
HDL Chip Design
A practical guide for designing, synthesizing and

simulating ASICs and FPGAs using VHDL or Verilog

Douglas J Smith

Foreword by Alex Zamfirescu

Doone
Publications

HDL Chip Design

© 1996 by Doone Publications, Madison, AL, USA
First printing June 1996,

Second printing January 1997, minor revisions
Third printing June 1997, minor revisions

All rights reserved. No part of this book may be reproduced or transmitted in any
form or by any means, electronic or mechanical, including photocopying,

recording or by any information storage and retrieval system, without written
permission from the publisher.

ISBN 0-9651934-3-8
Library of Congress Catalog Card Number: 96-84641

Doone
Publications

7950 Hwy 72W #G106. Madison
AL. 35758. USA
Tel: 1-800-311-3753
Fax: 205-837-0580
Int. Tel/Fax: +1 205-837-0580
email: astnith@doone. com
web: http: //www. doone. com

Cover graphic designed using ModelView from Intergraph Software Solutions.
Interior design: Doone Publications.

Package STANDARD & package TEXTIO reprinted from IEEE Std 1076-1993 IEEE Standard VHDL
Language Reference Manual, Copyright © 1994 by the Institute of Electrical and Electronics Engineers,
Inc.
Standard logic Package STD_LOGIC_1164 (IEEE 1164) reprinted from 1164-1993IFFF Standard Multivalue
Logic System for VHDL Model Interoperability, Copyright © 1993 by the Institute of Electrical and Electronics
Engineers, Inc.
Standard synthesis package NUIMERIC_STD (IEEE 1076. 3) reprinted from IEEE Draft Standard P1076. 3,
dated 1995, Draft Standard VHDL Synthesis Package, Copyright © 1995 by the Institute of Electrical and
Electronics Engineers, Inc. This is an unapproved draft of a proposed IEEE Standard, subject to change.
Use of information contained in the unapproved draft is at your own risk.
The IFFF disclaims any responsibility or liability resulting from the placement and use in this product.
Information is reprinted with the permission of the IEEE.

HDL Chip Design

FOREWORD

The EDA industry is an increasingly challenging area in which to be working. I
work at VeriBest Incorporated and have been in the EDA industry for many
years, and I am fully aware of the books that are available. This one, however, is
unique as it deals extensively with both VHDL and Verilog in a comparative
manner and includes many graphic examples of synthesized circuits. Doug Smith,
also of VeriBest Inc., has been mastering the valuable art of Hardware Description
Language (HDL) chip design for many years in both European and American
companies. He has cleverly captured years of design experience within the pages
of this book.

The abundant examples throughout show complete functional designs and not
just snippets of code. Doug has spent endless months researching HDL and
design topics to ensure that people in the EDA industry were in agreement with
his methods. I am certainly an advocate of Doug's HDL guide for EDA veterans
and first semester EE freshmen alike. His tips on planning and executing HDL
designs (including the modeling caveats) are invaluable. Designers can surely
benefit by applying his precepts and principles using the techniques emerged
from his design experience. You will probably keep this book close to your desk
for many projects to come.

Often, worth is measured by magnitude, however this book not only contains
more examples than any other previously published work dealing with HDL driven
design, but is more comprehensive than any other book of synthesis recipes
whatsoever. A technical work must stand or fall by its accuracy and authority;
"HDL Chip Design" stands head-and-shoulders over all other books covering
this subject.

The authority of this work rests on almost a lifetime of practical experience,
through his career. Its accuracy has been verified through machine-processing
of all the examples, and by leading industry experts. As a result "HDL Chip
Design" is the very best hands-on book you can own today. It will enable you to
survive in the competitive world of HDL chip design, and will be a beacon in
your quest for perfect HDL design.

IEEE Project 1076. 3 (Synthesis Packages) Chariman
IEC TC93 Working Group (HDLs) Convenor

iii

HDL Chip Design

ABOUT THE AUTHOR

Douglas Smith was born in England, and began his career with a four year
apprenticeship in a company developing and manufacturing radiation monitoring
equipment. He received a B. Sc. in Electrical and Electronic Engineering from Bath
University, England, in 1981. He worked at a number of companies in England
performing digital design and project management of microprocessor based circuit
boards and associated ICs. These IC's included PLD, FPGA, gate array ASICs and
standard cell ASIC devices for applications such as ring laser gyro control and frequency
hopping radios. He then moved into the EDA industry by becoming applications
manager and then product marketing manager for all synthesis products at GenRad
Ltd. When GenRad exited from the EDA industry he moved to the USA to Intergraph
Electronics, now VeriBest Incorporated, where he is now a member of the technical
staff. Doug is currently on the two working groups for VHDL and Verilog, whose charter
is to develop public domain synthesis interoperability standards for model portability
across multiple synthesis tools.

This book is dedicated to my mum and dad,
who are far away,

but always in my thoughts.

iv

HDL Chip Design

ACKNOWLEDGMENTS
My biggest thanks go to my wife Anne, who apart from looking after two active
young children during the day, found time and energy in the evenings to do the
drawings and layout the pages of this book.

i thank my daughter Zoe, who at one and a half years, was able to provide some
interesting edits to my manuscript. My son, Alexander, at five and a half years, often
gave me an excuse to break from writing to play "Power Rangers" or "Cowboys". 1
must also mention my in-laws, Margaret and Godfrey, and thank them for their
interest and encouragement; they now know a new definition for a flip-flop.

I also thank Intergraph Electronics, now VeriBest Incorporated, for allowing me the
use of their computers and CAE tools to verify the HDL models in this book.

Special thanks are due to the following four individuals, listed in alphabetical order,
for their technical reviews. They are each experts in the field of hardware description
languages, and the technology employed by synthesis and simulation tools. I
especially appreciate their efforts in taking the time out of their already busy schedules.

J. Bhasker (Bhasker) Lucent Technologies, Bell Laboratories.

Gabe Moretti VeriBest Incorporated

Jenjen Tiao Lucent Technologies, Bell Laboratories.

Alex Zamfirescu VeriBest Incorporated

Finally, I am very grateful to Charles Montgomery for reviewing the text for grammatical
errors, and especially ensuring my English spelling was suitably converted to
American.

V

HDL Chip Design

PREFACE

This book is intended for practicing design engineers, their managers who need to gain
a practical understanding of the issues involved when designing ASICs and FPGAs,
and students alike.

The past 10 years has seen a dramatic change in the way digital design is performed.
The need to reduce the time to market, the technology advancements and new
innovative EDA software tools, have all helped to fuel this dramatic change. In terms of
technology, transistors can be manufactured with submicron channel widths, resulting
in reduced size (100 times smaller than the thickness of a human hair) and improved
switching speed. This has lead to silicon chips containing a million transistors becoming
common, and large complex systems being implemented within them. The need to be
able to design chips of such size, in a timely manner, has lead to innovative EDA tools
being developed with automatic synthesis tools being the major advancement. The
introduction of commercial synthesis tools has enabled top down design methodologies
to be adopted, starting with an abstract description of a circuit's behavior written in a
hardware description language. More recently, the rate of change has slowed and the
introduction of standards has enabled EDA tool vendors to develop integrated design
tools and with far less risk.

There are two industry standard hardware description languages VHDL and Verilog,
thanks to the efforts of the VI (VHDL International) and OVI (open Verilog International).
Both the VI and OVI are industry consortiums of design tool vendors, chip vendors,
users (designers) and academia. The VI succeeded in establishing VHDL as an IEEE
standard (IEEE 1076) first in 1987 and revised it in 1993 (IEEE 1076-1993). The
second to become a standard was Verilog. The OVI established Verilog as an IEEE
standard in 1995 (IEEE 1364-1995). Although Verilog became an IEEE standard after
VHDL, it has been used by digital designers for far longer.

The benefits of adopting a top-down design methodology, adhering to the use of these
standards is that, 1) design source files are transportable between different EDA tools
and, 2) the design is independent of any particular silicon vendor's manufacturing
process technology.

The emphasis of this book is on digital design using such standards.

vi

HDL Chip Design

BOOK OVERVIEW
VHDL and Verilog are covered equally throughout this book. Code examples show VHDL
on the left and Verilog on the right because VHDL became a standard first. All language
reserved words are shown emboldened. Also, all HDL code related issues in the text apply
equally to VHDL and Verilog unless explicitly stated otherwise. Where synthesized circuits
are shown they are a result of synthesizing either the VHDL or Verilog version of the
associated model.

This book is divided into 12 chapters, a glossary and two appendices.

Chapter 1, "Introduction", defines what ASIC and FPGA devices are, and the criteria for
choosing which to use in a given application. Hardware description languages are defined
and a comprehensive listing of comparative features between VHDL and Verilog is given.
Electronic Design Automation (EDA) tools are discussed with a particular emphasis on
synthesis tools.

Chapter 2, "Synthesis Constraint and Optimization Tutorials", shows the effect of different
constraints on the synthesized circuit of a particular design. Also, a typical design constraint
scenario is posed and a description of how constraints for it are specified, described. For
completeness, command line optimization commands are included for the VeriBest
Synthesis tools.

Chapter 3, "Language Fundamentals", introduces the fundamentals of the VHDL and
Verilog hardware description languages. Code structure is described by first defining the
principle of design units and how they link together. The code structure of subsections
within a design unit are described all the way down to subfunctions. Assignments are also
defined together with the expressions within them. Includes a fully detailed description of
the operands and operators that make up an expression.

Chapter 4, "Design/Modeling Recommendations, Issues and Techniques", is one of the
most important chapters to the practicing digital design engineer. It provides a list of
recommendations, issues and techniques to consider when designing ASICs or FPGAs,
from both a design and HDL modeling perspective.

Chapter 5, "Structuring a Design", is devoted to structuring HDL code and hence inferred
hardware structure when modeling at the register transfer level. Code constructs are grouped
and discussed separately based on their level of granularity.

Chapter 6, "Modeling Combinational Logic Circuits", shows HDL models of commonly
used circuit functions that are implemented using combinational logic only. In most cases
different ways of modeling the same circuit is shown. Circuit functions covered include:
multiplexers, encoders, priority encoders, decoders, comparators and ALUs.

Chapter 7, "Modeling Synchronous Logic Circuits", shows how D-type latches and D-
type flip-flops are inferred in HDL models. Also included, are various models of linear-
feedback shift-registers and counters.

Chapter 8, "Modeling Finite State Machines", covers in detail the different aspects of
modeling finite state machines. Shown are: good and bad coding styles, when resets are

vii

HDL Chip Design

needed for fail safe behavior, state machines with Mealy or Moore type outputs, state
machines with additional synchronous logic modeled in the code of the state machine,
and multiple interactive state machines.

Chapter 9, "Circuit Functions Modeled Combinational or Synchronously", describes how
shifters, adders, subtractors, multipliers and dividers may be modeled for a combinational
or synchronous logic implementation.

Chapter 10, "Tri-State Buffers", contains various examples of how tri-state buffers are
inferred.

Chapter 11, "Writing Test Harnesses", describes the structure of a simulation test harness
and all related issues. Detailed examples show how input stimuli may be generated, and
how outputs from the model under test may be automatically monitored and tested
against reference data.

Chapter 12, "Practical Modeling Examples", contains five larger modeling examples.
Each example is posed as a problem and solution. The first shows how an internal tri-
state bus is used to reduce circuit area. The second example is of a digital alarm clock.
The third example is a three-way round-robin priority encoder used to arbitrate between
three microprocessors accessing the same RAM. The fourth example is of a circuit that
computes the greatest common divisor of two inputs. It is modeled at the algorithmic
level in C, VHDL and Verilog, and again at the RTL level in VHDL and Verilog, and uses
common test data files. Test harnesses for the RTL level models are also shown. The fifth
example is a model of an error detection and correction circuit that sits between a
microprocessor and RAM. Critical data is stored in the RAM along with parity check bits.
When data is retrieved single bit errors are detected and corrected, while double bit-
errors are simply detected and an interrupt generated.

Glossary, contains the definition of over 200 terms.

Appendix A, "VHDL", contains reference information relating to VHDL: reserved words,
predefined attributes, listings of packages STANDARD, TEXTIO, STD_LOG1C_1164 and
NUMERIC_STD, and reference information relating to VHDL constructs and where they
are used.

Appendix B, "Verilog", contains reference information relating to Verilog: reserved words,
compiler directives, system tasks and functions, and reference information relating to
VHDL constructs and where they are used.

Disclaimer

Every effort has been made to make this book as complete and as accurate as possible. However, there
may be mistakes both typographical and in content. Therefore, this text should be used only as a
general guide and not the ultimate reference source on the two languages. Please refer to the respective
LRMs for syntax accuracy.

The author and publisher shall not be liable for any direct or indirect damages arising from any use,
direct or indirect, of the examples provided in this book.

viii

HDL Chip Design

ABBREVIATIONS & ACRONYMS

The list below contains the abbreviations and a

ALU Arithmetic Logic Unit
AQL Average Quality Level
ASIC Application-Specific Integrated

Circuit
ATPG Automatic Test Pattern Generation
BIST Built-in Self-Test
CAD Computer Aided Design
CAE Computer Aided Engineering
CDFG Control-Data Flow-Graph
CMOS Complementary Metal-Oxide

Semiconductor
CPU Central Processing Unit
DFT Design-For-Test
DOD Department of Defence
EDA Electronic Design Automation
EDAC Error Detection And Correction
FIFO First-In First-Out
FPGA Field Programmable Gate Array
FSM Finite State Machine
GCD Greatest Common Divisor
GHDL GenRad's Hardware Description

Language
HDL Hardware Description Language
I/O Input/Output
IC Integrated Circuit
IEEE IEEE Institute of Electrical and

Electronics Engineers
JEDEC Joint Electronic Device Engineering

Council

icronyms used in this book.

LFSR Linear Feedback Shift Register
LRM Language Reference Manual
LSB Least Significant Bit
LSI Large-Scale Integration
LSSD Level-Sensitive Scan Device
MCM Multichip Module
MSB Most Significant Bit
MSI Medium Scale Integration
NRE Non-Recurring Engineering
OVI Open Verilog International
PCB Printed Circuit Board
PLD Programmable Logic Design
RAM Random Access Memory
ROM Read Only Memory
RTL Register Transfer Level
SDI Scan Data In
SDF Standard Delay Format
SDO Scan Data Out
TE Test Enable
VHDL VHSIC Hardware Description

Language
VHSIC Very High Speed Integrated Circuit
VI VHDL International
VITAL VHDL Initiative Toward ASIC

Libraries
VLSI Very-Large-Scale Integration

ix

HDL Chip Design

CONTENTS
C h a p t e r O n e : In t roduct ion

Introduction 3
ASIC and FPGA devices 3
Top-Down Design Methodology 5
Hardware Description Languages (HDLs) 8
Design Automation Tools 14
HDL support for synthesis 25

C h a p t e r Two: Synthesis Cons t ra in t & O p t i m i z a t i o n Tutor ia ls
Introduction 29
Combinational logic optimization 30
A typical design constraint scenario 32

C h a p t e r T h r e e : L a n g u a g e F u n d a m e n t a l s
Design Entities 39

VHDL Design Entity 39
Verilog Design Entity 40

Code Structure 41
Declaration statements 41
Concurrent statements 41
Sequential statements 41

Data Types and Data Objects 44
VHDL Data Types 45
VHDL Data Objects 46
Verilog Data Types 47
Verilog Data Objects 47

Expressions 48
Operands 48

Literal Operands 49
Identifier Operands 50
Aggregate Operands (VHDL) 51
Function Call Operands 52
Index & Slice Name Operands 53
Qualified Expression Operands (VHDL) 54
Type Conversion Operands (VHDL) 56
Record & Record Element Operands (VHDL) 57

Operators 59
Overloaded Operators (VHDL) 59
Arithmetic Operators 63
Sign Operators 64
Relational Operators 64
Equality & Inequality Operators 65
Logical Comparison Operators 66
Logical Bit-wise Operators 68
Shift Operators 69

x

HDL Chip Design

Concatenation & Verilog replication Operators 70
Reduction Operators (Verilog) 70
Conditional Operator (Verilog) 71

C h a p t e r Four: Des ign/Model ing R e c o m m e n d a t i o n s , Issues a n d Techniques
Introduction 75
Design and Modeling Recommendations 75

1. Design and process recommendations 75
2. Power reduction recommendations 75
3. Design for test (DFT) and test issues 75
4. Test harnesses recommendations 76
5. General HDL modeling recommendations 76
6. Ensuring simulation accuracy 77
7. Improving simulation speed 77
8. Synthesis modeling recommendations 78
9 Joint simulation and synthesis modeling recommendations 79

Simulation Compilation Issues 79
1. Output and buffer port modes (VHDL) 79
2. Width qualification of unconstrained arrays (VHDL) 80
3. Operators to the left of the assignment operator 80
4. Unconstrained subprogram parameters in reusable models (VHDL) 81
5. Invisible subprograms from separate packages (VHDL) 82
6. Subprogram overloading using type integer and subtype natural (VHDL) 82
7. Concatenation in the expression of a subprogram's formal list (VHDL) 82

Simulation Run Time Issues 83
1. Full sensitivity/event list (VHDL & Verilog) 83
2. Reversing a vectored array direction (VHDL & Verilog) 83
3. True leading edge detection - wait and if (VHDL) 84
4. Order dependency of concurrent statements 84

Synthesis Compilation Issues 85
1. Non-static data objects and non-static loops (VHDL & Verilog) 85

Joint Simulation and Synthesis Issues 87
1. When to use others (VHDL) and default (Verilog) 87
2. Signal and variable assignments (VHDL) 89
3. Blocking and non-blocking procedural assignments (Verilog) 94
4. Don't care inputs to a case statement (VHDL & Verilog) 96
5. Don't care outputs from a case statement (VHDL & Verilog) 97
6. Comparing vector array types of different width (VHDL) 98

General Modeling Issues 99
1. Using Attributes (VHDL) 99
2. Using Packages (VHDL) 103
3. Operator and subprogram overloading (VHDL) 105
4. Deferred constants (VHDL) 108
5. Translation Functions - Extension and Truncation (VHDL) 109
6. Resource Sharing 110

C h a p t e r F ive: Structuring a D e s i g n
Structuring a Design 115
Course Grain 115

xi

HDL Chip Design

Configurations (VHDL) 115
Entity-architecture/module 117

Course/Medium Grain 121
For/if-generate (VHDL) 121
Block statement (VHDL) 123

Medium Grain 125
Fine Grain 125

Procedure/Task 126
Function 128

C h a p t e r Six: M o d e l i n g C o m b i n a t i o n a l Logic Circuits
Modeling Combinational Logic 133
Logical/Arithmetic Equations 134
Logical Structure Control 135
Multiplexers 136
Encoders 141
Priority Encoders 145
Decoders 148
Comparators 157
ALU 159

C h a p t e r Seven: M o d e l i n g Synchronous Logic Circui ts
Introduction 163
Modeling Latch Circuits 163

How latches are inferred 164
Unintentional latch inference from case statements . 165

The D - Type Flip - Flop...172
VHDL flip-flop inference 172
Verilog flip-flop inference 173

Linear Feedback Shift Registers 179
XOR or XNOR feedback gates 179
One-to-many or many-to-one feedback structure 179
What taps to use 180
Avoid becoming stuck in the prohibited state 181
Ensuring a sequence of all 2" values 181
Constructing generic n-bit LFSR models 182

Counters 186
Deciding on a counter's structure and modeling 186

C h a p t e r Eight: M o d e l i n g Fini te S t a t e M a c h i n e s
Introduction 195
The Finite State Machine 195
The State Table and State Diagram 195
FSM Design and Modeling Issues 197

1. HDL coding style 198
2. Resets and fail safe behavior 198
3. State encoding 199
4. Mealy or Moore type outputs 200

xii

HDL Chip Design

5. Sequential next state or output logic 200
6. Interactive state machines 201

Chapte r N i n e : Ci rcui t Functions m o d e l e d C o m b i n a t i o n a l l y o r Synchronously
Shifters 273

Combinational Shifters 273
Synchronous Shifters 278

Adders and Subtractors 279
Combinational adders and subtractors 279
Sequential adders and subtractors 280

Multipliers and Dividers 286
Combinational versus synchronous 286
Multiplier and Divider Algorithms 287

C h a p t e r Ten: Tr i -Sta te Buffers
Modeling Tri-State Buffers 315

C h a p t e r E leven: Test H a r n e s s e s
Introduction 323
Configurations (VHDL) 323
Assertion Statement (VHDL) 324
Special Simulation Constructs - System Tasks & Functions (Verilog) 324
Hardware Model Under Test 325
Vector Generation (Stimulus & Reference) 325

1. Vectors generated on-the-fly 326
a). Generating clock signals 326
b). Generating signals with a few transitions (resets) 327
c). Relative or absolute time generated signals 327
d). Repetitive stimulus using loops 334
e). Tri-state buffers for bidirectional signals 335
f). Example where all vectors generated on-the-fly 336

2. Vectors stored in an array 339
3. Reading test vector system files 341

Comparing Actual and Expected Results 344

Chapte r Twe lve : Pract ica l M o d e l i n g Examples
1. Tri-State Pipeline Stage for Area Efficiency 347
2. Digital Alarm Clock 350
3. Three-Way-Round-Robin Arbiter 354
4. Greatest Common Divisor (GCD) 361
5. Error Detection and Correction (EDAC) 369

Glossary ... 379

A p p e n d i x A : V H D L
Reserved Words 395
Predefined Attributes 396

xiii

HDL Chip Design

Package STANDARD - for language defined types and functions 398
Package TEXTIO - for language defined file manipulation 399
Package STD_LOGIC_1164 - IEEE 1164 for standard logic operations 400
Package NUMERIC_STD - IEEE 1076. 3 - standard for use with synthesis 408
VHDL Constructs 413

A p p e n d i x B: Ver i log
Reserved Words 429
Compiler Directives 429
System Tasks and Functions 430
Verilog Constructs 433

Index 441

EXAMPLES

C h a p t e r Four: D e s i g n / M o d e l i n g R e c o m m e n d a t i o n s , Issues a n d Techniques
Example 4. 1 Non-Static Slice 86
Example 4. 2 Non-Static Loop 86
Example 4. 3 Signal assignments & delta delay iterations (VHDL) 90
Example 4. 4 Variable assignments & delta delay iterations (VHDL) 91
Example 4. 5 Signal and variable assignments (VHDL) 92
Example 4. 6 Signal and variable assignments in a for loop (VHDL) 93
Example 4. 7 Blocking & non-blocking procedural assignments (Verilog) 94
Example 4. 8 Blocking & non-blocking assignments in a for loop (Verilog) 95
Example 4. 9 Effect of "don't care" output values 97
Example 4. 10 Comparing vectors of different width return a boolean FALSE 98
Example 4. 11 Type related VHDL attributes - 'base, 'left, 'right, 'high, and 'low 100
Example 4. 12 Array related VHDL attributes - 'range, 'reverse_range and 'length 101
Example 4. 13 Signal related VHDL attributes - 'stable and 'event 102
Example 4. 14 Data types defined in a package 104
Example 4. 15 Overloaded " +" operator 105
Example 4. 16 Overloaded subprogram 106
Example 4. 17 Using a deferred constant (VHDL) 108
Example 4. 18 Translation Functions 109
Example 4. 19 Automatic resource sharing 111

C h a p t e r Five: Structuring a D e s i g n
Example 5. 1 Structural configuration for simulation using a configuration 116
Example 5. 2 Course grain structuring - multi-level components 117
Example 5. 3 Course grain structuring - components connected via split busses 119
Example 5. 4 Course/medium grain structural replication - for/if-generate (VHDL) 121
Example 5. 5 Course/medium grain structuring using blocks (VHDL) 124
Example 5. 6 Fine grain structuring - procedure/task 127
Example 5. 7 Fine grain structuring - function 128
Example 5. 8 Fine grain structuring - separate subprograms 129

C h a p t e r Six: M o d e l i n g C o m b i n a t i o n a l Logic Circuits
Example 6. 1 Equations modeled using continuous assignments 133

xiv

HDL Chip Design

Example 6. 2 Parentheses used to control logical structure 135
Example 6. 3 One bit wide 2-1 multiplexer 136
Example 6. 4 Modeling styles of a 4-1 multiplexer 137
Example 6. 5 Two bit wide 8-1 multiplexer using case 139
Example 6. 6 An 8-3 binary encoder 141
Example 6. 7 An 8-3 binary priority encoder 145
Example 6. 8 A 3-8 binary decoder 148
Example 6. 9 A 3-6 binary decoder with enable 150
Example 6. 10 Four bit address decoder 152
Example 6. 11 Generic N to M bit binary decoder 154
Example 6. 12 Simple comparator 157
Example 6. 13 Multiple comparison comparator 158
Example 6. 14 An arithmetic logic unit 159

C h a p t e r Seven: M o d e l i n g S e q u e n t i a l Logic Circuits
Example 7. 1 Simple and multiple latch inference using if statements 166
Example 7. 2 Modeling latches with preset and clear inputs 167
Example 7. 3 Multiple gated enable latch 168
Example 7. 4 Latch inference from nested if statements 168
Example 7. 5 Inadvertent latch inference from a case statement 170
Example 7. 6 Latch inference from nested case statements 171
Example 7. 7 Flip-flops (+ve/-ve clocked) - VHDL attributes and function calls 174
Example 7. 8 Various flip-flop models 175
Example 7. 9 Combinational logic between two flip-flops 178
Example 7. 10 One-to-many 8-bit LFSR modified for 2^n sequence values 182
Example 7. 11 Generic n-bit LFSR 184
Example 7. 12 5-bit Up-by-one down-by-two counter 187
Example 7. 13 Divide by 13 clock divider using an LFSR counter 188
Example 7. 14 Divide by 16 clock divider using an asynchronous (ripple) counter 190
Example 7. 15 Divide by 13 clock divider using an asynchronous (ripple) counter 191

C h a p t e r Eight: M o d e l i n g Fini te S t a t e M a c h i n e s
Example 8. 1 Bad and good coded models of a three state FSM(FSM1) 202
Example 8. 2 One bad and four good models of an FSM 205
Example 8. 3 FSM with inputs or state value as the primary branch directive 210
Example 8. 4 FSM reset configurations 212
Example 8. 5 Angular position FSM using Gray and Johnson state encoding 214
Example 8. 6 FSM state encoding formats - Blackjack Game Machine 218
Example 8. 7 FSMs with a Mealy or Moore output 229
Example 8. 8 FSM with a Mealy and a Moore Output 232
Example 8. 9 FSM with sequential next state logic 234
Example 8. 10 FSM with sequentiol output logic 236
Example 8. 11 FSM with sequential next and output state logic - Blackjack 238
Example 8. 12 Unidirectional interactive FSMs 242
Example 8. 13 Two interactive FSM's controlling two rotors 262

C h a p t e r N i n e : Circui t Functions m o d e l e d C o m b i n a t i o n a l l y o r Sequent ia l l y
Example 9. 1 Combinational logic shifter 274
Example 9. 2 Combinational logic shifter with shift in and out signals 276

xv

HDL Chip Design

Example 9. 3 Combinational barrel shifter 277
Example 9. 4 Shift registers 278
Example 9. 5 Comment directives for Carry-Look-Ahead and Ripple-Carry adders 280
Example 9. 6 Combined adder and subtractor with detailed structure 281
Example 9. 7 Serial adder/subtractor 284
Example 9. 8 Signed combinational multiplier using shift and add algorithm 290
Example 9. 9 Generic sequential shift and add multiplier 293
Example 9. 10 Generic (n x m) bit sequential multiplier using Booth's Algorithm 297
Example 9. 11 10-bit divide by 5-bit combinational logic divider 301
Example 9. 12 Generic sequential divider 306

C h a p t e r Ten: Tr i -State Buffers
Example 10. 1 Modeling tri-state buffers 315
Example 10. 2 Tri-state buffers using case& VHDL selected signal assignment 317
Example 10. 3 Tri-state buffers using continuous signal assignments 319
Example 10. 4 Synchronously clocked tri-state buffers from concurrent and

sequential statements 319

All examples are available on disk, see order form at rear of book for details.

xvi

1
Introduction

Chapter 1 Contents

Introduction..3

ASIC & FPGA devices...3

Top-Down Design Methodology... 5

Hardware Description Languages (HDLs)...8

Design Automation Tools...14

HDL Support for Synthesis... 25

2

Chapter One: Introduction

Introduction

Traditionally, digital design was a manual process of designing and capturing circuits using
schematic entry tools. This process has many disadvantages and is rapidly being replaced by
new methods.

System designers are always competing to build cost-effective products as fast as possible in a
highly competitive environment. In order to achieve this, they are turning to using top-down
design methodologies that include using hardware description languages and synthesis, in addition
to just the more traditional process of simulation. A product in this instance, is any electronic
equipment containing Application-Specific Integrated Circuits (ASICs), or Field-Programmable
Gate-Arrays (FPGAs).

In recent years, designers have increasingly adopted top down design methodologies even though
it takes them away from logic and transistor level design to abstract programming. The introduction
of industry standard hardware description languages and commercially available synthesis tools
have helped establish this revolutionary design methodology. The advantages are clear and
engineers' design methods must change. Some of the advantages are:

• increased productivity yields shorter development cycles with more product features
and reduced time to market,
reduced Non-Recurring Engineering (NRE) costs,
design reuse is enabled,
increased flexibility to design changes,
faster exploration of alternative architectures
faster exploration of alternative technology libraries,
enables use of synthesis to rapidly sweep the design space of area and timing, and to
automatically generate testable circuits,

• better and easier design auditing and verification.

This book uses the two industry standard hardware description languages VHDL and Verilog.
Both languages are used world wide and have been adopted by the Institute of Electrical and
Electronic Engineers (IEEE). The particular language versions used in this book are IEEE 1076
'93 for VHDL and IEEE 1364 for Verilog. All models have been verified using the simulation and
synthesis tools developed by VeriBest Incorporated. Where synthesized logic circuits are shown
they have been optimized for area unless explicitly specified otherwise.

ASIC and FPGA devices

Standard "off-the-shelf" integrated circuits have a fixed functional operation defined by the chip
manufacturer. Contrary to this, both ASIC and FPGAs are types of integrated circuit whose
function is not fixed by the manufacturer. The function is defined by the designer for a particular
application. An ASIC requires a final manufacturing process to customize its operation while an
FPGA does not.

ASICs

An application-specific integrated circuit is a device that is partially manufactured by an ASIC
vendor in generic form. This initial manufacturing process is the most complex, time consuming,
and expensive part of the total manufacturing process. The result is silicon chips with an array of
unconnected transistors.

3

HDL Chip Design

The final manufacturing process of connecting the transistors together is then completed when
a chip designer has a specific design he or she wishes to implement in the ASIC. An ASIC vendor
can usually do this in a couple of weeks and is known as the turn-round time. There are two
categories of ASIC devices; Gate Arrays and Standard Cells.

Gate Arrays

There are two types of gate array; a channeled gate array and a channel-less gate array. A
channeled gate array is manufactured with single or double rows of basic cells across the silicon.
A basic cell consists of a number of transistors. The channels between the rows of cells are used
for interconnecting the basic cells during the final customization process. A channel-less gate
array is manufactured with a "sea" of basic cells across the silicon and there are no dedicated
channels for interconnections. Gate arrays contain from a few thousand equivalent gates to
hundreds of thousands of equivalent gates. Due to the limited routing space on channeled gate
arrays, typically only 70% to 90% of the total number of available gates can be used.

The library of cells provided by a gate array vendor will contain: primitive logic gates, registers,
hard-macros and soft-macros. Hard-macros and soft-macros are usually of MSI and LSI
complexity, such as multiplexers, comparators and counters. Hard macros are defined by the
manufacturer in terms of cell primitives. By comparison, soft-macros are characterized by the
designer, for example, by specifying the width a particular counter.

Standard cell

Standard cell devices do not have the concept of a basic cell and no components are prefabricated
on the silicon chip. The manufacturer creates custom masks for every stage of the device's
process and means silicon is utilized much more efficiently than for gate arrays.

Manufacturers supply hard-macro and soft-macro libraries containing elements of LSI and VLSI
complexity, such as controllers, ALUs and microprocessors. Additionally, soft-macro libraries
contain RAM functions that cannot be implemented efficiently in gate array devices; ROM functions
are more efficiently implemented in cell primitives.

FPGAs

The field-programmable gate array is a device that is completely manufactured, but that remains
design independent. Each FPGA vendor manufactures devices to a proprietary architecture.
However, the architecture will include a number of programmable logic blocks that are connected
to programmable switching matrices. To configure a device for a particular functional operation
these switching matrices are programmed to route signals between the individual logic blocks.

The choice of ASIC or FPGA

The nonrecurring engineering (NRE) costs involved with customizing an ASIC is currently
somewhere in the region of $20, 000 to more than $100, 000. However, after this initial outlay the
unit cost for production devices might only be about $10. This is much cheaper than the production
costs of FPGA devices that are typically $150 to $250 per device. The advantage of FPGAs is
that they are quick and easy to program (functionally customize). Also, FPGAs allow printed
circuit board CAD layout to begin while the internal FPGA design is still being completed. This
procedure allows early hardware and software integration testing. If system testing fails, the
design can be modified and another FPGA device programmed immediately at relatively low
cost. For these reasons, designs are often targeted to FPGA devices first for system testing and

4

Chapter One: Introduction

for small production runs. The design is then retargeted to an ASIC for larger scale production.

Design trade-offs must be considered when retargeting FPGAs to ASICs. For example, a long
hold time may never appear in an ASIC because of the improved speed of operation.

Top-Down Design Methodology

In an ideal world, a true top-down system level design methodology would mean describing a
complete system at an abstract level using a Hardware Description Language (HDL) and the use
of automated tools, for example, partitioners and synthesizers. This would drive the abstract
level description to implementation on PCBs or MCMs (Multichip Modules) which contain: standard
ICs, ASICs, FPGA, PLDs and full-custom ICs. This ideal is not fulfilled, however, EDA tools are
constantly being improved in the strive towards this vision. This means designers must constantly
take on new rolls and learn new skills. More time is now spent designing HDL models, considering
different architectures and considering system test & testability issues. Practically no time is
spent designing at the gate level.

Technology advancements over the last six years or so has seen a tenfold increase in the number
of gates that an ASIC can contain: 100K gates is now common. This has increased the complexity
of standard ICs and ASICs and resulted in the concept, "system on a chip". A top-down design
methodology is the only practical option to design such chips.

Any ASIC or FPGA designs in a hardware development project are usually on the critical path of
the development schedule. Traditionally, such designs have been produced by entering them as
circuit diagrams using a schematic entry tool. In rare cases for reasons of cost, this may still be
a viable design method for small devices such as PLDs. Provided the budget is available for
simulation and synthesis tools, a top-down design approach using a Hardware Description
Language (HDL), is by far the best design philosophy to adopt.

The saying, "a picture paints a thousand words", seems to go against the grain of using HDLs
instead of schematics. This is evident in the popularity of graphical front end input tools which
output HDL models. However, there are many advantages of adopting a top-down design
methodology as summarized in the introduction on page 3.

Imagine using schematics to design a 100k gate ASIC; a small design change could result in
major time consuming changes to the schematics. The philosophy of using a hardware description
language to develop electronic hardware is similar to that of a software development project
using a high-level programming language such as C.

The levels of hierarchical refinement of electronic hardware in a top-down design process, is
shown in Figure 1. 1. It indicates how synthesis is the key link in this process.

5

HDL Chip Design

Figure 1.1 Hierarchical refinement of electronic hardware in a top down design environment

A top-down design methodology takes the
HDL model of hardware, written at a high
level of behavioral abstraction (system or
algorithmic), down through intermediate
levels, to a low (gate or transistor) level;
Figure 1. 2.

Figure 1. 2 Behavioral level of abstraction pyramid

6

Chapter One: Introduction

A typical ASIC design flow using simulation
and RTL level synthesis is shown in Figure
1. 4. The same test vectors are used to verify
the RTL and synthesized netlist level models.
The netlist level corresponds to the gate
level, but may also include larger macro
cells, or even bigger mega cells. By
comparing the simulation results at each
level, netlist level testing can be automated.

Figure 1. 4 Typical ASIC design flow using
simulation and RTL level synthesis.

7

The term behavior represents the behavior of intended hardware and is independent of the level
of abstraction by which it is modeled. A design represented at the gate level still represents the
behavior of hardware intent. As hardware models are translated to progressively lower levels
they become more complex and contain more structural detail. The benefit of modeling hardware
at higher levels of behavioral abstraction is that designers are not overwhelmed with large amounts
of unnecessary detail and the complexity of the design task is reduced.

Hardware structure is ignored when
modeling hardware at the two high levels
of behavior. However, when modeling
hardware at the RTL level it is essential
to keep the hardware intent in mind at all
times. Figure 1. 3 shows how the different
behavioral levels of abstraction overlap
between the different design domains of
pure abstraction, structural
decomposition and physical
implementation.

Figure 1.3 Design domain for different
levels of design abstraction

Hardware Description Languages (HDLs)

What is an HDL?

A Hardware Description Language (HDL) is a software programming language used to model
the intended operation of a piece of hardware. There are two aspects to the description of
hardware that an HDL facilitates; true abstract behavior modeling and hardware structure modeling.

Abstract behauior modeling. A hardware description language is declarative in order to facilitate
the abstract description of hardware behavior for specification purposes. This behavior is not
prejudiced by structural or design aspects of the hardware intent.

Hardware structure modeling. Hardware structure is capable of being modeled in a hardware
description language irrespective of the design's behavior.

The behavior of hardware may be modeled and represented at various levels of abstraction
during the design process. Higher level models describe the operation of hardware abstractly,
while lower level models include more detail, such as inferred hardware structure.

History of VHDL

1980

The USA Department of Defense (DOD) wanted to make circuit design self documenting, follow
a common design methodology and be reusable with new technologies. It became clear there
was a need for a standard programming language for describing the function and structure of
digital circuits for the design of integrated circuits (IC's). The DOD funded a project under the
Very High Speed Integrated Circuit (VHSIC) program to create a standard hardware description
language. The result was the creation of the VHSIC hardware description language or VHDL as
it is now commonly known.

1983

The development of VHDL began under the VHSIC contract with a joint effort by IBM, Texas
Instruments and Intermetrics. These companies pooled their experiences of high level languages
and top-down design techniques to jointly develop the new language together with associated
simulation tools.

VHDL provided government contractors with a standard method of communicating that facilitated
top-down design techniques, and addressed the concern of how to upgrade systems when
technologies became obsolete.

1987

Two significant things happened. First, the DOD mandated that all digital electronic circuits be
described in VHDL, and second, the Institute of Electrical and Electronics Engineers (IEEE)
ratified it as IEEE Standard 1076. The success of VHDL was now assured.

The F-22 advanced tactical fighter aircraft was one of the first major government programs to
mandate the use of VHDL descriptions for all electronic subsystems in the project. Different
subcontractors designed various subsystems, and so the interfaces between them were crucial
and tightly coupled. The VHDL code was self-documenting and formed the basis of the top-
down strategy. The success of this project helped establish VHDL and top-down design
methodology.

8

HDL Chip Design

Chapter One: Introduction

Now that VHDL was an industry standard, Electronic Design Automation (EDA) vendors could
start developing tools for it with considerably less risk. However, demand was low and the
investment needed to develop commercial quality tools was high, so few tools were developed.
This initial lack of tools meant VHDL was slow to be adopted commercially.

1993

The VHDL language was revised to IEEE 1076 ' 93.

1996

Both commercial simulation and synthesis tools became available adhering to IEEE 1076 '93
standard. This enabled designers to start using this version of the standard in a top-down design
methodology. A VHDL package for use with synthesis tools become part of the IEEE 1076
standard, specifically it is IEEE 1076. 3. This will greatly improve the portability of designs between
different synthesis vendor tools. Another part of the standard, IEEE 1076. 4 (VITAL), has been
completed and sets a new standard for modeling ASIC and FPGA libraries in VHDL. This will
make life considerably easier for ASIC vendors, EDA tool vendors and designers.

History of Verilog

1981

A CAE software company called Gateway Design Automation was founded by Prabhu Goel.
One of Gateway's first employees was Phil Moorby, who was an original author of GenRad's
Hardware Description Language (GHDL) and HILO simulator.

1983

Gateway released the Verilog Hardware Description Language known as "Verilog HDL" or simply
"Verilog" together with a Verilog simulator.

1985

The language and simulator were enhanced; the new version of the simulator was called "Verilog-
XL".

1983 to 1987

Verilog-XL gained a strong foothold among advanced, high-end designers for the following reasons:

• The behavioral constructs of Verilog could describe both hardware and test stimulus.
• The Verilog-XL simulator was fast, especially at the gate level and could handle designs

in excess of 100, 000 gates.
• The Verilog-XL simulator was an "interpreter" (interpretive software executes source

code directly instead of pre-compiling the source code into intermediate "object"
code). The interpretive nature of Verilog-XL gave hardware design engineers
something they wanted and needed with an easy way to interactively debug their
hardware designs. With Verilog-XL, engineers could do more than just model and
simulate, they could also troubleshoot a design the same way they would troubleshoot
real hardware on a breadboard.

1987

Verilog-XL was becoming more popular. Design sizes of a single chip began to exceed the

9

HDL Chip Design

realistic capacity of many other simulator products. Gateway began to aggressively pursue ASIC
foundry endorsement. Another start-up company, Synopsys, began to use the proprietary Verilog
behavioral language as an input to their synthesis product. At the same time, the IEEE released
the "VHDL" standard, drawing attention to the possibilities of "top down design" using a behavioral
Hardware Description Language and synthesis. All of these factors combined to increase the
use and acceptance of Verilog-XL.

December 1989

Cadence bought Gateway.

Early 1990

Cadence split the Verilog Hardware Description Language (HDL) and the Verilog-XL simulator
into separate products, and then released the Verilog HDL to the public domain. Cadence did this
partly to compete with VHDL, which was a nonproprietary HDL, and mostly because Verilog
users wanted to share models and knowledge about Verilog, which was not easy with a proprietary
language. At this time the "Open Verilog International" (OVI) was formed to control the language
specification. OVI is an industry consortium comprised of both Verilog users and CAE vendors.

1990

Nearly all ASIC foundries supported Verilog and most used Verilog-XL as a "golden" simulator.
This is one that a chip vendor will use to sign-off a chip against, and guarantee that a manufactured
chip will meet the same timing as that of the simulated model.

1993

Of all designs submitted to ASIC foundries in this year, 85% were designed and submitted using
Verilog. (Source EE Times.)

December 1995

The Verilog language was reviewed and adopted by the IEEE as IEEE standard 1364.

10

VHDL/Verilog compared e contrasted

Each of the following paragraphs in this section compares and contrasts one aspect of the two
languages and are listed in alphabetical order.

Capability

Hardware structure can be modeled equally
effectively in both VHDL and Verilog. When
modeling abstract hardware, the capability of VHDL
can sometimes only be achieved in Verilog when
using the PLI. The choice of which to use, is
therefore, not based solely on technical capability
but on:

• personal preferences,
• EDA tool availability,
• commercial, business and marketing issues.

The modeling constructs of VHDL and Verilog cover Figure 1. 5 HDL modeling capability

Chapter One: Introduction

a slightly different spectrum across the levels of behavioral abstraction; see Figure 1. 5.

Compilation

VHDL. Multiple design units (entity-architecture pairs), that reside in the same system file, may be
separately compiled if so desired. However, it is good design practice to keep each design unit in
its own system file.

Verilog. The Verilog language is still rooted in its native interpretative mode. Compilation is a
means of speeding up simulation, but has not changed the original nature of the language. As a
result care must be taken with both the compilation order of code written in a single file and the
compilation order of multiple files. Simulation results can change by simply changing the order
of compilation.

Data types

VHDL. A multitude of language or user-defined data types can be used. This may mean dedicated
conversion functions are needed to convert objects from one type to another. The choice of
which data types to use should be considered wisely, especially enumerated (abstract) data
types. This will make models easier to write, clearer to read and avoid unnecessary conversion
functions that can clutter the code. VHDL may be preferred because it allows a multitude of
language or user defined data types to be used.

Verilog. Compared to VHDL, Verilog data types are very simple, easy to use and very much
geared towards modeling hardware structure as opposed to abstract hardware modeling. Unlike
VHDL, all data types used in a Verilog model are defined by the Verilog language and not by the
user. There are net data types, for example wire, and a register data type called reg. A model
with a signal whose type is one of the net data types has a corresponding electrical wire in the
implied modeled circuit. Objects of type reg are updated under the control of the procedural flow
of constructs that surround them. Verilog may be preferred because the simplicity of its data
types.

Design reusability

VHDL. Procedures and functions may be placed in a package so that they are available to any
design unit that uses them.

Verilog. There is no concept of packages in Verilog. Functions and procedures used within a
model must be defined in the module statement with which it will be used. To make functions and
procedures generally accessible from different module statements they must be placed in a
separate system file and included using the 'include compiler directive.

Easiest to Learn

Starting with zero knowledge of either language, Verilog is probably the easiest to grasp and
understand. This assumes the Verilog compiler directive language for simulation and the PLI
language is not included. If these languages are included they can be looked upon as two
additional languages that need to be learned.

VHDL may seem less intuitive at first for two primary reasons. First, it is very strongly typed; a
feature that makes it robust and powerful for the advanced user after a longer learning phase.
Second, there are many ways to model the same circuit, especially those with large hierarchical
structures.

11

HDL Chip Design

Forward and back annotation

A spin-off from Verilog is the Standard Delay Format (SDF). This is a general purpose format
used to define the timing delays in a circuit. The format provides a bidirectional link between
chip layout tools, and either synthesis or simulation tools in order to provide more accurate
timing representations. The SDF format is now an industry standard in its own right.

High level constructs

VHDL. There are more constructs and features for high-level modeling in VHDL than there are in
Verilog. Abstract data types can be used along with the following statements:

• package statements for model reuse,
• configuration statements for configuring design structure,
• generate statements for replicating structure,
• generic statements for generic models that can be individually characterized, for example,

bit width.
All these language statements are useful in synthesizable models.

Verilog. Except for being able to parameterize models by overloading parameter constants, there
is no equivalent to the high-level VHDL modeling statements in Verilog.

Language Extensions

The use of language extensions will make a model nonstandard and most likely not portable
across other design tools. However, sometimes they are necessary in order to achieve the desired
results.

VHDL. Has an attribute called 'foreign that allows architectures and subprograms to be modeled
in another language.

Verilog. The Programming Language Interface (PLI) is an interface mechanism between Verilog
models and Verilog software tools. For example, a designer, or more likely, a Verilog tool vendor,
can specify user defined tasks or functions in the C programming language, and then call them
from the Verilog source description. Use of such tasks or functions make a Verilog model
nonstandard and so may not be usable by other Verilog software tools. Their use is not
recommended.

Libraries

VHDL. A library is a storage area in the host environment for compiled entities, architectures,
packages and configurations. Useful for managing multiple design projects.

Verilog. There is no concept of a library in Verilog. This is due to its origins as an interpretive
language.

Low Level Constructs

VHDL. Simple two input logical operators are built into the language, they are: NOT, AND, OR,
NAND, NOR, XOR and XNOR. Any timing must be separately specified using the after clause.
Separate constructs defined in IEEE 1076. 4 (VITAL) must be used to define the cell primitives of
ASIC and FPGA libraries.

Verilog. The Verilog language was originally developed with gate level modeling in mind, and so
has very good constructs for modeling at this level and for modeling the cell primitives of ASIC

12

Chapter One: Introduction

and FPGA libraries. Examples include User Defined Primitives (GDP), truth tables and the specify
block for specifying timing delays across a module.

Managing large designs

VHDL. Configuration, generate and package statements, together with the generic clause, all
help manage large design structures.

Verilog. There are no statements in Verilog that help manage large designs.

Operators

The majority of operators are the same between the two languages. Verilog does have very
useful unary reduction operators that are not predefined in VHDL. A loop statement can be used
in VHDL to perform the same operation as a Verilog unary reduction operator. VHDL has the
mod operator that is not found in Verilog.

Parameterizable models

VHDL. A specific bit width model can be instantiated from a generic n-bit model using the
generic clause. The generic model will not synthesize until it is instantiated and the value of the
generic given.

Verilog. A specific width model can be instantiated from a generic n-bit model using overloaded
parameter values. The generic model must have a default parameter value defined. This means
two things. In the absence of an overloaded value being specified, it will still synthesize, but will
use the default parameter settings. Also, it does not need to be instantiated with an overloaded
parameter value specified, before it will synthesize.

Procedures and tasks

VHDL allows concurrent procedure calls; Verilog does not allow concurrent task calls.

Readability

This is more a matter of coding style and experience than language feature. VHDL is a concise
and verbose language; its roots are based on Ada. Verilog is more like C because its constructs
are based approximately 50% on C and 50% on Ada. For this reason a C programmer may prefer
Verilog over VHDL. Although a programmer of both C and Ada may find the mix of constructs
somewhat confusing at first. Whatever HDL is used, when writing or reading an HDL model to be
synthesized, it is important to think about hardware intent.

Structural replication

VHDL. The generate statement replicates a number of instances of the same design unit or some
sub part of a design, and connect it appropriately.

Verilog. There is no equivalent to the generate statement in Verilog.

Test harnesses

Designers typically spend about 50% of their time writing synthesizable models and the other
50% writing a test harness to verify the synthesizable models. Test harnesses are not restricted to
the synthesizable subset and so are free to use the full potential of the language. VHDL has
generic and configuration statements that are useful in test harnesses, that are not found in
Verilog.

13

HDL Chip Design

Verboseness

VHDL. Because VHDL is a strongly typed language, models must be coded precisely with defined
and matching data types. This may be considered an advantage or disadvantage. However, it
does mean models are often more verbose, and the code often longer, than its Verilog equivalent.

Verilog. Signals representing objects of different bits widths may be assigned to each other. The
signal representing the smaller number of bits is automatically padded out to that of the larger
number of bits, and is independent of whether it is the assigned signal to or not. Unused bits will
be automatically optimized away during the synthesis process. This has the advantage of not
needing to model quite so explicitly as in VHDL, but does mean unintended modeling errors will
not be identified by an analyzer.

Design Automation Tools

Software tools used to assist in the design of hardware come under one of two categories;
Computer Aided Design (CAD) or Computer Aided Engineering (CAE). Tools used to design
circuit board related hardware come under the category of computer aided design, while tools
used for chip design come under the category of computer aided engineering. However, this
distinction is not clear cut, for example, a simulator can be used. to simulate both boards and
integrated circuits (chips). Only tools needed for chip design are discussed in this book.

Simulation

Simulation is the fundamental and essential part of the design process for any electronic based
product; not just ASIC and FPGA devices. For ASIC and FPGA devices, simulation is the process
of verifying the functional characteristics of models at any level of behavior, that is, from high
levels of abstraction down to low levels. The basic arrangement for simulation is shown in Figure
1. 6.

Figure 1. 6 Basic simulation arrangement

A simulator, in this context, is a CAE software tool that simulates the behavior of a hardware
model. Simulators use the timing defined in an HDL model before synthesis, or the timing from
the cells of the target technology library, after synthesis. A simulator may be a basic functional
simulator, a detailed dynamic timing analysis simulator, or both. Dynamic timing analysis is
used in simulation to evaluate timing delays through the model more accurately than if static
timing analysis were used. Static timing analysis is used by synthesis tools during optimization
by simply extracting delays from the cells of the technology library. However, static timing
analysis has difficulty with:

• multiple clocks and complex clocking schemes,
• asynchronous circuits and interfaces with asynchronous circuits,
• transparent latches,
• identifying and ignoring false paths.

Dynamic timing analysis is more accurate as illustrated in Figure 1. 7. From Figure 1. 7a), let Yl
be at logic 1 with all other wires at logic 0. If the delay of Bufl is large and ambiguous relative to
that of FF1 and FF2, then a rising edge on the clock produces the timing diagram shown in Figure

14

Chapter One: Introduction

1. 7b). The term ambiguous in this context, means the delay of Buf1 may have a wide range of
values determined by both the static and dynamic characteristics of the circuit. There is an
apparent hazard for FF2 because it appears that the edge on signal BufClock may occur either
before or after Yl changes value. However, when the common ambiguity due to Buf1's delay is
removed it is clear that the edge on BufClock comes first; therefore, there is no hazard, and Y2
changes cleanly to logic 1 as shown.

Figure 1. 7 Example showing need for dynamic timing analysis

Fault Simulation

Definition. Fault simulation is the simulation of the model of a digital circuit with particular input
stimuli (vectors), and with typical manufacturing faults injected into that model. Fault simulation
applies equally to integrated circuits (ICs) and printed circuit boards (PCBs).

Fault simulation is necessary for the following reasons:
• to identify areas of a circuit that are not being functionally tested by the functional test

vectors, that is, certain internal nodes may not be toggled during functional simulation
testing,

• to check the quality of test vectors and their ability to detect potential manufacturing
defects,

• to perform board and in-circuit chip testing for both production and repair testing.

Fault simulation is particularly important for ASIC devices. However, it is still important for both
anti-fuse programmable FPGAs and static RAM (SRAM) based programmable FPGAs.

The ability of manufacturing test vectors to test a device is called fault coverage and is measured
as a percentage of the number of faults detected against the number of faults considered, that

faults detected x 100 (typically 70% to 99. 9%)
fault coveraqe =

faults considered

Another important measurement in detecting defective manufactured parts is the Average Quality
Level (AQL) which is a measure of the manufacturing yield. It is a ratio of defective parts shipped
and the total number of parts shipped, that is,

AQL = (defective parts shipped) /(total number of parts shipped)
(typically 0. 1% to 5%)

The fault coverage and AQL measurements together
determine the potential number of faulty chips that will go
undetected. Figure 1. 8 shows the relationship between AQL
and fault coverage, while Figure 1. 9 identifies the
percentage of undetected faulty chip. Figure 1. 10 provides
percentage figures for undetectable fault chips.

Figure 1. 8 Log graph of AQL versus fault
coverage

15

0

10

20

30

40

5O

60

70

80

81

82

83

84

85

86

87

86

69

90

91

92

93

94

95

96

97

98

99

100

0

100

100

100

100

100

100

100

100

100

100

100

100

100

100

100

100

100

100

100

100

100

100

100

100

100

100

100

100

100

10

90

89

87

86

84

81

78

72

64

63

61

60

59

57

55

53

51

49

47

44

41

38

35

31

26

2 1

15

8

0

20

80

78

76

73

70

66

61

54

44

43

41

40

39

37

35

34

32

30

28

26

24

21

19

16

13

10

7

3

0

30

70

6 7

65

62

58

53

48

41

31

30

29

28

27

25

24

23

21

20

18

17

15

14

12

10

8

6

4

2

0

40

60

57

54

51

47

42

37

31

23

22

21

20

19

18

17

16

15

14

13

11

10

9

8

6

5

4

2

1

0

50

50

47

44

41

37

33

28

23

16

15

15

14

13

13

12

11

10

9

9

8

7

6

5

4

3

2

1

0

0

60

40

37

34

32

26

25

21

16

11

11

10

10

9

9

8

7

7

6

6

5

5

4

3

3

2

1

1

0

0

70

30

27

25

23

20

17

14

11

7

7

7

6

6

6

5

5

4

4

4

3

3

2

2

2

1

1

0

0

0

80

20

18

16

14

13

11

9

6

4

4

4

4

3

3

3

3

2

2

2

2

1

1

1

1

0

0

0

0

0

90

10

9

8

7

6

5

4

3

2

2

1

1

1

1

1

1

1

1

1

0

0

0

0

0

0

0

0

0

0

100

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

Yield

Fault
coverage

HDL Chip Design

Figure 1. 9 Undetectable faulty chips from
AQL and fault coverage

Fault simulation is a very CPU intensive back-end design
process and can lead to unexpected delays in getting a
product to market. The short life cycle of many products
containing ASIC or FPGA devices can mean that the cost
of delays dwarf the cost of field repair; even at 5% AQL.

The need to perform fault simulation has become
increasingly important for several reasons. One of the main
reasons is that early fault detection reduces costs
considerably; see Figure 1. 11. The vast increase in the

Figure 1. 10 Percentage figures for
undetectable faulty chips

number of gates on a chip, the increased gate to
pin ratio, and the reduced timing of submicron
transistor technology, have all increased the need
for fault simulation.

Some of the advantages of using fault simulation
are:

• greater confidence that the design is
correct,

• only way of verifying the quality of
production test vectors,

• gives early warning of any production
problems,

• the only way of testing integrated circuits
with a high gate to pin ratio,

• greater confidence that the final system
will work,

• less failures in the field,
• reduced cost and time in the long run,
• retained company image and reputation,
• easier to repair and replace units.

16

Figure 1. 11 Relative cost of not finding
faults early

Chapter One: Introduction

Another advantage for PCB testing is:
• bed of nails not needed for PCB testing.

The industry accepted fault coverage for good yield is 95%. However, a chip designer with test
vectors that give a 95% fault coverage cannot determine the percentage of potentially faulty
chips that will go undetected. The reason for this is chip vendors do not like to divulge their yield
figures. For example, if the fault coverage is 98%, but the manufacturers AQL is 40%, then 2% of
the chips will have faults that are not detected.

Fault simulators first simulate the model of a chip without any faults; this is known as the fault
free model. Typical manufacturing defects are then injected into the model and the simulation
rerun. If the output vectors from the two simulation runs are different then the particular fault is
detectable. The process then continues by injecting other faults throughout the model. Because
of the vast number of potential faults that need to be modeled, it is easy to see why fault
simulation run times are so long.

There are three main algorithms used by fault simulators; they are:
• serial,
• parallel,
• concurrent.

Serial. Serial fault simulation is the simplest. Two copies of the same circuit are stored in memory,
a fault is injected into one of them, both circuits are simulated and their output is compared.

Parallel. Parallel fault simulation uses several complete copies of the circuit; one is good and the
others have one fault injected into each of them. Each model is simulated concurrently on the
same machine or distributed across multiple machines. The parallel algorithm method must
continue until every parallel fault is detected whereas the serial algorithm can stop immediately
when the fault is detected.

Concurrent. The concurrent algorithm method is the most powerful. It simulates one good and
one bad model, with the bad model containing hundreds or thousands of injected faults. At the
point a good and bad simulation differ the algorithm copies each fault to a separate machine and
simulates them separately. It is faster and requires much less memory than the serial or parallel
algorithm method.

Traditionally, fault simulators have simulated defects that cause stuck-at-logic-0 or stuck-at-
logic-1 faults. Because of the speed and critical timing of silicon chips manufactured with
submicron transistor channel widths, new fault simulators are adding the ability to perform delay
fault testing. The risk is that critical timing from time optimized circuits may have longer delays
in the manufactured chip than are expected. Both gate delay faults and path delay faults are
considered.

Register Transfer Level Synthesis

Definition. Register transfer level synthesis is the process of translating a register transfer level
model of hardware, written in a hardware description language at the register transfer level, into
an optimized technology specific gate level implementation; see Figure 1. 12.

17

Figure 1.13 Translation and optimization process flow using RTL level synthesis

18

Figure 1. 12 Synthesis equals translation and optimization

A register transfer level synthesis software tool automates this part of the ASIC and FPGA design
process and forms the central link in a top-down design methodology. Synthesis is by far the
quickest, and most effective means of designing and generating circuits. A typical synthesis
process flow using a synthesis tool is shown in Figure 1. 13. It shows an initial translation to a
netlist without optimization. In practice, fundamental high-level optimization is performed, but is
transparent to the user. This provides the starting point on the area-time curve for optimization.
Figure 1. 13 shows a design optimized three times with three different constraint settings to yield
three different points on the area-time curve. The typical optimization methodology is to optimize
for area first, and then only optimize for timing if any timing constraints are not met. Hierarchical
blocks in a large design are normally optimized starting from the lower level blocks in a bottom-
up process.

HDL Chip Design

Chapter One: Introduction

Synthesis consists of multiple stages of translation and optimization. It takes a design through
three main internal levels of intermediate refinement (abstraction); see Figure 1. 14.

Figure 1.14 RTL synthesis internal translation and optimization processes

Automatic optimization occurs at each of these intermediate levels and is guided by user defined
constraints. Constraints provide the goals that the optimization and translation processes try to
meet. Current synthesis tools typically allow constraints to be set for minimal area and minimal
timing delay. Power and testability constraints may also be available. In the future, layout and
packaging constraints may also be available.

Minimal and maximal. The words minimal and maximal are used instead of minimum and
maximum because optimization by a synthesis tool is a heuristic process. Optimization uses
different algorithms on a trial and error basis to find a circuit implementation that best fits the
constraints. A circuit optimized for minimum area will have minimum area based on what the
optimizer can find. This may not always be the absolute minimum circuit that could be produced
if the design were carefully designed by hand.

There is a correlation between minimal area and minimal power. A circuit that is optimized for
minimal area is often the one that consumes minimal power for a given frequency. For this
reason, the majority of synthesis tools do not optimize separately for minimal power. It is up to
the designer to accurately specify constraints to trade off the two conflicting requirements of
minimal area and maximal speed. The circuit version optimized for minimal area will not be the
fastest. Similarly, the version of a circuit optimized to operate as fast as possible will not be
implemented and have minimal area. However, the spread of possible area and timing
implementations of different circuits is unique. It is possible that a circuit version optimized for
minimal area also operates the fastest.

The types of optimizations that occur at each translated level of synthesis are now discussed.

19

HDL Chip Design

RTL level optimization

Code related processing is first performed when a model is synthesized (compiled). Some examples
are:

• expansion - subprograms are in-line expanded,
• constant folding - constants are folded together, for example, A + 3 + 2 becomes A + 5,
• loop unrolling - loop statements are unrolled to a series of individual statements,
• dead code removal - any unused (dead) code is discarded,
• bit minimization - for example, VHDL state encoding or assignments of different width in

Verilog.
A control-data flow-graph (CDFG) format
is often used by synthesis tools for the
highest internal representation of a design.
A CDFG is a graphical means of
representing hardware structure, an
example of which is shown in Figure 1.15.
Optimization of a CDFG facilitates high
level (architectural) synthesis techniques
and includes synchronous logic
optimization techniques such as:
scheduling, resource binding, data path
structuring and partitioning.

Figure 1.15 Control-data flow-graph

Logic level optimization representation of high level structure
Once synthesis has translated a design to the logic level, all registered elements are fixed and
only combinational logic is optimized. Optimization at this level involves restructuring boolean
equations according to the rules of boolean logic. Combinational logic is, therefore, optimized on
a much finer grain basis than at the RTL level. The types of boolean optimization include:
minimization, equation flattening, equation factorization and optimization. The synthesis algorithms
used to perform these operations operate on a multiple level (equation) and multiple output
basis. The algorithms have multiple dimensions and are much more complex than the manual
process of using a two dimensional Karnaugh map to optimize a single equation with a single

output. An example of what happens during
logic level optimization is shown in Figure
1.16.

Flattening. The conversion of multiple
boolean equations into a two level sum-of-
products form is called flattening. All
intermediate terms are removed.

Factoring. The factorization of boolean
equations is the process of adding
intermediate terms. This adds implied logic
structure which both reduces the size of the

Figure 1.16 Example of the logic level implied circuit and reduces large fan-outs.
optimization of boolean equations Factoring is a varied design and constraint
dependent process. Adding structure adds levels of logic which tends to make a smaller, but
slower operating circuit. Mote, it is possible a circuit optimized for minimal area also has minimal
timing delays.
20

Chapter One: Introduction

Gate level optimization

Once synthesis has translated a design to the gate level, area and timing information is extracted
from the cells of the targeted technology library for fine grain local optimization of cell primitives.
Gate level optimization is a process of looking at a local area of logic containing a few cells and
trying to replace them by other cells from the technology library that fit the constraints better. It
then looks at another local area with an overlap with the first local area. If the effort level for such
an optimization is increased the optimizer will typically look at a slightly larger local area each
time. For a flat level ASIC containing 50, 000 to 100, 000 equivalent gates, it is easy to see how
such optimizations can last many hours. An example of what happens during gate level
optimization is shown in Figure 1. 17.

Figure 1.17 Example of gate level optimization

21

HDL Chip Design

Test Synthesis

Definition. Test synthesis is the modification of a chip design to make both the chip, and the
system (PCB) where it will reside, more testable, and the Automatic Test Pattern Generation
(ATPG) of test vectors.

The process of modifying a design to make a circuit more testable is called Design For Test
(DFT). There are many DFT techniques that can be implemented in both the HDL model before
synthesis and circuit after synthesis; test synthesis tools can assist on both accounts.

Traditionally, the issue of how to test manufactured chips has been a back end process. However,
due to the number of gates implemented in chips today, it is necessary to consider testability
issues up front when designing and writing HDL code. If the up front issue of test is ignored, and
a test synthesis tool is not available, then RTL level synthesis may be a fast and efficient means
of producing untestable logic.

The use of test synthesis for DFT techniques and ATPG will reduce the time it takes to generate
manufacturing test vectors from months to days. Design for test techniques known as "ad-hoc"
are typically not supported by synthesis tools, but are a result of careful design practices. Examples
include: redundancy removal, avoiding asynchronous logic, avoiding large fan-in and Built-in
Self-Test (BIST), etc. DFT features of test synthesis tools are aimed at improving signal
controllability and observability of internal circuit nodes. Operations performed by test synthesis
after RTL/logic synthesis are as follows:

• full internal scan,
• partial internal scan,
• boundary scan.

For ASICs, these tasks are often performed by the ASIC vendor.

Internal scan

The use of internal scan cells enables ATPG tools to easily generate a near 100% fault coverage
on the combinational logic. Internal scan is the replacement of latches and flip-flops by their
scan equivalent latch or flip-flop. Each scan cell has a scan data input (SDI), a scan data output
(SDO) and a test enable input (TE). Groups of these cells are then connected in chains of equal
or similar length. The TE input is used to put the register element in test mode. There are three
parts to the test mode. First, on successive clock cycles data is scanned from an input pin of the
chip to the input of the scan cell ready to be clocked in on the next rising edge of the clock
signal. Second, the scanned in data is clocked into the register element. Third, data on the
output of the register is scanned through the scan chain on successive clock cycles to an output
pin on the chip. An example of internal scan is shown in Figure 1. 18. It shows a synchronous
sequential circuit before and after inserting a scan chain. The synchronous circuit would be quite
difficult to test without scan cells. With scan cells, access from the pins of the chip to the scan
cells reduces the test problem to a combinational logic problem which is easily resolved by
FPGA tools.

22

Chapter One: Introduction

Figure 1.18 Internal scan - automatically implemented by test synthesis

There are three types of scan replacement dependent upon the technology library being used;
they are SCAN, MUXED and LSSD (Level-sensitive scan-design); see Figure 1. 19.

Figure 1. 19 D-type flip-flop scan replacements

23

HDL Chip Design

SCAN. If the technology library contains scan cells,
sequential logic cells will be replaced by their scan
equivalent. Many ASIC vendors provide SCAN
equivalent cells whose timing and area overhead are
minimal. The percentage increase in gate count as a
result of changing D-type flip-flops with their scan
equivalents are shown in Figure 1. 20.

MUXED. A multiplexer is inserted before the data input
to the sequential cell. This may be the only method
available if the ASIC library does not contain scan
equivalent cells. The disadvantage is the area overhead
of using a multiplexer, but may be reduced during Figure 1. 20 Silicon area percentage
optimization with other logic. increase when using scan cells

LSSD. A sequential logic cell is replaced with an equivalent LSSD cell, which uses two non
overlapping clocks (Clock-A and Clock-B), to drive the scan operation of the circuit. Example
LSSD replacements are double-latch, clocked and auxiliary clock.

Full internal scan. Every single register element in a circuit is replaced by its scan equivalent. The
disadvantage, which often outweighs the advantage, is that chip area increases significantly.

Partial internal scan. This is the same as full scan except that only certain register elements arc
replaced by their scan equivalent. In this case a test synthesis tool will perform controllability anc
observability checks on each node and intelligently decides which registers should be scan type
registers. Compared to full scan, silicon area overhead is reduced, but ATPG tools have a harder
job generating test vectors with a near 100% fault coverage. Also, more test vectors will be
needed.

Boundary scan

The purpose of boundary scan is to make the PCB on which the chip will reside more testable
not to make the chip more testable. A printed circuit board in this context could be any type of
board, for example, surface mount, wire bonded, etc. Boundary scan is an IEEE standard (IEEE
1149). All input and output cells of an ASIC are replaced with their scan equivalent cell and
connected together to
form a single chain
around the chip, and
controlled by a
dedicated controller
called a Test Activity
Port (TAP) Controller;
Figure 1. 21 . ASIC
vendors often have
TAP cells in their
technology library.
Designers can do one
of two things. One,
instantiate the
boundary scan related
cells in the HDL code Figure 1. 21 Boundary scan - automatically implemented by test
and simulate to synthesis

24

Chapter One: Introduction

ensure it does not affect circuit operation. Two, take a low risk chance that it will not affect circuit
operation and let the ASIC vendor perform automatic boundary scan insertion.

HDL Support for Synthesis

Certain constructs in a hardware description language are either ignored or are not supported by
synthesis tools. The reason for this is that some constructs have no direct hardware correlation
or the hardware intent is extremely abstract. For example, timing related constructs are ignored
as the timing should come from the cells of the technology specific library. Constructs that are
not supported typically include floating point arithmetic operators, loop statements without a
globally static range and file manipulation related constructs. There is no standard for which
constructs are supported and those that are not supported. As a consequence, the supported
subset of constructs may be different for different synthesis tools. A VHDL working group has
been set up to formalize an industry standard subset of constructs that should be supported by
synthesis tools, with the intention of making designs portable. Effort is ongoing under the OVI to
define an industry standard subset of Verilog constructs for synthesis. The main point is that
there are differences, but these differences are not the deciding factor on selecting which synthesis
tool to use. It is far better to write code that is independent of the synthesis tool being used. All
synthesis models in this book are independent of the synthesis tool except where indicated
otherwise.

25

2
Synthesis

Constraint &
Optimization

Tutorials

Chapter 2 Contents

Introduction 29

Combinational Logic Optimization 30

A Typical Design Constraint Scenario 32

28

Chapter Two: Synthesis Constraint & Optimization Tutorials

Introduction

This chapter graphically describes some of the types of constraints used by synthesis and how
they affect resulting optimized circuits. Constraints represent desired circuit characteristics, that
is, design goals for the optimizer to attempt to achieve. Different constraints cause different
optimized circuits to be generated, but with the same functionality. There is no industry standard
for how constraints are specified so the format is likely to be different for different synthesis tools.
Constraints are typically set through a graphical user interface or via the command line. This
chapter includes the command syntax for the VeriBest Synthesis tools.

Constraints fall into one of two categories:
• global,
• circuit specific.

Global default constraints. Once global constraints have been set, they apply equally to all designs
by default, that is, without needing to be explicitly defined for each individual design. Example
constraints are:

• library process factor,
• operating voltage,
• operating temperature.

Circuit specific constraints. Circuit specific constraints are specific to one particular design. Possible
examples are:

1) area
• maximum area,

2) timing
• input and output loading,
• input maximum fan-out constraints,
• input driving capability,
• input arrival times,
• output driving capability constraints,
• output arrival time constraints,
• minimum clock frequency.

3) power
• maximum power

4) testability (test synthesis)
• replacement scan cell types
• maximum scan cell length
• full or partial scan
• boundary scan

The most common constraints used in RTL level synthesis tools today are area and timing.

Area. An area constraint is a number corresponding to the desired maximum area of a specified
design module, and may, or may not, contain hierarchical structure. The area number will have
units corresponding to the units defined in the cells of the technology library, for example,
equivalent gates, grids or transistors. The units will depend upon the type of ASIC or FPGA.

Timing. Timing constraints tell the synthesis tool when signal values arrive and when they need
to arrive at specific points in time. The static timing analyzer in the synthesis tool will extract
timing information from the technology library in order to compute actual path delays. This
includes the setup and hold times of registered elements and signal delays through combinational
logic, given specific global constraints. Signal path delays in the model are computed and

29

HDL Chip Design

compared with desired timing constraints, whereby automatic optimization is performed as
necessary in order to improve timing characteristics. Typically, a designer will want to progressively
increase timing optimization effort levels in order to progressively trade off area for improved
timing, depending on the type of ASIC or FPGA. Note that timing constraints, or any constraints
for that matter, should not be more restrictive than are necessary.

V H D L
library IEEE;
use IEEE.STD_Logic_1164.all, IEEE.Numeric_STD.all;
entity COMB_1 is

port(A,B, C, D: in std_logic;
Y1. Y2: out std_logic);

end entity COMB_1;

architecture LOGIC of COMB 1 is
begin

process (A. B, C, D)
variable ABCD: unsigned(3 downto 0);

begin
ABCD := unsigned'(A & B & C & D);
case ABCD Is

when "0000" => Y1 <= '1 ' ; Y2 <= '0';
when "0001" => Y1 <= '1 ' ; Y2 <= 10';
when "0010" => Y1 <= '1 ' ; Y2 <= '0';
when "0011" => Y1 <= '1 ' ; Y2 <= '0';
when "0100" => Y1 <='1';Y2<='0';
when "0101" => Y1 <= '1 ' ; Y2 <= '0';
when "0110" => Y1 <='1';Y2<='0';
when "0111" => Y1 <= '1 ' ; Y2 <= '0';
when "1000" => Y1 <= '1 ' ; Y2 <= '0';
when "1001" => Y1 <= '0'; Y2 <= '1 ' ;
when "1010" => Y1 <= V. Y2 <= '1';
when "1011" => Y1 <='1';Y2 <='1';
when "1100" => Y1 <= '1 ' ; Y2 <= '0';
when "1101" => Y1 <= '1 ' ; Y2 <= '0';
when "1110" => Y1 <= ' 1'; Y2 <= '0';
when "1111" => Y1 <= '1 ' ; Y2 <= '0';
when others => Y1 <= '0'; Y2 <= '0';

end case;
end process;

end architecture LOGIC;

Verilog

module COMB 1 (A, B, C, D, Y1. Y2);
input A, B, C. D;
output Y1, Y2;
reg Y1,Y2;

always @(A or B or C or D)
begin

case ({A, B, C, D})
4'b 0000: begin Y1 = 1; Y2 = 0; end

. 4'b 0001 : begin Y1 = 1; Y2 = 0; end
4'b 0010: begin Y1 = 1; Y2 = 0; end
4'b 0011 : begin Y1 = 1; Y2 = 0; end
4'b 0100: begin Y1 = 1; Y2 = 0; end
4'b 0101 : begin Y1 = 1; Y2 = 0; end
4'b 0110: begin Y1 = 1; Y2 = 0; end
4'b 0111 : begin Y1 = 1; Y2 = 0; end
4'b 1000: begin Y1 = 1; Y2 = 0; end
4'b 1001 : begin Y1 = 0; Y2 = 1; end
4'b 1010: begin Y1 = 0; Y2 = 1; end
4'b 1011 : begin Y1 = 1; Y2 = 1; end
4'b 1100: begin Y1 = 1; Y2 = 0; end
4'b 1101 : begin Y1 = 1; Y2 = 0; end
4'b 1110: begin Y1 = 1; Y2 = 0; end
4'b 1111 : begin Y1 = 1; Y2 = 0; end
default : begin Y1 = 0; Y2 = 0; end

endcase
end

endmodule

HDL of combinational logic function

Table 2.7 Function table of
combinational logic

Combinational Logic Optimization

A combinational logic circuit conforming to the function
table, Table 2.1, is shown optimized with different
constraints set. The VHDL and Verilog models are coded
using a case statement.

30

Chapter Two: Synthesis Constraint & Optimization Tutorials

The model is first synthesized (translated) and then optimized four times with four different
design constraint configurations set. They are:

• minimal area irrespective of timing delays,
• minimal area, but with low drive inputs,
• maximal speed irrespective of area,
• maximal speed, but with low drive inputs.

The affect of these constraints on the circuit is shown in Figure 2.1.

Figure 2.1 Combinational logic function optimized with different constraints

31

HDL Chip Design

A typical design constraint scenario

This tutorial considers a typical design scenario for which constraints must be specified and may
represent part of a design or large project which has been partitioned among several designers.
The following timing paths are considered and shown graphically in Figure 2.2.

• begin at registers outside the design being optimized,
• begin at registers inside the design being optimized,
• begin outside the design being optimized, but not at registers,
• end at registers outside the design being optimized,
• end at registers inside the design being optimized,
• end outside the design being optimized, but not at registers.

Figure 2.2 Specifying design constraints

Timing constraints represent specific points in time. Therefore, in order to correctly constrain the
design the optimizer must be told the times at which signals t2, t8 and t12 arrive, and the times
when signals t5, t9 and tl3 need to arrive. In this example, signal delays through "logic clouds"
Delay1 to Delay6 are fixed, that is, they are outside the designer's control; only the logic in Logicl
to Logic4 is being optimized.

The assumed environment for the design is described in Figure 2.2. Example constraint commands
are shown for the VeriBest synthesis tools. Vendor specific constraints are an obstacle to portability.

Defining clock waveforms

The first step in correctly constraining this design is to define clock waveforms and associate
them with the clock signals of the design. For VeriBest the commands are:

set waveform name=clockwave definition=(>(u10 d10))
apply waveform name=clockwave signal=Clock1
apply waveform name=clockwave signal=Clock2 delay=5

This example does not show two registers with logic between them wholly contained in the
design being optimized. These clock constraints are enough to automatically constrain such
logic.

32

Chapter Two: Synthesis Constraint & Optimization Tutorials

Input constraints
Input constraints are usually the easiest to specify; it is the delay outside the circuit being optimized
that is being specified. The following constraints specify the point in time that signals t2, t8 and
tl2 arrive and are shown graphically in Figure 2.3.

1. Constraint for t2

When a signal originates at a register outside the design, the delay should be specified with
respect to the clock that controls the register. For signal t3, the delay is calculated as follows:

arrival_time(t2) - delay_outside_circuit
= delay (FF_clock_output) + delay(Delayl)
= 1.2 ns + 1.0 ns
= 2.2 ns

The VeriBest command is:
set arrival_time data=t2 clock_source=Clock1 edge=R rise=2.2 fall=2.2

This provides the optimizer with enough information to constrain the logic in logic1. The clock
waveform has already been specified and the optimizer can determine the setup time for the
register from the technology library. Thus, the logic in logic1 has the following timing requirement.

max_delay(Logicl) = clock_period - FF_setup_time - external-delay
= 20 ns - 0.4 ns - 2.2 ns
= 17.4 ns

2. Constraint for t8

The constraint for t8 is specified in the same way as for t2. The delay calculation is:
arrival_time(t8) = delay_outside_circuit

= delay(FF_clock_output) + delay(Delay3)
= 1.2 ns + 3.0 ns
= 4.2 ns

The VeriBest command is:
set arrival_time data=t8 clock_source=Clock2 edge=R rise=4.2 fall=4.2

Unlike the previous constraint, this does not provide the optimizer with enough information to
constrain the internal logic. Additional information is needed to constrain the logic in Logic3;
specifically the optimizer must know the time that data must arrive at t9, which has not yet been
specified.

