A: in unsigned(Width1 -! downto B: in unsigned(Width2 - 1 downto Valid: out std_logic; Y: out unsigned(3 downto 0)); end entity ATTRIBUTES_ARRAY;	0); 0);		improved simulation speed. The synthesized circuit shows the case when Widthl = 6 and Width2 = 7, that is, a 6-3 priority encoder.
architecture LOGIC of ATTRIBUTES_ARRAY is begin process (A, B) variable Y_var: unsigned(3 downto 0); begin Number of equivalent bits in A and B if (A'length = B'length) then A'length Valid <= 1; Y_var:= "0000"; for N in A'range loop A'range if (A(N) = B(N)) then Y_var:= Y_var + 1; else Y_var:= Y_var + 1; else - priority encode of A Valid <= '0'; Y_var:= "XXXX"; tor N in A'reverse_range loop A'rever if(A(N) = '1')then Y_var:= to_unsigned(N,4); Valid <='1'; exit; end loop; end if;	See of se	Circuit A.	
end process; end architecture LOGIC;			

Example 4.13 Signal related VHDL attributes - 'stable and 'event

Attribute 'stable. The S'stable(T) attribute returns a boolean true when signal S has not had an event for time T. Time T is ignored for synthesis. Although the 'stable attribute is usually supported by synthesis tools as shown in this example, there is no advantage in using it and will slow simulation time so its use is not recommended.

Attribute 'event. The S'event attribute returns a boolean true if an event has occurred in the current simulation time. The model shows the detection of a rising edge by detecting the occurrence of an event, and that its new value is a logic 1. Notice that the clock signals are of type bit which has two possible values 0 or 1 and so a rising edge is correctly detected, that is, an event has occurred and the new value is at logic 1. However, if the clock was of type std_logic, it is not enough to detect the occurrence of an event and that the new value is a logic 1. Type std_logic has nine possible values (U, X, 0, 1, Z, W, L, H, -} and the signal could be changing from any one of the other eight state values to logic 1. The model would still synthesize correctly, but may not simulate correctly. For this reason, functions rising_edge and falling, edge from the IEEE 1164 package STD_Logic_n 64, should be used, as is the case in most examples in this book.

2. Using Packages (VHDL)

Packages in VHDL provide a means of storing precompiled and verified design code for use by other design units as discussed in Chapter 3. Type and subprogram declarations are typical of the generic code placed in packages, so that they can be made available on an as needed basis, across multiple designs and multiple projects. Using already proven and precompiled subprograms provides a powerful means of enabling designers to build hardware models quicker, more efficiently and at a higher level of abstraction. A model containing subprogram calls to subprograms in such a package has the following advantages:

- the design time is shortened,
- the model's structure is improved,
- the coded model is often shorter and easier to read,
- the model is easier to debug.

Packages are made accessible to particular models with the **library** and **use** clauses; see Examples 4.14 and 4.15. The **library** clause will make a particular library visible and the **use** clause will make a particular package within a library visible.

A package consists of two distinct parts; the **package** declaration and the **package body** declaration. These two parts are known as primary and secondary library units, respectively; see Figure 4.4. The syntax for the **package** and **package body** is shown in Appendix A and indicates the kind of declarations that are allowed. Typical declarations supported by synthesis tools are also shown in Figure 4.4.

VHDL design models are usually compiled into the default working library called work. However, packages may be compiled into this work library or a completely new library defined by the user. Typically, all common design data that relates specifically to one project might

Figure4.4 Typicalpackage declarations supportedbysynthesis tools be compiled into the default library called work. Common design data that is intended to be generally available across multiple projects can be compiled into a specific library of its own. The standard VHDL packages defined by the IEEE will be precompiled into a library called 'IEEE' by the EDA tool vendor. The two IEEE packages used throughout this book are STD_Logic_l164 and Numeric_STD.

A **package body** is optional and is always associated with a **package** of the same name. It is needed for the declaration of the bodies of subprograms and the value of any deferred constants. The **package body** may be hidden from the users of a **package** with only their interfaces being made visible in the package.

Example 4.14 Data types defined in a package

In this case only the type MyLogic would be visible.

use Project1.data_types.MyLogic;

3. Operator and subprogram overloading (VHDL)

Operator and subprogram overloading is one of the most useful features in VHDL. They allow either language operators or user defined subprograms to operate on operands of different data types.

Operator overloading. Operators are overloaded by defining a function whose name is the same as the operator itself. Because the operator and function name are the same, the function name must be enclosed within double quotes to distinguish it from the actual VHDL operator. Calls to overloaded operators can use either the standard infix operator notation with operands either side of the operator, or a function call notation by enclosing the operator in double quotes followed by the operand list in brackets. Example 4.15. shows the "+" operator overloaded and calls to it using both these methods.

Subprogram overloading. Multiple functions and procedures (subprograms) of the same name can be defined, but have inputs and outputs that have different data types. A subprogram call will use the correct subprogram based on, 1) a match of its declared name and, 2) a match of the <u>base</u> types of the objects used in the subprogram call, to the <u>base</u> type of the declared parameters in the subprogram declaration. Example 4. 17. shows two functions and two procedures all with the same name defined in a package, and a model that calls each of them.

Example 4.15 Overloaded "+" operator

The plus (+) operator is overloaded, that is, a function called "+" is declared with its name enclosed in double quotes ("+") to distinguish it from the operator itself. The function is declared in a package, as is normally the case, so that it is globally accessible from any design unit wishing to make a call to it. The function is defined to accept two record type operands and return an operand of the same record type. The record contains two fields of different type. The first field is a 16 value integer type having values from 0 to 15, while the second is a 4-bit array of type unsigned. The operation of the overloaded "+" function is to add the two integer fields from the two operands and add the two unsigned values from the two operands.

The model OVERLOADED_OPERATOR_CALLS contains four plus operators as described below.

First"+" operator. Has operands of type integer so uses the standard "+" infix operator defined by the VHDL language.

<u>Second "+" operator</u>. Has operands of type unsigned and uses the overloaded "+" infix operator function defined in the IEEE 1076.3 synthesis package, Numeric_STD.

<u>*Third* "+" operator.</u> Has operands of type int_unsi, as defined in the package shown, and uses the overloaded "+" infix operator function defined in this package.

Fourth "+"operator. Calls the same overloaded"+" operator as the third"+" operator; the difference being that it uses the more unusual function call notation and so is known as a prefix operator.

Overloaded "+" operator function 0	Calls to various overloaded "+" operator functions
VHDL	VHDL
library IEEE; use IEEE. STD_Logic_1164. all. IEEE. Numeric_STD. all;	library IEEE; use IEEE. STD_Logic_1164. all. IEEE. Numeric_STD. all; use work. OVERLOADED_OPERATOR. all;
<pre>package OVERLOADED_OPERATOR is type int_unsi is record Int: integer range 0 to 10; Unsi: unsigned(4 downto 0); end record; function"+" (A, B: int_unsi) return int_unsi; end OVERLOADED_DPERATOR;</pre>	entity OVERLOADED_OPERATOR_CALLS is port(A1, B1: in integer range 0 to 15; A2, B2: in unsigned(3 downto 0); A3, B3: in int_unsi; A4, B4: in int_unsi; Y1: out integer range 0 to 15; Y2: out unsigned(3 downto 0);
<pre>package body OVERLOADED_OPERATOR is function "+" (A, B: int_unsi) return int_unsi is variable Y: int_unsi; begin Y.int:= A.Int + B.int; Y.Unsi:= A.Unsi+B.Unsi;</pre>	Y3: out int_unsi; Y4: out int_unsi; end entity OVERLOADED_OPERATOR_CALLS; crchitecture LOGIC of OVERLOADED_OPERATOR_CALLS is begin
end "+"; end OVERLOADED_OPERATOR;	begin Uses + infix operator defined Y1 <= A1 + B1;
Uses the overloaded + operator defined in package OVERLOADED OPERATOR using a	Y3 <= A3 + B3; Y4 <= "+"(A4, B4); end process; Calls the overloaded + operator defined in package NumericSTD using the infix operator notation.
function call, or prefix operator, notation.	end architecture LOGIC; Calls the overloaded + operator defined in package OVERLOADED_OPERATORusingthe standard infix operator notation.

Example 4.16 Overloaded subprogram

This example demonstrates the use of overloaded subprograms. There are two packages. The first, COLOR_TYPES, defines four enumerated data types and does not need a package body. A second package, OVERLOADED_SUBPROGS, contains four subprograms all with the same name MixColor and are hence overloaded. Two of the subprograms are procedures while the other two are functions. The package declaration declares the four subprograms while the package body contains their corresponding functional bodies. Each subprogram performs the same logical operation, that is, they mix colors. There is a **procedure** and **function** for mixing the three primary light colors and there is another **procedure** and **function** that' mixes the three primary pigment colors as indicated by Figure 4.5.

When a subprogram call is made to MixColor the correct body is called by virtue of it being either a procedure or function call and by virtue of matching the data types supplied.

Figure 4.5 Light spectrum and pigment color mix

Chapter Four: Design/Modeling Recommendations, Issues and Techniques

4. Deferred constants (VHDL)

A constant declaration normally declares the constant's identifier name and its associated constant value, for example,

constant WidthBusA: integer: = 16; - constant declaration

On the other hand, a deferred constant declaration declares the constant's identifier name, but not its value, for example,

constant WidthBusA: integer; - deferred constant declaration

Deferred constants are used when a constant value may need to be changed such that only a **package body** need be re-compiled. If a constant is not deferred, then not only would the package need to be recompiled, but all models dependent upon the constant would also need to be recompiled.

A deferred constant can only be declared inside a **package** and its declaration is completed with an associated full constant declaration that associates its value declared in the corresponding **package body;** see Example 4. 17.

Example 4.17 Using a deferred constant (VHDL)

A deferred constant is used to define the number of most significant bits of a multiple bit bus that should be ANDed together in the function called AND_MSBs.

Deferred constant declared in a package Two function calls

VHDL	VHDL
<pre>library IEEE; use IEEE. STD_Logic_1164. all, IEEE. Numeric_STD. all; package DEF_CONST_PKG is constant Width: integer:= 8;</pre>	library IEEE; use IEEE.STD_Logic_1164. all,IEEE.Numeric_STD.all; use work. DEF_CONST_PKG.all; entity DEF_CONST_CALL is port (A1, A2: in unsigned(7 downto 0); Y1, Y2: out std_logic); end entity DEF_CONST_CALL; architecture LOGIC of DEF_CONST_CALL is begin process (A1, A2) begin Y1 <= AND_MSBs(A1); Y2 <= AND_MSBs(A2); end process; end architecture LOGIC; Synthesized Circuit
	A1[7] A1[6] A1[5]

5. Translation Functions - Extension and Truncation (VHDL)

Extension and truncation functions in a package

VHDL library IEEE; use IEEE.STD_LOGIC_1164.all, IEEE.Numeric_STD.all; package SIGNED_EXT_TRUNC is function Ext (A: unsigned; Size: integer) return unsigned: function Trunc (A: unsigned; Size: integer) return unsigned; end package SIGNED_EXT_TRUNC; package body SIGNED_EXT_TRUNC is --\$ synthesis_compile_off constant ExtSize: string: = "Can't extended to a smaller width bus!"; constant TruncSize: string:= "Can't truncate to a larger width bus!"; -\$ synthesis_compile_on procedure Message (MESS: String; SEV: Severity_Level) is beain assert false report MESS severity SEV; end procedure Message; function Ext (A: unsigned; Size: integer) return unsigned is variable Extended: unsigned(Size - 1 downto 0); begin -S synthesis_compile_off if A'length > Size then Message(ExtSize, Error); return (A); end if: --\$ synthesis_compile_on Extended(A'length -1 **downto** 0) := A; for N in Size-1 downto A'length loop Extended(N):= A(A'left); end loop; return (Extended); end function Ext; function Trunc (A: unsigned; Size: integer) return unsigned is variable Truncated_downto: unsigned (A'low+Size-1 downto A'low); variable Truncated to: unsigned (A'low to A'low+Size-1); begin -\$ synthesis_compile_off if A'length < Size then Message(TruncSize, Error); return (A); end if: -S synfhesis_compile_on for N in A'low to A'low + Size -1 loop Truncated_downto(N): = A(N + A') length - Size); $Truncated_to(N) := A(N + A'length - Size);$ end loop: if (A'left > A'right) then return Truncated_downro; else return Truncated to: end if end function Trunc; end package body SIGNED_EXT_TRUNC;

Packages are often used to store precompiled conversion functions, which when called, convert data objects from one data type to another. Alternatively such functions may simply manipulate bits of the same type. These functions do not imply logic to be synthesized; they simply manipulate the various bits of the particular data type.

Example 4.18 Translation Functions

This example shows a package containing two functions; one for sign extension of the most significant bit and one for truncation of the least significant bit(s). They use the data type unsigned as defined by the IEEE 1076.3 package Numeric_STD. The **library** and **use** clause makes the two packages Std_Logic_1164 and Numeric_STD visible to the package Signed_Ext_Trunc.

When the Ext and Trunc functions are called they require 1) the vector to be extended or truncated and 2) an integer indicating the size of the returned vector.

Both functions contain a check that extension is not attempting to extend to a smaller bit width or that truncation is not attempting to truncate to a larger bit width. If this is the case, an appropriate error message is displayed. This checking mechanism uses an assertion statement in the **procedure** named Message which may be called from either function. The subprogram Message, must be a **procedure** and not a **function** as there is no return value, **it** is purely passive. Assertion statements are not supported by synthesis tools, so comment directives are used to tell the synthesis compiler to ignore these constructs. In this example, the compiler directives --\$ synthesis_compile_off and -\$ synthesis_compile_on are used corresponding to the synthesis tools from VeriBest Incorporated. All code between these complier directives are ignored by the synthesis compiler.

Extension and truncation function calls

```
VHDL
library IEEE
use IEEE. STD_LOGIC_1164. all, IEEE. Numeric_Std. all;
use work.SIGNED_EXTJRUNC.all;
entity SIGNED_EXT_TRUNC_CALL is
                 in unsigned(15 downto 8);
  port (A, B:
        C, D:
                 in unsigned(8 to 15);
        Y_A_EXT: out unsigned(17 downto 8);
        Y_B_TRC: out unsigned (13 downto 8);
        Y C_EXT: out unsigned(8 to 17);
        Y_D_TRC: out unsigned(8 to 13));
end entity SIGNED_EXTENSION_TRUNCATION;
architecture DATA FLOW of SIGNED EXT TRUNC CALL is
begin
  Y_A_EXT <= Ext(A, 10);
  Y\_B\_TRC \le Trunc(B, 6);
  Y_C_EXT<=Ext(C, 10);
  Y_D_TRC \le Trunc(D, 6)
end architecture DATA_FLOW;
```

6. Resource Sharing

During synthesis, a process called resource allocation, assigns each operator to a piece of hardware. If this process assigns two or more operators to a single piece of combinational logic hardware they are known to be shared and the process is called resource sharing. Operators that can typically be automatically shared by a synthesis tool are:

"+", "-", "*" and "\" (VHDL) "+", "-", "*" and 7" (Verilog)

Because multiply and divide operators are not synthesized efficiently using RTL synthesis tools only the "+" and "-" operators are best suited to being shared. A synthesis tool will make the decision as to whether a resource may be shared based upon certain criteria. The criteria for sharing is typically:

1. Operators must reside in the same process (VHDL)/always (Verilog) statement.

2. Operators must reside in different branches of the same conditional assignment statement.

When a synthesis tool performs resource sharing, it will typically add multiplexers to the inputs and outputs of shared hardware resources as needed to channel data into, and out of, the common resource. A synthesis tool will usually provide an option to switch automatic resource sharing on or off.

Example 4.19 Automatic resource sharing.

First process/always statement. Explicitly infers a shared adder using an if statement.

Second process/always statement. Implied shared adder through synthesis using an if statement.

Third process/always *statement*. Implied shared adder/subtracter circuit from synthesis using a case statement.

HDL Chip Design

5 Structuring a Design

Chapter 5 Contents

Structuring a Design	115
Course Grain	
Configurations (VHDL)	115
Example 5.1 Structural configuration for simulation using a configuration	116
Entity-architecture/module	117
Example 5.2 Course grain structuring - multi-level components	117
Example 5.3 Course grain structuring - components connected via split busses	119
Course/Medium Grain	.121
For/if-generate (VHDL)	
Example 5.4 Course/medium grain structural replication - for/if-generate (VHDL).	. 121
Block statement (VHDL)	
Example 5.5 Course/medium grain structuring using blocks (VHDL)	124
Medium Grain	125
Fine Grain	
Procedufe/Tdsk	
Example 5.6 Fine grain structuring - procedure/task	127
Function	
Example 5.7 Fine grain structuring - function	
Example 5.8 Fine grain structuring - separate subprograms	129

Structuring a Design

This chapter describes the motivation for building good structure into a model's design and how it is achieved.

The motivation for good model structure is modularity and clarity; the benefits of which are:

- models are less cluttered and easier to read,
- previously designed and verified submodels can be used (called) repeatedly within a design,
- previously designed and verified models can be quickly and easily incorporated into new designs,
- a well partitioned design, having structure corresponding to its functional operation, and breaks the total design and verification task into smaller, more manageable pieces.

The constructs used to build structure into HDL models are listed in Table 5.1 with reference to their granularity.

		HDL const	ruct
structural granularity	structural modeling unit	VHDL	Verilog
course grain	entity/architecture pairing	configuration *	module
course grain	primary design unit	entity/architecture	
course/medium grain	replication of concurrent statements	for/if-generate	
Course/medium grain	grouping of concurrent statements	block	
medium grain	grouping of sequential statements	process	always
fine grain	subprogram	procedure	task
fine grain	subprogram	function	function

* Ignored by synthesis tools, but can be used to configure the structure of synthesizabe models for simulation.

Table 5.7 Constructs used to build structure into HDL models

The following sections describe these constructs and include examples. Appendices A and B show the syntax of VHDL and Verilog constructs, respectively.

Course Grain

Configurations (VHDL)

A configuration is a separate *design unit* (see Figure 3. 1) that allows different architecture and component bindings to be specified after a model has been analyzed and compiled, by a simulator for example. There are two types; the *configuration declaration* and the *configuration specification*.

Configuration declarations

The standard VHDL design entity consists of an entity and architecture pair. The entity defines input and output signals, while the architecture defines its functional operation. An entity-architecture pair normally resides in the same system file, however, an entity does not need to be locked into being associated with one particular architecture. An entity can be configured, using a *configuration declaration*, to be bound to any one of a number of different architecture bodies for simulation purposes. Different architecture bodies may have different modeled structures or

may be the gate level implication resulting from synthesis.

In summary a configuration declaration defines a configuration for a particular entity in order too:

- bind the **entity** to a particular **architecture** body,
- bind components, used in the specified **architecture**, to a particular **entity** (a component is an **entity-architecture** pair),
- bind components statements, used in the specified **architecture**, to a particular **configuration** statement.

Configuration specifications

In contrast to the configuration declaration, a *configuration specification* can be used to enable a component to be associated with any one of a set of entity statements. The component declaration may have its name and the names, types, and number of ports and generics different from those of its entities. This is achieved with a configuration specification.

In summary, a configuration specification can be used to specify the binding of component instances to a particular **entity-architecture** pair.

Example 5.1 Structural configuration for simulation using a configuration

Two similar models have the same **entity** name, ADDSUB_SIRUCT, and each reside in their own system file. They are different in the way parentheses are used in the assignment of signal Y and are identified by having a different **architecture** name; LOGIC_SIRUCT1 or LOGICSTRUCT2. The configuration declaration used to decide which model version to use during simulation is also shown and resides in a separate system file. Once the two models have been compiled only the configuration declaration need be changed and recompiled in order to change which architecture to simulate. The configuration declaration shown is enabled for LOGIC_STRUCT2.

Configuration of one of two architectures

Entity-architecture (VHDL) / module (Verilog)

A *design entity* is the VHDL entity-architecture pair or Verilog module, both of which provide course grain control over a design's hierarchical structure. A design entity can instantiate lower level design entities in which case they are known as a component, which in turn, can instantiate lower level components to provide a course grain multiple level hierarchical structure.

When a VHDL architecture instantiates a lower-level entity, it must be declared in the declarative part of the architecture before it can be instantiated in the statement part. This is not the case in Verilog; it just needs to be instantiated, see Example 5.2.

Signals passing to and from sublevel components may be defined in the instantiating statement using positional or named notation, or additionally for VHDL, a mixture of both. Positional notation means that signals in the upper level component are connected to signals in the lower level component, corresponding to their relative position in the instantiating statement. Named notation means each signal in the upper level is explicitly defined as being connected to a specific signal in the lower level, and therefore, their relative order in the instantiation statement is not important. The <u>mixed positional and named notation</u> supported by VHDL allows signals to be listed using positional notation until the first named notation. Note, a signal can represent; a single bit, multiple bits, or selected bits from a multiple bit bus. There is no real advantage of using a mixed notation and is less readable.

Example 5.2 shows multiple levels of hierarchy using both positional and named notation. It also shows mixed notation in the VHDL model. Example 5.3 shows a bus whose bits are split and connected to different sublevel design units.

Example 5.2 Course grain structuring - multi-level components

The course grain structuring of a design in this example has three levels of hierarchy. It uses the entity-architecture (VHDL) and module (Verilog) to model the hierarchical structure indicated in Figure 5.1. The top level instantiates two middle level components which in turn instantiates the lower level components. The lowest level in this example contains only the model of a single two input logic gate for demonstration purposes, but would typically contain large sections of a larger design, which could be synthesizing circuits from 2000 to 5000 equivalent gates.

Figure 5. 1 Course grain hierarchical structure

Three hierarchical levels of course grain structuring

<pre>ilbrary iEEE; use iEEE.STD_Logic_1164.all; entity COURSE_STRUCTURE is port (A1, A2, A3, A4, B1, B2, B3, B4: in_std_logic; Y1, Y2, Y3, Y4: out std_logic); end entity COURSE_STRUCTURE: architecture STRUCT of COURSE_STRUCTURE is component LEV_2A port (A1, B1: in std_logic; Y1: out std_logic); end component; component LEV_2B port (A2, A3, A4, B2, B3, B4: in std_logic; Y2, Y3, Y4: out std_logic); end component; begin inst1_LEV_2A: LEV_2A port map (A1, B1, Y1); inst1_LEV_2B: LEV_2B port map (A2, A3, A4, B2, B3, B4, Y2, Y3, Y4); end architecture STRUCT;</pre>	 module COURSE_STRUCTURE (A1, A2, A3, A4, B1, B2, B3, B4, Y1, Y2, Y3, Y4); input A1, A2, A3, A4, B1, B2, B3, B4; output Y1, Y2, Y3, Y4; LEV_2A Inst1_LEV_2A (A1, B1, Y1); LEV_2B Inst1_LEV_2B (A2,A3,A4,B2,B3,B4,Y2,Y3,Y4); endmodule
library IEEE; use IEEE.STD_Logic_1164.all; entity LEV_2A is port (A1, B1: in std_logic; Y1: out std_logic); end entity LEV_2A;	module LEV_2A (A1, B1, Y1); input_A1,B1; output Y1;
architecture STRUCT of LEV_2A is component LEV_3A port (A, B: in std_togic; Y: out std_logic); end component; begin Inst1_LEV_3A: LEV_3A port map (A1, B1, Y1); end architecture STRUCT;	LEV_3A Inst1_LEV_3A (A1, B1, Y1); endmodule
library IEEE; use IEEE.STD_Logic_1164.all; entity LEV_2B is port (A2,A3,A4,B2,B3,B4: in std_logic; Y2,Y3,Y4: out std_logic); end entity LEV_2B;	module LEV_2B (A2, A3, A4, B2, B3, B4, Y2, Y3, Y4); input A2, A3, A4, B2, B3, B4; output Y2,Y3,Y4;
architecture STRUCT of LEV_2B is component LEV_3B port (A, B: in std_logic; Y: out std_logic); notation. end component; component LEV_3C port (A, B: in std_logic; Y: out std_logic); end component; begin Inst1_LEV_3B; LEV_3B port map (A => A2, B => B2, Y => Y2); inst1_LEV_3C; LEV_3C port map (Y => Y3, A => A3, B => B3); inst2_LEV_3C; LEV_3C port map (A => A4, B => B4, Y => Y4); end architecture STRUCT;	LEV_3B Inst1_LEV_3B (.A(A2), .B(B2), .Y(Y2)); LEV_3C Inst1_LEV_3C (.Y(Y3), .A(A3), .B(B3)), Inst2_LEV_3C (.A(A4), .B(B4), .Y(Y4)); endmodule
tibrary IEEE; use IEEE.STD_Logic_1164.all, IEEE.Numeric_STD.all; entity LEV_3A is port (A. B: in std_logic; Y: out std_logic); end entity LEV_3A;	module LEV_3A (A, B, Y); input A, B; output Y;
architecture STRUCT of LEV_3A is begin Y <= (A nand B); end architecture STRUCT;	assign Y = ! (A & B); endmodule
continued	continued

Example 5.3 Course grain structuring - components connected via split busses

The model COURSE_STR_SPLIT_BUS instantiates three separate ALU models; ALU1, ALU2 and ALU3. The model, ALU, is included for completeness.

The input bus signals Control, A and B are each split into three and connected to the three ALUs. The output signals from the ALUs are then combined into one output bus Y. The instantiation of ALU1 uses positional notation to link signals between the two levels of hierarchy. The instantiation of ALU2 uses named notation; each signal connection is specified in random order. The instantiation of ALU3 also uses named notation with signal connections specified in the same order as for ALU1.

Entity/module instantiations corrected via split busses

Verilog VHDL library IEEE; use IEEE. STD_Logic_1164.all, IEEE. Numetic_STD.all; module ALU (Operator, Operand1, Operand2, Result); entity ALU is input [2:0] Operator; port (Operator: in unsigned(2 downto 0); Operand1, Operand2: in unsigned(7 downto 0); input [7:0] Operand1, Operand2; Result: out unsigned(7 downto 0)); output [7:0] Result; end ALU; reg [7:0] Result; architecture COMB of ALU is always @(Operator or Operand1 or Operand2) case (Operator) begin 0: Result = 8'b 0; process (Operator, Operand1, Operand2) 1: Result = Operand1 + Operand2; begin 2: Result = Operand1 - Operand2; case (Operator) is 3: Result = Operand1 * Operand2; when "000" => Result <= (others => '0'); when "001" => Result <= Operand1 and Operand2; 4: Result = Operand1 >> 1; when "010" => Result <= Operand1 or Operand2: 5: Result = Operand2 » 1: when "011" => Result <= Operand1 xor Operand2; 6: Result = Operand1 « 1; 7: Result = Operand2 « 1; when "100" => Result <= Operand1 srl 1; when "101" => Result <= Operand2 srl 1; when "110" => Result <= Operand1 sll 1; when "111" => Result <= Operand2 sll 1; default: Result = 8'b 0; endcase endmodule when others => Result <= (others => '0'); end case; end process; end COMB; library IEEE; uselEEE.STD_Logic_1164.all,IEEE.Numeric_STD.all; entity COURSE_STR_SPLIT_BUS is module COURSE STR SPLIT BUS (Control, A, B, Y); port (Control: in unsigned(8 downto 0); input [8:0] Control; in unsigned(23 downto 0); input [23:0] A, B; A, B: Y: out unsigned(23 downto 0)); output [23:0] Y: end COURSE STR SPLIT BUS; architecture STRUCT of COURSE_STR_SPLIT_BUS is component ALU port (Operator: in unsigned(2 downto 0); Operand1, Operand2: in unsigned(7 downto 0); Result: out unsigned(7 downto 0)); end component; begin ALU1: ALU port map (Control(2 downto 0), A(7 downto 0), B(7 downto 0), Y(7 downto 0)); ALU ALU1 (Control[2:0], A[7:0], B[7:0], Y|7:0]); ALU2: ALU port map (Operand2 => A(15 downto 8), Operator => Control(5 downto 3), ALUALU2(.Operand2(A[15:8]), .Operator(Control[5:3]), Result => Y(15 downto 8), .Result(Y[15:8]), Operand1(B[I5:8])); Operand1 => B(15 downto 8)); ALU3: ALU port map (operator => Control(8 downto 6), Operand1 => A(23 downto 16), ALUALU3(.Operator(Controi[8:6]),.Operand1(A[23:16]), Operand2 => B(23 downto 16), .Operand2(B[23:16]),.Result(Y[23:16])); Result => Y(23 downto 16)); end STRUCT; endmodule

Entity/module instantiations corrected via split busses

Course/Medium Grain

For/if-generate (VHDL)

Course/medium grain structural replication is achieved in VHDL using generate statements, which replicate the enclosed concurrent statements; there is no Verilog equivalent. The two VHDL generate schemes are:

for-generate - replicates the enclosed concurrent statements a given number of times if-generate - conditionally replicates the enclosed concurrent statements

Example 5.4 Course/medium grain structural replication -for/if-generate(VHDL)

The VHDL model uses both the for-generate and if generate statements to provide Course/medium grain structuring. The first for-generate statement, GEN_1, generates three instances of ALU2 in exactly the same way as in Example 5.3. As ALU1 is instantiated repetitively, the generate statement is better suited and requires less code than the three individual instantiations in Example 5.3.

The for-generate statement, GEN 2, contains two nested if-generate statements. The first if-generate statement, GEN 3, instantiates two instances of ALU1, while the second, GEN4, instantiates another three instances of ALU2. This can be seen in the modeled circuit structure after the HDL models.

Structural replication for/if-generate (VHDL)

```
library IEEE:
use IEEE. STD_Logic_1164. all, IEEE. Numeric_STD. all;
entity ALU1 is
   port (Operator: in unsigned(1 downto 0);
         Operand1, Operand2: In unsigned(7 downto 0);
                     out unsigned(7 downto 0));
         Result:
end ALU1;
architecture COMB of ALU1 is
begin
   process (Operator, Operand1, Operand2)
   begin
      case (Operator) is
         when "00" => Result <= (others => '0'):
         when "01" => Result <= Operand1 and Operand2;
         when "10" => Result <= Operand1 or Operand2;
         when "11" => Result <= Operand1 xor Operand2;
         when others => Result <= (others => '0');
      end case;
   end process:
end COMB:
library IEEE;
use IEEE. STD_Logic_1164. all, IEEE. Numeric_STD. all;
entity ALU2 is
   port (Operator: in unsigned(2 downto 0);
         Operand1, Operand2: in unsigned(7 downto 0);
         Result:
                    out unsigned(7 downto 0));
end ALU2:
architecture COMB of ALU2 is
begin
   process (Operator, Operand1, Operand2)
   begin
      case (Operator) is
         when "000" => Result <= (others => '0');
when "001" => Result <= Operand1 and Operand2;
         when "010" => Result <= Operand1 or Operand2;
         when "011" => Result <= Operand1 xor Operand2;
         when "100" => Result <= Operand1 srl 1;
         when"101"=> Result <= Operand2 srl 1;
         when "110" => Result <= Operand1 sll 1;
         when "111" => Result <= Operand2 sll 1,
         when others => Result <= (others => '0');
      end case:
   end process;
end COMB;
```

VH DL library IEEE: uselEEE.STD_Logic_1164.all,IEEE.Numeric_STD.all; entity COURSE_MED_GENERATE is port(Ctl_AB: in unsigned(8 downto 0); A, B: in unsigned(23 downto 0); Y1: out unsigned(23 downto 0); Ctl CD: in unslaned(12 downto 0): in unsigned(39 downto 0); C, D: Y2: out unsigned(39 downto 0)); end COURSE_MED_GENERATE; architecture STRUCT of COURSE_MED_GENERATE is component ALU1 port (Operator: in unsigned(1 downto 0); Operand1, Operand2: in unsigned(7 downto 0); Result: out unsigned(7 downto 0)); end component; component ALU2 port (Operator: in unsigned(2 downto 0); Operand1, Operand2: in unsigned(7 downto 0); out unsigned(7 downto 0)); Result: end component; begin - Generates 3 instances of ALU2. GEN1: for N in 0 to 2 generate ALU2 X3: ALU2 port map (Ctl-AB(2 + N * 3 downto N * 3), A(7 + N * 8 downto N * 8),B(7 + N * 8 downto N * 8), Y1 (7 + N * 8 downto N * 8)); end generate; -- Generates 2 Instances of ALU1 and 3 instances of ALU2. GEN2: for N in 0 to 4 generate GEN3: if N <= 1 generate TWO ALU1S: ALU1 port map (Ctl_CD(1 + N * 2 downto N * 2), C(7 + N * 8 downto N * 8), D(7 + N * 8 downto N * 8), Y2(7 + N * 8 downto N * 8)): end generate; GEN4: if N >= 2 generate THREE ALU2S: ALU2 port map (Ctl_CD(N * 3 downto N * 3 - 2), $C(\overline{7} + N * 8 \text{ downto } N * 8),$ D(7 + N * 8 downto N * 8). Y2(7 + N*8 downto N* 8)); end generate; end generate;

end STRUCT;

Structural replication for/if-generate (VHDL)

Block Statement (VHDL)

Course/medium grain structuring can also be achieved in VHDL with the concurrent block statement. The block statement, contains zero or more concurrent statements, and can be nested; see Example 5.5. Typically, RTL synthesizable models rarely use the block statement as there is no advantage in doing so; there is no sensitivity list and the concurrent statements are treated in exactly the same way as if they are not in a block statement. The process statement is far more commonly used. There is no Verilog equivalent.

Example 5.5 Course/medium grain structuring using blocks (VHDL)

The VHDL model has two blocks; BLK1 and BLK2.

- BLK1. Uses identical generate statements as those used in Example 5.4 to instantiate the same number of ALU components. The ALUs are the same as those in Example 5.4.
- BLK2. Groups two **process** statements (PRC1 and PRC2) together and defines a 24-bit bus signal, Busl2. Busl2 is local to BLK2 and global to the two processes.

Structuring a design using VHDL blocks

124

Medium Grain

The VHDL process and Verilog always statements are used repeatedly in RTL synthesizable models. They provide medium grain structural control of a design. They are concurrent and activated when specified signals change value. In VHDL the list of signals which can activate the execution of a process statement is called a *sensitivity list*. In Verilog, the list of signals which can activate the execution of an always statement is called an *event list*. This activation is critical when simulating RTL models but does not affect the synthesized circuit.

<u>VHDL process statement</u>. This statement is activated in one of two ways depending upon whether it contains a wait statement or not. If it does not contain a wait statement, it is activated by the changing values of the signal or signals contained in the sensitivity list. If it does contain a wait statement, the process waits until the expression in the wait statement becomes true in which case a sensitivity list should not be used. For RTL synthesizable models, the wait should be the first and only wait statement in a process. The expression in a wait statement can wait for, 1) a particular signal's state to occur or, 2) the detection of a rising or falling edge to occur.

<u>Verlog always statement</u>. This statement is only activated when signals in the event list change value. The event list almost always contains signals separated by a logical OR (| |) operator. The logical AMD (&&) operator is allowed, but should not be used in models that are to be synthesized as simulation mismatches may occur between RTL and netlist level models. The reason for this is that the always statement will only be triggered into being executed when both signals either side of the logical AND operator (&&) change at the <u>same</u> time. The always statement will not be executed when only one signal changes. When modeling sequential logic, the clock and possible asynchronous reset in the event list, must always be preceded with either of the reserved words posedge or negedge.

<u>Both process (VHDL) and always (Verilog)</u>. When modeling purely combinational logic, sensitivity list or event list must contain all input signals to the process or always statement. If they do not, the model will still synthesize correctly, but RTL and netlist level simulation mismatches may occur.

Examples using the process and always statements are shown extensively throughout this book. Chapter 7 shows VHDL examples using the wait statement.

Fine Grain

Fine grain structural control is achieved with the use of subprograms. These are the VHDL procedure and function, and Verilog task and function. They provide fine grain structural control of a design. The procedure and task are similar, as are the two functions in VHDL and Verilog. The use of subprograms make models far easier to design, read and verify.

VHDL subprogram bodies are defined in either; the declaration region of an architecture, or within a package body. If the subprogram body is defined in a package body, its port list header must also be declared in the corresponding package. It is good design practice to always define subprograms in a package body so that they are then accessible to be used by any of the five types of design unit; see Chapter 3. It also means the calling models are less cluttered. Verilog does not have an equivalent to VHDL packages; subprograms are typically placed in a separate system file and included within a model using the 'include compiler directive. Table 5.2 compares the procedure/task with the function.

procedure (VHDL)/task (Verilog)	function (VHDL and Verilog)
can contain timing so may or may not execute in zero simulation time*	must not contain timing - executes in zero simulation time
can enable other procedures/tasks and functions	can enable other functions a VHDL function can enable procedures a Verilog function cannot enable tasks
	must have at least one input value
returns zero or more values	returns a single value
enabled from concurrent or sequential statements	enabled from an expression's operand
	return value is substituted for the expression's operand

* Although the Verilog task may contain timing, timing is not supported by synthesis tools.

Note 1. In VHDL formal actual parameter associations in subprogram calls could be either positional, named or mixed positional and named. Verilog supports only positional notation for subprogram calls.

Note 2. Different VHDL subprograms may have the same name provided the input and output data types are different. Only one signal or variable need have a different data type in order to make it unique. When the subprogram is called, it will use whichever one has input and output data types that exactly matches those of the signals in the calling statement. The technique is known as subprogram overloading.

Table5.2Comparisonofsubprograms-Procedure/Taskandfunctions

Procedure/Task

The procedure (VHDL) and task (Verilog) are ideal for partitioning models containing large amounts of code. A procedure may be called concurrently or sequentially, that is, from outside or inside a process. A task may only be called from within an always statement. The procedure is similar to the process in that it can always be rewritten as an equivalent process. The same is true for the task and a sequential always block.

VHDL or Verilog RTL synthesis tools typically do not allow more than one statement to be used in a sequential section of code that causes a wait on particular signal conditions. For VHDL, this means no more than one wait statement in a process. For Verilog, it means always statements cannot be nested. As a task can only be called from within an always statement or sequential always block, a task <u>cannot</u> be used to infer sequential logic, unlike the procedure.

In summary, when a model is to be synthesized:

- 1. synchronous logic may only be modeled in a procedure using the if statement, and not a wait statement,
- 2. synchronous logic may <u>not</u> be modeled in a task. Only combinational logic can be modeled which means a task can always be remodeled as a function.

Example 5.6 shows a procedure modeling synchronous logic and how the equivalent task is modeled differently because it cannot model synchronous logic.

Example 5.6 Fine grain structuring - Procedure/task

Linear feedback shift registers are modeled using subprograms.

VHDL A generic n-bit **procedure** contains the full LFSR model and is called three times. The first call is concurrent and uses positional signal association. The second call is sequential and uses named association. The third is also sequential and uses a mixed positional and named association.

Verilog. A **task** representing the combinational feedback logic for an 8-bit LFSR are declared. Notice the names of the **task** and **function** are different; they may not have the same name. No task can model synchronous logic if it is to be synthesized. Therefore, in this example, only the exclusive OR feedback logic is modeled in the task. This means a synthesizable task can always be remodeled using an equivalent function. The equivalent function is shown. There are two calls to the **task** while the third call, calls the **function**.

Procedure and task calls

Procedure and task calls

Function

The **function** in both VHDL and Verilog, provides the finest structural control of all. They are called as the operand from within an expression. The single returned value from a function, replaces the function call itself within the expression from which it is called.

Example 5.7 shows a **function** defined and called within the same model. Example 5.8 shows subprograms declared in a separate system file; the VHDL model has overloaded subprograms declared in a **package** and defined in a **package body**, while its Verilog equivalent shows a single **task** and **function** defined in a separate system and referenced using the 'include compiler directive.

Example 5.7 Fine grain structuring - function

The model in this example contains the definition of a **function** and three separate calls to it. The VHDL model uses; named, positional, and mixed named and positional notation to associate signals in the model's body to signals in the function. Mote again, Verilog does not support named notation for subprogram calls.

Function calls

VHDL	Verilog
library IEEE;	
use IEEE.STD_Logic_1164.all;	
entity FUNCTION_CALLS is	moduleFUNCTION_CALLS
port(S1, S2, A1, B1, C1, D1, A2, B2, C2, D2,	(S1,S2,A1,B12,C1,D1,Y1,A2,B2,C2,D2,Y2,A3,B3,C3,C3,Y3);
A3, B3, C3, D3: in std_logic;	input \$1 \$2 \$4 \$4 \$64 \$64 \$54 \$50 \$62 \$52 \$52 \$52 \$52 \$52 \$52
Y 1, Y2, Y3: OUT Stg_logic);	i iliput 51, 52, A1, D1, C1, D1, A2, D2, C2, D2, A3, D3, C3, D3,
end entity FONCTION_CALLS,	reg V2 V2
architecture LOGIC of FUNCTION CALLS is	i ieg iz, io,
function Fn1 (F1.F2.F3. F4: std logic) return std logic is	function Fn1;
variable Result: std logic;	input F1, F2, F3, F4;
begin	begin
Result:= (F1 xor F2) or (F3 xnor F4);	Fn1=((F1 ^ F2) &! (F3 ^ F4));
return Result;	end
end Fn1;	endfunction
Positional notation.	Only positional notation allowed in Verilog subprograms calls.
$V_{1} \sim Ep (A) B_{1} C_{1} D_{1} or S_{1} or S_{2}$	assign $Y_1 = En I (A_1 B_1 C_1 D_1) S_1 S_2'$
process (\$1, \$2, A1, B1, C1, D1, A2, B2, C2, D2)	always @(\$1 or \$2 or A2 or B2 or C2 or D2 or A3 or B3 or
begin Named potation	C3 or D3)
	begin
Y2 <= \$1 or \$2 or Fn1(F3=>C2, F4=>D2, F1=>A2, F2=>B2);	Y2 = \$1 Fn1(A2, B2, C2, D2) \$2;
Y3 <= \$1 or Fn1(A3, B3, F4 => D3, F3 => C3) or \$2;	
end process;	Y3 = S1 S2 Fn1(A3, B3, C3, D3);
and architecture LOGIC:	endmodule

128

Example 5.8 Fine grain structuring - separate subprograms

This example uses the preferred method of defining subprograms in a separate system file. The subprograms provide the color resulting from mixing any two of three paints together.

VHDL. Uses two packages. The first, COLOR_TYPES, defines the data types used by the subprograms in the second package. The second package, SUBPROGS, has a **package** and **package body**. The subprograms are declared in the **package** declaration and their functional bodies are specified in the **package body**. There are two procedures and two functions all of which have the same name. Although in this case, the two procedures and two functions perform the exact same operation, they are different in that they use different enumerated data types, as defined in the first **package** COLOR_TYPES. Both the two procedure names and two function names are also said to be overloaded.

Verilog. Uses a single 'include complier directive which has the effect of being replaced with the contents of the file it references. Subprograms cannot be overloaded so there is only one **task** and one **function.** Enumerated data types are also not allowed, so the **task** and **function** use Colorl, Color2, and Color3 instead of Red, Green and Blue.

Subprog	ramsdefinedina	separatesystemfile
---------	----------------	--------------------

package COLOR_TYPES Is type PigmentColorPrime is (Red, Yellow, Blue); type PigmentColorSec is (Orange, Violet, Green); end package COLOR_TYPES; usework.COLOR_TYPES.all; package SUBPROGS is procedure MixColor (signal C1, C2: in PigmentColorPrime; signal Mix: out PigmentColorSec); (unction MixColor (C1, C2: PigmentPrimeColor) return PigmentSecColor; end package SUBPROGS;	// filename "deflne_colors.v" 'define Color1 2'b 00 'define Color2 2'b 01 'define Color3 2'b 10 'define MixColor1 2'b 00 'define MixColor 2'b 01 'define MixColor3 2'b 10	Separate text substitution definition file "define_colors.v"
---	---	---

Sub programs defined in a separate system file

Calls to generic sub programs defined in a separate system file

6

Modeling Combinational Logic Circuits
Chapter 6 Contents

Modeling Combinational Logic	
Logical/Arithmetic Equations	
Example 6.1 Equations modeled using continuous assignments	
Logical Structure Control	135
Example 6.2 Parentheses used to control logical structure	
Multiplexers	
Example 6.3 One-bit wide 2-1 multiplexer	
Example 6.4 Modeling styles of a 4-1 multiplexer	
Example 6.5 Two-bit wide 8-1 multiplexer using case	
Encoders	
Example 6.6 An 8-3 binary encoder	
Priority Encoders	
Example 6.7 An 8-3 binary priority encoder	145
Decoders	
Example 6.8 A 3-8 binary decoder	
Example 6.9 A 3-6 binary decoder with enable	
Example 6.10 Four bit address decoder	
Example 6.11 Generic N to M bit binary decoder	
Comparators	
Example 6.12 Simple comparator	
Example 6.13 Multiple comparison comparator	
ALU	159
Example 6.14 An arithmetic logic unit	

Modeling Combinational Logic

This chapter demonstrates the different ways in which purely combinational logic may be modeled. It does not include tri-state logic which is covered separately in Chapter 10. The types of combinational logic circuit commonly used in digital design and covered in this chapter are listed in Table 6.1.

logical/arithmetic equations logical structure control multiplexers encoders priority encoders decoders comparators ALUs

Table 6.1 Functional types ofcombinational logic circuit

These more standard functional types of circuit are used in both control path and datapath structures. Typically each circuit type can be modeled in different ways using if, case, and for statements etc. Additionally for VHDL only, the concurrent selected and conditional signal assignments can also be used. The selected signal assignment is synonymous with the if statement and the conditional signal assignment is synonymous with the case statement, but reside outside a process. This means they are always active and so may increase the time it takes to simulate a model when compared to using a process with a sensitivity list. Also, the VHDL for-loop may include one or more next or exit statements. The next statement causes a jump to the next loop iteration, while the exit statement causes an exit from the for-loop altogether. There is no equivalent to the next or exit statements in Verilog. The VHDL while-loop statement, and the Verilog forever and while-loop statements, are not often used to model combinational logic; their loop range must have a static value at synthesis compile time so that a predetermined amount of logic can be synthesized. They are not supported by the synthesis tools from VeriBest Incorporated.

Note, that when modeling combinational logic, the sensitivity list of a process statement (VHDL) or the event list of an always statement (Verilog), must contain all inputs used in the particular statement. If it does not, the model will still synthesize correctly, but may not simulate correctly. This is because process/always statements are concurrent and will not be triggered into being executed when the omitted signals change, and means the output signals will not be updated.

Because the examples in this chapter are relatively small for demonstration purposes, VHDL models use mostly signal assignments and relatively few variable assignments. VHDL models with more code in a process, typically use more variable assignments. Variables and constants are used in the computation of signal values, see Chapter 4. A number of VHDL model versions in this chapter use for-loop statements. It is better to use only variable assignments, and not signal assignments in for-loop statements. This is not mandatory as identical circuits will be synthesized, but it will simulate faster for reasons given in Chapter 4.

The logic synthesized from the majority of the models in this chapter have little or no inherent logical structure. This means area, timing and power characteristics are often considerably improved when the synthesized circuit is optimized. Logic optimization breaks down the logical structure of a circuit and creates a new one in the process of attempting to improve any area, timing or power requirements that have been specified.

The following sections describe each of the circuit functions listed in Table 6. 1. Shifters, multipliers and dividers can also be modeled using synchronous logic and are included in Chapter 9.

Logical/Arithmetic Equations

Both logical and arithmetic equations may be modeled using the logical and arithmetic operators in the expressions of continuous data flow assignments, see Example 6.1.

Example 6.1 Equations modeled using continuous assignments

Logical and arithmetic equations are modeled using continuous data flow assignments, incorporating both logical and arithmetic operators. Both concurrent (outside **process/always**) and sequential (inside **process/always**) assignments are shown.

VHDL signals S1 and S2 and variables V1 and V2, have identical names in the Verilog model for comparison, but are all variables of type **reg** in the Verilog model. The Verilog variables V1 and V2 are not local to the sequential block as the variables are in the VHDL model. Although Verilog supports locally defined data types of type **reg**, this is not generally supported by synthesis tools. The VHDL output Y1 is defined from a concurrent continuous assignment and so the Verilog equivalent must be of type **wire**. The data type of Y1 could have been explicitly defined as a wire, for example, "**wire** Y1;", however, this is not necessary as type **wire** is implied by default as defined by the Verilog language.

Mathemematical	equations	modeled	usinacontinu	ousassianments
				e e e e e e e e g e e

134

Logical Structure Control

Parentheses can be used for course grain control of synthesized logic structure. Logic optimization can still be used to break down all, or most, of a circuit's logic structure and restructure it in the process of attempting to meet specific constraints. However, the use of parentheses in the model's expressions can make the optimizer's job far easier and less cpu intensive, but more importantly, the optimizer may not be able to achieve such good results that careful choice of parentheses can bring, see Example 6.2.

Example 6.2 Parentheses used to control logical structure

Parentheses are used to control the structure of inferred adders. The model contains two assignments, each implying the synthesis of three adders. The first assignment to Y1 does not use parentheses and so defaults to a left to right priority; this results in a worst case timing delay which passes through three adders. The second assignment to Y2 does use parentheses for a more course grain structural control and infers a circuit structure whose longest timing delay this time passes through only two adders instead of three.

Parentheses used to control logical structure

Multiplexers

A multiplexer selectively passes the value of one, of two or more input signals, to the output. One or more control signals control which input signal's value is passed to the output, see Figure 6. 1. Each input signal, and the output signal, may represent single bit or multiple bit busses. The select inputs are normally binary encoded such that n select inputs can select from one of up to $2^{ninputs}$.

RTL level synthesis tools are not particularly good at identifying multiplexer type functions and mapping them directly onto multiplexer macro cells in a given technology library. If this is desired a multiplexer macro cell should be explicitly instantiated in the HDL model. However, a multiplexer circuit is often better implemented in cell primitives as they can be optimized with their surrounding logic and often produce a more optimal overall circuit implementation. Example 6.3 shows three ways of modeling a 2-1 multiplexer. Example 6.4 shows a 4-1 multiplexer modeled in several different ways and Example 6.5 shows a 2-bit wide 8-1 multiplexer.

Example 6.3 One-bit wide 2-1 multiplexer

The model of the one-bit wide 2-1 multiplexer described above is shown modeled using the if statement in its most simplest form. Multiplexer output Y1 is derived concurrently via a selected signal assignment in VHDL and a conditional continuous assignment in Verilog. The second and third multiplexer outputs, Y2 and Y3, are derived from an if statement. The first if statement defines a default output value for Y2 in an assignment immediately before the if statement, while the second if statement uses the more normal method of using an **else** clause.

136

Example 6.4 Modeling styles of a 4-1 multiplexer

Five ways of modeling a 4-1 multiplexer in VHDL, and three ways of modeling it in Verilog are indicated. They are:

- 1. one if statement with multiple elsif/else if clauses,
- 2. a conditional signal assignment (VHDL),
- 3. nested if statements,
- 4. case statement,
- 5. uses a selected signal assignment (VHDL).

All models synthesize to the same circuit as shown.

There is no incorrect modeling method, however using the case statement requires less code and is easier to read when compared with the if statement. This becomes more distinct with increasing inputs per output; see also Example 6.5. The two VHDL only models, 2 and 5, use concurrent signal assignments so reside outside a process. This means they are always active and so will usually take longer to simulate.

Different ways of modeling a 4-1 multiplexer

Example 6.5 Two-bit wide 8-1 multiplexer using case

A 2-bit wide 8-1 multiplexer is modeled to the truth table in Table 6. 1. Models use the case statement, and additionally for VHDL only, selected signal assignment. The if statement becomes cumbersome for the wider inputs. It is different from the previous example in that a VHDL integer data type is used for the select input Sel, and the Verilog case selector values are specified in integer form, that is, 4 instead of 3'b 0100.

Two bit wide 8-1 multiplexer

Sel	Α7	A6	A5	A4	A3	A2	Al	A0	Y
000	XX	DD	DD						
001	XX	XX	XX	XX	XX	XX	DD	XX	DD
010	XX	XX	XX	XX	XX	DD	XX	XX	DD
011	XX	XX	XX	XX	DD	XX	XX	XX	DD
100	XX	XX	XX	DD	XX	XX	XX	XX	DD
101	XX	XX	DD	XX	XX	XX	XX	XX	DD
110	XX	DD	XX	XX	XX	XX	XX	XX	DD
111	DD	XX	DD						

XX = two bit don't care DD = two bit data **Table 6.1 Truth table for a two bit wide 8-7**

multiplexer

VHDL	Verilog
library IEEE; use IEEE: STD_LOGIC_1164. all, IEEE. NUMERIC_STD. all; entity MUX2X8_1_CASE is port (Sel: in integer range 0 to 7; A0,A1,A2,A3,A4,A5,A6,A7: in unsigned(1 downto 0); Y: out unsigned(1 downto 0)); end entity MUX2X8_1_CASE; architecture COND_DATA_FLOW of MUX2X8_1_CASE Is begin process (Sel, A0, A1, A2, A3. A4, A5, A6, A7) begin case Sel is when 0 => Y <= A0; when 1 => Y <= A1; when 2 => Y <= A2; when 3 => Y <= A3; when 4 => Y <= A5; when 6 => Y <= A6; when 7 => Y <= A7; end case; end process; end architecture COND_DATA_FLOW;	$\begin{array}{c} \mbox{module MUX2X8_1_CASE} \\ (Sel. A0. A1, A2. A3. A4. A5. A6. A7. Y); \\ \mbox{input} (2:0) Sel; \\ \mbox{input} (1:0) A0, A1, A2, A3, A4, A5, A6, A7; \\ \mbox{output} (1:0) Y; \\ \mbox{reg} (1:0) Y; \\ \mbox{reg} (1:0) Y; \\ \mbox{always} @(Sel or A0 or A1 or A2 or \\ A3 or A4 or A5 or A6 or A7) \\ \mbox{case} (Sel) \\ \mbox{0: } Y = A0; \\ \mbox{1: } Y = A1; \\ \mbox{2: } Y = A2; \\ \mbox{3: } Y = A3; \\ \mbox{4: } Y = A4; \\ \mbox{5: } Y = A5; \\ \mbox{6: } Y = A6; \\ \mbox{7: } Y = A7; \\ \mbox{default: } Y = A0; \\ \mbox{endcase} \\ \mbox{endmodule} \end{array}$
V H D L library IEEE; use IEEE. STD_LOGIC_1164. all, IEEE. NUMERIC_STD. all; entity MUX2X8_1_SSA is port (Sel: in integer range 0 to 7; A0,A1,A2,A3,A4,A5,A6,A7: in unsigned(1 downto 0); Y: out unsigned(1 downto 0)); end entity MUX2X8_1_SSA; architecture COND_DATA_FLOW of MUX2X8_1_SSA Is begin with Sel select Y<= A0 when 0, A1 when 1, A2 when 2, A3 when 3, A4 when 4, A5 when 5, A6 when 6, A7 when 7; end architecture COND_DATA_FLOW;	

Two-bit wide 8-7 multiplexer

140

Encoders

Discrete quantities of digital information, data, are often represented in a coded form; binary being the most popular. Encoders are used to encode discrete data into a coded form and decoders are used to convert it back into its original undecoded form. An encoder that has 2" (or less) input lines encodes input data to provide n encoded output lines. The truth table for an 8-3 binary encoder (8 inputs and 3 outputs) is shown in Table 6.2 It is assumed that only one input has a value of 1 at any given time, otherwise the output has some undefined value and the circuit is meaningless.

			inpu	ts				οι	ıtputs	
Α7	A 6	A 5	A 4	Α3	A 2	AT	A0	Y2	Y1	Y0
0	0	0	0	0	0	0	1	0	0	0
0	0	0	0	0	0	1	0	0	0	1
0	0	0	0	0	1	0	0	0	1	0
0	0	0	0	1	0	0	0	0	1	1
0	0	0	1	0	0	0	0	1	0	0
0	0	1	0	0	0	0	0	1	0	1
0	1	0	0	0	0	0	0	1	1	0
1	0	0	0	0	0	0	0	1	1	1

The truth table can be modeled using the if, case or for statements.

Models using a **case** statement are clearer than those using an if statement. The **for** loop is better for modeling a larger or more generic *m*-*n* bit encoder. All models of such a circuit must use a default "don't care" value to minimize the synthesized circuit as only 8 of the 256 (2^8) input conditions need to be specified. The synthesis tool, if capable, replaces "don't care" values with logic 0 or 1 values as necessary in order to minimize the circuit's logic. This means VHDL integer data type cannot be used for the case selector in a **case** statement. However, whatever data type is used, for example, unsigned, it can always be converted from an integer data type before the **case** statement and back again after, although this can be cumbersome.

Example 6.6 shows models of the 8-3 binary encoder described above, using either the **if**, **case** or **for** statement.

Example 6.6 An 8-3 binary encoder

An 8-3 encoder is modeled according to the truth table of Table 6.2 using the **if**, **case** or **for** statement, and additionally for VHDL, conditional and selected signal assignments.

All models use a default assigned output value to avoid having to explicitly define all $2^8 - 8 = 248$ input conditions that should not occur under normal operating conditions. The default assignment is a "don't care" value to minimize synthesized logic. If all 248 input conditions that are not explicitly defined default to binary 000, more logic would be synthesized than is necessary.

8-3 encoder modeled from the truth table

VHDL	Verilog
<pre>library IEEE; use IEEE. STD_LOGIC_1164. all, IEEE. NUMERIC_STD. all; entity ENCODE_8_3_IF_ELSE is port (A: in unsigned(7 downto 0); Y: out unsigned(2 downto 0)); end entity ENCODE_8_3IF_ELSE; architecture COND_DATA_FLOW of ENCODE_8_3_IF_ELSE is begin process (A) begin if (A = "00000001") then Y <= "000"; elsif (A = "00000001") then Y <= "001"; elsif (A = "00000000") then Y <= "011"; elsif (A = "0000100") then Y <= "011"; elsif (A = "00010000") then Y <= "101"; elsif (A = "00100000") then Y <= "101"; elsif (A = "01000000") then Y <= "111"; elsif (A = "10000000") then Y <= "111"; elsif (A = "10000000") then Y <= "111"; else Y <= "XXX"; end if; end process; end architecture COND_DATA_FLOW;</pre>	module ENCODER_8_3_IF_ELSE (A, Y); input [7:0) A; output (2:0) Y; reg (2:0) Y: always @(A) begin if (A == 8'b 00000001) Y = 0; else if (A == 8'b 00000001) Y = 1; else if (A == 8'b 0000100) Y = 2; else if (A == 8'b 00001000) Y = 3; else if (A == 8'b 00010000) Y = 4; else if (A == 8'b 00100000) Y = 5; else if (A == 8'b 01000000) Y = 6; else if (A == 8'b 10000000) Y = 7; else Y = 3'b X end
	1

VHDL

library IEEE; use IEEE. STD_LOGIC_1164. all. IEEE. NUMERIC_STD. all; entity ENCODE_8_3_CSA is port (A: in unsigned(7 downto 0); Y: out unsigned(2 downto 0)); end entity ENCODE_8_3_CSA; architecture LOGIC of ENCODE_8_3_CSA is begin Y<= "000" when A = "00000001" else "001" when A = "00000100" else "010" when A = "00001000" else "100" when A = "00001000" else "100" when A = "00100000" else "101" when A = "00100000" else "101" when A = "01000000" else "110" when A = "01000000" else "111" when A = "10000000" else "111" when A = "10000000" else "111" when A = "01000000" else "111" when A = "01000000" else "111" when A = "01000000" else

1

8-3 encoder modeled from the truth table (continued)

	Verilog
library IEEE; use IEEE.STD_LOGIC_1164.ail, IEEE.NUMERIC_STD.all;	
entity ENCODE_8_3_CASE is	module ENCODE_8_3_CASE (A, Y);
port (A: in unsigned(7 downto 0);	input (7:0) A:
Y: out_unsigned(2 downto 0));	output (2:0) Y;
end entity ENCODE_8_3_CASE;	reg (2:0) Y;
architecture LOGIC of ENCODE_8_3_CASE is	
begin	
process (A)	begin
case statement k	casex (A)
when "00000001" => Y <= "000": very clear.	
when "00000010" => Y <= "001":	8'b 00000010 : Y = 1;
when "00000100" => Y <= "010";	8'b 00000100 : Y = 2;
when "00001000" => Y <= "011";	8'b 00001000 : Y = 3;
when " 00010000" => Y <= "100";	8'b 00010000 : Y = 4;
when "00 100000" => Y <= "101";	8'b 00100000 : Y = 5:
when "01000000" => Y <= "110";	8'b 01000000 : Y = 6;
when "10000000" => Y <= "1111";	8'b 10000000 ; Y = 7;
when others => Y <= "XXX";	default: Y = 3'D X;
end case;	enacase
end process;	ena
end architecture LOGIC;	endmodule
	1
VHDL	
VHDL	
Ibrary IEEE: use IEEE.STD_LOGIC_1164.all, IEEE.NUMERIC_STD.all;	
Ibrary IEEE: use IEEE.STD_LOGIC_1164.all, IEEE.NUMERIC_STD.all; entity ENCODE_8_3_SSA is	
Ibrary IEEE: use IEEE.STD_LOGIC_1164.all, IEEE.NUMERIC_STD.all; entity ENCODE_8_3_SSA is port (A: in unsigned(7 downto 0);	
Ibrary IEEE; use IEEE.STD_LOGIC_1164.all, IEEE.NUMERIC_STD.all; entity ENCODE_8_3_SSA is port (A: in unsigned(7 downto 0); Y: out unsigned(2 downto 0));	
WHDL library IEEE; use IEEE.STD_LOGIC_1164.all, IEEE.NUMERIC_STD.all; entity ENCODE_8_3_SSA is port (A; in unsigned(7 downto 0); Y: out unsigned(2 downto 0)); end entity ENCODE_8_3_SSA;	
WHDL library IEEE: use IEEE.STD_LOGIC_1164.all, IEEE.NUMERIC_STD.all; entity ENCODE_8_3_SSA is port (A: in unsigned(7 downto 0); Y: out unsigned(2 downto 0)); Y: out unsigned(2 downto 0)); architecture LOGIC of ENCODE_8_3_SSA is	
WHDL library IEEE: use IEEE.STD_LOGIC_1164.all, IEEE.NUMERIC_STD.all; entity ENCODE_8_3_SSA is port (A: in unsigned(7 downto 0)); Y: out unsigned(2 downto 0)); end entity ENCODE_8_3_SSA; architecture LOGIC of ENCODE_8_3_SSA is begin with A select	
WHDL library IEEE: use IEEE.STD_LOGIC_1164.all, IEEE.NUMERIC_STD.all; entity ENCODE_8_3_SSA is port (A: in unsigned(7 downto 0)); Y: out unsigned(2 downto 0)); end entity ENCODE_8_3_SSA; architecture LOGIC of ENCODE_8_3_SSA is begin with A select Y: out unsigned "20000001"	mment
WHDL library IEEE: use IEEE.STD_LOGIC_1164.all, IEEE.NUMERIC_STD.all; entity ENCODE_8_3_SSA is port (A: in unsigned(7 downto 0); Y: out unsigned(2 downto 0)); end entity ENCODE_8_3_SSA; architecture LOGIC of ENCODE_8_3_SSA is begin with A select Y <= "000" when "00000001", "001" when "00000001",	nment sthe
WHDL library IEEE: use IEEE.STD_LOGIC_1164.all, IEEE.NUMERIC_STD.all; entity ENCODE_8_3_SSA is port (A: in unsigned(7 downto 0); Y: out unsigned(2 downto 0)); end entity ENCODE_8_3_SSA; architecture LOGIC of ENCODE_8_3_SSA is begin with A select Y <= "000" when "00000001", "001" when "00000001", "001" when "00000010", "010" when "00000010",	gnment s the ont of
WHDL library IEEE: use IEEE.STD_LOGIC_1164.all, IEEE.NUMERIC_STD.all; entity ENCODE_8_3_SSA is port (A: in unsigned(7 downto 0)); Y: out unsigned(2 downto 0)); end entity ENCODE_8_3_SSA; architecture LOGIC of ENCODE_8_3_SSA is begin with A select Y <= "000" when "00000001", "001" when "00000001", "010" when "00000100", "010" when "00000100", "011" when "00000100",	gnment s the ont of
Ibrary IEEE: use IEEE.STD_LOGIC_1164.all, IEEE.NUMERIC_STD.all; entity ENCODE_8_3_SSA is port (A: in unsigned(7 downto 0)); Y: out unsigned(2 downto 0)); end entity ENCODE_8_3_SSA; architecture LOGIC of ENCODE_8_3_SSA is begin with A select Y <= "000" when "00000001", "001" when "00000001", "010" when "0000000", "011" when "0000100", "100" when "0001000",	gnment s the ant of
WHDL library IEEE: use IEEE.STD_LOGIC_1164.all, IEEE.NUMERIC_STD.all; entity ENCODE_8_3_SSA is port (A: in unsigned(7 downto 0)); Y: out unsigned(2 downto 0)); end entity ENCODE_8_3_SSA; architecture LOGIC of ENCODE_8_3_SSA is begin with A select Y <= "000" when "00000001", "011" when "00000000", "011" when "0001000", "101" when "00010000", "101" when "00010000",	gnment s the ent of
WHDL library IEEE: use IEEE.STD_LOGIC_1164.all, IEEE.NUMERIC_STD.all; entity ENCODE_8_3_SSA is port (A: in unsigned(7 downto 0)); Y: out unsigned(2 downto 0)); end entity ENCODE_8_3_SSA; architecture LOGIC of ENCODE_8_3_SSA is begin with A select Y <= "000" when "00000001", "001" when "000000010", "010" when "00000000", "100" when "0000000", "100" when "00100000", "100" when "00100000", "101" when "00100000", "101" when "00100000",	gnment s the sht of
VHDL library IEEE: use IEEE.STD_LOGIC_1164.all, IEEE.NUMERIC_STD.all; entity ENCODE & 3.SSA is port (A: in unsigned(7 downto 0); Y: out unsigned(2 downto 0)); entity ENCODE & 3.SSA is begin with A select Y <= "000" when "00000001", "001" when "000000010", "010" when "00000100", "011" when "0000000", "100" when "00100000", "100" when "00100000", "101" when "00100000", "101" when "01000000", "110" when "01000000", "111" when "10000000",	gnment s the sht of
VHDL library IEEE: use IEEE.STD_LOGIC_1164.all, IEEE.NUMERIC_STD.all; entity ENCODE & 3.SSA is port (A: in unsigned(7 downto 0); Y: out unsigned(2 downto 0)); entity ENCODE & 3.SSA is port (A: in unsigned(2 downto 0)); entity ENCODE & 3.SSA is begin with A select Y <= "000" when "000000010", Selected signal assis is also very clear. It is concurrent equivals case statement. "011" when "00000000", "100" when "0010000", "100" when "00100000", "100" when "01000000", "10" when "01000000", "110" when "01000000", "110" when "10000000", "111" when "10000000",	gnment sthe sht of
VHDL library IEEE: use IEEE.STD_LOGIC_1164.all, IEEE.NUMERIC_STD.all; entity ENCODE & 3.SSA is port (A: in unsigned(7 downto 0); Y: out unsigned(2 downto 0)); entity ENCODE & 3.SSA is begin with A select Y <= "000" when "00000001", "001" when "000000010", "010" when "00000100", "011" when "0000000", "100" when "0010000", "100" when "00100000", "100" when "0010000", "100" when "00100000", "100" when "01000000", "100" when "01000000", "110" when "01000000", "111" when "10000000", "XXX" when others; end architecture LOGIC;	gnment sthe sht of
VHDL library IEEE: use IEEE.STD_LOGIC_1164.all, IEEE.NUMERIC_STD.all; entity ENCODE_8_3_SSA is port (A: in unsigned(7 downto 0); Y: out unsigned(2 downto 0)); entity ENCODE_8_3_SSA is begin with A select Y <= "000" when "000000010", "011" when "00000100", "011" when "00000100", "100" when "00000100", "100" when "00000000", "100" when "00100000", "100" when "00100000", "101" when "01000000", "111" when "10000000", "XXX" when others; end architecture LOGIC;	gnment s the sht of

Priority Encoders

The operation of the priority encoder is such that if two or more single bit inputs are at a logic 1, then the input with the highest priority will take precedence, and its particular coded value will be output. Models of an 8-3 binary priority encoder are included in Example 6.7.

Example 6.7 An 8-3 binary priority encoder

An 8-3 priority encoder is modeled in several different ways to the truth table shown in Table 6.3. The most significant bit, A7, has the highest priority. The output signal Valid indicates that at least one input bit is at logic 1 and signifies the 3-bit output Y is valid.

Different models use if, case and for statements. They all use "don't care" default value for the 3-bit output Y for the condition when all 8 inputs are at logic 0. This gives the synthesis tool the potential to reduce the logic, although it makes little or no difference in this particular model.

Using if *statements*. The first model uses an if statement to test each bit in turn starting from the highest priority bit, A7.

				outp	outs						
A7	A6	A5	A4	A3	A2	AT	A0	Y2	Y1	Υ	Valid
0	0	0	0	0	0	0	0	Х	Х	Х	0
0	0	0	0	0	0	0	1	0	0	0	1
0	0	0	0	0	0	1	Х	0	0	1	1
0	0	0	0	0	1	Х	Х	0	1	0	1
0	0	0	0	1	Х	Х	Х	0	1	1	1
0	0	0	1	Х	Х	Х	Х	1	0	0	1
0	0	1	Х	Х	Х	Х	Х	1	0	1	1
0	1	Х	Х	Х	Х	Х	Х	1	1	0	1
1	Х	Х	Х	Х	Х	Х	Х	1	1	1	1

Using case/casex statements. The second model uses a VHDL case statement and Verilog casex statement. The Verilog casex statement is ideally suited for this model as it allows "don't care" input conditions to be used. The VHDL case statement is not suitable at all, and the only practical way of using it is to convert signal A from an unsigned to integer data type and specify the appropriate range or each choice value. This type of model will typically cause a synthesis tool to generate large amounts of redundant logic which must then be optimized away by the optimizer. In this particular sized model the optimizer is able to produce identical circuits. However, this may not be the case for larger priority encoders due to the heuristic nature of logic optimizers.

Using conditional signal assignments (VHDL). If the priority encoder was modeled using VHDL conditional signal assignments, two assignments would be needed; one for each output, Valid and Y. Each assignment would be similar in that they would separately select each value of the input A. The synthesized circuit would also be the same, but there would be code duplication for the input selection. This results in more code that is less comprehensible. It is not recommended, and not shown in this example.

Using for *loop statements*. The third model uses the for loop and tests each bit in turn. The advantage is that the code does not get progressively larger as input and output bit widths increase. Default output values are defined before the for statement. There are two VHDL versions; the first checks each bit in turn starting from the least LSB, the second checks each bit in turn starting from the loop when it has found the first bit having a logic 1 value.

Different ways of modeling an 8-3 priority encoder

Different ways of modeling an 8-3 priority encoder

Decoders

Decoders are used to decode data that has been previously encoded using a binary, or possibly other, type of coded format. An n-bit code can represent up to 2^n distinct bits of coded information, so a decoder with n inputs can decode up to 2^n outputs. Various models of a 3-8 binary decoder are included in Example 6.8, while various models of a 3-6 binary decoder having a separate enable input are included in Example 6.9.

Example 6.8 A 3-8 binary decoder

The models of a 3-8 binary decoder in this example conform to the truth table in Table 6.4.

Different model versions use **if**, **case** and **for** statements along with VHDL conditional and selected signal assignments. All $2^3 = 8$ possible input values of this 3-8 decoder are decoded to a unique output. This means the automatic priority encoding employed by if and Verilog **case** statements do not affect the circuit and "don't care" output values are not needed. Like most other examples in this chapter there is no right or wrong modeling technique. The **case** statement is commonly used because

i	nput	8									
A2	A1	A0	Y7	Y6	Y5	Y4	Y3	Y2	Y1	Y0	
0	0	0	0	0	0	0	0	0	0	1	
0	0	1	0	0	0	0	0	0	1	0	
0	1	0	0	0	0	0	0	1	0	0	
0	1	1	0	0	0	0	1	0	0	0	
1	0	0	0	0	0	1	0	0	0	0	
1	0	1	0	0	1	0	0	0	0	0	
1	1	0	0	1	0	0	0	0	0	0	
1	1	1	1	0	0	0	0	0	0	0	
-											

Table 6.4 Truth table for a 3-8 line binary decoder

of its clarity, and the fact it is not a continuous assignment and so may simulate faster. As input and output bit widths increase, it is more code efficient to use the **for** loop statement. Again, all models synthesize to the same circuit.

Different ways of modeling a 3-8 decoder

Different ways of modeling an 3-8 decoder

Example 6.9 A 3-6 binary decoder with enable

The two model versions of a 3-6 binary decoder are included in this example and conform to the truth table; Table 6.5. Because of the similarities of this example to Example 6.8, only the versions using a **case** statement are covered. This example is different because it has a separate input enable signal and there are two unused binary values for the 3-bit input A. When the enable is inactive (En = 0), or A has an unused value, the 6-bit output must be at logic 0. Like the previous example, "don't care" default assigned values cannot be used.

	inp	outs				outp	outs		
En	A2	A1	A0	Y5	Y4	Y3	Y2	Y1	Y0
0	Х	Х	Х	0	0	0	0	0	0
1	0	0	0	0	0	0	0	0	1
1	0	0	1	0	0	0	0	1	0
1	0	1	0	0	0	0	1	0	0
1	0	1	1	0	0	1	0	0	0
1	1	0	0	0	1	0	0	0	0
1	1	0	1	1	0	0	0	0	0
1	1	1	0	0	0	0	0	0	0
1	1	1	1	0	0	0	0	0	0

Table 6.5 Truth table for a 3-6 line binary decoder with enable

The first model version below also uses an if statement to check the enable input En, separately from the enclosed **case** statement. The second version on the following page has the enable input En, concatenated with the encoded input A and the combined signal used in the **case** statement. Both are correct and synthesize to the same circuit as shown.

3-6 decoder with separate if branch which tests the enable input

Verilog
endmodule

3-6 decoder with concantenated enable/encoded input for case selector

Example 6.10 Four bit address decoder

This example is of a four bit address decoder. It provides enable signals for segments of memory, the address map of which, is shown in Figure 6.3. The decoder's inputs could be the upper four bits of a larger address bus in which case the decoded outputs would enable larger segments of memory. Seven enable outputs are provided; one for each memory segment. The address map is divided into quarters, and the second quarter is further subdivided into four. There are four outputs from the second quarter corresponding to four consecutive binary input values.

The first model version uses a **for** loop enclosing an if statement while the second **Figure 6.3** model uses a **case** statement. As a general rule, it is better to use the **for** loop and **Address mop** if statements when a large number of consecutively decoded outputs are required. This is because a **case** statement requires a separate choice branch for each decoded output.

Four bit address decoder using "if" in a "for" loop

VHDL	Verilog
library IFEF [.]	
use FFE STD LOGIC 1164 all IFFE NUMERIC STD all	
entity ADD DEC IF is	module ADD DEC IF
port (Address: in integer range 0 to 15:	(Address, AddDec, 0to3, AddDec, 4to7,
AddDec 0to3.AddDec 8to11.	AddDec 8to11, AddDec 12to15)
AddDec_12tol5: out std_logic;	input (3:0) Address:
AddDec_4to7: out unsigned(3 downto 0));	output AddDec 0to3, AddDec 8to11.
end entity ADD_DEC_IF;	AddDec 12tol5;
architecture COND_DATA_FLOW of ADD_DEC_IF is	output (3:0) AddDec_4to7;
begin	integer N;
process (Address)	reg AddDec_0to3, AddDec_8to11;
begin	AddDec_12to15;
- First quarter	reg (3:0) AddDec_4to7;
if (Address >= 0 and Address <= 3) then	always @(Address)
AddDec0to3<='1';	begin
else	// First quarter
AddDec_0to3 <= '0';	if (Address >= 0 && Address <= 3)
end if;	AddDec_0to3=1;
	else
Third quarter	$AddDec_0to3 = 0;$
if (Address >= 8 and Address <= 11) then	
AddDec8to11 <='1':	// Third quarter
else	if (Address ≥ 8 && Address ≤ 11)
AddDec8to11 <= '0';	AddDec 8 toll = 1
end if;	else
	AddDec $8to11 = 0$:
- Fourth guarter	//dd2/00_010// 0,
if (Address >= 12 and Address <= 15) then	// Fourth guarter
AddDec12to15<='1';	if (Address >= 12 && Address <= 15)
else	AddDec 12tol5=I:
AddDec12to15<='0';	else
end if;	AddDec $12tol5 = 0$:
- Second quarter	// Second quarter
for N in AddDec_4to7'range loop	for $(N = 0; N \le 3; N = N + 1)$
if $(Address = N + 4)$ then	if (Address == $N + 4$)
$AddDec_4to7(N) \le 1';$	$AddDec_4to7(N) = 1;$
else	else
AddDec_4to7(N) <= '0';	$AddDec_4to7(N) = 0;$
end if;	end
end loop;	
end process;	endmodule
end architecture COND_DATA_FLOW;	

Four bit address decoder using "case"

74 IDL	
library IEEE; use IEEE.STD_LOGIC_1164.all. IEEE.NUMERIC_STD.all;	
entity ADD_DEC_CASE is port (Address: in integer range 0 to 15; AddDec_0to3. AddDec_8rol 1, AddDec_12tol5: out std_logic; AddDec_4to7: out unsigned(3 downto 0)); end entity ADD_DEC_CASE;	<pre>module ADD_DEC_CASE (Address, AddDec_0to3, AddDec_4to7, AddDec_8to11, AddDec_12to15); input (3:0) Address; output AddDec_0to3, AddDec_8to11, AddDec_12to15; input (3:0) AddDec_12to15; addDec_12to15;</pre>
architecture COND_DATA_FLOW of ADD_DEC_CASE is begin	reg AddDec_0to3, AddDec_8to11, AddDec_12to15;
<pre>process (Address) begin AddDec_0to3 <= '0'; AddDec_4to7 <= (others => '0'); AddDec_8to11 <= V: AddDec_8to11 <= V: AddDec_12to15 <= '0'; case Address is - First quarter when 0 to 3 => AddDec_0to3<='1'; - Second quarter when 4 => AddDec_4to7(0) <= '1'; when 5 => AddDec_4to7(2) <= '1'; when 6 => AddDec_4to7(2) <= '1'; when 7 => AddDec_4to7(3) <= '1'; when 7 => AddDec_4to7(3) <= '1'; when 8 to 11 => AddDec_8to11<= '1'; - Third quarter when 8 to 11 => AddDec_8to11<= '1'; - Fourth quarter when 12 to 15 => AddDec_2to15<='1'; end case: addDec_1'; addDec_2to15<='1'; addDec_3to11<='1'; addDec_3to11<='</pre>	reg (3: 0) AddDec_4to7; always @(Address) begin AddDec_0to3 = 0; AddDec_4to7 = 0; AddDec_8to11 = 0; AddDec_12to15 =0; case (Address) // First quarter 0. 1. 2. 3: AddDec_0to3 = 1; // Second quarter 4: AddDec_4ro7(0) = 1; 5: AddDec_4to7(1) = 1; 6: AddDec_4to7(2) = 1; 7: AddDec_4to7(3) = 1; // Third quarter 8. 9. 10. 11: AddDec_8to11 = 1; // Fourth quarter 12, 13, 14, 15: AddDec_12to15 = 1;
end process;	endcase end
end architecture COND_DATA_FLOW;	endmodule
	AddDec, 12015 AddDec, 8011 AddDec, 4073 AddDec, 4073 AddDec, 407(1)01 AddDec, 407(1)01 AddDec, 407(1)01

Example 6.11 Generic N to M bit binary decoder

A generic n-bit input, m-bit output binary decoder is illustrated and incorporates a separate enable input. Like Example 6.9, all outputs will be at logic 0 if the decoder is not enabled, that is, En = 0, or it is enabled, but *n* has a value that is not used in the decoder. This generic decoder is called twice for the inference of a 2-4 and a 3-6 decoder.

The four models in this example are:

VHDL 1	-	a generic VHDL decoder using an entity,
Verilog 1	-	a generic Verilog decoder using a module,
VHDL 2	-	a generic VHDL decoder using a function in a package,
Verilog 2	-	non-generic Verilog using a decoder function Verilog 2.

There are two parts to each of the four models. The first part of VHDL 1 and Verilog 1 show the decoder model while the second part shows two separate instantiations of it. The first part of VHDL 2 and Verilog 2 show the decoder modeled in a function and the second part shows two function calls to it.

VHDL 1. Modeled using an **entity** statement and separately instantiated. The number of decoded input and output lines, needed for any given instance, are specified using a generic clause which specifies a value for Sizeln and SizeOut.

Verilog 1. Modeled using a **module** statement and instantiated from a separate module. Uses overloaded parameters for both input and output bit widths. These parameters have values defined for them in the generic decoder (Sizeln = 3 and SizeOut = 8), and overridden when instantiated from the instantiation in another **module**.

VHDL 2. Uses a generic function defined in a package. This is a more practical and easier method to use when compared with using a VHDL **entity** as described above. The function is called from an expression, either concurrently (outside a process) or sequentially (inside a process), by supplying;

- the enable input of type std_logic,
- the encoded input of type unsigned,
- the desired number of encoded inputs of type integer,
- the desired number of decoded outputs of type integer.

Verilog 2. The Verilog language does not support the overriding of parameters in a function call. Instead of being able to model a generic decoder, a predefined number of n-m bit decoders must be specified so that the appropriate decoder may be called when needed. In this version, two functions have been declared for 2-4 and 3-6 decoders. These decoders have been placed in a separate file and included in the calling **module** using the compiler directive 'include.

Generic decoder (entity/module)	
VHDL 1	Verilog 1
library IEEE; use IEEE. STD_LOGIC_1164.all, IEEE.NUMERIC_STD.all;	
entity GENERIC_DECODER_ENTITY is generic (Sizeln, SizeOut: integer); port (En: in std_logic; A: in unsigned(SizeIn -1 downto 0); Y: out unsigned(SizeOut -1 downto 0)); end entity GENERIC_DECODER_ENTITY;	<pre>module GENERIC_DECODER_MODULE (En, A, Y); parameter Sizeln = 3, SizeOut = 8; input En; Input [SizeIn - 1 :0] A; output [SizeOut- 1:0] Y; reg[SizeOut- 1 :0]Y;</pre>
architecture DATAFLOW of GENERIC_DECODER_ENTITY is begin	integer N;
process (En. A) begin if (En = '0') then $Y \le (others \Rightarrow '0');$ else (or N in 0 to SizeOut - 1 loop if (to integer (A) = N) then $Y(N) \le '1';$ else $Y(N) \le '1';$ end if; end loop; end if;	always @(En or A) begin If(IEn) Y=0; else if (A > SizeOut - 1) for(N = 0; N <= SizeOut - 1; N = N + 1) Y[N]=1'bX; else for (N = 0; N <= SizeOut - 1; N = N + 1) if (A == N) Y[N]=1; else Y[N]=0; end
end architecture DATAFLOW;	endmodule

Two instantiations of the generic decoder

VHDL 1	Verilog 1
library iEEE;	
use IEEE.STD_LOGIC_1164.all, IEEE.NUMERIC_STD.all;	
entity GENERIC_DECODER_ENTITY_CALL is port (EnA, EnB: in std_logic; AddA: in unsigned(1 downto 0); AddB: in unsigned(2 downto 0); DecAddA: out unsigned(3 downto 0); DecAddB: out unsigned(5 downto 0)); end entity GENERIC_DECODER_ENTITY_CALL;	module GENERIC_DECODER_MODULE_CALL (EnA, EnB, AddA, AddB, DecAddA, DecAddB); input EnA, EnB; input [1:0] AddA; input [2:0] AddB; output [3:0] DecAddA; output [5:0] DecAddB;
architecture STRUCT of GENERIC_DECODER_ENTITY_CALL is component GENERIC_DECODER_ENTITY generic (SizeIn, SizeOut: Integer); port (En: In std_logic; A: In unsigned(SizeIn - 1 downto 0); Y: out unsigned(SizeOut - 1 downto 0)); end component;	GENERIC_DECODER_MODULE #(2, 4) Decoder2_4(EnA, AddA, DecAddA); GENERIC_DECODER_MODULE #(3, 6) Decoder3_6(EnB, AddB, DecAddB); endmodule
Decoder2_4: GENERIC_DECODER_ENTITY Two generic map (2, 4) dec port map (EnA, AddA, DecAddA); Decoder3 6: GENERIC_DECODER_ENTITY	b Instantiations, 2-4 13-6, of the generic coder.
end architecture STRUCT;	

VHDL generic decoder (function) - Verilog specific decoders (functions)

Two decoder function calls

Comparators

A comparator compares two or more inputs using one, or a number of different comparisons. When the given relationship(s) is true, an output signal is given (logic 0 or logic 1). Comparators are only modeled using the if statement with an else clause and no else-if clauses. A VHDL conditional signal assignment or Verilog conditional continuous assignment could also be used, but is less common as a sensitivity list (VHDL) or event list (Verilog) cannot be specified to improve simulation time. Any two data objects are compared using equality and relational

	1	
Operators	VHDL	Verilog
Equality &	=	==
Relational	!=	!=
	<	<
	<=	<=
	>	>
		>=
Logical	not	!
	and	&&
	or	11

operators in the expression part of the if statement. Only, two data objects can be compared at once, that is statements like "If (A = B = C)" cannot be used. However logical operators can be used to logically test the result o multiple comparisons, for example, if ((A = B) and (A = C)) These equality, relational and logical operators are listed in Table 6.6.

Example 6. 12 shows a 6-bit two input equality comparator Example 6. 13 shows how multiple comparisons are used.

Table 6.6 Equality, relational and logicaloperators

Example 6.12 Simple Comparator

Identical equality comparators are shown coded in three different ways. The single bit output is at logic 1 when the two 6-bit input busses are the same, otherwise it is at logic 0.

Three ways to infer a 6-bit equality comparator

Three ways to infer a 6-bit equality comparator

Example 6.13 Multiple Comparison Comparator

Extra parentheses enclosing "C \models D or E \ge F" means that either one of these conditions and "A = B" must be true for the output to be at logic 1.

Comparatorusingmultiplecomparisons

ALU

An arithmetic logic unit (ALU) is the center core of a central processing unit (CPU). It consists of purely combinational logic circuit and performs a set of arithmetic and logic micro operations on two input busses. It has n encoded inputs for selecting which operation to perform. The select lines are decoded within the ALU to provide up to 2ⁿ different operations. The ALU in Example 6. 14 is capable of performing 14 different micro operations.

Example 6.14 An arithmetic logic unit

S4	S3	S2	S1	S0	Cin	Operation	Function	Implementation block
0	0	0	0	0	0	Y<=A	Transfer A	Arithmetic Unit
0	0	0	0	0	1	Y <= A + 1	Increment A	Arithmetic Unit
0	0	0	0	1	0	Y <= A + B	Addition	Arithmetic Unit
0	0	0	0	1	1	Y <= A + B + 1	Add with carry	Arithmetic Unit
0	0	0	1	0	0	Y <= A + Bbar	A plus 1's complement of B	Arithmetic Unit
0	0	0	1	0	1	Y <= A + Bbar + 1	Subtraction	Arithmetic Unit
0	0	0	1	1	0	Y <= A - 1	Decrement A	Arithmetic Unit
0	0	0	1	1	1	Y<= A	Transfer A	Arithmetic Unit
0	0	1	0	0	0	Y <= A and B	AND	Logic Unit
0	0	1	0	1	0	Y <= A or B	OR	Logic Unit
0	0	1	1	0	0	Y <= A xor B	XOR	Logic Unit
0	0	1	1	1	0	Y <= Abar	Complement A	Logic Unit
0	0	0	0	0	0	Y<= A	Transfer A	Shifter Unit
0	1	0	0	0	0	Y <= shI A	Shift left A	Shifter Unit
1	0	0	0	0	0	Y <= shr A	Shift right A	Shifter Unit
1	1	0	0	0	0	Y<=0	Transfer 0's	Shifter Unit

An Arithmetic Logic Unit (ALU) is modeled to the function table of Table 6.7.

Table6.7ALUFunctiontable

This whole function table could be modeled using a single case statement, however, its synthesized structure would be poor. Instead, the ALU has been modeled with a separate arithmetic unit, logic unit and shifter, as indicated by the modeled circuit structure. By separating the arithmetic and logic units in this way, and multiplexing their outputs to the shifter, better pre-optimized timing will result. It is very likely, that even after optimization, the shortest timing delay through the ALU will be longer if the arithmetic and logic units were combined into one process.

The arithmetic unit modeled using a single case statement. The reason it can be modeled in this way is because the synthesis tools from VeriBest Incorporated, synthesizes expressions like A + B + 1 to a single adder with the carry in set to logic 1. If a synthesis tool is being used that does not support this, it is necessary to remodel it in a way that avoids multiple adders being synthesized. Provided the synthesis tools resource sharing option is tunned on, the synthesized logic of the arithmetic unit will consist of just one adder for all add and subtract operations.

Arithmetic logic unit

VHDL	Verilog
library IEEE; use IEEE. STD_LOGIC_1164. all. IEEE. NUMERIC_STD. all; entity ALU is port (Sel: in unsigned(4 downto 0); CarryIn: in std_logic; A, B: in unsigned(7 downto 0); Y: out unsigned(7 downto 0));	module ALU (Sel, CarryIn, A, B, Y); input (4:0) Sel; input CarryIn; Input (7:0) A, B; output (7: 0) Y;
end entity ALU; continued	reg (7:0) Y; continued

Arithmetic logic unit

160

7 Modeling Synchronous Logic Circuits

Chapter 7 Contents

Introduction	163
Modeling Latch Circuits	163
How latches are inferred	
Unintentional latch inference from case statements	165
Example 7.1 Simple and multiple latch inference using if statements	
Example 7.2 Modeling latches with preset and clear inputs	
Example 7.3 Multiple gated enable latch	
Example 7.4 Latch inference from nested if statements	
Example 7.5 Inadvertent latch inference from a case statement	170
Example 7.6 Latch inference from nested case statements	171
The D-Type Flip-Flop	172
VHDL flip-flop inference	
Verilog flip-flop inference	
Example 7.7 Flip-flops (+ve/-ve clocked) - VHDL attributes and function calls	
Example 7.8 Various flip-flop models	
Example 7.9 Combinational logic between two flip-flops	178
Linear Feedback Shift Registers	
Linear Feedback Shift Registers	179
Linear Feedback Shift Registers XOR or XNOR feedback gates One-to-many or many-to-one feedback structure	179 179 179
Linear Feedback Shift Registers XOR or XNOR feedback gates One-to-many or many-to-one feedback structure What taps to use	179 179 179 180
Linear Feedback Shift Registers XOR or XNOR feedback gates One-to-many or many-to-one feedback structure What taps to use Avoid becoming stuck in the prohibited state	179 179 179 179 180 181
Linear Feedback Shift Registers	179 179 179 180 181 181
Linear Feedback Shift Registers	179 179 179 180 181 181 181 182
Linear Feedback Shift Registers XOR or XNOR feedback gates One-to-many or many-to-one feedback structure What taps to use Avoid becoming stuck in the prohibited state Ensuring a sequence of all 2 ⁿ values Constructing generic n-bit LFSR models Example 7. 10 One-to-many 8-bit LFSR modified for 2" sequence values	179 179 179 180 181 181 181 182 182
Linear Feedback Shift Registers XOR or XNOR feedback gates One-to-many or many-to-one feedback structure What taps to use Avoid becoming stuck in the prohibited state Ensuring a sequence of all 2 ⁿ values. Constructing generic n-bit LFSR models Example 7. 10 One-to-many 8-bit LFSR modified for 2" sequence values Example 7. 11 Generic n-bit LFSR	
Linear Feedback Shift Registers	

Introduction

This chapter describes the models of circuit functions that are implemented using synchronous logic. The two basic types of synchronous element, cell primitives in an ASIC or FPGA library), that are, 1) found in an ASIC or FPGA library of cells, and 2) mapped to by synthesis tools are:

- the D-type flow-through latch, and
- the D-type flip-flop.

