
www.it-ebooks.info

http://www.it-ebooks.info/

Filthy Rich Clients

www.it-ebooks.info

http://www.it-ebooks.info/

The Java™ Series

Ken Arnold, James Gosling, David Holmes
The Java™ Programming Language, Fourth Edition

Joshua Bloch
Effective Java™ Programming Language Guide

Stephanie Bodoff, Dale Green, Kim Haase, Eric Jendrock
The J2EE™ Tutorial, Second Edition

Mary Campione, Kathy Walrath, Alison Huml
The Java™ Tutorial, Third Edition: A Short Course on
the Basics

Mary Campione, Kathy Walrath, Alison Huml, The
Tutorial Team
The Java™ Tutorial Continued: The Rest of the JDK™

Patrick Chan
The Java™ Developers Almanac 1.4, Volume 1

Patrick Chan
The Java™ Developers Almanac 1.4, Volume 2

Patrick Chan, Rosanna Lee
The Java™ Class Libraries, Second Edition, Volume 2:
java.applet, java.awt, java.beans

Patrick Chan, Rosanna Lee, Doug Kramer
The Java™ Class Libraries, Second Edition, Volume 1:
Supplement for the Java™ 2 Platform, Standard Edition,
v1.2

Kirk Chen, Li Gong
Programming Open Service Gateways with Java™
Embedded Server

Zhiqun Chen
Java Card™ Technology for Smart Cards: Architecture
and Programmer’s Guide

Maydene Fisher, Jon Ellis, Jonathan Bruce

JDBC™ API Tutorial and Reference, Third Edition

Eric Freeman, Susanne Hupfer, Ken Arnold
JavaSpaces™ Principles, Patterns, and Practice

Li Gong, Gary Ellison, Mary Dageforde

Inside Java™ 2 Platform Security, Second Edition:
Architecture, API Design, and Implementation

James Gosling, Bill Joy, Guy Steele, Gilad Bracha

The Java™ Language Specification, Third Edition

Mark Hapner, Rich Burridge, Rahul Sharma, Joseph
Fialli, Kim Haase
Java™ Message Service API Tutorial and Reference:
Messaging for the J2EE™ Platform

Eric Jendrock, Jennifer Ball
The Java™ EE 5 Tutorial, Third Edition

Jonni Kanerva
The Java™ FAQ

Doug Lea
Concurrent Programming in Java™, Second Edition:
Design Principles and Patterns

Rosanna Lee, Scott Seligman
JNDI API Tutorial and Reference: Building Directory-
Enabled Java™ Applications

Sheng Liang
The Java™ Native Interface: Programmer’s Guide and
Specification

Tim Lindholm, Frank Yellin
The Java™ Virtual Machine Specification, Second Edition

Roger Riggs, Antero Taivalsaari, Jim Van Peursem, Jyri
Huopaniemi, Mark Patel, Aleksi Uotila
Programming Wireless Devices with the Java™ 2
Platform, Micro Edition, Second Edition

Rahul Sharma, Beth Stearns, Tony Ng
J2EE™ Connector Architecture and Enterprise
Application Integration

Inderjeet Singh, Beth Stearns, Mark Johnson, Enterprise
Team
Designing Enterprise Applications with the J2EE™
Platform, Second Edition

Inderjeet Singh, Sean Brydon, Greg Murray, Vijay
Ramachandran, Thierry Violleau, Beth Stearns
Designing Web Services with the J2EE™ 1.4 Platform:
JAX-RPC, SOAP, and XML Technologies

Kathy Walrath, Mary Campione, Alison Huml, Sharon
Zakhour
The JFC Swing Tutorial, Second Edition: A Guide to
Constructing GUIs

Steve Wilson, Jeff Kesselman
Java™ Platform Performance: Strategies and Tactics

Sharon Zakhour, Scott Hommel, Jacob Royal,
Isaac Rabinovitch, Tom Risser, Mark Hoeber
The Java™ Tutorial, Fourth Edition: A Short Course
on the Basics

www.it-ebooks.info

http://www.it-ebooks.info/

Filthy Rich Clients
Developing Animated

and Graphical Effects for
Desktop Java™ Applications

Chet Haase
Romain Guy

Upper Saddle River, NJ • Boston • Indianapolis • San Francisco

New York • Toronto • Montreal • London • Munich • Paris • Madrid

Capetown • Sydney • Tokyo • Singapore • Mexico City

www.it-ebooks.info

http://www.it-ebooks.info/

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where those desig-
nations appear in this book, and the publisher was aware of a trademark claim, the designations have been printed with initial capital let-
ters or in all capitals.

Sun Microsystems, Inc. has intellectual property rights relating to implementations of the technology described in this publication. In
particular, and without limitation, these intellectual property rights may include one or more U.S. patents, foreign patents, or pending
applications.

Sun, Sun Microsystems, the Sun logo, J2ME, J2EE, Java Card, and all Sun and Java based trademarks and logos are trademarks or regis-
tered trademarks of Sun Microsystems, Inc., in the United States and other countries. UNIX is a registered trademark in the United States
and other countries, exclusively licensed through X/Open Company, Ltd. THIS PUBLICATION IS PROVIDED “AS IS” WITHOUT
WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WAR-
RANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. THIS PUBLICA-
TION COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL ERRORS. CHANGES ARE PERIODICALLY
ADDED TO THE INFORMATION HEREIN; THESE CHANGES WILL BE INCORPORATED IN NEW EDITIONS OF THE PUBLI-
CATION. SUN MICROSYSTEMS, INC. MAY MAKE IMPROVEMENTS AND/OR CHANGES IN THE PRODUCT(S) AND/OR
THE PROGRAM(S) DESCRIBED IN THIS PUBLICATION AT ANY TIME.

The authors and publisher have taken care in the preparation of this book, but make no expressed or implied warranty of any kind and
assume no responsibility for errors or omissions. No liability is assumed for incidental or consequential damages in connection with or
arising out of the use of the information or programs contained herein.

The publisher offers excellent discounts on this book when ordered in quantity for bulk purchases or special sales, which may include
electronic versions and/or custom covers and content particular to your business, training goals, marketing focus, and branding inter-
ests. For more information, please contact: U.S. Corporate and Government Sales, (800) 382-3419, corpsales@pearsontechgroup.com.

For sales outside the United States please contact: International Sales, international@pearsoned.com.

Visit us on the Web: www.awprofessional.com

Library of Congress Cataloging-in-Publication Data

Haase, Chet.
Filthy rich clients : developing animated and graphical effects for

desktop Java applications / Chet Haase, Romain Guy.
p. cm.

Includes index.
ISBN 978-0-13-241393-0 (pbk. : alk. paper) 1. Object-oriented

programming (Computer science) 2. Java (Computer program language) I.
Guy, Romain. II. Title.

QA76.73.C153H33 2007
005.1'17—dc22 2007019818

Cover Illustration: Nathan Clement

Copyright © 2008 Sun Microsystems, Inc.
4150 Network Circle, Santa Clara, California 95054 U.S.A.
All rights reserved.

Printed in the United States of America. This publication is protected by copyright, and permission must be obtained from the publisher
prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical,
photocopying, recording, or likewise. For information regarding permissions, write to: Pearson Education, Inc., Rights and Contracts
Department, 75 Arlington Street, Suite 300, Boston, MA 02116, Fax: (617) 848-7047.

ISBN-13: 978-0-13-241393-0
ISBN-10: 0-13-241393-0
Text printed in the United States on recycled paper at Courier in Stoughton, Massachusetts.
First printing, August 2007

www.it-ebooks.info

http://www.awprofessional.com/safarienabled
www.awprofessional.com
http://www.it-ebooks.info/

For Kris

I never quite understood book dedications to spouses/partners/families.
I mean, it always seemed like the polite thing to do, but not really necessary.

Even while I was writing the bulk of my chapters, it just seemed like something
I happened to be doing as part of my work life, completely separate from my

home life. Then came the mad, unending rush at the end and the ensuing
review and editing phase. I basically disappeared from home life

entirely for about three months. Now, I get it.

Thank you, Kris, for supporting me in this project; for dealing with the
house, the kids, and everything else when I was nonexistent;

and for still being here when I finally reappeared.

––Chet

For All of My Friends

You heard me complain one too many times about this book, but you kept
listening to me. Such a load of work could not have come at a worse time.

Thank you for helping me keep what was left of my sanity.

For Chet

Thank you for remaining calm and polite even though you were dying
 to see me write my chapters.

For the Swing Team I Knew

Thank you for having faith in me and offering me
so many great opportunities.

––Romain

www.it-ebooks.info

http://www.it-ebooks.info/

This page intentionally left blank

www.it-ebooks.info

http://www.it-ebooks.info/

vii

Contents

Foreword .xvii

Preface . xix

Acknowledgments .xxv

About the Authors .xxvii

Introduction .1

PART I GRAPHICS AND GUI FUNDAMENTALS 9

Chapter 1 Desktop Java Graphics APIs: Swing, AWT,
and Java 2D .11
Abstract Window Toolkit (AWT) 12
Java 2D 13
Swing 13

Chapter 2 Swing Rendering Fundamentals15
Events 16
Swing Painting 17

Asynchronous Repaint Requests 17
Synchronous Paint Requests 19

Swing Rendering 20
paintComponent() 21
paint() 24
setOpaque() 27

www.it-ebooks.info

http://www.it-ebooks.info/

viii CONTENTS

Double-Buffering 28
Threading 31

Threading Model 33
Timers and the Event Dispatch Thread 37
Painless Threading through SwingWorker 38
Threading Summary 42

Chapter 3 Graphics Fundamentals . 43
Java 2D 43
Rendering 45

Getting the Graphics Object 46
Graphics State 48
Graphics Primitives 73

Chapter 4 Images . 91
Image Types 92
BufferedImage 95
Image Scaling 98

Quality versus Performance 101
getFasterScaledInstance(): Utility for Faster, Better Scaled Images 111

Chapter 5 Performance . 115
Use the Clip 115
Compatible Images 121

Why You Should Care 122
What about Managed Images? 123
Make Mine Compatible 124

Managed Images 126
Grabbing the DataBuffer 129
Frequent Rendering to the Image 132

Intermediate Images 134
The Big Idea 135
How It’s Done 135
Notes 141
Summary 142

Optimal Primitive Rendering 143
Benchmark 144

www.it-ebooks.info

http://www.it-ebooks.info/

CONTENTS ix

Command-Line Flags 145
Rendering 146
Debugging Performance 148

PART II ADVANCED GRAPHICS RENDERING 151

Chapter 6 Composites .153
AlphaComposite 153
AlphaComposite: The 12 Rules 155

Clear 157
Dst 157
DstAtop 158
DstIn 158
DstOut 159
DstOver 159
Src 160
SrcAtop 160
SrcIn 161
SrcOut 161
SrcOver 162
Xor 162

Creating and Setting Up an AlphaComposite 163
Common Uses of AlphaComposite 164

Using Clear 165
Using SrcOver 165
Using SrcIn 166

Issues with AlphaComposite 168
Create Your Own Composite 170

The Add Composite 171
Implementing the CompositeContext 174
Composing the Pixels 175

Summary 177

Chapter 7 Gradients .179
Two-Stops Linear Gradient 179
Special Effects with Regular Gradients 182
Multistops Linear Gradient 187
Radial Gradient 189

www.it-ebooks.info

http://www.it-ebooks.info/

x CONTENTS

Optimizing Gradients 193
Caching the Gradient 193
Smarter Caching 194
Optimization with Cyclic Gradients 195

Chapter 8 Image Processing . 199
Image Filters 200
Processing an Image with BufferedImageOp 201
AffineTransformOp 203
ColorConvertOp 204
ConvolveOp 206

Constructing a Kernel 208
Working on the Edge 209

LookupOp 211
RescaleOp 213
Custom BufferedImageOp 214

Base Filter Class 215
Color Tint Filter 216

A Note about Filters Performance 222
Summary 222

Chapter 9 Glass Pane . 223
Painting on the Glass Pane 225

Optimized Glass Pane Painting 227
Blocking Input Events 230

Mouse Events Issues 231

Chapter 10 Layered Panes . 237
Using Layered Pane Layers 238
Ordering Components within a Single Layer 242
Layered Panes and Layouts 243
Alternative to JLayeredPane with Layouts 244

Chapter 11 Repaint Manager . 249
When Swing Gets Too Smart 249
Meet the RepaintManager 251

Managing the RepaintManager 252

www.it-ebooks.info

http://www.it-ebooks.info/

CONTENTS xi

A Reflection on RepaintManager 253
Making Room for the Reflection 253
Painting the Reflection 257
A Dumber, Therefore Smarter, RepaintManager 259

Summary 262

PART III ANIMATION . 263

Chapter 12 Animation Fundamentals .265
It’s About Time 265
Fundamental Concepts 266
Frame-Based Animation 266

Frame Rate 268
Time-Based Motion 268

Timing (and Platform Timing Utilities) 275
“What Time Is It?” 275
“Can I Get a Wake-up Call?” 279
“Call Me Again. And again. And again.” 280

Resolution 288
Resolution of System.currentTimeMillis()
and System.nanoTime() 291
Sleeping Resolution 293
Timer Resolution 297
Resolution about Resolution 299

Animating Your Swing Application 300
Animated Graphics 301
Animated GUIs 303

Summary 314

Chapter 13 Smooth Moves .315
Background: Why Does My Animation Look Bad? 315
What Makes Animations Choppy,
and How to Smooth Them Out 316

Timing Is (Nearly) Everything 317
Color: What’s the Difference? 320
Vertical Retrace: That Syncing Feeling 329

SmoothMoves: The Demo 335
Creating the Graphics Objects 335
Running the Timer 335

www.it-ebooks.info

http://www.it-ebooks.info/

xii CONTENTS

Rendering 337
Rendering Options 338

Summary 341

Chapter 14 Timing Framework: Fundamentals 343
Introduction 343
Core Concepts 345

Animator 346
Callbacks 348
Duration 350
Repetition 351
Resolution 352
Start Behavior 352

Interpolation 359
Acceleration and Deceleration 360
Interpolator 364

Summary 378

Chapter 15 Timing Framework: Advanced Features 379
Triggers 379

Concepts and Usage 380
Triggers Superclasses 381
The Built-In Triggers 382

Property Setters 392
PropertySetter 395
Evaluator 399
KeyFrames 402

Summary 420

PART IV EFFECTS . 421

Chapter 16 Static Effects . 423
Blur 423

Motivation 423
Simple Blur 426
Gaussian Blur 428
Performance Trick 433

www.it-ebooks.info

http://www.it-ebooks.info/

CONTENTS xiii

Reflection 434
Motivation 434
Drawing Reflections 435
Blurred Reflections 435

Drop Shadows 437
Motivation 437
Simple Drop Shadow 438
Realistic Drop Shadow 440

Highlights 442
Motivation 442
Brightening 444
Spotlighting 446
Text Highlighting for Better Readability 448

Sharpening 450
Motivation 451
Simple Sharpen 452
Unsharp Masking 454
Sharpening a Downscaled Image 455

Summary 458

Chapter 17 Dynamic Effects .459
Motion 460

Motivation 460
Going, Going, Gone 462

Fading 465
Motivation 465
Fading Strategies 467
AlphaComposite Fading 468
Color Fading 470
Cross-Fading 472
Fading Made Easy 472

Pulse 473
Motivation 473
Feel My Pulse 474
Automatic Glow 478
Palpitating Pulse 482

Spring 484
Motivation 484
Spring Fever 486

www.it-ebooks.info

http://www.it-ebooks.info/

xiv CONTENTS

Morphing 489
Motivation 489
Morphing Buttons 491

Summary 495

Chapter 18 Animated Transitions . 497
Animating Application State Segues 497

The Big Idea 498
Animated Transitions: The Library 501

Animated Application State 501
GUI States 501
The API 502

Example: SearchTransition 503
Effects 509

Example: SearchTransition Revisited: Customization 516
Example: ImageBrowser 519

GUI Structure 523
Pictures and ImageHolder 523
ScreenTransition 525

Animated Transitions: Under the Hood, or How
Do You Get Swing to Do That? 527

Setting Up the Next Screen—Quietly 527
Getting Layout to Lay Off: Animating Layout Changes 528
Making Swing Sing: Performance 529

Summary 530

Chapter 19 Birth of a Filthy Rich Client 531
Aerith 531

Running Aerith 532
Finding Your Way Around 533

Workflow Paper Design 533
The Vision 535
Screen Paper Design 537
Mockup 538
From Mockup to Code 540

Use Layers 540
Blending Modes 542
Use Guides 543

www.it-ebooks.info

http://www.it-ebooks.info/

CONTENTS xv

But . . . I’m Not an Artist! 544
Choosing Nice Colors 545
Read Design Books 547
Summary 548

Conclusion .549

Index .553

www.it-ebooks.info

http://www.it-ebooks.info/

This page intentionally left blank

www.it-ebooks.info

http://www.it-ebooks.info/

xvii

Foreword

THIS is a book about creating beautiful applications. Not just blizzards of text
boxes and buttons in some nondescript standard look-and-feel, but applications
that are truly beautiful.

If you wind the clock back enough years, the world of graphical user interfaces
was ruled by standardized look-and-feel specifications. This approach was taken
in an effort to centralize all of the GUI coding in applications, make it easy to
document the applications (everyone knows what a slider does, therefore it doesn’t
need to be described), and work around the relatively poor graphics performance
of desktop computers.

But the last decade’s collision between the computer industry and the consumer
has led to a huge increase in the emphasis on aesthetics in user interfaces: for
everything from brand awareness to increasing the comprehensibility of sophis-
ticated systems, to eye-catching coolness to draw the customer in, to just plain
“Wow!” . . . Aesthetics are in.

Combine this with the phenomenal increase in computer power that Moore’s
Law has brought us, especially as it has been expressed in the performance of
commodity graphics rendering hardware, and you’ve got a huge range of enter-
taining programming possibilities.

There’s a lot of subtlety in this, from “What makes a beautiful interface?” and
“How do I make the pixels beautiful?” to “How do I make this fast?” This book
covers all of these topics and more. For me, this is the kind of programming task
that counts as pure pleasure. I’m sure it will bring you pleasure, too.

—James Gosling

www.it-ebooks.info

http://www.it-ebooks.info/

This page intentionally left blank

www.it-ebooks.info

http://www.it-ebooks.info/

xix

Preface

WELCOME to Filthy Rich Clients. This book is about building better, more
effective, and cooler desktop applications using graphical and animated effects.
We started writing this book after our successful session on the topic at the
JavaOne conference in 2006. The session explored the use of animation, advanced
2D effects, and even some 3D effects to create richer applications. But it seemed
we could have spoken for days on the subject. Understanding why you should
develop such applications, how the technologies that enable them work, and how
you can properly develop effects that enable Filthy Rich Clients is, well, a rich
topic indeed.

Hence, this book. Now we get to spend the next many pages with you, discuss-
ing fundamentals of Java, Swing, Java 2D, graphics, graphical user interfaces
(GUIs), animation, performance, and advanced effects that build on all of these
fundamentals in order to create beautiful applications.

Please join us for the ride. It should be fun.

Organization
The book has a sequential flow from beginning to end, so readers may want to
work through it in that order, at least to understand how the material is arranged.
There are plenty of code snippets and discussions in the book that are also
appropriate for random access, although the technology behind any particular
item might relate back to earlier discussions in the book. These relationships are
generally noted when they arise so that you can more easily refer back to earlier
material as background.

www.it-ebooks.info

http://www.it-ebooks.info/

xx PREFACE

The original intent of the book was to explain the cool effects that we show
mostly toward the end of the book. But there is currently no book, to our knowl-
edge, that explains the background of Swing, graphics, Java 2D rendering, and
animation that is necessary to understand how the effects work. So we start at the
beginning. We develop the fundamentals in these areas early on, building upon
them as we go, so that by the time you read the material at the end of the book,
everything should make sense.1

This book provides not only plenty of snazzy example effects you can use to cre-
ate Filthy Rich Clients but also the knowledge of how it all works so that you can
go further on your own.

Part I: Graphics and GUI Fundamentals

Part I covers the fundamental concepts of Java graphics and user interface
programming that we use throughout the rest of the book. A comprehensive
description of graphics and user interface development is beyond the scope of
this book, but we cover the basic areas that enable Filthy Rich Clients suffi-
ciently to get everyone up to speed with the APIs, techniques, and details nec-
essary to understand the later chapters that build upon these elements.

If you have a solid understanding of AWT, Java 2D, and Swing already, some
of the material at the beginning of this section may be old hat for you. How-
ever, we build upon these basic concepts as we go. Also, there are plenty of
interesting, deep tidbits throughout the book that should be useful to all Desk-
top Java programmers.

Part II: Advanced Graphics Rendering

Part II covers more advanced topics in Java 2D and Swing that are useful in
creating rich interfaces. The first half of Part II covers graphics-specific tech-
nologies of composites, gradients, and image processing. The second half of
Part II covers more Swing-focused technologies: the glass pane, layered
panes, and the repaint manager.

Part III: Animation

A Filthy Rich Client is not static; it is alive. It needs to move. It needs to tran-
sition. It needs a heartbeat so that the user knows it is there. Looking good is
half the battle. Looking alive is the rest of it.

1. Think of it as a GeneralPath to enlightenment.

www.it-ebooks.info

http://www.it-ebooks.info/

PREFACE xxi

Part III is about the fundamentals of animation that you can use to bring your
applications to life. We cover some of the basics of animating graphics and
GUIs, discuss the existing facilities in the Java SE core libraries for assisting
in developing animations, and cover the Timing Framework library that makes
developing animations in Java much easier.

Part IV: Effects

Part IV builds upon everything covered in the earlier parts of the book. Effects
are at the core of Filthy Rich Clients, making the difference between a mere
rich client and a Filthy Rich Client. The effects are grouped into two catego-
ries. The first category is static effects, which use graphics techniques for a
richer look in applications. The second category is dynamic, or animated,
effects for making GUIs move. We also cover Animated Transitions, another
animated effect that is enabled through a utility library available on the book’s
Web site. The section ends with a chapter that shows how a sample Filthy
Rich Client was developed, from initial design diagrams through implementa-
tion of the various effects.

Style
We have adopted an informal writing style for the book because we really feel
that we are talking to you, the reader. It is not unusual for one of us to use the
word “I” in any particular passage in the book. The trick is to figure out which
one of us is speaking. It really doesn’t matter, of course, and you probably don’t
care. But in case you do, here’s a hint: The pictures and screenshots in Romain’s
sections are generally more attractive, and there are more footnotes and raw text
in Chet’s sections. These differences map well to our characters: Romain has a
great aesthetic sense and takes beautiful pictures, and Chet talks a lot.

Reader Requirements
Experience with the Java language and Swing is helpful. This book is not a
primer on those subjects but rather assumes some familiarity with Java and
Swing. However, some of the rendering fundamentals of Swing, which are
important to understand in creating Filthy Rich Clients, may not be evident to
even advanced Swing programmers, so the first couple of chapters of the book
are devoted to explaining how Swing and Java 2D work together to create the
kinds of customizable effects that we explore throughout the rest of the book.

www.it-ebooks.info

http://www.it-ebooks.info/

xxii PREFACE

External Resources
We have compiled information relevant to the book on the Web site http://
filthyrichclients.org. This site has everything from demos to utility libraries used
in the book to other information about the book and related technologies as
appropriate. We’re positive there are absolutely no miisteakes in this book, but if
a miracle occurs and we’re wrong about that, expect the errata to show up on this
Web site.

Web Site Code
The book is full of demo code.2 There are snippets of code spread throughout the
pages. In most cases, this code is copied from demos that are posted on the
book’s Web site. Where we refer to an available demo in the text, look for an
“Online Demo” icon, like the one next to this paragraph, and the project name to
look for on the book’s Web site. Each of these demo projects contains the build-
able and runnable source code that allows you to see the application in action as
well as to use the code as you see fit in your projects. The demos are not just triv-
ial items to ignore. We expect you to go to the Web site and check things out. We
specifically developed the demos hand-in-hand with writing the book, and the
material in the software on the Web site integrates well with the book material
throughout every chapter.

Web Site Libraries
There are also utility libraries used and described in the book. These libraries are
useful for some of the demos we developed, but more importantly they are
intended to be used as standalone libraries for your projects.

These libraries are available in ongoing development projects on other Web
sites, listed below, but versions are provided on the book’s Web site, http://

2. How full is it? It’s so full that our code font got so exhausted it caught mono. It’s so full that we
edited the book by running lint on it. It’s so full that you could probably compile the text in the
book if it weren’t for all of these annoying footnotes.

ONLINE
DEMO

www.it-ebooks.info

http://filthyrichclients.org
http://filthyrichclients.org
http://filthyrichclients.org
http://www.it-ebooks.info/

PREFACE xxiii

filthyrichclients.org, that match the version used in the book. These libraries
include:

Timing Framework: This library is described in detail in two chapters in this
book (hint: look for the chapters whose names begin with the words “Timing
Framework”). The project is being developed at http://timingframework.dev.
java.net, but a specific version of the library that matches the one used for the
code and descriptions in this book is available on the book’s Web site.

Animated Transitions: This library is described toward the end of the book in
Chapter 18, cleverly named “Animated Transitions.” Again, this project will
probably also be available on java.net, although it is not yet posted at the time
of this writing. But regardless, a version that matches that described in the
book will be available on the book’s Web site.

Other Projects
There are many projects out there that would be good to investigate in the pursuit
of Filthy Rich Clients, but some in particular are mentioned in the book and used
in some of our demos:

SwingLabs: Many of the utilities mentioned in the context of demos and snip-
pets in the book are available on the SwingLabs Web site. Be sure to check
out these and other technologies at http://swinglabs.dev.java.net.

JOGL: The Java bindings for OpenGL library provides a way to write 3D
applications and effects in Java using the OpenGL API and hardware acceler-
ation across most platforms on which Java runs. You can find JOGL at http://
jogl.dev.java.net.

Other Web Resources
We both post irregularly but often to our blogs. When you want to know more
about graphics, performance, Java 2D, and Java Desktop Client technologies in
general, go visit Chet’s technical blog at http://weblogs.java.net/blog/chet/. When
you want to see more exciting visuals, go check out the latest Swing demos and
discussions on Romain’s English-friendly blog at www.curious-creature.org.

www.it-ebooks.info

http://timingframework.dev.java.net
http://timingframework.dev.java.net
http://filthyrichclients.org
http://swinglabs.dev.java.net
www.curious-creature.org
http://jogl.dev.java.net
http://jogl.dev.java.net
http://weblogs.java.net/blog/chet/
http://www.it-ebooks.info/

xxiv PREFACE

You will find invaluable information on those two Web sites that perfectly com-
plements the book. You may even get the chance to read sneak previews of
sequels to this book without even knowing it. In fact, we won’t know it either
when we post the entries, so we’ll be even.

If you enjoy reading some of this book’s footnotes, please check out Chet’s
informal humor blog at http://chetchat.blogspot.com. Finally, if you are lucky
enough to read French, do not hesitate to visit Romain’s French blog at
www.progx.org, which is an absurd mix of funny stories and programming advice.

www.it-ebooks.info

http://chetchat.blogspot.com
www.progx.org
http://www.it-ebooks.info/

xxv

Acknowledgments

THE authors would like to thank everyone they have ever known, but it would
take entirely too much time and space. Instead, we limit it to the people who
have directly helped influence the technologies, content, style, and fixes to typos
in this book.

First of all, we would like to thank the reviewers of the book. These people spent
countless hours reading through many pages of manuscript in a valiant attempt to
help us make the book as good and as accurate as possible. I wish I had a picture
of Scott Violet when he was reading Chapter 3 in the gym, between sets on the
bench press. Some of the Sun experts who kicked into this effort include Bob
Eckstein, Scott Violet, Chris Campbell, Dmitri Trembovetski, Amy Fowler, Jim
Graham, Phil Race, and Hans Muller. Also we want to thank Ken Russell, who
helped us with the 3D content in the original JavaOne presentation from which this
book was born. It was fantastic (if sometimes painful) to have the creators and
implementers of the technologies we describe correcting us where we went astray.
The technical lashings, er, reviews of Jim Graham were particularly thorough and
helpful. Also, Bob Eckstein’s reviews on style were extremely helpful in making
the whole book flow better. We also had plenty of assistance from outside of Sun,
including help from Jan Haderka, Jeff Kurtz, Guillaume Laforge, Ido Green,
Natasha Lloyd, Daniel Klein, Dimitri Baeli, James Lemieux, Bill Snyder, Chris
Brown, Jean-Laurent de Morlhon, Jan Bösenberg, and Jean-Baptiste Freymann.

We also thank the people who have helped with brainstorming, testing, design
reviewing, and heartily criticizing our technical work in many painful ways.
Utilities like the Timing Framework and Animated Transitions would not be the
same without their incessant complaints. This long list of people includes many

www.it-ebooks.info

http://www.it-ebooks.info/

xxvi ACKNOWLEDGMENTS

of the people mentioned previously as reviewers in addition to Vincent Hardy,
Richard Bair, and Joshua Marinacci from Sun and the following people from
outside of Sun: Dieter Krachtus, Stuart Scott, and Stephen Lum. There are many
other people who kicked in good suggestions and feedback on our work, but we
want to call out these folks in particular who helped out in suggesting and
reviewing design changes for various Timing Framework features. We should
also mention Chris Campbell specifically, since his work on the Interpolators
and Evaluators in the Timing Framework helped to drastically simplify the way
nonlinear interpolation works in the library.

Thanks also to Craig Aspinall, who kindly donated his filthyrichclients.com
domain name so that life would be less confusing for people who went looking
for the Web site associated with this book. Both filthyrichclients.com and
filthyrichclients.org will point to the same site and offer plenty of resources for
people who want to make their Swing applications filthy.

We thank all of the people who read our blogs and give us useful feedback.
Although these technologies are fun to play with regardless, at the end of the day
we want to improve the lives of developers, so hearing from the outside world
about the things that developers need is critical. Large portions of this book
would not have been possible without our astute readers.

Thanks also go to the java.sun.com and java.net Web sites, both of which have
published original articles upon which portions of this book were based. We
would like to specifically thank java.net editors Chris Adamson and Daniel
Steinberg for their help with our articles for that site and Sun Microsystem’s
Laureen Hudson, java.sun.com editor extraordinaire and generally funny person.
If writing articles for those sites were not so enjoyable, this book probably
would not exist right now.

Oh, and thank you for purchasing and reading this book. It’s fun playing with this
stuff and writing about it, but even more fun when people can listen in and play
along. Now let us help you to make your applications a bit more Filthy Rich.

www.it-ebooks.info

http://www.it-ebooks.info/

xxvii

About the Authors

Chet Haase is a client architect in the Java SE group at Sun Microsystems. He
works with all of the desktop Java technologies, including Swing and Java 2D,
and helps figure out how to improve the platform going forward. His passion in
software is graphics, and he has spent most of his career (apart from a short stint
just after college, when he realized just how dull “network analysis” is) working
with graphics technologies of all kinds, from 2D to 3D and from the application
down to the driver level. Chet received his B.A. in mathematics from Carleton
College and his M.S. in computer and information sciences from the University
of Oregon.