3. Constraint for t12

The path to tl2 does not originate at a register so the constraint specification becomes very
simple. The delay calculation is:

arrival_time(tl2) - delay_outside_circuit
= delay(Delay5)

- 5.0 ns

The VeriBest command is:
set arrival_time data=t12 rise=5.0 fall=5.0

Like signal t8, this does not provide enough information to constrain Logic4; the optimizer must
know the time that data must arrive at signal tl3.

33

Figure 2.3 Graphical representation of input constraints

HDL Chip Design

Output constraints

Output constraints are slightly more complicated. Constraints specifying the point in time that
signals t5, t9 and tl3 must arrive are described. Figure 2.4. shows a graphical representation of
the combined input and output constraints.

1. Constraint for t5

When a signal is ultimately driving a register outside the design, the same type of calculation
must be performed as was performed for Logic1. The constraint value is the clock period minus
both the setup time for the external register and the delay through the external combinational
logic (Delay2).

required_time(t5) = clock_edge(Clockl) - FF_setup_time - external_delay
= 20 ns - 0.4 ns - deIay(Delay2)
= 20 ns - 0.4 ns - 2.0 ns
=17.6 ns

The VeriBest command is:

set required time_time data=t5 clock_cource= Clock1 edge=R rise=l 7.6 fall=17.6

2. Constraint for t9

To constrain t9, a similar calculation must be performed as was performed for t5:
required_time(t9) = clock_edge(Clockl) - FF_setup_time - external_delay

= 20 ns - 0.4 ns - delay(Delay4)
= 20 ns - 0.4 ns - 4.0 ns
= 15.6 ns

The VeriBest command is:

set required time_time data=r9 clock_source= Clockl edge=R rise=15.6 fall=15.6

From this specified required time and the specified arrival time for signal t8, the optimizer will
automatically calculate how much time is left for the internal logic in Logic3. Now, because the
arrival time for t8 is specified with respect to Clock2, which is not at time 0ns, the arrival time of

34

Chapter Two: Synthesis Constraint & Optimization Tutorials

the clock edge must be added into the equation. This is determined as follows:
max_delay(Logic3) = required_time(t9) - real_arrival_time(t8)

= 15.6 ns - (edge_time(Clock2) + specific_arrival_time(t8))
= 15.6 ns - (5.0 ns+ 4.2 ns)
=15.6 ns - 9.2 ns
= 6.4 ns

3. Constraint for tl3

As the path from tl3 does not end at the register, the constraint specification becomes very
simple. The delay calculation is:

required_time(tl3) = required_time(tl4 - delay(Delay6)
= 19 ns - 6.0 ns
= 13 ns

The VeriBest command is:
set required time_time data=t13 rise=13.0 fall=13.0

From this specified required time and the specified arrival time for signal tl2, the optimizer will
automatically calculate how much time is left for the internal logic in Logic4. This is determined
as follows:

max_delay(Logic4) = required_time(tl3) - arrival_time(tl2)
= 13.0 ns - 5.0 ns
= 8.0 ns

Figure 2.4 Graphical representation of combined input and output constraints

35

3
language

Fundamentals

HDL Chip Design

Chapter 3 Contents

Design Entities 39
VHDL Design Entity 39
Verilog Design Entity 40

Code Structure 41
Declaration statements 41
Concurrent statements 41
Sequential statements 41

Data Types and Data Objects 44
VHDL Data Types 45
VHDL Data Objects 46
Verilog Data Types 47
Verilog Data Objects 47

Expressions 48

Operands 48
Literal Operands 49
Identifier Operands 50
Aggregate Operands (VHDL) 51
Function Call Operands 52
Index & Slice Name Operands 53
Qualified Expression Operands (VHDL) 54
Type Conversion Operands (VHDL) 56
Record & Record Element Operands (VHDL) 57

Operators 59
Overloaded Operators (VHDL) 59
Arithmetic Operators 63
Sign Operators 64
Relational Operators 64
Equality & Inequality Operators 65
Logical Comparison Operators 66
Logical Bit-wise Operators 68
Shift Operators 69
Concatenation & Verilog Replication Operators 70
Reduction Operators (Verilog) 70
Conditional Operator (Verilog) 71

38

Figure 3. 7 VHDL Design Units

The five kinds of VHDL design units are:

Entity declaration. An entity declaration describes the interface of a design entity through
which it communicates with other design entities in the same environment. The interface
typically includes all input, output and bidirectional signals defined in the port declaration
section plus any model parameterizing parameters defined using generic declarations.

39

Chapter Three: Language Fundamental:

Design Entities

When designing and modeling digital systems in VHDL or Verilog it is necessary to partition the
design into natural abstract blocks known as components. Each component is the instantiation
of a design entity, which is normally modeled in a separate system file for easy management and
individual compilation by simulation or synthesis tools, for example. A total system is then
modeled using a hierarchy of components known as a design hierarchy that has individual
subcomponents (subdesign entities) being brought together in a single higher level component
(design entity). When the coded models of design entities are to be synthesized, an assumption
made throughout this book, the designer should partition the system into suitably sized design
entities, that when synthesized will yield up to a maximum of about 5000 equivalent gates. An
equivalent gate equates to the size of a two input NAND gate. There is no absolute rule about
what is the most optimal sized circuit to synthesize and optimize, but anything from 2000 to
5000 equivalent gates typically gives good optimal results without being too CPU intensive.

Design entities are quite different in VHDL and Verilog.

VHDL design entities

Design entities are constructed in VHDL using five different types of design units as depicted in
Figure 3. 1. The entity declaration, package declaration and configuration declaration are primary
design units and are visible within a library. A library is a storage area of the host environment for
compiled design units. The architecture and package body declarations are secondary design
units because they are not visible within a library. A design entity consists of two design units; an
entity-architecture pair. An entity provides the port information of a particular design entity, while
the architecture provides the functional body description of a design entity. This design entity
can use common design data which is stored in a package. The package and possible package
body contain globally available design data, for example, data types and subprograms, that can
be made available for use by any other design units as required. A package may have a package
body for the declaration of the subprogram etc. A package body has the same name as its
corresponding package.

HDL Chip Design

Architecture body. An architecture body describes the functional composition of a design.
Multiple architecture bodies can describe different architecture versions of the same design
entity. In this context different architecture versions have matched signal names to a single
entity. For example there may be two slightly different RTL models of the same circuit, in
different architecture bodies, or there may be another at the gate level resulting from synthesis.

Configuration declaration. A configuration declaration is a primary design unit used to bind
entity statements to particular architecture bodies to form components of a design. A single
configuration can specify multiple entity-architecture bindings throughout a design hierarchy.
Configurations allow the late binding of components after multiple architecture bodies have
been written and compiled. It is possible to have more than one configuration declaration for
an entity, each of which defines a different set of bindings for components.

Package declaration. A package declaration is a repository for storing commonly used
declarations that can be made globally accessible across multiple design units. Example
declarations are data types, constants and subprograms. A package declaration has an
associated package body if subprograms (functions and procedures) are declared.

Package body: A package body is always associated with a package declaration of the same
name and contains the subprogram bodies of functions and procedures declared in the
package declaration.

Verilog design entities

In Verilog, a design entity has only one design unit; the module declaration as depicted in Figure
3. 2.

Design unit

Figure 3. 2 Verilog design entity

Module declaration. The module declaration is the only design unit (design entity) in Verilog. It
describes both a design's interface to other designs in the same environment, and its functional
composition. All declarations used within a model must be declared locally within the module.
However, the compiler directive 'include, is often used to reference a separate system file.
This directive is replaced with the contents of the file it references when compiled by a
simulator, synthesizer, or other similar tool. This is very useful for writing generic Verilog code
in a separate file that can be referenced from the code in any other Verilog file.

40

Chapter Three: Language Fundamentals

Code Structure
A design unit may instantiate other design units, which in turn may instantiate other design units
in a hierarchial manner. This hierarchical code structure should mimic inferred hardware structure
when hardware structure is being modeled, see Chapter 5.

Coded statements within a design unit fall into one of three categories: declaration, concurrent
or sequential. Appendix A includes the syntax of VHDL statements and Appendix B includes the
syntax of Verilog statements.

Declaration statements

These statements declare objects for use in concurrent and sequential statements.

VHDL. In VHDL, the component of a sublevel design unit must be declared before it can be
instantiated. Similarly subprograms must be declared before they can be used. A subprogram in
VHDL is a procedure or function. A declaration statement is placed before the begin clause in an
architecture, block, process, procedure or function statement, see Figure 3. 3.

Verilog. In Verilog a design unit, that is, a module statement, does not need to be declared; nor do
subprograms, that is, a task or function. There is no dedicated declarative region in a module,
sequential block, concurrent block, task or function, see Figure 3. 4.

Concurrent statements

These are statements that are executed in parallel, that is, at the same time. They operate
independently of all other concurrent statements. When modeling hardware structure they
represent independent sections of the circuit being modeled. Each concurrent statement is
executed asynchronously with all other concurrent statements.

VHDL. The block and process are concurrent statements. Signal assignments and procedure calls
are concurrent provided they do not reside in a process statement. Similarly a function call is
concurrent provided it is called from within the expression of a concurrent signal assignment.

Verilog. The continuous assignment and always statement are concurrent. A continuous assignment
uses the reserved word assign to assign data objects of any of the net data types. A task cannot
be called concurrently, see Figure 3. 5.

Sequential statements

Sequential statements are statements that are executed depending upon the procedural flow of
constructs that surround them.

VHDL. Sequential statements reside after the begin clause in a process; again see Figure 3. 3.

Verilog. Sequential statements reside in an always statement, that may, or may not, contain
sequential begin-end procedural blocks. The assigned objects are of type reg or integer, again
see Figure 3. 4.

41

HDL Chip Design

Figure 3. 3 VHDL - subprogram declarations in a design or library unit

Declaration or concurrent statement areas of code.

Declaration or sequential statement areas of code.
May include the fork-join parallel block to group two
or more statements together so that they are executed
concurrently. May also include begined sequential
blocks which group two or more statements together
so that they are executed sequentially.

The initial statement, nor the fork-loin block are supported
for synthesis. Use the always block as a concurrent
statement Instead.

Figure 3. 4 Verilog - subprogram declarations in a design unit

42

Declaration or concurrent statement areas of code.

Declaration or procedural assignment statement areas of code.
May include the fork-join parallel block which group two
or more statements together so that they are executed
concurrently. May also indue begin-end sequential blocks
which group two or more statements together
so that they are executed sequentially.

The initial statement, nor the fork-join block are supported
for synthesis. Use always as a concurrent
statement and the begin-end sequential block instead.

Figure 3. 6 Verilog - subprogram calls and sequential or concurrent blocks in a design unit

43

Figure 3. 5 VHDL - process statements in a design unit & subprogram calls in a design or
library unit

Note: Functions are called from within expressions
in the indicated section of code.

Chapter Three: Language Fundamentals

HDL Chip Design

Data Types and Data Objects

Models in either language pass data from one point to another using data objects. Each data
object has a collection of possible values known as a value set. A data type defines this value set.
The concept of the data type and data object is quite different between the two languages as
explained below.

Figure 3. 7 VHDL and Verilog data types and data objects

The data types and data objects that are indicated in Figure 3. 7 as not being supported by
synthesis tools, or are not needed in a simulation test harness, are not discussed further.

There are 8 kinds of VHDL data types defined by the language. It is not until a VHDL data object
of one of these types is declared in a model, using a type or subtype declaration, that the value
set is defined. Therefore, the value set is always defined in a model using a type declaration
along with the object kind, constant, variable, signal or file.

In Verilog, the language itself defines a single base data type which has the following four value,
value set.

0 - represents a logic zero, or false condition
1 - represents a logic one or true condition
X - represents an unknown logic value
Z - represents high-impedance state

Data objects of this type are declared in a model to have a single element, or an array of
elements, of this type, for example,

wire W1;
wire (31: 0) W2;

There are more kinds of data objects in Verilog than there are VHDL, and relate closely to the
detailed hardware structure being modeled.

44

These data types and data objects are not
supported by synthesis tools.

VHDL

Data types Data Objects
(of a data type)

constant
variable
signal
file

Scalar types
enumeration
integer
physical $
floating point

Composite types
array
record

access (pointers)

Data types Data Objects
(of the data type)

Verilog

01XZ (defined
by the language)

signal nets
wire
tri

wired nets
wand
triand
wor
trior
trireg
tri0
tri1

supply nets
supply0
supply1

register
parameter
integer
time $
memory (array)

Chapter Three: Language Fundamentals

Individual VHDL and Verilog data types and objects are described below.

VHDL data types

Enumeration data type. An enumerated data type contains a set of user defined values. Each
value may be an identifier, for example, Red, Multiply or character literal, for example, '0', '1', 'U', 'Z'.
The syntax of an enumerated type declaration is:

type enum_type_name is (enum_value {, enum_value});
where

enum_type_name is the identifier name of the enumerated data type
enum_value is an identifier or character literal

example
type Rainbow is (Red, Orange, Yellow, Green, Blue, Indigo, Violet);

The order in which enumerated values are declared determines the numerical order of numbers
assigned to them by a synthesis tool. The binary numbers assigned to the above example would
be: "

Red
Orange
Yellow
Green
Blue
Indigo
Violet

= 000
= 001
= 010
= 011
= 100
= 101
= 110

These assigned numbers enable relational operators to be used on enumerated data types; for
example,

if (Red < Orange) then

An attribute is often provided by synthesis tools to provide a means of specifying particular
enumerated values to the set of identifiers or character literals. For example, the synthesis tools
from VeriBest Incorporated defines an attribute called ENUM_TYPE_ENCODING, which can be used
to ensure objects of type rainbow use Gray coded assigned values, as follows:

attribute ENUM_TYPE_ENCODING: string;
attribute ENUM_TYPE_ENCODING of rainbow: type is

"000 001 011 010 110 111 101 100 ";

Integer data type. An integer type declaration defines a range of integer numbers. The actual
range should always be specified; otherwise, the language default of (231 + 1) to (231 - 1) is used
(IEEE 1076 '93). This is excessive and when synthesized will yield much more logic than is
necessary. This leaves the optimizer with the task of optimizing away all the redundant logic.

Syntax: type type_name_identifier is range integer_range;

where type_name_identifier is the identifier name of the data type
integer_range is the defined subrange of integers

example
type CountValue is range 0 to 15;
type Twenties is range 20 to 29;
type Thirties is range 39 downto 30;

There is no difference between using to or downto when declaring an integer range.

Note that when a synthesis tool synthesizes and assigns the necessary number of bits for an
integer range it counts from zero. This means the signal of type Thirties synthesizes to six bits (0-

45

HDL Chip Design

39) and is not normalized to four bits for an integer range of ten (30-39). Therefore, it makes
sense to always specify integer ranges beginning from zero.

Composite data type. Composite data types are used to define collections of values (elements]
which together constitute an array or record. Individual elements of an array must belong to the
same type while record elements may be of a different type.

Composite array data type. Array types are useful for modeling linear structures such as RAMS
and ROMS. Elements of an array may be of any type provided all the elements are of the
same type. An element is a constituent part of a type, for example, the constrained array
type below has 8 (0 to 7) constituent elements. The range of the array is specified with an
upper and lower bound integer separated with the word to or downto. It is possible to specify
arrays of arrays to any dimension, however, only one or two dimensions are supported by
synthesis tools. Multidimensional arrays of three or more are not needed for modeling physical
hardware.

The declaration of an array data type may specify a specific range, in which case it is said to
be constrained. It is possible not to specify a range of an array type. This has the advantage
of deferring the declaration of its range until a signal or variable of that type is declared.

example type unsigned is array (natural range <>) of std_logic; - unconstrained array
type unsigned is array (natural range 7 downto 0) of std_logic; - constrained array

Composite record data type. Record types are useful for modeling data packets. A record may
contain values which belong to the same or different type. Assignments to individual elements
in the record are made using the record identifier name and element name separated by a
period (.).

example type FloatPointType is
record

Sign: std_logic;
Exponent: unsigned(0 to 6);
Fraction: unsigned(24 downto 1);

end record;

VHDL Data Objects

Constant. A constant holds one specific value of the specified type. Once declared, the value of
a constant cannot change.

example constant DataWidth: integer: = 24;
constant Stop: unsigned(l downto 0): = "00";

Variable. A variable holds any single value from the values of the specified type. Often used to
hold temporary values within a process and need not relate to a node in the implied circuit.

example variable ThreeBits: unsigned (0 to 2);

Signal. A signal holds a list of values which includes its current value and a set of possible future
values that are to appear on the signal.

example signal RegB, RegQ: unsigned (A'length -1 downto 0);

File. A file refers to a system file and contains a sequence of values of a specified type. File
objects are not supported by synthesis tools, but are very useful in test harnesses. Values are
written to, or read from, a file using procedures.

example file VectorFile: text open read_mode is ". /vectorfile. vec";

46

Chapter Three: Language Fundamentals

Verilog data types

The Verilog language defines the only allowable data type. It has the value set {0, 1, X, Z} as
described earlier.

Verilog data objects

Net and Register data objects. If a net (wire, wand, wor), or register (reg) data objects are
declared without a range, then by default, they are one bit wide and referred to as a scalar. If a
range is declared, it has multiple bits and is known as a vector. A vector may be referenced in its
entirety, in part, or each individual bit as desired. Met and register data objects are described
below.

Net. The synthesizable net data objects indicated in Figure 3. 7, represent and model the
physical connection of signals. A net object must always be assigned using a continuous
assignment statement. An assignment in Verilog is the basic mechanism for assigning values
to net and register data types. In particular, a continuous assignment statement assigns
values to any of the net data types and so makes a connection to an actual wire in the
inferred circuit.

wire: Models a wire which structurally connects two signals together.
wor: Models a wired OR of several drivers driving the same net. An OR gate will be

synthesized.
wand: Models a wired AND of several drivers driving the same net. An AMD gate will

be synthesized.
example wire Netl;

wire (2: 0) Net234;

Register. The register (reg) data object holds its value from one procedural assignment statement
to the next and means it holds its value over simulation delta cycles. A procedural assignment
is an assignment for a register data type and does not imply a physical register will be
synthesized, although it is used for this purpose. It is used to assign values under trigger
conditions such as if and case statements. A procedural assignment stores a value in a
register data type and is held until the next procedural assignment to that register data type.

example reg (3: 0) Y1, Y2;

Parameter. A parameter data object defines a constant. Only integer (and not real) parameter
constants should be used with synthesis. Like all other data types, their position defines whether
they are global to a module or local to a particular always statement.

example parameter A = 4'b 1011, B = 4'b 1000;
parameter Stop = 0. Slow = 1. Medium = 2, Fast = 3;

Integer. Integer data objects are used to declare general purpose variables for use in loops; they
have no direct hardware intent and hold numerical values. No range is specified when an integer
object is declared. Integers are signed and produce 2's complement results.

example integer N;

47

HDL Chip Design

Expressions

An expression comprises of operators and operands, see Figure 3. 8, and are covered separately
in the following two sections.

Figure 3. 8 Expression consisting of
operands and operators

Operands
Data objects form the operands of an expression and it is their value that is used by operators in
an expression. There are more kinds of VHDL operands than there are in Verilog. All Verilog and
most VHDL operands are supported by synthesis tools, see Figure 3. 9.

+/+ does not make sense to use when modeling for
synthesis and so not supported by synthesis tools.

Figure 3. 9 VHDL and Verilog Operands

48

Verilog Operands

Literals
string (bit & character)
numeric
real

Identifiers
module
parameter
wire
register
macros (text substitutions)

Index & Slice Names
Function Calls

VHDL Operands

Literals
abstract
string (bit & character)
enumeration
numeric
physical
real

Identifiers
entity
architecture
configuration
constant
signal
variable
subprogram

Index & Slice Names
Function Calls
Record & Record Fields
Aggregates
Qualified Expressions
Type Conversion
Allocators

Chapter Three: Language Fundamentals

Literal Operands

A literal is a constant-valued operand. Only string, enumeration and numeric literals can be used
in synthesizable models and are described below.

String Literals. A string literal is a one dimensional array of characters enclosed in double quotes
(" ") for both languages. There are two kinds:

1. Character string literals. These are sequences of characters and are useful when designing
simulatable test harnesses around a synthesizable model.

example "ABC"
2. Bit string literals (VHDL): These apply to VHDL only and represent binary (B), octal (O)

or hexadecimal (X) based numbers. The string is prefixed by a "B", "O" or "X" depending
on the base required and may be in upper or lower case as shown below.

example B"1010"
O"57"
X"9FDE" or x"9FDE"

Enumeration Literals (VHDL). Enumeration literals are the individual values of an enumerated
iata type. An enumerated literal may be an identifier, a character or a mixture of both. The
/HDL language predefines the following enumeration types: BIT, BOOLEAN, CHARACTER and
SEVERITY_LEVEL (see package STANDARD in Appendix A.)

Numeric Literals

VHDL. Numeric literals may be of type integer, real or physical. Only integer numeric literals
should be used with synthesis. Integer numeric literals are the values of integer constants.
They may be defined in the default base 10 or any other base from 2 to 16. Underscores may
separate individual digits without changing the meaning of the numeric literal.

example 314159
3_14159
2#1010_0101#
8#57#
16#9FDE#

Verilog. Numeric literals are simple constant numbers that may be specified in binary, octal,
decimal or hexadecimal. The specification of its size is optional as Verilog calculates size based
on the longest operand value in an expression, and corresponding assigned value in an
assignment.

example 12'b0011_0101.
2'O 57
3_14159
4'h 9FDE

1100 12-bit sized binary constant number
2 digit octal number
default decimal number
4 digit hexadecimal number

49

HDL Chip Design

Literal operands

Identifier Operands

An identifier is used to give a name to a data object so that it may be easily referenced in an HDL
model. They are the most commonly used type of operand. The value of the named object is
returned as the operand value.

VHDL identifiers consists of letters, digits and underscores (_). Verilog identifiers have these plus
the dollar sigh ($).

As VHDL is case insensitive, upper and lower case identifier names are treated as being the same
identifier. Verilog is case sensitive, so upper and lower case identifier names are treated as being
different identifiers.

50

Chapter Three: Language Fundamentals

Identifier operands

Aggregate Operands (VHDL)

A VHDL aggregate is a set of one or more elements of an array or record separated by commas
and enclosed within parentheses, for example, ('0', '1' , A, B). The syntax of an aggregate operand
is:

type_name'((choice =>) expression {, (choice =>), expression})
where:

type_name- is any constrained array or record type
choice - is optional and used for explicit named notation
expression - is the value of the particular element

example unsigned'('0', '1', A, B)

51

Synthesized Circuit

VHDL Verilog

HDL Chip Design

Aggregate operands can, therefore, be considered as array or record operands. Synthesis tools
typically support both array and record aggregates. An aggregate may also be the target of a
signal or variable in an assignment statement.

example (A, B, C) <= unsigned'("101");

An example of aggregate array operands is shown below. The three 4-bit outputs Yl, Y2, Y3, plus
the four combined bits of Y3A, Y3B, Y3C and Y3D, all contain the same value.

Aggregate operands

Function Call Operands

Function calls, which must reside in an expression, are operands. The single value returned from
a function is the operand value used in the expression.

Function call operands

52

library IEEE;
use IEEE. STD_Logic_1164. all. IEEE. Numeric_STD. all;

entity AGGREGATES is
port (A, B: in std_logic;

C: in unsigned(3 downto 0);
Y1, Y2: out unsigned(3 downto 0);
Y3A, Y3B. Y3C. Y3D: out std_logic);

end entity AGGREGATES;

architecture DATA_FLOW of AGGREGATES is
begin

process (A, B, C)
begin

- Positional notation aggregate
Y1 <= ('0', '1', A nor B, A nand B);

- Named notation aggregate
Y2 <= (3 => A or B. 4 => A and B, 1 => '0', 2 => '1');

- Aggregate Target
(Y3A, Y3B, Y3C, Y3D) <= not C;

end process;

end architecture DATA FLOW;

library IEEE;
use IEEE. STD_Logic_1164. all;

entity FUNCTION_CALLS is
port (A1. A2, A3, A4, B1, B2: in std_logic;

Y1, Y2, Y3: out std_logic);
end entity FUNCTION_CALLS;

architecture LOGIC of FUNCTION_CALLS is

function Fn1 (F1, F2, F3, F4: std_logic) return std_logic is
variable Result: std_logic;

begin
Result: = (F1 and F2) or (F3 and F4);
return Result;

end function Fn1; continued

module FUNCTION_CALLS (A1, A2, A3, A4, B1, B2, Y1, Y2);
input A1, A2, A3, A4, B1, B2;
output Y1, Y2;

reg Y1, Y2;

function Fn1;
Input F1, F2, F3, F4;

begin
Fn1 = (F1 & F2) | (F3 & F4);

end
endfunction

continued

Chapter Three: Language Fundamentals

Function call operands

Index and Slice Name Operands

An index named operand specifies a single element of an array. For synthesis the array may be
of type constant, variable or signal. A slice named operand is a sequence of elements within an
array and is identified in VHDL using to or downto, and in Verilog using the colon ": ".

Index and slice name operands

53

HDL Chip Design

Index and slice name operands

Qualified Expression Operands (VHDL)

A qualified expression operand is used to explicitly state the type or subtype of the operand itself.
The operand may be a complete expression in its own right or an aggregate. By using qualified
operands, any possible ambiguities in an operands type is resolved. This includes the use of an
enumerated literal or aggregate, where their type is not known from the context in which they
are used.

Syntax of a qualified expression operand:
type_name' (expression)

or
type_name' aggregate

The two models, VHDL 1 and VHDL 2, show examples of qualified expression operands (VHDL
1) and qualified aggregate expressions (VHDL 2).

VHDL 1. Two enumerated data types, PrimeColorType and RainbowType have been declared in the
package, ColorsPKG, and are used by two identically named functions, ColorTest, defined in the
package body. The model, QUALIFIED_EXPRESSION, has a total of six calls to the two functions.
The problem is that, because the enumerated literals of the enumerated data type overlap (Red,
Green and Blue), when one of these overlapping literals is used in a function call to ColorTest,
there is no way of deducing which of the two functions should be used. Therefore, when
enumerated literals Red, Green and Blue are used, they must be qualified as shown. Function
calls which pass any of the enumerated literals; Orange, Yellow, Indigo or Violet to the function, do
not need to be qualified. Such a function call must use the first ColorTest function which uses the
data type RainbowType.

VHDL 2. The package BusTypes defines three unsigned subtypes (Bus4, Bus6 and Bus8) consisting
of 4, 6 and 8-bits, respectfully. The model, QUALIFIED_AGGREGATE, infers two adders assuming
the synthesis tool's automatic resource sharing option is used. The plus (+) operator, which
infers an adder, has left and right operands of 8 and 4-bits each, and is assigned to the 8-bit
output Y1. The right hand operand is a 4-bit qualified aggregate. The second plus operator
inferring a second adder has 8 and 6-bit inputs respectively and has an 8-bit output Y2. The plus
operator's right hand operand is an aggregate and is required to be either 4 or 6-bits wide. Only
the two most significant bits of this right hand operand needs to be explicitly defined: all other

54

Synthesized Circuit

Chapter Three: Language Fundamentals

bits have a default assignment using the others clause. The problem is two fold; 1) unless the
operand is qualified, it will not be of type unsigned as required by the "+" operator and 2) it would
not be of the correct bit width.

Qualified expressions Qualified aggregates

V H D L 1

package ColorsPKG is
type PrimeColorType is (Red, Green, Blue);
type RainbowType is

(Red, Orange, Yellow, Green, Blue, Indigo, Violet);
end package ColorsPKG;

package body ColorsPKG is
function ColorTest(Color: RainbowType)

return RainbowType is
begin

if (Color = Red) then
return Violet;

else
return Color;

end if;
end ColorTest;
function ColorTest(Color: PrimeColorType)

return PrimeColorType is
begin

if (Color = Red) then
return Blue;

else
return Color;

end if;
end ColorTest;

end package body ColorsPKG;

library IEEE;
use IEEE. STD_Logic_l 164all, IEEE. Numeric_STD. all;
use work. ColorsPKG. all;

entity QUALIFIED_EXPRESSION is
port (A1. A2: in std_logic;

Y1: out PrimeColorType;
Y2: out RainbowType);

end entity QUALIFIED_EXPRESSION;

architecture LOGIC of QUALIFIED EXPRESSION is
begin

process (A1, A2)
begin

if (A1=T) then
Y1 <= ColorTest(PrimeColorType'(Red));
Y2 <= ColorTest(indigo);

elsif (A2 = '1') then
Y1 <= ColorTest(PrlmeColorType'(Green));
Y2 <= ColorTest(RainbowType'(Green));

else
Y1 <= ColorTest(PrimeColorType'(Blue));
Y2 <= ColorTest(Yellow);

end if;
end process;

end architecture LOGIC;

V H D L 2

library IEEE;
use IEEE. STD_Logic_1164. all, IEEE. Numeric_STD. all;

package BusTypes is
subtype Bus4 is unsigned(3 downto 0);
subtype Bus6 is unslgned(5 downto 0);
subtype Bus8 is unsigned(7 downto 0);

end package BusTypes;

library IEEE;
use IEEE. STD_Logic_l 164. all, IEEE. Numeric_STD. all;
use work. BusTypes. all;

entity QUALIFIED_AGGREGATE is
port (A1, A2, B, C, D, E: in std_logic;

Data1, Data2: in unsigned(7 downto 0);
Y1: out Bus4;
Y2: out Bus6);

end entity QUALIFIED_AGGREGATE;

architecture DATA_FLOW of QUALIFIED_AGGREGATE is
begin

process (A1, A2, B, C, D, E)
begin

if (A1 ='1') then
Y1 <= Data1 + Bus4'(B or C,B and C,others =>not D);
Y2 <= Data2 + Bus6'(B or C,B and C,others =>not D);

elsif (A2 = '1') then
Y1 <= Data1 + Bus4'(B, C, others => D);
Y2 <= Data2 + Bus6'(B, C, others => D);

else
Y1 <= Data1 + Bus4'(others => not E);
Y2 <= Data2 + Bus6'(others => not E);

end if;
end process;

end architecture DATA_FLOW;

55

HDL Chip Design

Type Conversion Operands (VHDL)

Because VHDL is a strongly typed language the need to change an operand's type within an
expression is sometimes an unavoidable necessity. Type conversion operands change the type
of the returned operand.

The syntax is: originating operand
|-------|------| example signal A, B: unsigned (9 downto 0);

target_type_name (expression) std_logic_vector(A(5 downto 0) + B(5 downto 0))
|------------------------|------------------------|

New operand of different type

The type of the originating expression is implicit. The closely related types that may be converted
are:

1. Abstract numeric types of type integer. Includes floating point numbers and are not supported
for synthesis.

2. Particular kinds of array types. Array types that have the same dimensionality and where
each element is of the same type, can be converted. Array types that have the same
dimensionality and where each element is a closely related property of the array types,
can be converted.

Non-synthesizable conversion functions
Such operands usually contain a function call
to a type conversion function; this is always
the case for models that are to be synthesized.
Type conversions that are used in
synthesizable models typically do not infer
logic.
VHDL 1 (Non-synthesizable). A type conversion
can be modeled very efficiently using a look-
up table defined in a constant. The problem
is, that this constant array is typically not
supported by synthesis tools. VHDL 1 has
been included for completeness, but is not
synthesizable by commercial synthesis tools.
The constant To_Prime is used to convert data
objects of type RainbowType to type
PrimeColorType and vice versa for the constant
To_Rainbow. Mote that if this particular model
were synthesizable To_Rainbow would not infer
logic while To_Prime would.

56

V H D L 1

package ColorTypePackage is
type PrimeColorType is (Red, Green, Blue);
type RainbowType is (Red, Orange, Yellow, Green, Blue,

Indigo, Violet);
type ParrofR is array (PrimeColorType) of RainbowType;
type RarrofP is array (RainbowType) of PrimeColorType;

Constant To_Rainbow:
ParrofR: = (Red => Red, Green => Green, Blue => Blue);

Constant To_Prime:
RarrofP: = (Red => Red, Green => Green, Blue => Blue,

Orange => Red, Yellow => Red,
Indigo => Blue, Violet => Blue);

end package ColorTypePackage;

library IEEE;
use IEEE. STD_Logic_1164. all, IEEE. Numeric_STD. all;
use work. ColorTypePackage. all;
entity TYPE_CONVERSION_NON_SYNTH is

port (Convert: in std_logic;
A1: in PrimeColorType;
A2: in RainbowType;
Y1: out PrimeColorType;
Y2: out RainbowType):

end entity TYPE_CONVERSION_NON_SYNTH;

architecture LOGIC of TYPE CONVERSION NON SYNTH is
begin

process (A1, A2)
begin

if (Convert = T) then
Y1 <= To Prime(A2);
Y2<=To Rainbow(A1);

else
Y1 <=A1;
Y2 <= A2;

end if;
end process;

end architecture LOGIC;

Chapter Three: Language Fundamentals

VHDL 2. Commonly used type conversion functions are typically placed in packages for global
use. Standard packages like the IEEE 1164 package STD_Logic_l164, contains commonly needed
conversion functions that can be called at will. The model TYPE_CONVERSION identifies a situation
where tri-state buffers are being modeled, but the input values A and B are of type bit and
bit_vector. As these bits do not contain a tri-state value, that is Z, it must be converted to a type
that does, in this case std_logic_vector. It uses function calls to the functions To_stdulogic and
To_stdulogicvector which are defined in package STD_Logic_l164.

Use of predefined conversion functions

Record and Record Element Operands (VHDL)

A record is used to group objects of the same or different type. A record type declaration defines
the different types that can be used in a particular record. Each element of a record is referred to
as a field. The whole record or a particular element within a record can be used as an operand in
an expression, the syntax of which is shown below. The period (.) is used to separate record
names and record element names when referencing record elements.

record_name (record)
record_name. field_name (record field)

The two following two examples demonstrate record and record elements assignments and their
use as operands. By defining record types in a separate package, signals using these types can
appear in the interface list of entity statements.

57

V H D L 2

library IEEE;
use IEEE. STD_Logic_1164. all;

entity TYPE_CONVERSION is
port (EnA, EnB: in boolean;

A: In bit;
B: in bit_vector(3 downto 0);
Y1, Y2: out Std_logic_vector(3 downto 0));

end entity TYPE_CONVERSION;

architecture LOGIC of TYPE_CONVERSION is
begin

Y1 <= (others => (Tostdulogic(A))) when EnA else "ZZZZ";
Y2 <= Tostdulogicvector(B) when EnB else "ZZZZ";

end architecture LOGIC;

Synthesized Circuit

HDL Chip Design

Two examples of record and record element operands

58

V H D L

library IEEE;
useIEEE. STD_logic_1164. all, IEEE. Numeric_STD. all;
package RecordTypes is

type R1_Type is record
I: integer range 7 downto 0;
J: std_logic;

end record;
type R2_Type is record

I: integer range 0 to 7;
J: unsigned(1 downto 0);

end record;
end package RecordTypes;

use work. RecordTypes. all;

entity RECORDS is
port(Al. A2: in std_logic;

B1, B2: in integer range 0 to 7;
C: in R1_Type;
Y: out R2_Type);

end entity RECORDS;

architecture RTL of RECORDS is
signal M: R1_Type;

begin

process (A1, A2, B1, B2, C)
begin

M. I <= B1 + B2;
M. J <= A1 and A2;
if (C = M) then

Y. I <= M. I - C. I; //record element
Y. J <= M. J & C. J; //operands.

else
Y. I <= 0;
Y. J <= "00";

end if;
end process;

end architecture RTL;

V H D L

library IEEE;
use IEEE. STD_Logic_1164. all, IEEE. Numeric_STD. all;
package RecordPKG is

type FloatPointType is
record

Sign: std_logic;
Exponent: unsigned(6 downto 0);
Fraction: unsigned(23 downto 0);

end record;
end package RecordPKG;

library IEEE;
use IEEE. STD_Logic_1164. all, IEEE. Numeric_STD. all;
use work. RecordPKG. all;

entity RECORDS_FLOATING_POINT is
port (Si: in std_logic;

Ex: in unsigned(6 downto 0);
Fr: in unsigned(23 downto 0);
A, B: in std_logic;
Fl, F2: in FloatPointType;
Y1: out unsigned(31 downto 0);
Y2: out Std_logic;
Y3: out FloatPointType);

end entity RECORDS_FLOATING_POINT;

architecture RTL of RECORDS_FLOATING_POINT is
begin

process (Si, Ex, Fr)
variable F: FloatPointType;

begin
F. S i g n : = Si;
F. Exponent: = Ex;
F. F rac t ion : = Fr;
Y1 <= F. Sign & F. Exponent & F. Fraction;

end process;

process (A, F1, F2)
begin

if (F1 = F2) then
Y2 <= A;
Y3<=F1; //record operands

else
Y2 <= B;
Y3 <= F2; //record operands

endif;
end process;

end architecture RTL'

Chapter Three: Language Fundamentals

Operators

Operators perform an operation on one or more operands within an expression. An expression
combines operands with appropriate operators to produce the desired functional expression.

VHDL Operators. There are seven functional groups of VHDL operators, see Table 3. 1. Operators
within a particular group have the same level of precedence when used within an expression.
Starting from the top, each group of operators has precedence over the next.

Verilog Operators. The Verilog operators are shown in Table 3. 2. Although not all operators can be
used in the same expressional part of code, where they can, they are shown in descending order
of precedence. Operators with equal precedence are shown grouped. There are nine functional
groups of operators. The group to which each operator belongs is indicated in the third column
of the table. The group to which each operator belongs does not govern precedence.

VHDL and Verilog Operators. A comparison of VHDL and Verilog operators is shown in Table 3. 3.
Operators are categorized into functional groups and are not in precedence order. Where there is
no equivalent operator in the other language the entry in the table is left blank.

The models in the remaining sections in this chapter show use of all VHDL and Verilog operators.
Like all models in this book they are geared towards being simulated, synthesized and then
resimulated using the synthesized gate level netlist.

Overloaded Operators (VHDL)

VHDL operators that operate on single bit values are defined by the VHDL language to operate
on objects of type bit only. A data type (signal or variable) of type bit is defined to have one of
two values 0 or 1. The only multi-valued data types defined by the VHDL language is of type
integer. For this reason, overloaded VHDL operators from the IEEE 1076. 3 synthesis package
Numeric_STD are used.

Type std_logic is used for single bit data types, which can have one of nine possible values {U, X,
0, 1, Z, W, L H, -}. Data type, std_logic, is defined in the IEEE library package STD_Logic_l164 along
with all the appropriate overloaded language operators.

For multiple bit data types, types unsigned and signed are used and are defined in both IEEE
1076. 3 synthesis packages Numeric_bit and Numeri_STD. Types unsigned and signed are defined
in Numeric_bit to be a one dimensional array of values of type bit. Types unsigned and signed are
defined in Numeric_STD to be a one dimensional array of values of type std_logic. For this reason,
only package Numeri_STD is used throughout this book.

59

HDL Chip Design

VHDL Operator

Miscellaneous Operators

abs

Arithmetic (multiplying) Operators
*

/

mod

rem

Unary Arithmetic (sign) Operators
+
-

Adding Operators
+
-
&

Shift Operators
Sll

srl

sla

sra

rol

ror

Relational Operators
=
/=
<

>

>=

Logical Operators
not
and
or
nand
nor
xor
xnor

Operation

exponential

absolute value

multiplication

division

modulus

remainder

identity
negation

addition
subtraction
concatination

logical shift left

logical shift right

arithmetic shift left

arithmetic shift right

logical rotate left

logical rotate right

equality
inequality
less than

less than or equal to

greater than

greater than or
equal to

logical NOT
logical AND
logical OR
logical NAND
logical NOR
logical XOR
logical XNOR

Operand Type
Left Right

any integer INTEGER
any floating point INTEGER
any numeric type any numeric type

any integer same type
any floating point same type
any integer same type
any floating point same type
any integer same type

any integer same type

any numeric type any numeric type
any numeric type any numeric type

any numeric type same type
any numeric type same type
any array type same array type
any array type the element type
the element type any array type
the element type the element type

One dimensional INTEGER
array of bit or boolean
One dimensional INTEGER
array of bit or boolean
One dimensional INTEGER
array of bit or boolean
One dimensional INTEGER
array of bit or boolean
One dimensional INTEGER
array of bit or boolean
One dimensional INTEGER
array of bit or boolean

any type any type
any type any type
any scalar type or any scalar type or
discrete array type discrete array type
any scalar type or any scalar type or
discrete array type discrete array type
any scalar type or any scalar type or
discrete array type discrete array type
any scalar type or any scalar type or
discrete array type discrete array type

BOOLEAN, BIT or BIT VECTOR
BOOLEAN, BIT or BIT_VECTOR
BOOLEAN, BIT or BIT VECTOR
BOOLEAN, BIT or BIT VECTOR
BOOLEAN, BIT or BIT VECTOR
BOOLEAN, BIT or BIT VECTOR
BOOLEAN, BIT or BIT VECTOR

Result Type

same as left
same as left
some numeric type

same type
same type
same type
same type
same type

same type

same type
same type

same type
same type
same array type
same array type
same array type
any array type

same as left

same as left

same as left

same as left

same as left

same as left

BOOLEAN
BOOLEAN
BOOLEAN

BOOLEAN

BOOLEAN

BOOLEAN

same as left
same as left
same as left
same as left
same as left
same as left
same as left

Table 3. 1 VHDL Operators

60

Table 3. 2 Verilog Operators

61

Chapter Three: Language Fundamentals

Verilog
Operator

()

()

&
|
~&
-|
^
~^ or ^~

+

{}

{{}}

/
%

+
-
<<
>>

ii
ii

V
 A

V

V

!=

!==

&

^

^~ or ~^

|

&&

II

?:

Name

bit-select or part-select

parenthesis

logical negation
negation
reduction AND
reduction OR
reduction NAND
reduction NOR
reduction XOR
reduction XNOR

unary (sign) plus
unary (sign) minus

concatenation

replication

multiply
divide
modulus

binary plus
binary minus

shift left
shift right

greater than
greater than or equal to
less than
less than or equal to

logical equality
logical inequality

case equality
case inequality

bit-wise AND

bit-wise XOR
bit-wise XNOR

bit-wise OR

logical AND

logical OR

conditional

Functional Group

Logical
Bit-wise
Reduction
Reduction
Reduction
Reduction
Reduction
Reduction

Arithmetic
Arithmetic

Concatenation

Replication

Arithmetic
Arithmetic
Arithmetic

Arithmetic
Arithmetic

Shift
Shift

Relational
Relational
Relational
Relational

Equality
Equality

Equality
Equality

Bit-wise

Bit-wise
Bit-wise

Bit-wise

Logical

Logical

Conditional

HDL Chip Design

Table 3. 3 Comparison of VHDL and Verilog Operators

62

Operation

Arithmetic Operators
exponential
multiplication
division
addition
subtraction
modulus
remainder
absolute value

Unary Arithmetic (Sign) Operators
identity
negation

Relational Operators
less than
less than or equal to
greater than
greater than or equal to

Equality Operators
equality
inequality

Logical Comparison Operators
NOT
AND
OR

Logical Bit-wise Operators
unary negation NOT
binary AND
binary OR
binary nAND
binary NOR
binary XOR
binary XNOR

Shift Operators
logical shift left
logical shift right
arithmetic shift left
arithmetic shift right
logical rotate left
logical rotate right

Concatenation & Replication
Operators
concatenation
replication

Reduction Operators
AND
OR
NAND
NOR
XOR
XNOR

Conditional Operator
conditional

Operator
VHDL

**
*
/
+

mod
rem
abs

+
-

<

>
>=

=
/=

not
and
or

not
and
or
nand
nor
xor
xnor

sll
srl
sla
sra
rol
ror

&

Verilog

/
+
-

%

+
-

<
<=
>
>=

==
!=

!
&&
II

~
&
|

A

^~ or ~^

«
»

{}
{{}}

&
|
-&
~|
^
^~or~^

?:

Chapter Three: Language Fundamentals

Arithmetic Operators

There are eight VHDL arithmetic operators, but only five of them are found in Verilog; see Table
3. 3. The five common operators are shown in the first example, while the second example shows
the three remaining VHDL operators.

Arithmetic opeaotors common to both languages

VHDL arithmetic operators not in Verilog

It is not recommended to use
multiplication division.
modulus, to the power of.
remainder or absolute value
In a model which is to be
synthesized. More efficient
synthesized circuits usually
result when specifying these
functions with more structural
detail, see Chapter 9.

(A synthesis tool may
generate a warning for even
an error when these
operators are used with non-
constant operands)

63

library IEEE;
use IEEE. STD_logic_1164. all. IEEE. Numeric_STD. all;

entity ARITHMETIC is
port (A, B: in unsigned(2 downto 0);

Y1: out unsigned(3 downto 0);
Y3: out unsigned(5 downto 0);
Y2, Y4, Y5: out unsigned(2 downto 0));

end entity ARITHMETIC;

architecture RTL of ARITHMETIC is
begin

process (A, B)
begin

Y1 <= A + B; - Addition
Y2 <= A - B; - Subtraction
Y3 <= A * B; - Multiplication
Y4 <= A / B; - Division
Y5 <= A mod B; - Modulus of A divided by B

end process;
end architecture RTL;

module ARITHMETIC (A, B, Y1, Y2, Y3, Y4, Y5);
input (2: 0) A, B;
output (3: 0) Y1;
output (4: 0) Y3;
output (2: 0) Y2, Y4, Y5;
reg (3: 0) Y1;
reg (4: 0) Y3;
reg (2: 0) Y2, Y4, Y5;

always @(A or B)
begin

Y1 = A + B; // Addition
Y2 = A - B; // Subtraction
Y3 = A * B; // Multiplication
Y4 = A / B; // Division
Y5 = A % B; // Modulus of A divided by B

end
endmodule

library IEEE;
use IEEE. STD_Logic1164. all, IEEE. Numeric_STD. all;

entity ARITHMETIC is
port (A, B: in unsigned(4 downto 0);

C: in signed(3 downto 0);
Y1, Y2, Y3: out unsigned(4 downto 0));

end entity ARITHMETIC;

architecture RTL of ARITHMETIC is
begin

process (A, B)
begin

Y1 <= 4 ** 2; - 4 to the power of 2.
Y2 <= A rem B; - Remainder of A divided by B
Y3 <= abs C; - Absolute value of C.

end process;
end architecture RTL;

library IEEE;
use IEEE. STD_Logic_1164. all, IEEE. Numeric_STD. all;

entity SIGN is
port (A, B: in unsigned(2 downto 0);

Y1. Y2. Y3: out unsigned(3 downto 0));
end entity SIGN;
architecture RTL of SIGN is
begin

process (A, B)
begin

Y1 <= +A / (-B);
Y2 <= (-A) + (-B);
Y3 <= A * (-B);

end process;
end architecture RTL;

module SIGN (A, B, Y1, Y2, Y3);
input (2: 0) A, B;
output (3: 0) Y1. Y2. Y3;

reg (3: 0) Y1, Y2, Y3;

always @(A or B)
begin

Y1 = +A / -B;
Y2 = -A + -B;
Y3 = A* -B;

end

endmodule

library IEEE;
use IEEE. STD_Logic_1164. all, IEEE. Numeric_STD. all;

entity RELATIONAL_OPERATORS is
port (A, B: in unsigned(2 downto 0);

Y1, Y2, Y3: out boolean;
Y4: out std_logic);

end entity RELATIONAL_OPERATORS;
architecture LOGIC of RELATIONAL_OPERATORS is
begin

process (A. B)
begin

Y1<=A< B; -Less than
Y2<=A<= B; - Less than or equal to
Y3 <= A > B; - Greater than
if (A >= B) then - Greater than or equal to

Y4<='1 ' ;
else

Y4 <= '0';
end if:

end process;
end architecture LOGIC;

module RELATIONAL_OPERATORS (A, B, Y1. Y2. Y3. Y4);
input (2: 0) A. B;
output Y1. Y2, Y3, Y4;

reg Y1. Y2, Y3, Y4;

always @(A or B)
begin

Y1 = A < B; // Less than
Y2 = A <= B; // Less than or equal to
Y3 = A > B; // Greater than
If (A >= B); // Greater than or equal to

Y4= 1;
else

Y4 = 0;
end

endmodule

HDL Chip Design

Sign Operators

These operators simply assign a positive (+) or negative (-) sign to a singular operand. Usually
no sign operator is defined, in which case the default"+" is assumed.

Sign operators

64

Relational Operators

Relational operators compare two operands and returns an indication of whether the compared
relationship is true or false.

VHDL. The two operands need not be of the same type and the result need not be of type
boolean; it depends on the overloading. The comparison of enumeration types is performed
according to the positional ordering of each element in the enumeration type declaration. Record
or array types compare corresponding elements of each operand.

Verilog. The result of a comparison is either 0 or 1. It is 0 if the comparison is false and 1 if the
comparison is true.

Relational operators

VHDL Verilog

VerilogVHDL

Chapter Three: Language Fundamentals

Relational operators

Equality E Inequality Operators

Equality and inequality operators are used in exactly the same way as relational operators and
return a true or false indication in exactly the same way as relational operators, depending on
whether any two operands are equivalent or not.

Equality operators

65

VHDL
library IEEE;
use IEEE. STD_logic_1164. all, IEEE. Numeric_STD. all

entity EQUALITY_OPERATORS is
port (A. B: in unsigned(2 downto 0);

Y1, Y2: out boolean;
Y3: out unsigned(2 downto 0));

end entity EQUALITY_OPERATORS;

architecture LOGIC of EQUALITY_OPERATORS is
begin

process (A. B)
begin

Y1<=A=B;
Y2 <= A /=B;

if (A = B) then
Y3 <=A;

else
Y3 <= B;

end if;
end process;

end architecture LOGIC;

Verilog

module EQUALITY_OPERATORS (A, B, Y1, Y2, Y3);
Input (2: 0) A, B;
output Y1, Y2;
output (2: 0) Y3;

reg Y1, Y2;
reg (2: 0) Y3;

always @(A or B)
begin

Y1 = A == B; // Y1=1 if A equivalent to B
Y2 = A != B; // Y2=l if A not equivalent to B

i f (A==B) // Parentheses needed
Y3 = A;

else
Y3 = B;

end

endmodule

Synthesized Circuit

66

Logical Comparison Operators

Logical comparison operators are used in conjunction with relational and equality operators as
described in the previous two sections. They provide a means to perform multiple comparisons
within a single expression.

Logical comparison operators

Equality operators

HDL Chip Design

V H D L

library IEEE;
use IEEE. STD_Logic_1164. all, IEEE. Numeric_STD. all;

entity COMPARISON is
port (A, B, C. D. E. F: in unsigned(2 downto 0);

Y: out std_logic);
end entity COMPARISON;

architecture LOGIC of COMPARISON is
begin

process (A, B, C, D, E, F)
begin

if ((A = B) and ((C > D) or not (E <= F))) then
Y<='1';

else
Y <= '0';

end if;
end process;

end architecture LOGIC;

Verilog

module COMPARISON (A. B. C. D. E. F. Y);
input (2: 0) A, B, C, D, E, F;
output Y;

reg Y;

always @(A or B or C or D or E or F)
begin

if ((A==B)&&((C>D) | | !(E<=F)))
Y = 1 ;

else
Y = 0;

end

endmodule

Synthesized Circuit

Chapter Three: Language Fundamentals

Logical comparison operators

67

Synthesized Circuit

HDL Chip Design

Logical Bit-wise Operators

Logical bit-wise operators take two single or multiple bit operands on either side of the operator
and return a single bit result. The only exception is the NOT operator, which negates the single
operand that follows. Note that Verilog does not have the equivalent of a NAND or NOR operator,
though their function is implemented in the following Verilog model by negating the AND and OR
operators so that the VHDL and Verilog models remain identical.

Bit-wise logical operators

68

VHDL
library IEEE;
use IEEE. STD_Logic_1164. all, IEEE. Numeric_STD. all;

entity BITWISE is
port (A: in unsigned(6 downto 0);

B: in unsigned(5 downto 0);
Y: out unsigned(6 downto 0));

end entity BITWISE;

architecture LOGIC of BITWISE is
begin

process (A, B)
begin

Y(0)<=A(0) and B(0); -BinaryAND
Y(1)<=A(1) or B(l); -BinaryOR
Y(2) <= A(2) nand B(2); - Binary NAND
Y(3)<=A(3) nor B(3); - Binary NOR
Y(4)<=A(4) xor B(4); - Binary XOR
Y(5)<=A(5) xnor B(5); - Binary XNOR
Y(6) <= not A(6); - Unary negation

end process;

end architecture LOGIC;

Verilog

module BITWISE (A, B, Y);
input (6: 0) A;
input (5: 0) B;
output (6: 0) Y;

reg (6: 0) Y;

always @(A or B)
begin

Y(0) = A(0) & B(0); // Binary AND
Y(l) = A(l) | B(1); //Binary OR
Y(2) = !(A(2)& B(2)); / /Negated AND (No NAND)
Y(3) = !(A(3) | B(3)); // Negated OR (No NOR)
Y(4)= A(4)^ B(4); //Binary XOR
Y(5) = A(5) ~^ B(5); // Binary XNOR
Y(6) = ! A(6); // Unary negation

end

endmodule

Synthesized Circuit

Chapter Three: Language Fundamentals

Shift Operators

Shift operators require two operands. The operand before the operator contains data to be
shifted and the operand after the operator contains the number of single bit shift operations to be
performed.

In this instance, the two models are not identical because the Verilog model does not include the
two rotate and two arithmetic shift operators. These operators do not exist in Verilog, however,
their function can be implemented with little extra code, see shifters in Chapter 9.

Shift operators

69

VHDL
library IEEE,
use IEEE. STD_logic_1164. all, IEEE. Numeric_STD. all;

entity SHIFT is
port (A : in unsigned(7 downto 0);

Y1. Y2.
Y3, Y4,
Y5, Y6: out unsigned(7 downto 0));

end entity SHIFT;

architecture LOGIC of SHIFT is
constant B: integer: = 3;

begin

process (A. B)
begin

Y1 <= A sll B; - Logical shift left
Y2<=A srl B: --Logical shift right
Y3 <= A rol B; -- Logical rotate left
Y4 <= A ror B; - Logical rotate right

Y5 <= A sla B; - Arithmetic shift left
Y6 <= A sra B; - Arithmetic shift right

end process;

end architecture LOGIC;

Verilog

module SHIFT (A, Y1. Y2);
input (7: 0) A;
output (7: 0)Y l , Y2;

parameter B = 3;
reg (7: 0) Y1, Y2;

always @(A)
begin

Y1 = A <<B; //Logical shift left
Y2 = A>> B; // Logical shift right

end

endmodule

Synthesized Circuit

HDL Chip Design

Concatenation & Verilog replication Operators

VHDL. The concatenation operator "&" is an infix operator that combines (concatenates) the bits
of the single or multiple bit operands either side of the operator. The operands must be one
dimensional.

Verilog. The concatenation operator"{, }" combines (concatenates) the bits of two or more data
objects. These objects may be scaler (single bit) or vectored (multiple bit). Multiple concatenations
may be performed with a constant prefix and is known as replication. Replication in this way is
not supported in VHDL.

Concatenation & Veriloa replication operators

Reduction Operators (Verilog)

Verilog has six reduction operators, VHDL has none built-in. The operators accept a single vectored
(multiple bit) operand, performs the appropriate bit-wise reduction operation on all bits of the
operand, and returns a single bit result. For example, the four bits of A are ANDed together to
produce Yl. The equivalent of these Verilog operators can be achieved in VHDL by using a loop
statement as indicated in the model, or by using a function (AND_REDUCE in the VeriBest synthesis
tools).
Verilog reduction operators and VHDL coded equivalent

module REDUCTION (A, Y1, Y2, Y3, Y4, Y5. Y6);
input (3: 0) A;
output Y1, Y2, Y3, Y4, Y5, Y6;

reg Y1. Y2. Y3. Y4, Y5, Y6;

always @(A)
begin

library IEEE;
use IEEE.STD_Logic_1164.all,IEEE.Numeric_STD.all;

entity REDUCTION_OPERATORS is
port (A: in unsigned(3 downto 0);

Y1, Y2, Y3, Y4, Y5, Y6: out std_logic);
end entity REDUCTION_OPERATORS;

architecture LOGIC of REDUCTION_OPERATORS is
begin

process (A)
variable Yl_var, Y2_var, Y3_var, Y4_var,

Y5_var, Y6_var: std_logic;

70

VerilogVHDL Syn. Circuit

VerilogVHDL

Chapter Three: Language Fundamentals

Verilog reduction operators and VHDL coded equivalent

Conditional Operator (Verilog)

Only Verilog has a conditional operator and consists of the symbols "?" and ": ". An expression
using the conditional operator evaluates the logical expression before the "?". If the expression is

71

VHDL
begin

Y1_var: ='1';
Y2_var: = '0';
Y3_var: = '1 ' ;
Y4_var: = '0';
Y5_var: = '0';
Y6_var: = '0';
for N in A'range loop

Yl_var: = Y1_var and A(N);
Y2_var: = Y1_var or A(N);
Y3_var: = Y1_var nand A(N);
Y4_var: = Y1_var nor A(N);
Y5_var: = Y1_var xor A(N);
Y6_var: = Y1_vat xorA(N);

end loop;
Y1 <= Y1_var;
Y2 <= Y2_var;
Y3 <= Y3_var;
Y4 <= Y4_var;
Y5 <= Y5_var;
Y6 <= Y6_var;

end process;
end architecture LOGIC;

Verilog
Y1 = & A; // Reduction AND
Y2 = | A; // Reduction OR
Y3 = -& A; // Reduction NAND
Y4 = - | A; // Reduction NOR
Y5= ^ A; // Reduction XOR
Y6 =-^ A; // Reduction XNOR

end

endmodule

Synthesized Circuit

4
Design/modeling

Recommendations.
Issues and

Techniques

Chapter 4 Contents

Introduction 75

Design and Modeling Recommendations 75
1. Design and process recommendations 75
2. Power reduction recommendations 75
3. Design-for-test (DFT) and test issues 75
4. Test harnesses recommendations 76
5. General HDL modeling recommendations 76
6. Ensuring simulation accuracy 77
7. Improving simulation speed 77
8. Synthesis modeling recommendations 78
9 Joint simulation and synthesis modeling recommendations 79

Simulation Compilation Issues 79
1. Output and buffer port modes (VHDL) 79
2. Width qualification of unconstrained arrays (VHDL) 80
3. Operators to the left of the assignment operator 80
4. Unconstrained subprogram parameters in reuseable models (VHDL) 81
5. Invisible subprograms from separate packages (VHDL) 82
6. Subprogram overloading using type integer and subtype natural (VHDL) 82
7. Concatenation in the expression of a subprogram's formal list (VHDL) 82

Simulation Run Time Issues 83
1. Full sensitivity/event list (VHDL & Verilog) 83
2. Reversing a vectored array direction (VHDL & Verilog) 83
3. True leading edge detection - wait and if(VHDL) 84
4. Order dependency of concurrent statements 84

Synthesis Compilation Issues... 85
1. Non-static data objects and non-static loops (VHDL & Verilog) 85

Joint Simulation and Synthesis Issues 87
1. When to use others (VHDL) and default (Verilog) 87
2. Signal and variable assignments (VHDL) 89
3. Blocking and non-blocking procedural assignments (Verilog) 94
4. Don't care inputs to a case statement (VHDL & Verilog) 96
5. Don't care outputs from a case statement (VHDL & Verilog) 97
6. Comparing vector array types of different width (VHDL) 98

General Modeling Issues 99
1. Using Attributes (VHDL) 99
2. Using Packages (VHDL) 103
3. Operator and subprogram overloading (VHDL) 105
4. Deferred constants (VHDL) 108
5. Translation Functions - Extension and Truncation (VHDL) 109
6. Resource Sharing 110

74

Chapter Four: Design/Modeling Recommendations, Issues and Techniques

Introduction

This is an important chapter dealing with design and modeling recommendations, issues and
techniques that designers should be aware of, in order to produce good, well structured and
efficient models from both a simulation and synthesis view point. They are finite in number and
once understood will make modeling more productive and enjoyable.

First, a summary of modeling recommendations is given followed by more detailed issues and
techniques.

Design and Modeling Recommendations

1. Design and process recommendations:

• Adopt a top-down design and modeling methodology and bottom-up optimization strategy
by hierarchical block.

• Define a design's requirement specification as tightly as practically possible in terms of
input, output, associated timing and functionality before writing HDL models. It is very easy
to design the "wrong thing right".

• It is good design practice to use global clock and reset signals where possible.

• Consider testability issues early in the total system design process, otherwise synthesis can
be a fast and efficient means of producing large amounts of untestable logic. Techniques to
consider are boundary scan, internal scan (full or partial) and BIST, for example LFSRs.
Full scan is often too expensive in terms of area and possibly timing, therefore a mixture of
partial scan and BIST techniques is often the most suitable compromise.

2. Power reduction recommendations:

• Use dynamic power management to:

a) switch circuits to a low frequency standby mode, when applicable, and wake them up
again using interrupts.

b) disable the clock to inactive parts of a circuit and activate only when needed to process
data.

• Use weak drivers on tri-state busses.

3. Design-for-test (DFT) and test issues

• Avoid asynchronous feedback.

• Remove any race conditions.

• Split large counters.

• Use spare pins to aid controllability and observability of internal circuit nodes.

• Make the circuit easy to initialize to a known state.

75

HDL Chip Design

• Use scan testing where appropriate on register elements that are clocked off the same
clock.

• Run fault simulation on areas of the circuit not covered using scan techniques. Examples
include gated clocks or possibly an asynchronous interface to a microprocessor.

• Use test vector comparison techniques during simulation to ensure test insertion does not
alter the functionality of the design.

• Break the scan chain into several small chains of similar length. Use any spare pins to
increase the number of scan chains and reduce their length. This will reduce the number of
test vectors and also test cycles on a chip tester. Chip vendors normally base their test costs
on the number of clock cycles. Minimizing the length of scan chains will help minimize this
cost. If extra pins are not available consider using a pin to put the chip in test mode and
multiplex functional input and output pins with test pins to include scan-in and scan-out test
functions.

4. Test harness recommendations:

• Use test harnesses only when necessary to verify functional behavior. With experience test
harnesses will not be necessary at lower levels of hierarchy.

• Exploit the full richness of constructs in the hardware description language being used.

5. General HDL modeling recommendations

• Before attempting to code a model at the register transfer level, determine a sound architecture
and partition accordingly.

• Write HDL code to reflect the architectural partitioning of a design. Partitioning should be
sufficiently course grained to allow the synthesis tool sufficient scope to perform efficient
logic optimization. A synthesis tool can typically synthesize circuits containing up to 5, 000
equivalent gates fairly well. Above 5, 000 equivalent gates, the algorithms used by synthesis
tools do not always yield such optimal results and can be excessively CPU intensive. More
detailed structural partitioning should be achieved using the concurrent statements process
(VHDL)/always (Verilog); this does not mean describing down to the gate level.

• Only include timing in a model when critical at interfacing boundaries. Timing should come
from the technology cells mapped to by the synthesis tool.

• While VHDL is a strongly typed language, Verilog is not. This allows the freedom of assigning
signals of different width to each other in Verilog. For this reason, be more diligent when
using Verilog as Verilog compilers cannot detect unintentional bit width mismatches. If widths
do not match in Verilog, either bits are chopped off or extra bits are filled with logic 0s.

• When writing HDL code keep in mind:

the hardware intent, and
the synthesis modeling style and its associated restrictions.

• Use subprograms wherever possible to help structure a design making the code shorter and

76

Chapter Four: Design/Modeling Recommendations, Issues and Techniques

easier to read. A primary advantage of using subprograms is code reuse.

• Make models generic as far as possible for model reuse. This means having parameterizable
bit widths.

• Do not repeat identical sections of code in different branches of the same conditional
statement; they should be moved out of the conditional expression. Similarly, loop invariant
signals should not be contained in a loop. Although this may seem obvious, it is a mistake
often made and slows simulation time.

• Be aware that Verilog is case sensitive so identifiers "A" and "a" are different, while VHDL is
case insensitive so identifiers "A" and "a" are treated as being the same. Note that, character
literals in VHDL, "A" and"a" are different.

• Make use of abstract data types to make models easier to read and maintain. This means
using the VHDL enumerated data types and the Verilog 'define compiler directives to represent
data values. Although Verilog does not allow enumerated data types, use of the 'define
compiler directive can be very powerful in many different ways, not just for abstract data
type values.

• Use meaningful signal names. For active low control signals use <signal_name>_n for a
clearer understanding of its functionality and easier debugging, for example, Reset_n would
be active when at logic 0.

• Use comments liberally. A header should describe the functionality of the module and each
signal declaration should have a comment describing what it does.

6. Ensuring simulation accuracy

• VHDL & Verilog. Ensure the sensitivity list of process statements (VHDL) and the event list of
always (Verilog) statements are complete.

7. Improving simulation speed

• VHDL & Verilog. Use a process (VHDL) or always (Verilog) statement in preference to concurrent
signal assignments. This reduces the number of signals a simulator must continually monitor
for changes and so improves simulation time.

• VHDL & Verilog. Design models to minimize the number of signals in the sensitivity list of
process (VHDL)/always (Verilog) statements. Less signals to monitor will improve simulation
speed.

•VHDL & Verilog. Do not model many small process (VHDL)/always (Verilog) statements. It
takes time to activate and deactivate them. If there are many registers being clocked from
the same clock source it is better to put them in one process rather than in separate ones.

• VHDL. Do not use the block statement in RTL modeling for synthesis. Use a process instead.
There is no advantage to be gained from using the block statement and is always active
during simulation.

77

HDL Chip Design

• VHDL. Convert vectored data types, for example signed and unsigned, to integer data types
when convenient to do so.

• VHDL. Use variables instead of signals in a process wherever possible.

• VHDL. Use 'event in preference to 'stable when using objects of type bit; the 'stable attribute
looks for a level so is always active during simulation. However, it is better to use the
functions, rising_edge and falling_edge, in preference to 'event to detect edge transistions.
These functions are defined in the IEEE 1076. 3 packages Numeric_Bit and Numeric_STD
respectively.

8. Synthesis modeling recommendations

• VHDL & Verilog. When modeling purely combinational logic, ensure signals are assigned in
every branch of conditional signal assignments.

• VHDL & Verilog. For combinational logic from a case statement, ensure that either default
outputs are assigned immediately before the case statement or that the outputs are always
assigned regardless of which branch is taken through the case statement. This will avoid
latches being inferred. The others (VHDL) default case branch is optional to ensure all branch
values are covered. The default (Verilog) default case branch is essential to ensure all branch
values are covered and avoid inferring latches.

• VHDL & Verilog. Data objects assigned from within a for loop should be assigned a default
value immediately before the for statement.

• VHDL. Use case statements in preference to if statements containing else-if clauses where
applicable for efficient synthesized circuits. The if statement operates on a priority encoded
basis. (Unlike VHDL, the Verilog case statement is often interpreted by synthesis tools as
being priority encoded like the if statement.

• VHDL. Do not use unbounded integer data types. They default to the maximum range defined
by the language which, for IEEE 1076 '93, is 32-bit. This gives the synthesizer more work to
do in optimizing away the extra and redundant logic.

•VHDL. Standardize on using the IEEE packages STD_Logic_ll64 and Numeric_STD as the
basic minimum. Use types std_logic for single bit values, and either signed or unsigned for
vector array types.

• VHDL. Only use 'event for the edge detection of two value object types such as bit and
boolean. To use 'event with multi-valued data types, such as std_logic the attribute 'last_value
must also be used to detect a true rising edge from logic 0 to 1, and not unknown X to 1 for
example. The problem is 'last_value is not supported by synthesis tools.

• VHDL. Use parentheses in expressions to provide a finer grain structural control.

• VHDL. Use only variable assignments within a for-loop statement wherever possible.

• VHDL. There is no need to use the wait statement to infer flip-flops. The if statement can do
all that the wait statement does and has the added advantage of allowing purely combinational
logic and separate sequential logic to be modeled in the same process.

78

Chapter Four: Design/Modeling Recommendations, Issues and Techniques

• Verilog. Do not attempt to model synchronous logic in a task. A task can only be called from
within a procedural block, which for synthesis means a sequential begin-end block. A begin-
end block can only reside inside an always statement which must contain a posedge or
negedge construct in the sensitivity list, in order to model synchronous logic. Because
synthesis tools do not support nested edge-triggered constructs, a task cannot be used to
model synchronous logic.

9. Joint simulation and synthesis modeling recommendations:

• VHDL & Verilog. Keep loop invariant assignments outside for loop statements, otherwise,
models will take longer to simulate and will synthesize unneeded repeated blocks of logic
which must then be optimized away by the optimizer.

Simulation Compilation Issues

This section contains simulation compilation issues related only to VHDL because it is a strongly
typed language and there are many more issues to discuss. Verilog types are very straight
forward and even allow objects of different bit width to be assigned to each other; again, diligence
is needed because a Verilog compiler will not detect objects having a different bit width than
intended.

1. Output and buffer port modes (VHDL)

Problem. A model containing ports of mode (direction) out can only be written to (assigned)
within the model itself, they cannot be read as shown by signal Sum in the model below.

library IEEE;
use IEEE. STD_LOGIC_1164. all; IEEE. NUMERIC_STD. all;

entity ACCUMULATOR is
port (Clock, Reset, Enable: in std_logic;

Data: in unsigned(2 downto 0);
Sum: out unsigned(5 downto 0)); - Sum is of type out

end entity ACCUMULATOR;
architecture RTL of ACCUMULATOR is
begin

process (Clock)
begin

if rising_edge(Clock) then
if (Reset = '1') then

Sum <= (others <= '0');
elsif (Enable = '1') then

Sum <= Sum + ("000" & Data); - Error (Sum being read. i. e. on right hand side of expression)
else

Sum <= Sum + 1; - Error (Sum being read, i. e. on right h a n d side of expression)
end if;

end if;
end process;

end architecture RTL;

Solution. Port signals could be defined to be of mode buffer. However, this would lead to problems
when used hierarchically as signals of mode buffer may only be connected to other port signals
of mode buffer in a component instantiation. This would mean objects of mode buffer would

79

HDL Chip Design

have to be replicated throughout the design hierarchy. This would cause problems at higher
levels of hierarchy as local buffer ports will need to be connected to ports of mode out.

Port signals of type inout could be defined, however, this would also lead to problems and confusion
throughout the design hierarchy due to their resolution.

The preferred solution is to declare and use an intermediate variable because its value can be
read, and then assign their variable directly to a port of mode out.

process (Clock)
variable Sum_v: unsigned(5 downto 0); - intermediate variable declaration

begin
if rising_edge(Clock) then

if (Reset = '1') then
Sum_v <= (others <= '0');

elsif (Enable = '1') then
Sum_v: = Sum_v + ("000" & Data); -- intermediate variable assignment

else
Sum_v: = Sum_v + 1; - intermediate variable assignment

end if:
end if;
Sum <= Sum_v;

end process;

2. Width qualification of unconstrained arrays (VHDL)

Problem. Sometimes the resulting type from an expression cannot be determined from the
context from which it is used. Examples are:

• when individual bits are concatenated together to form a case statement's choice value.
case (A & B & C) is - Error, will not analyze

The reason this does not analyze is that (A & B & C) is an unconstrained array and the VHDL
language states that all arrays must be constrained.

• when literal values are used in overloaded subprogram calls in such a way that it is not clear
which subprogram should be used.

function FN1 (A: in bit; out integer);
function FN1 (A: in std_logic; out integer);
Y <= FN1 ('1', N); - Error, will not analyze

The literal ('1') is a value of both type bit and std_logic and so both functions match the
parameter profile.

Solution. Qualify an expression with its desired type as shown below. Qualification is also useful
for type checking and does not imply any type conversion.

subtype unsigned_3bit is unsigned(0 to 2); - must use "to" and not "downto"
case unsigned_3bit'(A & B & C) is - case choice value is qualified
Y<= FNl(unsigned'(1), N); - bit literal is qualified for the function call

Notice the type declaration has an increasing range (0 to 2) and not a decreasing range (2 downto
0). This is necessary as a compiler will read a qualified expression from left to right; the use of
downto will result in an analysis error.

80

Chapter Four: Design/Modeling Recommendations, Issues and Techniques

3. Operators to the left of the assignment operator

Problem. Operators cannot be used on the left side of an assignment.

ShiftRegA & ShiftRegB <= shift_left((ShiftRegA & ShiftRegB), 1);

Solution. Declare an extra variable that will hold the desired expression from the left hand side
of the assignment and assign it to this extra variable.

variable ShiftRegAB: unsigned(A'left + B'left-1 downto 0);
ShiftRegA <= ShiftRegAB(A'left + B'left -1 downto B'left);
ShiftRegB <= ShiftRegAB(B'left -1 downto 0);
ShiftRegAB <= shift_left(ShiftRegAB, 1);

4. Unconstrained subprogram parameters in reusable models (VHDL)

Problem. It is good practice to model subprograms for reuse using unconstrained parameters.
However, if a subprogram uses the others clause as an aggregate assigned to an object, that is,
of an unconstrained array type, compilation will cause an analysis error.

Solution. Declare a fixed range subtype wherever the subprogram is used (called). It must
always have the same name, but will have a different range as desired for its particular use. Use
this subtype to qualify the range of the unqualified aggregate in the body of the subprogram
itself. Code segments overleaf replace those of the models above.

81

HDL Chip Design

5. Invisible subprograms from separate packages (VHDL)

Problem. If two or more subprograms having the same name and parameter type profile are
declared in separate packages, they cannot both be given the same scope. In such a case, a
compiler would not know which subprogram to use from a subprogram call. The effect of this is
that the subprogram name is not directly visible making it appear not to exist.

use work. ASIC_cells. all;
use work. FPGA_cells. all;

Y1 <= AND3_OR2(A, B); - analysis error (AND3_OR2 defined in both packages)

Solution. Use a selected name.
Y1 <= work. FPGA_cells. AND3_OR2(A, B);

6. Subprogram overloading using type integer and subtype natural (VHDL)

Problem. Multiple subprogram declarations which have similar parameter type profiles, that
differ only by an integer and natural data type, will not analyze when compiled. This is because
type natural is a subtype of type integer and means subprograms are indistinguishable.

function to_stdlogicvector(A: integer) return std_logic_vector;
function to_stdlogicvector(A: natural) return std_logic_vector;

Solution. Use different named functions to make them distinct.
function to_stdlogicvector_int(A: integer) return std_logic_vector;
function to_stdlogicvector_nat(A: natural) return std_logic_vector;

7. Concatenation in the expression of a subprogram's formal list (VHDL)

Problem. The concatenation operator (&) can be used in the expression for the inputs of a
subprogram call's parameter list. However, it cannot be used for output and bidirectional
parameters.

- subprogram declaration
procedure ALU1(A, B: unsigned(31 downto 0);

Y: unsigned(31 downto 0));

- illegal procedure call
ALUl(DataBusl_16bit & DataBus2_16bit.

DataBus3_16bit & DataBus4_16bit,
ResultBus1_16bit & ResultBus2_16bit); - error (output concatenation)

Solution. Perform the concatenation inside the body of the procedure.
82

case (Sel) is
when "00" => Y<=A;
when "01" => Y<=B;
when "10" => Y<=C;
when "11" => Y <= FixedColorSets'(others => Red);
whon others -> Y <= FxedColorSets'(others => Violet)

end case;

Chapter Four: Design/Modeling Recommendations, Issues and Techniques

Simulation Run Time Issues

This section covers modeling issues affecting simulation results only. A separate section covers
modeling issues affecting both simulation and synthesis results.

1. Full sensitivity/event list (VHDL & Verilog)

A sensitivity list is a list of signals in a VHDL process statement that a simulator monitors for
changes. If a change occurs, in one or more of these signals, then the process will be executed.
Similarly an event list is a list of signals in a Verilog always statement that a simulator monitors for
changes. If the process or always statement infers only flip-flop(s) with associated combinational
logic on their input or output there is no need to include all input signals in the sensitivity/event
list. Only the clock signal and any asynchronous reset is needed. On the other hand, if only
combinational logic is being modeled then all input signals to the process/always statement must
be included in the sensitivity/event list.

Problem. A signal is inadvertently omitted from the sensitivity list. This will not affect the
synthesized circuit at all, but may yield unexpected and misleading simulation results. The reason
for this is that the process or always statement will not always be triggered into being executed,
so assignments within the process or always statement will not be updated. In the code below D
is missing from the sensitivity/event list.

VHDL: Verilog:
process (Sel, A, B, C) always @(Sel or A or B or C)
begin begin

if (Sel = '1') then if (Sel)
Y <= (A and B) or (C and D); Y = A + B;

end if; else
end process: Y = C + D;

end

Solution. Ensure all signals are included in the sensitivity list when modeling combinational
logic.

VHDL: Verilog:
process (Sel, A, B, C, D) always @(Sel or A or B or C or D)

2. Reversing a vectored array direction (VHDL & Verilog)

Problem. If an object is declared in one direction and assigned in the opposite direction the bits
will be reversed and connected accordingly. This will not give simulation or synthesis compilation
errors, but simulation results may be different than expected and lead to unnecessary confusion.

VHDL: Verilog:
entity REVERSE_RANGE is module REVERSE_RANGE (A, B, Y);

port (A, B: in unsigned(7 downto 0); input (7: 0) A B;
end entity REVERSE_RANGE; output (0: 7) Y;

reg (0: 7) Y;
architecture LOGIC of REVERSE_RANGE is
begin

Y <= A and B; - Y(0) is A(7) ANDed with B(7) assign Y = A & B; / / Y(0) is A(7) ANDed with B(7)
end LOGIC; endmodule

83

HDL Chip Design

Solution. Standardize on using vector arrays defined with a descending range and finishing at
bit 0 wherever possible. This will avoid the possibility of trying to access bits of an array that do
not exist. Also, objects and slices of objects can be assigned with ease.

3. True leading edge detection - wait and if (VHDL)

Problem. The edge detection of a data object whose type has more than two values must detect
the current and previous value in order to detect a true '0' to '1' transition and not, for example,
an 'X' to '1'. If this is not the case, the model will not simulate correctly. In the code below a
transition from any of the other 8 values of std_logic to '1' would be considered a rising edge.

- Enable is of type std_logic {U, X, 0, 1, Z, W, L, H, -}
process (Enable. A. B. C, D)
begin

wait until (Clock = '1'); - wait causes the execution of the whole process to halt.
if (Enable = '1') then - Its execution is resumed when the wait expression becomes true.