About a third of ASIC vendor libraries contain JK and toggle type flip-flops but they are not generally mapped to by commercial RTL synthesis tools. The sections in this chapter cover: latches, flip-flops, linear feedback shift registers (LFSRs) and counters. The section on counters also includes clock dividers.

Modeling synchronous logic is fairly straightforward provided that one adheres to the modeling style recommended by the particular synthesis tool being used. The modeling styles shown in this chapter, and throughout this book, are typical of most, if not all, commercial RTL level synthesis tools.

Modeling Latch Circuits

A latch is a level sensitive memory cell that is transparent to signals passing from the D input to Q output when enabled, and holds the value of D on Q at the time when it becomes disabled; see Figure 7.1.

Figure 7. 1 The level sensitive D-type flow-through latch

There are typically many latch variants in an ASIC or FPGA technology library. They may have active high or low enable signals, and optional active high or low preset and clear signals. The advantages of using latches over flip-flops is that if successive latches are enabled with phased enable signals, *cycle stealing* is possible which can yield faster operating circuits. Figure 7.2 shows the configuration of two and three phase latch enabling.

Cycle stealing occurs when combinational logic is moved from one clock phase to another in order to equalize latch-to-latch signal delays throughout a latch based design having multiple latch-to-latch stages. In a two phase system, combinational logic is moved to an adjacent latch-to-latch stage. In a three phase system, combinational logic is moved to one of the two closest stages, forwards or backwards. Synthesis tools may have the ability to automatically perform cycle stealing during optimization. The synthesis tools from VeriBest Incorporated has this capability.

Figure 7.2 Two and three phase latch enabling

The main disadvantage of using latches, instead of flip-flops, is that timing analysis of synthesized circuits can be very complex making it difficult to verify correct operation under all conditions: temperature, voltage and chip manufacturing process variations.

No *latch in target technology library*. There are FPGA libraries that do not contain latches. If using such a library, do not model latches in the HDL code. If latches are modeled, the synthesis tool will probably give a warning and may even try to decompose the function of a latch into combinational logic gates with asynchronous feedback in an attempt to find a mapping of equivalent functionality. This would almost certainly lead to race conditions. A latch based circuit can usually be remodeled using flip-flops instead of latches and still have the same required functional operation. The advice here is to be fully aware of the hardware intent when writing structural HDL code.

How latches are inferred

A latch is synthesized from an HDL model when a signal needs to hold its value over time. In VHDL if, **case** or **wait** statements, or conditional or selected signal assignments, can be used. In Verilog if and **case** statements can be used. Verilog does have a **wait** statement specifically for modeling the function of a latch, but it is not supported by synthesis tools, so should not be used. As a general rule, it is better not to use a **case** statement to infer latches as there is no way of explicitly specifying the enable signal; Example 7.5 shows what happens if you do. If it is desirable to use a **case** statement, it should be modeled within an if statement or the VHDL wait statement, as these allow the enable signal to be specified explicitly.

Chapter 6 showed how combinational logic is inferred when a signal is defined in all possible branches of a conditional expression, that is, **if**, **case**, etc. Conversely, if one or more branches of a conditional expression does not define a value for a particular output signal, and no default output value is defined before the conditional statement, then a latch is automatically inferred. A

latch is inferred if a path through the code exists such that a particular signal is not updated (assigned) a new value.

Unintentional latch inference from case statements

VHDL A VHDL **case** statement must always have a branch for <u>every</u> case choice value for VHDL IRM compliance and often means an **others** clause must be used. This does not mean each branch must assign a particular output value, although it usually does. If a particular output is assigned a value in every branch then a latch will not be inferred. The output must be assigned a value in all branches, otherwise latches are inferred.

Verilog. In Verilog, a branch for every case choice value is <u>not</u> needed for Verilog LRM compliance and so the **default** clause is always optional. However, if the **default** clause is omitted a latch will always be inferred, even if the **case** statement already has an output signal explicitly assigned in what is thought to be all branches covering all case choice values. The reason for this is that although all case conditions may be thought of as being covered, every possible combination of the four value, value set {X, 0, 1, Z}, is almost always not covered for all **case** choice values.

Six latch related examples follow and are summarized below.

Example 7.1. Simple latch model that shows the effect of VHDL signal versus variable assignments and Verilog blocking versus non-blocking procedural assignments.

Example 7.2. Various latch models with preset and clear inputs.

Example 7.3. Multiple gated enables signals feeding the enable input of a latch.

Example 7.4. Nested if statements where one branch does not assign a particular output value resulting in the inference of a latch.

Example 7.5. Inadvertent inference of a latch due to a **case** statement not having an output assignment for every **case** choice value.

Example 7.6. Similar to Example 7.5, but uses nested **case** statements. All **case** choice values do not contain an output assignment in the inner most **case** statement and so latches are inferred for the 4-bit output.

Example 7.1 Simple and multiple latch inference using if statements

First if *statement*. Signal Y1 has no **else** clause and shows the model of a latch in its most simplest form.

Second if *statement*. Contains two assignments to two single bit signals. Signal M2 is assigned a value in the first assignment statement and is used in the second. Now, because M2 is of type signal in the VHDL model, and the assignment is non-blocking (<=) in the Verilog model, two separate latches are inferred with combinational logic between them as shown.

Third if *statement*. Identical to second if statement except M3 is now a variable instead of a signal in the VHDL model, and the non-blocking signal assignment is now a blocking signal assignment (=) in the Verilog model. The synthesized circuit consists of just one latch as shown by the synthesized circuit. Only one latch is inferred because the VHDL signal assignment and Verilog blocking procedural assignment for Y3 uses the new value of M3 computed in the assignment of M3 immediately before the assignment of Y3.

166

Example 7.2 Modeling latches with preset and clear inputs

Latches with preset and clear input signals are modeled. Preset and clear inputs to a latch are always asynchronous with the enable.

Latcheswithpresetandclear

Example 7.3 Multiple gated enable latch

Provided an if statement is not in an edge triggered section of code, it does not matter how many elsif (VHDL) or else if (Verilog) clauses there are. If there is no **else** clause and there is no default output assignment before the if clause, latches will always be inferred.

Multiple enable latch

Example 7.4 Latch inference from nested if statements

The single bit output Y2 is only defined in 3 of the 4 possible branches of the nested if statements so a single latch is inferred.

Nested if statements inferring a latch

VHDL	Verilog
library IEEE; use IEEE. STD_logic_1164. all. IEEE. Numeric_STD. all;	
entity LATCH_NESTED_IF is port (Sel: in std_logic; A: in unsigned(4 downto 0); Y1: out unsigned(4 downto 0); Y2: out Std logic): end entity LATCH_NESTED_IF:	module LATCH_NESTED_IF (Sel, A, Y1, Y2);inputSel;input[4:0] A;output[4:0] Y1;outputY2;
architecture COND_DATA_FLOW of LATCH_NESTED_IF is begin continued	reg[4:0]Y1; reg Y2; continued

Example 7.5 Inadvertent latch inference from a case statement

This model shows a bad way of inferring a latch whether deliberate or not. The **case** statement is of the 16 valued input A. The output Y, is defined for all the choice values, however, because the output is not defined in the **others** clause (VHDL) or **default** clause (Verilog), a latched output is inferred.

Output Y will never have a value of 3 because **case** choice values 7 and 12 are also included in the case branch that assigns Y to 2.

Example 7.6 Latch inference from nested case statements

All conditions of A are covered in the outer case, but are not for Number in the inner case; output Y is therefore latched.

VHDL. The inner most case statement contains a when others branch for LRM compliance, but contains a null statement to infer latches for the 4-bit output Y.

Verilog. The inner most case statement contains a default clause, but contains a null, ";", statement to infer latches for the 4-bit output Y.

Latchinferencefromnestedcasestatements

VHDL Verilog 'define Red 2'b 00 package Types is 'define Green 2'b 01 type PrimeColor is (Red, Green, Blue); 'define Blue end Types; 2'b 10 library IEEE; use IEEE. STD_Logic_1164. all, IEEE. Numeric_STD.all; usework.Types.all; moduleLATCH_NESTED_CASE(ScreenColor,Number,A,Y); entity LATCH_NESTED_CASE is input (1: 0) ScreenColor, Number; port (ScreenColor: in PrimeColor; input (3:0) A; in unsigned(l downto 0); output (3:0) Y; Number: in unsigned(3 downto 0); A٠ Y: out unsigned(3 downto 0); reg (3:0) Y; end entity LATCH_NESTED_CASE; always @(ScreenColor or Number or A) architecture RTL of LATCH_NESTED_CASE is beain case (ScreenColor) begin process (ScreenColor, Number. A) "Red: Y = A + 1; variable Y_var: unsigned(3 downto 0); "Green: Y = A + 2;"Blue: case (Number) begin case ScreenColor is 2'b 00: Y = A; 2'b 01: Y = A + 1; when Red $=> Y_Var:= A + 1;$ when Green $=> Y_Var = A + 2;$ 2'b 10: Y = A + 2; default:; when Blue => case Number is **when** "00" => Y_Var:= A; endcase default: Y = A+ 1; when "01' => Y_Var:= A + 1; when "10" => Y_Var:= A + 2; endcase when others null; end end case: when others => Y_Var <= A + 1; endmodule end case; $Y \le Y_var;$ end process: end architecture RTL;

The D-Type Flip-Flop

The D-type flip-flop is an edge-triggered memory device (cell primitive) that transfers a signal's value on its D input, to its Q output, when an active edge transition occurs on its clock input. The output value is held until the next active clock edge. The Q-bar output signal is always the inverse of the Q output signal, see Figure 7.3. A bank of flip-flops clocked from a common clock signal is often referred to as a register.

Figure 7.3 The edge triggered D-type flip-flop

Like the latch, there are usually many variants of the flip-flop in an ASIC or FPGA technology library. A flip-flop may have a rising or falling edge triggered clock. It may, or may not, have preset and clear inputs which may be active high or low, and which may be synchronous or asynchronous with the clock.

A circuit, whose sequential elements consist only of D-type flip-flops, can be designed and verified quicker and easier than if latches were used. For this reason, flip-flops are usually preferred over latches. Latches with phased enable signals are used to reduce circuit timing when timing becomes a critical issue.

Flip-Flops are inferred differently in VHDL and Verilog and are described separately.

VHDL flip-flop inference

Flip-flops are inferred in VHDL using **wait** or **if** statements within a process. The difference from latch inferencing is that instead of detecting the occurrence of a signal's level, a signal's edge is now detected. Example edge detecting expressions are:

Clock'event and Clock = '1' Clock'event and Clock = '0' not Clock'stable and Clock = '1' not Clock'stable and Clock = '1' rising_edge(Clock) falling_edge(Clock) falling_edge(Clock) - rising edge detection using 'event attribute - rising edge detection using 'stable - rising edge detection using 'stable - rising edge detection using a function call - falling edge detection using a function call

Example use of these edge expressions in wait or if statements are as follow:

Wait until (Clock'event and Clock = '1'); if (Clock'event and Clock = '0') then wait until rising_edge(Clock); if falling_edge(Clock) then

The above edge detection methods use either VHDL attributes, for example 'event, or function calls, for example rising_edge or falling_edge. The functions rising_edge and falling_edge also use these VHDL attributes. Use of function calls simplifies a model slightly and is preferred, especially

if using multi-valued data types, like for example std_logic, that has nine possible values, {U, X, 0, 1, Z, W, L H, -}. The reason function calls are preferred is that in order to detect a rising edge (logic 0 to 1 transition) for a signal of type std_logic, it is necessary to ensure transitions like X to 1 are not detected.

example,

Clock is of type std_logic.

- Attribute 'event detects X to 0 and X to 1 transitions which may not be a transition at all if (Clock'event **and** Clock = '0') **then** - Detects X to 1 transitions

--Attribute 'event detects only 0 to 1 transitions

if (Clock'event and Clock'last_value = '0' and Clock = '1') then

- Detects only logic 0 to logic 1 transitions and has simplified code if rising_edge(Clock) $\ensuremath{\textbf{then}}$

Models that are to be simulated and synthesized, an assumption made throughout this book, should use multi-valued data types, and so from the above description, it is better to use function calls. Almost all edge detections throughout this book use function calls, mostly rising_edge, except for the examples in this section showing the use of attributes. Functions rising_edge and falling_edge are defined in the IEEE 1164 package STD_Logic_l164 for clock signals of type std_logic and in the IEEE 1076.3 synthesis package NUMERICI3IT for clocks of type bit.

Wait *uersus* if. The **wait** and **if** statements can be used for level detection to infer latches and edge detection to infer flip-flops. The **wait** statement delays the execution of the whole process until its expression becomes true. This means all other signal assignments in the process will infer one or more flip-flops depending on a signal's bit width. Synthesis tools only allow one **wait** statement does not stop the execution of the whole **process** it does not prohibit separate purely combinational logic from also being modeled in the same **process**. For this reason the if statement is normally preferred over the **wait** statement.

Examples 7.7 and 7.8 use both **wait** and if statements, though for the reason just stated, all other examples in this book use if statements.

Verilog flip-flop inference

Flip-flops are only inferred using edge triggered **always** statements and so this is similar to using the wait statement in VHDL. The Verilog **always** statement is edge-triggered by including either a **posedge** or **negedge** clause in the event list. Combinational logic may be modeled on the inputs to the flip-flops, but independent combinational logic may not be modeled in the same **always** statement. Purely combinational logic must be modeled in a separate **always** statement. For this reason, certain VHDL models may need to be modeled differently in Verilog. Example 7. 10 in the LFSR section shows one such case where two **always** statements in Verilog equate to one process statement in VHDL.

Example sequential **always** statements:

always @(posedge Clock) always @negedge Clock) always @(posedge Clock or posedge Reset) always @(posedge Clock or negedge Reset) always @(negedge Clock or negedge Reset) always @(negedge Clock or negedge Reset) If an asynchronously reset flip-flop is being modeled a second **posedge** or **negedge** clause is needed in the event list of the **always** statement. Also, most synthesis tools require that the reset must be used in an if statement directly following the **always** statement, or after the **begin** if it is in a sequential **begin-end** block.

example

// Active low asynchronous reset always @(posedge Clock or negedge Reset) begin if (! Reset)

end

Example 7.8 shows VHDL if and wait statements and Verilog synchronous always statements used to model flip-flops with a positive or negative edge triggered clock.

Example 7.9 shows the inference of numerous flip-flop variants having active high (logic 1) or low (logic 0) synchronous and asynchronous set, reset and enable inputs.

Example 7.7 Flip-flops (+ve/-ve clocked) - VHDL attributes and function calls

This is the only example that uses VHDL attributes, for example, 'event, for signal edge detection. The normal function call edge detection is also included for comparison. The model infers flipflops with a positive or negative edge triggered clock. If the target technology does not contain negative edge triggered flip-flops a positive edge triggered flip-flop will be inferred and the clock signal will be inverted through a separately inferred inverter.

VHDL. Both **if** and **wait** statements use the 'event attribute and rising_edge and falling_edge function calls. Outputs Y1, Y2, Y3 and Y4 are derived using the event attribute while outputs Y5, Y6, Y7 and Y8 are derived using function calls. Modeled are four different ways of modeling a positive edge-triggered flip-flop (Y1, Y3, Y5 and Y7), and four different ways of modeling a negative edge-triggered flip-flop (Y2, Y4, Y6 and Y8).

Verilog. There is only one way to model either a positive edge-triggered flip-flop or negative edge triggered flip-flop as indicated below.

+ve and -ve clocked flip-flops - VHDL model uses attributes a	nd function calls
---	-------------------

VHDL	Verilog
library IEEE; use IEEE. STD_Logic_1164. all. IEEE. Numeric_STD. all;	
entity FF_POS_NEG_CLK is port (Clock: in std_logic; A1. A2, A3. A4: in bit; A5. A6, A7, A8: in std_logic; Y1, Y2, Y3, Y4: out bit; Y5, Y6, Y7, Y8: out std_logic); end entity FF_POS_NEG_CLK;	module FF_POS_NEG_CLK (Clock, A1. A2, Y1, Y2); input Clock; input A1, A2; output Y1, Y2; reg Y1, Y2;
architecture RTL of FF_POS_NEG_CLK is	always @(posedge Clock) Y1=A1;
P1:process (Clock) begin	always ©(negedge Clock) Y2 = A2;
if (Clock 'event and Clock = '1') then Y1<=A1; end if;	endmodule
if (Clock 'event and Clock = '0') then continued	

Chapter Seven: Modeling Synchronous Logic Circuits

tve and -ve clocked mp-nops - vnDL model	uses all induces and function cans
VHDL	Synthesized Circuit
Y2<=A2;	
endif;	A1 Y1
endprocess P1;	
P2 process	
begin	
wait until (Clock event and Clock = '1 '):	
Y3<=A3:	
end process P2:	A3 Y3
P3: process	
begin	
wait until (Clock 'event and Clock = '0');	
Y4<=A4:	
end process P3;	
P4: process (Clock)	
begin	
if rising_edge(Clock) then	A6 76 1
Y5 <= A5;	
end if;	-ō <ō-
if falling_edge(Clock) then	
Y6 <= A6;	
end if;	
end process P4;	A8 Y8
P5: process	
begin	·
wait until rising_edge(Clock);	
Y7 <= A7;	Extra from VHDL
end process P5;	noder only.
D ⁰	
Po: process	
Degin weit until folling, odge/Clasky	
wait unui failing_edge(Clock);	
ĭŏ<=Aŏ;	
enu process Po;	
end architecture RTL	

+ve and -ve clocked flip-flops - VHDL model uses attributes and function calls

Example 7.8 Various flip-flop models

Different flip-flops with enable inputs, and asynchronous and synchronous resets are modeled. The coding style conforms to that described earlier in this section. An ASIC library, or more probably an FPGA library, may not have all the flip-flop types modeled in this example. This means extra logic gates are inferred with a flip-flop that is in the library to ensure the synthesized circuit maintains correct functionality.

Variousfili	p-flo	pinferences
		-

VHDL	Verilog
library IEEE; use IEEE. STD_Logic_1164.all;	
entity FLIP_FLOPS is port (Clock, SynReset1, SynReset2. AsynReset1, AsynReset2, Enable1, Enable2, Data1. Data2: in std_logic; continued	module FLIP_FLOPS (Clock. SynReset1. SynReset2 AsynReset1, AsynReset2, Enable1, Enable2 Data1, Data2, Y1, Y2, Y3, Y4, Y5, Y6, Y7, Y8, Y9); input Clock, SynReset1, SynReset2 AsynReset1, AsynReset2 continued

Various filip-flop inferences

Various filip-flop inferences

Example 7.9 Combinational logic between two flip-flops

This example is similar to Example 7.1, but infers flip-flops instead of latches. Two flip-flops are modeled with combinational logic on the input to the first flip-flop and between them both. This is achieved with a single process (VHDL)/always (Verilog) statement.

VHDL. Signal assignments in an edge triggered section of code infer one or more flip-flops. In this example signals M and Y both infer a single flip-flop. Because signal M is used in the expression for the assignment to Y, the output from one flip-flop feeds the input to the other. As data object N is a variable, it does not infer a flip-flop. The new computed value of N in the second assignment is used in computing the value of Y in the third assignment.

Verilog. The explicit assignment to N must appear in a separate, non-edge sensitive, always block to avoid inferring a third flip-flop. Also, the assignment to M uses a non-blocking signal assignment so that the NAND of A and B appears on the input to the first flip-flop. If a blocking signal assignment were used the NAND of A and B would feed the input to the NOR gate and the first flip-flop would be redundant.

Combinationallogicbetweentwoflip-flops

Linear Feedback Shift Registers

A Linear Feedback Shift Register (LFSR) is a sequential shift register with combinational feedback logic around it that causes it to pseudo-randomly cycle through a sequence of binary values. Linear feedback shift registers have a multitude of uses in digital system design. A design modeled using LFSRs often has both speed and area advantages over a functionally equivalent design that does not use LFSRs; unfortunately, these advantages are often overlooked by designers. Typical applications include: counters, Built-in Self Test (BIST), pseudo-random number generation, data encryption and decryption, data integrity checksums, and data compression techniques.

Feedback around an LFSR's shift register comes from a selection of points (taps) in the register chain and constitutes either XORing or XNORing these taps to provide tap(s) back into the register. Register bits that do not need an input tap, operate as a standard shift register, it is this feedback that causes the register to loop through repetitive sequences of pseudo-random values. The choice of taps determines how many values there are in a given sequence before the sequence is repeated. Certain tap settings yield maximal length sequences of $(2^n - 1)$. If the application requires all 2^n values to be included in the sequence, the circuit can be modified slightly, see below. If $(2^n - 1)$ or less is sufficient, the LFSR must be prohibited from randomly powering-up and becoming permanently stuck with the prohibited value on the register output; see below.

The structural design aspects to consider when modeling LFSRs follow.

XOR or XNOR feedback gates

The feedback path may consist of either all XOR gates or all XNOR gates. They are interchangeable, and given particular tap settings, an LFSR will sequence through the same number of values in a loop before the loop repeats itself; the only difference is that the sequence will be different. Figure 7.4 has LFSR configurations using XOR gates, but XNOR gates could equally be used.

One-to-many or many-to-one feedback structure

Both One-to-many or many-to-one feedback structures using XOR or XNOR gates can be implemented and use the same number of logic gates, Figure 7.4. A One-to-many structure will always have a shorter worst case clock-to-clock path delay as it only passes through a single two input XOR (XNOR) gate, instead of a tree of XOR (or XNOR) gates in the case of the many-to-one structure. For this reason, Example 7.10 uses only a one-to-many structure.

Figure 7.4 8-bit LFSR with a one-to-many or many-to-one feedback structure

What taps to use

The choice of which taps to use determines how many values are included in a sequence of pseudo-random values before the sequence is repeated. For example, a 3-bit LFSR with taps at register bits [1,2] will cause it to enter a loop comprising only two values: the actual values of which is dependent upon the initial value. By comparison, taps at bits [0,2] is said to give a sequence of maximal length $(2^n - I)$. It will sequence through every possible value, excluding the value where all 3-bits are at logic 0, before returning to its initial value.

For any given width LFSR there are many tap combinations that give maximal length sequences. For example, a 10-bit LFSR has two 2-tap combinations that result in a maximal length sequence ([2,9] and [6,9]), along with twenty 4-tap combinations, twentyeight 6-tap combinations, and ten 8-tap combinations. Again, the sequence of binary values will vary depending on which tap selection is used.

Table 7.1 shows a minimum number of taps that yield maximal length sequences for LFSRs ranging from 2 to 32 bits.

> Table 7.7 Taps for maximal length LFSRs Extracted from the book "Bebop to the Boolean Boogie" with 2 to 32 bits

Number of bits	Length of Loop	Taps
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 11 21 23 24 25 26 27 28 29 30 31 32 32 32 32 32 32 32 32 32 32	$\begin{array}{c} 3\\ 7\\ 15\\ 31\\ 63\\ 127\\ 255\\ 511\\ 1023\\ 2047\\ 4095\\ 8191\\ 16383\\ 32767\\ 65535\\ 131071\\ 262143\\ 524287\\ 1,048,575\\ 2,097,151\\ 4,194,303\\ 8,388,607\\ 16,777,215\\ 33,554,431\\ 67,108,863\\ 134,217,727\\ 268,435,455\\ 536,870,911\\ 1,073,741,823\\ 2,147,483,647\\ 4,294,967,295\end{array}$	$ \begin{bmatrix} [0,1] \\ [0,2] \\ [0,3] \\ [1,4] \\ [0,5] \\ [0,6] \\ [1,2,3,7] \\ [3,8] \\ [2,9] \\ [1,10] \\ [0,3,5,11] \\ [0,2,3,12] \\ [0,2,3,12] \\ [0,2,4,13] \\ [0,2,4,13] \\ [0,2,4,13] \\ [0,14] \\ [1,2,4,15] \\ [2,16] \\ [6,17] \\ [0,1,4,18] \\ [2,191 \\ [1,20] \\ 0,21] \\ [4,22] \\ [0,2,3,23] \\ [2,24] \\ [0,1,5,25] \\ [0,1,4,26] \\ [2,27] \\ [1,28] \\ [0,3,5,29] \\ [2,30] \\ [1,5,6,31] \\ \end{bmatrix} $

ISBN 1-878707-22-1 by permission of HighText Publications Inc.

Avoid becoming stuck in the prohibited state

Using XOR gates, the LFSR will not sequence through the binary value where all bits are at logic 0. Should it find itself with all bits at logic 0, it will continue to shift all 0s indefinitely. Therefore, the LFSR should be prohibited from randomly initializing to all logic 0s during power-up. Similarly, an XNOR based LFSR will not sequence through the binary value where all bits are at logic 1 and so should be prohibited from randomly initializing to all 1's during power-up.

This can be overcome by:

- using a reset to either preset or clear the individual register flip-flops to a known good value. In this case, the value is "hard wired" and cannot be changed,
- provide a means of loading an initial seed value into the register; either parallel or serial,
- model extra circuitry that allows all 2ⁿ values to be included in the sequence (see following section).

Ensuring a sequence of all 2ⁿ values

Provided taps for a *maximal length* sequence is used, the LFSR configurations described so far will sequence through $(2^n - 1)$ binary values. A sequence of $(2^n - 1)$ values may not be a problem in many applications, but for ATPG applications, or if modeling a 4-bit 16 value counter, for example, all 2^n values are needed in the sequence. The feedback path can be modified with extra circuitry to ensure that all 2^n binary values are included in the sequence. Figure 7.5 shows the two 8-bit XOR based LFSRs of Figure 7.4 modified for a sequence of 2^n values. The principle behind this is now described.

Figure 7.58-bit LFSR (many-to-one and one-to-many) modified for 2ⁿ sequences

Principle behind a 2ⁿ *looping sequence*. Notice from Table 7. 1 the taps for maximal length sequences always include the most significant bit plus a group of taps from the least significant end of the register. The most significant bit tap, when XORed (XNORed), inverts the smaller looping sequence caused by the taps at the least significant end. Knowing that the all 0s value does not occur naturally in the sequence when using XOR feedback gates, when all bits, except the most significant bit and the most significant bit must be at logic 1. This condition is detected and the most significant bit is then inverted to a logic 0 so that the feedback signal is forced to logic 0 and all logic 0 values are forced onto the register. This inversion is achieved by XORing the NOR of all bits, bar the most significant bit, with the rest of the XOR gates in the feedback path. When all bits have been set at logic 0, the inversion sets the feedback back to logic 1 and the sequence continues.

Constructing generic n-bit LFSR models

Generic n-bit LFSRs can be modeled and referenced as needed. The best way of achieving this, is to define a generic model. In VHDL an **entity** can use generics, while in Verilog overloaded **parameter** values can be used; see Example 7.11. Another way would be to define a generic VHDL **procedure** in a separate **package**. Verilog does not support parameterizable subprograms. The disadvantage of using a VHDL **procedure**, is that the feedback logic would need to be modeled using a signal (not a variable), which must be capable of being read and because signals cannot be defined in a procedure the output must be of type **inout or buffer**. This would lead to confusion and complications when used.

Example 7.10 contains the model of the one-to-many 8-bit LFSR modified for a 2^n looping sequence shown in Figure 7.5 (a). Example 7.11 has a model of a generic n-bit LFSR. The next section on counters contains Example 7.13 which uses a 4-bit one-to-many non-modified LFSR to model a 13 count counter.

Example 7.10 One-to-many 8-bit LFSR modified for 2ⁿ sequence values

An 8-bit LFSR is modeled for a one-to-many XOR feedback structure, Figure 7.5(a), and has been modified for a 2^n looping sequence.

The VHDL version has a single **process** containing variable assignments. The Verilog version cannot be modeled in a similar way using a single edge triggered **always** statement because the VHDL variables would become Verilog procedural assignments and infer extra flip-flops. Therefore, as is often the case when using Verilog, it is better to model sequential logic in one **always** statement and combinational logic in a separate **always** statement. This Verilog model is a classic example of when this is necessary.

The LFSR taps have been defined in a **constant (VHDL)/parameter** (Verilog), and is called Taps. The NOR of all LFSR bits minus the most significant bit, that is, Y(6:0) generates the extra circuitry needed for all 2ⁿ sequence values. This is achieved in VHDL using a **for** loop, while in Verilog the NOR reduction operator (~1) is used, and produces BitsO_6_Zero. By XORing BitsO_6_Zero, with the most significant bit of the LFSR, LFSRS_Reg(7), the feedback signal Feedback is generated. A loop is then used to perform the shifting operation which either; 1) shifts each bit to the next most significant bit, or 2) shifts each bit to the next most significant bit XORed with Feedback if it is a tap bit.

VHDL. Uses variable LFSR_Reg to calculate and hold the next value of the shift register. This variable is **then** assigned to the output signal Y after each clock edge. The assignments to this variable could have been modeled to be direct to signal Y, negating the need for LFSR_Reg, but

this would mean the output port for Y would need to be of type buffer instead of type out, which may, or may not, be a problem. As a general rule in VHDL, it is better to only use variable assignments within for loop statements as discussed in Chapter 4.

Verilog. As already stated in this example, sequential and combinational logic has been modeled in separate always statements. The first always statement infers just the register part of the LFSR and its output signal is called LFSR_Reg. The second always statement infers the combinational feedback logic and outputs the next register value as a signal called Next_LFSR_Reg. Output Y is assigned in a separate continuous assignment statement to avoid the output needing to be of type inout, as would be the case if the output was to come direct from the signal LFSR_Reg. This makes the model clearer and avoids the need to use type inout which could be mistaken for a bidirectional signal. There is no inherent problem if output Y was to be of type inout as it would be in VHDL.

nen en Antonio en el cara en el cara en el caracterizza en el caracterizza en el caracterizza en el caracteriz En el caracterizza en el caracteriz En el caracterizza en el caracteriz		
library IEEE; use IEEE. STD_Logic_1164. all. IEEE. Numeric_STD. all		
use IEEE. STD_Logic_1164. all. IEEE. Numeric_STD. all entity LFSR_8BIT is port (Clock, Reset: in std_logic; Y: out unsigned(7 downto 0)); end entity LFSR_8BIT; architecture RTL of LFSR_8BIT is constant Taps: unsigned(7 downto 0):= (1 2 3 7 =>'1', others =>'0'); begin process (Reset, Clock) variable LFSR_Reg: unsigned(7 downto 0); variable Bits0_6_Zero, Feedback: std_logic; begin if (Reset = 0') then LFSR_Reg: = (others => '0'); elsif rising_edge(Clock) then Bits0_6_Zero: = '0'; for N in 0 to 6 loop Bits0_6_Zero: = Bits0_6_Zero nor LFSR_Reg(N); end loop; Feedback:= LFSR_Reg(7) xor Bits0_6_Zero; for N In 7 downto 1 loop if(Taps(N-1) = T) then LFSR_Reg(N):= LFSR_Reg(N-I) xor Feedback; else LFSR_Reg(N):= LFSR_Reg(N-1); end if; end loop; LFSR_Reg(0):= Feedback; end if; Y <= LFSR_Reg; end process; andarchitectureRTL;	<pre>module LFSR_8BIT (Clock, Reset, Y); input Clock, Reset; output (7:0) Y; integer N; parameter (7:0) Taps = 8'b 10001110; reg Bits0_6_Zero, Feedback; reg (7:0) LFSR_Reg. Next_LFSR_Reg: clways @(negedge Reset or posedge Clock) begin: LFSR_Reg if (I Reset) LFSR_Reg = 8'b 0; else LFSR_Reg = Next_LFSR_Reg; end clways @(LFSR_Reg) begin: LTSR_Feedback Bits0_6_Zero = ~ [LFSR_Reg(i); Feedback = LFSR_Reg(7 ^ Bits0_6_Zero; for (N = 7; N >= 1; N = N - 1) if (Taps(N - 1) == 1) Next_LFSR_Reg(N) = LFSR_Reg(N - 1) ^ Feedback; else Next_LFSR_Reg(0) = Feedback; end cassign Y = LFSR_Reg; end cassign Y = LFSR_Reg; end cass</pre>	
(see Figure 7.5a)		

Example 7.11 Generic n-bit LFSR

A generic n-bit LFSR is modeled where n is any value from 2 to 32. The generic LFSR is modeled in an entity (VHDL)/module (Verilog). The width of a specific LFSR is specified when the entity or module is instantiated. Like any parameterizable model, the VHDL model uses a generic while the Verilog model uses an overloaded parameter value to define the width of any given LFSR instantiation. A separate model is shown that calls the generic model twice for the instantiation of a 5 and 8-bit LFSR. The modeled LFSR structure is identical to that used for the 8-bit LFSR shown in Example 7. 10, that is, a one-to-many XOR feedback modified for a 2ⁿ looping sequence.

Feedback tap settings for all LFSRs ranging from 2 to 32-bits, see Table 7.1, are modeled in a two dimensional array and referenced as needed. This is achieved differently in VHDL and Verilog as described below.

VHDL taps. A two dimensional array type, TapsArrayType, is defined to have 31 elements, numbered 2 to 32, that are each 32-bits wide. Each 32-bit value is of type unsigned because this is the type used in the model and saves the need to use a conversion function call. A constant array of type TapsArrayType, that is, TapsArray, defines the individual taps needed for each LFSR. Tap settings for each LFSR are assigned to each 32-bit element of the array using an aggregate for code efficiency and easier reading. The aggregate consists of two elements separated by a comma. The first element defines all the tap bits to be at logic 1 by listing the appropriate taps separated by the logical OR choice separator "T". All other non tap bits are defined to be at logic 0 in the second element, using the others clause and includes all 32 bits whether the constant is for a 2 or 32-bit LFSR.

The value of the generic, Width, is of type integer and specifies the required size of the instantiated LFSR. This value is used to assign the appropriate taps from the constant array to the signal Taps.

Verilog taps. A memory array, TapsArray, is defined to hold the tap constants. In a non-synthesizable model tap constants would typically be assigned in an initial statement. However, as initial statements are not supported by synthesis tools the tap constants have been assigned in a sequential always block and is triggered into running when a reset signal occurs on Reset. The memory array, TapsArray, is not synthesized to gates because:

- 30 of the 31 constants are not used and are not connected to anything so will be removed during the initial stages of synthesis,
- the constant array element that is used for a particular width LFSR will be optimized during synthesis, such that an array of logic gates is <u>not</u> formed with inputs connected to logic 0 or logic 1 as implied by the tap settings.

Verilog does not have an equivalent to VHDL aggregates. This means the Verilog default clause cannot be used to define tap values in the same way as the VHDL others clause did in the VHDL model. Although each element of the constant memory array is 32-bits only those bits needed for a particular width LFSR is specified. The underscore character (_) is used to split the constant tap value setting into groups of 8-bits for easier reading.

	Generic n-bit LFSR using c	one-to-man	v feedbac
--	----------------------------	------------	-----------

VHDL	Verlog
library IEEE; use IEEE. STD_Logic_1164. all. IEEE. Numeric_STD. all; entity LFSR_GENERIC_MOD is generic (Width: integer); port (Clock. Reset: std_logic:	module LFSR_GENERIC_MOD (Clock, Reset, Y); parameter Width = 8; input Clock, Reset; output (Width - 1:0) Y;
Y: out unsigned(Width -1 downto 0)); end entity LFSR_GENERIC_MOD; architecture RTL of LFSR_GENERIC_MOD is type TapsArrayType is array (2 to 32) of unsigned(31 downto 0);	reg (31:0) TapsArray (2:32); wire (Width - 1:0) Taps; integer N; reg Bits0_Nminus1_Zero, Feedback; reg (Width - 1:0) LFSR_Reg, Next_LFSR_Reg;
unsigned(31 downto 0); constant TapsArray: TapsArrayType: = (2 => (0)1 => '1'. others => '0'). 3 => (0)2 => '1'. others => '0'). 5 => (1)4 => '1', others => '0'). 7 => (0)5 => '1'. others => '0'). 8 => (1)2 3 7 => '1', others => '0'). 9 => (3)8 => '1', others => '0'). 10 => (2)9 => '1'. others => '0'). 11 => (1] 10 => '1', others => '0'). 12 => (0)2 3 12 => '1', others => '0'). 13 => (0)2 3 12 => '1', others => '0'). 14 => (0)2 3 12 => '1', others => '0'). 15 => (0)14 => '1', others => '0'). 15 => (0)14 => '1', others => '0'). 15 => (0)14 => '1', others => '0'). 16 => (1)2 4 15 => '1', others => '0'). 17 => (2)16 => '1', others => '0'). 18 => (6)17 => '1'. others => '0'). 20 => (2)19 => '1', others => '0'). 21 => (0)12 => '1', others => '0'). 22 => (2)12 => '1', others => '0'). 23 => (4)22 => '1', others => '0'). 24 => (0)2 3)23 => '1', others => '0'). 25 => (2) 24 => '1', others => '0'). 26 => (0)1 5 25 => '1', others => '0'). 27 => (0)124 26 => '1', others => '0'). 28 => (2)27 => '1', others => '0'). 29 => (1) 28 => '1', others => '0'). 31 => (2)30 => '1', others => '0'). 32 => (1)5 6]31 => '1', others => '0'). 33 => (2)30 => '1', others => '0'). 31 => (2)30 => '1', others => '0'). 32 => (1)5 6]31 => '1', others => '0'). 33 => (2)30 => '1', others => '0'). 31 => (2)30 => '1', others => '0'). 32 => (1)5 6]31 => '1', others => '0'). 33 => (2)30 => '1', others => '0'). 31 => (2)30 => '1', others => '0'). 32 => (1)5 6]31 => '1', others => '0'). 33 => (2)30 => '1', others => '0'). 34 => (2)30 => '1', others => '0'). 35 => (1)5 6]31 => '1', others => '0'). 35 => (1)28 => (1)28 => '1', others => '0'). 35 => (1)28 => (1)28 => '1', others => '0'). 36 => (1)28 => (1)28 => '1', others => '0'). 37 => (1)28 => (1)28 => '1', others => '0'). 31 => (2)30 => (1)28 =>	<pre>reg (Width - 1:0) LFSR_Reg, Next_LFSR_Reg; always @(Reset) begin TopsArray(2) = 2'b11; TopsArray(3) = 3'b101; TopsArray(4) = 4'b1001; TopsArray(6) = 5'b10010; TopsArray(6) = 5'b10010; TopsArray(6) = 6'b100001; TopsArray(7) = 7'b1000001_0; TopsArray(7) = 7'b1000001_0; TopsArray(7) = 10'b1000000_010; TopsArray(11) = 11'b1000000_0100; TopsArray(12) = 12'b1000000_01010; TopsArray(13) = 13'b1000000_01010; TopsArray(14) = 14'b1000000_01010; TopsArray(15) = 15'b1000000_000000_0; TopsArray(16) = 16'b1000000_000000_0; TopsArray(18) = 16'b1000000_0000000_0; TopsArray(19) = 10'b1000000_000000_0; TopsArray(12) = 22'b1000000_0000000_0; TopsArray(21) = 21'b1000000_0000000_0; TopsArray(22) = 22'b1000000_0000000_000000_0; TopsArray(23) = 22'b1000000_0000000_000000_0; TopsArray(24) = 24'b1000000_0000000_0000000_0; TopsArray(25) = 25'b1000000_0000000_000000_0; TopsArray(26) = 26'b1000000_0000000_0000000_0; TopsArray(28) = 22'b1000000_0000000_0000000_0; TopsArray(28) = 22'b1000000_0000000_0000000_0; TopsArray(28) = 22'b1000000_0000000_000000_0; TopsArray(28) = 22'b1000000_0000000_000000_0; TopsArray(29) = 25'b1000000_0000000_0000000_0; TopsArray(28) = 22'b1000000_0000000_0000000_0; TopsArray(29) = 25'b1000000_0000000_0000000_0; TopsArray(28) = 22'b1000000_0000000_0000000_0; TopsArray(29) = 25'b1000000_00000000_0000000_0; TopsArray(28) = 22'b1000000_00000000_0000000_0; TopsArray(29) = 25'b1000000_00000000_0000000_0; TopsArray(28) = 22'b10000000_00000000_0000000_0; TopsArray(29) = 25'b1000000_00000000_0000000_0; TopsArray(28) = 22'b10000000_00000000_0000000_0; TopsArray(28) = 22'b10000000_00000000_0000000_0; TopsArray(28) = 22'b10000000_00000000_0000000_0; TopsArray(28) = 22'b10000000_00000000_00000000_0; TopsArray(28) = 22'b10000000_0000000000000000000000000_0; TopsArray(28) = 25'b10000000_00000000_0; TopsArray(28) = 25'b10000000_00000000000000000000000000000</pre>
	assign Y = LFSR_Reg; endmodule

Generic n-bit LFSR using one-to-many feedback

VHDL	Verilog
<pre>for N in 1 to Width-1 loop if(Taps(N-I) = '1') then LFSR_Reg(N):= LFSR_Reg(N - 1) xor Feedback; else LFSR Reg(N):= LFSR Reg(N - 1); end if; end loop; LFSR Reg(0): = Feedback; end if; Y <= LFSR_Reg; end process;</pre>	
end architecture RTL	

VHDL	Verilog
library IEEE; use IEEE. STD_Logic_1164. all, IEEE. Numeric_STD. all; entity LFSR_5AND8_MOD is port (Clock, Reset: in std_logic; Y1: out unsigned(4 downto 0); Y2: out unsigned(7 downto 0)); end entity LFSR_5AND8_MOD;	<pre>module LFSR_8AND5_MOD (Clock, Reset, Y1, Y2); input Clock, Reset; output (4:0) Y1; output (7:0) Y2; LFSR GENERIC MOD #(5) LFSR 5(Clock, Reset, Y1); LFSR_GENERIC_MOD #(8) LFSR_8(Clock, Reset, Y2); and module;</pre>
architecture STRUCTURAL of LFSR 5AND8 MOD is component LFSR_GENERIC_MOD generic (Width: integer); port (Clock, Reset: in std_logic; Y: out unsigned(Width -1 downto 0)); end component LFSR_GENERIC_MOD; begin	enamoaule;
LFSR_5: LFSR_GENERIC_MOD generic map (5) port map (Clock, Reset, Y1); LFSR_8: LFSR_GENERIC_MOD generic map (8) port map (Clock, Reset, Y2);	
end architecture STRUCTURAL.;	

Counters

A register that goes through a predetermined sequence of binary values (states), upon the application of input pulses on one or more inputs, is called a counter. Counters count the number of occurrences of an event, that is, input pulses, that occur either randomly or at uniform intervals of time. Counters are used extensively in digital design for all kinds of applications. Apart from general purpose counting, counters can be used as clock dividers and for generating timing control signals.

Deciding on a counter's structure and modeling

There are many ways in which a counter can be implemented depending upon the design requirements. Some options follow depending upon whether a synchronous or asynchronous counter is needed.

1. Synchronous counters

All flip-flops in a synchronous counter receive the same clock pulse and so change state simultaneously, that is, synchronously. Synchronous counters are easier to design and verify, and are less layout dependent than their asynchronous equivalent. Three options for a synchronous counter are:

a). *Simplest and most common.* A synchronous incrementing or decrementing binary counter is modeled by adding or subtracting a constant 1 using the "+" or"-" arithmetic operators in assignments residing in a section of code inferring synchronous logic. The inferred logic for the adder or subtractor can be controlled during synthesis to have a ripple-carry or carry-look-ahead structure. See Example 7.13.

b). *Model detailed structure*. Like adder or subtractor circuits, synchronous counters can be modeled to have a specific detailed structure, see structural adders in Chapter 9. The adder or subtractor circuit is simply placed in a section of code that infers synchronous logic. Most applications do not require counters to be modeled at this level of detail.

c). Use an LFSR. LFSRs can be used to model synchronous counters. The design is slightly more complex because the counting sequence is pseudo-random, but the much reduced feedback logic yields a smaller and faster operating circuit than would be produced from an equivalent binary counter. This is especially true for counters which count to a large number of events and require a larger width count register. Such a counter should be first simulated without an end count so that it counts continuously, and enables the pseudo-random sequence to be derived. See Example 7. 14.

2. Asynchronous counters

Sometimes called ripple counters because flip-flop transitions ripple through from one flipflop to the next in sequence until all flip-flops reach a new stable value (state). Each single flip-flop stage divides the frequency of its input signal by two. Asynchronous counters can be significantly smaller, especially for clock dividers dividing by a factor of 2^n where *n* is any positive integer of 4 and above. Depending upon the application an extra resynchronizing flip-flop may be needed on the output stage. In order to count to any value that is not a factor of 2", extra feedback logic is needed to detect an end count value and reset the counter back to the start count value. In this case, a resynchronizing flip-flop is essential to generate a clean, glitch free, asynchronous reset. See Examples 7. 15 and 7. 16.

Example 7.12 5-bit up-by-one down-by-two counter

This 5-bit counter counts up-by-one when Up is a logic 1 and down-by-two when Down is a logic 1. For all other conditions of Up and Down the counter will hold its value. The synchronous reset (Reset) overrides the Up and Down signals and sets the counter to zero.

A **case** statement of the concatenation of Up and Down makes the model easy to read. Automatic resource sharing means the "+" and "-" operators will synthesize to a single adder/subtractor circuit. The synthesis tools from VeriBest Incorporated will implement a carry-look-ahead type circuit by default.

VHDL The "+" and "-" operators make a function call to the overloaded "+" and "-" functions defined in the IEEE 1076.3 VHDL package Numeric_STD. This allows an object of type unsigned to be added to an object of type integer.

	Werllog a restantion of the
library IEEE; use IEEE.STD_Logic_1164.att, IEEE.Numeric_STD.atl;	
entity CNT_UP1_DOWN2 is port (Clock, Reset, Up, Down: in std_logic; Count: out unsigned(4 downto 0)); end entity CNT_UP1_DOWN2;	<pre>module CNT_UP1_DOWN2 (Clock, Reset, Up, Down, Count); input Clock, Reset, Up, Down; output (4:0) Count; reg (4:0) Count;</pre>
architecture RTL of CNT_UP1_DOWN2 is	reg (1:0) UpDown;
begin process (Clock) variable UpDown: unsigned(1 downto 0); variable Count_v : unsigned(4 downto 0); begin UpDown := Up & Down;	always @(posedge Clock) begin If (Reset) Count = 0; wo case branch
if rising_edge(Clock) then Cat if (Reset = '1') then \$C Count_v := "0000"; Count_set	ssignments are the case ({Up, Down}) ame so could be ombined. Are left 2'b 00 : Count = Count; 2'b 10 : Count = Count + 1; aparate for clarity.
case UpDown is when "00" => Count_v := Count_v when "10" => Count_v := Count_v when "01" => Count_v := Count_v when others => Count_v := Count_v	t_v; t_v + 1; t_v - 2; t_v; t_v; endmodule
end case; end it; end it; Count <= Count_v end process;	
end architecture RTL:	

Up-by-one down-by-two counter

Example 7.13 Divide by 13 clock divider using an LFSR counter

A 4-bit LFSR is used to model this divide by 13 clock dividing counter. The output goes high for one clock cycle every 13th input clock. The LFSR uses XNOR feedback gates in a one-to-many configuration and does not have the extra logic needed for a 2ⁿ looping sequence. This means the binary value 1111 will not occur in the looping sequence and so the asynchronous reset is used to guard against random power-up to binary 1111.

This model was initially simulated with the indicated lines commented out. This enabled the counter to continually cycle through all 15 values in order to determine the actual pseudo-random sequence, see Figure 7.6. Now the sequence is known, the commented out lines are put back in, and the start count and end count values can be chosen and modeled for the desired counter. In this model, StartCount = A_{hex} and EndCount = 0 for a divide by 13 counter.

LFSR sequence	8	1	А	5	2	С	9	3	п	D	В	7	6	4	0
"StartCount" divide by number	15	14	13	12	11	10	9								

For divide by 13: StartCount = A_{HEX} EndCount =0 Use a 3-bit LFSR if dividing by 8 or less

Figure 7.6 Pseudo-random sequence of modeled 4-bit LFSR

Example 7.14 Divide by 16 clock divider using an asynchronous (ripple) counter

This asynchronous ripple counter divides an input clock by 16. It has four ripple stages each consisting of a D-type flip-flop whose output is connected back to its D input such that each stage divides its particular input clock by two. Circuits like this are often seen with the Qbar output fed back to the D input. As seen by the synthesized circuit Q output is fed back to the D inverter. This is deliberate to minimize the potential of violating flip-flop set-up times. The four stages provide an overall divide by 16 of the input clock. A fifth flip-flop synchronizes the asynchronous divided by 16 clock DIV16, back to the source clock Clock.

Divide by 16 ripple counter

VHDL	Verilog
uselEEE STD Logic 1164 all	
entity CNT_ASYNC_CLK_DIV16 is	<pre>module CNT_ASYNC_CLK_DIV16 (Clock, Reset, Y);</pre>
port (Clock, Reset: in std_logic;	input Clock, Reset;
Y: out std_logic);	output Y;
end entity CNT_ASYNC_CLK_DIV16;	
	reg Div2, Div4, Div8, Div16, Y;
architecture RTL of CNT_ASYNC_CLK_DIV16 is	
signal Div2. Div4, Div8, Div16: std_logic;	
begin	
process (Clock, Reset, Div2, Div4, Div8)	always @(posedge Clock or negedge Reset)
begin	if (I Reset)
if (Reset = '0') then	Div2 = 0;
Div2 <= '0';	else
elsif rising_edge(Clock) then	Div2 = ! Div2;
Div2 <= not Div2;	
end if;	always @(posedge Div2 or negedge Reset)
If (Reset = (0)) then	If (I Reset)
Div4 <= '0';	Div4 = 0;
elsif rising_edge(Div2) then	else Dista I Dista
Div4 <= not Div4;	DIV4 = ! DIV4;
ena Ir; if (Decet 101) then	always @(posedge DIV4 of negeoge Reset)
If (Reset = 0) then $Dive < 0$	$\frac{11}{1000} (! \text{ Reset})$
$Divo \le 0$, definition of $ao(Div(4)$ then	Divo = 0;
Dive a not Dive	
Divo <= not Divo,	always @(nosedge Div8 or negedge Reset)
if (Reset -10°) then	if (I Reset)
Div 6 < - '0'	Divi6 = 0
elsif rising edge(Div8) then	else
Divl6<-not Div16:	Div[6=!Div[6]
endif:	• • • ,
- Resynchronise back to Clock	// Resynchronize back to Clock
If (Reset = '0') then	always @(posedge Clock or negedge Reset)
Y <= '0':	if (! Reset)
elsif rising_edge(Clock) then	Y = 0;
Y<=Div16;	else
end if;	Y=Div16;
end process;	
end architecture RTL	endmodule
	and children is the complete management of the second state
	Resynchronize
	to Clock
Reset	- <u>+</u> ···
Feedback taken norm Q output back to D input from the Q output. This is deliberate to reduce	mrough an averter father than direct the poleritial of violating hold times,

190

Example 7.15 Divide by 13 clock divider using an asynchronous (ripple) counter

This asynchronous ripple counter counts every 13 input clock cycles and sets the output to a logic 1 for one clock cycle. Like Example 7. 14, the counter has four, divide by two, ripple stages. However, unlike Example 7. 14, the link between each chain is between the Q output via an inferring buffer (instead of the Q output) and D input of the next stage. This causes the counter to count up instead of down. There is no difference in the logic synthesized, but it does make determining the taps for the particular terminal count easier.

Detection of the thirteenth clock pulse and resynchronization is achieved with a fifth flip-flop. It detects when the Qbar outputs from the ripple stages have a value of 13 - 2 = 11 (1011 binary). The reason a count of 11, and not 13, is detected in this particular model, is that two clock cycles are lost; one during the reset and the other because the ripple flip-flop Qbar outputs are reset to logic 1 and then clocked to a logic 0 after the first clock cycle.

The simulated waveforms show the counting process. Notice the asynchronous reset CntRst is at logic 1 for only half a clock cycle when the terminal count is reached. This enables the counter to start counting again on the clock cycle immediately following a reset.

VHDL	Verilog
library IEEE; use IEEE.STD_Logic1164.all;	
entity CNT_ASYNC_CLK_DIV13 is port (Clock, Reset: in std_logic; Y: out Std_logic); end entity CNT_ASYNC_CLK_DIV13; architecture RTL of CNT_ASYNC_CLK_DIV13 is signal Div2, Div2_b, Div4, Div4_b, Div8, Div8_b, Div16, Div16_b, CntRst: Std_logic; begin	<pre>module CNT_ASYNC_CLK_DIV13 (Clock, Reset, Y); input Clock, Reset; output Y; reg Div2, Div4, Div8, Div16, Y; wire Div2_b, Div4_b, Div8_b, Div16_b, CntRst;</pre>
<pre>process (Clock- Reset, CntRst) variable Y var: Std_logic; begin if (Reset = '0' or CntRst = '1') then Div2 <= '0'; elsif rising_edge(Clock) then Div2 <= not Div2; end if;</pre>	<pre>always @(posedge Clock or negedge Reset or posedge CntRst) if (! Reset) Div2 = 0; else if (CntRst) Div2 = 0; else Div2 = ! Div2;</pre>
Div2_b <= not Div2;	assign Div2_b = ! Div2; always @(posedge Div2 or negedge Reset or posedge CntRst)
<pre>if (Reset = '0' or CntRst = '1') then Div4 <= '0'; elsif rising_edge(Div2) then Div4 <= not Dlv4; end if;</pre>	if (! Reset) Div4 = 0; else lf (CntRst) Div4 = 0; else Div4 = ! Div4;
Div4_b <= not Div4;	<pre>assign Div4_b = ! Div4; always @(posedge Div4 or negedge Reset or posedge CntRst) if (! Reset)</pre>
if (Reset = '0' or CntRst = '1') then Div8 <= '0'; elsif rising_edge(Div4) then <i>continued</i>	Div8 = 0; else if (CntRst) continued

Divideby13ripplecounter

Divide by 73 ripple counter

8

Modeling Finite State Machines

Chapter 8 Contents

Introduction	
The Finite State Machine	
The State Table and State Diagram	
FSM Design and Modeling Issues	
1. HDL coding style	
2. Resets and fail safe behavior	
3. State encoding	
4. Mealy or Moore type outputs	
5. Sequential next state or output logic	
6. Interactive state machines	
Examples	
Example 8.1 Bad and good coded models of a three state FSM(FSM1)	
Example 8.2 One bad and four good models of an FSM	
Example 8.3 FSM with inputs or state value as the primary branch directive	
Example 8.4 FSM reset configurations	
Example 8.5 Angular position FSM using Gray and Johnson state encoding	214
Example 8.6 FSM state encoding formats - Blackjack Game Machine	
Example 8.7 FSMs with a Mealy or Moore output	
Example 8.8 FSM with a Mealy and a Moore Output	
Example 8.9 FSM with sequential next state logic	
Example 8.10 FSM with sequential output logic	
Example 8.11 FSM with sequential next and output state logic - Blackjack	
Example 8.12 Unidirectional interactive FSMs	
Example 8.13 Two interactive FSM's controlling two rotors	

Chapter Eight: Modeling Finite State Machines

Introduction

Designers of digital circuits are invariably faced with needing to design circuits that perform specific sequences of operations, for example, controllers used to control the operation of other circuits. Finite State Machines (FSMs) have proven to be a very efficient means of modeling sequencer circuits. By modeling FSMs in a hardware description language for use with synthesis tools, designers can concentrate on modeling the desired sequences of operations without being overly concerned with circuit implementation; this is left to the synthesis tool. FSMs are an important part of hardware design and hence HDL hardware modeling.

A designer should consider the different aspects of an FSM before attempting to write a model. A well written model is essential for a functionally correct circuit that meets requirements in the most optimal manner. A badly written model may not meet either criteria. For this reason, it is important to fully understand FSMs and to be familiar with the different HDL modeling issues.

The Finite State Machine

A FSM is any circuit specifically designed to sequence through specific patterns of states in a predetermined sequential manner, and which conforms to the structure shown in Figure 8. 1. A state is represented by the binary value held on the current state register. The FSM structure consists of three parts and may, or may not, be reflected in the structure of the HDL code that is used to model it.

Figure 8.1 Simple structure of a finite state machine

1. *Current State Register*. Register of n-bit flip-flops used to hold the current state of the FSM. Its value represents the current stage in the particular sequence of operations being performed. When operating, it is clocked from a free running clock source.

2. *Next State Logic*. Combinational logic used to generate the next stage (state) in the sequence. The next state output is a function of the state machine's inputs and its current state.

3. *Output Logic*. Combinational logic is used to generate required output signals. Outputs are a function of the state register output and possibly state machine inputs.

The State Table and State Diagram

A state diagram is a graphical representation of a state machine's sequential operation and are often supported as a direct input to commercial synthesis tools from which synthesized circuits and HDL simulation models are generated. Whether to use a state diagram or HDL entry method is often a choice for the designer, provided the tools are available. Sometimes a company will dictate a particular design methodology, in which case, the choice has already been made.

Figure 8.2 shows two state diagram representations of the same five state, state machine; the

i in	outs	Curre	int state	Next	state	Out	outs
Å	Hold					Y_Me	Y_Mo
0	х	000	(STO)	000	(ST0)	1	0
1	х	000	(STO)	001	(ST1)	0	0
0	x	001	(ST1)	000	(ST0)	0	1
1	х	001	(ST1)	010	(ST2)	1	1
х	Х	010	(ST2)	011	(ST3)	0	0
х	1	011	(ST3)	011	(ST3)	1	1
0	0	011	(ST3)	000	(ST0)	1	1
1	0	011	(ST3)	100	(ST4)	0	1
х	х	100	(ST4)	000	(ST0)	0	1

X = don't care condition

Table 8. 1 State table for state diagrams of Figure 8.2

Figure 8.2 Two equivalent state diagrams

equivalent state table is indicated in Table 8. 1. The description of the two state diagrams of Figure 8.2 now follows.

Circles represent states and lines with arrows represent transitions between states which occur after every clock cycle. The clock signal is implied, but not shown on a state diagram, nor in a state table.

The binary number representing the value on the state register flip-flops (first state diagram), or its associated state name (second state diagram) is contained inside the circle. The input signal conditions that dictate state transitions are indicated next to the appropriate line and before any slash (/). A slash is used to separate input and output signals. The two inputs, A and Hold, are shown before the slash. Values shown after the slash, if any, indicate output signal values that are a function of both the inputs and current state register. These are called Mealy type outputs described later. The value of any output signals that are a function of the current state register only, are shown next to the circle representing the appropriate state. These are called Moore type outputs also described later. The major difference in the second state diagram, is that input and output signals are shown only when they are active, otherwise they are left off to aid functional comprehension and avoid cluttering the diagram. Example 8.8 shows the HDL models of this particular state diagram.

FSM Design and Modeling Issues

State machine design and modeling issues to consider are:

- 1. HDL coding style,
- 2. Resets and fail safe behavior,
- 3. State encoding,
- 4. Mealy or Moore type outputs,
- 5. Sequential next state or output logic,
- 6. Interactive state machines.

The structure of a state machine can take one of three forms, Figure 8.3, and consists of a combinational "Next State Logic" block, a sequential "Current State Register" block, and an optional combinational "Output Logic" block. Output logic is not needed if the outputs only come direct from the state register flip-flops. The current state is stored in flip-flops; latches would cause state oscillations when transparent. The next state and output logic blocks may contain additional sequential logic, inferred from within the body of the model, but is not considered part of the state machine. A state machine can only be in one state at any given time, and each active transition of the clock causes it to change from its current state to the next as defined by the next state logic.

Figure 8.3 FSM Structures with Mealy, Moore and combined Mealy/Moore outputs

A state machine with n state flip-flops has 2^n possible binary numbers that can be used to represent states. Often, not all 2^n numbers are needed, so the unused ones should be designed not to occur during normal operation. A state machine with five states, for example, requires a minimum of three flip-flops in which case there are $(2^3 - 5 = 3)$ unused binary numbers.

1. HDL coding style

There are different ways of modeling the same state machine, on the other hand, a small code change can cause a model to behave differently than expected. Designers should be aware of the different modeling styles supported by the synthesis tool being used, and should consider modeling state machines to be tool independent; this applies to modeling any type of circuit. The HDL code may be structured into three separate parts representing the three parts of a state machine, see Figure 8.3. Alternatively, different combinations of blocks can be combined in the model. Either way, the coding style is independent of the state machine being designed.

The next state logic is best modeled using the **case** statement, though the VHDL next state logic could be modeled using a selected signal assignment, but means the FSM cannot be modeled in one process. The others clause (VHDL) and default clause (Verilog) used in a case statement, avoids having to explicitly define all 2^n values that are not part of the state machine.

Examples 8.1 and 8.2, show bad and good modeling styles for three and four state FSMs respectively. Models in example 8.2 demonstrate how the three parts of a state machine may be combined, or separated in a model, and how to ensure portability between synthesis tools. Example 8.3 shows a state machine modeled with either the inputs or the current state, as the primary branch directive.

2. Resets and fail safe behavior

Depending on the application, a reset signal may not be available, there may only be a synchronous or asynchronous reset, or there may be both. To guarantee fail safe behavior, one of two things must be done, depending on the type of reset:

- <u>Use an asynchronous reset</u>. This ensures the state machine is always initialized to a known valid state, before the first active clock transition and normal operation commences. This has the advantage of not needing to decode any unused current state values, and so minimizes the next state logic.
- <u>With no reset or a synchronous reset</u>. In the absence of an asynchronous reset there is no way of predicting the initial value of the state register flip-flops when implemented in an IC and "powered up". It could power up and become permanently stuck in an uncoded state. All 2ⁿ binary values must, therefore, be decoded in the next state logic, whether they form part of the state machine or not. There is generally only a small area overhead in the next state logic, and is partially offset by using smaller flip-flops that do not have an asynchronous reset input.

Take for example, a ten state state machine modeled using Johnson State encoding. The state register consists of 5 flip-flops and there are $(2^5 - 10)$ unused states. The area optimized result of the next state logic is 11% bigger if a synchronous reset is used rather than an asynchronous one. This is partially offset by the asynchronously reset state register flip-flops, being slightly larger than synchronously reset flip-flops. The overall result is a 3% increase in area when an asynchronous reset is changed to a synchronous one.

In VHDL an asynchronous reset can only be modeled using the if statement, while a synchronous reset can be modeled using either a wait or if statement; the disadvantage of using the wait statement is that the whole process is synchronous so other if statements cannot be used to model purely combinational logic. In Verilog only the if statement can be used, and if asynchronous, must be included in the event list of the always statement with the posedge or negedge clause.

Example 8.4 shows a state machine with combined current and next state logic modeled with; an asynchronous reset, a synchronous reset, and with no reset. It also shows the minimal effect it has on the implied next state logic.

If the current and next state logic are modeled separately, an asynchronous reset must be included in the sequential current state logic while a synchronous reset may be included with either the current or next state logic. Clearly by always including a reset in the current state logic it is easy to change it from an asynchronous to synchronous reset or vice versa if needed. There are many examples of such resets in this chapter.

3. State encoding

The way in which binary numbers are assigned to states, is called the state encoding. The different state encoding formats commonly used are:

commonly used are:	No	Sequential	Gray	Johnson	One-Hot
• sequential,					
• grav	0	0000	0000	00000000	000000000000000001
• Johnson	1	0001	0001	0000001	00000000000000010
• Johnson,	2	0010	0011	00000011	00000000000000100
• one-not,	3	0011	0010	00000111	0000000000001000
 define your own, 	4	0100	0110	00001111	0000000000010000
• defined by synthesis.	5	0101	0111	00011111	0000000000100000
These formats are shown in Table	б	0110	0101	00111111	0000000001000000
8.2 for 16 states and their	7	0111	0100	01111111	0000000010000000
descriptions follows	8	1000	1100	11111111	0000000100000000
descriptions follows.	9	1001	1101	11111110	0000001000000000
Example 8.6 shows a state	10	1010	1111	11111100	0000010000000000
machine for a Blackiack card game	11	1011	1110	11111000	00001000000000000
controller using all state anading	12	1100	1010	11110000	00010000000000000
controller using an state encoding	13	1101	1011	11100000	00100000000000000
formats, and includes a synthesis	14	1110	1001	11000000	01000000000000000
defined format. The example also	15	1111	1000	10000000	10000000000000000
shows the effect state encoding has					

Table 8.2 Standard State Machine Encoding Formats

State Encoding Formats

particular model.

on the synthesized circuit of this

Sequential. Each state is simply assigned increasing binary numbers.

<u>Gray and Johnson</u>. Each state in both Gray and Johnson state encoding is assigned successive binary numbers where only one bit changes from one number to the next. A primary motive for using such coding, is to reduce the possibility of state transition errors caused by asynchronous inputs changing during flip-flop setup times.

All 2^n binary numbers can be used in Gray Code state encoding. However, because of the pattern of 1's and 0's in Johnson state encoding, more flip-flops are required, and there are

always unused binary numbers. This means that an asynchronous reset is preferred, otherwise the next state logic must decode all 2^n binary numbers, and result in a larger circuit. Example 8.5 shows a state machine for a platform position controller using both Gray and Johnson state encoding.

<u>One-hot</u>. In one-hot state encoding, each state is assigned its own flip-flop, so n states requires n flip-flops and only one flip-flop is in its true state at any one time. The increased number of flip-flops usually results in a larger circuit.

<u>Define your own</u>. Each state is assigned a binary number according to a particular design requirement.

<u>Defined by Synthesis</u>. These formats are chosen by the synthesis tool to minimize next state logic. Clearly the actual assignments are design dependent. It is necessary to consult the appropriate synthesis manual to find out how this can be achieved. The synthesis tools provided by VeriBest Incorporated allow a panel entry of FSM parameters from which it will choose optimal state encoding for minimal next state logic using one of three different algorithms. It also provides an HDL (VHDL or Verilog) model for simulation purposes.

4. Mealy or Moore type outputs

The structures of a Mealy, a Moore, and a combined Mealy/Moore state machines are shown in Figure 8.3. A Mealy state machine has outputs that are a function of the current state, and primary inputs. A Moore state machine has outputs that are a function of the current state only, and so includes outputs direct from the state register. If outputs come direct from the state register only, there is no output logic. A combined Mealy/Moore state machine has both types of output. The choice between modeling Mealy or Moore type outputs are clearly design dependent.

Example 8.7 shows the same state machine modeled with a Mealy or Moore type output, while Example 8.8 show models of the example state diagram, Figure 8.2, which has one Mealy and one Moore type output.

5. Sequential next state or output logic

Both the next state and output logic in a state machine, consists of combinational logic only. However, depending upon the application, you may want to model additional sequential logic in either of these blocks, and which may be imbedded within the code of a state machine model. Mote that by not defining next state or output signals in all branches of a state machine's **case** statement, it is easy to inadvertently model unwanted latches.

<u>Sequential Next State Logic</u>. Sequential next state logic controls state branching from previously set signals. Such signals could be set when the state machine was in another state, passed through a particular sequence of states, or because of some accumulated value resulting from looping around successive sequences of states. These next state control signals could also provide state machine outputs. Example 8.8 shows such a model which encompasses a single controlling flip-flop in the next state logic.

<u>Sequential Output Logic</u>. Sequential output logic, registers the fact that a certain state or sequence of states has occurred. Example 8.9 shows a typical application of this, where an accumulator is incremented every time the state machine passes through a particular state.

Chapter Eight: Modeling Finite State Machines

6. Interactive state machines

If a state machine's current state or output signals are used to influence the operation of other state machines, they are known to be interactive. Interaction between state machines may be unidirectional or bidirectional.

Unidirectional. State machines mav be hierarchically structured, in which case, they are useful in breaking down large complicated control path structures into more manageable pieces. Figure 8.4 shows the structure of two state machines where FSM1 has unidirectional control over FSM2, and means the next state of FSM2 is dependent upon its own inputs and current state, plus the state of FSM1. Example 8.10 shows three different state machine configurations of a control path model, used to control the same data path. The controller is modeled in three separate ways; (1) a master FSM controlling three sub hierarchial FSMs, (2) three FSMs with series control from one to the next, and (3) using a single FSM.

<u>Bidirectional.</u> State machines having bidirectional control over each other are useful for modeling circuits requiring handshaking mechanisms. Figure 8.5 shows the structure of three interactive state machines

Figure 8.4 Structure of two FSMs with uni-directional interaction

Figure 8.5 Structure of three bidirectional interactive FSMs.

where each state machine

has bidirectional control over the other two. Example 8. 11 shows two bidirectionally interactive state machines; each has four states representing the angular position of two interlocking mechanical rotors.

Example 8.1 A Bad and good coded models of a three state FSM (FSM1)

Bad and good models of a three state FSM are modeled to the state diagrams, Figure 8.6. The two VHDL models use a single state variable of an enumerated type, and means the synthesis tool will automatically assign sequential binary numbers to the states. The two Verilog models use one of three parameter values for the states, and so the state numbers are defined in the model itself.

Figure 8.6 FSM1 State Diagram

Bad Model

The first model, FSM1_BAD, is incorrect for the reasons listed below. Notice, that in this particular example the state type, and its declaration, are local to the VHDL process and Verilog always block.

- 1. The state machine has three states requiring two flip-flops, but two flip-flop have four possible binary values, so one is unused. There is no reset and there is no next state value defined for the unused state. This means the physical state machine could be implemented such that it has the potential of "powering up" and becoming stuck in this unused state.
- 2. The current state, next state and output logic, are all defined in the same VHDL process and Verilog always block. Because the VHDL **process** contains a wait statement, the Read and Write output assignments infer two extra flip-flops. Likewise, because the Verilog always block is triggered off the positive edge of the clock, the Read and Write output assignments also infer an extra flip-flop.
- 3. The variable definition for State in the VHDL version has an initial value of ST_Read. This is fine for simulation, but is ignored by synthesis tools. Variables or signals should not be initialized in this way if the model is to be synthesized; it does not represent the initial state of the physical hardware. Procedural assignments in Verilog are only initialized through **initial** blocks, which are not supported by synthesis tools, and so this problem should not occur.

Chapter Eight: Modeling Finite State Machines

FSMI Modeled incorrectly (FSM1_BAD)

Good Model

The second model, FSM1_GOOD, shows the corrected version. The sequential current state logic has been separated from the combined combinational next state and output logic. The VHDL version still uses a **wait** statement, though as a general rule it is often better to use the if statement. The VHDL if statement can model all synchronous and asynchronous logic needs, and has the added advantage of allowing sequential and combinational logic to be mixed within the same process.

VHDL		Verilog	
library IEEE; use IEEE.STD_Logic_1164.all;			
entity FSM1_GOOD is port (Clock, Reset: in std_logic; SlowRAM: in std_logic; Read, Write: out std_logic); end entity FSM1_GOOD;		module FSM1_GOOD (Clock, Reset, SlowRA input Clock, Reset, SlowRAM; output Read, Write; reg Read,Write;	M, Read, Write);
architecture RTL of FSM1_GOOD Is type StateType is (ST_Read, ST_Writh signal CurrentState, NextState: State begin No sensitivit SEQ: process	e, ST_Delay); eType: y list as process walt.	parameter (1:0) ST_Read = 0, ST_Write reg (1:0) CurrentState, NextSta always @(posedge Clock) begin: SEQ if (Reset)	= 1, ST_Delay = 2; ite;
begin wait until rising_edge(Clock); if (Reset = '1') then		CurrentState = ST_Read; else CurrentState = NextState;	
CurrentState <= ST_Read; eise		end	
CurrentState <= NextState end if; end process SEQ;		always @(CurrentState) begin: COMB case (CurrentState)	
COMB: process (CurrentState) begin		SI_Read : begin Read = 1;	
case CurrentState is when ST_Read => Read <= '1';		Write = 0; NextState = ST_Write; end	
Write <= '0': NextState <= ST_Write; when ST_Write =>		ST_Write : begin React = 0;	
Read <= '0'; Write <= '1'; if (SlowRAM = '1') then		Write = 1; if (SlowRAM) NextState = ST_Delay;	
NextState <= ST_Delay; else NextState <= ST_Read;		else NextState = ST_Read; end	
end it; when ST_Delay => Read <= '0';		SI_Delay : begin Read: = 0;	
Write <= '0'; NextState <= ST_Read; end case;	when others not needed; all 3	Write = 0; NextState = ST_Read; end	
end process COMB; end architecture RTL;	conditions of type StateType have a case branch explicitly defined.	default : Neede begin cutputs Read = 0; Write = 0; NextState = ST_Read;	d to avoid being tly latched.
		end Need endcase state end latch	led to avoid next logic being ed.
n Contract - 1927 Contract	Synthes	zed Circuit	
SlowRam			
Cłock	L		

Example 8.2 One bad and four good models of an FSM

One bad and four good models of the state machine, Figure 8.7. are shown in this example. It has four states and uses an asynchronous reset. As in the previous example, the VHDL models

use an enumerated data type for the state variable, while the Verilog models use parameter values.

The first model, FSM2_BAD, is incorrect for similar reasons to the bad model in Example 8.1, that is, flip-flops are synthesized in the output logic. The outputs in the VHDL model are this time assigned under the statement "if rising_edge(Clock)".

The good models (FSM2 GOOD1 to FSM2 GOOD4) show different combinations in which the current state, next state and output logic may be combined or separated within a model. The design is modeled as follows:

FSW2 GOOD1

Figure8.7FSM2 StateDiagram

Separate current state, next state and output logic (FSM2_GOOD1)

Chapter Eight: Modeling Finite State Machines

Combined current state and next state logic, separate output logic (FSM2_GOOD2)

Combined	next state	and o	output	logic,	separate	current	state	logic	(FSM2_	GOOD	3)
Province Service of the service service and	the second s	CALLS FROM THE RECT AND	A CARLENA A CARLENA AND A C	his of the set of the set	THE MARK STREET, STREE	The later that the	110.52		1	Weiner Sule Mortant	

VHDL		Verilog
library IEEE; use IEEE.STD_Logic_1164.all;		
entity FSM2_GOOD3 is port (Clock, Reset: in std_logic; Control: in std_logic; Y: out integer range 0 to 4); end entity FSM2_GOOD3; archifecture RTL of FSM2_GOOD3 is type StateType is (ST0, ST1, ST2, ST3); signat CurrentState, NextState: StateType; begin		<pre>module FSM2_GOOD3 (Clock, Reset, Control, Y); input Clock, Reset, Control; output [2:0] Y; reg [2:0] Y; parameter ST0 = 0, ST1 ≈ 1, ST2 = 2, ST3 = 3; reg [1:0] CurrentState, NextState;</pre>
COMB: process (Control, CurrentState) begin case CurrentState is when STO => Y <= 1; NextState <= ST1; when ST1 => Y <= 2; if (CONIROL = '1') then NextState <= ST2; else NextState <= ST3; when ST2 => Y <= 3; NextState <= ST3; when ST3 => Y <= 4; NextState <= ST0; when others => Y <= 1; NextState <= ST0; end case; end process COMB;	Next state and output logic.	atways @(Control or CurrentState)begin: COMBcase (CurrentState)ST0: begin $Y = 1;$ NextState = ST1;endST1: begin $Y = 2;$ if (Control)NextState = ST2;elseNextState = ST3;endST2: begin $Y = 3;$ NextState = ST3;endST3: begin $Y = 4;$ NextState = ST0;enddefault: begin $Y = 1;$ NextState = ST0;endendendendendendendendendendendendendendendendendend
SEQ: process (Clock, Reset) begin if (Reset = '1') then CurrentState <= STO; elsif rising_edge(Clock) then CurrentState <= NextState; end if; end process SEQ;	Current state logic.	always @(posedge Clock or posedge Reset) begin: SEQ if (Reset) CurrentState = STO; else CurrentState = NextState; end endmadule
end architecture RTL;		

VHDL		Verilog
library IEEE; use IEEE.STD_Logic_1164.ail;		
entity FSM2_GOOD4 is port (Clock, Reset: in std_logic; Control: in std_logic; Y: out integer range 0 to 4); end entity FSM2_GOOD4; architecture RTL of FSM2_GOOD4 is begin		No Verilog equivalent which combines the current state, next state and output logic into one always statement is synthesizable, and avoids the inference of three unwanted output flip-flops.
ALL_IN_1: process (Clock, Reset) type StateType is (ST0, ST1, ST2, ST3); variable StateType; begin If (Reset = '1') then State := ST0; elsif rising_edge(Clock) then case State is when ST0 => State := ST1; when ST1 => if (CONTROL = '1') then State := ST2; else State := ST3; when ST2 => State := ST3; when ST3 => State := ST0; when others => State := ST0; when ST0 => Y <= 1; when ST2 => Y <= 3; when ST3 => Y <= 4; when ST3 => Y <= 1; end case; end process ALL_IN_1; Marce State Interpreter (State Interpreter) state := ST0; state	State can be a variable because: 1. There is a single state value that is updated on the rising edge clock. 2. State is used entirely within a single process.	
end architecture RTL;		

Combined current state, next state and output logic (FSM2_GOOD4)

Example 8.3 FSM with inputs or state value as the primary branch directive

The state machine corresponding to the state machine in Figure 8.8, is modeled in two different ways. The state diagram represents a car speed controller.

The first model versions use the Brake and Accelerate inputs in a two way if branch directive, and then, using a case statement in both branches, assigns the new state value. For this particular state machine the increasing and

Figure 8.8 State diagram for car speed controller

decreasing speeds can be clearly seen by the two case statements. The second model versions on the following page show the more usual method of using the state value as the primary branch directive.

Chapter Eight: Modeling Finite State Machines

State value primary branch direct	ives			
VHDL		Veniog		
library IEEE; use IEEE.STD_Logic_1164.all, IEEE.Numeric_ST	D.all;			
entity FSM_CAR_SPEED_CNTL_2 is port (Clock, Keys, Brake, Accelerate: in std_logic; Speed: out unsigned(1 downto 0)); end entity FSM_CAR_SPEED_CNTL_2;		module FSM_CAR_SPEED_CNIL_2 (Clock, Keys, Brake, Accelerate, Speed); input Clock, Keys, Brake, Accelerate; output [1:0] Speed;		
architecture RTL of FSM_CAR_SPEED_CNTL_2 is constant Stop: unsigned(1 downto 0) := "00"; constant Stow: unsigned(1 downto 0) := "01"; constant Medium: unsigned(1 downto 0) := "10"; constant Fast: unsigned(1 downto 0) := "11"; signal NextSpeed: unsigned(1 downto 0); signal Speed_s: unsigned(1 downto 0); begin		reg [1:0] Speed, NewSpeed; parameter Stop = 2'b 00, Slow = 2'b 01, Medium = 2'b 10, Fast = 2'b 11;		
FSM2_COMB: process (Keys, Brake, Accel	erate, Speed_s,	always @(Keys or Brake or Accelerate or Speed)		
NextSpeed) begin case (Speed_s) is when Stop => if (Accelerate = '1') then	The state "Spee the primary bro directive.	begin: FSM2_COMB anch Stop: if (Accelerate) NewSpeed = Slow;		
NextSpeed <= Slow; else NextSpeed <= Stop; end if; when Slow =>	signal so that pol "Speed" may ma the mode out .	rt signal else NewSpeed = Stop; Slow:		
if (Brake = '1') then NextSpeed <= Stop; elsif (Accelerate = '1') then NextSpeed <= Medium;		NewSpeed = Stop; else if (Accelerate) NewSpeed = Medlum; else		
else NextSpeed <= Slow; end if; when Medium => if (Broke = 11) then	-	NewSpeed = Slow; Medium: if (Brake)		
NextSpeed <= Slow; elsif (Accelerate = '1') then NextSpeed <= Fast; else		else if (Accelerate) NewSpeed = Fast; else NewSpeed = Medium;		
NextSpeed <= Medium; end if; when Fast => if (Brake = '1') then		Fast: if (Brake) NewSpeed = Medium;		
NextSpeed <= Medium; else NextSpeed <= Fast; end if;		else NewSpeed = Fast; default: NewSpeed = Stop;		
when others => NextSpeed <= Stop; end case; end process FSM2_COMB;		endcase end		
FSM2_SEQ: process (Clock, Keys) begin	Asynchronous res to state stop.	always @(posedge Clock or negedge Keys) begin: FSM2_SEQ If (!Keys)		
<pre>Speed_s <= Stop; elsif rising_edge(Clock) then Speed_s <= NextSpeed; end if:</pre>		- speed = stop; else Speed = NewSpeed; end		
speed <= Speed_s; end process FSM2_SEQ; end architecture RTL;		endmodule		

Example 8.4 FSM reset configurations

In order to demonstrate the different ways in which resets may be modeled for a finite state machine, only the **process/always** statements are included. The sections of code are of the state machine used in Example 8.8, and whose state diagram was indicated in Figure 8.2. The first two sections of code are for an asynchronous reset and the last three on the following page are for a synchronous reset.

Example 8.5 Angular position FSM using Gray and Johnson state encoding

The state diagram for the state machine in this example, Figure 8.9, shows eight states. The states are encoded using either Gray or Johnson state encoding and represent the desired angular position of a rotor in 45 degree increments. State transitions occur from its current state to an

adjacent state, representing a 45 degree shift of the rotor in either a clockwise or counterclockwise direction.

Because external forces can move the rotor from its desired position, the input PhysicalPosition may change, and is asynchronous to the clock. For this reason, Gray or Johnson state encoding is ideal because, if the asynchronous input changes during the setup time of the state register flip-flops, it will not cause a meta stable state, and so there is no risk of the state machine transitioning to an erroneous state. With other state encoding formats there is a small, but finite risk that a rotor movement through 180 degrees could be requested in one clock cycle. The state encoding is achieved differently in the VHDL and Verilog models, and are described separately below. There is no output logic, as the state value itself represents the angular position.

Figure 8.9 Angular Position FSM

VHDL Model. There are two ways to specify state encoding.

- 1. Use a signal of an enumerated type for which a single synthesis specific attribute is applied. This is a convenient way to specify the state encoding, but because the attribute's name is specific to the synthesis tool, it may need to be changed for portability to other tools. The first package ENUM_STATE_ENCODE_TYPES defines two identical enumerated state encoding types, one for Gray and Johnson encoding. Different attributes are then applied to these types that specify the specific state encoding, which is three bits wide for Gray and four bits wide for Johnson. The attribute is called ENUM_TYPE_ENCODING in the VeriBest synthesis tools, but may be different for other synthesis tools.
- 2. Use constants to represent the individual state values; these are assigned to a signal representing the particular state, and is directly portable to other synthesis tools. The model shows two packages for the two encoding methods. The entity-architecture of the state machine is the same for the two state encoding methods, except for the **use** clause, which references the appropriate package. The second package shows the unsigned type definition for the Gray and Johnson state value, and the individual state constants. The state machine is modeled using a single process similar to the last model in Example 8.2 (FSM2_GOOD4). The input PhysicalPosition and output NewPosition, are either of type GRAY_POS_EcodeStates or JOHNSON_POS_EncodeStates depending on the state encoding method, and is the only change needed.

Verilog Model. Uses parameter constants to declare state values in one of two separate system

files. The state machine model uses the include compiler directive to select the desired file for the required state encoding. Alternatively, 'define compiler directives could have been used to allow the simple text substitution of state names for the binary state encoded values. Again, these could have been placed in separate system files and included in the model with include compiler directives.