Romain Guy wrote this book during his final year at school and should obtain
his M.S. in computer science in the Fall of 2007. His passion in software is
graphics and graphical user interface development, and he has spent many years
working with Java and Swing. Romain cannot stand still and has worked as a
freelance journalist for programming magazines for years, as a book translator
for O’Reilly, as a Java teacher in a French university, as a videogame developer,
as a freelance developer, as a software engineer on the Swing Team at Sun
Microsystems, and as a software engineer at Google. His new passion is digital
photography.

www.it-ebooks.info

http://www.it-ebooks.info/

This page intentionally left blank

www.it-ebooks.info

http://www.it-ebooks.info/

1

Introduction
This is not a book on data binding.1

Rich Clients
We should describe what we mean by Filthy Rich Clients. But first, we need to
describe what rich clients are. Rich clients is a phrase commonly associated with
desktop applications. Rich client applications are usually contrasted with thin
client or Web client applications, which are essentially software applications run-
ning on the server with a simple front end that runs in a browser on the user’s
desktop.

Rich client applications have more of the program logic and functionality local
to the user’s desktop machine. On one extreme, the application may be all local,
such as a word-processing application or photo-editing software. Or the applica-
tion may run in the client-server world, as do thin client applications. The data
may still be provided by the server, and important functionality may still come
from a server, a database, the network, or wherever. But the local application is

1. We figured we should be honest about this disclaimer. When we described the book and its out-
line in a blog entry, we received a comment that, in fact, the book should be about data binding.
While the interaction of Java Desktop applications with data sources is an interesting and critical
area to discuss, it’s really not what this book is about. At all. If you opened Filthy Rich Clients
assuming that it would talk about data binding, you might want to close the book and look on a
nearby shelf for other books instead. Or change your mind now and realize that this book will be
a lot more fun to read.

www.it-ebooks.info

http://www.it-ebooks.info/

2 INTRODUCTION

responsible for much more of the logic, user interface, and interactivity than is a
typical Web client.

The distinction between Web and rich clients is an important one because there
are trade-offs with each approach that application developers must be aware of
in deciding which route to go with their products. The trade-offs vary between
different application domains, systems, and technologies but basically boil down
to the following:

Web Clients

These applications look like simple Web pages to the user. Their great
advantage is their simplicity. They may start up faster than rich clients, tak-
ing just the time that it takes for the server to process information and send it
over the network to the user’s computer. These applications also tend to have
a simple, browser-oriented graphical user interface (GUI). This simplicity
comes at a cost, however. The application model tends to be very standard:
Each page has content, fields for the user to fill in, and buttons to submit infor-
mation back to the server. The interaction model tends to be batch-oriented:
The user sends information, the server processes the information, and the
resulting page is sent back to the user. Significant delays in interaction can
occur with this complete-send-process-return-display application model.

Rich Clients

These applications have a very “rich” user experience, taking advantage of
native facilities of the user’s desktop computer, such as graphics hardware
acceleration, to provide a more robust and full-featured application experi-
ence than is provided by Web clients. Rich client applications can sometimes
take longer to start up than a simple Web page because there is more going
on in the application, and the GUIs tend to be more involved than Web GUIs
because there is more happening in the application than in simple Web-
oriented applications. The interaction model is quite different because much
of the logic of the application is local, even if the application is talking to a
server on the back end.

Lately, a new model has emerged for Web clients, called Asynchronous Java-
Script and XML (AJAX), where much of the client-server interaction can be
handled in parallel with the user’s interacting with each Web page. This transpar-
ent client-server interaction can allow for dynamically updated Web pages
instead of the more tedious complete-send-process-return-display model of tra-
ditional Web client applications. However, this model is still limited by the

www.it-ebooks.info

http://www.it-ebooks.info/

FILTHY RICH CLIENTS 3

browser container in which the application lives and by many of the constraints
that that browser model places on the application, including the extent to which
JavaScript features are supported, the security model of the browser, and the
physical GUI of the browser container around the application.

AJAX applications are starting to explore some of the Filthy Rich features
described in this book, including some graphical effects in their GUIs. This is
obviously great. We believe that these features can make much more useable
applications. But given the browser constraints of AJAX, it is still a Web client
technology, and we focus our discussion on the rich client model instead.

Filthy Rich Clients
Filthy Rich Clients is a term that we coined to refer to applications that are so
graphically rich that they ooze cool. They suck users in from the outset and hang
onto them with a death grip of excitement. They make users tell their friends
about the applications. In short, they make users actually enjoy their application
experience. When was the last time you enjoyed using a software application?
Maybe you need more Filthy Rich Clients in your life.

The keys to Filthy Rich Clients are graphical and animated effects. These kinds
of effects provide ways of enhancing the user experience of the application
through more attractive GUIs, dynamic effects that give your application a pulse,
and animated transitions that keep your user connected to the logical flow of the
application.

We are not just talking about media players here. We are talking about enhancing
all kinds of software, from typical enterprise form-based applications to the
most gratuitously whizzy consumer application. All applications could benefit
from thinking about the user experience and how to apply Filthy Rich effects in
ways to improve that experience.

As an example of Filthy Rich Client effects and a shameless teaser for content you
will see later in the book, let’s see some screenshots (Figures I-1 through I-7).

“Effectives”: Effects Enabling More
Productive Applications
Graphical effects, especially animated ones, can be overdone. The last thing that a
user wants is for everything in an application to be blinking, swooping, pulsing,
and fading constantly. The techniques we outline in this book can, if misused,

www.it-ebooks.info

http://www.it-ebooks.info/

4 INTRODUCTION

Figure I-1 Chapter 10, “Layered Panes,” shows how to support multiple layers of
information in your user interface.

Figure I-2 Reflection, discussed in Chapter 11, “Repaint Manager,” brings realism and
richness to an application.

www.it-ebooks.info

http://www.it-ebooks.info/

FILTHY RICH CLIENTS 5

Figure I-3 The blur effect, discussed in Chapter 16, “Static Effects,” can be useful
for focusing the user’s attention on nonblurred items.

Figure I-4 The Aerith application, available in source and binary form at http://
aerith.dev.java.net, demonstrates many of the effects and techniques discussed in
this book.

www.it-ebooks.info

http://aerith.dev.java.net
http://aerith.dev.java.net
http://www.it-ebooks.info/

6 INTRODUCTION

Figure I-5 Aerith’s loading screen demonstrates the pulsating effect discussed in
Chapter 17, “Dynamic Effects.”

Figure I-6 The bloom effect is applied to Aerith’s loading screen, as discussed
in Chapter 17.

Figure I-7 Chapter 18, “Animated Transitions,” discusses automating animations
between different states of a GUI. Here, a change in thumbnail sizes causes the pictures
to automatically and smoothly animate to their new locations and sizes in the window.

www.it-ebooks.info

http://www.it-ebooks.info/

FILTHY RICH CLIENTS 7

contribute to this horror show. We show how to enrich the graphics and animate
anything you want. We also discuss how to do so effectively, making sure to enrich
applications in sensible ways. It is important that you make the application more
effective for the user, not just effect-ridden. Done right, the addition of graphical
effects to an application can really draw users in and keep them there.

Note that this book does not attempt to cover the deep topic of interface design.
We touch on this topic in the context of particular effects and techniques as we
discuss them, but if you wish to know more about designing user interfaces,
check out some of the great books out there on the subject. You might start with
Chapter 19 of this book, however, which discusses the UI design process used in
developing a particular application.

Why Java and Swing for Filthy Rich Clients?
The techniques that we discuss in this book apply to most graphically oriented
development toolkits. Anything that allows you to change the appearance of the
GUI elements of your application can take advantage of the approaches explored
here.

However, we have developed the sample code, the utility frameworks, and most
of the techniques around the programming environment of Java and Swing.
Swing is the library of classes for developing GUIs for Desktop Java applica-
tions. Swing’s great advantage over other GUI toolkits is its flexibility and cus-
tomization. These capabilities are exploited to a great extent in this book as we
explore how to use custom rendering and animation to create great-looking
effects in applications.

www.it-ebooks.info

http://www.it-ebooks.info/

This page intentionally left blank

www.it-ebooks.info

http://www.it-ebooks.info/

9

Part I

Graphics and GUI
Fundamentals

www.it-ebooks.info

http://www.it-ebooks.info/

This page intentionally left blank

www.it-ebooks.info

http://www.it-ebooks.info/

11

1
Desktop Java

Graphics APIs: Swing,
AWT, and Java 2D

MAYBE it is because I am a graphics geek, but I always find it useful to have
a picture in my mind of how the various pieces of libraries fit together. Bear with
me while I create and describe such a diagram for the Desktop Java Graphics
APIs.

In Figure 1-1, the interesting bit is in the middle: Swing, AWT, and Java 2D
interact to provide the graphics and user interface libraries that your application,
the piece on top, uses. Swing, Java 2D, and AWT are themselves running on top
of the Java Runtime Environment, which includes the Java Virtual Machine as
well as other Java libraries. The end result of all of these libraries is that your
application can create windows, user interface components, and graphics that are
displayed on the user’s monitor without that application knowing anything about
the window system APIs of the underlying native platform.

Although the layer cake diagram in Figure 1-1 is beautiful in its own right,1 it is
probably worth going into a bit more detail on these desktop libraries.

1. Romain would debate this point.

www.it-ebooks.info

http://www.it-ebooks.info/

12 CHAPTER 1 DESKTOP JAVA GRAPHICS APIS: SWING, AWT, AND JAVA 2D

Abstract Window Toolkit (AWT)
The AWT library was the first graphical user interface (GUI) toolkit that shipped
with Java, available in version 1.0 of the Java Runtime Environment. At that
time, AWT was the only core library for user interface programming in Java; any
desktop applications that needed user interfaces would use AWT to create and
display windows, buttons, and other GUI components. AWT provides this capa-
bility by calling upon the native libraries on the user’s system to create and dis-
play these GUI components. For example, an AWT java.awt.Window on the X
Windows System is actually an X window2 underneath. AWT is also responsible
for the input event mechanisms of the user interface, such as handling mouse
clicks and keyboard events. Events that occur in the native window system are
received by the AWT implementation and are then forwarded to Java applica-
tions as AWT events.

AWT lives on and can be used now exactly as it was in the beginning (ah, the
glories of backwards compatibility!), although it has since taken on more of an
infrastructure role for applications that use the Swing GUI toolkit. That is, you
can still use AWT to create windows and GUI components, but most current
Desktop Java applications use Swing, because Swing provides a more flexible
and powerful GUI development environment. However, AWT is still a critical
piece of the overall pie; it continues to provide the important platform-specific
capabilities that Swing depends on. For example, Swing windows, using
Swing’s JFrame component, use AWT to create the actual window on the screen.
AWT also provides certain core functionalities that Swing and desktop applica-
tions depend on, such as the event mechanism, cut and paste, drag and drop, key-
board focus management, and input management.

2. Not an ex-Window; that’s what you get when the application exits.

Figure 1-1 Desktop Java Graphics APIs: The layer cake.

www.it-ebooks.info

http://www.it-ebooks.info/

SWING 13

In Figure 1-1, we can see, from the Java application’s standpoint, that AWT may
be used both directly, using AWT APIs such as the event mechanism, and indi-
rectly, using Swing APIs that may depend on AWT functionality underneath.

Java 2D
Java 2D, introduced in the JDK 1.2 release, is the graphics library of Java.
Whereas AWT included basic drawing APIs in JDK 1.0, Java 2D goes much fur-
ther and covers a broad set of operations, including basic and advanced drawing
operations, image manipulation, text, and printing. We describe these features in
more detail later, but for the purposes of this section, Java 2D handles Swing’s
rendering operations. So, for example, when a Swing button wants to look like a
Swing button, it makes calls into Java 2D to draw the background, the border,
and the text for that button. In Figure 1-1, we can see that Java 2D methods can
be called directly by the application and indirectly through its support of Swing
functionality.

Swing
Swing, like Java 2D, was also introduced in JDK 1.2. Swing is the main GUI
library used by today’s Desktop Java developers. Swing is a lightweight toolkit,
which means that the Swing components you see in your application, such as but-
tons, checkboxes, and scrollbars, do not correspond to native components as they
do in AWT. This detail is completely irrelevant for the end user; if it looks like a
component, clicks like a component, and responds like a component, then it is a
component. But the difference is a very important one for Filthy Rich Client appli-
cations, as we shall see. The distinction here is that Swing’s lightweight compo-
nents are drawn using Java 2D, and they can have their drawing customized, which
leads to applications that look and behave in much more interesting ways.

Swing’s relation to AWT for platform-specific GUI functionality, such as the
underlying top-level windows, and Java 2D, for drawing the actual Swing com-
ponents, is illustrated in Figure 1-1. The application may call Swing methods
directly, but the functionality of these methods is handled through combinations
of AWT and Java 2D calls underneath.

www.it-ebooks.info

http://www.it-ebooks.info/

This page intentionally left blank

www.it-ebooks.info

http://www.it-ebooks.info/

15

2
Swing Rendering

Fundamentals

THIS chapter covers the basics of Swing rendering, by which your Swing
application paints the user interface that appears on the display. We cover the fol-
lowing topics:

• Events: The way that Swing receives and processes events is key to under-
standing how threads interact within Swing and how your application
threads interact with Swing and AWT events.

• Painting: Swing painting is the process by which Swing manages applica-
tion and system requests to update the display.

• Rendering: Swing rendering is the process by which Swing calls its own
internal code as well as your application code in order to render compo-
nents’ contents.

• Double-Buffering: Swing uses a back buffer to ensure smooth updates to
the screen.

• Threading: The Event mechanism is explored in more detail, and ways of
interacting effectively with the Swing GUI thread are examined.

Note: The sample code in this chapter uses some concepts of Java 2D that we have
not yet developed, such as graphics state and drawing primitives. We discuss these
topics in depth in Chapter 3, “Graphics Fundamentals,” but the basic idea is simple:
All rendering operations use a Graphics object, usually supplied to you by Swing; set
appropriate attributes on it, such as the color; and draw objects with it, such as a line.

www.it-ebooks.info

http://www.it-ebooks.info/

16 CHAPTER 2 SWING RENDERING FUNDAMENTALS

Events
Events in Java can come from the native system, such as a window becoming
visible or keyboard input, or from Java itself, such as an application-spawned
request. All of these events are put onto a queue of events. The object
java.awt.EventQueue is responsible for pulling the events off of this queue and
dispatching them as appropriate. The dispatch mechanism of EventQueue is run
on a single thread, called the Event Dispatch Thread (EDT). Figure 2-1 shows
the event posting and processing mechanisms.

As we see later in the section “Threading,” it is important for applications to
interact efficiently and intelligently with this event system. For example, all
GUI-related work, such as the painting process we are about to describe, must
happen on the EDT. System events related to the GUI are posted onto the event
queue and dispatched on the EDT. Any work that an application needs to do that
involves modifying the GUI must also be processed on the EDT, which involves
wrapping the request in an event and posting it onto the event queue.

Event

Event

Event

...

java.awt.EventQueue

Event Queue

Event Dispatch Thread (EDT)

Event dispatch

Requestor

Requestor

Figure 2-1 Event posting and dispatching in Swing happens via the EventQueue, which
runs on the Event Dispatch Thread (EDT).

www.it-ebooks.info

http://www.it-ebooks.info/

SWING PAINTING 17

Swing Painting
Painting in Swing is the process by which your application updates the display.
This process could involve some of your code, if you have any custom painting
behavior, or may involve only Swing internal code that knows how to repaint the
standard components. The process consists of a paint request being posted onto
the event queue and results in calls to the paint() and paintComponent()

methods on the EDT for each Swing component affected.

Painting requests originate in one of two ways: The Swing or AWT libraries
themselves may post a repaint request, or the application code may post such a
request. Swing and AWT request a repaint in response to some event in the
native system or the GUI components. For example, when an application win-
dow first appears on the screen, or when it is resized or exposed on the screen,
AWT receives a native expose event and issues a Java event to have the window
paint itself. Similarly, when the state of a component changes, such as when a
button is pressed, Swing issues a paint request to make sure that the button is
displayed in a pressed state. Applications can also issue a paint request to
Swing directly; this type of request is done in situations in which the applica-
tion code may know, on the basis of changes in some internal state, that the dis-
play should change.

In general, painting happens automatically; Swing detects when a component’s
contents have been altered such that the component needs to be repainted. Your
application does not normally need to issue paint requests to Swing unless it
knows that there has been some change to the display state that would not auto-
matically trigger a repaint. For example, if you change the text in a JLabel com-
ponent, Swing knows to repaint that label with the new text. But if your
application has detected a change to some internal variable, such as a variable
that affects the translucency of a component, then it might need to tell Swing that
a paint should be performed.

There are a handful of methods in components that are used to initiate painting.
These methods fall into two main categories: asynchronous requests and syn-
chronous requests.

Asynchronous Repaint Requests
These requests work by telling Swing what needs to be updated and letting
Swing handle the details of scheduling those requests and combining the requests

www.it-ebooks.info

http://www.it-ebooks.info/

18 CHAPTER 2 SWING RENDERING FUNDAMENTALS

as appropriate.1 All of the asynchronous requests are variants of the repaint()
method. There are several of these methods, but they basically come in two fla-
vors: those that request the entire component be updated and those that specify
an area that needs to be updated.

Component.repaint()

This variant is the easiest function to deal with; it tells Swing that the entire com-
ponent, whichever one you specified to be repainted, must be updated. It is
important to note that repaint requests get “coalesced,” or combined. So, for
example, if you request a repaint and there is already one on the queue that has
not yet been serviced, then the second request is ignored because your request
for a repaint will already be fulfilled by the earlier request. This behavior is par-
ticularly helpful in situations where many repaint requests are being generated,
perhaps by very different situations and components, and Swing should avoid
processing redundant requests and wasting effort.

The downside to repaint() is that it tells Swing that the entire component area
must be updated. If the component is a container, the ensuing call to paint()

will cause each of the child components to update themselves. This is fine in sit-
uations where repaints do not happen often or the GUI is not very complex. But
in performance-sensitive cases, you probably want to avoid painting more than is
completely necessary, and you may want to use the following variant instead to
constrain Swing to repaint only the content that needs to be updated.

Component.repaint(int x, int y, int width, int height)

This method asks Swing to repaint the specified rectangle in the component.
This repaint request, like that of the version of repaint() with no arguments,
also gets coalesced with any other repaint requests. This version is the best
method to call when you want only a subregion of the component to be
repainted. For example, if you are copying an image from one area of the com-
ponent to another and nothing else is changing in the display, then you only need
to update the old location (to erase it) and the new location (to display the image
there). In this case, you can call repaint() with a rectangle that spans both loca-
tions or call it twice with rectangles for each individual area.

1. This information was mentioned just a few short sentences ago, but Swing architect Scott Violet
wanted me to be very clear: you typically do not need to tell Swing to paint; it usually knows.
There are situations in which you might want to schedule a repaint request specifically, but that
is not the typical case.

www.it-ebooks.info

http://www.it-ebooks.info/

SWING PAINTING 19

The simpler repaint() method is equivalent to calling repaint(0, 0,

getWidth(), getHeight()).

Synchronous Paint Requests
The synchronous methods of painting must be handled with care. As we see later
in the section “Threading,” painting of Swing components must happen on the
EDT. By calling these synchronous paint methods, your code is implying that it
is on the correct thread so that the right things will happen at the right time. If the
calling code is not on that correct thread, the results could be undefined.2

Okay, so we’ve warned you. Assuming that you know what you’re doing, there
can be valid reasons for using synchronous painting. For example, you may be in
the middle of a method that you know has been called on the EDT, such as han-
dling an input event, and need to repaint as part of that request. Instead of tossing
a request onto the EventQueue that gets processed later, you could immediately
handle the paint and get on with life. That’s where the paintImmediately()
methods come in:

JComponent.paintImmediately(int x, int y, int w, int h)
JComponent.paintImmediately(Rectangle r)

These methods are equivalent; they both specify the rectangular area that needs
to be updated. paintImmediately() is the only method that you should need to
call to force a synchronous paint of a component’s contents. This method tells
the component that the specified area must be updated; Swing calls paint()
internally on all of the appropriate components to make this happen.

The disadvantage of calling paintImmediately(), apart from the constraint of
having to be on the EDT when you call it, is that it executes the paint call, well,
immediately. This means that there is no coalescing of paint requests that you
would otherwise get through calling the asynchronous repaint mechanisms
described earlier.

Component.paint(Graphics)

paint() should generally not be called in the normal course of events in a
Swing program. However, we mention it here because there is a specific case in
which it is sometimes useful to call paint: when you want to render a Swing

2. Undefined is a Bad Thing. Here, it could mean anything from painting being incorrect to excep-
tions being thrown to deadlocks to plagues to hordes of locusts.

www.it-ebooks.info

http://www.it-ebooks.info/

20 CHAPTER 2 SWING RENDERING FUNDAMENTALS

component to an image instead of to its usual place in the Swing window. This is
a useful technique in Filthy Rich Clients, as we see later in Chapter 18, “Ani-
mated Transitions.”

Swing Rendering
The Swing rendering model is straightforward and centers on Swing’s single-
threaded painting model. First, the paint request is placed onto the event queue,
as described previously. Sometime later, on the EDT, the event is dispatched to
the Swing RepaintManager object, which calls paint() on the appropriate
component. That paint call results in a component painting first its own content,
then its border, and finally any components that it contains (which are called its
children). This process is shown in Figure 2-2.

In this way, an entire hierarchy of components, from the JFrame down to the
lowliest button, gets rendered. Note that this is a back-to-front method of paint-
ing, where the backmost content (starting with the JFrame itself) gets rendered,

Event Queue

Component

Repaint
Manager

public void paint(Graphics g) {
 paintComponent();
 paintBorder();
 paintChildren();
}

Paint
Requestor

Figure 2-2 Swing painting: Repaint request is handled by the RepaintManager, which
calls paint() on the component, which then renders its content, its border, and its children.

www.it-ebooks.info

http://www.it-ebooks.info/

SWING RENDERING 21

then the items in that component, then the items in that component, and so on,
until the frontmost components get displayed.3

The trick is figuring out where your application needs to plug into this system in
order to get the right stuff painted at the right time. There are three things that
your application should be concerned about:

• JComponent.paintComponent(Graphics): Applications that have com-
ponents with any custom rendering, such as Filthy Rich Clients, may need
to override this method to perform that custom rendering. This rendering
might include drawing graphics inside a canvas, but it also includes doing
anything custom to a standard component, such as rendering a gradient for
the background of a button. Standard Swing components already handle
this functionality for their graphics, so it is only for the case of custom com-
ponents with specialized rendering that this method must be overridden.

• Component.paint(Graphics): For the most part, Swing applications do
not override paint() directly, unlike older AWT applications. However,
there are important situations for Filthy Rich Clients when overriding
paint() is crucial because by doing so we can set up the graphics state that
will be used by a component and its children.

• JComponent.setOpaque(boolean): Applications may need to call
setOpaque(false) on a component depending on whether the compo-
nent’s rectangular bounds are not completely opaque. This action ensures
that Swing does the right thing for nonopaque components by rendering
contents behind the component appropriately. Note that all Swing compo-
nents except for JLabel are opaque by default.

Let’s look at these three items more closely.

paintComponent()
Overriding paintComponent() is arguably the most important concept to under-
stand in writing custom Swing components, particularly for applications that are
Filthy Rich Clients. It is possible, even typical, to write a Swing application
without overriding paintComponent(), but doing so assumes that you are using

3. In graphics, this method is known as the painter’s algorithm, where a scene, like that in an oil paint-
ing, is rendered from back to front, with the objects in front covering the objects in the background.
Of course, this method doesn’t apply to all paintings. Watercolors, for example, do not work well
with this algorithm because all of the colors blend together instead of covering (the Swing equiv-
alent would be if all components were translucent). And many modern paintings, such as those by
Jackson Pollock, appear to use algorithms that are more reminiscent of rendering artifacts.

www.it-ebooks.info

http://www.it-ebooks.info/

22 CHAPTER 2 SWING RENDERING FUNDAMENTALS

the stock Swing components without any modification. Setting label text, setting
cell information for tables, creating and using menus, creating buttons—all of
these functions work fine with standard Swing components. However, the
moment you want to customize anything at all, including rendering any graphics
in a drawing area of a component, then you need a mechanism for performing
painting. That mechanism is paintComponent(). But sometimes overriding
paint() is useful and necessary.

The way that your code performs GUI or graphics operations in cooperation
with the Swing threading model is by performing your GUI-related operations
on the EDT. This calling mechanism is paintComponent(); whenever your
component needs to be updated, your component’s paintComponent() method
receives a call from Swing on the EDT. Inside this method, you perform what-
ever operations are necessary to make your component look correct.

Let’s look at some examples.

In the first example, the OvalComponent application on the book’s Web site, let
us assume a simple situation of a custom component that is essentially a blank
canvas to fill. On it we will draw a gray oval, as seen in Figure 2-3.

Since Swing does not offer such a standard component, we are going to create a
custom component that extends JComponent to handle this rendering for us.

public class OvalComponent extends JComponent {
 public void paintComponent(Graphics g) {
 g.setColor(getBackground());
 g.fillRect(0, 0, getWidth(), getHeight());
 g.setColor(Color.GRAY);
 g.fillOval(0, 0, getWidth(), getHeight());
 }
}

ONLINE
DEMO

Figure 2-3 Swing rendering into a completely custom component.

www.it-ebooks.info

http://www.it-ebooks.info/

SWING RENDERING 23

In this simple example, we set the color to the component’s current background
color and fill the area, set the color to gray, fill the oval, and we’re done. Note
that this code does not call super.paintComponent(); our override is com-
pletely responsible for drawing the contents of this component. Obviously, real
applications would try to draw something more interesting than a gray oval, but
the process for drawing in any custom component’s drawing area would be very
similar.

Another interesting example is one in which we enhance the rendering of an oth-
erwise standard GUI widget. Here, instead of drawing on a blank canvas as we
just did, we supplement the standard display of this component’s UI.

In this example, the HighlightedButton demo on the book’s Web site, we rely on
Swing to paint a button, but we customize its look slightly (Figures 2-4 and 2-5).

In Figure 2-4, we see two JButtons. One button, labeled Standard, is drawn
entirely by Swing. The other button, labeled Highlighted, is rendered both by
Swing and by our paintComponent() method. The second button shows a subtle
highlight effect, which was achieved by drawing an image with a radial gradient;
the gradient progresses from transparent to opaque white in the middle.

Here is the code for instantiating the two buttons in the JFrame:

f.add(new JButton("Standard"));
f.add(new HighlightedButton("Highlighted"));

ONLINE
DEMO

Figure 2-4 Standard and customized JButtons.

Figure 2-5 Zoomed-in view of highlight detail from Figure 2-4.

www.it-ebooks.info

http://www.it-ebooks.info/

24 CHAPTER 2 SWING RENDERING FUNDAMENTALS

And here is the relevant code of HighlightedButton:

// Earlier declaration of highlight image
BufferedImage highlight;

public class HighlightedButton extends JButton {
 public void paintComponent(Graphics g) {
 // defer to superclass to paint standard button graphics
 super.paintComponent(g);

 // superimpose highlight on top of standard button
 g.drawImage(highlight, getWidth()/4, getHeight()/4, null);
 }
}

This paintComponent() method is all of the code necessary to get this custom-
ized behavior; we create a class that extends a standard Swing JButton and then
override paintComponent() in that class to perform custom rendering. In this
case, we rely on Swing to paint the main button contents with a call to
super.paintComponent(g) and then add our own touch with the single call to
drawImage(), which paints the highlight image on top.

In fact, the only nontrivial, and hence more interesting, part of this example is
how we create the highlight image. We use a RadialGradientPaint, new in
Java SE 6, along with a translucent BufferedImage to do this. We discuss these
techniques later in the book, so we won’t go into that detail here, but check out
the example code for this application on the book’s Web site if you can’t stand
the suspense.

paint()
Overriding paint() is not necessary in many Swing applications. In fact, over-
riding paint() is not really recommended practice in general for Swing applica-
tions. This recommendation is in contrast to older AWT applications, where
overriding paint() was equivalent to overriding paintComponent() in Swing;
this is how applications got custom rendering behavior in some components of
their applications. In Swing, however, the paint() method in JComponent,
which is the superclass for all Swing components, handles everything that any
rendering Swing component would typically want. JComponent’s paint()
method handles painting the content, borders, and children of any Swing compo-
nent. Swing’s painting model also handles double-buffering, which we read
more about shortly.

www.it-ebooks.info

http://www.it-ebooks.info/

SWING RENDERING 25

It is the ability of JComponent to handle all of this functionality for paint() that
makes overriding paint() not recommended in general; subclasses may neglect
to do something (like drawing borders or painting children) that they should do.
It is far better to just let JComponent handle these details instead. But sometimes
overriding paint() is useful and necessary.

Tip: There is one important case in which it is useful for custom Swing components
to override paint(): when an application wants to alter the graphics state for all of
that component’s rendering.

A good example of this situation is a translucent component, where the user will
see through the component to items that lie behind it in the GUI. If you want a
Swing component, including its children and borders, to be completely translu-
cent, then you must change the Composite attribute of the Graphics object passed
into the paint() method. You could, of course, change the Graphics object
passed into paintComponent(), but that would alter the rendering only for that
component’s contents. JComponent creates a new Graphics object for each call to
paintComponent(), so altering the state of that Graphics object will affect only
the contents of that single component. What you should do instead is alter the
Graphics object that the contents, the borders, and the children are rendered with.
In this case, you should alter the Graphics object passed to the paint() method.

Let’s look at an example, the TranslucentButton demo on the book’s Web site:

public class TranslucentButton extends JButton {
 public TranslucentButton(String label) {
 super(label);
 setOpaque(false);
 }

 public void paint(Graphics g) {
 // Create an image for the button graphics if necessary
 if (buttonImage == null ||
 buttonImage.getWidth() != getWidth() ||
 buttonImage.getHeight() != getHeight()) {
 buttonImage = (BufferedImage)createImage(
 getWidth(), getHeight());
 }
 Graphics gButton = buttonImage.getGraphics();
 gButton.setClip(g.getClip());

 // Have the superclass render the button for us
 super.paint(gButton);

continued

ONLINE
DEMO

www.it-ebooks.info

http://www.it-ebooks.info/

26 CHAPTER 2 SWING RENDERING FUNDAMENTALS

 // Make the graphics object sent to this paint()
 // method translucent
 Graphics2D g2d = (Graphics2D)g;
 AlphaComposite newComposite =
 AlphaComposite.getInstance(AlphaComposite.SRC_OVER, .5f);
 g2d.setComposite(newComposite);

 // Copy the button's image to the destination
 // graphics, translucently
 g2d.drawImage(buttonImage, 0, 0, null);
 }
}

There are a few things going on here that make the button translucent:

• The button tells Swing that it is not opaque in the constructor. We see more
about this issue in the next section.

• The class overrides JButton’s paint() method. This is done because we
want all of the component’s contents, including the border and any chil-
dren, to be translucent.

• Paint creates an image that we use to hold the result of rendering the button.

• Paint calls super.paint(g) to render the button into the image that we
created.