Y<= (A and B) or (C and D);
end if;

end process;

- Clock is of type std_logic {U, X, 0, 1, Z, W, L, H, -}
process (Clock)
begin

if (Clock'event and Clock = '1') then
Y<= (A and B) or (C and D);

end if;
end process;

Solution. The model should contain an additional check to ensure that the clock signal really
did transition from '0' to '1' and not from some other value to '1', for example, 'X' to '1 ' .

wait until (Clock = '1' and Clock'last_value = '0');

if (Clock'event and Clock = '1' and Clock'last_value = '0') then

Note that this solves a simulation problem, but the attribute last_value is not supported for
synthesis. For this reason, functions rislng_edge or falling_edge should be used from the IEEE
1076. 3 synthesis package Numeric_STD, as is the case throughout this book.

4. Order dependency of concurrent statements

Problem. The order of concurrent statements in VHDL or Verilog never affects how a synthesizer
synthesizes a circuit. However, it can effect simulation results as demonstrated by the following
two process statements in VHDL and two always statements in Verilog. This problem rarely arises
in VHDL due to the concept of simulation delta delays which are intended to make the order in
which all current statements are executed irrelevant. However, order dependency of process
statements can be an issue when using shared variables as shown. The problem for both the
VHDL and Verilog model is that when a rising edge occurs on Clock (VHDL shared variable or
Verilog register type), Yl is assigned a value in the first concurrent statement CONCURRENT_1,
but is also used in the second, CONCURRENT_2. If CONCURRENT_1 is executed first by a simulator,
then the simulation results will not match that of the synthesized circuit. If CONCURRENT_2 is
executed first then they will match that of the synthesized circuit. However, there is no guarantee

84

Chapter Four: Design/Modeling Recommendations, Issues and Techniques

in which order the concurrent statements will be executed by a simulator, as is the intent. This is
a more common problem in Verilog as there is no concept of simulation delta delays.

VHDL Verilog
shared variable Y1: std_logic;

CONCURRENT_1:
process (Clock) always @(posedge Clock)
begin begin: CONCURRENT_1

if rising_edge(Clock) then Y1 = A;
Y1: = A; end

end if;
end process;

CONCURRENT_2:
process (Clock) always @(posedge Clock)
begin begin: CONCURRENT_2

if rising_edge(Clock) then if (Y1 == 1)
if (Y1 ='1') then Y2 = B;

Y2 <= B; else
else Y2 = 0;

Y2 <= '0'; end

CONCURRENT_1 executed first

CONCURRENT_2 executed first
end if;

end if;
end process;

Solution. VHDL: Do not use shared variables in models that are to be synthesized. The problem
model above would work fine if Yl was changed from a shared variable to a signal. The process
statements may be more conviently combined as shown below, although this is not necessary
provided Yl is a signal. Verilog: The always statements must be combined as shown so that the
sequential order in which Yl and Y2 are assigned is controlled during simulation. The synthesized
circuit is the same.

VHDL Verilog
ALL_IN_ONE:
process (Clock) always @(posedge Clock)
begin begin: ALL_IN_ONE

if rising_edge(Clock) then if (Y1 == 1)
if (Y1='1') then Y2 = B;

Y2 <= B; else
else Y2 = 0;

Y2 <= '0'; Y1 <= A;
end if; end
Y1 <=A;

end if;
end process;

Synthesis Compilation Issues

1. Non-static data objects and non-static loops (VHDL & Verilog)

All multiple bit data objects must have a statically determinable number of bits at synthesis
compile time. (Data objects are VHDL signals or variables, or Verilog variables.) Also, all for loop
statements must also have a statically determinable range at synthesis compile time. If either of
these conditions are not statically determinable, a synthesis tool does not know how much logic
to synthesize and an appropriate error message will be returned. This is not a problem for
simulation. Example 4. 1 shows a non-statically determinable slice, while Example 4. 2 shows a
non-statically determinable loop.

85

HDL Chip Design

Example 4. 1. Non-Static Slice

The slice of signal A and constant AllOnes, that is R downto 0, is variable at compile time because
R may be any integer value between 0 and 15.

Non-static slice - not synthesizable

Example 4. 2. Non-Static Loop

Input R is of type integer ranged between 0 and 7. The value of R is used as a loop variable which
determines the number of bits of inputs A and 8 should be ANDed together. As R is not
determinable at compile time, a synthesis tool cannot determine how many corresponding bits
of A and B to logically AMD together.

Non-static slice - not synthesizable

86

Verilog

module NON_STATIC_SLICE (A, R, Y);
input [15: 0] A;
input [3: 0] R;
output Y;

parameter [15; 0] AllOnes = 16'b 1;
reg Y;

always @(A)
if (A[R: 0] == AIIOnes[R: 0])

Y = 1;
else

Y = 0;

endmodule

VHDL

library IEEE;
use IEEE. STD_Logic_l 164. all. IEEE. Numeric_STD. all;

entity NON_STATIC_SLICE is
port (A: in unsigned(15 downto 0);

R: in integer range 0 to 15:
Y: out std_logic);

end entity NON_STATIC_SLICE;

architecture LOGIC of NON_STATIC_SLICE is
constant AllOnes: unsigned(15 downto 0): = (others => '1');

begin
process (A)
begin

if (A(R downto 0) = AIIOnes(R downto 0)) then
Y<= '1 ' ;

else
Y <= '0';

end if;
end process;

end architecture LOGIC;

VHDL
library IEEE;
use IEEE. STD_Logic_1164. all, IEEE. Numeric_STD. all;

entity NON_STATIC_LOOP is
port (A, B: in unsigned(7 downto 0);

R: in integer range 0 to 7;
Y: out unsigned(7 downto 0));

end entity NON_STATIC_LOOP;

architecture LOGIC of NON_STATIC_LOOP is
begin

process (A)
variable R_Var: Integer range 0 to 7;

begin
Y <= (others => '0');
R_Var: = R;
for N In 0 to R_Varloop

Y(N) <= A(N) and B(N);
end loop;

end process;
end architecture LOGIC;

Verilog

module NON_STATIC_LOOP (A, B, R, Y);
input [7: 0] A, B;
input [2: 0] R;
output [7: 0] Y;

reg [7: 0] Y;
integer N;

always @(A)
begin

Y = 8'b 0;
for (N=0; N<R'; N = N + 1)

Y[N] = A[N] &B[N];
end

endmodule

R is a signal used to
determine the slice
of A. It is therefore
non-static and will
not synthesize.

Chapter Four: Design/Modeling Recommendations, Issues and Techniques

Joint Simulation and Synthesis Issues

This section covers issues affecting both simulation and synthesis results.

1. When to use others (VHDL) and default (Verilog)

It is important to know when and how to use the others clause (VHDL) and default clause (Verilog);
they can affect simulation results and synthesized circuits greatly. They define a default branch
condition in multi-way branch statements which for VHDL means a case statement or selected
signal assignment, and for Verilog just a case statement. When to use these clauses in the two
languages is similar, but there are subtle differences and are described separately below.

There are many examples throughout this book showing use of the others and default clauses;
the description below references specific examples.

a) Others clause in a VHDL case statement.

The VHDL Language Reference Manual (LRM), states that a case statement must have each
value of the base type of the expression represented once, and only once, in the set of choices,
and that no other value is allowed. This means, if a designer does not want to explicitly define
every choice value, then it is necessary to always use a "when others =>... " type statement. If
modeling combinational logic, and do not want to explicitly specify every case branch condition,
use for example:

when others => Y<= "000000"; (See Example 6. 9 - binary decoder)

Or use the following statement with assigned "don't care" output values, provided the case
expression is of a type that includes a "don't care" value, for example, signed or unsigned. This
has the advantage of minimizing inferred combinational logic.

when others => Y <= "XXX"; - X = don't care (See Example 6. 6 - binary encoder)

If it is necessary to automatically infer latches from a case statement, and hold the last output
value defined in one of the explicitly defined choice values, the null default branch condition
could be used, for example,

when others => Y<=null; (See Examples 7. 5 and 7. 6)

The null construct means "do nothing", Y is not updated and a latch is inferred provided all
choice values have not been explicitly defined in the case statement. Note that by using a case
statement and not an if statement to infer a latch or latches, the latch enable signal is implied by
the model and does not explicitly exist in the model. This is not recommended.

If a case statement resides in a synchronous part of code inferring flip-flops, either of the above
three branch conditions can be used; the assigned output from a case statement will be held
regardless.

b) Others clause in a VHDL selected signal assignment

The VHDL selected signal assignment is very similar to the case statement; in fact the LRM
states that a selected signal assignment must have an exact equivalent case statement. This
means, all the above conditions for using the others clause in a case statement apply equally to
a selected signal assignment. A selected signal assignment is a concurrent statement residing

87

HDL Chip Design

outside a process, while the case statement is a sequential statement that must reside inside a
process statement. The examples referenced above for case statements also have equivalent
models using selected signal assignments.

c) The default clause in a Verilog case statement

The Verilog case statement uses the default clause to define a default branch for a choice case
expression, much like the others clause does in VHDL. The difference in Verilog is that all case
choice values do not need to have a branch defined in order to be Verilog LRM compliant.
However, when modeling combinational logic, and all case expression choice values have already
been explicitly defined, it is still necessary to use a default clause to define a branch, which
assigns an output value, to avoid inferring a latch. There is one exception to this, and that is if an
output signal assignment is included immediately before the case statement, see Example 8. 2
FSM_GOOD2. For example, by defining the output to be at logic 0 before the case statement,
there is no need to assign it in all the other branches when the required output is to be at logic 0.

For Verilog LRM compliance a case statement need not have a branch for each choice value.
However, a good coding standard should be used and do the same as in VHDL, that is, define a
branch for each case expression value once, and only once, either explicitly, or implicitly using
the default clause.

Example default clauses corresponding to the VHDL others clause above, are shown below.

Define a default output value, for example

default: Y = 6'b 0; (See Example 6. 9 - binary decoder)

Define a don't care default output value, and minimize inferred combinational logic, for example

default: Y = 3'b X; (See Example 6. 6 - binary encoder)

The null clause in VHDL is the same as the semi colon (;) in Verilog. The following default
statement, therefore, says "do nothing - output not assigned" for the default choice value, and
can be used to infer latches.

default:; (See Examples 7. 5 and 7. 6)

88

Chapter Four: Design/Modeling Recommendations, Issues and Techniques

2. Signal and Variable Assignments (VHDL)

There are four kinds of data objects in VHDL; signal, variable, constant and file. Only signals,
variables and constants are relevant for synthesis. Signals may be considered synthesized directly
in hardware, that is, they have hardware intent and are always associated with one or more
drivers; each driver holds the signal's projected waveform of values. Variables and constants
provide containers for values used in the computation of signal values.

The important points to remember about variables and signals are:

1) variables are updated immediately, that is, before any delta delay in which the assignment
is executed. There is no concept of delta delays for variables.

2) signal assignments cause an event to be scheduled in a future cycle. This cycle could be
the second, third, fourth etc. delta delay in the same simulation time unit or at some
scheduled simulation time in the future.

Signal assignments can explicitly specify a zero delay, or, as is normally the case, a delay is not
specified, for example,

Y <= A after 0 ns;
Y <= A; - (0 ns assumed by default)

The signal driver does not update the signal value until at least one delta delay after the assignment
was evaluated by the simulator within the current simulation time step. If a signal assignment
contains a delay value of more than zero, for example,

Y <= A offer 2 ns;

then the event is scheduled to occur at the appropriate time step in the future.

The delta delay and signal updating during simulation (VHDL)

During simulation, the scheduling and assigning of signals at each simulation cycle, a delay
period known as a simulation delta. When a signal's predicted value matures the driver holding
that value becomes the active value. This activity will cause the following to occur in order.

1. All driver contributions to a signal are resolved to a single value. This identifies what drives
that particular signal if there is more than one driver. Signals and ports will be updated
immediately with new values or will retain their old value.

2. The effect of changed signal values are propagated from the port signals down through
the circuit network.

3. Signal events for which a process is sensitive will cause the process to be triggered into
being executed. This means signals and variables within a process may also be updated
and is dependent upon the path taken through the sequential statements within the process.

Example 4. 3 shows scheduled signal assignments during simulation. Example 4. 4 shows both
signal assignments scheduled during simulation. Example 4. 5 shows the effect of modeling
combinational and synchronous logic using signals and variables.

Note: The number of deltas needed to compute the new signal's current value might be different
in the pre and post synthesis models, especially when resources like adders and multiplexers are
shared. Sometimes statements that are executed in one delta in the RTL model have to be
executed in two different deltas when simulating the synthesized gate level model.

89

HDL Chip Design

Signals & variables in loops (VHDL)

Both signal and variable assignments are acceptable within a VHDL loop. However, it is better to
use only variable assignments because; 1) simulation will be faster and 2) the resulting synthesized
circuit is more easily predicted, see Example 4. 6.

Example 4. 3. Signal assignments and delta delay iterations (VHDL)

The coded order of successive signal assignments does not matter whether they are: 1) concurrent
or 2) sequential assignments within a process in the branch of an if or case statement. All signal
assignments will be scheduled and updated as necessary. Note, this assumes the process sensitivity
is complete. Figure 4. 1 shows that three delta delay cycles are needed for all signals to become
stable. There are two assignments, that is, two drivers to the signal Y2. This means the synthesis
tool must be guided as to how to synthesize the desired wired logic. For example, it could be
implemented as a wired tri-state, wired AND or wired OR. The synthesized circuit shows a wired
OR.

Signal assignments requiring 3 simulation delta delay iterators

90

Figure 4. 7 Three simulation delta iterations
needed for all signals to become stable

library IEEE;
use IEEE. STD_Logic_l 164. all. IEEE. Numeric_STD. all;

entity SIG_ASSIGNMENT is
port (A, B, C, D, E, F: in std_logic;

Y1, Y2: out std_logic);
end entity SIG_ASSIGNMENT;

architecture DATA_FLOW of SIG_ASSIGNMENT is
signal Sig1, Sig2: std_logic;

begin

Sig1 <= A and B and C;

Y2 <= not E;
Y2 <= not F;

end architecture DATA_FLOW;

P1: process(D,Sig1,Sig2)
begin

Y1<=not Sig2;
Sig2<=Sig1 and D;

end process P1;

Chapter Four: Design/Modeling Recommendations, Issues and Techniques

Example 4. 4 Variable assignments and delta delay iterations (VHDL)

In this example variable assignments are included within a process. The first assignment is an
assignment to variable Varl, while the third assignment is the second variable assignment to Var2
and uses Varl in its expression. For synthesis, it would not matter if the assignments to Varl and
Var2 were swapped over, that is,

as there is no conflict and the synthesis tool is able to correctly interpret their values in the
computation of signal Y1. However, this is not recommended as it does matter for simulation. A
simulator will assign values to both variables in the sequential order in which they appear in the
code prior to any simulator delta delay. There is no concept of a delta cycle for variables. This
means Varl is old when used in the equation for the assignment of Y1. The position of the signal
assignment to signal Y1 can appear anywhere in the model because it will be scheduled to be
updated in the first delta cycle of the simulator, that is, after the variables have been assigned
values.

The ordering effect of variables is shown again by the two successive variable assignments to
the same variable Var3. This time the order is important for simulation and synthesis. The second
variable assignment overrides the first and provides the computed value that is assigned to the
signal Y2. The synthesized circuit therefore leaves input E unconnected.

Variable and signal assignments

Figure 4. 2 Variable and signal delta cycles

91

HDL Chip Design

Example 4. 5 Signal and variable assignments (VHDL)

Four process statements show the effect of modeling combinational and synchronous logic
using signals and variables. The model is similar to Example 4. 7 showing Verilog blocking and
non-blocking procedural assignments. Assignments to a variable always occur instantaneously,
that is, they cannot be scheduled to occur at some simulation time in the future. However, a
variable does holds its value over simulation time steps. A variable assignment containing an
after clause will yield syntax errors. The four processes included in this example are:

1. VARIABLE_COMB - Combinational logic using a variable.
2. SIGNAL_COMB - Combinational logic using only signals.
3. VARIABLE_SYNCH - Synchronous logic using a variable.
4. SIGNAL_SYNCH - Synchronous logic using only signals.

Signal and varaiable assignments Notice one flip-flop is synthesized from
the single signal assignment in the third
process (VARIABLE_SYNCH), while two
flip-flops are synthesized from the two
signal assignments in the fourth process
(SIGNAL_SYNCH). Signals M2 and M4
are local to their respective processes
to reduce simulation time.

92

Chapter Four: Design/Modeling Recommendations, Issues and Techniques

Example 4. 6 Signal and variable assignments in a for loop (VHDL)

This example demonstrates the effect of using signal or variable assignments in a for loop when
modeling synchronous logic. For demonstration purposes, the intended model is of a simple
shift register feeding a separate buffering output register. The model synthesizes to the exact
same circuit as Example 4. 8, showing the effect of Verilog blocking and non-blocking signal
assignments.

First process statement (VARIABLE_FOR)
The first process uses a for loop containing a variable assignment which shifts the bits of the
intended shift register, PipeA. Signal PipeA is then assigned to YA. When a compiler (simulator or
synthesizer) unrolls the loop, the assignments are:

PipeA(3): = PipeA(2); PipeA(2): = PipeA(1); PipeA(1): = PipeA(0); PipeA(0): = Data; YA<= PipeA;

When PipeA(2) is assigned to PipeA(3) it takes the old value of PipeA(2) which is the same as Data
due to the consecutive variable assignments. (Remember a variable can only hold its current
value.) This means the value of PipeA(2 downto 0) will always be the same as Data, and PipeA(3)
will be a clocked version of the Data. The 4-bit signal YA is the clocked version of PipeA. Notice
that if the loop range direction was changed the result would be different as shown.

Signals and variables in a for loop Second process statement (SIGNAL_FOR)
In this statement the for-loop uses signal
assignments that when unrolled are executed
concurrently after a positive edge clock. This
means a descending range (3 downto 1) or
an ascending range (1 to 3) makes no
difference, a shift register is inferred as
intended, followed by a buffer register.

Variable assignment in loop with
descending loop variable - no shift
register.

V H D L
library IEEE;
use IEEE. STD_Logic_1164. all. IEEE. Numeric_STD. all;

entity SIGNAL_VARIABLE_FORLOOP is
port (Clock, Data: in std_logic:

YA, YB: out unsigned(3 downto 0));
end entity SIGNAL_VARIABLE_FORLOOP;

architecture RTL of SIGNAL_VARIABLE_FORLOOP is
signal PipeB: unsigned(3 downto 0);

begin
VARIABLE_FOR:
process (Clock)

93

Variable assignment in loop with
ascending loop variable - no shift
register.

Intended shift
register with register
buffered output.

94

HDL Chip Design

3. Blocking and non-blocking procedural assignments (Verilog)

There are two types of procedural assignment in Verilog, blocking and non-blocking. Depending
on which are used in a sequential procedural block, that is, between reserved words begin and
end, simulation and synthesis results may be different. This is demonstrated in Example 4. 7.

Blocking procedural Assignments
A blocking procedural assignment must be executed before the procedural flow can pass to the
subsequent statement. This means that any timing delay associated with such statements is
related to the time at which the previous statements in the particular procedural block are executed.
Successive blocking procedural assignments in an edge triggered always statement do not infer
successive stages of synchronous logic (flip-flops); they act like a VHDL variable.

Non-Blocking procedural Assignments
A non-blocking procedural assignment is scheduled to occur without blocking the procedural
flow to subsequent statements. This means the timing in an assignment is relative to the absolute
time at which the procedural block was triggered into being executed. As synthesis tools ignore
all timing from the model, and non-blocking signal assignments are scheduled to occur at the
same time, successive assignments in an edge triggered always statement will each infer
synchronous logic (flip-flops).

Example 4. 7 Blocking and non-blocking procedural assignments (Verilog)

The model in this example contains blocking and non-blocking procedural assignments with
timing in sequential procedural blocks. Each block belongs to an always statement and infers
either combinational logic, or combinational and sequential logic. The simulated waveform and
synthesized circuit is shown for each of the four sequential always blocks. Timing delays for the
Blocking and non-blocking signal assignments two edge triggered always statements are

unrealistic for the circuit being modeled, but
serve to demonstrate blocking and non-
blocking assignments with delays.

Non-blocking assignment in loop yields
intended shift register with registered
buffered output.

Chapter Four: Design/Modeling Recommendations, Issues and Techniques

Example 4. 8 Blocking and non-blocking assignments in a for loop (Verilog)

This example reveals the effect of using blocking and non-blocking procedural assignments in
an edge triggered always statement which contains a for loop when attempting to model
synchronous logic. Again, for demonstration purposes, the intended model is of a simple shift
register feeding a separate buffering output register without using the ">>" and "<<" operators.
(A shift register is best modeled using the operators ">>" and "<<", see Chapter 9.)

The model synthesizes to the exact same circuit as Example 4. 6, which showed the effect of
VHDL signal and variable assignments in a for loop.

First always statement (BLOCKING_FOR)
The first always statement incorporates a for loop containing a blocking procedural assignment
which shifts the bits of the intended shift register, PipeA. Variable PipeA is then assigned to YA.
When a compiler (simulator or synthesizer) unrolls the loop, the assignments are:

PipeA(3) = PipeA(2); PipeA(2) = PipeA(1); PipeA(1) = PipeA(0); PipeA(0) = Data; YA = PipeA;

When PipeA(2) is assigned to PipeA(3) it takes the old value of PipeA(2) which is the same as Data
due to the consecutive blocking assignments. This means the value of PipeA(2: 0) will always be
the same as Data, and PipeA(3) will be a clocked version of the Data. The 4-bit signal YA is the
clocked version of PipeA. Notice that if the loop range direction were changed the result would
be different as shown.

Second always statement (NON_BLOCKING_FOR)
The for loop in the second sequential always block uses non-blocking procedural assignments
that, when unrolled, are executed concurrently after a positive edge clock. This means it makes
no difference whether the loop range is descending (N = 3; N >= 1; N = N - 1) or ascending
(N = 1; N <= 3; N = N + 1), a shift register is inferred as intended, followed by a 4-bit buffer register.

Blocking and non-blocking statement in a for loop

95

Blocking assignment in loop with
ascending loop variable. Simulates like
a shift register, but does not
synthesize to be a shift register.
(Note that different synthesis tools
may interpret this code differently and
synthesize the same logic produced by
NON_BLOCKING_FOR block.)

HDL Chip Design

4. "Don't Care" inputs to a case statement (VHDL & Verilog)

Both VHDL and Verilog support "don't care" input values to a case statement when specifying
branch conditions.

VHDL

The data type std_logic has a value, '-' to represent "don't care" conditions. However, the values
of std_logic (U, X, 0, 1, Z, W, L, H and -) are just an enumeration. This means simulators and
synthesizers treat '-' as a logic value and not a true "don't care" in terms of logic reduction. The
following attempt of modeling a leading '1 ' priority encoder demonstrates this effect.

case A is
when"l -" => Y<=3;
when "01--" => Y<=2;
when "001-" =>Y<= 1;
when others =>Y<= 0;

end case;

- A is of type unsigned.
- "Don't Care" inputs do not typically yield
- an efficiently synthesized circuit.

The circuit must be modeled differently to synthesize a priority encoder circuit. The case statement
above, is shown remodeled in three different ways below. The first method uses an if statement.
It is the better method as the code is straight forward and does not produce excessive amounts
of initial synthesized logic that must then be optimized away by the optimizer. The second
method works fine, but an optimizer will typically have more redundant logic to remove. This
problem becomes more acute for larger bit width inputs. The third method tests each bit in turn,
just like the first if statement, but maintains a case statement mentality by nesting multiple case
statements. Nesting case statements in this way is clumsy and not recommended.

-- A is of type unsigned
if(A(3) = '1') then

Y <= 3;
elsif (A(3 downto 2) = "01") then

Y<=2;
elsif (A(3 downto 1) ="001")then

Y<= 1;
else

Y<=0;
end if;

- A is of type integer
case A is

when 8 to 16 => Y <= 3;
when 4 to 7 => Y<=2;
when 2 to 3 => Y<= 1;
when others => Y <= 0;

end case;

- A is of type unsigned
case A(3) is

when '1'=> Y<=3;
when '0' =>

case A(2) is
when '1' => Y <= 2;
when '0' =>

case A(1)is
when '1' => Y<= 1;
when others =>Y<=0;

end case;
when others => Y<=0;

end case;
when others => Y <= 0;

end case;

There are three types of Verilog case statement; case, casex and casez. The case statement
does not allow case branch conditions to be specified that contain "don't care" values. The other
two case statements, casex and casez, are intended to be used with "don't care" input branch
values specified, and must be represented in either binary or hexadecimal format. The difference
between casex and casez is that casex allows "X", "?" or "Z" to represent a "don't care" input value,
while casez allows just"?" or "Z" to be used. For this reason there is no need to ever use casez. Do
not use "Z" with casex or casez as it can easily be confused with a high impedance value.

Don't cares in the case
expression or case item
expression are ignored for the
comparison.

96

casex (A) casez (A)
// X, ? or Z = don't care input // ? or Z = don't care input
4'b 1XXX: Y = 3; 4'b 1???: Y=3;
4'b 01XX: Y = 2; 4'b 01??: Y = 2;
4'b001X: Y=l; 4'b 001?: Y=1;
default: Y = 0; default: Y = 0;

endcase endcase

97

Chapter Four: Design/Modeling Recommendations, Issues and Techniques

5. "Don't care" output values from a case statement (VHDL & Verilog)

By using "don't care" output values wisely, synthesis tools are typically able to make the decision
as to whether they should be a logic 0 or logic 1 in order to minimize logic.

Example 4. 9 Effect of "don't care" output values

Two case statements are modeled in this example. The first assigns values to Y1 and does not
use a "don't care" default condition, but has a default of logic 0 value assigned. The second
case statement assigns values to Y2 and is functionally the same as the first, but this time the
Verilog model does use a "don't care" default condition. The Karnaugh maps, Figure 4. 3, indicates
the benefit exploited by a synthesis tool when "don't
care" conditions are used.

The VHDL version of the model uses the std_logic
data type which has a "don't care" value (-). However
this is a "don't care" in terms of a simulation logic
value and not a "don't care" in terms of logic
reduction. The VHDL input to synthesis tools typically
do not support "don't care" values as good as Verilog
input. Only the Verilog model in this example uses a
logic reduction "don't care". Figure 4. 3 Effect of "don't care"

output values

Case statement with or without a "don't care" output

VHDL Verilog

Synthesized Circuit

HDL Chip Design

6. Comparing Vector Array Types of Different Width (VHDL)

The expression in an If statement compares the values of multiple pairs of data objects. Each
comparison returns a boolean TRUE or FALSE depending upon whether the comparison is true
or not. The types being compared need not be of the same type. As a 7-bit unsigned data type
object is not the same as an 8-bit unsigned data type object, their comparison always returns a
FALSE condition as defined by the VHDL LRM, see the following example.

Example 4. 10 Comparing vectors of different width return a boolean FALSE

The if expression contains the comparison (S1 = S2). Signal S1 is a four bit value while S2 is a three
bit value and so a boolean FALSE is always returned. Similarly the comparison (S5 = "11") is
comparing a value with a two bit value and also always returns a boolean FALSE. Signals S3 and
S4 are the same so the comparison (S3 = S4) is fine, but because it is being ANDed with the result
of (S5 = "11"), which is always FALSE, the returned value from ((S3 = S4) and (S5 = "11")) will
always be FALSE. Therefore, the complete if expression, that is, ((S1 = S2) or ((S3 = S4) and (S5 =
"11"))), will always be FALSE and means the synthesized circuit will contain no logic and B will be
permanently connected to Y.

Multiple compares in an if statement

98

library IEEE;
use IEEE. STD_LogicJ 164all, IEEE. Numeric_STD. all;

entity COMP_DIFF_WIDTH is
port (S1: in unsigned(3 downto 0);

S2. S3, S4. S6: in unsigned(2 downto 0);
A, B: in std_logic;
Y: out std_logic);

end entity COMP_DIFF_WIDTH;

architecture COND_DATA_FLOW of COMP_DIFF_WIDTH is
begin

process (S1, S2, S3, S4, S5, A, B)
begin

if ((S1 = S2) or ((S3 = S4) and (S5 = "11"))) then
Y<=A;

else
Y<=B;

end if;
end process;

end architecture COND_DATA_FLOW;

Chapter Four: Design/Modeling Recommendations, Issues and Techniques

General Modeling Issues

1. Using Attributes (VHDL)

All attributes predefined by the VHDL language are listed in Appendix A. Mot all attributes make
sense or are needed for models that are to be synthesized; attributes typically supported by
synthesis tools are shown in Table 4. 1. Attributes not supported by synthesis tools either relate
to timing or are not necessary to model the physical structure of logic. There is no concept of
attributes in Verilog.

The syntax when using a VHDL attribute is

object'attribute

(User-defined constant attributes are allowed in VHDL, but are not supported by synthesis tools.

Examples 4. 11, 4. 12 and 4. 13 show models using type, array and signal related attributes
respectively, that are typically supported by synthesis tools.

Table 4. 7. VHDL Predefined attributes generally supported by synthesis tools

99

Attribute

Type related

T'base
T'left
T'right
Thigh
T'low

Array related

AVange[(N)]

A'reverse_
range((N)]

A'length[(N)]

Signal related

S'stable

S'event

Kind

type
value
value
value
value

range

range

range

signal

Function

Prefix

any type or subtype
any scalar type or subtype T
any scalar type or subtype T
any scalar type or subtype T
any scalar type or subtype T

any array object A

any array object A

any array object A

any signal S

any signal S

Returned result type

base type of T
same type as T
same type as T
same type as T
same type as T

type of the Nth index of A

type of the Nth index of A

universal integer

boolean

boolean

Returned result

left bound of T
right bound of T
upper bound of T
lower bound of T

range A'left(N) to
A'right(N) if A
ascending or A'left(N)
downto A'right(N) if A
is descending.

range A'right(N)
downto A'left(N) if A
ascending for the Nth
index. A'right(N)
downto A'left(N) if A is
descending.
number of values in the
Nth index range of N.

TRUE when event not
occured, otherwise
FALSE
TRUE when an event
has occured, otherwise
FALSE

HDL Chip Design

Example 4. 11 Type related VHDL attributes - 'base, 'left, 'right, 'high and 'low

The first process uses predefined VHDL attributes 'left, 'right, 'high and 'low. Attribute 'left returns
the left bound of signals A or B while attribute 'right returns the right bound of signals A or B.
Attributes 'high and 'low return the upper and lower bounds of signals A or B regardless of
whether their range is declared using to or downto.

The second process uses the 'base attribute. One enumerated data type, RainbowType, and two
enumerated subtypes of RainbowType, that is, LowMidRangeColorType and MidRangeColorType
are defined in a separate package. The two subtypes are of the base type RainbowType. The
range for the for loop uses type MidRangeColorType, however, because the 'base attribute is used
the actual range is of the base type RainbowType, that is, Red to Violet.

Use of type related attributes

100

VHDL

package ColorTypePackage is
type RainbowType is (Red. Orange, Yellow, Green, Blue, Indigo, Viole
subtype LowMidRangeColorType is RainbowType range Red to Gree
subtype MidRangeColorType is RainbowType range Yellow to Blue;

end package ColorTypePackage;

library IEEE;
use IEEE. STD_Logic_1164. all, IEEE. Numeric_STD. all;
use work. ColorTypePackage. all;

entity ATTRIBUTES_TYPES is
port (A: in unsigned(3 downto 0);

B: in unsigned(0 to 3);
LowMidRangeColor: in LowMidRangeColorType;
MidRangeColor: in MidRangeColorType;
Y1: out unsigned(3 downto 0);
Y2: out std_logic);

end entity ATTRIBUTES_TYPES:

architecture LOGIC of ATTRIBUTES_TYPES is
begin

process (A, B)
begin

Yl(0)<=A(A'left) and B(B'left); -T'left
Y1 (1) <= A(A'right) or B(B'right); - T'right
Yl(2)<=A(A'high) nand B(B'high); -- T'high
Yl(3)<=A(A'low) nor B(B'low); -T'low

end process;

process (LowMidRangeColor, MidRangeColor)
begin

for N in MidRangeColorType'base'left to - T'base & T'left
MidRangeColorType'base'right loop - T'base & T'right

if (LowMidRangeColor = MidRangeColor) then
Y2<='1';

else
Y2 <= '0';

end if;
end loop;

end process;

end architecture LOGIC;

Synthesized Circuit

Chapter Four: Design/Modeling Recommendations, Issues and Techniques

Example 4. 12 Array related VHDL attributes - 'range, 'reverse_range and 'length

This model uses two generics Width1 and Width2 which make it generic for different bit width bus
signals. This particular model is configurable in that it will synthesize to one of two different types
of circuit depending upon whether the value of Width1 and Width2 are the same or not. The
'length attribute is used to determine if the value of Widthl and Width2 are the same, that is
signals A and B are of the same width. If they are the same, then the model will synthesize to a
circuit that counts the number bits of A and B that are of the same value. The 'range attribute is
used to provide the loop variables in the for loop; the result is output on signal Y. The first
synthesized circuit shows the case when Widthl = Width2 = 6.

If Widthl and Width2 do not have the same value, a completely different circuit is synthesized; in
this case a priority encoder. It uses the 'reverse_range attribute in a for loop so that it starts from
the most significant bit and counts down. By doing this the exit statement is used to exit the loop
Use of array related attributes when the first most significant

bit having a value of logic 1 is
found. The advantage of
modeling in this way is a slightly
improved simulation speed. The
synthesized circuit shows the
case when Widthl = 6 and
Width2 = 7, that is, a 6-3 priority
encoder.

101

VHDL
library IEEE;
use IEEE. STD_Logic_1164. all, IEEE. Numeric_STD. all;

entity ATTRIBUTES_ARRAY is
generic (Width 1, Width2: natural);
port (A: in unsigned(Width1 -! downto 0);

B: in unsigned(Width2 - 1 downto 0);
Valid: out std_logic;
Y: out unsigned(3 downto 0));

end entity ATTRIBUTES_ARRAY;

architecture LOGIC of ATTRIBUTES_ARRAY is
begin

process (A, B)
variable Y_var: unsigned(3 downto 0);

begin
-- Number of equivalent bits in A and B
if (A'length = B'length) then — A'length

Valid <=1;
Y_var: = "0000";
for N in A'range loop -- A'range

if (A(N) = B(N)) then
Y_var: = Y_var + 1;

else
Y_var: = Y_var;

end if;
end loop;

else
- priority encode of A
Valid <= '0';
Y_var: = "XXXX";
tor N in A'reverse_range loop — A'reverse_range

if(A(N) = '1')then
Y_var: = to_unsigned(N, 4);
Valid <='1';
exit;

end if;
end loop;

end if;
Y <= Y_var;

end process;
end architecture LOGIC;

HDL Chip Design

Use of array related attributes

Example 4. 13 Signal related VHDL attributes - 'stable and 'event

Attribute 'stable. The S'stable(T) attribute returns a boolean true when signal S has not had an
event for time T. Time T is ignored for synthesis. Although the 'stable attribute is usually supported
by synthesis tools as shown in this example, there is no advantage in using it and will slow
simulation time so its use is not recommended.

Attribute 'event. The S'event attribute returns a boolean true if an event has occurred in the
current simulation time. The model shows the detection of a rising edge by detecting the occurrence
of an event, and that its new value is a logic 1. Notice that the clock signals are of type bit which
has two possible values 0 or 1 and so a rising edge is correctly detected, that is, an event has
occurred and the new value is at logic 1. However, if the clock was of type std_logic, it is not
enough to detect the occurrence of an event and that the new value is a logic 1. Type std_logic
has nine possible values (U, X, 0, 1, Z, W, L, H, -} and the signal could be changing from any one of
the other eight state values to logic 1. The model would still synthesize correctly, but may not
simulate correctly. For this reason, functions rising_edge and falling, edge from the IEEE 1164
package STD_Logic_n 64, should be used, as is the case in most examples in this book.

102

Synthesized Circuits

Chapter Four: Design/Modeling Recommendations, Issues and Techniques

Use of signal related attributes

2. Using Packages (VHDL)

Packages in VHDL provide a means of storing precompiled and verified design code for use by
other design units as discussed in Chapter 3. Type and subprogram declarations are typical of
the generic code placed in packages, so that they can be made available on an as needed basis,
across multiple designs and multiple projects. Using already proven and precompiled subprograms
provides a powerful means of enabling designers to build hardware models quicker, more efficiently
and at a higher level of abstraction. A model containing subprogram calls to subprograms in
such a package has the following advantages:

• the design time is shortened,
• the model's structure is improved,
• the coded model is often shorter and easier to read,
• the model is easier to debug.

Packages are made accessible to particular models with the library
and use clauses; see Examples 4. 14 and 4. 15. The library clause
will make a particular library visible and the use clause will make a
particular package within a library visible.

A package consists of two distinct parts; the package declaration
and the package body declaration. These two parts are known as
primary and secondary library units, respectively; see Figure 4. 4.
The syntax for the package and package body is shown in Appendix
A and indicates the kind of declarations that are allowed. Typical
declarations supported by synthesis tools are also shown in Figure
4. 4.

VHDL design models are usually compiled into the default working
library called work. However, packages may be compiled into this
work library or a completely new library defined by the user. Typically,
all common design data that relates specifically to one project might

Figure 4. 4
Typical package
declarations
supported by synthesis
tools

103

VHDL
entity ATTRIBUTES_SIGNALS is

port(Clock_p1l, Clock_ph2: in bit:
A, B, C: in bit_vector(2 downto 0);
Y: out bit_vector(2 downto 0));

end entity ATTRIBUTES_SIGNALS;

architecture RTL of ATTRIBUTES_SIGNALS is
begin

process (Clock_ph1, Clock_ph2)
variable S: bit_vector(2 downto 0);

begin
if (Clock_ph1 'event and Clock_ph1 = '1') then

S: = A and B:
end If;
if (not Clock_ph2'stable and Clock_ph2 = '1') then

Y<=S or C;
end if;

end process;
end architecture RTL;

Synthesized Circuit

HDL Chip Design

be compiled into the default library called work. Common design data that is intended to be
generally available across multiple projects can be compiled into a specific library of its own. The
standard VHDL packages defined by the IEEE will be precompiled into a library called "IEEE" by
the EDA tool vendor. The two IEEE packages used throughout this book are STD_Logic_l164 and
Numeric_STD.

A package body is optional and is always associated with a package of the same name. It is
needed for the declaration of the bodies of subprograms and the value of any deferred constants.
The package body may be hidden from the users of a package with only their interfaces being
made visible in the package.

Example 4. 14 Data types defined in a package

The package DATA_TYPES, defines only
types and subtypes and so a Various types defined in a package

In this case only the type MyLogic would be visible.

104

corresponding package body is not
needed. If this package was compiled
into the default library called work, then
the following use clause before the entity
statement would make all the types
visible inside the particular design unit.

use work. data_types. all;

Notice the package declaration uses the
name DATA_TYPES in capitals, while the
use clause uses data_types in lower case.
This does not matter as VHDL is case
insensitive. If the package was compiled
into a library called Project!, then the
library clause is also needed, that is,

library Project!;
use Project1. data_types. all;

The VHDL reserved word all means make
all declarations in the package visible.
This is the norm, however, it could be
replaced with the name of a particular
declaration if required, for example,

use Project1. data_types. MyLogic;

VHDL
library IEEE;

use IEEE. STD_Logic_1164. all, IEEE. Numeric_STD. all;

package DATA_TYPES is

type MyLogic is ('1', '0', Unknown, TirState);
type PrimeColor is (Red, Green, Blue);
type Rainbow is (Red, Orange, Yellow, Green, Blue. Indigo, Violet);
subtype MidRangeColor is Rainbow range Yellow to Blue;
subtype HexLetters is character range 'A' to 'F';
type MicroCode_Ops is (StoreA, StoreB, Load, IncAccA, IncAccB,

ShiftLeft, ShiftRight);

type Rl is record
I: integer range 0 to 7;
J: unsigned(1 downto 0);

end record;

type FloatPointType is
record

Sign: std_logic;
Exponent: unsigned(0 to 6);
Fraction: unsigned(24 downto 1);

end record;

end package DATA_TYPES;

Chapter Four: Design/Modeling Recommendations, Issues and Techniques

3. Operator and subprogram overloading (VHDL)

Operator and subprogram overloading is one of the most useful features in VHDL. They allow
either language operators or user defined subprograms to operate on operands of different data
types.

Operator overloading. Operators are overloaded by defining a function whose name is the same
as the operator itself. Because the operator and function name are the same, the function name
must be enclosed within double quotes to distinguish it from the actual VHDL operator. Calls to
overloaded operators can use either the standard infix operator notation with operands either
side of the operator, or a function call notation by enclosing the operator in double quotes
followed by the operand list in brackets. Example 4. 15. shows the "+" operator overloaded and
calls to it using both these methods.

Subprogram overloading. Multiple functions and procedures (subprograms) of the same name
can be defined, but have inputs and outputs that have different data types. A subprogram call
will use the correct subprogram based on, 1) a match of its declared name and, 2) a match of
the base types of the objects used in the subprogram call, to the base type of the declared
parameters in the subprogram declaration. Example 4. 17. shows two functions and two procedures
all with the same name defined in a package, and a model that calls each of them.

Example 4. 15 Overloaded "+" operator

The plus (+) operator is overloaded, that is, a function called "+" is declared with its name
enclosed in double quotes ("+") to distinguish it from the operator itself. The function is declared
in a package, as is normally the case, so that it is globally accessible from any design unit
wishing to make a call to it. The function is defined to accept two record type operands and
return an operand of the same record type. The record contains two fields of different type. The
first field is a 16 value integer type having values from 0 to 15, while the second is a 4-bit array
of type unsigned. The operation of the overloaded "+" function is to add the two integer fields
from the two operands and add the two unsigned values from the two operands.

The model OVERLOADED_OPERATOR_CALLS contains four plus operators as described below.

First"+" operator. Has operands of type integer so uses the standard "+" infix operator defined
by the VHDL language.

Second "+" operator. Has operands of type unsigned and uses the overloaded "+" infix operator
function defined in the IEEE 1076. 3 synthesis package, Numeric_STD.

Third "+" operator. Has operands of type int_unsi, as defined in the package shown, and uses
the overloaded "+" infix operator function defined in this package.

Fourth "+"operator. Calls the same overloaded"+" operator as the third"+" operator; the difference
being that it uses the more unusual function call notation and so is known as a prefix operator.

105

Example 4. 16 Overloaded subprogram

HDL Chip Design

Overloaded "+" operator function Calls to various overloaded "+" operator functions

This example demonstrates the use of overloaded subprograms. There are two packages. The
first, COLOR_TYPES, defines four enumerated data types and does not need a package body. A
second package, OVERLOADED_SUBPROGS, contains four subprograms all with the same name
MixColor and are hence overloaded. Two of the subprograms are procedures while the other two
are functions. The package declaration declares the four subprograms while the package body
contains their corresponding functional bodies. Each subprogram performs the same logical
operation, that is, they mix colors. There is a procedure and function for mixing the three primary
light colors and there is another procedure and function that' mixes the three primary pigment
colors as indicated by Figure 4. 5.

When a subprogram call is made to MixColor the correct body is called by virtue of it being either
a procedure or function call and by virtue of matching the data types supplied.

Figure 4. 5 Light spectrum and pigment color mix

106

library IEEE;
use IEEE. STD_Logic_1164. al l . IEEE. Numeric_STD. al l ;

package OVERLOADED_OPERATOR is
type int_unsi is record

Int: integer range 0 to 10;
Unsi: unsigned(4 downto 0);

end record;
function"+" (A, B: int_unsi) return int_unsi;

end OVERLOADED_DPERATOR;

package body OVERLOADED_OPERATOR is
function "+" (A, B: int_unsi) return int_unsi is

variable Y: int_unsi;
begin

Y. i n t : = A. lnt + B. int;
Y. Unsi: = A. Unsi + B. Unsi;
return Y;

end "+";
end OVERLOADED_OPERATOR;

VHDL VHDL
library IEEE;
use IEEE. STD_Logic_1164. all. IEEE. Numeric_STD. all;
use work. OVERLOADED_OPERATOR. all;

entity OVERLOADED_OPERATOR_CALLS is
port(A1, B1: in integer range 0 to 15;

A2, B2: in unsigned(3 downto 0);
A3, B3: in int_unsi;
A4, B4: in int_unsi;
Y1: out integer range 0 to 15;
Y2: out unsigned(3 downto 0);
Y3: out int_unsi;
Y4: out int_unsi);

end entity OVERLOADED_OPERATOR_CALLS;

Uses the overloaded + operator defined in
package OVERLOADED_OPERATOR using a
function call, or prefix operator, notation.

Uses + infix operator defined
by the VHDL language.

Calls the overloaded + operator
defined in package NumericSTD
using the infix operator notation.

Calls the overloaded + operator
defined in package
OVERLOADED_OPERATOR using the
standard infix operator notation.

Chapter Four: Design/Modeling Recommendations, Issues and Techniques

Two VHDL packages decoloring overloaded Concurrent and sequential
subprograms procedure and function calls

107

VHDL
package COLOR_TYPES is

type SpectrumPrimeColor is (Red, Green, Blue);
type SpectrumSecColor is (Yellow. Magenta, Cyan);
type PigmentPrimeColor is (Red, Yellow, Blue);
type PigmentSecColor is (Orange, Violet, Greene);

end package COLOR_TYPES;

use work. COLOR_TYPES. all;
package OVERLOADED_SUBPROGS is

procedure MixColor (signal C1, C2: in SpectrumPrimeColor;
signal Mix: out SpectrumSecColor);

procedure MixColor (signal C1, C2: in PigmentPrimeColor;
signal Mix: out PigmentSecColor);

function MixColor (C1, C2: SpectrumPrimeColor)
return SpectrumSecColor;

function MixColor (C1, C2: PigmentPrimeColor)
return PigmentSecColor;

end OVERLOADED_SUBPROGS;

package body OVERLOADED_SUBPROGS is

procedure MixColor
(signal C1, C2: in SpectrumPrimeColor;
signal Mix: out SpectrumSecColor) is

begin
if (C1=Red and C2=Green) then Mix <= Yellow;
elsif (C1=Red and C2=Blue) then Mix <= Magenta;
else Mix <= Cyan;

- (C1=Green and C2=Blue)
end if;

end MixColor;

function MixColor (C1, C2: SpectrumPrimeColor)
return SpectrumSecColor is

variable Mix: SpectrumSecColor;
begin

if (C1 =Red and C2=Green) then Mix: = Yellow;
elsif (C1 =Red and C2=Blue) then Mix: = Magenta;
else Mix: = Cyan; - (C1 =Green and C2=Blue)
end if;
return Mix;

end function MixColor;

procedure MixColor
(signal C1, C2: in PigmentPrimeColor;

signal Mix: out PigmentSecColor) is
begin

if (C1 =Red and C2=Yellow) then Mix <= Orange;
elsif (C1 =Red and C2=Blue) then Mix <= Violet;
else Mix <= Green; - (C1 =Yellow and C2=Blue)
end if;

end procedure MixColor;

function MixColor (C1, C2: PigmentPrimeColor) return
PigmentSecColor is

variable Mix: PigmentSecColor;
begin

if (C1=Red and C2=Yellow) then Mix: = Orange;
elsif (C1 =Red and C2=Blue) then Mix: = Violet;
else Mix: = Green; - (C1 =Yellow and C2=Blue)
end if;
return Mix;

end function MixColor;
end package body OVERLOADED_SUBPROGS;

Four
subprograms
calls to
different
subprograms
of t he same
name.

VHDL
library IEEE;
use IEEE. STD_Logic_1164. all;
use work. COLOR_TYPES. all;
use work. OVERLOADED_SUBPROGS. all;

entity CALL_OVERLOADED_SUBPROGS is
port (Clock, En: in std_logic;

A1, B1: in SpectrumPrimeColor;
A2, B2: in SpectrumPrimeColor;
A3, B3: in PigmentPrimeColor;
A4, B4: in PigmentPrimeColor;
Y1, Y2: out SpectrumSecColor;
Y3, Y4: out PigmentSecColor);

end entity CALL_OVERLOADED_SUBPROGS;

architecture LOGIC of CALL_OVERLOADED_SUBPROGS is
begin

MixColor(A1, B1, Y1);
Y2 <=MixColor(A2, B2);

process (Clock, En, A4, B4)
begin

if rising_edge (Clock) then
MixColor(A3, B3, Y3);

end if;
if (En = '1') then

Y4 <= MixColor(A4, B4);
end If;

end process;
end architecture LOGIC;

Synthesized Circuit

Concurrent procedure call.

Concurrent function call.

Sequential procedure call.

Sequential function call.

HDL Chip Design

4. Deferred constants (VHDL)

A constant declaration normally declares the constant's identifier name and its associated constant
value, for example,

constant WidthBusA: integer: = 16; - constant declaration

On the other hand, a deferred constant declaration declares the constant's identifier name, but
not its value, for example,

constant WidthBusA: integer; -- deferred constant declaration

Deferred constants are used when a constant value may need to be changed such that only a
package body need be re-compiled. If a constant is not deferred, then not only would the package
need to be recompiled, but all models dependant upon the constant would also need to be
recompiled.

A deferred constant can only be declared inside a package and its declaration is completed with
an associated full constant declaration that associates its value declared in the corresponding
package body; see Example 4. 17.

Example 4. 17 Using a deferred constant (VHDL)

A deferred constant is used to define the number of most significant bits of a multiple bit bus that
should be ANDed together in the function called AND_MSBs.

Deferred constant declared in a package Two function calls

108

VHDL
library IEEE;

use IEEE.STD_Logic_1164. all,IEEE.Numeric_STD.all;

use work. DEF_CONST_PKG. all;

entity DEF_CONST_CALL is
port (A1, A2: in unsigned(7 downto 0);

Y1, Y2: out std_logic);
end entity DEF_CONST_CALL;
architecture LOGIC of DEF_CONST_CALL is
begin

process (A1, A2)
begin

Y1 <=AND_MSBs(A1);
Y2 <= AND_MSBs(A2);

end process;

end architecture LOGIC;

VHDL

library IEEE;
use IEEE. STD_Logic_1164. all, IEEE. Numeric_STD. all;

package DEF_CONST_PKG is
constant Width: integer: = 8;
constant NO_MSBs: integer;
function AND_MSBs (A: unsigned(Width -1 downto 0))

return std_logic;
end package DEF_CONST_PKG;

package body DEF_CONST_PKG is

constant NO_MSBs:integer:=3;

function AND_MSBs (A: unsigned(Width -1 downto 0))
return std_logic is

variable V: std_logic;
begin

V: = T ;
for N in 7 downto 8 - NO_MSBs loop

V: =V and A(N);
end loop;
return V;

end AND_MSBs;

end package body DEF_CONST_PKG;

Constant declaration.

Deferred constant declaration.

Value of deferred
constant specified.

Chapter Four: Design/Modeling Recommendations, Issues and Techniques

5. Translation Functions - Extension and Truncation (VHDL)

Extension and truncation functions in a package Packages are often used to store
precompiled conversion functions,
which when called, convert data
objects from one data type to another.
Alternatively such functions may
simply manipulate bits of the same
type. These functions do not imply
logic to be synthesized; they simply
manipulate the various bits of the
particular data type.

Example 4. 18 Translation
Functions

This example shows a package
containing two functions; one for sign
extension of the most significant bit
and one for truncation of the least
significant bit(s). They use the data
type unsigned as defined by the IEEE
1076. 3 package Numeric_STD. The
library and use clause makes the two
packages Std_Logic_l164 and
Numeric_STD visible to the package
Signed_Ext_Trunc.

When the Ext and Trunc functions are
called they require 1) the vector to be
extended or truncated and 2) an
integer indicating the size of the
returned vector.

Both functions contain a check that
extension is not attempting to extend
to a smaller bit width or that truncation
is not attempting to truncate to a
larger bit width. If this is the case, an
appropriate error message is
displayed. This checking mechanism
uses an assertion statement in the
procedure named Message which may
be called from either function. The
subprogram Message, must be a
procedure and not a function as there
is no return value, it is purely passive.

109

V H D L
library IEEE;
use IEEE. STD_LOGIC_1164. all, IEEE. Numeric_STD. all;

package SIGNED_EXT_TRUNC is
function Ext (A: unsigned; Size: integer) return unsigned:
function Trunc (A: unsigned; Size: integer) return unsigned;

end package SIGNED_EXT_TRUNC;

package body SIGNED_EXT_TRUNC is

--$ synthesis_compile_off
constant ExtSize: string: = "Can't extended to a smaller width bus!";
constant TruncSize: string: = "Can't truncate to a larger width bus!";
-$ synthesis_compile_on

procedure Message (MESS: String; SEV: Severity_Level) is
begin

assert false report MESS severity SEV;
end procedure Message;

function Ext (A: unsigned; Size: integer) return unsigned is
variable Extended: unsigned(Size - 1 downto 0);

begin
--S synthesis_compile_off
if A'length > Size then

Message(ExtSize, Error);
return (A);

end if;
--$ synthesis_compile_on

Extended(A'length -1 downto 0) : = A;
for N in Size-1 downto A'length loop

Extended(N): = A(A'left);
end loop;
return (Extended);

end function Ext;

function Trunc (A: unsigned; Size: integer) return unsigned is
variable Truncated_downto: unsigned (A'low+Size-1 downto A'low);
variable Truncated_to: unsigned (A'low to A'low+Size-1);

begin
-$ synthesis_compile_off
if A'length < Size then

Message(TruncSize, Error);
return (A);

end if;
-S synfhesis_compile_on

for N in A'low to A'low + Size -1 loop
Truncated_downto(N): = A(N + A'length - Size);
T r u n c a t e d _ t o (N) : = A(N + A'length - Size);

end loop;

if (A'left > A'right) then
return Truncated_downro;

else
return Truncated to;

end if;
end function Trunc;

end package body SIGNED_EXT_TRUNC;

HDL Chip Design

Assertion statements are not supported by synthesis tools, so comment directives are used to
tell the synthesis compiler to ignore these constructs. In this example, the compiler directives -
-$ synthesis_compile_off and -$ synthesis_compile_on are used corresponding to the synthesis tools
from VeriBest Incorporated. All code between these complier directives are ignored by the synthesis
compiler.

Extension and truncation function calls

6. Resource Sharing

During synthesis, a process called resource allocation, assigns each operator to a piece of
hardware. If this process assigns two or more operators to a single piece of combinational logic
hardware they are known to be shared and the process is called resource sharing. Operators that
can typically be automatically shared by a synthesis tool are:

"+", "-", "*" and "\" (VHDL)
"+", "-", "*" and 7" (Verilog)

Because multiply and divide operators are not synthesized efficiently using RTL synthesis tools
only the "+" and "-" operators are best suited to being shared. A synthesis tool will make the
decision as to whether a resource may be shared based upon certain criteria. The criteria for
sharing is typically:

1. Operators must reside in the same process (VHDL)/always (Verilog) statement.
2. Operators must reside in different branches of the same conditional assignment statement.

When a synthesis tool performs resource sharing, it will typically add multiplexers to the inputs
and outputs of shared hardware resources as needed to channel data into, and out of, the
common resource. A synthesis tool will usually provide an option to switch automatic resource
sharing on or off.

110

VHDL

library IEEE
use IEEE. STD_LOGIC_1164. all, IEEE. Numeric_Std. all;
use work. SIGNED_EXTJRUNC. all;

entity SIGNED_EXT_TRUNC_CALL is
port (A, B: in unsigned(15 downto 8);

C, D: in unsigned(8 to 15);
Y_A_EXT: out unsigned(17 downto 8);
Y_B_TRC: out unsigned(13 downto 8);
Y_C_EXT: out unsigned(8 to 17);
Y_D_TRC: out unsigned(8 to 13));

end entity SIGNED_EXTENSION_TRUNCATION;

architecture DATA_FLOW of SIGNED_EXT_TRUNC_CALL is
begin

Y_A_EXT <= Ext(A, 10);
Y_B_TRC <= Trunc(B, 6);
Y_C_EXT<=Ext(C, 10);
Y_D_TRC <= Trunc(D, 6);

end architecture DATA_FLOW;

Chapter Four: Design/Modeling Recommendations, Issues and Techniques

Example 4. 19 Automatic resource sharing.

First process/always statement. Explicitly infers a shared adder using an if statement.

Second process/always statement. Implied shared adder through synthesis using an if statement.

Third process/always statement. Implied shared adder/subtracter circuit from synthesis using a
case statement.

HDL explicit and synthesis implied resource sharing

111

VHDL
library IEEE;
use IEEE. STD_Logic_1164. all. IEEE. Numeric_STD. all;

entity RES_SHARE is
port (Sel1, Sel2: in std_logic;

Sel3: in unsigned(1 downto 0);
A1. B1. C1. A2, B2, C2,
A3, B3, C3, D3: in unsigned(7 downto 0);
Y1, Y2, Y3: out unsigned(7 downto 0));

end entity RES_SHARE

architecture RTL of RES_SHARE is
begin

process (Sell, A1, B1, C1)
variable Left, Right: unsigned(7 downto 0);

begin
Left: =A1;
if (Sell ='1') then

Right: =B1;
else

Right: =C1;
end if;
Y1 <= Right + Left;

end process;

process(Sel2,A2,B2,C2)
begin

if (Sel2 = '1') then
Y2 <= A2 + B2;

else
Y2 <= A2 + C2;

end if;
end process;

process (Sel3, A3, B3, C3, D3)
begin

case Sel3 is
when "00" => Y3 <= A3 + B3;
when "01" => Y3 <= A3 - B3;
when "10" => Y3 <= C3 + D3;
when others => Y3<= C3 + D3;

end case;
end process;

end architecture RTL;

Verilog

module RES_SHARE
(Sel1, Sel2, Sel3, A1, B1, C1, A2, B2, C2, A3, B3, C3, D3,
Y1, Y2, Y3);

input Sell, Sel2;
input (1: 0) Sel3;
input (7: 0) A1, B1, C1, A2, B2, C2, A3, B3, C3, D3;
output (7: 0) Y1, Y2, Y3;
reg (7: 0) Y1, Y2, Y3;

reg (7: 0) Left, Right;

always @(Sel1 or A1 or B1 or C1)
begin

Left = A1;
if (Sell ==1)

Right =B1;
else

Right = C1;
Y1 = Right + Left;

always @(Sel2 or A2 or B2 or C2)
begin

if(Sel2==l)
Y2 <= A2+B2;

else
Y2 <= A2+C2;

end

always @(Sel3 or A3 or B3 or C3 or D3)
begin

case (Sel3)
0: Y3 = A3 + B3;
1: Y3 = A3-B3;
2: Y3 = C3 + D3;
default: Y3 = C3 + D3;

endcase
end

endmodule

Explicit
resource
sharing
defined in
the HDL
code.

Automatic
resource
sharing
provided by
synthesis from
an if statement.

Automatic
resource sharing
provided by
synthesis from a
case statement.

HDL Chip Design

112

5
Structuring a

Design

HDL Chip Design

Chapter 5 Contents

Structuring a Design 115

Course Grain 115
Configurations (VHDL) 115

Example 5. 1 Structural configuration for simulation using a configuration 116
Entity-architecture/module 117

Example 5. 2 Course grain structuring - multi-level components 117
Example 5. 3 Course grain structuring - components connected via split busses 119

Course/Medium Grain 121
For/if-generate (VHDL) 121

Example 5. 4 Course/medium grain structural replication - for/if-generate (VHDL) 121
Block statement (VHDL) 123

Example 5. 5 Course/medium grain structuring using blocks (VHDL) 124

Medium Grain 125

Fine Grain 125
Procedufe/Tdsk 126

Example 5. 6 Fine grain structuring - procedure/task 127
Function 128

Example 5. 7 Fine grain structuring - function 128
Example 5. 8 Fine grain structuring - separate subprograms 129

114

Chapter Five: Structuring a Design

Structuring a Design

This chapter describes the motivation for building good structure into a model's design and how
it is achieved.

The motivation for good model structure is modularity and clarity; the benefits of which are:

• models are less cluttered and easier to read,
• previously designed and verified submodels can be used (called) repeatedly within a

design,
• previously designed and verified models can be quickly and easily incorporated into

new designs,
• a well partitioned design, having structure corresponding to its functional operation,

and breaks the total design and verification task into smaller, more manageable
pieces.

The constructs used to build structure into HDL models are listed in Table 5. 1 with reference to
their granularity.

* Ignored by synthesis tools, but can be used to configure the structure of synthesizabe
models for simulation.

Table 5.7 Constructs used to build structure into HDL models

The following sections describe these constructs and include examples. Appendices A and B
show the syntax of VHDL and Verilog constructs, respectively.

Course Grain

Configurations (VHDL)

A configuration is a separate design unit (see Figure 3. 1) that allows different architecture and
component bindings to be specified after a model has been analyzed and compiled, by a simulator
for example. There are two types; the configuration declaration and the configuration specification.

Configuration declarations

The standard VHDL design entity consists of an entity and architecture pair. The entity defines
input and output signals, while the architecture defines its functional operation. An entity-
architecture pair normally resides in the same system file, however, an entity does not need to be
locked into being associated with one particular architecture. An entity can be configured, using
a configuration declaration, to be bound to any one of a number of different architecture bodies
for simulation purposes. Different architecture bodies may have different modeled structures or

115

structural granularity

course grain
course grain
course/medium grain
Course/medium grain
medium grain
fine grain
fine grain

structural modeling unit

entity/architecture pairing
primary design unit
replication of concurrent statements
grouping of concurrent statements
grouping of sequential statements
subprogram
subprogram

HDL construct

VHDL

configuration *
entity/architecture
for/if-generate
block
process
procedure
function

Verilog

module

always
task
function

HDL Chip Design

may be the gate level implication resulting from synthesis.

In summary a configuration declaration defines a configuration for a particular entity in order too:
• bind the entity to a particular architecture body,
• bind components, used in the specified architecture, to a particular entity (a component

is an entity-architecture pair),
• bind components statements, used in the specified architecture, to a particular

configuration statement.

Configuration specifications

In contrast to the configuration declaration, a configuration specification can be used to enable a
component to be associated with any one of a set of entity statements. The component declaration
may have its name and the names, types, and number of ports and generics different from those
of its entities. This is achieved with a configuration specification.

In summary, a configuration specification can be used to specify the binding of component
instances to a particular entity-architecture pair.

Example 5. 1 Structural configuration for simulation using a configuration

Two similar models have the same entity name, ADDSUB_STRUCT, and each reside in their own
system file. They are different in the way parentheses are used in the assignment of signal Y and
are identified by having a different architecture name; LOGIC_STRUCT1 or LOGICSTRUCT2. The
configuration declaration used to decide which model version to use during simulation is also
shown and resides in a separate system file. Once the two models have been compiled only the
configuration declaration need be changed and recompiled in order to change which architecture
to simulate. The configuration declaration shown is enabled for LOGIC_STRUCT2.

Configuration of one of two architectures

116

VHDL
library IEEE;
use IEEE. STD_Logic_1164. all. IEEE. Numeric_STD. all;

entity ADDSUB_STRUCT is
port (A, B, C, D: in unsigned(7 downto 0);

Y: out unsigned(7 downto 0));
end entity ADDSUB_STRUCT;

architecture LOGIC_STRUCT1 of ADDSUB_STRUCT is
begin

process (A, B, C, D)
begin

Y <= A + (B - C) + D;
end process;

end architecture LOGIC_STRUCT1;

VHDL
library IEEE;
use IEEE. STD_Logic_1164. all, IEEE.Numeric_STD.all;

entity ADDSUB_STRUCT is
port (A, B, C, D: in unsigned(7 downto 0);

Y: out unsigned(7 downto 0));
end entity ADDSUB_STRUCT;

architecture LOGIC_STRUCT2 of ADDSUB_STRUCT is
begin

process (A, B. C. D)
begin

Y <= (A + B) - (C + D);
end process;

end architecture LOGIC_STRUCT2;

VHDL
configuration CONFIG_ADDSUB_STRUCT of ADDSUB_STRUCT Is

-- for LOGIC_STRUCT1
-- end for;
for LOGIC_STRUCT2
end for;

end configuration CONFIG_ADDSUB_STRUCT;

Configuration
declaration shown
configured for
architecture
LOGIC_STRUCT2.

Figure 5. 1 Course grain
hierarchical structure

117

Chapter Five: Structuring a Design

Entity-architecture (VHDL) / module (Verilog)

A design entity is the VHDL entity-architecture pair or Verilog module, both of which provide
course grain control over a design's hierarchical structure. A design entity can instantiate lower
level design entities in which case they are known as a component, which in turn, can instantiate
lower level components to provide a course grain multiple level hierarchical structure.

When a VHDL architecture instantiates a lower-level entity, it must be declared in the declarative
part of the architecture before it can be instantiated in the statement part. This is not the case in
Verilog; it just needs to be instantiated, see Example 5. 2.

Signals passing to and from sublevel components may be defined in the instantiating statement
using positional or named notation, or additionally for VHDL, a mixture of both. Positional notation
means that signals in the upper level component are connected to signals in the lower level
component, corresponding to their relative position in the instantiating statement. Named notation
means each signal in the upper level is explicitly defined as being connected to a specific signal
in the lower level, and therefore, their relative order in the instantiation statement is not important.
The mixed positional and named notation supported by VHDL allows signals to be listed using
positional notation until the first named notation signal. After the first named notation signal, all
other signals must also use named notation. Note, a signal can represent; a single bit, multiple
bits, or selected bits from a multiple bit bus. There is no real advantage of using a mixed notation
and is less readable.

Example 5. 2 shows multiple levels of hierarchy using both positional and named notation. It also
shows mixed notation in the VHDL model. Example 5. 3 shows a bus whose bits are split and
connected to different sublevel design units.

Example 5. 2 Course grain structuring - multi-level components

The course grain structuring of a design in this example has three levels of hierarchy. It uses the
entity-architecture (VHDL) and module (Verilog) to model the hierarchical structure indicated in
Figure 5. 1. The top level instantiates two middle level components which in turn instantiates the
lower level components. The lowest level in this example contains only the model of a single two
input logic gate for demonstration purposes, but would typically contain large sections of a
larger design, which could be synthesizing circuits from 2000 to 5000 equivalent gates.

HDL Chip Design

Three hierarchical levels of course grain structuring

118

Chapter Five: Structuring a Design

Three hierarchical levels of course grain structuring

Example 5. 3 Course grain structuring - components connected via split busses

The model COURSE_STR_SPLIT_BUS instantiates three separate ALU models; ALU1, ALU2 and ALU3.
The model, ALU, is included for completeness.

The input bus signals Control, A and B are each split into three and connected to the three ALUs.
The output signals from the ALUs are then combined into one output bus Y. The instantiation of
ALU1 uses positional notation to link signals between the two levels of hierarchy. The instantiation
of ALU2 uses named notation; each signal connection is specified in random order. The instantiation
of ALU3 also uses named notation with signal connections specified in the same order as for
ALU1.

119

V H D L
library IEEE;
use lEEE. STD_Logic_1164. all, lEEE. Numetic_STD. all;
entity ALU is

port (Operator: in unsigned(2 downto 0);
Operand1, Operand2: in unsigned(7 downto 0);
Result: out unsigned(7 downto 0));

end ALU;

architecture COMB of ALU is
begin

process (Operator, Operand1, Operand2)
begin

case (Operator) is
when "000" => Result <= (others => '0');
when "001" => Result <= Operand1 and Operand2;
when "010" => Result <= Operand1 or Operand2:
when "011" => Result <= Operand1 xor Operand2;
when "100" => Result <= Operand1 srl 1;
when "101" => Result <= Operand2 srl 1;
when "110" => Result <= Operand1 sll 1;
when "111" => Result <= Operand2 sll 1;
when others => Result <= (others => '0');

end case;
end process;

end COMB;

library IEEE;
use lEEE. STD_Logic_1164. all, IEEE. Numeric_STD. all;
entity COURSE_STR_SPLIT_BUS is

port (Control: in unsigned(8 downto 0);
A, B: in unsigned(23 downto 0);
Y: out unsigned(23 downto 0));

end COURSE_STR_SPLIT_BUS;

architecture STRUCT of COURSE_STR_SPLIT_BUS is
component ALU

port (Operator: in unsigned(2 downto 0);
Operand1, Operand2: in unsigned(7 downto 0);
Result: out unsigned(7 downto 0));

end component;
begin

ALU1: ALU port map (Control(2 downto 0), A(7 downto 0),
B(7 downto 0), Y(7 downto 0));

ALU2: ALU port map (Operand2 => A(15 downto 8),
Operator => Control(5 downto 3),
Result => Y(15 downto 8),
Operand1 => B(15 downto 8));

ALU3: ALU port map (operator => Control(8 downto 6),
Operand1 => A(23 downto 16),
Operand2 => B(23 downto 16),
Result => Y(23 downto 16));

end STRUCT;

Verilog

module ALU (Operator, Operand1, Operand2, Result);
input [2: 0] Operator;
input [7: 0] Operand1, Operand2;
output [7: 0] Result;
reg [7: 0] Result;

always @(Operator or Operand1 or Operand2)
case (Operator)

0: Result = 8'b 0;
1: Result = Operand1 + Operand2;
2: Result = Operand1 - Operand2;
3: Result = Operand1 * Operand2;
4: Result = Operand1 >> 1;
5: Result = Operand2 » 1:
6: Result = Operand1 « 1;
7: Result = Operand2 « 1;
default: Result = 8'b 0;

endcase
endmodule

module COURSE_STR_SPLIT_BUS (Control, A, B, Y);
input [8: 0] Control;
input [23: 0] A, B;
output [23: 0] Y:

ALU ALU1 (Control[2: 0], A[7: 0], B[7: 0], Y|7: 0]);

ALU ALU2(. Operand2(A[15: 8]),. Operator(Control[5: 3]),
. Result(Y[15: 8]), Operand1(B[l5: 8]));

ALU ALU3(. Operator(Controi[8: 6]),. Operand1 (A[23: 16]),
. Operand2(B[23: 16]),. Result(Y[23: 16]));

endmodule

120

HDL Chip Design

Entity/module instantiations corrected via split busses

Chapter Five: Structuring a Design

Entity/module instantiations corrected via split busses

Course/Medium Grain

For/if-generate (VHDL)

Course/medium grain structural replication is achieved in VHDL using generate statements, which
replicate the enclosed concurrent statements; there is no Verilog equivalent. The two VHDL
generate schemes are:

for-generate - replicates the enclosed concurrent statements a given number of times
if-generate - conditionally replicates the enclosed concurrent statements

Example 5. 4 Course/medium grain structural replication -for/if-generate(VHDL)

The VHDL model uses both the for-generate and if generate statements to provide Course/medium
grain structuring. The first for-generate statement, GEN_1, generates three instances of ALU2 in
exactly the same way as in Example 5. 3. As ALU1 is instantiated repetitively, the generate statement
is better suited and requires less code than the three individual instantiations in Example 5. 3.

The for-generate statement, GEN 2, contains two nested if-generate statements. The first if-generate
statement, GEN 3, instantiates two instances of ALU1, while the second, GEN4, instantiates
another three instances of ALU2. This can be seen in the modeled circuit structure after the HDL
models.

121

VH

library IEEE;
use IEEE. STD_Logic_1164. all, IEEE. Numeric_STD. all;

entity ALU1 is
port (Operator: in unsigned(1 downto 0);

Operand1, Operand2: In unsigned(7 downto 0);
Result: out unsigned(7 downto 0));

end ALU1;

architecture COMB of ALU1 is
begin

process (Operator, Operand1, Operand2)
begin

case (Operator) is
when "00" => Result <= (others => '0'):
when "01" => Result <= Operand1 and Operand2;
when "10" => Result <= Operand1 or Operand2;
when "11" => Result <= Operand1 xor Operand2;
when others => Result <= (others => '0');

end case;
end process;

end COMB;

library IEEE;
use IEEE. STD_Logic_1164. all, IEEE. Numeric_STD. all;

entity ALU2 is
port (Operator: in unsigned(2 downto 0);

Operand1, Operand2: in unsigned(7 downto 0);
Result: out unsigned(7 downto 0));

end ALU2;

architecture COMB of ALU2 is
begin

process (Operator, Operand1, Operand2)
begin

case (Operator) is
when "000" => Result <= (others => '0');
when "001" => Result <= Operand1 and Operand2;
when "010" => Result <= Operand1 or Operand2;
when "011" => Result <= Operand1 xor Operand2;
when "100" => Result <= Operand1 srl 1;
when"101"=> Result <= Operand2 srl 1;
when "110" => Result <= Operand1 sll 1;
when "111" => Result <= Operand2 sll 1;
when others => Result <= (others => '0');

end case;
end process;

end COMB;

D L

library IEEE;
use lEEE. STD_Logic_1164. all, lEEE. Numeric_STD. all;
entity COURSE_MED_GENERATE is

port(Ctl_AB: in unsigned(8 downto 0);
A, B: in unsigned(23 downto 0);
Y1: out unsigned(23 downto 0);
Ctl_CD: in unslgned(12 downto 0);
C, D: in unsigned(39 downto 0);
Y2: out unsigned(39 downto 0));

end COURSE_MED_GENERATE;

architecture STRUCT of COURSE_MED_GENERATE is
component ALU1

port (Operator: in unsigned(1 downto 0);
Operand1, Operand2: in unsigned(7 downto 0);
Result: out unsigned(7 downto 0));

end component;
component ALU2

port (Operator: in unsigned(2 downto 0);
Operand1, Operand2: in unsigned(7 downto 0);
Result: out unsigned(7 downto 0));

end component;
begin

-- Generates 3 instances of ALU2.
GEN1: for N in 0 to 2 generate

ALU2 X3: ALU2
port map (Ctl-AB(2 + N * 3 downto N * 3),

A(7 + N * 8 downto N * 8),
B(7 + N * 8 downto N * 8),
Y1 (7 + N * 8 downto N * 8));

end generate;
-- Generates 2 Instances of ALU1 and 3 instances of ALU2.
GEN2: for N in 0 to 4 generate
GEN3: if N <= 1 generate

TWO ALU1S: ALU1
port map (Ctl_CD(1 + N * 2 downto N * 2),

C(7 + N * 8 downto N * 8),
D(7 + N * 8 downto N * 8),
Y2(7 + N * 8 downto N * 8));

end generate;
GEN4: if N >= 2 generate

THREE ALU2S: ALU2
port map (Ctl_CD(N * 3 downto N * 3 - 2),

C(7 + N * 8 downto N * 8),
D(7 + N * 8 downto N * 8),
Y2(7 + N*8 downto N* 8));

end generate;
end generate;

end STRUCT;

122

HDL Chip Design

Structural replication for/if-generate (VHDL)

Block Statement (VHDL)

Course/medium grain structuring can also be achieved in VHDL with the concurrent block
statement. The block statement, contains zero or more concurrent statements, and can be nested;
see Example 5.5. Typically, RTL synthesizable models rarely use the block statement as there is
no advantage in doing so; there is no sensitivity list and the concurrent statements are treated in
exactly the same way as if they are not in a block statement. The process statement is far more
commonly used. There is no Verilog equivalent.

123

Chapter Five: Structuring a Design

Structural replication for/if-generate (VHDL)

124

HDL Chip Design

Example 5. 5 Course/medium grain structuring using blocks (VHDL)

The VHDL model has two blocks; BLK1 and BLK2.

BLK1. Uses identical generate statements as those used in Example 5. 4 to instantiate the
same number of ALU components. The ALUs are the same as those in Example 5. 4.

BLK2. Groups two process statements (PRC1 and PRC2) together and defines a 24-bit bus
signal, Busl2. Busl2 is local to BLK2 and global to the two processes.

Structuring a design using VHDL blocks

Chapter Five: Structuring a Design

Medium Grain

The VHDL process and Verilog always statements are used repeatedly in RTL synthesizable models.
They provide medium grain structural control of a design. They are concurrent and activated
when specified signals change value. In VHDL the list of signals which can activate the execution
of a process statement is called a sensitivity list. In Verilog, the list of signals which can activate
the execution of an always statement is called an event list. This activation is critical when
simulating RTL models but does not affect the synthesized circuit.

VHDL process statement. This statement is activated in one of two ways depending upon whether
it contains a wait statement or not. If it does not contain a wait statement, it is activated by the
changing values of the signal or signals contained in the sensitivity list. If it does contain a wait
statement, the process waits until the expression in the wait statement becomes true in which
case a sensitivity list should not be used. For RTL synthesizable models, the wait should be the
first and only wait statement in a process. The expression in a wait statement can wait for, 1) a
particular signal's state to occur or, 2) the detection of a rising or falling edge to occur.

Verilog always statement. This statement is only activated when signals in the event list change
value. The event list almost always contains signals separated by a logical OR (| |) operator.
The logical AMD (&&) operator is allowed, but should not be used in models that are to be
synthesized as simulation mismatches may occur between RTL and netlist level models. The
reason for this is that the always statement will only be triggered into being executed when both
signals either side of the logical AND operator (&&) change at the same time. The always statement
will not be executed when only one signal changes. When modeling sequential logic, the clock
and possible asynchronous reset in the event list, must always be preceded with either of the
reserved words posedge or negedge.

Both process (VHDL) and always (Verilog). When modeling purely combinational logic, sensitivity
list or event list must contain all input signals to the process or always statement. If they do not,
the model will still synthesize correctly, but RTL and netlist level simulation mismatches may
occur.

Examples using the process and always statements are shown extensively throughout this book.
Chapter 7 shows VHDL examples using the wait statement.

Fine Grain

Fine grain structural control is achieved with the use of subprograms. These are the VHDL
procedure and function, and Verilog task and function. They provide fine grain structural control of
a design. The procedure and task are similar, as are the two functions in VHDL and Verilog. The
use of subprograms make models far easier to design, read and verify.

VHDL subprogram bodies are defined in either; the declaration region of an architecture, or
within a package body. If the subprogram body is defined in a package body, its port list header
must also be declared in the corresponding package. It is good design practice to always define
subprograms in a package body so that they are then accessible to be used by any of the five
types of design unit; see Chapter 3. It also means the calling models are less cluttered. Verilog
does not have an equivalent to VHDL packages; subprograms are typically placed in a separate
system file and included within a model using the 'include compiler directive. Table 5. 2 compares
the procedure/task with the function.

125

procedure (VHDL)/task (Verilog)

can contain timing so may or may not execute in
zero simulation time*

can enable other procedures/tasks and functions

returns zero or more values

enabled from concurrent or sequential statements

function (VHDL and Verilog)

must not contain timing - executes in zero simulation time

can enable other functions
a VHDL function can enable procedures
a Verilog function cannot enable tasks

must have at least one input value

returns a single value

enabled from an expression's operand

return value is substituted for the expression's operand

HDL Chip Design

* Although the Verilog task may contain timing, timing is not supported by synthesis tools.