State encoding definitions for angular position FSM

State encounty demittions for anyular position	
VHDL	Verilog
<pre>library IEEE; use IEEE. STD_Logic_1164. all, IEEE. Numeric_STD. all; package CONST_GRAY_STATE_ENCODE_TYPES is constant Ang_0: unsigned(3 downto 0):= "0010"; constant Ang_90: unsigned(3 downto 0):= "0110"; constant Ang_135: unsigned(3 downto 0):= "0110"; constant Ang_135: unsigned(3 downto 0):= "0100"; constant Ang_135: unsigned(3 downto 0):= "1100"; constant Ang_225: unsigned(3 downto 0):= "1100"; constant Ang_270: unsigned(3 downto 0):= "1101"; constant Ang_315: unsigned(3 downto 0):= "1101"; constant Ang_315: unsigned(3 downto 0):= "1111"; end package CONST_GRAY_STATE_ENCODE_TYPES;</pre>	<pre>// File name = fsm_ang_pos_gray_params.v // Specify state bit width parameter StateWidth = 3; // Gray State Definitions parameter Ang_0 = 3'b 000,</pre>
VHDL package ENUM_STATE_ENCODE_TYPES Is attribute ENUM_TYPE_ENCODING: string; type GRAY_POS_EncodeStates is (Ang_0, Ang_45, Ang_90, Ang_135, Ang_180, Ang_225, Ang_270, Ang_315); attribute ENUM_TYPE_ENCODING of GRAY_POS_EncodeStatestype is "00000001 0011 001001100111 0101 0100"; type JOHNSON_POS_EncodeStares is (Ang_0, Ang_45, Ang_90, Ang_135, Ang_180, Ang_225, Ang_270, Ang_315); attribute ENUM_TYPE_ENCODING of JOHNSON_POS_EncodeStates: type is "0000 0001 0011 0111 1111 1110 1100 1000"; end package STATE ENCODE TYPES;	Verilog // File name = fsm_ang_pos_john_params.v // Specify state bit width parameter StateWidth = 4; // Johnson State Definitions parameter Ang_0 = 4'b 0000, Ang_45 = 4'b 0001, Ang_90 = 4'b 0011, Ang_135 = 4'b 0011, Ang_135 = 4'b 0111, Ang_225 = 4'b 1110, Ang_270 = 4'b 1100, Ang_315 = 4'b 1000;

Angular position FSM

eist (MoveCCW = '1') then NextState <= Ang_135; eise NextState <= Ang_180; end if, eise NextState = Ang_180; end if, when Ang_225 => if (MoveCW = '1) then NextState <= Ang_270; eist (MoveCCW = '1) then NextState <= Ang_28; end if, Ang_225 : if (MoveCW = '1) then NextState <= Ang_225; end if, when Ang_270 => if (MoveCW = '1) then NextState <= Ang_225; end if, NextState = Ang_270; else MextState <= Ang_225; end if, when Ang_270 => if (MoveCW = '1') then NextState <= Ang_270; else NextState <= Ang_270; else NextStat	ngularpositionFSM		
eist (MoveCCW = '1') then NextState <= Ang_135; eise NextState <= Ang_180; end if; eise NextState = Ang_180; end if; when Ang_225 => if (MoveCW = '1') then NextState <= Ang_220; eist (MoveCCW = '1') then NextState <= Ang_225; end if; Ang_225 : if (MoveCW == 1) NextState <= Ang_220; eise if (MoveCW == 1) NextState <= Ang_225; eist (MoveCW = '1') then NextState <= Ang_270; eist (MoveCW = '1') then N	A PARTY AND A PART		
else NextState <= Ang_130; nextState <= Ang_180; else NextState <= Ang_180; end if; when Ang_225 => if (MoveCW = '1) then NextState <= Ang_270; else NextState <= Ang_270; else NextState <= Ang_225; end if; when Ang_270 => if (MoveCW = '1) then NextState <= Ang_225; end if; when Ang_270 => if (MoveCW = '1) then NextState <= Ang_225; end if; when Ang_270 => if (MoveCW = '1) then NextState <= Ang_225; end if; when Ang_315 => if (MoveCW = '1) then NextState <= Ang_270; else NextState <= Ang_270; else <th></th> <th></th> <th></th>			
NextState <= Ang_135; NextState <= Ang_180; eise NextState <= Ang_180; end if, when Ang_225 => if (MoveCW = '1') then if (MoveCW == 1) NextState <= Ang_270; else if (MoveCCW == 1) NextState <= Ang_225; nextState = Ang_225; else NextState <= Ang_270; when Ang_315 => if (MoveCW == 1) NextState <= Ang_270; NextState = Ang_270; else NextState <=	Pisit (MoveCCW = '1') then		else
eise NextState <= Ang_180; end if; Ang_225 : if (MoveCW = 1) then NextState <= Ang_270; eist (MoveCCW = 1) then NextState <= Ang_180; eise NextState <= Ang_225; end if; Ang_225 : if (MoveCW == 1) NextState = Ang_270; eise ise NextState <= Ang_225; end if; when Ang_270 => if (MoveCW = 1') then NextState <= Ang_315; eise NextState <= Ang_225; end if; Ang_270 : if (MoveCW == 1) NextState <= Ang_315; NextState <= Ang_225; eise NextState <= Ang_225; eise NextState <= Ang_270; eise NextState = Ang_315; end if; end case; end process COMBINATIONAL;	NextState <= Ang_135;		NextState = Ang_180;
NextState <= Ang_180; end if; when Ang_225 => if (MoveCW = '1') then NextState <= Ang_270; elst (MoveCW = '1') then NextState <= Ang_180; elst (MoveCW = '1') then NextState <= Ang_225; end if; when Ang_270 => if (MoveCW = '1') then NextState <= Ang_215; end if; when Ang_315; elst (MoveCW = '1') then NextState <= Ang_315; elst (MoveCW = '1') then NextState <= Ang_225; elst (MoveCW = '1') then NextState <= Ang_270; when Ang_315 => if (MoveCW = '1') then NextState <= Ang_270; elst (MoveCCW = '1') then NextState <= Ang_270; elst (MoveCCW = '1') then NextState <= Ang_270; elst (MoveCCW = '1') then <th>Piso</th> <th></th> <th></th>	Piso		
end if; Ang_225 :: if (MoveCW = '1') then if (MoveCW == 1) NextState <= Ang_270; else if (MoveCCW == 1) NextState <= Ang_180; else if (MoveCCW == 1) NextState <= Ang_225; nextState = Ang_225; end if; NextState <= Ang_225; when Ang_270 => Ang_270 : if (MoveCW = '1') then if (MoveCW == 1) NextState <= Ang_225; NextState = Ang_225; end if; NextState <= Ang_315; else NextState <= Ang_225; else NextState <= Ang_225; else NextState <= Ang_225; else NextState <= Ang_225; else NextState = Ang_225; else NextState = Ang_226; else NextState = Ang_270; when Ang_315 => If (MoveCW == 1) NextState <= Ang_270; NextState = Ang_270; else NextState <= Ang_270; else<	NextState <= Ang_180;		
when Ang_225 => if (MoveCW = '1') then NextState <= Ang_270; else else if (MoveCW = '1') then NextState <= Ang_180; else if (MoveCCW == 1) NextState <= Ang_225; else end if; when Ang_270 => if (MoveCW = '1') then NextState = Ang_225; end if; NextState <= Ang_315; else if (MoveCCW == 1) NextState <= Ang_315; else else if (MoveCCW == 1) NextState <= Ang_315; else else if (MoveCCW == 1) NextState <= Ang_270; else else if (MoveCCW == 1) NextState <= Ang_270; else else if (MoveCCW == 1) NextState <= Ang_270; else else if (MoveCW == 1) NextState <= Ang_270; else when Ang_315 => if (MoveCW == 1) NextState <= Ang_270; else else if (MoveCCW == 1) NextState <= Ang_270; else else if (MoveCCW == 1) NextState <= Ang_270; else else <t< th=""><th>end if;</th><th></th><th></th></t<>	end if;		
if (MoveCW = '1) then if (MoveCW = 1) NextState <= Ang_270; elst (MoveCW = 1) NextState <= Ang_180; elst if (MoveCW = 1) NextState <= Ang_225; elst if (MoveCW = 1) NextState <= Ang_270 => if (MoveCW = 1) NextState <= Ang_270 => Ang_270 : if (MoveCW = '1') then elst if (MoveCW == 1) NextState <= Ang_270; if (MoveCW == 1) NextState <= Ang_225; Ang_270 : if (MoveCW = '1') then elst if (MoveCW == 1) NextState <= Ang_225; NextState = Ang_225; elst MoveCW == 1) NextState <= Ang_270; elst if (MoveCW == 1) NextState <= Ang_270; NextState = Ang_270; elst if (MoveCCW = '1) then NextState = Ang_270; NextState <= Ang_270; elst if (MoveCCW == 1) NextState <= Ang_270; elst if (MoveCCW == 1) NextState <= Ang_315; elst if (MoveCCW == 1) NextState <= Ang_315;	when Ang_225 =>		Ang_225 :
NextState <= Ang_270; NextState <= Ang_270; else Ang_180; NextState <= Ang_225; NextState = Ang_180; NextState <= Ang_225; NextState = Ang_225; end if; Ang_270 => If (MoveCW = '1') then if (MoveCW == 1) NextState <= Ang_225; NextState = Ang_225; else NextState = Ang_270; end if; Ang_315 : if (MoveCCW = '1') then NextState = Ang_270; else NextState <= Ang_270; else NextState <= Ang_270; else NextState <= Ang_315; end if; NextState = Ang_315; end if; NextState = Ang_315; end if; NextState = Ang_315; <th>if (MoveCW = '1') then</th> <th></th> <th>if (MoveCW == 1)</th>	if (MoveCW = '1') then		if (MoveCW == 1)
eistf (MoveCCW = '1') then eise if (MoveCCW == 1) NextState <= Ang_180; NextState = Ang_180; eise NextState <= Ang_225; end if; NextState <= Ang_315; when Ang_270 => If (MoveCCW == 1) If (MoveCCW = '1') then if (MoveCCW == 1) NextState <= Ang_225; NextState = Ang_315; else NextState <= Ang_225; else NextState = Ang_315; else NextState <= Ang_225; else NextState <= Ang_225; else NextState <= Ang_270; else NextState <= Ang_0; else NextState <= Ang_0; else NextState <= Ang_13; nextState <= Ang_270; NextState = Ang_270; else NextState <= Ang_270; else NextState <= Ang_315; end if; NextState <= Ang_315; end if; <td< th=""><th>NextState <= Ang_270;</th><th></th><th>NextState = Ang 270;</th></td<>	NextState <= Ang_270;		NextState = Ang 270;
NextState <= Ang_180;	eisif (MoveCCW = '1') then		else if (MoveCC $W == 1$)
else NextState <= Ang_225; end if; NextState <= Ang_315; when Ang_270 => If (MoveCW == 1) NextState <= Ang_315; NextState = Ang_315; else NextState <= Ang_315; else NextState <= Ang_315; else NextState <= Ang_225; else NextState <= Ang_225; else NextState <= Ang_225; else NextState <= Ang_270; else NextState <= Ang_270; end if; NextState <= Ang_0; when Ang_315 => If (MoveCW == 1) NextState <= Ang_0; If (MoveCW == 1) NextState <= Ang_0; If (MoveCW == 1) NextState <= Ang_0; If (MoveCW == 1) NextState <= Ang_1; NextState = Ang_0; else NextState = Ang_0; else NextState = Ang_1; NextState <= Ang_1; NextState = Ang_2; else NextState = Ang_2; NextState <= Ang_3; NextState = Ang_3; end if; If (MoveCW == 1) NextState <= Ang_3; NextState = Ang_3; end if; If (MoveCW == 1) NextState <= Ang_3	NextState <= Ang_180;		NextState = Ana 180:
NextState <= Ang_225; NextState = Ang_225; end if; Ang_270 :=> if (MoveCW = '1') then if (MoveCW == 1) NextState <= Ang_315; NextState = Ang_315; elst (MoveCCW = '1') then else if (MoveCW == 1) NextState <= Ang_225; NextState = Ang_315; else NextState <= Ang_225; else NextState <= Ang_225; else NextState <= Ang_270; else NextState <= Ang_270; else NextState = Ang_270; else NextState <= Ang_270; if (MoveCCW = '1') then NextState = Ang_270; else Ang_315 : if (MoveCCW = '1') then NextState = Ang_270; else if (MoveCCW == 1) NextState <= Ang_10; else if (MoveCW == 1) NextState <= Ang_270; else if (MoveCW == 1) NextState <= Ang_270; else if (MoveCW == 1) NextState <= Ang_270; else NextState <= Ang_315; NextState = Ang_315; end dif; NextState = Ang_315; end dif NextState = PhysicalPosition:	else		else
end if; Ang_270 => if (MoveCW = '1') then if (MoveCW == 1) NextState <= Ang_315; else if (MoveCCW == 1) NextState <= Ang_225; else if (MoveCW == 1) NextState <= Ang_270; NextState = Ang_225; else NextState = Ang_270; when Ang_315 => NextState = Ang_270; when Ang_315 => Ang_315: if (MoveCW = '1') then if (MoveCW == 1) NextState <= Ang_0; NextState = Ang_0; else if (MoveCCW == 1) NextState <= Ang_270; NextState = Ang_0; else if (MoveCCW == 1) NextState <= Ang_270; else if (MoveCCW = '1') then else if (MoveCCW == 1) NextState <= Ang_270; else else NextState = Ang_270; else NextState = Ang_315; end case; NextState = Ang_315; end process COMBINATIONAL; end	NextState <= Ang_225;		NextState = Ana 225
when Ang_270 => Ang_270 : if (MoveCW = '1') then if (MoveCW == 1) NextState <= Ang_315; else if (MoveCCW == 1) NextState <= Ang_225; else if (MoveCCW == 1) NextState <= Ang_270; else if (MoveCW = '1') then if (MoveCW == 1) NextState <= Ang_0; nextState = Ang_0; else NextState = Ang_0; else NextState = Ang_1; NextState <= Ang_270; else if (MoveCCW == 1) NextState <= Ang_270; else if (MoveCCW == 1) NextState <= Ang_1; else if (MoveCCW == 1) NextState <= Ang_270; else if (MoveCCW == 1) NextState <= Ang_315; else ned case; end if; end process COMBINATIONAL; end	end if;		
If (MoveCW = '1') then if (MoveCW == 1) NextState <= Ang_315; elst (MoveCCW == 1) NextState <= Ang_225; else else NextState <= Ang_270; end if; when Ang_315 => if (MoveCW = '1') then else NextState <= Ang_270; else else NextState = Ang_270; end if; Ang_315 => if (MoveCW = '1') then if (MoveCW == 1) NextState <= Ang_0; NextState = Ang_0; else NextState = Ang_10; else NextState = Ang_10; else NextState = Ang_10; else NextState = Ang_10; else NextState = Ang_270; else NextState = Ang_270; else NextState = Ang_10; else NextState = Ang_10; else NextState = Ang_115; end if; end case; end process COMBINATIONAL; end	when Ang 270 =>		Ang 270 -
NextState <= Ang_315; NextState <= Ang_315; elst (MoveCCW = '1') then else if (MoveCCW == 1) NextState <= Ang_225; NextState = Ang_225; else NextState <= Ang_270; end it; else when Ang_315 => if (MoveCW = '1') then if (MoveCW = '1') then else NextState <= Ang_0; NextState = Ang_0; else NextState <= Ang_0; nextState <= Ang_10; NextState = Ang_0; else NextState <= Ang_0; else NextState = Ang_0; else NextState <= Ang_10; else NextState <= Ang_10; else NextState = Ang_270; else NextState <= Ang_270; else NextState <= Ang_1315; end it; else end case; NextState = Ang_315; end process COMBINATIONAL; end	If (MoveCW = '1') then		if (MoveCW 1)
elsif (MoveCCW = '1') then else if (MoveCCW == 1) NextState <= Ang_225; else if (MoveCCW == 1) NextState <= Ang_270; NextState = Ang_225; else NextState <= Ang_270; end if; Ang_315 : if (MoveCW = '1') then if (MoveCW == 1) NextState <= Ang_0; NextState = Ang_0; elsi (MoveCCW = '1') then else if (MoveCCW == 1) NextState <= Ang_270; NextState = Ang_0; elsie if (MoveCCW = '1') then else if (MoveCCW == 1) NextState <= Ang_270; NextState = Ang_270; else NextState <= Ang_315; end if; end case; end process COMBINATIONAL; endcase	NextState <= Ana 315;		NevtState - Ana 315
NextState <= Ang_225; else NextState = Ang_225; else NextState <= Ang_270; else when Ang_315 => Ang_315 : if (MoveCW = '1') then if (MoveCW == 1) NextState <= Ang_0; NextState = Ang_0; else if (MoveCW == 1) NextState <= Ang_0; else if (MoveCW == 1) NextState <= Ang_270; NextState = Ang_0; else NextState = Ang_270; else NextState = Ang_270; else NextState = Ang_10; NextState <= Ang_270; NextState = Ang_10; else NextState = Ang_10; NextState <= Ang_270; NextState = Ang_10; else NextState = Ang_115; end case; NextState = PhysicalPosition; endcase end	elsif (MoveCCW = '1') then		also if (MovoCOW = 1)
else NextState <= Ang_270; end if; when Ang_315 => if (MoveCW = '1) then if (MoveCW == 1) NextState <= Ang_0; NextState = Ang_0; else NextState <= Ang_0; else NextState <= Ang_0; NextState <= Ang_1; NextState = Ang_1; NextState <= Ang_1; NextState = Ang_1; else NextState <= Ang_1; NextState <= Ang_3; NextState = Ang_2; else NextState = Ang_3; ned case; NextState = Ang_3; end process COMBINATIONAL; endcase	NextState <= Ana 225:		NevtState - And 225:
NextState <= Ang_270; NextState = Ang_270; end if; NextState = Ang_270; when Ang_315 => Ang_315 : if (MoveCW = '1') then if (MoveCW == 1) NextState <= Ang_0; NextState = Ang_0; else NextState <= Ang_270; else NextState <= Ang_315; end case; NextState = Ang_315; end process COMBINATIONAL; end	else		
end if; when Ang_315 => if (MoveCW = '1') then if (MoveCW == 1) NextState <= Ang_0; NextState = Ang_0; else NextState <= Ang_270; else NextState <= Ang_315; end if; else nextState <= Ang_315; NextState = Ang_270; else NextState <= Ang_315; end case; NextState = PhysicalPosition: end process COMBINATIONAL; end	NextState <= Ana. 270		NovtState And 270
when Ang_315 => Ang_315 : if (MoveCW = '1') then if (MoveCW == 1) NextState <= Ang_0; NextState = Ang_0; else NextState <= Ang_270; else NextState <= Ang_315; end case; NextState = PhysicalPosition; end process COMBINATIONAL; end	end if:		$Mexisidle = Ang_2/0;$
if (MoveCW = '1) then if (MoveCW = 1) NextState <= Ang_0; if (MoveCW == 1) NextState <= Ang_270; else if (MoveCCW == 1) NextState <= Ang_270; NextState = Ang_270; else NextState <= Ang_315; end case; NextState = PhysicalPosition; end process COMBINATIONAL; end	when Ang $315 =>$		Apg. 315 :
NextState <= Ang_0; NextState = Ang_0; elsif (MoveCCW = '1) then NextState = Ang_0; NextState <= Ang_270; else if (MoveCCW == 1) NextState <= Ang_270; NextState = Ang_270; else NextState = Ang_315; end case; NextState = PhysicalPosition; end process COMBINATIONAL; end	if (MoveCW = '1') then		$\frac{1}{4} \left(M_{\rm CM} - 1 \right)$
elsif (MoveCCW = '1) then else if (MoveCCW == 1) NextState <= Ang_270; NextState = Ang_270; else else NextState <= Ang_315; NextState = Ang_315; end if; default : end process COMBINATIONAL; end case	NextState Ana D		$H(V OV\Theta CVV == 1)$
NextState <= Ang_270; else else NextState <= Ang_270; else NextState <= Ang_315; NextState = Ang_315; end if; default : end case; NextState = PhysicalPosition; end process COMBINATIONAL; endcase	elsif (Move $CCW = 10$ then		Nextstate = Ang_U ;
else NextState = Ang_2/0; NextState <= Ang_315; else end if; default : end case; NextState = PhysicalPosition; end process COMBINATIONAL; endcase	NextState <= Apg 270;		eise ir (ivioveccw == 1)
ense eise NextState <= Ang_315; NextState = Ang_315; end if; default : end case; NextState = PhysicalPosition; end process COMBINATIONAL; endcase	alto		Ivextstate = Ang_2/0;
end if; default : end case; NextState = Ang_315; end case; NextState = PhysicalPosition; end process COMBINATIONAL; endcase	Novistato - Apo 215		else
end case; end process COMBINATIONAL; end process COMBINATIONAL; end case end case end case end case	nexisible <= Ang_315;		NextState = Ang_315;
end process COMBINATIONAL: end process COMBINATIONAL: end case end			detault :
end process COMBINATIONAL: end	and cose;		NextState = PhysicalPosition;
end	and blocass COMBINATIONAL		endcase
			end
SEQUENTIAL: process (Clock, Reset)	SEQUENTIAL: process (Clock, Reset)		
always @(posedge Clock or negedge Reset)	begin		always @(posedge Clock or negedge Reset)
if (Reset = 11) then begin: SEQUENTIAL	If (Reset = '1') then		begin: SEQUENTIAL
CurrentState <= PhysicalPosition; if (I Reset)	CurrentState <= PhysicalPosition;		if (I Reset)
elst rising_edge(Clock) then CurrentState = PhysicalPosition;	elsif rising_edge(Clock) then		CurrentState = PhysicalPosition;
CurrentState <= NextState; else	CurrentState <= NextState;		else
end if SEQUENTIAL; CurrentState NextState;	end If SEQUENTIAL;	CurrentState	CurrentState = NextState;
end process SEQUENTIAL: assigned to end	end process SEQUENTIAL;	assigned to	end
		he output	
NewPosition <= CurrentState; "NewPosition". assign NewPosition = CurrentState;	NewPosition <= CurrentState;	NewPosition"	assign NewPosition = CurrentState;
end architecture RTL: endmodule	ind architecture RTL;	<u></u>	endmodule

Example 8.6 FSM state encoding formats - Blackjack Game Machine

The model of a state machine with selectable state encoding is shown. The effect state encoding has on this particular state machine's area and timing is also shown. The different state encoding used are: sequential, Gray, Johnson, one-hot and three types of Nova. The first four are shown defined in the HDL models, while the three types of Nova state encoding are chosen by the VeriBest synthesis tool and requires the state machine be entered in a graphical, non VHDL or Verilog, format. This has been done and the results included in Figure 8. 10.

The model is of a Blackjack card game machine; see inset for description. The model includes a state machine controller for which the different state encoding formats apply, plus data path accumulators. The accumulators are not affected by the state encoding, but are included in this model for completeness. They hold the accumulated card value and the number of aces counted as having a value of 11.

The state machine has 16 states as seen by the state diagram, Figure 8.11.

When an HDL model is synthesized, the VeriBest synthesis tools create a separate design database file for each process (VHDL) and always block (Verilog), which can be independently optimized and analyzed. Because of this, and the need to analyze

Blackjack

Blackjack is the most popular of the card games played at the tables in casinos. It is played with a standard deck of 52 cards. The four suits; spades, hearts, diamonds and dubs have no significance and are ignored. The value of the cards is important. The Jack, Queen and King all have a value of 10. The ace is the most powerful card having a value of 1 or 11 depending upon what the player chooses.

Blackjack is also known as pontoon or "21" because 21 is the highest rated total card value a player can hold. Blackjack is the name given to the strongest hand consisting of an ace and a 10 valued card.

The object of the game is to beat the dealer. The dealer has no object other than to follow the rules of the casino, which is to stand (hold) on hands of 17 or more, and to draw another card on hands of 16 or less.

A player looses if his or her total card value is less than the dealer's total, or, he or she has over 21 and so has bust. If a player wants to improve his hand he can ask the dealer for another card. This is called drawing or hitting. If satisfied with the total card value he can stand (hold).

the effect state encoding has on the state machine's next state, current state and output logic, they have all been modeled in separate process (VHDL)/ always (Verilog) statements. The designed architecture of the Blackjack machine, Figure 8. 12, represents the structure of the process (VHDL) and always (Verilog) statements in the HDL models.

This same design is remodeled in Example 8.10 with various blocks combined, and has the sequential logic buried within the FSM, resulting in reduced code.

Defining the state encoding

There are four statements in each model (VHDL and Verilog), that relate to the state encoding. One of the statements is enabled to set the desired state encoding, while the other three must be "commented out". The phrase "commenting out" means turning a particular line of code into a comment by prefixing it with "--" (VHDL) or "//" (Verilog). The models shown have sequential state encoding enabled.

<u>VHDL state encoding</u>. State encoding is specified in the VHDL model, by defining the two signals CurrenfState and NextState, to be one of four types defined in the VHDL package STATE_ENCODE_TYPES. This package first defines an attribute called ENUM_TYPE_ENCODING to be of type string. This attribute is known to the VeriBest synthesis tools, and is used specifically to define a string representing the enumerated encoding of enumerated data types. Most

Chapter Eight: Modeling Finite State Machines

synthesis tools allow an attribute to be used in this way, although its name, ENUM_TYPE_ENCODING, may be different. Four identical enumerated data types are declared in the package, each having 16 possible values representing the state of the state machine. Each type has the attribute, ENUM_TYPE_ENCODING, attributed to it, and contains a binary string representing the particular state encoding.

<u>Verilog state encoding</u>. The state encoding is defined in the Verilog model by selecting one of four statements similar to the VHDL version. Each statement uses the include compiler directive to reference a system file and has the effect of replacing the include statement with the contents of the file it references. Each statement references a different file depending upon the desired state encoding. Each file defines the bit width of the CurrenfState and NextState signals, which changes depending on which state encoding is used. Each file also defines the 16 parameter values which represent the binary value of each state.

The simulated waveforms are shown in Figure 8.13.

Figure 8. 10 Results of using different state encodings for one particular state machine

Figure 8. 11 State diagram for Blackjack FSM controller

Chapter Eight: Modeling Finite State Machines

Figure 8. 12 Modeled architecture of a Black Jack game machine

VHDL
<pre>package STATE ENCODE TYPES is attribute ENUM_TYPE_ENCODING: string;</pre>
 type SEQ_EncodeStates is (Rest, WaitCard1, CardIdeIt, Card1Ace, Card1Pic, Card1_2to10, DrawNextCard, NextCardDeIt, NextCardAce, NextCardPic, NextCard_2to10, TestGE16, TestGE22, AceAs1, ShowHold, ShowBust); attribute ENUM_TYPE_ENCODING of SEQ_EncodeStates: type is "0000 0001 0010 0011 0100 0101 0110 01111";& "1000 1001 1010 1011 1100 1101 1110 1111";
 type GRAY_EncodeStates is (Rest, WaitCard1, Card1delt, Card1Ace, Card1Pic, Card12to10, DrawNextCard, NextCardDelt, NextCardAce, NextCardPic, NextCard_2to10, TestGE16, TestGE22, AceAs1, ShowHold, ShowBust); attribute ENUM_TYPE_ENCODING of GRAY_EncodeStates: type is '0000 0001 0011 0010 0110 0111 0101 010
type JOHN_EncodeStates is (Rest, WaitCardI, CardIdelt, Card1Ace, Card1Pic, Cafd1_2to10, DrawNextCard, NextCardDelt, NextCardAce, NextCardPic. NextCard_2to10, TestGE16, TestGE22, AceAs1, ShowHold, ShowBust); attribute ENUM_TYPE_ENCODING of JOHN EncodeStates: type is "0000000 0000001 00000011 00000111" & "00001111 00011111 001111110 ". "11111111 1111110 11111100";& "11110000 11100000 10000000";
type ONEHOT_EncodeStates is (Rest, WaitCardl, CardIdelt Card1Ace, Card1Pic, Card1_2to10, DrawNextCard, NextCardDelt, NextCardAce, NextCardPic, NextCard_2to10, TestGE16, TestGE22, AceAs1, ShowHold, ShowBust); attribute ENUM_TYPE_ENCODING of ONEHOT_EncodeStates: type is "0000000000001000000000001000" & "0000000000010000 00000000010000" & "0000000000000000000000000000" & "000000000000000000000000000" & "00000000000000000000000000" & "0000000000000000000000000" & "00000000000000000000000000" & "00000000000000000000000000" & "0000000000000000000000000000" &
end package STATE_ENCODE_TYPES;

VHDL package defining four enumerated state encoding data types

four Verilog 'include files defining state parameter values and their width

sequentialstateencoding

Verilog
//File name = state_encoding_seq.v
// Specify state bit width parameter StateWidth = 4;
// State Definitions parameter Rest = 4'b 0000, WaitCardl =4'b 0001, Card1Delt = 4'b 0010, Card1Ace = 4'b 0011, Card1Pic =4'b 0100, Card1_2to10 = 4'b 0101, DrawNextCard = 4'b 0101, NextCardDelt = 4'b 0111, NextCardDelt = 4'b 1001, NextCardPic =4'b 1000, NextCardPic =4'b 1001, NextCardPic = 4'b 1010, TestGE16 = 4'b 1011, TestGE22 = 4'b 1100, AceAs1 = 4'b 1101, ShowHold = 4'b 1111,

Johnson state encoding

Verilog	I
<pre>// File name = state_encoding_</pre>	john. v
// specify state bit width parameter StateWidth = 8;	
// State Definitions parameter Rest = WaitCardl = Card1Delt = Card1Ace = Card1Pic = Card1_2to10 = DrawNextCardDelt = NextCardDelt = NextCardDelt = NextCardPic = Ne	8'b 00000000, 8'b 0000001, 8'b 0000011, 8'b 0000111, 8'b 0001111, 8'b 00011111, 8'b 00111111, 8'b 01111111, 8'b 1111110, 8'b 11111100, 8'b 11111000, 8'b 11110000, 8'b 11100000, 8'b 11100000,

Gray state encoding

Verilog
// File name = state_encoding_gray.v
// Specify state bit width parameter StateWidth = 4;
<pre>// State Definitions parameter Rest = 4'b 0000, WaitCardl =4'b 0001. Card1Delt =4'b 0011. Card1Ace = 4'b 0010, Card1Pic = 4'b 0110, Card1_2tol0 = 4'b 0111, DrawNextCard = 4'b 0101, NextCardDelt = 4'b 0100, NextCardAce =4'b 1100, NextCardAce =4'b 1100, NextCardPic = 4'b 1101, NextCard_2to10 = 4'b 1111, TestGE16 =4'b 1110, TestGE22 = 4'b 1010, AceAs1 =4'b 1001, ShowHold = 4'b 1000;</pre>

one-hot state encoding

Verilog
// File name = state_encoding_onehot.v
// Specify state bit width parameter StateWidth = 16;
<pre>// State Definitions parameter Rest = 16'b 000000000000000000000000000000000000</pre>

FSM with selectable state encoding - Blackjack game machine

VHDL	Verilog
library IEEE; usedEEE.STD_Logic_1164.all,IEEE.Numeric_STD.all; use work.STATE_ENCODE TYPES.all; entity FSM_STATE_ENCODING is port (Clock, Reset: in std_logic; GameOn, CardDelt: in std_logic; DeltCardValue: in unsigned(3 downto 0); TotalCardValue: out unsigned(4 downto 0); Draw, Hold, Bust: out std_logic); end entity FSM_STATE_ENCODING;	<pre>module FSM_STATE_ENCODING (Clock, Reset, GameOn, CaidDelt, DeltCardVaiue, TotalCardValue, Draw, Hold, Bust); input Clock, Reset; input GameOn, CardDelt; input [3:0] DeltCardValue: output [4:0] TotalCardValue; output Draw, Hold, Bust; reg [4:0] TotalCardValue; reg Draw. Hold, Bust;</pre>
architecture RIL of FSM_TATE_ENCODING is DeltCardValue constant Ace: integer:= 1; constant Two: integer:= 2; constant Three: integer:= 3; constant Four: integer:= 4; constant Five: integer:= 5; constant Six: integer:= 6; constant Seven: integer:= 7; constant Eight: integer:= 8; constant Eight: integer:= 9; constant Ten: integer:= 10; constant Jack: integer:= 12;	
 constant King: integer:= 12; constant King: integer:= 13; DeliCardType type TypeDeltCardType is (CardTypeAce,	<pre>// DeltCardType parameter CardTypeAce = 0, CardTypeNo2to10 = 1, CardTypePic = 2; // State encoding defined by one of the following Include "state encoding_seq.v" // include "state_encoding_gray.v" // include "state_encoding_john.v" // include "state_encoding_onehot.v" reg [StateWidth - 1 : 0] CurrentState, NextState; reg AcesAs11, GE16, GE22; reg [2:0] AcesEq11; reg [1:0] DeltCardType; reg ResetAccums, IncAces, DecAces; reg AccTotalCardValue, AccTotalCardValueByIO;</pre>
std_logic; begin	
Input logic for card type IN_LOGIC: process (DeltCardValue) begin case (DeltCardValue) is when Ace => DeltCardType <= CardTypeAce; when Jack Queen King => DeltCardType <= CardTypeAce; when others => DeltCardType <= CardTypeNo2tol0; end case;	<pre>//// Input logic for card type // always @(DeltCardValue) begin: INLOGIC case (DeltCardValue) Ace: DeltCardType = CardTypeAce; Jack,Queen,King: DeltCardType = CardTypePic: default: DeltCardType = CardTypeNo2to10; endcase end</pre>
end process IN_LOGIC; FSM Next state logic	// // FSM Next state logic //
NEXT LOGIC: process (CurrentState, GameOn, CardDelt, DeltCardType, GE16, GE22,AcesAs11,) continued	always @(CurrentState or GameOn or CardDelt or DeltCardType or GE16 or GE22 or AcesAs11) continued

FSM with selectable state encoding - Blackjack Game Machine

VHDI begin if (Reset ='1') then NextState <= Rest; else case (CurrentState) is when Rest => if (GameOn = '1') then NextState <= WaitCardl; else NextState <= Rest; end if; when WaitCardI => if (CardDelt ='1') then NextState <= Card1Delt; else NextState <= WaitCardl; end if; when Card1Delt => if (DeltCardType = CardTypeAce) then NextState <= Card1Ace; elsif (DeltCardType = CardTypePic) then NextState <= Card1Pic; else NextState <= Card1_2to10; end if; when Card1Ace => NextState <= DrawNextCard; when Card1Pic => NextState <= DrawNextCard; when Card1_2to10 => NextState <= DrawNextCard; when DrawNextCard => if (CardDelt ='1') then NextState <= NextCardDelt; else NextState <= DrawNextCard; end if; when NextCardDelt => if (DeltCardType = CardTypeAce) then NextState <= NextCardAce; elsif (DeltCardType = CardTypePic) then NextState <= NextCardPic; else NextState <= NextCard 2to10; end if; when NextCardAce => NextState <= TestGE16; when NextCardPic => NextState <= TestGE16: when NextCard_2to10 => NextState <= TestGE16; when TestGE16 => if(GE16 ='1') then NextState <= TestGE22; else NextState <= DrawNextCard; end if; when TestGE22 => if (GE22 ='1') then if (AcesAs11 = 0') then NextState <= ShowBust; else NextState <= AceAs1; end If; else continued

Verilog begin: NEXT LOGIC if (Reset == 1) NextState = Rest; else case (CurrentState) Rest: if (GameOn == 1) NextState = WaitCardl; else NextState = Rest; WaitCardl: if (CardDelt == 1) NextState = Card1Delt; else NextState = WaitCard1; Card1Delt: if (DeltCardType == CardTypeAce) NextState = Card1Ace; else if (DeltCardType == CardTypePic) NextState = Card1Pic; else NextState = Card1 2to10; Card1Ace: NextState = DrawNextCard; Card1Pic: NextState = DrawNextCard; Card1_2to10; NextState = DrawNextCard: DrawNextCard: if (CardDelt == 1) NextState = NextCardDelt; else NextState = DrawNextCard; NextCardDelt: if (DeltCardType == CardTypeAce) NextState = NextCardAce; else if (DeltCardType == CardTypePic) NextState = NextCardPic; else NextState = NextCard_2to1; NextCardAce: NextState =TestGE16; NextCardPic: NextState = TestGE16; NextCard_2to10: NextState = TestGE16; TestGE16: if (GE16== 1) NextState = TestGE22; else NextState = DrawNextCard; TestGE22: if(GE22== 1) If (AcesAs11 == 0) NextState = ShowBust; else NextState = AceAs1; else NextState = ShowHold;

continued

FSM with selectable state encoding - Blackjack Game Machine

VHDL.		Verilog					
NextState <= ShowHold	d;						
end if;							
when AceAs1 =>		AceAs1:					
NextState <= TestGE16;		NextState = TestGE16;					
when ShowHold =>		ShowHold:					
NextState <= Rest,		Nexistare = kest; ShowBust:					
when ShowBust =>		SnowBust: NextState - Bert:					
NextState <= Rest;		nexisidle = Resi;					
When omers ≈>		NovtStata - Rest:					
		endcase					
end cuse,		end					
end process NEXT LOGIC:		Cild					
FSM Cuffent state logic							
		always @(posedge Clock)					
begin		begin: CURR LOGIC					
if rising edge(Clock) then		CurrentState = NextState;					
CurrentState <= NextState;		end					
end if;							
end process CURR_LOGIC;							
		//					
FSM Output logic (Controls data	path)	// FSM Output logic (Controls data path)					
)	//					
begin	,	begin: OUT LOGIC					
ResetAccums <= '0''		ResetAccums = 0:					
		IncAces = 0:					
DecAces <= '0';		DecAces = 0;					
AccTotalCardValue8y10 <= '0';		AccTotalCardValueBy10 = 0;					
AccTotalCardValue <= '0';		AccTotalCardValue = 0;					
Hold <= '0';	1	Hold = $0;$					
Bust <= '0';		Bust = 0;					
Draw <= '0';		Draw = 0;					
case (CurrentState) is		case (CurrentState)					
when Rest =>		Rest:					
ResetAccums <= '1';		ResetAccums = 1;					
when CardTAce =>		Card IAce:					
when Caral Pic =>	1914	Cuidanc: AcototalCardValuoBv10 - 1;					
when Cordl 2tol0 =>	1.						
when DrawNextCard =>		DrawNextCard:					
	•	Draw = 1:					
when NextCordAce =>		NextCardAce:					
IncAces <= '1':		IncAces = 1;					
when NextCordPic =>		NextCardPlc:					
AccTotalCardValueBy10 <=	'1';	AccTotalCardValueBy10 = 1;					
when NextCard_2to10 =>		NextCard_2to10:					
AccTotalCardValue <= '1';		AccTotalCardValue = 1;					
when AceAs1 ≈>		AceAs1:					
DecAces <= '1';		DecAces = 1;					
when ShowHold =>		ShowHold:					
Hold <= '1';		Hold = 1;					
when ShowBust =>	efault output values	ShowBust:					
Bust <= '1';	efined before case	Bust = 1;					
when others => so	not needed here.	deidult:					
			ì				
		900CU59 450	[.				
	continued		continued				

	//
- Data path	// Data path (accumulators)
DATA_PATH: process (Clock)	11
ve:Table TotalCardValue_v: unsigned(4 downto 0); begin	ciways@(posedge Clock) begin: ACCMULATORS
- No. of aces counted as 11	// // No. of aces counted as 11
If rising_edge(Clock) then If (ResetAccums = '1') then AcesEq11 <= 0; elsif (incAces = '1') then	//
Aceseq11 <= Aceseq11 + 1; elsif (DecAces = '1') then AcesEq11 <= AcesEq11 - 1;	else if (DecAces == 1) AcesEq11 = AcesEq11 - 1; else
else AcesEq11 <= AcesEq11; end if; Variable used to increase simulation	AcesEq11 = AcesEq11;
end if:	
Accummulated card value	// // Accumulated Card Value
if rising edge(Clock) then	//
if (ResetAccums = '1') then	TotalCardValue = 0;
IotalCardValue_v := 0;	else if (AccTotalCardValueBy10 == 1)
TotalCardValue, v := TotalCardValue, v + 10;	lotalCaravalue = lotalCaravalue + 10; else if (locAces == 1)
elsif (incAces = '1') then	TotalCardValue = TotalCardValue + 11;
TotalCardValue_v := TotalCardValue_v + 11;	else If (AccTotalCardValue === 1)
eisif (AccTotalCardValue = '1') then	TotalCardValue = TotalCardValue +
IotalCaraValue_V := IotalCaraValue_V +	DeltCardValue;
eislf (DecAces = '1') then	TotalCardValue = TotalCardValue - 10:
TotalCardValue_v := TotalCardValue_v + 10;	else
else TotalCardValue v - TotalCardValue v:	Tota/CardValue = TotalCardValue;
and if:	ena
TotalCardValue <= TotalCardValue_v;	
end if;	// <u></u>
	// Data path (status of accumulators)
	aiways @(AcesAs) } or TotalCardValue) begin: ACC_STATUS
- Aces counted as 11 status	// // Aces counted as 11 status
W (AcesEq11 > 0) then	if (AcesEq11 > 0)
AcesAs]] <= '1';	AcesAsil = 1;
AcesAs11 <= '0':	else AcesAsil = fr
end it;	, 6000 na i i - 0,
	//
- Greater than 22 status	// Greater than 22 status
if (TotalCardValue >= 22) then GE22 <= '1';	//
eise GF22 <= '0'	eise (CF22 - 0)
end if;	9222 = U,
continued	continued

FSM with selectable state encoding - Blackjack Game Machine

VHDL	Verilog
- Greater than 15 status if (TotalCardValue >= 16) then GE16<=T; else GE16<='0'; end if; end process DATA_PATH; end architecture RTL;	// // Greater than 15 status // if (TotalCardValue >= 16) GE16=1; else GE16=0; end endmodule

FSM with selectable state encoding - Blackjack Game Machin
--

Clock Reset					<u> </u>	<u>L</u>		ารม		บาบ				സ
GameOn			-							· · · · · · · · · · · · · · · · · · ·				
CardDelt			1 2 2 2		20 Jul	<u>- 13</u>	7			·. ·			۲	
DeltCardValue [3:0])	3	<u> </u>		11	0	1		0		5		<u>ö</u>
DellCardType[1:0]			1 1 2 2 2			2	1	D		See.				
CurrentState [3:0]		0 34	1 21	5 6		7 9	11 6	7	8 11	12 13 1	11 6	7 10	11 12 1	4 0
NextState (3:0)	Ó	ī	J2 [5]	6 21 6	[7]	9 [11]	6	7 8	11 12	13 11	6 7]	10 11 6	12 14	0
AccTotalCardValue	× 🔯	1.5 or 155			<u>報知</u>		â				- .			<u>)</u> w
TotalCard ValueBy10	RI TRACE				San Line	_ F T			18 de -			- Kar-		31
AcesAs11	- x - L						1			3.20°	3. 2.	, y -		
AcasEq14[1:0]				0						1 1			0	
DecAces	×						1922 - 1 1922 - 192						<u>*</u>	
GE16	8 <u>1</u>				$\frac{r_{K,\tilde{\mu}}}{r_{K,\tilde{\mu}}} = \frac{-r_{1}}{r_{1}}$	- <u>1</u>	- ـــــــــــــــــــــــــــــــــــــ			÷.	· · · · · · · · · · · · · · · · · · ·			
GE22	像調		841, 191 (m. 1916) 1917	a sprac			_	<u>-</u>	30					
IncAces	N <u>RA</u>	i i i jedi i se ne			e succes	[1] [1]				19-65- 	47. juli 	1.964		Ś
ResetAccums	2. 1								in gr 					<u> </u>
TotalCardValue[5:0)	81	C)		3			13		24	14	201E3	219	Ď
Draw					- 1									_
Hold		Side and a second s	Not the second						18 an An 19 - 19 - 19 - 19 - 19 - 19 - 19 - 19 -		<u> </u>	gal ga		12
Bust	× 199		4151351 		9.65	2						<u>si</u> ,	<u> </u>	्रोक (2001)
	trikure Sang	···?***	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	¥21348-3	11月-21月1日	• • • • •						v, 4. 		
I	, D	50	100	150	2	òo	250 time (ns)	300	350	4	100	450	500	550
Currents	State and N	lextState	values are	e for sequen	tial state	encoding,	and corre	spond to	the state m	mbers in f	the state di	agram Fig	ure 8.11	

Figure 8. 13 Signal waveforms for the state encoding FSM - Blackjack Machine

Example 8.7 FSMs with a Mealy or Moore Output

The two state machines in this example differ in that, one has a Mealy type output, and the other a Moore. The state diagrams, Figure 8. 14, and the HDL code, shows how the output (NewColor) is a function of the inputs (Red, Green and Blue) in the Mealy example.

Figure 8. 14 State Diagram for FSMs with a Mealy and Moore Output

HDL Chip Design

when GreenState =>	GreenState :
If (Green = '1') then	if (Green)
NewColor <= '0';	begin
NextState <= GreenState;	NewColor = 0 ⁻
else	NextState = GreenState;
if (Red = '1' or Blue = '1') then	end
NewColor <= '1';	else
else	
NewColor <≃ 'U';	
Nexistate <= whitestate;	NowColor - 0:
erici II,	NewColor ≈ 0, NevtState - WhiteState
	and
when BlueState =>	BlueState :
if (Blue = '1') then	if (Blue)
NewColor <≈ '0';	begin
NextState <= BlueState;	NewColor = 0;
else	NextState = BlueState;
if (Red = '1' or Green = '1') then	end
NewColor <= 11;	else
else	begin
NewColor <= '0';	if (Red Green)
end if;	NewColor = I;
NextState <= WhiteState;	else
end it;	NewColor = U;
when WhiteState ->	WhiteStote :
$H/Dect = 11^{11}$ then	if (Bech
NewColor ≤ 1	begin
NextState <= RedState:	NewColor = 1:
elsif (Green = '1') fhen	NextState = RedState:
NewColor <= '1';	end
NextState <= GreenState;	else if (Green)
elsif (Blue \approx '1') then	begin
NewColor <= '1';	NewColor = 1;
NextState <= BlueState;	NextState = GreenState;
else	end
NewColor <≈ '0';	else if (Blue)
NextState <= WhiteState;	Degin
end in:	NewColor ≈ 1; NewtState - PlueState:
when others $=>$	
New Color $<= 0$, New State $<= W/biteState$	oleo
	begin
end process ESM_COMB ^r	NewColor = 0
	NextState = WhiteState:
	end
	default :
	NextState = WhiteState;
~	endcase
FSM_SEQ: process (clock, reset)	end
begin	
IT (Reset = U) then Sequential	always @(posedge Clock of negedge Reset)
Currentstate <≈ whitestate: section with	Degin: FSM_3EQ
enail fising_eage(Clock) inen	R () (050)
and if	
end process FSM SEQ:	CurrentState = NextState
	end
end architecture RTL:	L
	endmodule

FSM modeled with "NewColor" as a Mealy type output

FSM modeled with "NewColor" as a Moore type output

		$\sum_{j=1}^{N} z_j \ge C z_j $ is
ibrary IEEE; use IEEE.STD_Logic_1164.all;		
entity FSM_MOORF is		module ESM_MOORE
port (Clock, Reset: in std logic;		(Clock, Reset, Red, Green, Blue, NewColor);
Red. Green. Blue: in std logic:		input Clock, Reset, Red. Green, Blue:
NewColor: out std_logic);		output NewColor;
end entity FSM_MOORE;		reg NewColor;
architecture RTL of FSM_MOORE is		parameter RedState = 2'b 00,
type Color is (RedState, GreenState, BlueSi	ate, WhiteState);	GreenState = 2'b 01
signal CurrentState, NextState: Color;		BiueState = 2'b 10,
begin		WhiteState = 2'b 11;
		reg (1:0) CurrentState, NextState;
FSM_COMB: process (Red, Green, Blue, Cu	rrentState)	
begin		always @(Red or Green or Blue or CurrentState)
case CurrentState is	Current and next	begin: FSM_COMB
when RedState =>	state must not be	a case (CurrentState)
NewColor <= '1';	variable; filp-flops	RedState:
if (Red = 'i') field	would not be	영제 NewColor = 1;
NextState <= RedState;	inferred since a	
	variable is update	ed NextState = RedState;
NextState <= WhiteState;	in zero della fime.	ester Téc
end in;		NextState = WhiteState;
Winen Greensidie =>		Greenstate :
	Moore outo	
	Independer	
	of Red, Gree	
NevtState <= WhiteState:	and Blue.	NextState - WhiteState
	1. At	
when BlueState =>		BlueState
NewColor <= '1':		NewColor = 1:
if (Blue = ']') then		if (Blue)
NextState <= BlueState;		NextState = BlueState:
also		else
NextState <= WhiteState;		NextState = WhiteState;
end if;		
when WhiteState =>		WhiteState :
NewColor <= '0';		NewColor = 0;
if (Red = '1') then		if (Red)
NextState <= RedState;		NextState = RedState;
elsif (Green = '1') then		else if (Green)
NextState <= GreenState;		NextState = GreenState;
eisif (Blue = '1') then		else if (Blue)
NextState <= BlueState;		NextState = BiueState;
NEXISTORE <= WINTESTORE;		NEXTSTATE = WhiteState;
eng II; when albert ->		Cercuit :
when others ⇒>		Nexistate = Whitestate;
NewColor <= U;		enacase
And earer		end
and process ESM_COMR-		
FSM_SEQ; process (Clock, Reset)		always @(posedge Clock or negedge Reset)
begin		begin: FSM SEQ
if (Reset = '0') then	sequentio	if (I Reset)
CurrentState <= WhiteState:		CurrentState = WhiteState:
elsif rising_edge(Clock) then	asynchronous	else
CurrentState <= NextState:		CurrentState = NextState;
end If;		end
end process FSM_SEQ;		L.
		endmodule
and architecture RTL:		

Example 8.8 FSM with a Mealy and a Moore Output

These models are of the example state diagram described at the beginning of this chapter, see Figure 8.1. The model has a Mealy and a Moore type output (Y_Me and Y_Mo). The Moore type output is clearly seen to be dependent upon the state value only, while the Mealy type output is dependent upon the state value and inputs A and Hold. Because the Mealy output is dependent upon inputs, it is modeled in a section of code that infers combinational logic block, as must all Mealy type outputs.

FSM with a Mealy and a Moore Output

Example 8.9 FSM with sequential next state logic

The state machine in this example models an extra flip-flop in the next state logic. The state diagram, Figure 8.15, indicates the model's functional operation. The modeled architecture is shown after the HDL code.

As the state machine passes around the loop of five states, the three inputs A, B and C, cause the state machine to branch to states ThreeA, ThreeB, ThreeC, respectively, on a priority encoded basis. The synchronous reset is guaranteed to be high for at least five clock cycles, thus ensuring the state machine in state One. After a reset, the output Y1 is high for one clock cycle every five clock cycles while A remains high, likewise for input C and corresponding output Y3. However, when B goes high, its corresponding output Y2 goes high only once. The reason for this is, when the state machine is in state ThreeB, the signal BeenInState3B is set to a logic 1 from an additional flip-flop in the next state logic, and which is used to inhibit the state machine from entering state ThreeB again, until after a reset occurs.

Figure 8.75 State diagram implying sequential next state logic

FSM with sequential next state logic		
VHDL		Verilog
library IEEE; use IEEE.STD_Logic_1164.all;		
entity FSM SEQ. NEXT is		module FSM_SEQ_NEXT (Clock, Reset, A. B. C. Y1, Y2, Y3);
port (Clock, Reset: in std logic;	ĺ	Input Clock, Reset;
A, B, C: in std_logic;		input A, B, C;
Y1, Y2, Y3: out std logic);		output Y1, Y2, Y3;
end entity FSM_SEQ_NEXT;		reg Y1, Y2, Y3;
		parameter One = 3'b 000,
orchitecture RTL of FSM_SEQ_NEXT IS		IWO = 3D UUT, $IbrooA = 3b 010$
Dummy Four Five):	b, mileec,	$\frac{111000}{10000} = 30000,$
sianal CurrentState: StateType:		Three $C = 3'b 100$
signal BeenInState3B: std. logic;		Dummy = 3'b 101,
.		Four = 3'b 110,
begin	Synchronous	Five = 3'b 111;
	reset must b	e reg [2:0] CurrentState;
FSM_1: process (Clock)	at logic 1 tor	³ reg BeeninState3B;
begin		
if rising_edge(Clock) then	the state	always @(posedge Clock)
case (Currentstare) is	machine is ir	
if (Poset = '1') then	state "One".	
BeeninState3B <= '0''-		if (Reset)
CurrentState <= One:	*BeenInState3	B" begin
eise	∽ set to logic 0	BeenInState3B = 0;
CurrentState <= Two;	when in state	9 CurrentState = One;
end if;	"One" and	end
	rikeser is ar	else
		CurrentState = Two;
when IWO =>		
if (A = 'T') men		(r (A)
elsif /8 - 110 then	1	else if (B == 1)
if (BeeninState3B = '1') then	1	if (BeeninState3B)
CurrentState <= Dummy;	}	CurrentState = Dummy;
else		else
CurrentState <= ThreeB;	1	CurrentState = ThreeB;
end if;		else if ($C \approx 1$)
elsif (C = (1)) then		CurrentState = ThreeC;
CurrentState <= ThreeC;		else
		Currentstate = Dummy;
end if:		
when IhreeA =>		ThreeA:
CurrentState <= Four;		CurrentState = Four;
	"BeeninSto	ote36" Three8 :
when ThreeB =>	set to logi	cl begin
BeenInState3B <= '1';	when the	state BeenInState3B = 1;
CurrentState <= Four;	Indchine i	s in CurrentState = Four;
	sidieillie	end end
when Three C ->		IbrooC :
CurrentState <= Four		CurrentState = Four:
when Dummy =>		Dummy ;
CurrentState <= Four;		CurrentState = Four;
when Four =>	ļ	Four :
CurrentState <= Five;		CurrentState = Five;
when Five =>		Five
CurrentState <= One;		CurrentState = One;
when others =>	1	900CQ\$9
end cote:	{	ĊII G
end if:		
<u></u> -	Continued	لممريطةموم
	commued	cominuea

Example 8.10 FSM with sequential output logic

A state machine with an embedded counter is modeled to the state diagram; Figure 8.16. The counter forms part of the state machine's output logic as shown by the inferred structure.

After a reset, the state machine starts in state One, and the counter in the output logic is set to zero. After the reset, the state machine cycles around a loop of four states. There are two branches for the second stage of the loop, and are represented by the two states, TwoCountand TwoNoCount. When the input EnableCount is high, state TwoCount is used in the loop, otherwise, TwoNoCount is used. Therefore, while EnableCount is high the counter is incremented every for clock cycles. The counter's output is output from the model, together with an indication of whether it is greater than, or equal to 25.

Notice this structure causes the counters to be incremented one clock cycle after the state machine has been in State TwoCount. In order to cause the counter to increment at the same time the state machine enters state TwoCount, the next state signal should be passed into the output logic, instead of the current state signal as modeled in this example.

Figure 8. 16 State diagram implying sequential output logic

FSM with sequential output logic

Example 8.11 FSM with sequential next and output state logic - Blackjack

The models in this example are functionally the same, imply the same architecture and synthesize to the same circuit as those in Example 8.6. The state diagram is therefore the same, Figure 8.11, and the implied architecture is also the same, Figure 8.12. Example 8.6 was specifically designed with separate input, next state, current state, output logic and data path logic to show the effect of different state encoding. This example combines all these blocks into one process (VHDL) and always block (Verilog) reducing the code considerably. There is no right or wrong coding method for any model except that it should be easy to comprehend, that is, do not trade off comprehension for the shortest and most efficient use of the code. Example 8.6 and this one demonstrates these two extremes.

Sequential state encoding is used and, unlike Example 8.6, is defined within the model. There is no reference to any next state signals, but these exist by implication; signals CurrentState and NextState from Example 8.6 have been replaced with the signal State. The reduced number of signals can be seen by the reduced number of signals in the simulated waveforms, Figure 8.17

Chapter Eight: Modeling Finite State Machines

Blackjack Game Machine with condensed code					
VHDL	Verilog				
library lEEE; use lEEE_STD_Logic_1164. all, lEEE. Numeric_STD. all;					
entity FSM_SEQ_NEXT_OUT is port (Clock, Reset: in std_logic; GameOn, CardDelt: in std_logic; DeltCardValue: in unsigned(3 downto 0); TotalCardValue_out: out unsigned(4 downto 0); Draw. Hold. Bust: out Std_logic); end entity FSM_SEQ_NEXT_OUT;	module FSM_SEQ_NEXT_OUT (Clock. Reset, GameOn, CardDelt. DeltCardValue, TotalCardValue, Draw, Hold, Bust); input Clock, Reset, GameOn, CardDelt; input [3:0] DeltCardValue; output [4:0] TotalCardValue; output Draw, Hold, Bust; reg [4:0] TotalCardValue; reg Draw, Hold, Bust;				
architecture RTL of FSM_SEQ_NEXT_OUT is constant Ace: integer:= 1; constant Two: integer:= 2; constant Three: integer:= 3; constant Four: integer:= 4; constant Five: integer:= 5; constant Six: integer:= 6; constant Seven: integer:= 7; constant Seven: integer:= 7; constant Seven: integer:= 8; constant Nine: integer:= 9; constant Ten: integer:= 10; constant Jack: integer:= 10; constant Queen: Integer:= 12; constant Queen: Integer:= 13; Sequential state encoding type SeqStateType Is	<pre>// DeltCardValue parameter Ace = 1, Two = 2, Three = 3. Four = 4, Five = 5, Six = 6, Seven = 7. Eight = 8, Nine = 9, Ten = 10, Jack = 11, Queen = 12, King = 13; // Sequential state encoding parameter Rest = 0, WoitCord </pre>				
(Rest, WaitCardl, Card1Delt, Card1Ace, CardIPic, Card1_2to10, DrawNextCard, NextCardDelt, NextCardAce, NextCardPic, NextCard_2to10, TestGE15. TestGE22. AceAs1, ShowHold, ShowBust); attribute ENUM_TYPE_ENCODING: string; attribute ENUM_TYPE_ENCODING of SeqStateType: type is "0000 0001 00100011 01000101 01100111 "& "1000 1001 1010 1011 1100 1101 1110 1111";	$\begin{array}{llllllllllllllllllllllllllllllllllll$				
signal State: SeqStateType; signal AcesEq11: integer range 0 to 4; signal TotalCardValue: integer range 0 to 31;	reg [3:0] State; reg [2:0] AcesEq11;				
begin	//				
 FSM with additional counters integrated within the model. CURR_SEQ_NEXT_OUT: process (Clock) begin if rising edge(Clock) then If (Reset ='1') then State <= Rest; else	<pre>// FSM with additional counters // integrated within the model. // always @(posedge Clock) begin: CURR_SEQ_NEXT_OUT if (Reset) State = Rest; else case (State) Rest: begin</pre>				
continued	continued				
Blackjack Game Machine with condensed code	Datapath integral to the FSM (see Figure 8.12)				
--	---				
VHDL	Verilog				
TotalCardValue <= 0; AcesEq11 <=0; if (GameOn = '1') then State <= WaitCard1; else State <= Rest; end if;	TotalCardValue = 0; AcesEq11 = 0; if (GameOn) State = WaitCardI; else State = Rest; end				
<pre>when WaitCardI => if (CardDelt ='1') then State <= Card1Delt; else State <= WaitCard1; end if; when Card1Delt => if (DeltCardValue = Ace) then State <= Card1Ace; elsif (DeltCardValue = Jack or DeltCardValue = King) then State <= Card1Pic; else State <=Card12to10; end if; when Card1Ace => </pre>	WaitCardI: if (CardDelt) State = Card1Delt: else State = WaitCardI; Card1Delt: if (DeltCardValue == Ace) State = Card1Ace; else if (DeltCardValue == Jack DeltCardValue == Jack DeltCardValue == King) State = Card1Pic; else State = Card1_2to10;				
AcesEq11 <= AcesEq11+1; TotalCardValue <= TotalCardValue +11; State <= DrawNextCard;	Card1Ace: begin AcesEq11 = AcesEq11 + 1; TotalCardValue = TotalCardValue + 11; State = DrawNextCard; end CardIPic:				
TotalCardValue <= TotalCardValue + 10; State <= DrawNextCard; when Card1_2to10 => TotalCardValue <= TotalCardValue +	begin TotalCardValue = TotalCardValue + 10; State = DrawNextCard; end Card1_2to10: begin				
toJnteger(DeltCardValue); State <= DrawNextCard; when DrawNextCard => if (CardDelt = '1') then State <= NextCardDelt; else State <= DrawNextCard;	TotalCardValue = TotalCardValue + DeltCardValue; State = DrawNextCard; end DrawNextCard: If (CardDelt) State = NextCardDelt; else State = DrawNextCard;				
end if; when NextCardDelt => if (DeltCardValue = Ace) then State <= NextCardAce; elsif (DeltCardValue = Jack or DeltCardValue = Queen or DeltCardValue = King) then State <= NextCardPic; else State <= NextCard_2to10; end if; when NextCardAce => AcesEq11 <= AcesEq11 + 1; TotalCardValue <= TotalCardValue +11; State <=TestGE15;	NextCardDelt: if (DeltCardValue == Ace) State = NextCardAce; else if (DeltCardValue == Jack DeltCardValue == Queen DeltCardValue == King) State = NextCardPic; else State = NextCardPic; else State = NextCard_2to10; NextCardAce: begin AcesEq11 = AcesEq11 + 1; TotalCardValue = TotalCardValue + 11;				
continued	State = TestGE15; end				

Chapter Eight: Modeling Finite State Machines

when NextCard/Roc When NextCard 2010 => when NextCard 2010 => Total Card/Value = Total Card/Value + DiddeCard/Value = Total Card/Value + When NextCard 2010 => State <= IntGE15; When NextCard 2010 => When NextCard 2010 => State <= IntGE15; If (AcadCard/Value >= Total Card/Value + State <= IntGE15; If (AcadCard/Value >= Total Card/Value + State <= IntGE15; If (AcadCard/Value >= 10; State <= IntGE15; If (AcadCard/Value >= 22) If (Ac	Blackiack Game Machine with condensed code	Datapath integral to the FSM (see Figure 8, 12)
when NextCordPice > State <= TestGE15:		
<pre>File(SECondValue == TotalCardValue == 10) State <= TestGE15; when NextCord_2010 => TotalCardValue == TotalCardValue +: 3 State <= TotalCardValue =: 4 State == TotalCardValue +: 3 State == TotalCardValue +: 3 State <= TotalCardValue =: 4 NextCord_2010; begin when NextCord_2010; State <= TotalCardValue +: 4 NextCord_2010; Begin State <= TotalCardValue =: 15; end File(CardValue == TotalCardValue +: 4 NextCord_2010; Begin State <= TotalCardValue =: 15; end File(CardValue == TotalCardValue +: 4 NextCord_2010; Begin State <= TotalCardValue =: 15; end File(CardValue == TotalCardValue +: 16; State <= TotalCardValue =: 16; end File(CardValue =: TotalCardValue +: 16; File(CardValue =: 16; File(Ca</pre>	when NextCardPic =>	NextCordPic:
State <= TestGE16; when NextCord_2to10 => JotalCardValue <= TotalCardValue +: JotalCardValue == TotalCardValue +: JotalCardValue =: TotalCardValue +: JotalCardValue == TotalCardValue +: JotalCardValue =: TotalCardValue +: JotalCardValue =: JotalCardValue =:	JataCardVolue <= lotalCardVolue + 10	beain
<pre>when NextCord_2to10 => TotalCordVolue <= TotalCordVolue <= TotalCordVolue <= TotalCordVolue >= TotalCordVolue <= TotalCordVolue >= To</pre>	State <= TestGE15;	State = TestGE15;
Virtual Next Cold_2010(1-3) TotalCordValue + TotalCordValue	Nation NewtOred Ota 10	end North State
<pre>bolic outbook = to introger(DeltContVisiue): State <= lestGE15; when TestGE15 => #{(ColtContVisue >= 15) then State <= lestGE12; else State <= DrowNextCond; end f; else State <= DrowNextCond; end f; else State <= ShowHeat; else State <= ShowHeat; state <= ShowHeat; State <= Rest; footaCardValue >= 0; Hoat <= 0; end di; Tote <= Rest; ord case; end di; Tote <= Rest; ord case; end di; Toow <= 0; Hoat <= 0; bat <=</pre>	Tatal and also a lotal architer	hexicala_21010.
State <= TestGE15:		
State = TestGE16; when TestGE16 => When TestGE16 => State <= DrowNextCord;	State <= TestGE15:	
<pre>when TestGE15 => #f(c)dCard/Volue >= 15) then State <= DrawNextCard; end if; when TestGE22 => if (CotaCard/Volue >= 22) then if</pre>		State = TestGE15;
if (distiCard/table >= 15) State <= lostGE22;	when TestGE15 =>	TestGE15:
State <= lastGE22;	if (TotolCordVolue >= 15) then	I (TotalCardValue >= 15)
eise State <= DrawNextCard; end if: when IsetCE22 => if (CloidCardValue >= 22) then State <= ShowHold; eise State <= ShowHold; end if: eise State <= ShowHold; end if: when AceAs1; end if: when AceAs1] == 0 State <= ShowHold; end if: when ShowHold => State <= TestCE15; State <= Rest; when ShowHold => State <= Rest; when ShowHold => State <= Rest; when ShowHold => State <= Rest; end if: TotatCardValue = TotatCardValue -:10; State <= Rest; when ShowHold => State <= Rest; when ShowHold => State <= Rest; end if: TotatCardValue => State <= Rest; when ShowHold => State <= Rest; end if: TotatCardValue_out <= totatCardValue -:10; State <= Rest; end if: TotatCardValue_out <= to_unsigned(TotatCardValue, 5); Draw <= 10; when ShowHold => Draw <= 10; but <= 0; but <= 0; end end end end end end end end	State <= TestGE22;	State = TestGE22;
State <= DrawNextCord;	e{se	else
<pre>end if: when ShowHold: end if: else State <= ShowHold: end if: else State <= ShowHold: end if: end if: when AceAs1 : end if: when AceAs1 := AceAs1; end if: when ShowHold: end if: when ShowHold => State <= TotalCardyNalue >=10; State <= ShowHold: end if: when ShowHold => State <= TotalCardyNalue >=10; State <= TestGE15; when ShowHold => State <= Rest: when ShowHold => State <= Rest: end if: end if:</pre>	State <= DrawNextCard;	State = DrawNextCard;
<pre>idetOccurrent in the intervent is t</pre>	end if;	T. 40500
<pre>if (OfdicCatQuard Set 22) item if (Acastq11 = 0) if (Acastq11 = 0) State <= AcaAs1; else State <= AcaAs1; else State <= AcaAs1; else State <= AcaAs1; else State <= AcaAs1; else State <= AcaAs1; else State <= AcaAs1; begin AceAs1; AceAs1; begin AceAs1; But <= 0; But <</pre>	When lest(5:22 =>	IOST-SEZZ:
State < ShowBust;	ff (1010R-010 VOIU0 >= 22) 1101	= 1010 CordValue >= 22)
else State <= AceAs1;	State SpowBast	State - ShowPust
State <= AceAs1;	sicie <= snowbusi,	
and if; else State <= ShowHold;	State <= AceAs1	State = AceAs1:
eise State <= ShowHold: end if: when AceAs1 => AceAs1; begin TotalCardValue <= TotalCardValue -:10; State <= TestGE15;	end if;	else
State <= ShowHold:	else	State = ShowHold;
<pre>end if: when AceAs1 => AcesEq11 = AcesEq11 = 1; begin TotalCardValue == TotalCardValue == 10; State == TestGE15; when ShowHold => State <= Rest; when ShowHold => State <= Rest; end it; end case; end it; end case; end it; end case; end it; end case; end it; braw <= 10; Hold <= 10; braw <= 10; Hold <= 10; braw <= 10; Hold <= 11; when ShowHold => State = Rest; end it; end case; end it; end case; end it; end case; end it; end case; end it; braw <= 10; Hold <= 10; braw <= 10; Hold <= 10; Bust <= 10; Hold <= 0; Bust <= 0; Hold <= 0; Hold <= 0; Bust <= 0; Hold <= 0; Bust <= 0; Hold <= 0; Bust <= 0; Hold <= 0; Bust <= 0; Hold <= 0; Hold <= 0; Bust <= 0; Hold <= 0; Bust <= 0; Hold <</pre>	State <= ShowHold;	
when AccAs1 => Accest[11 - 1; begin Accest[11 - 1; begin iotalCardvalue <= TotalCardvalue = :10;	end if:	
Accestical 1 <= Accestical 1 <= 1; Total Card Value <= Total Card Value = 10; State <= Test GE 15; when ShowHold => State <= Rest; when ShowWold => State <= Rest; when others => Default value for outputs defined: State <= Rest; end case; end it; total Card Value => Default value for outputs defined: State = Rest; end case; end it; total Card Value => Default value for outputs defined: State = Rest; end case; end it; total Card Value, 5); Draw <= 0; Hold <= 0; Bust <= 10; when ShowHold => Draw <= 10; Hold <= 10; when ShowHold => Draw <= 0; Hold <= 10; when ShowHold => Draw <= 0; Hold <= 0; Bust <= 10; default: Bust <= 10; case (State) Bust <= 10; Bust <= 10; default is case = Rest; end case; when ShowHold => Draw <= 0; Hold <= 0; Bust <= 10; default is case = Rest; end case; when ShowHold => Draw <= 0; Hold <= 0; Bust <= 10; default is case = Rest; end end end end Hold <= 0; Bust <= 10; default is case = Rest; end end end end Hold <= 0; Bust <= 10; default is case = Rest; end end end Hold <= 0; Bust <= 0; Hold = 0; Bust <= 0; end end end end end end end end	when AceAs1 =>	AceAs1:
Ional Cardwards <= fordic Cardwards ==-10;	AcesEq11 <= AcesEq11 - 1;	
when ShowHold => State = Rest; end when ShowBust => Default Value for outputs defined at beginning of process/atways State = TestGETS; state <= Rest;	Notal Card Value <= 10tal Card Value - 10;	ACOSEQ11 = ACOSEQ11 - 1;
when ShowHold => State < Rest;	state <= lesiGE15;	State - TortCE15
when ShowHold => State <= Rest; when ShowBust => Bust <= '1'; State <= Rest; end case; end it; TotalCardValue_out <= to_unsigned(TotalCardValue, 5);		
State <= Rest;	when ShowHeld =>	ShowHold:
when ShowBust => Bust <= '1'; State <= Rest; when others => end it; end case; end it; TotalCardValue_out <= to_unsigned(TotalCardValue, 5);	State <= Rest;	State = Rest;
Bust <= '1';	when ShowBust => Default Value	ShowBust:
State <= Rest;	Bust <= '1'; Outputs Genne	State = Rest;
when others => Processive with the set; State <= Rest;	State <= Rest;	
starte <= Rest; end it; end it; TotalCardValue_out <= to_unsigned(TotalCardValue, 5); Draw <= '0'; Hold <= '0'; Bust <= '0'; case (State) is when DrawNextCard => Draw <= '1'; when ShowHold => Hold <= '1'; when ShowHold => Hold <= '1'; when ShowBust => Bust <= '0; Hold <= '1'; when ShowBust => Bust <= '1'; when ShowBust => Draw <= '1'; bust <= '1'; when ShowBust => Draw <= '1'; bust <= '1; when ShowBust => Draw <= '1'; bust <= '1; when ShowBust => Draw <= '1'; when ShowBust => Draw <= '1'; Bust <=	when others =>	default:
end it; end end it; end TotalCardValue_out <= to_unsigned(TotalCardValue, 5);	State <= Rest;	State = Rest;
end if: end TotalCardValue_out <= to_unsigned(TotalCardValue, 5);	ena Case; and H	endcase
TotalCardValue_out <= to_unsigned(TotalCardValue, 5);	end #:	end
Draw <= 10';	TotalCardValue_out <= to_unsigned(TotalCardValue, 5);	
Undw <= 0,		aby and O(State)
Bust <= 10;	Hold <= 0,	
case (State) is Assignments to the three outputs Draw Hold and DrawNextCard => Hold = 0; bust <= '1';	Bust <= '0':	Drow = 0:
when DrawNextCard => Draw <= '1';	case (State) is	Hold = 0;
Draw <= '1';	when DrawNextCard => Assignments to the th	ree Bust = 0;
when ShowHold => Bust creaseportere trom Hold <= '1';	Draw <= '1'; outputs Draw, Hold or	Case (State)
Hold <= '1';	when ShowHold => Bust are separate from	DrawNextCard: Draw = 1;
when ShowBust => Bust <= '1';	Hold <= '1';	ShowHold: Hold = 1;
Bust <= '1';	when ShowBust =>	ShowBust: Bust = 1;
Imment onlines => Imment onlines => Drow = 0; Drow <= '0';	bust <= 'l';	aeraulii: Degin
Hold <= '0'; Bust <= '0'; end case; ad process CURR_SEQ_NEXT_OUT; t ambitacture DTL:		$D(QW = 0;$ $H_{Q}(M = 0;$
Bust <= '0'; end case; nd process CURR_SEQ_NEXT_OUT; d grabitacture DTL: endmodule	Hold $\leq 10^{\circ}$	Bust = 0
end case; nd process CURR_SEQ_NEXT_OUT; d graphicacture DTU:	Bust <= '0';	end
nd process CURR_SEQ_NEXT_OUT; end endmodule	end case;	endcase
endmodule	nd process CURR_SEQ_NEXT_OUT;	end
	d grabila sture DTL.	endmodule

Figure 8. 17 Signal waveforms for Blackjack Machine with condensed code

Example 8.12 Unidirectional interactive FSMs

Three differently modeled state machine control paths are used to control the same data path see Figure 8. 18. Control Path 1 is modeled using a master state machine, which controls three slave state machines. Control Path 2 uses three state machines, with a series chain of control between them. Control Path 3 is modeled using a single state machine. All three control paths are functionally equivalent.

Data path

The data path structure, Figure 8. 19, and the HDL models are included in this example. The data path does not perform any particular function, but is long enough to demonstrate the different FSM configurations used for its control. The data path accepts sequences of either three or four, 4-bit values on the input, and processes them through the datapath, to provide sequences of either two or three, 9-bit values on the output. The data path is controlled by the control path to perform the following equations. The input data is A, B, C, and D, the output data is Y1, Y2 and Y3.

Sequence of four inputs (ThreeOnly = 0) Y1=A.B+A.C Y2=A.D+B.C Y3=B.D+C.D Sequence of three inputs (ThreeOnly = 1) Y1=A.B+A.C Y4=B.C

The sequential flow of data passing through the data path is indicated by the signal waveforms; Figure 8.23. Because six multiplications are needed when four 4-bit input data is used, and there is only one multiplier, the fastest throughput of consecutive data is every six clock cycles. When only three 4-bit input data is used, only three multiplications are needed, and so consecutive sequences of input data are possible.

Control paths

The structural configuration of the three control paths are illustrated in Figure 8. 18. Each control path provides the same control signals to the data path.

The description of the three control paths follow; their state diagrams are illustrated in Figures 8.20, 8.21 and 8.22.

Figure 8. 18 Three FSM control path configurations

Control Path 1. The master state machine FSM_MASTER, outputs a single control signal to each of the three slave state machines StartFSMl, StartFSM2 and StartFSM3. These signals trigger the appropriate slave state machine FSM1, FSM2 or FSM3, into cycling through its particular sequence of events. State machine, FSM1, is dedicated to providing four enable signals used to clock the serial input data into the appropriate holding register. State machine, FSM2, provides select signals used to select which of the two held inputs to multiply together, and also provides the enable signals used to clock the multiplied result into the appropriate state register. State machine, FSM8, simply provides the select lines used to select which result to output.

No.bits	Signal names	Comment
1	En_A En_B En_C En_D	Enables serial input data to be clocked into the
		appropriate 4-bit holding register.
2	Mux1_Sel Mux2_Sel	Selects which of A B C or D to multiply together.
1	En_AB En_AC En_AD En_BC En_BD En_CD	Enables the multiplied result to be clocked into the
		appropriate 8-bit register.
2	Mux3_Sel	Selects in turn, which of the four 9-bit results to
		output.

Control *Path 2*. The three state machines FSM1, FSM2 and FSM3 generate the same data path control signals as those in Control Path 1. The difference is that FSM1 also outputs the control signal StartFSM2 to FSM2, and FSM2 outputs the control signal StartFSM3 to FSM3.

Control Path 3. Modeled using a single state machine. The two main loops in the state diagram, Figure 8.22, indicate the condition when either three or four input words are used.

Figure 8. 19 Data Path controlled from Control Path 7, 2 or 3

Figure 8.20 State diagrams for Control Path 1

Figure 8.21 Three state diagrams for Control Path 2

Figure 8.22 Single state diagram for Control Path 3

HDL Models - Data Path

The data path models have been split into three stages; STAGE1, STAGE2, and STAGE3. Each stage is controlled by the corresponding state machine, FSM1, FSM2 and FSM3, in control paths 1 and 2. The VHDL concurrent signal assignments and Verilog continuous assignments for signals Suml, Sum2, Sum3 and NoSum, are not controlled by the controller, and are positioned between stages two and three. These assignments are not absolutely necessary as they could have been combined into STAGE3. For example, the assignment

$Sum1 \ll AB + AC;$

could be removed, and Suml replaced with AB + AC in the case statement of STAGE3. Explicit assignments to Sum1, Sum2, Sum3 and NoSum have been used so that they exist as data objects in the models, which can be monitored during simulation. It also makes comprehending the functional operation slightly easier.

Datapath

VHDL	Verilog
library IEEE; useIEEE.STD_Logic_1164.all, IEEE.Numeric_STD.all;	
entity HIER_FSMS_DATAPATH is port (Clock: in std_logic; En_A, En_B, En_C, En_D: in std_logic; Mux1_Sel, Mux2_Sel: in integer range 0 to 2; En AB. En_AC. En_AD, En_BC, En_BD, En_CD: in std_logic; Mux3_Sel: in integer range 0 to 3; SerialIn: in integer range 0 to 15; SerialOut: out integer range 0 to 511); end entity HIER_FSMS_DATAPATH; architecture RTL of HIER_FSMS_DATAPATH is signal A. B, C, D: integer range 0 to 15; signal Mult1, Mult2; integer range 0 to 15; signal AB, AC, AD, BC, BD, CD: integer range 0 to 511; begin	module HIERFSMS_DATAPATH (Clock, En A, En B, En C, En D. Mux1_Sel, Mux2_Sel, En_AB, En_AC, En_AD, En_BC, En_BD, En_CD, Mux3 Sel, Serialln, SerialOut); input Clock; input En_A, En_B, En_C, En_D; input En_AB, En_AC, En_AB, En_CD; input [1:0] Mux1_Sel, Mux2_Sel; input [1:0] Mux3_Sel; input [3:0] SerialIn; output [8:0] SerialOut; reg [8:0] SerialOut; reg [3:0] A, B, C, D; reg [7:0] Mult1, Mult2; reg [7:0] AB, AC, AD, BC, BD, CD; wire [8:0] Suml, Sum2, Sum3, NoSum;
Datapath stage 1 controlled by FSM1 STAGE1: process (Clock) begin if rising edge(Clock) then if (EnA = '1') then A <= Serialln; end if; if (EnB = '1') then B <= Serialln; end if; if (En_D ='1') then C <= Serialln; end if; if (En_D ='1') then D <= Serialln; end if; end end end end end end end end e	<pre>// // Datapath stage 1 controlled by FSM1 //. always @(posedge Clock) begin: STAGE1 if (EnA) A = Serialln; if (En B) B = Serialln; if (EnC) C = Serialln; i f (E n _ D) ; D = Serialln; end continued</pre>
ena process STAGE1; continued	continued

Datapath

VHDL	Verilog
- Datapath stage 2 controlled by FSM2	<pre>// Datapath stage 2 controlled by FSM2</pre>
$\begin{array}{l} \text{STAGE2 process (Clock, Mux1_Sel, Mux2_Sel)}\\ \textbf{begin}\\ \textbf{case (Mux1_Sel) is}\\ \textbf{when 0 => Mult1 <= A;}\\ \textbf{when 1 => Mult1 <= B;}\\ \textbf{when 2 => Mult1 <= C;}\\ \textbf{when others => Mult1 <= A;}\\ \textbf{end case;}\\ \textbf{case (Mux2_Sel) is}\\ \textbf{when 0 => Mult2 <= B;}\\ \textbf{when 0 => Mult2 <= C;}\\ \textbf{when 1 => Mult2 <= C;}\\ \textbf{when 1 => Mult2 <= D;}\\ \textbf{when others => Mult2 <= B;}\\ \textbf{end case;}\\ \textbf{Mult <= Mult1 * Mult2;}\\ \textbf{if rising_edge(Clock) then}\\ \textbf{if (En AB = '1') then}\\ AB <= Mult;\\ \textbf{end if;}\\ \textbf{if (En AC = '1') then}\\ AD <= Mult;\\ \textbf{end if;}\\ \textbf{if (En_BD = '1') then}\\ BD <= Mult;\\ \textbf{end if;}\\ \textbf{if (En_BD = '1') then}\\ BD <= Mult;\\ \textbf{end if;}\\ \textbf{if (En_CD = '1') then}\\ BD <= Mult;\\ \textbf{end if;}\\ \textbf{if (En_CD = '1') then}\\ BD <= Mult;\\ \textbf{end if;}\\ \textbf{if (En_CD = '1') then}\\ BD <= Mult;\\ \textbf{end if;}\\ \textbf{if (En_CD = '1') then}\\ BD <= Mult;\\ \textbf{end if;}\\ \textbf{if (En_CD = '1') then}\\ BD <= Mult;\\ \textbf{end if;}\\ end i$	<pre>always @(A or B or C or D or Mux1_Sel or Mux2_Sel) begin: STAGE2A</pre>
 Generate sum values (Not FSM controlled) Sum1 <= AB + AC; Sum2 <= AD + BC; Sum3 <= BD + CD; NoSum <= BC; Datapath stage 3 controlled by FSM3 SIAGE3: process (Sum1, Sum2, Sum3, NoSum, Mux3-Sel) begin case (Mux3_Sel) is when 0 => SerialOut <= Sum1; when 1 => SerialOut <= Sum2; when 2 => SerialOut <= Sum3; when 3 => SerialOut <= Sum3; when others => SerialOut <= Sum1; end case; end process STAGE3; 	<pre>//</pre>
end architecture RTL;	endmodule

HDL Models - Control Paths

The following description references numbers in the code of Control Path 1, but applies equally to Control Paths 2 and 3.

(1) The VHDL state encoding is defined as starting from SIO and not ST1. This is because the synthesis tool automatically assigns sequential states starting from 0, and so when simulated, ST1 has a value of 1 and not 0. However, if for example the state type for FSM2 was

type StateTypeFSM2 is (One, Two, Three, Four, Five, Six);

the state encoding would still be

000,001,010,011,100,101,100.

This is fine, but when simulated, the signal values of CurrStateFSM2 and NextStateFSM2 are at logic 0 when in state One, and 1 when in state Two etc. This introduces unnecessary confusion.

- (2) Defining a default logic 0 for the four outputs before the case statement avoids having to explicitly define their value in every branch of the case statement including the others (VHDL) and default (Verilog) branches. Either way this is necessary to avoid inferring latches in this combinational part of the state machine. The next state signal, NextStateMasterFSM, does not need a default value assigned to it before the case statement, as it is always assigned a new value in every branch of the case statement.
- (3) As default output values are defined before the case statement, they do not need to be repeated in the others and default clauses. However, as a default next state value is not defined before the case statement, it is needed in the others/default clauses to avoid inferring unwanted latches.

228

Chapter Eight: Modeling Finite State Machines

VHDL	Verilog
Ibrary IEEE; use IEEE.STD_Logic_1164.all, IEEE.Numeric_STD.all;	module HIERFSMS_CNTLPATH1 (Clock, Roset, ThreeOnly, FirstDataInRdy, En A En B En C En D
entity HIERESMS CNTLPATH1 is	Mux1 Sel, Mux2 Sel.
port (Clock, Reset, ThreeOnly, FirstDato-nRdy: in std logic	En AB, En AC, En AD, En BC, En BD, En CD,
En_A, En_B, En_C, En_D; out std_logic;	Mux3_Sel, FirstDataOutRdy);
Mux1_Sel, Mux2_Sel: out integer range 0 to 2;	
En_AB, En_AC, En_AD,	input Clock, Reset, ThreeOnly, FirstDataInRdy;
En_BC, En_BD, En_CD; out std_logic;	output En A, En B, En C, En D;
FirstDataOutRdv: out std Joaie):	output En AB En AC En AD En BC En BD En CD
end entity HIERFSMS CNTLPATH1;	output (1:0] Mux3_Sel;
-	output FirstDataOutRdy;
	reg En_A, £n_B, En_C, En_D;
	reg [1:0] Mux1 Sel, Mux2 Sel;
	reg Er_Ab,Er_AC,Er_AD,Er_BC,Er_BD,Er_CD,
	reg FirstDataOutRdy;
architecture RTL of HIERFSMS CNTLPATH1 is	// MASTER FSM state parameter values
type StateTypeMasterFSM is (STO, ST1, ST2, ST3, ST4, 🦷 🔔	parameter STO=0, ST1=1, ST2=2, S3=3, ST4=4,
SI5, SI6, ST7, ST8, ST9, (1)	SI5=5, SI6=6, SI7=7, S8=8, SI9=9, (1)
ST10, ST11, ST12);	SFI0=10, SFI1=11, SFI2=12;
the state was a rest of the state of the	parameter $S_A=0$, $S_B=1$, $S_C=2$, $S_L=3$; $7/FSM1$
type StateTypeFSM2 is (One. Two, Three, Four, Five, Six); (1	Three=3. Four=4. Five=5:
type StateTypeFSM3 is (ST_Sum1, ST_Sum2,	parameter ST_Sum1=0, ST_Sum2=1, // FSM3
ST_Sum3, ST_NoSum);	ST_Sum3=2, ST_NoSum=3;
signal CurrStateMasterFSM,	· · · ·
NextStateMasterFSM: StateTypeMasterFSM;	reg [3:0] CurrStateMasterFSM, NextStateMasterFSM;
signal StatthSM1, StatthSM2, StatthSM3; stat_ulogic; signal CutrStateESM1, NextStateESM1; StateTupeESM1;	reg Start-SM1, Start-SM2, Start-SM3;
signal CurrStateFSM2, NextStateFSM2; StateTypeFSM2;	reg [2:0] CurstateFSM2, NextStateFSM2
signal CurrStateFSM3, NextStateFSM3: StateTypeFSM3;	reg [1:0] CurrStateFSM3, NextStateFSM3;
əgin	
WASIER FSIM	// MASIER FSM //
MASTER_FSM_COMB:	always @(FirstDataInRdy or ThreeOnly or
process (FirstInDataRdy, ThreeOnly, CurrStateMasterFSM)	CurrStateMasterFSM)
begin StartfCOM	
StartESM2 <= 0	STORTESM2 = 0;
$\text{StartFSM3} \le 0$; (2)	$\frac{3101113M2 = 0}{510115M3 = 0}$
FirstDataOutRay <= '0';	FirstDataOutRdy = 0; _
case (CurrStateMasterFSM) is	case (CurrStateMasterFSM)
when SIO => if (FirstDatainRdy = '1') then	STO : if (FirstDatainRdy)
STORTESMU <= '1';	
NextStoteMosterESM <= \$17	if ([breeOnly)
else	NextStateMosterFSM = ST7;
NextStateMasterFSM <= ST1;	else
end if;	NextStateMasterFSM = ST1;
else NoviEtatoMasta-FOMA - DTO:	end
nextstatemaster/sml <= 510; end if:	eise NextStateMasterESM – STOr
when ST1 => NextStateMasterFSM <= ST2:	ST] : NextStateMasterFSM = ST2:
when ST2 => StartFSM2 <= '1';	ST2 : begin
NextStateMasterFSM <= ST3;	StartFSM2 = 1;
	NextStateMasterFSM = ST3;
when ST3 => NextStateMasterFSM <= ST4:	ena ST3 : NextStateMasterFSM ≈ ST4:
continued	continued

Control Path 1 - Master FSM controlling three other FSMs

	VHDL	Verilog	(종) (주)(*
when SI4 => when SI5 => when SI6 =>	NextStateMasterFSM <= ST5; NextStateMasterFSM <= ST6; StartFSM3 <= '1'; FirstDataOutRdy <= '1'; If (FirstDataInRdy = '1') then StartFSM1 <= '1'; NextStateMasterFSM <= ST1; else NextStateMasterFSM <= ST0; end if;	ST4 : NextStateMasterFSM = S15; ST5 : NextStateMasterFSM = S16; ST6 : begin StartFSM3 = 1; FirstDataOutRdy = 1; If (FirstInDataRdy) begin StartFSM1 = 1; NextStateMasterFSM = ST1; end else NextStateMasterFSM = ST0;	
when ST7 => when ST8 =>	NextStateMasterFSM <= S18; StartFSM2 <= '1'; NextStateMasterFSM <= S19;	ena ST7 : NextStateMasterFSM = ST8; ST8 : begin StartFSM2 = 1; NextStateMasterFSM = ST9; ord	
when ST9 =>	if (FirstDataInRdy = '1') then StartFSM1 <= '1': NextStateMasterFSM <= ST10; else NextStateMasterFSM <= ST12; end if;	end ST9 : begin if (FirstDataInRdy) begin StartFSM1 = 1; NextStateMasterFSM = ST10; end else NextStateMasterFSM = ST12;	
when \$110 =>	StartFSM3 <= '1'; FirstDataOutRdy <= '1'; NextStateMasterFSM <= ST11;	ST10: begin StartFSM3 = 1; FirstDataOutRdy = 1; NextStateMasterFSM = ST11;	
when ST() =>	StartFSM2 <= '1'; NextStateMasterFSM <= ST9;	ST11 : begin StartFSM2 = 1; NextStateMasterFSM = ST9; end	
when ST12 =>	StartFSM3 <= '1'; FirstDataOutRdy <= '1'; NextStateMasterFSM <= ST13;	ST12 : begin StartFSM3 = 1; FirstDataOutRdy = 1; NextStateMasterFSM = ST0;	
when others = end case; end process MASTE	>NextStateMasterFSM <= STO; 3	ena default : NextStateMasterFSM = STO; 3 endcase end	
MASTER_FSM_SEQ: process (Clock) begin If rising_edge(Clc If (Reset = '1') 1 CurrStateM else CurrStateM end if; end if; end process MASTEI	ock) then then lasterFSM <= STO; lasterFSM <= NextStateMasterFSM; R_FSM_SEQ;	always @(posedge Clock) begin: MASTER_FSM_SEQ If (Reset) CurrStateMasterFSM = STO; else CurrStateMasterFSM = NextStateMasterFSM; end	
FSM1 FSM1_COMB; process (StartFSM1, begin En_A <= '0';	ThreeOnly, CurrStateFSM1) continued	// // FSM1 // always @(StartFSM1 or ThreeOnly or CurrStateFSM1) begin: FSM1_COMB En_A = 0; En_B = 0; continue	d

250

Control Path I - Master FSM Controlling three	Control Path 1 - Master FSM controlling	three	other	FSMs
---	---	-------	-------	-------------

Verilog VHDL $En_C = 0;$ En B <= '0'; $En^{-}D = 0;$ En C <= '0'; En_D <= '0'; case (CurrStateFSM1) case (CurrStateFSM1) is ST_A : If (StartFSM1) when ST A => if (StartFSM) = '1') then NextStateFSM1 <= ST 8; begin En A = 1; En_A <= '1'; NextState[SM1 = ST_B; else NextStateFSM1 <= ST A; end else end If; NextStateFSM1 = ST A; ST_B: begin when ST_B => NextStateFSM1 <= ST_C; En_B <= 'l'; £n_B = 1; NextStateFSM1 = ST_C; end ST_C : begin when SI_C => if (ThreeOnly = '1') then En_C = 1; NextStateFSM1 <= ST A; else if (ThreeOnly) NextStateFSM1 = ST_A; NextStateFSM1 <= ST D; end if; else $NextStateFSM1 = ST_D;$ En_C <= '1'; end when SI_D => NextStateFSM1 <= SI_A;</pre> ST D: begin $\tilde{En} D = 1;$ En_D <= '1'; NextStateFSM1 = ST_A; end when others => NextStateFSM1 <= ST_A; detault : NextStateFSM1 = ST A; endcase end case end process FSM1_COMB; end FSM1 SEQ: always @(posedge Clock) process (Clock) begin: FSM1_SEQ begin if rising_edge(Clock) then if (Reset) if (Reset ='1') then CurrStateFSM1 = ST A; CurrStateFSM1 <= ST A; else CurrStateFSM1 = NextStateFSM1; else CurrStateFSM1 <= NextStateFSM1; end end if; end if: end process FSM1_SEQ; -----//-----// FSM2 -- FSM2 H_{-} FSM2 COMB: always @(StartFSM2 or ThreeOnly or CurrStateFSM2) process (StartFSM2, ThreeOnly, CurrStateFSM2) begin: FSM2_COMB Mux1_Sel = 0; begin Mux2 Sel = 0; Mux1 Sel <= 0; Mux2_Sel <= 0; $En_AB = 0;$ En AB <= '0': $En_AC = 0;$ En_AC <= '0'; En AD = 0;En_AD <= '0'; $En_BC = 0;$ $En_BD = 0;$ En_BC <= '0'; En_BD <= '0'; En_CD = 0; En CD <= '0'; case (CurrStateFSM2) is case (CurrStateFSM2) when Zero => if (StartFSM2 = '1') then Zero : begin Mux1 Sel = 0; En_A8 <= '1'; NextStateFSM2 <= One; Mux2_Set = 0; if (StartFSM2) else NextStateFSM2 <= Zero; begin NextStateFSM2 = One; end If; Mux1_Sel <= 0; En_AB = 1; ... Mux2 Sel <= 0; end continued continued

Control	Path	7	-	Master	FSM	controllina	three	other	FSMs
00110101	i aui			master	1 0 11	condoning		ounci	1 01113

VHDL	Verilog
	else NextStateESM2 = Zero:
	end
when One => Mux1_Sel <= 0;	One : begin
Mux2_Set <= 1;	$Mux1_Set = 0;$
En_AC <= '1';	Mux2_Sel = 1;
if (ThreeOnly = 'T') then	$En_A\overline{C} = 1;$
NextStateFSM2 <= Three;	if (ThreeOnly)
else	NextStateFSM2 = Three;
NextStateFSM2 <= Two;	else
end if;	NextStateFSM2 = Two;
when Iwo => Mux1 Sel <= 0:	Two: begin
Mux2_Sel <= 2;	Mux Sel = 0:
En $\overline{AD} \le 1$;	Mux2 Sel = 2;
NextStateFSM2 <= Three;	$En \ A\overline{D} = 1;$
	NextStateFSM2 - Three;
	end
<pre>when Three =>Mux1_Sel <= 1;</pre>	Three: begin
Mux2_Sel <= 1;	Mux1_Set = 1;
En_BC <= '1';	Mux2_Sel = 1;
ff (ThreeOnly = 'T') then	En_BC = 1;
NextStateFSM2 <= Zero;	if (ThreeOnly)
else	NextStateFSM2 = Zero;
NextStateFSM2 <= Four;	else
end if;	NextStateFSM2 = Four;
when Four a Mund Col . 1	ena Louis barin
when FOU? \Rightarrow Mux1_Set <= 1; Mux2_Set <= 2;	Mugl Col 1:
$\frac{1}{1000} = \frac{1}{1000} = \frac{1}{10000} = \frac{1}{10000} = \frac{1}{100000} = \frac{1}{10000000000000000000000000000000000$	$M(x)^2 Sol = 2$
NextStateESM2 <= Eive:	$F_{D} = BD = 1^{2}$
HEXIOLAICI MIZ <= 1140;	NextStateESM2 = Eive:
	end
when Five => Mux1 Sel <= 2:	Five : begin
Mux2 Sel <= 2;	Mux∃ Sel = 2;
En CD <= '1';	Mux2 Sel = 2;
NextStateFSM2 <= Zero;	En $C\overline{D} = 1$;
	NextStateFSM2 = Zero;
	end
<pre>when others => NextStateFSM2 <= Zero;</pre>	default : NextStatcFSM2 = Zero;
end case;	endcase
end process FSM2_COMB;	end
ESM2 SEQ	
process (Clock)	always @(posedge Clock)
begin	begin: FSM2_SEQ
If rising edge(Clock) then	If (Reset)
if (Reset = '1') then	CurrStateFSM2 = Zero;
CurrStateFSM2 <= Zero;	eise
else	CurrStateFSM2 = NextStateFSM2;
CunStateFSM2 <= NextStateFSM2;	end
end if;	
end if;	
end process FSM2_SEQ;	
continued	continued _

Chapter Eight: Modeling Finite State Machines

	VHDL		Verilog
 FSM3		// // FSM3	
FSM3_COMB: process (StartFSM3, Three begin	:Only, CurrStateFSM3)	always @(StartFS begin: FSM3_C Mux3_Sel = 0	M3 or ThreeOnly or CurrStateFSM3) COMB D;
Mux3_Set <= 0; case (CurrStateFSM3) when \$7_Sum1 =>	is Mux3_Set <= 0; if (StartFSM3 = '1') then if (ThreeOnly = '1') then NextStateFSM3 <= ST_NoSum; else NextStateFSM3 <= ST_Sum2; end if; else NextStateFSM3 <= ST_Sum1; end if;	case (CurrSt ST_Sum1	tateFSM3) : begin Mux3_Sel = 0; if (StartFSM3) if (ThreeOnly) NextStateFSM3 = ST_NoSum; else NextStateFSM3 = ST_Sum2; else NextStateFSM3 = ST_Sum1; end
when ST_Sum2 =>	Mux3_Sel <= 1; NextStateFSM3 <= ST_Sum3;	\$T_\$um2 :	: begin Mux3_Set = 1; NextStateFSM3 = ST_Sum3; end
when SI_Sum3 =>	Mux3_Set <= 2; NextStateF\$M3 <= \$T_\$um1;	ST_Sum3 :	: begin Mux3_Sel = 2; NextStateFSM3 = ST_Sum1; end
when ST_NoSum => when others => end case; end process FSM3_COMB	Mux3_Sel <= 3; NextStateFSM3 <= ST_Sum1; NoxtStateFSM3 <= ST_Sum1; ;	ST_NoSum default : endcase	: begin Mux3_Sel = 3; NextStateFSM3 = ST_Sum1; end NextStateFSM3 = ST_Sum1;
FSM3_SEQ: process (Clock) begin if rising_edge(Clock) th if (Reset = '1') then CurrStateFSM3 <= else CurrStateFSM3 <= end if;	en = SI_Sum1; = NextStateFSM3;	end always @(posedg begin: FSM3_SE if (Reset) CurrStateF else CurrStateF end	ge Clock) EQ FSM3 = ST_Sum1; FSM3 = NextStateFSM3;
end if; end process FSM3_SEQ;		endmodule	
nd architecture RTL;			