• A translucent Composite is set on the destination graphics. We see much
more about Composites later in the book.

• The image is copied into the destination graphics, which has a translucent
Composite; thus the button is rendered translucently into the Swing window.

The results can be seen in Figure 2-6.

Figure 2-6 TranslucentButton has the superclass paint the button to an image and
then copies the image to the destination with a translucent Composite.

www.it-ebooks.info

http://www.it-ebooks.info/

SWING RENDERING 27

Tip: Note the use of an image in the TranslucentButton to get the right result. It
is also possible to set the state of the destination Graphics object directly and ask
the superclass to paint into that Graphics object instead of into the image’s Graphics
object. However, this more direct approach can break down in various situations.
For example, if the superclass’s paint() method changes the state of the Graphics
object and clobbers your setting, then you will not get the result you expected. Also,
note that every operation using that altered Graphics object will use that state,
which may not provide the same result as just applying that state to the overall
result. For example, if we rendered the TranslucentButton by setting the
Composite on g and then calling super.paint(g), then the text of the button
would render translucently over the background of the button. This result is not the
same as the text rendering opaquely on top of the button’s background and then
drawing both translucently to the destination. The difference is subtle but can be
quite important in some situations.

It is still useful to take advantage of the facilities of JComponent’s paint()
method for painting the contents, borders, and children, so deferring to the super-
class is usually the best way to go for all of the standard rendering of a custom
component.

setOpaque()
As we saw in the previous example, we called setOpaque(false) for our translu-
cent component. Why? Was it because our component was translucent (and there-
fore not “opaque”)? Yes. And no. Opaque in Swing is different from opaque in
Java 2D.

In Java 2D, opacity, or its opposite, translucency, is a rendering concept that is
reflected in the combination of an alpha value and a Composite mode. The opac-
ity describes the degree to which the pixel colors being drawn should be blended
with the pixel values of whatever is already there. So a graphics primitive that is
half-translucent should use half of the value of the existing pixel color and half
of the value of the primitive’s pixel color to determine the new pixel color for
every pixel touched by the drawing primitive.

In Swing, opacity refers to whether the contents behind a given component are
visible to the user. For example, a normal rectangular button is typically opaque
in the Swing sense because it completely obscures whatever happens to be
behind the button. A rounded button, on the other hand, is not opaque because
there is content behind the button that is visible outside of the rounded corners.
Similarly, a component that is translucent in the Java 2D sense, partially see-
through, is also nonopaque in Swing because contents behind that component
are visible through the component.

www.it-ebooks.info

http://www.it-ebooks.info/

28 CHAPTER 2 SWING RENDERING FUNDAMENTALS

The main reason for this distinction between opaque and nonopaque in Swing is
performance. Swing takes a shortcut in rendering to optimize performance; it
does not render things that do not need to be rendered. In particular, Swing does
not render things that cannot be seen behind opaque components. For the case of
the rectangular button in our example, Swing knows that the button obscures
everything behind it, so repaint requests invoked on the button will not cause
Swing to draw the items behind the button, since the user will not be able to see
those items anyway.

Swing does not magically know when a component is nonopaque; we have to
tell Swing. We do this by setting the opaque property of a component to false.

An opaque component is contractually obligated to paint its background com-
pletely. By default, Swing fills the background of an opaque component accord-
ing to the current color specified by getBackground(). If you override
paintComponent() for a component that is opaque, you must ensure that the
entire bounds of the component will be painted completely, since Swing will not
do it for the component.

For more information on Swing painting details, please check out this article by
Swing engineer Amy Fowler: http://java.sun.com/products/jfc/tsc/articles/painting/
index.html.

Double-Buffering
An important concept in Swing rendering is that Swing is double-buffered. Dou-
ble-buffering is typically used in games and other applications in which onscreen
content might change rapidly. This technique makes updates to the screen appear
smooth to the user.

Tip: Swing’s use of double-buffering internally means that you should not need to
provide your own double-buffer mechanism. Let Swing take care of it instead.

We have seen some applications that use their own buffering mechanism. These
applications render content to their own offscreen image, which is then copied
into the Swing back buffer. This situation is known as triple-buffering, since
there are three buffers involved: the application back buffer, the Swing back
buffer, and the screen itself. The application will not get any smoother with this
approach; it’s just introducing an extra delay and operation for the additional
buffer copy.

www.it-ebooks.info

http://java.sun.com/products/jfc/tsc/articles/painting/index.html
http://java.sun.com/products/jfc/tsc/articles/painting/index.html
http://www.it-ebooks.info/

DOUBLE-BUFFERING 29

Double-buffering uses an offscreen image, called a back buffer, as the destina-
tion for its rendering operations. At appropriate times, this back buffer is copied
to the screen. This process for updating the screen is typically smoother than the
individual updates from all of the rendering operations because it happens all at
once. We can see the difference between these approaches in Figure 2-7; the pic-
ture on the top shows an application drawing directly to the screen. The picture
on the bottom shows a double-buffered application drawing to an offscreen
image that is then copied onto the screen.

Any application with contents so complex that they flicker when the screen is
repainted will immediately benefit from double-buffering. If an application
displays an empty window, chances are low that the user would notice if that
application was double-buffered. But if the application window has lots of text,

Updates
Application

Updates
Application

Single Buffered

Double Buffered

Copy

Screen

Screen

Back Buffer

Figure 2-7 Single-buffered compared to double-buffered application.

www.it-ebooks.info

http://www.it-ebooks.info/

30 CHAPTER 2 SWING RENDERING FUNDAMENTALS

graphics elements, and GUI widgets, then chances are higher that updates to the
window would be noticeable to the user as all of that complex content was updated.

Swing applications, in particular, benefit greatly from double-buffering for two
reasons. For one thing, Swing is a general platform upon which any desktop
application may be written. So someone might write a game or some other
dynamic, graphics-intensive application using Swing; these are exactly the kinds
of traditional animation-driven applications that benefit from the smooth updates
of double-buffering. Another reason that even simple Swing applications benefit
from double-buffering is the layered approach of Swing’s painting.

As we saw in the earlier discussion of setOpaque(), components may inform
Swing that they are nonopaque by calling setOpaque(false). This method tells
Swing that it must paint all of the elements behind this component up to the
nearest opaque ancestor because the component may or may not paint over those
pixels itself. The opacity property is useful when a component is shaped, such as
a button with rounded corners, or translucent, where the user can partially see
through the component to the contents beneath it. However, setting opacity to
false would cause onscreen rendering artifacts if Swing rendered directly to the
screen, because Swing renders the UI in layers: It draws the things behind first
and ends with the things in front.

Imagine a button with rounded corners. Since this component is nonopaque,
Swing would erase the background of the parent panel and then redraw the but-
ton. If Swing did this directly to the screen, the user would first see the erasure,
then the button, resulting in a flickering artifact during the rendering process.
This effect would get even worse if there were other components between the
opaque background and the button that had to be redrawn.

For this reason, and for reasons related to performance, Swing uses a buffering
mechanism so that all intermediate rendering of the layers are hidden from the
user and the screen is updated only with the final contents of the window. Not
only does this buffering mechanism provide a smoother update for all of the rea-
sons mentioned previously for double-buffering in general, but it is a better solu-
tion for Swing specifically because of Swing’s layered rendering approach for
nonopaque GUI elements.

Note that Swing’s buffering mechanism has changed recently and is much more
effective in Java SE 6.

Tip: Swing’s double-buffering change in Java SE 6 is probably my favorite feature
in that entire release. Previously, Swing would perform necessary painting to the
upper-left corner of the back buffer and then copy that content into place on the
screen. Therefore, the back buffer was really just a scratch-buffer for each individ-

www.it-ebooks.info

http://www.it-ebooks.info/

THREADING 31

ual update, with no persistence of those contents between repaints, and any future
updates to the window required re-rendering to the back buffer. In Java SE 6, Swing
changed its model to use true double-buffering, where the back buffer reflects the
actual contents of the window and where some re-rendering can occur simply by
copying the existing back buffer contents onto the screen, saving time and effort and
eliminating the infamous “gray rect” that was a characteristic of Swing’s previous
double-buffering implementation.4

Threading
As we discussed earlier, Swing relies on the older AWT GUI toolkit for top-level
window support and event dispatching. Whenever you run a Swing application,
three threads are automatically created. The first one is the main thread, which
runs your application’s main method. A second thread, called the toolkit thread,
is in charge of capturing the system events, like keyboard key presses or mouse
movements. Although this thread is vital, it is only part of AWT implementation
and never runs application code. Capture events are sent over to a third thread,
the EDT.

The EDT is very important because it is in charge of dispatching the events cap-
tured by the toolkit thread to the appropriate components and calling the painting
methods. It is also the thread on which you interact with Swing. For instance, if
you press a key in a JTextField, the EDT dispatches the key press events to the
component’s key listener. The component then updates its model and posts a
paint request to the event queue. The EDT dequeues the paint request and noti-
fies the component a second time, asking it to repaint itself. In short, everything
in AWT and Swing happens on the EDT. Note that if events are received faster
than they can be delivered, the EDT queues them until they can be processed.

While easy to understand on the surface, this simple threading model can yield
poor performance in Swing applications if the implications of the Swing’s single-
threaded model are not considered. Indeed, performing a long operation on the
EDT, such as reading or writing a file, will block the whole UI. No event can
then be dispatched and no update of the screen can be performed while the long
operation is underway. The result from the user perspective is that the applica-
tion appears to be hung or, at least, very slow.

4. See the blog postings at http://weblogs.java.net/blog/chet/archive/2005/04/swing_update_no_
1.html and http://weblogs.java.net/blog/zixle/archive/2005/04/no_more_gray_re_1.html for more
details on this excellent “true double-buffering” feature.

www.it-ebooks.info

http://weblogs.java.net/blog/chet/archive/2005/04/swing_update_no_1.html
http://weblogs.java.net/blog/zixle/archive/2005/04/no_more_gray_re_1.html
http://weblogs.java.net/blog/chet/archive/2005/04/swing_update_no_1.html
http://www.it-ebooks.info/

32 CHAPTER 2 SWING RENDERING FUNDAMENTALS

Poorly written applications that block the EDT for long periods of time have
contributed to some people thinking that Swing itself is slow. Most Swing
application performance issues are actually perceived performance issues. The
Swing components dispatch their work quite quickly. However, when the appli-
cation blocks the EDT, it freezes the user interface and the user thinks the appli-
cation runs slowly. Freezing happens, for instance, when you have long
computations or I/O accesses running in a method executed by the EDT.

The following example, available on the book’s Web site, exhibits such behavior.
Run the application and click the Freeze button. It should remain pressed for a
few seconds. Whenever the user clicks on a button, the actionPerformed()
method of the button’s ActionListener is called. Since this action is triggered
by an event, actionPerformed() is invoked on the EDT. In this particular case,
the code pauses the current thread for 4 seconds, emulating a long operation that
blocks Swing’s ability to dispatch events and repaint the GUI.

The following example shows that failure to understand and master Swing’s
threading can lead to applications that perform poorly.

public class FreezeEDT extends JFrame
implements ActionListener {
 public FreezeEDT() {
 super("Freeze");
 JButton freezer = new JButton("Freeze");
 freezer.addActionListener(this);
 add(freezer);
 pack();
 }

 public void actionPerformed(ActionEvent e) {
 // Simulates a long running operation.
 // For instance: reading a large file,
 // performing network operations, etc.
 try {
 Thread.sleep(4000);
 } catch (InterruptedException e) {
 }
 }

 public static void main(String... args) {
 FreezeEDT edt = new FreezeEDT();
 edt.setVisible(true);
 }
}

ONLINE
DEMO

www.it-ebooks.info

http://www.it-ebooks.info/

THREADING 33

Threading Model
Swing’s threading model is based on a single rule: The EDT is responsible for
executing any method that modifies a component’s state. This includes any com-
ponent’s constructor. According to this rule, and despite what you can read in
many books and tutorials about Swing, the main() method in the previous code
example is invalid and can cause a deadlock. Because the JFrame is a Swing
component, and because it instantiates another Swing component, it should be
created on the EDT, not on the main thread.

Swing is not a “thread-safe” API. It should be invoked only on the EDT. The
great minds behind Swing made this choice on purpose to guarantee the order
and predictability of events. A single-threaded API is also much simpler to
understand and debug than a multithreaded one. Incidentally, Swing is not the
only single-threaded graphical toolkit: SWT, QT, and .NET WinForms provide a
similar threading model.

Now that you know that you must avoid performing any lengthy operations on
the EDT, you need to find a solution to this common problem. The first answer
that springs to mind is to use another thread, as in the following code example.
In this actionPerformed() method, a new thread is spawned to read a large file
(of, say, several megabytes) and add the results in a JTextArea:

public void actionPerformed(ActionEvent e) {
 new Thread(new Runnable() {
 public void run() {
 String text = readHugeFile();
 // Bad code alert: modifying textArea on this thread
 // violates the EDT rule
 textArea.setText(text);
 }
 }).start();
}

At first, this code seems to be the solution to your problem, as it does not block
the EDT. Unfortunately, it violates Swing’s single-thread rule: it doesn’t modify
the text component’s state on the EDT. Doing so will not necessarily cause any
trouble during your tests, but a deadlock can appear anytime, and more often
than not, it will happen when one of your customers is using the application.5

5. Or when you are demonstrating your application onstage in front of a large audience. There is
some universal law about such events, as fundamental as the law of gravity and the perpetuation
of single socks.

www.it-ebooks.info

http://www.it-ebooks.info/

34 CHAPTER 2 SWING RENDERING FUNDAMENTALS

Tracking down and fixing such a bug is very difficult and time consuming, so it
is highly recommended to always follow Swing’s single-threading rule.

Invoke Later
But don’t fret! Swing offers three very useful methods to deal with the EDT in
the class javax.swing.SwingUtilities. The first of these methods is called
invokeLater(), and it can be used to post a new task on the EDT. Here is how
you can rewrite the previous example to be both nonblocking and correct:

public void actionPerformed(ActionEvent e) {
 new Thread(new Runnable() {
 public void run() {
 final String text = readHugeFile();
 SwingUtilities.invokeLater(new Runnable() {
 public void run() {
 textArea.setText(text);
 }
 });
 }
 }).start();
}

In the new version of the code, the application posts a Runnable task that updates
the content of the text area on the EDT. The invokeLater() implementation takes
care of creating and queuing a special event that contains the Runnable. This event
is processed on the EDT in the order it was received, just like any other event.
When its time comes, it is dispatched by running the Runnable’s run() method.

Using invokeLater() is as simple as passing a Runnable instance whose sole
method, run(), contains the code you wish to execute on the EDT. So what
exactly happens in this code? First, the user clicks on a button and the EDT
invokes actionPerformed(). Then, the application creates and starts a new
thread, which reads the content of a file and stores it in a String. Finally, a new
task, the Runnable instance, is created and placed in the queue of the EDT
thanks to invokeLater(). Now that you know how to force a block of code to
be invoked on the EDT, it is easy to fix the main() method of the first example:

public static void main(String... args) {
 SwingUtilities.invokeLater(new Runnable() {
 public void run() {
 FreezeEDT edt = new FreezeEDT();
 edt.setVisible(true);
 }
 });
}

www.it-ebooks.info

http://www.it-ebooks.info/

THREADING 35

Is This the EDT?
The second SwingUtilities method that makes it easier to work with Swing’s
threading model is called isEventDispatchThread(). When invoked, this
method returns true if the calling code is currently being executed on the EDT,
false otherwise. You can therefore create methods that can be called from the
EDT and any other thread and still obey the rule, as shown in the following
example.

private void incrementLabel() {
 tickCounter++;
 Runnable code = new Runnable() {
 public void run() {
 counter.setText(String.valueOf(tickCounter));
 }
 };

 if (SwingUtilities.isEventDispatchThread()) {
 code.run();
 } else {
 SwingUtilities.invokeLater(code);
 }
}

This method uses an integer, tickCounter, to change the text of a JLabel called
counter. When incrementLabel() is called from the EDT, the code executes
directly. Otherwise, invokeLater() is used to schedule the task for the EDT. A
full working version of this example can be found on the book’s Web site under
the name SwingThreading.

The third and last SwingUtilities method related to threading, invokeAndWait(),
is also the least commonly used (which is probably a good thing, as we will see).
Its behavior is similar to invokeLater() in that it allows you to post a Runnable
task to be executed on the EDT. The difference is that invokeAndWait() blocks
the current thread and waits until the EDT is done executing the task.

Let us imagine an intelligent application that can detect when the time it has
spent reading a file has exceeded some threshold. This application reads a file in
a separate thread and, after 10 seconds of work, asks the user whether he would
like to continue or cancel the operation. To implement such a feature, you would
normally initialize a lock to stop the reader thread and then display a dialog box
on the EDT.

Writing such a piece of code is possible but dangerous because you can easily intro-
duce a deadlock. The following example shows how you can use invokeAndWait()

ONLINE
DEMO

www.it-ebooks.info

http://www.it-ebooks.info/

36 CHAPTER 2 SWING RENDERING FUNDAMENTALS

to do the job safely. The complete, executable version of this example is called
SwingThreadingWait and can be found on the book’s Web site.

try {
 // Holds the answer to the dialog box
 final int[] answer = new int[1];

 // Pauses the current thread until the dialog box
 // is dismissed
 SwingUtilities.invokeAndWait(new Runnable() {
 public void run() {
 answer[0] = JOptionPane.showConfirmDialog(null,
 "Abort long operation?",
 "Abort?",
 JOptionPane.YES_NO_OPTION);
 }
 });

 if (answer[0] == JOptionPane.YES_OPTION) {
 return;
 }
} catch (InterruptedException ie) {
} catch (InvocationTargetException ite) {
}

Swing developers should be aware, however, that there is deadlock potential in
invokeAndWait(), as there is in any code that creates a thread interdependency.
If the calling code holds some lock (explicitly or implicitly) that the code called
through invokeAndWait() requires, then the EDT code will wait for the non-
EDT code to release the lock, which cannot happen because the non-EDT code
is waiting for the EDT code to complete, and the application will hang.

In general, invokeAndWait() may appear simpler to use than invokeLater(),
because it executes a Runnable task synchronously, and it would seem as though
you don’t have to worry about more than one thread executing your code at the
same time. But it is risky to use if you are not absolutely sure of the threading
and locking dependencies that you are creating, so it should be used only in very
clearly risk-free situations.

Besides the three utility methods just covered, every Swing component offers two
useful methods that can be called from any thread: repaint() and revalidate().
The latter forces a component to lay out its children, and the former simply
refreshes the display. These two methods do their work on the EDT, no matter
what thread you invoke them on.

ONLINE
DEMO

www.it-ebooks.info

http://www.it-ebooks.info/

THREADING 37

The repaint() method is widely used throughout the Swing API to synchronize
components’ properties and the screen. For instance, when you change the fore-
ground color of a button by calling JButton.setForeground(Color), Swing
stores the new color and calls repaint() to automatically show the new value of
the color property. Calling repaint() triggers the execution of several other
methods on the EDT, including paint() and paintComponent().

If you place the following component in a JFrame and spawn a new thread called
repaint() on the component, you will always see the message “true” in the con-
sole output. The complete running example, called SafeRepaint, can be found
on this book’s Web site.

public class SafeComponent extends JLabel {
 public SafeComponent() {
 super("Safe Repaint");
 }

 public void paintComponent(Graphics g) {
 super.paintComponent(g);
 System.out.println(
 SwingUtilities.isEventDispatchThread());
 }
}

Timers and the Event Dispatch Thread
The Java SE API offers two ways to schedule tasks to be executed at regular time
intervals: java.util.Timer and javax.swing.Timer. Both classes use a timer
thread to offer similar functionalities. Knowing which time class to use for a par-
ticular situation can be tricky. Here is how you can use java.util.Timer to
change a button’s color every 3 seconds:

java.util.Timer clown = new java.util.Timer();
clown.schedule(new TimerTask() {
 public void run() {
 SwingUtilities.invokeLater(new Runnable() {
 public void run() {
 button.setForeground(getRandomColor());
 }
 });
 }
}, 0, 3000); // delay, period

ONLINE
DEMO

www.it-ebooks.info

http://www.it-ebooks.info/

38 CHAPTER 2 SWING RENDERING FUNDAMENTALS

A java.util.Timer can schedule several TimerTasks, each with a different
execution interval. You can also cancel a TimerTask at any time. The major issue
with java.util.Timer is that it does not execute the tasks on the EDT, leaving
that responsibility to the developer. Since user interfaces seldom require highly
precise timers that can handle hundreds of tasks at once, it is a good idea to use
javax.swing.Timer instead.

The Swing Timer class offers a different API that integrates better in a Swing
environment. While a single timer supports several tasks, they all have the same
repeat period. The following example is a rewrite of the previous one with a
Swing timer:

javax.swing.Timer clown = new javax.swing.Timer(3000,
 new ActionListener() {
 public void actionPerformed(ActionEvent evt) {
 button.setForeground(getRandomColor());
 }
});
clown.start();

Swing’s timer makes it trivial to periodically run Actions. This timer also ensures
that all the tasks are executed on the EDT rather than in a random thread. Choosing
the appropriate timer class will save you a lot of time and debugging efforts when
dealing with the Swing threading model. Timers that update the user interface are
usually javax.swing.Timer instances; timers that drive background operations,
such as polling a Web server, are usually java.util.Timer instances.

Painless Threading through SwingWorker
The SwingUtilities class is a great asset to ensure that your application will
run smoothly and flawlessly. Despite its advantages, SwingUtilities often
leads to a code base made difficult to read and maintain because of the numerous
anonymous Runnable classes you need to create. To remedy this problem, the
Swing developers created SwingWorker, a utility class that simplifies the cre-
ation of long-running tasks that update the user interface.

This tool has been included in Java SE 6 but remains available for older versions of
the JDK, namely J2SE 5.0, on the Web site http://swingworker.dev.java.net. The
following code and text assumes that you are using either J2SE 5.0 or Java SE 6.

SwingWorker is a generic class available in the javax.swing package for Java
SE 6 and in org.jdesktop.swingworker for J2SE 5.0. This class lets you run a
specific task on a background thread, post intermediate results on the EDT, and
post the final result on the EDT as well.

www.it-ebooks.info

http://swingworker.dev.java.net
http://www.it-ebooks.info/

THREADING 39

Let us imagine a simple use case to better understand the SwingWorker architec-
ture. We want to load a set of images from the hard drive and display those
images in the user interface. To avoid blocking the user interface, we want to
load the images on a background thread.

At the same time, we want to present progress information to the user by show-
ing the names of the files that have been loaded so far. When the background
thread has finished, we want to return a list of the images it has loaded. We also
want to show the file name of each loaded image in the user interface.

When you want to implement such a lengthy task for your user interface with
SwingWorker, you need to subclass SwingWorker and override doInBackground().
SwingWorker allows you to specify the types of the intermediate and final values
with two generic types, called T and V. The first one, T, is the type of result com-
puted by the method doInBackground() in a worker, or background, thread.
The other type, V, is the type of intermediate values that you can send to the
EDT by calling publish(V...). SwingWorker then invokes process(V...) on
the EDT. You should override the process method to display the intermediate
results in your GUI. Upon completion, SwingWorker invokes the done() method
on the EDT.

The doInBackground() method can publish intermediate results at any time by
calling publish(V...), which in turn invokes the process(V...) method in the
EDT.

The done() method is also usually overridden to display the final result. Upon
completion of doInBackground(), the SwingWorker automatically invokes
done() in the EDT. In done(), you can call the get() method to retrieve the
value computed by doInBackground().

The relation among doInBackground(), publish(V...), process(V...), and
done() is shown in Figure 2-8.

The following code snippet shows a SwingWorker implementation for the use
case we defined earlier (loading a set of images from the hard drive and showing
the loaded files’ names):

// Final result is a list of Image
// Intermediate result is a message as a String
public class ImageLoadingWorker extends
 SwingWorker<List<Image>, String> {
 private JTextArea log;
 private JPanel viewer;
 private String[] filenames;

continued

www.it-ebooks.info

http://www.it-ebooks.info/

40 CHAPTER 2 SWING RENDERING FUNDAMENTALS

 public ImageLoadingWorker(JTextArea log, JPanel viewer,
 String... filenames) {
 this.log = log;
 this.viewer = viewer;
 this.filenames = filenames;
 }

 // On the EDT
 // Displays the loaded images in the JPanel
 @Override
 protected void done() {
 try {
 for (Image image : get()) {
 viewer.add(new JLabel(new ImageIcon(image)));
 viewer.revalidate();
 }
 } catch (Exception e) { }
 }

 // On the EDT
 // Logs a message in the JTextArea
 @Override
 protected void process(String... messages) {
 for (String message : messages) {
 log.append(message);
 log.append("\n");
 }
 }

 // On a worker (background) thread
 // Loads images from disk and sends a message
 // as a String to the EDT by calling publish(V...)
 @Override
 public List<Image> doInBackground() {
 List<Image> images = new ArrayList<Image>();
 for (String filename : filenames) {
 try {
 images.add(ImageIO.read(new File(filename)));
 publish("Loaded " + filename);
 } catch (IOException ioe) {
 publish("Error loading " + filename);
 }
 }
 return images;
 }
}

www.it-ebooks.info

http://www.it-ebooks.info/

THREADING 41

In this code, doInBackground() loads a list of Images and logs the success of
each operation by publishing a message. Even if only one value is published at a
time, the process() method can be called with several values. When the process()
method is called on the EDT, the SwingWorker implementation passes along all
of the pending values from the publish() calls.

Once doInBackground() has finished, done() fetches the result by calling get()
and adds the pictures to the user interface. Since done() executes on the EDT, the
single-thread rule is not broken. The final step is to execute the SwingWorker
like so:

JButton start = new JButton("Start");
start.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent e) {
 String[] files = new String[] {
 "Bodie_small.png", "Carmela_small.png",
 "Unknown.png", "Denied.png",
 "Death Valley_small.png", "Lake_small.png"
 };
 new ImageLoadingWorker(log, viewer, files).execute();
 }
});

The complete running example, ImageLoader, can be found on the book’s Web
site.

doInBackground()

process(V...)

Event Dispatch
Thread (EDT)

publish(V...) is implemented
only in the SwingWorker class

done()

process(V...)
Explicit call

Worker Thread

Automatic call upon thread completion

Figure 2-8 The process(V...) and done() methods are automatically invoked in the
EDT by the SwingWorker.

ONLINE
DEMO

www.it-ebooks.info

http://www.it-ebooks.info/

42 CHAPTER 2 SWING RENDERING FUNDAMENTALS

Threading Summary
Understanding and mastering Swing’s threading model does not require much
effort and can help you create powerful and snappy applications. With the help
of utilities like SwingWorker, you can write multithreaded code that is easy to
read and maintain. Every time you write a lengthy operation, think of the single-
thread rule and check whether or not you might block the EDT. Everyone hates
slow, unresponsive user interfaces, so save your users some pain and make your
Swing applications responsive.

www.it-ebooks.info

http://www.it-ebooks.info/

43

3
Graphics

Fundamentals

ONE of the things that makes Swing such a great platform for Filthy Rich Cli-
ents is its ability to have customized rendering for a GUI component, which
allows alterations of a component’s appearance. Swing’s ability to have custom-
ized rendering is made richer by its use of Java 2D, the rendering layer of Desk-
top Java. We explore important elements of Java 2D in this chapter, specifically
talking about the most important concepts of Java 2D rendering as they relate to
Filthy Rich Clients.

Java 2D
Whenever I give a presentation on Java 2D, I do a quick poll to see how many
people use this library. Typically, about 10 to 20 percent of the people raise their
hands. Then I ask how many people use Swing, and most of the audience raise
their hands.1 The real answer to the first question is actually the union of both of
these. Java 2D users are those who use the 2D APIs directly and use Swing,
because 2D is the rendering layer of Swing.

Maybe people don’t know that they’re using the 2D library because there is no
“2D” package. Or maybe they don’t use 2D APIs directly and do not know that

1. It’s not clear to me why the remainder of the people are in the room. I suspect that a previous
presentation bored them to sleep, and they just haven’t woken up yet.

www.it-ebooks.info

http://www.it-ebooks.info/

44 CHAPTER 3 GRAPHICS FUNDAMENTALS

Swing uses 2D. Or maybe they are using simple graphics objects (such as AWT,
offered in early releases of Java) and do not understand the difference.

The 2D APIs have many powerful and somewhat niche capabilities, such as
intersecting geometrical objects, handling the correct rasterization of a spline,
and specifying end caps and joins for polylines. But the 2D APIs also have the
plain old capabilities of rendering graphics objects that Swing depends on com-
pletely and that Swing developers use either implicitly or explicitly in every
application.

In Chapter 2, “Swing Rendering Fundamentals,” we saw how a Graphics object
is sent in as a parameter to paintComponent(). Through this object, we set
graphics state, such as the current color, and perform rendering operations, such
as filling a rectangle or drawing text. In the standard Swing component classes,
this is how the basic objects are drawn to the screen. And in Filthy Rich Clients,
this is how the custom Swing components are drawn.

Before we get too deep into graphics state, we should note an important distinc-
tion in the graphics APIs that may confuse first-timers. A long time ago, Java was
released with the GUI toolkit library AWT. This library included a class called
Graphics, which has exactly the behavior that we just discussed: You set the state
of that object and use that object to draw primitives with its current state.

Then along came Java 2D in the J2SE 1.2 release. Because Java is backward-
compatible, we could not easily add or change functionality in the Graphics
class, so we added a subclass of Graphics called Graphics2D. This class has the
same behavior as Graphics; you set the state on that object and draw primitives
with it that use the state. The main difference is that Graphics2D adds capabili-
ties that Graphics did not previously have. For example, translucent rendering is
now possible via the new Composite property in Graphics2D, as seen in the
TranslucentButton demo in Chapter 2.

Some of the graphics state settings and drawing primitives that we use for Filthy
Rich Clients are in the Graphics object, such as setColor(), and some are in
Graphics2D, such as setComposite().

So which object should you choose, Graphics or Graphics2D? Actually, this
decision is made for you; Swing almost always2 uses a Graphics2D object. Even
when a Swing method has Graphics as a parameter, it’s really a Graphics2D

2. Printing may use a non-Graphics2D object. Also, Swing’s DebugGraphics object is not a
Graphics2D subclass. If either of these situations may apply to your code, be careful how you
cast. Otherwise, typical Swing usage involves a Graphics2D object.

www.it-ebooks.info

http://www.it-ebooks.info/

RENDERING 45

object. The simple answer here is: If you want to call a Graphics method, do it
directly in the Graphics object; if you need to call a Graphics2D method, cast the
Graphics object and perform the operation in the resulting Graphics2D object.

For simplicity, we refer in this book to the Graphics and Graphics2D objects
generically as Graphics objects unless we are talking specifically about opera-
tions that require the object to be of type Graphics2D.