Note 1. In VHDL formal actual parameter associations in subprogram calls could be either positional, named or
mixed positional and named. Verilog supports only positional notation for subprogram calls.

Note 2. Different VHDL subprograms may have the same name provided the input and output data types are
different. Only one signal or variable need have a different data type in order to make it unique. When the
subprogram is called, it will use whichever one has input and output data types that exactly matches those of the
signals in the calling statement. The technique is known as subprogram overloading.

Table 5. 2 Comparison of subprograms - Procedure/Task and functions

Procedure/Task

The procedure (VHDL) and task (Verilog) are ideal for partitioning models containing large amounts
of code. A procedure may be called concurrently or sequentially, that is, from outside or inside
a process. A task may only be called from within an always statement. The procedure is similar
to the process in that it can always be rewritten as an equivalent process. The same is true for the
task and a sequential always block.

VHDL or Verilog RTL synthesis tools typically do not allow more than one statement to be used
in a sequential section of code that causes a wait on particular signal conditions. For VHDL, this
means no more than one wait statement in a process. For Verilog, it means always statements
cannot be nested. As a task can only be called from within an always statement or sequential
always block, a task cannot be used to infer sequential logic, unlike the procedure.

In summary, when a model is to be synthesized:

1. synchronous logic may only be modeled in a procedure using the if statement, and not a
wait statement,

2. synchronous logic may not be modeled in a task. Only combinational logic can be modeled
which means a task can always be remodeled as a function.

Example 5. 6 shows a procedure modeling synchronous logic and how the equivalent task is
modeled differently because it cannot model synchronous logic.

126

Chapter Five: Structuring a Design

Example 5. 6 Fine grain structuring - Procedure/task

Linear feedback shift registers are modeled using subprograms.

VHDL A generic n-bit procedure contains the full LFSR model and is called three times. The first
call is concurrent and uses positional signal association. The second call is sequential and uses
named association. The third is also sequential and uses a mixed positional and named association.

Verilog. A task representing the combinational feedback logic for an 8-bit LFSR are declared.
Notice the names of the task and function are different; they may not have the same name. No
task can model synchronous logic if it is to be synthesized. Therefore, in this example, only the
exclusive OR feedback logic is modeled in the task. This means a synthesizable task can always
be remodeled using an equivalent function. The equivalent function is shown. There are two
calls to the task while the third call, calls the function.
Procedure and task calls

127

VHDL
library IEEE;
use IEEE. STD_Logic_1164. all. IEEE. Numeric_STD. all:

PROCEDURE_CALLS is
port (Clock, Reset1, Reset2, Reset3: in std_logic;

Y1, Y2, Y3: out unsigned(7 downto 0));
end PROCEDURE_CALLS;

architecture RTL of PROCEDURE_CALLS is

procedure LFSR8 (signal Clk, Rst: in std_logic;
signal Y: out unsigned(7 downto 0)) is

constant Taps: unsigned(7 downto 0): =
(1 | 2 | 3 | 7 => '1' , others => '0');

variable Y_var: unsigned(7 downto 0);
begin

if (Rst = '0') then
Y_var: = (others => '0');

elsif rising_edge (Clk) then
for N in 7 downto 1 loop

if(Taps(N-1) = T)then
Y_var(N): = Y_var(N -1) xor Y_var(7);

else
Y_var(N): = Y_var(N -1);

end if;
end loop;
Y_var(0): = Y_var(7);
Y <= Y_var;

end if;
end LFSR8;

Verilog

HDL Chip Design

Procedure and task calls

Function

The function in both VHDL and Verilog, provides the finest structural control of all. They are
called as the operand from within an expression. The single returned value from a function,
replaces the function call itself within the expression from which it is called.

Example 5. 7 shows a function defined and called within the same model. Example 5. 8 shows
subprograms declared in a separate system file; the VHDL model has overloaded subprograms
declared in a package and defined in a package body, while its Verilog equivalent shows a single
task and function defined in a separate system and referenced using the 'include compiler directive.

Example 5. 7 Fine grain structuring - function

The model in this example contains the definition of a function and three separate calls to it. The
VHDL model uses; named, positional, and mixed named and positional notation to associate
signals in the model's body to signals in the function. Mote again, Verilog does not support
named notation for subprogram calls.
Function calls

128

VHDL Modeled Circuit Structure Verilog

VHDL
library IEEE;
use IEEE. STD_Logic_1164. all;

entity FUNCTION CALLS is
port(S1, S2, A1, B1, C1, D1, A2, B2, C2, D2,

A3, B3, C3, D3: in std_logic;
Y1, Y2, Y3: out Std logic);

end entity FUNCTION CALLS;

architecture LOGIC of FUNCTION_CALLS is
function Fn1 (F1,F2,F3, F4: std_logic) return std_logic is

variable Result: std_logic;
begin

Result: = (F1 xor F2) or (F3 xnor F4);
return Result;

end Fn1;

Verilog

module FUNCTION_CALLS
(S1,S2,A1,B12,C1,D1,Y1,A2,B2, C2, D2, Y2, A3, B3, C3, C3, Y3);

input S1, S2, A1, B1, C1, D1, A2, B2, C2, D2, A3, B3, C3, D3;
output Y1, Y2, Y3;
reg Y2, Y3;

function Fn1;
input F1, F2, F3, F4;

begin
Fn1 =((F1 ^ F2) & ! (F3 ^ F4));

end
endfunction

Chapter Five: Structuring a Design

Function calls

Example 5. 8 Fine grain structuring - separate subprograms

This example uses the preferred method of defining subprograms in a separate system file. The
subprograms provide the color resulting from mixing any two of three paints together.

VHDL. Uses two packages. The first, COLOR_TYPES, defines the data types used by the
subprograms in the second package. The second package, SUBPROGS, has a package and
package body. The subprograms are declared in the package declaration and their functional
bodies are specified in the package body. There are two procedures and two functions all of
which have the same name. Although in this case, the two procedures and two functions perform
the exact same operation, they are different in that they use different enumerated data types, as
defined in the first package COLOR_TYPES. Both the two procedure names and two function
names are also said to be overloaded.

Verilog. Uses a single 'include complier directive which has the effect of being replaced with the
contents of the file it references. Subprograms cannot be overloaded so there is only one task
and one function. Enumerated data types are also not allowed, so the task and function use
Colorl, Color2, and Color3 instead of Red, Green and Blue.

Sub programs defined in a separate system file

129

package COLOR_TYPES Is
type PigmentColorPrime is (Red, Yellow, Blue);
type PigmentColorSec is (Orange, Violet, Green);

end package COLOR_TYPES;

use work. COLOR_TYPES. all;
package SUBPROGS is

procedure MixColor (signal C1, C2: in PigmentColorPrime;
signal Mix: out PigmentColorSec);

(unction MixColor (C1, C2: PigmentPrimeColor)
return PigmentSecColor;

end package SUBPROGS;

continued

II filename "deflne_colors. v"

'define Color 1 2'b 00
'define Color2 2'b 01
'define Color3 2'b 10
'define MixColor 1 2'b 00
'define MixColor 2'b 01
'define MixColor3 2'b 10

HDL Chip Design

Sub programs defined in a separate system file

Calls to generic sub programs defined in a separate system file

130

6
Modeling

Combinational
Logic Circuits

HDL Chip Design

Chapter 6 Contents

Modeling Combinational Logic 133

Logical/Arithmetic Equations 134
Example 6.1 Equations modeled using continuous assignments 134

Logical Structure Control 135
Example 6.2 Parentheses used to control logical structure 135

Multiplexers 136
Example 6.3 One-bit wide 2-1 multiplexer 136
Example 6.4 Modeling styles of a 4-1 multiplexer 137
Example 6.5 Two-bit wide 8-1 multiplexer using case 139

Encoders 141
Example 6.6 An 8-3 binary encoder 141

Priority Encoders 145
Example 6.7 An 8-3 binary priority encoder 145

Decoders 148
Example 6.8 A 3-8 binary decoder 148
Example 6.9 A 3-6 binary decoder with enable 150
Example 6.10 Four bit address decoder 152
Example 6.11 Generic N to M bit binary decoder 154

Comparators 157
Example 6.12 Simple comparator 157
Example 6.13 Multiple comparison comparator 158

ALU 159
Example 6.14 An arithmetic logic unit 159

132

Chapter Six: Modeling Combinational Logic

Modeling Combinational Logic

This chapter demonstrates the different ways in which purely combinational logic may be modeled.
It does not include tri-state logic which is covered separately in Chapter 10. The types of
combinational logic circuit commonly used in digital design and covered in this chapter are
listed in Table 6.1.

Table 6.1 Functional types of
combinational logic circuit

These more standard functional types of circuit are used in both control path and datapath
structures. Typically each circuit type can be modeled in different ways using if, case, and for
statements etc. Additionally for VHDL only, the concurrent selected and conditional signal
assignments can also be used. The selected signal assignment is synonymous with the if statement
and the conditional signal assignment is synonymous with the case statement, but reside outside
a process. This means they are always active and so may increase the time it takes to simulate
a model when compared to using a process with a sensitivity list. Also, the VHDL for-loop may
include one or more next or exit statements. The next statement causes a jump to the next loop
iteration, while the exit statement causes an exit from the for-loop altogether. There is no equivalent
to the next or exit statements in Verilog. The VHDL while-loop statement, and the Verilog forever
and while-loop statements, are not often used to model combinational logic; their loop range
must have a static value at synthesis compile time so that a predetermined amount of logic can
be synthesized. They are not supported by the synthesis tools from VeriBest Incorporated.

Note, that when modeling combinational logic, the sensitivity list of a process statement (VHDL)
or the event list of an always statement (Verilog), must contain all inputs used in the particular
statement. If it does not, the model will still synthesize correctly, but may not simulate correctly.
This is because process/always statements are concurrent and will not be triggered into being
executed when the omitted signals change, and means the output signals will not be updated.

Because the examples in this chapter are relatively small for demonstration purposes, VHDL
models use mostly signal assignments and relatively few variable assignments. VHDL models
with more code in a process, typically use more variable assignments. Variables and constants
are used in the computation of signal values, see Chapter 4. A number of VHDL model versions
in this chapter use for-loop statements. It is better to use only variable assignments, and not
signal assignments in for-loop statements. This is not mandatory as identical circuits will be
synthesized, but it will simulate faster for reasons given in Chapter 4.

The logic synthesized from the majority of the models in this chapter have little or no inherent
logical structure. This means area, timing and power characteristics are often considerably
improved when the synthesized circuit is optimized. Logic optimization breaks down the logical
structure of a circuit and creates a new one in the process of attempting to improve any area,
timing or power requirements that have been specified.

The following sections describe each of the circuit functions listed in Table 6. 1. Shifters, multipliers
and dividers can also be modeled using synchronous logic and are included in Chapter 9.

133

logical/arithmetic equations
logical structure control
multiplexers
encoders
priority encoders
decoders
comparators
ALUs

134

HDL Chip Design

Logical/Arithmetic Equations
Both logical and arithmetic equations may be modeled using the logical and arithmetic operators
in the expressions of continuous data flow assignments, see Example 6. 1.

Example 6. 1 Equations modeled using continuous assignments

Logical and arithmetic equations are modeled using continuous data flow assignments,
incorporating both logical and arithmetic operators. Both concurrent (outside process/always)
and sequential (inside process/always) assignments are shown.

VHDL signals S1 and S2 and variables V1 and V2, have identical names in the Verilog model for
comparison, but are all variables of type reg in the Verilog model. The Verilog variables V1 and V2
are not local to the sequential block as the variables are in the VHDL model. Although Verilog
supports locally defined data types of type reg, this is not generally supported by synthesis tools.
The VHDL output Y1 is defined from a concurrent continuous assignment and so the Verilog
equivalent must be of type wire. The data type of Y1 could have been explicitly defined as a wire,
for example, "wire Y1; ", however, this is not necessary as type wire is implied by default as defined
by the Verilog language.

Mathemematical equations modeled using continuous assignments

Chapter Six: Modeling Combinational Logic

Logical Structure Control

Parentheses can be used for course grain control of synthesized logic structure. Logic optimization
can still be used to break down all, or most, of a circuit's logic structure and restructure it in the
process of attempting to meet specific constraints. However, the use of parentheses in the model's
expressions can make the optimizer's job far easier and less cpu intensive, but more importantly,
the optimizer may not be able to achieve such good results that careful choice of parentheses
can bring, see Example 6. 2.

Example 6. 2 Parentheses used to control logical structure

Parentheses are used to control the structure of inferred adders. The model contains two
assignments, each implying the synthesis of three adders. The first assignment to Y1 does not
use parentheses and so defaults to a left to right priority; this results in a worst case timing delay
which passes through three adders. The second assignment to Y2 does use parentheses for a
more course grain structural control and infers a circuit structure whose longest timing delay this
time passes through only two adders instead of three.

Parentheses used to control logical structure

135

VHDL
library IEEE;
use IEEE. STD_STDLOGIC_1164. all;
use IEEE. NUMERIC_STD. all;

entity COMB_LOGIC_STRUCT is
port (A1,B1,C1,D1,A2,B2,C2,D2: in unsigned(8 downto 0);

Y1, Y2: out unsigned(10 downto 0));
end entity COMB_LOGIC_STRUCT;

architecture LOGIC of COMB_LOGIC_STRUCT is
begin

process (A1, B1, C1, D1, A2, B2, C2, D2)
begin

Y1 <=A1 +B1 +C1 +D1;

Y2 <= (A2 + B2) + (C2 + D2);

end process;

end architecture LOGIC;

Verilog

module COMB_LOGIC_STRUCT
(A1, B1, C1, D1, A2, B2, C2, D2, Y1, Y2);

input (8: 0) A1, B1, C1, D1, A2, B2, C2, D2;
output (10: 0) Y1, Y2;

reg (10: 0) Y1, Y2;

always @(A1 or B1 or C1 or D1 or A2 or B2 or C2 or D2)
begin

Y1 <=A1 +B1 +C1 +D1;

Y2 <= (A2 + B2) + (C2 + D2);

end

endmodule

Synthesized Circuit Structure

HDL Chip Design

Multiplexers

A multiplexer selectively passes the value of one, of two or more input signals, to the output.
One or more control signals control which input signal's value is passed to the output, see Figure
6. 1. Each input signal, and the output signal, may represent single bit or multiple bit busses. The
select inputs are normally binary encoded such that n select inputs can select from one of up to
2^n inputs.

a) Circuit symbol b) Truth table c) Lojic implementation
Figure 6. 7 The Multiplexer

s
0
0
1
1

A
0
1
X
X

B
X
X
0
1

Y
0
1
0
1

RTL level synthesis tools are not particularly good at identifying multiplexer type functions and
mapping them directly onto multiplexer macro cells in a given technology library. If this is desired
a multiplexer macro cell should be explicitly instantiated in the HDL model. However, a multiplexer
circuit is often better implemented in cell primitives as they can be optimized with their surrounding
logic and often produce a more optimal overall circuit implementation. Example 6. 3 shows three
ways of modeling a 2-1 multiplexer. Example 6. 4 shows a 4-1 multiplexer modeled in several
different ways and Example 6. 5 shows a 2-bit wide 8-1 multiplexer.

Example 6. 3 One-bit wide 2-1 multiplexer

The model of the one-bit wide 2-1 multiplexer described above is shown modeled using the if
statement in its most simplest form. Multiplexer output Y1 is derived concurrently via a selected
signal assignment in VHDL and a conditional continuous assignment in Verilog. The second and
third multiplexer outputs, Y2 and Y3, are derived from an if statement. The first if statement
defines a default output value for Y2 in an assignment immediately before the if statement, while
the second if statement uses the more normal method of using an else clause.
One bit wide 2-1 multiplexer

136

Synthesized Circuit

VHDL Verilog

Chapter Six: Modeling Combinational Logic

Example 6. 4 Modeling styles of a 4-1 multiplexer

Five ways of modeling a 4-1 multiplexer in VHDL, and three ways of modeling it in Verilog are
indicated. They are:

1. one if statement with multiple elsif/else if clauses,
2. a conditional signal assignment (VHDL),
3. nested if statements,
4. case statement,
5. uses a selected signal assignment (VHDL).

All models synthesize to the same circuit as shown.

There is no incorrect modeling method, however using the case statement requires less code
and is easier to read when compared with the if statement. This becomes more distinct with
increasing inputs per output; see also Example 6. 5. The two VHDL only models, 2 and 5, use
concurrent signal assignments so reside outside a process. This means they are always active
and so will usually take longer to simulate.

Different ways of modeling a 4-1 multiplexer

137

VHDL
library IEEE;
use IEEE. STD_LOGIC_1164. all. IEEE. NUMERIC_STD. all;

entity MUX4_1 is
port (Sel: in unsigned(1 downto 0);

A, B, C, D: in std_logic;
Y: out std_logic);

end entity MUX4_1;

architecture COND_DATA_FLOW of MUX4_1 is
begin

Verilog

module MUX4_1 (Sel, A, B, C, D, Y);
input (1: 0) Sel;
input A, B, C, D;
output Y;

reg Y;

See VHDL insets 1 through 5. See Verilog insets 1, 3 and 4.

138

HDL Chip Design

Different ways of modeling a 4-1 multiplexer

V H D L Verilog

139

Chapter Six: Modeling Combinational Logic

Example 6. 5 Two-bit wide 8-1 multiplexer using case

XX = two bit don't care DD = two bit data

Table 6. 1 Truth table for a two bit wide 8-7
multiplexer

A 2-bit wide 8-1 multiplexer is modeled to
the truth table in Table 6. 1. Models use the
case statement, and additionally for VHDL
only, selected signal assignment. The if
statement becomes cumbersome for the
wider inputs. It is different from the previous
example in that a VHDL integer data type is
used for the select input Sel, and the Verilog
case selector values are specified in integer
form, that is, 4 instead of 3'b 0100.

Two bit wide 8-1 multiplexer

Sel

000
001
010
011
100
101
110
111

A7

XX
XX
XX
XX
XX
XX
XX
DD

A6

XX
XX
XX
XX
XX
XX
DD
XX

A5

XX
XX
XX
XX
XX
DD
XX
XX

A4

XX
XX
XX
XX
DD
XX
XX
XX

A3

XX
XX
XX
DD
XX
XX
XX
XX

A2

XX
XX
DD
XX
XX
XX
XX
XX

Al

XX
DD
XX
XX
XX
XX
XX
XX

A0

DD
XX
XX
XX
XX
XX
XX
XX

Y

DD
DD
DD
DD
DD
DD
DD
DD

VHDL

library IEEE;
use IEEE. STD_LOGIC_1164. all, IEEE. NUMERIC_STD. all;
entity MUX2X8_1_CASE is

port (Sel: in integer range 0 to 7;
A0,A1,A2,A3,A4,A5,A6,A7: in unsigned(1 downto 0);
Y: out unsigned(1 downto 0));

end entity MUX2X8_1_CASE;
architecture COND_DATA_FLOW of MUX2X8_1_CASE Is
begin

process (Sel, A0, A1, A2, A3. A4, A5, A6, A7)
begin

case Sel is
when 0 => Y <= A0;
when 1 => Y<=A1;
when 2 => Y <= A2;
when 3 => Y <= A3;
when 4 => Y <= A4;
when 5 => Y <= A5;
when 6 => Y <= A6;
when 7 => Y <= A7;

end case;
end process;

end architecture COND_DATA_FLOW;

Verilog

module MUX2X8_1_CASE
(Sel. A0. A1, A2. A3. A4. A5. A6. A7. Y);

input (2: 0) Sel;
input (1: 0) A0, A1, A2, A3, A4, A5, A6, A7;
output (1: 0) Y;

reg (1: 0) Y;

always @(Sel or A0 or A1 or A2 or
A3 or A4 or A5 or A6 or A7)

case (Sel)
0 : Y = A0;
1 : Y = A1;
2 : Y = A2;
3 : Y = A3;
4 : Y = A4;
5 : Y = A5;
6 : Y = A6;
7: Y = A7;
default: Y = A0;

endcase

endmodule

V H D L

library IEEE;
use lEEE. STD_LOGIC_1164. all, IEEE. NUMERIC_STD. all;
entity MUX2X8_1_SSA is

port (Sel: in integer range 0 to 7;
A0,A1,A2,A3,A4,A5,A6,A7: in unsigned(1 downto 0);
Y: out unsigned(1 downto 0));

end entity MUX2X8_1_SSA;
architecture COND_DATA_FLOW of MUX2X8_1_SSA Is
begin

with Sel select
Y<= A0 when 0,

A1 when 1,
A2 when 2,
A3 when 3,
A4 when 4,
A5 when 5,
A6 when 6,
A7 when 7;

end architecture COND_DATA_FLOW;

HDL Chip Design

Two-bit wide 8-7 multiplexer

140

Synthesized Circuit

Chapter Six: Modeling Combinational Logic

Encoders

Discrete quantities of digital information, data, are often represented in a coded form; binary
being the most popular. Encoders are used to encode discrete data into a coded form and
decoders are used to convert it back into its original undecoded form. An encoder that has 2" (or
less) input lines encodes input data to provide n encoded output lines. The truth table for an 8-
3 binary encoder (8 inputs and 3 outputs) is shown in Table 6. 2 It is assumed that only one
input has a value of 1 at any given time, otherwise the output has some undefined value and the
circuit is meaningless.

Table 6. 2 Truth table for an 8-3
binary encoder

The truth table can be modeled using the if, case or for statements.

Models using a case statement are clearer than those using an if statement. The for loop is better
for modeling a larger or more generic m-n bit encoder. All models of such a circuit must use a
default "don't care" value to minimize the synthesized circuit as only 8 of the 256 (28) input
conditions need to be specified. The synthesis tool, if capable, replaces "don't care" values with
logic 0 or 1 values as necessary in order to minimize the circuit's logic. This means VHDL integer
data type cannot be used for the case selector in a case statement. However, whatever data type
is used, for example, unsigned, it can always be converted from an integer data type before the
case statement and back again after, although this can be cumbersome.

Example 6. 6 shows models of the 8-3 binary encoder described above, using either the if, case
or for statement.

Example 6. 6 An 8-3 binary encoder

An 8-3 encoder is modeled according to the truth table of Table 6. 2 using the if, case or for
statement, and additionally for VHDL, conditional and selected signal assignments.

All models use a default assigned output value to avoid having to explicitly define all 28 - 8 = 248
input conditions that should not occur under normal operating conditions. The default assignment
is a "don't care" value to minimize synthesized logic. If all 248 input conditions that are not
explicitly defined default to binary 000, more logic would be synthesized than is necessary.

141

A 7

0

0

0

0

0

0

0

1

A 6

0

0

0

0

0

0
1

0

A 5

0

0

0

0

0
1

0

0

i n p u t s

A 4

0

0

0

0
1

0

0

0

A 3

0

0

0

1

0

0

0

0

A 2

0

0

1

0

0

0

0

0

AT

0
1

0

0

0

0

0

0

A0

1

0

0

0

0

0

0

0

Y2

0

0

0

0
1

1

1
1

o u t p u t s

Y1

0

0

1
1

0

0

1

1

Y0

0
1

0
1

0
1

0
1

HDL Chip Design

8-3 encoder modeled from the truth table

142

VHDL
library IEEE;
use lEEE. STD_LOGIC_1164. all. IEEE. NUMERIC_STD. all;
entity ENCODE_8_3_CSA is

port (A: in unsigned(7 downto 0);
Y: out unsigned(2 downto 0));

end entity ENCODE_8_3_CSA;

architecture LOGIC of ENCODE_8_3_CSA is
begin

Y<= "000" when A = "00000001 "else
"001" when A = "00000010" else
"010" when A = "00000100" else
"011" when A = "00001000" else
"100" when A = "00010000" else
"101" when A = "00100000" else
"110" when A = "01000000" else
"111" when A = "10000000" else
"XXX";

end architecture LOGIC;

V H D L
library IEEE;
use lEEE. STD_LOGIC_1164. all, IEEE. NUMERIC_STD. all;
entity ENCODE_8_3_IF_ELSE is

port (A: in unsigned(7 downto 0);
Y: out unsigned(2 downto 0));

end entity ENCODE_8_3IF_ELSE;

architecture COND_DATA_FLOW of ENCODE_8_3_IF_ELSE is
begin

process (A)
begin

if (A = "00000001") then Y <= "000";
elsif (A = "00000010") then Y <= "001";
elsif (A = "00000100") then Y <= "010";
elsif (A = "00001000") then Y <= "011";
elsif (A = "00010000") then Y <= "100";
elsif (A = "00100000") then Y <= "101";
elsif (A = "01000000") then Y <= "110";
elsif (A = "10000000") then Y <= "111";
else Y <= "XXX";
end if;

end process;
end architecture COND_DATA_FLOW;

Verilog

module ENCODER_8_3_IF_ELSE (A, Y);
input [7: 0) A;
output (2: 0) Y;

reg (2: 0) Y:

always @(A)
begin

if (A == 8'b 00000001) Y = 0;
else if (A == 8'b 00000010) Y = 1;
else if (A == 8'b 00000100) Y = 2;
else if (A == 8'b 00001000) Y = 3;
else if (A == 8'b 00010000) Y = 4;
else if (A == 8'b 00100000) Y = 5;
else if (A == 8'b 01000000) Y = 6;
else if (A == 8'b 10000000) Y = 7;
else Y = 3'b X

end

endmodule

Chapter Six: Modeling Combinational Logic

8-3 encoder modeled from the truth table (continued)

143

HDL Chip Design

8-3 encoder modeled from the truth table (continued)

144

Synthesized Circuit

VHDL Verilog

A7

0
0
0
0
0
0
0
0
1

A6

0
0
0
0
0
0
0
1
X

A5

0
0
0
0
0
0
1
X
X

inputs

A4

0
0
0
0
0
1
X
X
X

A3

0
0
0
0
1
X
X
X
X

A2

0
0
0
1
X
X
X
X
X

AT

0
0
1
X
X
X
X
X
X

A0

0
1
X
X
X
X
X
X
X

Y2

X
0
0
0
0
1
1
1
1

outputs

Y1

X
0
0
1
1
0
0
1
1

Y

X
0
1
0
1
0
1
0
1

Valid

0
1
1
1
1
1
1
1
1

Chapter Six: Modeling Combinational Logic

Priority Encoders

The operation of the priority encoder is such that if two or more single bit inputs are at a logic 1,
then the input with the highest priority will take precedence, and its particular coded value will be
output. Models of an 8-3 binary priority encoder are included in Example 6. 7.

Example 6. 7 An 8-3 binary priority encoder

An 8-3 priority encoder is modeled in several different ways to the truth table shown in Table 6. 3.
The most significant bit, A7, has the highest priority. The output signal Valid indicates that at
least one input bit is at logic 1 and signifies the 3-bit output Y is valid.

Different models use if, case
and for statements. They all use
"don't care" default value for
the 3-bit output Y for the
condition when all 8 inputs are
at logic 0. This gives the
synthesis tool the potential to
reduce the logic, although it
makes little or no difference in
this particular model.

Using if statements. The first
model uses an if statement to
test each bit in turn starting
from the highest priority bit, A7.

X = don't care
Table 6. 3 Truth table of an 8-3 binary priority encoder

Using case/casex statements. The second model uses a VHDL case statement and Verilog casex
statement. The Verilog casex statement is ideally suited for this model as it allows "don't care"
input conditions to be used. The VHDL case statement is not suitable at all, and the only practical
way of using it is to convert signal A from an unsigned to integer data type and specify the
appropriate range or each choice value. This type of model will typically cause a synthesis tool
to generate large amounts of redundant logic which must then be optimized away by the optimizer.
In this particular sized model the optimizer is able to produce identical circuits. However, this
may not be the case for larger priority encoders due to the heuristic nature of logic optimizers.

Using conditional signal assignments (VHDL). If the priority encoder was modeled using VHDL
conditional signal assignments, two assignments would be needed; one for each output, Valid
and Y. Each assignment would be similar in that they would separately select each value of the
input A. The synthesized circuit would also be the same, but there would be code duplication for
the input selection. This results in more code that is less comprehensible. It is not recommended,
and not shown in this example.

Using for loop statements. The third model uses the for loop and tests each bit in turn. The
advantage is that the code does not get progressively larger as input and output bit widths
increase. Default output values are defined before the for statement. There are two VHDL versions;
the first checks each bit in turn starting from the least LSB, the second checks each bit in turn
starting from the MSB and exits the loop when it has found the first bit having a logic 1 value.

145

HDL Chip Design

Different ways of modeling an 8-3 priority encoder

146

VHDL Verilog

Chapter Six: Modeling Combinational Logic

Different ways of modeling an 8-3 priority encoder

147

VHDL Verilog

Synthesized Circuit

HDL Chip Design

Decoders
Decoders are used to decode data that has been previously encoded using a binary, or possibly
other, type of coded format. An n-bit code can represent up to 2n distinct bits of coded information,
so a decoder with n inputs can decode up to 2n outputs. Various models of a 3-8 binary decoder
are included in Example 6. 8, while various models of a 3-6 binary decoder having a separate
enable input are included in Example 6. 9.

Example 6. 8 A 3-8 binary decoder

The models of a 3-8 binary decoder in this example conform to the truth table in Table 6. 4.

Different model versions use if, case and
for statements along with VHDL conditional
and selected signal assignments. All 23 = 8
possible input values of this 3-8 decoder
are decoded to a unique output. This
means the automatic priority encoding
employed by if and Verilog case statements
do not affect the circuit and "don't care"
output values are not needed. Like most
other examples in this chapter there is no
right or wrong modeling technique. The
case statement is commonly used because

Table 6. 4 Truth table for a 3-8 line binary
decoder

of its clarity, and the fact it is not a continuous assignment and so may simulate faster. As input
and output bit widths increase, it is more code efficient to use the for loop statement. Again, all
models synthesize to the same circuit.

Different ways of modeling a 3-8 decoder

148

A2

0
0
0
0
1
1
1
1

inputs
A1

0
0
1
1
0
0
1
1

A0

0
1
0
1
0
1
0
1

Y7

0
0
0
0
0
0
0
1

Y6

0
0
0
0
0
0
1
0

Y5

0
0
0
0
0
1
0
0

outputs
Y4

0
0
0
0
1
0
0
0

Y3

0
0
0
1
0
0
0
0

Y2

0
0
1
0
0
0
0
0

Y1

0
1
0
0
0
0
0
0

Y0

1
0
0
0
0
0
0
0

VHDL
library IEEE;
use IEEE. STD_LOGIC_1164. all, IEEE. NUMERIC_STD. all;

entity DECODER3_8 is
port (A: in integer range 0 to 7;

Y: out unsigned(7 downto 0));
end entity DECODER3_8;

architecture COND_DATA_FLOW of DECODER3_8 is
begin

Verilog

Chapter Six: Modeling Combinational Logic

Different ways of modeling an 3-8 decoder

149

VHDL Verilog

HDL Chip Design

Example 6. 9 A 3-6 binary decoder with enable

The two model versions of a 3-6 binary decoder are included in this example and conform to the
truth table; Table 6. 5. Because of the similarities of this example to Example 6. 8, only the
versions using a case statement are covered. This example is different because it has a separate
input enable signal and there are two unused binary values for the 3-bit input A. When the enable
is inactive (En = 0), or A has an unused value, the 6-bit output must be at logic 0. Like the
previous example, "don't care" default assigned values cannot be used.

X=don't care

Table 6. 5 Truth table for a 3-6 line binary decoder with enable

The first model version below also uses an if statement to check the enable input En, separately
from the enclosed case statement. The second version on the following page has the enable
input En, concatenated with the encoded input A and the combined signal used in the case
statement. Both are correct and synthesize to the same circuit as shown.
3-6 decoder with separate if branch which tests the enable input

150

VHDL

library IEEE;
use IEEE. STD_LOGIC_1164. all, IEEE. NUMERIC_STD. all;

entity DECODER3_6_CASE1 is
port (En: in std_logic;

A: in integer range 0 to 7,
Y: out unsigned(5 downto 0});

end entity DECODER3_6_CASE1;

architecture COND_DATA_FLOW of DECODER3_6_CASE1 is
begin

process (A)
begin

if (En = '0') then
Y <= "000000";

else
case A is

when 0 => Y <= "000001";
when 1 => Y<= "000010";
when 2=> Y <= "000100";
when 3=> Y<= "001000";
when 4=> Y<= "010000";
when 5=> Y<= "100000";
when others => Y <= '000000";

end case;
end if;

end process;
end architecture COND_DATA_FLOW;

Verilog

module DECODER3_6_CASE1 (A, En, Y);
input En;
input [2: 0] A;
output [5: 0] Y;

reg [5: 0] Y;

always @(En or A)
begin

if (! En)
Y = 6'b 0;

else
case (A)

0: Y = 6'b 000001;
1: Y = 6'b 000010;
2: Y = 6'b 000100;
3: Y = 6'b 001000;
4: Y = 6'b 010000;
5: Y = 6'b 100000;
default: Y = 6'b 0;

endcase
end

endmodule

En

0
1
1
1
1
1
1
1
1

inputs
A2

X
0
0
0
0
1
1
1
1

A1

X
0
0
1
1
0
0
1
1

A0

X
0
1
0
1
0
1
0
1

Y5

0
0
0
0
0
0
1
0
0

Y4

0
0
0
0
0
1
0
0
0

outputs
Y3

0
0
0
0
1
0
0
0
0

Y2

0
0
0
1
0
0
0
0
0

Y1

0
0
1
0
0
0
0
0
0

Y0

0
1
0
0
0
0
0
0
0

Chapter Six: Modeling Combinational Logic

3-6 decoder with concantenated enable/encoded input for case selector

151

VHDL Verilog

Synthesized Circuit

HDL Chip Design

Example 6. 10 Four bit address decoder

This example is of a four bit address decoder. It provides enable signals for
segments of memory, the address map of which, is shown in Figure 6. 3. The
decoder's inputs could be the upper four bits of a larger address bus in which
case the decoded outputs would enable larger segments of memory. Seven enable
outputs are provided; one for each memory segment. The address map is divided
into quarters, and the second quarter is further subdivided into four. There are
four outputs from the second quarter corresponding to four consecutive binary
input values.

The first model version uses a for loop enclosing an if statement while the second
model uses a case statement. As a general rule, it is better to use the for loop and
if statements when a large number of consecutively decoded outputs are required.
a case statement requires a separate choice branch for each decoded output.

Four bit address decoder using "if" in a "for" loop

Figure 6. 3
Address mop

This is because

12-15

8-11

7
6
5
A

0-3

152

V H D L
library IEEE;
use lEEE. STD_LOGIC_1164. all. IEEE. NUMERIC_STD. all;
entity ADD_DEC_IF is

port (Address: in integer range 0 to 15;
AddDec_0to3, AddDec_8to11,
AddDec_12tol5: out std_logic;
AddDec_4to7: out unsigned(3 downto 0));

end entity ADD_DEC_IF;
architecture COND_DATA_FLOW of ADD_DEC_IF is
begin

process (Address)
begin

- First quarter
if (Address >= 0 and Address <= 3) then

AddDec0to3<='1 ' ;
else

AddDec_0to3 <= '0';
end if;

-- Third quarter
if (Address >= 8 and Address <= 11) then

AddDec8to11 <='1';
else

AddDec8to11 <= '0';
end if;

- Fourth quarter
if (Address >= 12 and Address <= 15) then

AddDec12to15<='1';
else

AddDec12to15<='0';
end if;

- Second quarter
for N in AddDec_4to7'range loop

if (Address = N + 4)then
AddDec_4to7(N) <= '1';

else
AddDec_4to7(N) <= '0';

end if;
end loop;

end process;

end architecture COND_DATA_FLOW;

Verilog

module ADD_DEC_IF
(Address, AddDec_0to3, AddDec_4to7,
AddDec_8to11, AddDec_12to15);

input (3: 0) Address;
output AddDec_0to3. AddDec_8to11.

AddDec_12tol5;
output (3: 0) AddDec_4to7;
integer N;
reg AddDec_0to3, AddDec_8to11;

AddDec_12to15;
reg (3: 0) AddDec_4to7;

always @(Address)
begin

// First quarter
if (Address >= 0 && Address <= 3)

AddDec_0to3=1;
else

AddDec_0to3 = 0;

// Third quarter
if (Address >= 8 && Address <= 11)

AddDec_8toll = 1;
else

AddDec_8to11 = 0;

// Fourth quarter
if (Address >= 12 && Address <= 15)

AddDec_12tol5=l;
else

AddDec_12tol5 = 0;

// Second quarter
f o r (N = 0; N<=3; N = N + l)

if (Address == N + 4)
AddDec_4to7(N) = 1;

else
AddDec_4to7(N) = 0;

end

endmodule

Chapter Six: Modeling Combinational Logic

Four bit address decoder using "case"

153

library IEEE;
use IEEE.STD_LOGIC_1164.all. IEEE.NUMERIC_STD.all;

entity ADD_DEC_CASE is
port (Address: in integer range 0 to 15;

AddDec_0to3. AddDec_8rol 1,
AddDec_12tol5: out std_logic;
AddDec_4to7: out unsigned(3 downto 0));

end entity ADD_DEC_CASE;

architecture COND_DATA_FLOW of ADD_DEC_CASE is
begin

process (Address)
begin

AddDec_0to3 <= '0';
AddDec_4to7 <= (others => '0');
AddDec_8to11 <= V:
AddDec_12to15 <= '0';

case Address is
- First quarter
when 0 to 3 =>

AddDec_0to3<='1';

- Second quarter
when 4 => AddDec_4to7(0) <= '1 ';
when 5 => AddDec_4to7(1) <= '1 ' ;
when 6 => AddDec_4to7(2) <= '1 ' ;
when 7 => AddDec_4to7(3) <= '1' ;

- Third quarter
when 8 to 11 =>

AddDec_8to11<= '1';

- Fourth quarter
when 12 to 15 =>

AddDec_2to15<='1';
end case;

end process;

end architecture COND_DATA_FLOW;

module ADD_DEC_CASE
(Address, AddDec_0to3, AddDec_4to7, AddDec_8to11,
AddDec_12to15);

input (3: 0) Address;
output AddDec_0to3, AddDec_8to11,

AddDec_12to15;
output (3: 0) AddDec_4to7;

reg AddDec_0to3, AddDec_8to11, AddDec_12to15;
reg (3: 0) AddDec_4to7;

always @(Address)
begin

AddDec_0to3 = 0;
AddDec_4to7 = 0;
AddDec_8to11 = 0;
AddDec_12to15 =0;

case (Address)
// First quarter
0. 1. 2. 3:

AddDec_0to3 = 1;

// Second quarter
4: AddDec_4ro7(0) = 1;
5: AddDec_4to7(1) = 1;
6: AddDec_4to7(2) = 1;
7: AddDec_4to7(3) = 1;

// Third quarter
8. 9. 10. 11:

AddDec_8to11 = 1;

// Fourth quarter
12, 13, 14, 15:

AddDec_12tol5= 1;
endcase

end
endmodule

HDL Chip Design

Example 6. 11 Generic N to M bit binary decoder

A generic n-bit input, m-bit output binary decoder is illustrated and incorporates a separate
enable input. Like Example 6. 9, all outputs will be at logic 0 if the decoder is not enabled, that is,
En = 0, or it is enabled, but n has a value that is not used in the decoder. This generic decoder is
called twice for the inference of a 2-4 and a 3-6 decoder.

The four models in this example are:

VHDL 1 - a generic VHDL decoder using an entity,
Verilog 1 - a generic Verilog decoder using a module,
VHDL 2 - a generic VHDL decoder using a function in a package,
Verilog 2 - non-generic Verilog using a decoder function Verilog 2.

There are two parts to each of the four models. The first part of VHDL 1 and Verilog 1 show the
decoder model while the second part shows two separate instantiations of it. The first part of
VHDL 2 and Verilog 2 show the decoder modeled in a function and the second part shows two
function calls to it.

VHDL 1. Modeled using an entity statement and separately instantiated. The number of decoded
input and output lines, needed for any given instance, are specified using a generic clause which
specifies a value for Sizeln and SizeOut.

Verilog 1. Modeled using a module statement and instantiated from a separate module. Uses
overloaded parameters for both input and output bit widths. These parameters have values
defined for them in the generic decoder (Sizeln = 3 and SizeOut = 8), and overridden when instantiated
from the instantiation in another module.

VHDL 2. Uses a generic function defined in a package. This is a more practical and easier
method to use when compared with using a VHDL entity as described above. The function is
called from an expression, either concurrently (outside a process) or sequentially (inside a process),
by supplying;

• the enable input of type std_logic,
• the encoded input of type unsigned,
• the desired number of encoded inputs of type integer,
• the desired number of decoded outputs of type integer.

Verilog 2. The Verilog language does not support the overriding of parameters in a function call.
Instead of being able to model a generic decoder, a predefined number of n-m bit decoders
must be specified so that the appropriate decoder may be called when needed. In this version,
two functions have been declared for 2-4 and 3-6 decoders. These decoders have been placed in
a separate file and included in the calling module using the compiler directive 'include.

154

Chapter Six: Modeling Combinational Logic

Generic decoder (entity/module)

155

Two instantiations of the generic decoder

V H D L 1

library IEEE;
use lEEE. STD_LOGIC_1164. all, IEEE.NUMERIC_STD.all;

entity GENERIC_DECODER_ENTITY is
generic (Sizeln, SizeOut: integer);
port (En: in std_logic;

A: in unsigned(Sizeln -1 downto 0);
Y: out unsigned(SizeOut -1 downto 0));

end entity GENERIC_DECODER_ENTITY;

architecture DATAFLOW of GENERIC_DECODER_ENTITY is
begin

process (En. A)
begin

if (En = '0') then
Y <= (others => '0');

else
(or N in 0 to SizeOut - 1 loop

if (to integer (A) = N) then
Y(N)<='1';

else
Y(N) <= '1';

end if;
end loop;

end if;
end process;

end architecture DATAFLOW;

Verilog 1

module GENERIC_DECODER_MODULE (En, A, Y);
parameter Sizeln = 3,

SizeOut = 8;
input En;
Input [Sizeln - 1 : 0] A;
output [SizeOut- 1: 0] Y;
reg [SizeOut - 1 : 0] Y;

integer N;

always @(En or A)
begin

If(IEn)
Y = 0;

else
if (A > SizeOut - 1)

for(N = 0; N <= SizeOut- 1; N = N + 1)
Y[N] = 1'bX;

else
for (N = 0; N <= SizeOut - 1; N = N + 1)

if (A == N)
Y[N]=1;

else
Y[N] = 0;

end

endmodule

HDL Chip Design

VHDL generic decoder (function) - Verilog specific decoders (functions)

156

Two decoder function calls

Chapter Six: Modeling Combinational Logic

Comparators

A comparator compares two or more inputs using one, or a number of different comparisons.
When the given relationship(s) is true, an output signal is given (logic 0 or logic 1). Comparators
are only modeled using the if statement with an else clause and no else-if clauses. A VHDL
conditional signal assignment or Verilog conditional continuous assignment could also be used,
but is less common as a sensitivity list (VHDL) or event list (Verilog) cannot be specified to
improve simulation time. Any two data objects are compared using equality and relational

operators in the expression part of the if statement. Only;
two data objects can be compared at once, that is
statements like "if (A = B = C)" cannot be used. However
logical operators can be used to logically test the result o
multiple comparisons, for example, if ((A = B) and (A = C))
These equality, relational and logical operators are listed in
Table 6. 6.

Example 6. 12 shows a 6-bit two input equality comparator
Example 6. 13 shows how multiple comparisons are used.

Table 6. 6 Equality, relational and
logical operators

Example 6. 12 Simple Comparator

Identical equality comparators are shown coded in three different ways. The single bit output is
at logic 1 when the two 6-bit input busses are the same, otherwise it is at logic 0.

Three ways to infer a 6-bit equality comparator

157

Operators

Equality &
Relational

Logical

VHDL

=

!=
<
<=
>

not
and
or

Verilog

==
!=
<
<=
>
>=
!
&&
I I

HDL Chip Design

Three ways to infer a 6-bit equality comparator

Example 6. 13 Multiple Comparison Comparator

Extra parentheses enclosing "C /= D or E >= F" means that either one of these conditions and "A =
B" must be true for the output to be at logic 1.

Comparator using multiple comparisons

158

Synthesized Circuit

Synthesized Circuit

VHDL
library IEEE;
use IEEE. STD_LOGIC_1164. all, IEEE, NUMERIC_STD. all;
entity COMPARATOR_MULT_COMP is

port (A, B, C, D, E, F: in unsigned(2 downto 0);
Y: out std_logic);

end entity COMPARATOR_MULT_COMP;
architecture LOGIC of COMPARATOR_MULT_COMP is
begin

process (A, B, C. D. E, F)
begin

if (A = B and (C /= D or E >= F)) then
Y <='1';

else
Y <= '0';

end if;
end process;

end architecture LOGIC;

Verilog
module COMPARATOR_MULT_COMP (A,B,C,D,E,F,Y);

input [2: 0] A, B, C, D, E, F;
output Y;

reg Y;

always @(A or B or C or D or E or F)
if (A == B && (C != D | | E >= F))

Y= 1;
else

Y = 0;

endmodule

Chapter Six: Modeling Combinational Logic

ALU

An arithmetic logic unit (ALU) is the center core of a central processing unit (CPU). It consists of
purely combinational logic circuit and performs a set of arithmetic and logic micro operations on
two input busses. It has n encoded inputs for selecting which operation to perform. The select
lines are decoded within the ALU to provide up to 2^n different operations. The ALU in Example
6. 14 is capable of performing 14 different micro operations.

Example 6. 14 An arithmetic logic unit

An Arithmetic Logic Unit (ALU) is modeled to the function table of Table 6. 7.

Table 6. 7 ALU Function table

This whole function table could be modeled using a single case statement, however, its synthesized
structure would be poor. Instead, the ALU has been modeled with a separate arithmetic unit,
logic unit and shifter, as indicated by the modeled circuit structure. By separating the arithmetic
and logic units in this way, and multiplexing their outputs to the shifter, better pre-optimized
timing will result. It is very likely, that even after optimization, the shortest timing delay through
the ALU will be longer if the arithmetic and logic units were combined into one process.

The arithmetic unit modeled using a single case statement. The reason it can be modeled in this
way is because the synthesis tools from VeriBest Incorporated, synthesizes expressions like A + B
+1 to a single adder with the carry in set to logic 1. If a synthesis tool is being used that does not
support this, it is necessary to remodel it in a way that avoids multiple adders being synthesized.
Provided the synthesis tools resource sharing option is tunned on, the synthesized logic of the
arithmetic unit will consist of just one adder for all add and subtract operations.

Arithmetic logic unit

159

V H D L

library IEEE;
use lEEE. STD_LOGIC_1164. all. IEEE. NUMERIC_STD. all;
entity ALU is

port (Sel: in unsigned(4 downto 0);
Carryln: in std_logic;
A, B: in unsigned(7 downto 0);
Y: out unsigned(7 downto 0));

end entity ALU; continued

Verilog

module ALU (Sel, Carryln, A, B, Y);
input (4: 0) Sel;
input Carryln;
Input (7: 0) A, B;
output (7: 0) Y;

reg (7:0) Y; continued

S4
0
0
0
0
0
0
0
0

0
0
0
0

0
0
1
1

S3
0
0
0
0
0
0
0
0

0
0
0
0

0
1
0
1

S2
0
0
0
0
0
0
0
0

1
1
1
1

0
0
0
0

S1
0
0
0
0
1
1
1
1

0
0
1
1

0
0
0
0

S0
0
0
1
1
0
0
1
1

0
1
0
1

0
0
0
0

Cin
0
1
0
1
0
1
0
1

0
0
0
0

0
0
0
0

Operation
Y<=A
Y <= A + 1
Y <= A + B
Y <= A + B + 1
Y <= A + Bbar
Y <= A + Bbar + 1
Y <= A - 1
Y<= A

Y <= A and B
Y <= A or B
Y <= A xor B
Y <= Abar

Y<= A
Y <= shl A
Y <= shr A
Y<=0

Function
Transfer A
Increment A
Addition
Add with carry
A plus 1's complement of B
Subtraction
Decrement A
Transfer A

AND
OR
XOR
Complement A

Transfer A
Shift left A
Shift right A
Transfer 0's

Implementation block
Arithmetic Unit
Arithmetic Unit
Arithmetic Unit
Arithmetic Unit
Arithmetic Unit
Arithmetic Unit
Arithmetic Unit
Arithmetic Unit

Logic Unit
Logic Unit
Logic Unit
Logic Unit

Shifter Unit
Shifter Unit
Shifter Unit
Shifter Unit

HDL Chip Design

Arithmetic logic unit

160

VHDL Verilog

Modeled Circuit Structure

7
Modeling

Synchronous
Logic

Circuits

HDL Chip Design

Chapter 7 Contents

Introduction 163
Modeling Latch Circuits 163

How latches are inferred 164
Unintentional latch inference from case statements 165

Example 7. 1 Simple and multiple latch inference using if statements 166
Example 7. 2 Modeling latches with preset and clear inputs 167
Example 7. 3 Multiple gated enable latch 168
Example 7. 4 Latch inference from nested if statements 168
Example 7. 5 Inadvertent latch inference from a case statement 170
Example 7. 6 Latch inference from nested case statements 171

The D-Type Flip-Flop 172
VHDL flip-flop inference 172
Verilog flip-flop inference 173

Example 7. 7 Flip-flops (+ve/-ve clocked) - VHDL attributes and function calls 174
Example 7. 8 Various flip-flop models 175
Example 7. 9 Combinational logic between two flip-flops 178

Linear Feedback Shift Registers 179
XOR or XNOR feedback gates 179
One-to-many or many-to-one feedback structure 179
What taps to use 180
Avoid becoming stuck in the prohibited state 181
Ensuring a sequence of all 2n values 181
Constructing generic n-bit LFSR models 182

Example 7. 10 One-to-many 8-bit LFSR modified for 2" sequence values 182
Example 7. 11 Generic n-bit LFSR 184

Counters 186
Deciding on a counter's structure and modeling 186

Example 7. 12 5-bit up-by-one down-by-two counter 187
Example 7. 13 Divide by 13 clock divider using an LFSR counter 188
Example 7. 14 Divide by 16 clock divider using an asynchronous (ripple) counter 190
Example 7. 15 Divide by 13 clock divider using an asynchronous (ripple) counter 191

162

Chapter Seven: Modeling Synchronous Logic Circuits

Introduction

This chapter describes the models of circuit functions that are implemented using synchronous
logic. The two basic types of synchronous element, cell primitives in an ASIC or FPGA library),
that are, 1) found in an ASIC or FPGA library of cells, and 2) mapped to by synthesis tools are:

• the D-type flow-through latch, and
• the D-type flip-flop.

About a third of ASIC vendor libraries contain JK and toggle type flip-flops but they are not
generally mapped to by commercial RTL synthesis tools. The sections in this chapter cover:
latches, flip-flops, linear feedback shift registers (LFSRs) and counters. The section on counters
also includes clock dividers.

Modeling synchronous logic is fairly straightforward provided that one adheres to the modeling
style recommended by the particular synthesis tool being used. The modeling styles shown in
this chapter, and throughout this book, are typical of most, if not all, commercial RTL level
synthesis tools.

Modeling Latch Circuits

A latch is a level sensitive memory cell that is transparent to signals passing from the D input to
Q output when enabled, and holds the value of D on Q at the time when it becomes disabled; see
Figure 7. 1.

Figure 7. 1 The level sensitive D-type flow-through latch

There are typically many latch variants in an ASIC or FPGA technology library. They may have
active high or low enable signals, and optional active high or low preset and clear signals. The
advantages of using latches over flip-flops is that if successive latches are enabled with phased
enable signals, cycle stealing is possible which can yield faster operating circuits. Figure 7. 2
shows the configuration of two and three phase latch enabling.

Cycle stealing occurs when combinational logic is moved from one clock phase to another in
order to equalize latch-to-latch signal delays throughout a latch based design having multiple
latch-to-latch stages. In a two phase system, combinational logic is moved to an adjacent latch-
to-latch stage. In a three phase system, combinational logic is moved to one of the two closest
stages, forwards or backwards. Synthesis tools may have the ability to automatically perform
cycle stealing during optimization. The synthesis tools from VeriBest Incorporated has this
capability.

163

HDL Chip Design

Figure 7. 2 Two and three phase latch enabling

The main disadvantage of using latches, instead of flip-flops, is that timing analysis of synthesized
circuits can be very complex making it difficult to verify correct operation under all conditions:
temperature, voltage and chip manufacturing process variations.

No latch in target technology library. There are FPGA libraries that do not contain latches. If using
such a library, do not model latches in the HDL code. If latches are modeled, the synthesis tool
will probably give a warning and may even try to decompose the function of a latch into
combinational logic gates with asynchronous feedback in an attempt to find a mapping of
equivalent functionality. This would almost certainly lead to race conditions. A latch based circuit
can usually be remodeled using flip-flops instead of latches and still have the same required
functional operation. The advice here is to be fully aware of the hardware intent when writing
structural HDL code.

How latches are inferred

A latch is synthesized from an HDL model when a signal needs to hold its value over time. In
VHDL if, case or wait statements, or conditional or selected signal assignments, can be used. In
Verilog if and case statements can be used. Verilog does have a wait statement specifically for
modeling the function of a latch, but it is not supported by synthesis tools, so should not be
used. As a general rule, it is better not to use a case statement to infer latches as there is no way
of explicitly specifying the enable signal; Example 7. 5 shows what happens if you do. If it is
desirable to use a case statement, it should be modeled within an if statement or the VHDL wait
statement, as these allow the enable signal to be specified explicitly.

Chapter 6 showed how combinational logic is inferred when a signal is defined in all possible
branches of a conditional expression, that is, if, case, etc. Conversely, if one or more branches
of a conditional expression does not define a value for a particular output signal, and no default
output value is defined before the conditional statement, then a latch is automatically inferred. A

164

Chapter Seven: Modeling Synchronous Logic Circuits

latch is inferred if a path through the code exists such that a particular signal is not updated
(assigned) a new value.

Unintentional latch inference from case statements

VHDL A VHDL case statement must always have a branch for every case choice value for VHDL
LRM compliance and often means an others clause must be used. This does not mean each
branch must assign a particular output value, although it usually does. If a particular output is
assigned a value in every branch then a latch will not be inferred. The output must be assigned
a value in all branches, otherwise latches are inferred.

Verilog. In Verilog, a branch for every case choice value is not needed for Verilog LRM compliance
and so the default clause is always optional. However, if the default clause is omitted a latch will
always be inferred, even if the case statement already has an output signal explicitly assigned in
what is thought to be all branches covering all case choice values. The reason for this is that
although all case conditions may be thought of as being covered, every possible combination of
the four value, value set {X, 0, 1, Z}, is almost always not covered for all case choice values.

Six latch related examples follow and are summarized below.

Example 7. 1. Simple latch model that shows the effect of VHDL signal versus variable
assignments and Verilog blocking versus non-blocking procedural assignments.

Example 7. 2. Various latch models with preset and clear inputs.

Example 7. 3. Multiple gated enables signals feeding the enable input of a latch.

Example 7. 4. Nested if statements where one branch does not assign a particular output
value resulting in the inference of a latch.

Example 7. 5. Inadvertent inference of a latch due to a case statement not having an output
assignment for every case choice value.

Example 7. 6. Similar to Example 7. 5, but uses nested case statements. All case choice
values do not contain an output assignment in the inner most case statement and so latches
are inferred for the 4-bit output.

165

HDL Chip Design

Example 7. 1 Simple and multiple latch inference using if statements

First if statement. Signal Y1 has no else clause and shows the model of a latch in its most simplest
form.

Second if statement. Contains two assignments to two single bit signals. Signal M2 is assigned a
value in the first assignment statement and is used in the second. Now, because M2 is of type
signal in the VHDL model, and the assignment is non-blocking (<=) in the Verilog model, two
separate latches are inferred with combinational logic between them as shown.

Third if statement. Identical to second if statement except M3 is now a variable instead of a signal
in the VHDL model, and the non-blocking signal assignment is now a blocking signal assignment
(=) in the Verilog model. The synthesized circuit consists of just one latch as shown by the
synthesized circuit. Only one latch is inferred because the VHDL signal assignment and Verilog
blocking procedural assignment for Y3 uses the new value of M3 computed in the assignment of
M3 immediately before the assignment of Y3.

Simple latch inference

166

Chapter Seven: Modeling Synchronous Logic Circuits

Example 7. 2 Modeling latches with preset and clear inputs

Latches with preset and clear input signals are modeled. Preset and clear inputs to a latch are
always asynchronous with the enable.

Latches with preset and clear

167

HDL Chip Design

Example 7. 3 Multiple gated enable latch

Provided an if statement is not in an edge triggered section of code, it does not matter how many
elsif (VHDL) or else if (Verilog) clauses there are. If there is no else clause and there is no default
output assignment before the if clause, latches will always be inferred.

Multiple enable latch

Example 7. 4 Latch inference from nested if statements

The single bit output Y2 is only defined in 3 of the 4 possible branches of the nested if statements
so a single latch is inferred.

Nested if statements inferrinq a latch

168

V H D L

library IEEE;
use IEEE. STD_logic_1164. all. IEEE. Numeric_STD. all;

entity LATCH_NESTED_IF is
port (Sel: in std_logic;

A: in unsigned(4 downto 0);
Y1: out unsigned(4 downto 0);
Y2: out Std logic):

end entity LATCH_NESTED_IF;

architecture COND_DATA_FLOW of LATCH_NESTED_IF is
begin continued

Verilog

module LATCH_NESTED_IF (Sel, A, Y1, Y2);
input Sel;
input [4: 0] A;
output [4: 0] Y1;
output Y2;

reg [4: 0] Y1;
reg Y2;

continued

VHDL

library IEEE;
use lEEE. STD_Logic_1164. all;

entity LATCH_IF_ELSEIF is
port(Enl, En2, En3, A1, A2, A3: in std_logic;

Y: out std_logic);
end entity LATCH_IF_ELSEIF;

architecture RTL of LATCHJF_ELSEIF is
begin

process (En1, En2, En3, A1, A2, A3)
begin

if (En1 = '1') then
Y <= A1;

elsif (En2 ='1') then
Y <= A2;

elsif (En3 ='1') then
Y <= A3;

end if;
end process;

end architecture RTL;

V e r i l o g

module LATCH_IF_ELSEIF (En1, En2, En3, A1, A2, A3, Y);
input En1, En2, En3, A1, A2, A3;
output Y;

reg Y;

always @(Enl or En2 or En3 or A1 or A2 or A3)
if (En1 == 1)

Y = A1;
else if (En2== 1)

Y = A2;
else if (En3 == 1)

Y = A3;

endmodule

Synthesized Circuit

Chapter Seven: Modeling Synchronous Logic Circuits

Nested if statements inferring a latch

169

VHDL
process (Sel. A)
begin

if Sel = '0'then
if A>= 12 then

Y1 <= (others => '0');
Y2<=0;

else
Y1 <= A+ 1;
Y2<= 1:

end if;
else

if A >= 24 then
Y1 <= (others => '0');

else
Y1 <= A + 2;
Y2<= 1;

end if;
end if;

end process;
end architecture COND_DATA_FLOW;

Verilog
always @(Sel or A)

if(!Sel)
i f(A>=12)

begin
Y1 = 0;
Y2 = 0;

end
else

begin
Y1 = A + 1;
Y 2 = l ;

end
else

if (A >= 24)
Y1 = 0;

else
begin

Y1 = A + 2;
Y 2 = l ;

end
endmodule

HDL Chip Design

Example 7. 5 Inadvertent latch inference from a case statement

This model shows a bad way of inferring a latch whether deliberate or not. The case statement is
of the 16 valued input A. The output Y, is defined for all the choice values, however, because the
output is not defined in the others clause (VHDL) or default clause (Verilog), a latched output is
inferred.

Output Y will never have a value of 3 because case choice values 7 and 12 are also included in
the case branch that assigns Y to 2.

Latch inference from case - not recommended

170

Chapter Seven: Modeling Synchronous Logic Circuits

Example 7. 6 Latch inference from nested case statements

All conditions of A are covered in the outer case, but are not for Number in the inner case; output
Y is therefore latched.

VHDL. The inner most case statement contains a when others branch for LRM compliance, but
contains a null statement to infer latches for the 4-bit output Y.

Verilog. The inner most case statement contains a default clause, but contains a null, "; ", statement
to infer latches for the 4-bit output Y.

Latch inference from nested case statements

171

VHDL

package Types is
type PrimeColor is (Red, Green, Blue);

end Types;

library IEEE;
use IEEE. STD_Logic_1164. all, IEEE. Numeric_STD. all;
use work. Types. all;

entity LATCH_NESTED_CASE is
port (ScreenColor: in PrimeColor;

Number: in unsigned(l downto 0);
A: in unsigned(3 downto 0);
Y: out unsigned(3 downto 0);

end entity LATCH_NESTED_CASE;

architecture RTL of LATCH_NESTED_CASE is
begin

process (ScreenColor, Number. A)
variable Y_var: unsigned(3 downto 0);
begin

case ScreenColor is
when Red => Y_Var: = A + 1;
when Green => Y_Var: = A + 2;
when Blue => case Number is

when "00" => Y_Var: = A;
when "01' => Y_Var: = A + 1;
when "10" => Y_Var: = A + 2;
when others null;

end case;
when others => Y_Var <= A + 1;

end case;
Y <= Y_var;

end process;
end architecture RTL;

Verilog
'define Red 2'b 00
'define Green 2'b 01
'define Blue 2'b 10

module LATCH_NESTED_CASE(ScreenColor, Number, A, Y);
input (1: 0) ScreenColor, Number;
input (3: 0) A;
output (3: 0) Y;

reg (3: 0) Y;

always @(ScreenColor or Number or A)
begin

case (ScreenColor)
"Red: Y = A + 1 ;
"Green: Y = A + 2;
"Blue: case (Number)

2'b 00: Y = A;
2'b 01: Y = A+ 1;
2'b 10: Y = A + 2;
default:;

endcase
default: Y = A+ 1;

endcase
end

endmodule

HDL Chip Design

The D-Type Flip-Flop

The D-type flip-flop is an edge-triggered memory device (cell primitive) that transfers a signal's
value on its D input, to its Q output, when an active edge transition occurs on its clock input. The
output value is held until the next active clock edge. The Q-bar output signal is always the
inverse of the Q output signal, see Figure 7. 3. A bank of flip-flops clocked from a common clock
signal is often referred to as a register.

Figure 7. 3 The edge triggered D-type flip-flop
Like the latch, there are usually many variants of the flip-flop in an ASIC or FPGA technology
library. A flip-flop may have a rising or falling edge triggered clock. It may, or may not, have
preset and clear inputs which may be active high or low, and which may be synchronous or
asynchronous with the clock.

A circuit, whose sequential elements consist only of D-type flip-flops, can be designed and
verified quicker and easier than if latches were used. For this reason, flip-flops are usually preferred
over latches. Latches with phased enable signals are used to reduce circuit timing when timing
becomes a critical issue.

Flip-Flops are inferred differently in VHDL and Verilog and are described separately.

VHDL flip-flop inference

Flip-flops are inferred in VHDL using wait or if statements within a process. The difference from
latch inferencing is that instead of detecting the occurrence of a signal's level, a signal's edge is
now detected. Example edge detecting expressions are:

Clock'event and Clock = '1' - rising edge detection using 'event attribute
Clock'event and Clock = '0' - falling edge detection using 'event attribute
not Clock'stable and Clock = '1' - rising edge detection using stable
not Clock'stable and Clock = '0' — falling edge detection using 'stable
rising_edge(Clock) - rising edge detection using a function call
falling_edge(Clock) - falling edge detection using a function call

Example use of these edge expressions in wait or if statements are as follow:
Wait until (Clock'event and Clock = '1');
if (Clock'event and Clock = '0') then
wait until rising_edge(Clock);
if falling_edge(Clock) then

The above edge detection methods use either VHDL attributes, for example 'event, or function
calls, for example rising_edge or falling_edge. The functions rising_edge and falling_edge also use
these VHDL attributes. Use of function calls simplifies a model slightly and is preferred, especially

172

Chapter Seven: Modeling Synchronous Logic Circuits

if using multi-valued data types, like for example std_logic, that has nine possible values, {U, X, 0,
1, Z, W, L H, -}. The reason function calls are preferred is that in order to detect a rising edge (logic
0 to 1 transition) for a signal of type std_logic, it is necessary to ensure transitions like X to 1 are
not detected.

example,
Clock is of type std_logic.

- Attribute 'event detects X to 0 and X to 1 transitions which may not be a transition at all
if (Clock'event and Clock = '0') then - Detects X to 1 transitions

-- Attribute 'event detects only 0 to 1 transitions
if (Clock'event and Clock'last_value = '0' and Clock = '1') then

- Detects only logic 0 to logic 1 transitions and has simplified code
if rising_edge(Clock) then

Models that are to be simulated and synthesized, an assumption made throughout this book,
should use multi-valued data types, and so from the above description, it is better to use function
calls. Almost all edge detections throughout this book use function calls, mostly rising_edge,
except for the examples in this section showing the use of attributes. Functions rising_edge and
falling_edge are defined in the IEEE 1164 package STD_Logic_l164 for clock signals of type
std_logic and in the IEEE 1076. 3 synthesis package NUMERICJ3IT for clocks of type bit.

Wait uersus if. The wait and if statements can be used for level detection to infer latches and edge
detection to infer flip-flops. The wait statement delays the execution of the whole process until its
expression becomes true. This means all other signal assignments in the process will infer one or
more flip-flops depending on a signal's bit width. Synthesis tools only allow one wait statement
in a process and it should be the first statement within the process. Because the if statement does
not stop the execution of the whole process it does not prohibit separate purely combinational
logic from also being modeled in the same process. For this reason the if statement is normally
preferred over the wait statement.

Examples 7. 7 and 7. 8 use both wait and if statements, though for the reason just stated, all other
examples in this book use if statements.

Verilog flip-flop inference

Flip-flops are only inferred using edge triggered always statements and so this is similar to using
the wait statement in VHDL. The Verilog always statement is edge-triggered by including either a
posedge or negedge clause in the event list. Combinational logic may be modeled on the inputs
to the flip-flops, but independent combinational logic may not be modeled in the same always
statement. Purely combinational logic must be modeled in a separate always statement. For this
reason, certain VHDL models may need to be modeled differently in Verilog. Example 7. 10 in the
LFSR section shows one such case where two always statements in Verilog equate to one
process statement in VHDL.

Example sequential always statements:
always @(posedge Clock)
always @negedge Clock)
always @(posedge Clock or posedge Reset)
always @(posedge Clock or negedge Reset)
always @(negedge Clock or posedge Reset)
always @(negedge Clock or negedge Reset)

173

HDL Chip Design

If an asynchronously reset flip-flop is being modeled a second posedge or negedge clause is
needed in the event list of the always statement. Also, most synthesis tools require that the reset
must be used in an if statement directly following the always statement, or after the begin if it is
in a sequential begin-end block.

example
// Active low asynchronous reset
always @(posedge Clock or negedge Reset)

begin
if (! Reset)

end

Example 7. 8 shows VHDL if and wait statements and Verilog synchronous always statements
used to model flip-flops with a positive or negative edge triggered clock.

Example 7. 9 shows the inference of numerous flip-flop variants having active high (logic 1) or
low (logic 0) synchronous and asynchronous set, reset and enable inputs.

Example 7. 7 Flip-flops (+ve/-ve clocked) - VHDL attributes and function calls

This is the only example that uses VHDL attributes, for example, 'event, for signal edge detection.
The normal function call edge detection is also included for comparison. The model infers flip-
flops with a positive or negative edge triggered clock. If the target technology does not contain
negative edge triggered flip-flops a positive edge triggered flip-flop will be inferred and the clock
signal will be inverted through a separately inferred inverter.

VHDL. Both if and wait statements use the 'event attribute and rising_edge and falling_edge function
calls. Outputs Y1, Y2, Y3 and Y4 are derived using the event attribute while outputs Y5, Y6, Y7 and
Y8 are derived using function calls. Modeled are four different ways of modeling a positive edge-
triggered flip-flop (Y1, Y3, Y5 and Y7), and four different ways of modeling a negative edge-
triggered flip-flop (Y2, Y4, Y6 and Y8).

Verilog. There is only one way to model either a positive edge-triggered flip-flop or negative edge
triggered flip-flop as indicated below.
+ve and -ve clocked flip-flops - VHDL model uses attributes and function calls

174

VHDL

library IEEE;
use IEEE. STD_Logic_1164. all. IEEE. Numeric_STD. all;

entity FF_POS_NEG_CLK is
port (Clock: in std_logic;

A1. A2, A3. A4: in bit;
A5. A6, A7, A8: in std_logic;
Y1, Y2, Y3, Y4: out bit;
Y5, Y6, Y7, Y8: out std_logic);

end entity FF_POS_NEG_CLK;

architecture RTL of FF_POS_NEG_CLK is
begin

P1: process (Clock)
begin

if (Clock 'event and Clock = '1') then
Y1 <=A1;

end if;
if (Clock 'event and Clock = '0') then continued

Verilog

module FF_POS_NEG_CLK (Clock, A1. A2, Y1, Y2);
input Clock;
input A1, A2;
output Y1, Y2;

reg Y1, Y2;

always @(posedge Clock)
Y1=A1;

always ©(negedge Clock)
Y2 = A2;

endmodule

Chapter Seven: Modeling Synchronous Logic Circuits

+ve and -ve clocked flip-flops - VHDL model uses attributes and function calls

Example 7. 8 Various flip-flop models

Different flip-flops with enable inputs, and asynchronous and synchronous resets are modeled.
The coding style conforms to that described earlier in this section. An ASIC library, or more
probably an FPGA library, may not have all the flip-flop types modeled in this example. This
means extra logic gates are inferred with a flip-flop that is in the library to ensure the synthesized
circuit maintains correct functionality.

Various filip-flop inferences

175

VHDL

library IEEE;
use IEEE. STD_Logic_1164. all;

entity FLIP_FLOPS is
port (Clock,

SynReset1, SynReset2.
AsynReset1, AsynReset2,
Enable1, Enable2,
Data1. Data2: in std_logic; continued

Verilog

module FLIP_FLOPS (Clock.
SynReset1. SynReset2 AsynReset1, AsynReset2, Enable1,
Enable2 Data1, Data2, Y1, Y2, Y3, Y4, Y5, Y6, Y7, Y8, Y9);

input Clock,
SynReset1, SynReset2
AsynReset1, AsynReset2 continued

Y2 <= A2;
end if;

end process P1;

P2: process
begin

wait until (Clock event and Clock = '1 ');
Y3 <= A3;

end process P2;

P3: process
begin

wait until (Clock 'event and Clock = '0');
Y4 <= A4;

end process P3;

P4: process (Clock)
begin

if rising_edge(Clock) then
Y5 <= A5;

end if;

if falling_edge(Clock) then
Y6 <= A6;

end if;
end process P4;

P5: process
begin

wait until rising_edge(Clock);
Y7 <= A7;

end process P5;

P6: process
begin

wait until falling_edge(Clock);
Y8 <= A8;

end process P6;

end architecture RTL

HDL Chip Design

Various filip-flop inferences

176

Chapter Seven: Modeling Synchronous Logic Circuits

Various filip-flop inferences

177

HDL Chip Design

Example 7. 9 Combinational logic between two flip-flops

This example is similar to Example 7. 1, but infers flip-flops instead of latches. Two flip-flops are
modeled with combinational logic on the input to the first flip-flop and between them both. This
is achieved with a single process (VHDL)/always (Verilog) statement.

VHDL. Signal assignments in an edge triggered section of code infer one or more flip-flops. In
this example signals M and Y both infer a single flip-flop. Because signal M is used in the expression
for the assignment to Y, the output from one flip-flop feeds the input to the other. As data object
N is a variable, it does not infer a flip-flop. The new computed value of N in the second assignment
is used in computing the value of Y in the third assignment.

Verilog. The explicit assignment to N must appear in a separate, non-edge sensitive, always block
to avoid inferring a third flip-flop. Also, the assignment to M uses a non-blocking signal assignment
so that the NAND of A and B appears on the input to the first flip-flop. If a blocking signal
assignment were used the NAND of A and B would feed the input to the NOR gate and the first
flip-flop would be redundant.

Combinational logic between two flip-flops

178

Synthesized Circuit

Chapter Seven: Modeling Synchronous Logic Circuits

Linear Feedback Shift Registers
A Linear Feedback Shift Register (LFSR) is a sequential shift register with combinational feedback
logic around it that causes it to pseudo-randomly cycle through a sequence of binary values.
Linear feedback shift registers have a multitude of uses in digital system design. A design modeled
using LFSRs often has both speed and area advantages over a functionally equivalent design
that does not use LFSRs; unfortunately, these advantages are often overlooked by designers.
Typical applications include: counters, Built-in Self Test (BIST), pseudo-random number
generation, data encryption and decryption, data integrity checksums, and data compression
techniques.

Feedback around an LFSR's shift register comes from a selection of points (taps) in the register
chain and constitutes either XORing or XNORing these taps to provide tap(s) back into the
register. Register bits that do not need an input tap, operate as a standard shift register, it is this
feedback that causes the register to loop through repetitive sequences of pseudo-random values.
The choice of taps determines how many values there are in a given sequence before the sequence
is repeated. Certain tap settings yield maximal length sequences of (2n - 1). If the application
requires all 2n values to be included in the sequence, the circuit can be modified slightly, see
below. If (2n - 1) or less is sufficient, the LFSR must be prohibited from randomly powering-up
and becoming permanently stuck with the prohibited value on the register output; see below.

The structural design aspects to consider when modeling LFSRs follow.

XOR or XNOR feedback gates

The feedback path may consist of either all XOR gates or all XNOR gates. They are
interchangeable, and given particular tap settings, an LFSR will sequence through the same
number of values in a loop before the loop repeats itself; the only difference is that the sequence
will be different. Figure 7. 4 has LFSR configurations using XOR gates, but XNOR gates could
equally be used.

One-to-many or many-to-one feedback structure

Both One-to-many or many-to-one feedback structures using XOR or XNOR gates can be
implemented and use the same number of logic gates, Figure 7. 4. A One-to-many structure will
always have a shorter worst case clock-to-clock path delay as it only passes through a single
two input XOR (XNOR) gate, instead of a tree of XOR (or XNOR) gates in the case of the many-
to-one structure. For this reason, Example 7. 10 uses only a one-to-many structure.

179

HDL Chip Design

Figure 7. 4 8-bit LFSR with a one-to-many or many-to-one feedback structure

What taps to use

The choice of which taps to use determines
how many values are included in a sequence
of pseudo-random values before the sequence
is repeated. For example, a 3-bit LFSR with
taps at register bits [1, 2] will cause it to enter
a loop comprising only two values: the actual
values of which is dependent upon the initial
value. By comparison, taps at bits [0, 2] is said
to g i v e a s e q u e n c e of maximal length (2n- I).
It will sequence through every possible value,
excluding the value where all 3-bits are at logic
0, before returning to its initial value.

For any given width LFSR there are many tap
combinations that give maximal length
sequences. For example, a 10-bit LFSR has
two 2-tap combinations that result in a
maximal length sequence ([2, 9] and [6, 9]),
along with twenty 4-tap combinations, twenty-
eight 6-tap combinations, and ten 8-tap
combinations. Again, the sequence of binary
values will vary depending on which tap
selection is used.

Table 7. 1 shows a minimum number of taps
that yield maximal length sequences for LFSRs
ranging from 2 to 32 bits.

Table 7. 7 Taps for maximal length LFSRs
with 2 to 32 bits

180

Extracted from the book "Bebop to the Boolean Boogie"
ISBN 1-878707-22-1 by permission of HighText Publications Inc.

Number
of bits

2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
21
23
24
25
26
27
28
29
30
31
32

Length of Loop

3
7

15
31
63

127
255
511

1023
2047
4095
8191

16383
32767
65535

131071
262143
524287

1, 048, 575
2, 097, 151
4, 194, 303
8, 388, 607

16, 777, 215
33, 554, 431
67, 108, 863

134, 217, 727
268, 435, 455
536, 870, 911

1, 073, 741, 823
2, 147, 483, 647
4, 294, 967, 295

Taps

[0, 1]
[0, 2]
[0, 3]
[1, 4]
[0, 5]
[0, 6]

[1, 2, 3, 7]
[3, 8]
[2, 9]

[1, 10]
[0, 3, 5, 11]
[0, 2, 3, 12]
[0, 2, 4, 13]

[0, 14]
[1, 2, 4, 15]

[2, 16]
[6, 17]

[0, 1, 4, 18]
[2, 191
[1, 20]
0, 21]

[4, 22]
[0, 2, 3, 23]

[2, 24]
[0, 1, 5, 25]
[0, 1, 4, 26]

[2, 27]
[1, 28]

[0, 3, 5, 29]
[2, 30]

[1, 5, 6, 31]

Chapter Seven: Modeling Synchronous Logic Circuits

Avoid becoming stuck in the prohibited state

Using XOR gates, the LFSR will not sequence through the binary value where all bits are at logic
0. Should it find itself with all bits at logic 0, it will continue to shift all 0s indefinitely. Therefore,
the LFSR should be prohibited from randomly initializing to all logic 0s during power-up. Similarly,
an XNOR based LFSR will not sequence through the binary value where all bits are at logic 1 and
so should be prohibited from randomly initializing to all 1's during power-up.

This can be overcome by:

• using a reset to either preset or clear the individual register flip-flops to a known good
value. In this case, the value is "hard wired" and cannot be changed,

• provide a means of loading an initial seed value into the register; either parallel or serial,
• model extra circuitry that allows all 2n values to be included in the sequence (see following

section).

Ensuring a sequence of all 2n values

Provided taps for a maximal length sequence is used, the LFSR configurations described so far
will sequence through (2n - 1) binary values. A sequence of (2n - 1) values may not be a problem
in many applications, but for ATPG applications, or if modeling a 4-bit 16 value counter, for
example, all 2n values are needed in the sequence. The feedback path can be modified with extra
circuitry to ensure that all 2n binary values are included in the sequence. Figure 7. 5 shows the
two 8-bit XOR based LFSRs of Figure 7. 4 modified for a sequence of 2n values. The principle
behind this is now described.

Figure 7. 5 8-bit LFSR (many-to-one and one-to-many) modified for 2n sequences

181

HDL Chip Design

Principle behind a 2n looping sequence. Notice from Table 7. 1 the taps for maximal length sequences
always include the most significant bit plus a group of taps from the least significant end of the
register. The most significant bit tap, when XORed (XNORed), inverts the smaller looping sequence
caused by the taps at the least significant end. Knowing that the all 0s value does not occur
naturally in the sequence when using XOR feedback gates, when all bits, except the most significant
bit, are at logic 0, the most significant bit must be at logic 1. This condition is detected and the
most significant bit is then inverted to a logic 0 so that the feedback signal is forced to logic 0
and all logic 0 values are forced onto the register. This inversion is achieved by XORing the NOR
of all bits, bar the most significant bit, with the rest of the XOR gates in the feedback path. When
all bits have been set at logic 0, the inversion sets the feedback back to logic 1 and the sequence
continues.