Control Path 1 - Master FSM controlling three other FSMs

Control Path 2 - Three serial interactive FSMs

VADE	Verilog
library IEEE;	
use IEEE.STD_Logic_1164.all, IEEE.Numeric_STD.all;	Clock, Reset, ThreeOnly, FirstDataInRdy,
entity HIERFSMS CNTLPATH2 is	Mux1_sel, Mux2_sel,
port (Clock, Reset, ThreeOnly,	En_AB, En_AC, En_AD, En_BC, En_BD, En_CD,
FirstDataInRay: In std_logic;	Mux3_Sel, FirstDataOutRdy);
En_A, En_B, En_C, En_D: out std_logic; Mux1_Sel_Mux2_Sel: out interior range 0 to 2:	input Clock, Reset. ThreeOnly FirstDatalaBase
En_AB, En_AC, En_AD,	output En_A, En_B, En_C, En_D;
En_BC, En_BD, En_CD: out std_logic;	output [1:0] Mux1_Sel, Mux2_Sel;
Mux3_Sel: out integer range 0 to 3; FirstDataOutPdv: out std logio?;	ourpur en_AB,En_AC,En_AD,En_BC,En_BD,En_CD; output (1:0) Mux3, Sel:
end entity HERFSMS_CNTLPATH2;	output FirstDataOutRdy;
- · ·	reg En_A, En_B, En_C, En_D;
	reg [H:0] MUXE Sel, MUX2 Sel; reg En AR En AC En AD En BC En PD En Co
	reg [1:0] Mux3 Sel;
architecture RTL of HIERFSMS_CNTLPATH2 is	reg FirstDataOutRdy;
type StateTypeFSM1 is (ST_A, ST_B, ST_C, ST_D);	parameter SI $A = 0$, SI $B = 1$, SI $C = 2$, SI $D = 3$;
iype - sigretypersidzis (stit, ST2, ST3, ST4, ST5, ST6, ST7, ST8):	ST5 = 5, ST6 = 6, ST7 = 7, ST8 = 8;
type StateTypeFSM3 is (ST_Sum1, ST_Sum2,	parameter ST_Sum1 = 0, ST_Sum2 = 1,
ST_Sum3, ST_NoSum);	ST_Sum3 = 2, ST_NoSum = 3;
signal CuristateFSM1, NextStateFSM1; StateTypeFSM1; signal CuristateFSM2, NextStateFSM2; StateTypeFSM2;	reg [1:0] CuristatersM1, NextStaterSM1; reg [3:0] CuristateFSM2: NextStateFSM2:
signal CurrStateFSM3, NextStateFSM3; StateTypeFSM3;	reg [1:0] CurrStateFSM3, NextStateFSM3;
signal StartFSM2, StartFSM3: std_logic;	reg StartFSM2, StartFSM3;
Degin	
	//
FSM1	// FSM1
ESM1 COMB	J/ always @/FirstDataInRdy or ThreeOnly or Ourstate(SUN)
process (FirstDataInRdy, ThreeOnly, CurrStateFSM1)	begin: FSM1_COMB
begin	$En_A = 0;$
En_A <= '0'; En_B <= '0';	$bn_B = 0;$ $Fn_C = 0;$
En C <= 0;	En_D = 0;
En_D <= '0';	StartFSM2 = 0;
StartFSM2 <= '0';	case (CurretateE9M1)
when ST A => If (FirstDataInRdv = '1') then	ST A : If (FirstDataInRdv == 1)
En_A <= '1';	begin
NextStateFSM1 <= ST_B;	$En_A = 1;$
eise NextStateESM1 <- ST A·	end
end if;	else
	NextStateFSM1 = ST_A;
wnen St_B => En_B <= '1'; NevtStateESM3 <= ST_C:	ы_в: begin En B = 1:
	NextStateFSM1 = ST_C;
	end
wnen SI_C => En_C <= '1'; StortESM2 <= '1';	si_C: begin Fn C = 1:
if (ThreeOnly = '1') then	StartFSM2 = 1;
NextStateFSM1 <= ST_A;	if (ThreeOnly == 1)
else Noviciatocomi - et De	NextStateFSM1 = ST_A;
end if:	NextStateFSM1 = ST D;
	end
when ST_D => En_D <= '1';	SI_D ; begin
Nexi9idier9M1 <≖ 91_A;	NextStateFSM1 = SF A;
	end
continued	continued

Control Path 2	Three ser	rial interactiv	e FSMs
----------------	-----------	-----------------	--------

	VHDL	Verilog
when others end case;	=> NextStateFSM1 <= ST_A;	<pre>default : NextStateFSM1 = ST_A; endcase</pre>
end process FSM1_	COMB;	end
FSM1_SEQ: process (Clock)		always @(posedge Clock)
begin		begin: FSM1_SEQ
if rising_edge(Cl	lock) th en	if (Reset)
if (Reset = '1')		CurrstateFSM1 = SI_A;
Curratater	-SMT <= 51_A;	else CurrStateESM] = NevtStateESM];
CurrStateF end if;	SM1 <= NextStateFSM1;	end
end if;		
end process FSM1_	SEQ;	
L FSM2		() ESM2
		// · JWZ
FSM2 COMB:		always @(ThreeOnly or StartFSM2 or CurrStateFSM2)
process (ThreeOnly	, StartFSM2, CurrStateFSM2)	begin: FSM2 COMB
begin		Mux1_Sel = 0;
Mux1_Sei <= 0;		Mux2_Sel = 0;
Mux2_Sel <= 0;		$En_AB = 0;$
En_AB <= 'U';		$En_AC = 0;$
$En_AC <= 0;$ $En_AD <= 0;$		$En_AD = 0;$ $En_BC = 0;$
$En_BC <= '0'$		$En_BD = 0$
En BD <= 0';		En CD = 0;
En_CD <= '0';		StartFSM3 = 0;
StartFSM3 <= 'O';		
case (CurrStateF	SM2) is	case (CurrStateFSM2)
when ST1 =>	Mux1_Set <= 0;	ST1 : begin
	MUX2_Set <= U;	Mux1_Sel ≠ 0; Mux2_Sel = 0;
	$F_{D} \Delta B = 1$	$MUX2_Set = 0,$ if (StartESM2 1)
	if (ThreeOnly = '1') then	begin
	NextStateFSM2 <= ST7;	En AB = 1;
	else	if (ThreeOnly == 1)
	NextStateF\$M2 <≈ \$T2;	NextStateFSM2 = ST7;
	end if;	else
		. NextStateFSM2 = ST2;
	NexiStateFSMIZ <= 5(1);	ena
	end II,	NextStateFSM2 = SU
		end
when ST2 =>	Mux1_\$el <= 0;	ST2 : begin
	Mux2_Sel <= 1;	Mux1_Sel = 0;
	En_AC <= '1';	Mux2_Sel = 1;
	NextStateFSM2 <= \$T3;	$En_AC = 1;$
		NextStateFSM2 = 513;
when SI3 =>	Mux1_Set <= 0:	SI3 : beain
	Mux2 Sel <= 2;	Mux1 Sel = 0;
	En_AD <= '1';	Mux2 Sel = 2;
	NextStateFSM2 <= ST4;	En_AD = 1;
		NextStateFSM2 = ST4;
		end
when ST4 =>	Muxi_Sel <≃ 1;	ST4 : begin
	$MUX2_001 \le 1;$ En BC $z = 1;$	Muxi_set = 1; Mux2_set = 1;
	NextStateFSM2 <= ST5 ²	Fn BC = 1
		NextStateFSM2 = ST5:
		end
	continued	continued

Control Path 2 - Three serial interactive FSMs

	VHDL	Verilog
when ST5 =>	Mux1_Sel <= 1; Mux2_Sel <= 2; En_BD <= '1'; StartFSM3 <= '1'; NextStateFSM2 <= ST6;	SI5 : begin StartFSM3 = 1; Mux1_Se! = 1; Mux2_Se! = 2; En_BD = 1; NextStateFSM2 = ST6;
when ST6 ≈>	Mux1_Set <= 2; Mux2_Set <= 2; En_CD <= '1'; NextStateFSM2 <= ST1;	end S16 : begin Mux1_Sel = 2; Mux2_Sel = 2; En_CD = 1; NextStateFSM2 = ST1;
when ST7 =>	Mux1_Sel <= 0; Mux2_Sel <= 1; En_AC <= '1'; NextStateFSM2 <= \$18;	end ST7 : begin Mux1_Sel = 0; Mux2_Sel = 1; En_AC = 1; NextStateFSM2 = ST8;
when ST8 =>	Mux1_Sel <= 1; Mux2_Sel <= 1; En_BC <= '1'; StartFSM3 <= '1'; NextStateFSM2 <= ST1;	end ST8 : begin StartFSM3 = 1; Mux1_Sei = 1; Mux2_Sei = 1; En_BC = 1; NextStateFSM2 = ST1; ord
when others = end case; end process FSM2_c	=> Nex1StateF\$M2 <= ST1; COM3;	end default : NextStoteFSM2 = ST1; endcase end
FSM2_SEQ: process (Clock) begin if rising_edge(Clo if (Reset = '1') ' CurrStateFS else CurrStateFS end if; end if; end process FSM2_S	oak) then then SM2 <= NextStateFSM2; SM2 <= NextStateFSM2; SEQ;	always @(posedge Clock) begin: FSM2_SEQ if (Reset) CurrStateFSM2 = ST1; else CurrStateFSM2 = NoxtStateFSM2; end
FSM3 FSM3_COMB: process (StartFSM3, begin Mux3_Sel <= 0; FirstDataOutRdy case (CurrStateFS when ST_SumT Mux3_Sel <= if (StartFSM3 FirstData if (Threed NextS else NextS end if; else	ThreeOnly, CurrStateFSM3) <= '0'; SM3) is => = 0; 3 = '1') then :OutRdy <= '1'; Only = '1') then :tateFSM3 <= ST_NoSum; :tateFSM3 <= ST_Sum2;	// // FSM3 // always @(StartFSM3 or ThreeOnly or CuriStateFSM3) begin: FSM3_COMB Mux3_Sel = 0; FirstDataOutRdy = 0; case (CuriStateFSM3) ST_Sum1: begin Mux3_Sel = 0; If (StartFSM3 == 1) begin FirstDataOutRdy = 1; if (ThreeOnly == 1) NextStateFSM3 = ST_NoSum; else NextStateFSM3 = ST_Sum2; end else
	cont	nued continued

256

VHDL	Verilog
NextStateFSM3 <= SF_Sum1;	NextStateFSM3 = ST_Sum1;
end if:	end
when SI_Sum2 =>	, ST Sum2: begin
Mux3 Se(<= 1;	Mux3 Se! = 1;
NextStateFSM3 <= ST_Sum3;	NextStoteFSM3 = ST_Sum3;
= 11	end
when ST Sum3 =>	ST Sum3: begin
Mux3 Sel <= 2;	Mux3 Sel = 2;
NextStateFSM3 <= ST_Sum1;	NextStateFSM3 = ST_Sum1;
	end
when ST_NoSum =>	ST NoSum ; beain
Mux3 Sel <= 3:	Mux3 Sol = 3;
NextStateFSM3 <= ST_Sum1:	NextStateFSM3 = ST_Sum1;
	end
when others =>	defautt: NextStateFSM3 = ST Sum1;
NextStateFSM3 <= SL_Sum1:	endcase
end case:	end
end process FSM3_COMB;	
ESM3 SECT	always @(nosedge Clock)
procett (Clock)	berin: ESM3 SEC
begin	if (Reset)
if rispa, edge/Clack) then	CurrStateESM3 - ST_Sum1:
if (Resot = 11) then	
CurrStateSM3 -= NextStateSM3:	CurstateESM3 - NextStateESM3;
	end
CurrStateESM3 <= NextStateESM3:	
end if:	
and it	endmodule
end process ESM3_SEQ:	
and architecture RTL;	

Control Path 2 - Three serial interactive FSMs

Control Path 3 - Single FSM

	Verilog
library IEEE;	module HIERFSMS_CNTLPATH3
use IEEE.STD_Logic_1164.all, IEEE.Numeric_STD.all;	(Clock, Reset, ThreeOnly, FirstDataInRdy,
antity HIEDESMS CNTI DATHS is	En_A, En_B, En_C, En_D, Mux1 Set Mux2 Set
port (Clock, Reset, ThreeOniv,	En AB, En AC, En AD, En BC, En BD, En CD,
FirstDataInRdy: in std logic;	Mux3_Sel, FirstDataOutRdy);
En_A, En_B, En_C, En_D: out std_logic;	-
Mux1_Sel, Mux2_Sel: out integer range D to 2;	input Clock, Reset, ThreeOnly, FirstDataInRdy;
En_AB, En_AC, En_AD,	j output En_A, En_B, En_C, En_D;
En_bC, En_bD, En_CD, out sto_logic, Mux3, Sel: out integet range 0 to 3:	output En AB.En AC.En AD.En BC.En BD.En CD
FirstDataOutRdy: out std logic);	output [1:0] Mux3_Sel;
end entity HIERFSMS_CNTLPATH3;	output FirstDataOutRdy;
	reg En_A, En_B, En_C, En_D;
	reg [1:0] MOXI_SE, MUX2_SE, I reg En AB En AC En AD En BC En BD En CD:
	reg [1:0] Mux3 Sel;
architecture RTL of HIERFSMS_CNTLPATH3 is	reg FirstDataOutRdy;
type StateTypeFSM is (ST0, ST1, ST2, ST3, ST4, ST5, ST6,	parameter STO=0, ST1=1, ST2=2, ST3=3.
ST7, ST8, ST9, ST10, ST11, ST12, ST12, ST14, ST15);	514=4, $515=5$, $516=6$, $517=7$, 518=8, $519=0$, $5110=10$, $5111=11$
sianat CurrSinteESM_NextStateESM; StateTypeESM;	SI12=12, $SI13=13$, $SI14=14$, $SI15=15$
begin	reg [3:0] CurrStateFSM, NextStateFSM;
Single ESM	// Single ESM
	//
FSM_COMB:	always @(FirstDataInRdy or ThreeOnly or CurrStateFSM)
process (FirstDatoInRdy, ThreeOnly, CurrStateFSM)	begin: FSM_COMB
En_A <= 0; En_B <= '0':	$En_{\rm C} = 0;$
En_C <= '0';	$En_D = 0;$
En_D <= '0';	Mux1_Sel = 0;
$Mux1_Set <= 0;$	Mux2_Sel = 0;
MUX2_5€I<=0; En AB <= '0''	$E \eta A \sigma = 0$, En AC = Ω ;
En AC <= 0;	En AD = 0;
En_AD <= '0';	$En_BC = 0;$
En_BC <= '0';	$fn_BD = 0;$
En_BD <= 0; En_CD <= 10;	$E_{\text{IIII}} = 0;$
Mux3 Sel <= 0;	FirstDataOutRdy = 0;
FirstDataOutRdy <= '0';	
case (CurrStateFSM) is	case (CurrStateFSM)
when SIO => if (EintDetaloRdy = 111) then	510 : Degin if (FirstDatalpPdy == 1)
En $A \le 1$:	begin
if (ThreeOnty = '1') then	En_A = 1;
NextStateFSM <= ST10;	if (ThreeOnly == 1)
	NextStateFSM = SHU;
end if:	NextStateFSM = \$11;
eise	end
NextStateFSM <= STO;	eise
end if;	NextStaterSM = SIU;
when STI =>	STI : begin
En_8 <≈ '1';	$En_B = 1;$
NextStateFSM <= ST2;	NextStateFSM = ST2;
when ST2 =>	sī2 : beain
En C <= '1';	$E_{0} C = 1;$
Mux1_Sel <= 0;	Mux1_Sel = 0;
continued	I continued i

Control Path 3 - Single FSM

VHDL	Verilog
Mux2_Sel <= 0;	Mux2_Sei = 0;
En_AB <= '1';	$En_AB = 1;$
. Mux3_Sel <= 2;	$Mux3_Sel = 2;$
NextStateFSM <= \$13;	NextStateFSM = 513;
when ST3 =>	ST3 begin
fn D <= '1'	En $D = 1$:
Mux1 Sel <= 0;	Mux1 Set = 0;
Mux2 Sel <= 1;	Mux2 Sel = 1;
En_AĈ <≖ '1';	$En_A\overline{C} = 1;$
NextStateFSM <= ST4;	NextStateFSM = ST4;
	end
wnen 314 ≕> Maux] Sol >= 0:	St4 : Degin Mux1 Set - O
Mux^2 Sel <= 2:	$Mux^2 \text{ Set} = 0,$
En AD <= '1';	En AD = 1:
NextStateFSM <= ST5;	NextStateFSM = ST5;
	end
when ST5 =>	ST5 : begin
Muxl_Sel <= 1;	Mux1_Sel = 1;
$Mux2_Sel <= 1;$	Mux2_Sel = 1;
$E\Pi_B C <= 17$	EN_BU = 1; NoveStotoESN1 STA
Nexisialersmix= sto,	NOXISICIOFSMI = 510,
when ST6 =>	ST6 : begin
Mux1 Sel <= 1;	Mux1 Sel = 1;
Mux2_Sel <= 2;	Mux2_Sel = 2;
En_BD <= '1';	En_BD ≂ I;
Mux3_Sel <= 0;	Mux3_Set = 0;
FirstDataOutRdy <= '1';	FirstDataOutRdy = 1;
IF $(\# I S I D G G H H H O Y = 11)$ Then Eq. (4) $(\# I S I D G H H O Y = 11)$	if (HistDatainkay == 1)
NextStateESM <= \$17	En $\Delta = 1$
else	NextStateFSM = ST7:
NextStateFSM <= \$18;	else
end if;	NextStateFSM = ST8;
	end
when SI/ =>	SI/: begin
$ET_D <= 1,$ MUX1 Solve 2:	Ef[b] = 1;
Mux2 Set <= 2;	$Mux^2 \text{ Sel} = 2$
En CD <= '1';	En CD = 1;
Mux3 Sel <= 1;	Mux3 Sel = 1;
NextStateFSM <= ST2;	NextStateFSM = ST2;
	end
when Si8 =>	ST8 : begin
MUXI_SOI <= 2; MUX2_Soi <= 2;	M(x) = Sci = 2;
$F_{D} = CD <= 1$	$Fn CD = \lambda'$
Mux3 Set <= 1:	Mux3 Sel = 1:
NextStateFSM <= ST9;	NextStateFSM = ST9;
	end
when ST9 =>	ST9 : begin
MUX3_Sel <= 2;	Mux3_Set = 2;
NextStaterStyl <= 5(0;	
when STI0 =>	STID : begin
En_B <= '1';	$En_B = 1;$
NextStateFSM <= ST11;	NextStateFSM = ST11;
	end
When Sill =>	SIII: Degin
$m_{\rm M} < = 1$, $m_{\rm M} < = 0$	$EII_C = 1;$ Mux1 Sel = 0
Mux2 Sel <= 0;	Mux2 Set = 0;
cor	atinued continued

Control Path3 - Single FSM

VHDL	Verilog
Fn AB <≈ '1'	En AB = 1:
Mux3 Sel <= 3;	Mux3 Sel = 3:
NextStateESM <= SI12:	NextStateFSM = ST12:
	end
when ST12 =>	SI12: begin
Mux1 Sel $\leq = 0$	Mux1 Sel = 0:
$M_{11} = 2 $	Mux2 Sel = 1:
En AC <= '1'	En $A\overline{C} = 1$:
if (FirstDataInRdy = '1') then	If (FirstDatainRdv ⇒= 1)
En A <= '1'	begin
NextStateFSM <= ST13:	$E_{n} A = 1;$
else	NextStateFSM = ST13;
NextStateFSM <= ST14;	end
end if:	else
	NextStateFSM = STI4;
	end
when ST13 =>	ST13: begin
En B <= '1';	En B = 1;
Mux Set <= 1:	Mux1 Sel = 1;
Mux2 Sel <= 1;	Mux2 Sel = 1;
En BC <= '1';	Fn BC = 1;
Mux3 Sel <= 0;) Mux3 Sel = 0;
FirstDataOutRdy <= '1';	FirstDataOutRdy = 1:
NextStateFSM <= S [*] 11;	NextStateFSM = $ST11$:
	end
when ST14 =>	ST14: begin
En B <= '1';	En_B = 1;
Mux1 Sel <= 1;	Mux1_Set = 1;
Mux2 Sel <= 1;	Mux2_Sel = 1;
En BC <= '1';	$En_BC = 1;$
Mux3_Sel <= 0;	Mux3_Sei = 0;
FirstDataOutRdy <= '1';	FirstDataOutRdy = 1;
NextStateFSM <= ST15;	NextStateFSM = \$T15;
	enci
when SI15 =>	ST15: begin
Mux3_Sel <= 3;	Mux3_Sel = 3;
NextStateFSM <= STO;	FirstDataOutRdy = 1;
	NextStateFSM = STO;
when others =>	end
NextStateFSM <= ST0;	default : NextStateFSM = STO;
end case;	endcase
end process FSM_COMB;	end
	duma @(pecedae Clock)
row_sew:	aiways @(poseage CiUCK)
process (Clock)	if (Decet)
Degin	CurrStateESM = NevtStateESM:
ii lising_eage(Clock) men	
	CurrStateESM ~ NovtStateSM
CurretatoECM - NovietatoESM	enu
CUIDIUIEF3W <= NEXISIOIEF3W,	endmodule
enu (); and (f)	chumodulo
and architecture RII:	ļ

		<u>ria</u> ni r-		- n ai si	ு கூட்	പ അംരം	n en ini	-			्र संबद्धाः			الباليديو	
	Clock						— 際空 				ЦЦ			日間間	
	FirstDatainRdy			Ave ave	Mina y Mina y		Point -								
ſ	CumStateMasterFSM [3:0]	$\mathbf{x} \stackrel{\text{a.s.a.}}{\underset{\substack{i_1,\ldots,i_m\\i_m \neq \cdots,i_m}}{\overset{i_1,\ldots,i_m}{i_1,\ldots,i$	147	1 2	3 45	5 😽	1 2	3	5 6	ha. 0	\$3.j.	7 8	9 10	11 .9	12 0
	StartFSM1		同時			<u> </u>	4. T 5. ()	614 818 8 1 8 8 8 8	5 R. Su	in :	_ <u>1</u>	1.1		4CM	
Ę	StartFSM2	17 17 19 19 19	- 143		، د. دادیدهد ۲۰۰۰ - ۲۰۰۰			1997 1997			ilia.	<u> </u>			AF PARATA
10	StartFSM3	j.			in the					1.1				0191 2167	
Con	CurrStateFSM1 [1:0]	* (100	0	1 2	3 100	0 1-21	1 2	3 420		0	8 	111	2 003	1 2	
	CurrStateFSM2 (2:0)	N 1000	41 A A	er Teorie Martine Martine	1 2	3	5 0	1 2		5	i di i		1 5 35	0	3 13 0
	CurrStateFSM3 (1.0)	<u>10</u>	- 10 km	00.0			<u></u> 1 2	284624F		1 2		0	Ultroate a	3 0	0.10.2000 0.10.2000
			110.24	the start	. Set Alex		-11 11	Sarres in				1	1.4 ¹¹ a.47		
N	CurrStateFSM1 [1:0]	× <u>Lucci</u>	0 000	1 2	3.1	and and a	1 [2]	3 <u>CHO</u>		٥		1_2_(2	0
÷.	StartFSM2	<u></u>	PRANE.		rides E	- 4 Chi-		2.280. 		- #19	141		的機構		
Ito	CurrStateFSM2 [2:0]	×		H.	1.52	3 [4] _	5 9	1 2		5	.			• •	7 0
5	StartFSM3			AL TLA			11 ¹¹ 17 A. 2		. <u>19</u> 1					(Tight)	CIER.
	CurrStateFSM3 [1:0]			<u> 1001</u> -		الم المحمد الم	2		Энгий	1 2	<u> </u>	· 3		з р	
ontro	Fath 3 CurrStateFSM [3:0]	· <u> </u>	<u>, 22</u>	1 2	3 44	3 6	7 2	3 4	s [.6]	8 9	0	10 11 1	12 [2 13]	11 124	14 15
-				ta fa	1						, <u>, , , , , , , , , , , , , , , , , , </u>		1999 - 1992	1210	
	En_A	<u> </u>		10		╶╶╌┙╴┠╌				<u></u>	┈╣∶└╴			1.8 [44]	
	En B		ليشيد				<u> </u>						 		- <u></u>
	En_C			*: L								1			<u>tutu</u>
ş	En_D	<u> </u>		البيت	<u> </u>							I`	<u>1997</u> -	- [72]	<u>- 642</u>
5	Mux1_\$el [1:0]] 	<u> </u>		2	0	1	2	121.0	·	2414	0	1 2016-0
	Mux2_Sel [1:0]		•	maril	1 2	1 2	0	1 2	2	- 21 -			01	0	0
	En_AB		12(1,4) 12(1,4)										<u>, 195</u>	<u>_</u>	-
	En_AC			0.5	<u>l</u>	. ::: :::::::::::::::::::::::::::::::::			े वे हु. जन्म	-:	P.S.			E	
	٤n_AD						<u></u>		197 14-51	<u>}</u>	841 - 1 12 - 1	d.	이번 - 프론 -		1933-91
Ĩ	En BC				288 3. [_	1				375.	. 17	FAC		
	En BD				1.(- آ	5	ا ا	72	84				
	En CD				100	Sala.		ur kazi	ŢĊ,	1	a de	* 14F		rizsijat	
	Must Calling		1 <u>1</u>				 			- 1 - 1		<u></u>		- <u>19</u>	- <u>100</u>
-		25		uch.	ite di ci	1.7		2512.1*	162					51 AM 1 AM 1 AM	(110,51 (110,7) (14,64 21,656
ſ	Senalin [3:0]	0	5	4 7	10	0 22	9 5	6	167	o	5	4 8	3 10	1	0
	A (3:0)			1.75	5				2		<u></u>	5		3	787.69
	B [3:0]				4		Ţ.		<u> </u>		- dian-	4	Solver-		10
ľ	C (3·0)		×			7				5		<u>i</u>	8		73 SP 73.67
	D [3.0]		<u> </u>	<u>3 17 4</u>		01		1054		6		· · · · · · · · · · · · · · · · · · ·	107.01 107.01	1-226	1000 1000 1000 1000 1000 1000 1000 100
	Mult		bidi Ha	20	35 50 1 2	8 40 7	1.1	10 12 4	5 54 3	30 1	8 <u>5</u> 4	5 20 40	0.323	0 15 5	0 30
	AB [7:0]		ESST.		Adalas Lakur	20	1	a and a second s	24180 	18	1.01. 1.01.		20		30.25
	AC (7:0)	• • • • • • •		19632		35				10	- 3010 - 5010		E State	03.8	
	AD [7:0]		Right Harth				50							······································	
	RC [7:0]		<u>Cárs rá</u>	កាលកីត ប្រាំស្នាក ព្រាទីឱ្យ									3.4		a transfer
	00 (7.0) 00 (7.1)	<u> </u>					28	7.62.001 7.62.001 1.728.00	1.146	-44					
	BD [7:0]	na zl				1560 1998	K () Street	40	Edit a	1455		 		institek Desaret	
	CD [7:0]		1011			CONSTRUCTION OF		70		33			1. 1943 3	0	13029 EMIN
	Sum1 (8:0)		1000 C				23	53	1941	28		ж		70	
	Sum2 (8:0)						278				6 1	-A-68	NCSIN U-CAST		62
	0 0 00	<u> </u>		C. P.		Piles and	and with the second sec	310	1	24		2 4 1 (Q)	-	HITUN	
	Sum3 [8:0]		10 A 12 A 14				Same and Same	Set 2 6.	1.5380		77227 p. r	· · · · · · · · · · · · · · · · · · ·			1000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
	Sum3 [8:0] NoSum [8:0] = BC [7:0]					1. wodana	28	0.04.061		H.	45		- <u>2</u>	32	50
	Sum3 (8:0) NoSum (8:0) = BC (7:0) FirstData OutRdy					A volation	28	0.3 w 260 9. 1.3.5 M 2. 3 (2015) 1. 3 (2015) 1. 3 (2015) 1. 3 (2015)				41 (2010) 41 (20		1 32 -11 5-134	50

Г

Figure 8.23 Waveforms for three separate control paths controlling one data path

Example 8.13 Two interactive FSMs controlling two rotors

Two bidirectionally interactive state machines are used to control two mechanical interlocking rotors, which rotate in 90 degree increments in a clockwise or counter clockwise rotation, see Figure 8.24. Each rotor may reside in any one of four physical positions angled at 0, 90, 180 or 270 degrees. The mechanical interlocking arrangement between the two rotors prohibits them from being positioned at the same angle. Each rotor is controlled by its own state machine. State machine FSM1 controls the position or rotor Rl, while state machine FSM2 controls the position of the rotor R2. The two state diagrams for the two state machine controllers are shown in Figure 8.25a). Each state machine has four states (Ang0, Ang90, Ang180 and Ang270) corresponding to the four positions of each rotor. The state transition equations for the four state transitions indicated in Figure 8.25a) are shown in Figure 8.25b).

Signals CW_R1 and CCW_R1 control the clockwise and counter clockwise movements of rotor R1, while signals CW_R2 and CCW_R2 control the clockwise and counter clockwise movements of rotor R2. A

Figure 8.24 Two mechanical interlocking rotors

rotor cannot be requested to move in both directions at the same time, that is, both CWR1 and CCW_R1 are at logic 1. Also, the movement requests for each rotor are independent of each other, that is, CWR1 and CCW_R1 are independent of CW_R2 and CCW_R2.

State machine interaction comes from having to ensure the two rotors are never requested to move to the same position. At any one time, one of the rotors is the primary drive while the other is the secondary drive or slave. The primary drive always follows its clockwise and counter clockwise control signals, while secondary drive only follows its clockwise and counter clockwise control signals, provided the primary drive rotor is not in the way. The signal DriveRI_R2b indicates which rotor is the drive at any particular time. As a consequence of the interlocking mechanism, and the requirement for the state machines not to try and drive the two rotors into the same position, the two state machines, FSM1 and FSM2, interact in two ways indicated by the following two scenarios.

- 1. If rotor Rl is the drive and CW_Rl is at logic 1, then the state machine FSMI will cycle round its four states in a clockwise rotation causing rotor Rl to rotate clockwise. Now if rotor R2 is not being driven, that is, CW_R2 and CCW_R2 are at logic 0, or it is wanting to move counter clockwise, that is, CCW_R2 is at logic 1, then when rotor Rl sees that R2 is in the way, Rl will override R2's control signals, and R2 will be pushed round in a clockwise direction one position ahead of Rl.
- 2. If rotor Rl is the drive and both CW_Rl and CCW_Rl are at logic 0, then FSMI stays in the same state, and Rl is stationary. In this case, movement requests for R2 by signals CW_R2 and CCW_R2 will only be granted by the state machine FSM2, provided it is in the bounds of the three positions not occupied by FSM1 (Rl). If R2 does want to move to the position occupied by Rl, it will hold its current position.

HDLmodels

The two state machines, FSMI and FSM2 residing in their own process (VHDL)/always (Verilog) statement. The interaction between them is communicated via the state machine's current state signals (NewPosR1 and NewPosR2), and is bidirectional by virtual of both state machine's next state signals being a function of both state machine's current state. Placing the two state machines in their own process/always statement, is the most natural partitioning for this design, however, if there is other related or unrelated code included in the model, the two state machines may be better placed in the same process/always statement. In this case, the communication between the two VHDL state machines could be via variables instead of signals, and so would simulate faster.

Both the VHDL and Verilog versions of this design use a case statement to model the next state logic for the state machine when it is the drive. The interactive next state logic modeled for the condition when the other state machine is the drive, is coded differently between the VHDL and Verilog versions. The reason for this is, the Verilog example is able to make use of the casex construct which allows "don't care" input choice values. The VHDL language does not allow this, so it is better to use the in built priority encoding provided by the if statement.

Figure8.25a)Twointeractivestatemachinecontrollers

(A)	(DriveR1_R2b.	CW_R1) or			Ft1 is the drive.		
	(DriveR1_R2b.	CW_R2. PosR2=An	g270) or	R2 i	s the drive an	dpushes R1 clockwise.	>
	((DriveR1_R2b	. CW_R1)(CCW_R2	2. PosR2=Ang	90) R2	is the drive bu dependentlymov	t is not impeding R1 from in- vingclockwise.	
	(CW_R1.CW	_R2.CCW_R2.PosF	R2=Ang90)		, ,	0	
	(CCW_R1.CV	N_R2.CCW_R2.Po	sR2=Ang270)))			
(B)	(DriveR1_R2b.	CCW_R1) or	R1	is	the drive.		
	(DriveR1_R2b.	CCW_R2.PosR2=A	ng180) or		R2 is the drive and	Ipushes R1 counter clockwis	se.
	((DriveR1_R2b	. CCW_R1)(CW_R2	. PosR2=	=Ang0)	R2 is the drive bu dependently mov	t is not impeding R1 from in- vinacounterclockwise.	
	(CW_R1.CW_	_R2.CCW_R2.PosR	2=Ang180)			3	
	(CCW_R1.CV	V_R2.CCW_R2.Pos	sR2=Ang0))				
(C)	(DriveR1_R2b.	CW_R2) or			R2 is the drive.		
	(DriveR1_R2b.	CW_R1.PosR1=An	g180) or		R1 is the drive an	d pushes R2 clockwise.	
	((DriveR1_R2b dependently (CW_R2.CW_	.CW_R2)(CCW_R1 _R1.CCW_R1.PosR	. PosR1=Ang 1=Ang0)	0) R1	is the drive bu movi	t is not impeding R2 from in- ing clockwise.	
	(CCW_R2.CW	/_R1.CCW_R1.Pos	R1=Ang180))			
(D)	(DriveR1_R2b.0	CCW_R2) or			R2 is the drive.		
	(DriveR1_R2b.	CCW_R1. PosR1	I=Ang90) or	R1 Is th	ne drive and pu	shes R2 counter clockwis	е.
	((DriveR1_R2b.	CCW_R2)(CW_R1	.PosR1=Ang	270)	R1 is the drive bu dependentlymov	it is not impeding R2 from in- ingcounterclockwise	
	(CW_R2.CW_	R1.CCW_R1.PosR	(1=Ang90)				
	(CCW_R2.CW	/_R1.CCW_R1.Pos	R1=Ang270))			

Figure 8.25b) State transistion equations for the state diagrams, Figure 8.25a)

Two bidirectionally interactive state machines

VHDL Verilog 1827 1.144 library IEEE: use IEEE.STD_Logic_1164.all, IEEE.Numeric_STD.all; define AnyAng 2'b XX entity FSMS_BIDIR_INTERACTIVE Is module FSMS_BIDIR_INTERACTIVE port (Clock, Reset: in std_logic; (Clock, Reset, DriveR1_R2b, PosR1, PosR2, CW_R1, DriveR1_R2b: in std_logic; CCW_R1, CW_R2, CCW_R2, NewPosR1, NewPosR2); PosR1: In unsigned(1 downto 0); PosR2: in unsigned(1 downto 0); CW R1, CCW R1: in std logic; input Clock, Reset, DriveR1_R2b; CW R2, CCW R2: in std_logic; input [1:0] PosR1, PosR2; NewPosR1_out: out unsigned(1 downto 0); input CW_R1, CCW_R1, CW_R2, CCW_R2; NewPosR2_out: out unsigned (1 downto 0)); output [1:0] NewPosR1, NewPosR2; end entity FSMS BIDIR INTERACTIVE: NewPosR1, NewPosR2; reg [1:0] Ang0 = 2'b 00, Ang90 = 2'b 01, parameter architecture RTL of FSMS_BIDIR INTERACTIVE is constant Ang0: Ang180 = 2'b 10, unsigned(1 downto 0) := "00"; State values Ang270 = 2'b 11; constant Ang90: unsigned(1 downto 0) := '01'; constant Ang180: unsigned(1 downto 0) := "10"; for both FSMs. constant Ang270: unsigned(1 downto 0) := "11"; begin always @(posedge Clock) begin: FSM ROTOR1 FSM_ROTOR1: process (Clock) variable CW_CCW_R1: unsigned(1 downto 0); begin CW_CCW R1 := CW_R1 & CCW R1; if rising_edge(Clock) then if (Reset) if (Reset = '1') then NewPosR1 = PosR1; NewPosR1 <= PosR1; else else casex (NewPosR1) case (NewPosR1) is Ang0: when Ang0 => if (DriveR1_R2b) if (DriveR1_R2b = '1') then case ({CW R1, CCW_R1}) case (CW_CCW_R1) is 2'b 10: NewPosR1 = Ang90; when "10" => NewPosR1 <= Ana90; 2'b 01: NewPosR1 = Ang270; when "01" => NewPosR1 <= Ang270; endcase when others => NewPosR1 <= Ang0; else end case; casex ({CW_R1,CCW_R1,CW_R2,CCW_R2,PosR2}) else {4'b XX10, Ang270}: NewPosR1 = Ang90; if (CW R2 = '1' and PosR2 = Ang270) then {4'b XX01, Ang90}: NewPosR1 = Ang270; NewPosR1 <= Ang90; {4'b 1000, Ang90}: NewPosR1 = Ang0; elsif (CCW_R2='1' and PosR2=Ang90) then {4'b 0100, Ang270}: NewPosR1 = Ang0; NewPosR1 <= Ang270; {4'b 10XX, `AnyAng}: NewPosR1 = Ang90; elsif (CW R) = '1' and CW R2 = '0' and {4'b 01XX, `AnyAng}: NewPosR1 = Ang270; CCW_R2='0' and PosR2=Ang90) then endcase NewPosR1 <= Ang0; elsif ($CCW_R1 = '1'$ and $CW_R2 = '0'$ and CCW_R2='0' and PosR2=Ang270) then NewPosR1 <= Ang0; eisif (CW_R1 = '1') then NewPosR1 <= Ang90; elsif (CCW R1 = '1') then NewPosR1 <= Ang270; end if: end if; when Ang90 => Ang90 : if (DriveR1 R2b = '1') then if (DriveR1_R2b) case (CW_CCW_R1) is case ({CW_R1, CCW_R1}) when "10" => NewPosR1 <= Ang180; 2'b 10: NewPosR1 = Ang180; 2'b 01: NewPosR1 = Ang0; when "01' => NewPosR1 <= Ang0; when others => NewPosR1 <= Ang90; endcase end case; else else casex ({CW_R1,CCW_R1,CW_R2,CCW_R2,PosR2}) If (CW R2 = '1' and PosR2 = Ang0) then {4'b XX10, Ang0}: NewPosR1 = Ang180; NewPosR1 <= Ang180; {4'b XX01, Ang180}:NewPosR1 = Ang0; continued continued

Two	bidirectionally	interactive	state	machines

I DESCRIPTION OF THE DESCRIPTION OF THE PARTY OF THE PART

		Politica	BERRAR BALLER
elstf (CCW_R2='1' o NewPosR1 <= Ar elstf (CW_R1 = '1' o CCW_R2='0' o NewPosR1 <= Ar elstf (CCW_R1 = '1') CCW_R2='0' or NewPosR1 <= Ar elstf (CW_R1 = '1') NewPosR1 <= Ar elstf (CCW_R1 = '1') NewPosR1 <= Ar end if;	Ind PosR2=Ang180) then Ig0; Ind CW_R2 = '0' and Ind PosR2=Ang180) then Ig90; and CW_R2 = '0' and Ind PosR2=Ang0) then Ig90; hen Ig180; Ithen Ig0;	{4'b 1000, Ang180}: Ne {4'b 0100, Ang0}: Ne {4'b 10XX, `AnγAng}: Ne {4'b 01XX, `AnγAng}: Ne endcase	ewPosR1 = Ang90; ewPosR1 = Ang90; ewPosR1 = Ang180; ewPosR1 = Ang0;
end if;		1 100 -	l
when Ang180 =>			
if (DriveR1_R2b = '1') t	hen		
case (CW_CCW_R) is	case ({CW_RI, CCW_RI})	70
when "10" => Ne	WPOSRT <= $Ang270$;	2'D TU: NewPoskT = Ang2	70; o:
wnen 'Ul' => Ne	WPOSRT <≈ Angyu;	2 D UT: NEWPOSRT = Angy	0,
	NewPositi <= Ang 180;	enacase	
ena case;			
	$P_{O}(B^2) = A_{O}(O(0))$ then	$\frac{1}{(4!b YY10 A p q 90)}$	PorPI = Apg270
$H_{C} W_{R2} = F GHO$	$r_{03R2} = Ang_{70}$ (nen		Po(D) = Arg270,
	nd PocP2-Apg270) than	(4'D 1000 Apr/270). Ne	PopP1 = Apg180
		(415 1000, Ang270). Ne	$wPosP1 = \Delta ng180$
	$Q^{2}Q$, ad CW(P2 – '0' and	(40 0100, Ang/oj, Ac	wPosPl = Ang270
	$d Pos R^2 = A p a^2 7 \alpha$	(4'b 01XX `AnyAng): No	POSR1 = Ang POSR1
NewPosR1 <= An	0180	endcase	
eisif (CCW R] = (1)	and CW R2 = 0 and	0.120200	
CCW R2='0' gr	d PosR2=Ana90) then		
NewPosR1 <= An	a180:		
elsif (CW R] = '1') f	ien		
NewPosR1 <= An	a270:		
eisif (CCW R1 = '1')	then		
NewPosR1 <= An	g90;		
end if;	-		
end if;			
when Ang270 =>		Ang270 :	
if (DriveR1_R2b = '1') fl	nen (if (DriveR1_R2b)	
case (CW_CCW_R	l) is	case ({CW_R1, CCW_R1})	
when "10" => Ne	wPosR1 <= Ang0;	2'b 10: NewPosR1 = Ang0;	
when "01" => Ne	wPosR1 <= Ang180;	2'b 01: NewPosR1 = Ang18	80;
when others => 1	NewPosR1 <= Ang270;	endcase	
end case;			
	0/0/_ (D0180) then		$\sum_{i=1}^{N} \sum_{j=1}^{N} \sum_{i=1}^{N} \sum_{i=1}^{N} \sum_{i=1}^{N} \sum_{i=1}^{N} \sum_{i=1}^{N} \sum_{i=1}^{N} \sum_{i=1}^{N} \sum_{i=1}^{N} \sum_{i$
IT (C W_K2=1' CHO P	osk2≡Angrooj men	(4D AXTU, AIRGTOU). NO	wPosPI = Anglan
	gu, nd RosR2~Ana() then	(40 XX01, X190), Ne (45 1000 Ango); Ne	wPosR1 - Angroo,
	0180:	(4'b 1000, Angl); Ne	wPosP1 = Ang270
eleif (CW P1 - '1' or	$d C W R^2 = '0' and$	Idth 10XX `AnyAngl: Ne	wPosR1 = Angl:
	PosR2 = Ang(0) then	(4'b 01XX, 'AnyAng): Ne	wPosR1 = Ang180
NewPosR1 ~= An	o270:	endcasé	
elsif (CCW_R1 = '1')	and CW R2 = '0' and	endcase	
CCW R2='0' an	d PosR2=Ang180) then	end	
NewPosR1 <= An	g270;		
eisif (CW R] = '1') #	nen		
NewPosR1 <= An	g0;		
elsif (CCW_R1 = '1')	then		
NewPosR1 <= An	g180;		
end if;	-		
end if;			
when others => null;			
end case;	continued	-	continued
			00000

266

Two bidirectionally interactive state machines

VHDL	Verilog
end if: end if: NewPosD1 - out <= NewPosD1 -	
end process FSM_ROTOR1;	
<pre>FSM_ROTOR2: process (Clock) variable CW_CCW_R2: unsigned(1 downto 0);</pre>	always@(posedge Clock) begin: FSM_ROTOR2
CW_CCW_R2 := CW_R2 & CCW_R2;	
if rising_edge(Clock) then if (Reset = '1') then	if (Reset) NewPosR2 = PosR2:
NewPosR2 <= PosR2;	else
case (NewPosR2) is	Ang0:
when Ang0 => if (DriveP1_P2b = '0') then	if (I DriveR1_R2b)
case (CW_CCW_R2) is	2'b 10: NewPosR2 = Ang90;
when "10" => NewPosR2 <= Ang90; when "01" => NewPosR2 <= Ang270;	2'b 01: NewPosR2 = Ang270; endcase
when others => NewPosR2 <= Ang0;	
ena case; else	{4'b 10XX, Ang270}: NewPosR2 = Ang90;
if (CW_R1 = '1' and PosR1 = Ang270) then NewPosR2 <= Ang00;	{4'b 01XX, Ang90}: NewPosR2 = Ang270; {4'b 0010_Ang90}: NewPosR2 = Ang0;
elsif (CCW_R1='1' and PosR1=Ang90) then	{4'b 0001, Ang270}: NewPosR2 = Ang0;
NewPosR2 <= Ang270; elsif (CW_R2 = 1' and CW_R1 = '0' and	{4'b XX10, AnγAng}; NewPosR2 = Ang90; {4'b XX01, 'AnγAng}: NewPosR2 = Ang270;
CCW_R1='0' and PosR1=Ang90) then	endcase
elsif (CCW_R2 \pm '1' and CW_R1 $=$ '0' and	
CCW_R1='0' and PosR1=Ang2/0) then NewPosR2 <= Ang0;	
elsif (CW_R2 = '1') then	
elsif (CCW_ $R2 = 'l')$ then	
NEWPOSK2 <= Ang270; end if;	
end if; when Ang20 ->	Ang90 ·
if (DriveR1_R2b = '0') then	if (! DriveR1_R2b)
case (CW_CCW_R2) is <pre>when '10" => NewPosR2 <= Ang180;</pre>	case ({CW_R2, CCW_R2}) 2'b 10: NewPosR2 = Ang180;
when "01" => NewPosR2 <= Ang0; when other => NewPosR2 <= Ang0;	2'b 01: NewPosR2 = Ang0;
end case;	else
else if (CW_R1 = '1' and PosR1 = Ang0) then	casex ({CW_R1,CCW_R1,CW_R2,CCW_R2,PosR1}) {4'b 10XX, Ang0}:
NewPosR2 <= Ang180; elsit (CCW $R1-11$ and $PosR1-Ang180$) then	{4'b 01XX, Ang180}: NewPosR2 = Ang0; {4'b 0010_Ang180}: NewPosR2 = Ang90;
NewPosR2 <= Ang0;	{4'b 0001, Ang0}: NewPosR2 = Ang90;
eisir (CW_R2 = 11 and CW_R1 = 10 and CCW_R1='0' and PosR1=Ang180) then	{4'D XXIU, AnyAng}: NewPosk2 = Ang180; {4'D XX01, 'AnyAng}: NewPosk2 = Ang0;
NewPosR2 <= Ang90; elsif (CCW_R2 = '1' and CW_R1 = '0' and	endcase
CCW_R1='0' and PosR1=Ang0) then	
$elsif(CW_R2 = '1') then$	
NewPosR2 <= Ang180; elsif (CCW_R2 = '1') then	
NewPosR2 <= Ang0;	
ena ir; end if;	
when Ang180 => if (DriveR1, R2b = '0') then	Ang180: if (I DriveR1 R2b)
continued	continued

VHDL	Verilog
<pre>case (CW_CCW_R2) is when '10' => NewPosR2 <= Ang270; when '01' => NewPosR2 <= Ang90; when others => NewPosR2 <= Ang180; end case; else if (CW_R1 = '1' and PosR1 = Ang90) then NewPosR2 <= Ang270; elsif (CCW_R1='1' and PosR1=Ang270) then NewPosR2 <= Ang90; elsif (CW_R2 = '1' and CW_R1 = '0' and CCW_R1 = '0' and PosR1 = Ang270) then NewPosR2 <= Ang180; elsif (CCW_R2 = '1' and CW_R1 = '0' and CCW_R1 = '0' and PosR1 = Ang90) then NewPosR2 <= Ang180; elsif (CW_R2 = '1') then NewPosR2 <= Ang180; elsif (CW_R2 = '1') then</pre>	case ({CW_R2, CCW_R2}) 2'b 10: NewPosR2 = Ang270; 2'b 01: NewPosR2 = Ang90; endcase else casex ({CW_R1,CCW_R1,CW_R2,CCW_R2,PcsR1}) {4'b 10XX, Ang90}: NewPosR2 = Ang270; {4'b 01XX, Ang270}: NewPosR2 = Ang90; {4'b 0010, Ang270}: NewPosR2 = Ang180; {4'b 0001, Ang90}: NewPosR2 = Ang180; {4'b XX10, `AnyAng}: NewPosR2 = Ang270; {4'b XX01, `AnyAng}: NewPosR2 = Ang90; endcase
NewPosR2 <= Ang270; elsif (CCW_R2 = '1') finen NewPosR2 <= Ang90; end if; end if; when Ang270 => if (DriveR1_R2b = '0') filten case (CW_CCW_R2) is when "10" => NewPosR2 <= Ang0; when "10" => NewPosR2 <= Ang180; when offiers => NewPosR2 <= Ang270; end case; else if (CW_R1 = '1' and PosR1 = Ang180) filten NewPosR2 <= Ang0; elsif (CCW_R1 = '1' and PosR1 = Ang0) filten NewPosR2 <= Ang180; elsif (CW_R2 = '1' and CW_R1 = '0' and CCW_R1 = '0' and PosR1 = Ang0) filten NewPosR2 <= Ang270; elsif (CCW_R2 = '1' and CW_R1 = '0' and CCW_R1 = '0' and PosR1 = Ang180) filten NewPosR2 <= Ang270; elsif (CCW_R2 = '1') filten NewPosR2 <= Ang270; elsif (CW_R2 = '1') filten NewPosR2 <= Ang270; elsif (CW_R2 = '1') filten NewPosR2 <= Ang180; elsif (CW_R2 = '1') filten NewPosR2 <= Ang180; elsif (CCW_R2 = '1') filten NewPosR2 <= Ang180; elsif (CCW_R2 = '1') filten NewPosR2 <= Ang180; elsif (CW_R2 = '1') filten NewPosR2 <= Ang180; elsif (CW_R2 = '1') filten NewPosR2 <= Ang180; elsif (CW_R2 = '1') filten NewPosR2 <= Ang180; end if; end if; NewPosR2_out <= NewPosR2; end process FSM_ROTOR2;	Ang270 : if (I DriveR1_R2b) case ({CW_R2, CCW_R2}) 2'b 10: NewPosR2 = Ang0; 2'b 01: NewPosR2 = Ang180; endcase else casex ({CW_R1,CCW_R1,CW_R2,CCW_R2,PosR1}) {4'b 10XX, Ang180}: NewPosR2 = Ang0; {4'b 01X, Ang0}: NewPosR2 = Ang180; {4'b 0010, Ang0}: NewPosR2 = Ang270; {4'b 0001, Ang180}: NewPosR2 = Ang270; {4'b XX10, 'AnyAng}: NewPosR2 = Ang0; {4'b XX0, 'AnyAng}: NewPosR2 = Ang180; endcase end endmodule
end architecture RTL;	

268

Two bidirectionally interactive state machines

HDL Chip Design

9

Circuit Functions modeled Combinationally or Synchronously

Chapter 9 Contents

Shifters	273
Combinational Shifters	
Example 9.1 Combinational logic shifter	274
Example 9.2 Combinational logic shifter with shift in and out signals	276
Example 9.3 Combinational barrel shifter	
Synchronous Shifters	
Example 9.4 Shift registers	
Adders and Subtractors	279
Combinational adders and subtractors	279
Sequential adders and subtractors	
Example 9.5 Comment directives for Carry-Look-Ahead and Ripple-Carry adders.	. 280
Example 9.6 Combined adder and subtractor with detailed structure	281
Example 9.7 Serial adder/subtractor	284
Multipliers and Dividers	286
Combinational versus synchronous	286
Multiplier and Divider Algorithms	
Example 9.8 Signed combinational multiplier using shift and add algorithm	290
Example 9.9 Generic sequential shift and add multiplier	293
Example 9.10 Generic NxM sequential multiplier using Booth's Algorithm	297
Example 9.11 10-bit divide by 5-bit combinational logic divider	301
Example 9.12 Generic sequential divider	306

Shifters

Shift operations may be implemented using: 1) purely combinational logic for a combinational shifter or 2) sequential logic, possibly with combinational logic as well, for a synchronous shifter. Combinational logic shifters operate faster than their synchronous counterparts and can perform any shift operation in a single operation. A sequential shift requires two clock cycles; one to load data into a register and another to shift the data within the register. More clock cycles are needed if a shift of more than one bit position is required. Combinational logic shifters do not require any clock cycles, no matter how many shifts are required. The logic for the combinational shifter can be combined with other combinational logic and all operate within a single clock cycle. A typical application of a combinational logic shifter is for the output stage of an ALU.

Combinational Shifters

A combinational shifter circuit can be constructed using multiplexers as shown in Figure 9. 1. It shows the structure of a 4-bit wide shifter, the function table of which is shown in Table 9. 1.

Sel1 Sel	Operation	Function
0 0	Y <- A	no shift
0 1	Y <- shl A	shift left
1 0	Y <- shr A	shift right
1 1	Y <- 0	zero outputs

Table 9. 1 Function table for acombinationalshifter

Shifters can be modeled using if or **case** statements just like most other circuit functions. It is often better to use the **case** statement as models are slightly easier to read and maintain. For this reason, Examples 9.1, 9.2 and 9.3, only use **case** statements.

Example 9.1 shows a 6-bit shifter similar to the 4-bit shifter described above. Example 9.2 is similar, but includes extra serial shifted input and output data signals. Example 9.3 shows a 6-bit barrel shifter that can shift input data by any number of bit positions defined by the binary value on the select inputs.

Figure 9. 1 Structure of a 4-bit combinational shifter

Example 9.1 Combinational logic shifter

A 6-bit wide combinational logic shifter is modeled to the function table; Table 9.2. The implied structure is shown graphically in Figure 9.2, using 4-1 multiplexers for convenience. A synthesized circuit will never use 4-1 multiplexers from the cell library as there would be too much redundant logic. The synthesized circuit will be constructed from cell primitives, as most other types of circuit. A possible implementation from a synthesis tool is indicated on the following page.

Sel	Operation	Function
0	Y<- A	no shift
1	Y <- shl A	shift left
2	Y <- shr A	shift right
3	Y<-0	zero outputs

logic

shifter

6-bit wide combinational

Y[5]

Select[1:0]

A[5:0]

6-bit wide combinational logic shifter
Example 9.2 Combinational logic shifter with shift in and out signals

A 6-bit wide combinational logic shifter is modeled to the function table; Table 9.3. The model is similar to Example 9.1, but signals ShiftLeftln and ShiftRightln are used as serial inputs for the shift left and shift right operations, respectively. Similarly, signals ShiftLeftOut and ShiftRightOut correspond to the shifted output data from the shift left and shift right operations, respectively.

The 6-bit input data to be shifted is assigned to the inner six bits of an 8-bit data type. This leaves a bit either side that can hold the shift left and right overflows which are then assigned to the ShiftLeftOut and ShiftRightOut signals, respectively. The inner six bits of the 8-bit data type is then assigned to the output Y.

Sel	Operation	Function
0	Y<-A ShiftLeftOut <- 0 ShiftRightOut <- 0	no shift
1	Y <- shl A ShiftLeftOut <- A[5] ShiftRightOut <- 0	shift left
2	Y <- shr A ShiftLeftOut <- 0 ShiftRightOut <- A[0]	shift right
3	Y <-0 ShiftLeftOut <- 0 ShiftRightOut <- 0	zero outputs

Table 9.3 Function table for shifterwith shift in and out signals

6-bit wide conbinational logic shifter with shift in and shift out

VHDL	Verilog
library lEEE; use lEEE. STD_LOGIC_1164. all; lEEE. Numeric_STD. all;	
<pre>entity SHIFTER_SHIFTINOUT is port (Sel: in integer range 0 to 3; ShiftLeftIn, ShiftRightIn: in std_logic; A: in unsigned(5 downto 0); ShiftLeftOut, ShiftRightOut: in std_logic; Y: out unsigned(5 downto 0)); end entity SHIFTER_SHIFTINOUT; architecture COND_DATA_FLOW of SHIFTER_SHIFTINOUT is begin COMB_SHIFT: process (Sel, A) variable; A_Wide, Y_Wide: unsigned(7 downto 0); begin A_Wide:=ShiftLeftIn & A & ShiftRightIn; case (Sel) is when 0 => Y Wide:= A Wide; when1 => Y Wide:=shift_left(A_wide, 1); when 3 => Y_Wide:= (others =>'0'); end case; ShiftLeftOut <= Y Wide(0); Y<=Y_Wide(6 downto 1); ShiftRightOut <= Y Wide(7); end process COMB_SHIFT;</pre>	<pre>module SHIFTER_SHIFTINOUT (Sel, ShiftLeftIn, ShiftRightIn, A, ShiftLeftOut. ShiftRightOut, Y); input [1:0] Sel; input ShiftLeftIn, ShiftRightIn; input [5:0] A; output ShiftLeftOut, ShiftRightOut: output [5:0] Y; reg ShiftLeftOut, ShiftRightOut; reg[5:0]Y; reg [7:0] A_Wide, Y_Wide; always @(Sel or ShiftLeftIn or ShiftRightIn or A) begin: COMB SHIFT</pre>
end architecture COND_DATA_FLOW;	

Example 9.3 Combinational barrel shifter

A 6-bit wide combinational logic barrel shifter is modeled to the function table; Table 9.4. The value of the Rotate, specifies how many rotation operations are to be performed. The 6-bit input may be functionally rotated from 0 to 5 positions.

Only one model version using a case statement is included, it is easier to code and comprehend than if the if statement was used. Also, a model using the if statement would be very similar to the models in Examples 9.1 and 9.2. A for loop cannot be used to model this barrel shifter as the signal, Rotate, would need to be used to determine the loop range. This is not allowed by synthesis tools as a loop's range <u>must</u> be statically computable at compile time in order do synthesize a finite amount of logic.

Synchronous Shifters - Shift Registers

Synchronous shifters, commonly known as shift registers, are inferred in the same way as standard registers, but with a shifted version of the registered output fed back to its input. Alternatively, they can be thought of as being modeled as a combinational shifter, but in an edge triggered section of code; see Example 9.4.

Example 9.4 Shift registers

Two 5-bit loadable shift registers are shown. The first shift register, ShiftRegl, shifts the register bits one bit to the left (up one towards the most significant bit) and uses only if statements. The second shift register, ShiftReg2, can shift the register one bit to the left or right depending upon the value of the two bit select line Sel2. A case statement selects which shift, if any, to perform. The synthesized circuit only includes an implementation of the first shift register, ShiftRegl.

Two 5-bit loadable shift registers, one shift left and one shift left and right

VHDL	Verilog
	module SHIFT REG
use IEEE.STD Logic 1164.all, IEEE.Numeric STD.all;	(Clock, Reset, Load1, SL1, Load2, Sel2, Data1,
entity SHIFT REG is	Data2, ShiftReg1, ShiftReg2);
port (Clock, Reset: in std_logic;	input Clock, Reset;
Load1, SL1, Load2: in std_logic;	input Load1, SL1, Load2;
Sel2: in unsigned(1 downto 0);	Input [1:0] Sei2;
Data1, Data2: in unsigned(4 downto 0);	input [4:0] Data1, Data2;
ShiftReg1, ShiftReg2: out unsigned(4 downto 0));	output [4:0] ShiftReg1, ShiftReg2;
end entity SHIFT_REG;	reg [4:0] ShiftReg1, ShiftReg2;
architecture COND_DATA_FLOW of SHIFT_REG is	
begin	
SYNCH_SHIFTERS:	
process (Clock)	
<pre>variable ShiftReg1_v, ShiftReg2_v: unsigned(4 downto 0);</pre>	always @(posedge Clock)
	Degin: SYNCH_SHIFTERS
if rising_edge(Clock) then Loadable	FiftBool - Ο:
if (Reset = '1') then shift left	Sim (keg) = 0;
snmrkegi v := (omers => 0); register (see	Enitibeel Detel:
synthesized synthesized	elve if (SL1)
circuit).	ShiftBool = ShiftBool << 1
ShiftBool $y :=$ shift loft(ShiftBool y 1):	
	SbiftReal - ShiftReal:
ShiftPeal y := ShiftPeal y	
and if	
endif	
ShiftReal <= ShiftReal v:	
If rising edge(Clock) then	if (Reset)
if (Reset = '1') then	ShiftReg2 = 0;
ShiftReg2 v := (others => '0');	else if (Load2)
elsif (Load2 = '1') then Loadable left	or ShiftReg2 = Data2;
ShiftReg2 v := Data2;	ster else
else (synthesized d	cuse (Sel2)
case Sel2 is not snown).	2'b 00 : ShiftReg2 = ShiftReg2;
when "00" => ShiftReg2_v := ShiftReg2_v;	2'b 01 : ShiftReg2 = ShiftReg2 << 1;
<pre>when "01" => ShiftReg2_v := Shift_left(ShiftReg2_v, 1);</pre>	2'b 10 : ShiftReg2 = ShiftReg2 >> 1;
<pre>when "10" => ShiftReg2_v := Shift_right(ShiftReg2_v, 1); </pre>	default : ShiffReg2 = ShiftReg2;
<pre>when others => ShiftReg2_v := ShiftReg2_v;</pre>	endcase
end case;	end
end if;	
end if;	enamoaue
Shirtikeg2 <= ShiftReg2_v;	
ena process SYNCH_SHIFTERS;	
end architecture COND_DAIA_FLOW;	

5-bit loadable shift left register only

Adders and Subtractors

Digital circuits that perform addition and subtraction operations can be realized in parallel using purely combinational logic, or serially, in a synchronous manner, using combinational and sequential logic. Most are realized in parallel because they operate considerably faster, and although the circuit will be bigger, it is often not prohibitively excessive.

Combinational adders and subtractors

Adder and subtractor circuits can be modeled in different ways for different circuit implementations. Subtractors are implemented in the same way as adders, but with the 2's complement of one of the inputs, that is,

A - B is the same as A + the 2's complement of B.

(The 2's complement is the 1's complement plus 1; the 1's complement is each bit inverted.)

The simplest modeling method is to use the "+" and "-" arithmetic operators, they work equally well for both signed and unsigned numbers. In VHDL, the "+" and "-" operators are overloaded with different data types in order to facilitate the use of signed and unsigned numbers, that is, multiple functions named "+" and "-" are defined in the two IEEE 1076.3 synthesis packages.

Figure 9.3 Typical area/delay relationship of carry-look-ahead and ripple-carry adders

Typically, particular comment directives can be used in a model to guide a synthesis tool as to how an adder or subtractor should be structured. This allows adder/subtractor circuits to be synthesized with carry-look-ahead or ripple-carry structures, or a mixture of both, see Example 9.5. There is no standard for such comment directives and so may differ between synthesis tools. Carry-look-ahead circuits are faster, but larger than ripple-carry circuits, see Figure 9.3.

If each "+" and "-" operator in a model is synthesized to a separate adder or subtractor circuit, the chip area required to implement them could be needlessly excessive. When synthesis tools bind an operator like "+" or "-" to a particular circuit, called *resource binding*, the synthesis tool can choose to bind multiple operators to the same circuit. This is called *resource sharing*, see Chapter 4.

If the standard carry-look-ahead or ripple-carry implementation does not meet specific area, timing or power requirements one of two things can be done.

- 1. Use the logic optimizer to remove logical structure (flatten) and then restructure (factorize) to a circuit that better meets the requirements. Flattening and factorizing represents what happens to the boolean equations representing the function of adders or subtractors, as described in Chapter 1. When boolean equations are completely flattened, each output is represented in terms of only inputs; there are no intermediate terms. When equations are factorized, intermediate common terms, known as factors, are introduced producing multiple, but smaller equations.
- ^{'2}. Write a more detailed model describing the specific structure of a circuit that better meets the requirements. Example 9.6 shows how gate primitives, single bit half adders and single bit full adders are constructed to model a circuit that adds or subtracts a 2-bit value, to or from a 6-bit value. These single bit adders could be the direct instantiation of cells from a particular ASIC or FPGA technology library, and which will already have an efficient layout model.

Optimization Strategies. These are not discussed in any depth, however, a designer typically wants to optimize for the smallest possible area, and then, if the circuit does not meet specific timing requirements, reoptimize for timing until it does. Timing driven optimization reduces circuit timing, but its effect on the area is somewhat unknown because it is very much design dependent. Circuit area generally increases with reduced timing, however, it is possible that a circuit optimized for the minimal area also has the shortest timing delay paths through the circuit.

Sequential adders and subtractors

Serial addition and subtraction is performed synchronously using sequential logic, one bit at a time and using a single full adder. For this reason, it can be the preferred method if either, or both, inputs are already in a serial form, or the output is required in a serial form, see Example 9.7.

Example 9.5 Comment directives for Carry-Look-Ahead and Ripple-Carry adders and subtractors

Adder and subtractor circuits are modeled using of the "+" and "-" arithmetic operators. Synthesis specific comment directives plus other related constructs are also included and are specific to the synthesis tools from VeriBest Incorporated. These directives tell the synthesis tool how the circuit should be structured, that is, carry-look-ahead or ripple-carry. Directives in the first process tell the synthesis tool to construct carry-look-ahead structures, while directives in the second process requests ripple-carry structures to be synthesized. The third process has a normal (non directive) comment which defaults to a carry-look-ahead structure in the case of the synthesis tools from VeriBest Incorporated.

Example 9.6 Combined adder and subtractor with detailed structure

The detailed logical structure of a circuit that either adds or subtracts a 2-bit value, to or from, a 6-bit value is modeled to the structure shown in Figure 9.4.

A single bit half adder is modeled using a single XOR logical operator and a single AND logical operator. Two of these half adders and the OR logical operator are used to model a single bit full adder. The adder/subtractor circuit, SIXBITADDSUB2BIT, is then modeled by instantiating six of these full adders with a ripple carry chain from one full adder to the next. As input B, the addend, is only two bits wide, only two XOR functions are needed in order to create the 1's complement; they are XORed with the two least significant bits of input A, the augend. The 2's complement needed for subtraction, is created by connecting SubAddBar (logic 1 for subtraction) to the carry in of the first, least significant bit, full adder. It is worth considering at this point, the ASIC or FPGA technology library being used. It is likely single bit half and full adders already exist in the technology specific library of cells. If so, simply change the names of the full adders in SXBITADDSUB2BIT to match the cell name in the library.

Figure 9.4 Detailed logical structure of a specific adder/subtractor

Extra logic is modeled to force the output to binary 111111 if an addition causes an overflow, and to binary 000000 if a subtraction causes an underflow. An overflow has occurred when adding, that is, SubAddBar = 0, and the carry out from the most significant bit full adder, that is, Carry_Out[5], is at logic 1. An underflow has occurred when subtracting, that is, SubAddBar = 1, and Carry_Out[5] = 0.

The model has been designed so that only minimal changes are necessary in order to remodel it for different bit widths. VHDL constants and Verilog parameters specify the bus width of inputs A and B which are then referenced in the body of the model. The VHDL model uses generate statements to instantiate the single bit adders in such a way that only the constants WidthA and WidthB, need to be changed in order to change the input and output bit widths. Verilog has no equivalent to the generate statement and so, in addition to changing the parameters WidthA and WidthB, the number of single bit full adders instantiated must also be changed to match the width of input A. The width of B is either the same or smaller than the width of A.

Sinale	bit	half	adder
Singic .	~~~	man	aaaoi

VHDL	Verilog
useIEEE.STD_Logic1164.all;	
entity HALF_ADD is port (A, B: in std_logic; Sum, Cout: out std_logic); end entity HALF_ADD;	module HALF ADD (A, B, Sum, Cout); input A, B; output Sum, Cout;
architecture LOGIC of HALF ADD is begin Sum <= A xor B; Cout <= A and B; end architecture LOGIC:	assign Sum = A ^ B; assign Cout = A & B; endmodule

Single bit full adder

VHDL	Verilog
library IEEE; use IEEE. STD_Logic_1164. all. IEEE. Numeric_STD. all;	
entity FULL_ADD is port (A, B, Cin: in Std_logic; Sum, Cout: out Std_logic); end entity FULL_ADD;	<pre>module FULL_ADD (A, B, Cin, Sum, Cout); input A, B, Cin; output Sum, Cout;</pre>
architecture LOGIC of FULL ADD is component HALF ADD port (A, B: in Std logic; Sum, Cout: out std_logic); end component: signal AplusB, CoutHA1, CoutHA2: Std_logic; begin HA1: HALF ADD port map (A =>A, B =>B, Sum =>AplusB, Cout => CoutHA1); HA2: HALF_ADD port map (A => AplusB, B => Cin, Sum => Sum, Cout => CoutHA2); Cout <= CoutHA1 or CoutHA2; end architecture LOGIC;	<pre>wire AplusB, CoutHA1, CoutHA2; HALF ADD HA1(.A(A),.B(B),</pre>

Six bit add or subtract a two bit

VHDL		Verilog
iibrary IEEE		
use IEEE.STD_LOGIC_1164.all; IEEE.STD_Numeric_STD.all;		
entity SIXBIT_ADDSU828IT is		module SIXBIT_ADDSUB2BIT (Sub_AddBar, A, B, Y);
port (Sub_AddBar: in std_logic;		parameter WidthA = 6;
A: in unsigned(5 downto 0);		parameter WidthB = 2;
B: in unsigned(1 downto 0);		input Sub_AddBar:
Y: out unsigned(5 downto 0));		input [WidthA-1:0] A;
end entity SIXBIT_ADDSUB2BIT;		input [Width8-1:0] B;
		output [WidthA-1:0] Y;
architecture LOGIC of SIXBIT_ADDSUB2BIT is		
constant WidthA: integer := 6;		integer N;
constant Width8: integer := 2;		reg [WidthA-1:0] B toADD;
component FULL_ADD		wire [WidthA-1:0] CarryOut;
port (A, B, Cin: in std_logic; Sum, Cout: out std_logic	c);	wire (WidthA-1:0) AddOut;
end component;		reg [WidthA-1:0] Y;
<pre>signal B_toADD: unsigned(WidthB-1 downto 0);</pre>		
signal CarryOut: unsigned(WidthA-1 downto 0);		
signal AddOut: unsigned(WidthA-1 downto 0);		
begin		
INV_B_FOR_SUB: process (Sub_AddBar,B)		//INV_B_FOR_SUB:
<pre>variable B_toADD_Var: unsigned(1 downto 0);</pre>		always @(Sub_AddBar or B)
begin		for (N = 0; N < WidthB; N = N + 1)
for N in 0 to Width8-1 loop		B_toADD[N] = Sub_AddBar ^ B[N];
<pre>B_toADD_Var(N) := Sub_AddBar xor B(N);</pre>	Í	
end loop;		
B_toADD <= B_toADD_Var;		
end process INV_B_FOR_SUB;		
ADDERS: block		//ADDERS:
begin		FULL ADD FA1 BITO
G1 ALL FA: for M in 0 to WidthA - 1 generate		(A(A(0)), B(B toADD(0)), Cin(Sub AddBar),
G_2 : if (M = 0) generate		.Sum(AddOut[0]), .Cout(CarryOut[0]));
FA 0: FULL ADD port map		
$\overline{(A \Rightarrow A(M), B \Rightarrow B \text{ toADD}(M))}$]]	FULL ADD FA2 BIT1
Cin => Sub AddBar, Sum => AddOut(M),		(.Ā(A[1]), .B(B_toADD[1]), .Cin(CarryOut[0]),
Cout => CarryOut(M));	ا <u>ا</u> بادام مرالية	.sum(AddOut[1]), .Cout(CarryOut[1]));
end generate G2;	-uli adae Adaatiati	
G3: if (M>0 and M <widthb) generate<="" td=""><td>nsiamiai</td><td>FULL_ADD FA1_BIT2</td></widthb)>	nsiamiai	FULL_ADD FA1_BIT2
FA_1toB: FULL_ADD port map		(.Ā(A[2]), .B(CarryOut[1]), .Cin(Sub_AddBar),
$(A = > A(M), B = > B_toADD(M),$ continue	ed	continued

Six bit add or subtract a two bit

Example 9.7 Serial adder/subtractor

A serial sequential adder or subtracter circuit is modeled to the structure shown in Figure 9.5. It subtracts if register A is parallel loaded with a 2's complement number and so, unlike Example 9.6, the exclusive OR of the adders addend needed for subtraction is not needed.

Figure 9.5 Structure of serial sequential adder/subtractor

The circuit being modeled assumes a serial input, possibly coming from a communications channel feeding directly onto the chip. This input assumes the adder's augend. The adders addend is a coefficient that is parallel loaded into shift register A in preparation for being adder to, or subtracted from, the augend. Register A, therefore, contains a programmable coefficient that can be used to normalize any inherent offset in the serial input data. The serial input must be received LSB first, and in this case consists of sequences of 8-bit data. Sequential addition is performed one bit at a time, LSB first, using a single bit full adder and the result is shifted into Register B. The carry output from each addition is needed for the carry input of the next, more significant bit addition, and so is delayed one clock cycle through the feedback flip-flop. This feedback flip-flop has a reset to ensure a logic 0 for the first single bit addition; Registers A and B do not need a reset. The summed result resides in Register B and can be parallel read by the controlling system.

Serial adder/subtractor

module ADD_SEQ (Clock, Reset, ParaLoad, CoeffData, Serialin, EnableShiftAdd, ParafielOut); input Clock, Reset; Input ParaLoad, Serialin, EnableShiftAdd; input (7:0) CoeffData; output (7:0) ParatielOut; reg (7:0) ParatielOut; reg ShiftRegA_LSB; reg Sum, Cout, HoldCout;
always @(posedge Clock) begin: REG_AB // // Shift register A // if (ParaLoad) ShiftRegA = CoeffData; else if (EnableShiftAdd) begin ShiftRegA_LSB = ShiftRegA(0); ShiftRegA = ShiftRegA >> 1; ShiftRegA(7) = ShiftRegA_LSB; end
// // Shift register B // if (EnableShiftAdd) begin ShiftRegB = ShiftRegB >> 1; ShiftRegB(7) = Sum; end end
// Single blt full adder // FULL_ADD FA1 (.A(Serialin), .B(ShiftRegA(0)). .Cin(HoldCout), .Sum(Sum), .Cout(Cout));
// // Hold carry out for next add // always @(posedge Clock or negedge Reset) begin: HOLD_COUT If (! Reset) HoldCout = 0; else if (EnableShiftAdd) HoldCout = Cout; else HoldCout = HoldCout; end endmodule

Multipliers and Dividers

The area that combinational logic multiplier and divider circuits occupy on a chip often prohibits them from being used in many applications. This area increases exponentially with increasing bit widths. Instead, sequential multiplier and divider circuits are often implemented because of the substantial savings in chip area. Though sequential implementations do take a finite number of clock cycles in which to perform an operation, unless the design is for a *real time* critical system where speed is the essence, a sequential implementation is often the better compromise.

Combinational Circuits. Current synthesis tools do not synthesize combinational multiplier and divider circuits at all well using the "*" and "/" arithmetic operators. The resulting synthesized circuits are typically very large before optimization for input bit widths much above 4 or 5 bits. This makes the optimizer's job of optimizing the circuit particularly difficult, very CPU intensive, and most important of all, will probably not yield as optimal a circuit as could be achieved if a specific structure was modeled. A more efficient combinational multiplier circuit can be produced by modeling the structure of the shift and add multiplication algorithm. Similarly, for a divider circuit a more efficient circuit can be produced by modeling the structure of the shift are described later in this section.

Synchronous Circuits. The two algorithms commonly used to model sequential multiplier circuits are, 1) the same shift and add algorithm used for combinational circuits, and 2) Booth's Algorithm. Booth's Algorithm is defined specifically to speed up sequential multiplication operations. Synchronous dividers are better modeled using the same shift, compare and subtract algorithm used for combinational dividers. There is no equivalent to Booth's algorithm for speeding up synchronous division.

Combinational versus synchronous

A comparison of typical combinational versus synchronous circuit implementations for different bit width multipliers and dividers, using a typical 0.5 micron ASIC library, is indicated in Figure 9.6. The area disadvantage of combinational circuits is clearly seen.

Figure 9.6 Typical area for combinational verses synchronous multipliers

286

Combinational logic multipliers are faster, but are significantly larger than their sequential counterpart for input bit widths of 4 or more. The area of the combinational circuit increases exponentially as the input and output bit widths increase. In contrast, circuits implemented sequentially are smaller but do take a finite number of clock cycles in which to perform an operation. Sequential multiplication takes up to twice the number of clock cycles as there are bits in the multiplier input; the actual number depends on the multiplier's binary value. Sequential division will take exactly twice the number of clock cycles as there are bits in the divisor. Due to the vast area differences the choice between modeling a combinational or sequential multiplier or divider circuit is usually fairly clear.

Algorithms for performing multiplication and division are described in the following section. Models showing their combinational or sequential implementation are included in Examples 9.8 through to 9.12. Notice that the sequential implementation of a multiplier or divider uses very similar data registers and so could be combined into one circuit that either multiplies or divides.

Multiplier and Divider Algorithms

The following algorithms are described: 1) Shift and add multiplication algorithm for combinational or sequential circuits, 2) Booth's multiplication algorithm for sequential circuits, 3) Shift and subtract division algorithm for combinational or sequential circuits.

Shift and add Multiplication Algorithm

The multiplication of two positive binary numbers is achieved with paper and pencil by a process of successive shift and add operations as illustrated in Figure 9.7a). Figure 9.7b) shows the multiplication using signed 2's complement numbers.

Decimal 39 49	Binary 10111 11001	multiplcand multiplier	5 x (-6) in 2's complement form. 0 1 1 0 (6) 1 0 1 0 (-6 in 2's comp)
1911	10111 00000 00000 10111 10111 <u>1000111111</u> 1000111111	partial product 1 partial product 2 partial product 3 partial product 4 partial product 5 product ≈ sum of partial products	$\begin{array}{c} 0 \ 1 \ 0 \ 1 \ (5) \\ 1 \ 1 \ 1 \ 1 \ 1 \ 0 \ 1 \ 0 \ x \ (-6) \\ \hline 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \\ 0 \ 0 \$

Figure 9.7 Example of binary multiplication

The process consists of looking at each successive bit of the multiplier in turn, starting with the least significant bit. If the multiplier bit is a logic 1, the multiplicand is copied down; otherwise, zeros are copied down. The numbers copied down in successive lines are shifted one position to the left from the previous number. Finally, the numbers are added and their sum provides the product.

When multiplying two signed numbers together the algorithm is modified slightly to cope with the sign bits. The sign of the product is determined from the signs of the multiplicand and multiplier. If they are alike, the sign of the product is a plus. If they are not alike, the sign of the multiplier is a minus.

Example 9.8 shows this shift and add algorithm employed in the model of a 6x6 input combinational multiplier, while Example 9.9 shows it employed in the model of a generic (n x m) bit sequential multiplier.

Booth's Multiplication Algorithm

Booth's algorithm, like all multiplication schemes requires the examination of the multiplier bits and the shifting of partial products. Booth's algorithm is intended for a synchronous logic implementation of a multiplier circuit and works equally for positive and negative numbers. It treats positive and negative multipliers uniformly and is ideally suited for the multiplication of signed 2's complement numbers.

Booth's algorithm operates on two basic facts. The first is that strings of successive 0's in the multiplier require no addition, but just shifting. The second is that a string of successive 1's in the multiplier can be treated as $2^{up}+1 - 2^{\circ}$ where "up" is the upper weighted bit and "lo" is the lower weighted bit. For example, if the multiplier is 001110 (+14), then up = 3 and lo = 1 and $2^4 - 2^1 = 14$. For this algorithm, the individual partial products determined from the multiplicand may be: added too, subtracted from, or may not change the final product at all based on the following rules:

- the multiplicand is subtracted from the partial product upon encountering the first 1 in a string of 1's in the multiplier,
- the multiplicand is added to the partial product upon entering the first 0 provided that there was no previous 1 in a string of 0's in the multiplier,
- the partial product does not change when the bit is identical to the previous multiplier bit.

This algorithm works equally for positive and negative multipliers in a 2's complement representation because a negative multiplier fills the most significant bits with a string of 1's and the last operation will be a subtraction of the appropriate weight. For example, a multiplier equal to -14 is represented as 110010 and treated as $-2^4 + 2^2 - 2^1 = -14$. A paper and pencil illustration of this algorithm is shown in Figure 9.8 for (-9) x (-13) = (+117).

2's complement of multiplicand 10111 is 01001 9876543210 bit weighting (-9)10111 multiplicand first 1 10011 multiplier (-13) _ first 0 _second 1 0000001001 1st multiplier bit 1 - subtract (add 2's complement) 000000000 2nd multiplier bit also 1 - no change so no add/subtract 11110111 3rd multiplier bit changes to 0 so add. Note sign extension 0000000 4th multiplier bit also 0 - no change so no add/subtract 5th multiplier bit changes to 1 so subtract (add 2's complement) 001001 0001110101 product (+117) Note the overflow of adding the the partial products into the 11th bit (bit weighting10) of the product is ignored as it represents the original sign bit of the multiplier.

Figure 9.8 Paper and pencil illustration of Booth's algorithm

Division Algorithm

The division of two positive binary numbers is achieved with paper and pencil by a process of successive compare, shift and subtract operations. Binary division is simpler than decimal division because the quotient digits are either 0 or 1 and there is no need to estimate how many times the dividend or partial remainder fits into the divisor.

l	Divisor B	11010	(26)	Quotient Q
	10001 (17))0111000010 011104 011100	(150)	Dividend A 5 bits of A < B therefore quotient has 5 bits Bring down next Q bit; 6 bits of A >= B Shift Brinth and subtrast actors his Q
		- 0 1 0 1 1 0 1 0 0 0 1		Bring down next Q bit; 7 bits of remainder >= B Shift B right and subtract; enter 1 in Q
		001010+ 010101 <u>10001</u>		Bring down next Q bit; Remainder < B; enter 0 in Q; shift B right Bring down next Q bit; Remainder >= B Shift B right and subtract; enter 1 in Q
		00100	(8)	Remainder < B; enter 0 in Q Bring down last Q bit for final remainder

This division process is illustrated in Figure 9.9.

Figure 9.9 Example of binary division

The divisor B consists of five bits and the dividend A, of ten bits. The five most significant bits of the dividend are compared with the divisor. Since the 5-bit number is smaller than B, we try again by bringing down the sixth most significant bit and comparing the six most significant bits of A with the divisor B. The 6-bit number is now greater than B so we place a 1 for the first quotient bit in the sixth position above the dividend. The divisor is then shifted one place to the right and subtracted from the dividend. The difference is called a *partial remainder* because the division could have stopped here to yield a quotient of 1 and a remainder equal to the partial remainder. This process is continued by comparing a partial remainder with the divisor. If the partial remainder is greater than or equal to the divisor, the quotient bit is equal to 1. The divisor is then shifted right and subtracted from the partial remainder. If the partial remainder is smaller than the divisor, the quotient bit is 0 and no subtraction is needed. The divisor is shifted once to the right in any case. Note that the result gives both a quotient and a remainder.

Example 9.11 employs this division algorithm in the model of a combinational logic divider having a 10-bit dividend, divided by a 5-bit divisor and provides a resulting 5-bit quotient, with a 5-bit remainder. An overflow signal is also provided to indicate when the quotient wants to be more than 5-bits wide. Example 9.12 employs this same algorithm in the model of a generic n-bit, divide by m-bit sequential divider. It provides an (n minus m) bit quotient with an m-bit remainder and an overflow signal.

Example 9.8 Signed combinational multiplier using shift and add algorithm

A 7x7 bit combinational logic multiplier of signed-magnitude numbers is modeled according to the shift and add algorithm already described. It contains an exclusive OR of the input sign bits in order to generate the product's sign bit. The model's structure, Figure 9.10, consists of five adders in parallel, each with differing input and output bit widths.

Figure 9.70 Structure of 7x7 signed combinational logic multiplier

The Verilog language has the advantage of allowing signals of one bit width to be assigned to signals of a different bit width, see Chapter 4. This means the left or right hand side of an assignment that has the least number of bits is automatically expanded to meet the size of the larger, and any unused bits are optimized away during synthesis. This is taken advantage of in two ways in the code of the Verilog model; one for how the partial products are generated, and the other for how the partial products are summed, and are described separately below.

Forming the partial products:

The six partial products are formed in accordance with the algorithm, that is, it is zero if the corresponding bit in the multiplier B is zero, or a shifted version of the multiplicand A if a logic 1. The partial products are generated using conditional signal assignments and do not infer any logic; it only specifies how the shifted multiplier input is connected to the adders.

Verilog. The Verilog model shows two different ways in which the multiplier can be shifted to form the partial products. The first method uses the concatenation of constant logic 0's to the least significant bit of the multiplier. The second uses the shift operator and is shown commented out in this particular model. The point to note about this commented out portion of code is that multiplicand A is shifted from 1 to 5 times, but is still effectively only 6-bits

wide. The shifted bits are not lost because the assignments to PP1-PP6 have the exact number of bits necessary to take the shifted bits.

VHDL. Shifting using a shift operator or shift function is not possible in VHDL. As described in Chapter 4, VHDL assignments (<= and:=) <u>must</u> resolve to have equivalent bit widths on each side of the assignment operator. This means, that although that VHDL assignment operators can be overloaded on their data type, they cannot be overloaded on their size. This means, that if the Verilog assignments using the shift operator, were modeled to their VHDL equivalent, there would be unavoidable bit width mismatches.

Summing the partial products:

Five adders sum the six partial products to yield the multipliers product excluding the sign bit. Delay paths pass through either two or three adders and so are structured so that the delay paths are balanced and minimized. Adders with the largest bit widths will have the longest delay and so are placed in a path that passes through only two adders. This structuring could have been achieved with all partial products, PP1-PP6, defined as being 12-bits wide and using a single parenthesized statement, that is,

Y<= ((PP1 + PP2) + (PP3 + PP4)) + (PP5 + PP6); - VHDL Y = ((PP1 + PP2) + (PP3 + PP4)) + (PP5 + PP6); // Verilog

This would work fine and the synthesis tool would optimize away unused most significant input and output bits connected to logic 0. However, a more explicit structure is modeled because three of the adders (ADD1, ADD2 and ADD3) must use a carry output while the other two (ADD4 and ADD5) need not. For example, adder ADD4 has a 10-bit input but only needs a 10-bit output because even if all bits of the partial products PP1, PP2, PP3 and PP4 were a logic 1, the maximum output from ADD4 is still only 10-bits, as indicated.

 111111
 PP1
 6-bit

 111111
 PP2
 7-bit

 1011110
 PP1+PP2
 8-bit

 11111100
 PP3
 8-bit

 11111100
 PP4
 9-bit

 10111101
 PP3+PP4
 10-bit

 10111101
 PP1+PP2
 8-bit

 10111101
 PP1+PP2
 8-bit

 10111101
 PP1+PP2
 8-bit

 10111101
 PP1+PP2
 8-bit

 101111000
 PP3+PP4
 10-bit

 101111000
 PP3+PP4
 10-bit

This results in a slight reduction in the size of adders ADD4 and ADD5.

Verilog. Assignments for the adders needing a carry out are of the type PP12 = PP1 + PP2; where PP12 is defined as being one bit bigger than PP2, and which is one bit bigger that PP1.

VHDL. Assignments have a logic 0 concatenated to the most significant bit of the largest of the two adder operands solely for the purposes of matching the bit widths either side of the assignment for VHDL compliance. The port declarations; A, B and Y are of type unsigned because type signed is reserved for 2's complement signed numbers and not signed magnitude numbers as used in this example.

The addition of partial products is performed without regard to the magnitude bits of inputs A and B, that is, Am and Bm.

7x7 signed combinational logic multiplier

VHDL	Verilog
library IEEE:	
use IEEE.STD_Logic_1164.all; IEEE.Numeric_STD.all;	
entity MULT7X7SIGNED_COMB Is	module MULT7X7SIGNED_COMB (A, B, Y);
port (A, B: in unsigned(6 downto 0);	input [6:0] A, B;
Y: out unsigned(12 downto 0));	output [12:0] Y:
end entity MULT7X7SIGNED_COMB;	
	wire [5:0] Am, Bm; // magnitude bits only
architecture COND_DATA_FLOW of MULI/X/SIGNED_COMB is	wire [5:0] PPT;
signal Am, Bm: Unsigned (5 downto U); magnitude bits only	wire [6:0] PP2;
signal PPT: Unsigned (5 downto U);	
signal PP2: Unsigned(o downto U);	WIRE [8:0] PP4;
signal PP3: Unsigned(7 downto 0);	
signal PP4, Unsigned (o downolo),	
signal PPA: unsigned(10 downto 0);	uira (7:01 PP19:
signal i i o, anagnea (io dowine o),	wire [7:0] 1112, wire [9:0] PP34:
signal PP12: unsigned(7 downto 0);	wire (9:0) PP1234:
sianal PP34: unsigned (9 downto 0);	wire [1]:0] PP56;
signal PP1234: unsigned (9 downto 0);	
signal PP56: unsigned(11 downto 0);	// Generate the product's sign bit
begin	assign Y[12] = A[6] ^ B[6];
•	
 Generate the product's sign bit 	// Generate partial products using concatination
$Y(12) \le A(6) \text{ xor } B(6);$	assign Am = A[5:0];
	assign Bm = B[5:0];
Generate partial products	assign PP1 = Bm[U] ? Am : 6'b 0; 7
Am <= A(5 downto 0);	
BM <= B(0 downto U); $BD1 = (Am) + (Bin (D) - 1) else (others -> (0))$	$\begin{bmatrix} assign PP3 = Bm[2] ? {Am, 2DU}; BD U; \\ assign PD4 = Bm[2] ? {Am, 2DU}; BD U; \\ assign PD4 = Bm[2] ? {Am, 2DU}; BD U; \\ assign PP3 = Bm[2] ? {Am, 2DU}; \\ assign PP3 = Bm[2]$
PP1 <= (AD1) when DD(0) = 1 ever (unless -> 0), $PP2 <= (AD1 & (D1) & when BD(1) = (1) ever (unless -> 0).$	assign PP5 = Bro(41.2 (Arr), 3 DO); Y D U, 1 assign PP5 = Bro(41.2 (Arr), 4 DO); 10 b D; Concatenation
$PP3 \sim - (Am \& "O")$ when $Bm(2) = 1$ else (others = > 0).	$\frac{\text{dssign PPS = Sin(4) + (Ain, 400), 1000, (00 shift)}{\text{accion PPS = Bm(512, (Am, 5)b(3), 11)b(0), (00 shift)}$
$PPA \sim (Am \& "000") \text{when } Bm(3)=1' \text{ eise (others => '0')}$	method of
PP5 <= (Am & "0000") when $Bm(4)='1'$ else (others => '0');	// Generate partial products using shift generating
$PP6 \le (Am \& "00000")$ when $Bm(5)='1'$ else (others => '0');	//assian PP] = Bm[0] ? Am : 6'b 0;] partial
	//assign PP2 = Bm[1] ? Am << 1 : 7'b 0; products.
Sum partial products	//assign PP3 = Bm[2] ? Am << 2 : 8'b 0; //
PP12 <= PP1 + ('0' & PP2): Uses the corry out	//assign PP4 = Bm[3] ? Am << 3 : 9'b 0;
PP34 <= PP3 + ('0' & PP4); Uses the corry out	// assign PP5 = Bm[4] ? Am << 4 : 10'b 0;
PP56 <= PP5 + ('0' & PP6); Uses the carry out	// assign PP6 = Bm[5] ? Am << 5 : 11′b 0;]
PP1234 <= PP12 + PP34; Carry out not needed	
Carry out not needed for PP1234 + PP56	// Sum partial products
Y(11 downto 0) <= PP1234 + PP56;	assign PP12 = PP1 + PP2; // Uses the carry out
LA THE AVER COND DATA FLOW	assign PP34 = PP3 + PP4; // Uses the carry out
end architecture COND_DAIA_FLOW;	assign PP56 = PP5 + PP6; // Uses the Carry out
	assign PP1234 = PP12 + PP34, // Cany out not needed
	$\mathbf{GSSIGII} = \mathbf{T} + \mathbf{T} + \mathbf{T} + \mathbf{U} + \mathbf$
	endmodule

Example 9.9 Generic sequential shift and add multiplier

A generic $(n \times m)$ bit sequential signed multiplier is modeled to the shift and add multiplication algorithm previously described, but with the addition of a sign bit. It is convenient to change the algorithm's process slightly for sequential hardware implementation.

- Instead of providing registers to simultaneously store and add as many binary numbers as there are bits in the multiplier, hardware is substantively reduced by using only one adder and successively accumulating the partial products in a register.
- Instead of shifting the multiplicand to the left the partial product is shifted to the right; this results in leaving the partial product and multiplicand in their required relative position.
- When the corresponding bit of the multiplier is 0, there is no need to add all zeros to the partial product as it will not alter its value.

The sequential implementation of the multiplication algorithm is shown graphically in the flow chart, Figure 9.11. The corresponding modeled hardware structure is indicated in Figure 9.12. Because the model is generic, the width of the multiplicand and multiplier can be specified when the model is instantiated from another model. This avoids having multiple versions of the same model with different width registers.

Figure 9.11 Sequential shift and add multiplication algorithm

Figure 9. 12 Hardware structure of sequential shift and add multiplier

The operation starts when Load is a logic 1 and causes the following register loading.

RegA <- 0

RegB <- multiplicand without the sign bit

RegQ <- multiplier without the sign bit flip-flop

Ps <- exclusive OR of the multiplicand and multiplier sign bits

SequenceCounter <- number of bits in the multiplier minus the sign bit

The products sign is the exclusive OR of the sign of the two inputs. Instead of storing the sign of each input, the exclusive OR of the two input sign bits is stored in a single flip-flop. This is the products sign bit and saves a flip-flop.

With the multiplicand minus its sign bit in register B, and the multiplier minus its sign bit in register Q, the operation proceeds. This consists of a sequence of consecutive test, possible add, and shift right operations. The control signal Add_Shiftb controls whether to add or shift.

When new data is loaded, the least significant bit of the Multiplier is loaded directly into the add/ shift control flip-flop producing Add_Shiftb. In this way, the Add_Shiftb is set ready for an immediate add if logic 1, or shift if logic 0.