Rendering
Rendering: Heating animal remains to extract fat

—MSN Encarta

The process of 2D rendering is as follows:

1. Get a Graphics (or Graphics2D) object.

2. Set attributes on the Graphics object.

3. Draw graphics primitives with the Graphics object.

Let’s look at some sample code for a paintComponent() method in a Swing
component:

// No need to get a Graphics object; it is given to us
protected void paintComponent(Graphics g) {
 // Set Color attribute on g
 g.setColor(Color.RED);
 // Fill this component with red
 g.fillRect(0, 0, getWidth(), getHeight());
}

This example does nothing interesting, but it gets the point across. The code gets
the Graphics object g as a parameter to paintComponent() method; it sets an
attribute on g, the color RED; and it tells g to draw a filled rectangle.

Most of the 2D rendering examples we explore in this book behave similarly.
The differences include

• How we get the Graphics object: We may request one from an image or
component or be given one, as in the previous example.

• Which attributes we set on the Graphics object.

• Which drawing operations we perform with the Graphics object.

www.it-ebooks.info

http://www.it-ebooks.info/

46 CHAPTER 3 GRAPHICS FUNDAMENTALS

We discuss all of these topics in the sections that follow.

Getting the Graphics Object
For the most part, you will not actually need to get a Graphics object; it will be
given to you. Let’s say that again:

Swing usually gives you the Graphics object you need.3

Typical cases of rendering in Swing applications happen in the context of a method
like paintComponent(), where the Graphics object is given to you as a parame-
ter of the method. You do not usually have to go looking for or creating a Graph-
ics object. However, there are some cases in which it may be handy to know how
to best get a Graphics object when you need it. That’s what this section is about.

Cloning versus Clobbering
Sometimes you already have a Graphics object and you want to change some of
its state temporarily and then return it to its original state. One approach is to cre-
ate a new Graphics object that is a copy of the original one and to make changes
to that copy instead. This technique avoids clobbering the state of the original
object. For example, the following code changes the current translation of the
Graphics object, which other parts of Swing may then incorrectly depend on:

// Wrong: This approach clobbers the state
protected void paintComponent(Graphics g) {
 // Setting state in g sets it for anyone that might
 // use g after this method
 g.translate(x,y);

 // ...render the component contents...

 // return without resetting translation of g
}

This cloning-versus-clobbering idea is covered in more detail in the “Graphics
State” section of this chapter, but the basic idea is to copy the current Graphics

3. I recently gave a talk on this subject and mentioned “Getting the Graphics” as a topic, explaining
a couple of slides later that you don’t usually need to go to any effort to get a Graphics object.
Scott Violet said that I should be more explicit about this point because it didn’t sound clear
enough. So one more time for Scott (everyone repeat with me): You usually don’t have to get the
Graphics object explicitly.

www.it-ebooks.info

http://www.it-ebooks.info/

RENDERING 47

object and make changes to that copy rather than directly to the Graphics object
that Swing gave you. Whether you need to do this depends on your situation:
where you got the Graphics object, what state you are changing, how you are
changing the state, and perhaps most importantly, what other code will do with
this same Graphics object when you are done.

A reasonable way to get such a copy is to call the create() method:

// Better: This approach sets the state in a copy instead
protected void paintComponent(Graphics g) {
 // create a copy
 Graphics gTemp = g.create();

 // Set the state in gTemp instead
 gTemp.translate(x,y);

 // ...render the component contents using gTemp...

 gTemp.dispose();
}

The create() method returns a clone of the object in its current state, so using
this copy is just like using the original Graphics object except that it maintains
its own copy of all of the graphics attributes. An alternative way to achieve this
goal is to simply use the original object but then reset the state after you are
done.

Rendering into an Image
There are many times, especially in Filthy Rich Clients, when you would like to ren-
der graphics into an image. Image objects do not have handy paintComponent()
methods to override, so your application will never be given a Graphics object
automatically by Swing. However, it is quite easy to get such an object; you can
ask an Image for a Graphics object:

// Sample image creation
Image img = createImage(w, h);
// Get the Graphics object for the image
Graphics g = img.getGraphics();

The getGraphics() method returns a Graphics object that is set up for ren-
dering directly to the image. Note that some Image objects may be read-only. For
example, the images created by loading image data through Toolkit.getImage()
and Applet.getImage() create Image objects that can only be displayed, not

www.it-ebooks.info

http://www.it-ebooks.info/

48 CHAPTER 3 GRAPHICS FUNDAMENTALS

rendered to. This is one of many great reasons we suggest you use images of type
BufferedImage in your applications.4

Tip: Speaking of BufferedImage, if you happen to be using one of these wonderful
images and need a Graphics2D object, instead of using the getGraphics() call
from Image and casting it, you can use the following method to get a Graphics2D
object directly:

// creation of bImg performed elsewhere
BufferedImage bImg;
// Get the Graphics2D object for the image
Graphics2D g2d = bImg.createGraphics();

Getting a Component’s Graphics Object
It is also possible to ask a Swing component for a Graphics object directly.
However, it is not advisable to do so for rendering purposes. This means of
obtaining the Graphics object bypasses and interferes with Swing’s buffering
and repainting mechanisms. It is far better to handle rendering in the proper con-
text, such as in the paintComponent() method. You may sometimes want a
Graphics object for a Component just to query some rendering attributes, but
otherwise you will probably have no need to get a Graphics object for a Compo-
nent. Just leave it to Swing to provide the Graphics object when you need to do
the rendering.

Warning: Don’t call paint(g) directly. Let Swing call it for you. If you need to
have Swing paint a component, call repaint() on the component. Or, if you are on
the EDT and must render something immediately, call paintImmediately(). Don’t
get a Graphics object from the component and call paint() yourself. Bad things
will happen.

Graphics State
Graphics objects have several attributes that contribute to what we call the
graphics state. This state affects all subsequent rendering operations performed
with a particular Graphics object. We have already seen one example of graph-

4. We discuss the various image types, including the advantages of BufferedImage, in greater
detail in Chapter 4, “Images.”

www.it-ebooks.info

http://www.it-ebooks.info/

RENDERING 49

ics state: the current color. Just in case you missed it the first time, here is that
fascinating example once more:

protected void paintComponent(Graphics g) {
 // Set Color attribute on g
 g.setColor(Color.RED);
 // Fill this component with red
 g.fillRect(0, 0, getWidth(), getHeight());
}

After the call to g.setColor(Color.RED), all rendering operations on g that use
a foreground color will happen in red.

But graphics state can be far more interesting and can affect far more of the ren-
dering results than a simple color change. For example, we can change the posi-
tion, rotation, or size of the rendering operations by setting the transform
property. We can change the translucency of the rendering operations by setting
the Composite property. And we can set the graphics to fill or draw with a gradi-
ent or image instead of a color.

Now that we have covered the basics of how to set graphics state, let’s look at
some of the graphics state that we can set. We do not examine all state in the
Graphics and Graphics2D classes here but constrain the discussion to those
attributes we find most useful in Filthy Rich Clients. It is worth familiarizing
yourself with the JavaDocs for the Graphics and Graphics2D classes, however.
There are various other interesting attributes not covered here that you may want
to use in some situations.

From the Graphics and Graphics2D classes, we examine the following properties:

• Foreground color: The color used by drawing primitives.

• Background color: The color used when erasing an area.

• Font: The font used in text primitives.

• Stroke: The attributes used in line-based primitives.

• Rendering hints: Information that Java 2D uses to determine the quality
and performance of various rendering primitives.

• Clip: The region to which drawing is constrained.

• Composite: The method of combining color data from drawing primitives
with color data in the destination.

• Paint: Similar to the color, the Paint property determines how pixels will
be colored by drawing primitives.

• Transform: The size, position, and orientation of drawing primitives.

www.it-ebooks.info

http://www.it-ebooks.info/

50 CHAPTER 3 GRAPHICS FUNDAMENTALS

public void setColor(Color c)
public Color getColor()

These methods set and get the current foreground color, which controls the cur-
rent drawing color of the Graphics object. This color is then used in later primi-
tive calls, such as drawLine() and fillRect(). Note that colors may be opaque
or translucent.

The setColor() method is closely related to setPaint(), which creates more
interesting contents for graphics primitives than a simple solid color. We provide
more information on setPaint() later in this chapter.

Usage: The following code draws a red line:

public void paintComponent(Graphics g) {
 g.setColor(Color.RED);
 g.drawLine(0, 0, 10, 10);
}

public void setBackground(Color c)
public Color getBackground()

These methods set and get the background property, which controls the back-
ground color for the Graphics object. This is the color that will be used in calls
to clearRect() on the Graphics object.

Usage: The following code clears a component’s background to white:

public void paintComponent(Graphics g) {
 g.setBackground(Color.WHITE);
 g.clearRect(0, 0, getWidth(), getHeight());
}

public void setFont(Font f)
public Font getFont()

The Font property controls the font used by the Graphics object for any future
text operations. When drawString() is called on the Graphics object, a text
string is rendered using the Font property currently set on that Graphics object.
If you want a larger font, a different style (e.g., bold), or a different font type
entirely, call the setFont() method to make that change.

Usage: The following code draws a string with a bold, 24-point version of the
default font used by the Graphics object:

www.it-ebooks.info

http://www.it-ebooks.info/

RENDERING 51

public void paintComponent(Graphics g) {
 Font newFont = g.getFont().deriveFont(Font.BOLD, 24f);
 g.setFont(newFont);
 g.drawString("String with new font", 20, 20);
}

public void setStroke(Stroke s)
public Stroke getStroke()

The Stroke property controls the line attributes for future line-based drawing
primitives, such as drawLine(). In particular, a Stroke controls the line width,
the end caps of the line, and the style of join in multisegment line calls like
drawPolyline(). End caps and joins are fairly irrelevant with the default line
width of 1. They become more important when thick lines are used.

Stroke itself is an interface, and the BasicStroke class is the standard imple-
mentation of this interface. Typical use of Stroke is through the BasicStroke
class.

Usage: The following code draws a wide line with round end caps. Note that the
JOIN_MITER parameter is not relevant here, since we are simply calling the sin-
gle-segment drawLine() primitive:

public void paintComponent(Graphics g) {
 Graphics2D g2d = (Graphics2D)g.create();
 g2d.setStroke(new BasicStroke(10f, BasicStroke.CAP_ROUND,
 BasicStroke.JOIN_MITER));
 g2d.drawLine(0, 0, 10, 10);
 g2d.dispose();
}

Performance Tip: Java 2D uses 1-pixel-wide lines by default for a good reason:
They are much faster for Java 2D to render. Once you start asking for wide lines,
and the library has to think about the width as well as end caps and joins, then there
is a lot more computation involved and things can go much slower. My advice: Use
wide lines when you need them, but avoid them when you don’t.

Example: Simple State-Setting
Now that we have seen how to set some of the simple Graphics attributes, let’s look
at an example, the demo SimpleAttributes, available on the book’s Web site.

ONLINE
DEMO

www.it-ebooks.info

http://www.it-ebooks.info/

52 CHAPTER 3 GRAPHICS FUNDAMENTALS

In the paintComponent() method of this application, we play with various
attributes, and the results can be seen in Figure 3-1.

protected void paintComponent(Graphics g) {
 // Create temporary Graphics2D object
 Graphics2D g2d = (Graphics2D)g.create();

 // Set the background color and erase to it
 g2d.setBackground(Color.GRAY);
 g2d.clearRect(0, 0, getWidth(), getHeight());

 // Draw text with default font and Color
 g2d.drawString("Default Font", 10, 20);

 // Draw line with default Color and Stroke
 g2d.drawLine(10, 22, 80, 22);

 // Change the font
 g2d.setFont(g.getFont().
 deriveFont(Font.BOLD | Font.ITALIC, 24f));

 // Change the color
 g2d.setColor(Color.WHITE);

 // Change the Stroke
 g2d.setStroke(new BasicStroke(10f, BasicStroke.CAP_ROUND,
 BasicStroke.JOIN_MITER));

 // Draw text with new font and Color
 g2d.drawString("New Font", 10, 50);

 // Draw line with new Color and Stroke
 g2d.drawLine(10, 57, 120, 57);

 g2d.dispose();
}

Figure 3-1 SimpleAttributes demo output: Results from simple state-setting.

www.it-ebooks.info

http://www.it-ebooks.info/

RENDERING 53

The state-setting is happening in the four calls to g2d.set*. The first one sets the
background color to Color.GRAY, which results in the gray background in the
window. Then we perform our drawString() and drawLine() calls with the
default state, which results in the black string and line in the figure. We change
the Font to one derived from the current one, but with a different style and size.
Then we change the Color to WHITE, and we set the Stroke to a wide line with
rounded end caps. Note that the joins are irrelevant in this single-segment
example. The final result is seen by the white text and line in the figure.

public void setRenderingHint(RenderingHints.Key key, Object value)
public Object getRenderingHint(RenderingHints.Key key)

Rendering hints provide information to the Java 2D rendering system about how
you would like the rendering performed. The information is provided with key/
value pairs that are defined in the RenderingHints class.

Rendering hints are all about controlling the trade-off between quality and per-
formance. In many cases, high-quality rendering is not needed or desired, so a
setting that ensures that the operation is fast is more appropriate. In other situa-
tions, quality is more important and worth any potential performance trade-off.
You can make the right call for your situation, but here is the information you
need on some of the most common rendering hints.

Hints for Image Scaling
To control image-scaling quality, use the key RenderingHints.KEY_INTERPOLATION
with one of the following three values:

RenderingHints.VALUE_INTERPOLATION_NEAREST_NEIGHBOR

This is the default setting and represents the fastest scaling method. When
using this approach during an image-scaling operation, the 2D code deter-
mines how each destination pixel maps back to the source image and chooses
a color from the source pixel nearest that location. This technique has a ten-
dency to lose a lot of information in the original image. Imagine, for example,
if you scaled a highly detailed image from 100 × 100 to 10 × 10. You would
drop 99 out of every 100 pixels of color information and the result would
probably be far from the quality of the original image.

However, this approach works adequately in many situations, especially if
the image is transient so that you don’t see it for long or if the scale factor is
small so that this approach does not lose as much color information. The

www.it-ebooks.info

http://www.it-ebooks.info/

54 CHAPTER 3 GRAPHICS FUNDAMENTALS

performance can be substantially better for this approach than for some of the
others, so it is worthwhile using this default hint if the quality is good enough
for your situation.

RenderingHints.VALUE_INTERPOLATION_BILINEAR

This approach determines how each destination pixel maps back to the source
image and combines the four source-pixel values closest to that location. This
technique provides a much smoother scaling and a much better result than the
NEAREST_NEIGHBOR approach. If image quality is important to your applica-
tion, consider using this hint.

RenderingHints.VALUE_INTERPOLATION_BICUBIC

This approach is like BILINEAR, only instead of using the four pixels nearest
the location that the destination pixel maps back to, it uses a 4 × 4 grid of pix-
els. This hint provides improved quality over BILINEAR but at the cost of
increased time due to the increased complexity of the scaling algorithm.

Image-scaling quality and performance is covered in more detail in Chapter 4.

Before we discuss rendering hints for antialiasing shapes and text, we thought
that a bit of background in antialiasing might help.

Antialiasing: A Primer
Antialiasing (also called AA) is an approach used to smooth out rendering artifacts
known as “jaggies,” which are the result of computer screens having a discrete
number of visible pixels.

For example, when we draw a diagonal line on a monitor, we turn on and off pix-
els—it’s not just a continuous stream of color. So if you look close, you can see the
stair-step effect as we set the color of pixels along the slope of the line. You can see
this effect in Figure 3-2, where a diagonal line is shown in the upper right of the
figure and a zoomed-in view of some of the pixels that make up that line is shown
to the left.

Note that the close-up view of the line in Figure 3-2 does not flow continuously
down the screen but just colors individual pixels in the right locations according to
the slope of the line. Lines on the screen are exactly the same as the zoomed-in
image, only thinner. They look better than the zoomed-in representation because the
density of the pixels is such that you do not have to back up or squint to make the line
appear smooth. The combination of the small pixel size and your viewing distance

www.it-ebooks.info

http://www.it-ebooks.info/

RENDERING 55

from the screen makes it work. If you scoot forward close enough to the screen, you
will see the individual pixels of onscreen lines similar to the example in Figure 3-2.

Although lines and other graphics primitives, such as text, are usually “good
enough,” there are clear “jaggy” effects that can be improved on. One way to
improve things is by using antialiasing, which smoothes the hard edges of render-
ing primitives to reduce the on-or-off characteristic of the jaggies. In antialiasing,
we blend pixels on the edges with the background color to remove the hard-edge
effect of non-antialiased primitives.

To see this smoothing effect, imagine the case for just one individual pixel of a
larger primitive. The pictures in Figure 3-3 and Figure 3-4 show a single pixel
without and with an antialiasing technique applied.

Figure 3-2 Diagonal line, upper right, along with close-up view of some of
the pixels that make up that line.

Figure 3-3 Aliased version of a single pixel.

Figure 3-4 Antialiased version of a single pixel.

www.it-ebooks.info

http://www.it-ebooks.info/

56 CHAPTER 3 GRAPHICS FUNDAMENTALS

Note the effect in these figures. We are still drawing the main pixel in the same loca-
tion as before, but now we have a wider area that is grayed out at the edges, using a
color value that is halfway between the black color of the pixel and the white color of
the background. The result that the user sees is that the line is smoother and blends in
better with the background colors because each of the individual line pixels has a
smoother transition from the background color to the line color.

Example: AntiAliasingDemo

We can see the effects of antialiasing on a simple line primitive in the application
AntiAliasingDemo, available on the book’s Web site. This application draws two
lines: The first is drawn with default Graphics attributes, which do not include
antialiasing, and the second is drawn after setting the antialiasing rendering hint.
Here is the paintComponent() method, where all of the rendering logic is handled:

protected void paintComponent(Graphics g) {
 // We will need a Graphics2D object to set the RenderingHint
 Graphics2D g2d = (Graphics2D)g;

 // Erase to white
 g2d.setBackground(Color.WHITE);
 g2d.clearRect(0, 0, getWidth(), getHeight());

 // Draw line with default (aliased) setting
 g2d.drawLine(0, 0, 50, 50);

 // Enable antialiasing
 g2d.setRenderingHint(RenderingHints.KEY_ANTIALIASING,
 RenderingHints.VALUE_ANTIALIAS_ON);

 // Draw line with new (anti-aliased) setting
 g2d.drawLine(50, 0, 100, 50);
}

The results are shown in Figure 3-5 and Figure 3-6.

ONLINE
DEMO

Figure 3-5 Screenshot of AntiAliasingDemo application, showing a
default line on the left and a line with antialiasing enabled on the right.

www.it-ebooks.info

http://www.it-ebooks.info/

RENDERING 57

Now that we’ve seen how the basics of antialiasing work for drawing operations,
we are ready to talk about the various rendering hints for controlling antialiasing.
Note that there are different hints for drawing primitives and for text. We cover
both of these cases.

Hints for Shape Antialiasing
The default for drawing primitives in Java 2D is non-antialiased. If you wish to
set the antialiasing attribute for lines and other shapes in your application, you
need to set the rendering hint with the key RenderingHints.KEY_ANTIALIASING
to one of the following values:

RenderingHints.VALUE_ANTIALIAS_OFF
RenderingHints.VALUE_ANTIALIAS_ON

VALUE_ANTIALIAS_OFF is the default value, where antialiased rendering is dis-
abled. VALUE_ANTIALIAS_ON enables antialiasing. Note that antialiasing is a
more time-intensive rendering operation, so there may be some performance hit
for using this value.

Hints for Text Antialiasing
The final rendering hint we cover is text antialiasing, which is controlled by the
hint KEY_TEXT_ANTIALIASING. The technique behind text antialiasing is the
same as that for drawing primitives: Smooth out the jaggies by blending the
edges of the text characters with the background color values. In addition, as of
Java SE 6, text can take advantage of the newer LCD text antialiasing.

We do not cover LCD antialiasing techniques in depth here, but we cover the ren-
dering hints you need for antialiasing text in general. Check out the article “LCD-
Text: Anti-Aliasing on the Fringe” on java.net for more information on this topic.5

5. The article “LCD Text: Anti-Aliasing on the Fringe” can be found on java.net at http://today.
java.net/pub/a/today/2005/07/26/lcdtext.html. If you want to read more about antialiasing, and es-
pecially more detailed stuff about how we do antialiasing for LCD displays, check out the article.

Figure 3-6 Zoomed-in view of AntiAliasingDemo application.

www.it-ebooks.info

http://today.java.net/pub/a/today/2005/07/26/lcdtext.html
http://today.java.net/pub/a/today/2005/07/26/lcdtext.html
http://www.it-ebooks.info/

58 CHAPTER 3 GRAPHICS FUNDAMENTALS

There are several rendering hint values to be aware of, depending on the type of
antialiasing you want:

RenderingHints.VALUE_TEXT_ANTIALIAS_DEFAULT

This option chooses the default for the Java Runtime Environment (JRE). Up
through and including the Java SE 6 release, the default for Sun’s platforms
(Windows and UNIX) has been equivalent to the VALUE_TEXT_ANTIALIAS_OFF
key described next. Note that if text antialiasing is set to DEFAULT, then setting
the general antialiasing hint, KEY_ANTIALIASING, to VALUE_ANTIALIAS_ON
will cause text to be antialiased because Java 2D interprets this combination
as a hint to enable text antialiasing.

RenderingHints.VALUE_TEXT_ANTIALIAS_OFF

This setting forces antialiasing off, and we get aliased text as a result.

RenderingHints.VALUE_TEXT_ANTIALIAS_ON

This setting forces antialiasing on, and we get smoother text as a result. The
algorithm used with this hint is like the results we saw for Figure 3-6, which
was the only type of text antialiasing available prior to Java SE 6. It is fine for
many situations, but sometimes the quality is noticeably worse. For example,
when the characters are quite small, the blurring caused by this approach can
make the characters run together because the size of the pixels starts to out-
weigh the size of the character detail. In Java SE 6, the Java 2D team also
enabled LCD text antialiasing, which is described shortly.

RenderingHints.VALUE_TEXT_ANTIALIAS_GASP6

This hint specifies that Java 2D should use information that comes from the
font itself to determine whether to antialias that font at any given point size.

RenderingHints.VALUE_TEXT_ANTIALIAS_LCD_HRGB

RenderingHints.VALUE_TEXT_ANTIALIAS_LCD_HBGR

RenderingHints.VALUE_TEXT_ANTIALIAS_LCD_VRGB

RenderingHints.VALUE_TEXT_ANTIALIAS_LCD_VBGR

These hints all control the settings for LCD text. For each of the four hints,
the antialiasing algorithm assumes a different orientation of the red, green,

6. GASP stands for “grid-fitting and scan conversion procedure,” which doesn’t seem, to me, any
more explanatory than the acronym GASP. The term “GASP” at least sounds more dramatic.

www.it-ebooks.info

http://www.it-ebooks.info/

RENDERING 59

and blue stripes in the LCD monitor. The hints with RGB assume that the
stripes are in red-green-blue order. The hints with BGR assume blue-green-
red order. The HRGB and HBGR hints assume that the striping is in the hori-
zontal direction, where the RGB stripes are vertical. The VRGB and VBGR
hints assume that the striping is vertical, with each stripe running horizontally.

The most typical configuration for LCD displays is HRGB, so the most typical
setting for this hint is VALUE_TEXT_ANTIALIAS_LCD_HRGB. However, even if you
know that the user has an LCD screen and that HRGB is the right setting for that
screen, both of which might be difficult to determine at runtime, forcing this ren-
dering hint automatically may be the wrong solution. Instead, you should proba-
bly take the approach outlined in the FontHints example that follows.

Setting text antialiasing hints directly can be problematic, especially with all of
the new hints added in Java SE 6. A better solution for most situations is for your
application to figure out what the user’s desktop settings are for fonts and to do
something similar for the user’s Java application. This, in fact, is what Swing
does in some of its look and feels, including: Synth, Metal, Windows, and GTK.
Swing queries desktop properties for how text is rendered by native applications
and sets RenderingHints appropriately.

Tip: Custom components that perform their own text operations do not get this
Swing behavior. The Graphics object received in paintComponent() is set up with
defaults that do not know anything about the desktop properties. So if you want text
in your custom components to look like Swing’s text or to look like native applica-
tions’ text, for that matter, you need to do something like what Swing is doing. Look
at the FontHints demo for tips.

Example: Setting Text Hints from
Desktop Properties

The FontHints demo on the book’s Web site shows how to accomplish the task of
matching the desktop settings for a custom component. The application renders
one string with the default Graphics object in paintComponent() for comparison

ONLINE
DEMO

www.it-ebooks.info

http://www.it-ebooks.info/

60 CHAPTER 3 GRAPHICS FUNDAMENTALS

purposes. It then sets RenderingHints appropriately to match desktop settings
and renders another string with this modified Graphics object.

public FontHints() {
 Toolkit tk = Toolkit.getDefaultToolkit();
 desktopHints = (Map)(tk.getDesktopProperty(
 "awt.font.desktophints"));
}

protected void paintComponent(Graphics g) {
 Graphics2D g2d = (Graphics2D)g;
 g2d.setColor(Color.WHITE);
 g2d.fillRect(0, 0, getWidth(), getHeight());
 g2d.setColor(Color.BLACK);
 g2d.drawString("Unhinted string", 10, 20);
 if (desktopHints != null) {
 g2d.addRenderingHints(desktopHints);
 }
 g2d.drawString("Desktop-hinted string", 10, 40);
}

Figure 3-7 shows the result on my test system (Windows Vista with ClearType
enabled).

The screenshot in Figure 3-7 probably looks much better on my display than it
does on this page; LCD text rendering is optimized to look good on an LCD
screen, not on a piece of paper. But the important thing to note here is not how
good it looks on the page but that the two strings are different because the sec-
ond string was drawn after setting the appropriate desktop property hints on the
Graphics object.

Figure 3-7 Default and hinted strings rendered in custom component’s
paintComponent() method.

www.it-ebooks.info

http://www.it-ebooks.info/

RENDERING 61

To get the desktop properties in the constructor, we do a query on
awt.font.desktophints, which returns a Map of all of the properties.7 Then we
simply add all of those hints through a call to Graphics2D.addRenderingHints().
Now our Graphics object is set up to render text just like native applications.

For more information on desktop properties, check out “AWT Desktop Prop-
erties” in the JavaDocs. The document name is DesktopProperties.html,
but it might be easier to find it by clicking on the link in the JavaDoc for
Toolkit.getDesktopProperty().

public void clipRect(int x, int y, int width, int height)
public void clip(Shape s)
public void setClip(int x, int y, int width, int height)
public void setClip(Shape s)
public Shape getClip()
public Rectangle getClipBounds()

The clip property controls the shape within which rendering operations are con-
strained to be visible. That is, the caller passes in parameters that define a bound-
ing area, and future rendering operations to that Graphics object will be visible
only within the area defined by those values.

Warning: The setClip() methods set the clip to the specified area, whereas the
clipRect() and clip() methods combine the specified area with the clip currently
set on that Graphics object. In general, you should use the combined clip approach,
not create an entirely new one that ignores the clip previously set on the Graphics
object. For example, the Graphics that Swing gives you in paintComponent() has a
clip set on it to constrain rendering to the component’s area. You probably don’t want
to clobber that setting by replacing it with your own clip. Use clipRect() and clip().

Swing uses these clip methods internally to limit the visible area to be rendered
for any component hierarchy. For example, if an area in the upper left of the
Swing back-buffer image needs to be repainted due to some windowing event or
a programmatic update request, then a clip will be set on the Graphics for the
operation that is bounded by that area.

7. Desktop properties could actually change during the course of an application run (although it’s
pretty unlikely to happen), which this approach of caching the properties would miss. It is possi-
ble to listen in on property changes, which is what Swing does; there is more information about
this in the “AWT Desktop Properties” document.

www.it-ebooks.info

http://www.it-ebooks.info/

62 CHAPTER 3 GRAPHICS FUNDAMENTALS

There are two good reasons to set the clip during rendering:

1. Preservation of contents: The window may have content outside of a par-
ticular area that should not change. Constraining the clip ensures that these
contents are preserved, since rendering operations will be contained within
the clipping area.

2. Performance: Why do more than you need to? If only a small area of the
window needs to be repainted, it is a waste of time and cycles to paint the
rest of the window.

It is this second item that particularly concerns us. If Swing or the application
code is going to the trouble of setting a clip to constrain the task, then our paint-
ing code should be intelligent enough to check the clip and render accordingly.
That is, we should only bother painting those items that lie within the current
clip. Your code will probably not need to set the clip. The clip that you get from
Swing in the Graphics object sent to paintComponent() will be sufficient for
most of your needs. But you may often need to get the clip by calling getClip()
and then rendering accordingly. We discuss in detail how to use the clip in Chap-
ter 5, “Performance.”

One interesting use of setting the clip is in drawing complex shapes. For exam-
ple, if you want to draw a rectangular image into some nonrectangular area, you
can simply constrain the clip to that Shape and then draw the image as usual.
The results will be visible only in the area inside that Shape.

public void setComposite(Composite c)
public Composite getComposite()

The Composite property is used to determine how pixel colors from ensuing
graphics operations will be combined or blended with the pixel colors already in
the destination. Composite is an interface that may be implemented by a custom
class. For the most part, we use the AlphaComposite class that is part of the core
graphics libraries. There is probably little or no need for you to implement your
own Composite implementation, although Chapter 6, “Composites,” describes
how to do so.

By default, the rendering rule used by Graphics2D is SrcOver, which means that
the destination pixel colors are obscured by the source colors proportional to the
alpha value, or opacity, of the source color. For example, a source color with
alpha = 0 has no effect on the destination, whereas a source color with alpha = 1
completely replaces the destination color.

www.it-ebooks.info

http://www.it-ebooks.info/

RENDERING 63

Tip: The Composite property is incredibly important for Filthy Rich Clients, since
it enables the translucency effects that we use throughout our applications. We cover
this topic in more detail in Chapter 6.

public void setPaint(Paint p)
public Paint getPaint()

Paint is an interface implemented by various subclasses such as Color,
GradientPaint, and TexturePaint. The current Paint on a Graphics object
determines how the pixels will be colored when ensuing graphics operations are
performed. For example, Color implements Paint and determines what color
will be used when rendering graphics primitives. Note that setColor() is really
just a special case of setPaint(); every Color is also a Paint.

Paint gets really interesting when you look at some of the other more complex
implementations. In particular, GradientPaint is used to define various types of
gradients that are used when performing drawing operations. Gradients are so
important in achieving great looking Filthy Rich Clients that they are described
in their own chapter (Chapter 7).

public void rotate(double theta)
public void rotate(double theta, double x, double y)
public void scale(double sx, double sy)
public void translate(int x, int y)
public void translate(double x, double y)
public void transform(AffineTransform xform)
public void setTransform(AffineTransform xform)
public AffineTransform getTransform()

There are several related methods that allow you to control the transform on the
Graphics object. The sheer number of the methods may seem overwhelming, but
they are all just different ways of setting the same object: the AffineTransform of
the Graphics object. Transforms can be confusing, so having utility methods to
help out is a Good Thing.