Constructing generic n-bit LFSR models

Generic n-bit LFSRs can be modeled and referenced as needed. The best way of achieving this,
is to define a generic model. In VHDL an entity can use generics, while in Verilog overloaded
parameter values can be used; see Example 7. 11. Another way would be to define a generic
VHDL procedure in a separate package. Verilog does not support parameterizable subprograms.
The disadvantage of using a VHDL procedure, is that the feedback logic would need to be
modeled using a signal (not a variable), which must be capable of being read and because
signals cannot be defined in a procedure the output must be of type inout or buffer. This would
lead to confusion and complications when used.

Example 7. 10 contains the model of the one-to-many 8-bit LFSR modified for a 2n looping
sequence shown in Figure 7. 5 (a). Example 7. 11 has a model of a generic n-bit LFSR. The next
section on counters contains Example 7. 13 which uses a 4-bit one-to-many non-modified LFSR
to model a 13 count counter.

Example 7. 10 One-to-many 8-bit LFSR modified for 2n sequence values

An 8-bit LFSR is modeled for a one-to-many XOR feedback structure, Figure 7. 5(a), and has
been modified for a 2n looping sequence.

The VHDL version has a single process containing variable assignments. The Verilog version
cannot be modeled in a similar way using a single edge triggered always statement because the
VHDL variables would become Verilog procedural assignments and infer extra flip-flops. Therefore,
as is often the case when using Verilog, it is better to model sequential logic in one always
statement and combinational logic in a separate always statement. This Verilog model is a classic
example of when this is necessary.

The LFSR taps have been defined in a constant (VHDL)/parameter (Verilog), and is called Taps.
The NOR of all LFSR bits minus the most significant bit, that is, Y(6: 0) generates the extra
circuitry needed for all 2n sequence values. This is achieved in VHDL using a for loop, while in
Verilog the NOR reduction operator (~l) is used, and produces Bits0_6_Zero. By XORing Bits0_6_Zero,
with the most significant bit of the LFSR, LFSRS_Reg(7), the feedback signal Feedback is generated.
A loop is then used to perform the shifting operation which either; 1) shifts each bit to the next
most significant bit, or 2) shifts each bit to the next most significant bit XORed with Feedback if
it is a tap bit.

VHDL. Uses variable LFSR_Reg to calculate and hold the next value of the shift register. This
variable is then assigned to the output signal Y after each clock edge. The assignments to this
variable could have been modeled to be direct to signal Y, negating the need for LFSR_Reg, but

182

Chapter Seven: Modeling Synchronous Logic Circuits

this would mean the output port for Y would need to be of type buffer instead of type out, which
may, or may not, be a problem. As a general rule in VHDL, it is better to only use variable
assignments within for loop statements as discussed in Chapter 4.

Verilog. As already stated in this example, sequential and combinational logic has been modeled
in separate always statements. The first always statement infers just the register part of the LFSR
and its output signal is called LFSR_Reg. The second always statement infers the combinational
feedback logic and outputs the next register value as a signal called Next_LFSR_Reg. Output Y is
assigned in a separate continuous assignment statement to avoid the output needing to be of
type inout, as would be the case if the output was to come direct from the signal LFSR_Reg. This
makes the model clearer and avoids the need to use type inout which could be mistaken for a
bidirectional signal. There is no inherent problem if output Y was to be of type inout as it would be
in VHDL.

One-to-many 8-bit LFSR that sequences through all 2" binary values

183

library IEEE;
use IEEE. STD_Logic_1164. aII. IEEE. Numeric_STD. all

entity LFSR_8BIT is
port (Clock, Reset: in std_logic;

Y: out unsigned(7 downto 0));
end entity LFSR_8BIT;

architecture RTL of LFSR_8BIT is
constant Taps: unsigned(7 downto 0) : =

(1 | 2 | 3 | 7 =>'1', others =>'0');
begin

process (Reset, Clock)
variable LFSR_Reg: unsigned(7 downto 0);
variable Bits0_6_Zero, Feedback: std_logic;

begin
if (Reset = 0') then

LFSR_Reg: = (others => '0');
elsif rising_edge(Clock) then

Bits0_6_Zero: = '0';
for N in 0 to 6 loop

Bits0_6_Zero: = Bits0_6_Zero nor LFSR_Reg(N);
end loop;
Feedback: = LFSR_Reg(7) xor Bits0_6_Zero;
for N In 7 downto 1 loop

if(Taps(N-1) = T) then
LFSR_Reg(N): = LFSR_Reg(N-l) xor Feedback;

else
LFSR_Reg(N): = LFSR_Reg(N -1);

end if;
end loop;
LFSR_Reg(0): = Feedback;

end if;
Y <= LFSR_Reg;

end process;
and architecture RTL;

HDL Chip Design

Example 7. 11 Generic n-bit LFSR

A generic n-bit LFSR is modeled where n is any value from 2 to 32. The generic LFSR is modeled
in an entity (VHDL)/module (Verilog). The width of a specific LFSR is specified when the entity or
module is instantiated. Like any parameterizable model, the VHDL model uses a generic while
the Verilog model uses an overloaded parameter value to define the width of any given LFSR
instantiation. A separate model is shown that calls the generic model twice for the instantiation
of a 5 and 8-bit LFSR. The modeled LFSR structure is identical to that used for the 8-bit LFSR
shown in Example 7. 10, that is, a one-to-many XOR feedback modified for a 2n looping sequence.

Feedback tap settings for all LFSRs ranging from 2 to 32-bits, see Table 7. 1, are modeled in a
two dimensional array and referenced as needed. This is achieved differently in VHDL and Verilog
as described below.

VHDL taps. A two dimensional array type, TapsArrayType, is defined to have 31 elements, numbered
2 to 32, that are each 32-bits wide. Each 32-bit value is of type unsigned because this is the type
used in the model and saves the need to use a conversion function call. A constant array of type
TapsArrayType, that is, TapsArray, defines the individual taps needed for each LFSR. Tap settings
for each LFSR are assigned to each 32-bit element of the array using an aggregate for code
efficiency and easier reading. The aggregate consists of two elements separated by a comma.
The first element defines all the tap bits to be at logic 1 by listing the appropriate taps separated
by the logical OR choice separator "I". All other non tap bits are defined to be at logic 0 in the
second element, using the others clause and includes all 32 bits whether the constant is for a 2 or
32-bit LFSR.

The value of the generic, Width, is of type integer and specifies the required size of the instantiated
LFSR. This value is used to assign the appropriate taps from the constant array to the signal
Taps.

Verilog taps. A memory array, TapsArray, is defined to hold the tap constants. In a non-synthesizable
model tap constants would typically be assigned in an initial statement. However, as initial
statements are not supported by synthesis tools the tap constants have been assigned in a
sequential always block and is triggered into running when a reset signal occurs on Reset. The
memory array, TapsArray, is not synthesized to gates because:

• 30 of the 31 constants are not used and are not connected to anything so will be
removed during the initial stages of synthesis,

• the constant array element that is used for a particular width LFSR will be optimized
during synthesis, such that an array of logic gates is not formed with inputs connected
to logic 0 or logic 1 as implied by the tap settings.

Verilog does not have an equivalent to VHDL aggregates. This means the Verilog default clause
cannot be used to define tap values in the same way as the VHDL others clause did in the VHDL
model. Although each element of the constant memory array is 32-bits only those bits needed
for a particular width LFSR is specified. The underscore character (_) is used to split the constant
tap value setting into groups of 8-bits for easier reading.

184

Chapter Seven: Modeling Synchronous Logic Circuits

Generic n-bit LFSR using one-to-many feedback

185

V H D L
library IEEE;
use IEEE. STD_Logic_1164. all. IEEE. Numeric_STD. all;
entity LFSR_GENERIC_MOD is
generic (Width: integer);
port (Clock, Reset: std_logic;
Y: out unsigned(Width -1 downto 0));
end entity LFSR_GENERIC_MOD;
architecture RTL of LFSR_GENERIC_MOD is
type TapsArrayType is array (2 to 32) of
unsigned(31 downto 0);
constant TapsArray: TapsArrayType: =
(2 => (0|1 => '1'. others => '0').
3 => (0|2 => '1'. others => '0').
4 => (0|3 => '1', others => '0'),
5 =>(1|4 =>'1', others =>'0'),
6 => (0|5 => '1'. others => '0').
7 =>(0|6 =>'1', others =>'0'),
8 =>(1|2|3|7 =>'1', others =>'0').
9 =>(3|8 => '1', others => 0'),
10 => (2|9 => ' 1'. others => '0'),
11 =>(1| 10 => '1', others =>'0'),
12 => (0|3 |5|11 => '1', others => '0'),
13 =>(0|2|3|12 =>'1', others =>'0'),
14 =>(0|2|4|13 =>'1', others =>'0').
15 => (0|14 => '1', others => '0'),
16 =>(1|2|4|15 =>'1', others =>'0'),
17 =>(2|16 =>'1', others =>'0'),
18 => (6|17 => '1'. others => '0'),
19 =>(0|l|4|18 =>'1', others =>'0'),
20 => (2|19 => '1', others => '0'),
21 =>(l|20 =>'1', others =>'0'),
22 => (0|12 => '1', others => '0').
23 => (4|22 =>'1', others => '0'),
24 => (0|2|3|23 => '1', others => '0'),
25 => (2| 24 => '1', others => '0'),
26 => (0|1|5|25 => '1', others => '0').
27 => (0|1|4|26 => '1', others => '0'),
28 => (2|27 => ' 1', others => '0'),
29 => (1| 28 => ' 1', others => '0'),
30 => (0| 3|5|29 => '1', others => '0'),
31 => (2|30 => '1', others => '0'),
32 => (1|5|6|31 => '1', others => '0'));
signal Tap's: unsigned(Width -1 downto 0);
begin
LFSR: process (Reset, Clock)
variable LFSR_Reg: unsigned(Width -1 downto 0);
variable BitsO_Nminusl_Zero, Feedback: std_logic;
begin
Taps <= TapsArray(Width)(Width -1 downto 0);
if (Reset = '0') then
LFSR_Reg: = (others => '0');
elsif rising_edge(Clock) then
BitsO_Nminusl_Zero: = '0';
for N in 0 to Width-1 loop
Bits0_Nminus1_Zero: = Bits0_Nminus1_ Zero nor
LFSR_Reg(N);
end loop;
Feedback: = LFSR_Reg(Width -1) xor
Bits0_Nminus1_Zero;
continued

HDL Chip Design

Generic n-bit LFSR using one-to-many feedback

Instantiation of a 5-bit and 8-bit generic LFSR

V H D L

for N in 1 to Width-1 loop
if(Taps(N-l) = '1') then

LFSR_Reg(N): = LFSR_Reg(N -1) xor Feedback;
else

LFSR Reg(N): = LFSR Reg(N -1);
end if;

end loop;
LFSR Reg(0): = Feedback;

end if;
Y <= LFSR_Reg;

end process;

end architecture RTL

Verilog

Counters
A register that goes through a predetermined sequence of binary values (states), upon the
application of input pulses on one or more inputs, is called a counter. Counters count the number
of occurrences of an event, that is, input pulses, that occur either randomly or at uniform intervals
of time. Counters are used extensively in digital design for all kinds of applications. Apart from
general purpose counting, counters can be used as clock dividers and for generating timing
control signals.

Deciding on a counter's structure and modeling

There are many ways in which a counter can be implemented depending upon the design
requirements. Some options follow depending upon whether a synchronous or asynchronous
counter is needed.

186

VHDL
library IEEE;
use IEEE. STD_Logic_1164. all, IEEE. Numeric_STD. all;
entity LFSR_5AND8_MOD is

port (Clock, Reset: in std_logic;
Y1: out unsigned(4 downto 0);
Y2: out unsigned(7 downto 0));

end entity LFSR_5AND8_MOD;

architecture STRUCTURAL of LFSR 5AND8 MOD is
component LFSR_GENERIC_MOD

generic (Width: integer);
port (Clock, Reset: in std_logic;

Y: out unsigned(Width -1 downto 0));
end component LFSR_GENERIC_MOD;

begin

LFSR_5: LFSR_GENERIC_MOD
generic map (5)
port map (Clock, Reset, Y1);

LFSR_8: LFSR_GENERIC_MOD
generic map (8)
port map (Clock, Reset, Y2);

end architecture STRUCTURAL.;

Verilog

module LFSR_8AND5_MOD (Clock, Reset, Y1, Y2);
input Clock, Reset;
output (4: 0) Y1;
output (7: 0) Y2;

LFSR GENERIC MOD #(5) LFSR 5(Clock, Reset, Y1);
LFSR_GENERIC_MOD #(8) LFSR_8(Clock, Reset, Y2);

endmodule;

Chapter Seven: Modeling Synchronous Logic Circuits

1. Synchronous counters

All flip-flops in a synchronous counter receive the same clock pulse and so change state
simultaneously, that is, synchronously. Synchronous counters are easier to design and verify,
and are less layout dependent than their asynchronous equivalent. Three options for a
synchronous counter are:

a). Simplest and most common. A synchronous incrementing or decrementing binary counter
is modeled by adding or subtracting a constant 1 using the "+" or"-" arithmetic operators in
assignments residing in a section of code inferring synchronous logic. The inferred logic for
the adder or subtractor can be controlled during synthesis to have a ripple-carry or carry-
look-ahead structure. See Example 7. 13.

b). Model detailed structure. Like adder or subtractor circuits, synchronous counters can be
modeled to have a specific detailed structure, see structural adders in Chapter 9. The
adder or subtractor circuit is simply placed in a section of code that infers synchronous
logic. Most applications do not require counters to be modeled at this level of detail.

c). Use an LFSR. LFSRs can be used to model synchronous counters. The design is slightly
more complex because the counting sequence is pseudo-random, but the much reduced
feedback logic yields a smaller and faster operating circuit than would be produced from
an equivalent binary counter. This is especially true for counters which count to a large
number of events and require a larger width count register. Such a counter should be first
simulated without an end count so that it counts continuously, and enables the pseudo-
random sequence to be derived. See Example 7. 14.

2. Asynchronous counters

Sometimes called ripple counters because flip-flop transitions ripple through from one flip-
flop to the next in sequence until all flip-flops reach a new stable value (state). Each single
flip-flop stage divides the frequency of its input signal by two. Asynchronous counters can be
significantly smaller, especially for clock dividers dividing by a factor of 2n where n is any
positive integer of 4 and above. Depending upon the application an extra resynchronizing
flip-flop may be needed on the output stage. In order to count to any value that is not a
factor of 2", extra feedback logic is needed to detect an end count value and reset the
counter back to the start count value. In this case, a resynchronizing flip-flop is essential to
generate a clean, glitch free, asynchronous reset. See Examples 7. 15 and 7. 16.

Example 7. 12 5-bit up-by-one down-by-two counter

This 5-bit counter counts up-by-one when Up is a logic 1 and down-by-two when Down is a logic
1. For all other conditions of Up and Down the counter will hold its value. The synchronous reset
(Reset) overrides the Up and Down signals and sets the counter to zero.

A case statement of the concatenation of Up and Down makes the model easy to read. Automatic
resource sharing means the "+" and "-" operators will synthesize to a single adder/subtractor
circuit. The synthesis tools from VeriBest Incorporated will implement a carry-look-ahead type
circuit by default.

VHDL The "+" and "-" operators make a function call to the overloaded "+" and "-" functions
defined in the IEEE 1076. 3 VHDL package Numeric_STD. This allows an object of type unsigned to
be added to an object of type integer.

187

HDL Chip Design

Up-by-one down-by-two counter

Example 7. 13 Divide by 13 clock divider using an LFSR counter

A 4-bit LFSR is used to model this divide by 13 clock dividing counter. The output goes high for
one clock cycle every 13th input clock. The LFSR uses XNOR feedback gates in a one-to-many
configuration and does not have the extra logic needed for a 2^n looping sequence. This means
the binary value 1111 will not occur in the looping sequence and so the asynchronous reset is
used to guard against random power-up to binary 1111.

This model was initially simulated with the indicated lines commented out. This enabled the
counter to continually cycle through all 15 values in order to determine the actual pseudo-
random sequence, see Figure 7. 6. Now the sequence is known, the commented out lines are put
back in, and the start count and end count values can be chosen and modeled for the desired
counter. In this model, StartCount = Ahex and EndCount = 0 for a divide by 13 counter.

For divide by 13: StartCount = AHEX EndCount =0
Use a 3-bit LFSR if dividing by 8 or less

Figure 7. 6 Pseudo-random sequence of modeled 4-bit LFSR

188

LFSR sequence

"StartCount" d iv ide by number

8

15

1

14

A

13

5

12

2

11

C

10

9

9

3

E

D B 7 6 4 0

Chapter Seven: Modeling Synchronous Logic Circuits

Divide by 13 LFSR clock dividing counter

189

HDL Chip Design

Example 7. 14 Divide by 16 clock divider using an asynchronous (ripple) counter

This asynchronous ripple counter divides an input clock by 16. It has four ripple stages each
consisting of a D-type flip-flop whose output is connected back to its D input such that each
stage divides its particular input clock by two. Circuits like this are often seen with the Qbar
output fed back to the D input. As seen by the synthesized circuit Q output is fed back to the D
inverter. This is deliberate to minimize the potential of violating flip-flop set-up times. The four
stages provide an overall divide by 16 of the input clock. A fifth flip-flop synchronizes the
asynchronous divided by 16 clock DIV16, back to the source clock Clock.

Divide by 16 ripple counter

190

VHDL
library IEEE;
use IEEE. STD_Logic_l 164. all;

entity CNT_ASYNC_CLK_DIV16 is
port (Clock, Reset: in std_logic;

Y: out std_logic);
end entity CNT_ASYNC_CLK_DIV16;

architecture RTL of CNT_ASYNC_CLK_DIV16 is
signal Div2. Div4, Div8, Div16: std_logic;

begin
process (Clock, Reset, Div2, Div4, Div8)
begin

if (Reset = '0') then
Div2 <= '0';

elsif rising_edge(Clock) then
Div2 <= not Div2;

end if;
if (Reset = '0') then

Div4 <= '0';
elsif rising_edge(Div2) then

Div4 <= not Div4;
end if;
if (Reset = '0') then

Div8 <= '0';
elsif rising_edge(Dlv4) then

Div8 <= not Div8;
end if;
if (Reset ='0') then

Divl6<='0';
elsif rising_edge(Div8) then

Divl6<=not Div16;
end if;
- Resynchronise back to Clock
If (Reset = '0') then

Y <= '0';
elsif rising_edge(Clock) then

Y<=Div16;
end if;

end process;
end architecture RTL

Verilog

module CNT_ASYNC_CLK_DIV16 (Clock, Reset, Y);
input Clock, Reset;
output Y;

reg Div2, Div4, Div8, Div16, Y;

always @(posedge Clock or negedge Reset)
if (I Reset)

Div2 = 0;
else

Div2 = ! Div2;

always @(posedge Div2 or negedge Reset)
if (I Reset)

Div4 = 0;
else

Div4 = ! Div4;
always @(posedge Div4 or negedge Reset)

if (! Reset)
Div8 = 0;

else
Div8 = ! Div8;

always @(posedge Div8 or negedge Reset)
if (! Reset)

Divl6 = 0;
else

Divl6=!Div l6;

// Resynchronize back to Clock
always @(posedge Clock or negedge Reset)

if (! Reset)
Y = 0;

else
Y=Div16;

endmodule

Chapter Seven: Modeling Synchronous Logic Circuits

Example 7. 15 Divide by 13 clock divider using an asynchronous (ripple) counter

This asynchronous ripple counter counts every 13 input clock cycles and sets the output to a
logic 1 for one clock cycle. Like Example 7. 14, the counter has four, divide by two, ripple stages.
However, unlike Example 7. 14, the link between each chain is between the Q output via an
inferring buffer (instead of the Q output) and D input of the next stage. This causes the counter
to count up instead of down. There is no difference in the logic synthesized, but it does make
determining the taps for the particular terminal count easier.

Detection of the thirteenth clock pulse and resynchronization is achieved with a fifth flip-flop. It
detects when the Qbar outputs from the ripple stages have a value of 13 - 2 = 11 (1011 binary).
The reason a count of 11, and not 13, is detected in this particular model, is that two clock
cycles are lost; one during the reset and the other because the ripple flip-flop Qbar outputs are
reset to logic 1 and then clocked to a logic 0 after the first clock cycle.

The simulated waveforms show the counting process. Notice the asynchronous reset CntRst is at
logic 1 for only half a clock cycle when the terminal count is reached. This enables the counter
to start counting again on the clock cycle immediately following a reset.

Divide by 13 ripple counter

191

V H D L

library IEEE;
use IEEE. STD_Logic1164. all;

entity CNT_ASYNC_CLK_DIV13 is
port (Clock, Reset: in std_logic;

Y: out Std_logic);
end entity CNT_ASYNC_CLK_DIV13;

architecture RTL of CNT_ASYNC_CLK_DIV13 is
signal Div2, Div2_b, Div4, Div4_b, Div8, Div8_b,

Div16, Div16_b, CntRst: Std_logic;
begin

process (Clock- Reset, CntRst)
variable Y var: Std_logic;

begin
if (Reset = '0' or CntRst = '1') then

Div2 <= '01;
elsif rising_edge(Clock) then

Div2 <= not Div2;
end if;

Div2_b <= not Div2;

if (Reset = '0' or CntRst = '1') then
Div4 <= '0';

elsif rising_edge(Div2) then
Div4 <= not Dlv4;

end if;

Div4_b <= not Div4;

if (Reset = '0' or CntRst = '1') then
Div8 <= '0';

elsif rising_edge(Div4) then
continued

Verilog

module CNT_ASYNC_CLK_DIV13 (Clock, Reset, Y);
input Clock, Reset;
output Y;

reg Div2, Div4, Div8, Div16, Y;
wire Div2_b, Div4_b, Div8_b, Divl6_b, CntRst;

always @(posedge Clock or negedge Reset or
posedge CntRst)

if (! Reset)
Div2 = 0;

else if (CntRst)
Div2 = 0;

else
Div2 =! Div2;

assign Div2_b = ! Div2;

always @(posedge Div2 or negedge Reset or
posedge CntRst)

if (! Reset)
Div4 = 0;

else If (CntRst)
Div4 = 0;

else
Div4 = ! Div4;

assign Div4_b = ! Div4;

always @(posedge Div4 or negedge Reset or
posedge CntRst)

if (! Reset)
Div8 = 0;

else if (CntRst)

continued

HDL Chip Design

Divide by 73 ripple counter

192

VHDL
Div8 <= not Div8;

end if;

Div8_b <= not Div8;

if (Reset = '0' or CntRst = '1') then
Div16<='0';

elsif rising_edge(Div8) then
Divl6<=not Dlv16;

end if;

Divl6_b <= not Div16;

-- Resynchronize back to Clock

if (Reset = '0') then
Y_var: = '0';

elsif rising_edge(Clock) then
Y_var <= Divl6_b and not Div8_b and

Div4_b and Div2_b;
end if;

-- Async reset when terminal count reached
CntRst: = Y_var and Clock;
Y <= Y_var;

end process;
end architecture RTL;

Verilog
Div8 = 0;

else
Div8 = ! Div8;

assign Div8_b = ! Div8;

always @(posedge Div8 or negedge Reset or
posedge CntRst)

if (I Reset)
Divl6 = 0;

else if (CntRst)
Divl6 = 0;

else
Divl6 = ! Divl6;

assign Div16_b = ! Div16;

// Resynchronize back to Clock
always @(posedge Clock or negedge Reset)

if (!Reset)
Y = 0;

else
Y = Div!6_b & ! Div8_b & Div4_b & Div2_b;

// Async reset when terminal count reached
assign CntRst = Y & Clock;

endmodule

Simulated Waveforms

Modeling Finite

8

State Machines

HDL Chip Design

Chapter 8 Contents

Introduction 195
The Finite State Machine 195
The State Table and State Diagram 195
FSM Design and Modeling Issues 197

1. HDL coding style 198
2. Resets and fail safe behavior 198
3. State encoding 199
4. Mealy or Moore type outputs 200
5. Sequential next state or output logic 200
6. Interactive state machines 201

Examples
Example 8. 1 Bad and good coded models of a three state FSM(FSM1) 202
Example 8. 2 One bad and four good models of an FSM 205
Example 8. 3 FSM with inputs or state value as the primary branch directive 210
Example 8. 4 FSM reset configurations 212
Example 8. 5 Angular position FSM using Gray and Johnson state encoding 214
Example 8. 6 FSM state encoding formats - Blackjack Game Machine 218
Example 8. 7 FSMs with a Mealy or Moore output 229
Example 8. 8 FSM with a Mealy and a Moore Output 232
Example 8. 9 FSM with sequential next state logic 234
Example 8. 10 FSM with sequential output logic : 236
Example 8. 11 FSM with sequential next and output state logic - Blackjack 238
Example 8. 12 Unidirectional interactive FSMs 242
Example 8. 13 Two interactive FSM's controlling two rotors 262

194

Chapter Eight: Modeling Finite State Machines

Introduction

Designers of digital circuits are invariably faced with needing to design circuits that perform
specific sequences of operations, for example, controllers used to control the operation of other
circuits. Finite State Machines (FSMs) have proven to be a very efficient means of modeling
sequencer circuits. By modeling FSMs in a hardware description language for use with synthesis
tools, designers can concentrate on modeling the desired sequences of operations without being
overly concerned with circuit implementation; this is left to the synthesis tool. FSMs are an
important part of hardware design and hence HDL hardware modeling.

A designer should consider the different aspects of an FSM before attempting to write a model.
A well written model is essential for a functionally correct circuit that meets requirements in the
most optimal manner. A badly written model may not meet either criteria. For this reason, it is
important to fully understand FSMs and to be familiar with the different HDL modeling issues.

The Finite State Machine

A FSM is any circuit specifically designed to sequence through specific patterns of states in a
predetermined sequential manner, and which conforms to the structure shown in Figure 8. 1. A
state is represented by the binary value held on the current state register. The FSM structure
consists of three parts and may, or may not, be reflected in the structure of the HDL code that is
used to model it.

Figure 8. 1 Simple structure of a finite state machine

1. Current State Register. Register of n-bit flip-flops used to hold the current state of the FSM.
Its value represents the current stage in the particular sequence of operations being performed.
When operating, it is clocked from a free running clock source.

2. Next State Logic. Combinational logic used to generate the next stage (state) in the sequence.
The next state output is a function of the state machine's inputs and its current state.

3. Output Logic. Combinational logic is used to generate required output signals. Outputs are
a function of the state register output and possibly state machine inputs.

The State Table and State Diagram

A state diagram is a graphical representation of a state machine's sequential operation and are
often supported as a direct input to commercial synthesis tools from which synthesized circuits
and HDL simulation models are generated. Whether to use a state diagram or HDL entry method
is often a choice for the designer, provided the tools are available. Sometimes a company will
dictate a particular design methodology, in which case, the choice has already been made.

Figure 8. 2 shows two state diagram representations of the same five state, state machine; the

195

HDL Chip Design

X = don't care condition

Table 8. 1 State table for state diagrams of Figure 8. 2

Figure 8. 2 Two equivalent state diagrams

196

equivalent state table is indicated in
Table 8. 1. The description of the two
state diagrams of Figure 8. 2 now
follows.

Circles represent states and lines with
arrows represent transitions between
states which occur after every clock
cycle. The clock signal is implied, but
not shown on a state diagram, nor in
a state table.

The binary number representing the
value on the state register flip-flops
(first state diagram), or its associated
state name (second state diagram) is
contained inside the circle. The input
signal conditions that dictate state
transitions are indicated next to the
appropriate line and before any slash
(/). A slash is used to separate input
and output signals. The two inputs, A
and Hold, are shown before the slash.
Values shown after the slash, if any,
indicate output signal values that are
a function of both the inputs and
current state register. These are called
Mealy type outputs described later.
The value of any output signals that
are a function of the current state
register only, are shown next to the
circle representing the appropriate
state. These are called Moore type
outputs also described later. The major
difference in the second state diagram,
is that input and output signals are
shown only when they are active,
otherwise they are left off to aid
functional comprehension and avoid
cluttering the diagram. Example 8. 8
shows the HDL models of this
particular state diagram.

Chapter Eight: Modeling Finite State Machines

FSM Design and Modeling Issues

State machine design and modeling issues to consider are:

1. HDL coding style,
2. Resets and fail safe behavior,
3. State encoding,
4. Mealy or Moore type outputs,
5. Sequential next state or output logic,
6. Interactive state machines.

The structure of a state machine can take one of three forms, Figure 8. 3, and consists of a
combinational "Next State Logic" block, a sequential "Current State Register" block, and an
optional combinational "Output Logic" block. Output logic is not needed if the outputs only
come direct from the state register flip-flops. The current state is stored in flip-flops; latches
would cause state oscillations when transparent. The next state and output logic blocks may
contain additional sequential logic, inferred from within the body of the model, but is not considered
part of the state machine. A state machine can only be in one state at any given time, and each
active transition of the clock causes it to change from its current state to the next as defined by
the next state logic.

Figure 8. 3 FSM Structures with Mealy, Moore and combined Mealy/Moore outputs

197

HDL Chip Design

A state machine with n state flip-flops has 2n possible binary numbers that can be used to
represent states. Often, not all 2n numbers are needed, so the unused ones should be designed
not to occur during normal operation. A state machine with five states, for example, requires a
minimum of three flip-flops in which case there are (23 - 5 = 3) unused binary numbers.

1. HDL coding style

There are different ways of modeling the same state machine, on the other hand, a small code
change can cause a model to behave differently than expected. Designers should be aware of
the different modeling styles supported by the synthesis tool being used, and should consider
modeling state machines to be tool independent; this applies to modeling any type of circuit.
The HDL code may be structured into three separate parts representing the three parts of a state
machine, see Figure 8. 3. Alternatively, different combinations of blocks can be combined in the
model. Either way, the coding style is independent of the state machine being designed.

The next state logic is best modeled using the case statement, though the VHDL next state logic
could be modeled using a selected signal assignment, but means the FSM cannot be modeled in
one process. The others clause (VHDL) and default clause (Verilog) used in a case statement,
avoids having to explicitly define all 2n values that are not part of the state machine.

Examples 8. 1 and 8. 2, show bad and good modeling styles for three and four state FSMs
respectively. Models in example 8. 2 demonstrate how the three parts of a state machine may be
combined, or separated in a model, and how to ensure portability between synthesis tools.
Example 8. 3 shows a state machine modeled with either the inputs or the current state, as the
primary branch directive.

2. Resets and fail safe behavior

Depending on the application, a reset signal may not be available, there may only be a synchronous
or asynchronous reset, or there may be both. To guarantee fail safe behavior, one of two things
must be done, depending on the type of reset:

• Use an asynchronous reset. This ensures the state machine is always initialized to a known
valid state, before the first active clock transition and normal operation commences. This
has the advantage of not needing to decode any unused current state values, and so
minimizes the next state logic.

• With no reset or a synchronous reset. In the absence of an asynchronous reset there is no
way of predicting the initial value of the state register flip-flops when implemented in an IC
and "powered up". It could power up and become permanently stuck in an uncoded state.
All 2n binary values must, therefore, be decoded in the next state logic, whether they form
part of the state machine or not. There is generally only a small area overhead in the next
state logic, and is partially offset by using smaller flip-flops that do not have an asynchronous
reset input.

Take for example, a ten state state machine modeled using Johnson State encoding. The state
register consists of 5 flip-flops and there are (25 - 10) unused states. The area optimized result of
the next state logic is 11% bigger if a synchronous reset is used rather than an asynchronous
one. This is partially offset by the asynchronously reset state register flip-flops, being slightly
larger than synchronously reset flip-flops. The overall result is a 3% increase in area when an
asynchronous reset is changed to a synchronous one.

198

In VHDL an asynchronous reset can only be modeled using the if statement, while a synchronous
reset can be modeled using either a wait or if statement; the disadvantage of using the wait
statement is that the whole process is synchronous so other if statements cannot be used to
model purely combinational logic. In Verilog only the if statement can be used, and if asynchronous,
must be included in the event list of the always statement with the posedge or negedge clause.

Example 8. 4 shows a state machine with combined current and next state logic modeled with;
an asynchronous reset, a synchronous reset, and with no reset. It also shows the minimal effect
it has on the implied next state logic.

If the current and next state logic are modeled separately, an asynchronous reset must be
included in the sequential current state logic while a synchronous reset may be included with
either the current or next state logic. Clearly by always including a reset in the current state logic
it is easy to change it from an asynchronous to synchronous reset or vice versa if needed. There
are many examples of such resets in this chapter.

3. State encoding

The way in which binary numbers are assigned to states, is called the state encoding. The

State Encoding Formats

Sequential. Each state is simply assigned increasing binary numbers.

Gray and Johnson. Each state in both Gray and Johnson state encoding is assigned successive
binary numbers where only one bit changes from one number to the next. A primary motive
for using such coding, is to reduce the possibility of state transition errors caused by
asynchronous inputs changing during flip-flop setup times.

All 2n binary numbers can be used in Gray Code state encoding. However, because of the
pattern of l's and 0's in Johnson state encoding, more flip-flops are required, and there are

199

Table 8. 2 Standard State Machine Encoding Formats

different state encoding formats
commonly used are:

• sequential,
• gray,
• Johnson,
• one-hot,
• define your own,
• defined by synthesis.

These formats are shown in Table
8. 2 for 16 states and their
descriptions follows.

Example 8. 6 shows a state
machine for a Blackjack card game
controller using all state encoding
formats, and includes a synthesis
defined format. The example also
shows the effect state encoding has
on the synthesized circuit of this
particular model.

No

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

Sequential

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

Gray

0000
0001
0011
0010
0110
0111
0101
0100
1100
1101

1111
1110
1010
1011
1001
1000

Johnson

00000000
00000001
00000011
00000111
00001111
00011111
00111111

01111111
11111111
11111110
11111100
11111000
11110000
11100000
11000000
10000000

One-Hot

0000000000000001
0000000000000010
0000000000000100
0000000000001000
0000000000010000
0000000000100000
0000000001000000
0000000010000000
0000000100000000
0000001000000000
0000010000000000
0000100000000000
0001000000000000
0010000000000000
0100000000000000
1000000000000000

Chapter Eight: Modeling Finite State Machines

HDL Chip Design

always unused binary numbers. This means that an asynchronous reset is preferred, otherwise
the next state logic must decode all 2n binary numbers, and result in a larger circuit. Example
8. 5 shows a state machine for a platform position controller using both Gray and Johnson
state encoding.

One-hot. In one-hot state encoding, each state is assigned its own flip-flop, so n states requires
n flip-flops and only one flip-flop is in its true state at any one time. The increased number of
flip-flops usually results in a larger circuit.

Define your own. Each state is assigned a binary number according to a particular design
requirement.

Defined by Synthesis. These formats are chosen by the synthesis tool to minimize next state
logic. Clearly the actual assignments are design dependent. It is necessary to consult the
appropriate synthesis manual to find out how this can be achieved. The synthesis tools
provided by VeriBest Incorporated allow a panel entry of FSM parameters from which it will
choose optimal state encoding for minimal next state logic using one of three different
algorithms. It also provides an HDL (VHDL or Verilog) model for simulation purposes.

4. Mealy or Moore type outputs

The structures of a Mealy, a Moore, and a combined Mealy/Moore state machines are shown in
Figure 8. 3. A Mealy state machine has outputs that are a function of the current state, and
primary inputs. A Moore state machine has outputs that are a function of the current state only,
and so includes outputs direct from the state register. If outputs come direct from the state
register only, there is no output logic. A combined Mealy/Moore state machine has both types of
output. The choice between modeling Mealy or Moore type outputs are clearly design dependent.

Example 8. 7 shows the same state machine modeled with a Mealy or Moore type output, while
Example 8. 8 show models of the example state diagram, Figure 8. 2, which has one Mealy and
one Moore type output.

5. Sequential next state or output logic

Both the next state and output logic in a state machine, consists of combinational logic only.
However, depending upon the application, you may want to model additional sequential logic in
either of these blocks, and which may be imbedded within the code of a state machine model.
Mote that by not defining next state or output signals in all branches of a state machine's case
statement, it is easy to inadvertently model unwanted latches.

Sequential Next State Logic. Sequential next state logic controls state branching from previously
set signals. Such signals could be set when the state machine was in another state, passed
through a particular sequence of states, or because of some accumulated value resulting
from looping around successive sequences of states. These next state control signals could
also provide state machine outputs. Example 8. 8 shows such a model which encompasses a
single controlling flip-flop in the next state logic.

Sequential Output Logic. Sequential output logic, registers the fact that a certain state or
sequence of states has occurred. Example 8. 9 shows a typical application of this, where an
accumulator is incremented every time the state machine passes through a particular state.

200

Chapter Eight: Modeling Finite State Machines

6. Interactive state machines

If a state machine's current state or output signals are used to influence the operation of other
state machines, they are known to be interactive. Interaction between state machines may be
unidirectional or bidirectional.

interactive state machines
Figure 8. 5 Structure of three bidirectional interactive FSMs.

where each state machine
has bidirectional control over the other two. Example 8. 11 shows two bidirectionally interactive
state machines; each has four states representing the angular position of two interlocking
mechanical rotors.

201

Unidirectional. State
machines may be
hierarchically structured, in
which case, they are useful
in breaking down large
complicated control path
structures into more
manageable pieces. Figure
8. 4 shows the structure of
two state machines where
FSM1 has unidirectional
control over FSM2, and
means the next state of
FSM2 is dependent upon
its own inputs and current
state, plus the state of
FSM1. Example 8. 10
shows three different state
machine configurations of
a control path model, used
to control the same data
path. The controller is
modeled in three separate
ways; (1) a master FSM
controlling three sub
hierarchial FSMs, (2) three
FSMs with series control
from one to the next, and
(3) using a single FSM.

Bidirectional. State
machines having
bidirectional control over
each other are useful for
modeling circuits requiring
handshaking mechanisms.
Figure 8. 5 shows the
structure of three

Figure 8. 4 Structure of two FSMs with uni-directional
interaction

HDL Chip Design

Example 8. 1 A Bad and good coded models of a three state FSM (FSM1)

Bad and good models of a three state FSM are modeled to the state diagrams, Figure 8. 6. The
two VHDL models use a single state variable of an enumerated type, and means the synthesis
tool will automatically assign sequential binary numbers to the states. The two Verilog models
use one of three parameter values for the states, and so the state numbers are defined in the
model itself.

Bad Model

The first model, FSM1_BAD, is incorrect for the reasons listed below. Notice, that in this particular
example the state type, and its declaration, are local to the VHDL process and Verilog always
block.

1. The state machine has three states requiring two flip-flops, but two flip-flop have four
possible binary values, so one is unused. There is no reset and there is no next state value
defined for the unused state. This means the physical state machine could be implemented
such that it has the potential of "powering up" and becoming stuck in this unused state.

2. The current state, next state and output logic, are all defined in the same VHDL process
and Verilog always block. Because the VHDL process contains a wait statement, the Read
and Write output assignments infer two extra flip-flops. Likewise, because the Verilog
always block is triggered off the positive edge of the clock, the Read and Write output
assignments also infer an extra flip-flop.

3. The variable definition for State in the VHDL version has an initial value of ST_Read. This
is fine for simulation, but is ignored by synthesis tools. Variables or signals should not be
initialized in this way if the model is to be synthesized; it does not represent the initial state
of the physical hardware. Procedural assignments in Verilog are only initialized through
initial blocks, which are not supported by synthesis tools, and so this problem should not
occur.

202

Figure 8. 6 FSM1 State Diagram

Chapter Eight: Modeling Finite State Machines

FSM1 Modeled incorrectly (FSM1_BAD)

The second model, FSM1_GOOD, shows the corrected version. The sequential current state logic
has been separated from the combined combinational next state and output logic. The VHDL
version still uses a wait statement, though as a general rule it is often better to use the if statement.
The VHDL if statement can model all synchronous and asynchronous logic needs, and has the
added advantage of allowing sequential and combinational logic to be mixed within the same
process.

203

Good Model

HDL Chip Design

FSM1 Modeled correctly (FSM1_GOOD)

204

Chapter Eight: Modeling Finite State Machines

Example 8. 2 One bad and four good models of an FSM

One bad and four good models of the state machine, Figure 8. 7. are shown in this example. It
has four states and uses an asynchronous reset. As in the previous example, the VHDL models

Figure 8. 7 FSM2
State Diagram

205

use an enumerated data type for the state variable, while the Verilog
models use parameter values.

The first model, FSM2_BAD, is incorrect for similar reasons to the bad
model in Example 8. 1, that is, flip-flops are synthesized in the output
logic. The outputs in the VHDL model are this time assigned under the
statement "if rising_edge(Clock)".

The good models (FSM2_GOOD1 to FSM2_GOOD4) show different
combinations in which the current state, next state and output logic
may be combined or separated within a model. The design is modeled
as follows:

FSM2_GOOD1 Separate CS, NS and OL
FSM2_GOOD2 Combined CS and MS. Separate OL
FSM2_GOOD3 Combined NS and OL. Separate CS
FSM2_GOOD4 Combined CS, MS and OL (VHDL only)

where: CS = Current State, NS = Next State, OL = Output Logic

FSM2 modeled incorrectly (FSM2_BAD)

HDL Chip Design

Separate current state, next state and output logic (FSM2_GOOD1)

206

Combined current state and next state logic, separate output logic (FSM2_GOOD2)

207

Chapter Eight: Modeling Finite State Machines

HDL Chip Design

Combined next state and output logic, separate current state logic (FSM2_GOOD3)

208

Combined current state, next state and output logic (FSM2_GOOD4)

Chapter Eight: Modeling Finite State Machines

209

HDL Chip Design

Example 8.3 FSM with inputs or state value as the primary branch directive

The state machine corresponding
to the state machine in Figure 8.8,
is modeled in two different ways.
The state diagram represents a car
speed controller.

The first model versions use the
Brake and Accelerate inputs in a
two way if branch directive, and
then, using a case statement in
both branches, assigns the new
state value. For this particular state
machine the increasing and

Figure 8.8 State diagram for car speed controller

decreasing speeds can be clearly seen by the two case statements. The second model versions
on the following page show the more usual method of using the state value as the primaiy
branch directive.
Input primary branch directives

210

State value primary branch directives

211

Chapter Eight: Modeling Finite State Machines

HDL Chip Design

Example 8.4 FSM reset configurations

In order to demonstrate the different ways in which resets may be modeled for a finite state
machine, only the process/always statements are included. The sections of code are of the state
machine used in Example 8.8, and whose state diagram was indicated in Figure 8.2. The first
two sections of code are for an asynchronous reset and the last three on the following page are
for a synchronous reset.

Two ways of implementing the same asynchronous reset for the FSM

212

Three ways of implementing the same synchronous reset for the FSM

Chapter Eight: Modeling Finite State Machines

213

HDL Chip Design

Example 8. 5 Angular position FSM using Gray and Johnson state encoding

The state diagram for the state machine in this example, Figure 8. 9, shows eight states. The
states are encoded using either Gray or Johnson state encoding and represent the desired angular
position of a rotor in 45 deqree increments. State transitions occur from its current state to an
adjacent state, representing a 45 degree
shift of the rotor in either a clockwise or
counterclockwise direction.

Because external forces can move the rotor
from its desired position, the input
PhysicalPosition may change, and is
asynchronous to the clock. For this reason,
Gray or Johnson state encoding is ideal
because, if the asynchronous input
changes during the setup time of the state
register flip-flops, it will not cause a meta
stable state, and so there is no risk of the
state machine transitioning to an erroneous
state. With other state encoding formats
there is a small, but finite risk that a rotor
movement through 180 degrees could be
requested in one clock cycle. The state
encoding is achieved differently in the
VHDL and Verilog models, and are
described separately below. There is no
output logic, as the state value itself
represents the angular position.

Figure 8. 9 Angular Position FSM

VHDL Model. There are two ways to specify state encoding.

1. Use a signal of an enumerated type for which a single synthesis specific attribute is applied.
This is a convenient way to specify the state encoding, but because the attribute's name is
specific to the synthesis tool, it may need to be changed for portability to other tools. The first
package ENUM_STATE_ENCODE_TYPES defines two identical enumerated state encoding types,
one for Gray and Johnson encoding. Different attributes are then applied to these types that
specify the specific state encoding, which is three bits wide for Gray and four bits wide for
Johnson. The attribute is called ENUM_TYPE_ENCODING in the VeriBest synthesis tools, but
may be different for other synthesis tools.

2. Use constants to represent the individual state values; these are assigned to a signal representing
the particular state, and is directly portable to other synthesis tools. The model shows two
packages for the two encoding methods. The entity-architecture of the state machine is the
same for the two state encoding methods, except for the use clause, which references the
appropriate package. The second package shows the unsigned type definition for the Gray
and Johnson state value, and the individual state constants. The state machine is modeled
using a single process similar to the last model in Example 8. 2 (FSM2_GOOD4). The input
PhysicalPosition and output NewPosition, are either of type GRAY_POS_EcodeStates or
JOHNSON_POS_EncodeStates depending on the state encoding method, and is the only change
needed.

Verilog Model. Uses parameter constants to declare state values in one of two separate system

214

files. The state machine model uses the include compiler directive to select the desired file for
the required state encoding. Alternatively, 'define compiler directives could have been used to
allow the simple text substitution of state names for the binary state encoded values. Again,
these could have been placed in separate system files and included in the model with include
compiler directives.

State encoding definitions for angular position FSM

Chapter Eight: Modeling Finite State Machines

215

VHDL
library IEEE;
use lEEE. STD_Logic_1164. all, IEEE. Numeric_STD. all;
package CONST_GRAY_STATE_ENCODE_TYPES is

constant Ang_0: unsigned(3 downto 0) : = "0010";
constant Ang_45: unsigned(3 downto 0): = "0110";
constant Ang_90: unsigned(3 downto 0) : = "0111';
constant Ang_135: unsigned(3 downto 0). = "0101";
constant Ang_180: unsigned(3 downto 0) : = "0100';
constant Ang_225: unsigned(3 downto 0) : = "1100";
constant Ang_270: unsigned(3 downto 0) : = "1101";
constant Ang_315: unsigned(3 downto 0) : = "1111";

end package CONST GRAY_STATE_ENCODE_TYPES;

library IEEE;
use lEEE. STD_Logic_1164. all. IEEE. Numeric_STD. all;
package CONST_JOHN_STATE_ENCODE_TYPES is

constant Ang_0: unsigned(3 downto 0). = "0000";
constant Ang_45: unsigned(3 downto 0) : = "0001";
constant Ang_90: unsigned(3 downto 0): = "0011";
constant Ang_135: unsigned(3 downto 0) : = "0111";
constant Ang_180: unsigned(3 downto 0): = "1111";
constant Ang_225: unsigned(3 downto 0) : = "1110";
constant Ang_270: unsigned(3 downto 0) : = "1100";
constant Ang_315: unsigned(3 downto 0) : = "1000";

end package CONST_JOHN_STATE_ENCODE_TYPES;

VHDL

package ENUM_STATE_ENCODE_TYPES Is
attribute ENUM_TYPE_ENCODING: string;

type GRAY_POS_EncodeStates is
(Ang_0, Ang_45, Ang_90, Ang_135, Ang_180, Ang_225,
Ang_270, Ang_315);

attribute ENUM_TYPE_ENCODING of
GRAY_POS_EncodeStatestype is
"00000001 0011 001001100111 0101 0100";

type JOHNSON_POS_EncodeStares is
(Ang_0, Ang_45, Ang_90, Ang_135, Ang_180, Ang_225,
Ang_270, Ang_315);

attribute ENUM_TYPE_ENCODING of
JOHNSON_POS_EncodeStates: type is
"0000 0001 0011 0111 1111 1110 1100 1000";

end package STATE ENCODE TYPES;

Verilog

// File name = fsm_ang_pos_gray_params. v

// Specify state bit width
parameter StateWidth = 3;

// Gray State Definitions
parameter Ang_0 = 3'b 000,

Ang_45 =3'b 001,
Ang_90 =3'b 011,
Ang_135 =3'b 010,
Ang_180 =3'b 110,
Ang_225 =3'b 111,
Ang_270 =3'b 101,
Ang_315 = 3'b 100;

Verilog

// File name = fsm_ang_pos_john_params. v

// Specify state bit width
parameter StateWidth = 4;

// Johnson State Definitions
parameter Ang_0 = 4'b 0000,

Ang_45 = 4'b 0001,
Ang_90 = 4'b 0011,
Ang_135 = 4'b 0111,
Ang_180 = 4'b 1111,
Ang_225 = 4'b 1110,
Ang_270 = 4'b 1100,
Ang_315 = 4'b 1000;

HDL Chip Design

Angular position FSM

216

Angular position FSM

Chapter Eight: Modeling Finite State Machines

217

HDL Chip Design

Example 8. 6 FSM state encoding formats - Blackjack Game Machine

The model of a state machine with selectable state
encoding is shown. The effect state encoding has
on this particular state machine's area and timing
is also shown. The different state encoding used
are: sequential, Gray, Johnson, one-hot and three
types of Nova. The first four are shown defined in
the HDL models, while the three types of Nova state
encoding are chosen by the VeriBest synthesis tool
and requires the state machine be entered in a
graphical, non VHDL or Verilog, format. This has
been done and the results included in Figure 8. 10.

The model is of a Blackjack card game machine;
see inset for description. The model includes a state
machine controller for which the different state
encoding formats apply, plus data path
accumulators. The accumulators are not affected
by the state encoding, but are included in this model
for completeness. They hold the accumulated card
value and the number of aces counted as having a
value of 11.

The state machine has 16 states as seen by the
state diagram, Figure 8. 11.

When an HDL model is synthesized, the VeriBest
synthesis tools create a separate design database
file for each process (VHDL) and always block
(Verilog), which can be independently optimized and
analyzed. Because of this, and the need to analyze
the effect state encoding has on the state machine's next state, current state and output logic,
they have all been modeled in separate process (VHDL)/ always (Verilog) statements. The designed
architecture of the Blackjack machine, Figure 8. 12, represents the structure of the process (VHDL)
and always (Verilog) statements in the HDL models.

This same design is remodeled in Example 8. 10 with various blocks combined, and has the
sequential logic buried within the FSM, resulting in reduced code.

Defining the state encoding

There are four statements in each model (VHDL and Verilog), that relate to the state encoding.
One of the statements is enabled to set the desired state encoding, while the other three must be
"commented out". The phrase "commenting out" means turning a particular line of code into a
comment by prefixing it with "--" (VHDL) or "//" (Verilog). The models shown have sequential
state encoding enabled.

VHDL state encoding. State encoding is specified in the VHDL model, by defining the two
signals CurrenfState and NextState, to be one of four types defined in the VHDL package
STATE_ENCODE_TYPES. This package first defines an attribute called ENUM_TYPE_ENCODING to
be of type string. This attribute is known to the VeriBest synthesis tools, and is used specifically
to define a string representing the enumerated encoding of enumerated data types. Most

Blackjack
Blackjack is the most popular of the card
games played at the tables in casinos. It is
played with a standard deck of 52 cards. The
four suits; spades, hearts, diamonds and clubs
have no significance and are ignored. The
value of the cards is important. The Jack,
Queen and King all have a value of 10. The
ace is the most powerful card having a value
of 1 or 11 depending upon what the player
chooses.

Blackjack is also known as pontoon or "21"
because 21 is the highest rated total card
value a player can hold. Blackjack is the name
given to the strongest hand consisting of an
ace and a 10 valued card.

The object of the game is to beat the dealer.
The dealer has no object other than to follow
the rules of the casino, which is to stand (hold)
on hands of 17 or more, and to draw another
card on hands of 16 or less.

A player looses if his or her total card value
is less than the dealer's total, or, he or she
has over 21 and so has bust. If a player wants
to improve his hand he can ask the dealer for
another card. This is called drawing or hitting.
If satisfied with the total card value he can
stand (hold).

218

Chapter Eight: Modeling Finite State Machines

synthesis tools allow an attribute to be used in this way, although its name,
ENUM_TYPE_ENCODING, may be different. Four identical enumerated data types are declared
in the package, each having 16 possible values representing the state of the state machine.
Each type has the attribute, ENUM_TYPE_ENCODING, attributed to it, and contains a binary
string representing the particular state encoding.

Verilog state encoding. The state encoding is defined in the Verilog model by selecting one of
four statements similar to the VHDL version. Each statement uses the include compiler
directive to reference a system file and has the effect of replacing the include statement with
the contents of the file it references. Each statement references a different file depending
upon the desired state encoding. Each file defines the bit width of the CurrenfState and NextState
signals, which changes depending on which state encoding is used. Each file also defines the
16 parameter values which represent the binary value of each state.

The simulated waveforms are shown in Figure 8. 13.

Figure 8. 10 Results of using different state encodings for one particular state machine

219

HDL Chip Design

Figure 8. 11 State diagram for Blackjack FSM controller

220

1. The synchronous signal "Reset" causes a state transition to the state "Rest"
regardless of the current state. These state transitions are not shown.

2. The state numbers shown are for sequential state encoding and
correspond to the numbers in the signal waveforms shown in Figure 8. 13.

Notes

Chapter Eight: Modeling Finite State Machines

Figure 8. 12 Modeled architecture of a Black Jack game machine

221

HDL Chip Design

VHDL package defining four enumerated state encoding data types

222

V H D L

package STATE ENCODE TYPES is
attribute ENUM_TYPE_ENCODING: string;

type SEQ_EncodeStates is
(Rest, WaitCard1, Cardldelt, Card1Ace, Card1Pic,
Card1_2to10, DrawNextCard, NextCardDelt,
NextCardAce, NextCardPic, NextCard_2to10,
TestGE16, TestGE22, AceAs1, ShowHold, ShowBust);

attribute ENUM_TYPE_ENCODING of SEQ_EncodeStates: type is
"0000 0001 0010 0011 0100 0101 0110 0111";&
"1000 1001 1010 1011 1100 1101 1110 1111";

type GRAY_EncodeStates is
(Rest, WaitCard1, Card1delt, Card1Ace, Card1Pic,
Card12to10, DrawNextCard, NextCardDelt,
NextCardAce, NextCardPic, NextCard_2to10,
TestGE16, TestGE22, AceAs1, ShowHold, ShowBust);

attribute ENUM_TYPE_ENCODING of GRAY EncodeStates: type is
"0000 0001 0011 0010 0110 0111 0101 0100";&
"1100 1101 1111 1110 1010 1011 1001 1000";

type JOHN_EncodeStates is
(Rest, WaitCardl, Cardldelt, Card1Ace, Card1Pic,
Cafd1_2to10, DrawNextCard, NextCardDelt,
NextCardAce, NextCardPic. NextCard_2to10,
TestGE16, TestGE22, AceAs1, ShowHold, ShowBust);

attribute ENUM_TYPE_ ENCODING of JOHN EncodeStates: type is
"00000000 00000001 00000011 00000111" &
"00001111 00011111 00111111 01111111" &
"11111111 11111110 11111100 11111000";&
"11110000 11100000 11000000 10000000";

type ONEHOT_EncodeStates is
(Rest, WaitCardl, Cardldelt Card1Ace, Card1Pic,
Card1_2to10, DrawNextCard, NextCardDelt,
NextCardAce, NextCardPic, NextCard_2to10,
TestGE16, TestGE22, AceAs1, ShowHold, ShowBust);

attribute ENUM_TYPE_ENCODING of ONEHOT_EncodeStates: type is
"0000000000000001 0000000000000010" &
"0000000000000100 0000000000001000" &
"0000000000010000 0000000000100000" &
"0000000001000000 0000000010000000" &
"0000000100000000 0000001000000000" &
"0000010000000000 0000100000000000" &
"0001000000000000 0010000000000000" &
"0100000000000000 1000000000000000";

end package STATE_ENCODE_TYPES;

Chapter Eight: Modeling Finite State Machines

four Verilog 'include files defining state parameter values and their width

sequential state encoding Johnson state encoding

223

Verilog

// File name = state_encoding_gray. v

// Specify state bit width
parameter StateWidth = 4;

// State Definitions
parameter Rest = 4'b 0000,

WaitCardl =4'b 0001.
Card1Delt =4'b 0011.
Card1Ace = 4'b 0010,
Card1Pic = 4'b 0110,
Card1_2tol0 = 4'b 0111,
DrawNextCard = 4'b 0101,
NextCardDelt = 4'b 0100,
NextCardAce =4'b 1100,
NextCardPic = 4'b 1101,
NextCard_2to10 = 4'b 1111,
TestGE16 =4'b 1110,
TestGE22 = 4'b 1010,
AceAs1 =4'b 1011,
ShowHold = 4'b 1001,
ShowBust =4'b 1000;

Verilog
// File name = state_encoding_onehot. v

// Specify state bit width
parameter StateWidth = 16;

// State Definitions
parameter Rest = 16'b 0000000000000001,

WaitCard1 = 16'b 0000000000000010,
Card1Delt = 16'b 0000000000000100,
Card1Ace = 16'b 0000000000001000,
Card1Pic = 16'b 0000000000010000,
Card1_2to10 = 16'b 0000000000100000,
DrawNextCard= 16'b 0000000001000000,
NextCardDelt = 16'b 0000000010000000,
NextCardAce = 16'b 0000000100000000,
NextCardPic = 16'b 0000001000000000,
NextCard_2to10= 16'b 0000010000000000,
TestGE16 = 16'b 0000100000000000,
TestGE22 = 16'b 0001000000000000,
AceAs1 = 16'b 0010000000000000,
ShowHold =16'b 0100000000000000,
ShowBust = 16'b 1000000000000000;

Verilog

//File name = state_encoding_seq. v

// Specify state bit width
parameter StateWidth = 4;

// State Definitions
parameter Rest = 4'b 0000,

WaitCardl =4'b 0001,
Card1Delt = 4'b 0010,
Card1Ace = 4'b 0011,
Card1Pic =4'b 0100,
Card1_2to10 = 4'b 0101,
DrawNextCard = 4'b 0110,
NextCardDelt = 4'b 0111,
NextCardAce =4'b 1000,
NextCardPic =4'b 1001,
NextCard_2to10 = 4'b 1010,
TestGE16 = 4'b 1011,
TestGE22 = 4'b 1100,
AceAs1 = 4'b 1101,
ShowHold = 4'b 1110,
ShowBust =4'b 1111,

Verilog

// File name = state_encoding_john. v

// specify state bit width
parameter StateWidth = 8;

// State Definitions
parameter Rest = 8'b 00000000,

WaitCardl = 8'b 00000001,
Card1Delt = 8'b 00000011,
Card1Ace = 8'b 00000111,
Card1Pic = 8'b 00001111,
Card1_2to10 = 8'b 00011111,
DrawNextCard =8'b 00111111,
NextCardDelt = 8'b 011 111 11,
NextCardAce =8'b 11111111,
NextCardPic =8'b 11111110,
NextCard_2to10=8'b 11111100,
TestGEl6 =8'b 11111000,
TestGE22 = 8'b 11110000,
AceAs1 = 8'b 11100000,
ShowHold = 8'b 11000000,
ShowBust = 8'b 10000000;

Gray state encoding one-hot state encoding

HDL Chip Design

FSM with selectable state encoding - Blackjack game machine

224

VHDL
library IEEE;
useclEEE. STD_Logic_1164. all, lEEE. Numeric_STD. all;
use work. STATE ENCODE TYPES. all;
entity FSM_STATE_ENCODING is

port (Clock, Reset: in std_logic;
GameOn, CardDelt: in std_logic;
DeltCardValue: in unsigned(3 downto 0);
TotalCardValue: out unsigned(4 downto 0);
Draw, Hold, Bust: out std_logic);

end entity FSM_STATE_ENCODING;

architecture RTL of FSM_TATE_ENCODING is
-- DeltCardValue
constant Ace: integer: = 1;
constant Two: integer: = 2;
constant Three: integer: = 3;
constant Four: integer: = 4;
constant Five: integer: = 5;
constant Six: integer: = 6;
constant Seven: integer: = 7;
constant Eight: integer: = 8;
constant Nine: integer: = 9;
constant Ten: integer: = 10;
constant Jack: integer: = 11;
constant Queen: integer: = 12;
constant King: integer: = 13;

- DeliCardType
type TypeDeltCardType is (CardTypeAce,

CardTypeNo2to10,
CardTypePic);

- State encoding defined by one of the following
signal CurrentState, NextState: SEQ_EncodeStates;
- signal CurrentState, NextState: GRAY_EncodeStates;
-- signal CurrentState, NextState: JOHN_EncodeStates;
- signal CurrentState, NextState: ONEHOT_EncodeStates;

signal AcesAs11, GE16, GE22: std_logic:
signal AcesEq11: integer range 0 to 4;
signal DeltCardType: TypeDeltCardType;
signal ResetAccums, IncAces, DecAces: std_logic;
signal AccTotalCardValue, AccTotalCardValueBy10:

std_logic;
begin

-- Input logic for card type

IN_LOGIC: process (DeltCardValue)
begin

case (DeltCardValue) is
when Ace =>

DeltCardType <= CardTypeAce;
when Jack | Queen | King =>

DeltCardType <= CardTypeAce;
when others =>

DeltCardType <= CardTypeNo2tol0;
end case;

end process IN_LOGIC;

-- FSM Next state logic

NEXT LOGIC: process (CurrentState, GameOn,
CardDelt, DeltCardType, GE16,
GE22, AcesAs11,) continued

Verilog
module FSM_STATE_ENCODING

(Clock, Reset, GameOn, CaidDelt, DeltCardVaiue,
TotalCardValue, Draw, Hold, Bust);
input Clock, Reset;
input GameOn, CardDelt;
input [3: 0] DeltCardValue:
output [4: 0] TotalCardValue;
output Draw, Hold, Bust;
reg [4: 0] TotalCardValue;
reg Draw. Hold, Bust;

// DeltCardValue
parameter Ace = 1,

Two = 2,
Three = 3,
Four = 4,
Five = 5,
Six = 6,
Seven = 7,
Eight = 8,
Nine = 9,
Ten = 10,
Jack =11,
Queen = 12,
King =13;

// DeltCardType
parameter CardTypeAce = 0,

CardTypeNo2to10 = 1,
CardTypePic = 2;

// State encoding defined by one of the following
Include "state encoding_seq. v"
//'include "state_encoding_gray. v"
//'include "state_encoding_john. v"
//'include "state_encoding_onehot. v"

reg [StateWidth - 1 : 0] CurrentState, NextState;
reg AcesAs11, GE16, GE22;
reg [2: 0] AcesEq11;
reg [1: 0] DeltCardType;
reg ResetAccums, IncAces, DecAces;
reg AccTotalCardValue, AccTotalCardValueBylO;

//
// Input logic for card type
//
always @(DeltCardValue)

begin: INLOGIC
case (DeltCardValue)

Ace: DeltCardType = CardTypeAce;
Jack, Queen, King: DeltCardType = CardTypePic:
default: DeltCardType = CardTypeNo2to10;

endcase
end

//
// FSM Next state logic
//
always @(CurrentState or GameOn or

CardDelt or DeltCardType or GE16 or
GE22 or AcesAs11) continued

FSM with selectable state encoding - Blackjack Game Machine

Chapter Eight: Modeling Finite State Machines

225

VHDL

begin
if (Reset ='1') then

NextState <= Rest;
else

case (CurrentState) is
when Rest =>

if (GameOn = '1') then
NextState <= WaitCardl;

else
NextState <= Rest;

end if;
when WaitCardl =>

if (CardDelt ='1') then
NextState <= Card1Delt;

else
NextState <= WaitCardl;

end if;
when Card1Delt =>

if (DeltCardType = CardTypeAce) then
NextState <= Card1Ace;

elsif (DeltCardType = CardTypePic) then
NextState <= Card1Pic;

else
NextState <= Card1_2to10;

end if;
when Card1Ace =>

NextState <= DrawNextCard;
when Card1Pic =>

NextState <= DrawNextCard;
when Card1_2to10 =>

NextState <= DrawNextCard;
when DrawNextCard =>

if (CardDelt ='1') then
NextState <= NextCardDelt;

else
NextState <= DrawNextCard;

end if;
when NextCardDelt =>

if (DeltCardType = CardTypeAce) then
NextState <= NextCardAce;

elsif (DeltCardType = CardTypePic) then
NextState <= NextCardPic;

else
NextState <= NextCard_2to10;

end if;
when NextCardAce =>

NextState <= TestGE16;
when NextCardPic =>

NextState <= TestGE16:
when NextCard_2to10 =>

NextState <= TestGE16;
when TestGE16 =>

if(GE16 ='1') then
NextState <= TestGE22;

else
NextState <= DrawNextCard;

end if;
when TestGE22 =>

if (GE22 ='1') then
if (AcesAs11 = 0') then

NextState <= ShowBust;
else

NextState <= AceAs1;
end If;

else continued

Verilog

begin: NEXT LOGIC
if (Reset == 1)

NextState = Rest;
else

case (CurrentState)
Rest:

if (GameOn == 1)
NextState = WaitCardl;

else
NextState = Rest;

WaitCardl:
if (CardDelt == 1)

NextState = Card1Delt;
else

NextState = WaitCard1;

Card1Delt:
if (DeltCardType == CardTypeAce)

NextState = Card1Ace;
else if (DeltCardType == CardTypePic)

NextState = Card1Pic;
else

NextState = Card1_2to10;

Card1Ace:
NextState = DrawNextCard;

Card1Pic:
NextState = DrawNextCard;

Card1_2to10;
NextState = DrawNextCard;

DrawNextCard:
if (CardDelt == 1)

NextState = NextCardDelt;
else

NextState = DrawNextCard;

NextCardDelt:
if (DeltCardType == CardTypeAce)

NextState = NextCardAce;
else if (DeltCardType == CardTypePic)

NextState = NextCardPic;
else

NextState = NextCard_2to1;

NextCardAce:
NextState =TestGE16;

NextCardPic:
NextState = TestGE16;

NextCard_2to10:
NextState = TestGE16;

TestGE16:
if (GE16== 1)

NextState = TestGE22;
else

NextState = DrawNextCard;
TestGE22:

if(GE22== 1)
If (AcesAs11 == 0)

NextState = ShowBust;
else

NextState = AceAs1;
else

NextState = ShowHold;
continued

226

HDL Chip Design

FSM with selectable state encoding - Blackjack Game Machine

Chapter Eight: Modeling Finite State Machines

FSM with selectable state encoding - Blackjack Game Machine

227

HDL Chip Design

FSM with selectable state encoding - Blackjack Game Machine

V H D L

- Greater than 15 status

if (TotalCardValue >= 16) then
GE16<=T;

else
GE16<='0';

end if;

end process DATA_PATH;

end architecture RTL;

Verilog

//
// Greater than 15 status
//

if (TotalCardValue >= 16)
GE16 = 1;

else
GE16 = 0;

end

endmodule

Figure 8. 13 Signal waveforms for the state encoding FSM - Blackjack Machine

228

Chapter Eight: Modeling Finite State Machines

Example 8. 7 FSMs with a Mealy or Moore Output

The two state machines in this example differ in that, one has a Mealy type output, and the other
a Moore. The state diagrams, Figure 8. 14, and the HDL code, shows how the output (NewColor)
is a function of the inputs (Red, Green and Blue) in the Mealy example.

229

Figure 8. 14 State Diagram for FSMs with a Mealy and Moore Output

FSM modeled with "NewColor" as a Mealy type output

HDL Chip Design

FSM modeled with "NewColor" as a Mealy type output

230

Chapter Eight: Modeling Finite State Machines

FSM modeled with "NewColor" as a Moore type output

231

HDL Chip Design

Example 8.8 FSM with a Mealy and a Moore Output

These models are of the example state diagram described at the beginning of this chapter, see
Figure 8.1. The model has a Mealy and a Moore type output (Y_Me and Y_Mo). The Moore type
output is clearly seen to be dependent upon the state value only, while the Mealy type output is
dependent upon the state value and inputs A and Hold. Because the Mealy output is dependent
upon inputs, it is modeled in a section of code that infers combinational logic block, as must all
Mealy type outputs.

FSM with a Mealy and a Moore Output

232

Chapter Eight: Modeling Finite State Machines

FSM with a Mealy and a Moore Output

233

HDL Chip Design

Example 8. 9 FSM with sequential next state logic

The state machine in this example models an extra flip-flop in the next state logic. The state
diagram, Figure 8. 15, indicates the model's functional operation. The modeled architecture is
shown after the HDL code.

As the state machine passes around the loop of five states, the three inputs A, B and C, cause the
state machine to branch to states ThreeA, ThreeB, ThreeC, respectively, on a priority encoded
basis. The synchronous reset is guaranteed to be high for at least five clock cycles, thus ensuring
the state machine in state One. After a reset, the output Y1 is high for one clock cycle every five
clock cycles while A remains high, likewise for input C and corresponding output Y3. However,
when B goes high, its corresponding output Y2 goes high only once. The reason for this is, when
the state machine is in state ThreeB, the signal BeenlnState3B is set to a logic 1 from an additional
flip-flop in the next state logic, and which is used to inhibit the state machine from entering state
ThreeB again, until after a reset occurs.

Figure 8. 75 State diagram implying sequential next state logic

234

Chapter Eight: Modeling Finite State Machines

FSM with sequential next state logic

235

HDL Chip Design

FSM with sequential next state logic

Example 8. 10 FSM with sequential output logic

A state machine with an embedded counter is modeled to the state diagram; Figure 8. 16. The
counter forms part of the state machine's output logic as shown by the inferred structure.

After a reset, the state machine starts in state One, and the counter in the output logic is set to
zero. After the reset, the state machine cycles around a loop of four states. There are two
branches for the second stage of the loop, and are represented by the two states, TwoCountand
TwoNoCount. When the input EnableCount is high, state TwoCount is used in the loop, otherwise,
TwoNoCount is used. Therefore, while EnableCount is high the counter is incremented every four
clock cycles. The counter's output is output from the model, together with an indication of
whether it is greater than, or equal to 25.

Notice this structure causes the counters to be incremented one clock cycle after the state
machine has been in State TwoCount. In order to cause the counter to increment at the same
time the state machine enters state TwoCount, the next state signal should be passed into the
output logic, instead of the current state signal as modeled in this example.

236

Chapter Eight: Modeling Finite State Machines

Figure 8. 16 State diagram implying sequential output logic

FSM with sequential output logic

237

HDL Chip Design

FSM with sequential output logic

Example 8. 11 FSM with sequential next and output state logic - Blackjack

The models in this example are functionally the same, imply the same architecture and synthesize
to the same circuit as those in Example 8. 6. The state diagram is therefore the same, Figure
8. 11, and the implied architecture is also the same, Figure 8. 12. Example 8. 6 was specifically
designed with separate input, next state, current state, output logic and data path logic to show
the effect of different state encoding. This example combines all these blocks into one process
(VHDL) and always block (Verilog) reducing the code considerably. There is no right or wrong
coding method for any model except that it should be easy to comprehend, that is, do not trade
off comprehension for the shortest and most efficient use of the code. Example 8. 6 and this one
demonstrates these two extremes.

Sequential state encoding is used and, unlike Example 8. 6, is defined within the model. There is
no reference to any next state signals, but these exist by implication; signals CurrentState and
NextState from Example 8. 6 have been replaced with the signal State. The reduced number of
signals can be seen by the reduced number of signals in the simulated waveforms, Figure 8. 17

238

Chapter Eight: Modeling Finite State Machines

Blackjack Game Machine with condensed code

239

V H D L

library IEEE;
use IEEE. STD_Logic_1164. all, IEEE. Numeric_STD. all;

entity FSM_SEQ_NEXT_OUT is
port (Clock, Reset: in std_logic;

GameOn, CardDelt: in std_logic;
DeltCardValue: in unsigned(3 downto 0);
TotalCardValue_out: out unsigned(4 downto 0);
Draw. Hold. Bust: out Std_logic);

end entity FSM_SEQ_NEXT_OUT;

architecture RTL of FSM_SEQ_NEXT_OUT is
constant Ace: integer: = 1;
constant Two: integer: = 2;
constant Three: integer: = 3;
constant Four: integer: = 4;
constant Five: integer: = 5;
constant Six: integer: = 6;
constant Seven: integer: = 7;
constant Eight: integer: = 8;
constant Nine: integer: = 9;
constant Ten: integer: = 10;
constant Jack: integer: = 11;
constant Queen: Integer: = 12:
constant King: integer: = 13;

-- Sequential state encoding
type SeqStateType Is

(Rest, WaitCardl, Card1Delt, Card1Ace, CardlPic,
Card1_2to10, DrawNextCard, NextCardDelt,
NextCardAce, NextCardPic, NextCard_2to10,
TestGE15. TestGE22. AceAs1, ShowHold, ShowBust);

attribute ENUM_TYPE_ENCODING: string;
attribute ENUM_TYPE_ENCODING of SeqStateType: type is

"0000 0001 00100011 01000101 01100111 "&
"1000 1001 1010 1011 1100 1101 1110 1111";

signal State: SeqStateType;
signal AcesEq11: integer range 0 to 4;
signal TotalCardValue: integer range 0 to 31;

begin

-- FSM with additional counters
•- integrated within the model.

CURR_SEQ_NEXT_OUT: process (Clock)
begin

if rising edge(Clock) then
If (Reset ='1') then

State <= Rest;
else

case (State) is
when Rest =>

continued

Verilog

module FSM_SEQ_NEXT_OUT
(Clock. Reset, GameOn, CardDelt. DeltCardValue,
TotalCardValue, Draw, Hold, Bust);
input Clock, Reset, GameOn, CardDelt;
input [3: 0] DeltCardValue;
output [4: 0] TotalCardValue;
output Draw, Hold, Bust;
reg [4: 0] TotalCardValue;
reg Draw, Hold, Bust;

// DeltCardValue
parameter Ace = 1,

Two = 2,
Three = 3.
Four = 4,
Five = 5,
Six = 6,
Seven = 7.
Eight = 8,
Nine = 9,
Ten = 10,
Jack =11,
Queen = 12,
King = 13;

// Sequential state encoding
parameter Rest = 0,

WaitCardl = 1,
Card1Delt =2,
Card1Ace =3,
Card1Pic =4,
Card1_2to10 =5,
DrawNextCard = 6,
NextCardDelt = 7,
NextCardAce = 8,
NextCardPic = 9,
NextCard_2tol0 = 10,
TestGE15 =11,
TestGE22 =12,
AceAs1 = 13,
ShowHold - 14,
ShowBust = 15;

reg [3: 0] State;
reg [2: 0] AcesEq11;

//
// FSM with additional counters
// integrated within the model.
//
always @(posedge Clock)

begin: CURR_SEQ_NEXT_OUT
if (Reset)

State = Rest;
else

case (State)

Rest:
begin

continued

HDL Chip Design

Datapath integral to the FSM
Blackjack Game Machine with condensed code (see Figure 8. 12)

240

V H D L

TotalCardValue <= 0;
AcesEq11 <=0;
if (GameOn = '1') then

State <= WaitCard1;
else

State <= Rest;
end if;

when WaitCardl =>
if (CardDelt ='1') then

State <= Card1Delt;
else

State <= WaitCard1;
end if;

when Card1Delt =>
if (DeltCardValue = Ace) then

State <= Card1Ace;
elsif (DeltCardValue = Jack or

DeltCardValue = Queen or
DeltCardValue = King) then

State <= Card1Pic;
else

State <=Card12to10;
end if;

when Card1Ace =>
AcesEq11 <= AcesEq11+1;
TotalCardValue <= TotalCardValue +11;
State <= DrawNextCard;

when Card1Pic =>
TotalCardValue <= TotalCardValue + 10;
State <= DrawNextCard;

when Card1_2to10 =>
TotalCardValue <= TotalCardValue +

toJnteger(DeltCardValue);
State <= DrawNextCard;

when DrawNextCard =>
if (CardDelt = '1') then

State <= NextCardDelt;
else

State <= DrawNextCard;
end if;

when NextCardDelt =>
if (DeltCardValue = Ace) then

State <= NextCardAce;
elsif (DeltCardValue = Jack or

DeltCardValue = Queen or
DeltCardValue = King) then

State <= NextCardPic;
else

State <= NextCard_2to10;
end If;

when NextCardAce =>
AcesEq11 <= AcesEq11 + 1;
TotalCardValue <= TotalCardValue +11;
State <=TestGE15;

continued

Verilog

TotalCardValue = 0;
AcesEq11 = 0;
if (GameOn)

State = WaitCardl;
else

State = Rest;
end

WaitCardl:
if (CardDelt)

State = Card1Delt:
else

State = WaitCardl;

Card1Delt:
if (DeltCardValue == Ace)

State = Card1Ace;
else if (DeltCardValue == Jack | |

DeltCardValue == Queen | |
DeltCardValue == King)

State = Card1Pic;
else

State = Card1_2to10;

Card1Ace:
begin

AcesEq11 = AcesEq11 + 1;
TotalCardValue = TotalCardValue + 11;
State = DrawNextCard;

end
CardlPic:

begin
TotalCardValue = TotalCardValue + 10;
State = DrawNextCard;

end
Card1_2to10:

begin
TotalCardValue = TotalCardValue +

DeltCardValue;
State = DrawNextCard;

end
DrawNextCard:

If (CardDelt)
State = NextCardDelt;

else
State = DrawNextCard;

NextCardDelt:
if (DeltCardValue == Ace)

State = NextCardAce;
else if (DeltCardValue == Jack |

DeltCardValue == Queen | |
DeltCardValue == King)

State = NextCardPic;
else

State = NextCard_2to10;

NextCardAce:
begin

AcesEq11 = AcesEq11 + 1;
TotalCardValue = TotalCardValue + 11;
State = TestGE15;

end

continued

Chapter Eight: Modeling Finite State Machines

241

Datapath integral to the FSM
Blackjack Game Machine with condensed code (see Figure 8. 12)

HDL Chip Design

Figure 8. 17 Signal waveforms for Blackjack Machine with condensed code

Example 8. 12 Unidirectional interactive FSMs

Three differently modeled state machine control paths are used to control the same data path
see Figure 8. 18. Control Path 1 is modeled using a master state machine, which controls three
slave state machines. Control Path 2 uses three state machines, with a series chain of control
between them. Control Path 3 is modeled using a single state machine. All three control paths
are functionally equivalent.

Data path

The data path structure, Figure 8. 19, and the HDL models are included in this example. The
data path does not perform any particular function, but is long enough to demonstrate the
different FSM configurations used for its control. The data path accepts sequences of either
three or four, 4-bit values on the input, and processes them through the datapath, to provide
sequences of either two or three, 9-bit values on the output. The data path is controlled by the
control path to perform the following equations. The input data is A, B, C, and D, the output data
is Y1, Y2 and Y3.