When Add_Shiftb is a logic 1 the sum of registers A and B form a partial product that is transferred to EA (the concatenation flip-flop E and register A) as depicted in Figure 9. 12. It is necessary to hold the carry out from the adder in flip-flop E so that it can be used in the generation of the next partial product summation. A shift right is of EAQ; the least significant bit of register A is shifted into the most significant bit of register Q; the bit from E is shifted into the most significant bit of register Q; the bit from E is shifted into the most significant bit of register A to be shifted into register Q, pushing the multiplier bits one position to the right. In this manner, the right-most flip-flop in register Q, designated by Qn, will hold the bit of the multiplier which must be inspected next. If Qn is a logic 1 an addition is required before the next shift. This is a two clock cycles process; one for the partial product add, and one for the shift during which the counter is decremented. If Qn is a logic 0 no addition is required and so only one clock cycle is needed for shifting EAQ and decrementing the counter.

A single multiplication will take from between (WidthMultiplier - 1) and ((WidthMultiplier - 1)x2) clock cycles to complete depending upon the logic 0's and 1's in the multiplier; it takes 2 cycles per magnitude bit if the multiplier bit is at logic 1 and 1 cycle per magnitude bit if at logic 0. When a multiplication is complete, that is, the sequence counter is zero, Done is set to a logic 1.

HDL Code

As this is a generic $(n \times m)$ bit multiplier, the input and output bit widths can be specified when the model is instantiated from another model. In VHDL, this is achieved using generics while in Verilog it is achieved by overloading parameter values. When this model is instantiated from a calling model, the following data must be passed to it.

Width Multiplicand	- width of the input multiplicand
WidthMultiplier	- width of the input multiplier
WidthCount	- width of the counter where: (Verilog only)
	2Widhount <= WidthMultiplier*2 -1

Ignoring the sign bit, this particular model has been designed such that the width of the output magnitude does not need to be the width of the sum of the two input magnitude widths. This may not be necessary, but does mean there will not be any unused (unconnected) outputs in the calling model. For example, a 10-bit multiplicand and multiplier, each having 1 sign bit and 9 magnitude bits will yield a 19-bit product having 1 sign bit and 2x9 = 18 magnitude bits. Now, if for some reason you only want a 15-bit resolution output, including the sign bit, WidthProduct can be specified as being 15. In this case, the 15 most significant bits of the product are output and the 4 least significant bits are ignored. The model still computes a 19-bit signed product to maintain accuracy. This feature may be of use when designing DSP filters etc.

Suppose a (9×6) bit sign multiplier is required. The process for choosing to model a 9×6 (multiplicand x multiplier) or a (6×9) bit multiplier is as follows.

- 1. Magnitude bits of the multiplicand and multiplier will be 8 and 5, or 5 and 8, respectively.
- 2. Magnitude bits of (8 x 5) will be multiplied in 5 to 10 (2 x 5) clock cycles, will need 22 magnitude related flip-flops and an 8-bit adder.
- 3. Magnitude bits of (5 x 8) will be multiplied in 8 to 16 (2 x 8) clock cycles, will need 19 magnitude related flip-flops and a 5-bit adder.
- 4. Choose from 3 or 4 above depending upon the design criteria.

VHDL: The VHDL model has two variables defined, E_RegA and E_RegA_RegQ, that are not needed in the Verilog model. They are necessary to avoid data type mismatches, that is, a target aggregate of the form:

(E, RegA) <= RegB + RegA;

This <u>does not</u> become a one dimensional array of bits. It is a record with 2 fields; the first field being a 1-bit object of type std_logic and the second having a number of bits constituting an object of type unsigned. This is discussed in Chapter 4.

The addition statement in the VHDL model has a logic 0 concatenated onto the most significant bit, that is, '0' & Multiplicand. This ensures the output bit width matches that of the resolved expression on the right hand side of the assignment; a requirement of VHDL, but not Verilog.

Generic sequential shift and add multiplier

```
VHDL
                                                                                     Verilog
                                                                                                 BERN MURLER H
                                                            .....
                                            始始的自己的
                                                            module MULT_SEQ
library IEEE:
                                                              (Clock, Reset, Load, Multiplicand, Multiplier, Done, Product);
use IEEE.STD_Logic_1164.all; IEEE.Numeric_STD.all;
                                                                 parameter WidthMultiplicand = 5, // multiplicand
entity MULT SEQ Is
                                                                            WidthMultiplier = 8, // multiplier
   generic (WidthMultiplicand, WidthMultiplier,
                                                                            // 2**WidthCount<= (WidthMultiplier - 1) * 2
                                                                            WidthCount
            MaxCount: natural);
                                                                                              = 4;
                                                                         Clock, Reset, Load;
   port (Clock, Reset, Load: In std logic;
                                                                 input
         Multiplicand: in unsigned(WidthMultiplicand - 1
                                                                         [WidthMultiplicand - 1:0] Multiplicand;
                                                                 input
                                                                 input
                                                                         [WidthMultiplier - 1:0] Multiplier;
                                   downto 0);
                       In unsigned(WidthMultiplier - 1
                                                                 output Done;
         Multiplier:
                                                                 output [WidthMultiplicand+WidthMultiplier-1:0] Product;
                                   downto 0);
         Done:
                       out std logic;
                                                                 reg Done;
                       out unsigned (Width Multiplicand +
         Product:
                                    WidthMultiplier - 1
                                                                 reg ProductSign;
                                                                 reg [WidthMultiplicand-2:0] RegA;
                                    downto 0));
end entity MULT_SEQ;
                                                                 reg [WidthMultiplicand-2:0] RegB;
                                                                 reg [WidthMultiplier-2:0] RegQ;
architecture RTL of MULT SEQ is
                                                                 reg E;
   signal ProductSign: std_logic;
                                                                reg Add_Shiftb;
                                                                 reg [WidthCount-1:0] SequenceCount;
   signal RegA: unsigned(WidthMultiplicand - 1 downto 0);
   signal RegB: unsigned(WidthMultiplicand - 1 downto 0);
                                                                 wire [WidthMultiplicand+WidthMultiplier-2.0]
   signal RegQ: unsigned(WidthMultiplier - 1 downto D);
                                                                                                      WholeProduct;
   sianal E:
                      std_logic;
   signal Add_Shiftb: std_logic;
   signal SequenceCount: integer range 0 to MaxCount-1;
   signal WholeProduct:unsigned(WidthMultiplicand
                         + WidthMultiplier - Idownto 0);
begin
                                                              //-----
   -- Shift and add multiplier
                                                              // Shift and add multiplier
                                                              //-----
  SHIFT_ADD_MULT: process (Clock)
                                                              always @(posedge Clock)
     variable E_RegA: unsigned(WidthMultiplicand
                                                                begin: SHIFT_ADD_MULT
                      downto 0);
     variable E_RegA_RegQ: unsigned(WidthMultiplicand
                            +WidthMultiplier downto 0);
     variable Done_v: std_logic;
  begin
     if rising_edge(Clock) then
                                                                   // Synchronous reset
                                                                   //-----
                                                                   if (! Reset)
        -- Synchronous reset
                                                                      begin
                                                                         ProductSign = 0;
        if (Reset = '0') then
           ProductSign <= '0'.
                                                                         RegA = 0;
                                                                         RegB = 0;
           RegA <= (others => '0');
           RegB \le (others => '0');
                                                                         RegQ = 0;
           RegQ<= (others => '0');
                                                                         E = 0;
           E <= '0';
                                                                         Add shiftb = 0;
           Add_Shiftb <= '0';
                                                                         SequenceCount = WidthMultiplier-2;
           SequenceCount <= WidthMultiplier - 1;
                                                                         Done = 0;
           Done_v := '0';
                                                                      end
                                                                   //-----
                                                                   // Load new data & set control signals
        -- Load new data & set control signal
                                                                   //-----
                                                                                 -----
        elsif (Load = '1') then
                                                                   else if (Load)
           ProductSign <= Multiplicand
                                                                      begin
                                                                        ProductSign = Multiplicand[WidthMultiplicand - 1]
                          (WidthMultiplicand - 1)
                         xor Multiplier(WidthMultiplier - 1);
                                                                                       ^ Multiplier[WidthMultiplier - 1]:
           RegA <= (others => '0');
                                                                         RegA = 0;
           RegB <= Multiplicand(WidthMultiplicand - 2
                                                                         RegB = Multiplicand{WidthMultiplicand - 2:0];
                                downto 0);
                                                                         RegQ = Multiplier[WidthMultiplier - 2:0];
        RegQ <=Multiplier(WidthMultiplier - 2 downto 0);
                                                                        \mathbf{E} = \mathbf{0};
                                                                         Add Shiftb = Multiplier[0];
        E <= '0';
                                                                                                              continued
                                              continued
```

Generic sequential shift and add multiplier

Example 9.10 Generic NxM sequential multiplier using Booth's Algorithm

A generic $(n \ x \ m)$ bit sequential multiplier implementing Booth's algorithm is modeled to the hardware structure, Figure 9.13. The structure is very similar to that implemented for the standard shift and add algorithm of Example 9.9. The hardware differences needed to implement Booth's algorithm are:

- 1. An extra flip-flop, Qn+l(Qnplus1), is appended to the least significant bit of register Q in order to facilitate double bit inspection of the multiplier.
- 2. The ability to subtract as well as add.
- 3. The E flip-flop that holds the carry out from the adder is not needed as an add will never cause an overflow. The flow chart, Figure 9.14, indicates how Booth's algorithm is implemented in this example. When Load is a logic 1 the sequential elements are initialized as follows:

RegA	<- 0	Shift_afterAddSub	<- 0
RegB	<- multiplicand	SequenceCounter	<- number of bits multiplier.
RegQ	<- multiplier	Done	<- 0
Qnplus1	l<- 0		

Figure 9.13 Hardware structure implied by multiplier model using Booth's algorithm

Figure 9.14 Booth's algorithm for multiplication of signed - 2's complement numbers

The flip-flop providing the output signal Done is implied by virtue of being assigned in the synchronous section of code and ensures it changes immediately after a clock edge along with the multiplied product. If a small delay of the Done signal after a clock edge is tolerable, it could be assigned in a combinational section of code, saving a flipflop.

The operation begins by inspecting two bits of the multiplier Qn and Qnplusl, along with the control bit Shift_afterAddSub in a case statement. If the two bits Qn and Qnplusl are equal to binary 10, the first 1 in a string of l's has been encountered in the multiplicand. This requires a subtraction of the multiplicand from the partial product in the accumulator register (RegA). If the two bits are equal to binary 01, the first 0 in a string of 0's has been encountered. This requires the addition of the multiplicand to the partial product in RegA. If Qn and Qnplusl are binary 00 or 11 no action is necessary and so the next shift occurs.

After an add or subtract, the control signal Shift_afterAddSub is set to logic 1 in order to guarantee a shift occurs during the next clock

... ..

cycle, as defined by the algorithm. The shift is an arithmetic shift right of the partial product in RegA, the multiplier in RegQ and the Qnplusl flip-flop. When the two bits are equal, the partial product does not change and so another shift follows. Following any shift, the two bits Qn and Qnplusl are retested and the process repeated.

An arithmetic shift ensures that the most significant bit of Register A before the shift, is duplicated into the most significant bit of Register A after the shift; this ensures no sign change. When a shift operation occurs the control signal Shift_afterAddSub is set back to logic 0 ready to test the next Qn and Qn+1 values. The sequence counter is decremented during each shift and the computational loop is repeated as may times as there are bits in the multiplier.

HDLcode

The VHDL model uses an extra variable, Shift_Q0_Q0plusl, to group (concatenate) the three signals Shift_afterAddSub, RegQ(0) and Q0plusl. This is not necessary in Verilog, as they can be concatenated in the case statement itself.

The VHDL model uses the arithmetic shift right operator, asr. Verilog has no equivalent and so a second assignment is used after the shift in order to copy the most significant bit but one, the original sign bit, to the new most significant bit, the new sign bit.

An overflow cannot occur because addition and subtraction operations alternate and the two numbers being added or subtracted always have opposite signs, a condition that excludes an overflow.

Table 9.5 shows a numerical example of data flowing through the registers as a multiplication operation is performed and uses the same numbers used in the description of Booth's algorithm.

not	B + 1 =010	01			multiplier			
Clock cycle	Sequence counter	Qn	Qn+1	Shift_afterAddSub	RegA	RegQ	Done	Comments
1 2	5 5	7	0	0 1	00000 <u>01001</u> 01001	10011	0	Initial value after Load subtract (add Bbar + 1)
3 4 5	4 3 3	1 0	1	0 0 1	00100 00010 <u>10111</u> 11001	11001 01101	1 1	arithmetic shift right arithmetic shift right add
6 7 8	2 1 1	0 1	0 0	0 0 1	11100 11100 <u>01001</u> 00111	10110 10110	0 0	arithmetic shift right arithmetic shift right subtract (add Bbar + 1)
9	0			0	00011	10101	1	arithmetic shift right

Multiplicand in RegB = 10111not B + 1 = 01001

product

Table 9.5 Example register data flow for sequential multiplier using Booth's Algorithm

Generic Booth's algorithm multiplier

```
n de la desta de la composición
La Mandala Maria de la composición
La desta de la composición de la composi
La del de la composición de la composición
                                                               VHDL
                                                                                                                                                                                                              Verilog
library IEEE;
                                                                                                                                                      module MULT SEQ BOOTH
use IEEE.STD Logic 1164.all; IEEE.Numeric STD.all;
                                                                                                                                                             (Clock, Reset, Load, Multiplicand, Multiplier,
                                                                                                                                                                Done, Product);
                                                                                                                                                                   parameter WidthMultiplicand = 5, // multiplicand
entity MULT_SEQ_BOOTH is
       generic (WidthMultiplicand, WidthMultiplier,
                                                                                                                                                                                               WidthMultiplier - 5, // multiplier
                             MaxCount: natural);
                                                                                                                                                                                               WidthCount = 3; // 2**WidthCount <=
                                                                                                                                                                                                                                                     WidthB * 2
       port ( Clock, Reset, Load: in std logic;
                     Multiplicand: in unsigned(WidthMultiplicand - 1
                                                                                                                                                                    input Clock,Reset,Load;
                                                                                                                                                                   input [WidthMultiplicand - 1:0] Multiplicand;
                                                                                      downto 0);
                                                       in unsigned(WidthMultiplier - 1
                                                                                                                                                                    Input [WidthMultiplier - 1:0] Multiplier;
                     Multiplier:
                                                                                      downto 0);
                                                                                                                                                                    output Done;
                                                       out std_logic;
                                                                                                                                                                   output [WidthProduct - 1:0] Product;
                     Done:
                                                       out unsigned(WidthMultiplicand +
                                                                                                                                                                   reg Done;
                     Product:
                                                                                          WidthMultiplier - 1
                                                                                          downto 0));
                                                                                                                                                                                                                                         Shift_afterAddSub;
                                                                                                                                                                   reg
                                                                                                                                                                   reg [WidthMultiplicand - 1:0] RegA;
end entity MULT_SEQ_BOOTH;
                                                                                                                                                                   reg [WidthMultiplier - 1:0]
                                                                                                                                                                                                                                         RegB;
architecture RTL of MULT SEQ BOOTH is
                                                                                                                                                                   reg [WidthMultiplier - 1:0]
                                                                                                                                                                                                                                         RegQ;
      signal Shift afterAddSub: std logic;
                                                                                                                                                                   reg [WidthCount - 1:0]
                                                                                                                                                                                                                                         SequenceCount;
       signal RegA: unsigned(WidthMultiplicand downto 0);
                                                                                                                                                                                                                                         Qnplus1;
                                                                                                                                                                   rea
      signal RegB: unsigned(WidthMultiplier downto 0);
      signal RegQ: unsigned(WidthMultiplier downto 0);
      signal SequenceCount: integer range 0 to MaxCount;
       signal Qnplus1: std logic;
begin
                                                                                                                                                            //-----
      -- Booth algorithm Shift and add multiplier
                                                                                                                                                            // Booth algorithm Shift and add multiplier
                                                                                                                                                            11---
      SHIFT ADD MULT: process (Clock)
                                                                                                                                                            always @(posedge Clock)
             variable Shift_Q0_Q0plus1: unsigned(C to 2);
                                                                                                                                                                   begin: SHIFT ADD MULT
             variable Reg[A], \overline{Q}, \overline
                                                                          WidthMultiplier - 1 downto 0):
             variable Done, v,
      begin
             If rising_edge(Clock) then
                                                                                                                                                                         //-----
                                                                                                                                                                         // Synchronous reset
                                                                                                                                                                          //-----
                    -- Synchronous reset
                                                                                                                                                                         if (IReset)
                    if (Reset = '0') then
                                                                                                                                                                                begin
                           RegA <= (others \Rightarrow '0');
                                                                                                                                                                                       RegA = 0;
                                                                                                                                                                                       RegB = 0;
                           RegB <= (others => '0');
                                                                                                                                                                                       RegQ = 0;
                           RegQ \ll (others \Rightarrow '0');
                           Qnplus1 <= '0';
                                                                                                                                                                                        Qnplus1 = 0;
                           Shift afterAddSub <= '0';
                                                                                                                                                                                       Shift atterAddSub = 0;
                                                                                                                                                                                       SequenceCount = WidthMultiplier;
                           SequenceCount <= WidthMultiplier;
                           Done_v := '0';
                                                                                                                                                                                       Done = 0;
                                                                                                                                                                                end
                                                                                                                                                                         //-----
                           // Load new data to be multiplied & set control
                           -- Load new data to be multiplied & set control
                           -- signals
                                                                                                                                                                         // signals
                                                                                                                                                                         11.
                           elsif (Load = '1') then
                                                                                                                                                                         else if (Load)
                                  RegA <= (others => '0');
                                                                                                                                                                                begin
                                  RegB <= Multiplicand;
                                                                                                                                                                                       RegA = 0;
                                                                                                                                                                                       RegB = Multiplicand;
                                   RegQ <= Multiplier;
                                  Qnplus] <= '0';
                                                                                                                                                                                       RegQ = Multiplier;
                                  Shift afterAddSub <= '0';
                                                                                                                                                                                       Qnplus 1 = 0;
                                  SequenceCount <= WidthMultiplier;
                                                                                                                                                                                       Shift_afterAddSub = 0;
                                                                                                                                                                                       SequenceCount = WidthMultiplier;
                                  Done_v := '0';
                                                                                                                                                                                       Done = 0;
                                                                                                                                                                                end
                                                                                                                                                                                                                                                                         continued
                                                                                                                      continued
```

Generic Booth's algorithm multiplier

Example 9.11 10-bit divide by 5-bit combinational logic divider

The divide algorithm is modeled for a 10-bit divide by 5-bit combinational logic divider. As with most algorithms, the process is changed slightly for hardware implementation. Instead of using consecutive sequences of shift, compare and subtract operations, it is convenient to use consecutive sequences of shift and add a 2's complement number. This process applies equally for combinational or sequential circuit implementations. By adding a 2's complement number instead of subtract operations, a single adder is able to perform both the compare and subtract operations. The carry out from the adder indicates which of the two inputs is the greater. For example A - B becomes A + (! B + 1), and the carry out, if a logic 1, indicates that A is greater than or equal to B. This principle is shown in the model's structure, Figure 9.15.

In the combinational implementation of the multiplier algorithm, Example 9.8, the individual partial products could be derived directly from the inputs. This is not possible for the divider; individual partial remainders must be derived from the previously computed partial remainder in a chain. This chain of successive shift, compare and subtract (shift and add 2's complement) operations, causes the circuit to exhibit much longer delays than multipliers of equivalent bus widths. This somewhat reduces the primary advantage of using combinational circuit dividers over sequential ones.

The first compare is of the upper 5-bits of the dividend A and the 5-bit divisor B. If A[9:5] is greater than, or equal to B[4:0] it means the division will result in a number that is greater than 5-bits wide. As only 5-bits have been allocated to hold the quotient Quotient an overflow signal is generated, that is, Overflow is set to logic 1. No subtraction is required because if A[9:5] >= B an overflow condition exists. For this reason, the first stage in the chain uses a comparator and not an adder.

The next stage in the chain of add, compare and shift operations continues with A[8:4]. Each partial remainder that is generated, is a remainder in its own right; the required resolution of the quotient determines which partial remainder is the output remainder. For example, the first partial remainder, PartReml, would be the output remainder for a single bit quotient, but would be 9-bits wide instead of 5. The second remainder would be the output for a 2-bit quotient, etc.

HDL Code. There is nothing unusual about the coding style; only continuous signal assignments and if statements are used. The code is self-documenting and sufficiently commented for easy comprehension.

Table 9.6 shows by example, signal values resulting from using the same dividend and divisor numbers as used in the description of the algorithm.

302

Signalname	Binary value	Operation	
A (dividend) B (divisor)	0111000010 (450) 10001 (17)		
2's comp B	01111		
Overflow	0		
Compare1[5:0] Quotient[4] PartReml[4:0]	101011 1 01011	A[8:4] + 2's comp B Compare1[4:0]	
PartRem1_Abit[4:0] Compare2[5:0] Quotient[3] PartRem2[4:0]	10110 100101 1	Bring down dividend bit 3 Compare1_Abit + 2's comp B Compare2[4:0]	
PartRem2_Abit[4:0]	00101	Bring down dividend bit 2	
Compare3[5:0] Quotient[2] PartRem3[4:0]	01010 011001 0	Compare2_Abit + 2's comp B Compare2_Abit	
PartRem3_Abit[4:0]	01010	Bring down dividend bit 1	
Compare4[5:0] Quotient[1] PartRem4[4:0] PartRem4_Abit[4:0]	100100 1 00100 01000	Compare3_Abit + 2's comp B PartRem3_Abit - B Bring down dividend bit 0	
Compare5[5:0] Quotient[0]	010111 0	Compare4_Abit + 2's comp B	
Quotient[4:0] Remainder[4:0]	11010 (26) 01000 (8)		

 Table 9.6 Example signal values for the 10-bit divide by 5-bit combinational divider

10-bit divide b	y 5-bit	combinational	logic	divider
-----------------	---------	---------------	-------	---------

VHDL	Verilog
library IEEE;	module DIV10BY5_COMB
use IEEE. STD_Logic_1164. all; IEEE. Numeric_BIT. all;	(A, B, Overflow, Quotient, Remainder);
entity DIV10BY5_COMB is	input [4:0] B: // divisor
port (A: in unsigned(9 downto 0); dividend	output Overflow;
B: in unsigned(4 downto 0); -divisor	output [4:0] Quotient, Remainder;
Overflow: out std_logic;	reg Overflow;
Quotient,	reg [4:0] Quotient, Remainder;
Remainder out unsigned(4 downto 0));	
	reg [4:0] notB;
analista atura DIL of DIV (40D)/C COMP is	reg [5:0] Compare 1, Compare 2,
architecture RIL of DIV 10BY5 COMB IS	Compare3, Compare4,
	collipates, rog [4: 0] PartPaml, PartPam2, PartPam2, PartPam4
process (A, B)	DertPom1 Abit DertPom2 Abit
variable notB: unsigned(4 downto 0);	PattRem2 Abit PattRem2 Abit
variable Compare1, Compare2,	rannenis_Abit, ranneni4_Abit,
continued	continueu

10-bit divide by 5-bit combinational logic divider

VEDE Verilog Compare3, Compare4, always @(A or B) Compare5: unsigned(5 downto 0); variable PartRem1, PartRem2, begin PortRem3, PartRem4, PartRem1_Abit, PartRem2_Abit, PartRem3_Abit, PartRem4_Abit: unsigned(4 downto 0); begin 11-----// Subtract upper 5-bits of quotient from divisor (B) -- Subtract upper 5-bits of quotient from divisor (B) -- and test for a Quotient bit overflow. // and test for a Quotient bit overflow. //----if (A[9:5] >= B) If $(A(9 \text{ downto } 5) \ge B)$ then Overflow <= '1'; -- an overflow has occured beain - Quotient & Remainder void Overflow = 1: // an overflow has occured // Quotient & Remainder void else Overflow <= '0'; - no overflow end -- Quotient & Remainder valid else end if: begin Overflow = 0; // no overflow // Quotient & Remainder valid end 11----------// Invert B -- Invert B 11----notB = -B;notB := **not** B: 11----------------// Ignore MSB of A and test if next 5 MSB bits of -- Ignore MSB of A and test if next 5 MSB bits of -- A >= divisor (B). Quotient(4)=1 if A(8:4)>= B. // $\overline{A} >=$ divisor (B). Quotient[4]=1 if A[8:4]>=B. 11-----Compare1 = A[8:4] + notB + 1;Compare1 := A(8 downto 4) + ('0' & notB) + 1; if (Compare1(5) = '1') then -- A[8:4] >= B if (Compare][5]) // A[8:4] >= B PartRem1 := Compare1(4 downto 0); begin Quotient(4) <= '1'; PartRem1 = Compare1[4:0]; Quotient[4] = 1; else PartRem1 := A(8 downto 4); end Quotient(4) <= 0; else end if; begin PartRem1 = A[8:4];Quotient[4] = 0; end // Bring down next dividend bit (bit 3) -- Bring down next dividend bit (bit 3) ____ _____ PartRem1_Ablt = {PartRem1[3:0], A[3]}; // shift PartRem1_Abit := PartRem1 (3 downto 0) & A(3); -- shift //-----// Subtract if first remainder >= divisor (8) -- Subtract If first remainder >= divisor (B) 11-Compare2 = PartRem1_Abit[4:0] + notB + 1; Compare2 := PartRem1_Abit(4 downto 0) + ('0' & not8) + 1; If (Compare2[5]) // PartRem1_Abit >= 8 If (Compare2(5) = '1') then -- PartRem1_Ablt >= B begin PartRem2 := Compare2(4 downto 0); PartRem2 = Compare2[4:0]; Quotient[3] = 1: Quotient(3) <= 1; end else PartRem2 := PartRem1 Abit(4 downto 0); else begin Quotient(3) <= 0; PartRem2 = PartRem1_Abit[4:0]; end if: Quotient[3] = 0;end continued continued

304

10-bit divide by 5-bit combinational logic divider

```
VHDL
                                                      Verilog
                                                             11-----
                                                             // Bring down next dividend bit (bit 2)
    -- Bring down next quotient bit (bit 2)
                                                             //-----
                                                             PartRem2_Abit = {PartRem2[3:0], A[2]}; // shift
    PartRem2 Abit := PartRem2(3 downto 0) & A(2); -- shift
                                                             //-----
       // Subtract if second remainder >= divisor [B)
    -- Subtract if second remainder 2 >= divisor (B)
                                                             //-----
            Compare3 := PartRem2_Abit(4 downto 0) + ('0' & notB) + 1;
                                                             Compare3 = PartRem2_Abit[4:0] + notB + 1;
                                                             If (Compare3[5]) // PartRem2 Abit >= B
    If (Compare3(5) = '1') then -- PartRem2_Abit >= B
      PartRem3 := Compare3(4 downto 0);
                                                               begin
                                                                  PortRem3 = Compare3[4:0];
      Quotient(2) <= '1';
                                                                  Quotient[2] = 1;
    else
      PartRem3 := PartRem2_Abit(4 downto 0);
                                                               end
                                                             else
      Quotient(2) <= '0';
                                                               beain
    end if:
                                                                  PartRem3 = PartRem2_Abit[4:0];
                                                                  Quotient[2] = 0;
                                                               end
                                                             //-----
                                                             // Bring down next dividend bit (bit 1)
    - Bring down next quotient bit (bit 1)
    -----
                                                             //-----
                                                             PartRem3 Abit = {PartRem3[3:0], A[1]}; // shift
    PartRem3_Abit := PartRem3(3 downto 0) & A(1); -- shift
                                                             11-----
                                                                       -----
                                                             // Subtract if third remainder >= divisor (B)
    -- Subtract if third remainder >= divisor (B)
                                                             11-----
                                                             Compare4 = PartRem3 Abit[4:0] + notB + 1;
    Compare4 := PartRem3 Abit(4 downto 0) + ('0' & notB) + 1;
                                                             if (Compare4[5]) // PartRem3_Abit >= B
    if (Compare4(5) = '1') then -- PartRem3_Abit >= B
      PartRem4 := Compare4(4 downto 0);
                                                               begin
                                                                  PartRem4 = Compare4[4:0];
      Quotient(1) <= '1;
                                                                  Quotient[1] \approx 1;
    else
      PartRem4 := PartRem3 Abit(4 downto 0);
                                                               end
      Quotient(1) <= 0^{\circ};
                                                            else
    end lf;
                                                               begin
                                                                  PartRem4 = PartRem3_Abit[4:0];
                                                                  Quotient[1] = 0;
                                                               end
                                                            //-----
                                                            // Bring down last dividend bit (bit 0)
    - Bring down last quotient bit (bit 0)
                                                            //-----
        ____
                                                            PartRem4_Abit = {PartRem4[3:0], A[0]}; // shift
   PartRem4_Abit := PartRem4(3 downto 0) & A(0); -- shift
          // Subtract if fourth remainder >= divisor (B)
   -- Subtract if fourth remainder >= divisor (8)
                                                            11----
                                                            Compare5 = PartRem4 Abit[4:0] + not8 + 1;
   Compare5 := PartRem4_Abit(4 downto 0) + ('0' & notB) + 1;
   if (Compare5(5) = '1') then -- PartRem4 Abit >= 8
                                                            if (Compare5[5]) // PartRem4_Abit >= B
      Remainder <= Compare5(4 downto 0);
                                                               begin
                                                                 Remainder = Compare5[4:0];
      Quotient(0) <= '1';
                                                                 Quotient[0] \approx 1;
   else
      Remainder <= PartRem4_Abit(4 downto 0);
                                                               end
      Quotient(0) \leq 0;
                                                            else
   end if;
                                                               begin
                                                                 Remainder = PartRem4_Ablt[4:0];
end process;
                                                                 Quotient[0] \approx 0;
end architecture RTL:
                                                               end
                                                          end
                                                        endmodule
```

Example 9.12 Generic sequential divider

A generic $(n \ x \ m)$ bit sequential shift, compare and subtract divider is modeled to the same division algorithm described earlier. Like multiplication, it is convenient to change the algorithm's process slightly for hardware implementation. Instead of shifting the divisor to the right, the dividend, or partial remainder is shifted to the left. This leaves the two numbers in their required relative position. As in the case for the combinational divider in the previous example, subtraction is better achieved by taking the 2's complement and adding so that information about their relative magnitude is available from the most significant (carry out) end. In this way, a single adder can perform both the compare and subtract functions.

The sequential process of the division algorithm, as modeled in this example, is indicated by flow chart, Figure 9. 16. The hardware structure inferred by the model is in Figure 9. 17; notice the data register structure is again very similar to the sequential multipliers in Examples 9.9 and 9.10.

Figure 9. 16 Algorithm for sequential divide operation

Figure 9. 17 Hardware structure implied by sequential divider

Because this model is generic, the width of the dividend and divisor can be specified when the model is instantiated from another model and avoids having multiple versions of the same model, but with different width registers. The control block uses a finite state machine to provide; Shift and Subtract control signals, and Done and Overflow output signals. Its state diagram is shown in Figure 9.18.

The state machine controller is initialized and stays in state ST_WaitLoad until Load is a logic 1 whereupon division starts with the following register loading.

- Upper bits of dividend equal to number of divisor bits (ignoring sign
bit)
- divisor (ignoring sign bit)
- lower bits of the dividend equal to dividend bits minus divisor bits
(ignoring sign bit)
- sign bit of dividend XOR'ed with sign bit of divisor
- VHDL: number of bits in the divisor (including the sign bit) times two. Verilog: bit width of counter. 2 x WidthCount <= (WidthDivisor - 1) x 2

The sign of the quotient (Quotient) and remainder (Remainder) are always the same, that is, QuoRemSign and is set when data is loaded.

Initially, a divide overflow condition is tested by subtracting the divisor in RegB from the upper n bits of the quotient in RegA, where n is the number of bits in the divisor. Subtraction is achieved from: RegA plus the 2's complement of RegB. If RegA is greater than, or equal too, RegB, that is, A_GE_B is a logic 1, an overflow condition exists and the state machine traverses to state ST_Overflow and Overflow is set to logic 1. Overflow remains set until either a reset or subsequent load occurs. An overflow means division would result in a quotient that requires more bits than there are bits in RegQ to hold it.

Figure 9.18 State diagram for sequential divider control block

If RegA is less than RegB, that is, A_GE_B is a logic 0, there is no overflow, so the process continues by shifting left RegA and RegQ, ready for the next test. The most significant bit of RegQ is shifted into the least significant bit of RegA.

The flow chart, Figure 9. 16, shows a loop which shifts left and either transfers RegA - RegB back to RegA if $A_GE_B = 1$, or leaves RegA unchanged if $A_GE_B = 0$. If A_GE_B is at logic 1, the divisor will "go into" the bits of the quotient or partial remainder in RegA. The corresponding quotient bit is, therefore, at logic 1 and is inserted into Qn. This can also be seen in the model's state diagram, Figure 9. 18. If A_GE_B is a logic 0, the bits of the quotient or partial remainder in RegA is less than the divisor. The corresponding quotient bit is therefore at logic 0 and is inserted into Qn. This looping process continues until the counter is zero, that is, there has been as many shifts as there are bits in the divisor. When the counter reaches zero the magnitude bits of the quotient resides in RegA.

Table 9.7 demonstrates the flow of data through the registers during a divide operation and uses the same numbers used in the description of the algorithm.

HDL Code: The following VHDL generics and Verilog parameters are used to customize the bit widths of this generic divider:

WidthDividend - bit v	width of the dividend			
WidthDivisor - bit y	width of the divisor			
MaxCount (VHDL) - number of magnitude bits in the divisor				
WidthCount (Verilog)	- bit width of the sequence counter according to:			
	2^widthcaunt ← (WidthDivisor-1) * 2			

This divider operates on signed-magnitude numbers, and not 2's complement numbers. For this reason, the VHDL model uses unsigned data types and not signed data types. The signed data type, as defined in the IEEE 1076.3 synthesis packages, are intended for 2's complement operations.

Divisor B = 10001notB +1 = 01111

Clock cycle	State	Count		Q	A GE B	RegA_minus_RegB	Connents
1	ST_WaitLoad	5	01110	00010		01110(A)+ 01111(notB+1)	Load dividend AQ, divisor B
					0	11101	A_GE_B = 0. No overflow.
2	ST_Shift	4	11100	00100			Shift left AQ
						1 1 1 0 0 (A) + 0 1 1 1 1 (notB + 1)	
					1	01011	A_GE_B = 1. Q[0] = 1. Subtract needed.
3	ST_Subtract	4	01011	00101			A <- A - B. 1 in Q[0].
4	ST_Shift	3	10110	01010		1 0 1 1 0 (A) + 0 1 1 1 1 (notB + 1)	
					1	00101	A_GE_B = 1. Q[0] = 1. Subtract needed.
5	ST_Subtract	3	00101	0 101 1			A <- A - B. 1 in Q[0].
6	ST_Shift	2	01010	10110		01010(A)+ 01111(notB+1)	Shift left AQ
					0	11001	A_GE_B = 1. Q[0] = 0. Subtract not needed.
7	ST_Shift	1	10101	01100		10101(A) + 01111 (notB + 1)	Shift left AQ
					1	00100	A_GE_B = 1. Q[0] = 1. Subtract needed.
8	ST_Subtract	1	00100	01101			A <- A - B. 1 in Q[0].
9	ST_Shift	0	01000	11010			Shift left AQ

remainder / quotient

dividing line between partial remainder or remainder, and the quotient Table 9.7 Example of binary division with sequential divider

Generic n-bit sequential divider

```
2
                                                                       The Assessment Askeres
                                                              module DIV_SEQ
library IEEE;
                                                                    (Clock, Reset, Load, Dividend, Divisor, Overflow,
use IEEE.STD_Logic_1164.all; IEEE.Numeric_STD.all;
                                                                     Done, Quotient, Remainder);
entity DIV_SEQ is
                                                                       parameter WidthDividend = 11, // dividend
   generic (WidthDividend,WidthDivisor,MaxCount: natural);
                                                                                   WidthDlvisor
                                                                                                   = 6, // divisor
                                                                                   WidthCount
                                                                                                   = 3; // From:
   port (Clock, Reset, Load: in std_logic;
                                                                                   // 2**WidthCount <= (WidthDivisor-1)*2
         Dividend: in unsigned(WidthDividend-1 downto 0);
         Divisor:
                  in unsigned(WidthDivisor - 1 downto 0);
                                                                       input Clock, Reset, Load;
                                                                       input (WidthDividend - 1:0) Dividend;
         Overflow: out std_logic;
                   out std_logic;
                                                                              (WidthDivisor - 1:0) Divisor;
         Done:
                                                                       input
         Quotient: out unsigned(WidthDividend -
                                                                       output Overflow, Done;
                                                                       output (WidthDividend - WidthDivisor - 1:0) Quotient;
                                 WidthDivisor - 1 downto 0);
         Remainder: out unsigned(WidthDivisor - 1
                                                                       output (WidthDivisor - 1:0) Remainder;
                                                                             Overflow,Done;
                                   downto 0));
                                                                       reg
end entity DIV SEQ:
                                                                    // FSM states
                                                                    parameter ST_WaitLoad = 0,
architecture RTL of DIV_SEQ is
                                                                                ST_Shift
   type StateType is (ST_WaitLoad, ST_Shift, ST_Overflow,
                                                                                              = 1,
                     ST_Subtract, ST_Done);
                                                                                ST_Overflow
                                                                                              = 2.
                                                                                ST_Subtract
   signal CurrentState, NextState: StateType;
                                                                                              = 3,
                                                                                ST_Done
                                                                                              - 4:
                                                                    reg (2:0)
                                                                                           CurrentState, NextState;
   signal CurrentCount, NextCount: integer range 0 to
                                                                    reg (WidthCount - 1:0) CurrentCount, NextCount;
                                    MaxCount:
   signal Shift, Subtract, A_GE_B: std_ulogic;
                                                                    reg Shift, Subtract, A_GE_B;
                                                                    reg QuoRemSign;
   signal QuoRemSign:
                         std_logic;
                                                                    reg (WidthDivisor - 2:0) RegA;
   signal RegA: unsigned(WidthDivisor - 2 downto 0);
   signal RegQ: unsigned(WidthDividend - WidthDivisor - )
                                                                    reg (WidthDividend - WidthDivisor - 1:0) RegQ;
                                                                    reg (WidthDivisor - 2:0) RegB, notRegB;
                          downto 0);
                                                                    reg (WidthDivisor - 2:0) Reg.A_minus_Reg.B;
  signal RegB, notRegB: unsigned(WidthDivisor - 2
                                    downto 0);
   signal RegA_minus_RegB: unsigned(WidthDivisor - 2
                                       downto 0);
begin
                                                                 11-
                                                                 // FSM Controller with integrated counter
  - FSM Controller with integrated counter
                                                                 always @(Load or A_GE_8 or CurrentCount or
  FSM COMB: process (Load, A_GE B, CurrentCount,
                                                                           CurrentState)
                        CurrentState)
                                                                 begin: FSM_COMB
  begin
     Shift <= '0';
                                                                    Shift = 0;
     Subtract <= '0';
                                                                    Subtract = 0;
                                                                    Overflow = 0;
     Overflow <= '0':
                                                                    Done = 0;
     Done \leq 0^{\circ}:
                                                                    NextCount = CurrentCount;
     NextCount <= CurrentCount;
     case (CurrentState) is
                                                                    case (CurrentState)
        when ST_WaitLoad =>
                                                                       ST_WaltLoad: begin
                                                                                        NextCount = WidthDivisor - 1;
           NextCount <≃ MaxCount; .....
           if (Load = '1') then
                                                                                        if (Load)
              Shift <= '1';
                                                                                           begin
              NextState <= ST_Shift;
                                                                                              Shlft = 1;
                                                                                              NextState = ST_Shift;
           else
              NextState <= ST_WaitLoad;
                                                                                           end
                                                                                        else
           end if;
                                                                                           NextState = ST_WaitLoad;
        when ST_Shift =>
           if (CurrentCount = WidthDivisor and
                                                                                     end
             A_GE_B ='1') then
              Overflow <= '1';
                                                                      ST_Shift:
                                                                                     ₩ ((CurrentCount == (WidthDivlsor - 1))
              NextState <= ST_Overflow;
                                                                                        && A_GE_B)
           elsif (CurrentCount = 0) then
                                                                                        begin
              Done <= '1';
                                                                                           \overline{O}verflow \approx 1;
              NextState <= ST_Done;
                                                                                              NextState = ST_Overflow;
           elsif (A_GE_B = '1') then
                                                                                        end
              Subtract <= '1';
                                                                                     else if (CurrentCount == 0)
                                                                                                               continued
                                                continued
```

Generic n-bit sequential divider

VHDL	Vecilog
NextState <= ST_Subtract; else Shift <= '1'; NextCount <= CurrentCount - 1; NextState <= 3T_Shift;	begin Done = 1; NextState = ST_Done; end else if (A_GE_B)
end if;	else h (r_ot_or) begin Subtract = 1; NextState = ST_Subtract; end else begin
	Shift = 1; NextCount = CurrentCount - 1; NextState = SI_Shift; end
<pre>when SI_Overflow => if (Load = '1') then Shift <= '0'; NextCount <= MaxCount; NextState <=:ST_Shift; </pre>	ST_Overflow: If (Load) begin Shift = 0; NextCount = WidthDivisor-1; NextState = ST_Shift;
eise Overflow <= '1'; NextStote <= ST_Overflow; end if;	ena else begin Overflow = 1; NextState = ST_Overflow; end
when ST_Subtract => Shift <= '1': NextCount <= CurrentCount - 1; NextState <= ST_Shift;	ST_Subtract: begin Shift = 1; NextCount = CurrentCount - 1; NextState = ST_Shift; end
<pre>when SI_Done => tf (Load = '1') then Shift <= '1'; NextCount <= MaxCount; NextState <= ST_Shift; else</pre>	ST_Done: If (Load) begin Shift = 1; NextCount = WidthDivisor - 1; NextState = ST_Shift; end
Done <= '1'; NextState <= ST_Done; end if;	else begin Done = 1; NextState = ST_Done; end
<pre>when others => NextState <= CurrentState; end case; end process FSM_COMB;</pre>	default: NextState = CurrentState; endcase end
FSM_SEQ: process (Clock) begin If rising_edge(Clock) then if (Reset = '0') then CurrentCount <= MaxCount; CurrentState <= ST_WaitLoad; else	always @(posedge Clock) begin: FSM_SEQ if (I Reset) begin CurrentCount = WidthDivisor-2; CurrentState = ST_WaltLoad; end
CurrentCount <= NextCount; CurrentState <= NextState; end if; end if; end process FSM_SEQ;	else begin CurrentCount = NextCount; CurrentState = NextState; end
continued	end continued
Generic n-bit sequential divider

10 Tri-State Buffers

Chapter10Contents

Modeling Tri-State Buffers	315
Example 10.1 Modeling tri-state buffers	
Example 10.2 Tri-state buffers using case& VHDL selected signal assignment	
Example 10.3 Tri-state buffers using continuous signal assignments	
Example 10.4 Synchronously clocked tri-state buffers from concurrent and	
sequential statements	319

Modeling Tri-State Buffers

Data with multiple sources that need to be connected to one or more destination points in a circuit may be implemented using either multiplexers or tri-state buffers. This chapter shows the different ways in which tri-state buffers may be modeled for inference by synthesis tools.

Tri-State buffers are modeled using any of the multi-way branch statements:

if statements, case statements, conditional signal assignments (VHDL), conditional continuous assignments (Verilog).

A tri-state buffer is inferred by assigning a high impedance value (Z) to a data object in a particular branch of a multi branch statement. The main point to note about modeling tri-state buffers is that multiple buffers that are connected to the same output <u>must</u> be modeled in separate <u>concurrent</u> statements, see examples.

Example 10.1 models three tri-state buffers connected to the same tri-state output signal using either concurrent or sequential assignment statements. Example 10.2 has a tri-state buffer inferred from a **case** statement and indicates how it inhibits use of a "don't care" default assignment. Example 10.3 has five mutually exclusive busses connect to the same output bus via tri-state buffers. Example 10.4 is similar to Example 10.3, but has synchronously clocked enable signals for minimal skew between switching tri-state buffers.

Example 10.1 Modeling tri-state buffers

Two different models of the same circuit are shown. It consists of tri-state buffers whose outputs are connected together. The operation is such that only one of the three enable signals EnA, EnB and EnC are at logic 1 at any one time.

TRI_STATE_IA This first model version has three conditional assignments. Each assignment assigns a value to the output concurrently, and infers a tri-state buffer by virtue of the **else** clause defining a default assigned value for Y of "Z" (high impedance). Because each assignment is concurrent, successive assignments to Y do not overwrite each other as they would if they were sequential assignments in a **process** (VHDL) or sequential **always** block (Verilog).

Tri-state buffers from conditional signal assignments

VHDL	Verilog	Syn. Circuit
library IEEE; use IEEE.std_Logic_1164.all; entity TRI_STAT_1A Is port(AB, C: in std_logic; EnA, EnB, EnC: in std_logic; Y: out std_logic);	module TRI_STATE_1A (A, B, C EnA, EnB, EnC, Y); input A, B, C, EnA, EnB, EnC; output Y; assign Y = EnA ? A : 1'b Z;	
end entity TRI_STATE_1A;	assign Y = EnB ? B : 1'b Z assign Y = EnC? C : 1'b Z;	В
architecture LOGIC of TRI_STATE1A is begin Y<= A when (EnA =' 1') else 'Z'; Y<= B when (EnB ='1') else 'Z'; Y<= C when (EnC =' 1') else 'Z'; end architecture LOGIC;	endmodule	

TRLSTATE_IB This second model version uses three process statements (VHDL) or three always statements (Verilog). Each is a separate concurrent statement containing an if statement that infers a single tri-state buffer. The synthesis tools from VeriBest Incorporated allow WIRE-ORor WIRE-AND logic to be synthesized. These options should not be used when tri-state buffers are required. The synthesized circuit shows what happens if the WIRE-OR logic option is used.

Tri-state buffers from separate process statements

Example 10.2 Tri-state buffers from case and VHDL selected signal assignment

Tri-state buffers are modeled using the case statement and VHDL selected signal assignment. Only five of the eight case choice values are explicitly defined for each of the five enable signals. The remaining three case choice values leave the output in a high impedance state. The problem is that the default branch of a case statement, others (VHDL) or default (Verilog), cannot be used to both assign a "don't care" output value to reduce logic, and assign a high impedance output value to infer a tri-state buffer.

Two sets of functionally equivalent models are shown. The first set of models below assigns a high impedance default output value and does not use a "don't care" default assigned value. The second set of models on the following page use a "don't care" default assigned output value to ensure the inferred logic is minimized. It has a separate conditional assignment to assign a high impedance output value to infer the tri-state buffer. It so happens that a logic 0 default for the case statement yields a minimum circuit and both sets of models yield the same synthesis circuit as shown.

Tri-state signals but no don't care default

Tri-state signals with a don't care default

Example 10.3 Tri-state buffers using continuous signal assignments

One of five 3-bit input busses (BusA to BusE) can drive the 3-bit tri-state output bus, BusY. The five enable inputs, (En_A to En_E), one for each bus, are guaranteed to be mutually exclusive in that only one can be active high at any one time. When no bus is enabled, BusA defaults to drive BusY. This ensures one, and only one, input bus is always driving the output bus, and that it is not left in the high impedance state assuming there are no pull-up resistors in the cells of the inferred tristate buffer. If pull-up resistors are connected to the tri-state bus then it is not necessary to ensure the bus is always driven in this way. The five assignments to BusY cannot be modeled using if statements and combined in the same process.

Tri-statebuffersfromcontinuoussignalassignments

VHDL	Verilog
<pre>libraryIEEE; useIEEE.std_logic_1164.all;IEEENumeric_STD.all; entity TRI_STATE_3 is port (BusA, BusB, BusC, BusD, BusE: in unsigned(2 downto 0); En_A, En_B, En_C, En_D, En_E: in std_logic; BusY: out unsigned(2 downto 0)); end entity TRI_STATE_3;</pre>	moduleTRI_STATE_3 (BusA, BusB, BusC, BusD, BusE, En_A, En_B, En_C,En_D, En_E,BusY); input [2:0] BusA, BusB, BusC, BusD, BusE; input En_A, En_B, En_C, En_D, En_E; output [2:0] BusY;
architecture TRI_LOGIC of TRI_STATE_3 is begin BusY <= BusA when En_A = '1' or (En_B = '0' and En_C = '0' and En_D = '0' and En_E = '0') else 'ZZZ'; BusY <= BusB when En_B else 'ZZZ'; BusY <= BusC when En_C else 'ZZZ'; BusY <= BusD when En_D else 'ZZZ'; BusY <= BusE when En_E else 'ZZZ'; end architecture TRI_LOGIC;	$assign BusY = En_A \mid (!En_B \& !En_C \& !En_D \& !En_E) ?$ $BusA : 3'b Z;$ $assign BusY = En_B ? BusB : 3'b Z;$ $assign BusY = En_C ? BusC : 3'b Z;$ $assign BusY = En_D ? BusD : 3'b Z;$ $assign BusY = En_E ? BusE : 3'b Z;$ $endmodule$

Example 10.4 Synchronously clocked tri-state buffers from concurrent and sequential statements

This example is similar to Example 10.3 in that there are five 3-bit busses connected to a single 3-bit output bus using tri-state buffers. The difference is that all enable signals to the tri-state buffers are clocked through a flip-flop at the same time to minimize skew between switching tri-state buffers. The tri-state buffers for BusA and BusB are inferred using concurrent conditional signal assignments. The tri-state buffers for BusC, BusD and BusE are inferred from sequential conditional signal assignments. Data from bus signals BusD and BusE are shown clocked through a register.

Synchronously clocked enables to tri-state buffers

VHDL		Verilog
library IEEE;		moduleTRI_STATE_4
use IEEE.STD_Logic_1164.all, IEEE.Numeric_STD.all;		(Clock,
entity TRI STATE 4 is		BusA, BusB. BusC, BusD, BusE,
port (Clock: in std_logic;		En A, En B, En C, En D, En E,
BusA,BusB,BusC,BusD,BusE: in unsigned(2 downto 0);	BusY);
En A, En B, En C En D, En E: in std_logi	;	
BusY:outunsigned(2downto0));		inputClock,En A,En B,En C,En D,En E;
endentity TRI STATE 4;		input[2:0]BusA, BusB, BusC, BusD, BusE;
		output [2:0] BusY:
architecture TRI LOGIC of TRI STATE 4 is		
signal En A sync. En B sync. En C sync.		rea En A sync. En B sync. En C sync.
En D sync En E sync; std logic:		En D sync En E sync:
heain		reg[2:0] BusV reg:
process (Clock)	continued	reg[z.v] busi_reg,
	continueu	continued

Synchronously clocked enables to tri-state buffers

VHDL	Verilog
	always @(posedge Clock)
if rising_edge(Clock) then	bégin
En_A_sync <= En_A or(not En_B and not En_C and not En_D and not En_E)	$En_A_sync = En_A (! En_B \& ! En_C \& \\ En_B \& ! En_B E E E E E E E E E E $
En B svnc \leq En B;	En B svnc = En B;
En C_sync <= En_C;	$En_C_sync = En_C;$
En_D_sync <= En_D;	En_D_sync = En_D;
En_E_sync <= En_E;	En_E_sync = En_E;
end if;	end
end process:	Durk Durk Er A suma O Durk (Olh Z)
$P_{\rm LEV} \sim - R_{\rm LEV}$ when $F_{\rm L} \Delta$ succ = '1' else (others => '7'):	assign Busy = $En_A_sync : BusA : 3 U Z$, assign Busy = $En_B_sync : 2 BusB : 3 h Z$.
Bust <= Bust when Fn B svnc = '1' else (others => 'Z');	assign dust - Li_D_sync : duad . 0 0 2,
$\mathbf{D}_{\mathbf{D}} = \mathbf{D}_{\mathbf{D}} = \mathbf{D}_{\mathbf{D}} = \mathbf{D}_{\mathbf{D}} = \mathbf{D}_{\mathbf{D}} = \mathbf{D}_{\mathbf{D}}$	alwavs @(En C sync or BusC)
process (En_C_sync, BusC)	if (En_C_sync == 1)
begin	BusY_reg = BusC;
if (En_C_sync = '1') then	else
BusY <= BusC;	BusY_reg = 3'b Z;
else $D(x) = (athera - 17)$	
BUSY <= (OTHERS => $\angle j$,	
ena II,	$ \begin{array}{c} \text{II} (\Box I _ D _ S Y I U == I) \\ \text{RusY reg} = \text{RusD} \end{array} $
ena process, process (Clock)	else
beain	BusY reg = 3'b Z;
if rising_edge(Clock) then	
if (En_D_sync ='1') then	always @(posedge Clock)
BusY <= BusD;	if (En_E_sync == 1)
else	BusY_reg = BusE;
BusY <= (others => 'Z');	else
end if;	BusY_reg = 3 b \angle ;
ena II,	accion Bury - Rucy reg.
nrocess (Clock)	assign dust = dust_rey,
beain	endmodule
if risingedge(Clock) then	
if (En_E_sync ='1') then	
BusY <= BusE;	
else	
BusY <= (others => '∠');	
end If;	
ena II;	
end architecture TRLLOGIC	
Synthesiz	ed Circuit
EnA	
Evð	
⊨] -	
⊢ II + Ł	
│	<u>,</u> ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
· · · · · · · · · · · · · · · · · · ·	· _
BusA(2:0)	
Bus(2:0)	
Bad(2:0)	
Buse[20]	
_ Circh	

320

11 Test Harnesses

Chapter11Contents

Introduction	
Configurations (VHDL)	
Assertion Statement (VHDL)	
Special Simulation Constructs - System Tasks & Functions (Verilog)	
Hardware Model Under Test	
Vector Generation (Stimulus & Reference)	
1. Vectors generated "on-the-fly"	
a). Generating clock signals	
b). Generating signals with a few transitions (resets)	
c). Relative or absolute time generated signals	
d). Repetitive stimulus using loops	
e). Tri-state buffers for bidirectional signals	
f). Example where all vectors generated on-the-fly	
2. Vectors stored in an array	
3. Reading test vector system files	
Comparing Actual and Expected Results	

Introduction

This chapter describes the common methods of writing test harnesses. A test harness is often referred to as a *test bench* in the VHDL world and a *test fixture* in Verilog.

A test harness is a software program written in any language for the purposes of exercising and verifying the functional correctness of a hardware model during simulation in a simulation environment. As a result, test harness development should be driven by specification requirements which accurately reflect the system environment. Designers typically spend as much time writing test harnesses and verifying models as they do writing the hardware models themselves. The expressive power of both VHDL and Verilog means two things:

- a test harness is normally written in the same HDL language as the hardware model itself, the assumption made in this chapter, and contains no input or output ports,
- there is a wide variety of ways in which test harnesses may be coded.

The objectives of a test harness are to:

- instantiate the hardware model under test,
- generate stimulus waveforms and apply them to the hardware model in the form of functional test vectors during simulation,
- generate expected waveforms in the form of reference vectors and compare them with the output from the hardware model during simulation,
- possibly automatically provide a pass or fail indication automatically,
- consider simulation efficiency for long test sequences. That is, reduce actual processes where possible and use *on-off* control of other stimulus and response mechanisms. For VHDL, access types are slow, use signals where possible as they are statiscally allocated at elaboration time.

The advantages of writing a test harness in the same HDL (VHDL or Verilog) as the hardware model are:

- there is no need to learn a special simulation tool or special language,
- VHDL and Verilog are IEEE standardized languages so models and their associated test harnesses should be transportable across different design tools,
- both languages have rich simulation semantics that can be exploited to the full in a test harness.

The structure of a test harness, Figure 11.1, shows its three constituent parts. It is sometimes convenient to include other parts of the modeled hardware system within the test harness itself, in order to aid the generation of stimulus vectors, reference vectors, or both.

Figure11.1Testharnessstructure

There are both static and dynamic parts to a test procedure using a test harness. The static part reads test vectors, applies them to the model under test and controls where results will go. The dynamic part of a test harness is the part that changes when using the same test harness to perform new test sequences.

Configurations (VHDL)

A configuration is a separate *design unit* (see Figure 3. 1) that allows different **architecture** and component bindings to be specified after a model has been analyzed and compiled, by a simulator for example. There are two types; the *configuration declaration* and the *configuration specification*.

Chapter 5 discussed configuration declarations and configuration specifications. Configurations are useful in test harnesses to configure different component (entity-architecture pair) bindings, and to bind a particular entity and architecture design units together.

Assertion Statement (VHDL)

The assertion, **assert** statement is used to conditionally display a text string message to the standard output, that is, the screen, during simulation. The **assert** statement checks the value of a boolean expression, and if true does nothing. If the expression evaluates false, the assert statement will **report** a user-specified text string. Note, this is the opposite from the branch expression of an if statement which executes the branch when the condition is true, not false. A designer can also specify one of four severity level messages with which the assert statement applies. They are "note", "warning", "error" and "failure", see Table 11.1. Do not over use as they slow simulation.

Severity level	Use
note	General information about the condition of a model
warning	Alert designers of potential problem conditions
error	Alert designers of conditions that will cause errors
failure	Alert designers of conditions that have disastrous effects

Table 11.7 Severity level in an assert statement

An example extracted from a model in this chapter is:

assert (AlarmEnable = '1')
report "ALARM_CLOCK Error: Alarm not on at 07: 00: 00 am"
severity failure;

Special Simulation Constructs - System Tasks & Functions (Verilog)

The Verilog LRM defines simulation specific system tasks and functions as, part of the language. They perform activities such as monitoring and displaying simulation time and associated signal values at a specific simulation time. All system tasks and functions begin with a dollar sign, for example, \$monitor. The Verilog standard permits tool vendors to define system tasks and functions unique to their particular tool using the peripheral language interface (PLI). However, to maintain portability between EDA tools only use the standard system tasks and functions defined as part of the Verilog language, see Appendix B. This chapter uses only these language defined system tasks and functions.

Hardware Model Under Test

Only one instantiation of the hardware under test is usually needed. However, with bus-orientated ASICS becoming more and more prevalent, it may be convenient to instantiate more than one instance of the model under test and use the extra models to aid vector generation. For instance, a model with both serial and parallel input and output ports, could be easily tested by instantiating two models and connecting the serial output from one back to the serial input of the other; and likewise for the parallel ports.

324

Vector Generation (Stimulus & Reference)

As previously mentioned, a test harness provides stimulus vectors to the model under test in order to exercise it during simulation. To automatically verify correct behavior, reference vectors must also be provided to compare output vectors from the model under test, with the reference vectors. In this case, an automatic pass or fail indication can be given. The extra time needed to write reference vectors is well worth spending; the model may need to be simulated several times before achieving the desired results. Another reason for generating reference vectors is that they can be used to verify the synthesized circuit operates correctly and that dynamic timing delays do not violate constraint specified timing. The synthesized circuit will include timing delays from cells in the targeted technology library. A test harness can be easily modified to instantiate the synthesized circuit, or possibly both the RTL model and synthesized circuit model at the same time, in which case their output vectors can be compared with the reference vectors during a single simulation. Automatic vector checking will save considerable time in the long run when compared to repeatedly checking simulation results manually.

There are three ways a test harness can provide test vectors:

- 1. generate them "on-the-fly" from within a test harness,
- 2. read vectors stored as constants in an array and
- 3. read vectors stored in a separate system file.

The following three sections describe these three methods. For complex models requiring many random type vectors, it may be better to store them in a separate system file. Adding extra vectors to the vector file is easy and different sets of vectors in different system files can be easily referenced as required from the same test harness.

1. Vectors generated "on-the-fly"

Test vectors that are generated "on-the-fly" are those that are not explicitly stored in an array or separate system file. Signal waveforms (functional test vectors) can be generated "on-the-fly" in many different ways from within a test harness as listed below and described in the following sections.

- a) use continuous loops for repetitive signals, such as clocks,
- b) use simple assignments for signals with few transitions, such as resets,
- c) use relative or absolute time generated signals, not both,
- d) use loop constructs for repetitive signal patterns,
- e) use procedures to generate specific waveforms,
- f) use tri-state buffers to both stimulate and monitor bidirectional signals.

This section covers these different ways and advises on when to use each method.

a) Generating clock signals

It is far easier to keep the generation of clock signal waveforms, and possibly reset signal waveforms, separate from other signal waveforms, even if all others are defined as vectors in a separate system file. This shortens the vector width, but more importantly avoids the necessity of having to define two vectors every single cycle of the clock signal. Clock signals can be generated in several different ways as illustrated below. The following models show how clock signals can be generated. Mote that manufacturing test vectors, that have been automatically generated by an ATPG tool, will include any clock signals in the vector list.

b) Generating signals with few transitions (resets)

Waveforms for signals with few transitions, such as reset signals, are easily generated as shown below.

VHDL

Concurrent signal assignment appearing in a test harness.

Reset signal waveform generated from within an **initial** statement using a sequential **begin** - **end** block or concurrent **fork - join** block. Signal waveforms are usually generated in conjunction with other signal waveforms as shown in this chapter.

c). Relative or absolute time generated signals

The most straight forward method of generating "on-the-fly" stimulus is to implement procedural stimulus and specify waveform changes as needed.

HDLChipDesign

Advantages of procedural stimulus are:

- easy to write,
- only input signals that change need to be listed at particular simulation times,
- can use relative or absolute simulation times for each input signal,
- input changes may be asynchronous, allowing different delays between each input signal change.

The disadvantages of procedural stimulus is that large amounts of input stimulus requires lengthy blocks of procedural code which can become unmanageable.

Procedural stimulus can specify waveform changes either relative or absolute to a specific simulation time.

- *Relative time*. Signal waveforms that are specified to change at simulation times relative to the previous time, in a time accumulated manner.
- *Absolute time*. Signal waveforms that are specified to change at simulation times absolute to a particular simulation time corresponding to the start of a particular section of code.

Time generated signal waveforms are shown in the following test harness using both relative and absolute specified timing. The test harnesses are for the alarm clock model shown in Chapter 12.

Relative time generated signal waveforms in a test harness (VHDL)

Nt library IEFE	IDL	
use IEEE.STD_Logic_1164.all, IEEE.Numeric_STD.all; use work.AM_PM_Package.all;	Package labeled ' package	e shown in the code VHDL Alarm clock e for AM/PM type" on
entity ALARM_CLOCK_REL_TIME_H is end entity ALARM_CLOCK_REL_TIME_H:	page 35	
architecture TEST_HARN of ALARM_CLOCK_REL_TIME – Data type and component declarations not sh	_H is iown	
begin Clock waveform <u>specification</u> not shown		
Instantiate RTL model under test		
ALARM_CLOCK_1: ALARM_CLOCK port map (Clock_1sec, Reset, LoadTime, Load SetSecs, SetMins, SetHours, Set_AM_ AlarmMinsin, AlarmHoursin, Alarm_A AlarmEnable, Secs, Mins, Hours, AM_PM, Alarm, Fi	IAIm, _PM, AM_PM_In, lashing);	Statements are executed in sequence
– Relative time specified signal changes		at a time relative to previous statements and determined by the accumulated delay from the wait statements
process begin Passed <= '1'; Set all hardware model inputs to zero at time	€0	
Reset <= '0'; LoadTime <= '0'; SetHours <= 0; SetMins <= 0; Se LoadAim <= '0'; AlarmHoursin <= 0; AlarmMinsi AlarmEnable<='0';	 ətSəcs <= (ı <= 0; Ala); Set_AM_PM <= AM; rm_AM_PM_in <= AM;
Perform reset		
wait for ClockPeriod_1sec;		continued

328

Reset <= '1'; with fer Clearl/Datland Jacob	
Wair for ClockPelloa_tsec;	
Set the time for the alarm clock (06:59:50 am)	
wait for ClockPeriod_1sec;	
LoadTime <= '1'; SetHours <= 6; SetMins <= 59; SetSecs <=	50; Set_AM_PM <= AM; time = 6:59:50
wait for ClockPeriod_1sec:	
LoadTime <= '0'; SetHours <= 0; SetMins <= 0; SetSecs <= 0); Set_AM_PM <= AM;
– Set the alarm time for the alarm clock (07:00 am)	
wait for ClockPeriod_1sec;	
LoadAim <= '1'; AlarmHoursin <= 7; AlarmMinsin <= 0; Alar	rm_AM_PM_In <= AM; time = 6:59:52 ai
wait for ClockPeriod_1sec;	
LoadAlm <= '0'; AlarmHoursin <= 0; AlarmMinsin <= 0; Alar	rm_AM_PM_In <= AM; tIme = 6:59:53 ai
Wait for 9 seconds and check alarm Is turned off	
wait for (ClockPeriod_1sec * 6);	time = 6:59:59 am
if (AlarmEnable /= '0') then	
Passed <= '0';	
end if;	
assert (AlarmEnable = '0')	
report "ALARM_CLOCK Error: Alarm already on at 06:59	9:59 am"
sevently failure;	
Wait a further 1 second and check alarm turns on	
woit for ClockPeriod_1sec;	– time = 7:00:00 am
If (AlarmEnable /= 'l') then	
Passed <= '0';	May want to use TEXTIO to
end if:	report error message in
assert (AlarmEnable = '1')	
report "ALARM_CLOCK Error: Alarm not on at 07:00:00 (om" speed Usially better to
severity failure;	- only use assert when
•	stopping a simulation.
- Einthor torting pot thown	
nd process:	

Relative time generated signal waveforms in a test harness (VHDL)

Relative time generated signal waveforms in a test harness (Verilog) VERILOG

Relative time generated signal waveforms in a test harness (Verilog)

<pre>previous delays and time accumulates. 0; Set_AM_PM = 0; dorm_AM_PM_in = 0; dorm_AM_PM_in = 0; dorm_AM_PM_in = 0; dorm_AM_PM_in = 0; // time = 6:59:50 a tMins = 0; SetSecs = 0; Set_AM_PM = 0; // time = 6:59:51 a n) 7; AlarmMinsin = 0; Alarm_AM_PM_in = 0; // time = 6:59:52 a</pre>
0; Set_AM_PM = 0; Jarm_AM_PM_in = 0; tMins = 59; SetSecs = 50; Set_AM_PM = 0; // time = 6:59:50 a tMins = 0; SetSecs = 0; Set_AM_PM = 0; // time = 6:59:51 a n) t; AlarmMinsIn = 0; Alarm_AM_PM_in = 0; // time = 6:59:52 a
- 0; Set_AM_PM = 0; Jorm_AM_PM_In = 0; tMins = 59; SetSecs = 50; Set_AM_PM = 0; // time = 6:59:50 a tMins = 0; SetSecs = 0; Set_AM_PM = 0; // time = 6:59:51 a n) 7; AlarmMinsIn = 0; Alarm_AM_PM_In = 0; // time = 6:59:52 a
0; Set_AM_PM = 0; Jorm_AM_PM_In = 0; Mins = 59; SetSecs = 50; Set_AM_PM = 0; // time = 6:59:50 a Mins = 0; SetSecs = 0; Set_AM_PM = 0; // time = 6:59:51 a n)
0; Set_AM_PM = 0; Norm_AM_PM_in = 0; Mins = 59; SetSecs = 50; Set_AM_PM = 0; // time = 6:59:50 a Mins = 0; SetSecs = 0; Set_AM_PM = 0; // time = 6:59:51 a n) 7; AlarmMinsIn = 0; Alarm_AM_PM_in = 0; // time = 6:59:52 a
tMins = 59; SetSecs = 50; Set_AM_PM = 0; // time = 6:59:50 a tMins = 0; SetSecs = 0; Set_AM_PM = 0; // time = 6:59:51 a n) ?; AlarmMinsIn = 0; Alarm_AM_PM_In = 0; // time = 6:59:52 a
tMins = 59; SetSecs = 50; Set_AM_PM = 0; // time = 6:59:50 a tMins = 0; SetSecs = 0; Set_AM_PM = 0; // time = 6:59:51 a n)
tMins = 59; SetSecs = 50; Set_AM_PM = 0; // time = 6:59:50 a tMins = 0; SetSecs = 0; Set_AM_PM = 0; // time = 6:59:51 a n) 7; AlarmMinsIn = 0; Alarm_AM_PM_In = 0; // time = 6:59:52 a
tMins = 59; SetSecs = 50; Set_AM_PM = 0; // time = 6:59:50 a tMins = 0; SetSecs = 0; Set_AM_PM = 0; // time = 6:59:51 a n) 7; AlarmMinsIn = 0; Alarm_AM_PM_In = 0; // time = 6:59:52 a
tMins = 59; SetSecs = 50; Set_AM_PM = 0; // time = 6:59:50 a tMins = 0; SetSecs = 0; Set_AM_PM = 0; // time = 6:59:51 a n) 7; AlarmMinsIn = 0; Alarm_AM_PM_In = 0; // time = 6:59:52 a
tMins = 59; SetSecs = 50; Set_AM_PM = 0; // time = 6:59:50 a tMins = 0; SetSecs = 0; Set_AM_PM = 0; // time = 6:59:51 a n) 7; AlarmMinsIn = 0; Alarm_AM_PM_In = 0; // time = 6:59:52 a
tMins = 59; SetSecs = 50; Set_AM_PM = 0; // time = 6:59:50 a tMins = 0; SetSecs = 0; Set_AM_PM = 0; // time = 6:59:51 a n) 7; AlarmMinsIn = 0; Alarm_AM_PM_In = 0; // time = 6:59:52 a
tMins = 59; SetSecs = 50; Set_AM_PM = 0; // time = 6:59:50 a tMins = 0; SetSecs = 0; Set_AM_PM = 0; // time = 6:59:51 a n) 7; AlarmMinsIn = 0; Alarm_AM_PM_In = 0; // time = 6:59:52 a
ny
n) 7; AlarmMinsIn = 0; Alarm_AM_PM_In = 0; // time = 6:59:52 ai
n) 7; AlarmMinsIn = 0; Alarm_AM_PM_In = 0; // time = 6:59:52 ai
/; AlarmMinsIn = 0; Alarm_AM_PM_In = 0; // time = 6:59:52 at
(3, AK) = 0; AK) =
ff
 // time - 6:60:50 am
// ame = 0.09.09 dm
ready on at 06:59:69 at simulation time %d",
n
// inne = 7.56.66 dim
pt on at 07:00:00 at simulation time %d",

Absolute time generated signal wavefor	orms in a test harne	ess (VHDL)
VHDL		
library IEEE; use IEEE STD_Logic_1164.all, IEEE. Numeric_STD.all; use work.AM_PM_Package.all;		
entity ALARM_CLOCK_ASB_TIME_H ls end entity ALARM_CLOCK_ASB_TIME_H;		
architecture TEST_HARN of ALARM_CLOCK_ASB_TIM - Data type and component declarations not s	E_H is hown	
Clock waveform specification not shown		
— Instantiate RTL model under test		
ALARM_CLOCK_1:ALARM_CLOCK port map (Clock_1sec. Reset, LoadTime, Load SetSecs, SetMins, SetHours, Set_AV AlarmMinsIn, AlarmHoursIn, Alarm_ AlarmEnable, Secs. Mins, Hours. AM_PM, Alarm. R	dAlm, I_PM, AM_PM_In, Flashing);	
- Relative time specified signal changes		
process begin Passed <='1'; - Set all hardware model inputs to zero at tim	e 0	
-Reset		
Reset <= '0', '1' after ClockPeriod_1sec. '0' after (ClockPeriod_1sec * 2);	- simulation time = 0 - simulation time = 1 - simulation time = 2	
- LoadTime		
LoadTime <= '0',	- simulation time = 0 simulation time = 3 - simulation time = 4	
- SetHours		
SetHours <= 0; 6 after (ClockPeriod_1sec * 3), 0 after (ClockPeriod_1sec * 4);	- simulation time = 0 - simulation time = 3 - simulation time = 4	
- SetMins		
SetMins <= 0, 59 after (ClockPeriod_1sec * 3), 0 after (ClockPeriod_1sec * 4);	- simulation time = 0 - simulation time = 3 - simulation time = 4	
SetSecs		
SetSecs <= 0, 50 after (ClockPeriod_1sec * 3), 0 after (ClockPeriod_1sec * 4);	- simulation time = 0 - simulation time = 3 - simulation time = 4	
- Set_AM_PM		
Set_AM_PM <= AM;		
		continued

Absolute time generated signal waveforms in a test harness (VHDL) VHDL

LoadAim		
LoadAlm <= '0'; '1' after (ClockPeriod_1se '0' after (ClockPeriod_1se	- simulation time = 0 ec * 5), - simulation time = 5 c * 6); - simulation time = 6	
AlarmHoursIn		
AlarmHoursIn <= 0; 7 after (ClockPeriod_7 0 after (ClockPeriod_1	1sec $*$ 5) simulation time = 5 1sec $*$ 6); - simulation time = 6	
—AlarmMinsIn		
AlarmMinsIn <= 0;	- simulation time = 0	
Alarm_AM_PM_In		
Alarm_AM_PM_In <= AM;	- simulation time = 0	
—AlarmEnable		
AlarmEnable <= '0';	- simulation time = 0	
Further testing not shown		
end process;		
Check alarm is still "off" at 6:59:59 am		
begin wait tor (ClockPeriod_1_sec * 12); If (AlarmEnable /= '0') then Passed <= '0';	- simulation time = 12	
end ii; assert (AlarmEnable = '0') report "ALARM_CLOCK Error: Alari severity failure; end process;	m already on at 06: 59: 59 am"	
Check alarm is "on" at 7: 00: 00 am		
process begin		
<pre>wait for (ClockPeriod_1sec * 13); if (AlarmEnable /='1') then Passed <= '0';: end if:</pre>	- simulation time = 13	
assert (AlarmEnable = '1') report "ALARM_CLOCK Error: Alarm not on at 07: 00: 00 am" severity failure; end process;		
Further testing not shown		
end architecture TEST_HARN;		

332

Absolute time	generated	signal	waveforms	in a	test harness	(Verilog)
	•	<u> </u>				· · · · · · · · · · · · · · · · · · ·

Langer and the construction of the second	erilog 🗧 👔	
'timescale 1ns/100ps module ALARM_CLOCK_ABS_TIME_H;		
// Data type declarations and clock waveform specific	ation not shown	
// // Instantiate RTL model under test		
 ALARM_CLOCK ALARM_CLOCK_1 (Clock_1sec, Reset, LoadTime, LoadAlm, SetSecs, SetMins, SetHours, Set_AM_PM, AlarmMinsin, AlarmHoursin, Alarm_AM_PM_In, AlarmEnable, Secs, Mins, Hours, AM_PM, Alarm, Flashing); 		
//// Relative time specified signal changes	The fork - join reserves	ved words el ^a procedural
initial	block. Each delay i	s absolute to the
fork	start of the block, w	vhich is at time
Passed = 1; // Set all hardware model inputs to zero at time 0		2.
// Reset = 0; LoadTime = 0; SetHours = 0; SetMins = 0; SetSecs = 0 LoadAIm = 0; AlarmHoursIn = 0; AlarmMinsIn = 0; Al AlarmEnable = 0;);	// simulation time = 0 // simulation time = 0 // simulation time = 0 // simulation time = 0
// Perform reset		
#ClockPeriod_1sec Reset = 1; #(ClockPeriod_1sec * 2) Reset = 0;		// simulation time = 1 // simulation time = 2
// Set the time for the alarm clock (06:59:50 am)		
#(ClockPeriod_1sec * 3) LoadTime = 1; SetHours = 6 #(ClockPeriod_1sec * 4) LoadTime = 0; SetHours = 0); SetMins = 59; SetSec); SetMins = 0; SetSec)	cs=50; Set_AM_PM=0; // simulation time = 3 s=0; Set_AM_PM=0; // simulation time = 4
// daining daining for the daining cock (07.00 din //	- 	Alarm_AM_PM_In=0; // simulation time = 5
#(ClockPeriod_isec * 6) LoadAim = 0; AlarmHoursir	a = 0; AlarmMinsin=0;	Alarm_AM_PM_In=U; // simulation time = o
//		
#(ClockPeriod_1sec * 12) If (AlarmEnable I= 0) begin		// simulation time = 12
Passed = 0; \$fdisplay (SimResults, "ALARM_CLOCK Error: Alarm alro \$time);	eady on at 06:59:59 c	at simulation time %d",
// Check alarm furns on af 7:00:00 am //		
#(ClockPeriod_1sec * 13) if (AlarmEnable != 1) begin Passed = 0; Statisolay (SimResults.		// simulation time = 13
"ALARM_CLOCK Error: Alarm no \$time);	t on at 07:00:00 at sin	nulation time %d",
// Further testing not shown join		
enamodule		

d. Repetitive stimulus using loops

Loop statements in both VHDL and Verilog provide a powerful means of generating stimulus that has some form of repetitive sequence. The advantages are:

- easy to write,
- code is compact and avoids having to store large vector files,
- reduces simulation virtual memory requirements substantially.

The following example shows part of a test harness that generates a gray-code sequence for a 16-bit data bus. Gray-coded patterns are particularly useful in test applications as only one bit changes between adjacent values in the sequence. This means specific errors are more easily identified in either the hardware model or its physical implementation. In the code below, each pattern in the sequence is held for 7 clock cycles. This means that if the sequence was modeled as test vectors, including the clock signal, there would be at least 917504 ($2^{16} \times 7 \times 2$) test vectors instead of the few statements shown in this test harness.

Repetitive stimulus using loops

VHDL	Verilog
library IEEE; use IEEE STD Legie 1164 ell IEEE Numerie STD elli	'timescale ins/100ps
use IEEE. STD_LOGIC_TT04.all,IEEE.NutTielic_STD.all,	module GRAY_SCALE_LOOP_H;
entity GRAY_SCALE_LOOP_H is end entity GRAY_SCALE_LOOP_H;	// Data type declarations not shown
architecture TEST_HARN of GRAY_SCALE_LOOP_H is	// Hardware model instantiation not shown
- Data type and component declarations not shown	initial Clock = 0; always #/ClockPeriod / 2) Clock = ! Clock:
begin	
- Hardware model instantiation not shown	
Clock <= not Clock after ClockPeriod / 2;	
- 16-bit gray scale sequence	// 16-bit gray scale sequence
GRAY_SCALE: process begin DataBus_16 <= (others => '0 ¹); for N in 0 to 65535 loop DataBus_16_var<=to unsigned(N, 16) xor shift right(to unsigned(N, 16), 1); for M in 1 to 7 loop wait until rising_edge(Clock); end loop; wait until falling_edge(Clock); end loop;	<pre>initial begin:GRAY_SCALE integer N; DataBus_16 = 0; for (N = 0; N < 65535; N = N + 1) begin DataBus_16 = (N ^ (N>> 1)); repeat(7) @(posedge Clock); ©(negedge Clock); end // // Remainder of the test harness not shown. //</pre>
 Remainder of the test harness, including output verification procedure, not shown 	end
end process GRAY SCALE; end architecture TEST_HARN;	// // Output verification procedure not shown //
	endmodule

e. Tri-state buffers for bidirectional signals

Designs often have bidirectional ports which a test harness must both drive and read. In such a case, the hardware model under test will have a means of controlling its direction. The model may drive the signal as an output, or read it as an input, in which case the output driver is tristated. The directional control signal is often not accessible as an output from the hardware model at the (top) chip level. The test harness must contain bidirectional control code to fully exercise the model under test.

There are many ways bidirectional logic can be modeled. The test harness below illustrates one of the more common methods.

	others restant the Maillor and an Market
Horory IEEE;	'timescale 1ns/100ps
Use IEEE.STD_Logic_1164.all, IEEE.Numeric_STD.all;	module ALU_BIDIR_H;
entity ALU_BIDIR_H is	// Insuda to OTI, howelvere model
	// inputs to kit hardware model //
architecture TEST_HARN of ALU_BIDIR_H is component ALU_BIDIR	reg OutputEnable; reg (15:0) A. B. V. in:
port (A, B: in unsigned(15 downto 0);	
<pre>Y_Diair: our unsigned(15 downto 0)); end component ALU_B/DiR;</pre>	// Outputs from KIL haraware model //
signal OutputEnable: std_logic; signal A. B. V. in, V. out, V. bidir: upsigned(15 downto (1);	wire (15:0) Y_bidir;
begin	
	//
Bidirectional bus control	// Bidirectional bus control
Y_bidir <= Y_in when (OutputEnable = '1') else (others => '0');	assign Y_bidir = (OutputEnable == 1) ? Y_in : 16'b Z;
- Instantiate the RTL model to be simulated	// // Instantiate the RTL model to be simulated
ALU_BIDIR_1: ALU_BIDIR port map (A, B, OutputEnable, Y_bidir);	ALU_BIDIR ALU_BIDIR_1 (A, B, OutputEnable, Y_bidlr);
- Apply stimulus to model under test	//
process to a de	initial
– Drive bidirectional port	// Drive bidirectional port
A <= 16#5A5A5#, B <= 16#5A5A#;	A = 16 h A5A5, $B = 16$ h 5A5A;
wait for 25 ns;	
Tri-state bidirectional port Notice VHDL asse	ft // Tri-state bidirectional port
OutputEnable <= '0'; Verilog if uses "!="	#25 OutputEnable = 0;
war tor 25 ns; assert (Y_bidir = 16#25D6#)	if (Y_bldir i= 16'h 2506) \$diplay (*ALU_BIDIR Error: A = A5A5, B ≈ 5A5A.
report ALU_BIDIR Error: $A = A5A5$, $B = 5A5A$,	Y = 25D6"):
sevently failure;	// Remainder of test harness not shown
– – Remainder of test harness not shown	// end
end process; end process;	andmodula

Bidirectional bus control in a test harness

f) Example where all vectors are generated "on-the-fly"

The following example shows a test harness for the sequential Booth multiplier shown in Chapte 9. It is similar to the other test harnesses in this chapter, except that all test vectors are generated "on-the-fly" from within the test harness. Pseudo-random test data is generated by using the algorithm for a linear feedback shift register and Booth's algorithm is modeled within the test harness in order to generate reference test vectors. Specific points of note for the VHDL and Verilog test harnesses are summarized below.

VHDL test harness:

- A dedicated function called to_bitvector is declared (overloaded), and used to convert data objects of type unsigned to type bit_vector. The purpose of this is to enable simulation result data to be written to a text file using the VHDL package, TEXIIO, that is defined a: part of the IEEE 1076 standard; see Appendix A. Fuction to_bitvector is already declared in STD_LOGIC_1164 for std_logic_vector. As unsigned is "closely related" to std_logic_vector a cast to std_logic_vector would preclude this overloading. (See also page 328.)
- True random data could be automatically generated using the random number generator package called "rnd2", which has been released to the public domain by McDonnell Douglas Aerospace. This package is useful for automatically generating test vectors in a test harness

Verilog test harness:

• True random data could be automatically generated using the \$random system function.

All stimulus and reference vectors generated "on-the-fly"

VHDL 3	Verligg	
library IEEE;		
use IEEE.STD_Logic_1164.all, IEEE.Numeric_STD.all, STD.TEXTIO.all;	"timescale Ins/100ps	
entity MULT_SEQ_BOOTH_H is end entity MULT_SEQ_BOOTH_H; but is overloaded here.	module MULT_SEQ_BOOTH_H; parameter WktthA = 10, WktthB = 10,	
architecture TEST_HARN of MULT_SEQ_BOOTH_H is	WidthCount = 5, // 2**WidthCount <= WidthB * 2	
function to_bilivector (A: unsigned) return bit_vector is	Width Y = 20;	
dias BV: bit_vector(1 to Atengm) is A;	parameter (wiamA - 1:0) UFSR_A_laps =10'0 1000001_00;	
vancove Result: Dir_vector(1 to Atengin);	parameter (wrame - 1:0) L-sr_B_taps $=100,1000001_00;$	
for N in Resultirance loop "range" is an	parameter ClockPeriod = 20;	
when '0' => result(N) := '0': attribute, not the	// hours to model under test	
when '1' => result(N) := '1'; reserved word	reg Clock Reset Load:	
end case; range.	reg (WidthA - 1:0) A:	
end loop;	reg (WidthB - 1:0) B;	
return result;		
end function to_bitvector;	// Outputs from model under test	
constant Mildth A : integer := 10:		
constant WidthB: Integer := 10;		
constant WidthCount: Integer := 5: 2**WidthCount <= WidthB*2	rea A. Feedback, B. Feedback;	
constant WidthY: Integer := 20:	rec (WidthY - 1:0) Y Ref:	
constant LFSR_A_Taps: unsigned(9 downto 0) := "1000000100";	rea LookingFor 0 1;	
constant LFSR_B_Taps: unsigned(9 downto 0) :="1000000100";	reg (WkdthB - 1:0) Zeros,Ones;	
constant ClockPeriod: time := 20 ns;	reg (WidthA - 1:0) A_TwosComp;	
	reg (WkdthY - 1:0) A_TwosComp_SignExtended:	
 Inputs to model under test 	reg (WidthY - 1:0) A_SignExtended;	
signal Clock, Reset, Load; std_logic;	reg Fail;	
signal A: unsigned(WidthA - 1 downto 0);	integer N;	
signal B: unsigned(WidthB - 1 downto 0);	integer SimResults:	
 Outputs from model under test 		
signal Done: std_logic;		
signal Y: unsigned(WidthY - 1 downto 0);		
continued	continued	

MI stimulus and reference vectors generated on-the-fly

All stimulus and reference vectors generated on-the-fly

end lf;	if (LFSR_B_1aps(N - 1) == 1)
end loop;	$B(N) = B(N - 1) \wedge B_{Feedback}$
A(0) <= A_Feedback;	$\frac{\Theta(S\Theta)}{B(N) - B(N - 1)}$
B.Feedback := '0';	B(0) = B_Feedback
for N in 0 to (WidthB - 2) loop	
B_Feedback := B_Feedback nor B(N);	
ena koop; 8. Feedback := 8. Feedback var 8(Width8 - 1);	
for N in (WidthB - 1) to 1 loop	
If (LFSR_B_Taps($N \cdot 1$) = '1') then	
$B(N) \le B(N - 1)$ xor $B_Feedback;$	
$B(N) \le B(N - 1)$:	
end #:	
end loop;	
B(U) <= B_Feedback; 	//
- Use Booth's algorithm to compute reference product	// Use Booth's algorithm to compute
	// reference product
Y_Ref <= (others => 'U');	// V Pef = 0:
Zeros (= (others => '0'):	$LookingFor_0, 1 = 1;$
Ones := (others => '}');	Zeros = 0;
A_TwosComp := not A + 1;	Ones = ~ 0;
Sian extend	// Sign extend
	//
if (A_TwosComp(WidthA - 1) = '1') then	If (A_TwosComp(WidthA - 1) == 1)
A_twosComp_SignExtended := Ones & A_twosComp;	A_IwosComp_SignExtended = {Ones,
A TwosComp SignExtended :≂ Zeros & A TwosComp:	i else
end if;	A_TwosComp_SignExtended = {Zeros,
if (A(WidthA - 1) = '1') then	A_TwosComp);
A_signextended := Ones & A; else	A SignExtended = {Ones, A}:
A_SignExtended := Zeros & A:	else
end if;	A_SignExtended = (Zeros, A);
Perform Booth's algorithm	// Perform Booth's algorithm
for N in Uto (WidthB - 1) loop If (LookingFor (), 1 - '1' and B(N) - '1') then	$\mathbf{ror}(\mathbf{N} = \mathbf{U}; \mathbf{N} < \mathbf{Wrom} \mathbf{B}; \mathbf{N} = \mathbf{N} + \mathbf{I})$
Y_Ref <= Y_Ref + A_TwosComp_SignExtended;	if (LookingFor_0_1 == 1 && B(N) == 1)
LookingFor_0_1 := '0';	begin
etsii (Lookingtor_U_) = U and b(N) = U) men V Ref <- V Ref + A SanExtended:	Y_Ket = Y_Ket + A TwosComp SignExtended
LookingFor_0_1 := '1';	LookingFor_0_1 = 0;
else	end
Y_Ref <= Y_Ref;	f else if (LookingFor_0_1 == 0 && B(N) == 0)
if (N < Width 8 - 1) then	Y Ref = Y Ref + A SkanExtended;
A_TwosComp_SignExtended :=	LookingFor_0_1 = 1;
shift_left(A_TwosComp_SignExtended, 1); A_SignExtended (end
A_signextended := shallen(A_signextended, 1); end it:	Y_Ref = Y_Ref;
end loop;	if (N < Width8 - 1)
	begin A TurnComm StarFutendert
	A Twoscomp SignExtended << 1:
	A_SignExtended = A_SignExtended << 1
	end
	//
 Test product on hardware model 	// Test product on hardware model
wait for ClockPeriod; Load <= '1'; load A and B	#ClockPeriod Load = 1; // load A and B
wait for ClockPeriod; Load <= '0';	#ClockPeriod Load = 0;
while (Done /= '1') loop	while (Done I= 1)
wan tor Clock-enoa; end loop:	#⊂lock⊬erioa; If (Y I= Y Ref) // Le, has failed
if (Y /= Y_Ref) then - i.e. has failed	begin
Fail := '1';	
witte(ButLine, string'("Error at fime "));	staisplay (SimResults.

All stimulus and reference vectors generated on-the-fly

write(BufLine, now); write(BufLine, string'(": ")); write(BufLine, (to_bitvector(A))); write(BufLine, (to_bitvector(B))); write(BufLine, (to_bitvector(B))); write(BufLine, (to_bitvector(Y_Ref))); write(BufLine, string'(". Should be ")); write(BufLine, (to_bitvector(Y))); write(BufLine, (to_bitvector(Y))); write(BufLine, SimResults, BufLine); end #; weitf for ClockPeriod * 3; end loop; if (Feil = '0) then - Sim results are the same	"Error at %d: %d x %d not equal to %d. Should be %d", Stime,A, B, Y_Ref, Y); end repeat (3) #ClockPeriod; end If (Fall == 0) // Sim results are the same Statisplay (SimResults, "MULT_SEQ_BOOTH passed"); Statisplay (SimResults); Statisplay (SimResults); end
write(Simkesuris, sring ("MULI_SEQ_BOOTH possed")); end if; end process; end process;	Function to_bitvector is defined in STD_LOGIC_1164, but is defined and overloaded in this model. Could use : write(BufLine, to_bitvector(std_logic_vector(A))); and not use overloaded to_bitvector in this test hamess.

2. Vectors stored in an array

Test vectors may be conveniently stored as constants in an array and defined within the test harness itself rather than in a separate system file. Although this method is convenient for small numbers of test vectors, it soon becomes less manageable as the number of test vectors increase. For this reason, it is often better to put the vectors in a separate system file, see the following section which covers the reading of test vector files.

The following test harness contains vectors stored in an array and tests the error detection and correction model shown in Chapter 12.