The AffineTransform of the Graphics2D object is essentially a matrix (in the
linear algebra sense, not the Keanu Reeves sense),8 which defines the calcula-
tions used to figure out the position, size, and orientation of ensuing graphics
operations. The process of calculating this new position, size, and orientation for

8. It’s interesting that the movie The Matrix chose the term matrix to mean “the scariest technical
thing we can think of.” You wonder how much the writers enjoyed their math classes.

www.it-ebooks.info

http://www.it-ebooks.info/

64 CHAPTER 3 GRAPHICS FUNDAMENTALS

objects is called transformation, since we are transforming points from their
original positions to new positions using the calculations encapsulated by
AffineTransform9.

Some background in matrix math might help in understanding how the underly-
ing operations relate to these methods.

9. In the interest of full disclosure, I should point out that my first encounter with linear algebra was
pretty awful. I spent the entire term in a misery of confusion and boredom, not understanding a
whit about why it was important to have orthonormal bases, or how to derive basis vectors, or
why I’d gotten up so early for this class again. It wasn’t until three years later that I took my first
computer graphics course and it hit me like a ball-peen hammer between the eyes: Matrix math
is a tool, and a very effective one at that. Matrices are very compact representations of the calcu-
lations that we must do to move points from one location to another in space (or, perhaps more
correctly, from one space to another), which is what we do a lot of in graphics. Once I understood
that, it made a lot more sense why I should care about linear algebra and the ability to transform
points using matrices. It did not, however, make morning classes any more enjoyable.

Matrix Math: A Perfectly Painless
Primer (Probably)
We can picture the AffineTransform matrix as a series of three rows of three ele-
ments each, as follows:

where the last row is always (0, 0, 1). If we picture each (x, y) point of a graphics
primitive (such as a line endpoint) as a column vector, like so:

where the third element is always 1, then we can see how to transform the point (x,
y) to the point (x', y') by simple matrix multiplication:

m00 m01 m02

m10 m11 m12

0 0 1

x

y

1

x'

y'

1

m00 m01 m02

m10 m11 m12

0 0 1
*

x

y

1

m00*x m01*y m02+ +

m10*x m11*y m12+ +

1

= =

www.it-ebooks.info

http://www.it-ebooks.info/

RENDERING 65

Here, the transformed points (x', y', 1) are the values in the new column vector:
(m00*x + m01*y + m02, m10*x + m11*y + m12, 1), so the new (x', y') point is sim-
ply (m00*x + m01*y + m02, m10*x + m11*y + m12).

As you can see, each element in the matrix affects the outcome of the transform calcu-
lation. For example, the elements at the right, m02 and m12, get added to each respec-
tive x or y value. This operation effectively performs a translation or move of the
original coordinates. So if we wanted to simply shift the original point (x, y) by some
distance (dx, dy) to get the new point (x', y'), we could construct a matrix like this:

and perform the following transform calculation:

where the new values (x', y') equal (x + dx, y + dy).

Similarly, the elements m00 and m11 multiply the original (x, y) elements to derive
new (x', y') values. These elements perform a “scale” operation on the original
point. This means that we can perform a scaling operation on a point (x, y) by sim-
ply providing the scale factor (sx, sy) in the m00 and m11 elements, as shown in the
following calculation:

Rotations are not quite as obvious10 and involve the upper four elements of the
matrix. For example, to rotate an object by θ radians, the rotation matrix would
look like this:

10. Don’t bother memorizing which elements are sine, cosine, negative, and positive. You’ll just forget.
Remember that graphics is more fun because you can visually debug it. In my experience, you tend
to get the rotation elements wrong, and then you figure out the right elements by trial and error. But
the best approach is to simply use the utility functions in Graphics2D and AffineTransform
and make Java 2D construct the rotation matrix for you. Just provide θ and Java 2D will do the rest.

1 0 dx

0 1 dy

0 0 1

x'

y'

1

1 0 dx

0 1 dy

0 0 1

*

x

y

1

1*x 0*y dx+ +

0*x 1*y dy+ +

0*x 0*y 1*1+ +

x dx+

y dy+

1

= = =

x'

y'

1

sx 0 0

0 sy 0

0 0 1

*

x

y

1

sx*x 0*y 0*1+ +

0*x sy*y 0*1+ +

0*x 0*y 1*1+ +

sx*x

sy*y

1

= = =

θcos – θsin 0

θsin θcos 0

0 0 1

www.it-ebooks.info

http://www.it-ebooks.info/

66 CHAPTER 3 GRAPHICS FUNDAMENTALS

Combining Matrix Operations

Now we can see how these different types of matrices might combine to create
matrices of more complexity and utility. A great example is scaling. You do not
generally want to scale a set of points around the world origin (at x = 0, y = 0), as
shown in Figure 3-8. Instead, you typically want to scale it around some other cen-
ter, as shown in Figure 3-9.

The scaling matrix we discussed earlier, using just sx and sy factors, scales the
square around the world origin. We can perform a more complex operation to scale
around an arbitrary center by combining matrices. We are still going to scale our
points around the world origin, but we are going to move our arbitrary scaling
center to the world origin prior to scaling (and then move it back afterward). This
multistep operation involves three matrices: translating our scaling center to the
world origin, scaling, and translating back.

Matrices can be combined by multiplying them together to result in one single
matrix that can then be multiplied by the vectors we wish to transform. In this case,
we want to combine the translation, scale, and back-translation for our center
(dx, dy) as follows:

1 0 dx

0 1 dy

0 0 1

*

sx 0 0

0 sy 0

0 0 1

*

1 0 –dx

0 1 –dy

0 0 1

sx 0 dx

0 sy dy

0 0 1

*

1 0 –dx

0 1 –dy

0 0 1

sx 0 dx 1 sx–

()
0 sy dy 1 sy– ()
0 0 1

= =

Figure 3-8 Scaling an object (square) around the world origin (circle).

Figure 3-9 Scaling an object (square) around its center (circle).

www.it-ebooks.info

http://www.it-ebooks.info/

RENDERING 67

At first, it might seem counterintuitive that we have the forward translation by
(dx, dy) on the left. After all, we want to back-translate to the origin first and then
forward translate after. However, these matrices actually multiply right to left. If
you picture the coordinate column vector on the right of all three operations, then
you’ll see that it actually gets multiplied by the (–dx, –dy) translation first, then the
scale, then the forward translation, just like what we want.

This quick introduction to matrix math is obviously way too light on details to
enable a full understanding of the topic, but then, that wasn’t really the intent.11 If
you can understand just enough of the basic operations of how translation, scaling,
and rotation factors contribute to transforming points, then our discussion of the
transform methods in

Graphics2D should make more sense.

Utility Transform Methods
Now that we’ve seen how the various operations of translation, scale, and rotation
affect the elements of the transform matrix, the utility functions

translate(),

scale(), and

rotate() in the

Graphics2D class should be clear. Instead of
complicating your job by adding more methods for you to understand, these
methods simplify it by letting you more easily construct the matrix you want.
And by implicitly combining the effects of multiple transformations, they allow
you to ignore details like the matrix multiplication we just described. You simply
ask for the transform operations you need, and the internal

AffineTransform

constructs the matrix that those operations require.

For example, if you want to perform a translation of (dx, dy) on graphics primi-
tive calls on the current

Graphics object, you can simply call

translate(). This
method will add the specified translation factor to the current transform used by
the

Graphics object by combining the matrix created by this

translate() call
with the current

Graphics matrix:

translate(dx, dy);

Similarly, if you want to scale primitives by (sx, sy), you can call scale(),
which resizes primitives around the world origin, as shown in Figure 3-8.

scale(sx, sy);

11. We’re assuming you bought this book to see how to make better, cooler Swing applications, not
to bury yourself in math notation. Feel free to pick up a book on linear algebra if you’re dying
for more details on the math.

www.it-ebooks.info

http://www.it-ebooks.info/

68 CHAPTER 3 GRAPHICS FUNDAMENTALS

If you want to rotate primitives by theta radians, you can call rotate(), which
rotates primitives around the world origin:

rotate(theta);

There is an additional variant of rotate() that is quite useful. This variation
performs the translation-to-origin-and-back steps that we discussed earlier for
scaling, all in this single method call. This operation effectively rotates future
drawing around the specified center (x, y):

rotate(theta, x, y);

Example: RotationAboutCenter
You can see the difference between these two rotation operations in this exam-
ple, taken from the RotationAboutCenter demo on the book’s Web site. The
application calls fillRect() three times, each time with a different color and
rotation.

protected void paintComponent(Graphics g) {
 Graphics2D g2d;
 g2d = (Graphics2D)g.create();

 // Erase background to white
 g2d.setColor(Color.WHITE);
 g2d.fillRect(0, 0, getWidth(), getHeight());

 // base rectangle
 g2d.setColor(Color.GRAY.brighter());
 g2d.fillRect(50, 50, 50, 50);

 // rotated 45 degrees around world origin
 g2d.rotate(Math.toRadians(45));
 g2d.setColor(Color.GRAY.darker());
 g2d.fillRect(50, 50, 50, 50);

 // rotated 45 degrees about center of rect
 g2d = (Graphics2D)g.create();
 g2d.rotate(Math.toRadians(45), 75, 75);
 g2d.setColor(Color.BLACK);
 g2d.fillRect(50, 50, 50, 50);

 // done with g2d, dispose it
 g2d.dispose();
}

ONLINE
DEMO

www.it-ebooks.info

http://www.it-ebooks.info/

RENDERING 69

The first rectangle, in light gray, is drawn at (50, 50). Then the Graphics2D
object is rotated by 45 degrees and the rectangle is drawn again, this time in dark
gray. Then the Graphics2D object is reset to the original state to avoid inheriting
the intermediate scale property. Finally, the new Graphics2D is rotated by 45
degrees, this time around the rectangle’s center at (75, 75). You can see the
results in Figure 3-10.

You can also specify an arbitrary transform by calling transform() with a com-
plete AffineTransform object:

transform(xform);

Note that all of the methods just described combine the requested matrix opera-
tion with the matrix that is already in place for the Graphics object. These
requests effectively multiply the matrix that represents your specified operation,
such as translate(x, y), by the current matrix in the Graphics object. There is
an alternative approach whereby you can request an exact transform to take
place:

setTransform(xform);

This method may look like the transform() method, but it has a very different
effect. The previous transform() method combines the supplied transform with
the current transform in the Graphics object. setTransform(), on the other
hand, sets the transform explicitly, effectively replacing the current transform in
the Graphics object with this new transform.

Figure 3-10 RotationAboutCenter screenshot. The original, unrotated primitive is in
light gray. The dark gray primitive is rotated about the world origin, while the black
primitive is rotated about the object center.

www.it-ebooks.info

http://www.it-ebooks.info/

70 CHAPTER 3 GRAPHICS FUNDAMENTALS

Warning: In general, you should use the methods that combine transform requests
with the current Graphics transform. The current transform may have important
information embedded in it, such as the correct offset that Swing set up to render to
the current lightweight component. Ignoring the current transform may result in
incorrect rendering.

It is worth mentioning a few more details about the transform methods. First of all,
there is one additional method in Graphics2D for setting transforms, shear(),
which performs a transformation that is important in some graphics operations
but not typically in those that we deal with in Filthy Rich Clients. Perhaps more
importantly, all of the methods in the AffineTransform class itself are available
to you. We talked exclusively about the Graphics2D methods in our discussion,
but an AffineTransform can be manipulated directly as well. AffineTransform
has a host of utility methods for creating, combining, and managing a transform,
similar to those we covered for Graphics2D. If you are working closely with
transforms, you probably want to befriend this class and read the JavaDocs,
which go into more detail on transforms than we have done here.

Finally, it is important to note that changing the current transform of a Graphics
object has implications that are sometimes not obvious and can lead to problems
that are difficult to track down. We discuss this topic in more detail later, but the
main point is worth emphasizing in the following Tip.

Tip: If you change the Graphics object that Swing hands to you, you may mess up
other Swing rendering that is using this same Graphics object.

When you change the object handed to you in paintComponent(Graphics), for
example, you are changing the Graphics object that Swing may be using for
other purposes, such as rendering your component’s borders or children. In gen-
eral, this is probably not what you want to do, so it is usually good practice to
work on a copy of the current Graphics object instead, like so:

protected void paintComponent(Graphics g) {
 // make a copy to avoid clobbering g
 Graphics2D myG2d = (Graphics2D)g.create();
 // change the transform on the copy
 myG2d.scale(sx, sy); // for example...
 // Now use myG2d for your graphics operations, such as:
 myG2d.fillRect(...);
 // dispose the Graphics object
 myG2d.dispose();
}

www.it-ebooks.info

http://www.it-ebooks.info/

RENDERING 71

Final Graphics State-ment12: State Is Persistent
One final, important note about graphics state that everyone should remember: It
doesn’t go away! That is, if you set the value of an attribute on a Graphics
object, the attribute will retain that value until the object is disposed or until that
attribute is set to some other value. This behavior is typically not an issue for
temporary Graphics objects or those that are created, used, and disposed in an
area of small scope. But it can be an issue for situations in which you are using
the Graphics object that Swing gave you, in the paintComponent() method, for
example, and that Swing may use elsewhere when you are finished.

Tip: The issue of clobbering graphics state in the paint() method is different from
that with the paintComponent() method. If you choose to override paint(),13 then
you have free reign over the changes that you make to the Graphics object because
the caller of paint(), at least if it’s internal Swing code, will not reuse that object
for other purposes. Therefore, changes that you make to the Graphics object within
paint() will be irrelevant outside of the context of that paint() method.

There is an inherent trade-off with any powerful tool. You can use the power
wisely to create beautiful and functional objects, or you can mess around and cut
your hand off. Similarly, the persistent state of the Graphics object can be both
powerful and dangerous.

Powerful By setting the state of a Graphics object and then letting Swing go
about its usual business with the object, we can automatically control how
Swing does otherwise standard rendering. For example, we might use this
approach in order to have Swing draw an otherwise normal component with
translucency, as in this example of a paintComponent override in a subclass of
some Swing component:

public void paintComponent(Graphics g) {
 Graphics2D g2d = (Graphics2D)g.create();
 g2d.setComposite(myTranslucencyComposite);
 super.paintComponent(g2d);
 g2d.dispose();
}

12. In which I meant what I stated.
13. Hopefully, you have a good reason to override paint(); see our discussion in Chapter 2,

“Swing Rendering Fundamentals,” on overriding paint().

www.it-ebooks.info

http://www.it-ebooks.info/

72 CHAPTER 3 GRAPHICS FUNDAMENTALS

Here, we set the Composite attribute of g2d and then defer to the Swing super-
class to actually draw the component. Since the Composite state in g2d persists
in the call to the superclass, the component will be rendered translucently.

Dangerous The flip side of persistent graphics state is that you should avoid
making changes that will cause side effects to the rendering performed in other
places that use the same Graphics object. The effects from clobbering state can
be undefined, since it may be difficult to tell exactly who is doing what with the
Graphics object once you finish with it. For example, this code alters the current
transform of the Graphics object:

public void paintComponent(Graphics g) {
 g.translate(...);
 g.drawLine(...);
}

The side effect of calling translate() here is that you will cause all future ren-
dering with this Graphics object, even outside of this method, to take place in
the location specified by the call to translate(), which may not be what you
intended.

Avoiding the Clobber
There are two simple workarounds for this situation if you want to alter the state
of the Graphics object but do not want to cause a side effect to code outside of
your method. These examples all use translate(), but the same techniques can
be applied to any of the state that you might alter on Graphics or Graphics2D
objects.

Create and Use a Copy Instead
public void paintComponent(Graphics g) {
 Graphics tmpG = g.create();
 tmpG.translate(...);
 tmpG.drawLine(...);
 tmpG.dispose();
}

Here, we create a clone of the original Graphics object, which starts out with all
of the same state in the original object, and then change and use that copy of g
instead. The original Graphics was not altered, so any future code relying on the
state of that object will not be affected by the translate() call made on the
copy of g.

www.it-ebooks.info

http://www.it-ebooks.info/

RENDERING 73

Restore Clobbered State
public void paintComponent(Graphics g) {
 AffineTransform oldXform = ((Graphics2D)g).getTransform();
 g.translate(...);
 g.drawLine(...);
 ((Graphics2D)g).setTransform(oldXform);
}

In this example, we get the original transform state before we alter it, make our
translation change, draw our line, and then restore the original transform state
when we are finished. Even though we change and use the original Graphics
object directly, we restore it to its original condition when we are done so that
anyone using the object later will be unaffected by our temporary changes.

Tip: The copy-versus-restore approach that you should use in your code depends on
the situation. For example, if you alter many different attributes in the Graphics object,
then it might be tedious and error-prone to call the many methods required in order to
save and restore the original state. In this case, using a copy of the Graphics object is
probably a better choice. On the other hand, if you are changing just one simple prop-
erty, then the calls to save and restore that property appropriately might be cheaper than
creating and using a copy of the original Graphics object for just that one attribute.

In the end, the fact that state is persistent is mostly a powerful tool. We use it
quite extensively in Filthy Rich Clients because it allows us to easily alter how
core Swing rendering happens through simple overriding, state-setting, and dele-
gating to the superclass. But you need to be aware of the risks involved in chang-
ing the state of the Graphics object. That object may be used outside your code,
so its state should be treated with care.14

Graphics Primitives
Graphics primitives are the objects that we draw, such as lines, rectangles,
images, pictures of Duke, ovals, and text. These operations happen, for the most
part, through calls to methods in the Graphics and Graphics2D classes. For a

14. Your painting code should never assume a particular state set up on the Graphics by another
component, be it a sibling or a parent in the component’s hierarchy. While this might work on
your machine, it is not guaranteed to work across all platforms. For instance, when Romain was
working at Sun on a Swing demo for JavaOne 2006, he created a component that relied on the
antialiasing state set by another component. It worked fine on Windows. Unfortunately, when
he presented this demo on stage in front of 10,000 people, he discovered that Mac OS X was not
keeping this state across the components. He nearly had a heart attack on stage, except a coro-
nary, fortunately, was not in the demo script.

www.it-ebooks.info

http://www.it-ebooks.info/

74 CHAPTER 3 GRAPHICS FUNDAMENTALS

simple example, here is how we might draw a diagonal line in the content area of
a Swing component:

public void paintComponent(Graphics g) {
 g.drawLine(0, 0, 100, 100);
}

The code draws a single line from the point (0, 0) to the point (100, 100). There
are many details we’ve skimmed over here, such as the line color (which is
defined by the state of the Graphics object we received, as discussed previously
under “Graphics State”). But you can see the basic process followed by most
graphics primitive operations: We call the method of interest in the Graphics
object, passing in the parameters that define the characteristics of the primitive.
In the example above, we call the drawLine() method and pass in values that
define the start and end points for the line.

Example: DiagonalLineDemo
If we want to make the example slightly more interesting, we can base the line’s
endpoints on the dimensions of the component into which we are rendering. For
example, suppose we want to draw a line from the upper left of the component to
the lower right. The following code, which you can see in the DiagonalLineDemo
on the book’s Web site, is a complete application that does so:

public class DiagonalLineDemo extends JComponent {

 public void paintComponent(Graphics g) {
 g.drawLine(0, 0, getWidth() - 1, getHeight() - 1);
 }

 private static void createAndShowGUI() {
 JFrame f = new JFrame("Diagonal Line Demo");
 f.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 f.setSize(300, 100);
 f.add(new DiagonalLineDemo());
 f.setVisible(true);
 }

 public static void main(String args[]) {
 Runnable doCreateAndShowGUI = new Runnable() {
 public void run() {
 createAndShowGUI();
 }
 };

ONLINE
DEMO

www.it-ebooks.info

http://www.it-ebooks.info/

RENDERING 75

 SwingUtilities.invokeLater(doCreateAndShowGUI);
 }
}

Figure 3-11 shows the exciting result of this application.

The only interesting code in this example, beyond the boilerplate of the code
used to create and show the JFrame and add the custom component that we are
defining into that frame, is the code in the paintComponent() method:

g.drawLine(0, 0, getWidth() - 1, getHeight() - 1);

Tip: Note that if a border is set on a component, then the component’s insets prop-
erty will reflect the geometry of that border. These insets should be taken into
account when rendering the content for that component to ensure that the border
doesn’t inadvertently obscure it. For example, the code to fill the non-border area of
a component would be:

Insets i = getInsets();
g.fillRect(i.left, i.top,
 getWidth() – i.left – i.right,
 getHeight() – i.top – i.bottom);

This code is the same as the line-drawing code we saw a page or two ago, except
that it uses the width and height of the component to put the endpoints of the line at
the upper-left and lower-right corners of the component.

Pretty exciting, no? No. Not really. But simple line drawing is an easy way to see
how the basics of all graphics primitives work. Now we can move on to see some
more interesting graphics operations.

We look at some of the key primitives used by Swing applications, and Filthy
Rich Clients in particular. Our discussion does not cover the full spectrum of

Figure 3-11 Terribly exciting results from the fantastic DiagonalLineDemo application.

www.it-ebooks.info

http://www.it-ebooks.info/

76 CHAPTER 3 GRAPHICS FUNDAMENTALS

primitives available to you in Graphics and Graphics2D, but, as in our earlier
discussion of graphics state, we focus on what we have found to be the most use-
ful graphics primitive operations for Filthy Rich Clients. You should check out
the JavaDocs for the Graphics and Graphics 2D classes for more information on
the wealth of other options available.

From the Graphics and Graphics2D classes, we examine the following primitives:

• Images: Copying and scaling images

• Lines: Drawing single-segment lines

• Strings: Drawing text

• Rects: Drawing rectangular borders and interiors

• Shapes: Drawing arbitrary shapes

• CopyArea: Copying contents from one location to another

public void drawImage(...)

drawImage() is one of the most prevalent graphics primitive calls in any Swing
application, both in application code and in Swing internally. Its purpose is to copy
a Java Image object to the destination surface used by the current Graphics object.
This method may be used for anything from copying a back buffer to the window,
to copying icons or other images onto the GUI, to copying contents from one
Image type to another, to scaling an image from its original size to a new size.

There are several different variants of drawImage() in Graphics and Graphics2D.
We discuss those that are most important for Filthy Rich Clients in order to sim-
plify the alternatives.

In the following discussion, it is assumed that there is no scaling transform
applied to the Graphics object. If there is a transform on the Graphics object,
that operation will occur in addition to any explicit translation and scaling opera-
tions specified by the parameters of the drawImage() methods themselves.

Note: For all of the drawImage() methods, you will notice that there is an
ImageObserver argument as the final parameter. This argument is useful for images
that may not be fully loaded yet at the time of the drawImage() call or that are ani-
mating, such as an animated GIF image. But in general, if you are using images that
are already loaded, such as any BufferedImage, this argument is not needed. You
should pass null for the final argument in these cases, as follows:

drawImage(image, x, y, null);

This is what you will see for the drawImage() calls in our demo code, as we generally
use BufferedImage objects.

www.it-ebooks.info

http://www.it-ebooks.info/

RENDERING 77

drawImage(Image img, int x, int y, ImageObserver observer)

This variant is the simplest version of drawImage(). It just copies the source
image to the destination Graphics at the location specified by (x, y). There is no
scaling or other operation performed during the copy apart from any scaling that
occurs due to the transform set on the Graphics object.

drawImage(Image img, int x, int y, int width, int height,
 ImageObserver observer)

This variant is like the previous one except that it performs a scale of the source
image, if necessary, to fit the given width and height dimensions. Regardless of
the size of the original image, the result will be that the entire source image fits
in the width and height dimensions in the destination. Note that any scaling
incurred by this operation will use the value of the KEY_INTERPOLATION render-
ing hint, as discussed previously, to determine the algorithm that should be
applied during the scale operation.

drawImage(Image img, int dx1, int dy1, int dx2, int dy2,
 int sx1, int sy1, int sx2, int sy2,
 ImageObserver observer)

This variant, the only one to use boundary points for the image area instead of
width and height parameters, is a bit more involved, but it is also more flexible. It
allows you to specify a subregion of the source image, defined by the s* param-
eters, that will be copied into the specified region of the destination, defined by
the d* parameters. This operation could be a simple copy if the areas are of equal
sizes, or it could be a scale if the regions differ in size. Note that any scaling
incurred by this operation will use the value of the KEY_INTERPOLATION render-
ing hint, as discussed previously, to determine the algorithm that should be applied
during the scale operation.

There are other variants of drawImage(), but the three we just covered are the
most useful for Filthy Rich Client situations. More detail about resizing images
with drawImage() is presented in the “Image Scaling” section of Chapter 4.

public void drawLine(int x1, int y1, int x2, int y2)

drawLine() is a simple method that draws a straight line between the two speci-
fied points (x1, y1) and (x2, y2). Important properties used in conjunction with
lines include the current Color, Stroke, and antialiasing rendering hint.

www.it-ebooks.info

http://www.it-ebooks.info/

78 CHAPTER 3 GRAPHICS FUNDAMENTALS

public void drawString(String s, int x, int y)

drawString() is the simplest means of rendering text into a drawing area. You
specify the String to draw and the (x, y) position that will be the baseline of the
string15 in the Graphics destination. Important properties associated with this
drawing primitive include the current Color and text antialiasing rendering hint.

public void drawRect(int x, int y, int width, int height)
public void fillRect(int x, int y, int width, int height)

These primitives affect the region of pixels specified by the rectangle (x, y, width,
height) with the current Color or Paint. drawRect() draws a border around this
area, while fillRect() fills the pixels inside this area. See the section “Fill ver-
sus Draw” later for more information about the difference between these results
of primitives. Important states associated with these drawing primitives include
the current Color and Paint.

Graphics2D.draw(Shape s)
Graphics2D.fill(Shape s)

These methods draw the outline or fill the interior of a Shape, which is an arbi-
trary piece of geometry described by a series of path objects. There are actually
Shape implementations for most of the primitives that you see in the individual
draw* and fill* methods. For example, there is a Line2D primitive, an Ellipse2D
primitive, and a Rectangle2D primitive.

Tip: For the most part, unless you are looking for some of the added functionality
that Shape offers, such as the ability to test a shape for intersection or whether it
contains specific points or the use of more precise floating-point instead of integer
coordinates, you should use the simpler draw and fill methods in Graphics and
Graphics2D when a simpler method exists. That is, you should call drawLine()
instead of creating a Line2D and calling draw(Shape). We discuss this topic more
in Chapter 5, but the reason is straightforward: Simple primitives are faster for Java
2D to handle because there is simply less to deal with.

15. The fact that string origins are at their baseline and origins of other drawing primitives, such as
images and rectangles, are at the upper left can be confusing. Correct positioning of text with
respect to other graphics objects may involve calculation of various text attributes to correctly
determine the baseline. Doug Felt and Phil Race described various details of text positioning in
the Advanced Java 2D talk at JavaOne 2005. You can see the slides here: http://developers.
sun.com/learning/javaoneonline/2005/desktop/TS-3214.html.

www.it-ebooks.info

http://developers.sun.com/learning/javaoneonline/2005/desktop/TS-3214.html
http://developers.sun.com/learning/javaoneonline/2005/desktop/TS-3214.html
http://www.it-ebooks.info/

RENDERING 79

There are more interesting Shapes that you can create and then render with these
methods. For example, GeneralPath can be used to construct an arbitrary path
from individual line and curve segments. Also, the more sophisticated Area
object, which interprets arbitrary Shapes as enclosed regions of 2D space, can
perform operations that intersect, combine, and subtract those regions. These
shapes are worth investigating if your graphics primitives take you outside the
basic shapes provided in the other draw and fill methods.

To whet your appetite, here is a simple method that creates a donut16 shape by
creating two circle shapes and subtracting one from the other:

private static Shape generateDonut(double x, double y,
 double innerRadius,
 double outerRadius) {
 Area a1 = new Area(
 new Ellipse2D.Double(x, y, outerRadius, outerRadius));
 double innerOffset = (outerRadius - innerRadius)/2;
 Area a2 = new Area(
 new Ellipse2D.Double(x + innerOffset, y + innerOffset,
 innerRadius, innerRadius));
 a1.subtract(a2);
 return a1;
}

And here is a routine that constructs a GeneralPath that holds a star of arbitrary
size. The inner loop moves around the star, adding to the path with lineTo()
calls for each point of the star:

private static Shape generateStar(double x, double y,
 double innerRadius,
 double outerRadius,
 int branchesCount) {
 GeneralPath path = new GeneralPath();

 double outerAngleIncrement = 2 * Math.PI / branchesCount;

 double outerAngle = 0.0;
 double innerAngle = outerAngleIncrement / 2.0;

 x += outerRadius;
 y += outerRadius;

continued

16. Mmmmmm. Donuts. . .

www.it-ebooks.info

http://www.it-ebooks.info/

80 CHAPTER 3 GRAPHICS FUNDAMENTALS

 float x1 = (float) (Math.cos(outerAngle) * outerRadius + x);
 float y1 = (float) (Math.sin(outerAngle) * outerRadius + y);

 float x2 = (float) (Math.cos(innerAngle) * innerRadius + x);
 float y2 = (float) (Math.sin(innerAngle) * innerRadius + y);

 path.moveTo(x1, y1);
 path.lineTo(x2, y2);

 outerAngle += outerAngleIncrement;
 innerAngle += outerAngleIncrement;

 for (int i = 1; i < branchesCount; i++) {
 x1 = (float) (Math.cos(outerAngle) * outerRadius + x);
 y1 = (float) (Math.sin(outerAngle) * outerRadius + y);

 path.lineTo(x1, y1);

 x2 = (float) (Math.cos(innerAngle) * innerRadius + x);
 y2 = (float) (Math.sin(innerAngle) * innerRadius + y);

 path.lineTo(x2, y2);

 outerAngle += outerAngleIncrement;
 innerAngle += outerAngleIncrement;
 }

 path.closePath();
 return path;
}

The donut and star shapes can then be rendered later with a call to draw() or
fill(), as appropriate.

Example: DrawShapes
You can see a sample usage of these shapes in the DrawShapes demo on the
book’s Web site. A screenshot of this demo is shown in Figure 3-12, where sev-
eral donuts and stars have been created by mouse clicks in different regions of
the screen.