Sequence of four inputs (ThreeOnly = 0)
Y1 =A. B + A. C
Y2 = A. D + B. C
Y3 = B. D + C. D

Sequence of three inputs (ThreeOnly = 1)
Y1=A. B + A. C
Y4 = B. C

The sequential flow of data passing through the data path is indicated by the signal waveforms;
Figure 8. 23. Because six multiplications are needed when four 4-bit input data is used, and there
is only one multiplier, the fastest throughput of consecutive data is every six clock cycles. When
only three 4-bit input data is used, only three multiplications are needed, and so consecutive
sequences of input data are possible.

242

Chapter Eight: Modeling Finite State Machines

Control paths

The structural configuration of the
three control paths are illustrated
in Figure 8. 18. Each control path
provides the same control signals
to the data path.

The description of the three
control paths follow; their state
diagrams are illustrated in Figures
8. 20, 8. 21 and 8. 22.

Figure 8. 18 Three FSM control
path configurations

Control Path 1. The master state machine FSM_MASTER, outputs a single control signal to each of
the three slave state machines StartFSMl, StartFSM2 and StartFSM3. These signals trigger the
appropriate slave state machine FSM1, FSM2 or FSM3, into cycling through its particular sequence
of events. State machine, FSM1, is dedicated to providing four enable signals used to clock the
serial input data into the appropriate holding register. State machine, FSM2, provides select
signals used to select which of the two held inputs to multiply together, and also provides the
enable signals used to clock the multiplied result into the appropriate state register. State machine,
FSM3, simply provides the select lines used to select which result to output.

Control Path 2. The three state machines FSM1, FSM2 and FSM3 generate the same data path
control signals as those in Control Path 1. The difference is that FSM1 also outputs the control
signal StartFSM2 to FSM2, and FSM2 outputs the control signal StartFSM3 to FSM3.

Control Path 3. Modeled using a single state machine. The two main loops in the state diagram,
Figure 8. 22, indicate the condition when either three or four input words are used.

243

No. bits

1

2
1

2

Signal names

En_A En_B En_C En_D

Mux1_Sel Mux2_Sel
En_AB En_AC En_AD En_BC En_BD En_CD

Mux3_Sel

Comment

Enables serial input data to be clocked into the
appropriate 4-bit holding register.
Selects which of A B C or D to multiply together.
Enables the multiplied result to be clocked into the
appropriate 8-bit register.
Selects in turn, which of the four 9-bit results to
output.

HDL Chip Design

Figure 8. 19 Data Path controlled from Control Path 7, 2 or 3

Figure 8. 20 State diagrams for Control Path 1

244

Chapter Eight: Modeling Finite State Machines

245

Figure 8.22 Single state diagram for Control Path 3

Figure 8.21 Three state diagrams for Control Path 2

HDL Chip Design

HDL Models - Data Path

The data path models have been split into three stages; STAGE1, STAGE2, and STAGE3. Each stage
is controlled by the corresponding state machine, FSM1, FSM2 and FSM3, in control paths 1 and 2.
The VHDL concurrent signal assignments and Verilog continuous assignments for signals Suml,
Sum2, Sum3 and NoSum, are not controlled by the controller, and are positioned between stages
two and three. These assignments are not absolutely necessary as they could have been combined
into STAGE3. For example, the assignment

Sum1 <= AB + AC;
could be removed, and Suml replaced with AB + AC in the case statement of STAGE3. Explicit
assignments to Sum1, Sum2, Sum3 and NoSum have been used so that they exist as data objects
in the models, which can be monitored during simulation. It also makes comprehending the
functional operation slightly easier.

Datapath

246

VHDL

library IEEE;
use lEEE. STD_Logic_1164. all, IEEE. Numeric_STD. all;

entity HIER_FSMS_DATAPATH is
port (Clock: in std_logic;

En_A, En_B, En_C, En_D: in std_logic;
Mux1_Sel, Mux2_Sel: in integer range 0 to 2;
En AB. En_AC. En_AD,
En_BC, En_BD, En_CD: in std_logic;
Mux3_Sel: in integer range 0 to 3;
Serialln: in integer range 0 to 15;
SerialOut: out integer range 0 to 511);

end entity HIER_FSMS_DATAPATH;

architecture RTL of HIER_FSMS_DATAPATH is
signal A. B, C, D: integer range 0 to 15;
signal Mult1, Mult2; integer range 0 to 15;
signal Mult: integer range 0 to 255;
signal AB, AC, AD, BC, BD, CD: integer range 0 to 255;
signal Suml, Sum2, Sum3, NoSum: integer range 0 to 511;

begin

-- Datapath stage 1 controlled by FSM1

STAGE1: process (Clock)
begin

if rising edge(Clock) then
if (EnA = '1') then

A <= Serialln;
end if;
If (EnB = '1') then

B <= Serialln;
end if;
if (En_C ='1') then

C <= Serialln;
end if;
lf(En_D ='1') then

D <= Serialln;
end if;

end If;
end process STAGE1; continued

Verilog

module HIERFSMS_DATAPATH
(Clock, En A, En B, En C, En D.
Mux1_Sel, Mux2_Sel,
En_AB, En_AC, En_AD, En_BC, En_BD, En_CD,
Mux3 Sel, Serialln, SerialOut);

input Clock;
input En_A, En_B, En_C, En_D;
input [1: 0] Mux1_Sel, Mux2_Sel;
input En_AB, En_AC, En_AD, En_BC, En_BD, En_CD;
input [1: 0] Mux3_Sel;
input [3: 0] Serialln;
output [8: 0] SerialOut;
reg [8: 0] SerialOut;

reg [3: 0] A, B, C, D;
reg [3: 0] Mult1, Mult2;
reg [7: 0] Mult;
reg [7: 0] AB, AC, AD, BC, BD, CD;
wire [8: 0] Suml, Sum2, Sum3, NoSum;

//

// Datapath stage 1 controlled by FSM1
//
always @(posedge Clock)

begin: STAGE1
if (EnA)

A = Serialln;
if (En B)

B = Serialln;
If (EnC)

C = Serialln;
i f (E n _ D) ;

D = Serialln;
end

continued

Chapter Eight: Modeling Finite State Machines

Datapath

247

V H D L

- Datapath stage 2 controlled by FSM2

STAGE2: process (Clock, Mux1_Sel, Mux2_Sel)
begin

case (Mux1_Sel) is
when 0 => Mult1 <= A;
when 1 => Mult1 <= B;
when 2 => Mult1 <= C;
when others => Mult1 <= A;

end case;
case (Mux2_Sel) is

when 0 => Mult2 <= B;
when 1 => Mult2 <= C;
when 2 => Mult2 <=D;
when others => Mult2 <= B;

end case;
Mult <= Mult1 * Mult2;
if rising_edge(Clock) then

if (En AB ='1') then
AB <= Mult;

end if;
if (En AC ='1') then

AC <= Mult;
end if;
if (En_AD ='1') then

AD <= Mult;
end if:
If (En_BC ='1') then

BC <= Mult;
end if;
if (En_BD ='1') then

BD <= Mult;
end if;
if (En_CD ='1') then

CD <= Mult;
end if;

end if;
end process STAGE2;

- Generate sum values (Not FSM controlled)

Suml <= AB + AC;
Sum2 <= AD + BC;
Sum3 <= BD + CD;
NoSum <= BC;

- Datapath stage 3 controlled by FSM3

SIAGE3: process (Sum1, Sum2, Sum3, NoSum, Mux3-Sel)
begin

case (Mux3_Sel) is
when 0 => SerialOut <= Sum1;
when 1 => SerialOut <= Sum2;
when 2 => SerialOut <= Sum3;
when 3 => SerialOut <= NoSum;
when others => SerialOut <= Suml;

end case;
end process STAGE3;

end architecture RTL;

Verilog

II
// Datapath stage 2 controlled by FSM2

always @(A or B or C or D or Mux1_Sel or Mux2_Sel)
begin: STAGE2A

case (Mux1_Sel)
2'b 0 0 : Mult1 = A;
2'b 01: Mult1 = B;
2'b 10: Mult1 =C;
default : Mult1 = A;

endcase
case (Mux2 Sel)

2'b 0 0 : Mult2 = B;
2'b 01: Mult2 = C;
2'b 10: Mult2 = D;
default : Mult2 = B;

endcase
Mult = Mult1 * Mult2;

end

always @(posedge Clock)
begin: STAGE2 B

if (En_AB)
AB = Mult;

if (En_AC)
AC = Mult;

if (En_AD)
AD = Mult;

if (En_BC)
BC = Mult;

if (En_BD)
BD = Mult;

if (En_CD)
CD = Mult;

end

//
// Generate sum values (Not FSM controlled)
//
assign Sum1 = AB + AC;
assign Sum2 = AD + BC;
assign Sum3 = BD + CD;
assign NoSum = BC:

//
// Datapath stage 3 controlled by FSM3
//
always @(Sum1 or Sum2 or Sum3 or NoSum or Mux3_Sel)

begin: STAGE3
case (Mux3_Sel)

2'b 0 0 : SerialOut = Sum1;
2'b 0 1 : SerialOut = Sum2;
2'b 1 0 : SerialOut = Sum3;
2'b 1 1 : SerialOut = NoSum;
default : SerialOut = Sum1;

endcase
end

endmodule

HDL Chip Design

HDL Models - Control Paths

The following description references numbers in the code of Control Path 1, but applies equally
to Control Paths 2 and 3.

(1)The VHDL state encoding is defined as starting from STO and not ST1. This is because the
synthesis tool automatically assigns sequential states starting from 0, and so when simulated,
ST1 has a value of 1 and not 0. However, if for example the state type for FSM2 was

type StateTypeFSM2 is (One, Two, Three, Four, Five, Six);

the state encoding would still be

000, 001, 010, 011, l00, 101, 100.

This is fine, but when simulated, the signal values of CurrStateFSM2 and NextStateFSM2 are
at logic 0 when in state One, and 1 when in state Two etc. This introduces unnecessary
confusion.

(2) Defining a default logic 0 for the four outputs before the case statement avoids having to
explicitly define their value in every branch of the case statement including the others
(VHDL) and default (Verilog) branches. Either way this is necessary to avoid inferring latches
in this combinational part of the state machine. The next state signal, NextStateMasterFSM,
does not need a default value assigned to it before the case statement, as it is always
assigned a new value in every branch of the case statement.

(3) As default output values are defined before the case statement, they do not need to be
repeated in the others and default clauses. However, as a default next state value is not
defined before the case statement, it is needed in the others/default clauses to avoid inferring
unwanted latches.

228

Chapter Eight: Modeling Finite State Machines

Control Path 7 - Master FSM controlling three other FSMs

249

HDL Chip Design

Control Path 1 - Master FSM controlling three other FSMs

250

Chapter Eight: Modeling Finite State Machines

Control Path 1 - Master FSM controlling three other FSMs

251

HDL Chip Design

Control Path 7 - Master FSM controlling three other FSMs

252

Control Path 1 - Master FSM controlling three other FSMs

Chapter Eight: Modeling Finite State Machines

253

HDL Chip Design

Control Path 2 - Three serial interactive FSMs

254

Chapter Eight: Modeling Finite State Machines

Control Path 2 - Three serial interactive FSMs

255

HDL Chip Design

Control Path 2 - Three serial interactive FSMs

256

Chapter Eight: Modeling Finite State Machines

Control Path 2 - Three serial interactive FSMs

257

HDL Chip Design

Control Path 3 - Single FSM

258

Chapter Eight: Modeling Finite State Machines

Control Path 3 - Single FSM

259

HDL Chip Design

Control Path3 - Single FSM

260

Chapter Eight: Modeling Finite State Machines

Figure 8. 23 Waveforms for three separate control paths controlling one data path

261

HDL Chip Design

Example 8. 13 Two interactive FSMs controlling two rotors

Two bidirectionally interactive state machines are
used to control two mechanical interlocking rotors,
which rotate in 90 degree increments in a clockwise
or counter clockwise rotation, see Figure 8. 24.
Each rotor may reside in any one of four physical
positions angled at 0, 90, 180 or 270 degrees. The
mechanical interlocking arrangement between the
two rotors prohibits them from being positioned at
the same angle. Each rotor is controlled by its own
state machine. State machine FSM1 controls the
position or rotor Rl, while state machine FSM2
controls the position of the rotor R2. The two state
diagrams for the two state machine controllers are
shown in Figure 8. 25a). Each state machine has
four states (Ang0, Ang90, Ang180 and Ang270)
corresponding to the four positions of each rotor.
The state transition equations for the four state
transitions indicated in Figure 8. 25a) are shown in
Figure 8. 25b).

Signals CW_R1 and CCW_R1 control the clockwise
and counter clockwise movements of rotor Rl, while
signals CW_R2 and CCW_R2 control the clockwise
and counter clockwise movements of rotor R2. A

Figure 8. 24 Two mechanical interlocking
rotors

rotor cannot be requested to move in both directions at the same time, that is, both CWR1 and
CCW_R1 are at logic 1. Also, the movement requests for each rotor are independent of each
other, that is, CWR1 and CCW_R1 are independent of CW_R2 and CCW_R2.

State machine interaction comes from having to ensure the two rotors are never requested to
move to the same position. At any one time, one of the rotors is the primary drive while the other
is the secondary drive or slave. The primary drive always follows its clockwise and counter
clockwise control signals, while secondary drive only follows its clockwise and counter clockwise
control signals, provided the primary drive rotor is not in the way. The signal DriveRl_R2b indicates
which rotor is the drive at any particular time. As a consequence of the interlocking mechanism,
and the requirement for the state machines not to try and drive the two rotors into the same
position, the two state machines, FSM1 and FSM2, interact in two ways indicated by the following
two scenarios.

1. If rotor Rl is the drive and CW_R1 is at logic 1, then the state machine FSM1 will cycle round
its four states in a clockwise rotation causing rotor Rl to rotate clockwise. Now if rotor R2
is not being driven, that is, CW_R2 and CCW_R2 are at logic 0, or it is wanting to move
counter clockwise, that is, CCW_R2 is at logic 1, then when rotor Rl sees that R2 is in the
way, Rl will override R2's control signals, and R2 will be pushed round in a clockwise
direction one position ahead of Rl.

2. If rotor Rl is the drive and both CW_R1 and CCW_R1 are at logic 0, then FSM1 stays in the
same state, and Rl is stationary. In this case, movement requests for R2 by signals CW_R2
and CCW_R2 will only be granted by the state machine FSM2, provided it is in the bounds
of the three positions not occupied by FSM1 (Rl). If R2 does want to move to the position
occupied by Rl, it will hold its current position.

262

Chapter Eight: Modeling Finite State Machines

H D L m o d e l s

The two state machines, FSM1 and FSM2 residing in their own process (VHDL)/always (Verilog)
statement. The interaction between them is communicated via the state machine's current state
signals (NewPosRl and NewPosR2), and is bidirectional by virtual of both state machine's next
state signals being a function of both state machine's current state. Placing the two state machines
in their own process/always statement, is the most natural partitioning for this design, however,
if there is other related or unrelated code included in the model, the two state machines may be
better placed in the same process/always statement. In this case, the communication between
the two VHDL state machines could be via variables instead of signals, and so would simulate
faster.

Both the VHDL and Verilog versions of this design use a case statement to model the next state
logic for the state machine when it is the drive. The interactive next state logic modeled for the
condition when the other state machine is the drive, is coded differently between the VHDL and
Verilog versions. The reason for this is, the Verilog example is able to make use of the casex
construct which allows "don't care" input choice values. The VHDL language does not allow this,
so it is better to use the in built priority encoding provided by the if statement.

Figure 8. 25a) Two interactive state machine controllers

263

FSM1 Controls rotor R1
FSM2 Controls rotor R2

R1_R2b = 1 Means rotor R1 is the drive. Rotor R2 may be in, or moved to, any position not
occupied by R1. If R2 is in the way it is moved round by R1.

R1_R2b = 0 Means rotor R2 is the drive. Rotor R1 may be in, or moved to, any position not
occupied by R2. If R1 is in the way it is moved round by R2.

HDL Chip Design

(A) (DriveR1_R2b. CW_R1) or Ft 1 is the drive.

(DriveR1_R2b. CW_R2. PosR2=Ang270) or R2 is the drive and pushes R1 clockwise. >

((DriveR1_R2b. CW_R1)(CCW_R2. PosR2=Ang90) R2 is the drive but is not impeding R1 from in-
dependently moving clockwise.

(CW_R1. CW_R2. CCW_R2. PosR2=Ang90)

(CCW_R1. CW_R2. CCW_R2. PosR2=Ang270))

(B) (DriveR1_R2b. CCW_R1) or R1 is the drive.

(DriveR1_R2b. CCW_R2. PosR2=Ang180) or R2 is the drive and pushes R1 counter clockwise.

((DriveR1_R2b. CCW_R1)(CW_R2. PosR2=Ang0) R2 is the drive but is not impeding R1 from in-
dependently moving counter clockwise.

(CW_R1. CW_R2. CCW_R2. PosR2=Ang180)

(CCW_R1. CW_R2. CCW_R2. PosR2=Ang0))

(C) (DriveR1_R2b. CW_R2) or R2 is the drive.

(DriveR1_R2b. CW_R1. PosR1=Ang180) or R1 is the drive and pushes R2 clockwise.

((DriveR1_R2b. CW_R2)(CCW_R1. PosR1=Ang0) R1 is the drive but is not impeding R2 from in-
dependently moving clockwise.

(CW_R2. CW_R1. CCW_R1. PosR1 =Ang0)

(CCW_R2. CW_R1. CCW_R1. PosR1=Ang180))

(D) (DriveR1_R2b. CCW_R2) or R2 is the drive.

(DriveR1_R2b. CCW_R1. PosR1=Ang90) or R1 Is the drive and pushes R2 counter clockwise.

((DriveR1_R2b. CCW_R2)(CW_R1. PosR1 =Ang270) R1 is the drive but is not impeding R2 from in-

dependently moving counter clockwise

(CW_R2. CW_R1. CCW_R1. PosR1 =Ang90)

(CCW_R2. CW_R1. CCW_R1. PosR1 =Ang270))

Figure 8. 25b) State transistion equations for the state diagrams, Figure 8. 25a)

264

Chapter Eight: Modeling Finite State Machines

Two bidirectionally interactive state machines

265

HDL Chip Design

Two bidirectionally interactive state machines

266

Chapter Eight: Modeling Finite State Machines

Two bidirectionally interactive state machines

267

HDL Chip Design

Two bidirectionally Interactive state machines

268

Chapter Eight: Modeling Finite State Machines

Two bidirectionally interactive state machines

269

R1 - Rotor 1
R2 - Rotor 2

Nomenclature of position number:
0 - 0' angle
1 - 90' angle
2-180' angle
3 - 270' angle

Time periods:
A - R1 driven clockwise. Pushes R2 round if in the way.
B - R1 driven counter clockwise. Pushes R2 round if in the way.
C & E- R1 stationary at 0° angle. R2 clockwise until stopped by R1 being in the way at 270° angle.
D - R1 stationary at 0° angle. R2 counter clockwise until stopped by R1 being in the way at 90' angle.

Simulated waveforms

HDL Chip Design

270

Circuit Functions

9

modeled
Combinationally

or
Synchronously

HDL Chip Design

Chapter 9 Contents

Shifters 273
Combinational Shifters 273

Example 9. 1 Combinational logic shifter 274
Example 9. 2 Combinational logic shifter with shift in and out signals 276
Example 9. 3 Combinational barrel shifter 277

Synchronous Shifters 278
Example 9. 4 Shift registers 278

Adders and Subtractors 279
Combinational adders and subtractors 279
Sequential adders and subtractors 280

Example 9. 5 Comment directives for Carry-Look-Ahead and Ripple-Carry adders 280
Example 9. 6 Combined adder and subtractor with detailed structure 281
Example 9. 7 Serial adder/subtractor 284

Multipliers and Dividers 286
Combinational versus synchronous 286
Multiplier and Divider Algorithms 287

Example 9. 8 Signed combinational multiplier using shift and add algorithm 290
Example 9. 9 Generic sequential shift and add multiplier 293
Example 9. 10 Generic NxM sequential multiplier using Booth's Algorithm 297
Example 9. 11 10-bit divide by 5-bit combinational logic divider 301
Example 9. 12 Generic sequential divider 306

272

Chapter Nine: Circuit Functions modeled Combinationally or Sequentially

Shifters

Shift operations may be implemented using: 1) purely combinational logic for a combinational
shifter or 2) sequential logic, possibly with combinational logic as well, for a synchronous shifter.
Combinational logic shifters operate faster than their synchronous counterparts and can perform
any shift operation in a single operation. A sequential shift requires two clock cycles; one to load
data into a register and another to shift the data within the register. More clock cycles are needed
if a shift of more than one bit position is required. Combinational logic shifters do not require any
clock cycles, no matter how many shifts are required. The logic for the combinational shifter can
be combined with other combinational logic and all operate within a single clock cycle. A typical
application of a combinational logic shifter is for the output stage of an ALU.

Combinational Shifters

A combinational shifter circuit can be
constructed using multiplexers as shown in
Figure 9. 1. It shows the structure of a 4-bit
wide shifter, the function table of which is
shown in Table 9. 1.

Table 9. 1 Function table for a
combinational shifter

Shifters can be modeled using if or case
statements just like most other circuit
functions. It is often better to use the case
statement as models are slightly easier to
read and maintain. For this reason, Examples
9. 1, 9. 2 and 9. 3, only use case statements.

Example 9. 1 shows a 6-bit shifter similar to
the 4-bit shifter described above. Example
9. 2 is similar, but includes extra serial shifted
input and output data signals. Example 9. 3
shows a 6-bit barrel shifter that can shift input
data by any number of bit positions defined
by the binary value on the select inputs.

Figure 9. 1 Structure of a 4-bit
combinational shifter

273

Sel1 Sel0

0 0
0 1
1 0
1 1

Operation

Y < - A
Y <- shl A
Y <- shr A
Y < - 0

Function

no shift
shift left
shift right
zero outputs

HDL Chip Design

Example 9. 1 Combinational logic shifter

A 6-bit wide combinational logic shifter is modeled
to the function table; Table 9. 2. The implied
structure is shown graphically in Figure 9. 2, using
4-1 multiplexers for convenience. A synthesized
circuit will never use 4-1 multiplexers from the cell
library as there would be too much redundant logic.
The synthesized circuit will be constructed from
cell primitives, as most other types of circuit. A
possible implementation from a synthesis tool is
indicated on the following page.

Sel

0
1
2
3

Operation

Y<- A
Y <- shl A
Y <- shr A
Y<-0

Function

no shift
shift left
shift right
zero outputs

Table 9. 2 Function table for the shifter

6-bit wide combinational logic shifter Figure 9. 2 Implied structure of a 6-bit
combinational shifter

274

Verilog
module SHIFTER (Sel, A, Y);

input [1: 0] Sel;
input [5: 0] A;
output [5: 0] Y; .

reg [5: 0] Y;

always @(Sel or A)
begin: COMB_SHIFT

case (Sel)
0 : Y = A;
1 : Y = A « 1;
2 : Y = >> 1;
default: Y = 6'b 0;

endcase
end

endmodule

VHDL
library IEEE;
use IEEE. STD_LOGIC_1164. all; IEEE. Numeric_STD. all;

entity SHIFTER is
port (Sel: in integer range 0 to 3;

A: in unsigned(5 downto 0);
Y: out unslgned(5 downto 0));

end entity SHIFTER;

architecture COND_DATA_FLOW of SHIFTER is
begin

COMB_SHIFT:
process (Sel. A)
begin

case (Sel) is
when 0 => Y <= A;
when 1 => Y <= Shift_left (A, 1);
when 2 => Y <= Shift_rlght (A, 1);
when others => Y <= (others =>'0');

end case;
end process;

end architecture COND_DATA_FLOW;

Chapter Nine: Circuit Functions modeled Combinationally or Sequentially

6-bit wide combinational logic shifter

275

HDL Chip Design

Example 9. 2 Combinational logic shifter with shift in and out signals

A 6-bit wide combinational logic shifter is modeled
to the function table; Table 9. 3. The model is similar
to Example 9. 1, but signals ShiftLeftln and
ShiftRightln are used as serial inputs for the shift
left and shift right operations, respectively.
Similarly, signals ShiftLeftOut and ShiftRightOut
correspond to the shifted output data from the
shift left and shift right operations, respectively.

The 6-bit input data to be shifted is assigned to
the inner six bits of an 8-bit data type. This leaves
a bit either side that can hold the shift left and
right overflows which are then assigned to the
ShiftLeftOut and ShiftRightOut signals, respectively.
The inner six bits of the 8-bit data type is then
assigned to the output Y.

Table 9. 3 Function table for shifter
with shift in and out signals

6-bit wide conbinational logic shifter with shift in and shift out

276

VHDL

library IEEE;
use IEEE. STD_LOGIC_1164. all; IEEE. Numeric_STD. all;

entity SHIFTER_SHIFTINOUT is
port (Sel: in integer range 0 to 3;

ShiftLeftln,
ShiftRightln: in std_logic;
A: in unsigned(5 downto 0);
ShiftLeftOut,
ShiftRightOut: in std_logic;
Y: out unsigned(5 downto 0));

end entity SHIFTER_SHIFTINOUT;

architecture COND_DATA_FLOW of SHIFTER_SHIFTINOUT is
begin

COMB_SHIFT:
process (Sel, A)

variable; A_Wide, Y_Wide: unsigned(7 downto 0);
begin

A_Wide: = ShiftLeftln & A & ShiftRightln;
case (Sel) is

when 0 => Y Wide: = A Wide;
when1 => Y Wide: = shift_left(A_wide, 1);
when 2=> Y_Wide: = shift_right(A_wide, 1);
when 3 => Y_Wide: = (others =>'0');
when others => Y_Wide: = (others =>'0');

end case;
ShiftLeftOut <= Y Wide(0);
Y<=Y_Wide(6 downto 1);
ShiftRightOut <= Y Wide(7);

end process COMB_SHIFT;

end architecture COND_DATA_FLOW;

Verilog

module SHIFTER_SHIFTINOUT
(Sel, ShiftLeftln, ShiftRightln, A,
ShiftLeftOut. ShiftRightOut, Y);

input [1: 0] Sel;
input ShiftLeftln, ShiftRightin;
input [5: 0] A;
output ShiftLeftOut, ShiftRightOut:
output [5: 0] Y;

reg ShiftLeftOut, ShiftRightOut;
reg [5: 0] Y;

reg [7: 0] A_Wide, Y_Wide;

always @(Sel or ShiftLeftln or ShiftRightln or A)
begin: COMB SHIFT

A_Wide = {ShiftLeftln, A, ShiftRightln};
case (Sel)

0: Y Wide = A Wide;
1: Y Wide = A W i d e « 1;
2: Y Wide = A Wide>> 1;
3: Y_Wide = 8'b0;
default: Y = A_Wide;

endcase
ShiftLeftOut = Y Wide[0];
Y = Y Wide[6: 0];
ShiftRightOut = Y_Wide[7];

end

endmodule

Sel

0

1

2

3

Operation

Y<- A
ShiftLeftOut <- 0
ShiftRightOut <- 0
Y <- shl A
ShiftLeftOut <- A[5]
ShiftRightOut <- 0
Y <- shr A
ShiftLeftOut <- 0
ShiftRightOut <- A[0]
Y< -0
ShiftLeftOut <- 0
ShiftRightOut <- 0

Function

no shift

shift left

shift right

zero outputs

Chapter Nine: Circuit Functions modeled Combinationally or Sequentially

Example 9. 3 Combinational barrel shifter

A 6-bit wide combinational logic barrel shifter is modeled to the function table; Table 9. 4. The
value of the Rotate, specifies how many rotation operations are to be performed. The 6-bit input
may be functionally rotated from 0 to 5 positions.

Only one model version using a case statement is included, it is easier to code and comprehend
than if the if statement was used. Also, a model using the if statement would be very similar to
the models in Examples 9. 1 and 9. 2. A for loop cannot be used to model this barrel shifter as the
signal, Rotate, would need to be used to determine the loop range. This is not allowed by
synthesis tools as a loop's range must be statically computable at compile time in order do
synthesize a finite amount of logic.

277

Table 9. 4 Function table for 6-bit wide
barrel shifter

Sel

0
1
2
3
4
5

Operation

Y<- A
Y <- A rol 1
Y <- A rol 2
Y <- A rol 3
Y <- A rol 4
Y <- A rol 5

Function

no shift
rotate once
rotate twice
rotate three times
rotate four times
rotate five times

HDL Chip Design

Synchronous Shifters - Shift Registers

Synchronous shifters, commonly known as shift registers, are inferred in the same way as standard
registers, but with a shifted version of the registered output fed back to its input. Alternatively,
they can be thought of as being modeled as a combinational shifter, but in an edge triggered
section of code; see Example 9. 4.

Example 9. 4 Shift registers

Two 5-bit loadable shift registers are shown. The first shift register, ShiftRegl, shifts the register
bits one bit to the left (up one towards the most significant bit) and uses only if statements. The
second shift register, ShiftReg2, can shift the register one bit to the left or right depending upon
the value of the two bit select line Sel2. A case statement selects which shift, if any, to perform.
The synthesized circuit only includes an implementation of the first shift register, ShiftRegl.

Two 5-bit loadable shift registers, one shift left and one shift left and right

278

Chapter Nine: Circuit Functions modeled Combinationally or Sequentially

5-bit loadable shift left register only

Adders and Subtractors

Digital circuits that perform addition and subtraction operations can be realized in parallel using
purely combinational logic, or serially, in a synchronous manner, using combinational and
sequential logic. Most are realized in parallel because they operate considerably faster, and
although the circuit will be bigger, it is often not prohibitively excessive.

Combinational adders and subtractors

Adder and subtractor circuits can be modeled in different ways for different circuit implementations.
Subtractors are implemented in the same way as adders, but with the 2's complement of one of
the inputs, that is,

A - B is the same as A + the 2's complement of B.
(The 2's complement is the l's complement plus 1; the l's complement is each bit
inverted.)

The simplest modeling method is to use the "+" and "-" arithmetic operators, they work equally
well for both signed and unsigned numbers. In VHDL, the "+" and "-" operators are overloaded
with different data types in order to facilitate the use of signed and unsigned numbers, that is,
multiple functions named "+" and "-" are defined in the two IEEE 1076. 3 synthesis packages.

Figure 9. 3 Typical area/delay relationship of carry-look-ahead and ripple-carry adders

Typically, particular comment directives can be used in a model to guide a synthesis tool as to
how an adder or subtractor should be structured. This allows adder/subtractor circuits to be
synthesized with carry-look-ahead or ripple-carry structures, or a mixture of both, see Example

279

HDL Chip Design

9. 5. There is no standard for such comment directives and so may differ between synthesis
tools. Carry-look-ahead circuits are faster, but larger than ripple-carry circuits, see Figure 9. 3.

If each "+" and "-" operator in a model is synthesized to a separate adder or subtractor circuit,
the chip area required to implement them could be needlessly excessive. When synthesis tools
bind an operator like "+" or "-" to a particular circuit, called resource binding, the synthesis tool
can choose to bind multiple operators to the same circuit. This is called resource sharing, see
Chapter 4.

If the standard carry-look-ahead or ripple-carry implementation does not meet specific area,
timing or power requirements one of two things can be done.

1. Use the logic optimizer to remove logical structure (flatten) and then restructure (factorize)
to a circuit that better meets the requirements. Flattening and factorizing represents what
happens to the boolean equations representing the function of adders or subtractors, as
described in Chapter 1. When boolean equations are completely flattened, each output is
represented in terms of only inputs; there are no intermediate terms. When equations are
factorized, intermediate common terms, known as factors, are introduced producing
multiple, but smaller equations.

'2. Write a more detailed model describing the specific structure of a circuit that better meets
the requirements. Example 9. 6 shows how gate primitives, single bit half adders and
single bit full adders are constructed to model a circuit that adds or subtracts a 2-bit value,
to or from a 6-bit value. These single bit adders could be the direct instantiation of cells
from a particular ASIC or FPGA technology library, and which will already have an efficient
layout model.

Optimization Strategies. These are not discussed in any depth, however, a designer typically
wants to optimize for the smallest possible area, and then, if the circuit does not meet specific
timing requirements, reoptimize for timing until it does. Timing driven optimization reduces circuit
timing, but its effect on the area is somewhat unknown because it is very much design dependent.
Circuit area generally increases with reduced timing, however, it is possible that a circuit optimized
for the minimal area also has the shortest timing delay paths through the circuit.

Sequential adders and subtractors

Serial addition and subtraction is performed synchronously using sequential logic, one bit at a
time and using a single full adder. For this reason, it can be the preferred method if either, or
both, inputs are already in a serial form, or the output is required in a serial form, see Example
9. 7.

Example 9. 5 Comment directives for Carry-Look-Ahead and Ripple-Carry adders
and subtractors

Adder and subtractor circuits are modeled using of the "+" and "-" arithmetic operators. Synthesis
specific comment directives plus other related constructs are also included and are specific to
the synthesis tools from VeriBest Incorporated. These directives tell the synthesis tool how the
circuit should be structured, that is, carry-look-ahead or ripple-carry. Directives in the first process
tell the synthesis tool to construct carry-look-ahead structures, while directives in the second
process requests ripple-carry structures to be synthesized. The third process has a normal (non
directive) comment which defaults to a carry-look-ahead structure in the case of the synthesis
tools from VeriBest Incorporated.

280

Chapter Nine: Circuit Functions modeled Combinationally or Sequentially

Synthesis comment directed carry-look-ahead/ripple-carry add/subtract

Example 9. 6 Combined adder and subtractor with detailed structure

The detailed logical structure of a circuit that either adds or subtracts a 2-bit value, to or from, a
6-bit value is modeled to the structure shown in Figure 9. 4.

A single bit half adder is modeled using a single XOR logical operator and a single AND logical
operator. Two of these half adders and the OR logical operator are used to model a single bit full
adder. The adder/subtractor circuit, SIXBITADDSUB2BIT, is then modeled by instantiating six of
these full adders with a ripple carry chain from one full adder to the next. As input B, the addend,
is only two bits wide, only two XOR functions are needed in order to create the l's complement;
they are XORed with the two least significant bits of input A, the augend. The 2's complement
needed for subtraction, is created by connecting SubAddBar (logic 1 for subtraction) to the
carry in of the first, least significant bit, full adder. It is worth considering at this point, the ASIC
or FPGA technology library being used. It is likely single bit half and full adders already exist in
the technology specific library of cells. If so, simply change the names of the full adders in
SIXBITADDSUB2BIT to match the cell name in the library.

281

HDL Chip Design

282

VHDL

use IEEE. STD_Logic1164. all;

entity HALF_ADD is
port (A, B: in std_logic; Sum, Cout: out std_logic);

end entity HALF_ADD;

architecture LOGIC of HALF ADD is
begin

Sum <= A xor B;
Cout <= A and B;

end architecture LOGIC:

Verilog

module HALF ADD (A, B, Sum, Cout);
input A, B;
output Sum, Cout;

assign Sum = A ̂ B;
assign Cout = A & B;

endmodule

Figure 9. 4 Detailed logical structure of a specific adder/subtractor

Extra logic is modeled to force the output to binary 111111 if an addition causes an overflow,
and to binary 000000 if a subtraction causes an underflow. An overflow has occurred when
adding, that is, SubAddBar = 0, and the carry out from the most significant bit full adder, that is,
Carry_Out[5], is at logic 1. An underflow has occurred when subtracting, that is, SubAddBar = 1,
and Carry_Out[5] = 0.

The model has been designed so that only minimal changes are necessary in order to remodel it
for different bit widths. VHDL constants and Verilog parameters specify the bus width of inputs A
and B which are then referenced in the body of the model. The VHDL model uses generate
statements to instantiate the single bit adders in such a way that only the constants WidthA and
WidthB, need to be changed in order to change the input and output bit widths. Verilog has no
equivalent to the generate statement and so, in addition to changing the parameters WidthA and
WidthB, the number of single bit full adders instantiated must also be changed to match the width
of input A. The width of B is either the same or smaller than the width of A.

Single bit half adder

Chapter Nine: Circuit Functions modeled Combinationally or Sequentially

Single bit full adder

283

Six bit add or subtract a two bit

V H D L
library IEEE;
use IEEE. STD_Logic_1164. all. IEEE. Numeric_STD. all;

entity FULL_ADD is
port (A, B, Cin: in Std_logic; Sum, Cout: out Std_logic);

end entity FULL_ADD;

architecture LOGIC of FULL ADD is
component HALF ADD

port (A, B: in Std logic; Sum, Cout: out std_logic);
end component:
signal AplusB, CoutHA1, CoutHA2: Std_logic;

begin
HA1: HALF ADD port map (A =>A, B =>B, Sum =>AplusB,

Cout => CoutHA1);
HA2: HALF_ADD port map (A => AplusB, B => Cin,

Sum => Sum, Cout => CoutHA2);
Cout <= CoutHA1 or CoutHA2;

end architecture LOGIC;

Verilog

module FULL_ADD (A, B, Cin, Sum, Cout);
input A, B, Cin;
output Sum, Cout;

wire AplusB, CoutHA1, CoutHA2;

HALF ADD HA1(. A(A),. B(B),
. Sum(AplusB), Cout(CoutHA1));

HALF ADD HA2(. A(AplusB),. B(Cin),
. Sum(Sum),. Cout(CoutHA2));

assign Cout = CoutHA1 | CoutHA2;
endmodule

HDL Chip Design

Six bit add or subtract a two bit

Example 9.7 Serial adder/subtractor

A serial sequential adder or subtracter circuit is modeled to the structure shown in Figure 9.5. It
subtracts if register A is parallel loaded with a 2's complement number and so, unlike Example
9.6, the exclusive OR of the adders addend needed for subtraction is not needed.

Figure 9.5 Structure of serial sequential adder/subtractor
The circuit being modeled assumes a serial input, possibly coming from a communications
channel feeding directly onto the chip. This input assumes the adder's augend. The adders
addend is a coefficient that is parallel loaded into shift register A in preparation for being adder
to, or subtracted from, the augend. Register A, therefore, contains a programmable coefficient
that can be used to normalize any inherent offset in the serial input data. The serial input must be
received LSB first, and in this case consists of sequences of 8-bit data. Sequential addition is
performed one bit at a time, LSB first, using a single bit full adder and the result is shifted into
Register B. The carry output from each addition is needed for the carry input of the next, more
significant bit addition, and so is delayed one clock cycle through the feedback flip-flop. This
feedback flip-flop has a reset to ensure a logic 0 for the first single bit addition; Registers A and
B do not need a reset. The summed result resides in Register B and can be parallel read by the
controlling system.

284

Chapter Nine: Circuit Functions modeled Combinationally or Sequentially

Serial adder/subtractor

285

HDL Chip Design

Multipliers and Dividers

The area that combinational logic multiplier and divider circuits occupy on a chip often prohibits
them from being used in many applications. This area increases exponentially with increasing bit
widths. Instead, sequential multiplier and divider circuits are often implemented because of the
substantial savings in chip area. Though sequential implementations do take a finite number of
clock cycles in which to perform an operation, unless the design is for a real time critical system
where speed is the essence, a sequential implementation is often the better compromise.

Combinational Circuits. Current synthesis tools do not synthesize combinational multiplier and
divider circuits at all well using the "*" and "/" arithmetic operators. The resulting synthesized
circuits are typically very large before optimization for input bit widths much above 4 or 5 bits.
This makes the optimizer's job of optimizing the circuit particularly difficult, very CPU intensive,
and most important of all, will probably not yield as optimal a circuit as could be achieved if a
specific structure was modeled. A more efficient combinational multiplier circuit can be produced
by modeling the structure of the shift and add multiplication algorithm. Similarly, for a divider
circuit a more efficient circuit can be produced by modeling the structure of the shift, compare
and subtract algorithm. These algorithms are described later in this section.

Synchronous Circuits. The two algorithms commonly used to model sequential multiplier circuits
are, 1) the same shift and add algorithm used for combinational circuits, and 2) Booth's Algorithm.
Booth's Algorithm is defined specifically to speed up sequential multiplication operations.
Synchronous dividers are better modeled using the same shift, compare and subtract algorithm
used for combinational dividers. There is no equivalent to Booth's algorithm for speeding up
synchronous division.

Combinational versus synchronous

A comparison of typical combinational versus synchronous circuit implementations for different
bit width multipliers and dividers, using a typical 0. 5 micron ASIC library, is indicated in Figure
9. 6. The area disadvantage of combinational circuits is clearly seen.

Figure 9. 6 Typical area for combinational verses synchronous multipliers

286

Chapter Nine: Circuit Functions modeled Combinationally or Sequentially

Combinational logic multipliers are faster, but are significantly larger than their sequential
counterpart for input bit widths of 4 or more. The area of the combinational circuit increases
exponentially as the input and output bit widths increase. In contrast, circuits implemented
sequentially are smaller but do take a finite number of clock cycles in which to perform an
operation. Sequential multiplication takes up to twice the number of clock cycles as there are
bits in the multiplier input; the actual number depends on the multiplier's binary value. Sequential
division will take exactly twice the number of clock cycles as there are bits in the divisor. Due to
the vast area differences the choice between modeling a combinational or sequential multiplier
or divider circuit is usually fairly clear.

Algorithms for performing multiplication and division are described in the following section.
Models showing their combinational or sequential implementation are included in Examples 9. 8
through to 9. 12. Notice that the sequential implementation of a multiplier or divider uses very
similar data registers and so could be combined into one circuit that either multiplies or divides.

Multiplier and Divider Algorithms

The following algorithms are described: 1) Shift and add multiplication algorithm for combinational
or sequential circuits, 2) Booth's multiplication algorithm for sequential circuits, 3) Shift and
subtract division algorithm for combinational or sequential circuits.

Shift and add Multiplication Algorithm

The multiplication of two positive binary numbers is achieved with paper and pencil by a process
of successive shift and add operations as illustrated in Figure 9. 7a). Figure 9. 7b) shows the
multiplication using signed 2's complement numbers.

Figure 9. 7 Example of binary multiplication
The process consists of looking at each successive bit of the multiplier in turn, starting with the
least significant bit. If the multiplier bit is a logic 1, the multiplicand is copied down; otherwise,
zeros are copied down. The numbers copied down in successive lines are shifted one position to
the left from the previous number. Finally, the numbers are added and their sum provides the
product.

When multiplying two signed numbers together the algorithm is modified slightly to cope with
the sign bits. The sign of the product is determined from the signs of the multiplicand and

287

HDL Chip Design

multiplier. If they are alike, the sign of the product is a plus. If they are not alike, the sign of the
multiplier is a minus.

Example 9. 8 shows this shift and add algorithm employed in the model of a 6x6 input
combinational multiplier, while Example 9. 9 shows it employed in the model of a generic (n x m)
bit sequential multiplier.

Booth's Multiplication Algorithm

Booth's algorithm, like all multiplication schemes requires the examination of the multiplier bits
and the shifting of partial products. Booth's algorithm is intended for a synchronous logic
implementation of a multiplier circuit and works equally for positive and negative numbers. It
treats positive and negative multipliers uniformly and is ideally suited for the multiplication of
signed 2's complement numbers.

Booth's algorithm operates on two basic facts. The first is that strings of successive 0's in the
multiplier require no addition, but just shifting. The second is that a string of successive l's in the
multiplier can be treated as 2up+l - 2'° where "up" is the upper weighted bit and "lo" is the lower
weighted bit. For example, if the multiplier is 001110 (+14), then up = 3 and lo = 1 and 24 - 21 = 14.
For this algorithm, the individual partial products determined from the multiplicand may be:
added too, subtracted from, or may not change the final product at all based on the following
rules:

• the multiplicand is subtracted from the partial product upon encountering the first 1 in a
string of l's in the multiplier,

• the multiplicand is added to the partial product upon entering the first 0 provided that
there was no previous 1 in a string of 0's in the multiplier,

• the partial product does not change when the bit is identical to the previous multiplier bit.

This algorithm works equally for positive and negative multipliers in a 2's complement
representation because a negative multiplier fills the most significant bits with a string of 1's and
the last operation will be a subtraction of the appropriate weight. For example, a multiplier equal
to -14 is represented as 110010 and treated as -24 + 22 - 21 = -14. A paper and pencil illustration
of this algorithm is shown in Figure 9. 8 for (-9) x (-13) = (+117).

Figure 9. 8 Paper and pencil illustration of Booth's algorithm

288

Chapter Nine: Circuit Functions modeled Combinationally or Sequentially

Division Algorithm

The division of two positive binary numbers is achieved with paper and pencil by a process of
successive compare, shift and subtract operations. Binary division is simpler than decimal division
because the quotient digits are either 0 or 1 and there is no need to estimate how many times the
dividend or partial remainder fits into the divisor.

This division process is illustrated in Figure 9. 9.

Figure 9. 9 Example of binary division

The divisor B consists of five bits and the dividend A, of ten bits. The five most significant bits of
the dividend are compared with the divisor. Since the 5-bit number is smaller than B, we try
again by bringing down the sixth most significant bit and comparing the six most significant bits
of A with the divisor B. The 6-bit number is now greater than B so we place a 1 for the first
quotient bit in the sixth position above the dividend. The divisor is then shifted one place to the
right and subtracted from the dividend. The difference is called a partial remainder because the
division could have stopped here to yield a quotient of 1 and a remainder equal to the partial
remainder. This process is continued by comparing a partial remainder with the divisor. If the
partial remainder is greater than or equal to the divisor, the quotient bit is equal to 1. The divisor
is then shifted right and subtracted from the partial remainder. If the partial remainder is smaller
than the divisor, the quotient bit is 0 and no subtraction is needed. The divisor is shifted once to
the right in any case. Note that the result gives both a quotient and a remainder.

Example 9. 11 employs this division algorithm in the model of a combinational logic divider
having a 10-bit dividend, divided by a 5-bit divisor and provides a resulting 5-bit quotient, with
a 5-bit remainder. An overflow signal is also provided to indicate when the quotient wants to be
more than 5-bits wide. Example 9. 12 employs this same algorithm in the model of a generic n-
bit, divide by m-bit sequential divider. It provides an (n minus m) bit quotient with an m-bit
remainder and an overflow signal.

289

HDL Chip Design

Example 9. 8 Signed combinational multiplier using shift and add algorithm

A 7x7 bit combinational logic multiplier of signed-magnitude numbers is modeled according to
the shift and add algorithm already described. It contains an exclusive OR of the input sign bits
in order to generate the product's sign bit. The model's structure, Figure 9. 10, consists of five
adders in parallel, each with differing input and output bit widths.

Figure 9. 70 Structure of 7x7 signed combinational logic multiplier

The Verilog language has the advantage of allowing signals of one bit width to be assigned to
signals of a different bit width, see Chapter 4. This means the left or right hand side of an
assignment that has the least number of bits is automatically expanded to meet the size of the
larger, and any unused bits are optimized away during synthesis. This is taken advantage of in
two ways in the code of the Verilog model; one for how the partial products are generated, and
the other for how the partial products are summed, and are described separately below.

Forming the partial products:

The six partial products are formed in accordance with the algorithm, that is, it is zero if the
corresponding bit in the multiplier B is zero, or a shifted version of the multiplicand A if a logic 1.
The partial products are generated using conditional signal assignments and do not infer any
logic; it only specifies how the shifted multiplier input is connected to the adders.

Verilog. The Verilog model shows two different ways in which the multiplier can be shifted to
form the partial products. The first method uses the concatenation of constant logic 0's to
the least significant bit of the multiplier. The second uses the shift operator and is shown
commented out in this particular model. The point to note about this commented out portion
of code is that multiplicand A is shifted from 1 to 5 times, but is still effectively only 6-bits

290

Chapter Nine: Circuit Functions modeled Combinationally or Sequentially

wide. The shifted bits are not lost because the assignments to PP1-PP6 have the exact number
of bits necessary to take the shifted bits.

VHDL. Shifting using a shift operator or shift function is not possible in VHDL. As described in
Chapter 4, VHDL assignments (<= and: =) must resolve to have equivalent bit widths on each
side of the assignment operator. This means, that although that VHDL assignment operators
can be overloaded on their data type, they cannot be overloaded on their size. This means,
that if the Verilog assignments using the shift operator, were modeled to their VHDL equivalent,
there would be unavoidable bit width mismatches.

Summing the partial products:

Five adders sum the six partial products to yield the multipliers product excluding the sign bit.
Delay paths pass through either two or three adders and so are structured so that the delay
paths are balanced and minimized. Adders with the largest bit widths will have the longest delay
and so are placed in a path that passes through only two adders. This structuring could have
been achieved with all partial products, PP1-PP6, defined as being 12-bits wide and using a single
parenthesized statement, that is,

Y<= ((PP1 + PP2) + (PP3 + PP4)) + (PP5 + PP6); -- VHDL
Y = ((PP1 + PP2) + (PP3 + PP4)) + (PP5 + PP6); // Verilog

This would work fine and the synthesis tool would optimize away unused most significant input
and output bits connected to logic 0. However, a more explicit structure is modeled because
three of the adders (ADD1, ADD2 and ADD3) must use a carry output while the other two (ADD4
and ADD5) need not. For example, adder ADD4 has a 10-bit input but only needs a 10-bit output
because even if all bits of the partial products PP1, PP2, PP3 and PP4 were a logic 1, the maximum
output from ADD4 is still only 10-bits, as indicated.

1 1 1 1 1 1 PP1 6-bit
1 1 1 1 1 1 0 PP2 7-bit

1 0 1 1 1 1 0 1 PP1+PP2 8-bit

This results in a slight reduction in the size of adders ADD4 and ADD5.

Verilog. Assignments for the adders needing a carry out are of the type PP12 = PP1 + PP2;
where PP12 is defined as being one bit bigger than PP2, and which is one bit bigger that PP1.

VHDL. Assignments have a logic 0 concatenated to the most significant bit of the largest of
the two adder operands solely for the purposes of matching the bit widths either side of the
assignment for VHDL compliance. The port declarations; A, B and Y are of type unsigned
because type signed is reserved for 2's complement signed numbers and not signed magnitude
numbers as used in this example.

The addition of partial products is performed without regard to the magnitude bits of inputs A
and B, that is, Am and Bm.

291

1 1 1 1 1 1 0 0 PP3 8-bit
1 1 1 1 1 1 0 0 0 PP4 9-bit

1 0 1 1 1 1 0 1 0 0 PP3+PP4 10-bit

1 0 1 1 1 1 0 1 PP1+PP2 8-bit
1 0 1 1 1 1 0 1 0 0 PP3+PP4 10-bit
1 1 1 0 1 1 0 0 0 1 (PP1+PP2) + (PP3+PP4) 10-bit

HDL Chip Design

7x7 signed combinational logic multiplier

292

Chapter Nine: Circuit Functions modeled Combinationally or Sequentially

Example 9. 9 Generic sequential shift and add multiplier

A generic (n x m) bit sequential signed multiplier is modeled to the shift and add multiplication
algorithm previously described, but with the addition of a sign bit. It is convenient to change the
algorithm's process slightly for sequential hardware implementation.

• Instead of providing registers to simultaneously store and add as many binary numbers
as there are bits in the multiplier, hardware is substantively reduced by using only one
adder and successively accumulating the partial products in a register.

• Instead of shifting the multiplicand to the left the partial product is shifted to the right;
this results in leaving the partial product and multiplicand in their required relative position.

• When the corresponding bit of the multiplier is 0, there is no need to add all zeros to the
partial product as it will not alter its value.

The sequential implementation of the multiplication algorithm is shown graphically in the flow
chart, Figure 9. 11. The corresponding modeled hardware structure is indicated in Figure 9. 12.
Because the model is generic, the width of the multiplicand and multiplier can be specified when
the model is instantiated from another model. This avoids having multiple versions of the same
model with different width registers.

Figure 9. 11 Sequential shift and add multiplication algorithm

293

HDL Chip Design

Figure 9. 12 Hardware structure of sequential shift and add multiplier
The operation starts when Load is a logic 1 and causes the following register loading.

RegA <- 0
RegB <- multiplicand without the sign bit
RegQ <- multiplier without the sign bit flip-flop
Ps <- exclusive OR of the multiplicand and multiplier sign bits
SequenceCounter <- number of bits in the multiplier minus the sign bit

The products sign is the exclusive OR of the sign of the two inputs. Instead of storing the sign of
each input, the exclusive OR of the two input sign bits is stored in a single flip-flop. This is the
products sign bit and saves a flip-flop.

With the multiplicand minus its sign bit in register B, and the multiplier minus its sign bit in
register Q, the operation proceeds. This consists of a sequence of consecutive test, possible
add, and shift right operations. The control signal Add_Shiftb controls whether to add or shift.

When new data is loaded, the least significant bit of the Multiplier is loaded directly into the add/
shift control flip-flop producing Add_Shiftb. In this way, the Add_Shiftb is set ready for an immediate
add if logic 1, or shift if logic 0.

When Add_Shiftb is a logic 1 the sum of registers A and B form a partial product that is transferred
to EA (the concatenation flip-flop E and register A) as depicted in Figure 9. 12. It is necessary to
hold the carry out from the adder in flip-flop E so that it can be used in the generation of the next
partial product summation. A shift right is of EAQ; the least significant bit of register A is shifted
into the most significant bit of register Q; the bit from E is shifted into the most significant bit of
register A; and logic 0 is shifted into E. The shift causes one bit of the partial product in register
A to be shifted into register Q, pushing the multiplier bits one position to the right. In this manner,
the right-most flip-flop in register Q, designated by Qn, will hold the bit of the multiplier which
must be inspected next. If Qn is a logic 1 an addition is required before the next shift. This is a
two clock cycles process; one for the partial product add, and one for the shift during which the
counter is decremented. If Qn is a logic 0 no addition is required and so only one clock cycle is
needed for shifting EAQ and decrementing the counter.

A single multiplication will take from between (WidthMultiplier - 1) and ((WidthMultiplier - 1)x2)
clock cycles to complete depending upon the logic 0's and l's in the multiplier; it takes 2 cycles
per magnitude bit if the multiplier bit is at logic 1 and 1 cycle per magnitude bit if at logic 0.
When a multiplication is complete, that is, the sequence counter is zero, Done is set to a logic 1.

294

Chapter Nine: Circuit Functions modeled Combinationally or Sequentially

HDL Code
As this is a generic (n x m) bit multiplier, the input and output bit widths can be specified when
the model is instantiated from another model. In VHDL, this is achieved using generics while in
Verilog it is achieved by overloading parameter values. When this model is instantiated from a
calling model, the following data must be passed to it.

Width Multiplicand - width of the input multiplicand
WidthMultiplier - width of the input multiplier
WidthCount - width of the counter where: (Verilog only)

2̂widthcount <= WidthMultiplier*2 -1

Ignoring the sign bit, this particular model has been designed such that the width of the output
magnitude does not need to be the width of the sum of the two input magnitude widths. This
may not be necessary, but does mean there will not be any unused (unconnected) outputs in the
calling model. For example, a 10-bit multiplicand and multiplier, each having 1 sign bit and 9
magnitude bits will yield a 19-bit product having 1 sign bit and 2 x 9 = 18 magnitude bits. Now,
if for some reason you only want a 15-bit resolution output, including the sign bit, WidthProduct
can be specified as being 15. In this case, the 15 most significant bits of the product are output
and the 4 least significant bits are ignored. The model still computes a 19-bit signed product to
maintain accuracy. This feature may be of use when designing DSP filters etc.

Suppose a (9 x 6) bit sign multiplier is required. The process for choosing to model a 9 x 6
(multiplicand x multiplier) or a (6 x 9) bit multiplier is as follows.

1. Magnitude bits of the multiplicand and multiplier will be 8 and 5, or 5 and 8, respectively.

2. Magnitude bits of (8 x 5) will be multiplied in 5 to 10 (2 x 5) clock cycles, will need 22
magnitude related flip-flops and an 8-bit adder.

3. Magnitude bits of (5 x 8) will be multiplied in 8 to 16 (2 x 8) clock cycles, will need 19
magnitude related flip-flops and a 5-bit adder.

4. Choose from 3 or 4 above depending upon the design criteria.

VHDL: The VHDL model has two variables defined, E_RegA and E_RegA_RegQ, that are not
needed in the Verilog model. They are necessary to avoid data type mismatches, that is, a target
aggregate of the form:

(E, RegA) <= RegB + RegA;

This does not become a one dimensional array of bits. It is a record with 2 fields; the first field
being a 1 -bit object of type std_logic and the second having a number of bits constituting an
object of type unsigned. This is discussed in Chapter 4.

The addition statement in the VHDL model has a logic 0 concatenated onto the most significant
bit, that is, '0' & Multiplicand. This ensures the output bit width matches that of the resolved
expression on the right hand side of the assignment; a requirement of VHDL, but not Verilog.

295

HDL Chip Design

Generic sequential shift and add multiplier

296

Chapter Nine: Circuit Functions modeled Combinationally or Sequentially

Generic sequential shift and add multiplier

Example 9. 10 Generic NxM sequential multiplier using Booth's Algorithm

A generic (n x m) bit sequential multiplier implementing Booth's algorithm is modeled to the
hardware structure, Figure 9. 13. The structure is very similar to that implemented for the standard
shift and add algorithm of Example 9. 9. The hardware differences needed to implement Booth's
algorithm are:

1. An extra flip-flop, Qn+l(Qnplus1), is appended to the least significant bit of register Q in
order to facilitate double bit inspection of the multiplier.

2. The ability to subtract as well as add.

3. The E flip-flop that holds the carry out from the adder is not needed as an add will never
cause an overflow. The flow chart, Figure 9. 14, indicates how Booth's algorithm is
implemented in this example. When Load is a logic 1 the sequential elements are initialized
as follows:

RegA <- 0 Shift_afterAddSub <- 0
RegB <- multiplicand SequenceCounter <- number of bits multiplier.
RegQ <- multiplier Done <- 0
Qnplus1<- 0

297

HDL Chip Design

Figure 9. 13 Hardware structure implied by multiplier model using Booth's algorithm

The flip-flop providing the output signal Done
is implied by virtue of being assigned in the
synchronous section of code and ensures it
changes immediately after a clock edge along
with the multiplied product. If a small delay
of the Done signal after a clock edge is
tolerable, it could be assigned in a
combinational section of code, saving a flip-
flop.

The operation begins by inspecting two bits
of the multiplier Qn and Qnplusl, along with
the control bit Shift_afterAddSub in a case
statement. If the two bits Qn and Qnplusl are
equal to binary 10, the first 1 in a string of l's
has been encountered in the multiplicand.
This requires a subtraction of the multiplicand
from the partial product in the accumulator
register (RegA). If the two bits are equal to
binary 01, the first 0 in a string of 0's has
been encountered. This requires the addition
of the multiplicand to the partial product in
RegA. If Qn and Qnplusl are binary 00 or 11
no action is necessary and so the next shift
occurs.

After an add or subtract, the control signal
Shift_afterAddSub is set to logic 1 in order to
guarantee a shift occurs during the next clock

Figure 9. 14 Booth's algorithm for
multiplication of signed - 2's complement
numbers

298

Chapter Nine: Circuit Functions modeled Combinationally or Sequentially

cycle, as defined by the algorithm. The shift is an arithmetic shift right of the partial product in
RegA, the multiplier in RegQ and the Qnplusl flip-flop. When the two bits are equal, the partial
product does not change and so another shift follows. Following any shift, the two bits Qn and
Qnplusl are retested and the process repeated.

An arithmetic shift ensures that the most significant bit of Register A before the shift, is duplicated
into the most significant bit of Register A after the shift; this ensures no sign change. When a
shift operation occurs the control signal Shift_afterAddSub is set back to logic 0 ready to test the
next Qn and Qn+1 values. The sequence counter is decremented during each shift and the
computational loop is repeated as may times as there are bits in the multiplier.

HDL code

The VHDL model uses an extra variable, Shift_Q0_Q0plusl, to group (concatenate) the three
signals Shift_afterAddSub, RegQ(0) and Q0plusl. This is not necessary in Verilog, as they can be
concatenated in the case statement itself.

The VHDL model uses the arithmetic shift right operator, asr. Verilog has no equivalent and so a
second assignment is used after the shift in order to copy the most significant bit but one, the
original sign bit, to the new most significant bit, the new sign bit.

An overflow cannot occur because addition and subtraction operations alternate and the two
numbers being added or subtracted always have opposite signs, a condition that excludes an
overflow.

Table 9. 5 shows a numerical example of data flowing through the registers as a multiplication
operation is performed and uses the same numbers used in the description of Booth's algorithm.

multiplier
Multiplicand in RegB =10111
not B + 1 =01001

product

Initial value after Load
subtract (add Bbar + 1)

arithmetic shift right
arithmetic shift right
add

arithmetic shift right
arithmetic shift right
subtract (add Bbar + 1)

arithmetic shift right

Table 9. 5 Example register data flow for sequential multiplier using Booth's Algorithm

299

HDL Chip Design

Generic Booth's algorithm multiplier

300

Chapter Nine: Circuit Functions modeled Combinationally or Sequentially

Generic Booth's algorithm multiplier

Example 9. 11 10-bit divide by 5-bit combinational logic divider

The divide algorithm is modeled for a 10-bit divide by 5-bit combinational logic divider. As with
most algorithms, the process is changed slightly for hardware implementation. Instead of using
consecutive sequences of shift, compare and subtract operations, it is convenient to use
consecutive sequences of shift and add a 2's complement number. This process applies equally
for combinational or sequential circuit implementations. By adding a 2's complement number
instead of subtracting, a single adder is able to perform both the compare and subtract operations.
The carry out from the adder indicates which of the two inputs is the greater. For example A - B
becomes A + (! B + 1), and the carry out, if a logic 1, indicates that A is greater than or equal to B.
This principle is shown in the model's structure, Figure 9. 15.

In the combinational implementation of the multiplier algorithm, Example 9. 8, the individual
partial products could be derived directly from the inputs. This is not possible for the divider;
individual partial remainders must be derived from the previously computed partial remainder in
a chain. This chain of successive shift, compare and subtract (shift and add 2's complement)
operations, causes the circuit to exhibit much longer delays than multipliers of equivalent bus
widths. This somewhat reduces the primary advantage of using combinational circuit dividers
over sequential ones.

301

HDL Chip Design

The first compare is of the upper 5-bits of the dividend A and the 5-bit divisor B. If A[9: 5] is greater
than, or equal to B[4: 0] it means the division will result in a number that is greater than 5-bits
wide. As only 5-bits have been allocated to hold the quotient Quotient an overflow signal is
generated, that is, Overflow is set to logic 1. No subtraction is required because if A[9: 5] >= B an
overflow condition exists. For this reason, the first stage in the chain uses a comparator and not
an adder.

The next stage in the chain of add, compare and shift operations continues with A[8: 4]. Each
partial remainder that is generated, is a remainder in its own right; the required resolution of the
quotient determines which partial remainder is the output remainder. For example, the first partial
remainder, PartReml, would be the output remainder for a single bit quotient, but would be 9-bits
wide instead of 5. The second remainder would be the output for a 2-bit quotient, etc.

HDL Code. There is nothing unusual about the coding style; only continuous signal assignments
and if statements are used. The code is self-documenting and sufficiently commented for easy
comprehension.

Table 9. 6 shows by example, signal values resulting from using the same dividend and divisor
numbers as used in the description of the algorithm.

302

Chapter Nine: Circuit Functions modeled Combinationally or Sequentially

Signal name

A (dividend)
B (divisor)

2's comp B

Overflow

Compare1 [5: 0]
Quotient[4]
PartReml [4: 0]

PartRem1_Abit[4: 0]

Compare2[5: 0]
Quotient[3]
PartRem2[4: 0]

PartRem2_Abit[4: 0]

Compare3[5: 0]
Quotient[2]
PartRem3[4: 0]

PartRem3_Abit[4: 0]

Compare4[5: 0]
Quotient[1]
PartRem4[4: 0]

PartRem4_Abit[4: 0]

Compare5[5: 0]
Quotient[0]

Quotient[4: 0]
Remainder[4: 0]

Binary value

0111000010 (450)
10001 (17)

01111

0

101011
1

01011

10110

100101
1

00101

01010
011001

0
01010

10101

100100
1

00100
01000

010111
0

11010 (26)
01000 (8)

Operation

A[8: 4] + 2's comp B

Compare1[4: 0]

Bring down dividend bit 3

Compare1_Abit + 2's comp B

Compare2[4: 0]

Bring down dividend bit 2

Compare2_Abit + 2's comp B

Compare2_Abit

Bring down dividend bit 1

Compare3_Abit + 2's comp B

PartRem3_Abit - B

Bring down dividend bit 0

Compare4_Abit + 2's comp B

Table 9. 6 Example signal values for the 10-bit divide by 5-bit combinational divider

10-bit divide by 5-bit combinational logic divider

303

V H D L

library IEEE;
use IEEE. STD_Logic_1164. all; IEEE. Numeric_BIT. all;

entity DIV10BY5_COMB is
port (A: in unsigned(9 downto 0); -- dividend

B: in unsigned(4 downto 0); -divisor
Overflow: out std_logic;
Quotient,
Remainder out unsigned(4 downto 0));

end entity DIV10BY5_COMB;

architecture RTL of DIV10BY5 COMB is
begin

process (A, B)
variable notB: unsigned(4 downto 0);
variable Compare1, Compare2,

continued

Verilog

module DIV10BY5_COMB
(A, B, Overflow, Quotient, Remainder);

Input [9: 0] A; // dividend
input [4: 0] B; // divisor
output Overflow;
output [4: 0] Quotient, Remainder;
reg Overflow;
reg [4: 0] Quotient, Remainder;

reg [4: 0] notB;
reg [5: 0] Compare1, Compare2,

Compare3, Compare4,
Compare5;

reg [4: 0] PartReml, PartRem2, PartRem3, PartRem4,
PartRem1_Abit, PartRem2_Abit,
PartRem3_Abit, PartRem4_Abit;

continued

HDL Chip Design

10-bit divide by 5-bit combinational logic divider

304

Chapter Nine: Circuit Functions modeled Combinationally or Sequentially

10-bit divide by 5-bit combinational logic divider

305

HDL Chip Design

Example 9. 12 Generic sequential divider

A generic (n x m) bit sequential shift, compare and subtract divider is modeled to the same
division algorithm described earlier. Like multiplication, it is convenient to change the algorithm's
process slightly for hardware implementation. Instead of shifting the divisor to the right, the
dividend, or partial remainder is shifted to the left. This leaves the two numbers in their required
relative position. As in the case for the combinational divider in the previous example, subtraction
is better achieved by taking the 2's complement and adding so that information about their
relative magnitude is available from the most significant (carry out) end. In this way, a single
adder can perform both the compare and subtract functions.

The sequential process of the division algorithm, as modeled in this example, is indicated by
flow chart, Figure 9. 16. The hardware structure inferred by the model is in Figure 9. 17; notice
the data register structure is again very similar to the sequential multipliers in Examples 9. 9 and
9. 10.

Figure 9. 16 Algorithm for sequential divide operation

306

Chapter Nine: Circuit Functions modeled Combinationally or Sequentially

Figure 9. 17 Hardware structure implied by sequential divider

Because this model is generic, the width of the dividend and divisor can be specified when the
model is instantiated from another model and avoids having multiple versions of the same
model, but with different width registers. The control block uses a finite state machine to provide;
Shift and Subtract control signals, and Done and Overflow output signals. Its state diagram is
shown in Figure 9. 18.

The state machine controller is initialized and stays in state ST_WaitLoad until Load is a logic 1
whereupon division starts with the following register loading.

RegA - Upper bits of dividend equal to number of divisor bits (ignoring sign
bit)

RegB - divisor (ignoring sign bit)
RegQ - lower bits of the dividend equal to dividend bits minus divisor bits

(ignoring sign bit)
QuoRemSign - sign bit of dividend XOR'ed with sign bit of divisor
SequenceCounter - VHDL: number of bits in the divisor (including the sign bit) times two.

Verilog: bit width of counter. 2 x WidthCount <= (WidthDivisor - 1) x 2

The sign of the quotient (Quotient) and remainder (Remainder) are always the same, that is,
QuoRemSign and is set when data is loaded.

Initially, a divide overflow condition is tested by subtracting the divisor in RegB from the upper n
bits of the quotient in RegA, where n is the number of bits in the divisor. Subtraction is achieved
from: RegA plus the 2's complement of RegB. If RegA is greater than, or equal too, RegB, that is,
A_GE_B is a logic 1, an overflow condition exists and the state machine traverses to state ST_Overflow
and Overflow is set to logic 1. Overflow remains set until either a reset or subsequent load
occurs. An overflow means division would result in a quotient that requires more bits than there
are bits in RegQ to hold it.

307

HDL Chip Design

Figure 9. 18 State diagram for sequential divider control block

If RegA is less than RegB, that is, A_GE_B is a logic 0, there is no overflow, so the process
continues by shifting left RegA and RegQ, ready for the next test. The most significant bit of
RegQ is shifted into the least significant bit of RegA.

The flow chart, Figure 9. 16, shows a loop which shifts left and either transfers RegA - RegB back
to RegA if A_GE_B = 1, or leaves RegA unchanged if A_GE_B = 0. If A_GE_B is at logic 1, the divisor
will "go into" the bits of the quotient or partial remainder in RegA. The corresponding quotient bit
is, therefore, at logic 1 and is inserted into Qn. This can also be seen in the model's state
diagram, Figure 9. 18. If A_GE_B is a logic 0, the bits of the quotient or partial remainder in RegA
is less than the divisor. The corresponding quotient bit is therefore at logic 0 and is inserted into
Qn. This looping process continues until the counter is zero, that is, there has been as many
shifts as there are bits in the divisor. When the counter reaches zero the magnitude bits of the
quotient resides in RegQ and the magnitude bits of the remainder resides in RegA.

Table 9. 7 demonstrates the flow of data through the registers during a divide operation and uses
the same numbers used in the description of the algorithm.

HDL Code: The following VHDL generics and Verilog parameters are used to customize the bit
widths of this generic divider:

WidthDividend - bit width of the dividend
WidthDivisor - bit width of the divisor

MaxCount (VHDL) - number of magnitude bits in the divisor
WidthCount (Verilog) - bit width of the sequence counter according to:

2̂ widthcount<= (WidthDivisor-1) * 2

This divider operates on signed-magnitude numbers, and not 2's complement numbers. For this
reason, the VHDL model uses unsigned data types and not signed data types. The signed data
type, as defined in the IEEE 1076. 3 synthesis packages, are intended for 2's complement
operations.

308

Chapter Nine: Circuit Functions modeled Combinationally or Sequentially

Divisor B = 10001
notB +1 =01111

dividing line between partial remainder or remainder, and the quotient
Table 9.7 Example of binary division with sequential divider

309

HDL Chip Design

Generic n-bit sequential divider

310

Chapter Nine: Circuit Functions modeled Combinationally or Sequentially

Generic n-bit sequential divider

311

HDL Chip Design

Generic n-bit sequential divider

312

Tri-State Buffers
10

HDL Chip Design

Chapter 10 Contents

Modeling Tri-State Buffers 315
Example 10.1 Modeling tri-state buffers 315
Example 10.2 Tri-state buffers using case& VHDL selected signal assignment 317
Example 10.3 Tri-state buffers using continuous signal assignments 319
Example 10.4 Synchronously clocked tri-state buffers from concurrent and

sequential statements 319

314

Chapter Ten: Tri-State Buffers

Modeling Tri-State Buffers

Data with multiple sources that need to be connected to one or more destination points in a
circuit may be implemented using either multiplexers or tri-state buffers. This chapter shows the
different ways in which tri-state buffers may be modeled for inference by synthesis tools.

Tri-State buffers are modeled using any of the multi-way branch statements:

if statements,
case statements,
conditional signal assignments (VHDL),
conditional continuous assignments (Verilog).

A tri-state buffer is inferred by assigning a high impedance value (Z) to a data object in a
particular branch of a multi branch statement. The main point to note about modeling tri-state
buffers is that multiple buffers that are connected to the same output must be modeled in separate
concurrent statements, see examples.

Example 10.1 models three tri-state buffers connected to the same tri-state output signal using
either concurrent or sequential assignment statements. Example 10.2 has a tri-state buffer inferred
from a case statement and indicates how it inhibits use of a "don't care" default assignment.
Example 10.3 has five mutually exclusive busses connect to the same output bus via tri-state
buffers. Example 10.4 is similar to Example 10.3, but has synchronously clocked enable signals
for minimal skew between switching tri-state buffers.

Example 10.1 Modeling tri-state buffers

Two different models of the same circuit are shown. It consists of tri-state buffers whose outputs
are connected together. The operation is such that only one of the three enable signals EnA, EnB
and EnC are at logic 1 at any one time.

TRI_STATE_1A. This first model version has three conditional assignments. Each assignment assigns
a value to the output concurrently, and infers a tri-state buffer by virtue of the else clause defining
a default assigned value for Y of "Z" (high impedance). Because each assignment is concurrent,
successive assignments to Y do not overwrite each other as they would if they were sequential
assignments in a process (VHDL) or sequential always block (Verilog).

Tri-state buffers from conditional signal assignments

315

VHDL
library IEEE;
use lEEE.std_Logic_1164.all;
entity TRI_STAT_1A Is

port(AB, C: in std_logic;
EnA, EnB, EnC: in std_logic;
Y: out std_logic);

end entity TRI_STATE_1A;

architecture LOGIC of TRI_STATE1A is
begin

Y <= A when (EnA =' 1') else 'Z';
Y <= В when (EnB = '1') else 'Z';
Y <= С when (EnC = ' 1') else 'Z';

end architecture LOGIC;

Verilog
module TRI_STATE_1A

(А, В, С EnA, EnB, EnC, Y);
input A, B, C, EnA, EnB, EnC;
output Y;

assign Y = EnA ? A : 1'b Z;
assign Y = EnB ? В : 1'b Z
assign Y = EnC? С : 1'b Z;

endmodule

HDL Chip Design

TRI_STATE_1B. This second model version uses three process statements (VHDL) or three always
statements (Verilog). Each is a separate concurrent statement containing an if statement that
infers a single tri-state buffer. The synthesis tools from VeriBest Incorporated allow WIRE-ORor
WIRE-AND logic to be synthesized. These options should not be used when tri-state buffers are
required. The synthesized circuit shows what happens if the WIRE-OR logic option is used.

Tri-state buffers from separate process statements

316

Chapter Ten: Tri-State Buffers

Example 10.2 Tri-state buffers from case and VHDL selected signal assignment

Tri-state buffers are modeled using the case statement and VHDL selected signal assignment.
Only five of the eight case choice values are explicitly defined for each of the five enable signals.
The remaining three case choice values leave the output in a high impedance state. The problem
is that the default branch of a case statement, others (VHDL) or default (Verilog), cannot be used
to both assign a "don't care" output value to reduce logic, and assign a high impedance output
value to infer a tri-state buffer.

Two sets of functionally equivalent models are shown. The first set of models below assigns a
high impedance default output value and does not use a "don't care" default assigned value.
The second set of models on the following page use a "don't care" default assigned output value
to ensure the inferred logic is minimized. It has a separate conditional assignment to assign a
high impedance output value to infer the tri-state buffer. It so happens that a logic 0 default for
the case statement yields a minimum circuit and both sets of models yield the same synthesis
circuit as shown.

Tri-state signals but no don't care default

317

HDL Chip Design

Tri-state signals with a don't care default

318

Chapter Ten: Tri-State Buffers

Example 10.3 Tri-state buffers using continuous signal assignments

One of five 3-bit input busses (BusA to BusE) can drive the 3-bit tri-state output bus, BusY. The five
enable inputs, (En_A to En_E), one for each bus, are guaranteed to be mutually exclusive in that
only one can be active high at any one time. When no bus is enabled, BusA defaults to drive BusY.
This ensures one, and only one, input bus is always driving the output bus, and that it is not left
in the high impedance state assuming there are no pull-up resistors in the cells of the inferred tri-
state buffer. If pull-up resistors are connected to the tri-state bus then it is not necessary to
ensure the bus is always driven in this way. The five assignments to BusY cannot be modeled
using if statements and combined in the same process.