Test harness using vectors stored in an array

	Verilog
iibrary IEEE;	
use IEEE.STD_Logic_1164.all, IEEE.Numeric_STD.all, STD.TEXTIO.all use work.ERRDET_COR_PKG.all;	timescole 1ns/100ps
• - ·	
entity ERRDET_CORRECTION_H is	module ERRDET_CORRECTION_H
end entity ERRDET_CORRECTION_H;	parameter TestPeriod = 20,
	lestC, ycles = 5;
orchitecture IEST_HARN of ERRDET_CORRECTION_H is	// C
function to_bitvector (A: unsigned) return bit_vector is	
discistav: Dir_vector(1 to Allength) is A:	Ind Keodwine_D,
herin	// Ridirectional ports to RTIs model
for N In Pesultrance Icon	wine (1510) ProcData
cose RV/N) le	wire (21:0) MemData:
when 'l' => resuit(Ni) '= 'l':	
when atters => result(N) := 'C';	// Proc & Mern stimulus buses
end cose;	reg (15:0) ProcWriteData;
end loop;	reg (21:0) MemReadData;
return result;	
end function to_bitvector;	// Reference data
	reg (15:0) RefProcData;
constant TestPeriod: time := 20 ns:	reg (21:0) RefMemData;
constant TestCycles: integer := 5:	((O) to the form DTI model
	// Oulpuis from Kit, model
- Common inputs to RIL model	
NGNGI Kedawine_D; sia_logic;	// Define array for Processor & Memory test and
- Birlivectional parts to DTI model	// result data
signal ProcData: unsigned(15 downto ());	reg (15:0) ProcArr (TestCycles - 1:0);
stanal MemData: unsigned(21 downto 0);	reg (21:0) MemArr (TestCycles - 1:0);
	•••••
Proc & Mem stimulus busses	integer N:
signal ProcWriteData: unsigned(15 downto 0);	reg Fail.
signal MemReadData; unsigned(2) downto 0);	FallTime:
	integer SimResults:
- Reference data contin	ued continued

Test harness using vectors stored in an array

V:D	Veniog
signal RefProcData: unsigned(15 downto 0); signat RefMemData: unsigned(21 downto 0);	
– Outputs from RTL model signal ΕποτΤγρε: ΕποτΤγρεϊγρε;	
Define array for Processor & Memory test and result data type MemVecArr Is array (0 to TestCycles - 1) of unslaned(2) downto (0): Vec	rmory read test ctors: one
type ProcVecArr is array (0 to TestCycles - 1) of unsigned(15 downto 0); erro	ctor for each or type
Assign test data to constant arrays	// Assign test data to memory arrays
Write data to memory is 1010 1011 1100 1101 bin (ABCD hex)	initial bacin
MEMORY Read data from memory. P=Parity bits. constant MemArr: MemVecArr := - contribute: 22, 14, 8, 4, 2, % 1	// Write data to memory is 16'b 1010_1011_1100_1101 // (ABCD hex)
(0 => "010101101110001100101", - 15BC65 ABCD No error 1 => "0100011011110001100101", - 11BC65 8BCD - Single bit data error	// MEMORY Read data from memory. P=Parity bits. // parity bits: 22, 16, 8, 4, 2 &1 MemArt(0)=22'b 01_0101_1011_1100_0110_0101;
2 => *0101011011110011100101", 15BCE5 ABCD P3 error 3 => *0100011011110011100101", 11BCE5 BBCD & P3 error 4 => *1101011011110001100101"); 35BC65 Overall parity error	// 158C65 ABCD No error // 118C65 ABCD No error // 118C65 88CD Single bit data error MemArr(2)=22'b 01 0101_011_100_011;
- Verification data. PROCESSOR read data from memory. constant ProcArr: ProcVecArr := (0 -> "1010101111" - ABCD No error	// 158CE5 ABCD P3 error MemArr(3)=22'b 01_0001_1011_1100_1110_0101; // 118CE5 88CD & P3 error
1 => "1010101111001101", - ABCD Single bit corrected - data error	MemArr(4)=22'b 11_0101_1011_1100_0110_0101; // 35BC65 Overall parity error
$2 \Rightarrow$ 100001111001101", - ABCD single bit corrected - data error $3 \Rightarrow$ 1000101111001101", - 8BCD Double error uncorrectable	// Verification data. PROCESSOR read data from memory. ProcArr(0)=16'b 1010_1011_1100_1101; // APCD No error
	// ABCD iso enfor ProcArr(1)=16/b 1010_1011_100_1101; // APCD Biolo bit corrected data error
Open simulation results file for appending pass/fail messages file SimResults; text open write_mode is "errdet_correction.simres";	ProcArr(2)=16'b 1010_1011_1100_1101; // ABCD Single bit corrected data error
component ERRDET_CORRECTION	ProcArr(3)=16'b 1000_1011_1100_1101; // 88CD Double error uncorrectable
port (ReadWrite_b: In std_logic; ProcData: Inout unsIgned(15 downto 0); MemData: inout unsIgned(21 downto 0);	ProcArr(4)=16/b 1010_10:1_100_110; // ABCD P5 in error end
end component ERRDET_CORRECTION; Reference vect	
begin ogdinst the erro	
- Instantiate model to be simulated read data to the	// Instantiate model to be simulated
ERRDET_CORRECTION_1: ERRDET_CORRECTION Interoprocessor. port map (ReadWrite_b, ProcData, MemData, ErrorType);	ERRDET_CORRECTION ERRDET_CORRECTION_1 (ReadWrite_b, ProcData, MemData, Εποτγρε);
Assign tri states for device under test	// Assign tri states for device under test
ProcData <= ProcWifeData when (ReadWife_b = '1') else (others ≈> '2');	assign ProcData = ReadWife_b ? 16'b Z : ProcWifeData: assign MemData = ReadWife_b ? MemReadData :22'b Z:
MemData <≈ MemReadData when (ReadWitte_b = '1') esse (others => ℤ');	
- Apply stimulus to RTL models under test	// // Apply stimulus to RTL models under test //
process variable BufLine: line;	initial bealn
begin	Fail = 0; // Set to 1 if fails
Fail <= '0'; - Set to if tails ProcWitteData <= (others => '0'); - 16-bit	ProcwritteData = 10'b 0; MemReadData = 22'b 0;
MemReadData <= (othera => '0'); - 22-bit	RefProcData = $16'b 0;$
RefProcData <= (others => '0'); 16-bit RefMemData <= (others => '0'); 22-bit	RefMemData = 22'b 0; ReadWrite h = 0;
continued	continued

340

Test harness using vectors stored in an array

3. Reading test vector system files

Both input vectors and reference output vectors may be stored in tabular form in a system file. Input vectors may be read from a system file and applied directly to the model under test during simulation. The reference output vectors are also read from the file, but are used to compare with the output vectors from the model under test. A benefit of writing a test harness that accesses system files is that only one, relatively simple, generic test harness need be written. Changing the tests being performed can be as simple as telling the test harness to read a different test vector file. In VHDL, this means telling the simulator to simulate a different configuration. In Verilog, it means supplying a different parameter name.

Repetitive signal waveforms, such as clock signals, and signals that only change once or twice, such as resets, are better left out of the vector files. Such signals are easy to implement directly in the test harness, will make the vector file less cluttered, and may reduce simulation time.

<u>a)</u> VHDL

Files in the host environment are referenced as VHDL objects and must be of type file.

Example type TestVectorFileType is file of unsigned;

A file of type TestVectorFileType contains a sequence of values of type unsigned.

A file can be opened, closed, read, written to, or tested for an end-of-file condition using special procedures and functions that are implicitly declared for every file type.

Package TEXTIO. This VHDL package is defined as part of the language and resides in a VHDL library called SID, see Appendix A. To use this package, the following use clause must be included at the top of a test harness.

use STD.TEXTIO.all;

Package TEXIIO defines a single file type called TEXT to represent a file consisting of variable length strings. An access type, LINE, is also provided to point to such strings. Various overloaded procedures called "READ" and "WRITE" allow the reading and writing of data to or from an object of type LINE. All VHDL test harnesses shown in this chapter access system files using the types and procedures defined in package TEXTIO. The READ and WRITE procedures in this package use the vector data type bit_vector. If an equivalent package using unsigned and signed values is available it may be more convenient to use that instead, and avoid the possible need to use conversion functions between bit_vector and either signed or unsigned.

The following VHDL test harness illustrates a vector file being accessed using the 'READ' function defined in TEXTO in order to read each line of the input vector file.

b) Verilog

Files in the host environment are referenced and applied to the hardware model under test using one of two system tasks or a system function.

\$readmemb	- This system task reads a system file containing test vectors stored in a <u>binary</u> format and which can be applied directly to the hardware model under test.
\$readmemh	- This system task reads a system file containing test vectors stored in a
	<u>hexadecimal</u> format and which can be applied directly to the hardware model under test.
\$getpattem	- This system function provides a fast means of propagating stimulus patterns to a large number of 1 -bit wide (scalar) inputs. It reads stimulus patterns that have been loaded into a memory using the \$readmemb or \$readmemh system tasks. Except for exclusively long simulation runs, \$getpattem is rarely needed to be used.

The following Verilog test harness illustrates vector file access using \$readmemb. The test vectors file are in a format that can be read using \$readmemb.

Vectors in separate system file

# Test vectors in file "tri_pipe_h.vhdl_vec".	// Test vectors in file "tri_plpe_h.v_vec".
# 1 - InDataReady	// 1 - InDataReady
# 2 - A(1)	// 2 - A(1)
# 3 - A(0) Comments in a vector file	// 3 ~ A(0)
# 4 - B(1) will slow simulation time,	// 4 - B(1)
# 5 - B(0) Use wisely.	// 5 - B(0)
#6-C(1)	//6-C(1)

# 7 - C(0) Comments not # 123347 /r Indecide there. # 1110 h /r hockeded y = 0. A = 2.8 = 0. C = 2 Indicide there. # 1110 h /r hockeded y = 0.4 = 2.8 = 0. C = 2 Indicide there. # 1110 h /r hockeded y = 0.4 = 2.8 = 3. C = 2 Indicide there. # 2.5 harness that reads vectors in separate system file Worldod # 2.5 harness that reads vectors in separate system file Worldod # 2.5 harness that reads vectors in separate system file Worldod # 2.5 harness that reads vectors in separate system file Worldod # 2.5 harness that reads vectors in separate system file Worldod # 2.5 harness that reads vectors in separate system file Worldod # 2.5 harness that reads vectors in separate system file Worldod # 2.5 harness har treads vectors in sepa	Vectors in separate system file			
# 7 - C(0) Comments notice # 123347 Incode here:: # 1110 h / Incode here:: # 1.8 = 2. C = 3 # 1110 h / Incode here:: # 1.8 = 2. C = 2 # 123447 # 1.8 = 2. C = 2 # 123447 # 1.8 = 2. C = 2 # 123447 # 1.8 = 2. C = 2 # 123447 # 1.8 = 2. C = 2 # 123447 # 1.8 = 2. C = 2 # 123447 # 1.8 = 2. C = 2 # 12347 # 1.8 = 2. C = 2 # 12347 # 1.8 = 2. C = 2 # 12347 # 1.8 = 2. C = 2 # 12347 # 1.8 = 2. C = 2 # 12347 # 1.8 = 2. C = 2 #			Verilog	
# isolato? Inecledities: # isolato?	#7-C(0) Comments not		// 7 - C(0)	
#12340// Ditalit // Inderdifeedy = 0, A = 1, B = 2, C = 3 Ditalit // Inderdifeedy = 0, A = 2, B = 0, C = 2 Ditalit // Inderdifeedy = 0, A = 2, B = 0, C = 2 Ditalit // Inderdifeedy = 0, A = 2, B = 0, C = 2 Ditalit // Inderdifeedy = 0, A = 2, B = 0, C = 2 Ditalit // Inderdifeedy = 0, A = 3, B = 3, C = 2 Ditalit // Inderdifeedy = 0, A = 2, B = 2, D =	# needed here.			
Incontinued of the Contract of the Cock Period (2) In the Contract of the Cock Period (2) In the Contract of the Cock Period (2) International Processor International Processor International Processor International Processor International Processor International Processor	#1233407	2	123346/7/	
1111110 // InDertification = 0, A = 3, B = 3, C = 2 Elst vector file in a format that can be read using readine flunction from package TEXTO Test harness that reads vectors in separate system file Test harness that reads vectors in separate system file Test harness that reads vectors in separate system file Ibary [EEE, STD; use (EEE, STD, use (EEE, STD, use (EEE, 1076 TEXTO) package, and entity TR_PRE_H1 is - Specity vector file - Specity vector file Be vectors file - Deckre hardware model under fest - Deckre not Clock dife Clock dife Clock dife Clock dife Clock	-1010011 inDulokeddy = 1, A = 1, B = 2, C = 0100010 inDataReady = 0, A = 2, B = 0, C	= 0 - 7	101011 // inDataReady = 1, A = 1, B = 2, C = 3	
Iter vector file in a format that can be read using exactions from package TEXTO //f.ex.domemb. Test harness that reads vectors in separate system file Ibory EEE, STD; weeterstart, index of the in a format that can be read using //seedmemb. Ibory EEE, STD; weeterstart, index of the in a format that can be read using //seedmemb. Ibory EEE, STD; weeterstart, index of the inde	(111110 inDataReady = 0, A = 3, B = 3, C = 0,	= 2	1011110 // inDataReady = 0, A = 2, B = 0, C = 2	
#tunction from package TEXTO //Sreadmemb. Test harness that reads vectors in separate system file Aerioe Ibray EEE, STD; Wheecole Ins/100ps welfEx RD Logic; 1164.dll, EEE Numeric. STD.dll, STD.TEXTO.etli Thescole Ins/100ps entity TR_PPE_H1; EEE 1076 TEXTO entity TR_PPE_TR_PPE_H1; EEE 1076 TEXTO entity TR_PPE_TR_PPE_H1; EEE 1076 TEXTO entity TR_PPE_TR_PPE_H1; EEE 1076 TEXTO entity TR_PPE_	#Test vector file in a format that can be re-	ad usina readline	//Test vector file in a format that can be read using	
Test harness that reads vectors in separate system file VIDI VIDIO VIDIO <th co<="" td=""><td>#function from package TEXTIO</td><td>ÿ</td><td>//\$readmemb.</td></th>	<td>#function from package TEXTIO</td> <td>ÿ</td> <td>//\$readmemb.</td>	#function from package TEXTIO	ÿ	//\$readmemb.
Bitray IEEE, SID: use IEEE STD_Logic_1104.dtl IEEE.Numeric_STD_atl, STD_TSTL.ord, entity TRL_PIPE_H1 is IEEE 1076 TEXTO_cont entity TRL_PIPE_H1 is IEEE 1076 TEXTO_cont - Specify vector file - Specify vector file - Specify vector file - Specify vector file - Oeclare hardware model under fest - Outputs from RTL hardware model - Oeclare hardware model under fest - CultodatReady: out std_logic: - Oeclare hardware model downto 0); - Set unsigned(2 downto 0); end component TRL_PIPE - Set up free running clock - Set up free running clock Steckment - Instantiate the hardware model under fest Steckment - Set up free running clock Steckment - Instantiate the hardware model under fest Steckment - Instanticle the hardware model under fest Steckment	Test harness that reads vectors i	n separate syst	em file	
ibtory EEE, STD: itmescale 1nst/100ps wei REESTD_Logic_1104.all, REENUmeric_STD all, STD_TEXTIO.all, end entify TRI_PIPE_H1: itmescale 1nst/100ps architecture TEST_HARN of TRI_PIPE_H1 is itmescale 1nst/100ps	WEDL		Verilog	
use IEEE STD_Logic_1164.dtl IEEE.Numeric, STD.dtl STD_TEXTIO.ati, entity TRI_PIPE_H1 is entity TRI_PIPE_H1 is - Specify vector file - Specify vector file - Specify vector file - Declare hardware model under test - Set up free running clock - Instanticate the hardware model under test - Set up free running clock - Instanticate the hardware model under test - Set up free running clock - Instanticate the hardware model under test - Set up free running clock - Instanticate the hardware model under test - Set up free running clock - Instanticate the hardware model under test - Instanticate the hardware model under test - Instanticate the hardware model under test - R_PIPE_1: RL PIPE - Read vector file & apply test vectors to model under test - R_PIPE_1: RL PIPE - Read vector file & apply test vectors to model under test - Read vector file & apply test vectors to model under test - Read vector file & apply test vectors to model under test - Read vector file & apply test vectors to model under test - Read vector file & apply test vectors to model under test - Read vector file & apply test vectors to model under test - Read vector file & apply test vectors to model under test - Read vector file & apply test vectors to model under test - Read vector file & apply test vectors to model under test - Read vector file & apply test vectors to model under test - Read vector file	library IEEE, STD;		'timescale 1ns/100ps	
entity TRL PIPE_H1 is end entity TRLPIPE_H1 is = spacify vector file = spacify vector fi	use IEEE.STD_Logic_1164.all, IEEE.Numeric_S	ID. ali , STD <u>,</u> TEXTIO. al i;		
entity Int PIPE_H is marchitecture TEST_HARN of TR_PIPE_H1 is IEEE 1076 TEXTIC package. Image: Text open read_model is 'tri_pipe_h1.vhd_vec'; image: Text open read_model is 'tri_pipe_h1.vec'; image: Text open read_model is 'tri_pipe_h1.vec'; ABC_Am; image: Text open read_model			module TRI_PIPE_H1;	
and anny INC PIPE_H1: package. crchitecture TEST_HARN of TRI_PIPE_H1 is		EE 1076 TEXTIC	parameter ClockPeriod = 20,	
architecture TEST_HARN of TR_PIPE_H1 is // inputs to RTL hardware model -Specify vector file -specify vector file -Beckire hordware model under test // Clock. Reset, InDataReady; in std_Dogic; -Deckare hordware model under test // Uputs from RTL hardware model -Deckare hordware model under test // Uputs from RTL hardware model -Deckare hordware model under test // Uputs from RTL hardware model -Deckare hordware model under test // Uputs from RTL hardware model -OutDataReady; ust std_Dogic; A. B. C. In unsigned(2 downto 0); -V. Unsigned(2 downto 0); integer N: -Generate reset waveform FailTime; -Generate reset waveform // Instantiate the RTL model to be simulated -Set up free running clock Steadmemb Clock = 1; 07 offer 20 ns; 11' offer 20 ns; Intide Clock = 1; - Instantiate the hardware model under test Intide Clock = 1; - Instantiate the hardware model under test Intide the period / 2) - Instantiate the hardware model under test Intide the period / 2) - Instantiate the hardware model under test Intide the clock; INDEC Stree The data Ready; N; Steadmemb Poot mare Clock, Reset, InDataReady; A, B, C. Int	end entry (RI_PIPE_HI); [p	ackage.	iestCycles = 3;	
Specify vector file - Specify vector file - Specify vector file - Specify vector file - Specify vector file - Deckare hardware model under test - Specify vector file - Deckare hardware model under test - Specify vector file - Deckare hardware model under test - Specify vector file - Deckare hardware model under test - Specify vector file - Deckare hardware model under test - Specify vector file - Deckare hardware model under test - Specify vector file - Deckare hardware model under test - Specify vector file - OutDataReady. out std. Logic: - Specify vector file - Specify vector file - Specify vector file - Specify vector file - Specify vector file - Generate reset waveform - Set up free running clock - Instantiate the hardware model under test Nattce type file - Naturitie the hardware model under test Nattce type file - Read vector file & apply test vectors to model under test Nattce type bit - Read vector file & apply test vectors to model under test Nattce type bit - Read vector file & apply test vectors to model under test - Nattce type bit - Read vector file & apply test vectors to model under test	architecture TEST HARN of TRL PIPE H1 is		// Inputs to RTL hardware model	
 Specify vector file Specify vector file Generate reset waveform Section file 20 ns; 1' offer 20 ns; Strantiate the hardware model under test Notice type bit reset waveford Reset <= 1', 10 affer 20 ns; 1' offer 20 ns; Strantiate the hardware model under test Notice type bit reset waveford Reset <= 1', 10 affer 20 ns; 1' offer 20 ns; Strantiate the hardware model under test Notice type bit reset waveford Reset <= 1', 10 affer 20 ns; 1' offer 20 ns; Strantiate the hardware model under test Notice type bit reset waveford Reset <= 1', 0' affer 20 ns; 1' offer 20 ns; Notice type bit reset waveford Notice type bit reset waveford Reset <= 1', 0' affer 20 ns; 1' offer 20 ns; Strantiate the hardware model under test Notice type bit reset waveford Notice type bit reset Notice type bit reset			//	
iffe vectors: text open read_mode is 'tri_pipe_h1.vhdLvec'; iffe vectors: 'tri of offer 20 ns; 'tri offer 20 ns; 't	– Specify vector file		reg Clock, Reset, InDataReady;	
file vectors: text open read_mode is "tri_pipe_h1.vhdLvec"; Declare hardware model under test Declare hardware model			reg (1:0) A, B, C;	
- Declare hardware model under test - Declare hardware model under test component TRL_PIPE pod (Clock, Reset, InDataReady: in std_logic; A, B, C, C, unsigned(1 downto 0); OutDataReady: out std_logic; Y, out unsigned(2 downto 0); end component TRL_PIPE; constant Clock/Period: time := 20 ns; signal Clock, Reset, InDataReady. OutDataReady: std_logic; signal Clock, Reset, InDataReady. OutDataReady: std_logic; - Generate reset waveform - Generate reset waveform - Generate reset waveform - Set up free running clock Clock <= not Clock after ClockPeriod / 2: - Instantiate the hardware model under test TRL_PIPE_1: TRL_PIPE pot map (Clock, Reset, InDataReady, A, B, C, OutDataReady, Y; - Reset <= 1', '0' after 20 ns; '1' after 20 ns; - Set up free running clock Clock <= not Clock after ClockPeriod / 2: - Instantiate the hardware model under test TRL_PIPE_1: TRL_PIPE pot map (Clock, Reset, InDataReady, A, B, C, OutDataReady, Y; - Read vector file & apply test vectors to model under test variable inDataReady, Var; bit; - v	file vectors: text open read_mode is "tri_p	pipe_h1.vhdl_vec";		
- Declare hardware model under fest component TRL PIPE port (Clock, Reset, inDataReady; in std_logic; A, B, C; In unsigned(1 downto 0); OutDataReady; out std_logic; Y; out unsigned(2 downto 0); end component TRL PIPE; constant ClockPeriod; time := 20 ns; signal Clock, Reset, InDataReady; utDataReady; std_logic; gand A, B, C, Y; unsigned(2 downto 0); begin - Generate reset waveform - Generate reset waveform - Generate reset waveform - Set up free running clock Clock <= not Clock after ClockPeriod / 2: - Instantiate the hardware model under test - Instantiate the hardware model under test Process variable A_Var, B_Var, C_Var, bit; - Read vector file & apply test vectors to model under test variable M_Var, B_Var, C_Var, bit; - Variable M_Var,			// Outputs from RIL hardware model	
Component RL PIPE port (Clock, Reset, InDataReady, in std_logic; A, B, C; in unsigned(2 downto 0); CutiDataReady; out std_logic; Y; out unsigned(2 downto 0); end component RL PIPE; constant ClockReset, InDataReady, cutDataReady; std_logic; signal A, B, C, Y: unsigned(2 downto 0); begin - Generate reset waveform Reset <= 11', 10' affer 20 ns; 11' affer 20 ns; - Set up free running clock Clock <= not Clock affer ClockPeriod / 2: Instantiate the hardware model under test RL PIPE_1: RL PIPE port map (Clock, Reset, InDataReady, A, B, C, OutDataReady, Y; - Instantiate the hardware model under test RL PIPE_1: RL PIPE port map (Clock, Reset, InDataReady, A, B, C, OutDataReady, Y; - Read vector file & apply test vectors to model under test process variable inDataReady. Var: bit; Variable inDataReady, Var: bit; Variable inDa			wire OutDataPeady:	
component TR_PIPE port (Clock, Reset, InDataReady: In std_logic; A, B, C, In unsigned(1 downto 0); CufDataReady: out std_logic; Y, Yout unsigned(2 downto 0)); end component TRI_PIPE; constant ClockPeriod: time := 20 ns; signal ClockReset, InDataReady, CufDataReady: std_logic; integer N: reg PossFall, constant ClockReset, InDataReady, CufDataReady: std_logic; signal ClockReset, InDataReady, CufDataReady: std_logic; Integer N: reg PossFall, CockReset, InDataReady, CufDataReady: std_logic; // Instantiate the RIL model to be simulated //			wire (2:0) Y:	
port (Clock, Reset, inDataReady: in std_logic; A, B, C; in unsigned(1 downto 0); OutDataReady: out std_logic; Y; out unsigned(2 downto 0); // Set up register (memory) arrays to hold input data //	component TRI_PIPE			
A. B. C: In unsigned(1 downto 0); OutDardReady: sub std_logic; Y: out unsigned(2 downto 0)); end component IRL_PIPE; constant ClockReset, InDataReady, OutDataReady: std_logic; ignal A. B., C. Y: unsigned(2 downto 0); begin - Generate reset waveform - Instanticate the hardware model under test - Read vector file & apply test vectors to model under test - Read vector file & apply test vectors to model under test - Read vector file & apply test vectors to model under test - Read vector file & apply test vectors to model under test - Read vector file & apply test vectors to model under test - Read vector file & apply test vectors to model under test - Read vector file & apply test vectors to model under test - Read vector file & apply test vectors to model under test - Read vector file & apply test vectors to model under test - Read vector file & apply test vectors to model under test - Read vector file & apply test vectors to model under test - Read vector file & apply test vectors to model under test - Read vector file & apply test vectors (1 downto 0); - Read vector file & apply test	port (Clock, Reset, inDataReady: in sto	d_logic;	// Set up register (memory) arrays to hold input data	
OutDataReady: out std_logic; Y: out unsigned(2 downto 0)); end component TRL_PIPE; constant Clock/Reset,InDataReady: std_logic; signal Clock, Reset,InDataReady: std_logic; signal A, B, C, Y: unsigned(2 downto 0); begin - Generate reset waveform - Set up free running clock Clock <= not Clock after ClockPeriod / 2;	A, B, C: In unsigned(1 downto 0);			
<pre>ind component TRL_PIPE; constant Clock/Period: time := 20 ns; signal Clock/Reset.InDataReady.OutDataReady: std_logic; signal A, B, C, Y: unsigned(2 downto 0); // Instantiate the RTL model to be simulated //</pre>	OutDataReady: out std_logic;		reg (7:1) ABC_Arr (1:1estCycles);	
end comparison NC_10ck Period: time := 20 ns; signal Clock Reset, InDataReady, OutDataReady: std_logic; signal A. B., C. Y: unsigned(2 downto 0); Image PossFall, FallTime;	end component TDL DIDE:		integer N:	
constant Clock/Period: time := 20 ns; signal Clock/Reset.InDataReady.OutDataReady: std_logic; signal A. B. C. Y: unsigned(2 downto 0); FailTime; //			rea PassFall.	
signal Clock,Reset,InDataReady,OutDataReady:std_logic; signal A, B, C, Y: unsigned(2 downto 0); begin - Generate reset waveform - Generate reset waveform Reset <= '1', '0' after 20 ns; '1' after 20 ns;	constant ClockPeriod: time := 20 ns;		FailTime;	
signal A, B, C, Y: unsigned(2 downto 0); begin Generate reset waveform Generate reset waveform Reset <= '1', '0' after 20 ns; '1' after 20 ns;	signal Clock, Reset, InDataReady, OutDate	aReady: std_logic;	//	
	signal A, B, C, Y: unsigned(2 downto 0);		// Instantiate the RTL model to be simulated	
- Generate reset waveform - Generate reset waveform Reset <= '1', '0' affer 20 ns; '1' affer 20 ns; - Set up free running clock - Set up free running clock Clock <= not Clock affer ClockPeriod / 2: - Instantiate the hardware model under test - Instantiate the hardware model under test - Instantiate the hardware	begin			
- Generate reset waveform - Generate reset waveform Reset <= '1', '0' after 20 ns; - Set up free running clock - Set up free running clock - Set up free running clock - Instantiate the hardware model under test RL_PIPE_1: TRL_PIPE port map (Clock, Reset, InDataReady, A, B, C, OutDataReady, Y); - Read vector file & apply test vectors to model under test variable VectorLine: line; variable VectorLine: line; variable A_Var, B_Var, C_Var: bit; continued - Clock - = '1', '0' after 20 ns; - Steadmemb continued - Steadmemb continued - Steadmemb continued - Instantiate the hardware model under test - Instantiate the hardware			Clock Post InDataPoady A. B. C	
Reset <= '1', '0' after 20 ns; '1' after 20 ns;	Generate reset waveform		OutDataReady Y	
Reset <= '1', '0' affer 20 ns; '1' affer 20 ns;			//	
- Set up free running clock Clock <= not Clock after ClockPeriod / 2: - Instantiate the hardware model under test - Instantiate the hardware model under test TRL_PIPE_1: TRL_PIPE port map (Clock Reset, InDataReady, A, B, C, OutDataReady, Y); - Read vector file & apply test vectors to model under test variable VectorLine: line; variable A_Var, B_Var, C_Var: bit; variable A_Var, B_Var, C_Var; bit; variable A_Var, B_Var, C_Var; variable A_Var, B_Var, C_Var; vari	Reset <= '1', '0' after 20 ns, '1' after 20 ns;		// Set up free running clock	
- Set up free running clock - Set up free running clock - Instantiate the hardware model under test - Instantiate the hardware model under test TRL_PIPE_1: TRL_PIPE port map (Clock, Reset, InDataReady, A, B, C, OutDataReady, Y); - Read vector file & apply test vectors to model under test variable vectorLine: line: variable A_Var, B_Var, C_Var: bit; variable A_Var, B_Var, C_Var: bit; continued Sreadmemb Sreadmemb Sreadmemb Sreadmemb Sreadmemb Sreadmemb Sreadmemb Sreadmemb ("tri_pipe_h1.vec", ABC_Arr): Sreadmemb ("tri_pipe_h1.vec", ABC_Arr):			//	
- set up free running clock - set up free running clock \$readmemb Clock <= not Clock after ClockPeriod / 2:			initial Clock = 1;	
Clock <= not Clock after ClockPeriod / 2; - Instantiate the hardware model under test - Read vector file & apply test vectors to model under test - Read vector file & apply test vectors to model under test - Read vector file & apply test vectors to model under test - Read vector file & apply test vectors to model under test - Read vector file & apply test vectors to model under test - Read vector file & apply test vectors to model under test - Read vector file & apply test vectors to model under test - Read vector file & apply test vector to model under test - Read vector file & apply test vectors to model under test - Read vector file & apply test vector to model under test - Read vector file & apply test vector to model under test - Read vector file & apply test vector to model under test - Read vector file & apply test vector to model under test - Read vector file & apply test vector to model under test - Read vector file & apply test vector to model under test - Read vector file & apply test vector to model under test - Read vector file & apply test vector to model under test - Read vector file & apply test vector to model under test - Read vector file & apply test vector to model under test - Read vector file & apply test vector to model under test - Read vector file & apply test vector to model under test - Read vector file & apply test vector to model under test - Read vector file & apply test vector to mod		\$readmemb	time of the second of the seco	
Contents of the file file file file file file file fil	Clock <= not Clock after ClockPeriod / 2	loods the		
Instantiate the hardware model under test Instantiate the hardware model under test Interfile Interfi		contents of	//	
Instantiate the hardware model under test "fit_pipe_fit_wec" // into the vector into the vector array; into the		the file	// Apply stimulus to model under test	
IRL_PIPE_1: TRL_PIPE Initial begin port map (Clock, Reset, InDataReady, A, B, C, OutDataReady, Y); Sreadmemb("tri_pipe_h1.v_vec", ABC_Arr); - Read vector file & apply test vectors to model under test //*	- Instantiate the hardware model under	test m_pipe_h1.vec	· //	
IRI_PIPE_1: IRI_PIPE Latery: begin port map (Clock, Reset, InDataReady, A, B, C, OutDataReady, Y); Sreadmemb("tri_pipe_h1.v_vec", ABC_Arr); Read vector file & apply test vectors to model under test //*			* Initial	
<pre>>> readmemb(Tit_pipe_n1.v_vec*, ABC_Att): OutDataReady, Y); Read vector file & apply test vectors to model under test process variable VectorLine: line; variable InDataReady_Var: bit; variable A_Var, B_Var, C_Var: bit_vector(1 downto 0); begin</pre>	IKEPPE_I: IKEPPE			
- Read vector file & apply test vectors to model under test process variable VectorLine: line: variable InDataReady_Var: bit; variable A_Var, B_Var, C_Var: bit_vector(1 downto 0); begin Continued	port map (Crock, Reset, InDataReady, OutDataDaady VV	Λ, D, U ,	-> steadmento(in_pipe_n1.v_vec., AbC_Aff);	
- Read vector file & apply test vectors to model under test process variable VectorLine: line; variable inDataReady_Var: bit; variable A_Var, B_Var, C_Var: bit_vector(1 downto 0); begin continued			//	
- Read vector file & apply test vectors to model under test process variable VectorLine: line; variable InDataReady_Var: bit; variable A_Var, B_Var, C_Var: bit_vector(1 downto 0); begin continued			// Initial values	
process Natice type bit and bit_vector variable VectorLine: line; Natice type bit and bit_vector variable InDataReady_Var: bit; and bit_vector variable A_Var, B_Var, C_Var: bit_vector(1 downto 0); //	- Read vector file & apply test vectors to model under test		//	
process Notice type bit and bit_vector variable VectorLine: line; and bit_vector variable InDataReady_Var: bit; and bit_vector variable A_Var, B_Var, C_Var: bit_vector(1 downto 0); // Perform reset begin continued			Clock = 0; Reset = 1;	
variable InDataReady_Var: bit;and bit_vector // variable InDataReady_Var: bit;and bit_vector // // variable A_Var, B_Var, C_Var: bit_vector (1 downto 0); // Perform reset begin continued		Notice type bit	InDataReady = 0; A = 2'b 0; B = 2'b 0; C = 2'b 0;	
variable A_Var, B_Var, C_Var; bit_vector(1 downto 0); // Perform reset begin continued continued	Variable InDataDoach, Variable	and bit_vector	//	
begin // continued	variable A Var B Var C Var bit vest		// Perform reset	
continued continued			//	
		continued	continued	

Test harness that reads vectors in separate system file

Comparing Actual and Expected Results

Comparing of actual and expected vectors at specific times during simulation is an important and often overlooked task. It is worth the extra effort of enhancing a test harness so that during simulation, the test harness automatically compares output vectors from the model being tested with expected reference vectors. A simple pass or fail indication will save lengthy manual checking of simulation results every time a change is made to either the test harness or the model under test, which necessitates resimulation. A fail indication should give the simulation time at which the failure occurred, the actual vectors from the model under test, and the expected results. This is achieved in VHDL using the assert statement to send messages to the screen, and the procedure write to send messages to a system file. In Verilog, the system task \$display is used to send messages to the screen and the system task \$fdisplay is used to send messages to a system file.

Examples incorporating automatic vector checking have been included in the test harnesses already shown in this chapter. Section lc) showed an example (ALARM_CLOCK_H) where simulation results are sent to a separate system file. Section le) showed an example (ALU_BIDR_H) where simulation results are sent to the screen.

344

12 Practical Modeling Examples

Chapter 12 Contents

1. Tri-Stated Pipeline Stage for Area Efficiency	347
2. Digital Alarm Clock	. 350
3. Three-Way Round-Robin Arbiter	
4. Greatest Common Divisor (GCD)	
5. Error Detection and Correction (EDAC)	.369

1. Tri-stated pipeline stage for area efficiency

Problem

Three 8-bit data busses A, B and C, have valid data arriving in three consecutive clock cycles. Design a model that computes the sum of the three pairs of busses, that is, (A + B), (A + C), and (B + C) and supply the results on a single 9-bit output bus in three consecutive clock cycles. A separate input signal is at logic 1 for one clock cycle to indicate when data on the first bus, A, is valid. Data on the other two busses, B and C, then become valid on the following two consecutive clock cycles.

An output control signal should be at logic 1 for one clock cycle to signify the start of the three clock cycles when the three summed output results are available.

Chip area is critical and must be kept to an absolute minimum. Timing and any latent delay is not an issue. Data on the input busses is arriving late in the clock cycle so must be stored in registers before being processed through any combinational logic.

Solution

As chip area is critical, it is necessary to use only one adder. Also, instead of multiplexing different input bus combinations to the single adder a single tri-stated bus and a single 2-1 multiplexer is used. The solution architecture is shown graphically in Figure 12.1.

Figure 12.1 Modeled architecture for the tri-stated pipelined stage

The three input buses are first clocked into registers as required, for example, A to A Hold. The control path provides the tri-state buffer enable signals EnA, EnB and EnC to allow each of the three pieces of stored data onto the internal tri-state bus in turn. Signal EnA is arranged so that it is always be at logic 1 when EnB and EnC are at logic 0 so that the tri-state bus is always driven. The enable signals are derived directly from the output of flip-flops in order to minimize skew.

The control path allows the three stored input busses, A_Hold, B_Hold and C_Hold onto the internal tri-state bus M in the order A, B, C. Bus M provides one input to the adder and M delayed one clock cycle, M_Delayed, provides the second input to yield the summations (A + B) and (B + C). In order to generate the last sum, (A + C), A_Hold must be delayed by one clock cycle, A_Delay, in order to allow the next new value of A from the start of a subsequent sequence of three values, to be passed to M and M_Delay.
Simulated signal waveforms, Figure 12.2, indicate how three sets of three back-to-back values are added in consecutive sequences of (A + B), (B + C) and (C + A). The pipe-lined arrangement means there is a latent delay of four clock cycles from valid data arriving on A to the first valid summed data, A + B, arriving on the output Y. Therefore, a four clock cycle delay exits between InDataReady switching to logic 1 and its corresponding output OutDataReady switching to logic 1.

HDL code. Inferred flip-flops for signals InDataReady_Delay, EnA, EnB, EnC and EnA_Delay are all inferred from within the same process/always statement. In VHDL, signals are used to feed data from one flip-flop to the next. In Verilog, non-blocking procedural assignments are used for the same reason. Similarly M_Delay and Y are generated from within a separate process/always statement. Two addition operators are used, but resource sharing ensures that only one adder is actually synthesized.

Clock					<u> </u>				
Reset_N		M. C. M. S.	su tetto y				P.01	· · · · ·	
InDataReady	(aq)								
InDataReadyDelay	x	An en eng]	r		
EnB	x				_				: .
EnC]				
En& Delay			i Zaja		[<i></i>	L.,	_	
LIA_Delay	Trible (1924) (A	\$P\$194544(1)	541 P 2018		J 	L	ا 	· · · · · ·	1.011
EnA	<u> </u>					<u> </u>			8 1999 1973 - 1979
A[7:0]	<u> </u>		A1	X	A2	X	A3	χ	X
B[7:0]		X	- Pager	B1	ý	B2	<u>γ</u>	B3	—
	1 Carbon 2 C	reaction of the second se						ang para s	
C[7:0]		X	X	<u>C1</u>]		<u>C2</u>	<u>C3</u>	X
A_Hold[7:0]	Constant Con	X		A1	χ	A2))	A3)	X
R Hold[7:0]			<u> </u>	01			<u> </u>		Ville
D_M010[7.0]		Copression of the second			<u>. </u>	<u> </u>	02	<u> </u>	
C_Hold[7:0]		X	5.0		C1	<u> </u>	C2		Сз (х
4 Dolov(7:0)		(16)#1)C	οιος. Υποτογ	A 1		, <u> </u>	A9	A2	
A_Delay[1.0]			_^^^	<u></u>		<u> </u>	<u> </u>	~0	
M[7:0]	X	<u> </u>	A1 (B1 (C1	(A2)	B2)	C2 (A3)	B3 (C3)	X
M_Delay[7:0]	in a state of the	X) A) (B1	(Cci)	(A2)	B2 (C2)	A3 83	C3 X
	albert des Blote-	12 Martinet	2.12 (J. 1) 27 - 13 (27)	V 41.01	(PL-CI)		40.00140.00	CO. 401 40.001	52. C2 C2. 421 V
1[8:0]	÷			V *(+6)		(<u></u>)		- A Managa	······

Figure 12.2 Signal waveforms for the tri-stated pipelined stage

Tri-stated pipeline stage for area efficiency

Verilog VHDL iibrary IEEE: module TRI PIPE use IEEE STD_Logic_1164.all, IEEE.Numeric_STD.all; (Clock, Reset_N, InDataReady, A, B, C, OutDataReady, Y); entity TRI PIPE is Clock, Reset_N, InDataReady; input port (Clock, Reset N, InDataReady: in std logic; input [7:0] A, B, C; in unsigned(7 downto 0); OutDataReady; A. B. C: output OutDataReady: out std logic; output [8:0] Y; out unsigned(8 downto 0)); Y: end entity TRI_PIPE; wire OutDataReady; // shown for clarification. // Is detault if not defined. architecture RTL of TRI PIPE is signal inDataReody Delay, EnA, EnB, EnC, EnA Delay: InDataReady_Delay,EnA,EnB,EnC,EnA_Delay; reg std logic; reg [7:0] A_Hold, B_Hold, C_Hold, A_Delay; signal A Hold, B Hold, C Hold, A Delay, wire [7:0] M; M,M Delay: unsigned(7 downto 0); reg [7:0] M_Delay; begin reg [8:0] Y; CONTROL_PATH: process (Clock, Reset_N) always @(posedge Clock or negedge Reset, N) begin: CONTROL_PATH begin if (Reset N = 0) then if (! Reset_N) InDataReady_Delay <= '0'; begin EnA <= '1'; -- So tri-state bus has a drive. InDataReady_Delay = 0; EnB <= '0'; EnA = 1; // So tri-state bus has a drive. EnC <= '0';EnB = 0: EnA Delay <= '0'; EnC = 0; elsif rising edge(Clock) then EnA Delay = 0; InDataReady_Delay <= InDataReady; end EnA <= InDataReady and else (not inDataReady_Delay and not EnB); begin EnB <= EnA; EnA = InDataReady & EnC <= EnB; (! InDataReady Delay & ! EnB); EnA Deloy <= EnC; = ÈnA; En8 end if: = EnB: EnC end process CONTROL PATH; EnA_Delay = EnC; end OutDataReady <= EnC; end IP BUS REG: assign OutDataReady = EnC; process (Clock) begin always @(posedge Clock) if rising_edge(Clock) then begin: IP_BUS_REG A_Hold = A; A_Hold <= A: B_Hold <= B; $B_Hold = B;$ C Hold <= C; C Hold = C; A_Delay <= A_Hold; A_Delay = A_Hold; end if end end process IP BUS REG: -- Tri-state bus drivers // Tri-state bus drivers $M \le A_Hold$ when EnA = '1' else (others => 'Z'); assign M = EnA ? A_Hold : 8'b Z: $M \le B$ Hold when $EnB = 1^{\circ} else$ (others => 'Z'); assign M = EnB ? B Hold :8'b Z: $M \le C$ Hold when EnC = '1' else (others \Rightarrow '2'), assign M = EnC ? C Hold : 8'b Z; OUT_STAGE: process (Clock) always @(posedge Clock) Non-blocking M_Delay assigned begin begin: OUT STAGE signal assignment. and used in same if rising_edge(Clock) then M Delay <= M; synchronous block. M_Delay <= M; -If (EnA_Delay == 1) if (EnA_Delay = '1') then Y <= M_Delay + A_Delay; Y <= ('0' & M Delay) + A Delay; Resource else eise shared adder. Y <= M_Delay + M; Y <= ('0' & M_Delay) + M; end end if; end If: endmodule end process OUT_STAGE; enci RTL:

2. Digital Alarm Clock

Problem

Design a digital alarm clock that has the following terminal (port) signals:

Inputs	Clock_1sec, Reset, LoadTime, SetHours, SetMins, SetSecs, Set_AM_PM, LoadAlm, AlarmHoursIn, AlarmMinsIn, Alarm_AM_PM_In, AlarmEnable
Outputs	Hours, Mins, Secs, Hours, AM_PM, Flashing, Alarm

The required characteristics of the digital alarm clock are:

- timing is to be controlled from a 1 second input clock, Clock_lsec,
- to operate on a 12 hour basis with separate am/pm control,
- the value of time to be set when LoadTime is high,
- the alarm time to be set when LoadAlm is high,
- the Alarm output should go high when the current value of time is equal to the alarm time, the alarm should stay on until either the AlarmEnable signal goes low, which equates to turning the alarm off, or after period of 1 minute has elapsed when left on.
- if power is lost, and then powered up again, it should display the time 00:00:00 and the "Flashing" signal should be activated high. This causes the display to flash and so indicate that the alarm clock's time needs to be set. The Flashing signal should stay high and the clock's time should increase from zero until a new time is set.

Solution

First, identify what storage elements are required. A total of 29 flip-flops are needed to hold the current clock time and set alarm time. The constituent flip-flops are listed in Table 12. 1.

This problem is most easily solved by splitting the problem into two; one for the clock time and the other for the alarm time. The VHDL and Verilog models show this split. In the VHDL model, separate process statements model the clock time and alarm time generation. In the Verilog model, a single **always** statement is used to model the clock time, but two **always** statements are needed to implement the alarm time because both synchronous and combinational output logic is needed.

The first process/always statements instantiate the 18 flip-flops needed to hold the current value of time and compute its next incremental value. The word "time" in this context means hours, minutes, seconds plus the AM/PM indication. It uses nested if statements, the outermost of which waits for a rising edge on the 1 second clock signal Clock_lsec. If a rising edge has occurred, the time and Flashing signals are updated. Notice that no matter which branch is taken through the nested if statements, new values for Hours, Mins, Secs, AM_PM and Flashing are always defined and avoids extra unneeded latches being inferred.

	Function	Range	No. of bits	
Clock Time				
	Clock time - Seconds	(range 0 to 59)	6	
	Clock time - Minutes	(range 0 to 59)	6	
	Clock time - Hours	(range 0 to 11)	4	
	Clock time - AM/PM	(1 bit toggle)	1	
	Time not set (Flashing)	(1 bit toggle)	1	
			18	= Flip-flops needed
Alarm Time				
	Alarm time - minutes	(range 0 to 59)	6	
	Alarm time - Hours	(range 0 to 11)	4	
	Alarm time - AM/PM	(1 bit toggle)	1	
			11	= Flip-flops needed
		Total flip-flops n	eeded = 29	

 Table 12.1 Constituent flip-flops for the alarm clock

The second part of the VHDL and Verilog models hold the alarm time (AlarmHours, AlarmMins and Alarm_AM_PM) and checks to see if the current time is equal to the alarm time. Notice that seconds are not used for the alarm time. If the two time values compare and the AlarmEnable signal is at logic 1 the Alarm signal is activated. The alarm will stay on until turned off by the AlarmEnable changing to logic 0 or for a maximum of 1 minute if AlarmEnable stays at logic 1.

VHDL	Alarm	clock	package	for	AM/PM	type

VHDL	Verilog
<pre>package AM_PM_Package is type AM_PM_type is (AM, PM); function "not" (Value: AM_PM_type) return AM_PM_type; end;</pre>	
<pre>package body AM_PM_Package is function "not" (Value: AM PM type) return AM PM type is begin if Value = AM then return PM; else return AM; end if; end mot"; end AM_PM_Package;</pre>	Verilog does not support enumerated data types.

Digital_alarm_clock

AHD	Verilog
llbrary IEEE; use IEEE.STD_Logic_1164.all, IEEE.Numeric_STD.all; use work.AM_PM_Package.all;	module ALARM_CLOCK (Clock_1sec, Reset, LoadTime, LoadAlm, SetSecs, SetMins, SetHours, Set_AM_PM, AlarmMinsin, AlarmHoursin, Alarm_AM_PM_In, Secs, Mins, Hours,
entity ALARM_CLOCK is	AM_PM, Alarm, Flashing);
port (Clock_1sec: In std_logic;	
Reset: in std_logic;	input Clock_1sec, Reset;
LoadTime: in std_logic;	input LoadTime, LoadAlm;
SetHours: in integer range 0 to 11;	input [0:5] SetSecs, SetMins;
SetMins, SetSocs: in integer range 0 to 59;	input [0:3] SetHours;
Set_AM_PM; in AM_PM_type;	input Set_AM_PM;
LoadAlm: in std_logic;	input [0:5] AlarmMinsin;
AlarmHoursin: in integer range 0 to 11;	input [0:3] AlarmHoursin;
AlarmMinsin: In integer range 0 to 59;	input Alarm_AM_PM_in;
Alarm AM PM In: In AM PM Type;	input Alarmenable;
Alarmenable in stallogic;	output [0:5] Secs, Mins:
Hours: out integer range 0 to 11;	Duipur (0:5) Hours;
Mins, Secs: Our integer range U to SY;	outpur AM_PM, Hushing, Aldim;
AW_FM: OUT AW_FW_type;	rog [0:5] Algemetrics:
Alerma ent stellogie):	reg (0.3) Alarrollours:
and entity ALARM CLOCK:	
end enning ALARM_CLOCK,	
architecture PTL of ALARM CLOCK is	
signal Hours st integer range () to 1):	reg AM PM Flashing Alarm
signal Miss s Secs s: integer range 0 to 59	
signal AM PM s: AM PM type:	
signal Flashing s: std logic:	
signal name	s enaing in "_s" are internal
begin	die boin ledu and willien lo.
_*************************************	//*************************************
 Calculate the next value of time: 	// Calculate the next value of time:
 Secs, Mins, Hours, AM_PM & Flashing. 	// Secs, Mins, Hours, AM_PM & Flashing.
***********************************	//* ***** *****************************
TIMER: process (Clock_1sec)	always @ (posedge Clock_Isec)
begin	// Synchronous Reset
if rising_edge(Clock_Isec) then	
Synchronous Reset	if (Reset)
if (Reset = ' ') then	Degin
HOUIS_S <= U;	5005 = 0.
$\frac{1}{2} = 0,$	Hours = 0;
$\Delta M = M = -\Delta M$	$\Delta M P M = 0$
Flashing s <= 0'	Flashing = 1
Set the time	end
elsif (LoadTime = '1') then	// Set the time
Hours_s <= SetHours;	else if (LoadTime)
Mins_s <= SetMins;	begin
Sec_s <= SetSecs;	Secs = SetSecs;
AM_PM_s <= \$et_AM_PM;	Mins = SetMins;
Flashing_s <= '0';	Hours ≈ SetHours;
	AM_PM = Set_AM_PM;
Increment time	Fiashing = 0;
	ena (Linacoment time
eise Flachlag it de Flaching d' Llachangod	
f(second = 59) theorem = second = 59	bagin
Socs s = 0;	Elashina - Elashina: // Unchanged
If (Mins $s = 59$) then Reached 59	if (Secs == 59) // Reached 59
Mins s <= 0: Reset mins	begin
If (Hours s = 11) then Reached 11	Secs = 0; // Reset secs
Hours s <= 0; Reset hours	if (Mins == 59) // Reached 59
AM_PM_s <≖ not AM_PM_s; Toggle	begin
am_pm	Mins = 0; // Reset mins
else	If (Hours == 11) // Reached 11
continued	continued

352

Digital alarm clock

```
VHDL
                                                                               Verilog
                                      begin
               Hours s \le Hours s + 1: -- Increment
               AM_PM_s <= AM_PM_s; -- unchanged
                                                                           BOURS = 0:
                                                                                              // Reset hours
                                                                           AM_PM = I AM_PM; // Toggle AM_PM
            end if;
          eise
                                                                         end
            Mins s <= Mins s + 1;
                                     -- Increment
                                                                      elsə
            Hours s <= Hours s;
                                                                        beain
                                     -- unchanged
            AM_PM_s <= AM_PM_s;
                                     -- unchanged
                                                                           Hours = Hours + 1;
                                                                                              // Increment
                                                                           AM_PM = AM_PM;
                                                                                              // Unchanged
          end if:
       else
                                                                        end
         Secs s <= Secs_s + 1;</pre>
                                                                    end
                                    -- Increment
          Mins_s <= Mins_s;
                                     -- unchanged
                                                                  else
          Hours_s <= Hours_s;
                                     -- unchanged
                                                                    begin
          AM PM s <= AM PM s;
                                    -- unchanged
                                                                      Mins = Mins + 1;
                                                                                              // Increment
                                                                                              // Unchanged
       end If:
                                                                      Hours = Hours:
                                                                      AM_PM = AM_PM;
                                                                                              // Unchanged
    end if:
  end if:
                                                                    end
  Hours
          <= Hours s;
                                                                end
         <= Mins s;
  Mins
                                                              else
  Secs
         <= Secs_s;
                                                                begin
  AM PM <= AM PM s;
                                                                  Secs = Secs + 1;
                                                                                              // Increment
end process TIMER;
                                                                  Mins = Mins;
                                                                                              // Unchanged
                                                                  Hours = Hours:
                                                                                              // Unchanged
                                                                  AM_PM = AM_PM;
                                                                                              // Unchanged
                                                                end
                                                            end
     U
 --- Store set alarm time when "LoadAlm" active and
                                                         // Store set alarm time when "LoadAlm" active.
 --- compare current time with set alarm time.
                                                         //****
                                                         always @(posedge Clock_lsec)
  ***************
 ALARM LOAD AND TEST:
                                                            If (Reset)
 process (Clock_lsec)
                                                              begin
                                                                              = 0:
    variable AlarmMins: integer range 0 to 59;
                                                                AlarmMins
    variable AlarmHours: integer range () to 11;
                                                                AlarmHours
                                                                              = 0;
    variable Alarm_AM_PM; AM_PM_type;
                                                                Alarm AM PM = 0;
 begin
                                                              end
   -- Store set alarm time when "LoadAlm" active.
                                                            eise if (LoadAlm)
  if rising_edge(Clock_1sec) then
                                                              begin
    If (Reset = '1') then
                                                                AlarmMins
                                                                              = AlarmMinsin;
       AlarmMins
                                                                AlarmHours
                                                                              = AlarmHoursin:
                    := 0:
                                                                Alarm_AM_PM = Alarm_AM_PM_In;
       AlarmHours
                    := 0:
       Alarm_AM_PM := AM;
                                                              end
    elsif (LoadAim ='1') then
                                                            else
       AlarmMins
                    := AlarmMinsin:
                                                              beain
       AlarmHours
                     := AlarmHoursin;
                                                                AlarmMins.
                                                                              = AlarmMins:
       Alorm_AM_PM := Alorm_AM_PM_In;
                                                                AlarmHours
                                                                              = AlarmHours;
                                                                Alarm AM PM = Alarm_AM_PM;
    else
      AlarmMins
                    := AlarmMins:
                                                              end
      AlarmHours
                    := AlarmHours:
       Alarm_AM_PM := Alarm_AM_PM;
   end if:
                                                         end if;
  --- Compare current time with set the alarm time.
                                                         // Compare current time with the set alarm time.
                                                         // Sets alarm for 1 minute (ignores seconds).
  --- Sets alarm for 1 minute (ignores seconds).
                                                         11****
  if (Mins_s = AlarmMins and
                                                         always @(Hours or Mins or AM PM or AlarmEnable or
    Hours s = AlarmHours and
    AM PM s = Alarm AM PM and
                                                                  AlarmHours or AlarmMins or Alarm AM PM)
    AlarmEnable = '1') then
                                                           If (Hours== AlarmHours && Mins== AlarmMins &&
    Alarm <= '1';
                                                              AM_PM == Alarm_AM_PM && AlarmEnable ==1)
  else
                                                              Alarm = 1;
    Alarm <= '0';
                                                           else
  end if:
                                                             Alorm = 0
 end process ALARM_LOAD_AND_TEST;
end architecture RTL;
                                                       endmodule
```

3. Three-Way Round-Robin Arbiter

Problem

Three independent microprocessors (A, B and C) are required to share access to the same synchronous RAM. The memory is 1024 x 8-bits in size and requires a single read/write signal. The following data is therefore needed from each microprocessor.

Address	-	12-bits
Write Data	-	8-bits
Read Data	-	8-bits
Read/write	-	1-bit

Design an arbiter that accepts data from each microprocessor and arbitrates which one is granted access to the RAM at any one time. Each microprocessor will initiate a RAM request signal when it wants access to the RAM and will deactivate it when finished. If more than one microprocessor requests the bus at the same time, access should be granted on a "round robin" basis so that no one microprocessor is locked out while another has continuous access. Continuous access is granted to any one microprocessor for a period of time, up to a number of clock cycles separately programmable from microprocessor A data bus. When a programmable "watch dog" time has not been set, a 64 clock cycle delay should default.

Tri-state buffers, not multiplexers, are needed for speed purposes.

Solution

The "round robin" priority access to the RAM, from each microprocessor, is easiest modeled using a state machine. A "watch dog" timer (counter) is used to deny a microprocessor RAM access when it has had access for more than 64 clock cycles or a number of clock cycles stored in TimeOutClockPeriods.

Figure 12.3 shows the arrangement of microprocessors, arbiter and RAM; it also shows the modeled structure of the arbiter. The state machine, see Figure 12.4, has four states: Idle, Grant_A, Grant_B and Grant_C. The "round robin" priority access is Grant_A, Grant_B, Grant_C and back to Grant_A again should more than one microprocessor request access at the same time. The structure of the state machine, Figure 12.5, shows the enable signals EnA1, EnA2, EnBl, EnB2, EnCl and EnC2 generated separately from the microprocessor acknowledge signals AckA, AckB and AckC. The enable signals are generated directly from the next state logic through extra, non-state machine flip-flops, and drive the enable inputs to the tri-state buffers directly with no extra loading; this reduces skew. Each pair of enable signals, for example EnAl and EnA2, are identical, but are derived from separate flip-flops. Enable signals with a number 1 suffix (EnAl, EnBl and EnCl) are used to enable the tri-state buffers for the address busses, while enable signals with a number 2 suffix (EnA2, EnB2 and EnC2) are used to enable the tri-state buffers for the data busses and read/write signals. This reduces the loading on each enable signal and so also reduces skew.

Figure 12.3 Microprocessor/arbiter/RAM configuration and modeled arbiter structure

Figure 12.4 State diagram for arbiter control logic

Figure 12.5 State machine for arbiter logic control

Three-way round-robin arbiter

	it is the the second
Kibrary (EEE;	module ARBITER
use IEEE.STD_Logic_1164.all, IEEE.Numeric_STD.all;	(Clock, Reset, En_TimeOutTime, ReqA, ReqB, ReqC,
	R_Wb_ProcA, R_Wb_ProcB, R_Wb_ProcC,
port (Clock Reset: in std logic:	AddBus_ProcA, AddBus_ProcB, AddBus_ProcC, DataWriteBus_ProcA_DataWriteBus_ProcB
En_TimeOutTime: in std_logic;	DataWriteBus ProcC.
ReqA, ReqB, ReqC: in std_logic;	AckA, AckB, AckC, TimeStart,
R_Wb_ProcA, R_Wb_ProcB,	R_Wb_RAM, AddBus_RAM, DataWriteBus_RAM);
AddBus ProcA	innut Clock Poret En TimeQutTime DecA DecP Pore
AddBus ProcB.	input R Wh ProcA, R Wh ProcB
AddBus_ProcC: in unsigned(11 downto 0);	R_Wb_ProcC;
DataWriteBus_ProcA,	input (11:0)AddBus_ProcA,
DataWriteBus_ProcB, DataWriteBus_ProcC: In unsigned(7 downto 0);	AddBus_ProcB,
AckA. AckB. AckC. TimeStart: out std. logic:	ionut (7:0) DotaWiteBus ProcA
R_Wb_RAM: out std_logic;	DataWitteBus_ProcB,
AddBus_RAM: out unsigned(11 downto 0);	DataWriteBus_ProcC;
<pre>DataWriteBus_RAM: out unsigned(7 downto 0)); and anythe Approx (7 downto 0));</pre>	output AckA, AckB, AckC, TimeStart;
end entity Arbiter;	output R_Wo_RAM;
architecture RTL of ARBITER is	output (11.0) Adobus_KAM, output (7:0) DataWriteBus RAM:
constant DefaultTimeOut: integer := 64;	reg AckA, AckB, AckC, TimeStart;
signal TimeOutClockPeriods: unsigned(7 downto 0);	
signal Runtimer, Timesup: sta_logic; signal Count: unsigned(5 downto 0);	reg (7:0) TimeOutClockPeriods;
agrici Coorna draighista (o downio b),	reg Rammer, imesop; reg (5:0) Count:
Define 4 states of arbiter state machine.	
type ARB_STATE_TYPE is (Idle,Grant_A,Grant_B,Grant_C);	// Define 4 states of arbiter state machine.
eignel CurrentState, NextState: ADB_STATE_TVPE:	parameter Idle = 0,Grant_A = 1,Grant_B = 2,Grant_C = 6;
	rea (3:0) CurrentState, NextState:
signal EnA1, EnA2, EnB1, EnB2, EnC1, EnC2: std_togic;	
begin	reg EnA1, EnA2, EnB1, EnB2, EnC1, EnC2;
	//
Process: TIMEOUT_COUNT	// Process: TIMEOUT_COUNT1 and TIMEOUT_COUNT2
 Pulpose, Hold En_Inneourning and time how long a microprocessor has had access to the RAM. 	// Purpose: Hold En_ItimeQuitatine and time now long a // microprocessor bas bad access to the RAM
- Inputs: Clock, Reset, RunTimer.	// Inputs: Clock, Reset, RunTimer,
– Outputs: TimesUp,	// Outputs: TimesUp.
	//
nmeour_count: process (Clock, Count)	always @(posedge Clock) begin: IMEOUT, COUNT)
begin	If (Reset == 1)
if rising_edge(Clock) then	TimeOutClockPerlods = 64;
if (Reset = '1') then	else if (En_TimeOutTime == 1)
to_unsigned/8efgultTimeOut_8\-	ImeOutClockPeriods = DataWriteBus_ProcA;
elsif (En_TImeOutTime = ')') then	if (Reset == }] RunTimer == 0)
TimeOutClockPeriods <= DataWriteBus_ProcA;	Count = 6'b 0;
end if;	else
enci II;	Count = Count + 1;
if rising edge(Clock) then	alo
if (Reset = '1' or RunTimer = '0') then	always @(Count)
Count <= (others => '0');	begin: TIMEOUT_COUNT2
else Count z= Count + 1:	if (Count == TimeOutClockPeriods)
end if:	nmesup = 1; else
end if;	TimesUp = 0;
if (Count = TimeOutClockPeriods) then	end
continued	continued

Three-way round-robin arbiter

TimesUp <= '1';	
TimesUp <= '0';	
end if;	
end TIMEOUT_COUNT process;	
Process: ARBITER COMB	// // Module: ARBITER_COMB
- Purpose: Arbiter's combinational logic which	// Purpose: Arbiter's combinational logic which
computes next state and output signal	computes next State and output signal
Inputs: Read Read Read Timestia CurrentState	// Inputs: ReaA, ReaB, ReaC, TimesUp, CurrentState
Outputs: AckA, AckB, AckC, RunTimer.	// Outputs: NextState, AckA, AckB, AckC, RunTimer.
RBITER_COMB:	always @ (ReqA or ReqB or ReqC or TimesUp or
ocess (ReqA, ReqB, ReqC, TimesUp, CurrentState)	CurrentState)
egin	
to define every output in every case branch.	// Initialize to default values to save the need
	// to define every output in every case branch.
ACKA <= '0';	//
AGNE $\langle = 0;$ AckC $\langle = 0;$	AckB = 0;
TimeStart <= '0';	AckC = 0;
RunTimer <= '0';	TimeStart = 0;
	RunTimer = 0;
case (CurrentState) is	case (CurrentState)
	// Idle
when Idle =>	//
if (RecA = 'I') then	Idle:
AckA <= '1';	H(RegA == 1)
elsif (RegB = '1') then	AckA = 1:
AckB <= '1';	NextState = Grant A;
NextState <= Grant_B;	end
elsif (ReqC = '1') then	else if (ReqB == 1)
ACKU <= '1'; NevtState <= Grant C:	Degin AckB - 1
else	NextState = Grant B:
NextState <= Idle;	end
end if;	else if (ReqC ⊭≖ 1) begin
Grant_A	AckC = 1;
	NextState = Grant_C;
if (RegA = 11' and Timestic = 10') then	ena
Processor A allowed continued access.	// Grant A
RunTimer <= '1';	//
AckA <= '1';	Grant_A:
NextState <= Grant_A;	if (ReqA == 1 && TimesUp == 0)
- Processor A voluntarily releases access	11 Processor A allowed continued acce beain
request or has had access too long.	RunTimer = 1;
if (ReqB = '1') then	AckA = 1;
NextState <= Grant_B;	NextState = Grant_A;
elsif (ReqC = '1') then	end
eise	// Processor A voluntarily releases acces
NextState <= Idle;	// request or has had access too long.
end if;	· · · · · ·
ənd if;	
pontinu od	continued
Cominuea	Committee

Three-way round-robin arbiter	Three-way	round-robin	arbiter
-------------------------------	-----------	-------------	---------

YHDL	Verilog
Grant_B	if (RegB == 1)
When Grant B =>	eise ii (Requ == 1)
ii (RegB = 1° and timesup = 0) then	
Processor & allowed continuing access.	eise NeutState Idle:
Runimer <= 1;	Nexisidie = luie,
ACKB <= 'I';	11 Crownt D
NextState <= Grant_6;	
else Base de la base de la construcción d	
- Processor & voluntarily releases access	
request or has had acces too long.	$\mathbf{m} \left(\mathbf{R} \mathbf{\Theta} \mathbf{G} \mathbf{B} = = \mathbf{I} \mathbf{X} \mathbf{X} \mathbf{I} \mathbf{m} \mathbf{\Theta} \mathbf{S} \mathbf{D} = = \mathbf{U} \right)$
fr(ReqC = 1) free	// Processor B allowed continued access.
NextState <= Grant_C;	Degin
elsif ($\operatorname{ReqA} = (1)$) then	Runhmer = 1;
NextState <= Grant_A;	ACKB = 1;
else	NextState = Grant_B;
NextState <= Idle;	end
end if;	else
end if;	// Processor B voluntarily releases access
	// request or has had access too long.
Grant C	if (RegC == 1)
	NextState = Grant C;
when Grant C =>	else if (RegA == 1)
if (ReaC = '1' and LimesUp = '0') then	NextState = Grant A:
Processor C allowed continuing access	Alse
PunTimer 114	NextState - Idle:
Ack (-1)	
NevtState <= Crant C'	// Grant C
Brooster C voluntarily releases access	Grant C:
- Processor & voluntumy releases access	$\frac{H}{PagC} = 1.8.9 \text{ Jimpslin} 0)$
request of has had acces too long.	$\frac{1}{(Reqc == 1 \text{ as fitnes } p == 0)}{(Reconstruct C allowed applying approximate C allowed approximate C allowed applying approximate C allowed approximate C $
IT (RegA = 17) men	// Processor C allowed continued access.
Nexisidie <= Grant_A;	pegin DupTimon
eisir (Req8 = 1') men	Runnmer = 1;
NextState <= Grant_B;	ACKC = 1;
else	NextState = Grant_C;
NextState <= Idle;	end
end if;	else
end if;	// Processor C voluntarily releases access
end case;	// request or has had access too long.
end process ARBITER_COMB;	If (RegA == 1)
	NextState = Grant_A;
	else if (ReqB == 1)
	NextState = Grant_B;
	eise
	NextState = Idle;
	endcase
	end
	//
Process: ARBITER SEQ	// Module: ARBITER SEQ
- Purpose: Arbiter's state machine state register.	// Purpose: Arbiter's state machine state register.
Inouts: Clock, Reset, NextState,	// inputs: Clock, Reset, NextState,
Outputs: CurrentState.	// Outputs: CurrentState.
	//
ARBITER SEC	always @ (nosedge Reset or posedge Clock)
process (Reset Clock)	begin: ARBITER SEQ
bonin	# (Deset)
if (Decet - ')') then	CurrentState - Idle:
Currentatule <= lute,	CurrentState - NextState:
Currentatore <= NextStore;	
end process Akbrick_ace; continued	continued

Three-way round-robin arbiter

```
VHDL
                                                                                       Verilog
                                                                 11---
                                                                 // Module: SYNC_TRI_STATE ENS
   -- Process: SYNC_TRI_STATE_ENS
   -- Purpose: Synchronize tri-state enable signals
                                                                 // Purpose: Synchronize tri-state enable signals
              to minimize swithing skew.
                                                                             to minimize swithing skew.
                                                                 H
               Async reset ensures EnA1/2, EnB1/2
                                                                 Ħ
                                                                             Async reset ensures EnA1/2, EnB1/2
   --
                                                                             and EnC1/2 all 0 for safe (no multiple
              and EnC1/2 all 0 for safe (no multiple
                                                                 11
   ---
               drives) tri-state start condition.
                                                                             drives) tri-state start condition.
   ---
                                                                 11
              inputs: NextState.
                                                                 // Inputs:
                                                                             NextState.
   -- Outputs: EnA1/2, EnB1/2 EnC1/2.
                                                                 // Outputs: EnA1/2, EnB1/2 EnC1/2.
                                                                 11-
                                                                 always @(posedge Reset or posedge Clock)
   SYNC TRI STATE ENS:
   process (Reset, Clock)
                                                                    begin: SYNC_TRI_STATE_ENS
                                                                       if (Reset)
   begin
                                                                          begin
     If (Reset = '1') then
                                                                             EnA1 = 0; EnA2 = 0;
         EnA1 <= '0'; EnA2 <= '0';
                                                                             EnB1 = 0; EnB2 = 0;
         EnB1 <= '0'; EnB2 <= '0';
         EnC1 <= '0'; EnC2<= '0';
                                                                             EnC1 = 0; EnC2 = 0;
     elsif rising_edge(Clock) then
                                                                          end
         EnA1 <= '0'; EnA2 <= '0';
                                                                       else
         EnB1 <= '0'; EnB2 <= '0';
                                                                          begin
         EnC1 <= '0'; EnC2 <= '0';
                                                                             EnA1 = 0; EnA2 = 0;
                                                                             EnB1 = 0; EnB2 = 0;
         case NextState is
                                                                             EnC1 = 0: EnC2 = 0:
                               EnA1 <= '1'; EnA2 <= '1';
           when Grant A =>
                               EnB1 <= '1'; EnB2 <= '1';
           when Grant B =>
                                                                             case (NextState)
           when Grant_C =>
                               EnC1 <= '1': EnC2<= '1';
                                                                                Grant_A: begin EnA1 = 1; EnA2 = 0; end
                                                                                Grant B: begin EnB1 = 1; EnB2 = 0; end
           when others =>
                                EnA1 <= '0'; EnA1 <= '0';
                               EnB1 <= '0'; EnB1 <= '0';
                                                                                Grant_C: begin EnC1 = 1;EnC2 = 0; end
                                EnC1 <= '0'; EnC1 <= '0';
                                                                               default<sup>.</sup>
         end case:
                                                                                  begin
     end if;
                                                                                     EnA1 = 0; EnA2 = 0;
                                                                                     EnB1 = 0; EnB2 = 0;
   end process SYNC_TRI_STATE_ENS;
                                                                                     EnC1 = 0; EnC2 = 0;
                                                                                  end
                                                                             endcase
                                                                         end
                                                                    end
                                                                 11---
                                                                 // Module: No model name - concurrent statements.
  -- Process: No process name - concurrent statements.
  -- Purpose: Infer tri-state buffers for RAM access
                                                                   Purpose: Infer tri-state buffers for RAM access.
                                                                 11
                                                                 // Inputs: EnA1/2, EnB1/2, EnC1/2,
  -- Inputs: EnA1/2, EnB1/2, EnC1/2,
                                                                           AddBus_ProcA, AddBus_ProcB, AddBus_ProcC,
  -- AddBus_ProcA, AddBus_ProcB, AddBus_ProcC,
                                                                 11
  -- DataWriteBus ProcA, DataWriteBus ProcB,
                                                                 II
                                                                           DataWriteBus ProcA, DataWriteBus_ProcB,
  -- DataWriteBus ProcC.
                                                                          DataWriteBus_ProcC.
                                                                 11
                                                                 // Outputs: AddBus_RAM, DataWilteBus_RAM.
  -- Outputs: AddBus_RAM, DataWriteBus_RAM.
                                                                 11----
                                                                         -----
  AddBus_RAM <= AddBus_ProcA when (EnA1 = '1') else
                                                                 assign AddBus RAM = EnA1 ? AddBus ProcA : 12'b Z;
                                                                 assign AddBus RAM = EnB1 ? AddBus ProcB : 12b Z:
                    (others => 'Z');
                                                                 assign AddBus RAM = EnC1 ? AddBus ProcC : 12'b Z:
  AddBus RAM <= AddBus ProcB when (EnB1 = '1') else
                    (others => 'Z');
  AddBus_RAM <= AddBus_ProcC when (EnC1 = '1') eise
                                                                 assign DataWriteBus_RAM = EnA2 ? DataWriteBus_ProcA
                                                                                                                  : 8'b Z:
                    (others => 'Z');
                                                                 assign DataWriteBus RAM = EnB2 ? DataWriteBus ProcB :
                                                                                                                  8'b Z;
  DataWriteBus RAM <= DataWriteBus_ProcA when
                                                                 assign DataWrlteBus_RAM = EnC2 ? DataWriteBus_ProcC
                                        (EnA2 = '1') else
                                                                                                                  : 8'b Z:
                    (others => 2');
  DataWriteBus_RAM <= DataWriteBus_ProcB when
                                                                assign R_Wb_RAM = EnA2 ? R_Wb_ProcA : 1'b Z;
assign R_Wb_RAM = EnB2 ? R_Wb_ProcB : 1'b Z;
                                        (EnB2 = '1') else
                    (others => 'Z');
                                                                 assign R Wb RAM = EnC2 ? R Wb ProcC : 1'b Z;
  DataWriteBus_RAM <= DataWriteBus_ProcC when
                                        (EnC2 = '1') else
                                                              endmodule
                    (others = > 'Z'):
  \label{eq:rescaled} R\_Wb\_RAM <= R\_Wb\_ProcA\_when~(EnA2 \approx `1`)~eise~`Z';
  R_Wb_RAM \le R_Wb_ProcB_when (EnB2 = '1') else 'Z';
  R Wb RAM <= R Wb ProcC when (EnC2 = '1') else 'Z';
end architecture RTL;
```

4. Greatest Common Divisor (GCD)

Problem

The problem consists of three parts:

- 1. Design three algorithmic level models of an algorithm that finds the Greatest Common Divisor (GCD) of two numbers in the software programming language, "C", and the two hardware description languages, VHDL and Verilog. Use common test data files to test the algorithm where practically possible. Neither the VHDL nor Verilog models need to contain timing. Al three models should automatically indicate a pass or fail condition.
- 2. Model the GCD algorithm at the register transfer level for synthesis in both VHDL and Verilog. The model must be generic so that it can be instantiated with different bit widths. A signal called Load should indicate when input data is valid, and a signal called Done should be provided to signify when valid output data is available. The generic model should be verified with 8-bit bus signals.
- 3. Write VHDL and Verilog test harnesses for the two models that 1) use the same test data files used by the algorithmic level models, and 2), instantiates both the RTL and synthesized gate level models so that they are simulated and tested at the same time.

Solution

The solution is broken into three parts corresponding to those of the problem.

1. Designing algorithmic level models in C, VHDL and Verilog

The algorithm used to find the greatest common divisor between two numbers is indicated by the flow chart; Figure 12.6.

The algorithm operates by continually subtracting the smaller of the two numbers, A or B, from the largest until such point the smallest number becomes equal to zero. It does this by continually subtracting B from A while A is greater than or equal to B, and then swapping A and B around when A becomes less than B, so that the new value of B can once again be continually subtracted from A. This process continues until B becomes zero.

Figure 72.6 GCD Algorithm

C model

The C model first declares integer values for the two inputs A and B, the computed output of the algorithm Y, and the reference output Y_Ref. Integer Y_Ref is the expected GCD result and is used to compare with the computed result from the algorithm. The integer Swap is also declared and used in the algorithm to swap the two inputs A and B. A final integer, Passed, is used to indicate a pass (1) or fail (0) condition.

A file pointer (file_pointer) is defined in order to access the test data file "gcd_test_data.txt". It is opened for read mode only. Integer Passed is initially set to 1 and only set to 0 if the algorithm fails.

Reading test data file. The test data file contains three numbers on each line corresponding to values of A, B and Y_Ref, respectively. A while loop is used to 1) read each line of the test data file, 2) assign the three values to A, B and Y_Ref, respectively, 3) use A and B to compute the GCD output Y, and 4) compare Y with Y_Ref. This while loop continues while there is test data in the test data file.

Algorithm implementation. The initial if statement is an extra check that both A and B are not zero. The algorithm is then modeled using two while statements. The first, outermost, while statement checks to see if B has reached zero; if it has, the GCD has been found. The second, innermost while statement checks to see if A is greater than or equal to B; if it is, it continually subtracts A from B and puts the result back in A. When A becomes less than B the innermost while loop completes, A and B are swapped using Swap, and the outer most while statement rechecks B to see if it has reached zero.

Testing the result The algorithm is tested using an If statement which tests to see if the computed result Y is the same as the expected result Y_Ref. If they are different an error message is printed to the screen and Passed assigned the value 0. Finally, when all tests have completed and Passed is still equal to 1 a passed message is printed to the screen.

VHDL Model

The VHDL model follows exactly the same principle as defined for the C model above. When reading the integer values from the test date file they must be read and assigned to a variable; they cannot be read and assigned to a signal. As this is an algorithmic level model defined in a single entity it contains no inputs or outputs, nor does it contain any internal signals or associated timing. All computations use variables; variables are read from the test data file, the algorithm computes the result and variables are written to a results file.

Verilog Model

The Verilog model also follows the same principle as defined above for the C model. A major difference in this model is that Verilog cannot read decimal integer values from a system file. Data read from a system file <u>must</u> be: 1) read using one of the two language define system tasks, \$readmemb or \$readmemb and 2) stored in a memory, which has specific width and depth. This limits any read data to being in either hexadecimal or binary format. In this case, a separate test data file is used "gcd_test_data_hex.txt" which has the test data specified in hexadecimal format.

GCD test data files

$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	15 31 7 // Decimal 21 49 7 19 1E 5 // Decimal 25 30 5 13 1B 1 // Decimal 19 27 1 28 28 28 // Decimal 40 40 40 FA 6E A // Decimal 250 190 10 5 FA 5 // Decimal 5 250 5

GCD modeled at the algorithm level

	실망한 한 것이가 가려 못해 물질을 하는 것을 물질을 수 있다. 같은 것이 가지 않는 것은 것을 물질을 하는 것이 같은 것이라.	
#include <stdio.h></stdio.h>	Hibrary STD; use STD.TEXTIC.cll;	module GCD_ALG; parameter Width = 14;
main ()	die Stottexholding	$\mathbf{part (A/idth - 1:0) A in B in A B Swan}$
1	entity GCD ALG is	V.V. Ref:
iniA in B in ABSwan V V Dof Paread	and antity GCD ALC:	11 - 1001
SILE "file pointer:		normater Test Period -20
file pointer =		GCD for t = h'
foren/"and test data tyt" """"		GOD_10010 = 0,
iopen(gcd_lesi_ddid.ixi ; 1);	- Declare test data file and results file	integer N M
Porced - 1:		rea Passed
Fusseu = 1,		Exiliano:
while (Ifact/file, pointer))	read made is "and text data tet"	integer SimBouth:
witte (neor(ne_pointer))		nneger sinnesons,
1	and data test results test	(Declare memory array for fact data
	gcd_dig_test_testins.txt ,	// Decidie memory analy for lesi data
/* Keda test data trom tile */	begin	
	000	reg (widin - 1:1) All_Y_kei_Air
iscani (file_pointer, "%a %a		(I:GCD_TESTS * 3);
%d∖n", &A_in, &B_in, &Y_Ref);	vanable A_in, B_in, A, B, Swap, Y, Y_Ref:	
	integer range 0 to 65535;	
/**/	variable TestData: line;	// Model GCD algorithm
/* Model GCD algorithm */	variable BufLine: line;	//
/**/	variable Passed: bit := '1';	always @(A or B)
A = A_in;	begin	begin: GCD
8 = B_In;	while not endfile(TestDataFile) loop	A = A_In;
lf (A l= 0 && B l≈ 0)		$B = B_in;$
{	Read test data from file	lf (A != 0 && B != 0)
while (B != 0)	***************************************	while (B != 0)
{	readline(TestDataFile, TestData);	begin
while (A >= 8)	read(TestData, A_in);	while (A >= B)
• {	read(TestData, B_in);	A = A - B;
A = A - B;	read(TestData, Y_Ref);	Swap = A;
}		A = B;
Swap = A;		B = Swap;
A = B;		end
B = Swap;	- Model GCD algorithm	else
}		A = 0;
	A := A ln:	Y = A:
else	B := B in:	end
{	if (A $f=0$ and B $f=0$) then	
A = 0;	while (B /= 0) loop	//
1	while $(A \ge B)$ loop	// Test GCD algorithm
Y = A:	A := A - B:	//
	and loop:	initial
/**/	Swap := A:	beain
/* Test GCD algorithm */	A := B:	// Load contents of
/**/	B := Swap:	// "acd test data.txt" into array.
ir (Y I= Y Ref)	end loop	Sreadmemb("acd test data bey tyt"
	also	AB Y Ref Arth
brint ("Fror A - % d B - % d	A = 0	, 10, 1, 101, 101, 101,
$V = \frac{1}{2} $	and H	// Open simulation results file
	V - Δ	SimPosults - Stopen/land simposity
Possed = 0;		Curriconna a Arobard Roaminaa)
		Passad - 1: // Sat to 0 if fails
\ '	- Test GCD aborithm	
1		for $(N = 1; N \neq CCD$ tests $(N = N \neq 1)$
# (9/msect = 1)	$H(X)/_{\pi} Y$ Deft then _ bas failed	herin
n (r used = 1)	n (r /≃ r_ito) mont ≂ hus iuliou Daesad – 104	$\Delta in = \Delta \mathbf{R} \vee \mathcal{D}_{\text{of}} \Delta m((\mathbf{N}_1 + 2) + 1)$
Mum (GCC offormum rest brased)	russou ,= 0, witte(Ruitline, strine)("⊂∩) Error: A="\\;	$\mathbf{A}_{\mathbf{n}} = \mathbf{A}_{\mathbf{n}} $
OK VIL 2	wither(Dutline, Samig (GOD EnOI: A=));	$V Def = \Delta E V Def A \pi (A + 2);$
1	witte(Bufflee, style=""");	$\tau_{1}(\Theta) = \Delta D_{1}(\Theta) - \Delta H((1 + 3) + 3);$
I	wine(doimle, sinkly (" d=));	
	continued	continued

an an ann an an an an an an ann an ann an a		
	<pre>witte(Bufline, B_in): witte(Bufline, string'(" Y=")); witte(Bufline, string'(" Y_Ref=")); witte(Bufline, Y_Ref); witte(Bufline, Y_Ref); end itop; if (Passed = '1) then has passed witte(Bufline, string'</pre>	<pre>#TestPeriod if (Y != Y_Ref) // has failed begin Passed = 0; Sidisplay (SimResults, "GCD Error: A=%d B=%d Y=%d, Y should be %d", A_in, B_in, Y, Y_Ref); end end if (Passed == 1) // has passed Sidisplay (SimResults, "GCD algorithm test has passed"); Siclose (SimResults): Sinish; end endmodule</pre>

GCD modeled at the algorithm level

2. Designing RTL level hardware models in VHDL and Verilog

The RTL level models infer the architectural structure illustrated in Figure 12.7. The models have additional inputs and outputs over and above that of the algorithmic models. They are inputs Clock, Reset_N and Load, and the output Done. When Load is at logic 1 it signifies input data is available on inputs A and B, and are loaded into separate registers whose output signals are called A_hold and B_hold. The extra output signal, Done, switches to a logic 1 to signify the greatest common divisor has been computed. It takes a number of clock cycles to compute the GCD and is dependent upon the values of A and B.

Figure 12.7 Inferred architecture of RTL level GCD model

The models are broken down into three process/always statements.

First **process/always** *statement* LOAD_SWAP. This statement infers two registers which operate as follows:

- 1) When Reset_N is at logic 0, A_hold and B_hold are set to zero.
- 2) When not 1) and Load is at logic 1, data on A and B is loaded into A_hold and B_hold.
- 3) When not 1) or 2) and A_hold is less than B_hold, values on A_hold and B_hold are swapped, that is, A_hold and B_hold are loaded into B_hold and A_hold respectively.
- 4) When not 1), 2) or 3), A_hold is reloaded, that is, it keeps the same value. The value of A_hold B_hold, from the second **process/always** statement, is loaded into B_hold.

Second process/always statement SUBIRACT_TEST. The first if statement tests to see if A_hold is greater than or equal to B_hold. If it is, the subtraction, (A_hold - B_hold), occurs and the result assigned to A_New ready to be loaded into B_hold on the next rising edge of the clock signal. If A_hold is less than B_hold, then subtraction cannot occur and A_New is assigned the value B_hold so that a swap occurs after the next rising edge of the clock signal. The second If statement checks to see if the value of B_Hold has reached zero. If it has, signal Done is set to logic 1 and the value of A_Hold is passed to the output Y through an inferred multiplexer function.

It is a requirement of the problem to synthesize the generic model with 8-bit bus signals. This is easily achieved in the Verilog model by setting the default parameter value Width to 8. This means it does not need to be separately instantiated before it can be synthesized and have the correct bit width. This is not the case in VHDL, which uses a generic. The value of the generic is only specified when the model is instantiated. Although the VHDL model will be instantiated in the test harness, the test harness is not synthesized. Therefore, in order to synthesize an 8-bit GCD circuit a separate synthesizable model must be used which instantiates the RTL model so that it can assign the generic, Width, to be 8. This extra model only contains one component instantiation and is not included in this text. The simulation test harness does not need to use this extra model, as it too will specify the generic, Width, to be 8.

VHDL.	Verilog
library IEEE; use IEEE STD, Logic, 1164 all, IEEE Numeric, STD all:	module GCD (Clock, Reset, Load, A. B. Done, Y);
1 430 IEEE.01D_EOGIC_1104.011 , IEEE.Nothene_31D.011,	polometer widni = 0, Imput Ciack Deset Lond:
ontitu CCD is	input Clock, Resel, Lock,
construction of the second sec	extent Done:
port (Clock Reset Load: in std loale:	output Done, output Alights - 1:00 V:
A B: in unsigned(Width + 1 downto ())	
Done: out std logic:	ran A lessthan B Done
Y: out unsigned(Width -) downto (ii):	reg Width - 1:0) A New A Hold B Hold Y
end entity GCD:	
	// Load 2 input registers and ensure B. Hold < A. Hold
architecture RTL of GCD is	
signal A New, A Hold, B Hold: unsigned(Width-1 downto ());	always @(posedge Clock)
signal A_lessthan_B; std_logic;	begin: LOAD SWAP
begin	if (Reset)
•	begin
,,	A Hold = $0;$
 Load 2 input registers and ensure B_Hold < A_Hold 	$B_Hold = 0;$
	end
LOAD_SWAP: process (Clock)	else if (Load)
begin	begin
# rising_edge(Clock) then	Ā_Hold = A;
# (Reset = '0') then	B_Hold = B;
A_Hold <= (others => '0'); continued	end continued

GCD modeled at the RTL level

GCD modeled at the RTL level

The second s	
B_Hold <= (others => '0'); elsif (Load = '1') then A_Hold <= A; B_Hold <= B; elsif (A_lessthan_B = '1') then A_Hold <= B_Hold; B_Hold <= A_New; else A_Hold <= A_New; end if; end if; end process LOAD_SWAP; SUBTRACT_TEST: process (A_Hold, B_Hold) begin - Subtract B_Hold from A_Hold if A_Hold >= B_Hold if (A_Hold >= B_Hold) then A_lessthan_B <= '0'; A_New <= A_Hold - B_Hold; else A_lessthan_B <= '1'; A_New <= A_Hold; end if;	etse if (A_lessthan_B) begin A_Hold = B_Hold; B_Hold = A_New; end etse A_Hold = A_New; end atways @(A_Hold or B_Hold) begin: SUBTRACT_TEST //
- Greatest common divisor found if B_Hold = 0 if (B_Hold = (others => '0')) then Done <= '1'; Y <= A_Hold; else Done <= '0'; Y <= (others => '0'); end if; end process SUBTRACT_TEST; end architecture RTL;	<pre>//</pre>

3. Designing VHDL and Verilog test harnesses for the RTL level models

The VHDL and Verilog test harnesses instantiate both the RTL and synthesized gate level models as required. The RTL model, called GCD, is instantiated with the instance name GCD_1. The synthesized gate level model, called GCD_GL, is instantiated with the instance name GCD_GLJ. Notice bus signals in the RTL model are expanded to individual signals in the gate level model and so are individually connected in its instantiation. The width of the bus signals are specified to be 8, that is, the generic Width in the VHDL test harness, and the overloaded parameter value Width in the Verilog test harness. Note, the default parameter value of Width in the Verilog RTL level model is already 8, so overloading it with a new value of 8, is not necessary in this particular instance, although it is shown in the example for completeness.

These test harnesses read the same test data files as the algorithmic models shown earlier. The common input signals to both the RTL and gate level instances, that is, Clock, Resset_N, Load, A and B, plus the separate output signals, Y from the RTL model, and Y_gl from the gate level model, are all declared and connected appropriately. A free running clock is defined and has period, ClockPeriod, defined to be 20ns.

366

Chapter Twelve: Practical Modeling Examples

The final process/initial statement, 1) applies the test data to the two models, 2) waits an unknown number of clock cycles until signal Done switches to a logic 1, and 3) tests that the signal Done_gl, is also at logic 1 and that both Y and Y_gl are the same as Y_Ref. If the signals are not as expected an error message is written to the system file "gcd_rtl_test_results.txt" together with the expected and actual results. If the signals are as expected, the next test is performed. When all tests are complete, and Passed still has a value of 1, a "passed" message is written to the system file "gcd_rtl_test_results.txt".

library IEEE,STD; use IEEE.STD_Logic_1164.all, IEEE.Numeric_STD.all; use STD.TEXTIO.all;	`timescale 1ns/100ps
entity GCD_H is end entity GCD_H; architecture TEST_HARN of GCD_H is 	<pre>module GCD_H; parameter Width = 8, ClockPeriod = 20, GCD_TestClockPeriods = 100, GCD_Tests = 5; reg Clock, Reset, Load; reg (Width - 1:0) A, B; wire Done, Done_gl; wire (Width - 1:0) Y_Ref; integer N, M; reg Passed, FaiTime; integer SimResults; // Declare memory array for test data // reg (Width - 1:1) AB_Y_Ref_Arr (1:GCD_Tests * 3);</pre>
begin	
Instantiate RTL & gate level models GCD_1: GCD generic map (8) port map (Clock, Reset, Load, A. B, Done, Y); GCD_GL_1: GCD_GL port map (Clock, Reset, Load,	// // instantiate the RTL & gate level models // GCD GCD_1 #(8) (Clock, Reset, Load, A. B. Done, Y); GCD_GL GCD_GL_1 (.Clock(Clock), .Reset(Reset), .Load(Load),
continued	.A/(A(/)), .A0(A(0)), .A5(A(5)), .A4(A(4)), continued

Test harness for RTL and synthesized gate level

GCD modeled at the RTL level

A7=>A(7), A6=>A(6), A5=>A(5), A4=>A(4), A3=>A(3), A2=>A(2), A1=>A(1), A0=>A(0), B7=>B(7), B6=>B(6), B5=>B(5), B4=>B(4), B3=>B(3), B2=>B(2), B1=>B(1), B0=>B(0), Done_gl=>Done_gl, Y_gl7=>Y_gl(7), Y_gb6=>Y_gl(6), Y_gl5=>Y_gl(5), Y_gl4=>Y_gl(4), Y_gl3=>Y_gl(3), Y_gl2=>Y_gl(2), Y_gl1=>Y_gl(1), Y_gl0=>Y_gl(0));	A3(A(3)), A2(A(2)), A1(A(1)), A0(A(0)), B7(B(7)), B6(B(6)), B5(B(5)), B4(B(4)), B3(B(3)), B2(B(2)), B1(B(1)), B0(B(0)), Done(Done), Y_gl7(Y_gl(7)), Y_gl6(Y_gl(6)), Y_gl5(Y_gl(5)), Y_gl4(Y_gl(4)), Y_gl3(Y_gl(6)), Y_g ¹ 5(Y_gl(5)), Y_gl1(Y_gl(1)), Y_gl0(Y_gl(0)),
Set up free running clock	//// Set up free running clock
Clock <= not Clock after ClockPeriod / 2;	always #(ClockPeriod / 2) Clock = ! Clock;
- Apply stimulus to GCD models under test	// // Apply stimulus to GCD under test
STIM_GCD: process variable A_vatB_vat,Y_Ref_vat: integer range 0 to 255; variable TestData: line; variable BufLine: line; variable Passed: bit := '1': Set to 0 if fails begin Reset <= '0'; Load <= '0'; wait for ClockPeriod; Reset <= '1'; wait for ClockPeriod; Reset <= '0'; while not endfile(TestDataFile) loop	<pre>// Initial begin // Load contents of "gcd_test_data.txt" into array. %readmemh("gcd_test_data_h.txt", AB_Y_Ref_Arr); // Open simulation results file SimResults = \$fopen("gcd_rtl_test_results.txt"); Passed = 1; // Set to 0 if fails Clock = 0;</pre>
Read test data from file	Reset = 0; Lood = 0; #ClockPeriod Reset 1: #ClockPeriod Reset = 0;
readline(TestDataFile, TestData); read(TestData, A_var); read(TestData, B_var); read(TestData, Y_Ref_var); A <= to_unsIgned(A_var, 8); B <= to_unsIgned(B_var, 8); Y_Ref<= to_unsigned(Y_Ref_var, 8);	for (N = 0; N < GCD_Tests; N = N + 1) begin A = AB_Y_Ref_Arr((N * 3) + 1); B = AB_Y_Ref_Arr((N * 3) + 2); Y_Ref = AB_Y_Ref_Arr((N * 3) + 3); #ClockPeriod Load = 1; #ClockPeriod Load = 0; for (M=0; M <gcd_testclockperiods; m="M+1)</td"></gcd_testclockperiods;>
Test GCD algorithm	#ClockPeriod if (Done == 1) if (Y != Y_Ref Y_g != Y_Ref {
<pre>wait for ClockPeriod; Load <= '1'; wait for ClockPeriod; Load <= '0'; for M in 0 to (GCD_TestClockPeriods - 1) loop wait for ClockPeriod; if (Done = '1') then</pre>	begin Passed = 0; \$fdisplay (SimResults, "Error: Y_Ref=%d, Y=%d, Y_gl=%d at time %d", Y_Ref, Y, Y_gl, \$time); end if (Passed == 1) // has passed \$fdisplay (SimResults, "GCD RTL & gate level test passed"); \$fclose (SimResults); \$finish; end end end
end if; end loop; continued	
connnued	}

GCD modeled at the RTL leve	1		
end loop; if (Passed = '1') then has passed write(Bufline, string(("GCD algo passed")); writeline(ResultsFile, Bufline); end If; end process; end architecture TEST_HARN;	t rithm test has		Verilog
	Simulated	waveform	
Clock			
Reset			
Load			Clock period 20ns
A[7:0]			
B[7:0]			
Y_Ref[7:0]	- γ το το		
A_Hold[7:0]	X X 0 (21)	<u> (28) 7 1 21 14 (7) 0</u>	
	. in the state of the state		
B_Hold[7:0]	<u>X</u> <u>(</u> <u>49</u>)	21 7	
A lessthan B			
A_New[7:0]	X 1 0 21 21	<u>, 7, 14, 7, 0, 0</u>	
Done			
Y[7:0]			
Done al(7:0)			
Y_gl[7:0]			

5. Error Detection And Correction (EDAC)

Problem

A microprocessor system that processes vital data needs to employ an automatic error detection and correction (EDAC) mechanism between the microprocessor and its associated memory in order to enhance reliability.