In the DrawShapes demo, we alternately create stars and donuts at mouse-click
locations with random sizes inside a MouseListener implementation:

private class ClickReceiver extends MouseAdapter {
 public void mouseClicked(MouseEvent me) {
 int centerX = me.getX();

ONLINE
DEMO

www.it-ebooks.info

http://www.it-ebooks.info/

RENDERING 81

 int centerY = me.getY();
 double innerSize = 1 + (25 * Math.random());
 double outerSize = innerSize + 10 + (15 * Math.random());
 Shape newShape;
 if (getStar) {
 int numPoints = (int)(8 * Math.random() + 5);
 newShape = generateStar(centerX - outerSize,
 centerY - outerSize,
 innerSize, outerSize, numPoints);
 } else {
 newShape = generateDonut(centerX - outerSize/2,
 centerY - outerSize/2,
 innerSize, outerSize);
 }
 getStar = !getStar;
 shapes.add(newShape);
 repaint();
 }
}

Figure 3-12 DrawShapes demo showing rendering of stars created from mouse-
click events.

www.it-ebooks.info

http://www.it-ebooks.info/

82 CHAPTER 3 GRAPHICS FUNDAMENTALS

The shapes data structure is a simple ArrayList object:

private List<Shape> shapes = new ArrayList();

To paint our custom component, we iterate through the list of shapes and fill
each one in turn. Note that most of the code in paintComponent() is actually
related to gradients. We use one GradientPaint that goes from the top of the
window most of the way down and another GradientPaint that goes the rest of
the way. These give us a pseudo-night-sky/ground appearance. Finally, we use
RadialGradients for each shape, white at their centers and black at the outer
edges. The actual rendering for the shapes takes place in the simple call to
fill(Shape) at the end of the loop.

protected void paintComponent(Graphics g) {
 Graphics2D g2d = (Graphics2D)g;

 // Paint a gradient for the sky
 GradientPaint background = new GradientPaint(
 0f, 0f, Color.GRAY.darker(),
 0f, (float)getHeight(), Color.GRAY.brighter());
 g2d.setPaint(background);
 g2d.fillRect(0, 0, getWidth(), 4*getHeight()/5);

 // Paint a gradient for the ground
 background = new GradientPaint(
 0f, (float)4*getHeight()/5, Color.BLACK,
 0f, (float)getHeight(), Color.GRAY.darker());
 g2d.setPaint(background);
 g2d.fillRect(0, 4*getHeight()/5, getWidth(), getHeight()/5);

 // Enable anti-aliasing to get smooth outlines
 g2d.setRenderingHint(RenderingHints.KEY_ANTIALIASING,
 RenderingHints.VALUE_ANTIALIAS_ON);

 // Iterate through all of the current shapes
 for (Shape shape : shapes) {
 // Get the bounds to compute the RadialGradient properties
 Rectangle rect = shape.getBounds();
 Point2D center = new Point2D.Float(
 rect.x + (float)rect.width / 2.0f,
 rect.y + (float)rect.height / 2.0f);
 float radius = (float)rect.width / 2.0f;
 float[] dist = {0.1f, 0.9f};
 Color[] colors = {Color.WHITE, Color.BLACK};

www.it-ebooks.info

http://www.it-ebooks.info/

RENDERING 83

 // Create and set a RadialGradient centered on the object,
 // going from white at the center to black at the edges
 RadialGradientPaint paint = new RadialGradientPaint(
 center, radius, dist, colors);
 g2d.setPaint(paint);

 // Finally, render our shape
 g2d.fill(shape);
 }
}

Note that we set antialiasing to give our shapes nice, smooth edges.

Graphics.copyArea(int x, int y, int width, int height,
int dx, int dy)

copyArea() is useful for performing quick copies of content from one area of an
image or a window to another area of that same surface. Swing uses this method,
for example, when the user drags JInternalFrames around or when the con-
tents of a scroll pane are scrolled up or down. Contents are copied from the area
described by (x, y, width, height) to an area of the same size that is offset from
the original area by (dx, dy).

One reason to consider copyArea() for some situations is performance. It may
be faster and easier to copy existing contents around than it is to re-render those
contents in a different location. This technique is a variant of the performance tip
discussed in Chapter 5 under “Intermediate Images.”

Example: CopyAreaPerformance
To demonstrate this point about performance, we wrote the CopyAreaPerformance
application found on the book’s Web site. This application draws lots of smiley
faces into the window in varying colors, as seen in Figure 3-13. When the user
clicks the arrow keys on the keyboard, the contents scroll 100 pixels in the spec-
ified direction.

What’s actually happening during rendering is that there is a huge area of smiley-
faces, 256 × 256 of them. This is a much larger area than the application window
can fit. The window is just a view into that larger world of happiness. The easiest

ONLINE
DEMO

www.it-ebooks.info

http://www.it-ebooks.info/

84 CHAPTER 3 GRAPHICS FUNDAMENTALS

approach to painting the window is to simply draw all of the smiley faces in the
universe, which we can do like this:

for (int column = 0; column < 256; ++column) {
 int x = column * (SMILEY_SIZE + PADDING) - viewX;
 for (int row = 0; row < 256; ++row) {
 int y = row * (SMILEY_SIZE + PADDING) - viewY;
 Color faceColor = new Color(column, row, 0);
 drawSmiley(g, faceColor, x, y);
 }
}

Here, we iterate through all of the rows and columns of happy faces, altering the
face color, which gets redder to the right and greener toward the bottom, and
calling our routine that draws each face in the correct location in the window.
viewX and viewY are the x and y coordinates of the left and top of the window, so
drawSmiley() may be called with negative x and y values for faces that are off
to the left or top of the window.

Figure 3-13 A very happy window: output from CopyAreaPerformance.

www.it-ebooks.info

http://www.it-ebooks.info/

RENDERING 85

The code is instrumented to print out the time that it takes to process the
paintComponent() method. The simplistic approach presented here has a per-
frame rendering time of about 1,200 milliseconds on my test system.

Trick 1: Use the Clip
The first and most obvious performance improvement here would be to not draw
objects that do not even show up in the window. This idea is covered more in the
earlier discussion of the clip property and in the “Use the Clip” section of Chap-
ter 5. The approach is also illustrated in this demo. The code checks, for any given
smiley face, whether it falls within the viewable portion of the field of smileys. If it
does, draw it. If not, skip it. Here is the code that performs this logic. It is the same
as the above code, with the clip-checking logic, inside the if (useClip) blocks,
shown in bold:

for (int column = 0; column < 256; ++column) {
 int x = column * (SMILEY_SIZE + PADDING) - viewX;
 if (useClip) {
 if (x > clipR || (x + (SMILEY_SIZE + PADDING)) < clipL) {
 // trivial reject; outside to the left or right
 continue;
 }
 }
 for (int row = 0; row < 256; ++row) {
 int y = row * (SMILEY_SIZE + PADDING) - viewY;
 if (useClip) {
 if (y > clipB || (y + (SMILEY_SIZE + PADDING)) < clipT) {
 // trivial reject; outside to the top or bottom
 continue;
 }
 }
 Color faceColor = new Color(column, row, 0);
 drawSmiley(g, faceColor, x, y);
 }
}

This logic speeds up the application considerably, dropping the time spent in
paintComponent() to around 180 ms on my test system, or about 15% of the
original rendering time.

Trick 2: Use CopyArea for Existing Contents
Finally, we get to the performance trick that uses copyArea(). When scrolling
back and forth in the application, most of the contents are the same from frame
to frame. We are scrolling by only 100 pixels at a time, which means that only a

www.it-ebooks.info

http://www.it-ebooks.info/

86 CHAPTER 3 GRAPHICS FUNDAMENTALS

100-pixel-wide swath is new content. The rest is just a copy of smileys that were
on the screen previously in a different location. So what happens if we copy that
old content around and draw new smileys only for the new content?

We can do this inside our paintComponent() method by first calling copyArea()
for copying the old contents and then setting the clip on the Graphics object
prior to performing our normal drawing operation. This approach works in con-
junction with our earlier performance trick of using the clip area. The basic idea
is shown in Figure 3-14.

In this simple demo, we scroll in one direction at a time, either horizontally or ver-
tically, so the copyArea calls are specific to the direction in which we are moving.
This behavior could be generalized to movement in both directions at once,
although the current demo does not do so. Here is the code for a vertical scroll:

g.copyArea(0, copyFromY,
 getWidth(), getHeight() - Math.abs(scrollY),
 0, -scrollY);
g.setClip(0, clipFromY, getWidth(), Math.abs(scrollY));

copyFromY and clipFromY are values calculated on the basis of the direction of
the scroll (negative or positive). The horizontal scroll operations are similar:

g.copyArea(copyFromX, 0,
 getWidth() - Math.abs(scrollX), getHeight(),
 -scrollX, 0);
g.setClip(clipFromX, 0, Math.abs(scrollX), getHeight());

Window

Draw new content
in exposed region

Copy content up
from the bottom
of the window

Copy Area

Clip Area

Figure 3-14 CopyAreaPerformance with copyArea and clipping optimizations. Old
content moves up in a down-scroll operation; new content is drawn in the exposed region.

www.it-ebooks.info

http://www.it-ebooks.info/

RENDERING 87

This technique yields fantastic results in this application. It reduces the amount
of new rendering to a small fraction of what was happening before, dropping the
time in paintComponent() to around 40 ms in my tests, less than a quarter of
our previous rendering time and about 1/30 of the original time!

copyArea() is not a general solution for many performance or rendering issues,
but it is certainly worth a look when it suits the purpose. In particular, if your
application is rendering a complex screen and much of it could be copied instead
of rendered from scratch, consider using copyArea().

Fill versus Draw
It’s good to understand the rasterization rules that Java2D uses when filling a
shape, such as fillRect(), as opposed to when it is drawing a shape, such as
drawRect().

Tip: The boundaries of fill and draw operations affect different pixels.

A draw operation uses the current Stroke setting to determine which pixels to
touch. The standard BasicStroke draws a line along the boundary like a pen,
with half of the pen inside the boundary and half outside. With the default line
width of 1, this results in a half pixel inside and half pixel outside the shape all
the way around, which cannot be represented using discrete pixels. With these
default settings, rounding must be used to determine whether to choose the pixel
inside or outside the boundary, and it chooses the pixels that are biased toward
the lower right.

The following examples assume that no scaling is taking place: Scaling would
introduce other factors in addition to what we are highlighting here.

Example: FillDraw
To illustrate the differences in fill and draw, suppose we want a 3 × 3 square
filled with gray and outlined in black, as illustrated in the FillDraw demo on the
book’s Web site. We might try the following code:

g.setColor(Color.LIGHT_GRAY);
g.fillRect(x, y, 3, 3);
g.setColor(Color.BLACK);
g.drawRect(x, y, 3, 3);

ONLINE
DEMO

www.it-ebooks.info

http://www.it-ebooks.info/

88 CHAPTER 3 GRAPHICS FUNDAMENTALS

The result looks like Figure 3-15.

It actually looks pretty good, but notice that the border is actually 4 × 4 instead
of 3 × 3.17 Let’s suppose that that result is okay, though. We got what we wanted:
a gray interior and black exterior. Now let’s see what happens when we reverse
the order of the fill and draw, as in this code:

g.setColor(Color.BLACK);
g.drawRect(x, y, 3, 3);
g.setColor(Color.LIGHT_GRAY);
g.fillRect(x, y, 3, 3);

This code gives us the result seen in Figure 3-16.

Now we can see that our original border was actually drawing over our fill on the
top and left of the square but drawing outside the fill area on the right and bot-
tom. If we wanted to perform the fill only inside the pixels affected by the draw,
we would have to change our areas as follows:

g.setColor(Color.BLACK);
g.drawRect(x, y, 3, 3);
g.setColor(Color.LIGHT_GRAY);
g.fillRect(x+1, y+1, 2, 2);

We can see the results of this approach in Figure 3-17.

17. Note that this is a graphics-only example. If this were a Swing component whose bounds were
3 × 3, Swing would hand you a Graphics with a clip set that would constrain rendering to 3 × 3,
which would effectively hide the right and bottom pixels in the figure.

The white dashes show the pixel grid

Figure 3-15 fillRect(x, y, 3, 3) followed by drawRect(x, y, 3, 3).

www.it-ebooks.info

http://www.it-ebooks.info/

RENDERING 89

The key thing to notice here is that the fill and draw operations both hit the
same pixels along the top and left of the rectangle, but the fill covers (width ×
height) pixels, while the draw affects the pixels that are a boundary around that
area. This behavior may not actually matter in many situations. For example,
the square in Figure 3-17 looks fine, regardless of whether some pixels were
drawn twice. But there may be situations in which you need your draw and fill
operations to line up more exactly. For instance, if you are drawing a translu-
cent border where the colors of each operation blend with the colors in the des-
tination, you may not want the border color to be affected by the underlying
fill color.

Figure 3-16 drawRect(x, y, 3, 3) followed by fillRect(x, y, 3, 3).

The white dashes show the pixel grid

Figure 3-17 drawRect(x, y, 3, 3) followed by fillRect(x+1, y+1, 2, 2).

The white dashes show the pixel grid

www.it-ebooks.info

http://www.it-ebooks.info/

This page intentionally left blank

www.it-ebooks.info

http://www.it-ebooks.info/

91

4
Images

IMAGES are just another graphics primitive, as described Chapter 3, “Graphics
Fundamentals,” in the section “Graphics Primitives.” But images are so crucial
to most 2D and Swing applications, so important in performance-critical situa-
tions, and so fundamental to Filthy Rich Clients, that they are worth discussing
in depth. Lucky them: They get their own chapter.

Image objects can be used for many different purposes. They can hold the con-
tents of image files. They can act as back buffers in buffered applications to
enable smooth animation, as we saw in the section “Double-Buffering” in Chap-
ter 2, “Swing Rendering Fundamentals.” They can provide an easy mechanism
for improving application performance through caching intermediate rendering
results. And images can provide various means of performing the kinds of inter-
esting graphical effects that we use in Filthy Rich Clients. This chapter explores
these and other tasks that can be accomplished with images.

First, we should define some terminology. The term images, in the non-Java
world, usually refers to image files. While Java Image objects can hold the con-
tents of these files, they are much more than this, as we’ll see below. In general,
when we say images in this book, we are talking about Java Image objects, not
image files. Java Image objects are, essentially, rectangular arrays of pixel data
in some specified format.

The basics of image usage include the following:

• Image creation: Images are created by either loading an image file or cre-
ating an image from scratch.

• Image rendering: An image that is loaded from a file already has its con-
tents defined by the data in that file. Images that are created from scratch
are rendered to by creating a Graphics object for the image, setting the state

www.it-ebooks.info

http://www.it-ebooks.info/

92 CHAPTER 4 IMAGES

of that Graphics object, and using that object to render. This process should
seem familiar to you if you read Chapter 3; rendering to an image is the same
as rendering to a component, minus the Swing paintComponent() method.

• Image copying: Images are copied to other images or to the screen using
the drawImage() methods described Chapter 3.

• Image saving: Images are saved out to files using the Image I/O APIs. Note
that any Image, regardless of whether it was loaded from an image file or
created from scratch, can be saved out to an image file.

The details of images are a little more subtle. In particular, there are several
kinds of images and various image APIs to choose from; which ones should you
use? There are, fortunately, some obvious choices here for Filthy Rich Clients.

Although we focus on specific image types, loading approaches, and copying
techniques, it is helpful to see the gamut of possibilities so that we can under-
stand our choices in context. Let’s take a look at the various possibilities.

Image Types
There are a few distinct image types, which correspond to specific classes in the
JDK:

java.awt.Image

This is the abstract superclass of all images. In general, the images you use
are accessible through more capable methods of subclasses of Image, but
Image is used as a handy generic class to refer to images of all types. For
example, BufferedImage is a subclass of Image but extends the class in vari-
ous useful ways.

Although we do not instantiate Image directly, we see references in the code
to Image because various methods depend on this generic superclass. For
example, all of the Graphics.drawImage() methods take Image as a parame-
ter, meaning that they can draw any image type.

java.awt.VolatileImage1

This image type was created in J2SE 1.4 as a means of accessing hardware
acceleration and video memory storage for images. Video memory, or VRAM,

1. There are a couple of older articles on VolatileImage posted on my blog at http://weblogs.
java.net/blog/chet. If you’re curious about this image type, check out those articles for more in-
formation on the VolatileImage API and usage of this image type. Or, better yet, ignore
VolatileImage completely and use BufferedImage instead.

www.it-ebooks.info

http://weblogs.java.net/blog/chet
http://weblogs.java.net/blog/chet
http://www.it-ebooks.info/

IMAGE TYPES 93

is a finicky and constrained resource. On some operating systems, such as
Windows, an application may lose its allocation of VRAM without warning,
which is known as surface loss. This volatility of accelerated memory does
not work well with standard Java Image objects, which have no way of com-
municating this loss to the user.

VolatileImage was created to work around this issue so that images could be
created in VRAM, could communicate memory-loss problems to the applica-
tion, and could be queried for acceleration characteristics. VolatileImage
objects may sometimes be used internally by Swing, but Filthy Rich Clients
need not use VolatileImage directly. Instead, we depend on BufferedImage.

java.awt.image.BufferedImage2

BufferedImage objects represent a square region of pixels stored in main
memory in any of a variety of formats. BufferedImage is the main image
type of interest to Filthy Rich Clients because it provides the right combina-
tion of flexibility and performance that these applications need. See the sec-
tion “BufferedImage” later in this chapter for a more thorough discussion on
these full-featured image types.

There are also, just to keep things interesting, several other phrases and names
associated with images, so it is worthwhile spending some time clarifying the
meanings of these other terms. The three base types covered in the preceding list
are the true “image” types of Java. Other phrases that refer to images do not refer
to specific image types but rather to variations of the base types, used in particu-
lar scenarios. Here are some of these other terms:

Toolkit Image

A toolkit image is an image loaded from the original Java APIs, such as
java.awt.Toolkit and java.applet.Applet. For example, we have:

• Image Toolkit.getImage(String filename)

• Image Toolkit.getImage(URL url)

• Image Applet.getImage(URL url)

• Image Applet.getImage(URL url, String filename)

2. There are a couple of articles on BufferedImage posted on my blog at http://weblogs.java.net/
blog/chet; check them out for more information.

www.it-ebooks.info

http://weblogs.java.net/blog/chet
http://weblogs.java.net/blog/chet
http://www.it-ebooks.info/

94 CHAPTER 4 IMAGES

Objects returned from these APIs tend to be of an internal type whose only
public interface is java.awt.Image. You can see from our discussion about
java.awt.Image that this type is not as useful as the image type returned
from other loading or creation methods.

Note: One of the biggest limitations of toolkit images is that they are display-only.
You cannot get the Graphics object for a toolkit image and render to it like you can
with other image types, such as BufferedImage. Because Filthy Rich Clients use
images extensively, often creating them from scratch or modified loaded images,
toolkit images are not very useful for our purposes. The Image I/O API provides
image-loading mechanisms that integrate better with our preferred image type,
BufferedImage.

Managed Image

A managed image is an image whose acceleration is being managed automat-
ically by Java 2D. This topic is discussed in Chapter 5, “Performance.”

Compatible Image

A compatible image is an image whose pixel data is in a format that best suits
the format of the display on which the application is being viewed. For exam-
ple, if the user has a monitor running in 32-bit mode, a compatible image
might be created with type BufferedImage.TYPE_INT_RGB with the red,
green, and blue bytes aligned the same in the image as they are in the dis-
play memory. Typically, compatible images are created with the method
GraphicsConfiguration.createCompatibleImage(). This method returns
an image that is compatible with the given GraphicsConfiguration, which
is associated with a particular GraphicsDevice, or display. Compatible images
have certain performance advantages, discussed further in Chapter 5.

Intermediate Image

Intermediate images is an acceleration technique that uses managed images to
cache complex rendering operations. We describe this technique in detail in
Chapter 5.

Image I/O

This API, in the javax.imageio package, was introduced in J2SE 1.4 as a
better facility than the older toolkit image approach to reading and writing
image files. Images loaded by Image I/O are of type BufferedImage.

www.it-ebooks.info

http://www.it-ebooks.info/

BUFFEREDIMAGE 95

Image Files

Images stored on disk or on a Web server, or streamed from some other loca-
tion, are not related to the “Image” objects discussed here except that these
files may be loaded into one of the previously mentioned types of Image
objects by one of the various mechanisms, including those described under
Toolkit Image and Image I/O.

BufferedImage
BufferedImage objects offer a good combination of versatility, functionality,
performance, and integration into other APIs. Let’s take a look at some of their
advantages:

• Versatility: BufferedImage objects exist in many different flavors. They
vary in how they store their pixels in memory, how many different colors
they can support, and whether or not they have an alpha channel. These
images can be created by loading files through the Image I/O API, created
from scratch using one of several different formats, or created to be com-
patible with a given GraphicsConfiguration. This variety of ways to cre-
ate the images makes it easy to use a BufferedImage that is suited to your
particular purpose.

• Functionality: The data stored in a BufferedImage can be accessed in
many different ways. A BufferedImage object can be rendered to and
from using the Graphics and Graphics2D operations covered in previous
chapters, just as other Image types (aside from toolkit images) can. You can
also access the pixels of a BufferedImage directly using the easy
getRGB() and setRGB() methods. Finally, this image type offers some-
thing that the other image types do not: You can access the pixel data of a
BufferedImage directly. Using the Raster and DataBuffer classes, which
are part of the internal representation of a BufferedImage, you can get a
handle to the pixels of a BufferedImage and manipulate those pixels
directly. Note that this more involved technique requires that you know the
type of data being accessed, as that array will be exposing the raw data.
This is a handy technique for reading the pixels, which was an awkward
operation using the original Image type provided in the pre-J2SE 1.2
releases. This technique also provides a fast approach to writing per-pixel
information to the image.

www.it-ebooks.info

http://www.it-ebooks.info/

96 CHAPTER 4 IMAGES

Performance Tip: Note that in Java SE releases up through Java SE 6, requesting
the DataBuffer from a BufferedImage will defeat hardware acceleration possibil-
ities for that image. See the section “Managed Images” in Chapter 5 for more infor-
mation on this detail.

• Performance: BufferedImage objects cannot be stored in VRAM because
of the potential for surface loss, as described earlier in the VolatileImage
section. BufferedImage objects are instead stored in the Java memory
heap. This means that you do not have to worry about whether the mem-
ory becomes lost, as you do with VolatileImage. However, there are
also potentially good and bad performance consequences because of this
difference.

First of all, Java 2D cannot hardware-accelerate basic rendering into a
BufferedImage. Since the image is stored in the Java heap, the 2D library
uses software rendering loops to draw to that memory. However, opera-
tions from these images to an accelerated destination, such as copying a
BufferedImage to the Swing back buffer, can be accelerated by using the
managed images technique discussed in Chapter 5. Finally, direct pixel
access and some other advanced rendering techniques require software to
get at the pixel data quickly and easily, and the fact that BufferedImage
objects keep their pixels in main memory makes these operations quicker
than if the operations had to access the pixels in VRAM.

• Integration with other APIs: Image I/O, the image loading/saving API
introduced in J2SE 1.4, works exclusively with BufferedImages. So when
you load image data through Image I/O, the result is a BufferedImage. Or
when you want to save an image out to disk, it expects a BufferedImage.
Also, the method in GraphicsConfiguration that creates a compatible
image, createCompatibleImage(), returns a BufferedImage.

We pointed out various mechanisms for creating or loading BufferedImage
objects, but there are also various older methods in Java for creating images of
other types. Should you make the reasonable decision of using BufferedImages
exclusively, it is a simple matter to copy any other image into a BufferedImage
instead. The following snippet provides an example of how to convert any image
into a BufferedImage.

public BufferedImage makeBufferedImage(Image oldImage) {
 // Query the old image for its dimensions

www.it-ebooks.info

http://www.it-ebooks.info/

BUFFEREDIMAGE 97

 int w = oldImage.getWidth(null);
 int h = oldImage.getHeight(null);

 // Assume we have a handle to a GraphicsConfig object
 // Create a compatible image
 BufferedImage bImg =
 graphicsConfig.createCompatibleImage(w, h);

 // Get the image Graphics
 Graphics g = bImg.getGraphics();

 // Copy the contents from the old image into the new one
 g.drawImage(oldImage, 0, 0, null);
 // dispose the temporary Graphics object we used
 g.dispose();

 // Return the BufferedImage
 return bImg;
}

Note that the details are a bit different for transparent and translucent images. A
translucent or transparent image would require a translucent or transparent
BufferedImage instead of the opaque BufferedImage created in our code
example. A transparent image is one in which each pixel is either fully transpar-
ent or fully opaque. Such an image can be created like this:

BufferedImage bImg = graphicsConfig.
 createCompatibleImage(w, h, Transparency.BITMASK);

A translucent image is one in which each pixel can have a varying level of opac-
ity, ranging from fully transparent to fully opaque or anything in between. A
translucent image can be created like this:

BufferedImage bImg = graphicsConfig.
 createCompatibleImage(w, h, Transparency.TRANSLUCENT);

Some of the advantages of BufferedImage, and of images in general, will
become clear in Chapter 5. The general idea is that many graphical objects can
be represented very cheaply as images, and operations on those images can be
much cheaper, faster, and easier than other approaches.

www.it-ebooks.info

http://www.it-ebooks.info/

98 CHAPTER 4 IMAGES

Image Scaling3

Let’s talk about one particular image operation that has bugged me for years:
scaling. Scaling tends to be a problem area for 2D programmers because of the
many options available for scaling images and the accompanying variety of dif-
ferences in terms of quality and performance.

Tip: One of the most important items to mention here is that you should avoid per-
forming a scaling operation repeatedly for any particular image that you need to dis-
play at the same scaled size. If you find that you are constantly re-rendering the
same image with the same scaling factor, it may make sense to cache another pres-
caled version of the image and simply copy from that prescaled image instead of
scaling from the original image. This idea is discussed further in Chapter 5 under
“Intermediate Images.” The idea of caching intermediate results goes beyond scal-
ing images, but scaling is a great example of why this technique is useful.

There are so many ways to scale an image. For any scaling operation that you
need to perform, which method should you use? Here are some of the most obvi-
ous ways that you might consider, although this is only a partial list:

Method 1:

g.drawImage(img, x, y, width, height, null);

Method 2:

g.drawImage(img, dx1, dy1, dx2, dy2,
 sx1, sy1, sx2, sy2, null);

Method 3:

g.translate(x, y);
((Graphics2D)g).scale(sx, sy);
g.drawImage(img, 0, 0, null);

3. I have been planning to write an article on this topic for years. I even started the article a couple of
years back but deadlocked when I realized that I needed some nice code and screenshots to go along
with it. So it sat on the back burner until I found myself in the middle of writing this book and want-
ed to discuss the topic in the chapter on images. I wrote up a draft of this section, complete with a
demo application and screenshots, sent it to Chris Campbell to review . . . and he replied that he’d
just written his own article on the subject. Clearly, the topic scales quite well. For more details on
this topic, check out Chris’s excellent article, “The Perils of Image.getScaledInstance()” at http://
today.java.net/pub/a/today/2007/04/03/perils-of-image-getscaledinstance.html.

www.it-ebooks.info

http://today.java.net/pub/a/today/2007/04/03/perils-of-image-getscaledinstance.html
http://today.java.net/pub/a/today/2007/04/03/perils-of-image-getscaledinstance.html
http://www.it-ebooks.info/

IMAGE SCALING 99

Method 4:

AffineTransform at = new AffineTransform();
at.translate(x, y);
at.scale(sx, sy);
((Graphics2D)g).drawImage(img, at, null);

Method 5:

Image scaledImg = img.getScaledInstance(w, h, hints);
g.drawImage(scaledImg, x, y, null);

You can see these different approaches in action in the ScalingMethods applica-
tion on the book’s Web site (see Figure 4-1).

The first four of these methods are all actually quite similar, at least under the
hood. Java 2D sets up scaling calculations internally that match the requirements
in all four methods. The only real functional difference in the first four
approaches is that the second alternative, with all of the d* and s* parameters,
allows the flexibility of specifying source and destination subrectangles, instead
of scaling the entire source image into place. All of these options are affected by
the RenderingHints.KEY_INTERPOLATION hint, as discussed later in this chap-
ter and in the “Graphics State” section of Chapter 3.

The getScaledInstance() method is really a different kind of beast, which we
discuss later in this chapter. Just know that there are good reasons for you to con-
sider the other alternatives that we cover.

Let’s discuss these approaches in more detail.

g.drawImage(img, x, y, width, height, null);

This approach is by far the simplest. The source image (img) is resized into an
area of size (width × height) and drawn at the location (x, y). It is a great choice

ONLINE
DEMO

Figure 4-1 The ScalingMethods application scales the same image using the five
scaling methods described here.

www.it-ebooks.info

http://www.it-ebooks.info/

100 CHAPTER 4 IMAGES

for scaling operations that fit this simple model in which the source image is
resized in its entirety into the destination area.

Tip: If you have no overriding reason to use one of the other options, drawImage(img,
x, y, w, h, null) is the scaling method you should use.

g.drawImage(img, dx1, dy1, dx2, dy2, sx1, sy1, sx2, sy2, null);

This version is more flexible than the previous version and allows a subregion of
the source image, defined by (sx1, sy1, sx2, sy2), to be scaled to fit into the area
in the destination defined by the rectangle (dx1, dy1, dx2, dy2). Note that this
variant uses the actual boundary points of the regions instead of the width and
height parameters of some of the other approaches. This difference can make the
method slightly more complicated to use than the other methods, but also more
flexible. Otherwise, it has similar performance characteristics to the first option.
In fact, the simpler drawImage() option can be seen as a degenerate example of
this more flexible method. But if you do not need the extra flexibility, why
bother with all of the dx/dy/sx/sy parameters?

g.translate(x, y);
((Graphics2D)g).scale(sx, sy);
g.drawImage(img, 0, 0, null);

and

AffineTransform at = new AffineTransform();
at.translate(x, y);
at.scale(sx, sy);
Graphics2D)g).drawImage(img, at, null);

These two options are listed together because they are functionally equivalent,
differing only in the extra step of creating and composing the AffineTransform
object in the latter approach. These options change the state of the transform
used by the Graphics object and translate and scale the source image according
to that transform.4 It is a more tedious way to scale an image than the previous
options and may, in the at.scale(sx, sy) case, cause you to create an unneces-
sary temporary AffineTransform object. But if you happen to be doing other
transforms or just have a hankering for working with matrices, feel free to use
these alternatives.

4. Note the necessary translation to or from some origin to perform the scaling operation around
that origin. This technique is explained in the section on transforms in Chapter 3.

www.it-ebooks.info

http://www.it-ebooks.info/

IMAGE SCALING 101

Image scaledImg = img.getScaledInstance(w, h, hints);

g.drawImage(scaledImg, x, y, null);

This method is quite different from the other four options. getScaledInstance()
does not render the image directly but instead creates a new image of the speci-
fied size, which you can then use as your source image in a drawImage() opera-
tion. The hints parameter controls the trade-off between quality and performance
for the scaling operation and can take on one of the following five values:

Image.SCALE_AREA_AVERAGING
Image.SCALE_DEFAULT
Image.SCALE_FAST
Image.SCALE_REPLICATE
Image.SCALE_SMOOTH

In Sun’s current implementation, REPLICATE is basically equivalent to the
NEAREST_NEIGHBOR algorithm discussed in Chapter 3 under “RenderingHints.”
FAST and DEFAULT are both set to use REPLICATE.

AREA_AVERAGING averages all of the pixel values that contribute to a destination
pixel value. This approach tends to give the highest quality during downscale
operations, especially when scaling by large factors, at the cost of much slower
performance. SMOOTH is, in Sun’s current implementation,5 set to be equivalent to
AREA_AVERAGING and thus has the same quality and performance.

Quality versus Performance
The whole reason for launching into the topic of image scaling is to discuss the
performance of the different scaling algorithms available to you. Like many situ-
ations in graphics rendering, there is a trade-off between quality and perfor-
mance. If you want better quality from your image-scaling operation, you may
have to take a hit in performance. However, there are some hidden “gotchas” in
the various techniques of scaling images that may trip you up unnecessarily. You
can, in fact, get excellent image-scaling quality without taking a huge perfor-
mance hit. You just have to know how to avoid the pitfalls.