Tri-state buffers from continuous signal assignments

319

Example 10.4 Synchronously clocked tri-state buffers from concurrent and
sequential statements

This example is similar to Example 10.3 in that there are five 3-bit busses connected to a single
3-bit output bus using tri-state buffers. The difference is that all enable signals to the tri-state
buffers are clocked through a flip-flop at the same time to minimize skew between switching tri-
state buffers. The tri-state buffers for BusA and BusB are inferred using concurrent conditional
signal assignments. The tri-state buffers for BusC, BusD and BusE are inferred from sequential
conditional signal assignments. Data from bus signals BusD and BusE are shown clocked through
a register.
Synchronously clocked enables to tri-state buffers

V H D L

library IEEE;
use lEEE.STD_Logic_1164.all, lEEE.Numeric_STD.all;
entity TRI_STATE_4 is

port (Clock: in std_logic;
BusA,BusB,BusC,BusD,BusE: in unsigned(2 downto 0);
En_A, En_B, En_С En_D, En_E: in std_logic;
BusY: out unsigned(2 downto 0));

end entity TRI_STATE_4;

architecture TRI_LOGIC of TRI_STATE_4 is
signal En_A_sync, En_B_sync, En_C_sync,

En_D_sync, En_E_sync: std_logic;
begin

process (Clock) continued

V e r i l o g

module TRI_STATE_4
(Clock,
BusA, BusB. BusC, BusD, BusE,
En_A, En_B, En_C, En_D, En_E,
BusY);

input Clock,En_A, En_B, En_C, En_D, En_E;
input [2:0] BusA, BusB, BusC, BusD, BusE;
output [2:0] BusY;

reg En_A_sync, En_B_sync, En_C_sync,
En_D_sync, En_E_sync;

reg [2:0] BusY_reg;
continued

V H D L

library IEEE;
use lEEE. std_logic_1164.all; IEEE Numeric_STD.all;
entity TRI_STATE_3 is

port (BusA, BusB, BusC,
BusD, BusE: in unsigned(2 downto 0);
En_A, En_B, En_C, En_D, En_E: in std_logic;
BusY: out unsigned(2 downto 0));

end entity TRI_STATE_3;

architecture TRI_LOGIC of TRI_STATE_3 is
begin

BusY <= BusA when En_A = '1' or (En_В = '0' and En_С = '0'
and En_D = '0' and En_E = '0')
else "ZZZ";

BusY <= BusB when En_B else "ZZZ":
BusY <= BusC when En_C else "ZZZ";
BusY <= BusD when En_D else "ZZZ";
BusY <= BusE when En_E else "ZZZ";

end architecture TRI_LOGIC;

V e r i l o g

module TRI_STATE_3 (BusA, BusB, BusC, BusD, BusE,
En_A, En_B, En_C,En_D, En_E,BusY);

input [2:0] BusA, BusB, BusC, BusD, BusE;
input En_A, En_B, En_C, En_D, En_E;
output [2:0] BusY;

assign BusY = En_A | (!En_В & !En_С & !En_D & !En_E) ?
BusA : 3'b Z;

assign BusY = En_B ? BusB : 3'b Z;
assign BusY = En_C ? BusC : 3'b Z;
assign BusY = En_D ? BusD : 3'b Z;
assign BusY = En_E ? BusE : 3'b Z;

endmodule

HDL Chip Design

Synchronously clocked enables to tri-state buffers

320

VHDL
begin

if rising_edge(Clock) then
En_A_sync <= En_A or(not En_B and not En_C and

not En_D and not En_E);
En_B_sync <= En_B;
En_C_sync <= En_C;
En_D_sync <= En_D;
En_E_sync <= En_E;

end if;
end process:

BusY <= BusA when En_A_sync = '1 ' else (others => 'Z');
BusY <= BusB when En_B_sync = '1 ' else (others => 'Z');

process (En_C_sync, BusC)
begin

if (En_C_sync = '1') then
BusY <= BusC;

else
BusY <= (others => 'Z');

end if;
end process;
process (Clock)
begin

if rising_edge(Clock) then
if (En_D_sync ='1') then

BusY <= BusD;
else

BusY <= (others => 'Z');
end if;

end if;
end process;
process (Clock)
begin

if risingedge(Clock) then
if (En_E_sync ='1') then

BusY <= BusE;
else

BusY <= (others => 'Z');
end if;

end if;
end process:

end architecture TRI_LOGIC;

Verilog
always @(posedge Clock)

begin
En_A_sync = En_A | (! En_B & ! En_C &

! En_D & I En_E);
En_B_sync = En_B;
En_C_sync = En_C;
En_D_sync = En_D;
En_E_sync = En_E;

end

assign BusY = En_A_sync ? BusA : 3'b Z;
assign BusY = En_B_sync ? BusB : 3'b Z;

always @(En_C_sync or BusC)
if (En_C_sync == 1)

BusY_reg = BusC;
else

BusY_reg = 3'b Z;

always @(posedge Clock)
if (En_D_sync == 1)

BusY_reg = BusD;
else

BusY_reg = 3'b Z;

always @(posedge Clock)
if (En_E_sync == 1)

BusY_reg = BusE;
else

BusY_reg = 3'b Z;

assign BusY = BusY_reg;

endmodule

11
Test Harnesses

Chapter 11 Contents

Introduction 323
Configurations (VHDL) 324
Assertion Statement (VHDL) 324
Special Simulation Constructs - System Tasks & Functions (Verilog) 324
Hardware Model Under Test 324
Vector Generation (Stimulus & Reference) 325

1. Vectors generated "on-the-fly" 326
a). Generating clock signals 326
b). Generating signals with a few transitions (resets) 327
c). Relative or absolute time generated signals 327
d). Repetitive stimulus using loops 334
e). Tri-state buffers for bidirectional signals 335
f). Example where all vectors generated on-the-fly 336

2. Vectors stored in an array 339
3. Reading test vector system files 341

Comparing Actual and Expected Results 344

322

Chapter Eleven: Writing Test Harnesses

Introduction

This chapter describes the common methods of writing test harnesses. A test harness is often
referred to as a test bench in the VHDL world and a test fixture in Verilog.

A test harness is a software program written in any language for the purposes of exercising and
verifying the functional correctness of a hardware model during simulation in a simulation
environment. As a result, test harness development should be driven by specification requirements
which accurately reflect the system environment. Designers typically spend as much time writing
test harnesses and verifying models as they do writing the hardware models themselves. The
expressive power of both VHDL and Verilog means two things:

• a test harness is normally written in the same HDL language as the hardware model
itself, the assumption made in this chapter, and contains no input or output ports,

• there is a wide variety of ways in which test harnesses may be coded.
The objectives of a test harness are to:

• instantiate the hardware model under test,
• generate stimulus waveforms and apply them to the hardware model in the form of

functional test vectors during simulation,
• generate expected waveforms in the form of reference vectors and compare them with

the output from the hardware model during simulation,
• possibly automatically provide a pass or fail indication automatically,
• consider simulation efficiency for long test sequences. That is, reduce actual processes

where possible and use on-off control of other stimulus and response mechanisms. For
VHDL, access types are slow, use signals where possible as they are statiscally allocated
at elaboration time.

The advantages of writing a test harness in the same HDL (VHDL or Verilog) as the hardware
model are:

• there is no need to learn a special simulation tool or special language,
• VHDL and Verilog are IEEE standardized languages so models and their associated test

harnesses should be transportable across different design tools,
• both languages have rich simulation semantics that can be exploited to the full in a test

harness.

The structure of a test harness, Figure 11. 1, shows its three constituent parts. It is sometimes
convenient to include other parts of the modeled hardware system within the test harness itself,
in order to aid the generation of stimulus vectors, reference vectors, or both.

Figure 11. 1 Test harness structure
There are both static and dynamic parts to a test procedure using a test harness. The static part
reads test vectors, applies them to the model under test and controls where results will go. The
dynamic part of a test harness is the part that changes when using the same test harness to
perform new test sequences.

323

HDL Chip Design

Configurations (VHDL)

A configuration is a separate design unit (see Figure 3. 1) that allows different architecture and
component bindings to be specified after a model has been analyzed and compiled, by a simulator
for example. There are two types; the configuration declaration and the configuration specification.

Chapter 5 discussed configuration declarations and configuration specifications. Configurations
are useful in test harnesses to configure different component (entity-architecture pair) bindings,
and to bind a particular entity and architecture design units together.

Assertion Statement (VHDL)

The assertion, assert statement is used to conditionally display a text string message to the
standard output, that is, the screen, during simulation. The assert statement checks the value of
a boolean expression, and if true does nothing. If the expression evaluates false, the assert
statement will report a user-specified text string. Note, this is the opposite from the branch
expression of an if statement which executes the branch when the condition is true, not false. A
designer can also specify one of four severity level messages with which the assert statement
applies. They are "note", "warning", "error" and "failure", see Table 11. 1. Do not over use as
they slow simulation.

Table 11. 7 Severity level in an assert statement

An example extracted from a model in this chapter is:
assert (AlarmEnable = '1')

report "ALARM_CLOCK Error: Alarm not on at 07: 00: 00 am"
severity failure;

Special Simulation Constructs - System Tasks & Functions (Verilog)

The Verilog LRM defines simulation specific system tasks and functions as, part of the language.
They perform activities such as monitoring and displaying simulation time and associated signal
values at a specific simulation time. All system tasks and functions begin with a dollar sign, for
example, $monitor. The Verilog standard permits tool vendors to define system tasks and functions
unique to their particular tool using the peripheral language interface (PLI). However, to maintain
portability between EDA tools only use the standard system tasks and functions defined as part
of the Verilog language, see Appendix B. This chapter uses only these language defined system
tasks and functions.

Hardware Model Under Test

Only one instantiation of the hardware under test is usually needed. However, with bus-orientated
ASICS becoming more and more prevalent, it may be convenient to instantiate more than one
instance of the model under test and use the extra models to aid vector generation. For instance,
a model with both serial and parallel input and output ports, could be easily tested by instantiating
two models and connecting the serial output from one back to the serial input of the other; and
likewise for the parallel ports.

324

Severity level
note
warning
error
failure

Use
General information about the condition of a model
Alert designers of potential problem conditions
Alert designers of conditions that will cause errors
Alert designers of conditions that have disastrous effects

Chapter Eleven: Writing Test Harnesses

Vector Generation (Stimulus & Reference)

As previously mentioned, a test harness provides stimulus vectors to the model under test in
order to exercise it during simulation. To automatically verify correct behavior, reference vectors
must also be provided to compare output vectors from the model under test, with the reference
vectors. In this case, an automatic pass or fail indication can be given. The extra time needed to
write reference vectors is well worth spending; the model may need to be simulated several times
before achieving the desired results. Another reason for generating reference vectors is that they
can be used to verify the synthesized circuit operates correctly and that dynamic timing delays
do not violate constraint specified timing. The synthesized circuit will include timing delays from
cells in the targeted technology library. A test harness can be easily modified to instantiate the
synthesized circuit, or possibly both the RTL model and synthesized circuit model at the same
time, in which case their output vectors can be compared with the reference vectors during a
single simulation. Automatic vector checking will save considerable time in the long run when
compared to repeatedly checking simulation results manually.

There are three ways a test harness can provide test vectors:

1. generate them "on-the-fly" from within a test harness,
2. read vectors stored as constants in an array and
3. read vectors stored in a separate system file.

The following three sections describe these three methods. For complex models requiring many
random type vectors, it may be better to store them in a separate system file. Adding extra
vectors to the vector file is easy and different sets of vectors in different system files can be easily
referenced as required from the same test harness.

1. Vectors generated "on-the-fly"

Test vectors that are generated "on-the-fly" are those that are not explicitly stored in an array or
separate system file. Signal waveforms (functional test vectors) can be generated "on-the-fly" in
many different ways from within a test harness as listed below and described in the following
sections.

a) use continuous loops for repetitive signals, such as clocks,
b) use simple assignments for signals with few transitions, such as resets,
c) use relative or absolute time generated signals, not both,
d) use loop constructs for repetitive signal patterns,
e) use procedures to generate specific waveforms,
f) use tri-state buffers to both stimulate and monitor bidirectional signals.

This section covers these different ways and advises on when to use each method.

a) Generating clock signals

It is far easier to keep the generation of clock signal waveforms, and possibly reset signal
waveforms, separate from other signal waveforms, even if all others are defined as vectors in a
separate system file. This shortens the vector width, but more importantly avoids the necessity
of having to define two vectors every single cycle of the clock signal. Clock signals can be
generated in several different ways as illustrated below. The following models show how clock
signals can be generated. Mote that manufacturing test vectors, that have been automatically
generated by an ATPG tool, will include any clock signals in the vector list.

325

HDL Chip Design

Clock waveform generation in a test harness (VHDL)

326

Chapter Eleven: Writing Test Harnesses

Clock waveform generation in a test harness (Verilog)

b) Generating signals with few transitions (resets)
Waveforms for signals with few transitions, such as reset signals, are easily generated as shown
below.

VHDL
Reset <= '1', '0' after 20 ns. '1' after 40 ns;

Concurrent signal ass ignment appearing in a test harness .

Verilog
initial initial

begin fork
Reset= 1'b 1; Reset =1'b 1;
#20 Reset = 1'b 0; #20 Reset = 1 'b 0;
#20 Reset=1'b 1; #40 Reset =1'b 1;

end join
Reset signal waveform generated from within an initial statement using a sequential
begin - end block or concurrent fork - join block. Signal waveforms are usually generated
in conjunction with other signal waveforms as shown in this chapter.

c). Relative or absolute time generated signals

The most straight forward method of generating "on-the-fly" stimulus is to implement procedural
stimulus and specify waveform changes as needed.

327

HDL Chip Design

Advantages of procedural stimulus are:

• easy to write,
• only input signals that change need to be listed at particular simulation times,
• can use relative or absolute simulation times for each input signal,
• input changes may be asynchronous, allowing different delays between each input signal

change.

The disadvantages of procedural stimulus is that large amounts of input stimulus requires lengthy
blocks of procedural code which can become unmanageable.

Procedural stimulus can specify waveform changes either relative or absolute to a specific
simulation time.

• Relative time. Signal waveforms that are specified to change at simulation times relative to
the previous time, in a time accumulated manner.

• Absolute time. Signal waveforms that are specified to change at simulation times absolute
to a particular simulation time corresponding to the start of a particular section of code.

Time generated signal waveforms are shown in the following test harness using both relative and
absolute specified timing. The test harnesses are for the alarm clock model shown in Chapter 12.

Relative time generated signal waveforms in a test harness (VHDL)

328

Chapter Eleven: Writing Test Harnesses

Relative time generated signal waveforms in a test harness (VHDL)

329

Relative time generated signal waveforms in a test harness (Verilog)
VERILOG

'timescale lns/100ps
modulo ALARM_CLOCK_REL_TIME_H;

// Data type declarations and clock waveform specification not shown
//
// Instantiate RTL model under test
//
ALARM_CLOCK ALARM_CLOCK_1

(Clock_1sec, Reset, LoadTime, LoadAlm,
SetSecs, SetMins, SetHours, Set_AM_PM,
AlarmMinsIn, AlarmHoursIn, Alarm_AM_PM_ln,
AlarmEnable,
Secs, Mins, Hours, AM_PM, Alarm, Flashing);

continued

HDL Chip Design

Relative time generated signal waveforms in a test harness (Verilog)

330

Chapter Eleven: Writing Test Harnesses

Absolute time generated signal waveforms in a test harness (VHDL)

331

V H D L
library IEEE;
use IEEE. STD_Logic_1164. all, IEEE. Numeric_STD. all;
use work. AM_PM_Package. all;

entity ALARM_CLOCK_ASB_TIME_H Is
end entity ALARM_CLOCK_ASB_TIME_H;

architecture TEST_HARN of ALARM_CLOCK_ASB_TIME_H is
- Data type and component declarations not shown

begin
-- Clock waveform specification not shown

— Instantiate RTL model under test

ALARM_CLOCK_1: ALARM_CLOCK
port map (Clock_1sec. Reset, LoadTime, LoadAlm,

SetSecs, SetMins, SetHours, Set_AM_PM,
AlarmMinsIn, AlarmHoursIn, Alarm_AM_PM_ln,
AlarmEnable,
Secs. Mins, Hours. AM_PM, Alarm. Flashing);

- Relative time specified signal changes

process
begin

Passed <='1';
- Set all hardware model inputs to zero at time 0

-Reset

Reset <= '0', - simulation time = 0
'1' after ClockPeriod_1sec. - simulation time = 1
'0' after (ClockPeriod_1sec * 2); - simulation time = 2

-- LoadTime

LoadTime <= '0', - simulation time = 0
'1' after (ClockPeriod_1 sec * 3), -- simulation time = 3
'0' after (ClockPeriod_1sec * 4); - simulation time = 4

- SetHours

SetHours <= 0; - simulation time = 0
6 after (ClockPeriod_1sec * 3), - simulation time = 3
0 after (ClockPeriod_1sec * 4); - simulation time = 4

- SetMins

SetMins <= 0, - simulation time = 0
59 after (ClockPeriod_1sec * 3), - simulation time = 3
0 after (ClockPeriod_1sec * 4); - simulation time = 4

-- SetSecs

SetSecs <= 0, - simulation time = 0
50 after (ClockPeriod_1sec * 3), - simulation time = 3
0 after (ClockPeriod_1sec * 4); - simulation time = 4

- Set_AM_PM

Set_AM_PM <= AM;

continued

HDL Chip Design

Absolute time generated signal waveforms in a test harness (VHDL)

332

VHDL

-- LoadAlm

LoadAlm <= '0'; - simulation time = 0
'1' after (ClockPeriod_1sec * 5), - simulation time = 5
'0' after (ClockPeriod_1sec * 6); - simulation time = 6

-- AlarmHoursIn

AlarmHoursIn <= 0;
7 after (ClockPeriod_1sec * 5). - simulation time = 5
0 after (ClockPeriod_1sec * 6); - simulation time = 6

— AlarmMinsIn

AlarmMinsIn <= 0; - simulation time = 0

-- Alarm_AM_PM_ln

Alarm_AM_PM_ln <= AM; - simulation time = 0

— AlarmEnable

AlarmEnable <= '0'; - simulation time = 0

-- Further testing not shown

end process;

-- Check alarm is still "off" at 6: 59: 59 am

process
begin

wait tor (ClockPeriod_1_sec * 12); - simulation time = 12
If (AlarmEnable /= '0') then

Passed <= '0';
end if;
assert (AlarmEnable = '0')

report "ALARM_CLOCK Error: Alarm already on at 06: 59: 59 am"
severity failure;

end process;

-- Check alarm is "on" at 7: 00: 00 am

process
begin

wait for (ClockPeriod_1sec * 13); - simulation time = 13
if (AlarmEnable /= '1') then

Passed <= '0';:
end if;
assert (AlarmEnable = '1')

report "ALARM_CLOCK Error: Alarm not on at 07: 00: 00 am"
severity failure;

end process;

-- Further testing not shown

end architecture TEST_HARN;

Chapter Eleven: Writing Test Harnesses

Absolute time generated signal waveforms in a test harness (Verilog)

333

HDL Chip Design

d. Repetitive stimulus using loops

Loop statements in both VHDL and Verilog provide a powerful means of generating stimulus that
has some form of repetitive sequence. The advantages are:

• easy to write,
• code is compact and avoids having to store large vector files,
• reduces simulation virtual memory requirements substantially.

The following example shows part of a test harness that generates a gray-code sequence for a
16-bit data bus. Gray-coded patterns are particularly useful in test applications as only one bit
changes between adjacent values in the sequence. This means specific errors are more easily
identified in either the hardware model or its physical implementation. In the code below, each
pattern in the sequence is held for 7 clock cycles. This means that if the sequence was modeled
as test vectors, including the clock signal, there would be at least 917504 (216 x 7 x 2) test
vectors instead of the few statements shown in this test harness.

Repetitive stimulus using loops

334

VHDL
library IEEE;
use IEEE. STD_Logic_1164.all,IEEE.Numeric_STD.all;

entity GRAY_SCALE_LOOP_H is
end entity GRAY_SCALE_LOOP_H;

architecture TEST_HARN of GRAY_SCALE_LOOP_H is

- Data type and component declarations not shown

begin

- Hardware model instantiation not shown

Clock <= not Clock after ClockPeriod / 2;

- 16-bit gray scale sequence

GRAY_SCALE:
process
begin

DataBus_16 <= (others => '01);
for N in 0 to 65535 loop

DataBus_16_var<=to unsigned(N, 16) xor
shift right(to unsigned(N, 16), 1);

for M in 1 to 7 loop
wait until rising_edge(Clock);

end loop;
wait until falling_edge(Clock);

end loop;

- Remainder of the test harness, including
- output verification procedure, not shown

end process GRAY SCALE;
end architecture TEST_HARN;

Verilog
'timescale ins/100ps

module GRAY_SCALE_LOOP_H;

// Data type declarations not shown

// Hardware model instantiation not shown

initial Clock = 0;
always #(ClockPeriod / 2) Clock = ! Clock;

// 16-bit gray scale sequence
//
initial

begin: GRAY_SCALE
integer N;
DataBus_16 = 0;
for (N = 0; N < 65535; N = N + 1)

begin
DataBus_16 = (N ^ (N>> 1));
repeat(7) @(posedge Clock);
©(negedge Clock);

end

//
// Remainder of the test harness not shown.
//

end

//
// Output verification procedure not shown
//

endmodule

Chapter E/even: Writing Test Harnesses

e. Tri-state buffers for bidirectional signals
Designs often have bidirectional ports which a test harness must both drive and read. In such a
case, the hardware model under test will have a means of controlling its direction. The model
may drive the signal as an output, or read it as an input, in which case the output driver is tri-
stated. The directional control signal is often not accessible as an output from the hardware
model at the (top) chip level. The test harness must contain bidirectional control code to fully
exercise the model under test.

There are many ways bidirectional logic can be modeled. The test harness below illustrates one
of the more common methods.

Bidirectional bus control in a test harness

335

HDL Chip Design

f) Example where all vectors are generated "on-the-fly"

The following example shows a test harness for the sequential Booth multiplier shown in Chapte
9. It is similar to the other test harnesses in this chapter, except that all test vectors are generated
"on-the-fly" from within the test harness. Pseudo-random test data is generated by using the
algorithm for a linear feedback shift register and Booth's algorithm is modeled within the test
harness in order to generate reference test vectors. Specific points of note for the VHDL and
Verilog test harnesses are summarized below.

VHDL test harness:
• A dedicated function called to_bitvector is declared (overloaded), and used to convert data

objects of type unsigned to type bit_vector. The purpose of this is to enable simulation
result data to be written to a text file using the VHDL package, TEXTIO, that is defined a:
part of the IEEE 1076 standard; see Appendix A. Fuction to_bitvector is already declared
in STD_LOGIC_1164 for std_logic_vector. As unsigned is "closely related" to
std_logic_vector a cast to std_logic_vector would preclude this overloading. (See also
page 328.)

• True random data could be automatically generated using the random number generator
package called "rnd2", which has been released to the public domain by McDonnell Douglas
Aerospace. This package is useful for automatically generating test vectors in a test harness

Verilog test harness:

• True random data could be automatically generated using the $random system function.

All stimulus and reference vectors generated "on-the-fly"

336

Chapter Eleven: Writing Test Harnesses

Ml stimulus and reference vectors generated on-the-fly

337

HDL Chip Design

All stimulus and reference vectors generated on-the-fly

338

Chapter Eleven: Writing Test Harnesses

All stimulus and reference vectors generated on-the-fly

339

2. Vectors stored in an array

Test vectors may be conveniently stored as constants in an array and defined within the test
harness itself rather than in a separate system file. Although this method is convenient for small
numbers of test vectors, it soon becomes less manageable as the number of test vectors increase.
For this reason, it is often better to put the vectors in a separate system file, see the following
section which covers the reading of test vector files.

The following test harness contains vectors stored in an array and tests the error detection and
correction model shown in Chapter 12.
Test harness using vectors stored in an array

HDL Chip Design

Test harness using vectors stored in an array

340

Chapter Eleven: Writing Test Harnesses

Test harness using vectors stored in an array

3. Reading test vector system files

Both input vectors and reference output vectors may be stored in tabular form in a system file.
Input vectors may be read from a system file and applied directly to the model under test during
simulation. The reference output vectors are also read from the file, but are used to compare
with the output vectors from the model under test. A benefit of writing a test harness that
accesses system files is that only one, relatively simple, generic test harness need be written.
Changing the tests being performed can be as simple as telling the test harness to read a different
test vector file. In VHDL, this means telling the simulator to simulate a different configuration. In
Verilog, it means supplying a different parameter name.

Repetitive signal waveforms, such as clock signals, and signals that only change once or twice,
such as resets, are better left out of the vector files. Such signals are easy to implement directly
in the test harness, will make the vector file less cluttered, and may reduce simulation time.

341

HDL Chip Design

a) VHDL

Files in the host environment are referenced as VHDL objects and must be of type file.

Example type TestVectorFileType is file of unsigned;

A file of type TestVectorFileType contains a sequence of values of type unsigned.

A file can be opened, closed, read, written to, or tested for an end-of-file condition using special
procedures and functions that are implicitly declared for every file type.

Package TEXTIO. This VHDL package is defined as part of the language and resides in a VHDL
library called STD, see Appendix A. To use this package, the following use clause must be included
at the top of a test harness.

use STD.TEXTIO. all;

Package TEXTIO defines a single file type called TEXT to represent a file consisting of variable length
strings. An access type, LINE, is also provided to point to such strings. Various overloaded
procedures called "READ" and "WRITE" allow the reading and writing of data to or from an object
of type LINE. All VHDL test harnesses shown in this chapter access system files using the types
and procedures defined in package TEXTIO. The READ and WRITE procedures in this package use
the vector data type bit_vector. If an equivalent package using unsigned and signed values is
available it may be more convenient to use that instead, and avoid the possible need to use
conversion functions between bit_vector and either signed or unsigned.

The following VHDL test harness illustrates a vector file being accessed using the "READ" function
defined in TEXTIO in order to read each line of the input vector file.

b) Verilog

Files in the host environment are referenced and applied to the hardware model under test using
one of two system tasks or a system function.

$readmemb - This system task reads a system file containing test vectors stored in a binary
format and which can be applied directly to the hardware model under test.

$readmemh - This system task reads a system file containing test vectors stored in a
hexadecimal format and which can be applied directly to the hardware
model under test.

$getpattem - This system function provides a fast means of propagating stimulus patterns
to a large number of 1 -bit wide (scalar) inputs. It reads stimulus patterns
that have been loaded into a memory using the $readmemb or $readmemh
system tasks. Except for exclusively long simulation runs, $getpattem is
rarely needed to be used.

The following Verilog test harness illustrates vector file access using $readmemb. The test vectors
file are in a format that can be read using $readmemb.

Vectors in separate system file

342

Chapter Eleven: Writing Test Harnesses

Vectors in separate system file

343

Test harness that reads vectors in separate system file

HDL Chip Design

Test harness that reads vectors in separate system file

Comparing Actual and Expected Results

Comparing of actual and expected vectors at specific times during simulation is an important
and often overlooked task. It is worth the extra effort of enhancing a test harness so that during
simulation, the test harness automatically compares output vectors from the model being tested
with expected reference vectors. A simple pass or fail indication will save lengthy manual checking
of simulation results every time a change is made to either the test harness or the model under
test, which necessitates resimulation. A fail indication should give the simulation time at which
the failure occurred, the actual vectors from the model under test, and the expected results. This
is achieved in VHDL using the assert statement to send messages to the screen, and the procedure
write to send messages to a system file. In Verilog, the system task $display is used to send
messages to the screen and the system task $fdisplay is used to send messages to a system file.

Examples incorporating automatic vector checking have been included in the test harnesses
already shown in this chapter. Section lc) showed an example (ALARM_CLOCK_H) where
simulation results are sent to a separate system file. Section le) showed an example (ALU_BIDR_H)
where simulation results are sent to the screen.

344

12
Practical
Modeling
Examples

HDL Chip Design

Chapter 12 Contents

1. Tri-Stated Pipeline Stage for Area Efficiency 347

2. Digital Alarm Clock . 350

3. Three-Way Round-Robin Arbiter 354

4. Greatest Common Divisor (GCD) 361

5. Error Detection and Correction (EDAC) 369

346

Chapter Twelve: Practical Modeling Examples

1. Tri-stated pipeline stage for area efficiency

Problem

Three 8-bit data busses A, B and C, have valid data arriving in three consecutive clock cycles.
Design a model that computes the sum of the three pairs of busses, that is, (A + B), (A + C), and
(B + C) and supply the results on a single 9-bit output bus in three consecutive clock cycles. A
separate input signal is at logic 1 for one clock cycle to indicate when data on the first bus, A, is
valid. Data on the other two busses, B and C, then become valid on the following two consecutive
clock cycles.

An output control signal should be at logic 1 for one clock cycle to signify the start of the three
clock cycles when the three summed output results are available.
Chip area is critical and must be kept to an absolute minimum. Timing and any latent delay is
not an issue. Data on the input busses is arriving late in the clock cycle so must be stored in
registers before being processed through any combinational logic.

Solution

As chip area is critical, it is necessary to use only one adder. Also, instead of multiplexing
different input bus combinations to the single adder a single tri-stated bus and a single 2-1
multiplexer is used. The solution architecture is shown graphically in Figure 12. 1.

Figure 12. 1 Modeled architecture for the tri-stated pipelined stage

The three input buses are first clocked into registers as required, for example, A to A Hold. The
control path provides the tri-state buffer enable signals EnA, EnB and EnC to allow each of the
three pieces of stored data onto the internal tri-state bus in turn. Signal EnA is arranged so that it
is always be at logic 1 when EnB and EnC are at logic 0 so that the tri-state bus is always driven.
The enable signals are derived directly from the output of flip-flops in order to minimize skew.

The control path allows the three stored input busses, A_Hold, B_Hold and C_Hold onto the
internal tri-state bus M in the order A, B, C. Bus M provides one input to the adder and M delayed
one clock cycle, M_Delayed, provides the second input to yield the summations (A + B) and (B +
C). In order to generate the last sum, (A + C), A_Hold must be delayed by one clock cycle,
A_Delay, in order to allow the next new value of A from the start of a subsequent sequence of
three values, to be passed to M and M_Delay.

347

HDL Chip Design

Simulated signal waveforms, Figure 12. 2, indicate how three sets of three back-to-back values
are added in consecutive sequences of (A + B), (B + C) and (C + A). The pipe-lined arrangement
means there is a latent delay of four clock cycles from valid data arriving on A to the first valid
summed data, A + B, arriving on the output Y. Therefore, a four clock cycle delay exits between
InDataReady switching to logic 1 and its corresponding output OutDataReady switching to logic
1.

HDL code. Inferred flip-flops for signals InDataReady_Delay, EnA, EnB, EnC and EnA_Delay are all
inferred from within the same process/always statement. In VHDL, signals are used to feed data
from one flip-flop to the next. In Verilog, non-blocking procedural assignments are used for the
same reason. Similarly M_Delay and Y are generated from within a separate process/always
statement. Two addition operators are used, but resource sharing ensures that only one adder is
actually synthesized.

Figure 12. 2 Signal waveforms for the tri-stated pipelined stage

348

Chapter Twelve: Practical Modeling Examples

Tri-stated pipeline stage for area efficiency

349

HDL Chip Design

2. Digital Alarm Clock

Problem

Design a digital alarm clock that has the following terminal (port) signals:

Inputs

Outputs

Clock_1sec, Reset,
LoadTime, SetHours, SetMins, SetSecs, Set_AM_PM,
LoadAlm, AlarmHoursIn, AlarmMinsIn, Alarm_AM_PM_ln,
AlarmEnable

Hours, Mins, Secs, Hours, AM_PM, Flashing, Alarm

The required characteristics of the digital alarm clock are:
• timing is to be controlled from a 1 second input clock, Clock_lsec,
• to operate on a 12 hour basis with separate am/pm control,
• the value of time to be set when LoadTime is high,
• the alarm time to be set when LoadAlm is high,
• the Alarm output should go high when the current value of time is equal to the alarm time,

the alarm should stay on until either the AlarmEnable signal goes low, which equates to
turning the alarm off, or after period of 1 minute has elapsed when left on.

• if power is lost, and then powered up again, it should display the time 00: 00: 00 and the
"Flashing" signal should be activated high. This causes the display to flash and so indicate
that the alarm clock's time needs to be set. The Flashing signal should stay high and the
clock's time should increase from zero until a new time is set.

Solution

First, identify what storage elements are required. A total of 29 flip-flops are needed to hold the
current clock time and set alarm time. The constituent flip-flops are listed in Table 12. 1.

This problem is most easily solved by splitting the problem into two; one for the clock time and
the other for the alarm time. The VHDL and Verilog models show this split. In the VHDL model,
separate process statements model the clock time and alarm time generation. In the Verilog
model, a single always statement is used to model the clock time, but two always statements are
needed to implement the alarm time because both synchronous and combinational output logic
is needed.

The first process/always statements instantiate the 18 flip-flops needed to hold the current value
of time and compute its next incremental value. The word "time" in this context means hours,
minutes, seconds plus the AM/PM indication. It uses nested if statements, the outermost of
which waits for a rising edge on the 1 second clock signal Clock_lsec. If a rising edge has
occurred, the time and Flashing signals are updated. Notice that no matter which branch is taken
through the nested if statements, new values for Hours, Mins, Secs, AM_PM and Flashing are always
defined and avoids extra unneeded latches being inferred.

350

Chapter Twelve: Practical Modeling Examples

Clock Time

Alarm Time

Function

Clock time - Seconds
Clock time - Minutes
Clock time - Hours
Clock time - AM/PM
Time not set (Flashing)

Alarm time - minutes
Alarm time - Hours
Alarm time - AM/PM

Range

(range 0 to 59)
(range 0 to 59)
(range 0 to 11)
(1 bit toggle)
(1 bit toggle)

(range 0 to 59)
(range 0 to 11)
(1 bit toggle)

No. of bits

6
6
4
1
1

18

6
4
1

11

Total flip-flops needed = 29

= Flip-flops needed

= Flip-flops needed

Table 12. 1 Constituent flip-flops for the alarm clock

The second part of the VHDL and Verilog models hold the alarm time (AlarmHours, AlarmMins and
Alarm_ AM_PM) and checks to see if the current time is equal to the alarm time. Notice that
seconds are not used for the alarm time. If the two time values compare and the AlarmEnable
signal is at logic 1 the Alarm signal is activated. The alarm will stay on until turned off by the
AlarmEnable changing to logic 0 or for a maximum of 1 minute if AlarmEnable stays at logic 1.

VHDL Alarm clock package for AM/PM type

351

VHDL

package AM_PM_Package is
type AM_PM_type is (AM, PM);
function "not" (Value: AM_PM_type) return AM_PM_type;

end;

package body AM_PM_Package is
function "not" (Value: AM PM type) return AM PM type is
begin

if Value = AM then
return PM;

else
return AM;

end if;
end "not";

end AM_PM_Package;

Verilog

Verilog does not support
enumerated data types.

HDL Chip Design

Digital alarm clock

352

Chapter Twelve: Practical Modeling Examples

Digital alarm clock

353

HDL Chip Design

3. Three-Way Round-Robin Arbiter

Problem

Three independent microprocessors (A, B and C) are required to share access to the same
synchronous RAM. The memory is 1024 x 8-bits in size and requires a single read/write signal.
The following data is therefore needed from each microprocessor.

Address - 12-bits
Write Data - 8-bits
Read Data - 8-bits
Read/write - 1-bit

Design an arbiter that accepts data from each microprocessor and arbitrates which one is granted
access to the RAM at any one time. Each microprocessor will initiate a RAM request signal when
it wants access to the RAM and will deactivate it when finished. If more than one microprocessor
requests the bus at the same time, access should be granted on a "round robin" basis so that no
one microprocessor is locked out while another has continuous access. Continuous access is
granted to any one microprocessor for a period of time, up to a number of clock cycles separately
programmable from microprocessor A data bus. When a programmable "watch dog" time has
not been set, a 64 clock cycle delay should default.

Tri-state buffers, not multiplexers, are needed for speed purposes.

Solution

The "round robin" priority access to the RAM, from each microprocessor, is easiest modeled
using a state machine. A "watch dog" timer (counter) is used to deny a microprocessor RAM
access when it has had access for more than 64 clock cycles or a number of clock cycles stored
in TimeOutClockPeriods.

Figure 12. 3 shows the arrangement of microprocessors, arbiter and RAM; it also shows the
modeled structure of the arbiter. The state machine, see Figure 12. 4, has four states: Idle,
Grant_A, Grant_B and Grant_C. The "round robin" priority access is Grant_A, Grant_B, Grant_C
and back to Grant_A again should more than one microprocessor request access at the same
time. The structure of the state machine, Figure 12. 5, shows the enable signals EnA1, EnA2, EnBl,
EnB2, EnCl and EnC2 generated separately from the microprocessor acknowledge signals AckA,
AckB and AckC. The enable signals are generated directly from the next state logic through
extra, non-state machine flip-flops, and drive the enable inputs to the tri-state buffers directly
with no extra loading; this reduces skew. Each pair of enable signals, for example EnAl and
EnA2, are identical, but are derived from separate flip-flops. Enable signals with a number 1
suffix (EnAl, EnBl and EnCl) are used to enable the tri-state buffers for the address busses, while
enable signals with a number 2 suffix (EnA2, EnB2 and EnC2) are used to enable the tri-state
buffers for the data busses and read/write signals. This reduces the loading on each enable
signal and so also reduces skew.

354

Chapter Twelve: Practical Modeling Examples

Figure 12.3 Microprocessor/arbiter/RAM configuration and modeled arbiter structure

355

HDL Chip Design

Figure 12. 4 State diagram for arbiter control logic

Figure 12. 5 State machine for arbiter logic control

356

Chapter Twelve: Practical Modeling Examples

Three-way round-robin arbiter

357

HDL Chip Design

Three-way round-robin arbiter

358

Chapter Twelve: Practical Modeling Examples

Three-way round-robin arbiter

359

HDL Chip Design

Three-way round-robin arbiter

360

Chapter Twelve: Practical Modeling Example.

4. Greatest Common Divisor (GCD)

Problem

The problem consists of three parts:

1. Design three algorithmic level models of an algorithm that finds the Greatest Common Divisor
(GCD) of two numbers in the software programming language, "C", and the two hardware
description languages, VHDL and Verilog. Use common test data files to test the algorithm
where practically possible. Neither the VHDL nor Verilog models need to contain timing. A1
three models should automatically indicate a pass or fail condition.

2. Model the GCD algorithm at the register transfer level for synthesis in both VHDL and Verilog.
The model must be generic so that it can be instantiated with different bit widths. A signal
called Load should indicate when input data is valid, and a signal called Done should be
provided to signify when valid output data is available. The generic model should be verified
with 8-bit bus signals.

3. Write VHDL and Verilog test harnesses for the two models that 1) use the same test data files
used by the algorithmic level models, and 2), instantiates both the RTL and synthesized gate
level models so that they are simulated and tested at the same time.

Solution

The solution is broken into three parts corresponding to those of the problem.

1. Designing algorithmic level models in C, VHDL and Verilog

Figure 72. 6 GCD Algorithm

361

The algorithm used to find the greatest common
divisor between two numbers is indicated by the
flow chart; Figure 12. 6.

The algorithm operates by continually
subtracting the smaller of the two numbers, A or
B, from the largest until such point the smallest
number becomes equal to zero. It does this by
continually subtracting B from A while A is greater
than or equal to B, and then swapping A and B
around when A becomes less than B, so that the
new value of B can once again be continually
subtracted from A. This process continues until
B becomes zero.

HDL Chip Design

C model

The C model first declares integer values for the two inputs A and B, the computed output of the
algorithm Y, and the reference output Y_Ref. Integer Y_Ref is the expected GCD result and is used
to compare with the computed result from the algorithm. The integer Swap is also declared and
used in the algorithm to swap the two inputs A and B. A final integer, Passed, is used to indicate
a pass (1) or fail (0) condition.

A file pointer (file_pointer) is defined in order to access the test data file "gcd_test_data. txt". It is
opened for read mode only. Integer Passed is initially set to 1 and only set to 0 if the algorithm
fails.

Reading test data file. The test data file contains three numbers on each line corresponding to
values of A, B and Y_Ref, respectively. A while loop is used to 1) read each line of the test data
file, 2) assign the three values to A, B and Y_Ref, respectively, 3) use A and B to compute the
GCD output Y, and 4) compare Y with Y_Ref. This while loop continues while there is test data in
the test data file.

Algorithm implementation. The initial if statement is an extra check that both A and B are not
zero. The algorithm is then modeled using two while statements. The first, outermost, while
statement checks to see if B has reached zero; if it has, the GCD has been found. The second,
innermost while statement checks to see if A is greater than or equal to B; if it is, it continually
subtracts A from B and puts the result back in A. When A becomes less than B the innermost
while loop completes, A and B are swapped using Swap, and the outer most while statement
rechecks B to see if it has reached zero.

Testing the result The algorithm is tested using an If statement which tests to see if the computed
result Y is the same as the expected result Y_Ref. If they are different an error message is printed
to the screen and Passed assigned the value 0. Finally, when all tests have completed and Passed
is still equal to 1 a passed message is printed to the screen.

VHDL Model

The VHDL model follows exactly the same principle as defined for the C model above. When
reading the integer values from the test date file they must be read and assigned to a variable;
they cannot be read and assigned to a signal. As this is an algorithmic level model defined in a
single entity it contains no inputs or outputs, nor does it contain any internal signals or associated
timing. All computations use variables; variables are read from the test data file, the algorithm
computes the result and variables are written to a results file.

Verilog Model

The Verilog model also follows the same principle as defined above for the C model. A major
difference in this model is that Verilog cannot read decimal integer values from a system file.
Data read from a system file must be: 1) read using one of the two language define system
tasks, $readmemh or $readmemb and 2) stored in a memory, which has specific width and
depth. This limits any read data to being in either hexadecimal or binary format. In this case, a
separate test data file is used "gcd_test_data_hex. txt" which has the test data specified in
hexadecimal format.

362

Chapter Twelve: Practical Modeling Examples

GCD test data files

363

21 49 7
25 30 5
19 27 1
40 40 40

250 190 10
5 250 5

15 31 7 // Decimal 21 49 7
19 1E 5 // Decimal 25 30 5
13 1B 1 // Decimal 19 27 1
28 28 28 // Decimal 40 40 40
FA 6E A // Decimal 250 190 10
5 FA 5 // Decimal 5 250 5

GCD modeled at the algorithm level

HDL Chip Design

GCD modeled at the algorithm level

2. Designing RTL level hardware models in VHDL and Verilog

The RTL level models infer the architectural structure illustrated in Figure 12. 7. The models have
additional inputs and outputs over and above that of the algorithmic models. They are inputs
Clock, Reset_N and Load, and the output Done. When Load is at logic 1 it signifies input data is
available on inputs A and B, and are loaded into separate registers whose output signals are
called A_hold and B_hold. The extra output signal, Done, switches to a logic 1 to signify the
greatest common divisor has been computed. It takes a number of clock cycles to compute the
GCD and is dependent upon the values of A and B.

Figure 12. 7 Inferred architecture of RTL level GCD model

364

Chapter Twelve: Practical Modeling Examples

The models are broken down into three process/always statements.

First process/always statement LOAD_SWAP. This statement infers two registers which operate as
follows:

1) When Reset_N is at logic 0, A_hold and B_hold are set to zero.
2) When not 1) and Load is at logic 1, data on A and B is loaded into A_hold and B_hold.
3) When not 1) or 2) and A_hold is less than B_hold, values on A_hold and B_hold are swapped,

that is, A_hold and B_hold are loaded into B_hold and A_hold respectively.
4) When not 1), 2) or 3), A_hold is reloaded, that is, it keeps the same value. The value of

A_hold - B_hold, from the second process/always statement, is loaded into B_hold.
Second process/always statement SUBTRACT_TEST. The first if statement tests to see if A_hold is
greater than or equal to B_hold. If it is, the subtraction, (A_hold - B_hold), occurs and the result
assigned to A_New ready to be loaded into B_hold on the next rising edge of the clock signal. If
A_hold is less than B_hold, then subtraction cannot occur and A_New is assigned the value B_hold
so that a swap occurs after the next rising edge of the clock signal. The second If statement
checks to see if the value of B_Hold has reached zero. If it has, signal Done is set to logic 1 and
the value of A_Hold is passed to the output Y through an inferred multiplexer function.

It is a requirement of the problem to synthesize the generic model with 8-bit bus signals. This is
easily achieved in the Verilog model by setting the default parameter value Width to 8. This
means it does not need to be separately instantiated before it can be synthesized and have the
correct bit width. This is not the case in VHDL, which uses a generic. The value of the generic is
only specified when the model is instantiated. Although the VHDL model will be instantiated in
the test harness, the test harness is not synthesized. Therefore, in order to synthesize an 8-bit
GCD circuit a separate synthesizable model must be used which instantiates the RTL model so
that it can assign the generic, Width, to be 8. This extra model only contains one component
instantiation and is not included in this text. The simulation test harness does not need to use
this extra model, as it too will specify the generic, Width, to be 8.

GCD modeled at the RTL level

365

HDL Chip Design

GCD modeled at the RTL level

3. Designing VHDL and Verilog test harnesses for the RTL level models

The VHDL and Verilog test harnesses instantiate both the RTL and synthesized gate level models
as required. The RTL model, called GCD, is instantiated with the instance name GCD_1. The
synthesized gate level model, called GCD_GL, is instantiated with the instance name GCD_GLJ.
Notice bus signals in the RTL model are expanded to individual signals in the gate level model
and so are individually connected in its instantiation. The width of the bus signals are specified
to be 8, that is, the generic Width in the VHDL test harness, and the overloaded parameter value
Width in the Verilog test harness. Note, the default parameter value of Width in the Verilog RTL
level model is already 8, so overloading it with a new value of 8, is not necessary in this particular
instance, although it is shown in the example for completeness.

These test harnesses read the same test data files as the algorithmic models shown earlier. The
common input signals to both the RTL and gate level instances, that is, Clock, Resset_N, Load, A
and B, plus the separate output signals, Y from the RTL model, and Y_gl from the gate level
model, are all declared and connected appropriately. A free running clock is defined and has
period, ClockPeriod, defined to be 20ns.

366

Chapter Twelve: Practical Modeling Examples

The final process/initial statement, 1) applies the test data to the two models, 2) waits an unknown
number of clock cycles until signal Done switches to a logic 1, and 3) tests that the signal
Done_gl, is also at logic 1 and that both Y and Y_gl are the same as Y_Ref. If the signals are not as
expected an error message is written to the system file "gcd_rtl_test_results. txt" together with the
expected and actual results. If the signals are as expected, the next test is performed. When all
tests are complete, and Passed still has a value of 1, a "passed" message is written to the system
file "gcd_rtl_test_results. txt".

Test harness for RTL and synthesized gate level

367

HDL Chip Design

GCD modeled at the RTL level

368

Chapter Twelve: Practical Modeling Examples

GCD modeled at the RTL level

5. Error Detection And Correction (EDAC)

Problem

A microprocessor system that processes vital data needs to employ an automatic error detection
and correction (EDAC) mechanism between the microprocessor and its associated memory in
order to enhance reliability.

Design VHDL and Verilog models of a circuit that sits between the microprocessor and memory
which performs flow-through error detection and correction of data written to, and read from the
memory. Single bit errors should be detected and corrected. Two bit errors should be detected,
but do not have to be corrected. A two bit status flag should be given to indicate the type of
error, or if no error has occurred. This allows the microprocessor to take appropriate action in
the extremely rare case of two bits being in error at the same time. There is a single read/write
signal that should be used to control the direction of the two bidirectional data busses;
microprocessor and memory. Ignore the address bus; model only the purely combinational
EDAC logic between the bidirectional microprocessor and memory data busses. The vital data
from the microprocessor is 16-bits wide.

Algorithm

A simple parity bit is the most common method of detecting errors, however, the erroneous bit
is not known so cannot be corrected. Multiple parity check bits are needed which check the

369

HDL Chip Design

parity of groups of bits, and which are stored along with the data in memory. When data is read
back from memory, the associated parity bits are also read and compared with a new set of
check bits that are generated from the read data. If the newly generated check bits do not
compare with the stored parity bits, they generate a unique pattern called a SYNDROME and
means an error has occurred. This syndrome can be used to identify the erroneous bit which can
then be corrected.

For this model, we will use the modified Hamming code developed by R W Hamming*. Data
which is N bits wide requires K parity bits to be stored along with the data where

N <= 2K - 1 - K

If the bits are numbered in sequence, those bits that are a power of two are reserved for the parity
bits. Figure 12. 8 shows how the 16-bit data (D0-D15) is stored along with a total of 6 parity bits
(P0-P5) to form a 22-bit word that is stored in memory.

D = Data Bit
P = Parity Bit

Figurel2. 8 Configuration of 16-bit data and 6 bit parity stored as a 22-bit word in memory

The five parity bits P0-P4 make up the parity check bits for single bit error detection and correction.
They are generated as follows:

P0 - XOR of data bits (0, 1, 3, 4, 6, 8, 10, 11, 13, 15)
P1 - XOR of data bits (0, 2, 3, 5, 6, 9, 10, 12, 13)
P2 = XOR of data bits (1, 2, 3, 7, 8, 9, 10, 14, 15)
P3 = XOR of data bits (4, 5, 6, 7, 8, 9, 10)
P4 - XOR of data bits (11, 12, 13, 14, 15)

The term "modified Hamming code" refers to the addition of an extra parity bit (P5) that is used
to detect double errors, but which cannot be corrected. It is an overall parity of the 16 data bits
(D0-D15) and 5 parity bits P0-P4, that is,

P5 - XOR of (D0-D15, P0-P4)
When the 22-bit word is read from memory the syndrome word is formed by comparing (XORing)
the original parity bits (P0-P4) stored in memory with the newly generated parity bits (P0-P4)
from the stored data (D0-D15). If they compare, no error has occurred. If they are different, the
value of the syndrome indicates the position number of the error bit in the 22-bit word as indicated
in Figure 12. 8.

Table 12. 2 shows how the type of error is detected based on the value of the syndrome and
overall parity bit, P5.

Table 72. 2 EDAC Error Type Detection
•Described in Computer Engineering Hardware Design by M. Morris Mano.

370

Syndrome P5
(5-bits). (1-bit)

0 0
/ = 0 1
/ = 0 0
0 1

Error type

No error
Single error '
Double error
P5 error

Comments

Is Correctable. (Syndrome equal to erroneous bit position)
Cannot be corrected
Is Correctable.

Position number
Bit number
Data/Parity Bit

22 21
21 20
P5 D15

20 19 18 17
19 18 17 16
D14 D13 D12 D11

16 15 14 13
15 14 13 12
P4 D10 D9 D8

12 11 10 9
11 10 9 8
D7 D6 D5 D4

8 7 6 5
7 6 5 4
P3 D3 D2 D1

4 3 2 1
3 2 1 0
P2 DO P1 P0

Chapter Twelve: Practical Modeling Examples

Solution

The architecture used to implement the algorithm is illustrated in Figure 12. 8. When the
microprocessor writes data to memory, this EDAC model generates the 6 parity bits (P0-P5) and
stores them along with the data in a 22-bit word. When the 22-bit word is read back from
memory, the same parity generation circuit is used to regenerate the parity bits. These parity bits
are compared with the actual parity bits from memory in the "Generate Syndrome" block and
the syndrome is generated. This syndrome is then used in the "Correct Data" block to correct
any errors that may have occurred. The corrected 16-bit data is then read by the microprocessor.
The syndrome, and overall parity check bit, is used to generate the two bit error type according
to Table 12. 2.

Table 12. 3 Parity bit generation for data of ABCDHEX

Figure 12. 9 shows the 22-bit data that is stored in memory and includes the overall parity bit
(P5). Figure 12. 9 indicates how this word is read back from memory, but with bit position
number 19 in error.

371

Figure 12. 8 Implemented architecture for EDAC algorithm

Example of Corrected Data

Suppose the following 16-bit word is to be stored in memory.

Data Bit
Value

15 14 13 12
1 0 1 0

11 10 9 8
1 0 1 1

7 6 5 4
1 1 0 0

3 2 1 0
1 1 0 1 = ABCDHEX

The parity bits stored along with this data would be as indicated in Table 12. 3.

Parity Bit

P0 = XOR of
P1 = XOR of
P2 = XOR of
P3 = XOR of
P4 = XOR of

Micrepr

15 14 13 12
1 0 1 0

1 1
1 0

1 0

1 0 1 0

ocessor Data Bi

11 10 9 8
1 0 1 1

1 0 1
0 1
0 1 1
0 1 1

1

Ts (ABCDHEX)

7 6 5 4
1 1 0 0

1 0
1 0

1
1 1 0 0

3 2 1 0
1 1 0 1

1 1 1
1 1 1
1 1 0

Parity Bit
{No error)

P0 = 1
P1 = 0
P2 = 0
P3 = 0
P4 = 1

HDL Chip Design

Position Number
Bit Number
Data/Parity bits

Write Data
(15BC65HEX)

Read Data
(11BC65HEX)

22 21
21 20
P5 D15

0 1

0 1

20 19 18 17
19 18 17 16
D14 D13 D12 D11

0 1 0 1

0 0 0 1

A

16 15 14 13
15 14 13 12
P4 D10 D9 D8

1 0 1 1

1 0 1 1

12 11 10 9
11 10 9 8
D7 D6 D5 D4

1 1 0 0

1 1 0 0

8 7 6 5
7 6 5 4
P3 D3 D2 D1

0 1 1 0

0 1 1 0

4 3 2 1
3 2 1 0
P2 DO P1 P0

0 1 0 1

0 1 0 1

Bit in error when data read back from memory
Figure 12. 9 Memory write data (15BC65HEX) and erroneous read data (11BC65HEX)

The data bits (D0-D15) generate new parity bits and are compared with the parity bits from
memory. The result is a syndrome value of 19 indicating that the bit in position number 19 is in
error. This can be seen as 13HEX in the simulated waveforms, see Figure 12. 10. Memory bit
position 19 contains data bit D13 and means the value 8BCDHEX would have been read back by
the microprocessor if it had not been corrected back to ABCDHEX.

Figure 12. 70 Signal waveforms for EDAC write and read cycles

372

Chapter Twelve: Practical Modeling Examples

HDL Code for EDAC

The HDL code is partitioned into process/always statements according to the architecture shown
in Figure 12. 8. There are 8 parts to the architecture, however there are 9 process/always statements
in the HDL models. The reasons for the difference is summarized as follows.

1. Tri-state buffers are implied using continuous signal assignment statements and so are
not contained in a process/always statement.

2. The two VHDL processes named PR_MemData and PR_MemWriteData and equivalent
Verilog always blocks named BK_MemData and BK_MemWriteData do not imply logic,
they simply reassign signal names.

3. The box in Figure 12. 8 named "Correct Erroneous Data" represents two process/always
statements.

Table 12. 4 summarizes the link between the process/always statement in the code and the block
in the structural diagram; Figure 12. 8.

1
2
3
4
5
6
7
8
9
10

process/always name

PR_MemData/BK_MemData
PR_Ham_Select/BK_HamSelect
PR_GenParity/BK_GenParity
PR_OverallParity/BK_OverallParity
PR_MemWriteData/BK_MemWriteData
PR_GenSyndrome/BK_GenSyndrome
PR_GenErrorType/BK_GenErrorType
PR_DecodeSyndrome/BK_DecodeSyndrome
PR_CorrectErrors/BK_CorrectErrors

n/a

Block name from Figure 12. 8

n/a
2x1 16-bit multiplexer
Generate 6 parity check bits
Overall parity check bit

n/a
Generate syndrome
Error type detection
Correct erroneous data (1)
Correct erroneous data (2)
Tri-state buffers for microprocessor
and memory busses.

Table 12. 4 Link between HDL code and block diagram Figure 12. 8

The different multiple input XOR operations needed in this model are defined using separate
function statements.

VHDL Specific. Uses a VHDL package to define the enumerated data type for the type of EDAC
error, ErrorTypeType, and the XOR function definitions. These functions make the code in the
EDAC model shorter and easier to comprehend.

Verilog Specific. Four define compiler directives are used to represent the four EDAC error type
conditions. The XOR function definitions are placed in a separate system file and referenced
using the include compiler directive. When the model is synthesized the file pointed to by the
include compiler directive is replaced by the 'include statement itself, so like the VHDL code, it
makes the main body of the model shorter and easier to comprehend.

373

HDL Chip Design

Common XOR functions used in the EDAC model

374

V H D L

library IEEE:
use lEEE. std_logic 1164. all, lEEE. Numeric_STD. all;
package ERRDET_COR_PKG is

type ErrorTypeType is (NoError, SingleError, DoubleError, OverallParityErtor);
function XOR5 (A0. A1. A2, A3. A4: std_logic) return std_logic;
function XOR6 (A0, A1, A2, A3, A4, A5: Std_logic) return std_logic;
function XOR7 (A0, A1, A2, A3, A4, A5, A6: Std logic) return Std logic;
function XOR9 (A0,A1,A2,A3,A4,A5,A6,A7, A8, A9: std_logic) return Std_logic;
function XOR10 (A0,A1,A2,A3,A4,A5,A6,A7,A8, A9: Std_logic) return Std_logic;
function XOR16 (A: unsigned(l5 downto 0)) return std_llogic;

end package ERRDET_COR_PKG;

package body ERRDET_COR_PKG is
function XOR5 (A0, A1, A2, A3, A4: std_logic) return std_logic is
begin

return ((A0 xor A1) xor
(A2 xor A3))xor
(A4);

end function XOR5;

function XOR6 (A0. A1, A2. A3. A4, A5: std_logic) return std_logic is
begin

return ((A0 xor A1) xor
(A2 xor A3))xor
(A4 xor A5):

end function XOR6;

function XOR7 (A0, A1, A2, A3, A4, A5, A6: std_logic) return Std_logic is
begin

return ((A0 xor A1) xor
(A2 xor A3)) xor

((A4 xor A5) xor
(A6));

end function XOR7;

function XOR9 (A0, A1, A2, A3, A4, A5, A6, A7, A8: std_logic) return std_logic is
begin

return ((A0 xor A1) xor
(A2 xor A3)) xor

((A4xorA5) xor
(A6 xor A7)) xor
(A8);

end function XOR9;

function XOR10 (A0,A1,A2,A3,A4,A5, A6, A7, A8, A9: std_logic) return std_logic is
begin

return ((A0 xor A1) xor
(A2 xor A3)) xor

((A4 xor A5) xor
(A6 xor A7)) xor
(A8xorA9) ;

end function XOR 10;

function XOR16 (A: unsigned(15 downto 0)) return std_logic Is
begin

return (((A(0) xor A(l)) xor
(A(2) xor A(3))) xor

((A(4)xor A(5)) xor
(A(6) xor A(7)))) xor

(((A(8)xor A(9)) xor
(A(10)xorA(l l)))xor

((A(12)xorA(13)) xor
(A(14)xorA(15))));

end function XOR16;
end package body ERRDET_COR_PKG;

Verilog

function XOR5;
Input A0, A1, A2, A3, A4;
XOR5 = ((A0 ^ A1) ^

(A2 ^ A3)) ^
(A4);

endfunction

function XOR6;
input A0, A1, A2, A3, A4, A5;
XOR6= ((A0^ A1) ^

(A2 ^ A3)) ^
(A4 ^ A5);

endfunction

function XOR7;
input A0, A1, A2, A3, A4, A5, A6;
XOR7 = ((A O ^ A 1) ^

(A2 ^ A3)) ^
((A4 ^ A5) ^
(A6));

endfunction

function XOR9;
input A0,A1,A2,A3,A4,A5,A6,A7,A8;
XOR9= ((A0 ^ A1) ^

(A2 ^ A3)) ^
((A4 ^ A5) ^
(A6 ^ A7)) ^
(A8) ;

endfunction

function XOR 10;
input A0,A1,A2,A3,A4,A5,A6,A7,A8,A9;
XOR10= ((A0 ^ A1) ^

(A2 ^ A3)) ^
((A4 ^ A5) ^

(A6 ^ A7)) ^
(A8 ^ A9);

endfunction

function XOR16;
input [15: 0] A;
XOR16= (((A[0] ^ A [l]) ^

(A[2] ^ A[3])) ^
((A[4] ^ A[5]) ^
(A[6] ^ A[7]))) ^

(((A[8] ^ A[9]) ^
(A[10] ^A[11])) ^

(([12]^A[13]) ^
(A(14] ^A[15])));

endfunction

Chapter Twelve: Practical Modeling Examples

Error Defection and Correction (EDAC)

375

VHDL

library IEEE;
use lEEE. std_logic_1164. all, IEEE. Numeric_STD. all;
use work. ERRDET_COR_PKG. all;

entity ERRDET_CORRECTION is
port (ReadWrite_b: in std_logic;

ProcData: inout unsigned(15 downto 0);
MemData: inout unsigned(21 downto 0);
ErrorType: out ErrorTypeType);

end entity ERRDET_CORRECTION;

architecture RTL of ERRDET_CORRECTION is
signal ProcReadData, D, DataMemData:

unsigned(15 downto 0);
signal MemWriteData, DecodeSyn:

unsigned(21 downto 0);
signal D0_16Parity, OverallParity, P_Parity: std_logic;
signal P, - Ham Parity

ParityMemData: unsigned(5 downto 0);
signal Syndrome: unsigned(4 downto 0);

begin

- Assign separate 16-bit data and 6-bit
- parity from combined 22-bit memory
- read data bus.
- No physical logic synthesized.

PR MemData: process (MemData)
begin

DataMemData(0) <= MemData(2);
DataMemData(l) <= MemData(4);
DataMemData(2) <= MemData(5);
DataMemData(3) <= MemData(6);
DataMemData(4) <= MemData(8);
DataMemData(5) <= MemData(9);
DataMemData(6) <= MemData(lO);
DataMemData(7) <= MemData(l 1);
DataMemData(8) <= MemData(12);
DataMemData(9) <=MemData(13);
DataMemData(lO) <= MemData(14);
DataMemData(11) <= MemData(16);
DataMemData(12) <=MemData(17);
DataMemData(13) <= MemData(18);
DataMemData(14) <= MemData(19);
DataMemData(15) <= MemData(20);

ParityMemData(0) <= MemData(0);
ParityMemData(l) <= MemData(l);
ParityMemData(2) <= MemData(3);
ParityMemData(3) <= MemData(7);
ParltyMemData(4) <= MemData(15);
ParityMemData(5) <= MemData(21);

end process PR_MemData;

continued

Verilog

'define NoError 2'b 00
"define SingleError 2'b 01
'define DoubleError 2'b 10
'define OverallParityError 2'b 11

module ERRDET_CORRECTION
(ReadWrite_b, ProcData, MemData, ErrorType);

input ReadWrite_b;
inout (15: 0) ProcData;
Inout (21: 0) MemData;
output (1: 0) ErrorType;

wire (15: 0) ProcData;
wire (21: 0) MemData
reg (1: 0) ErrorType;

integer N;
reg (15: 0) ProcReadData, D, DataMemData;
reg (21: 0) MemWriteData, DecodeSyaCorrectedData;
reg D0_16Parity, OverallParity, P_Parity;
reg (5: 0) P, / /Ham Parity

ParityMemData;
reg (4: 0) Syndrome;

/ /
// Function Definitions
/ /
'include "errdet_cor_fns. v"

/ /
// Assign separate 16-bit data and 6-bit
// parity from combined 22-bit memory
// read data bus.
// No physical logic synthesized.
/ /
always @(MemData)

begin: BK_MemData
DataMemData (0) = MemData(2);
DataMemData (1) = MemData (4);
DataMemData (2) = MemData (5);
DataMemData (3) = MemData(6);
DataMemData (4) = MemData(8);
DataMemData (5) = MemData(9);
DataMemData (6) =MemData(10);
DataMemData (7) = MemData(11);
DataMemData(8) = MemData (12);
DataMemData(9) =MemData(13);
DataMemData(10) =MemData(14);
DataMemData(1) =MemData(16);
DataMemData(l2) = MemData(l 7);
DataMemData(13) =MemData(18);
DataMemData(14) =MemData(19):
DataMemData(15) = MemData(20);

ParityMemData (0) = MemData (0);
ParityMemData(1) =MemData(l);
ParityMemData (2) = MemData(3);
ParityMemData(3) = MemData(7);
ParityMemData (4) =MemData(15);
ParityMemData (5) = MemData(21);

end

continued

HDL Chip Design

Error Defection and Correction (EDAC)

376

V H D L

-- Select 16-bit processor (write) or
-- memory (read) from which to generate
- Hamming code parity bits.

PR_HamSelect: process (ReadWrite_b. ProcData,
DataMemData)

begin
if (ReadWrite_b = '0') then

D <= ProcData:
else

D <= DataMemData;
end if;

end process PR_HamSelect;

- Generate Hamming Code parity bits

PR_GenParity: process (D)
begin

-- Five bit parity for single error detection
P(0) <= XOR10(D(0), D(l), D(3), D(4), D(6), D(8), D(10),

D(11), D(13), D(15));

P(l) <= XOR9(D(0), D(2), D(3), D(5), D(6), D(9), D(10),
D(12), D(13));

P(2) <= XOR9(D(1), D(2), D(3), D(7), D(8), D(9), D(10),
D(14), D(15));

P(3) <= XOR7(D(4), D(5), D(6). D(7), D(8), D(9), D(10));

P(4) <= XOR5(D(11), D(12), D(13), D(14), D(15));

- Parity of 16-bit data
D0_16Parity <= XOR16(D);

- Additional parity bit required for double error
- detection
P(5) <= XOR6(D0_16Parity, P(0), P(1), P(2), P(3), P(4));

end process PR_GenParity;

- Generate overall parity bit from 22-bit memory read
- data (Needed for error type)

PR_OverallParity: process (ParityMemData, D0_16Parity)
begin

P_Parity <= XOR6(ParityMemData(0).
ParityMemData(1).
ParityMemData(2),
ParityMemData(3),
ParityMemData(4).
ParityMemData(5));

OverallParity <= D0_16Parity xor P_Parity;
end process PR_OverallParity;

continued

Verilog

// Select 16-bit processor (write) or
// memory (read) from which to generate
// Hamming code parity bits.

always @(ReadWrite_b or ProcData or DataMemDota)
begin: BK_HamSelect

if (ReadWrite_b == 0)
D = ProcData;

else
D = DataMemData;

end

II Generate Hamming Code parity bits
//
always @(D)

begin: BK_GenParity
// Five bit parity for single error detection
P[0] = XOR10(D[0], D[1], D[3], D[4], D[6], D[8], D[10],

D [1] , D[13], D[15]);

P[1] = XOR9(D[0], D[2], D[3], D|5], D[6], D[9], D[10],
D[12], D[13]);

P[2] = XOR9(D[1], D[2], D[3], D[7], D[8], D[9], D[10],
D[14], D[15]);

P[3] = XOR7(D[4], D[5], D[6], D[7], D[8], D[9], D[10]);

P[4] = XOR5(D[11], D[12], D[13], D[14], D[15]);

// Parity of 16-bit data
D0J6Parity = XOR16(D);

// Additional parity bit required for double error
// detection
P[5] = XOR6(D0_16Parity, P[0], P[1], P[2], P[3], P[4|);

end

// _

// Generate overall parity bit bit from 22-bit memory read
// data (Needed for error type)
//
always @(ParityMemData or D0_16Parlty)

begin: BK_OverallParity
P_Parity = ((ParityMemData[0] ^

ParityMemData[1]) ^
(ParityMemData[2] ^
ParityMemData[3])) ^

(ParityMemData[4] ^
ParityMemData[5]);

OverallParity = D0_16Parity ^ P_Parity;
end

continued

Chapter Twelve: Practical Modeling Examples

Error Detection and Correction (EDAC)

377

V H D L

-- Assign 22-bit memory write data
- from 16-bit processor data and 6 bit parity.
- No physical logic synthesized.

PR_MemWriteData: process (P, ProcData)
begin

MemWriteData(0) <= P(0);
MemWriteData(1) <=P(1);
MemWriteData(2) <= ProcData(0);
MemWriteData(3) <= P(2);
MemWriteData(4) <= ProcData(1);
MemWriteData(5) <= ProcData(2):
MemWriteData(6) <= ProcData(3);
MemWriteData(7) <= P(3);
MemWriteData(8) <= ProcData(4);
MemWriteData(9) <= ProcData(5);
MemWriteData(10) <= ProcData(6);
MemWriteData(11) <= ProcData(7);
MemWriteData(12) <= ProcData(8);
MemWriteData(13) <= ProcData(9);
MemWriteData(14) <= ProcData(10);
MemWriteData(15) <= P(4);
MemWriteData(16) <= ProcData(11);
MemWriteData(17) <= ProcData(12);
MemWriteData(18) <= ProcData(13);
MemWriteData(19) <= ProcData(14);
MemWriteData(20) <= ProcData(15);
MemWriteData(21) <= P(5):

end process PR_MemWriteData;

- Generate syndrome
- XOR of HAM code parity bits from memory
-- and actual parity bits from memory

PR_GenSyndrome: process (ParityMemData(4 downto 0).
P(4 downto 0))

begin
Syndrome(4 downto 0) <= ParityMemData(4 downto 0)

xor P(4 downto 0);
end process PR_GenSyndrome;

- Detect error type

PR_GenErrorType: process (ReadWrite_b, Syndrome,
OverallParity)

begin
if (ReadWrite_b = '1') then

If (Syndrome = "00000" and OverallParity = '0') then
ErrorType <= NoError;

elsif (Syndrome /= "00000" and OverallParity = '1') then
ErrorType <= SingleError;

elsif (Syndrome /= "00000" and OverallParity = '0') then
ErrorType <= DoubleError;

else
ErrorType <= OverallParityError;

end if;
else

ErrorType <= NoError;
end if;

end process PR_GenErrorType;

continued

Verilog

// Assign 22-bit memory write data
// from 16-bit processor data and 6 bit parity.
// No physical logic synthesized.
//
always @(P or ProcData)

begin: BK_MemWriteData
MemWriteData[0] = P[0];
MemWriteData[1] = P[1];
MemWriteData[2] = ProcData[0];
MemWriteData[3] = P[2];
MemWriteData[4] = ProcData[1];
MemWriteData[5] = ProcData[2];
MemWriteData[6] = ProcData[3];
MemWriteData[7] = P[3J;
MemWriteData[8] = ProcData[4];
MemWriteData[9] = ProcData[5];
MemWriteData [10] = ProcData[6];
MemWriteData[11] = ProcData[7];
MemWriteData[12] = ProcData[8];
MemWriteData[13] = ProcData[9];
MemWrlteData[14] = ProcData[10];
MemWriteData[15| = P[4];
MemWriteData(16] = ProcData[11];
MemWriteData[17] = ProcData[12];
MemWriteData[18] = ProcData[13];
MemWriteData[19] = ProcData[14];
MemWriteData[20] = ProcData[15];
MemWriteData|21] = P[5];

end

//
// Generate syndrome
// XOR of HAM code parity bits from memory
// and actual parity bits from memory
//
always @(ParityMemData[4: 0] or P[4: 0])

begin: BK_GenSyndrome
Syndrome[4: 0] = ParityMemData[4: 0] ^ P[4: 0];

end

//
// Detect error type
II

always @(ReadWrite_b or Syndrome or OverallParity)
begin: BK_GenErrorType

If (ReadWrite_b == 1)
if (Syndrome == 5'b 0 && OverallParity == 0)

ErrorType = 'NoErron
else if (Syndrome != 5'b 0 && OverallParity == 1)

ErrorType = ' SingleError;
else if (Syndrome 1= 5'b 0 && OverallParity == 0)

ErrorType = 'DoubleError;
else

ErrorType = 'OverallParityError;
else

ErrorType = 'NoError;
end

continued

378

HDL Chip Design

Error Detection and Correction (EDAC)
VHDL

- Decode syndrome
- Input: Syndrome (Number representing bit error position)
- Output: Decoded syndrome. (If any of 22-bits is 1 an
- error has occured in that bit position)

PR_DecodeSyndrome: process (Syndrome)
begin

for N in 1 to 22 loop -- N = bit position
if (Syndrome = to_unsigned(N, 22)) then

DecodeSyn(N -1) <= '1 ' ;
else

DecodeSyn(N -1) <= '0';
end if;

end loop;
end process PR_DecodeSyndrome;

- Correct any errors in 22-bit read data
- and assign processor read bits.

PR_CorrectErrors: process (MemData, DecodeSyn)
variable CorrectedData: unsigned(21 downto 0);

begin
C o r r e c t e d D a t a : = MemData xor DecodeSyn;
ProcReadData(0) <= CorrectedData(2);
ProcReadData(1) <= CorrectedData(4);
ProcReadData(2) <= CorrectedData(5);
ProcReadData(3) <= CorrectedData(6);
ProcReadData(4) <= CorrectedData(8);
ProcReadData(5) <= CorrectedData(9);
ProcReadData(6) <= CorrectedData(10);
ProcReadData(7) <= CorrectedData(11);
ProcReadData(8) <= CorrectedData(12);
ProcReadData(9) <= CorrectedData(13);
ProcReadData(10) <= CorrectedData(14);
ProcReadData(11) <= CorrectedData(16);
ProcReadData(12) <= CorrectedData(l 7);
ProcReadData(13) <= CorrectedData(18);
ProcReadData(14) <= CorrectedData(9);
ProcReadData(15) <= CorrectedData(20);

end process PR_CorrectErrors;

- Assign microprocessor and memory
- tri-state busses.

ProcData <= ProcReadData when ReadWrite_b = ' 1 ' else
(others => 'Z'):

MemData <= MemWriteData when ReadWrite_b = "0' else
(others => 'Z'):

end architecture RTL;

Verilog

/ /
// Decode syndrome
// Input: Syndrome (Number representing bit error position)
// Output: Decoded syndrome. (If any of 22-bits is 1 on
// error has occured in that bit position
//
always @(Syndrome)

begin: BK_DecodeSyndrome
for (N = 1; N <= 22; N = N + 1) // N = bit position

if (Syndrome == N)
DecodeSyn(N-1) = 1;

else
DecodeSynf(N -1) = 0;

end

/ /
// Correct any errors in 22-bit read data
// and assign processor read bits.
/ /
always @(MemData or DecodeSyn)

begin: BK_CorrectErrors
CorrectedData = MemData ^ DecodeSyn;
ProcReadData (0) = CorrectedData (2);
ProcReadData(1) = CorrectedData(4);
ProcReadData(2) = CorrectedData(5);
ProcReadData (3) = CorrectedData(6);
ProcReadData(4) = CorrectedData(8);
ProcReadData (5) = CorrectedData(9);
ProcReadData (6) =CorrectedData(10);
ProcReadData(7) = CorrectedData(11)j;
ProcReadData (8) =CorrectedData(12);
ProcReadData(9) =CorrectedData(13);
ProcReadData(10) = CorrectedData(14);
ProcReadData(11) =CorrectedData(16);
ProcReadData (12) = CorrectedData(17);
ProcReadData(13) =CorrectedData(18);
ProcReadData(14) = CorrectedData(19);
ProcReadData (15) = CorrectedData(20);

end

/ /
// Assign microprocessor and memory
// tri-state buses.
/ /
assign ProcData = ReadWrite_b ? ProcReadData: 16'bZ;
assign MemData = ReadWrite_b ? 22'bZ: MemWriteData;

endmodule

Glossary

aggregate (VHDL)
A set of comma-separated elements enclosed within
parentheses. Either elements of a record or array type
may be grouped to form an aggregate which has a single
composite value. Individual elements of an aggregate
may be specified using either named or positional
notation.

algorithmic level (VHDL & Verilog)
The level at which an HDL model is described. It
describes the functional behavior hardware in terms of
signals and their response to various stimulus. Hardware
behavior is described algorithmically and has no regard
to how it will be implemented structurally and so is not
synthesizable by RTL synthesis tools.

algorithmic level synthesis
The process of converting an HDL model described at
the algorithmic level to either the RTL level, or all the
way down to the gate level. It includes such processes
as scheduling, resource allocation, resource binding,
etc.

allocation
A process performed by a synthesis tool that assigns a
particular operation in an HDL model to a piece of
hardware.
See also resource allocation.

Application-Specific Integrated Circuit (ASIC)
A device (chip) whose initial stages of manufacture are
design independent and the final photographic mask
process is design dependent.

architecture body (VHDL)
One of the five design units defined by VHDL. It contains
the internal functional description (behavior), of a block
using one of the following modeling styles:

Structural - a set of interconnected
components

Dataflow - a set of concurrent assignment
statements

RTL - a set of sequential assignment
statements

Combined - combination of the above three.

array types (VHDL)
An array type (or array subtype) is one of two forms of
a composite type, a record type being the other. Objects
declared as being of an array type contain a collection
of elements that are of the same type. The array types
may be constrained (fixed number of elements) or
unconstrained (generic number of elements). Any
unconstrained array types must be constrained as
subtypes in synthesizable models.

-- constrained array type
type Bus8 Is array (7 downto 0) of unsigned;
type ROM is array (0 to 31) of Bus8;
-- unconstrained array type
type FIFO_Type Is array (Bus8 range <>);

380

behavior
How an HDL model operates (behaves) functionally.
The behavior of a model should be the same regardless
of the abstract level at which it is modeled, i. e.
algorithmic, RTL, data flow, logic, or gate level.

Backus-Naur (VHDL)
Refers to a semi-algebraic notation for documenting the
syntax of a programming language. The VHDL
Language Reference Manual uses this notation; see
Appendix A.

base type (VHDL)
All type and subtype declarations have a base type.
The base type of a type declaration is the type itself
while the base type of a subtype declaration is the type
of the type declaration of which it is a subtype.

automatic test pattern generator (APTG)
The automatic generation of manufacturing test vectors
by a CAE software tool.

ASIC
See Application-Specific Integrated Circuit.

assertion violation (VHDL)
Describes when the condition in an assertion statement
evaluates false.

association list (VHDL & Verilog)
VHDL. Provides the mapping between formal or local:
generics, port or subprograms parameter names and
local or actual names or expressions.

Verilog. The same VHDL principle applies to Verilog
though is not normally referred to as an association
list.

ATPG
See automatic test pattern generator.

attribute (VHDL)
Attributes a particular characteristic to a named item.
There are five kinds: function, range, signal, type and
value. An attribute can be attributed to one of five kinds
of item: type (scalar, composite or file), array, signal
(scalar or composite), or entity. There are 36 predefined
attributes, 10 of which are typically supported for
synthesis; see Appendix A.

A constrained subtype array can be declared, which is
of an unconstrained base type, and so is also supported
for synthesis.

- constrained subtype array of an unconstrained base
- type
type FIFO_Type Is array (Bus8 range <>);
subtype FIFO_Type64 Is FIFO_Type (0 to 63):

HDL Chip Design

binary representation
The way in which binary numbers, positive and negative,
are represented. When a binary number is positive, the
sign is represented by 0 in the most significant bit and
the magnitude by a positive binary number in the
remaining bits. When the number is negative, the sign
is represented by 1 in the most significant bit, but the
remaining bits may be represented in one of three
possible ways: signed-magnitude, signed-1's
complement or signed-2's complement.
(See signed-magnitude, signed-1 's complement and signed-
2's complement)

Glossary

BIST
See Built-in Self-Test.

block statements (Verilog)
Used to group two or more statements together so that
they act syntactically like a single statement. There are
two types of block statement; the sequential block which
is supported by synthesis and delimited by the keywords
begin and end, and the parallel block which is not
supported by synthesis and delimited by the keywords
fork and join.

blocking procedural assignment (Verilog)
An assignment that must be executed before subsequent
statements may be executed within the same procedural
flow of statements in a sequential begin-end block. A
blocking procedural assignment uses the delimiter "=".

#3 Y1 = A1 + B1;
#1 Y2 = A2 + B2; // Y2 assigned after 4 time units

Two dependent blocking signal assignments in a
sequential always block will synthesize to a single flip-
flop, i. e.

always @(posedge Clock)
begin

Sig1 = A & B;
Y1 = Sig1 &C: //single flip-flop inferred

end

boolean algebra
Mathematical equations representing combinational
logic.

Built-in Self-Test (BIST)
The extra circuitry added to a circuit that enables the
circuit to test itself.