Design VHDL and Verilog models of a circuit that sits between the microprocessor and memory which performs *flow-through* error detection and correction of data written to, and read from the memory. Single bit errors should be detected and corrected. Two bit errors should be detected, but do not have to be corrected. A two bit status flag should be given to indicate the type of error, or if no error has occurred. This allows the microprocessor to take appropriate action in the extremely rare case of two bits being in error at the same time. There is a single read/write signal that should be used to control the direction of the two bidirectional data busses; microprocessor and memory. Ignore the address bus; model only the purely combinational EDAC logic between the bidirectional microprocessor and memory data busses. The vital data from the microprocessor is 16-bits wide.

Algorithm

A simple parity bit is the most common method of detecting errors, however, the erroneous bit is not known so cannot be corrected. Multiple parity check bits are needed which check the parity of groups of bits, and which are stored along with the data in memory. When data is read back from memory, the associated parity bits are also read and compared with a new set of check bits that are generated from the read data. If the newly generated check bits do not compare with the stored parity bits, they generate a unique pattern called a SYNDROME and means an error has occurred. This syndrome can be used to identify the erroneous bit which can then be corrected.

For this model, we will use the modified Hamming code developed by R W Hamming*. Data which is N bits wide requires K parity bits to be stored along with the data where

If the bits are numbered in sequence, those bits that are a power of two are reserved for the parity bits. Figure 12.8 shows how the 16-bit data (D0-D15) is stored along with a total of 6 parity bits (P0-P5) to form a 22-bit word that is stored in memory.

Position number	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1
Bit number	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Data/Parity Bit	P5	D15	D14	D13	D12	D11	P4	D10	D9	D8	D7	D6	D5	D4	P3	D3	D2	D1	P2	DO	P1	P0

D = Data BitP = Parity Bit

Figurel2.8 Configuration of 16-bit data and 6 bit parity stored as a 22-bit word in memory

The five parity bits P0-P4 make up the parity check bits for single bit error detection and correction. They are generated as follows:

P0 - XOR of data bits (0, 1, 3, 4, 6, 8, 10, 11, 13, 15) P1 - XOR of data bits (0, 2, 3, 5, 6, 9, 10, 12, 13) P2 = XOR of data bits (1, 2, 3, 7, 8, 9, 10, 14, 15) P3 = XOR of data bits (4, 5, 6, 7, 8, 9, 10) P4 - XOR of data bits (11, 12, 13, 14, 15)

The term "modified Hamming code" refers to the addition of an extra parity bit (P5) that is used to detect double errors, but which cannot be corrected. It is an overall parity of the 16 data bits (D0-D15) and 5 parity bits P0-P4, that is,

P5 - XOR of (D0-D15, P0-P4)

When the 22-bit word is read from memory the syndrome word is formed by comparing (XORing) the original parity bits (P0-P4) stored in memory with the newly generated parity bits (P0-P4) from the stored data (D0-D15). If they compare, no error has occurred. If they are different, the value of the syndrome indicates the position number of the error bit in the 22-bit word as indicated in Figure 12.8.

Table 12.2 shows how the type of error is detected based on the value of the syndrome and overall parity bit, P5.

Syndrome (5-bits).	P5 (1-bit)	Error type	Comments
0 /=0 /=0 0	0 1 0 1	No error Single error ' Double error P5 error	Is Correctable. (Syndrome equal to erroneous bit position) Cannot be corrected Is Correctable.

Table 72. 2 EDAC Error Type Detection

•Described in Computer Engineering Hardware Design by M. Morris Mano.

Solution

The architecture used to implement the algorithm is illustrated in Figure 12.8. When the microprocessor writes data to memory, this EDAC model generates the 6 parity bits (P0-P5) and stores them along with the data in a 22-bit word. When the 22-bit word is read back from memory, the same parity generation circuit is used to regenerate the parity bits. These parity bits are compared with the actual parity bits from memory in the "Generate Syndrome" block and the syndrome is generated. This syndrome is then used in the "Correct Data" block to correct any errors that may have occurred. The corrected 16-bit data is then read by the microprocessor. The syndrome, and overall parity check bit, is used to generate the two bit error type according to Table 12.2.

Figure 12.8 Implemented architecture for EDAC algorithm

Example of Corrected Data

Suppose the following 16-bit word is to be stored in memory.

Data Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
Value	1	0	1	0	1	0	1	1	1	1	0	0	1	1	0	1	= ABCD _{HEX}

The parity bits stored along with this data would be as indicated in Table 12.3.

			Mic	repi	oce	ssor	Dat	ta Bi	Ts(A	BCD	HEX)						
Parity Bit	15 1	14 0	13 1	12 0	11 1	10 0	9 1	8 1	7 1	6 1	5 0	4 0	3 1	2 1	1 0	0 1	Parity Bit {No error)
P0 = XOR of P1 = XOR of P2 = XOR of P3 = XOR of P4 = XOR of	1 1 1	1 1 0	0 1	0	1	0 0 0 0	1 1 1	1 1 1	1	1 1 1	0 0	0	1 1 1	1 1	1 0	1	P0 = 1 P1 = 0 P2 = 0 P3 = 0 P4 = 1

Table 12.3 Parity bit generation for data of ABCD_{HEX}

Figure 12.9 shows the 22-bit data that is stored in memory and includes the overall parity bit (P5). Figure 12.9 indicates how this word is read back from memory, but with bit position number 19 in error.

Position Number Bit Number Data/Parity bits	22 21 P5	21 20 D15	20 19 D14	19 18 D13	18 17 D12	17 16 D11	16 15 P4	15 14 D10	14 13) D9	13 12 D8	12 11 D7	11 10 D6	10 9 D5	9 8 D4	8 7 P3	7 6 D3	6 5 D2	5 4 D1	4 3 P2	3 2 DC	2 1 0 P1	1 0 <i>P0</i>
Write Data (15BC65⊨⊨x)	0	1	010) 1			1	0	1	1	1	1	0	0	0	1	1	0	0	1	0	1
Read Data (11BC65 _{HEX})	0	1	0	0 A	0	1	1	0	1	1	1	1	0	0	0	1	1	0	0	1	0	1

Bit in error when data read back from memory Figure 12.9 Memory write data (15BC65_{HEX}) and erroneous read data (11BC65_{HEX})

The data bits (D0-D15) generate new parity bits and are compared with the parity bits from memory. The result is a syndrome value of 19 indicating that the bit in position number 19 is in error. This can be seen as 13_{HEX} in the simulated waveforms, see Figure 12.10. Memory bit position 19 contains data bit D13 and means the value 8BCD_{HEX} would have been read back by the microprocessor if it had not been corrected back to ABCD_{HEX}.

	Q	20	40 1	60	80	10	D	120 1	40 10	50 1 <u>50</u>
						ماهاد الا بشاريخ الا		én en est		
MemData [21:0]		15BC65		000		Contractor Anticada de la	118C65		11BCE5	
DataMemData [15:0]		ABCD		x			8BCD		8BCD	
ParityMemData [5:0]	alar Peuratión er	11		þ					9	
ProcData [15:0]		ABCD		0000			ABCD	laggi kina da na Anga kina da na	8BCD	
ReadWrite_b								— 1.4		
D [15:0]		ABCD		0	2		8BCD		8BCD	· · · · · · · · · · · · · · · · · · ·
P [5:0]		11				 2	02		02	
DO 16Parity										
MamWriteData [21:0]		15BC65		000000			153C66		113C66	
Syndrome [4:0]		00		× ,			13		18	
P_Panty			0					-	2	
Error Type[1:0]			-					-		
DecodeSyn [21:0]		000000			_ * **	÷ .	040000		000000	
CorrectedData [21:0]*		15BC65	_	00		-	158C65		11BCE5	· ·
OverallParity										
ProcReadData [15:0]		ABCD		0			ABCD		8BCD	
					1		Corrected	Corrected	Double error. Not corrected.	Corrected overall parity bit
* variable in the		Write			No er	ror	data error	parity error	ЕлогТуре=2	(PS) error.
VHDL model		-				- 1-	- •	Read		

Figure 12.70 Signal waveforms for EDAC write and read cycles

HDL Code for EDAC

The HDL code is partitioned into process/always statements according to the architecture shown in Figure 12.8. There are 8 parts to the architecture, however there are 9 process/always statements in the HDL models. The reasons for the difference is summarized as follows.

- 1. Tri-state buffers are implied using continuous signal assignment statements and so are not contained in a process/always statement.
- 2. The two VHDL processes named PR_MemData and PR_MemWriteData and equivalent Verilog **always** blocks named BK_MemData and BK_MemWriteData do not imply logic, they simply reassign signal names.
- 3. The box in Figure 12.8 named "Correct Erroneous Data" represents two **process/always** statements.

Table 12.4 summarizes the link between the process/always statement in the code and the block in the structural diagram; Figure 12.8.

	process/always name	Block name from Figure 12.8
1 2 3 4 5 6 7 8 9 10	PR_MemData/BK_MemData PR_Ham_Select/BK_HamSelect PR_GenParity/BK_GenParity PR_OverallParity/BK_OverallParity PR_MemWriteData/BK_MemWriteData PR_GenSyndrome/BK_GenSyndrome PR_GenErrorType/BK_GenErrorType PR_DecodeSyndrome/BK_DecodeSyndrome PR_CorrectErrors/BK_CorrectErrors n/a	n/a 2x1 16-bit multiplexer Generate 6 parity check bits Overall parity check bit n/a Generate syndrome Error type detection Correct erroneous data (1) Correct erroneous data (2) Tri-state buffers for microprocessor and memory busses.

Table 12.4 Link between HDL code and block diagram Figure 12.8

The different multiple input XOR operations needed in this model are defined using separate function statements.

VHDL Specific. Uses a VHDL package to define the enumerated data type for the type of EDAC error, ErrorTypeType, and the XOR function definitions. These functions make the code in the EDAC model shorter and easier to comprehend.

Verilog Specific. Four define compiler directives are used to represent the four EDAC error type conditions. The XOR function definitions are placed in a separate system file and referenced using the include compiler directive. When the model is synthesized the file pointed to by the include compiler directive is replaced by the 'include statement itself, so like the VHDL code, it makes the main body of the model shorter and easier to comprehend.

Common XOR functions used in the EDAC model

VHDL	Verilog
library IEEE: use IEEE. std_logic 1164. all, IEEE. Numeric_STD. all; package ERRDET_COR_PKG is type ErrorTypeType is (NoError, SingleError, DoubleError, OverallParityErtor); function XOR5 (A0. A1. A2, A3. A4: std_logic) return std_logic; function XOR6 (A0, A1, A2, A3, A4, A5: Std_logic) return std_logic; function XOR7 (A0, A1, A2, A3, A4, A5. A6: Std logic) return Std logic; function XOR9 (A0,A1,A2,A3,A4,A5,A6,A7, A8,A9: std_logic) return Std_logic; function XOR10 (A0,A1,A2,A3,A4,A5,A6,A7,A8, A9: Std_logic) return Std_logic; function XOR10 (A0,A1,A2,A3,A4,A5,A6,A7,A8, A9: Std_logic) return Std_logic; function XOR16 (A: unsigned(I5 downto 0)) return std_llogic; end package ERRDET_COR_PKG; package body ERRDET_COR_PKG is function XOR5 (A0, A1, A2, A3, A4: std_logic) return std_logic is begin return ((A0 xor A1) xor (A2 xor A3))xor (A4); end function XOR5;	function XOR5; Input A0, A1, A2, A3, A4; XOR5 = $((A0 \land A1) \land (A2 \land A3)) \land (A4)$; endfunction function XOR6; input A0, A1, A2, A3, A4, A5; XOR6= $((A0 \land A1) \land (A2 \land A3)) \land (A4 \land A5)$; endfunction function XOR7; input A0, A1, A2, A3, A4, A5, A6; XOR7 = $((A0 \land A1) \land (A2 \land A3)) \land (A2 \land A3)) \land (A2 \land A3)) \land (A4 \land A5)$;
function XOR6 (A0. A1, A2. A3. A4, A5: std_logic) return std_logic is begin	(A6)); endfunction
return ((A0 xor A1) xor (A2 xor A3))xor (A4 xor A5): end function XOR6; function XOR7 (A0, A1, A2, A3, A4, A5, A6: std_logic) return Std_logic is begin return ((A0 xor A1) xor (A2 xor A3)) xor ((A4 xor A5) xor (A6)); end function XOR9 (A0, A1, A2, A3, A4, A5, A6, A7, A8: std_logic) return std_logic is begin return ((A0 xor A1) xor (A2 xor A3)) xor ((A4 xor A5) xor (A6 xor A7)) xor (A8); end function XOR9; function XOR10(A0,A1,A2,A3,A4,A5,A6,A7,A8,A9: std_logic) return std_logic is begin return ((A0 xor A1) xor (A8); end function XOR9; function XOR10(A0,A1,A2,A3,A4,A5,A6,A7,A8,A9: std_logic) return std_logic is begin return ((A0 xor A1) xor (A8 xor A7)) xor ((A4 xor A5) xor (A6 xor A7)) xor ((A4 xor A5) xor (A6 xor A7)) xor (A8 xor A9); end function XOR 10;	function XOR9; input A0,A1,A2,A3,A4,A5,A6,A7,A8; XOR9= ((A0 ^ A1) ^
function XOR16 (A: unsigned(15 downto 0)) return std_logic Is begin return (((A(0) xor A(1)) xor	

Error Defection and Correction (EDAC)	
VHDL	Verilog
library IEEE; use IEEE.std_logic_1164.all, IEEE. Numeric_STD.all; use work. ERRDET_COR_PKG.all;	'define NoError 2'b 00 "define SingleError 2'b 01 'define DoubleError 2'b 10 'define OverallParityError 2'b 11
entity ERRDET_CORRECTION is port (ReadWrite_b: in std_logic; ProcData: inout unsigned(15 downto 0); MemData: inout unsigned(21 downto 0); ErrorType: out ErrorTypeType); end entity ERRDET_CORRECTION; architecture RTL of ERRDET_CORRECTION is signal ProcReadData, D, DataMemData: unsigned(15 downto 0); signal MemWriteData, DecodeSyn: unsigned(21 downto 0); signal D0_16Parity, OverallParity, P_Parity: std_logic; signal P, - Ham Parity ParityMemData: unsigned(5 downto 0); signal Syndrome: unsigned(4 downto 0); begin	<pre>module ERRDET_CORRECTION (ReadWrite_b, ProcData, MemData, ErrorType); input ReadWrite_b; inout (15:0) ProcData; Inout (21:0) MemData; output (1: 0) ErrorType; wire (15: 0) ProcData; wire (21: 0) MemData reg (1:0) ErrorType; integer N; reg (15:0) ProcReadData, D, DataMemData; reg (21: 0) MemWriteData, DecodeSyaCorrectedData; reg D0_16Parity, OverallParity, P_Parity; reg (5:0) P, //Ham Parity</pre>
- Assign separate 16-bit data and 6-bit - parity from combined 22-bit memory - read data bus. - No physical logic synthesized.	// // Function Definitions // 'include "errdet_cor_fns.v" // // Assign separate 16-bit data and 6-bit // parity from combined 22-bit memory // read data bus. // No physical logic synthesized.
PR MemData: process (MemData) begin DataMemData(0) <= MemData(2); DataMemData(1) <= MemData(4); DataMemData(2) <= MemData(5); DataMemData(3) <= MemData(6); DataMemData(4) <= MemData(8); DataMemData(5) <= MemData(9); DataMemData(5) <= MemData(9); DataMemData(6) <= MemData(10); DataMemData(6) <= MemData(12); DataMemData(8) <= MemData(12); DataMemData(8) <= MemData(13); DataMemData(10) <= MemData(14); DataMemData(12) <= MemData(16); DataMemData(13) <= MemData(16); DataMemData(14) <= MemData(19); DataMemData(15) <= MemData(20);	always @(MemData) begin: BK_MemData DataMemData(0) = MemData(2); DataMemData(1) = MemData(4); DataMemData(2) = MemData(4); DataMemData(2) = MemData(5); DataMemData(3) = MemData(6); DataMemData(4) = MemData(8); DataMemData(5) = MemData(9); DataMemData(6) = MemData(10); DataMemData(7) = MemData(11); DataMemData(8) = MemData(12); DataMemData(9) = MemData(12); DataMemData(10) = MemData(13); DataMemData(10) = MemData(14); DataMemData(10) = MemData(14); DataMemData(11) = MemData(16); DataMemData(13) = MemData(17); DataMemData(13) = MemData(18); DataMemData(13) = MemData(18); DataMemData(14) = MemData(19): DataMemData(15) = MemData(20);
ParityMemData(0) <= MemData(0); ParityMemData(I) <= MemData(I); ParityMemData(2) <= MemData(3); ParityMemData(3) <= MemData(7); ParityMemData(4) <= MemData(15); ParityMemData(5) <= MemData(21); end process PR_MemData;	ParityMemData (0) = MemData (0); ParityMemData(1) = MemData (1); ParityMemData (2) = MemData (3); ParityMemData (3) = MemData (7); ParityMemData (4) = MemData (15); ParityMemData (5) = MemData (21); end
continued	continued

Error Defection and Correction (EDAC)

VHDL	Verilog
 Select 16-bit processor (write) or memory (read) from which to generate Hamming code parity bits. PR_HamSelect: process (ReadWrite_b. ProcData, DataMemData) begin if (ReadWrite_b = '0') then D <= ProcData: else D <= DataMemData; end if; 	<pre>// Select 16-bit processor (write) or // memory (read) from which to generate // Hamming code parity bits. always @(ReadWrite_b or ProcData or DataMemDota) begin: BK_HamSelect if (ReadWrite_b == 0) D = ProcData; else D = DataMemData; end</pre>
<pre>end process PR_HamSelect; - Generate Hamming Code parity bits PR_GenParity: process (D) begin - Five bit parity for single error detection P(0) <= XOR10(D(0), D(1), D(3), D(4), D(6), D(8), D(10), D(11), D(13), D(15)); P(1) <= XOR9(D(0), D(2), D(3), D(5), D(6), D(9), D(10), D(12), D(13)); P(2) <= XOR9(D(1), D(2), D(3), D(7), D(8), D(9), D(10), D(14), D(15)); P(3) <= XOR7(D(4), D(5), D(6). D(7), D(8), D(9), D(10)); P(4) <= XOR5(D(11), D(12), D(13), D(14), D(15)); P(5) <= XOR6(D0_16Parity, P(0), P(1), P(2), P(3), P(4)); end process PR_GenParity; Generate overall parity bit required for double error data (Needed for error type) PR_OverallParity: process (ParityMemData, D0_16Parity) begin P_Parity <= XOR6(ParityMemData(0). ParityMemData(2), ParityMemData(3), ParityMemData(3), ParityMemData(4), ParityMemData(4), ParityMemData(5)); OverallParity <= D0_16Parity xor P_Parity; end process PR_OverallParity; </pre>	<pre>// Generate Hamming Code parity bits // always @(D) begin: BK_GenParity // Five bit parity for single error detection P[0] = XOR10(D[0], D[1], D[3], D[4], D[6], D[8], D[10], D[1], D[13], D[15]); P[1] = XOR9(D[0], D[2], D[3], D[5], D[6], D[9], D[10], D[12], D[13]); P[2] = XOR9(D[1], D[2], D[3], D[7], D[8], D[9], D[10], D[14], D[15]); P[3] = XOR7(D[4], D[5], D[6], D[7], D[8], D[9], D[10]); P[4] = XOR5(D[11], D[12], D[13], D[14], D[15]); // Parity of 16-bit data D0J6Parity = XOR16(D); // Additional parity bit required for double error // detection P[5] = XOR6(D0_16Parity, P[0], P[1], P[2], P[3], P[4]); end //</pre>
continued	continued

Error Detection and Correction (EDAC)	
VHDL	Verilog
 Assign 22-bit memory write data - from 16-bit processor data and 6 bit parity. - No physical logic synthesized. 	 // Assign 22-bit memory write data // from 16-bit processor data and 6 bit parity. // No physical logic synthesized.
PR_MemWriteData: process (P, ProcData) begin MemWriteData(0) <= P(0); MemWriteData(1) <=P(1); MemWriteData(2) <= ProcData(0); MemWriteData(3) <= P(2); MemWriteData(4) <= ProcData(1); MemWriteData(5) <= ProcData(2): MemWriteData(6) <= ProcData(3); MemWriteData(7) <= P(3); MemWriteData(8) <= ProcData(4); MemWriteData(9) <= ProcData(6); MemWriteData(10) <= ProcData(6); MemWriteData(11) <= ProcData(7); MemWriteData(12) <= ProcData(8); MemWriteData(13) <= ProcData(10); MemWriteData(14) <= ProcData(10); MemWriteData(15) <= P(4); MemWriteData(16) <= ProcData(11); MemWriteData(17) <= ProcData(12); MemWriteData(18) <= ProcData(13); MemWriteData(19) <= ProcData(14); MemWriteData(20) <= ProcData(15); MemWriteData(21) <= P(5): end process PR_MemWriteData;	<pre>always @(P or ProcData) begin: BK_MemWriteData MemWriteData[0] = P[0]; MemWriteData[1] = P[1]; MemWriteData[2] = ProcData[0]; MemWriteData[3] = P[2]; MemWriteData[4] = ProcData[1]; MemWriteData[5] = ProcData[2]; MemWriteData[6] = ProcData[3]; MemWriteData[7] = P[3J; MemWriteData[8] = ProcData[4]; MemWriteData[9] = ProcData[5]; MemWriteData[10] = ProcData[6]; MemWriteData[11] = ProcData[6]; MemWriteData[12] = ProcData[8]; MemWriteData[13] = ProcData[10]; MemWriteData[15] = P[4]; MemWriteData[16] = ProcData[11]; MemWriteData[17] = ProcData[12]; MemWriteData[18] = ProcData[13]; MemWriteData[19] = ProcData[13]; MemWriteData[20] = ProcData[15]; MemWriteData[21] = P[5]; end</pre>
 Generate syndrome XOR of HAM code parity bits from memory and actual parity bits from memory PR_GenSyndrome: process (ParityMemData(4 downto 0). P(4 downto 0)) begin Syndrome(4 downto 0) <= ParityMemData(4 downto 0) xor P(4 downto 0); end process PR_GenSyndrome; 	// // Generate syndrome // XOR of HAM code parity bits from memory // and actual parity bits from memory // always @(ParityMemData[4:0] or P[4:0]) begin: BK_GenSyndrome Syndrome[4:0] = ParityMemData[4:0] ^ P[4:0]; end
 Detect error type PR_GenErrorType: process (ReadWrite_b, Syndrome, OverallParity) begin if (ReadWrite_b = '1') then 	// // Detect error type // always @(ReadWrite_b or Syndrome or OverallParity) begin: BK_GenErrorType If (ReadWrite_b == 1) if (Syndrome == 5'b 0 && OverallParity == 0)
If (Syndrome = "00000" and OverallParity = '0') then ErrorType <= NoError; elsif (Syndrome /= "00000" and OverallParity = '1') then ErrorType <= SingleError; elsif (Syndrome /= "00000" and OverallParity = '0') then ErrorType <= DoubleError; else ErrorType <= OverallParityError:	ErrorType = 'NoErron else if (Syndrome != 5'b 0 && OverallParity == 1) ErrorType = 'SingleError; else if (Syndrome 1= 5'b 0 && OverallParity == 0) ErrorType = 'DoubleError; else ErrorType = 'OverallParityError; else
end if; else ErrorType <= NoError; end if; end process PR_GenErrorType;	ErrorType = 'NoError; end
continued	continued

Error Detection and Correction (EDAC)

```
Verilog
VHDL
                                                               11_
                                                               // Decode syndrome
   - Decode syndrome
                                                               // Input: Syndrome (Number representing bit error position)
   - Input: Syndrome (Number representing bit error position)
   - Output: Decoded syndrome. (If any of 22-bits is 1 an
                                                               // Output: Decoded syndrome. (If any of 22-bits is 1 on
             error has occured in that bit position)
                                                                          error has occured in that bit position
                                                               11
                                                               11
                                                               always @(Syndrome)
                                                                   begin: BK DecodeSyndrome
   PR_DecodeSyndrome: process (Syndrome)
                                                                      for (N = 1; N \le 22; N = N + 1) // N = bit position
   begin
      for N in 1 to 22 loop -- N = bit position
                                                                         if (Syndrome == N)
        if (Syndrome = to_unsigned(N, 22)) then
    DecodeSyn(N-1)<='1';</pre>
                                                                           DecodeSyn(N-1) = 1;
                                                                         else
                                                                            DecodeSynf(N - 1) = 0;
         else
           DecodeSyn(N - 1) \le '0';
                                                                   end
         end if;
      end loop;
   end process PR DecodeSyndrome;
                                                               // Correct any errors in 22-bit read data
   - Correct any errors in 22-bit read data
   - and assign processor read bits.
                                                               // and assign processor read bits.
                                                               11
                                                               always @(MemData or DecodeSyn)
   PR_CorrectErrors: process (MemData, DecodeSyn)
                                                                   begin: BK_CorrectErrors
     variable CorrectedData: unsigned(21 downto 0);
                                                                      CorrectedData = MemData ^ DecodeSyn;
   begin
                                                                      ProcReadData(0)
                                                                                         = CorrectedData(2);
      CorrectedData:= MemData xor DecodeSvn:
      ProcReadData(0) <= CorrectedData(2);
                                                                      ProcReadData(1)
                                                                                         = CorrectedData(4);
                                                                      ProcReadData(2)
                                                                                         = CorrectedData(5);
      ProcReadData(1)
                         <= CorrectedData(4);
                                                                      ProcReadData (3)
                                                                                         = CorrectedData(6);
      ProcReadData(2)
                         <= CorrectedData(5);
                                                                                         = CorrectedData(8);
                                                                      ProcReadData(4)
      ProcReadData(3)
                         <= CorrectedData(6);
      ProcReadData(4)
                         <= CorrectedData(8);
                                                                      ProcReadData (5)
                                                                                         = CorrectedData(9);
     ProcReadData(5)
                         <= CorrectedData(9);
                                                                      ProcReadData (6)
                                                                                         =CorrectedData(10);
     ProcReadData(6)
                                                                      ProcReadData(7)
                                                                                         = CorrectedData(11)j;
                         <= CorrectedData(10);
                                                                      ProcReadData (8)
                                                                                         =CorrectedData(12);
     ProcReadData(7)
                         <= CorrectedData(11);
                                                                                         =CorrectedData(13);
                                                                      ProcReadData(9)
     ProcReadData(8)
                         <= CorrectedData(12);
                                                                      ProcReadData(10)
                                                                                         = CorrectedData(14);
     ProcReadData(9)
                         <= CorrectedData(13);
     ProcReadData(10)
                        <= CorrectedData(14);
                                                                      ProcReadData(11)
                                                                                         =CorrectedData(16);
                        <= CorrectedData(16);
                                                                      ProcReadData (12)
                                                                                         = CorrectedData(17);
     ProcReadData(11)
                                                                      ProcReadData(13)
                                                                                         =CorrectedData(18);
     ProcReadData(12) <= CorrectedData(17):
                                                                                         = CorrectedData(19);
     ProcReadData(13) <= CorrectedData(18);
                                                                      ProcReadData(14)
                                                                      ProcReadData(15) = CorrectedData(20);
     ProcReadData(14) <= CorrectedData(9);</pre>
     ProcReadData(15) <= CorrectedData(20);</pre>
                                                                   end
   end process PR_CorrectErrors;
                                                               11
                                                               // Assign microprocessor and memory
  - Assign microprocessor and memory
                                                               // tri-state buses.
   - tri-state busses.
                                                               assign ProcData = ReadWrite_b ? ProcReadData: 16bZ;
  ProcData <= ProcReadData when ReadWrite_b = '1' else
                                                               assign MemData = ReadWrite_b ? 22'bZ: MemWriteData;
                (others => 'Z'):
  MemData <= MemWriteData when ReadWrite_b = "0' else
                                                             endmodule
                (others => 'Z'):
end architecture RTL:
```

Glossary

aggregate (VHDL)

A set of comma-separated elements enclosed within parentheses. Either elements of a record or array type may be grouped to form an aggregate which has a single composite value. Individual elements of an aggregate may be specified using either named or positional notation.

algorithmic level (VHDL & Verilog)

The level at which an HDL model is described. It describes the functional behavior hardware in terms of signals and their response to various stimulus. Hardware behavior is described algorithmically and has no regard to how it will be implemented structurally and so is not synthesizable by RTL synthesis tools.

algorithmic level synthesis

The process of converting an HDL model described at the algorithmic level to either the RTL level, or all the way down to the gate level. It includes such processes as scheduling, resource allocation, resource binding, etc.

allocation

A process performed by a synthesis tool that assigns a particular operation in an HDL model to a piece of hardware.

See also resource allocation.

Application-Specific Integrated Circuit (ASIC)

A device (chip) whose initial stages of manufacture are design independent and the final photographic mask process is design dependent.

architecture body (VHDL)

One of the five design units defined by VHDL. It contains the internal functional description (behavior), of a block using one of the following modeling styles:

Structural	- a set of interconnected
	components
Dataflow	- a set of concurrent assignment
	statements
RTL	- a set of sequential assignment
	statements
Combined	- combination of the above three.

array types (VHDL)

An array type (or array subtype) is one of two forms of a composite type, a record type being the other. Objects declared as being of an array type contain a collection of elements that are of the same type. The array types may be constrained (fixed number of elements) or unconstrained (generic number of elements). Any unconstrained array types must be constrained as subtypes in synthesizable models.

-- constrained array type
type Bus8 Is array (7 downto 0) of unsigned;
type ROM is array (0 to 31) of Bus8;
-- unconstrained array type
type FIFO_Type Is array (Bus8 range <);

A constrained subtype array can be declared, which is of an unconstrained base type, and so is also supported for synthesis.

- constrained subtype array of an unconstrained base

```
- type
```

type FIFO_Type Is array (Bus8 range ↔); subtype FIFO_Type64 Is FIFO_Type (0 to 63):

ASIC

SeeApplication-SpecificIntegratedCircuit.

assertion violation (VHDL)

Describes when the condition in an assertion statement evaluates false.

association list (VHDL & Verilog)

VHDL. Provides the mapping between formal or local: generics, port or subprograms parameter names and local or actual names or expressions.

Verilog. The same VHDL principle applies to Verilog though is not normally referred to as an association list.

ATPG

See automatic test pattern generator.

attribute (VHDL)

Attributes a particular characteristic to a named item. There are five kinds: function, range, signal, type and value. An attribute can be attributed to one of five kinds of item: type (scalar, composite or file), array, signal (scalar or composite), or entity. There are 36 predefined attributes, 10 of which are typically supported for synthesis; see Appendix A.

automatic test pattern generator (APTG)

The automatic generation of manufacturing test vectors by a CAE software tool.

base type (VHDL)

All type and subtype declarations have a base type. The base type of a type declaration is the type itself while the base type of a subtype declaration is the type of the type declaration of which it is a subtype.

Backus-Naur (VHDL)

Refers to a semi-algebraic notation for documenting the syntax of a programming language. The VHDL Language Reference Manual uses this notation; see Appendix A.

behavior

How an HDL model operates (behaves) functionally. The behavior of a model should be the same regardless of the abstract level at which it is modeled, i.e. algorithmic, RTL, data flow, logic, or gate level.

<u>Glossary</u>

binary representation

The way in which binary numbers, positive and negative, are represented. When a binary number is positive, the sign is represented by 0 in the most significant bit and the magnitude by a positive binary number in the remaining bits. When the number is negative, the sign is represented by 1 in the most significant bit, but the remaining bits may be represented in one of three possible ways: signed-magnitude, signed-1's complement or signed-2's complement.

(Seesigned-magnitude, signed-1 'scomplementand signed-2'scomplement)

BIST

SeeBuilt-inSelf-Test.

block statements (Verilog)

Used to group two or more statements together so that they act syntactically like a single statement. There are two types of block statement; the sequential block which is supported by synthesis and delimited by the keywords **begin** and **end**, and the parallel block which is not supported by synthesis and delimited by the keywords fork and join.

blocking procedural assignment (Verilog)

An assignment that must be executed before subsequent statements may be executed within the same procedural flow of statements in a sequential begin-end block. A blocking procedural assignment uses the delimiter "=".

#3 Y1 = A1 + B1;

#1 Y2 = A2 + B2; // Y2 assigned after 4 time units

Two dependent blocking signal assignments in a sequential always block will synthesize to a single flip-flop, i.e.

always @(posedge Clock) begin Sg1 = A & B Y1 = Sg1 &C: //single flip-flop inferred end

boolean algebra

Mathematical equations representing combinational logic.

Built-in Self-Test (BIST)

The extra circuitry added to a circuit that enables the circuit to test itself.

CDFG

See control-dataflow-graph.

cell

A logic function in the cell library defined by the manufacturer of an ASIC or FPGA.

cell library

The collective name for a set of logic functions defined by the manufacturer of an ASIC or FPGA. A cell library defines the type of cells that can be used in the design of a particular device for which the library applies. Simulation and synthesis tools will use the information in a cell library when simulating and synthesizing a design's model.

character literal (VHDL)

A single ASCII symbol enclosed in single quotes ('). They are case sensitive, that is, 'Y' is not the same as 'y' despite VHDL being case insensitive to object names.

checksum

The final cyclic-redundant check value stored in a linearfeedback shift-register (or its software equivalent). Also known as a "signature" in functional test applications.

comment (VHDL & Verilog)

Phrases or sentences that are used within a model's code purely for documentation purposes. They make a model clearer and easier to read and are ignored by design tool compilers reading them unless it is a comment directive.

VHDL. Comments start with a double dash (--) on a per line basis. Any text appearing after the double dash, and the end of the line, is ignored by a compiler.

- This is a comment

Y <= A + B; — This is a comment at the end of a line

Verilog. Comments can start with a double slash (//) on a per line basis like VHDL. Alternatively they can start with slash-star (/*) and carry over to multiple lines and ended with star-slash (*/).

/* This Is a comment that crosses several lines */ // This is a comment Y <= A + B; // This is a comment at the end of a line

(See also comment directive)

comment directive (VHDL & Verilog)

Standard comments that are recognized by a particular design tool, or tools, in order to direct it how a certain statement, or statements, should be interpreted. For example, synthesis tools will typically recognize certain comments as directives to implement a carry-lookahead or ripple-carry type adder.

 $Y \le A + B$; -\$ RPL (Ripple carry adder - VHDL) Y = A + B; //\$ RPL (Ripple carry adder • Verilog)

compiled simulation

A type of simulation where a model is compiled prior to being simulated; the other form of simulation is interpreted simulation. The compilation process means it takes longer for a simulator to prepare a model (build) ready for simulation, but means the simulation run time is faster than interpreted simulation. (See*alsointerpretedsimulation*)

complement numbers

See signed one's complement and signed two's complement.

component declaration (VHDL)

Declares both the name and the interface of a component. The interface specifies the mode and the type of parts. Component declarations are not necessary in Verilog.

composite type (VHDL)

A data type that is composed of elements of a single type and which are grouped together under a single identifier. The elements may be of a single type (an array type) or different types (a record type).

concatenation (VHDL & Verilog)

The combination of two or more elements into one larger element. VHDL elements include identifiers, arrays, etc., while Verilog elements are of any of the net data types (e.g. wire) or of type reg.

Y <= A & B; // VHDL concatenation

 $Y = \{A, B\}; //Verilog concatenation$

concurrent statements (VHDL & Verilog)

Statements that are executed in parallel and so their textual order within a model has no effect on the implied behavior.

configuration declaration (VHDL)

Provides a means of deferring the binding of architecture bodies, and any components in the structural hierarchy of that architecture, to an entity.

configuration specification (VHDL)

Used to bind component instances to specific design entities.

constant declaration (VHDL)

One of four kinds of data object (signal, variable and file being the other three), that are declared to have a fixed value that cannot be changed by any statement during simulation or synthesis. (See*alsodeferredconstant*).

constraints

The desired area, speed and possibly power performance characteristics used by a synthesis tool during any level of optimization.

continuous assignment (VHDL & Verilog)

Assignments that are always driven during simulation. *VHDL*. The syntax of continuous and conditional assignments are the same.

Verilog. The syntax of continuous assignments differ from procedural assignments in that they are preceded by the reserved word assign. **assign** Y=A&**B**;

382

Control-Data Flow-Graph (CDFG)

A synthesis internally compiled graphical representation of a design. A control-data flow-graph represents design behavior and not circuit structure. Both algorithmic and RTL synthesis tools may use a control-data flow-graph technique. Algorithmic synthesis tools manipulate control-data flow-graphs when performing scheduling, allocation and high-level structural partitioning, etc.

control path

The path of intermediate control signals through control logic used to provide necessary control signals to a data path.

data object (VHDL & Verilog)

A place holder for holding data values of a specific type in an HDL model. A data object is created using an object declaration.

VHDL. There are four specific kinds of object; constant, variable, signal or file, and must be of a specific type; for example, integer, unsigned, etc.

Verilog. Data objects are any of the net data types (wire, tri, wand, etc.), parameter, register (reg) or integer.

data path

The path through which information (data) is processed through a circuit. A data path normally refers to the path through successive blocks of combinational and sequential logic, though can also mean the path through blocks of combinational logic only.

delta delay (VHDL)

The delay between two simulation cycles that occur at the same simulation time. (See*alsoiteration*).

(Secursoneration).

DeMorgan transformation

The transformation of boolean expressions, representing boolean logic, into an alternative, and often more convenient, form. For example, the boolean equation: v=(a+b+c)

is transformed to:

ansionned to

y=(a.b.c)

This technique is used extensively during logic optimization.

design constraints

Seeconstraints.

design for test

Design for test (DFT) is the process of designing and adding extra hardware in an HDL model or its associated synthesized circuit for the purposes of improving the ability of manufacturing test vectors to stimulate all circuit nodes and monitor potential manufactured chip defects.

design unit (VHDL)

Any set of constructs that may be independently analyzed and inserted into a design library. The VHDL design units that may be declared are:

entity architecture configuration package package body

DFT

See design for test.

discrete type (VHDL)

A discrete type is a data type whose elements consist of a one dimensional array, that is, an enumerated type or an array type.

driver (VHDL & Verilog)

Contains the projected output waveform for a data object. A data object can have multiple assignments which can each schedule values to be assigned an object at different simulation times. Each scheduled value is a driver.

dynamically reconfigurable hardware

A circuit, that when implemented in a chip, can be customized "on-the-fly" while remaining resident in the system. An example is a single circuit that can perform multiplication, division, addition or subtraction dynamically as needed.

elaboration (VHDL & Verilog)

A stage performed by a simulator or synthesizer when an HDL model is compiled. Elaboration consists of:

- expanding and linking the separately analyzed units, if any, and building the design hierarchy.
- allocating storage for the object's values etc. (simulation only).
- any other local specific preparation required for simulation or synthesis.

element

The constituent port of a type. This means the element of an array or record type (VHDL) or a vector or memory type (Verilog).

enumeration literal (VHDL)

One of the individual values of an enumeration type.

- contains three enumeration literals Red. Green and

- Blue

type Color is (Red. Green. Blue);

equation flattening

A logic optimization process that takes a group of hierarchical sum of product equations and merges them together. Generally, the process is constrained to avoid what is known as *combinational explosion*.

equivalent gates

The term "equivalent gates" is used as a guide to compare the size of circuits. The size of an equivalent gate is referenced to the size of a two input NAND gate. A two input NAND gate is normalized to the equivalent of one equivalent gate and all other cells in the library are given an equivalent gate size with reference to the two input NAND gate. A circuit's total equivalent gate size is the parameter often used by a synthesizer when performing gate-level area optimization.

event (VHDL & Verilog)

Refers to a change in a signals value in terms of simulation.

event scheduling

When a signal assignment contains a delay the assigned signal value is scheduled to occur at some simulation time in the future. This process is called *scheduling an event*.

$$Y \le A$$
 and B after 2ns; - VHDL
Y = #2 (A & B); // Verilog

execute

To execute means to evaluate assignment statements in an HDL model.

expression (VHDL & Verilog)

The mathematical formula on the right hand side of an assignment statement, that is, after the assignment operator.

factorization

A process performed by a logic optimizer that identifies and removes one or more common factors from a set of one or more boolean equations to form a multilevel set of equations. The equations represent logic, so factorization means the sharing of logic which will reduce area. This area reduction may be at the expense of increasing the delay through the logic since the depth of logic from the input to output is increased. Factorization of the following two boolean equations produces four equations as shown.

fan-in

The input capacitance on the input to a cell as seen by the driving source of that signal.

fan-out

The output capacitance seen by the output driver from a cell.

Field Programmable Gate Array (FPGA)

A programmable logic device (chip) that can be programmed in the field for a particular application. All
chip manufacturing processes are independent of the particular circuit being implemented, so it is more generic and cheaper than standard cell devices. Logic gates are laid out in a fixed and structured way on the silicon. This means circuit density will not be as high as standard cell devices.

(See also gate array and standard cell)

finite state machine

See state machine.

flip-flop

An edge-sensitive memory device (cell).

floorplan

This is the area on a silicon chip not including the input, output and bidirectional buffers around its periphery.

formal verification

A method of mathematically verifying the logic synthesized from a hardware model. Formal verification is the process of building an internal mathematical model of logic contained in an HDL model and comparing it with the actual synthesized logic using specialized algorithms. Especially useful in the verification of large complex systems where excessive functional verification vectors would be needed using a simulation verification technique.

FPGA

SeeFieldProgrammableGateArray.

full scan

Where every flip-flop and latch in a design is transposed to being a scan type flip-flop or latch in order to improve the accessibility of internal nodes to manufacturing test vectors and the observability of nodes for monitoring possible manufacturing defects. Full scan makes writing manufacturing test vectors considerably shorter and easier to generate than if partial or no scan was used. Full scan manufacturing test vectors are easily generated automatically by test synthesis tools. The reduced number of test vectors, compared to those needed with no scan or partial scan, means the important test cycle per chip is shortened. In many cases full scan can be overly expensive in terms of extra area on the silicon chip.

function (VHDL & Verilog)

One of the two kinds of subprogram that is common to both VHDL and Verilog. A function can: only model combinational logic, must have a least one input, must not contain timing and returns a single value. Functions are called from operands within an expression. The function call operand is substituted with the returned value from the function.

functional test vectors

The input stimuli used during simulation to verify an HDL model operates functionally as intended.

gate array

An application-specific integrated circuit in which the manufacturer prefabricates uncustomized devices containing arrays of unconnected basic cells organized in groups. A designer specifies the function of the device in terms of cells from a cell library and their interconnection. The manufacturer then customizes the device by generating the masks used to create the metallization layers which form the interconnections.

gray code

A sequence of binary values where adjacent values change by only one bit; for example, 00, 01, 11, 10.

gate level

A low-level behavioral model of a circuit described in terms of gate primitives from a technology specific library, or possibly from some generic technology independent library of gates.

gate level optimization

Optimization performed on the model of a circuit described at the gate level.

generic (VHDL)

Used to pass static information of a particular type to any of the following. A generic is determinable at elaboration time.

- an entity declaration,
- a component declaration,
- a component instantiation,
- a configuration specification or
- a configuration declaration.

Generics are commonly used in synthesizable models to parameterize bus widths.

glue logic

Logic used to interface more complex circuits together.

Hardware Description Language (HDL)

A software computer language used for the purposes of modeling hardware circuits.

HDL

SeeHardwareDescriptionLanguage.

heuristic

In general computing terms, this means proceeding to a solution by trial and error. Specifically, it relates to a logic optimizer's trial and error method of using different algorithms to iteratively improve a circuits structure in order to optimally fit desired specified constraints.

<u>Glossary</u>

host environment

The computer and its resident CAE design tools. Used to design and store HDL models in system files and to store all appropriate compiled files.

identifier (VHDL & Verilog)

Used to give a name to a data object so that it may be easily referenced in an HDL model.

Identifiers consist of a continuous (contains no spaces) sequence of letters, numbers and underscores (_), and additionally for Verilog the dollar sign (\$).

VHDL is not case sensitive so "ENABLE" and "enable" are regarded as being the same identifier; they are different in Verilog as it is case sensitive.

iteration

One of several delta cycles, or one cycle of an iterative statement.

iterative statement (VHDL & Verilog)

A repetitively executed statement. The loop statement (for) is the only statement that allows the repeated execution of a sequence of statements.

interpreted simulation

A type of simulation where a model's HDL code is directly simulated by the simulator, i.e., it is interpreted line by line during simulation. (The other form of simulation is compiled simulation.) Interpreted simulation prepares a model (builds) for simulation very fast, but then simulation run times will be longer. (See *also compiled simulation*)

Johnson state encoding

A state encoding format for a state machine where only one bit changes between successive state values in a pattern of consecutive 1 s and 0s from left to right.

Karnaugh map

Graphical means to represent and minimize a boolean equation.

latch

A level sensitive memory device (cell).

leaf cell

The lowest level hierarchical structure of a circuit that is decomposed by a particular CAE tool. For simulation and synthesis tools, leaf cells are the cells in an ASIC or FPGA technology specific library.

lexical element (VHDL & Verilog)

An individual item of text in an HDL model that is separated by a space or spaces.

LFSR

SeeLinearFeedbackShiftRegister.

library (VHDL)

This is a VHDL design library and facilitates the storage of analyzed VHDL design units. Design libraries are classified into two groups: working libraries and resource libraries. The working library is the library in which compiled design units are placed. There is only one working library during the compilation of a design. The resource library is a library that is referenced within a design unit when that design unit is compiled. Any number of resource libraries can be referenced from a design unit.

Linear Feedback Shift Register (LFSR)

A register with either XOR or XNOR feedback logic around it in such a way that causes it to pseudorandomly sequence through up to 2^n values, where *n* is the number of bits in the register. Often used in BIST techniques.

literal (VHDL & Verilog)

A lexical element that represents itself in VHDL, Verilog or a boolean equation. In VHDL it can be a number, character or string; in Verilog it is simply a number. In a boolean equation a literal is a variable in either its true or false condition.

logic optimization

Covers the steps of conventional multilevel minimization, factorization and equation flattening in such way that fits area, timing and possibly power requirements (constraints) in the most optimal manner. (See*alsooptimization*)

logic synthesis

The process of optimizing boolean equations at the logic level, mapping them to a technology specific library of cells and then optimizing at the gate level using timing and area information from the cells in the technology library.

LRM (VHDL & Verilog)

SeeLanguageReferenceManual.

Language Reference Manual (LRM)

The IEEE standardized manual defining the hardware description language for VHDL (IEEE 1076-1993) or Verilog (IEEE 1364-1995).

macro cell

Intermediately sized cells such as adders, comparators, counters, decoders etc. (See *also cell*, *primitive and mega cell*)

manufacturing test vectors

The exhaustive input stimuli used to test the physically manufactured chips and which are designed to test and detect as near to 100% of the chip as practically possible.

maxterm

A boolean product in a boolean product-of-sum expression. A maxterm is represented by the boolean OR of all input signals, e.g., (a or b or c).

mega cell

Large sized cells such as microprocessors and microcontrollers, etc.

(See also cell, primitive and macro cell)

memory declaration (Verilog)

Declares a group (array) of register variables which are used to model read only memories (ROMs), random access memories (RAMs) or simply an array of registers. Each element in such an array is addressed by a single array index.

reg [7:0] MemA [0:255];

minimization

A process of minimizing the numbers of literals in one or more boolean equations. Single output minimization relates to Karnaugh maps where the aim is to simplify and reduce the number of product terms in a single equation. This is also known as flat minimization as only one equation is minimized at a time. Minimization typically performed by a logic optimizer uses multilevel (multiple equations), multi-output minimization in order to achieve global minimization of a combinational logic function. Multilevel minimization includes logic (equation) flattening.

minterm

A boolean sum in a boolean sum-of-products expression. A minterm is represented by the boolean AND of all inverted input signals,

e.g., (a.b.c) where "." is the boolean AMD.

named association (VHDL & Verilog)

An association is considered named when an association element is matched by name from the actual port to the formal port.

VHDL.

Verilog.

ALU ALU2(. Operand2(A[15:8]). . Operator(Control[5:3]), . Result(Y[15:8]),. Operandl(B[15:8]));

net data type (Verilog)

Used to represent the physical connection of inferred hardware elements in a structural manner. The different

kinds of net data types are: wire, tri, wand, triand, trieg, tri0, tri1, supply0 and supply1. Not all net data types are supported by synthesis tools. wire Net1, Net2;

netlist

A file containing the representation of a design at the cell level in VHDL, Verilog or EDIF, etc. The cell level is also the gate level if all cells are gate level cells. A netlist file contains a list of cells, usually from a technology specific library, and identifies how the cells are interconnected.

non-blocking procedural assignment (Verilog)

Non-blocking procedural assignment statements are found in a sequential begin-end block and use the assignment operator "<=". They are scheduled to occur without blocking the procedural flow from one statement to the next. Such assignments are used where more than one register assignment is required without regard to their order. In the example below, the addition in the first assignment is computed immediately and the assignment is scheduled for 3 time units later. This allows the second assignment to be executed independently of the first.

#1 Y2 <= A2 + B2; // Y2 assigned after 1 time unit

Two dependent non-blocking procedural assignments in a sequential always block will synthesize to two flipflops, i.e.

always@(posedgeClock)

object (VHDL & Verilog)

An object is a place holder for storing values in an HDL model.

(See also data object)

one's complement

Seesigned-1'scomplement.

optimization

A general term used to describe the process of improving the structural configuration of a circuit model given certain area, timing and possibly power constraints. (See *also logic level optimization and gate level optimization*)

overloading (VHDL)

Describes the process of using the same name for two or more subprograms. If they have the same scope they are differentiated by having different enumeration literals or a different subprogram type (function or procedure). **type** rainbow It (Red. Orange. Yellow, Green, Blue,

e rainbow it (Red. Orange. Yellow, Green. Bil Indigo, Violet):

type rainbow is (Yellow, Magenta, Cyan, Indigo, Violet);

package (VHDL)

Provides a convenient means of grouping multiple declarations so that they are accessible across many design units. A package consists of a package declaration and an optional package body. A package declaration contains a set of declarations, for example types, constants and subprograms. In contrast, a package body contains the hidden details of a package, for example the bodies of subprograms.

parallel block statement (Verilog)

(Uses the reserved words fork and join to group a series of statements that are to be executed concurrently. Control does not pass out of the block until the last time ordered statement has executed. It is not supported by synthesis tools.

parameter declaration (Verilog)

A declaration is used to declare a constant. parameter Width = 16;

partial scan

A circuit-where only a selection of flip-flops and latches are transposed to being scan type flip-flops or latches in order to improve the accessibility of specific internal nodes to manufacturing test vectors and the observability of specific internal nodes for the observability of possible manufacturing defects. Partial scan is a compromise between using full scan and keeping area to a practical minimum.

partitioning

The process of dividing a design into smaller pieces, either through the HDL code design of concurrent hardware modules or, by using a synthesis tool to automatically partition a flattened netlist.

physical synthesis

The process of taking a technology specific netlist of gates and physically laying them out on the floor plan of the chip. Typical processes include: partitioning, cell compaction, layout compaction, floor-planning, placement and routing. Physical synthesis is regarded as a back-end process normally performed by the chip vendor.

port (VHDL & Verilog)

VHDL. The word port in VHDL is a reserved word and defines the communication signals between interfacing sections of code. Each port has a name, a mode and type. The modes are:

•	• .	1	
1n	- input	only	port

out - output only port

- inout bidirectional port
- buffer bidirectional port that can only have one source and that can only be connected to another port signal of type buffer
- linkage no defined semantics

Verilog. The word "port" is not a Verilog reserved word, but is a term often used to refer to the interconnection of modules, primitives and macro modules. Each module has ports declared in its body as follows:

input - *input only* port output - output only port

inout - bidirectional port

positional notation/positional association (VHDL & Verilog)

One of two ways of associating an actual port to a corresponding formal port without explicitly specifying which actual port matches a corresponding formal port. The association is made by the position of each element.

/HDL.

ALU1: ALU port map (Control(2 downto 0), A(7 downto 0), B(7 downto 0), Y(7 downto 0));

Verilog.

ALU ALU1(Control[2:0], A[7:0], B[7:0], Y[7:0]);

primitives

Simple logic gates such as BUT, NOT, AND, NAND, OR, NOR, XOR and XNOR plus flip-flops and latches. Such primitives are normally cells found in an ASIC or FPGA technology specific library.

procedural assignment (Verilog)

Assignments that are updated under the control of the procedural flow of constructs that surround them.

procedure (VHDL)

One of two kinds of VHDL subprogram; function being the other. Like the Verilog task, a procedure can contain timing, can enable other subprograms and can compute zero or more values. A VHDL procedure can be called concurrently as well as sequentially.

process (VHDL)

Is a passive or persistent concurrent statement. A passive process contains no signal assignment statement or any signal assignments in a called procedure and may appear in any entity declaration, but is not supported for synthesis. A persistent process is the more common type of process containing sequential statements. Once a persistent process has been elaborated, it exists for the duration of a simulation run.

propagation delay

The delay of a signal passing from one point in a circuit to another. A propagation delay may be: a delay passing along a wire in the physical circuit on the chip, the delay of a signal being passed through a cell, or the total delay through multiple cells and their associated wires. Propagation delays are determined by cell drive capability and capacitive loading. Capacitive loading consists of the input capacitances of cells connected to the drive cell and the total capacitance on the interconnecting wire network.

pseudo-random

A sequence of values that give the appearance of being random, but which is deterministic and hence repeatable.

Read Muller logic

Logic functions that are implemented using only XOR and XNOR gates, for example as used in the feedback path around registers in LFSRs.

reconfigurable hardware

Hardware designed to be used in many different ways.

record type (VHDL)

A composite type consisting of named elements. **type** FloatPointType is

record

Sign: std_logic; Exponent: unsigned(23 downto 0); Fraction: unsigned(6 downto 0); end record;

reduction operator (Verilog)

An operator that operates on all bits of a multiple bit bus and that produces a single bit result. For example,

Y=&A;

register

A memory device containing more than one latch or flip-flop that are all clocked from the same clock signal.

register (reg) data type (Verilog)

A data type used for the declaration of objects that need to hold their value over simulation cycles. They are used to describe objects that are assigned using blocking and non-blocking procedural assignments. A register data- type should not be confused with a hardware register. The reserved word **reg** is used to signify a register data type.

reg Y; reg [7:0] Bus1, Bus2;

Register Transfer Level

The model of a circuit described in a hardware description language that infers memory devices.

resource allocation

A process performed by algorithmic (high-level) synthesis tools which assigns each operational part of a design to a particular piece of hardware.

388

resource sharing

A process performed by RTL synthesis tools that allows specific circuit functions (resources) to be shared. For instance, if two independent additions are required in a circuit, and they do not need to be performed at the same time, the same physical adder could be used and the inputs to it, and outputs from it, multiplexed accordingly. This operation is performed automatically by synthesis as directed by the user.

reserved word (VHDL & Verilog)

A word that has been defined by the HDL language to have specific meaning and so cannot be used as basic identifiers. Certain characters such as the semicolon and parentheses could also be classified as reserved words. (All reserved words in the models and text of this book are shown emboldened.)

RTL synthesis

The process of converting an HDL model described at the register transfer level (RTL), to the logic level, and then to the gate level, performing combinational logic optimization at each stage. Register transfer level synthesis does not optimize (add or remove) registers. The definition of RTL synthesis encompasses logic level synthesis, logic level optimization and gate level optimization.

resolved signal (VHDL)

A signal whose type has an associated resolution function.

rol (VHDL)

Language defined rotate left operator.

ror (VHDL)

Language defined rotate right operator.

RTL

See Register Transfer Level.

scheduling

A process performed by algorithmic (high-level) synthesis tools which assigns each operational part of a design to a particular time step (clock cycle).

scope (VHDL & Verilog)

Refers to the region of code where a declaration has effect.

SDF

See Standard Delay Format.

sea-of-cells

Popular name for a channel-less gate array.

sea-of-gates

Popular name for a channel-less gate array.

semantics (VHDL & Verilog)

The rules that determine the meaning of language constructs as they relate to the description of hardware.

signal signal signal signal	A: B: 1 C: Y:	unsigned unsigned unsigned	(4 d 3 d (0 to (3 d	own own o 15) own	nto:0); nto:0);); nto:0):	
ayna	1.	unayneu	u U	Ovvi		

separators (VHDL & Verilog)

Characters that separate lexical elements. Such characters are the space and end of line character, and non-printable characters such as: tab, line feed, form feed and carriage return.

sequential block statement (Verilog)

Groups a series of statements (blocking or nonblocking) between the reserved words begin and end such that they are executed one after the another in sequence. Control does not pass out of the block until the last statement has been executed. Sequential block statements are supported by synthesis tools and used extensively in synthesizable models.

sequential statements (VHDL & Verilog)

Statements that are executed in the order in which they are encountered.

VHDL. Statements within a process or procedure. Verilog. Statements within a begin-end block.

signal (VHDL) & variable (Verilog)

A data object that has a current value and scheduled future values at future simulation times. In RTL synthesizable models they have direct hardware intent.

VHDL.	Verilog.
Y<=A;	Y=A;
V <= A after 3.5 ns;	Y=#3.5A;
n the second assignment	t the value of Y is calc

In the second assignment the value of Y is calculated immediately and then assigned 3.5 ns later.

signed

Data objects whose value can be positive, 0 or negative.

signed-1's complement

One of three ways of representing binary numbers. Signed-1's complement is represented with a sign bit, followed by the magnitude with all bits, including the sign bit, complemented.

(See also signed-magnitude and signed-2's complement)

signed-2's complement

One of three ways of representing binary numbers. Signed-2's complement is represented with a sign bit, followed by the magnitude with all bits, including the sign bit, complemented and 1 added to the result. (See also signed-magnitude and signed 1's complement)

signed-magnitude

One of three ways of representing binary numbers. Signed-magnitude is represented with a sign bit (0 for positive, 1 for negative), followed by the magnitude of the number.

(See also signed 1's complement and signed 2's *complement*)

skew

The difference in the time it takes a signal's transitions to travel from a single source point in a circuit to different destination points.

sla (VHDL)

Language defined shift left arithmetic operator.

slice (VHDL & Verilog)

Designates a portion of a one dimensional array that is created from another one dimensional array.

VHDL.

```
type FloatPoint is unsigned(31 downto 0);
Sign <= FloatPoint(31); --1 bit slice
Exponent <= FloatPoint(30 downto 7]; - 24 bit slice
Fraction <= FloatPoint(6 downto 0); - 7 bit slice
```

Verilog.

teg (31:0) FloatPoint; Sign=FloatPoint;//1 bit slice Exponent <= FloatPoint[30: 7]; // 24 bit slice sll (VHDL)

Language defined shift left logical operator.

source code (VHDL & Verilog)

The HDL constructs that together constitute a model of hardware behavior and that is stored in a system file on the resident computer.

specification (VHDL)

Provides additional information associated with a model's description. There are three types: attribute, configuration and disconnection.

sra (VHDL)

Language defined shift right arithmetic operator.

srl (VHDL)

Language defined shift right logical operator.

standard cell

An application specific integrated circuit which, unlike a gate array, does not use the concept of a basic cell and does not have any prefabricated components, A chip manufacturer creates custom masks for every stage of the device's fabrication. This allows each function to be created using the minimum number of transistors in a more efficient layout than field programmable gate arrays.

Standard Delay Format

Standard Delay Format (SDF) is an industry standard notation for a file format. This format is used for the exchange of a circuits timing delay and constraint data between different tools. An IEEE group is working towards final standardization of SDF.

state assignment

The process of assigning states in a state machine to binary numbers used in the implementation of a state machine.

state diagram

A graphical representation of the operation of a state machine.

state machine

The model of a circuit, or its hardware implementation, that cycles through a predefined sequence of operations (states).

state table

The tabular representation of a state machine listing input, next state, current state and output values.

structural level (VHDL & Verilog)

The level at which an HDL model describes hardware as an arrangement of interconnected components.

subprogram (VHDL & Verilog)

VHDL subprograms are the **procedure** and function while Verilog subprograms are the task and function. The use of subprograms decomposes (portions) a design into models that are easier to read and maintain.

subtype (VHDL)

A subtype is a type with a constraint. The constraint specifies the subset of values of the base type for the subtype.

syntax

The syntax of an HDL model refers to the formal rules of how an HDL model should be constructed. The syntax specifies how constructs such as declarations and statements should be written. A VHDL or Verilog compiler will generate error messages if discrepancies are found.

$$\begin{array}{l} Y <= A + B - V + DL \text{ syntax incorrect, missing"; "} \\ Y = A + B & - V + DL \text{ syntax incorrect, "=" not valid for a signal or variable } \end{array}$$

Y <= A + B - Verilog syntax Incorrect, missing"; "

synthesis

A general term used to describe the process of converting the model of a design described in an HDL from one behavioral level of abstraction to a lower, more detailed, behavioral level.

(See Algorithmic synthesis, RTL synthesis and logic synthesis)

synthesis subset (VHDL or Verilog)

A subset of HDL constructs (VHDL or Verilog) that are supported for use with a particular synthesis tool.

technology library

A library of cells that are available for use in a particular type of ASIC or FPGA device.

technology mapping

The process of converting boolean logic equations into a netlist of logic gates from an ASIC of FPGA library.

test bench

See test harness.

test harness

Also known as a test bench in the VHDL world and a test fixture in Verilog. A test harness is an HDL model used to verify the correct behavior of a hardware model. Normally written in the same HDL language as the hardware model being tested. A test harness will:

- instantiate one or more instances of the hardware model under test,
- generate simulation input stimuli (test vectors) for the model under test,
- apply this input stimuli to the model under test and collate output responses (output vectors)
- compare output responses with expected values and possibly automatically give a pass or fail indication.

test Fixture

See test harness.

test vectors

Seefunctional test vectors and manufacturing test vectors.

test synthesis

The modification of circuits to make them more testable and the automatic generation of test vectors. Examples of how circuits can be modified include boundary scan, full or partial internal scan and built in self test (BIST) techniques.

timestep (VHDL & Verilog)

The unit of time corresponding to the smallest time increment in a simulator. A Verilog model can specify this simulation time by using the language defined compiler directive 'timescale, e.g.

'timescale 1ns/lps where:

- where.
 - 1 ns is the unit of measurement for time
- and delay
 - 1 ps is the precision of time in the simulator

A VHDL simulator may provide a means whereby a model can specify a simulation time unit, but this is not part of the language.

transaction (VHDL)

Identifies a value to appear on a signal along with the time at which the value is to appear. This principle applies equally to VHDL and Verilog as shown, but the word "transaction" is normally only associated with VHDL models.

Y <= A after 10 ns; -- VHDL transaction scheduled after 10 ns Y = #10 A; // Verilog equivalent of the VHDL transaction

tri-state

An HDL data object that is in its high-impedance (Z) state. This means it is not being driven. For VHDL this assumes the data object has at least three values, {0, 1, Z}.

tri-state buffer

A cell primitive whose output can adopt one of three states: logic 0, logic 1 and high-impedance (Z). The high-impedance state can be considered disconnected allowing other tri-state buffers to drive the same circuit node.

truth table

A convenient means of representing the operation of circuits as columns of input values and their corresponding output responses. The function of combinational logic and single level sequential logic circuits are often represented using truth tables, especially in ASIC and FPGA vendor technology library books.

two's complement

Seesigned-2'scomplement.

type (VHDL)

A type declaration defines all values that objects of that type can take. Objects of a particular type must be one of four kinds: constant, signal, variable or file.

- From package Numeric STD

type unsigned is array (natural range <>) of std_logic; type opcode is (Inc. Dec. Load. Store, Shift. Add);

unconstrained array type (VHDL)

An array type in which the type of the indices are specified, but whose range is not. The box symbol " is used in place of specifying the range. In this way many arrays of the same type, but with a different range may be declared. The range can be specified when a subtype is declared (supported for synthesis), or when an object of the type is declared (not supported for synthesis). Objects of an unconstrained array type may be passed to and from subprograms.

- The "<>" symbol is called "box". type DataWordWidth is array (0 to 31) of unsigned;

type FIFO_buffer_type is array (integer range <>) of DataWordWidth;

- Subtype defining range subtype FIFO_buffer is FIFO_buffer_type (0 to 127);

- Object defining range

variable FIFI_1: FIFO_buffer_type (0 to 127);

unsigned

Data objects whose value can only be positive or 0.

variable (VHDL)

A class of data object that only has a current value associated with it and that is changed in a variable assignment statement using the delimiter "=: ". It has no history and so only holds its current value across simulation time steps, and not any scheduled values.

VeriBest Synthesis

The synthesis tool suite supplied by VeriBest Incorporated.

VHDL

VHSIC Hardware Description Language used to describe discrete hardware systems.

VHDL Initiative Toward ASIC Libraries

Normally abbreviated VITAL, this is an industry consortium for the purpose of generating a standard for writing models of the cells in a technology library which can be used with VHDL. This standard has been adpoted by the IEEE as IEEE 1076.4.

VHSIC

Very High Speed Integrated Circuit. A program of the United States Department of Defense from which the VHDL language derived.

visible (VHDL & Verilog)

Refers to the region of code where a declaration is visible.

VITAL

See VHDL Initiative Toward ASIC Libraries.

wire (Verilog)

A Verilog net data type used to declare objects that are to be driven by a single driver or from a continuous assignment. Like the register (reg) and parameter data types, they are four valued (0, 1, X, and Z).

A VHDL

Appendix A Contents

Reserved Words	
Predefined attributes	396
Package STANDARD- for language defined types and functions	398
Package TEXTIO - for language defined file manipulation	399
Package STD_LOGIC_1164 - IEEE 1164 for standard logic operations	400
Package NUMERIC_STD - IEEE 1076.3 - standard for use with synthesis	408
VHDL constructs	

Reserved Words

The following identifiers are reserved words in the VHDL language and so cannot be used as basic identifiers in a VHDL model. A reserved word is a keyword that has specific meaning in the language.

		VHDL Reserved	Words	
abs	else	map	register	variable
access	elsif	mod	reject	wait
after	end		rem	when
alias	entity	nand	report	while
all	exit	new	return	with
and		next	rol	
architecture	file	nor	ror	xnor
array	for	not		xor
assert	function	null	select	
attribute			severity	
	generate	of	shared	
begin	generic	on	signal	
block	group	open	sla	
body	guarded	or	sli	
buffer		others	sra	
bus	if	out	srl	
	impure	-	subtype	
case	in	package		
component	inertia	port	then	
configuration	inout	postponed	to	
constant	is	procedure	transport	
		process	type	
disconnect	label	pure		
downto	library		unaffected	
	linkage	range	units	
	literal	record	until	
	loop		use	

+/+ Constructs not supported by synthesis tools. A Constructs in the current version of the VHDL language. IEEE 1076 '93. and that are not in the old version of VHDL language, IEEE 1076'87.

Predefined Attributes

An attribute is a value, function, type, range, signal or constant that can be associated (attributed) with certain names within a VHDL model. These names could be among others, an entity name, an architecture name, a label or a signal. The VHDL language has predefined attributes that may be attributed to various names. These attributes are listed in Table A. 1, using the following notations.

1. **Type.** The type of entity to which the attribute is attributed.

Type	-	An attribute of a type (Denoted by T')
Array	-	An attribute of an array object (Denoted by A')
Signal	-	An attribute of a signal object (Denoted by S')
Entity	-	An attribute of an entity (Denoted by E')

2. **Kind.** The attribute "kind", which can be:

Value	-	attributes that returns a constant value.
Туре	-	attributes that returns a type value.
Range	-	attributes that returns a range.
Function	-	attributes that calls a function which returns a value.
Signal	-	attributes that creates a new signal

3. **Prefix.** The object or "prefix" to which the attribute is attributed.

Tl	-	Any type or subtype T
T2	-	Any scalar type or subtype T
Т3	-	Any discrete or physical type or subtype T
A	-	Any array object or alias thereof, or a constrained array subtype.
S	-	Any signal.
Е	-	Any named entity.

- 4. **Parameter**. Some predefined attributes require a "Parameter" value to be supplied when being used. These are denoted as follows:
 - (X) An expression whose type or subtype is of type T1, T2 or T3.
 - (N) An expression of type integer that does not exceed the dimensionality of the array "A".
 - (Ti) An expression of type TIME. Must not be negative. Defaults to 0 ns if omitted.
- 5. **Result Type.** This is the result type, if applicable, of evaluation the attribute. These are defined implicitly in Table A. 1.
- 6. **Result.** This is the result of evaluating the value, type, range, function or signal attributed to a named VHDL object. These are defined implicitly in Table A. 1.

Attributes grouped by type	Kind	Prefix	Para- meter	Returned Result Type	Returned Result
Type Related T'base T'left* T'right+/+ T'low+/+ T'ascending T'image(X) T'Value(X) T'pos(X) T'Val(X) T'succ(X)	value value value value value function function function function	T1 T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T3 T3	(X) (X) (X) (X) (X)	same base as T same base as T same base as T same base as T same base as T boolean string same base as T universal integer same base as T same base as T	the left bound of T the right bound of T the upper bound of T the lower bound of T true if T defined with ascending range string representation of (X). value of T whose string representation is given by(x). position number of X in list T. value of the type corresponding to position X. value of the parameter whose position is one greater than the parameter
T'pred(X)	function	Т3	(X)	same base as T	value of the parameter whose position is one less than the parameter
T'leftof(X)	function	Т3	(X)	same base as T	value of the parameter to the left of X in type T.
T'rightof(X)	function	Т3	(X)	same base as T	value of the parameter to the right of X in type T.
Array Related A'left[(N)] A'right[(N)] A'high[(N)] A'range[(N)]+/+ A'reverse_range[(N)] \$ A'length[(N)]+/+ A'ascending[(N)]	function function function function function [unction unction	A A A A A A	22 2 2222	type of Nth index range of A type of Nth index range of A universal integer boolean	left bound of the Nth index range of A. left bound of the Nth index range of A. upper bound of the Nth index range of A. lower bound of the Nth index range of A. range A'left(N) to A'right(N) of values in Nth index range of A. range A'right(N) to A'left(N) of values in Nth index range of A. number of values in the Nth index range. TRUE if Nth index range of A has an ascending range.
Signal Related	signal	9	(T;)	same base as S	signal S delayed by T units of time
S'stable[(Ti)]+/+	signal	S	(TI) (TI)	boolean	TRUE when event has not occurred on signal S for T units of time.
S"quiet[(Ti)]	signal	S	(Ti)	boolean	TRUE when signal S has been quiet for T units of time.
S'qransaction S'event+/+	signal unction	S S		bit boolean	signal whose value toggles when S is active. TRUE if an event has just occurred on signal
S'active	unction	S		boolean	TRUE if signal S is active during current simulation delta cycle.
S'last_event S'last_active S'last_value	unction unction unction	S S S		time time same base as T	time elapsed since the last event on signal S. time since signal S was last active. previous value of signal S immediately before last change of S.
S'driving	unction	S		boolean	false if, in the enclosing process the driver for signals is disconnected. True otherwise.
S'driving_value	function	S		same base as T	the current value of S.
Entity Related E'simple_name E'instance_name E'path_name	value value value	E E E		string string string	the name of a named entity. the name of a named entity including the design hierarchy path. the design hierarchy path to the entity excluding the entity name.

+/+Typicallysupportforsynthesis

Table A. 1 VHDL Attributes

Package STANDARD - language defined types and functions

Package STANDARD is defined in the VHDL LRM so is part of the language and does not need to be referenced with a use clause. It contains predefined definitions for the types and functions of the language.

STANDARD	STANDARD
package STANDARD is - Predefined enumeration types: type BOOLEAN is (FALSE, TRUE): type BOT is (0', '1'): type CHARACTER is (NUL, SOH, STX, ETX, EOT, ENQ, ACK, BEL, BS, HT, LF, VT, FF, CR, SO, St, DLE, DC1, DC2, DC3, DC4, NAK, SYN, FTB, CAN, EM, SUB, ESC, FSP, GSP, RSP, USP '', '', ''', ''', 'Y', 'S', ''S', '8', '8', ''', '', '', '', '', '', ''	 Predefined physical type TIME: type TIME is range implementation_defined; units fs; fefficient physical type TIME: fs; ficient physical type TIME: fs; fs; ficient physical type TIME: fs; fs; fs; fefficient physical type: for a floor physical subtype: fredefined numeric subtype: subtype DELAY_LENGTH is TIME range 0 fs to TIME'HIGH; fredefined numeric subtype: subtype NATURAL is INTEGER range 0 to INTEGER'HIGH; subtype POSITIVE is INTEGER range >) of CHARACTER; fype STRING is array (POSITIVE range <>) of BIT; fredefined types for file operations: fype FILE_OPEN_KIND is (READ_MODE, WRITE_MODE, APPEND_MODE); fype FILE_OPEN_STATUS is (OPEN_OK, STATUS_ERROR, MODE_ERROR); Attribute declaration: attribute FOREIGN: STRING; end STANDARD;
type REAL & longe implementation coefficient,	

Standard file manipulation package TEXTIO

The VHDL package, TEXTIO, is shown. It contains declarations of types and subprograms that support formatted input and output operations on text files. It contains read and write procedures for vector arrays of type bit. Therefore, when used with types like unsigned for example, type conversions are needed as shown in this book. If a different version of this package contains procedures that use data types, std_logic and unsigned, conversion functions would not be needed.

Standard file manipul	ation package TEXTIO
 Package TEXTIO from the IEEE 1076 VHDL LRM. Modifications have - Deen made based on the recommendations in VASG issue #32. Textio package body was re-written in C to Improve performance. The supporting routines have been added to sim_support In The package TEXTIO is Type Definitions for Text I/O type UNE is access STRING; – a LINE is a pointer to a STRING value type SIDE is (RIGHT, LEFT); – for justifying output data within fields subtype WIDTH is NATURAL; – for specifying widths of output fields 	procedure READ(L: inout LINE; VALUE: out STRING; GOOD: out BOOLEAN); procedure READ(L: inout LINE; VALUE: out STRING); procedure READ(L: inout LINE; VALUE: out STRING); procedure READ(L: inout LINE; VALUE: out TIME; GOOD: out BOOLEAN); procedure READ(L: inout LINE; VALUE: out TIME); - Output Routines for Standard Types: procedure WRITELINE(F: out TEXT; L: inout LINE); procedure WRITELINE(F: out TEXT; L: inout LINE); JUSTIFIED; in SIDE := RIGHT; FIELD: in WIDTH := 0);
 Input Routines for Standard Types procedure READLINE(variable F: in TEXT; L: inout LINE); procedure READ(L: inout LINE; VALUE: out BIT; GOOD: out BCOLEAN); procedure READ(L: inout LINE; VALUE: out BIT, VECTOR; GOOD: out BOOLEAN); procedure READ(L: inout LINE; VALUE: out BIT_VECTOR; GOOD: out BOOLEAN); procedure READ(L: inout LINE; VALUE: out BIT_VECTOR); procedure READ(L: inout LINE; VALUE: out BOOLEAN; GOOD: out BOOLEAN); procedure READ(L: inout LINE; VALUE: out BOOLEAN; GOOD: out BOOLEAN); procedure READ(L: inout LINE; VALUE: out BOOLEAN); procedure READ(L: inout LINE; VALUE: out BOOLEAN); procedure READ(L: inout LINE; VALUE: out CHARACTER; GOOD: out BOOLEAN); procedure READ(L: inout LINE; VALUE: out CHARACTER); procedure READ(L: inout LINE; VALUE: out INTEGER; GOOD: out BOOLEAN); procedure READ(L: inout LINE; VALUE: out INTEGER; GOOD: out BOOLEAN); procedure READ(L: inout LINE; VALUE: out INTEGER); procedure READ(L: inout LINE; VALUE: out INTEGER); procedure READ(L: inout LINE; VALUE: out REAL; GOOD: out BOOLEAN); procedure READ(L: inout LINE; VALUE: out REAL; GOOD: out BOOLEAN); procedure READ(L: inout LINE; VALUE: out REAL; GOOD: out BOOLEAN); 	<pre>procedure WRITE(L: inout LINE; VALUE: in BIT_VECTOR; JUSTIFIED: in SIDE := RIGHT; FIELD: in WIDTH := 0); procedure WRITE(L: inout LINE; VALUE: in BOOLEAN; JUSTIFIED: in SIDE := RIGHT; FIELD: in WIDTH := 0); procedure WRITE(L: inout LINE; VALUE: in CHARACTER; JUSTIFIED: in SIDE := RIGHT; FIELD: in WIDTH := 0); procedure WRITE(L: inout LINE; VALUE: in INTEGER; JUSTIFIED: in SIDE := RIGHT; FIELD: in WIDTH := 0); procedure WRITE(L: inout LINE; VALUE: In INTEGER; JUSTIFIED: in SIDE := RIGHT; FIELD: in WIDTH := 0); procedure WRITE(L: inout LINE; VALUE: In REAL; JUSTIFIED; in SIDE := RIGHT; FIELD: in WIDTH := 0; DIGITS: in NATURAL := 0); procedure WRITE(L: inout LINE; VALUE: In STRING; JUSTIFIED: In SIDE := RIGHT; FIELD: In WIDTH := 0); procedure WRITE(L: inout LINE; VALUE: In TIME; JUSTIFIED: In SIDE := RIGHT; FIELD: In WIDTH := 0); procedure WRITE(L: inout LINE; VALUE: In TIME; JUSTIFIED: In SIDE := RIGHT; FIELD: In WIDTH := 0); procedure WRITE(L: inout LINE; VALUE: In TIME; JUSTIFIED: In SIDE := RIGHT; FIELD: IN WIDTH := 0; UNIT: IN TIME := ns); end TEXTIO; - This procedure hos no procedure hody.</pre>

Standard logic Package STD_LOGIC_1164 (IEEE 1164)

This is the IEEE 1164 standard VHDL logic package called STD_LOGIC_1164.