5. Rumor has it that Sun may try to change how SCALE_SMOOTH is implemented in a future version
of Java SE to make it perform much better than the current implementation. It is apparently dif-
ficult to change AREA_AVERAGING while remaining compatible with the API specification, but
the same is not true for SMOOTH. Read on for the discussion of progressive bilinear scaling, which
is what Sun is currently investigating to gain much better performance from SMOOTH.

www.it-ebooks.info

http://www.it-ebooks.info/

102 CHAPTER 4 IMAGES

Let’s start the discussion with a subtle tip:

Tip: Do not use getScaledInstance().
Let me repeat that sentiment in a nicer way:
Please don’t use getScaledInstance(). Or else . . .
It’s just, well, slow. And there are much better alternatives available.

You may be wondering why this method is an issue. In a word: quality. The qual-
ity of an image-scaling operation is controlled by two mechanisms:

1. The method invoked to scale the image.

2. The scaling hint used to control the quality.

Method
Methods 1 through 4, discussed earlier, all use the internal implementation of
Graphics, whereas Method 5 uses getScaledInstance(). To simplify the dis-
cussion, let’s assume that if you’re not using getScaledInstance(), you’re
using the drawImage(img, x, y, w, h, null) method of java.awt.Graphics
shown earlier.

Scaling Hints
Each of the two approaches, drawImage() and getScaledInstance(), uses a
different set of hints. The hints for scaling with drawImage() are set by a call to
setRenderingHint(), which we introduced in the “Graphics State” section of
Chapter 3, with the key RenderingHints.KEY_INTERPOLATION. Recall that that
key takes one of the following three values:

RenderingHints.VALUE_INTERPOLATION_NEAREST_NEIGHBOR
RenderingHints.VALUE_INTERPOLATION_BILINEAR
RenderingHints.VALUE_INTERPOLATION_BICUBIC

The default hint for scaling with drawImage() is NEAREST_NEIGHBOR. This algo-
rithm is the simplest to compute and, as you would expect, the fastest. BILINEAR
is slower, but provides better quality. BICUBIC is better still, but comes at an even
higher performance cost.

The hints for getScaledInstance(), on the other hand, are provided during the
call to that function and come from the java.awt.Image class:

Image.SCALE_DEFAULT
Image.SCALE_REPLICATE
Image.SCALE_FAST

www.it-ebooks.info

http://www.it-ebooks.info/

IMAGE SCALING 103

Image.SCALE_SMOOTH
Image.SCALE_AREA_AVERAGING

These hints break down into two categories: DEFAULT, REPLICATE, and FAST are
all equivalent on Sun’s Java implementation and use the same approach as the
NEAREST_NEIGHBOR hint for drawImage(). The AREA_AVERAGING and SMOOTH

approaches are equivalent on Sun’s Java implementation, producing a higher
quality result in general than either the other hints for getScaledInstance() or
the BILINEAR and BICUBIC results for drawImage(), especially when scaling
down an image by a large factor.

Downscaling Quality Results
With the bilinear technique, the scaling algorithm samples the four pixels closest
to the source pixel that each pixel in the scaled image maps back to, averaging
those colors to get the final result. This approach provides a reasonable result
when these surrounding pixels represent most of the color information that
should go into that final pixel. However, if the image is downscaled by a large
factor from the original, each pixel in the resulting image must represent a far
greater number of pixels from the original image, so sampling only the four
nearest pixels is not enough. Important information from the original image is
lost in the process.

Bicubic is similar to bilinear except that it uses a 4 × 4 grid of pixels surrounding
the source pixel. This increased amount of data means that downscales retain
more information from the original image than is the case for bilinear down-
scales. But downscaling by a large factor will still lose a lot of pixel data, result-
ing in a loss of quality.

Area averaging, on the other hand, samples all of the pixels that contribute to the
scaled pixel value, no matter what the scaling factor. This approach provides a
far more accurate value for each of the pixels in the final image. Consequently,
using getScaledInstance() with the Image.SCALE_AREA_AVERAGING hint pro-
vides much higher quality for large downscales than drawImage() using either
BILINEAR or BICUBIC.

Let’s look at the quality of the various algorithms from lowest to highest:

• NEAREST_NEIGHBOR: This algorithm is used when you call drawImage()
with no hint, as well as when you call getScaledInstance() with either
SCALE_REPLICATE, SCALE_FAST, or SCALE_DEFAULT. This algorithm is the
fastest but results in the worst quality, with artifacts that are more notice-
able as the scale magnitude increases.

www.it-ebooks.info

http://www.it-ebooks.info/

104 CHAPTER 4 IMAGES

• BILINEAR: drawImage() with the hint RenderingHints.VALUE_

INTERPOLATION_BILINEAR provides reasonable quality for small down-
scales in which the scaled image is greater than half the size of the original.
However, as with NEAREST_NEIGHBOR, artifacts are more noticeable as the
scale magnitude increases. This approach does, however, tend to provide
the best results for upscales.

• BICUBIC: drawImage() with the hint RenderingHints.VALUE_

INTERPOLATION_BICUBIC provides good quality for small downscales.
However, artifacts are more noticeable as the scale magnitude increases.

• AREA_AVERAGING: getScaledInstance() in conjunction with Image.SCALE_
AREA_AVERAGING provides the best filtering quality of these options for
large downscales. For downscales in which the result is more than half
the size of the original image, this approach is roughly equivalent to
BILINEAR, but as the downscale factor increases, this approach looks better
than BILINEAR and BICUBIC. Upscaling, in which the result is larger than the
original image, tends to have worse quality than the BILINEAR approach.

If the quality comparison is that clear, why are we even discussing it? If you
need a quality downscale, shouldn’t you use getScaledInstance() with
Image.SCALE_AREA_AVERAGING, regardless of the performance implications?

No. With the performance differences involved, which can easily be orders of
magnitude between getScaledInstance() and any of the other approaches, it is
worth seeing if there is a better alternative that provides both the quality and per-
formance that you need. We don’t want to sacrifice too much performance for
the sake of quality, but we would like our images to look good. Let’s consider an
alternate approach instead: progressive bilinear scaling.

Progressive Bilinear Scaling
We know that a significant problem with the quality of the bilinear approach
occurs when the downscale is by more than 50 percent. So what if we compen-
sated for that problem by scaling iteratively toward the final size, scaling down
by exactly 50 percent each time until the final iteration, when we scale by 50
percent or less? Then we would account for all of the pixels along the way that
should figure into the final image. And, believe it or not, we can do this in a frac-
tion of the time required by the area-averaging technique.

We show the code for this approach, but first let’s see some pictures to motivate
the quality and performance angles of this discussion.

www.it-ebooks.info

http://www.it-ebooks.info/

IMAGE SCALING 105

Example: ScaleTest
The ScaleTest demo on the book’s Web site shows how an image looks when it
is scaled down by progressively larger factors. The original image is a collage of
four different images, shown in Figure 4-2, representing four different types of
graphics situations:

• RGB stripes: The upper-left quadrant is simply repeating stripes of red,
green, and blue. This is probably not something you would see in a typical
application, but it’s great for demonstrating some of the artifacts in these
scaling operations.

• Photograph: The upper-right quadrant is a thumbnail of a photograph,
which represents pictures that a typical application might show in its UI.

• Vector drawing: The beautiful smiley face in the lower-left quadrant is a
simple line drawing, black on white.

• Grid: The lower-right quadrant is a simple black-and-white line grid,
which shows some of the rendering artifacts of scaling nicely.

The ScaleTest demo scales the image down several times from the original
image, increasing the amount of the scale each time. It does this for five different

ONLINE
DEMO

Figure 4-2 ScaleTest: Source image with RGB stripes, a photograph, vector art, and a
black and white grid.

www.it-ebooks.info

http://www.it-ebooks.info/

106 CHAPTER 4 IMAGES

approaches to scaling, timing the results for each approach and displaying the
rendering times in the window.

You can see the results of a sample run of ScaleTest in Figure 4-3. The columns
in the figure show the different scaled sizes, with the original image on the left.
The rows represent the different ways of scaling the images, from NEAREST_
NEIGHBOR to BILINEAR to BICUBIC to getScaledInstance() with the AREA_

Figure 4-3 ScaleTest results for various alternative approaches to scaling. Times
are in milliseconds for the total time taken to render each row of scaled images.

www.it-ebooks.info

http://www.it-ebooks.info/

IMAGE SCALING 107

AVERAGING hint and finally to our new progressive bilinear approach. The time
that each row took to produce the series of scaled images is displayed on the left
of each row.

What you should notice about the figure is that the artifacts of scaling increase as
the scaled images get smaller and that the artifacts are more noticeable in the
first three rows (NEAREST, BILINEAR, and BICUBIC). You should also notice the
performance times for each of the rows. Rendering all of the NEAREST images
took the least time (“0” here means that the real time was within the resolution of
the timer being used, or about 1 to 2 milliseconds). BILINEAR took a bit more at
3 milliseconds. BICUBIC took 8 milliseconds. getScaledInstance() took the
most at a whopping 132 milliseconds. And finally, the progressive bilinear approach
took 6 milliseconds.

Tip: Some people have reported fast performance from getScaledInstance(), but
beware: getScaledInstance() is asynchronous and may not actually have com-
pleted the scaling operation when it returns to the caller. It will complete the scaling
when the image data is requested (which it is in the ensuing drawImage() call in this
demo). So if you just time getScaledInstance() without a following operation
that requires the data, you may get misleadingly fast results. Don’t buy it;
getScaledInstance() is a slow way to scale images.

It might help to see a larger version of the smallest image on the right from the
ScaleTest application, where the artifacts are most pronounced because more
information from the original image is lost in deriving the final image. We can
see these close-up results for the five rows in Figures 4-4 through 4-8.

Figure 4-4 NEAREST results for
smallest scaled image.

Figure 4-5 BILINEAR results for
smallest scaled image.

www.it-ebooks.info

http://www.it-ebooks.info/

108 CHAPTER 4 IMAGES

As you can see in the close-up pictures, the errors for NEAREST, BILINEAR, and
BICUBIC are fairly large, especially for the parts of the original image with dis-
crete pixel values: the RGB stripes, the vector drawing, and the black and white
grid. For example, you cannot even tell in these first two snapshots that the vec-
tor drawing is supposed to be a smiley face. The additional computation involved
in BILINEAR and BICUBIC compared to NEAREST_NEIGHBOR seems wasted for
downscales of this magnitude. The last two images, on the other hand, appear to
provide reasonable, if slightly different, approximations of the original image.
Even the smiley face is clearly discernible at this extreme size reduction with the
getScaledInstance() and progressive bilinear approaches.

Figure 4-6 BICUBIC results for
smallest scaled image.

Figure 4-7 getScaledInstance
results for smallest scaled image.

Figure 4-8 Progressive bilinear
results for smallest scaled image.

www.it-ebooks.info

http://www.it-ebooks.info/

IMAGE SCALING 109

Finally, you should notice that even though the quality of the progressive bilinear
approach nearly matches that of getScaledInstance(), it does so in a small
fraction of the time that getScaledInstance() took. This improved perfor-
mance for similar quality is the big takeaway from this section.

Tip: You can get high-quality scaling without resorting to the performance hit of
getScaledInstance() by using the progressive bilinear approach.

It is worth making some final points about getScaledInstance(), just in case
you are still, for unknown reasons, thinking that it’s a pretty great way to scale
images on the fly. First, as we noted earlier, the call to getScaledInstance() is
asynchronous. The getScaledInstance() method will return immediately and
will not actually perform the scaling operation until the image data is requested
at some later time. This means that there could be hidden side effects from
changing the original image after you have supposedly received your scaled
image; those changes to the original image may show up in the scaled version,
depending on when the scaling operation actually occurs. The other point is that
getScaledInstance() accesses the pixel array for the image directly, which, as
we see in Chapter 5, means that managed image acceleration is not possible for
the image. So, all things considered, you should just avoid this method.

Example: PictureScaler
We can see what happens to a higher resolution picture as we put it through the
various scaling approaches just discussed. Figure 4-9 shows a snapshot from the
PictureScaler demo on the book’s Web site. This application scales an original
high-resolution picture on the fly through the same mechanisms used in the

ONLINE
DEMO

Figure 4-9 PictureScaler: High-resolution photo scaled on the fly using the same five
approaches as before.

www.it-ebooks.info

http://www.it-ebooks.info/

110 CHAPTER 4 IMAGES

ScaleTest application. We can see the quality results in the thumbnails and the
performance results listed below each picture.

The three images on the left, using drawImage() with the NEAREST_NEIGHBOR,
BILINEAR, and BICUBIC approaches, show clear scaling artifacts. For example,
look at the straight and diagonal lines in the pictures and notice that the jaggies
are very prominent. Figure 4-10 shows a close-up view of these three images,
where you can see some of these artifacts quite clearly.

The two images on the right, using the getScaledInstance() and progressive
bilinear approaches, show much smoother lines and transitions between areas of
high contrast, as shown in the close-up view of Figure 4-11.

Figure 4-10 Close-up of the NEAREST, BILINEAR, and BICUBIC scaling results. All have
similar artifacts for this large downscale.

Figure 4-11 Close-up of the getScaledInstance() and progressive bilinear scaling
results. Note the smoother lines with these approaches compared to those in Figure 4-10.

www.it-ebooks.info

http://www.it-ebooks.info/

IMAGE SCALING 111

Note, once again, that the performance of getScaledInstance() is completely
out of sync with the performance of the other approaches. The quality of that
approach comes at a substantial cost. But note more importantly that the perfor-
mance of the progressive bilinear approach is substantially better, providing a
good-quality alternative at a fraction of the time that getScaledInstance()
takes.

getFasterScaledInstance(): Utility for Faster,
Better Scaled Images
I have taken the liberty of borrowing and modifying a utility from Chris Camp-
bell and Jim Graham, which also exists in some form in the SwingLabs project
on http://swinglabs.dev.java.net. You can use this method to create a scaled ver-
sion of an image with various approaches. This is an easy way to use the pro-
gressive bilinear approach for your own images, since you simply pass it a flag
to tell it to choose this approach. This method is used in the PictureScaler
demo, and is therefore also available online in that demo code.

public BufferedImage getFasterScaledInstance(BufferedImage img,
 int targetWidth, int targetHeight, Object hint,
 boolean progressiveBilinear)
{
 int type = (img.getTransparency() == Transparency.OPAQUE) ?
 BufferedImage.TYPE_INT_RGB : BufferedImage.TYPE_INT_ARGB;
 BufferedImage ret = (BufferedImage)img;
 BufferedImage scratchImage = null;
 Graphics2D g2 = null;
 int w, h;
 int prevW = ret.getWidth();
 int prevH = ret.getHeight();
 if (progressiveBilinear) {
 // Use multistep technique: start with original size,
 // then scale down in multiple passes with drawImage()
 // until the target size is reached
 w = img.getWidth();
 h = img.getHeight();
 } else {
 // Use one-step technique: scale directly from original
 // size to target size with a single drawImage() call
 w = targetWidth;
 h = targetHeight;
 }

continued

www.it-ebooks.info

http://swinglabs.dev.java.net
http://www.it-ebooks.info/

112 CHAPTER 4 IMAGES

 do {
 if (progressiveBilinear && w > targetWidth) {
 w /= 2;
 if (w < targetWidth) {
 w = targetWidth;
 }
 }

 if (progressiveBilinear && h > targetHeight) {
 h /= 2;
 if (h < targetHeight) {
 h = targetHeight;
 }
 }

 if (scratchImage == null) {
 // Use a single scratch buffer for all iterations
 // and then copy to the final, correctly sized image
 // before returning
 scratchImage = new BufferedImage(w, h, type);
 g2 = scratchImage.createGraphics();
 }
 g2.setRenderingHint(RenderingHints.KEY_INTERPOLATION,
 hint);
 g2.drawImage(ret, 0, 0, w, h, 0, 0, prevW, prevH, null);
 prevW = w;
 prevH = h;

 ret = scratchImage;
 } while (w != targetWidth || h != targetHeight);

 if (g2 != null) {
 g2.dispose();
 }

 // If we used a scratch buffer that is larger than our
 // target size, create an image of the right size and copy
 // the results into it
 if (targetWidth != ret.getWidth() ||
 targetHeight != ret.getHeight()) {
 scratchImage = new BufferedImage(targetWidth,
 targetHeight, type);
 g2 = scratchImage.createGraphics();
 g2.drawImage(ret, 0, 0, null);
 g2.dispose();
 ret = scratchImage;
 }

 return ret;
}

www.it-ebooks.info

http://www.it-ebooks.info/

IMAGE SCALING 113

The method is not too complex, so we leave most of the details to curious readers.
The basic idea is that a caller requests a scaled image, specifying whether progres-
sive bilinear filtering is desired with the cleverly named progressiveBilinear
flag. If this flag is true, and if targetWidth or targetHeight is less than half of
the original image width or height, then the image will be progressively scaled
by halves using the BILINEAR rendering hint until the target size is reached.

Note the use of the scratchImage variable; we create a single image the first
time through that is used for future iterations through the loop, finally creating
an image of the correct size and copying to it before returning. This approach
avoids having to create a new BufferedImage for every new intermediate scal-
ing size.

Let’s leave this chapter with one final performance tip about image scaling.

Tip: No matter which approach you decide to use for your quality-versus-
performance needs, consider the approach of using intermediate images.
The fastest operation is the one that you don’t have to perform. If you need
to constantly scale the same image to the same size, consider creating a
cached version of the scaled image and simply copying that version around
instead. Java 2D can copy the prescaled version of the image much faster
than it can scale the original image.

www.it-ebooks.info

http://www.it-ebooks.info/

This page intentionally left blank

www.it-ebooks.info

http://www.it-ebooks.info/

115

5
Performance

AN application that looks great but performs like a dog1 is a sad thing. Users
may like the look, but they’ll hate the feel, and they’ll probably avoid running
the application again. Java, Swing, and Java 2D work just fine and perform great
as-is, and you generally do not need to care about performance. But it is always
good to know about things that may cause performance problems and to know
techniques you can use to speed up your application.

We have not been shy about sprinkling performance information throughout the
book where applicable. This chapter goes much deeper in detail into some par-
ticular techniques and information about performance that are useful to know in
order to write great, fast Filthy Rich Clients.

Use the Clip

Tip: The most important optimization rule of graphics-oriented applications is to
never draw anything unnecessarily. Swing offers an internal mechanism to help
with this optimization: the clip.

We’ve mentioned a few times that you should call repaint(x, y, width,

height) to refresh only the areas of the screen that need to be refreshed. What

1. It’s not clear to me where this saying came from; I’ve known some very fast dogs. In fact, most
dogs tend to be a lot faster than me. Perhaps the saying should be changed to “performs like a
Chet.”

www.it-ebooks.info

http://www.it-ebooks.info/

116 CHAPTER 5 PERFORMANCE

was not necessarily obvious, however, is that calling this method can vastly
improve the rendering speed. We also glossed over the fact that calling
repaint(x, y, width, height) alone is not sufficient to get good performance
when your own painting code is involved in the rendering process.

In earlier chapters, we saw two methods that belong to the Graphics class:

Graphics.setClip(int x, int y, int width, int height)
Graphics.setClip(Shape s)

The clip defines the shape within which drawing operations are constrained to be
visible. For instance, if the clip is a 100 × 100 rectangle starting at (50, 50) in a
drawing surface of 640 × 480 pixels, a 10 × 10 square drawn at (200, 200) will
not appear on screen. Note that changing the clip does not affect existing pixels;
it only affects future rendering with that Graphics object (just as all state affects
only future rendering with that Graphics object). Figure 5-1 shows a screen with
four colored circles that were drawn before the clip was set. The white area shows
the clip where future drawing operations are permitted. Drawing operations per-
formed in the space outside this clip area, shown in gray, will be ignored.

The clip does not need to be a rectangle; you can use an arbitrary shape. For
instance, you can pass a circle to the setClip() method to constrain drawing
operations to be within a circular area of the drawing surface.

No matter what clip shape you use, Swing honors your settings, so you can
safely draw outside the bounds of a component when you override the
paintComponent method. When Swing calls the painting methods of a compo-

640 pixels

48
0

pi
xe

ls

Figure 5-1 The drawing operation works only in the area defined by the clip.

www.it-ebooks.info

http://www.it-ebooks.info/

USE THE CLIP 117

nent, it sets up a clip rectangle that encapsulates that component’s bounds
beforehand. Therefore, any drawing operation attempted outside of the compo-
nent’s bounds is ignored.

Swing also sets the clip for you whenever you call repaint(x, y, width,

height). There is no real magic behind this code that would explain the perfor-
mance gain. The API simply sets a clip rectangle on the drawing surface accord-
ing to the parameters you specify.

Unfortunately, setting a clip is only valuable when the painting code honors it.
Let’s take the example of a very simple component that fills its background with
a solid color:

@Override
protected void paintComponent(Graphics g) {
 g.setColor(Color.BLACK);
 g.fillRect(0, 0, getWidth(), getHeight());
}

This code attempts to fill the entire component in black every time paintComponent()
is invoked. Java2D improves the performance by not painting the pixels lying
outside of the clip. Nevertheless, you give Java2D extra work by asking it to fig-
ure out what to paint and what to ignore. To avoid this situation, you must honor
the clip.

Honoring the clip refers to the task of checking the clip boundaries and prevent-
ing unnecessary drawing operations from being issued to Java2D. The previous
example can, for example, be rewritten to honor the clip as follows:

@Override
protected void paintComponent(Graphics g) {
 Rectangle clip = g.getClipBounds();
 g.setColor(Color.BLACK);
 g.fillRect(clip.x, clip.y, clip.width, clip.height);
}

This new version fills only the pixels belonging to the clip area, making sure that
Java2D does not have to do any extra work before putting your beautiful artwork
on screen.

Honoring the clip usually results in one of two possible outcomes: Either you
don’t issue a drawing operation2 or you manually constrain that operation to the

2. In graphics terminology, skipping such an operation is referred to as a trivial reject; you check to see
whether your primitive overlaps the clip area at all. If it does not, then you don’t bother trying to draw it.

www.it-ebooks.info

http://www.it-ebooks.info/

118 CHAPTER 5 PERFORMANCE

clip area. The previous code snippet was an example of the latter. Ignoring a
drawing operation is usually easier because you always know3 the boundaries of
the primitive that you want to draw on the screen. The following example shows
how to ignore the drawing of a logo in a custom component.

@Override
protected void paintComponent(Graphics g) {
 // paint the logo at location logoX, logoY
 Rectangle clip = g.getClipBounds();
 Rectangle logo = new Rectangle(logoX, logoY,
 logoWidth, logoHeight);

 // if the logo is outside the clip, ignore it
 if (clip.intersects(logo)) {
 g.drawImage(logoImage, logo.x, logo.y, null);
 }

 // paint the rest
}

You can also combine both techniques by first checking that your primitive inter-
sects with the clip and then constraining the primitive to the clip area. The fol-
lowing code snippet comes from the JXGraph component that I wrote for the
SwingLabs project.4 This method is responsible for the painting of the main axes
(vertical and horizontal), as seen in Figure 5-2.

private void drawAxis(Graphics2D g2) {
 if (!isAxisPainted()) {
 return;
 }

 double axisH = yPositionToPixel(originY);
 double axisV = xPositionToPixel(originX);

 Rectangle clip = g2.getClipBounds();

 g2.setColor(getAxisColor());
 Stroke stroke = g2.getStroke();
 g2.setStroke(new BasicStroke(STROKE_AXIS));

3. Or Java2D can at least compute them for you. You should refer to the java.awt.geom.Shape
documentation and read about its getBounds() and getBounds2D() methods.

4. www.swinglabs.org

www.it-ebooks.info

www.swinglabs.org
http://www.it-ebooks.info/

USE THE CLIP 119

 if (axisH >= clip.y && axisH < clip.y + clip.height) {
 g2.drawLine(clip.x, (int) axisH,
 clip.x + clip.width, (int) axisH);
 }
 if (axisV >= clip.x && axisV < clip.x + clip.width) {
 g2.drawLine((int) axisV, clip.y,
 (int) axisV, clip.y + clip.height);
 }

 g2.setStroke(stroke);
}

As you can see, the component first checks that the lines to be drawn intersect
with the clip area. When they do, it constrains them to this area, thus avoiding
unnecessary guesswork for Java2D.

Figure 5-2 The JXGraph component honors the clip for every line drawn.

www.it-ebooks.info

http://www.it-ebooks.info/

120 CHAPTER 5 PERFORMANCE

Tip: Although you should always try to honor the clip, there are some cases in
which it would be either too hard or too costly to do so. Honoring nonrectangular
clip areas and honoring clips against nonrectangular primitives are good examples
of these cases.

For instance, how would you honor a circular clip? You could call
Graphics.getClip() to retrieve a Shape instance defining the circular area very
precisely, but it would then be difficult to know how to constrain the primitives
to this area.

Tip: Always call getClipBounds(), which returns a Rectangle, and work with
rectangular clip areas only.

Besides, Swing uses rectangular clips. In the worst case, you will attempt draw-
ing operations over areas lying outside the clip, but Java2D will take care of the
superfluous pixels. Nonetheless, the induced cost of having Java 2D do it is
much cheaper than the one required by doing it yourself.

Constraining primitives to the clip area is also not always worth it. While hori-
zontal and vertical lines5 and rectangles are easy to constrain, things get much
harder with complex shapes, like polygons or text. When you can’t easily con-
strain a drawing primitive to the clip, don’t do it. All the code that you would
have to write would probably end up hurting performance. Java2D can be trusted
to optimize these situations.

Finally, images need a special treatment. An image can be seen as a rectangular
drawing primitive, and it is very tempting to constrain its painting to a rectangu-
lar clip area when possible. After all, you could easily constrain it by calling
BufferedImage.getSubimage(x, y, width, height).

Warning: Calling getSubimage() for this purpose is a bad idea for two reasons.
First, you will implicitly generate another image, which takes time to create and
copy the content. The additional image also wastes memory and puts more strain on

5. Even simple diagonal lines are probably more trouble than they are worth; you would have to
compute the intersection of the line with the clip area and pick a new endpoint at the place where
the line exits the clip area, and you would have to be sure that your endpoint is in the same posi-
tion as the one that Java 2D might otherwise draw for you. Rasterization algorithms can vary
slightly from each other, so this is not necessarily a simple task. Diagonal lines therefore also fall
clearly into the “don’t bother” category.

www.it-ebooks.info

http://www.it-ebooks.info/

COMPATIBLE IMAGES 121

the garbage collector. Second, this approach might, in some situations, defeat opti-
mizations performed under the hood by Java2D.

You could also use the various Graphics.drawImage() methods that let you
paint only a subregion of an image, but you are better off leaving this work to
Java2D, thus making sure you do not interfere with any optimization that the
rendering pipeline could perform.

Tip: Images and Clipping. When it comes to images, make sure they at least inter-
sect with the clip area, and then simply draw them entirely. Java 2D does the neces-
sary work to constrain the operation to the visible region so that no rendering cycles
are wasted.

The clip is a very powerful and efficient tool to make your applications fast. Just
remember that setting the clip or calling repaint(x, y, width, height) is only
half of what you must do. Always honor the clip. For an example of how respect-
ing the clip can improve performance, check out the CopyAreaPerformance
demo in the “GraphicsState” section of Chapter 3, “Graphics Fundamentals.”
It shows how simply not drawing objects outside the clip made the application
perform significantly faster.

Compatible Images
We have mentioned compatible images in several places so far in the book:

• They are created with GraphicsConfiguration.createCompatibleImage().

• They are of type BufferedImage.

• They are in the suitable format for the display device associated with the
GraphicsConfiguration with which they were created.

• They have certain performance advantages.

But why? Why should you use them? Why are they faster? Why do we keep talk-
ing about them?

The answer is simple: Compatible images require less of Java 2D when copying
them to the display hardware. And when Java 2D has less to do, your application
can go faster.

ONLINE
DEMO

www.it-ebooks.info

http://www.it-ebooks.info/

122 CHAPTER 5 PERFORMANCE

Why You Should Care
Imagine a display device with a typical display format of 32 bits holding the
color values in the format xRGB (where the x byte is essentially ignored).6 Now
imagine an image whose pixels are stored in a different way, say a 16-bit format
such as 565: 5 bits of red, 6 bits of green, and 5 bits of blue. Finally, imagine
what happens when that image gets copied to the screen or to the Swing back
buffer, which is in the same format as the screen. Every single pixel of the image
will have to be modified along the way to suit the new format.

In this example, each pixel will undergo the transformation similar to that
depicted in Figure 5-3, where src refers to a pixel in the image and dest refers
to a pixel in the display:7

6. In typical current (especially older) graphics hardware, the red, green, and blue channels of color
are represented by, at most, 8 bits. So even when the display is running in 32-bit color, there are
actually only 24 bits of color information, and the remaining byte is ignored. Of course, if the
display is going to ignore a quarter of the information in every integer, it might as well have a 24-
bit display, right?

Actually, there were (and may still be) video boards with a 24-bit display depth. The last one
I saw was one of the Intel integrated graphics chips that was current about 4 years ago. But this
type of display device is not typical—and it’s a serious hassle. You end up having to detect this
special device-specific color format and making sure your images are in a format compatible to
it, which is not usually the case. Integers are just so easy to work with. Addressing subintegers is
a pain. So even though one of the bytes in a 32-bit xRGB format is ignored, that situation is much
better than having to address subintegers in a 24-bit RGB format device.

7. The actual computations are slightly more complex in Java 2D; we end up OR-ing the src bits
into the low-order bits of the destination bytes as well, instead of just leaving empty bits as seen
in the figure. But the idea is the same. The computation is simplified here to make the figure and
idea easier to understand.

Red Green Blue

Destination (int RGB)

Figure 5-3 Pixel in 565 format being copied to destination in Int RGB format.

www.it-ebooks.info

http://www.it-ebooks.info/

COMPATIBLE IMAGES 123

As seen in Figure 5-3, the color bits from the source pixel would become the
most significant bits of the colors in the destination pixel. Internally, the code
would be something like this:

int red = (src & 0xF8) >> 8;
int green = (src & 0x7C) >> 2;
int blue = (src & 0x1F) << 3;
int dest = (red << 16 | green << 8 | blue);

Each color component in the source pixel is singled out through the AND opera-
tion and then shifted into the right location for an 8-bit color representation.
Then these colors are combined into the final pixel value. Altogether, there are
three AND operations, two ORs, and five shifts. We could optimize this code
slightly to shift the components directly into place, like this:

dest = ((src & 0xF8) << 8) | ((src & 0x7C) << 6) | ((src & 0x1F) << 3);

This optimized version still has three ANDs and two ORs, but only three shifts.
None of these are expensive operations, but when you have to perform all of
them per-pixel in a large image, they add up.

Compare this process to one in which the source image is in the same format as
the destination, 32-bit xRGB. In this case, we simply call a single memory-copy
routine to operate on all of the pixels at once. Copy routines are highly optimized
in the operating system for transferring large amounts of data very quickly. In this
case, instead of performing several operations per-pixel as we did before, we per-
form one simple and fast copy operation on the entire image.

What about Managed Images?
To some extent, Java 2D takes care of the issue of compatible images automati-
cally. As explained later in the section “Managed Images,” Java 2D usually makes
an internal copy of any image that is copied to the display device. That copy is in
the device’s format and thus has all of the advantages of a compatible image. So
once an image is being managed by Java 2D, compatibility needn’t be a concern.