CDFG
See control-data flow-graph.

cell
A logic function in the cell library defined by the
manufacturer of an ASIC or FPGA.

cell library
The collective name for a set of logic functions defined
by the manufacturer of an ASIC or FPGA. A cell library

381

defines the type of cells that can be used in the design
of a particular device for which the library applies.
Simulation and synthesis tools will use the information
in a cell library when simulating and synthesizing a
design's model.

character literal (VHDL)
A single ASCII symbol enclosed in single quotes (').
They are case sensitive, that is, 'Y' is not the same as 'y'
despite VHDL being case insensitive to object names.

checksum
The final cyclic-redundant check value stored in a linear-
feedback shift-register (or its software equivalent). Also
known as a "signature" in functional test applications.

comment (VHDL & Verilog)
Phrases or sentences that are used within a model's
code purely for documentation purposes. They make a
model clearer and easier to read and are ignored by
design tool compilers reading them unless it is a
comment directive.
VHDL. Comments start with a double dash (--) on a per
line basis. Any text appearing after the double dash,
and the end of the line, is ignored by a compiler.
- This is a comment
Y <= A + B; — This is a comment at the end of a line

Verilog. Comments can start with a double slash (//) on
a per line basis like VHDL. Alternatively they can start
with slash-star (/*) and carry over to multiple lines and
ended with star-slash (*/).
/* This Is a
comment that crosses
several lines */
// This is a comment
Y <= A + B; // This is a comment at the end of a line

(See also comment directive)

comment directive (VHDL & Verilog)
Standard comments that are recognized by a particular
design tool, or tools, in order to direct it how a certain
statement, or statements, should be interpreted. For
example, synthesis tools will typically recognize certain
comments as directives to implement a carry-look-
ahead or ripple-carry type adder.
Y <= A + B; --$ RPL (Ripple carry adder - VHDL)
Y = A + B; //$ RPL (Ripple carry adder • Verilog)

compiled simulation
A type of simulation where a model is compiled prior to
being simulated; the other form of simulation is
interpreted simulation. The compilation process means
it takes longer for a simulator to prepare a model (build)
ready for simulation, but means the simulation run time
is faster than interpreted simulation.
(See also interpreted simulation)

HDL Chip Design

complement numbers
See signed one's complement and signed two's
complement.

component declaration (VHDL)
Declares both the name and the interface of a
component. The interface specifies the mode and the
type of parts. Component declarations are not necessary
in Verilog.

composite type (VHDL)
A data type that is composed of elements of a single
type and which are grouped together under a single
identifier. The elements may be of a single type (an
array type) or different types (a record type).

concatenation (VHDL & Verilog)
The combination of two or more elements into one larger
element. VHDL elements include identifiers, arrays, etc.,
while Verilog elements are of any of the net data types
(e. g. wire) or of type reg.
Y <= A & B; // VHDL concatenation
Y = {A. B}; //Verilog concatenation

concurrent statements (VHDL & Verilog)
Statements that are executed in parallel and so their
textual order within a model has no effect on the implied
behavior.

configuration declaration (VHDL)
Provides a means of deferring the binding of architecture
bodies, and any components in the structural hierarchy
of that architecture, to an entity.

configuration specification (VHDL)
Used to bind component instances to specific design
entities.

constant declaration (VHDL)
One of four kinds of data object (signal, variable and
file being the other three), that are declared to have a
fixed value that cannot be changed by any statement
during simulation or synthesis.
(See also deferred constant).

constraints
The desired area, speed and possibly power performance
characteristics used by a synthesis tool during any level
of optimization.

continuous assignment (VHDL & Verilog)
Assignments that are always driven during simulation.
VHDL. The syntax of continuous and conditional
assignments are the same.

Verilog. The syntax of continuous assignments differ
from procedural assignments in that they are preceded
by the reserved word assign.
assign Y = A & B;

382

design for test
Design for test (DFT) is the process of designing and
adding extra hardware in an HDL model or its associated
synthesized circuit for the purposes of improving the
ability of manufacturing test vectors to stimulate all
circuit nodes and monitor potential manufactured chip
defects.

design constraints
See constraints.

DeMorgan transformation
The transformation of boolean expressions, representing
boolean logic, into an alternative, and often more
convenient, form. For example, the boolean equation:
v = (a + b + c)

is transformed to:
y = (a. b. c)

This technique is used extensively during logic
optimization.

delta delay (VHDL)
The delay between two simulation cycles that occur at
the same simulation time.
(See also iteration).

data path
The path through which information (data) is processed
through a circuit. A data path normally refers to the
path through successive blocks of combinational and
sequential logic, though can also mean the path through
blocks of combinational logic only.

data object (VHDL & Verilog)
A place holder for holding data values of a specific type
in an HDL model. A data object is created using an
object declaration.

VHDL. There are four specific kinds of object; constant,
variable, signal or file, and must be of a specific type;
for example, integer, unsigned, etc.

Verilog. Data objects are any of the net data types (wire,
tri, wand, etc.), parameter, register (reg) or integer.

control path
The path of intermediate control signals through control
logic used to provide necessary control signals to a data
path.

Control-Data Flow-Graph (CDFG)
A synthesis internally compiled graphical representation
of a design. A control-data flow-graph represents design
behavior and not circuit structure. Both algorithmic and
RTL synthesis tools may use a control-data flow-graph
technique. Algorithmic synthesis tools manipulate
control-data flow-graphs when performing scheduling,
allocation and high-level structural partitioning, etc.

Glossary

design unit (VHDL)
Any set of constructs that may be independently
analyzed and inserted into a design library. The VHDL
design units that may be declared are:
entity
architecture
configuration
package
package body

DFT
See design for test.

discrete type (VHDL)
A discrete type is a data type whose elements consist
of a one dimensional array, that is, an enumerated type
or an array type.

driver (VHDL & Verilog)
Contains the projected output waveform for a data
object. A data object can have multiple assignments
which can each schedule values to be assigned an object
at different simulation times. Each scheduled value is a
driver.

dynamically reconfigurable hardware
A circuit, that when implemented in a chip, can be
customized "on-the-fly" while remaining resident in the
system. An example is a single circuit that can perform
multiplication, division, addition or subtraction
dynamically as needed.

elaboration (VHDL & Verilog)
A stage performed by a simulator or synthesizer when
an HDL model is compiled. Elaboration consists of:
• expanding and linking the separately analyzed units,

if any, and building the design hierarchy.
• allocating storage for the object's values etc.
(simulation only).

• any other local specific preparation required for
simulation or synthesis.

element
The constituent port of a type. This means the element
of an array or record type (VHDL) or a vector or memory
type (Verilog).

enumeration literal (VHDL)
One of the individual values of an enumeration type.

- contains three enumeration literals Red. Green and
- Blue
type Color is (Red. Green. Blue);

equation flattening
A logic optimization process that takes a group of
hierarchical sum of product equations and merges them
together. Generally, the process is constrained to avoid
what is known as combinational explosion. Field Programmable Gate Array (FPGA)

A programmable logic device (chip) that can be
programmed in the field for a particular application. All

383

fan-out
The output capacitance seen by the output driver from
a cell.

fan-in
The input capacitance on the input to a cell as seen by
the driving source of that signal.

factorization
A process performed by a logic optimizer that identifies
and removes one or more common factors from a set
of one or more boolean equations to form a multilevel
set of equations. The equations represent logic, so
factorization means the sharing of logic which will reduce
area. This area reduction may be at the expense of
increasing the delay through the logic since the depth
of logic from the input to output is increased.
Factorization of the following two boolean equations
produces four equations as shown.

y1 = a. b. c + a. b. d n = c + d
y2 = a. b + c+d m = a. d

y1 = n. m
y2 = n + m

expression (VHDL & Verilog)
The mathematical formula on the right hand side of an
assignment statement, that is, after the assignment
operator.

execute
To execute means to evaluate assignment statements
in an HDL model.

event scheduling
When a signal assignment contains a delay the assigned
signal value is scheduled to occur at some simulation
time in the future. This process is called scheduling an
event.

Y <= A and B after 2ns; - VHDL
Y = #2 (A & B); // Verilog

event (VHDL & Verilog)
Refers to a change in a signals value in terms of
simulation.

equivalent gates
The term "equivalent gates" is used as a guide to
compare the size of circuits. The size of an equivalent
gate is referenced to the size of a two input NAND gate.
A two input NAND gate is normalized to the equivalent
of one equivalent gate and all other cells in the library
are given an equivalent gate size with reference to the
two input NAND gate. A circuit's total equivalent gate
size is the parameter often used by a synthesizer when
performing gate-level area optimization.

HDL Chip Design

chip manufacturing processes are independent of the
particular circuit being implemented, so it is more generic
and cheaper than standard cell devices. Logic gates
are laid out in a fixed and structured way on the silicon.
This means circuit density will not be as high as standard
cell devices.
(See also gate array and standard cell)

finite state machine
See state machine.

flip-flop
An edge-sensitive memory device (cell).

floorplan
This is the area on a silicon chip not including the input,
output and bidirectional buffers around its periphery.

formal verification
A method of mathematically verifying the logic
synthesized from a hardware model. Formal verification
is the process of building an internal mathematical model
of logic contained in an HDL model and comparing it
with the actual synthesized logic using specialized
algorithms. Especially useful in the verification of large
complex systems where excessive functional verification
vectors would be needed using a simulation verification
technique.

FPGA
See Field Programmable Gate Array.

full scan
Where every flip-flop and latch in a design is transposed
to being a scan type flip-flop or latch in order to improve
the accessibility of internal nodes to manufacturing test
vectors and the observability of nodes for monitoring
possible manufacturing defects. Full scan makes writing
manufacturing test vectors considerably shorter and
easier to generate than if partial or no scan was used.
Full scan manufacturing test vectors are easily generated
automatically by test synthesis tools. The reduced
number of test vectors, compared to those needed with
no scan or partial scan, means the important test cycle
per chip is shortened. In many cases full scan can be
overly expensive in terms of extra area on the silicon
chip.

function (VHDL & Verilog)
One of the two kinds of subprogram that is common to
both VHDL and Verilog. A function can: only model
combinational logic, must have a least one input, must
not contain timing and returns a single value. Functions
are called from operands within an expression. The
function call operand is substituted with the returned
value from the function.

384

heuristic
In general computing terms, this means proceeding to
a solution by trial and error. Specifically, it relates to a
logic optimizer's trial and error method of using different
algorithms to iteratively improve a circuits structure in
order to optimally fit desired specified constraints.

HDL
See Hardware Description Language.

Hardware Description Language (HDL)
A software computer language used for the purposes
of modeling hardware circuits.

glue logic
Logic used to interface more complex circuits
together.

generic (VHDL)
Used to pass static information of a particular type to
any of the following. A generic is determinable at
elaboration time.

• an entity declaration,
• a component declaration,
• a component instantiation,
• a configuration specification or
• a configuration declaration.

Generics are commonly used in synthesizable models
to parameterize bus widths.

gate level optimization
Optimization performed on the model of a circuit
described at the gate level.

gate level
A low-level behavioral model of a circuit described in
terms of gate primitives from a technology specific
library, or possibly from some generic technology
independent library of gates.

gray code
A sequence of binary values where adjacent values
change by only one bit; for example, 00, 01, 11, 10.

gate array
An application-specific integrated circuit in which the
manufacturer prefabricates uncustomized devices
containing arrays of unconnected basic cells organized
in groups. A designer specifies the function of the device
in terms of cells from a cell library and their
interconnection. The manufacturer then customizes the
device by generating the masks used to create the
metallization layers which form the interconnections.

functional test vectors
The input stimuli used during simulation to verify an
HDL model operates functionally as intended.

Glossary

host environment
The computer and its resident CAE design tools. Used
to design and store HDL models in system files and to
store all appropriate compiled files.

identifier (VHDL & Verilog)
Used to give a name to a data object so that it may be
easily referenced in an HDL model.

Identifiers consist of a continuous (contains no spaces)
sequence of letters, numbers and underscores (_), and
additionally for Verilog the dollar sign ($).

VHDL is not case sensitive so "ENABLE" and "enable"
are regarded as being the same identifier; they are
different in Verilog as it is case sensitive.

iteration
One of several delta cycles, or one cycle of an iterative
statement.

iterative statement (VHDL & Verilog)
A repetitively executed statement. The loop statement
(for) is the only statement that allows the repeated
execution of a sequence of statements.

interpreted simulation
A type of simulation where a model's HDL code is
directly simulated by the simulator, i. e., it is interpreted
line by line during simulation. (The other form of
simulation is compiled simulation.) Interpreted
simulation prepares a model (builds) for simulation very
fast, but then simulation run times will be longer.
(See also compiled simulation)

Johnson state encoding
A state encoding format for a state machine where only
one bit changes between successive state values in a
pattern of consecutive 1 s and 0s from left to right.

0000
0001
0011
0111
1111
1110
1100
1000

Karnaugh map
Graphical means to represent and minimize a boolean
equation.

latch
A level sensitive memory device (cell).

leaf cell
The lowest level hierarchical structure of a circuit that is
decomposed by a particular CAE tool. For simulation
and synthesis tools, leaf cells are the cells in an ASIC or
FPGA technology specific library.

macro cell
Intermediately sized cells such as adders, comparators,
counters, decoders etc.
(See also cell, primitive and mega cell)

385

Language Reference Manual (LRM)
The IEEE standardized manual defining the hardware
description language for VHDL (IEEE 1076-1993) or
Verilog (IEEE 1364-1995).

LRM (VHDL & Verilog)
See Language Reference Manual.

logic synthesis
The process of optimizing boolean equations at the logic
level, mapping them to a technology specific library of
cells and then optimizing at the gate level using timing
and area information from the cells in the technology
library.

logic optimization
Covers the steps of conventional multilevel minimization,
factorization and equation flattening in such way that
fits area, timing and possibly power requirements
(constraints) in the most optimal manner.
(See also optimization)

literal (VHDL & Verilog)
A lexical element that represents itself in VHDL, Verilog
or a boolean equation. In VHDL it can be a number,
character or string; in Verilog it is simply a number. In a
boolean equation a literal is a variable in either its true
or false condition.

Linear Feedback Shift Register (LFSR)
A register with either XOR or XNOR feedback logic
around it in such a way that causes it to pseudo-
randomly sequence through up to 2^n values, where n is
the number of bits in the register. Often used in BIST
techniques.

library (VHDL)
This is a VHDL design library and facilitates the storage
of analyzed VHDL design units. Design libraries are
classified into two groups: working libraries and resource
libraries. The working library is the library in which
compiled design units are placed. There is only one
working library during the compilation of a design. The
resource library is a library that is referenced within a
design unit when that design unit is compiled. Any
number of resource libraries can be referenced from a
design unit.

LFSR
See Linear Feedback Shift Register.

lexical element (VHDL & Verilog)
An individual item of text in an HDL model that is
separated by a space or spaces.

HDL Chip Design

manufacturing test vectors
The exhaustive input stimuli used to test the physically
manufactured chips and which are designed to test and
detect as near to 100% of the chip as practically possible.

maxterm
A boolean product in a boolean product-of-sum
expression. A maxterm is represented by the boolean
OR of all input signals,
e. g., (a or b or c).

mega cell
Large sized cells such as microprocessors and micro-
controllers, etc.
(See also cell, primitive and macro cell)

memory declaration (Verilog)
Declares a group (array) of register variables which are
used to model read only memories (ROMs), random
access memories (RAMs) or simply an array of registers.
Each element in such an array is addressed by a single
array index.

reg [7: 0] MemA [0: 255];

minimization
A process of minimizing the numbers of literals in one
or more boolean equations. Single output minimization
relates to Karnaugh maps where the aim is to simplify
and reduce the number of product terms in a single
equation. This is also known as flat minimization as
only one equation is minimized at a time. Minimization
typically performed by a logic optimizer uses multilevel
(multiple equations), multi-output minimization in order
to achieve global minimization of a combinational logic
function. Multilevel minimization includes logic
(equation) flattening.

minterm
A boolean sum in a boolean sum-of-products
expression. A minterm is represented by the boolean
AND of all inverted input signals,
e. g., (a. b. c) where ". " is the boolean AMD.

named association (VHDL & Verilog)
An association is considered named when an association
element is matched by name from the actual port to
the formal port.

VHDL.

ALU2: ALU port map (Operand2 => A(15 downto 8),
Operator => Control(5 downto 3),
Result => Y(15 downto 8),
Operand1 => B(15 downto 8));

Verilog.
ALU ALU2(. Operand2(A[15: 8]).

. Operator(Control[5: 3]),

. Result(Y[15: 8]),. Operandl(B[15: 8]));

net data type (Verilog)
Used to represent the physical connection of inferred
hardware elements in a structural manner. The different

386

overloading (VHDL)
Describes the process of using the same name for two
or more subprograms. If they have the same scope they
are differentiated by having different enumeration literals
or a different subprogram type (function or procedure).
type rainbow It (Red. Orange. Yellow, Green. Blue,

Indigo, Violet):
type rainbow is (Yellow, Magenta, Cyan, Indigo, Violet);

optimization
A general term used to describe the process of improving
the structural configuration of a circuit model given
certain area, timing and possibly power constraints.
(See also logic level optimization and gate level
optimization)

one's complement
See signed-1 's complement.

object (VHDL & Verilog)
An object is a place holder for storing values in an HDL
model.
(See also data object)

non-blocking procedural assignment (Verilog)
Non-blocking procedural assignment statements are
found in a sequential begin-end block and use the
assignment operator "<=". They are scheduled to occur
without blocking the procedural flow from one statement
to the next. Such assignments are used where more
than one register assignment is required without regard
to their order. In the example below, the addition in the
first assignment is computed immediately and the
assignment is scheduled for 3 time units later. This allows
the second assignment to be executed independently
of the first.
#3 Y1 <= A1 + B1;
#1 Y2 <= A2 + B2; // Y2 assigned after 1 time unit

Two dependent non-blocking procedural assignments
in a sequential always block will synthesize to two flip-
flops, i. e.

always @(posedge Clock)
begin

Sig1 <=A & B; //First flip-flop Inferred
Y1 <= Sig1 & C; // Second flip-flop inferred

end

netlist
A file containing the representation of a design at the
cell level in VHDL, Verilog or EDIF, etc. The cell level is
also the gate level if all cells are gate level cells. A netlist
file contains a list of cells, usually from a technology
specific library, and identifies how the cells are
interconnected.

kinds of net data types are: wire, tri, wand, triand, trireg,
tri0, tril, supply0 and supply1. Not all net data types are
supported by synthesis tools.
wire Netl, Net2;

Glossary

package (VHDL)
Provides a convenient means of grouping multiple
declarations so that they are accessible across many
design units. A package consists of a package
declaration and an optional package body. A package
declaration contains a set of declarations, for example
types, constants and subprograms. In contrast, a
package body contains the hidden details of a package,
for example the bodies of subprograms.

parallel block statement (Verilog)
(Uses the reserved words fork and join to group a series
of statements that are to be executed concurrently.
Control does not pass out of the block until the last
time ordered statement has executed. It is not supported
by synthesis tools.

parameter declaration (Verilog)
A declaration is used to declare a constant.

parameter Width = 16;

partial scan
A circuit-where only a selection of flip-flops and latches
are transposed to being scan type flip-flops or latches
in order to improve the accessibility of specific internal
nodes to manufacturing test vectors and the
observability of specific internal nodes for the
observability of possible manufacturing defects. Partial
scan is a compromise between using full scan and
keeping area to a practical minimum.

partitioning
The process of dividing a design into smaller pieces,
either through the HDL code design of concurrent
hardware modules or, by using a synthesis tool to
automatically partition a flattened netlist.

physical synthesis
The process of taking a technology specific netlist of
gates and physically laying them out on the floor plan
of the chip. Typical processes include: partitioning, cell
compaction, layout compaction, floor-planning,
placement and routing. Physical synthesis is regarded
as a back-end process normally performed by the chip
vendor.

port (VHDL & Verilog)
VHDL. The word port in VHDL is a reserved word and
defines the communication signals between interfacing
sections of code. Each port has a name, a mode and
type. The modes are:

in - input only port
out - output only port
inout - bidirectional port
buffer - bidirectional port that can only have

one source and that can only be
connected to another port signal of type
buffer

linkage - no defined semantics

propagation delay
The delay of a signal passing from one point in a circuit
to another. A propagation delay may be: a delay passing
along a wire in the physical circuit on the chip, the delay
of a signal being passed through a cell, or the total
delay through multiple cells and their associated wires.
Propagation delays are determined by cell drive
capability and capacitive loading. Capacitive loading
consists of the input capacitances of cells connected to
the drive cell and the total capacitance on the
interconnecting wire network.

387

process (VHDL)
Is a passive or persistent concurrent statement. A
passive process contains no signal assignment
statement or any signal assignments in a called
procedure and may appear in any entity declaration,
but is not supported for synthesis. A persistent process
is the more common type of process containing
sequential statements. Once a persistent process has
been elaborated, it exists for the duration of a simulation
run.

procedure (VHDL)
One of two kinds of VHDL subprogram; function being
the other. Like the Verilog task, a procedure can contain
timing, can enable other subprograms and can compute
zero or more values. A VHDL procedure can be called
concurrently as well as sequentially.

procedural assignment (Verilog)
Assignments that are updated under the control of the
procedural flow of constructs that surround them.

primitives
Simple logic gates such as BUT, NOT, AND, NAND, OR,
NOR, XOR and XNOR plus flip-flops and latches. Such
primitives are normally cells found in an ASIC or FPGA
technology specific library.

positional notation/positional association
(VHDL & Verilog)

One of two ways of associating an actual port to a
corresponding formal port without explicitly specifying
which actual port matches a corresponding formal port.
The association is made by the position of each element.

VHDL.
ALU1: ALU port map (Control(2 downto 0), A(7 downto 0),

B(7 downto 0), Y(7 downto 0));
Verilog.
ALU ALU1(Control[2: 0], A[7: 0], B[7: 0], Y[7: 0]);

Verilog. The word "port" is not a Verilog reserved word,
but is a term often used to refer to the interconnection
of modules, primitives and macro modules. Each
module has ports declared in its body as follows:

input - input only port
output - output only port
inout - bidirectional port

HDL Chip Design

pseudo-random
A sequence of values that give the appearance of being
random, but which is deterministic and hence
repeatable.

Read Muller logic
Logic functions that are implemented using only XOR
and XNOR gates, for example as used in the feedback
path around registers in LFSRs.

reconfigurable hardware
Hardware designed to be used in many different ways.

record type (VHDL)
A composite type consisting of named elements.

type FloatPointType is
record

Sign: std_logic;
Exponent: unsigned(23 downto 0);
Fraction: unsigned(6 downto 0);

end record;

reduction operator (Verilog)
An operator that operates on all bits of a multiple bit
bus and that produces a single bit result. For example,

reg [5: 0]A:
reg Y:

Y = &A;

register
A memory device containing more than one latch or
flip-flop that are all clocked from the same clock signal.

register (reg) data type (Verilog)
A data type used for the declaration of objects that
need to hold their value over simulation cycles. They
are used to describe objects that are assigned using
blocking and non-blocking procedural assignments. A
register data- type should not be confused with a
hardware register. The reserved word reg is used to
signify a register data type.
reg Y;
reg [7: 0] Bus1, Bus2;

Register Transfer Level
The model of a circuit described in a hardware
description language that infers memory devices.

resource allocation
A process performed by algorithmic (high-level)
synthesis tools which assigns each operational part of
a design to a particular piece of hardware.

388

sea-of-gates
Popular name for a channel-less gate array.

sea-of-cells
Popular name for a channel-less gate array.

SDF
See Standard Delay Format.

scope (VHDL & Verilog)
Refers to the region of code where a declaration has
effect.

scheduling
A process performed by algorithmic (high-level)
synthesis tools which assigns each operational part of
a design to a particular time step (clock cycle).

RTL
See Register Transfer Level.

ror (VHDL)
Language defined rotate right operator.

rol (VHDL)
Language defined rotate left operator.

resolved signal (VHDL)
A signal whose type has an associated resolution
function.

RTL synthesis
The process of converting an HDL model described at
the register transfer level (RTL), to the logic level, and
then to the gate level, performing combinational logic
optimization at each stage. Register transfer level
synthesis does not optimize (add or remove) registers.
The definition of RTL synthesis encompasses logic level
synthesis, logic level optimization and gate level
optimization.

reserved word (VHDL & Verilog)
A word that has been defined by the HDL language to
have specific meaning and so cannot be used as basic
identifiers. Certain characters such as the semicolon and
parentheses could also be classified as reserved words.
(All reserved words in the models and text of this book
are shown emboldened.)

resource sharing
A process performed by RTL synthesis tools that allows
specific circuit functions (resources) to be shared. For
instance, if two independent additions are required in a
circuit, and they do not need to be performed at the
same time, the same physical adder could be used and
the inputs to it, and outputs from it, multiplexed
accordingly. This operation is performed automatically
by synthesis as directed by the user.

Glossary

semantics (VHDL & Verilog)
The rules that determine the meaning of language
constructs as they relate to the description of hardware.
signal A: unsigned(4 downto 0);
signal B: unsigned(3 downto 0);
signal C: unsigned(0 to 15);
signal Y: unsigned(3 downto 0);

Y <= A; -- correct syntax, incorrect semantics
Y <= B; -- correct syntax, correct semantics
Y <= C; -- correct syntax, incorrect semantics

separators (VHDL & Verilog)
Characters that separate lexical elements. Such
characters are the space and end of line character, and
non-printable characters such as: tab, line feed, form
feed and carriage return.

sequential block statement (Verilog)
Groups a series of statements (blocking or non-
blocking) between the reserved words begin and end
such that they are executed one after the another in
sequence. Control does not pass out of the block until
the last statement has been executed. Sequential block
statements are supported by synthesis tools and used
extensively in synthesizable models.

sequential statements (VHDL & Verilog)
Statements that are executed in the order in which they
are encountered.

VHDL. Statements within a process or procedure.
Verilog. Statements within a begin-end block.

signal (VHDL) & variable (Verilog)
A data object that has a current value and scheduled
future values at future simulation times. In RTL
synthesizable models they have direct hardware intent.

VHDL. Verilog.
Y<=A; Y = A;
V <= A after 3. 5 ns; Y = #3. 5 A;

In the second assignment the value of Y is calculated
immediately and then assigned 3. 5 ns later.

signed
Data objects whose value can be positive, 0 or negative.

signed-1 's complement
One of three ways of representing binary numbers.
Signed- l's complement is represented with a sign bit,
followed by the magnitude with all bits, including the
sign bit, complemented.
(See also signed-magnitude and signed-2's complement)

signed-2's complement
One of three ways of representing binary numbers.
Signed-2's complement is represented with a sign bit,
followed by the magnitude with all bits, including the
sign bit, complemented and 1 added to the result.
(See also signed-magnitude and signed 1 's complement)

standard cell
An application specific integrated circuit which, unlike
a gate array, does not use the concept of a basic cell
and does not have any prefabricated components, A
chip manufacturer creates custom masks for every stage
of the device's fabrication. This allows each function to
be created using the minimum number of transistors in
a more efficient layout than field programmable gate
arrays.

389

srl (VHDL)
Language defined shift right logical operator.

sra (VHDL)
Language defined shift right arithmetic operator.

specification (VHDL)
Provides additional information associated with a
model's description. There are three types: attribute,
configuration and disconnection.

source code (VHDL & Verilog)
The HDL constructs that together constitute a model of
hardware behavior and that is stored in a system file on
the resident computer.

sll (VHDL)
Language defined shift left logical operator.

slice (VHDL & Verilog)
Designates a portion of a one dimensional array that is
created from another one dimensional array.

VHDL.

type FloatPoint is unsigned(31 downto 0);
Sign <= FloatPoint(31); --1 bit slice
Exponent <= FloatPoint(30 downto 7]; - 24 bit slice
Fraction <= FloatPoint(6 downto 0); -- 7 bit slice

Verilog.

teg (31: 0) FloatPoint;
Sign = FloatPoint; //1 bit slice
Exponent <= FloatPoint[30: 7]; // 24 bit slice
Fraction <= FloatPoint[6: 0]; // 7 bit slice

sla (VHDL)
Language defined shift left arithmetic operator.

skew
The difference in the time it takes a signal's transitions
to travel from a single source point in a circuit to different
destination points.

signed-magnitude
One of three ways of representing binary numbers.
Signed-magnitude is represented with a sign bit (0 for
positive, 1 for negative), followed by the magnitude of
the number.
(See also signed 1's complement and signed 2's
complement)

HDL Chip Design

Standard Delay Format
Standard Delay Format (SDF) is an industry standard
notation for a file format. This format is used for the
exchange of a circuits timing delay and constraint data
between different tools. An IEEE group is working
towards final standardization of SDF.

state assignment
The process of assigning states in a state machine to
binary numbers used in the implementation of a state
machine.

state diagram
A graphical representation of the operation of a state
machine.

state machine
The model of a circuit, or its hardware implementation,
that cycles through a predefined sequence of operations
(states).

state table
The tabular representation of a state machine listing
input, next state, current state and output values.

structural level (VHDL & Verilog)
The level at which an HDL model describes hardware
as an arrangement of interconnected components.

subprogram (VHDL & Verilog)
VHDL subprograms are the procedure and function while
Verilog subprograms are the task and function. The use
of subprograms decomposes (portions) a design into
models that are easier to read and maintain.

subtype (VHDL)
A subtype is a type with a constraint. The constraint
specifies the subset of values of the base type for the
subtype.

syntax
The syntax of an HDL model refers to the formal rules
of how an HDL model should be constructed. The syntax
specifies how constructs such as declarations and
statements should be written. A VHDL or Verilog
compiler will generate error messages if discrepancies
are found.
Y <= A + B - VHDL syntax incorrect, missing"; "
Y = A + B - VHDL syntax Incorrect, "=" not valid for a

signal or variable
Y <= A + B - Verilog syntax Incorrect, missing"; "

synthesis
A general term used to describe the process of
converting the model of a design described in an HDL
from one behavioral level of abstraction to a lower, more
detailed, behavioral level.
(See Algorithmic synthesis, RTL synthesis and logic
synthesis)

390

timestep (VHDL & Verilog)
The unit of time corresponding to the smallest time
increment in a simulator. A Verilog model can specify
this simulation time by using the language defined
compiler directive 'timescale, e. g.

'timescale 1ns/lps
where:

1 ns is the unit of measurement for time
and delay

1 ps is the precision of time in the
simulator

A VHDL simulator may provide a means whereby a
model can specify a simulation time unit, but this is not
part of the language.

test synthesis
The modification of circuits to make them more testable
and the automatic generation of test vectors. Examples
of how circuits can be modified include boundary scan,
full or partial internal scan and built in self test (BIST)
techniques.

test vectors
See functional test vectors and manufacturing test vectors.

test Fixture
See test harness.

test harness
Also known as a test bench in the VHDL world and a
test fixture in Verilog. A test harness is an HDL model
used to verify the correct behavior of a hardware model.
Normally written in the same HDL language as the
hardware model being tested. A test harness will:

• instantiate one or more instances of the hardware
model under test,

• generate simulation input stimuli (test vectors) for
the model under test,

• apply this input stimuli to the model under test
and collate output responses (output vectors)

• compare output responses with expected values
and possibly automatically give a pass or fail
indication.

test bench
See test harness.

technology mapping
The process of converting boolean logic equations into
a netlist of logic gates from an ASIC of FPGA library.

technology library
A library of cells that are available for use in a particular
type of ASIC or FPGA device.

synthesis subset (VHDL or Verilog)
A subset of HDL constructs (VHDL or Verilog) that are
supported for use with a particular synthesis tool.

Glossary

transaction (VHDL)
Identifies a value to appear on a signal along with the
time at which the value is to appear. This principle
applies equally to VHDL and Verilog as shown, but the
word "transaction" is normally only associated with
VHDL models.
Y <= A after 10 ns; -- VHDL transaction scheduled after 10 ns
Y = #10 A; // Verilog equivalent of the VHDL transaction

tri-state
An HDL data object that is in its high-impedance (Z)
state. This means it is not being driven. For VHDL this
assumes the data object has at least three values, {0,
l, Z}.

tri-state buffer
A cell primitive whose output can adopt one of three
states: logic 0, logic 1 and high-impedance (Z). The
high-impedance state can be considered disconnected
allowing other tri-state buffers to drive the same circuit
node.

truth table
A convenient means of representing the operation of
circuits as columns of input values and their
corresponding output responses. The function of
combinational logic and single level sequential logic
circuits are often represented using truth tables,
especially in ASIC and FPGA vendor technology library
books.

two's complement
See signed-2's complement.

type (VHDL)
A type declaration defines all values that objects of that
type can take. Objects of a particular type must be one
of four kinds: constant, signal, variable or file.
- From package Numeric_STD
type unsigned is array (natural range <>) of std_logic;
type opcode is (Inc. Dec. Load. Store, Shift. Add);

unconstrained array type (VHDL)
An array type in which the type of the indices are
specified, but whose range is not. The box symbol "<>"
is used in place of specifying the range. In this way
many arrays of the same type, but with a different range
may be declared. The range can be specified when a
subtype is declared (supported for synthesis), or when
an object of the type is declared (not supported for
synthesis). Objects of an unconstrained array type may
be passed to and from subprograms.
-- The "<>" symbol is called "box".
type DataWordWidth is array (0 to 31) of unsigned;
type FIFO_buffer_type is array (integer range <>) of
DataWordWidth;
- Subtype defining range
subtype FIFO_buffer is FIFO_buffer_type (0 to 127);
-- Object defining range
variable FIFI_1: FIFO_buffer_type (0 to 127);

391

wire (Verilog)
A Verilog net data type used to declare objects that are
to be driven by a single driver or from a continuous
assignment. Like the register (reg) and parameter data
types, they are four valued (0, 1, X, and Z}.

VITAL
See VHDL Initiative Toward ASIC Libraries.

visible (VHDL & Verilog)
Refers to the region of code where a declaration is visible.

VHSIC
Very High Speed Integrated Circuit. A program of the
United States Department of Defense from which the
VHDL language derived.

VHDL Initiative Toward ASIC Libraries
Normally abbreviated VITAL, this is an industry
consortium for the purpose of generating a standard
for writing models of the cells in a technology library
which can be used with VHDL. This standard has been
adpoted by the IEEE as IEEE 1076. 4.

VHDL
VHSIC Hardware Description Language used to describe
discrete hardware systems.

VeriBest Synthesis
The synthesis tool suite supplied by VeriBest
Incorporated.

variable (VHDL)
A class of data object that only has a current value
associated with it and that is changed in a variable
assignment statement using the delimiter "=: ". It has no
history and so only holds its current value across
simulation time steps, and not any scheduled values.

unsigned
Data objects whose value can only be positive or 0.

A
VHDL

HDL Chip Design

Appendix A Contents

Reserved Words 395

Predefined attributes 396

Package STANDARD- for language defined types and functions 398

Package TEXTIO - for language defined file manipulation 399

Package STD_LOGIC_1164 - IEEE 1164 for standard logic operations 400

Package NUMERIC_STD - IEEE 1076. 3 - standard for use with synthesis 408

VHDL constructs 413

394

Appendix A: VHDL

Reserved Words

The following identifiers are reserved words in the VHDL language and so cannot be used as basic identifiers
in a VHDL model. A reserved word is a keyword that has specific meaning in the language.

+/+ Constructs not supported by synthesis tools.
A Constructs in the current version of the VHDL language. IEEE 1076 '93. and that are not in the old version of
VHDL language, IEEE 1076'87.

395

V H D L Reserved Words

abs else map register variable
access elsif mod reject wait
after end rem when
alias entity nand report while
all exit new return with
and next rol
architecture file nor ror xnor
array for not xor
assert function null select
attribute severity

generate of shared
begin generic on signal
block group open sla
body guarded or sll
buffer others sra
bus if out srl

impure subtype
case in package
component inertia port then
configuration inout postponed to
constant is procedure transport

process type
disconnect label pure
downto library unaffected

linkage range units
literal record until
loop use

HDL Chip Design

Predefined Attributes

An attribute is a value, function, type, range, signal or constant that can be associated (attributed) with
certain names within a VHDL model. These names could be among others, an entity name, an architecture
name, a label or a signal. The VHDL language has predefined attributes that may be attributed to various
names. These attributes are listed in Table A. 1, using the following notations.

1. Type. The type of entity to which the attribute is attributed.

Type - An attribute of a type (Denoted by T')
Array - An attribute of an array object (Denoted by A')
Signal - An attribute of a signal object (Denoted by S')
Entity - An attribute of an entity (Denoted by E')

2. Kind. The attribute "kind", which can be:

Value - attributes that returns a constant value.
Type - attributes that returns a type value.
Range - attributes that returns a range.
Function - attributes that calls a function which returns a value.
Signal - attributes that creates a new signal

3. Prefix. The object or "prefix" to which the attribute is attributed.

Tl - Any type or subtype T
T2 - Any scalar type or subtype T
T3 - Any discrete or physical type or subtype T
A - Any array object or alias thereof, or a constrained array subtype.
S - Any signal.
E - Any named entity.

4. Parameter. Some predefined attributes require a "Parameter" value to be supplied when
being used. These are denoted as follows:

(X) - An expression whose type or subtype is of type Tl, T2 or T3.
(N) - An expression of type integer that does not exceed the dimensionality

of the array "A".
(Ti) - An expression of type TIME. Must not be negative. Defaults to 0 ns if

omitted.

5. Result Type. This is the result type, if applicable, of evaluation the attribute. These are
defined implicitly in Table A. 1.

6. Result. This is the result of evaluating the value, type, range, function or signal attributed
to a named VHDL object. These are defined implicitly in Table A. 1.

396

Appendix A: VHDL

Attributes grouped by
type

Type Related
T'base
T'left*
T'right +/+
T'high +/+
T'low +/+
T'ascending
T'image(X)
T'Value(X)

T'pos(X)
T'Val(X)

T'succ(X)

T'pred(X)

T'leftof(X)

T'rightof(X)

Array Related
A'left[(N)]
A'right[(N)]
A'high[(N)]
A'low[(N)]
A'range[(N)] +/+

A'reverse_range[(N)] $

A'length[(N)] +/+
A'ascending[(N)]

Signal Related
S'delayed[(Ti)]
S'stable[(Ti)] +/+

S"quiet[(Ti)]

S'qransaction
S'event +/+

S'active

S'last_event
S'last_active
S'last_value

S'driving

S'driving_value

Entity Related
E'simple_name
E'instance_name

E'path_name

Kind

value
value
value
value
value
value
function
function

function
function

function

function

function

function

function
function
function
function
function

[unction

unction
unction

signal
signal

signal

signal
unction

unction

unction
unction
unction

unction

function

value
value

value

Prefix

T1
T2
T2
T2
T2
T2
T2
T2

T2
T3

T3

T3

T3

T3

A
A
A
A
A

A

A
A

S
S

S

S
S

S

S
S
S

S

S

E
E

E

Para-
meter

(X)
(X)

(X)
(X)

(X)

(X)

(X)

(X)

(N)
(N)
(N)
(N)
(N)

(N)

(N)
(N)

(Ti)
(Ti)

(Ti)

Returned Result Type

same base as T
same base as T
same base as T
same base as T
same base as T
boolean
string
same base as T

universal integer
same base as T

same base as T

same base as T

same base as T

same base as T

type of Nth index range of A
type of Nth index range of A
type of Nth index range of A
type of Nth index range of A
type of Nth index range of A

type of Nth index range of A

universal integer
boolean

same base as S
boolean

boolean

bit
boolean

boolean

time
time
same base as T

boolean

same base as T

string
string

string

Returned Result

the left bound of T
the right bound of T
the upper bound of T
the lower bound of T
true if T defined with ascending range
string representation of (X).
value of T whose string representation is given
by(x).
position number of X in list T.
value of the type corresponding to
position X.
value of the parameter whose position is
one greater than the parameter,
value of the parameter whose position is
one less than the parameter,
value of the parameter to the left of X in
type T.
value of the parameter to the right of X in
type T.

left bound of the Nth index range of A.
left bound of the Nth index range of A.
upper bound of the Nth index range of A.
lower bound of the Nth index range of A.
range A'left(N) to A'right(N) of values in Nth
index range of A.
range A'right(N) to A'left(N) of values in Nth
index range of A.
number of values in the Nth index range.
TRUE if Nth index range of A has an
ascending range.

signal S delayed by T units of time.
TRUE when event has not occurred on signal
S for T units of time.
TRUE when signal S has been quiet for T
units of time.
signal whose value toggles when S is active.
TRUE if an event has just occurred on signal
S.
TRUE if signal S is active during current
simulation delta cycle.
time elapsed since the last event on signal S.
time since signal S was last active.
previous value of signal S immediately before
last change of S.
false if, in the enclosing process the driver for
signals is disconnected. True otherwise.
the current value of S.

the name of a named entity.
the name of a named entity including the
design hierarchy path.
the design hierarchy path to the entity
excluding the entity name.

+/+ Typically support for synthesis
Table A. 1 VHDL Attributes

397

HDL Chip Design

Package STANDARD - language defined types and functions

Package STANDARD is defined in the VHDL LRM so is part of the language and does not need to be
referenced with a use clause. It contains predefined definitions for the types and functions of the language.

398

Appendix A: VHDL

Standard file manipulation package TEXTIO

The VHDL package, TEXTIO, is shown. It contains declarations of types and subprograms that support
formatted input and output operations on text files. It contains read and write procedures for vector arrays
of type bit. Therefore, when used with types like unsigned for example, type conversions are needed as
shown in this book. If a different version of this package contains procedures that use data types, std_logic
and unsigned, conversion functions would not be needed.

399

HDL Chip Design

Standard logic Package STD_LOGIC_1164 (IEEE 1164)

This is the IEEE 1164 standard VHDL logic package called STD_LOGIC_1164.

400

Appendix A: VHDL

401

HDL Chip Design

402

403

Appendix A: VHDL

HDL Chip Design

404

Appendix A: VHDL

405

406

HDL Chip Design

407

Appendix A: VHDL

HDL Chip Design

Standard synthesis package NUMERIC_STD (IEEE 1076. 3)

The IEEE 1076. 3 VHDL synthesis package NUMERIC_STD is shown. Although this is a draft standard, the
final approval is imminent and only comments are expected to change. Package NUMERIC_STD is one of
two standard synthesis packages being defined in IEEE 1076. 3; NUMERIC_BIT is the other. NUMERIC_STD
uses the multivalued data type, std_logic, defined in package STD_LOGIC_1164. Array types of type std_logic
are defined in this package and are named signed and unsigned. These are the types used by the VHDL
models throughout this book. Package NUMERIC_BIT has identical functions, but instead uses the two
valued data type, bit and bit_vector.

408

409

Appendix A: VHDL

HDL Chip Design

410

Appendix A: VHDL

411

HDL Chip Design

412

Appendix A: VHDL

VHDL Constructs

This is a quick reference guide to the different kinds of constructs used in VHDL. The symbol "+/+" is used
to identify constructs that are not supported by present synthesis tools. For each construct the following
is shown:

- the formal syntax definition,
- an indication of where it may be used in a Verilog model,
- a brief description,
- in most cases, a simple example.

The formal syntax is shown in Backus Naur Form (BNF). The following conventions are used:

Symbol/Notation

<>
module (for example)
<name>
<NAME>
<name><, <name>>*
<name>:: =
1

Description

One or more spaces, tabs
or carriage returns.
Sharp pointed angle brackets
A word in bold print.
Name is in lower case.
Name in upper case.
Name is in lower case.
Name is in lower case.
Vertical line.

Meaning

Separator between lexical elements.

Surround any non-literal symbols.
A Verilog keyword.
A syntax construct item.
A lexical term.
A comma separated list of items.
The syntax definition of an item.
Alternative syntax definition.

Design Unit Declarations Block 421
Entity 414 Process 421
Architecture 414 Procedure Call 421
Package Declaration 415 Function Call 421
Package Body 415 Assertion 422
Configuration 415 Signal Assignment 422

Context Clauses Component Instantiation 422
Library Clause 416 Generate 422
Use Clause 416 Sequential Statements

Specifications Wait 423
Attribute 416 Assertion 423
Configuration 416 Signal Assignment 423
Disconnection 417 Variable Assignment 423

Declarations Procedure Call 424
Alias 417 Function Call 424
Attribute 417 If 424
Type 418 Case 424
Subtype 418 Loop 425
Constant 418 Next 425
Constant (deferred) 418 Exit 425
Signal 419 Return 426
Variable 419 Null 426
Group 419
Group Template 419
File 420
Component 420
procedure/function (subprogram) 420
procedure/function (subprogram body).. 420

Concurrent Statements

413

HDL Chip Design

entity - primary design unit declaration (design entity port list)

414

architecture - secondary design unit declaration (design entity functional body)

Appendix A: VHDL

package - primary design unit declaration (common design data)

415

package body - secondary design unit declaration (common design data)

configuration - primary design unit declaration

HDL Chip Design

library - context clause
A design library is used to store
previously analyzed designs. These
designs are made visible to new
designs by preceding the new design
with the library clause. (A library may
contain one or more packages.)

library IEEE. Macros;

use - context clause
Usually comes after a library clause
and before a new design entity. It
causes previously declared
declarations within a library to be made
directly visible within a new design
provided they are visible in a library
defined by the library statement.

use IEEE. STD_logic_1164. all;

Used to specify an attribute which is a
value, function, type, constant, signal or
range that is attributed to a particular
item in a model. An item is an entity
name, architecture name, label or
signal.
The attributes name and the name of
one of more named objects and their
value are defined.

Used to bind particular component
instantiations to specific entities that
have been precompiled into the same
or a different library. Appear in the
same architecture or block declaration
area as the instantiated components.
It is useful for managing multiple design
projects where commonly used
subblocks of the same name may need
to use different precompiled versions
from different libraries. For example, if you have multiple adder defined (e. g., ripple carry, or
carry look ahead) in a library you can use a configuration to define which kind of adder to use
in a particular instance.

forr ADD1: ADDER use configuration Proj1Lib. ADDER_CONF;

library identifier {. identifier);

use selected_name (. selected_name);

configuration - specification

attribute - specification

416

Appendix A: VHDL

417

attribute - declaration
A value, function, type, range, signal or
constant that may be associated with
one or more named items in a
description. There are two categories;
predefined and user-defined.
Predefined attributes are defined by
language, as shown earlier in this
appendix. User-defined attributes are
shown below. Software tools may have their own defined attributes that the designer can use.
For synthesis only, use the VHDL predefined attributes supported by synthesis tools plus any
synthesis specified attributes.

attribute ENUM_TYPE_ENCODING; string;
type is (Red. Orange. Yellow, Green, Blue);
attribute color ENUM_TYPE_ENCODING of color: typo is("010 110 11 011 00");

Defines the time delay to be used in
implicit disconnection of drivers of a
guarded signal within a guarded signal
assignment. Is used to model the delay
times of signals being switched off i. e.,
tri-stated by a null driver.
Ignored by synthesis tools.

disconnect Bus1:wired_or after4.0ns;

disconnect - specification

Declares an alternative name for an
existing named object or part of an
object. A compiler transposes an alias
name with the text that is defined in the
alias and allows named objects to be
referenced in a more convenient mane

variable TimelnSeconds integer range 0 to 59;
alias Secs: Integer range 0 to 59 is TimeSeconds;

alias - declaration

attribute Identifier type_mark;

HDL Chip Design

418

constant (deferred) - declaration

constant - declaration

subtype - declaration

type - declaration

Appendix A: VHDL

419

signal - declaration

variable - declaration

group - declaration

group template - declaration

HDL Chip Design

420

file - declaration

component - declaration

procedure/function (subprogram) - declaration

procedure/function (subprogram body) - declaration

Appendix A: VHDL

421

block - concurrent statement

process - concurrent statement

procedure call - concurrent statement

function call - concurrent statement

HDL Chip Design

assertion - concurrent statement

signal assignment - concurrent statement

component instantiation - concurrent statement

generate - concurrent statement

422

Appendix A: VHDL

423

wait - sequential statement

assertion - sequential statement

signal assignment - sequential statement

variable assignment - sequential statement

HDL Chip Design

424

procedure call - sequential statement

function call - sequential statement

if - sequential statement

case - sequential statement

Appendix A: VHDL

425

loop - sequential statement

next - sequential statement

exit - sequential statement

HDL Chip Design

return - sequential statement

null - sequential statement

426

B
Verilog

HDL Chip Design

Appendix B Contents

Reserved Words 429

Compiler directives 429

System Tasks and Functions 430

Verilog Constructs 433

428

Appendix B: Verilog

Reserved Words

The following identifiers are reserved words in the Verilog language and so cannot be used as basic
identifiers in a Verilog model. A reserved word is a keyword that has specific meaning in the language.

‡ Constructs not supported by synthesis tools.

Verilog Compiler Directives

This chapter describes the Verilog language defined compiler directives. All such directives are preceded
by the "'" (accent grave) character often referred to as tick. They are listed in Table Bl and typically only
the 'define (pronounced tick define) and the 'include compiler directives are supported by synthesis tools.
Except for these two, the word compiler in the text below implies a simulator's compiler.

Table B1 Verilog Compiler Directives

429

'resetall 'Include
'define 'celldefine
'undef 'endcelldefine
'timescale 'default_neftype
'ifdef 'unconnected_drive
'else 'nounconnected_drive
'endif

always
and
assign

begin
buf
bufif0
bufif1

case
casex
casez
cmos ‡

deassign ‡
default
defparam ‡
disable ‡

edge ‡
else
end
endattribute ‡
endcase
endmodule
endfunction
endprimitive ‡
endspecify ‡
endtable ‡
endtask

Verilog

event ‡

for
force ‡
forever ‡
fork ‡
function

highz0 ‡
highz1 ‡

if
ifnone ‡
initial ‡
inout
input
integer

join ‡

large

macromodule
medium
module

nand
negedge
nmos
nor

Reserved Worlds

not
notif0
notif1

or
output

parameter
pmos ‡
posedge
primitive ‡
pull0 ‡
pull1 ‡
pullup ‡
pulldown ‡

rcmos‡
real ‡
realtime ‡
reg
release ‡
repeat
rnmos ‡
rpmos ‡
rtran ‡
rtranif0 ‡
rtranif1 ‡

scalared ‡
signed ‡

small ‡
specify ‡
specparam ‡
strength ‡
strong1 ‡
strong1 ‡
supply0
supply1

table ‡
task
time ‡
tran ‡
tranif0 ‡
tranif1 ‡
tri
tri0 ‡
tril ‡
triand ‡
trior ‡
trireg ‡

unsigned ‡

vectored ‡

wait
wand
weak0 ‡
weak1 ‡

while
wire
wor

xnor
xor

HDL Chip Design

'resetall
Resets all compiler directives to their default values
when encountered during compilation.

'define/'undef
Tick define creates macros for text substitutions. Can
be used both inside and outside module definitions.
After a text macro is defined, it can be used in the
source description by using the "'" character followed
by the macro name. The compiler will substitute the
text of the macro for the sting Ynacro_name.

'define State0 2'b 00
'define State1 2'b 01
'define State2 2'b 10
'define State3 2'b 11

case (State)
'State0: Y = A0;
'State1: Y = A1;
'State2: Y = A2;
'State3: Y = A3;

endcase

Tick undef is used to undefine a previously defined
macro.

'timescale
Specifies the unit of time and the precision of time
of the models that follow.

'timescale 1 ns / 1 ps
All time values are in multiples of 1 ns with a precision
of 1 ps.

'ifdef/'else/'endif
These are conditional compilation compiler directives
that are used to optionally include lines of Verilog
source code for compilation. As such, they perform
a similar function to VHDL configurations, although
in Verilog the whole module must be recompiled each
time.

The directive 'ifdef checks for the definition of a
variable name. If the variable name is defined then
the lines following the 'ifdef are included. If the
variable name is not defined and an 'else directive
exists then the source code is compiled.

'ifdef <text_macro_name>
<first_group_of-lines>
'else
<second_group_of_lines>
'endif

These directives can be nested.

'include

Used to insert the entire contents of a source file in
another file during compilation. The result is the
same as though the contents of the included file
were to appear in place of the "include directive. Is
useful in defining global or commonly used
definitions, tasks or functions, without having to
repeat the code in every module boundary.

It can be nested, that is, an included file may itself
contain an included file.

'celldefine/'endcelldefine

Used to tag a module as being a cell.

'default_nettype
Used to control the net type created for implicit net
types. The default type is wire and should not be
changed to anything else in synthesizable models.

'default_nettype <type_of_net>
where:

type_of_net can be: wire, wand, wor, tri, triand,
trior, tri0, tri1 or trireg.

'unconnectd_drive/'nounconnected_drive

Pulls all input ports to a logic 0 or logic 1 instead of
leaving them floating to the high impedance value
Z.

Verilog System Tasks and Functions

All Verilog system tasks and functions defined in the Verilog LRM as being part of the Verilog language are
listed along with a description of those that are typically used in test harnesses. They are not needed in
synthesizable models, nor are they supported by synthesis tools.

Verilog system tasks and functions are used to perform simulation related operations such as monitoring
and displaying simulation time and associated signal values at a specific time during simulation. All
system tasks and functions begin with a dollar sign, for example, Smonitor.

The Verilog LRM also describes other system tasks and functions in a separate appendix that does not
form part of the standard Verilog language, but that is included in the LRM for information. These, and any
tool specific system tasks and functions, should not be used if a Verilog model is to maintain portability
between different design tools. (These tools specific system tasks and functions are defined by using the
Peripheral Language Interface (PLI) which is also defined as part of the Verilog language.)

430

Appendix B: Verilog

As a result of the previous discussion, only use the standard system tasks and functions defined by the
Verilog language. These are listed in Table B-2, and their description's follow.

Display tasks

$display
$displayb
$displayh
$displayo
$monitor
$monitorb
$monitorh
$monitoro
$monitoroff
$strobe
$strobeb
$strobeh
$strobeo
$write
$writeb
$writeh
$writeo
$monitoron

File I/O tasks

$fclose
$fdisplay
$fdisplayb
$fdisplayh
$fdisplayo
$fmonitor
$fmonitorb
$fmonitorh
$fmonitoro
$readmemb
$fopen
$fstrobe

$fstrobeb
$fstrobeh
$fstrobeo
$fwrite
$fwriteb
$fwriteh
$fwriteo
$readmemh

Timescale tasks

$printtimescale
$timeformat

Simulation control
tasks

$finish
$stop

Timing check tasks

$hold
$period
$setup
$skew
$nochange
$recovery
$setuphold
$width

PLA modeling tasks

$async$and$array

$async$nand$array
$async$or$array
$async$nor$array
$async$and$plane
$async$nand$plane
$async$or$plane
$async$nor$plane
$sync$and$array
$sync$nand$array
$sync$or$array
$sync$nor$array
$sync$and$plane
$sync$nand$plane
$sync$or$plane
$sync$nor$plane

Stochastic analysis
tasks

$q_initialize
$q_remove
$q_exam
$q add
$q_full
$q_random

Simulation time
functions

$realtime
$time
$stime

Conversion functions
for reals

$bitstoreal
$itor
$readtobits
$rtoi

Probablistic distribution
functions

$random
$dist_chi_square
$dist_exponential
$dist_poisson
$dist_uniform
$dist_erlang
$dist_nornal
$dist_t

Value change dump
file

$comment
$date
$enddefinitions
$scope
$timescale
$upscope
$var
$version
$dumpall
$dumpoff
$dumpon
$dumpvars

Display tasks

$display/$write.
Displays a formatted message to the screen. They
are identical except $display adds a newline character
to the end of its output whereas $write does not.
They can display a quoted string, an expression that
returns a value, or a null argument. They are
displayed in the order in which they appear in the
argument list.

$display ("ERRDET_CORRECTION Write error at time
%d: Should be equal to %d, but is = %d",
$time, RefMemData, MemData);

$strobe.

Provide the ability to display simulation data at a

selected time and has the same argument list format
as $display and $write.

$monitor.
Displays a formatted message to the screen when
any variables or expressions specified as arguments
to the system task, change. Again, it has the same
argument list format as $display and $write.

Displays a formatted message to the screen when
any signal in the monitor list changes.

initial
Smonitor ("ERRDET_CORRECTION Write error at

time %d: Should be equal to %d, but
is = %d",
$time. RefMemData, MemData);

431

Note. System tasks differing by only a "b", "h" or "o" at the end refer to binary, hexidecimal and
octal, respectively.

Table B-2 Verilog language defined system tasks and functions

HDL Chip Design

File I/O tasks

$fopen.
Opens a system file for reading and writing.

SimResults=$fopen("errdet_correction.simres");

$fclose.

Closes a system file that has previously been opened
using $fopen.

$fclose(SimResults);

$fdisplay/$fwrite/$fmonitor/$fstrobe.

Correspond to $display, $write, Smonitor and $strobe,
but writes to specific files as apposed to the standard
output; normally the monitor.

$fdisplay(SimResults,
"ERRDET_CORRECTION Write error at time
%d: Should be equal to %d. but is = %d",
$time, RefMemData, MemData);

$readmemb/$readmemh.
Used to read and load data from a specified file into
a specified memory.

$readmemb("mem8x5. dat", Mem8x5);

Timescale tasks

$printtimescale.
Displays the unit of simulation time and its precision.
A specific module name can be given as an
argument to display the time unit and precision of a
particular module.

$printtimescale // No name so uses module
name with current scope.

$printtimescale<hierarchical_name>;

$timeformat.

Specifies how time will be displayed when using:
$write,$display,$strobe,$monitor,$fwrite,$fdisplay,
$fstrobe and $fmonitor.See Verilog LRM for details.

Simulation control tasks

$finish.

Finishes a simulation and passes control back to
the host system.

$stop.
Halts simulation at the current simulation time and
enters an interactive debug mode where values can
be interactively changed or break points set-up etc.

Timing check tasks

Used primarily in technology library cells. See Verilog

432

LRM for details.

PLA modeling tasks

These system tasks are provided for modeling PLA
devices. See Verilog LRM for details.

Stochastic analysis tasks

These system tasks and functions manage queues
and generate random numbers with specific
distributions. See Verilog LRM for details.

Simulation time functions

These system functions provide access to the current
simulation time.

$time.

Returns a 64-bit integer value scaled to the timescale
value of the module from which it was invoked.

$stime.

Returns a 32-bit integer value scaled to the timescale
value of the module from which it was invoked.

$realtime.
Returns a real number scaled to the timescale value
of the module from which it was invoked.

Conversion functions for reals

$rtoi.

Converts a real value to an integer value through
truncation, for example, 29. 95 becomes 29.

$itor.

Converts an integer value to a real value, for example,
29 becomes 29. 0.

$readtobits.

Used to convert real numbers to a 64-bit vector
representation so that they can be passed across
module ports.

$bitstoreal.

Used to convert bit patterns to real numbers.

Probabilistic distribution functions

$random.
System function for generating random numbers and
returns a new 32-bit signed integer value each time
it is called. A "seed" argument can be used to control

Appendix B: Verilog

the random numbers that are generated.

$random %64 // will generate numbers between
-63 and 63.

$dist_chi_square/$dist_exponential/
$dist_poisson/$dist_uniform/$dist_erlang/
$dist_nornal/$dist_t.

Used to generate random number to a specific
probabilistic distribution. See Verilog LRM for details.

Value change dump file

$comment/$date/$enddefinitions/$scope/
$timescale/$upscope/$var/$version/$dumpall

$dumpoff/$dumpon/$dumpvars

A change dump file is a file that contains information
about value changes on selected variables for a
design using the value change dump system tasks.
See Verilog LRM for details.

Verilog Constructs
This is a quick reference guide to the different kinds of constructs used in the Verilog language. The
symbol "+/+" is used to identify constructs that are not supported by synthesis tools. For each construct the
following is shown:

• the formal syntax definition,
• an indication of where it may be used in a Verilog model,
• a brief description,
• in most cases, a simple example.

The formal syntax is shown in Backus Naur Form (BNF). The following conventions are used:

Symbol/Nomenclature

<>
module (for example)
<name>
<NAME>
<name><, <name>>*
<name>:: =
1

Description

One or more spaces, tabs
or carriage returns.
Sharp pointed angle brackets
A word in bold print.
Name is in lower case.
Name in upper case.
Name is in lower case.
Name is in lower case.
Vertical line.

Meaning

Separator between lexical elements.

Surround any non-literal symbols.
A Verilog keyword.
A syntax construct item.
A lexical term.
A comma separated list of items.
The syntax definition of an item.
Alternative syntax definition.

A summary of the described constructs are listed below with corresponding page numbers.

Design Entity
module 434

Declarations
parameter data type 434
net data types 434
register data type 435
task (subprogram) 435
function (subprogram) 435

Concurrent Statements
component instantiation 436
Initial 436
always 436
continuous assignment 437
function call 437

Concurrent Procedural Block
fork-join 437

Sequential Procedural Block
begin-end 437

Procedural Statements
blocking procedural assignment 438
non-blocking procedural assignment 438
function can 439
if 439
case/casex/casez 439
forever/ropeat/whlle/for 439

433

HDL Chip Design

434

module - design entity

parameter data type - declaration

net data types - declaration

Appendix B: Verilog

435

register data type - declaration

task (sub program) - declaration

function (sub program) - declaration

HDL Chip Design

436

component instantiation - concurrent statement

initial - concurrent statement

always - concurrent statement

Appendix B: Verilog

437

continuous assignment - concurrent statement

function call - concurrent statement

fork-join - concurrent procedural block

begin-end - sequential procedural block

HDL Chip Design

438

blocking procedural assignment - sequential statement

non-blocking procedural assignment - sequential statement

Appendix B: Verilog

439

function call - sequential statement

if - sequential statement

case/casex/casez - sequential statement

forever/repeat/while/for - sequential loop statement

HDL Chip Design

A
absolute time generated vectors

325-326, 329-331
abstract

data types 77
adders

combinational 279-284
overflow 282
sequential 284-285
synchronous (serial) 279, 280,

284
address decoder 152-153
aggregates (VHDL) 51-52, 184
algorithms

Booth's 286, 287, 288
division 289
shift and add multiplication 287,

293
alias (VHDL) 417
ALU 159-160

arithmetic unit 159-160
logic unit 159-l60
microcoded operations 159

always (Verilog)
syntax 436

application specific integrated circuit
described 3-4
cost 4

AQL 15
arbiter 354
architecture (VHDL)

course grain structuring 117,
definition 40
syntax 414

arithmetic
equations 134
operators 63, 134

array
reversing vector 83
unconstrained (VHDL) 80

ASIC 3-4
see also application specific
integrated circuit

assert (VHDL)
described 324
used 329, 332, 335
concurrent syntax 422
sequential syntax 423

asynchronous
feedback 75
FSM reset 198, 199, 212
resets 175-177
ripple counters 187, 190-192

ATPG
defined 22
see also automatic test pattern
generation

attribute (VHDL)
'base 'left 'right 'high 'low 100
'range 'reverse range 'length

101-102

'stable 'event 102-103
'event 172, 173, 174
'stable 172
declaration syntax 417
specification syntax 416
supported for synthesis 99

automatic test pattern generation
defined 22
LFSR application 181

automatic vector checking 234
average quality level 15

B
barrel shifter

combinational 277
begin-end (Verilog) 437
behavioral levels of abstraction 6
bidirectional

FSMs 199, 262
in test harnesses 335
see also finite state machines

BIST 22, 75, 179
see also built-in self-test

bit_vector (VHDL) 336
blackjack 218
block (VHDL) 123-124

described
syntax 421

blocking procedural assignment
(Verilog)

description 94
example use of 94, 178
in for loops 95
syntax 438

Booth
algorithm 286, 287, 288
test harness 335-339

bottom-up 75
boundary scan 24, 75
buffer data type (VHDL) 182
built-in self-test

data compression techniques
179

data encryption & decryption
179

data integrity checksums 179
defined 22
testability issues 75
pseudo-random number
generation 179

C
CAD 14
CAE 14
capability

VHDL/Verilog compared 10
carry-look-ahead 279
case

address decoder 151-153
decoder 149-150
default (Verilog) 78, 164
don't care inputs 96

don't care outputs 97
encoder 143
priority encoder 146
insensitive 50
latch inference 170, 171
LRM compliance (VHDL) 165
multiplexer 138-139
others (VHDL) 78, 165
syntax (Verilog) 439
syntax (VHDL) 424

casex (Verilog)
syntax 439
see also case

casez (Verilog)
syntax 439
see also case

cell primitive 163, 172
channel-less gate array 4
channeled gate array 4
clock dividers 186, 190-192
combinational

adder 279-284
dividers 286, 287, 301-305
multipliers 286, 287, 290-292
shifters 273-277
subtractor 279-284

combinational logic 135-160
comparators 157-158

equality 157
multiple comparison 158
operators used 157

compilation
VHDL/Verilog compared 10

compiler directives (Verilog)
'define 214
'include 40, 154, 215, 216, 223,

224
described 429-430
listed 429

component
declaration syntax (VHDL) 420
instantiation syntax (Verilog) 436
instantiation syntax (VHDL) 422

computer aided design 14
computer aided engineering 14
concatenation

in subprogram formal list (VHDL)
82

operator 70
concurrent

block (Verilog) 437
statements 41, 315
statements listed (VHDL) 413
statements listed (Verilog) 433

conditional (Verilog) operator 71
configuration (VHDL)

declaration syntax 415
defined 324
description 40, 115-116, 324
example 116-117
in a test harness 324

442

Index

specification 116, 324
specification syntax 416

constant (VHDL)
array 184
deferred 109
syntax 418

constraints
area 29
circuit specific 29
global 29
timing 29

continuous assignment (Verilog)
example 134
syntax 437

counters 186-192
asynchronous (ripple) 187, 190-

192
clock dividers 186 188, 189,

190-192
deciding on structure 186-187
LFSR 188, 189
synchronous 187
up-by-one down-by-two 187-188

cycle stealing 163

D
D-type

flip-flop 172-178
flow through latch 163-171
see also latch and flip-flop

data objects
constant (VHDL) 46
file (VHDL) 46
listed 44
signal (VHDL) 46
variable (VHDL) 46

data types
abstract 77
array 46
enumeration (VHDL) 45
four valued value set (Verilog) 46
integer (Verilog) 47
integer (VHDL) 45
listed 44
net (Verilog) 47
parameter (Verilog) 47
record 46
register (Verilog) 47
VHDL/Verilog compared 11

declaration statements
defined 41
listed (Verilog) 434
listed (VHDL) 413
where used 42

decoders 148-156
default (Verilog) 78, 87, 88,

317
deferred constant (VHDL)

described 108
syntax 418

delta delay
described 89

example 90, 91
design automation tools 14
design domains 7
design entity (Verilog) 40
design entity (VHDL) 39
design-for-test 22, 75
design reusability

VHDL/Verilog compared 11
design unit (VHDL) 39-40, 324
DFT 22, 75

see also design for test
disconnect (VHDL)

syntax 416
dividers

combinational 286, 287, 301-
305

sequential 286, 287, 306-312
don't care

encoders 141
inhibits tri-state 315
input to case 96
output from case 97

dynamic power management 75

E
edge detection (VHDL) 85
encoders 141-144
entity (VHDL)

definition 39
course grain structuring 117
syntax 414

enumerated data type (VHDL)
FSM state encoding 205, 222

equality operator 65-66
equations 134
error detection and correction

algorithm 369
example 369-378

event list (Verilog) 77, 83, 125, 133
see also sensitivity list (VHDL)

event scheduling 89
exit (VHDL)

described 133
encoder 144
priority encoder 147
syntax 425

expressions
defined 48

F
fail safe behavior (FSM) 198

see also finite state machines
falling_edge 172, 173, 174
fault simulation

concurrent 17
defined 15
fault coverage 15
parallel 17
serial 17
where used 76

field-programmable gate array
definition 3, 4

cost 4
file type (VHDL)

syntax 420
finite state machines 193-269

asynchronous reset 198-199
coding style 198
fail safe behavior 198
Gray state encoding 199, 214-

217
interactive - bidirectional 201,

262-269
interactive - unidirectional 201,

242-261
Johnson state encoding 198,

199, 214-217
Mealy outputs 196, 197, 200,

229-233
Moore outputs 196, 197, 200,

229-233
minimal next state logic 200
modeling issues 197
optimal state encoding 200
primary branch directive 210
reset configurations 212-213
sequential next state logic 200,

234-236, 238-242
sequential output logic 200, 236-

242
state diagram 195-196
state encoding 199, 218-228
state table 195-196
structure 195
synchronous reset 198-199

flip-flop 172-178
active edge 172
asynchronous resets 175-177
D-type 163
edge triggered 172
if (VHDL) 172
inference (VHDL) 172
inference (Verilog) 173
JK-type 163
negedge (Verilog) 173
posedge (Verilog) 173
synchronous resets 175-177
toggle 163

for loop
combinational logic 133
decoder 149, 152
encoder 144, 147
repetitive stimulus 334
syntax (Verilog) 439
syntax (VHDL) 425
with variable (VHDL) 78

forever (Verilog)
not supported for synthesis 133
syntax 439

fork-join (Verilog) 437
forward and back annotation

VHDL/Verilog compared 11

443

HDL Chip Design

FPGA 3, 4
see also field-programmable gate
array

FSMs 193-269
see also finite state machines

full adder 281, 283
full internal scan 75
function

declaration syntax (Verilog) 435
declaration syntax (VHDL) 420
description 128-130
call syntax (Verilog) 437, 439
call syntax (VHDL) 421, 424
operand calls 52-53
translation (VHDL) 110-111

G
gate array 4
gate-to-pin ratio 16
generate (VHDL)

for-generate 121-122
if-generate 121-122
syntax 422

generic
Booth multiplier 297-301
declaration (VHDL) 155, 185,

296, 300
divider (synchronous) 306-312
n-bit LFSR 182-186

' shift and add multiplier 293-297
Gray code

test vector generation 334
state encoding 199, 214-217
see also finite state machines

greatest common divisor 361-369
group

syntax (VHDL) 419
group template

syntax (VHDL) 419

H
half adder 281, 282
hardware description language
HDL 8

definition 8
hierarchy 117
high impedance 315
high level constructs

VHDL/Verilog compared 12
history

Verilog 9
VHDL 8

/
identifies 50-51
if

comparator 157-158
D-type flip-flop inference 174-

178
decoder 149
encoder 142
latch inference 166, 166-169

multiplexer 136-138
priority encoder 146
syntax (Verilog) 439
syntax (VHDL) 424

index named operands 53-54
inequality operator 65-66
initial (Verilog)

LFSR tap setting 184
not supported for synthesis 436
syntax 436

initialize 75
inout data type (Verilog) 183
integer

unbounded (VHDL) 78
interactive FSMs

bidirectional 201, 262-269
unidirectional 201, 242-261
see also finite state machines

intermediate variable 79
internal scan

full 24
LSSD cell replacement 24
multiplexer cell replacement 24
partial 24
scan cell replacement 24
invariance 79

J
Johnson state encoding 198, 199,

214-217
see also finite state machines

L
language extensions

VHDL/Verilog compared 12
latch 163-171

cycle stealing 163
disadvantages 164
how inferred 164
not in library 164
preset & clear inputs 167
three phase 163
two phase 163

learning
VHDL/Verilog compared 11

LFSR 179-186
see also linear feedback shift
register

library (VHDL)
described 12
use of 103, 104
syntax 416

linear feedback shift register 179-
186

counter 188-189
described 179-182
maximal length sequence 181
n-bit 182
one-to-many & many-to-one
feedback structure 179

prohibited state 181
pseudo-random sequence 179

subprograms 127
taps 179

literals
bit string 49
character string 49
enumeration (VHDL) 49
numeric 49

logical
bit-wise operators 68
comparison operators 66-67
equations 134
operators 134
structure control 135

loop
invariance 79
for (VHDL) 78

low level constructs
VHDL/Verilog compared 12

M
managing large designs

VHDL/Verilog compared 13
many-to-one

LFSR feedback structure 179
McDonnell Douglas Aerospace 336
Mealy outputs (FSM)

defined 200
examples 229-233
illustrated 196, 197
see also finite state machines

memory
array (Verilog) 184
device 172

microprocessor 354
mimimal

FSM next state logic 200
see also finite state machines

mode
buffer (VHDL) 79
inout (VHDL) 79
out (VHDL) 79

model under test 234
modeling issues (FSM) 197

see also finite state machines
module (Verilog)

described 40
example 117
syntax 435

Moore outputs (FSM)
defined 200
example 229-233
illustrated 196, 197
see also finite state machines

multi-level
design hierarchy 117

multiplexers 136-140, 315
2-1 136
4-1 137-138
8-1 139-140

multipliers
Booth's algorithm 286

444

Index

combinational 286, 287, 290-
292

sequential 286, 287, 293-301
shift and add algorithm 287

N
named notation 117
negedge (Verilog) 78, 125, 173-174
net data types (Verilog)

declaration syntax 434
next (VHDL)

described 133
syntax 425

non-blocking procedural
assignment (Verilog)

description 94
example use of 94, 178
syntax 438
in for loops 95

non-recurring engineering 3
non-static

data object 85
loop 85, 86
slice 85

NRE 3
null (VHDL)

syntax 426
nullified subprogram (VHDL) 80
NUMERIC BIT (VHDL) 59
NUMERIC_STD (VHDL) 59, 104

o
one-to-many

LFSR feedback structure 179
ones complement 279, 281
operands

aggregates 51-52
enumeration literals (VHDL) 49
functions call 52-53
identifier 50-51
indexed named 53-54
listed 48
literal 49-50
numeric literals 49
qualified aggregate (VHDL) 54-

55
qualified expression (VHDL) 54-

55
record & record element 57-58
slice named 53-54
string literals 49
type conversion (VHDL) 56-57

operators
arithmetic 63
concatenation 70
conditional (Verilog) 71
equality 65-66
inequality 65-66
listed (VHDL) 60
listed (Verilog) 61
listed (VHDL/Verilog) 62
logical bit-wise 68

logical comparison 66-67
overloaded (VHDL) 59, 105-106
relational 64-65
shift 69
sign 64
reduction (Verilog) 70-71
replication (Verilog) 70
VHDL/Verilog compared 13

optimal
FSM state encoding 200
see also finite state machines

optimization
gate level 21
logic level 20
RTL level 20

others (VHDL) 78, 87, 88, 317
overflow 282, 289
overloaded parameter 184
overloaded (VHDL)

operators 59, 105-107
subprograms 105-106

P
package (VHDL)

definition 40
NUMERIC BIT 59
NUMERIC_STD 59, 104, 408-

412
STANDARD 400
STD_LOGIC_1076 105, 400-

407
syntax 415
TEXTIO 399
using 103-104

package body (VHDL)
definition 40
syntax 415

parameter (Verilog)
syntax 434

parameterizable model
decoder 154-156
generic LFSR 184-186
multiplier - shift & add 221-297
multiplier - Booth 297-301
VHDL/Verilog compared 13

parentheses
left to right priority 135

partial internal scan 75
partial products

forming 290
summing 291

partitioning 76
posedge (Verilog) 78, 125, 173-174
positional notation 117
predefined attributes (VHDL)

listed 396-397
priority encoders 145-147
procedure (VHDL)

concurrent 13,
described 126
example 127-128
concurrent call syntax (VHDL)

421
declaration syntax (VHDL) 420
sequential call syntax (VHDL)

424
process (VHDL)

syntax 421
prohibited state

LFSR 181
pseudo-random 179, 336

Q
qualified aggregate (VHDL) 54-55
qualified expression (VHDL) 54-55,

80

R
race conditions 75, 164
RAM 354
readability

VHDL/Verilog compared 13
records (VHDL) 57-58
reduction operator (Verilog) 70-71,

182
register data type (Verilog)

syntax 435
relational operators 64-65
relative time generated vectors 327-

330
repeat

syntax (Verilog) 439
replication (Verilog) operator 70
reserved words

Verilog 429
VHDL 395

resource sharing 110-111
return (VHDL)

syntax 426
reuse 76
ripple-carry 279
rising_edge 172, 173, 174, 205
RTL synthesis

defined 17
see also synthesis

s
scan chain 76
scheduling

an event 89
scope (VHDL) 82
sensitivity list (VHDL) 77, 83, 125,

133
see also event list (Verilog)

sequential
begin-end block (Verilog) 437
FSM next state logic 200, 234-

236, 238-242
FSM output logic 200, 236-242
statements defined 41
statements listed (VHDL) 413

shift operators 69
shifters

barrel 277

445

HDL Chip Design

combinational 273-277
synchronous 273, 278

sign operators 64
signal (VHDL)

assignment syntax (VHDL) 422,
423

computation of 133
declaration syntax (VHDL) 419
example use of 91, 92
in for loop 93
scheduling 89, 90

simulation
defined 14
fault 15
see also fault simulation

skew 315, 319
slice named operands 53-54
standard cell 4
state diagram (FSM) 195-196

see also finite state machines
state encoding 199-200 218-228

examples 218-228
formats 199-200
see also finite state machines

state table (FSM) 195-196
see also finite state machines

statements
declarative 41
concurrent 41
sequential 41
see also declarative statements,
concurrent statements and
sequential statements

structural replication
VHDL/Verilog compared 13

structure
configurations (VHDL) 115-116
Course/medium grain 121-124
course grain 135, 115-121
fine grain 125-130
logical 135
medium grain 125
of a design 115-130
synthesized logic 135

subprograms
advantage of 76
comparison of 126
definition 125-126
linear feedback shift register 127
nullified 82
overloading (VHDL) 82, 105-106
see also functions, procedures
(VHDL) and tasks (Verilog)

subtractors
combinational 279-284
synchronous 284-285
underflow 282

subtype (VHDL)
syntax 418

synchronous
adder 284

counters 186-189
dividers 286, 287, 306-312
elements 163
FSM reset 198, 199, 212-213
logic 163
multipliers 286, 287, 293-301
resets 175-177
shift register 273, 278
subtractor 284-285

system tasks and functions (Verilog)
$random (Verilog) 336, 337
described 324
described 430-434
listed 431

synthesis
defined 17

T
taps

LFSR maximal length sequence
179, 180

LFSR settings 179
task (Verilog) 78

task (Verilog)
described 126
example 127-128
call syntax 429
declaration syntax 436

test bench 323
see also test harness

test fixture 323
see also test harness

test harness 13, 323, 325
test synthesis

defined 22
test vectors 321-344

absolute time generated 327-
328, 331-333

ATPG 326
checking 325
clock signals 326-327
comparing expected results
on-the-fly 325 326-327, 336-
339
reference 325
relative time generated 327-330
repetitive 334
reset signals 327
stimulus 325
stored in an array 325 339-341
stored in system file 325
tri-state 335

testability 75
top-down 75
translation functions (VHDL) 109-

110
tri-state

buffers 315-320
pipelined model 347

two dimensional array 184
Two's complement 279, 281, 287,

288, 291

type
buffer (VHDL) 182
conversion (VHDL) 56-57
inout (Verilog) 183
syntax (VHDL) 418

U
unconstrained

arrays (VHDL) 80, 92
subprogram parameters 92

underflow 282
underscores

identifier (VHDL) 50
underscore (Verilog) 184

unidirectional
FSMs 201, 262
see also finite state machines

unsigned 184, 336
use (VHDL) 103, 104

syntax 416

V
value set 44
variable (VHDL)

assignment of in delta delays 91
assignment syntax 423
assignments 92
in for loops 93
intermediate 79
not scheduled 89
declaration syntax 419

verboseness
VHDL/Verilog compared 13

W
wait (VHDL)

bad FSM model 202-203
not necessary for flip-flops 78,
in a process 125,
in a procedure 126,
latch or flip-flop inference 172-

173,
syntax 423

while
(VHDL) 133
syntax (Verilog) 439
syntax (VHDL) 425

width qualification (VHDL) 80
wired logic 90

X
XNOR

LFSR feedback logic 179
XOR

LFSR feedback logic 179

446