Standard logic Packa	Ige STD_LOGIC_1164 (IEEE 1164)
 mis package defines the panable constructs that were de - by the IEEE VHDL Model Standards Group. 	std_ulogic;
Title : std_logic_1164 multi-value logic system Library : This package shall be compiled into a libr symbolically named IEEE.	attribute unique of std_ulogic_vector : type Is "LOGIC9_BASE_VEC"; D
: Developers : IEEE model standards group (par 1164)	
 Purpose : This packages defines a standard for designation of the standard for designation of the interconnection distribution of the interconnection distribution of the standard for designation of the standar	ata types FUNCTION resolved (s:std_ulogic_vector) RETURN std_ulogic;
: Limitation : The logic system defined in this package r	nay *** Industry Standard Logic Type ***
: be insufficient for modeling switched trans : since such a requirement is out of the sco	pe of this SUBTYPE std_logic IS resolved std_ulogic;
effort. Furthermore, mathematics, primitive fining standards, etc. are considered orth issues as it relates to this package and ore	35, logonal attribute unique of std_logic : subtype is "LOGIC9_X";D
; therefore beyond the scope of this effort.	Unconstrained array of std_logic for use in declaring signal arrays
Note : No declarations or definitions shall be inclu or excluded from this package. The "pack	uded In, age TYPE std_logic_vector IS ARRAY (NATURAL RANGE <>) of std_logic;
declaration" defines the types, subtypes a declarations of std_logic_1164. The std_log declarations of std_logic_1164. The std_log declarations of std_logic_1164. The std_log	nd gic_1164 attribute unique of std_logic_vector : type is "LOGIC9_X_VEC"; -D rmal
definition of the semantics of this package developers may choose to implement	Tool Basic states + Test
the package body in the most efficient m avaliable to them.	anner SUBTYPE X01 is resolved std_ulogic range 'X' to '3';
modification history :	(X','0','1') SUBTYPE X01Z is resolved std ulogic range 'X' to 'Z';
This is the case	for ('X''0','1',Z') orated. SUBTYPE (IX0) is resolved std ulogic range 'II' to 'I';
v4.200 01/02/92 Extra lines are indicated with the end of the	
library IEEE;	attribute unique of Y01 (subtras is "LOGICS Y01"
PACKAGE Std_logic_1164 is	attribute unique of X01Z : subtype is "LOGIC9_X01Z"; D attribute unique of UX01 : subtype is "LOGIC9_UX01"; D
Built-in attribute for synthesis: D attribute BUILT_IN: BOOLEAN; D	attribute unique of UX01Z : subtype is "LOGIC9_UX012"; D
Logic State System (unresolved)	- Overloaded Logical Operators
TYPE std_ulogic is ('U', - Uninitialized 'X', - Forcing Unknown '0', - Forcing 0 '1', - Forcing 1 'Z', - High Impedance 'W', - Weak Unknown 1', - Weak 0 'H', - Weak 1	FUNCTION "and" (i:std_ulogic; r:std_ulogic) RETURN UX01; FUNCTION "nond" (1:std_ulogic; r:std_ulogic) RETURN UX01; FUNCTION "or" (1:std_ulogic; r:std_ulogic) RETURN UX01; FUNCTION "or" (1:std_ulogic; r:std_ulogic) RETURN UX01; FUNCTION "nor" (1:std_ulogic; r:std_ulogic) RETURN UX01; FUNCTION "nor" (1:std_ulogic; r:std_ulogic) RETURN UX01; FUNCTION "xor" (1:std_ulogic; r:std_ulogic) RETURN UX01; FUNCTION "xnor" (1:std_ulogic; r:std_ulogic) RETURN UX01; FUNCTION "nort" (1:std_ulogic; r:std_ulogic) RETURN UX01; FUNCTION "nort" (1:std_ulogic; r:std_ulogic) RETURN UX01; FUNCTION "nort" (1:std_ulogic; r:std_ulogic) RETURN UX01;
'-' don't care);	Vectorized Overloaded Logical Operators
attribute unique : string; attribute unique of std_logic_1164 : package is "LOGIC_11 attribute unique of std_ulogic : type is "LOGIC9_BASE";	- D
These lines are added for synthesis: J. Bhasker, Feb 27, 19	P FUNCTION "xor" (1, r : std_logic_vector) RETURN std_logic_vector; P FUNCTION "xor" (1, r : std_logic_vector) RETURN std_logic_vector; FUNCTION "hot" (1 : std_logic_vector) RETURN std_logic_vector; FUNCTION "hot" (1 : std_logic_vector) RETURN std_logic_vector;
ATRIBUTE enum_type_encoding: STRING; ATTRIBUTE enum_type_encoding OF std_ulogic: TYPE IS "U 0	D D 1 Z D 1 D"; -D FUNCTION "nand" (1. r : std_ulogic_vector) RETURN FUNCTION "nand" (1. r : std_ulogic_vector) RETURN std_ulogic_vector;
Unconstrained array of std_ulogic for use with the resolu tunction	FUNCTION "or" (1, r : std_ulogic_vector) RETURN std_ulogic_vector; fUNCTION "nor" (1, r : std_ulogic_vector) RETURN std_ulogic_vector; FUNCTION "xor" (1, r : std_ulogic_vector) RETURN std_ulogic_vector; FUNCTION "nor" (1 : std_ulogic_vector) RETURN std_ulogic_vector;

	Standard logic package ST		1164 (IEEE 1164)
Note : The declaration and implementation of the "xnot" function is specifically commented until at which time the VHDL language has beenofficially adopted as containing such a function. At such a point, the following comments may be removed along with this notice without further "official" ballotting of this std logic_1164		FUNCTION fo synthesis b attribute BUI attribute BUI	sult-in_godge (SIGNALs: std_ulogic) RETURN boolean; sult-in functions
package. It once it bec	is the intent of this effort to provide such a function ones available in the VHDL standard.	object co	ntains an unknown
function "xn function "xn	or" (1, r : std_logic_vector) return std_logic_vector; or" (1, r : std_ulogic_vector) return std_ulogic_vector:	FUNCTION Is FUNCTION Is FUNCTION Is	X(s:std_ulogic_vector)RETURN BOOLEAN; X(s:std_logic_vector)RETURN BOOLEAN; X(s:std_ulogic_)RETURN BOOLEAN;
Conversio	on Functions	END Std_logic_1	164;
FUNCTION	To bit (s:std ulogic: xmgg; BIT := '0')		
FUNCTION	RETURN BIT; To_bitvector (s:std_logic_vector; xmop:BIT := '0')		
FUNCTION	RETURN BIT_VECTOR; To_bitvector (s:std_ulogic_vector; xmap:BIT := '0') RETURN BIT_VECTOR;	 	Body of IEEE.Std_logic_1164
FUNCTION	To_StdULogic (b:Bli) PETIEN tid ploais:		
FUNCTION	To_StdLogicVector (b:BIT_VECTOR) RETURN std_logic_vector;	Ime - Library 	 sra logic_1104 multi-value logic system This package shall be compiled into a library symbolically named IEEE.
FUNCTION	To_StdLogicVector (s:std_ulogic_vector) RETURN std_logic_vector; Is StdLogicVector;	 Developers	IEEE model standards group (par 1164)
FUNCTION	RETURN std_ulogic_vector; D_StdULogicVector(s:std_logic_vector) RETURN std_ulogic vector;	Purpose	 This packages defines a standard for designers to use in describing the interconnection data t types used in vhdi modeling.
strength st	rippers and type convertors	Limitation : 	The logic system defined in this package may be insufficient for modeling switched transistors, since such a requirement is out of the scope of this effort. Furthermore, mathematics, primitives,
FUNCTION TO FUNCTION TO	DZ01 (s:std_logic_vector) RETURN std_logic_vector; b_Z01 (s:std_ulogic_vector) RETURN std_ulogic_vector;		 timing standards, etc. are considered orthogonal issues as it relates to this package and are therefore beyond the scope of this effort.
FUNCTION TO FUNCTION TO FUNCTION TO FUNCTION TO	 b_X01 (s:std_ulogic) RETURN X01; b_X01 (b:bit_vector) RETURN std_logic_vector; b_X01 (b:bit_vector) RETURN std_ulogic_vector; b_X01 (b:bit) RETURN X01; b_X012 (s:std_logic_vector) RETURN std_logic_vector; 	Note 	: No declarations or definitions shall be included in. : or excluded from this package. The "package : declaration" defines the types, subtypes and : declarations of std_logic_1164. The std_logic_1164 : package body shall be considered the formal : definition of the semantics of this package. Tool
FUNCTION TO	X012 (s : std_ulogic_vector) RETURN std_ulogic_vector; x012 (s : std_ulogic) RETURN X012; X012 (s : std_ulogic) RETURN X012; X012 (s : bit ucctor) BETURN td legic vector; X012 (s : bit ucctor) BETURN	 	developers may choose to implement the package body in the most efficient manner available to them.
FUNCTION TO FUNCTION TO	X012 (b : bit_vector) RETURN std_ulogic_vector: X012 (b : bit) RETURN std_ulogic_vector:	- modification	history :
FUNCTION TO	D_UX01 (s:std_logic_vector) RETURN std_logic_vector;	version mod v4.200 01/0	l. date: 2/92
	std_ulogic_vector; std_ulogic_vector; std_ulogic_vector; UX01 (s:std_ulogic) RETURN UX01;	PACKAGE BODY	/ Std_logic_1164 is
FUNCTION TO FUNCTION TO	b_UX0) (b : bit_vector) RETURN std_logic_vector; b_UX01 (b : bit_vector) RETURN std_ulogic_vector;	Local Type	\$
attribute BUI	ביטאטיר (מ: מוד) אבויטאאי טאטו; עד וא of TO BIT: function is TRUE: D	TYPE stollogic	_1d is array (std_ulogic) of std_ulogic;
attribute BUI attribute BUI	LT_IN of TO_BITVECTOR: function is TRUE; -D LT_IN of TO_STDULOGIC: function is TRUE; -D		
attribute BUII attribute BUII attribute BUII	LI_IN OF IO_STDULOGICVECTOR; function is TRUE; D LT_IN of TO_STDLOGICVECTOR; function is TRUE; D LT_IN of TO_X01; function is TRUE; D	Resolution	Function
attribute BUI	LT_IN of TO_X012: function is TRUE:		sounon_table : stalogic_table := (
– Edge Dete	action		·, ·∪, ·∪, ·∪, ·∪, ·∪, ·∪, ·∪, ·∪, ·∪, ·

Standard logic package ST	Dielo(elicantican(IEEEAnood)
Standard logic package St $\begin{cases} (U, X, Y, U, T, Y, U, Y, Y, Y, X, Y, Z, Y, Z, Z,$	<pre>(U, X, T; T; T, Y, Y, X, Y, X, X, Y,) =] H] (U, X, Y, Y, Y, X, Y, Y, Y, Y, Y, Y, Y,) =] +]); -fruth table for not function -CONSTANT not_table : table(1, 10): -(U, X, T, Y, Y,</pre>
$\begin{array}{c} \hline \\ \hline $	<pre>sevemy FAILURE; else for I in result/range loop result(I) := and_table (LV(I), RV(I)); end loop; end it; retum result; end ^tand*;</pre>

402

Standard logic package ST	Dilogic (164. (EEB 1164)
	else for Lin, result/range loop
FUNCTION "nand" (LR:std_logic_vector) RETURN	result(i) := xor_table (LV(i), RV(i));
sta_logic_vector() to Ltength) IS 1:	end ioop;
ALIAS RV : std_logic_vector (1 to R'length) IS R:	return result;
VARIABLE result : std_logic_vector (1 to Ltength);	end "xor";
begin X (Lionath /= Dianath) than	
a (Liongin /= Kiengin) men assert folse	
report "Arguments of overloaded "nand" operator are not of the same length" severity FAILURE:	FUNCTION "xnor" (1,r:std_logic_vector) RETURN std_logic_vector IS ALLAS IV:std_logic_vector() to l'length) IS t; ALLAS IV:std_logic_vector() to d'enoth) IS r
giso	VARIABLE result : std logic vector (1 to l'length);
for i in result'range loop	begin
result(i) := not_table(and_table (LV(i), RV(i)));	lf (l'length /= r'length) then
end loop;	assert talse
return result:	the same length"
end "nand";	severity failure:
	else
	for i in resulfrange loop
	result(i) := not_table(xor_table (lv(i), rv(i)));
PUNCTION "OF (LK: sta_logic_vector) RETURN sta_logic_vector IS ATTAS IV: stal logic vector (1 to Llongth) IS1:	ena kop; and it:
ALIAS RV : std_logic_vector () to Rienath) is R	return result:
VARIABLE result : std. logic, vector (1 to L'length);	end "xnor";
begin	
if (L'length /= R'length) then	L
assert folse	ENDETION "pott (), and logic vector) DETURN and logic vector IS
the same length"	ALLAS IV : std. logic_vector () to L'length \is L:
sevently FAILURE;	VARIABLE result : std logic vector (1 to L'length) :=
else	(Others => X');
for i in result'range loop	begin
result(i) := or_table (LV(i), RV(i));	for i in resultirange loop
end loop;	result(i) := not_table(LV(i)):
enciti: Astum result:	end koop; return result:
end "or";	end "not";
FUNCTION "nor" (1, R : std_logic_vector) RETURN std_logic_vector	- Vectorized Overloaded Logical Operators (unresolved vectors)
ALIAS LV : sta_logic_vector () to L'iength) is L; ALIAS DV : stal logic_vector () to D'iength) is 0;	FUNCTION "and" (LK: sta_ulogic_vector) KEIUKN std. ukodic. vector IS
VARIABLE result : std logic vector (1 to L'length):	AUAS LV : std. ulogic, vector () to L'Ienath) is L:
begin	ALIAS RV : std_ulogic_vector (1 to R'length) IS R;
if (L'length /= R'length) then	VARIABLE result : std_ulogic_vector (1 to L'length);
assert faise	begin K (Hanatha (- Dhanatha) then
the same length"	r (Liengin /≅ Riengin) men assert foke
sevently FAILURE;	report "Arguments of overloaded 'and' operator are not of
else	the same length"
tor i in resulttrange loop	severity FAILURE;
result()) := not_table(or_table (LV()), RV()));	
end loop; and it:	for the result range toop
encin, return result:	end loop
end "nor";	end if;
	retum result;
·	end "ond":
FINCTION Worf () Direct logic vector \ DCTUDN and logic vector (C	
ALLAS IV: std. jogic_vector (1 to Plenath) IST:	
ALLAS RV : std_logic_vector (1 to R'length) IS R:	FUNCTION "nand" (L.R.; std_ulogic_vector) RETURN
VARIABLE result : std_logic_vector (1 to L'length);	std_ulogic_vector IS
begin	ALIAS LV : std_ulogic_vector (1 to L'length) IS L:
if (L'ength /= R'length) then	ALIAS RV : std_ulogic_vector (1 to R'length) IS R;
USSEN 1058 menori "Arguments of overloaded bot operator are not of	vakiable result : std_ulogic_vector (1 to L'length); begin
the same length"	#(L'enath/=R'enath) then
severity FAILURE;	cissent false
, ·	

standard logic package ST	D_LOGIC_1164 (IEEE 1164)
report "Arguments of overloaded 'nand' operator are not of the same length" severity FAILURE; else for i in result'range loop result() := nat_table(and_table (LV(i), RV(i))); end loop; end loop; end lt; return result; end "nand";	FUNCTION 'xnot" (1,r:std_ulogic_vector) RETURN std_ulogic_vector IS ALIAS IV:std_ulogic_vector (1 to flength) IS I; ALIAS IV:std_ulogic_vector (1 to rlength) IS r; VARIABLE result : std_ulogic_vector (1 to rlength); begin if (flength /= rlength) ithen assent false report "arguments of overloaded 'xnor' operator are not of severity foilure: else
<pre>FUNCTION "or" (L,R : std_ulogic_vector) RETURN</pre>	for i in result'range loop result() := nol_table(xor_table (tv(), rv())); end ic; return result; end "xnor"; FUNCTION "not" (L:std_ulogic_vector) RETURN std_ulogic_vector IS ALIAS LV : std_ulogic_vector (1 to L'length) IS L: VARIABLE result : std_ulogic_vector (1 to L'length) IS L: (Others => 'X'); begin for i in result'range loop result() := not_table(LV()); end loop; return result; end "not";
FUNCTION 'hor'' (L.R : std_ulogic_vector) RETURN std_ulogic_vector IS ALIAS LV : std_ulogic_vector (1 to L'length) IS L; ALIAS RV : std_ulogic_vector (1 to Riength) IS R; VARIABLE result : std_ulogic vector (1 to L'length); begin if (L'length /= R'length) then assert false report "Arguments of overloaded 'nor' operator are not of the same length" severity FAILURE; else for i in result'range loop result(i) := not_table(or_table (LV(i), RV(i))); end loop; end it; return result; end 'nor';	Conversion Tables
FUNCTION "xor" (LR : std_ulogic_vector) RETURN std_ulogic_vector (1 to L'length) IS L: ALIAS LV : std_ulogic_vector (1 to R'length) IS L: ALIAS RV : std_ulogic_vector (1 to R'length) IS R; VARIABLE result : std_ulogic_vector (1 to L'length); begin If (L'length /= R'length) itten caseft false report "Arguments of overloaded 'xor' operator are not of the same length" severity FAILURE; else for i in result'range loop result(0) := xor_table (LV(t), RV(t)); end loop;	CONSTANT cvt_to_X01 : logic_x01_table := ('X', - 'U' 'X', - 'X' '0', - 'Y' 'U', - 'I' 'X', - Z' 'X', - W' '0', - U' 'X', - W' 'U', - 'I' 'Y', - U' 'X', - W' 'U', - 'I' 'Y', - 'I' 'X' - 'U' 'D' 'D' 'T', - 'I' 'Y', - 'U' 'X' - 'U' 'D' 'D' 'Y' 'Y' 'D' 'Y' 'Y'
ena II; retum result; end "xor";	- in : sta_ulogic - some logic value - returns : x01z - state value of logic value - purpose : to convert state-strength to state only - - example : if (cvt_to_x01z (input_signal) = '1') then

```
Standard logic package STD_LOGIC_1164 (IEEE 1164)
                                                                                       END LOOP;
 CONSTANT cvt_to_x01z : logic_x01z_table := (
                                                                                       RETURN result;
           'X', --'U'
'X', --'X'
'0', --'0'
                                                                                   END:
                                                                                   FUNCTION To_StdULogic (b:BIT)
           RETURN std_ulogic IS
           'Z. - 'Z'
                                                                                  BEGIN
          'X', - W
'0', - 'L'
                                                                                      CASE b IS
                                                                                          WHEN '0' => RETURN '0';
           יוי - יוי
                                                                                          WHEN '1' => RETURN '1'
          'X'
              -0
                                                                                     END CASE:
         );
                                                                                  END:
                                                                                  FUNCTION To_StdLogicVector (b:BIT_VECTOR)
--- table name : cvt_to_ux01
                                                                                      RETURN std_logic_vector IS

ALIAS by : BIT_VECTOR ( b'LENGTH-1 DOWNTO 0 ) IS b;
~ parameters
                                                                                      VARIABLE result : std_logic_vector ( b'LENGTH-1 DOWNTO 0 );
           in
                    std_ulogic ~ some logic value
                                                                                  BEGIN
- returns
                   · +001

    state value of logic value

                                                                                     FOR I IN result RANGE LOOP
                   : to convert state-strength to state only
- purpose
                                                                                         CASE by(1) iS
                                                                                             WHEN '0' => result(i) := '0';
- example
                   : If (cvt_to_ux01 (input_signal) = '1') then ...
                                                                                             WHEN '1' => result(i) := '1';
                                                                                         END CASE:
                                                                                     END LOOP:
CONSTANT cvf_to_ux01 : logic_ux01_table := (
                                                                                     RETURN result:
         יש, --ישי
יש, --ישי
יא, --יאי
יש, --ישי
יד, -ידי
                                                                                 END:
                                                                                 FUNCTION To_StdLogicVector (s:std_ulogic_vector)
          'X'. ~ 'Z'
'X'. ~ 'W'
                                                                                                RETURN std_logic_vector IS
                                                                                     ALLAS sv : std_ulogic_vector (s*LENGTH-1 DOWNTO 0) IS s;
VARIABLE result : std_logic_vector (s*LENGTH-1 DOWNTO 0):
          '0', -- 'L'
          ''!', –'₩
                                                                                  BEGIN
          'X'
              - 12
                                                                                     FOR I IN result RANGE LOOP
         );
                                                                                        result(i) := sv(i);
                                                                                     END LOOP
                                                                                     RETURN result:
- Conversion Functions
                                                                                  END:
FUNCTION To_bit
                       (s:std_ulogic: xmap:BIT:='0')
                                                                                  FUNCTION To_StdULogicVector ( b : BIT_VECTOR)
   RETURN BIT IS
                                                                                     RETURN std_ubgic_vector IS
ALIAS bv : BIT_VECTOR ( b'LENGTH-1 DOWNTO 0 ) IS b;
BEGIN
        CASE s IS
                                                                                      VARIABLE result : std_ulogic_vector ( b'LENGTH-1 DOWNTO 0);
           WHEN '0' | 'L' => RETURN ('0');
                                                                                  BEGIN
           WHEN '1' | 'H' => RETURN ('1');
                                                                                     FOR HIN result'RANGE LOOP
           WHEN OTHERS => RETURN xmap;
                                                                                         CASE bv(i) IS
       END CASE:
                                                                                             WHEN '0' => result(i) := '0';
END;
                                                                                             WHEN '1' => result(i) := '1':
                                                                                         END CASE:
FUNCTION To_bitvector (s:std_logic_vector; xmap:BfT := '0')
                                                                                     END LOOP;
               RETURN BIT_VECTOR IS
                                                                                     RETURN result;
   ALLAS sv : std_logic_vector ( s'LENGTH-1 DOWNTO 0 ) IS s;
VARIABLE result : BIT_VECTOR ( s'LENGTH-1 DOWNTO 0 );
                                                                                 END:
BEGIN
   FOR I IN result RANGE LOOP
                                                                                 FUNCTION To_StdULogicVector(s:std_logic_vector)
       CASE sv(i) IS
                                                                                     RETURN std_ulogic_vector IS
ALIAS sv : std_logic_vector (s*LENGTH-1 DOWNTO 0 ) IS s;
VARIABLE result : std_ulogic_vector (s*LENGTH-1 DOWNTO 0 );
           WHEN '0' | 'L' => result(i) := '0';
WHEN '1' | 'H' => result(i) := '1';
           WHEN OTHERS => result(i) := xmap;
                                                                                  BEGIN
       END CASE;
                                                                                     FOR I IN result RANGE LOOP
   END LOOP;
                                                                                        result(i) := sv(i);
   RETURN result:
                                                                                     END LOOP:
END:
                                                                                     RETURN result:
                                                                                 END:
FUNCTION To_bitvector ( s : std_ulogic_vector; xmap : BIT := '0')
           RETURN BIT_VECTOR IS
   ALLAS sv: std_ulogic_vector ( s'LENGTH-1 DOWNTO 0) is s;
VARIABLE result : BIT_VECTOR ( s'LENGTH-1 DOWNTO 0);
                                                                                 - strength strippers and type convertors
BEGIN
                                                                                 - to_x01
   FOR I IN result RANGE LOOP
       CASE sv(i) IS
                                                                                 FUNCTION To_X01 (s:std_logic_vector) RETURN std_logic_vector
          WHEN '0' | 'L' => result(1) := '0';
WHEN '1' | 'H' => result(1) := '1';
                                                                                     ALIAS SV : std_logic_vector ( 1 to s'length ) IS s;
           WHEN OTHERS => result() := xmop;
                                                                                     VARIABLE result : std_logic_vector ( 1 to s'length );
       END CASE;
                                                                                 BEGIN
```



```
Standard logic package STD_LOGIC_1164 (IEEE 1164)
         - Ba
    return (cvt_to_ux01(s));
                                                                                   END LOOP;
 END:
                                                                                   RETURN FALSE;
                                                                               END:
FUNCTION To_UX01 (b:BIT_VECTOR) RETURN std_logic_voctor IS
ALIAS by : BIT_VECTOR (1 TO b'LENGTH) IS b;
VARIABLE result : std_logic_vector (1 TO b'LENGTH);
                                                                               FUNCTION Is_X (s: std_ulogic) RETURN BOOLEAN IS
                                                                               BEGIN
                                                                                   CASE s IS
 BEGIN
    FOR I IN result'RANGE LOOP
                                                                                      WHEN 'U' | 'X' | 'Z' | 'W' | '-' => RETURN TRUE:
        CASE by(i) IS
                                                                                      WHEN OTHERS => NULL:
           WHEN '0' => result() := '0';
WHEN '1' => result() := '1';
                                                                                   END CASE:
                                                                                   RETURN FALSE;
       END CASE:
                                                                               END;
    END LOOP;
    RETURN result:
                                                                           END Std_logic_1164;
END:
FUNCTION To_UX01 ( b : BIT_VECTOR ) RETURN std_ulogic_vector IS
ALIAS bv : BIT_VECTOR ( 1 TO b'LENGTH ) IS b;
    VARIABLE result : std_ulogic_vector ( 1 TO b'LENGTH );
BEGIN
    FOR I IN result/RANGE LOOP
       CASE by() IS
           WHEN '0' => result(i) := '0';
           WHEN '1' => result() := '1';
       END CASE;
    END LOOP:
    RETURN result:
END;
FUNCTION TO_UX01 ( b : BIT ) RETURN UX01 IS
BEGIN
    CASE b IS
       WHEN '0' ≈> RETURN('0');
       WHEN '1' => RETURN('1');
    END CASE;
END:
- Edge Detection
Function rising_edge (SIGNALs:std_ulogic) RETURN boolean is
begin
   return (s'event and (To_X01(s) = '1') and
(To_X01(s'last_value) = '0'));
end;
Function failing_edge (SIGNALs: std_ulogic) RETURN boolean is
begin
   return (s'event and (To_X01(s) = '0') and
           (To_X01(s'last_value) = '1'));
end;
- object contains an unknown
FUNCTION Is_X (s:std_ulogic_vector) RETURN BOOLEAN IS
BEGIN
   FOR I IN S'RANGE LOOP
                                                                                                                      •...`
       CASE s(1) IS
          when 'U' | 'X' | 'Z' | 'W' | '-' => return true;
| When others => NULL;
       END CASE;
   END LOOP
   RETURN FALSE:
END;
FUNCTION Is_X (s:std_logic_vector) RETURN BOOLEAN IS
BEGIN
   FOR HIN S'RANGE LOOP
       CASE s() IS
WHEN 'U' | 'X' | 'Z' | 'W' | '-' => RETURN TRUE;
       END CASE;
```

Standard synthesis package NUMERIC_STD (IEEE 1076.3)

The IEEE 1076.3 VHDL synthesis package NUMERIC_SID is shown. Although this is a draft standard, the final approval is imminent and only comments are expected to change. Package NUMERIC_SID is one of two standard synthesis packages being defined in IEEE 1076.3; NUMERIC_BIT is the other. NUMERIC_SID uses the multivalued data type, std_logic, defined in package STD_LOGIC_1164. Array types of type std_logic are defined in this package and are named signed and unsigned. These are the types used by the VHDL models throughout this book. Package NUMERIC_BIT has identical functions, but instead uses the two valued data type, bit and bit_vector.

Standard synthesis Package	NUMERIC_STD (IEEE 1076.3)
	 Result subtype: UNSIGNED(MAX(L'LENGTH, R'LENGTH)-1 downto D). Result: Adds two UNSIGNED vectors that may be of different lengths.
statutate vnice synthesis rackages. This source file represents a portion of IEEE Draft Standard P1076.3 and is unapproved and subject to change.	 Id: A.4 function *+* (L, R: SIGNED) return SIGNED; Result subtype: SIGNED(MAX(L'LENGTH, R'LENGTH)-1 downto 0), Result: Adds two SIGNED vectors that may be of different lengths.
 This package may be modified to include additional cata required by tools, but it must in no way change the external interfaces or simulation behavior of the description. It is permissible to add comments and/or attributes to the package declarations, but not to change or delete any original lines of the package declaration. The package bady may be changed only in occordance with the terms of 7.1 and 7.2 of this draft standard. 	 Id: A.5 function *+* (L: UNSIGNED; R: NATURAL) return UNSIGNED; Result subtype: UNSIGNED(L'LENGTH-1 downto 0), Result: Adds on UNSIGNED vector, L, with a non-negative INTEGER, R. Id: A.6
Title : Standard VHDL Synthesis Packages (1076.3,NUMERIC_STD) L'brary : This package shall be compiled into a library symbolically : named IEEE.	function "+" (L: NATURAL: R: UNSIGNED) return UNSIGNED; Result subtype: UNSIGNED(R'LENGTH-1 downto 0). Result: Adds a non-negative iNTEGER, L, with an UNSIGNED vector, R.
 Developers : EEE DASC Synthesis Working Group, PAR 1076.3 Purpose : This package defines numeric types and arithmetic functions for use with synthesis tools. Two numeric types are defined : >> UNSIGNED: represents UNSIGNED number in vector form → > SIGNED: represents UNSIGNED number in vector form → SIGNED: represents UNSIGNED number in vector form → element type is type STD_LOGIC. The leftmost bit is treated as the most significant bit. Signed vectors are represented in thwo's complement form. This package contains overloaded arithmetic operators on the SIGNED and UNSIGNED types. The package also contains useful type conversions functions. 	 Id: A.7 Inction *+" (L: INTEGER; R: SIGNED) return SIGNED; Result subtype: SIGNED(RIENGTH-1 downto 0). Result: Adds an INTEGER, L(may be positive or negative), to a SIGNED vector, R. Id: A.8 function *+" (L: SIGNED; R: INTEGER) return SIGNED; Result subtype: SICNED(L'LENGTH 1 downto 0), Result: Adds a SIGNED vector. L to an INTEGER, R.
 If any argument to a function is a null array, a null array Is returned (exceptions, if any, are noted individually). Note: No declarations or definitions shall be included in, or excluded from this package. The "package declaration" defines the types, subtypes and declarations of NUMERIC_STD. The NUMERIC_STD package body shall be considered the formal definition of the semantics of this package. Tool developers may choose to implement the package body in the most efficient manner. 	 Id: A.9 function ** (L. R: UNSIGNED) return UNSIGNED; Result subtype: UNSIGNED(MAX(L'LENGTH, R'LENGTH)-1 downto 0). Result: Subtracts two UNSIGNED vectors that may be of different lengths. Id: A.10 function ** (L. R: SIGNED) return SIGNED;
available to them.	 Result subtracts a SIGNED(MAX(L'LENGTH, R'LENGTH)-1 downto (0). Result: Subtracts a SIGNED vector. R. from another SIGNED vector. L. that may possibly be of different lengths.
Version: 2.4 Date : 12 April 1995 Sibrary IEEE:	Id: A.11 function ** (L: UNSIGNED:R: NATURAL) return UNSIGNED; Result subtype: UNSIGNED(L'LENGTH-1 downto 0), Result: Subtracts a non-negative INTEGER. R. from an UNSIGNED vector, L.
pockage NUMERIC_STD is constant CopyRightNotice: STRING := "CopyRight © 199X IEEE. All rights reserved.";	 Id: A.12 function ** (L: NATURAL; R: UNSIGNED) return UNSIGNED; Result subtype: UNSIGNED(R'LENGTI-1 downto 0). Result: Subtracts un UNSIGNED vector, R, from a non-negative INTEGER, L.
Numeric array type demnitions 	- Id: A.13 function ** (L: SIGNED; R: INTEGER) return SIGNED; - Result: subtype: SIGNED(L'LENGTH-1 downto 0). - Result: Subtracts an INTEGER, R, from a SIGNED vector, L.
Arithmetic Operators:	kd: A.14 function ** (L: INTEGER: R: SIGNED) return SIGNED: - Result subtype: SIGNED(R'LENGTH-1 downto 0). - Result: Subtracts a SIGNED vector, R, from an INTEGER, L.
- td: A.2 function *-* (ARG: SIGNED) return SIGNED; - Result subtype: SIGNED(ARG'LENGTH-1 downto 0), - Result: Returns the value of the unary minus operation on a - SIGNED vector ARG.	 Id: A.15 function *** (L. R: UNSIGNED) return UNSIGNED; Result subtype: UNSIGNED((L'ENGTH-R'LENGTH-1) downto 0). Result: Performs the multiplication operation on two UNSIGNED vectors that may possibly be of different lengths.
- Id: A.3 function "+" (_ R: UNSIGNED) rotum UNSIGNED;	- (d: A.16 function "" (L. R: SkGNED) return SkGNED; - Result subtype: SkGNED((L'LENGTH-R'LENGTH-1) downto 0)

Standard synthesis Package	NUMERIC_STD (IEEE 1076.3)
 Result: Multiplies two SIGNED vectors that may possibly be of different lengths. 	 Result: Computes "Lirem R" where Lis an UNSIGNED vector and R is a non-negative INTEGER. If NO_OF_BITS(R) > L'LENGTH, result is truncated to L'LENGTH.
- Id: A.17 function *** (L: UNSIGNED; R: NATURAL) return UNSIGNED; ·- Result subtype: UNSIGNED((.'LENGTH-LLENGTH-1) downto D), Result: Multiplies an UNSIGNED vertor L with a non-negative INTEGER, R. R is conversed to an UNSIGNED vector of SIZE L'LENGTH before multiplication.	Id: A.30 function "rem" (L: NATURAL: R: UNSIGNED) return UNSIGNED; - Result subtype: UNSIGNED(R'LENGTH-1 downto 0) - Result: Computes "L rem R" where R is an UNSIGNED vector and L is a - non-negative INTEGER. - If NO_OF_BITS(L) > R'LENGTH, result is truncated to R'LENGTH.
 Id: A.18 function "" (L: NATURAL; R: UNSIGNED) return UNSIGNED, Result subtype: UNSIGNED((R'LENGTH+R'LENGTH-1) downto 0). Result: Multiplies an UNSIGNED vector. R, with a non-negative INTEGER, L, L is converted to an UNSIGNED vector of SZE R'LENGTH before multiplication. 	 Id: A.31 function "rem" (L: SIGNED: R: INTEGER) return SIGNED: Result subtype: SIGNED(L'LENGTH-1 downto 0) Result: Computes "L rem R" where L is SIGNED vector and R is an INTEGER. If NO_OF_BRIS(R) > L'LENGTH, result is fruncated to L'LENGTH.
Id: A.19 function *** (L: SIGNED; R: INTEGER) return SIGNED; Result subtype: SIGNED((L'LENGTH+L'LENGTH-1) downto (D) Result: Multiplies a SIGNED vector, L. with an INTEGER, R, R is converted to a SIGNED vector of SIZE L'LENGTH before multiplication.	 Id: A.32 function "rem" (L: INTEGER: R: SIGNED) return SIGNED; Result subtype: SIGNED/(R/LENGTH-1 downto 0) Result: Computes "L rem R" where R is SIGNED vector and L is an INTEGER. If NO_OF_BITS(L) > R'LENGTH, result is truncated to R'LENGTH.
 Id: A.20 function *** (L: INTEGER: R: SIGNED) return SIGNED: Result subtype: SIGNED((R'LENGTH+R'LENGTH-1) downto D) Result: Multiplies a SIGNED vector. R, with an INTEGER. L. L is converted to a SIGNED vector of SIZE R'LENGTH before multiplication. 	
	 Id: A.33 function "mod" (L, R: UNSIGNED) return UNSIGNED; Result subtype: UNSIGNED(RLENGTH-1 downto 0) Result: Computes "L mod R" where L and R are UNSIGNED vectors.
	 - 10, A.94 function "mod" (L, R: SiGNED) return SIGNED; - Result subtype: SIGNFD(R!LFNGTH-1 downto D) - Result: Computes "L mod R' where L and R are SIGNED vectors. - Id: A.35
- Id: A.22 function "/" (L. R: SIGNED) return SIGNED; - Result subtype: SIGNED(L'LENGTH-1 downto 0) - Result: Divides an SIGNED vector, L. by another SIGNED vector, R.	function "mod" (L: UNSIGNED; R: NATURAL) return UNSIGNED; - Result subtype: UNSIGNEQL'/ENGTH-1 downto 0) - Result: Computes "L mod R" where L is an UNSIGNED vector and R - Is a non-negative INTEGER. - If NO_OF_BITS(R) > L'LENGTH, result is truncated to L'LENGTH.
 Id: A.23 function "/" (L: UNSIGNED; R: NATURAL) return UNSIGNED; Result subtype: UNSIGNED(L'LENGTH-1 downto 0) Result: Divides an UNSIGNED vector, L, by a non-negative INTEGER, R. If NO_OF_BITS(R) > L'LENGTH, result is truncated to L'LENGTH. 	Id: A.36 function 'mod' (L: NATURAL; R: UNSIGNED) return UNS IGNED; Result subtype: UNSIGNED(R'LENGTH-1 downto 0) Result: Computes "L mod R" where R is an UNSIGNED vector and L is a non-negative INTEGER. it NO. OF BIJS(L) > R'LENGTH, result is truncated to R'LENGTH.
 Id: A 24 function "/" (L: NATURAL; R: UNSIGNED) return UNSIGNED; Result subtype; UNSIGNED(RLENGIH-1 downto 0) Result: Divides a non-negative INTEGER. L by an UNSIGNED vector R. If NO_OF_BITS(L) > R'LENGTH, result is truncated to R'LENGTH. 	Id: A 37 function "mod" (L: SIGNED: R: INTEGER) return SIGNED: Result subtype: SIGNED(L'LENGTH-1 downto D) Result: Computes "L mod R" where L is a SIGNED vector and R is an INTEGER. // Computer SIGNED.
 Ici: AL25 "Ic: AL25" (L: SIGNED; R: INTEGER) roturn SIGNED; Result subtype: SIGNED(L'LENGTH-1 downto 0) Result: Divides a SIGNED vector. L by an INTEGER, R. If NO_OF_BITS(R) > L'LENGTH, result is truncated to L'LENGTH. Id: A.26 	 If NO_OF_BIIS(R) > ELENGTH, result is truncated to L LENGTH. Id: A.38 function 'mod" (L: INTEGER; R: SIGNED) return SIGNED; Result subtype: SIGNED(R'LENGTH-1 downto 0) Result: Computes "L mod R" where L is an INTEGER and R is a SIGNED vector.
 - Result subtype: SIGNED(RECRED) return SIGNED; - Result subtype: SIGNED(RECRED) advanto 0) - Result: Divides an INTEGER, L, by a SIGNED vector, R. - If NO_OF_BITS(L) > R'LENGTH, result is truncated to R'LENGTH. 	- If NO_OF_BIIS(L) > R*LENGIH, result is fruncated to R*LENGIH. -=================================
	Id: C.1 function ">" (L. R: UNSIGNED) return BOOLEAN; - Result subtype: BOOLEAN Result: Computes "L > R" where L and R are UNSIGNED vectors possibly of different lengths.
Id: A.27 function "rem" (L. R: UNSIGNED) return UNSIGNED; - Result subtype: UNSIGNED((PLENGTH-1) downto (0) - Result: Computes "L rem R" where L and R are UNSIGNED vectors. Id: A.28	- Id: C.2 function ">" (L. R: SIGNED) return BOOLEAN: Result subtype: BOOLEAN Result: Computes "L > R" where L and R are SIGNED vectors possibly of different lengths. of different lengths.
function "rem" (L. R: SKSNED) return SKGNED; Result subtype: SKGNED(RLENGTH-1 downto 0) Result: Computes "L. rem R" where L and R are SKGNED vectors. Id: A.29 function "term" (I: UNSIGNED: R: NATURAL \ setum LINSIGNED:	Id: C.3 function ">" (L: NATURAL; R: UNSIGNED) return BOOLEAN; Result subtype: BOOLEAN - Result: Computes "L > R" where L is a non-negative INTEGER and D is an INSIGNED vector.
- Result subtype: UNSIGNED(L'LENGTH+1 downto ()	

Standard synthesis Package.	NUMERIC_STD (IEEE 1076.3)
- Result subtype: BOOLEAN	– Result subtype: BOOLEAN
 Result: Computes "L > R" where L is a INTEGER and R is a SIGNED vector. 	 Result: Computes "L <= R" where L is a SIGNED vector and R is an INTEGER.
Id: C.5 function "s" (L: UNSIGNED; R: NATURAL) return BOOLEAN;	
- Result subtype: BOOLEAN	- ld: C.19
 Result: Computes "L > R" where L is an UNSIGNED vector and R is a non-negative INTEGER. 	tunction ">=" (L, R: UNSIGNED) fotum BOOLEAN; Result subtype: BOOLEAN
	 Result: Computes "L >= R" where L and R are UNSIGNED vectors possibly at affectant longith;
function ">" (I : SIGNED; R: INTEGER) return BOOLEAN;	
Result subtype: BOOLEAN Result: Computes "L > R" where L is a SIGNED vector and	Id: C.20 function ">=" (I_R: SKENED) return BOOI FAN:
R is a INTEGER.	 Result subtype: BOOLEAN Beruit: Computer 1 B^a where L and B are SIGNED vector: possibly
	- of different lengths.
- ld: C.7	- ld; C.21
function "<" (L. R: UNSIGNED) return BOOLEAN: Result subtype: BOOLEAN	function ">≃" (L: NATURAL: R: UNSIGNED) return 800LEAN: Result subtype: 800LEAN
 Result: Computes "L < R" where L and R are UNSIGNED vectors possibly of different lengths. 	 Result: Computes "L>= R" where L is a non-negative INTEGER and R is an UNSIGNED vector.
function "<" (L, R: SIGNED) return BOOLEAN;	function ">=" (L: INTECER; R: SIGNED) return BOOLEAN;
 Result subtype: BOOLEAN Result: Computes "L < R" where L and R are SIGNED vectors possibly 	Result subtype: BOOLEAN Result: Computes "L>= R" where L is an INTEGER and
 of different lengths. 	- R is a SIGNED vector.
– Id: C.9 function: */* (I - NATHRAT: P: LINSKONED) role on BOOLEAN:	- Id: C.23 function ">" (I: UNSCORD: P: NATI DAL) when BOOLEAN:
- Result subtype: BOOLEAN	- Result subtype: BOOLEAN
 Result: Computes "L < R' where L is a non-negative INTEGER and R is an UNSIGNED vector. 	 Result: Computes "L>= R" where L is an UNSIGNED vector and R is a non-negative INTEGER.
- ld: C.10	ld: C.24
function "<" (L: INTEGER; R: SIGNED) return BOOLEAN: - Result subtype; BOOLEAN	function ">=" (L: SIGNED; R: INTEGER) return BOOLEAN; Result subtype; BOOLEAN
Result: Computes "L < R" where L is an INTEGER and D la a SiChED variation	 Result: Computes "L>= R" where L is a SIGNED vector and D is an INTEGER
function "<" (L: UNSIGNED; R: NATURAL) return BOOLEAN;	
 Result subtype: BOOLEAN Result: Computes "L < R" where L is an UNSIGNED vector and 	- Id: C.25 function "=" (L. R. UNSKGNED) return 800LEAN;
 R is a non-negative INTEGER. 	Result subtype: BOOLEAN Result: Computes 1 P" where Land P are LINSIGNED vectors possibly
	- of different lengths.
nunction "<" (L: SKGNED: R: INTEGER) return BOOLEAN: Result subtype: BOOLEAN	ld: C.26
Result: Computes "L < R" where I, is a SIGNED vector and	function "=" (L R: SIGNED) return BOOLEAN;
	- Result: Computes "L = R" where L and R are SiGNED vectors possibly
	 of different lengths.
~ Id: C.13 function "<=" (L R: UNSIGNED) return BOOLFAN:	Id: C.27 function "=" (L: NATURAL: R: UNSIGNED) return BOOLEAN
- Result subtype: BOOLEAN	- Result subtype: BOOLEAN
 Result: Computes "L <= R" where L and R are UNSIGNED vectors possibly of different lengths. 	 Result: Computes "L = K" where L is a non-negative INTEGER and R is an UNSIGNED vector.
kd: C.14	Id: C.28
function "<=" (L, R: SIGNED) return BOOLEAN;	function "=" (L: INTEGER; R: SIGNED) return 800LEAN; Result sulptime: 800LEAN
Result: Computes $L <= R'$ where L and R are SIGNED vectors possibly	- Result: Computes $T = R^*$ where L is an INTEGER and
or amerent lengths.	- K B D SIGNED VECTOR
– KI; C.15 function "<≏" (L: NATURAL: R: UNSIGNED) ⊯rturn BOOLEAN;	Ia: C.29 function "=" (L: UNSIGNED; R: NATURAL) return BOOLEAN;
- Result subtype: BOOLEAN	Result subtype: BOOLEAN
- Reading Configurations in the reading of the regulation in the sets of the reading of the sets of the reading of the sets of the reading of	 R is a non-negative INTEGER.
Tunction T<="(L'INTEGER; R: SIGNED) Mitum BOOLEAN; — Result subtype: BOOLEAN	Runchion "=" (L' Skainel); R: Rifleger) refum BOOLEAN; Result subtype: BOOLEAN
Result: Computes "L <= R" where L is an INTEGER and R is a SIGNED vector.	 Result: Computes "L = R" where L is a SIGNED vector and R is an INTEGER.
Id: C.17	······································
function "<=" (L: UNSIGNED; R: NATURAL) return BOOLEAN; Desuit a interce: BOOLEAN	-101 (C 3)
- Result: Computes "L <= R" where L is an UNSIGNED vector and	tunction "/=" (L, R: UNSIGNED) return BOOLEAN:
 R is a non-negative INTEGER. 	Result subtype: 800LEAN

Standard synthesis Package	NUMERIC_STD (IEEE 1076.3)
 Result: Computes "L /= R" where L and R are UNSIGNED vectors possibly of different lengths. 	
ld: C.32	
function */=" (L, R: SIGNED) return BOOLEAN;	
Result subtype: BOOLEAN	 Note : Function S.9 is not compatible with VHDL 10/6-1987. Comment : f the function (declaration and body) for VHDL 1076-1987 compatibility.
 Result: Computes "L /= R" where L and R are SIGNED vectors possibly of different lengths 	- Our the function (declaration and body) for VHDL 1070-1987 compatibility,
	ld: 5.9
ld: C.33	function "sli" (ARG: UNSIGNED; COUNT: INTEGER) return UNSIGNED;
function "/=" (E: NATURAL: R: UNSIGNED) return BOOLEAN;	Result subtype: UNSIGNED(ARG'LENGTH-) downto ()
- Result subtype: BOOLEAN	- Result: SHIFT_LEFT(ARG, COUNT)
 Result: Computes "L /= R" where L is a non-negative INFEGER and B is an UNERCHED vacator 	
Ris di unaisined vector.	- Note : Function S, 10 is not compatible with VHDL 1076-1987. Comment
ld: C.34	- out the function (declaration and body) for VHDL 1076-1987 compatibility.
function "/=" (L: INTEGER; R: SIGNED) return BOOLEAN;	
Result subtype: BOOLEAN	
Result: Computes "L /= R" where L is an INTEGER and	TURCTION "SIL" (ARG: SIGNED; COUNT: IN/EGER) INFUT SIGNED; Desuit subtring: SICNED/ADC% EN/CTH 1, downto 0)
- RISCISICINED VOCIDI.	- Result SHET LEFT(ARG_COUND)
— kt: C 35	
function "/-" (L: UNSIGNED; R: NATURAL) return BOOLEAN;	
- Result subtype: BOOLEAN	 Note : Function \$.11 is not compatible with VHDL 1076-1987. Comment
 Result: Computes "L /= R" where L is an UNSIGNED vector and 	 out the function (declaration and body) for VHDL 1076-1987 compatibility.
R is a non-negative INTEGER.	_ 1dt \$ 11
let (* 36	function "st" (ARG: UNSIGNED: COUNT: INTEGER) return UNSIGNED:
= 10, 0,50 function 1/-1 (1: SIGNED: R: INTEGER) setum BOOI FAN:	- Result subtype: UNSIGNED(ARG'LENGTH-1 downto U)
Result subtype: BOOLEAN	Result. SHIFT_RIGHT(ARG, COUNT)
Result: Computes "L /= R" where L is a SIGNED vector and	
R is on INTEGER.	
**	 Note : Function 5.12 is not compatible with VHDL 1076-1987. Comment - out the function (declaration and body) for VHDL 1076-1987 compatibility.
	~ ld: 5.12
	function "sr" (ARG: SIGNED; COUNT: INTEGER) roturn SIGNED;
— id : S. I	 Result subtype: SIGNED(ARG'LENGTH-1 downto 0)
function SHIFT_LEFT (ARG; UNSIGNED; COUNT: NATURAL) rotum UNSIGNED;	— Result: SIGNED(SHIFT_RIGHT(UNSIGNED(ARG), COUNT))
Result subtype: UNSIGNED(ARG/LENGTH-1 downto 0)	
- Result: Performs a shin-left on an UNSIGNED vector COUNT rittles.	 Note : Eurotico S 13 is not compatible with VHDL 107A-1987. Comment
The COUNT leftmost elements ore lost	 out the function (declaration and bady) for VHDL 1076-1987 compatibility.
ld: \$.2	ld: \$ 13
function SHIFT_RIGHT (ARG: UNSIGNED; COUNT: NATURAL) roturn UNSIGNED;	function "roi" (ARG: UNSIGNED: COUNT: INTEGER) return UNSIGNED;
Result subtype: UNSIGNED(ARG'LENGTH-1 downto 0)	Result subtype: UNSIGNED(ARG'LENGTH-T downto U)
Result: Performs a shift-right on an UNSIGNED vector COUNT times.	- Result Rotate_left(Arg, Count)
 The COUNT rightmost elements are lost. 	
	 Note : Function S.14 is not compatible with VHDL 1076-1987. Comment
id: 5.3	 out the function (declaration and body) for VHDL 1076-1987 compatibility.
function SHIFT_LEFT (ARG: SIGNED; COUNT: NATURAL) roturn SIGNED;	(44.0.) a
 Result subtype: SiGNED(ARG'LENG)(+1 downto 0) Deputy Restaura a shift latting a SIGNED upper COUNT times 	 IQ: 5.14 function "rot" (ADC: SIGNED: COUNT: INTEGED) with the SIGNED:
 Result: Penointis a sinn-ten on a signed vector Count nitries. The vacated positions are filled with '0' 	- Result subtype: SIGNED/ARG1ENGTH-1 downto 0)
 The COUNT leftmost elements are lost. 	- Result: ROTATE_LEFT(ARG, COUNT)
	_ 、 、
– ld: S.4	
function SHIFT_RIGHT (ARG: SIGNED; COUNT: NATURAL) return SIGNED;	 Note : Function S.15 is not compatible with VHDL 1076-1987. Comment aut the function (declaration and body) (at) (JDL 1026-1987. comment
 Result subtype: SiGNED(ARG'LENGTH-F downto 0) Result: Reforms a difficient on a SiGNED vector COUNT times 	
 The vocated positions are filled with the leftmost 	ld: \$.15
element, ARG'LEFT. The COUNT rightmost elements are lost.	function "ror" (ARG: UNSIGNED; COUNT: INTEGER) return UNSIGNED;
-	 Result subtype: UNSIGNED(ARG!LENGTH-1 downto 0)
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	- Result: ROTATE_RIGHT(ARG, COUNT)
- KO: S.O function dotate ( FET ( ADG: UNSIGNED: COUNT: NATURAL), where UNSIGNED:	Note : Function \$.16 is not compatible with VHDL 1076-1987. Comment
- Result subtype: UNSIGNED(ARG'LENGTH-1 downto 0)	<ul> <li>out the function (declaration and body) for VHDL 1076-1987 compatibility.</li> </ul>
<ul> <li>Result: Performs a rotate-left of an UNSIGNED vector COUNT times.</li> </ul>	
	ld: \$.16
Id: S.6 function ROTATE_RIGHT (ARG: UNSIGNED: COUNT: NATURAL) return	Bould a local Signed; COUNT: INTEGER) ASTUR SIGNED;
UNSKONED; Brouth autotamo: UNSKONED(ADC)! ENCTU 1 doumto ())	- Result SUDIVE: SIGNED(ARG LEVENT + COWIND 0)
- Result subtype: Unoremetic/area tension-1 downroot) - Result: Performs a rotate-right of an UNSIGNED vector COUNT times	Kable Roman Contraction Reads
nagan ananna a laidid agus ar an anananna adaidi a dann hitea.	**************************************
Id: S.7	<ul> <li>RESIZE Functions</li> </ul>
function ROTATE_LEFT (ARG: SIGNED; COUNT; NATURAL) return SIGNED;	—xxxxx¥********************************
<ul> <li>Result subtype. SIGNED(ARG'LENGTH-1 downto 0)</li> </ul>	10.01
- Result: Performs a logical rotate-left of a SIGNED	THE RULE ADD FROM A DOWNED WEAK STEL NATI IDA! ) IN A DOWN SIGNED.
	- Result subtype; SIGNEDXNEW SIZE-1 downto 0)
id: S.8. function ROTATE, RIGHT (ARG: SIGNED: COUNT: NATURAL) rolum	- Result: Resizes the SIGNED vector ARG to the specified size.
SIGNED;	<ul> <li>To create a larger vector, the new (leftmost) bit positions</li> </ul>
Result subtype: SIGNED(ARG'LENGTH-1 downto 0)	<ul> <li>are filled with the sign bit (ARG'LEFT). When truncating,</li> </ul>
Result: Performs a logical rotate-right of a SIGNED	<ul> <li>me sign bit is retained along with the rightmost pair.</li> </ul>
	I I I I I I I I I I I I I I I I I I I

Standard synthesis Package	NEMERIC_STD (IEEE 1076.3)
- Id: R.2 function RESIZE (ARG: UNSIGNED; NEW_SIZE NATURAL) roturn UNSIGNED; - Result subtrase UNSIGNED/NEW_SIZE-1 downto 0	Result subtype: SiGNED(L'LENGTH-1 downto 0) Result: Vector OR operation
Result: Resizes the SIGNED vector ARG to the specified size.	ld: L 1]
<ul> <li>To create a larger vector, the new (leftmost) bit positions</li> </ul>	function "nand" (L, R: SIGNED) return SIGNED;
<ul> <li>are filled with '0'. When truncating, the leftmost bits are dropped.</li> </ul>	<ul> <li>Result subtype: SIGNED(L'LENGTH-1 downto 0)</li> </ul>
	Result: Vector NAND operation
- Conversion Functions	ld: L.12
	function "nor" (U.R: SIGNED) return SIGNED;
- Int D I	Result subtype: StanEU(ELENG(H-1 COWITO U)
function TO INTEGER (ARG: UNSIGNED) return NATURAL;	
Result subtype: NATURAL. Volue cannot be negative since parameter is an	- Id: L.13
	Lanction "xor" (L, R: SIGNED) fefum SIGNED: - Desuit subtract SIGNED(LENGIE) downto (D)
Result. Convensitie onoisened vectorito dir influenza.	- Result: Vector XOR operation
– ld: D.2	
tunction IO_INIFGER (ARG: SIGNED) return INTEGER;	- Note : Exection (114 is not compartible with VHD) 1076-1987. Comment
Result: Converts a SiGNED vector to an INTEGER.	- out the function (declaration and body) for VHDL 1076-1987 compatibility.
Id: D.3 Substant to UNICANED (ADC) OFF, MARION IN UNICANED:	let ( ) 4
iungilion to_unsigned (vikg, size: n/siukal) return Unsigned; Result subtype, UNSiGNED(SiZE-1 cownto ())	function "xnor" (L.R; SIGNED) return SIGNED;
Result: Converts a non-negative INTEGER to an UNSIGNED vector with	Result subtype: SIGNED(L'LENGTH-1 downto 0)
the specified SIZE.	Result: Vector XNOR operation
– ld: D.4	
function TO_SIGNED (ARG: INTEGER; SIZE: NATURAL) return SIGNED;	Match Functions
Result subtype: SIGNED(SIZE-1 downto 0)  Provide: Converts on INTEGEP to a SIGNED vector of the readilised SIA.	
- Result: Converts on Integer to a argived vector of the specified SIZE.	Id: M.1
	kunction STD_MATCH (L. R: STD_ULOCIC) return BOOLEAN;
Logical Operators	Result subtype: BOOLEAN
	~ kesun, terms compared per arb_coolid_in terminent
ld: L.1	kd: M.2
function "not" (L: UNSIGNED) return UNSIGNED;	function STD_MATCH (L, R: UNSIGNED) return BOOLEAN;
Result subtype: UNSIGNED(L'LENGIH-1 downto U) Result: Termuise inversion	Result subtype: BCOLEAN     Result: terms compared per SID LOGIC 1164 intent
id: L.2	Id: M.3 Averation CTD, MATCH (L. D. SICAED) and an ROCOLEAN(
- Result subtype: UNSIGNED( "ENGTH-1 downto (?)	- Result subtype: BOOLEAN
- Result: Vector AND operation	<ul> <li>Result: terms compared per STD_LOGIC_1164 intent</li> </ul>
Id: 1.2	- 171: DA 4
id. L.5 function "or" (L. R: UNSIGNED) return UNSIGNED;	function STD_MATCH (L. R: STD_LOGIC_VECTOR) return 800LEAN;
Result subtype: UNSIGNED(L'LENGTH-1 downto 0)	<ul> <li>Result subtype: BOOLEAN</li> </ul>
Result: Vector OR operation	<ul> <li>Result: terms compared per STD_EOGIC_TT64 Intent</li> </ul>
ld: L.4	Id: M.5
function "nand" (L. R: UNSIGNED) return UNSIGNED;	function STD_MATCH (L, R: STD_ULOGIC_VECTOR) return BOOLEAN;
Result subtype: UNSGNED(LTENGTE-L downtoll) Dealth: Vector MAND operation	<ul> <li>Result subtype: BOOLEAN</li> <li>Result: terms compared per SID LOGIC 1164 intent</li> </ul>
<ul> <li>- id: L.5 function "nor" (L. R: UNSIGNED) return UNSIGNED.</li> </ul>	
<ul> <li>Result subtype: universe (cleared a downto 0)</li> <li>Result: Vector NOR operation</li> </ul>	· · · · · · · · · · · · · · · · · · ·
Id: L.6 Amerikan Iwart (L. D: LING(CNED) (ING(CNED)	- ICETT Augettee TO, OLAS LENSIONED: YMAD: STOLLOCIC := 100 extrem UNCICNED:
Tunchon "xor (L. R. UNSKENED) IBTURI UNSKENED, — Result subtyce: UNSKENED(L'LENGTH-1 clowinto ())	- Result subtype: UNSIGNED(S'RANGE)
Result: Vector XOR operation	- Result: Termwise. 'H' is translated to '1', and 'L' is translated to '0'. If a value
	<ul> <li>other than 10'(1'1'(H')(L' is found, the array is set to (others =&gt; XMAP), and</li> <li>a warring is issued.</li> </ul>
- Note : Function (7) is not compatible with VHDI 1076-1987. Comment	- u wuming a laudu.
- out the function (declaration and body) for VHDL 1076-1987 compatibility.	- ld: 12
	tunction TO_01 (S: SIGNED; XMAP; STD_LOGIC := '0') return SIGNED; Result rubture: SIGNED(S'RANGE)
K3: L7 function "xnor" (L R: UNSIGNED) return UNSIGNED:	- Result: Termwise, "H' is translated to '1', and 'L' is translated
- Result subtype: UNSIGNED(L'LENGTH-1 downto 0)	- to '0'. If a value other than '0' [ '1' ] 'H' [ 'L' is found, the array is set to
Result: Vector XNOR operation	<ul> <li>(others =&gt; XMAP), and a worning is issued.</li> </ul>
– IC: L.8	end NUMERIC_STD;
function "not" (L: SIGNED) return SIGNED;	
- Result subtype: SIGNED(L'LENGTH-1 downto 0)	
- Kesnii: Iei,WMise Inversion	
Id: 1.9	
function "and" (L. R. SIGNED) return SIGNED;	
Result subtype: Signebic Lengert- Lugernio U) Result: Vector AND operation	
- Id: L10 function for // D: SIGNED) return SIGNED:	
$A_{\rm eff}(A_{\rm eff}) \rightarrow (L, R, A_{\rm eff})$ (Bruill $A_{\rm eff}(A_{\rm eff})$ )	

# **VHDL** Constructs

This is a quick reference guide to the different kinds of constructs used in VHDL. The symbol "+/+" is used to identify constructs that are <u>not</u> supported by present synthesis tools. For each construct the following is shown:

- the formal syntax definition,
- an indication of where it may be used in a Verilog model,
- a brief description,
- in most cases, a simple example.

The formal syntax is shown in Backus Naur Form (BNF). The following conventions are used:

Symbol/Notation	Description	Meaning
<> module (for example) <name> <name>&lt;,<name>&gt;* <name>::= 1</name></name></name></name>	One or more spaces, tabs or carriage returns. Sharp pointed angle brackets A word in bold print. Name is in lower case. Name in upper case. Name is in lower case. Name is in lower case. Vertical line.	Separator between lexical elements. Surround any non-literal symbols. A Verilog keyword. A syntax construct item. A lexical term. A comma separated list of items. The syntax definition of an item. Alternative syntax definition.

Design	Unit	Declarations
Design	Unit	Declarations

Entity	414
Architecture	414
Package Declaration	415
Package Body	415
Configuration	415
Context Clauses	
Library Clause	416
Use Clause	416
Specifications	
Attribute	
Configuration	416
Disconnection	417
Declarations	
Alias	417
Attribute	417
Туре	418
Subtype	418
Constant	418
Constant (deferred)	418
Signal	419
Variable	419
Group	419
Group Template	419
File	420
Component	420
procedure/function (subprogram)	420
procedure/function (subprogram body)	420
Concurrent Statements	

Block	
Process	
Procedure Call	
Function Call	
Assertion	
Signal Assignment	
Component Instantiation	
Generate	
Sequential Statements	
¹ Wait	
Assertion	
Signal Assignment	
Variable Assignment	
Procedure Call	
Function Call	
lf	
Case	
Loop	
Next	
Exit	
Return	
Null	

# entity - primary design unit declaration (design entity port list)

Used to define the interface (inputs & outputs) of a given design unit plus the environment in which it is used. entity ENT1 is use work.SPECIAL_FNS; generic (N: in natural); port (A, B: in_std_logic; Y: out unsigned(N downto 0)); type BUS_N is unsigned(N downto 0); begin report "ERROR" severity ERROR; end entity ENT3;	entity identitier is (generic (generic_iist);) (port (port_list);) ( subprogram_declaration   subprogram_body   type_declaration   subtype_declaration   constant_declaration   signal_declaration   shared_variable_declaration   file_declaration   alias_declaration   attribute_declaration   attribute_specification   use_clause   disconnection_specification   group_template_declaration   group_declaration) begin ( concurrent_assertion_statement   passive_concurrent_procedure_call   passive_process_statement) end (entity) (entity_name);		entity ENT1 is } begin } end enty ENT1; architecture ARC1 of ENT1 is begin ) BLK1: block () is ) begin } begin } begin ] begin ] begin ] begin ]
architecture - secondary design Defines the functionality of a design unit i.e., the relationship between inputs and outputs of a given design unit. More than one architecture body may be associated with the same entity. architecture RTL of MULT is }declaration area begin } statement area end architecture RTL;	anit declaration (design entity functional book         architecture identifier of entity_name is         (subprogram_declaration   subprogram_body         type_declaration   subtype_declaration         constant_declaration   signal_declaration         shared_variable_declaration         file_declaration   attribute_specification         util_declaration   attribute_specification         group_template_declaration   group_declaration]         begin         (concurrent_statement]         end (architecture)(architecture_name);	dy)	procedure PD1 () is j begin j end procedure PD1: function FN1 () return TP is j end function FN1; package PCK1 is j end package PCK1 is j end package PCK1 is j end package body PCK1; configuration CF1 of ENT1 is j

# **package** - primary design unit declaration (common design data)





416







418




#### Appendix A: VHDL



421

configuration CF1 of ENT1 is }..... end configuration CF1;

#### HDL Chip Design



end function FN1;

package PCK1 is

end package PCK1;

package body PCK1 is

end package body PCK1;

nd configuration CF1;

configuration CF1 of ENT1 is

selected for execution. Both for and if generate statements are supported by synthesis tools. The "condition" part of the if clause must have static values at compile time in order for synthesis tools to generate a defined amount of logic. GEN_1: for N in 0 to 7 generate GEN_2: if N < 4 generate Unit1: AND2 port map (A(N).B(N).Y(N)); end generate: GEN_3: if N >= 4 generate Unit2: OR2 port map (A(N).B(N).Y(N)); end generate; end generate; end generate;

AppendixA:VHDL

wait - sequential statement		entity ENT1 is } begin
Causes the suspension of a process or procedure. A list of signal names define the sensitivity list to which the wait statement is sensitive. Each signal in the sensitivity list must be statically defined.	-28)	end enity ENT1; architecture ARC1 of ENT1 is } begin } end architecture ARC1;
used with synthesis using walt until. The statements beginning wait on and wait for relate to timing and are not supported by synthesis tools. wait until (Enable = '1'):		BLK1: block () is ] begin ] end block BLK1;
assertion - sequential statement	(28)(29)-	PS1 : process () } begin ]
Is sequential by being in the statement area of a process or procedure. Checks if a specified boolean condition is true during simulation. If it is not true an error	  	process PS1: procedure PD1 () is ) begin 
given. If the <b>report</b> clause is present it must include an expression of predefined type STRING that specifies the message to be reported. If the <b>sevently</b> clause is present it must specify an expression of predefined type SEVERITY_LEVEL that specifies the severity level of the assertion. The enumerated type SEVERITY_LEVEL is defined in package STANDARD and has the values		tunction FN1 () return TP is } begin } end function FN1;
NOTE, WARNING, ERROR AND FAILURE. Does not imply hardware so not supported by synthesis tools; are useful in test harnesses. assert SystemReset = '1' report "System reset signal active!" assert (Now - LastEvent) >= HoldTime report "Hold time violation"		package PCK1 is } end package PCK1;
severity WARNING; severity Failure; assert Set = '1' and Reset = '1' enced tSet & reset active at the same time!"		package body PCK1 is  end package body PCK1; configuration CE1 of ENT1 is
severity error;		end contiguration CF1;

#### signal assignment - sequential statement

signal assignment - sequential statement			entity ENT1 is
Modifies the projected output of drivers of one or more signals. Is sequential by virtue of being (transport)	regate <=   reject time_expression) inertial)	-(30)	begin } and enity ENT1;
bositioned within the statement waveformed (body) of a concurrent process or procedure. A signal assignment is not allowed within a function body. Signal assignment	ement {, waveform_element}   unaffected;	Ŭ	architecture ARCt of ENT1 is J begin J end architecture ARC1;
a particular simulation delta cycle at any given simul simulation delta cycles as needed to schedule all signal time.)	ation time. (There are as many scheduled assignment events at a particular simulation		BLK1: block () is } begin }
Ine reject, inertial and other clauses are ignored by syn    The following 3 assignments are equivalent     Y <= A after 10 ns;     Y <= inertial A after 10 ns;     Y <= reject 10 ns inertial A after 10 ns;	Reset <= TRUE, FALSE after 20 ns; Cik <= '1' after CikPeriod/2, '0' after CikPeriod;	3031-	PS1: process () } begin
-Pulse rejection limit less than time expression. Y <= <b>reject</b> 5 ns <b>inertial</b> A <b>atter</b> 10 ns;	Y <= A and B; Secs <= Secs + 1; AM_PM <= not AM_PM;		process PS1, procedure PD1 () is } begin
variable assignment - sequential statement			end procedure PD1; function FN1 () return TP is begin
Replaces the current value of a variable with a new value specified by the expression instantaneously. They are not scheduled like signals. The gamed	label:) target := expression;	-31)- -31)	end function FN1:
variable and the right hand side expression must be of models.	f the same type. Are used in synthesizable		end package PCK1; package body PCK1 is } and package body PCK1:
Y := Y + 1;			configuration CF1 of ENT1 is



#### Appendix A: VHDL





B

# Verilog

## Appendix B Contents

Reserved Words	429
Compiler directives	429
System Tasks and Functions	430
/erilog Constructs	433

#### **Reserved Words**

The following identifiers are reserved words in the Verilog language and so cannot be used as basic identifiers in a Verilog model. A reserved word is a keyword that has specific meaning in the language.

	Veril	og Reserved World	ds	
always	event‡	not	small‡	while
and	form	notifu	specity ‡	wire
assign	forcet	notir1	specparam ‡ strength †	wor
begin	forever ±	or	strong1 t	xnor
buf	fork±	outout	strong1 t	xor
bufif0	function	ouput	supply0	
bufif1		parameter	supply1	
	hiahz0±	pmost		
case	highz1 ±	posedge	table †	
casex	··· <b>J</b> · -· <b>†</b>	primitive	task	
casez	if	pullOt	time t	
cmost		pull1 ±	trant	
	initial ±	pullup±	tranif0±	
deassiont	inout	pulldown ±	tranif1 ±	
default	input	• •	tri	
defparamt	integer	rcmost	tri0 ±	
disablet	U	realt	tril ±	
	join‡	realtimet	triand ±	
edaet	<i>,</i>	rea	trior ±	
else	large	releaset	trireg‡	
end	U	repeat	•	
endattribute ±	macromodule	mmost	unsigned ±	
endcase	medium	rpmos±		
endmodule	module	rtran‡	vectored ±	
endfunction		rtranif0‡	• • • • • •	
endprimitive ‡	nand	rtranif1‡	wait	
endspecify ‡	negedge	-	wand	
endtable ‡	nmõs	scalared ±	weak0 ±	
endtask	nor	signed ±	weak1 ±	
		<b>.</b> .	•	

**‡** Constructs not supported by synthesis tools.

#### **Verilog Compiler Directives**

This chapter describes the Verilog language defined compiler directives. All such directives are preceded by the """ (accent grave) character often referred to as *tick*. They are listed in Table Bl and typically only the 'define (pronounced tick define) and the 'include compiler directives are supported by synthesis tools. Except for these two, the word compiler in the text below implies a simulator's compiler.

'resetall 'define 'undef 'timescale 'ifdef 'else 'endif	'Include 'celldefine 'endcelldefine 'default_neftype 'unconnected_drive 'nounconnected_drive
---------------------------------------------------------------------------	-------------------------------------------------------------------------------------------------------------

Table B1 Verilog Compiler Directives

#### 'resetall

Resets all compiler directives to their default values when encountered during compilation.

#### 'define/'undef

Tick define creates macros for text substitutions. Can be used both inside and outside module definitions. After a text macro is defined, it can be used in the source description by using the "" character followed by the macro name. The compiler will substitute the text of the macro for the sting Ynacro_name.

```
'define State0 2'b 00
'define State1 2'b 01
'define State2 2'b 10
'define State3 2'b 11
case (State)
   'Stàte0: Ý = A0;
   'State1: Y = A1;
'State2: Y = A2;
   'State3: Y = A3;
```

#### endcase

Tick undef is used to undefine a previously defined macro.

#### 'timescale

Specifies the unit of time and the precision of time of the models that follow.

'timescale1ns/1ps

All time values are in multiples of 1 ns with a precision of 1 ps.

#### 'ifdef/'else/'endif

These are conditional compilation compiler directives that are used to optionally include lines of Verilog source code for compilation. As such, they perform a similar function to VHDL configurations, although in Verilog the whole module must be recompiled each time.

## Verilog System Tasks and Functions

The directive 'ifdef checks for the definition of a variable name. If the variable name is defined then the lines following the 'ifdef are included. If the variable name is not defined and an 'else directive exists then the source code is compiled.

```
'ifdef <text macro name>
<first_group_of-lines>
'else
<second group of lines>
'endif
```

These directives can be nested.

#### 'include

Used to insert the entire contents of a source file in another file during compilation. The result is the same as though the contents of the included file were to appear in place of the "include directive. Is useful in defining global or commonly used definitions, tasks or functions, without having to repeat the code in every module boundary.

It can be nested, that is, an included file may itself contain an included file.

#### 'celldefine/'endcelldefine

Used to tag a module as being a cell.

#### 'default_nettype

Used to control the net type created for implicit net types. The default type is wire and should not be changed to anything else in synthesizable models.

'default_nettype <type_of_net> where:

type of net can be: wire, wand, wor, tri, triand, trior, tri0, tri1 or trireg.

'unconnectd_drive/'nounconnected_drive

Pulls all input ports to a logic 0 or logic 1 instead of leaving them floating to the high impedance value Z.

All Verilog system tasks and functions defined in the Verilog LRM as being part of the Verilog language are listed along with a description of those that are typically used in test harnesses. They are not needed in synthesizable models, nor are they supported by synthesis tools.

Verilog system tasks and functions are used to perform simulation related operations such as monitoring and displaying simulation time and associated signal values at a specific time during simulation. All system tasks and functions begin with a dollar sign, for example, Smonitor.

The Verilog LRM also describes other system tasks and functions in a separate appendix that does not form part of the standard Verilog language, but that is included in the LRM for information. These, and any tool specific system tasks and functions, should not be used if a Verilog model is to maintain portability between different design tools. (These tools specific system tasks and functions are defined by using the Peripheral Language Interface (PLI) which is also defined as part of the Verilog language.)

As a result of the previous discussion, only use the standard system tasks and functions defined by the Verilog language. These are listed in Table B-2, and their description's follow.

Display tasks	\$fstrobeb \$fstrobeh \$fetrobeo	\$async\$nand\$array \$async\$or\$array \$async\$par\$array	Conversion functions for reals
suispiay Sdieplayb	\$favrite	\$async\$and\$nlane	\$bitstoreal
sdisplayb	Sfwriteh	\$async\$nand\$plane	Sitor
\$displayo	Sfwriteh	\$async\$or\$plane	\$readtobits
\$monitor	\$fwriteo	\$async\$nor\$plane	\$rtoi
\$monitorb	\$readmemb	\$sync\$and\$array	
\$monitorh	<i><i><i>ϕ</i></i></i>	\$svnc\$nand\$arrav	Probablistic distribution
\$monitoro	Timescale tasks	\$svnc\$or\$arrav	functions
\$monitoroff		\$sync\$nor\$array	
\$strobe	\$printtimescale	\$sync\$and\$plane	\$random
\$strobeb	\$timeformat	\$sync\$nand\$plane	\$dist_chi_square
\$strobeh	•	\$sync\$or\$plane	\$dist_exponential
\$strobeo	Simulation control	\$sync\$nor\$plane	\$dist_poisson
\$write	tasks		\$dist_uniform
\$writeb		Stochastic analysis	\$dist_erlang
\$writeh	\$finish	tasks	\$dist_nornal
\$writeo	\$stop		\$dist_t
\$monitoron		\$q_initialize	
	Timing check tasks	\$q_remove	Value change dump
File I/O tasks	<b>.</b>	\$q_exam	file
	\$hold	\$q add	<b>•</b>
\$fclose	\$period	\$q_full	\$comment
\$fdisplay	\$setup	\$q_random	\$0ate
\$fdisplayb	\$skew		\$enddelinitions
\$fdisplayh	\$nochange	Simulation time	\$scope
\$fdisplayo	\$recovery	functions	Sumescale
Stmonitor	\$setupnoid		supscope [©] var
\$IMONITORD	фwidtri	\$realtime	\$version
\$11101110111 \$fmonitoro	DI A modeling tech	\$time	Sdumpall
φιπομιιοι Greadmemb	HLA MODELING TASKS	\$stime	\$dumpoff
\$fonen	¢acurac¢and¢arrau		\$dumpon
\$fetroho	фазупсфанифанау		\$dumpvars
φιστισμο			· · · · ·

Note. System tasks differing by only a "b", "h" or "o" at the end refer to binary, hexidecimal and octal, respectively.

#### Table B-2 Verilog language defined system tasks and functions

#### **Display tasks**

#### \$display/\$write.

Displays a formatted message to the screen. They are identical except \$display adds a newline character to the end of its output whereas \$write does not. They can display a quoted string, an expression that returns a value, or a null argument. They are displayed in the order in which they appear in the argument list.

\$display ("ERRDET_CORRECTION Write error at time %d: Should be equal to %d, but is = %d", \$time, RefMemData, MemData);

#### \$strobe.

Provide the ability to display simulation data at a

selected time and has the same argument list format as \$display and \$write.

#### \$monitor.

Displays a formatted message to the screen when any variables or expressions specified as arguments to the system task, change. Again, it has the same argument list format as \$display and \$write.

Displays a formatted message to the screen when any signal in the monitor list changes.

#### initial

Smonitor ("ERRDET_CORRECTION Write error at time %d: Should be equal to %d, but is=%d", \$time. RefMemData, MemData);

#### File I/O tasks

#### \$fopen.

Opens a system file for reading and writing.

SimResults=\$fopen("errdet_correction.simres");

#### \$fclose.

Closes a system file that has previously been opened using \$fopen.

#### \$fclose(SimResults);

#### \$fdisplay/\$fwrite/\$fmonitor/\$fstrobe.

Correspond to \$display, \$write, Smonitor and \$strobe, but writes to specific files as apposed to the standard output; normally the monitor.

#### \$fdisplay(SimResults,

"ERRDET_CORRECTION Write error at time %d: Should be equal to %d. but is = %d", \$time, RefMemData, MemData);

#### \$readmemb/\$readmemh.

Used to read and load data from a specified file into a specified memory.

\$readmemb("mem8x5.dat", Mem8x5);

#### Timescale tasks

#### \$printtimescale.

Displays the unit of simulation time and its precision. A specific module name can be given as an argument to display the time unit and precision of a particular module.

\$printtimescale // No name so uses module name with current scope. \$printtimescale<hierarchical_name>;

#### \$timeformat.

Specifies how time will be displayed when using: \$write,\$display,\$strobe,\$monitor,\$fwrite,\$fdisplay, \$fstrobe and \$fmonitor.See Verilog LRM for details.

#### Simulation control tasks

#### \$finish.

Finishes a simulation and passes control back to the host system.

#### \$stop.

Halts simulation at the current simulation time and enters an interactive debug mode where values can be interactively changed or break points set-up etc.

#### Timing check tasks

Used primarily in technology library cells. See Verilog

#### LRM for details.

#### PLA modeling tasks

These system tasks are provided for modeling PLA devices. See Verilog LRM for details.

#### Stochastic analysis tasks

These system tasks and functions manage queues and generate random numbers with specific distributions. See Verilog LRM for details.

#### Simulation time functions

These system functions provide access to the current simulation time.

#### \$time.

Returns a 64-bit integer value scaled to the timescale value of the module from which it was invoked.

#### \$stime.

Returns a 32-bit integer value scaled to the timescale value of the module from which it was invoked.

#### \$realtime.

Returns a real number scaled to the timescale value of the module from which it was invoked.

#### Conversion functions for reals

#### \$rtoi.

Converts a real value to an integer value through truncation, for example, 29.95 becomes 29.

#### \$itor.

Converts an integer value to a real value, for example, 29 becomes 29.0.

#### \$readtobits.

Used to convert real numbers to a 64-bit vector representation so that they can be passed across module ports.

#### \$bitstoreal.

Used to convert bit patterns to real numbers.

#### Probabilistic distribution functions

#### \$random.

System function for generating random numbers and returns a new 32-bit signed integer value each time it is called. A "seed" argument can be used to control

the random numbers that are generated.

\$random %64 // will generate numbers between -63 and 63.

#### \$dist_chi_square/\$dist_exponential/ \$dist_poisson/\$dist_uniform/\$dist_erlang/ \$dist_nornal/\$dist_t.

Used to generate random number to a specific probabilistic distribution. See Verilog LRM for details.

Value change dump file

## \$comment/\$date/\$enddefinitions/\$scope/ \$timescale/\$upscope/\$var/\$version/\$dumpall \$dumpoff/\$dumpon/\$dumpvars

A change dump file is a file that contains information about value changes on selected variables for a design using the value change dump system tasks. See Verilog LRM for details.

## Verilog Constructs

This is a quick reference guide to the different kinds of constructs used in the Verilog language. The symbol "+/+" is used to identify constructs that are <u>not</u> supported by synthesis tools. For each construct the following is shown:

- the formal syntax definition,
- an indication of where it may be used in a Verilog model,
- a brief description,
- in most cases, a simple example.

The formal syntax is shown in Backus Naur Form (BNF). The following conventions are used:

Symbol/Nomenclature	Description	Meaning
<> module (for example) <name> <name> <name>&lt;,<name>&gt;* <name>::= 1</name></name></name></name></name>	One or more spaces, tabs or carriage returns. Sharp pointed angle brackets A word in bold print. Name is in lower case. Name is in lower case. Name is in lower case. Name is in lower case. Vertical line.	Separator between lexical elements. Surround any non-literal symbols. A Verilog keyword. A syntax construct item. A lexical term. A comma separated list of items. The syntax definition of an item. Alternative syntax definition.

A summary of the described constructs are listed below with corresponding page numbers.

Design Entity			Concurrent Procedural Block	
module			fork-join	
Declarations			Sequential Procedural Block	
parameter data type			begin-end	
net data types			Procedural Statements	
register data type			blocking procedural assignment	
task (subprogram)			non-blocking procedural assignment	
function (subprogram)			function can	
Concurrent Statements			if	
component instantiation	l		case/casex/casez	
Initial			forever/ropeat/while/for	
always			·	
continuous assignment.				
function	call	437		

#### module - design entity

The module is the only design unit in the Verilog language and as such is also the design entity. Ideally, it should reside in its	module_declaration ::=         module_keyword module_identifier ( list_of_ports); { module_item}         endmodule         module_keyword ::= module   macromodule         list_of_ports ::= (port {, port})         port_itentifier ( liport_expression)         [port_identifier ( liport_expression)]		module MOD1 (); } endmodule Initial ‡
although multiple	port_expression ::=		
declarations may	(port_reference {, port_reference)}		atways
reside in a single file.	port_reference ::=		
Hierarchy is created	<i>port_</i> identifier (constant expression)		
when higher level modules create instances of lower level declared modules and connects their port signals	port_identifier (msb_constant_expression : /sb_constant_expression)   module_item ::=   module_item_deciaration   parameter_override   continuous_assign   gate_instantiation   udp_instantiation   module_instantiation   specify_block		begin : SeqBLK1; ) end
appropriately, Module	initial_construct   always_construct	1	forik: ConcBLK1;
declarations cannot	module_item declaration ::=		join
be nested.	Linput declaration Loutput declaration		
	inout_declaration   net_declaration   reg_declaration   integer_declaration   red_declaration   time_declaration   realtime_declaration   event_declaration   task_declaration   function_declaration   parameter_overtide ::= delparam list_of_param_assignments;		task: TSK1; } endtask
			)uncion: FN1; }
			andfunction



#### Appendix B: Verilog





block_item_declaration ::= control, and must execute in one | parameter_declaration | reg_declaration integer_declaration | real_declaration time_declaration | realtime_declaration l event declaration

simulation time unit. Function

declarations cannot be nested,

must have at least one input, and

always returns a single value.

function: FN1:

endiunction

Key }..... Both declaration and

statement greas Single statement or block ‡ not for synthesis

#### component instantiation - concurrent statement





#### Appendix B: Verilog

#### continuous assignment - concurrent statement



fork-join - concurrent procedura	al block		
Is a means of grouping two or more procedural assignments together so tha they act like a single group of concurren	par_block ::= fork (: block_identifier { block_item_declaration}} (statement) ioin	-11)	endimodule
within a fork-join block execute concurrently with each other, that is, when control is passed to the block.	when simulating, each statement starts at the same time	1112-	initial +
Is used when all variable delays within which is the time when simulation cont As timing for hardware models to be sy the <b>fork-join</b> block is not supported by	a black need to be relative to a particular simulation time rot enters the block. athesized should come from technology library primitives, synthesis tools. Use the <b>atways</b> statement for concurrent	1112-	always 
blocks in synthesizable models.	ral block	1112-	begin:SeqBLK1; } end
Is a means of grouping two or more procedural assignments together so that they act like a single group of sequential statements. Individual	seq_block ::= begin(: block_identifier { block_item_declaration)} {statement} end block_item_declaration ::=	1112- -112	fork: ConcBLK1; ‡ } join
statements within a <b>begin-end</b> block are executed sequentially. Used extensively in synthesis models.	parameter_declaration   reg_declaration   integer_declaration   reat_declaration   time_declaration   realtime_declaration   event_declaration	1112-	tasic TSK1;  endtasik
atways @ (S or A or B) begin: TestAB if (S) begin X1 = A cost B:		1112-	function: FN1;  endfunction
Y2 = A or B; end			Key ) Both declaration and statement areas

#### blocking procedural assignment - sequential statement





#### Appendix B: Verilog



case/casex/casez - s	equential statement	module MOD1 (); }
Selects one of several browithin a case, casex or statement based on the vo the case expression, and executes any proce- assignments within that b Maybe be nested within case, casex or casez statem. The case statement is the m allow the handling of "dor treated as "don't care" con- values to be treated as "do	Inches       Case_statement ::=         case (expression) case_item {case_item} endcase         acasez (expression) case_item {case_item} endcase         I hen         casez (expression) case_item {case_item} endcase         acasez (expression) case_item {case_item} endcase         dural         casez (expression) case_item {case_item} endcase         acasez (expression) case_item {case_item} endcase         dural         casez (expression) case_item {case_item} endcase         acasez (expression) case_item {case_item} endcase         dural         default (:) statement_or_null         18         other         default (:) statement_or_null         18         ist commonly used case statement. The casez and casex statements         18         t care" conditions. Casez allows high impedance (Z) and unknown (X)         18         of care" conditions.         18	)(19 always (19 begin : SeqBLK1; end
forever/repeat/while/f Repeatedly executes a sequence of other procedural assignments zero or more times. May be nested within other loop statements. A forever statement executes continuously. A repeat statem	or - sequential loop statement         looping_statement ::=         forever statement         repeat (expression) statement         while (expression) statement         tor (reg_assignment ; expression ; reg_assignment) statement         int executes other statements a fixed number of times. A while statement	19         fork: ConcBLK1;         1           Join         Join         1           19         task: TSK1;         -           19
executes other statements u statement executes other sta	til an expression becomes talse; not executed it initially talse. A for ements in a controlled way with a defined loop parameter.	(19) endfunction Key } Both declaration and statement areas Single statement or block \$ not for synthesis

#### A

absolute time generated vectors 325-326, 329-331 abstract data types 77 adders combinational 279-284 overflow 282 sequential 284-285 synchronous (serial) 279, 280, 284 address decoder 152-153 aggregates (VHDL) 51-52, 184 algorithms Booth's 286, 287, 288 division 289 shift and add multiplication 287, 293 alias (VHDL) 417 ALU 159-160 arithmetic unit 159-160 logic unit 159-160 microcoded operations 159 always (Verilog) syntax 436 application specific integrated circuit described 3-4 cost 4 AQL 15 arbiter 354 architecture (VHDL) course grain structuring 117, definition 40 syntax 414 arithmetic equations 134 operators 63, 134 arrav reversing vector 83 unconstrained (VHDL) 80 ASIC 3-4 seealsoapplicationspecific integratedcircuit assert (VHDL) described 324 used 329, 332, 335 concurrent syntax 422 sequential syntax 423 asynchronous feedback 75 FSM reset 198, 199, 212 resets 175-177 ripple counters 187, 190-192 ATPG defined 22 see also automatic test pattern generation attribute (VHDL) 'base 'left 'right 'high 'low 100 'range 'reverse range 'length 101-102

'stable 'event 102-103 'event 172, 173, 174 'stable 172 declaration syntax 417 specification syntax 416 supported for synthesis 99 automatic test pattern generation defined 22 LFSR application 181 automatic vector checking 234 average quality level 15

#### B

barrel shifter combinational 277 begin-end (Verilog) 437 behavioral levels of abstraction 6 bidirectional FSMs 199, 262 in test harnesses 335 see also finite state machines BIST 22, 75, 179 seealsobuilt-inself-test bit_vector (VHDL) 336 blackjack 218 block (VHDL) 123-124 described syntax 421 blocking procedural assignment (Verilog) description 94 example use of 94, 178 in for loops 95 syntax 438 Booth algorithm 286, 287, 288 test harness 335-339 bottom-up 75 boundary scan 24, 75 buffer data type (VHDL) 182 built-in self-test data compression techniques 179 data encryption & decryption 179 data integrity checksums 179 defined 22 testability issues 75 pseudo-random number generation 179

### С

CAD 14 CAE 14 capability VHDL/Verilog compared 10 carry-look-ahead 279 case address decoder 151-153 decoder 149-150 default (Verilog) 78, 164 don't care inputs 96

don't care outputs 97 encoder 143 priority encoder 146 insensitive 50 latch inference 170, 171 LRM compliance (VHDL) 165 multiplexer 138-139 others (VHDL) 78, 165 syntax (Verilog) 439 syntax (VHDL) 424 casex (Verilog) syntax 439 see also case casez (Verilog) syntax 439 see also case cell primitive 163, 172 channel-less gate array 4 channeled gate array 4 clock dividers 186, 190-192 combinational adder 279-284 dividers 286, 287, 301-305 multipliers 286, 287, 290-292 shifters 273-277 subtractor 279-284 combinational logic 135-160 comparators 157-158 equality 157 multiple comparison 158 operators used 157 compilation VHDL/Verilog compared 10 compiler directives (Verilog) 'define 214 'include 40, 154, 215, 216, 223, 224 described 429-430 listed 429 component declaration syntax (VHDL) 420 instantiation syntax (Verilog) 436 instantiation syntax (VHDL) 422 computer aided design 14 computer aided engineering 14 concatenation in subprogram formal list (VHDL) 82 operator 70 concurrent block (Verilog) 437 statements 41, 315 statements listed (VHDL) 413 statements listed (Verilog) 433 conditional (Verilog) operator 71 configuration (VHDL) declaration syntax 415 defined 324 description 40, 115-116, 324 example 116-117

in a test harness 324

#### <u>Index</u>

specification 116, 324 specification syntax 416 constant (VHDL) array 184 deferred 109 syntax 418 constraints area 29 circuit specific 29 global 29 timing 29 continuous assignment (Verilog) example 134 svntax 437 counters 186-192 asynchronous (ripple) 187, 190-192 clock dividers 186 188, 189, 190-192 deciding on structure 186-187 LFSR 188, 189 synchronous 187 up-by-one down-by-two 187-188 cycle stealing 163

## D

D-type flip-flop 172-178 flow through latch 163-171 see also latch and flip-flop data objects constant (VHDL) 46 file (VHDL) 46 listed 44 signal (VHDL) 46 variable (VHDL) 46 data types abstract 77 array 46 enumeration (VHDL) 45 four valued value set (Verilog) 46 integer (Verilog) 47 integer (VHDL) 45 listed 44 net (Verilog) 47 parameter (Verilog) 47 record 46 register (Verilog) 47 VHDL/Verilog compared 11 declaration statements defined 41 listed (Verilog) 434 listed (VHDL) 413 where used 42 decoders 148-156 default (Verilog) 78, 87, 88, 317 deferred constant (VHDL) described 108 syntax 418 delta delav described 89

example 90, 91 design automation tools 14 design domains 7 design entity (Verilog) 40 design entity (VHDL) 39 design-for-test 22, 75 design reusability VHDL/Verilog compared 11 design unit (VHDL) 39-40, 324 DFT 22, 75 see also design for test disconnect (VHDL) syntax 416 dividers combinational 286, 287, 301-305 sequential 286, 287, 306-312 don't care encoders 141 inhibits tri-state 315 input to case 96 output from case 97 dynamic power management 75

#### E

edge detection (VHDL) 85 encoders 141-144 entity (VHDL) definition 39 course grain structuring 117 syntax 414 enumerated data type (VHDL) FSM state encoding 205, 222 equality operator 65-66 equations 134 error detection and correction algorithm 369 example 369-378 event list (Verilog) 77, 83, 125, 133 see also sensitivity list (VHDL) event scheduling 89 exit (VHDL) described 133 encoder 144 priority encoder 147 syntax 425 expressions defined 48

### F

fail safe behavior (FSM) 198 see *also finite state machines* falling_edge 172, 173, 174 fault simulation concurrent 17 defined 15 fault coverage 15 parallel 17 serial 17 where used 76 field-programmable gate array definition 3, 4

cost 4 file type (VHDL) syntax 420 finite state machines 193-269 asynchronous reset 198-199 coding style 198 fail safe behavior 198 Gray state encoding 199, 214-217 interactive - bidirectional 201, 262-269 interactive - unidirectional 201, 242-261 Johnson state encoding 198, 199, 214-217 Mealy outputs 196, 197, 200, 229-233 Moore outputs 196, 197, 200, 229-233 minimal next state logic 200 modeling issues 197 optimal state encoding 200 primary branch directive 210 reset configurations 212-213 sequential next state logic 200, 234-236, 238-242 sequential output logic 200, 236-242 state diagram 195-196 state encoding 199, 218-228 state table 195-196 structure 195 synchronous reset 198-199 flip-flop 172-178 active edge 172 asynchronous resets 175-177 D-type 163 edge triggered 172 if (VHDL) 172 inference (VHDL) 172 inference (Verilog) 173 JK-type 163 negedge (Verilog) 173 posedge (Verilog) 173 synchronous resets 175-177 toggle 163 for loop combinational logic 133 decoder 149, 152 encoder 144, 147 repetitive stimulus 334 syntax (Verilog) 439 syntax (VHDL) 425 with variable (VHDL) 78 forever (Verilog) not supported for synthesis 133 syntax 439 fork-join (Verilog) 437 forward and back annotation VHDL/Verilog compared 11

FPGA 3, 4 see*alsofield-programmablegate array* FSMs 193-269 see *also finite state machines* full adder 281, 283 full internal scan 75 function declaration syntax (Verilog) 435 declaration syntax (VHDL) 420 description 128-130 call syntax (Verilog) 437, 439 call syntax (VHDL) 421, 424 operand calls 52-53 translation (VHDL) 110-111

#### G

gate array 4 gate-to-pin ratio 16 generate (VHDL) for-generate 121-122 if-generate 121-122 syntax 422 generic Booth multiplier 297-301 declaration (VHDL) 155, 185, 296, 300 divider (synchronous) 306-312 n-bit LFSR 182-186 shift and add multiplier 293-297 Gray code test vector generation 334 state encoding 199, 214-217 see also finite state machines greatest common divisor 361-369 group syntax (VHDL) 419 group template syntax (VHDL) 419

## Η

half adder 281, 282 hardware description language HDL 8 definition 8 hierarchy 117 high impedance 315 high level constructs VHDL/Verilog compared 12 history Verilog 9 VHDL 8 identifies 50-51 comparator 157-158 D-type flip-flop inference 174-178 decoder 149 encoder 142 latch inference 166, 166-169

multiplexer 136-138 priority encoder 146 syntax (Verilog) 439 syntax (VHDL) 424 index named operands 53-54 inequality operator 65-66 initial (Verilog) LFSR tap setting 184 not supported for synthesis 436 syntax 436 initialize 75 inout data type (Verilog) 183 integer unbounded (VHDL) 78 interactive FSMs bidirectional 201, 262-269 unidirectional 201, 242-261 see also finite state machines intermediate variable 79 internal scan full 24 LSSD cell replacement 24 multiplexer cell replacement 24 partial 24 scan cell replacement 24 invariance 79

## J

Johnson state encoding 198, 199, 214-217 see also finite state machines L language extensions VHDL/Verilog compared 12 latch 163-171 cycle stealing 163 disadvantages 164 how inferred 164 not in library 164 preset & clear inputs 167 three phase 163 two phase 163 learning VHDL/Verilog compared 11 LFSR 179-186 see also linear feedback shift register library (VHDL) described 12 use of 103, 104 syntax 416 linear feedback shift register 179-186 counter 188-189 described 179-182 maximal length sequence 181 n-bit 182 one-to-many & many-to-one feedback structure 179 prohibited state 181 pseudo-random sequence 179

subprograms 127 taps 179 literals bit string 49 character string 49 enumeration (VHDL) 49 numeric 49 logical bit-wise operators 68 comparison operators 66-67 equations 134 operators 134 structure control 135 loop invariance 79 for (VHDL) 78 low level constructs VHDL/Verilog compared 12

#### М

managing large designs VHDL/Verilog compared 13 many-to-one LFSR feedback structure 179 McDonnell Douglas Aerospace 336 Mealy outputs (FSM) defined 200 examples 229-233 illustrated 196, 197 see also finite state machines memory array (Verilog) 184 device 172 microprocessor 354 mimimal FSM next state logic 200 see also finite state machines mode buffer (VHDL) 79 inout (VHDL) 79 out (VHDL) 79 model under test 234 modeling issues (FSM) 197 see also finite state machines module (Verilog) described 40 example 117 syntax 435 Moore outputs (FSM) defined 200 example 229-233 illustrated 196, 197 see also finite state machines multi-level design hierarchy 117 multiplexers 136-140, 315 2-1 136 4-1 137-138 8-1 139-140 multipliers Booth's algorithm 286

combinational 286, 287, 290-292 sequential 286, 287, 293-301 shift and add algorithm 287

#### N

named notation 117 negedge (Verilog) 78, 125, 173-174 net data types (Verilog) declaration syntax 434 next (VHDL) described 133 syntax 425 non-blocking procedural assignment (Verilog) description 94 example use of 94, 178 syntax 438 in for loops 95 non-recurring engineering 3 non-static data object 85 loop 85, 86 slice 85 NRE 3 null (VHDL) syntax 426 nullified subprogram (VHDL) 80 NUMERIC BIT (VHDL) 59 NUMERIC_STD (VHDL) 59, 104

## 0

one-to-many LFSR feedback structure 179 ones complement 279, 281 operands aggregates 51-52 enumeration literals (VHDL) 49 functions call 52-53 identifier 50-51 indexed named 53-54 listed 48 literal 49-50 numeric literals 49 qualified aggregate (VHDL) 54-55 qualified expression (VHDL) 54-55 record & record element 57-58 slice named 53-54 string literals 49 type conversion (VHDL) 56-57 operators arithmetic 63 concatenation 70 conditional (Verilog) 71 equality 65-66 inequality 65-66 listed (VHDL) 60 listed (Verilog) 61 listed (VHDL/Verilog) 62 logical bit-wise 68

logical comparison 66-67 overloaded (VHDL) 59, 105-106 relational 64-65 shift 69 sign 64 reduction (Verilog) 70-71 replication (Verilog) 70 VHDL/Verilog compared 13 optimal FSM state encoding 200 see also finite state machines optimization gate level 21 logic level 20 RTL level 20 others (VHDL) 78, 87, 88, 317 overflow 282, 289 overloaded parameter 184 overloaded (VHDL) operators 59, 105-107 subprograms 105-106

## P

package (VHDL) definition 40 NUMERIC BIT 59 NUMERIC_STD 59, 104, 408-412 STANDARD 400 STD_LOGIC_1076 105, 400-407 syntax 415 TEXTIO 399 using 103-104 package body (VHDL) definition 40 syntax 415 parameter (Verilog) syntax 434 parameterizable model decoder 154-156 generic LFSR 184-186 multiplier - shift & add 221-297 multiplier - Booth 297-301 VHDL/Verilog compared 13 parentheses left to right priority 135 partial internal scan 75 partial products forming 290 summing 291 partitioning 76 posedge (Verilog) 78, 125, 173-174 positional notation 117 predefined attributes (VHDL) listed 396-397 priority encoders 145-147 procedure (VHDL) concurrent 13, described 126 example 127-128 concurrent call syntax (VHDL)

421 declaration syntax (VHDL) 420 sequential call syntax (VHDL) 424 process (VHDL) syntax 421 prohibited state LFSR 181 pseudo-random 179, 336

## Q

qualified aggregate (VHDL) 54-55 qualified expression (VHDL) 54-55, 80

## R

race conditions 75, 164 **RAM 354** readability VHDL/Verilog compared 13 records (VHDL) 57-58 reduction operator (Verilog) 70-71, 182 register data type (Verilog) syntax 435 relational operators 64-65 relative time generated vectors 327-330 repeat syntax (Verilog) 439 replication (Verilog) operator 70 reserved words Verilog 429 **VHDL 395** resource sharing 110-111 return (VHDL) syntax 426 reuse 76 ripple-carry 279 rising_edge 172, 173, 174, 205 **RTL** synthesis defined 17 see also synthesis

## S

scan chain 76 scheduling an event 89 scope (VHDL) 82 sensitivity list (VHDL) 77, 83, 125, 133 see also event list (Verilog) sequential begin-end block (Verilog) 437 FSM next state logic 200, 234-236, 238-242 FSM output logic 200, 236-242 statements defined 41 statements listed (VHDL) 413 shift operators 69 shifters barrel 277

#### <u>Index</u>

combinational 273-277 synchronous 273, 278 sign operators 64 signal (VHDL) assignment syntax (VHDL) 422, 423 computation of 133 declaration syntax (VHDL) 419 example use of 91, 92 in for loop 93 scheduling 89, 90 simulation defined 14 fault 15 see also fault simulation skew 315, 319 slice named operands 53-54 standard cell 4 state diagram (FSM) 195-196 see also finite state machines state encoding 199-200 218-228 examples 218-228 formats 199-200 see also finite state machines state table (FSM) 195-196 see also finite state machines statements declarative 41 concurrent 41 sequential 41 see also declarative statements, concurrentstatementsand sequentialstatements structural replication VHDL/Verilog compared 13 structure configurations (VHDL) 115-116 Course/medium grain 121-124 course grain 135, 115-121 fine grain 125-130 logical 135 medium grain 125 of a design 115-130 synthesized logic 135 subprograms advantage of 76 comparison of 126 definition 125-126 linear feedback shift register 127 nullified 82 overloading (VHDL) 82, 105-106 see also functions, procedures (VHDL)andtasks(Verilog) subtractors combinational 279-284 synchronous 284-285 underflow 282 subtype (VHDL) syntax 418 synchronous adder 284

counters 186-189 dividers 286, 287, 306-312 elements 163 FSM reset 198, 199, 212-213 logic 163 multipliers 286, 287, 293-301 resets 175-177 shift register 273, 278 subtractor 284-285 system tasks and functions (Verilog) \$random (Verilog) 336, 337 described 324 described 430-434 listed 431 synthesis defined 17

#### Т

taps LFSR maximal length sequence 179, 180 LFSR settings 179 task (Verilog) 78 task (Verilog) described 126 example 127-128 call syntax 429 declaration syntax 436 test bench 323 see also test harness test fixture 323 see also test harness test harness 13, 323, 325 test synthesis defined 22 test vectors 321-344 absolute time generated 327-328, 331-333 ATPG 326 checking 325 clock signals 326-327 comparing expected results on-the-fly 325 326-327, 336-339 reference 325 relative time generated 327-330 repetitive 334 reset signals 327 stimulus 325 stored in an array 325 339-341 stored in system file 325 tri-state 335 testability 75 top-down 75 translation functions (VHDL) 109-110tri-state buffers 315-320 pipelined model 347 two dimensional array 184 Two's complement 279, 281, 287, 288, 291

type buffer (VHDL) 182 conversion (VHDL) 56-57 inout (Verilog) 183 syntax (VHDL) 418 **U** 

#### unconstrained arrays (VHDL) 80, 92 subprogram parameters 92 underflow 282 underscores identifier (VHDL) 50 underscore (Verilog) 184 unidirectional FSMs 201, 262 see *also finite state machines* unsigned 184, 336 use (VHDL) 103, 104 syntax 416

#### $\boldsymbol{V}$

value set 44 variable (VHDL) assignment of in delta delays 91 assignment syntax 423 assignments 92 in for loops 93 intermediate 79 not scheduled 89 declaration syntax 419 verboseness VHDL/Verilog compared 13

#### W

wait (VHDL) bad FSM model 202-203 not necessary for flip-flops 78, in a process 125, in a procedure 126, latch or flip-flop inference 172-173, syntax 423 while (VHDL) 133 syntax (Verilog) 439 syntax (VHDL) 425 width qualification (VHDL) 80 wired logic 90

XNOR LFSR feedback logic 179 XOR LFSR feedback logic 179