However, it should still be a concern for those first couple of copies or for whatever
operations you are doing for which Java 2D is not managing the image. For exam-
ple, suppose you have an extremely large image in a format different from that of
the screen. This image would have to undergo a large per-pixel transformation
when it is copied to the Swing back buffer. Even if Java 2D will eventually manage
this image, the first couple of copies before image management begins will be hor-
rendously expensive.

www.it-ebooks.info

http://www.it-ebooks.info/

124 CHAPTER 5 PERFORMANCE

Make Mine Compatible
The mechanism that you use to load an image may result in an image that is not
compatible with the display device. For example, the Image I/O library in cur-
rent Java SE releases loads some JPEG images in a format that does not match
most display formats. So while PNG and BMP images may be loaded through
Image I/O in fairly reasonable formats, device-compatible image formats is not
something that you should assume in general. Also, Toolkit images, loaded
through the older JDK 1.0 APIs, are probably not in an optimal format when
loaded. It might be easier and better to simply copy the result of a loaded image
into an image type that you know is a compatible image.

Sometimes you cannot help the format an image is in, or you may not care about
performance in a particular situation. But in general, if there is a way that you
can use a compatible image instead of some suboptimal format, then it is proba-
bly worthwhile doing so.

Tip: Converting an image from its current format into a better one is as easy as cre-
ating a compatible image and copying the old suboptimal image into it:8

// Assume that we are in the component to which we will
// copy the image; its GraphicsConfiguration is the one that
// we want to use to create the compatible image
GraphicsConfiguration gc = getGraphicsConfiguration();
BufferedImage compatibleImage = gc.createCompatibleImage(
 suboptimalImage.getWidth(),
 suboptimalImage.getHeight());
Graphics g = compatibleImage.getGraphics();
g.drawImage(suboptimalImage, 0, 0, null);

It is worth extending this idea further and having a utility class that just does the
right thing for you. Here is a sample class that has several useful methods you
can use to create and load compatible images:9

public class MakeMineCompatible {

 // This method returns an image that is compatible with the
 // primary display device. If a user has multiple displays
 // with different depths, this may be suboptimal, but it

8. Note that this code snippet is specific to an opaque image. The utility class MakeMineCompatible
covers the other cases.

9. If you want to use this class but don’t want to transcribe from this page, check out the online ver-
sion in the GraphicsUtilities class in the SwingLabs project at http://swingx.dev.java.net.

www.it-ebooks.info

http://swingx.dev.java.net
http://www.it-ebooks.info/

COMPATIBLE IMAGES 125

 // should work in the general case.
 private static GraphicsConfiguration getConfiguration() {
 return GraphicsEnvironment.getLocalGraphicsEnvironment().
 getDefaultScreenDevice().getDefaultConfiguration();
 }

 // Creates a compatible image of the same dimension and
 // transparency as the given image
 public static BufferedImage createCompatibleImage(
 BufferedImage image) {
 return createCompatibleImage(image, image.getWidth(),
 image.getHeight());
 }

 // Creates a compatible image with the given width and
 // height that has the same transparency as the given image
 public static BufferedImage createCompatibleImage(
 BufferedImage image, int width, int height) {
 return getConfiguration().createCompatibleImage(width,
 height, image.getTransparency());
 }

 // Creates an opaque compatible image with the given
 // width and height
 public static BufferedImage createCompatibleImage(
 int width, int height) {
 return getConfiguration().createCompatibleImage(width,
 height);
 }

 // Creates a translucent compatible image with the given
 // width and height
 public static BufferedImage createCompatibleTranslucentImage(
 int width, int height) {
 return getConfiguration().createCompatibleImage(width,
 height, Transparency.TRANSLUCENT);
 }

 // Creates a compatible image from the content specified
 // by the resource
 public static BufferedImage loadCompatibleImage(URL resource)
 throws IOException {
 BufferedImage image = ImageIO.read(resource);
 return toCompatibleImage(image);
 }

 // Creates and returns a new compatible image into which
 // the source image is copied

continued

www.it-ebooks.info

http://www.it-ebooks.info/

126 CHAPTER 5 PERFORMANCE

 // If the source image is already compatible, then the
 // source image is returned
 // This version takes a BufferedImage, but it could be
 // extended to take an Image instead
 public static BufferedImage toCompatibleImage(
 BufferedImage image) {
 GraphicsConfiguration gc = getConfiguration();
 if (image.getColorModel().equals(gc.getColorModel())) {
 return image;
 }

 BufferedImage compatibleImage = gc.createCompatibleImage(
 image.getWidth(), image.getHeight(),
 image.getTransparency());
 Graphics g = compatibleImage.getGraphics();
 g.drawImage(image, 0, 0, null);
 g.dispose();

 return compatibleImage;
 }
}

Now you have all of the code that you need to use compatible images always. No
more excuses!

Managed Images
The phrase managed images does not refer to image types but rather to a mecha-
nism of accelerating rendering operations for any types of images. The phrase
came from the idea that a developer should have to worry only about creating
and using an image and that Java 2D should “manage” the performance opportu-
nities for the developer automatically.10

10. The first phrase we used to denote this acceleration mechanism was “acceleration under the
hood,” which was a bit of a mouthful and thankfully didn’t gain any recognition or reuse. The
more concise “automatic images” then arose, which meant the same thing in a much quicker and
more pronounceable manner. This second attempt gained some reuse in the developer commu-
nity . . . and made no sense to me whatsoever. I have to admit I was never comfortable with “au-
tomatic images” because there’s nothing automatic about the images themselves. The phrase
just didn’t quite parse correctly in my brain. Finally, we started talking about “managed images,”
which seemed to gain more traction, since it is pretty clear what it refers to: Java 2D is managing
the images and their acceleration for you. It is concise and pronounceable, and it maps well onto
similar mechanisms in other toolkits. This time the name stuck.

www.it-ebooks.info

http://www.it-ebooks.info/

MANAGED IMAGES 127

The idea behind managed images is that an image is created by whatever mecha-
nism is appropriate: loading it from disk, creating a BufferedImage from
scratch, or creating a compatible image. Meanwhile, Java 2D caches the image
contents in a location that is most suitable from a performance standpoint.

For example, suppose an application on Windows creates a compatible image
and that the image’s contents are created once and not changed thereafter. This
image’s contents exist in system memory. The image’s contents cannot be stored
in video memory on Windows because that memory may be lost and the contents
destroyed at any time (read about VolatileImage under “Image Types” in
Chapter 4, “Images”). Now suppose that that image is copied several times to the
Swing back buffer, which may exist in VRAM.

Java 2D will notice that it is being asked repeatedly to copy the same image con-
tents from system memory to the back buffer in VRAM. This is not a horribly
slow operation, but there are certainly better ways of spending the computer’s
time than having it move images pixel-by-pixel over the bus from main memory
to video memory. At this point, Java 2D may choose to create a second, cached
version of this image in VRAM, closer to the Swing back buffer. The next time
that the application requests a copy from the image to the Swing back buffer, or to
any other image in VRAM, Java 2D will notice that this image has a cached ver-
sion in VRAM. Java 2D will then perform the copy operation from that VRAM-
cached version instead.

Some pictures might help to illustrate how the system works (Figures 5-4 and 5-5).
After all, this is a graphics book.

System Memory

Video Memory

Screen

Figure 5-4 Unmanaged images copy from system memory to video memory.

www.it-ebooks.info

http://www.it-ebooks.info/

128 CHAPTER 5 PERFORMANCE

We can see in Figure 5-4 the process of copying images to the computer screen
without managed images. The image is stored in system memory and the copy
operation simply copies the contents of the image from system memory, over the
system bus, onto to the screen that resides in video memory.

In Figure 5-5, we can see how this process works with managed images. The
original image is still stored in system memory, as before. But in this figure,
there is also an accelerated version of the image stored in video memory. When a
copy operation to the screen is requested, signified by the dashed diagonal line,
the actual copy is performed in video memory, signified by the solid horizontal
arrow. If the contents of the original version are not current with the cached ver-
sion, such as upon initial creation, there is an additional copy operation to make
the contents current, signified by the solid vertical arrow from the system mem-
ory version of the video memory version.

There are several advantages to this system:

• Speed: It is clearly faster to copy pixel data from VRAM to VRAM. The
CPU, the bus, and main memory never get involved in the process at all,
and the speed of VRAM–VRAM copies is significantly faster than moving
traffic over the bus. In addition, the graphics chip is optimized for these
types of operations and can perform them more quickly than the CPU,
even discounting the memory and bus issues.

System Memory

Video Memory

Screen

Figure 5-5 Managed images copy from a cached video memory version of the image to
other locations in video memory.

www.it-ebooks.info

http://www.it-ebooks.info/

MANAGED IMAGES 129

• Parallel processing: The managed image copy takes advantage of multi-
processing capabilities of the computer. The graphics chip is a separate
processor, so asking that chip to handle a VRAM–VRAM copy is like
spawning a thread on this other processor. This leaves the CPU free to per-
form other tasks. This advantage can be seen clearly in some tests in which
an approach using unmanaged images may peg the CPU, whereas the same
application using managed images shows a negligible amount of work
being done by the CPU. Freeing up the CPU to do other work has real
advantages outside of mere benchmarks. There is usually other work that
an application can think of to keep the CPU busy, and not having to waste
its time on simple pixel operations enables applications and the operating
system overall to run faster.

• Ease of development: These advantages are as true for VolatileImage
operations as they are for managed images. The big win for the managed-
image approach is that the developer need not worry about the manage-
ment aspects of acceleration. Java 2D handles the content loss issues asso-
ciated with VRAM, as well as decisions about when, how, and whether to
accelerate particular images and image operations.

It is worth noting some of the hidden details of managed images. Images are not
always accelerated, and it may be a mystery to developers why that is the case in
any particular situation. In general, the system makes good decisions based on
the information it has about the images and operations, and the developer may be
better off with the choices made by the system. But if the system is not accelerat-
ing something that would benefit from acceleration, it is good to know what
might be contributing to the cause.

Tip: There are two factors in working with an image that will cause Java 2D to
avoid accelerating it: grabbing the pixel array and frequent rendering to the image.

Grabbing the DataBuffer
Recall the discussion about the original image contents being stored in system
memory and the cached version being stored in VRAM. The key that makes this
work is that Java 2D knows when the contents of the original image have been
altered. When the original image contents have been updated, the new contents can
be copied to the accelerated version. There is one usage of BufferedImage objects
that causes a problem, however: accessing the DataBuffer from a BufferedImage’s
Raster object.

www.it-ebooks.info

http://www.it-ebooks.info/

130 CHAPTER 5 PERFORMANCE

If you get a handle to the DataBuffer, you can change pixel data in a BufferedImage
without Java 2D knowing. From a DataBuffer, you can request an array of the
raw pixel data and then access the pixels the same as you would any other array
of data. Since Java 2D cannot tell when the array data changes, it cannot appro-
priately update any accelerated version of the image. So Java 2D does the only
thing it can when the DataBuffer is accessed: It gives up.11 Once this happens
on an image, Java 2D can no longer manage it, and there will be no more accel-
eration for it via the managed-image approach.

Let’s look at an example, DataBufferGrabber, which can be found on the
book’s Web site. This example copies an image to the Swing back buffer several
times, timing how long the copies take. Then the image is modified through the
image’s DataBuffer, and the timing test is performed once more.

Here is the method used to copy the image:

private long copyImage(Graphics g, BufferedImage image,
 int x, int y) {
 long startTime = System.nanoTime();
 for (int i = 0; i < 100; ++i) {
 g.drawImage(image, x, y, null);
 }
 long endTime = System.nanoTime();
 return (endTime - startTime) / 1000000;
}

The method performs the same copy operation 100 times and returns the number
of milliseconds that those 100 copies took.

Note: Notice that we do this operation 100 times. We do so in order to make the
benchmarking times larger and more significant. This is a common approach in
most of our timing-related tests, especially for quick operations in which test anom-
alies or the resolution of timing utilities could otherwise be quite significant com-
pared to the actual time that an operation takes.

11. The 2D team is currently working on changes for future releases that may reduce the cases that
cause this acceleration punting. For example, up through Java SE 6, simply requesting the
DataBufferwould cause Java 2D to give up on accelerating a BufferedImage. Future chang-
es may make it possible to use a DataBuffer and still have Java 2D accelerate the image, al-
though requesting the actual pixel array itself may still force 2D to give up on accelerating for
the reasons explained here.

ONLINE
DEMO

www.it-ebooks.info

http://www.it-ebooks.info/

MANAGED IMAGES 131

Here is the paintComponent() method in which we create and fill the image and
benchmark managed and unmanaged copy operations.

protected void paintComponent(Graphics g) {

 // Create the image and fill it with white
 BufferedImage bImg = new BufferedImage(SWATCH_SIZE,
 SWATCH_SIZE, BufferedImage.TYPE_INT_RGB);
 Graphics gImage = bImg.getGraphics();
 gImage.setColor(Color.WHITE);
 gImage.fillRect(0, 0, SWATCH_SIZE, SWATCH_SIZE);

 // Time how long it takes to copy the managed version
 long managedTime = copyImage(g, bImg, 0, 0);
 System.out.println("Managed: " + managedTime + " ms");

 // Now grab the pixel array, change the colors, rerun the test
 Raster raster = bImg.getRaster();
 DataBufferInt dataBuffer =
 (DataBufferInt)raster.getDataBuffer();
 int pixels[] = dataBuffer.getData();
 for (int i = 0; i < pixels.length; ++i) {
 // Make all pixels black
 pixels[i] = 0;
 }

 // Time this unmanaged copy
 long unmanagedTime = copyImage(g, bImg, SWATCH_SIZE, 0);
 System.out.println("Unmanaged: " + unmanagedTime + " ms");
}

Note that the code to get the data array is hard-coded to use a DataBufferInt
because we know that the DataBuffer would be in integer format, since we cre-
ated the BufferedImage to be of type INT_RGB. A more flexible version of this
approach would check the DataBuffer type before casting. Nevertheless, this
code shows how we can grab the pixel array from the DataBuffer and what
effect that has on the performance of the system.

The results of this test depend greatly on the platform on which it is run and the
extent to which Java 2D can accelerate managed images. On one test system, I
got a time of 24 milliseconds for the managed version and 225 milliseconds for
the unmanaged one. Note that the managed version includes the time it takes for
Java 2D’s image management to kick in, which typically occurs on the second
copy operation. Also, note that the variable bImg in the code is in an optimal for-
mat for my test, since the screen of the test system is in INT_RGB format. This
means that software copies are as fast as possible since no pixel format translation

www.it-ebooks.info

http://www.it-ebooks.info/

132 CHAPTER 5 PERFORMANCE

is necessary. A different version of this test used INT_BGR as the image type, and
the unmanaged results took twice as long as before, while the managed results
stayed the same. After all, the original format of the image does not matter after
Java 2D starts managing it.

The reason that Java 2D cannot manage an image that has had its pixel array
accessed is that Java 2D can no longer track changes made to the image. If the
image contents are altered through a regular API call, then Java 2D notices that
operation and knows to update the accelerated version of the image before copy-
ing from it. But if the image contents are altered directly through an array, Java
2D has no way of knowing that it happened. Because Java 2D cannot guarantee
that the original image and the cached copy will remain in sync in this situation,
it disables acceleration for this image entirely and the image will not be managed
or accelerated. Since there is no way to “return” an array to the DataBuffer or to
otherwise disable access to the pixel data through the array, the only way to for
the developer to re-enable acceleration for the image is to create a new image
and copy the old contents into it.

There may be valid reasons for accessing the array directly. After all, the ability
to have direct pixel access is one of BufferedImage’s strengths. But you should
be aware of the consequences of that decision so that you can make the appropri-
ate trade-off in your code between the speed of pixel access and the performance
of managed images.12

Frequent Rendering to the Image
Rendering frequently to an image, unlike accessing the DataBuffer object, will
not permanently disable image management. But frequent rendering may effec-
tively disable acceleration for the period during which the image is being con-
stantly re-rendered.

It only makes sense for Java 2D to manage an image if it can copy from an accel-
erated version more often than it has to update that accelerated version from the
original image. Suppose an application changed an image’s contents every time
it was about to copy the image to the Swing back buffer. In this case, the changes
would happen once for every copy of the image to the back buffer. Here, image

12. The flag that controls this de-acceleration behavior is my favorite variable in the Java 2D code.
The variable is named rasterStolen, meaning that someone snuck into the image and ran off
with the Raster object. A more correct name might be something like pixelArrayAccessed
or userCodeHasDirectAccessToDataBufferArray, but I like rasterStolen much bet-
ter. It sounds so sneaky and subversive.

www.it-ebooks.info

http://www.it-ebooks.info/

MANAGED IMAGES 133

management would actually introduce extra operations and adversely affect per-
formance in a fruitless attempt to keep the cached copy of the image in sync.
Let’s look at the operations that would occur for every update of the back buffer
in this suboptimal situation:

1. Application renders new contents to image.

2. Application requests image to be copied to Swing back buffer.

a. Java 2D notices that the image has changed since the last time it used
the accelerated version of the image. Java 2D copies the new contents
from the image to the accelerated version.

b. Java 2D copies the accelerated version of the image to the Swing back
buffer.

If this is how managed images worked, it would mean that step 2b is just an extra
step above what would normally occur if the image were not managed at all.
Let’s look at the unmanaged case for this situation:

1. Application renders new contents to image.

2. Application requests image to be copied to Swing back buffer.

a. Java 2D copies the image to the Swing back buffer.

Steps 1, 2, and 2a are the same as steps 1, 2, and 2b in the first list, but we’ve
skipped the superfluous step of the accelerated copy. The operation to put the
image contents into the accelerated version of the image is equivalent to getting
the contents into the Swing back buffer directly.

Because Java 2D does not actually want to introduce performance delays into
your application, it notices when this situation happens and acts accordingly. An
image must be copied to accelerated destinations more than it is written to in
order for Java 2D to bother accelerating it. This heuristic kicks in at any time. If
you start out with a static image that is not re-rendered, Java 2D will quickly13

decide to manage it, and future copy-from operations will go through the accel-
erated version. If the application then modifies the image, Java 2D will stop
using the accelerated version and instead use the image itself as the source for its
copy operations. If the application stops modifying the image contents again,
Java 2D will again notice and go back to using the accelerated version after
updating it.

13. Typically, Java 2D manages an image on the second copy from that image to an accelerated des-
tination since the last rendering to the image.

www.it-ebooks.info

http://www.it-ebooks.info/

134 CHAPTER 5 PERFORMANCE

Intermediate Images
In a previous life, I worked in the 3D graphics arena writing applications, APIs,
and drivers for real-time 3D graphics visualization. At that time, there was an
idea kicking around the 3D graphics world of image-based rendering. This
approach played tricks with images in order to simulate real-time 3D viewing.
So, for example, instead of rendering the 3D model associated with a building on
every frame as the viewer walks around that world, you might render that model
once from a single viewpoint, cache that result in an image, and use that image
thereafter. As the viewer moves around, this image warps to appear as though it
is being re-rendered from different viewpoints on every frame, but it is actually
just neat image-rendering tricks to make it look “good enough.”

This is indeed a neat trick. You can get great performance because you avoid
complex model re-rendering and do simple image operations instead. Of course,
you must re-render models into images occasionally when the errors get bad
enough. You can’t walk around to the other side of a building model and not
expect to re-render that building a few times in the process. For one thing, the
original rendering of that model didn’t include any details about the side facing
away from the original view location, so looking at it from the other side would
result in some pretty awful rendering artifacts.14

Some example uses of this approach to rendering include the following:

• Apple’s Quicktime VR,15 which uses several surrounding 3D views of a
scene, allowing you to smoothly animate around that scene by interpolat-
ing between the various pre-rendered images

• Proposals for hardware that could use this approach. For example, Microsoft
proposed the Talisman16 graphics hardware architecture

• Various academic papers at graphics conferences

Sadly, graphics hardware moved on, 3D rendering performance got orders of mag-
nitude faster, and the need for using image-based tricks instead of re-rendering 3D
geometry became less important. After all, with current graphics hardware using

14. The effect might be similar to what you would see in a Hollywood set if you walked around a
building that only had a front.

15. www.apple.com/quicktime/technologies/qtvr/
16. http://research.microsoft.com/research/pubs/view.aspx?pubid=222

www.it-ebooks.info

http://research.microsoft.com/research/pubs/view.aspx?pubid=222
www.apple.com/quicktime/technologies/qtvr/
http://www.it-ebooks.info/

INTERMEDIATE IMAGES 135

fast, programmable pixel shaders, why should anyone have to play image tricks
and deal with associated rendering artifacts?

I love neat performance tricks, so part of me is sad to see it go away. Fortunately,
image-based rendering still has a place in the world, at least in my current world
of 2D graphics. While not as complex or fascinating as the 3D image-based ren-
dering techniques, the technique discussed here does have similar performance
advantages in the 2D realm. We call this approach intermediate images.

The Big Idea
The motivation for the intermediate images technique is this:

Note: It is a lot faster to copy an image than to perform a complex rendering operation.

In general, a simple image copy (Graphics.drawImage(img, x, y, null))

operation is at least as fast as an optimized memory copy operation and may even
end up being accelerated in the graphics hardware and video memory in the best
case. On the other hand, operations such as transforms, complex GeneralPath
drawing, and even drawing text may involve lots of operations per-pixel and end
up being a bottleneck for what could otherwise be simple and fast code.

That’s the “why” of the idea. Image copies are simply faster. Now let’s look at
the “how.”

How It’s Done
The basic approach with intermediate images is to create an image of the type
and size that you need, perform your expensive rendering operations to that
image, and thereafter copy from that image to your destination instead of per-
forming your rendering operations directly.

For example, suppose that you have an image of some size and you want to dis-
play it in your component at some different size (scaleW × scaleH). You could
do this in your paintComponent() method like so:

protected void paintComponent(Graphics g) {
 g.drawImage(img, 0, 0, scaleW, scaleH, null);
}

This code causes Java2D to scale the image every time paintComponent() is
called. You could, instead, use the intermediate image approach, where you create

www.it-ebooks.info

http://www.it-ebooks.info/

136 CHAPTER 5 PERFORMANCE

an image of the target size (scaleW × scaleH), scale the original image to that
new image, and then do a simple copy from that image instead:

// Earlier declaration of intermediate image
Image intermediateImage = null;

protected void paintComponent(Graphics g) {
 // Check for situations that should cause re-creation
 // of intermediate image
 if (intermediateImage == null ||
 intermediateImage.getWidth() != scaleW ||
 intermediateImage.getHeight() != scaleH) {
 intermediateImage = createImage(scaleW, scaleH);
 Graphics gImg = intermediateImage.getGraphics();
 gImg.drawImage(img, 0, 0, scaleW, scaleH, null);
 gImg.dispose();
 }
 g.drawImage(intermediateImage, 0, 0, null);
}

Note that, in this code, the intermediateImage object is cached between calls
to paintComponent() and will only be re-created or re-rendered when either the
image is null, which is the case the first time through that method, or the scaling
size has changed. Otherwise, all scaling operations from that original image
have been reduced to a simple copy operation from the intermediate image.

This approach is not limited to scaling transforms. You can use the same
approach for arbitrary transformations. Note, however, that some transforms of
an image may produce nonrectangular results; thus, you may need an image with
a transparent background so that the intermediate image background does not
show up during the copy operation. See the drawSmiley() code example later
for an example using a transparent-background image.

But wait: There’s more!

We’ve shown that you can use this technique for pre-transforming images, sav-
ing on the cost of scaling, rotating, or whatever you want to do with an image.
But intermediate images are not limited to image rendering operations.

Note: Intermediate images is a technique that can be used for any arbitrary render-
ing operations, including imaging operations, complex shapes, and even text. Any
rendering that will be performed repeatedly in the same manner, such as scaling to
the same sized image or drawing the same complex geometry, is a candidate for
acceleration via intermediate images.

www.it-ebooks.info

http://www.it-ebooks.info/

INTERMEDIATE IMAGES 137

The idea is to create an image of the appropriate size and type, render your
graphics operations into it once, or whenever they change, and thereafter just call
drawImage() from that intermediate image instead of doing the actual render-
ing. Note that, depending on the type of graphics rendering you are doing, you
may need a transparent-background image, like we use in the drawSmiley()
example, or a translucent-background image.

Example: IntermediateImages
Let’s look at some example code and results to see how this technique works in
practice. Check out the IntermediateImages example on the book’s Web site to
play with this code. This application creates intermediate images for an image-
scaling operation and a complex rendering operation. It times how long it takes
to perform the rendering directly to the Swing back buffer versus using an inter-
mediate image and then reports the results in the application window.

Prescaled Images
The IntermediateImages example uses the prescaling approach to cache a
thumbnail of a picture at a given size. Without an intermediate image, the opera-
tion looks like this:

g.drawImage(picture, SCALE_X, DIRECT_Y, scaleW, scaleH, null);

The operation simply scales picture into place at the location (SCALE_X,
DIRECT_Y) with the final size (scaleW, scaleH).

Using an intermediate image instead, the operation looks like this:

private BufferedImage scaledImage = null;

private void drawScaled(Graphics g) {
 // Recreate image if null or if scale size changed
 if (scaledImage == null ||
 scaledImage.getWidth() != scaleW ||
 scaledImage.getHeight() != scaleH) {

 GraphicsConfiguration gc = getGraphicsConfiguration();

 // Opaque image is fine here; our cached operation
 // is opaque

continued

ONLINE
DEMO

www.it-ebooks.info

http://www.it-ebooks.info/

138 CHAPTER 5 PERFORMANCE

 scaledImage = gc.createCompatibleImage(scaleW, scaleH);
 Graphics gImg = scaledImage.getGraphics();

 // Set BILINEAR to get better scaling quality
 ((Graphics2D)gImg).setRenderingHint(
 RenderingHints.KEY_INTERPOLATION,
 RenderingHints.VALUE_INTERPOLATION_BILINEAR);

 // Scale picture into our intermediate image
 gImg.drawImage(picture, 0, 0, scaleW, scaleH, null);

 gImg.dispose();
 }

 // Now our scaling operation becomes a simple copy
 g.drawImage(scaledImage, SCALE_X, INTERMEDIATE_Y, null);
}

Here, the actual operation to scale into the Swing back buffer is nearly the same,
only without the scaling parameters:

g.drawImage(scaledImage, SCALE_X, INTERMEDIATE_Y, null);

The rest of the code in drawScaled() is concerned with creating the image and
scaling picture into it. Note that these operations happen only once, the first
time our intermediate image is created.

Complex Shapes
The IntermediateImages example also draws some complex geometry using
intermediate images, using the happy shape seen in Figure 5-6.

Figure 5-6 Insipid smiley face.

www.it-ebooks.info

http://www.it-ebooks.info/

INTERMEDIATE IMAGES 139

We can render this shape with the following graphics operations:

private void renderSmiley(Graphics g, int x, int y) {
 Graphics2D g2d = (Graphics2D)g.create();

 // Yellow face
 g2d.setColor(Color.yellow);
 g2d.fillOval(x, y, SMILEY_SIZE, SMILEY_SIZE);

 // Black eyes
 g2d.setColor(Color.black);
 g2d.fillOval(x + 30, y + 30, 8, 8);
 g2d.fillOval(x + 62, y + 30, 8, 8);

 // Black outline
 g2d.drawOval(x, y, SMILEY_SIZE, SMILEY_SIZE);

 // Black smile
 g2d.setStroke(new BasicStroke(3.0f));
 g2d.drawArc(x + 20, y + 20, 60, 60, 190, 160);

 g2d.dispose();
}

To draw the smiley into the back buffer, we simply call

renderSmiley(g, SMILEY_X, DIRECT_Y);

Rendering this graphic once is not a problem. But suppose your application had
to render this same graphic several times every time you painted the compo-
nent.17 At some point, it just doesn’t make sense to keep redoing all of the same
rendering. You may as well cache the rendering results in an intermediate image
and perform simple image copies instead.

Note that in this case, the graphics you are rendering are nonrectangular. When
you cache the graphics as an image, you must make the background of the image
transparent so that copying that image will result in copying only the colors from
the graphics, not the colors from the background of the image. You can make this
work by creating a BITMASK transparent image, and then rendering your graphics.

17. Maybe it’s a graphical chat room application with many happy people in it.

www.it-ebooks.info

http://www.it-ebooks.info/

140 CHAPTER 5 PERFORMANCE

Here is code that caches this shape as an image and copies from that image:

private BufferedImage smileyImage = null;

private void drawSmiley(Graphics g) {
 if (smileyImage == null) {
 GraphicsConfiguration gc = getGraphicsConfiguration();
 smileyImage = gc.createCompatibleImage(
 SMILEY_SIZE + 1, SMILEY_SIZE + 1,
 Transparency.BITMASK);
 Graphics2D gImg = (Graphics2D)smileyImage.getGraphics();
 renderSmiley(gImg, 0, 0);
 gImg.dispose();
 }
 g.drawImage(smileyImage, SMILEY_X, INTERMEDIATE_Y, null);
}

The smiley face is now rendered with this single drawImage() call:

g.drawImage(smileyImage, SMILEY_X, INTERMEDIATE_Y, null);

The rest of the code in drawSmiley() is responsible for creating the intermedi-
ate image and rendering the smiley into it the first time.

By inserting some timing code in our application, we can compare the perfor-
mance of each alternative. The results from a sample run are seen in Figure 5-7.

Figure 5-7 Direct rendering compared to intermediate images for scaling and complex
rendering. Times are in milliseconds.

www.it-ebooks.info

http://www.it-ebooks.info/

INTERMEDIATE IMAGES 141

You can see that using intermediate images for prescaling in this example took
less than 3 percent of the time of the direct approach. And using intermediate
images for the relatively simple operations in the smiley face took less than 9
percent of the time of the direct rendering approach.

Note: In general, the time you save by using the intermediate images technique is
relative to the complexity of the rendering in the image compared to the cost of
copying the image. Simple operations, such as drawLine() or fillRect(), do not
generally benefit from this technique. But more complex rendering operations, such
as those shown in our example, stand to gain substantially from this approach.

The examples presented here are meant merely to illustrate the concept. You can
earn extra credit by figuring out how to apply the technique to your particular sit-
uations. Keep an eye out for examples of this technique throughout the book.
Intermediate images are flexible, are easy to implement, and are much faster
than the alternative for many rendering situations.

Notes
There are some important things to note about the intermediate images technique.

Cache Cow
In creating intermediate images, you are necessarily taking up more space on the
memory heap. For example, if you are using a 500 × 500 intermediate image
with a color depth of 32 bits, then you would allocate about 1 megabyte of mem-
ory on the heap for that single image (500 pixels × 500 pixels × 4 bytes/pixel =
1,000,000 bytes). While intermediate images can be quite beneficial if used cor-
rectly, you may not want to create large intermediate images willy-nilly because
your application will suddenly be using a much bigger runtime memory foot-
print than it would otherwise. Be aware of the trade-off between size and speed
for this approach and choose appropriately.

Tip: If you do use a lot of intermediate images and are concerned about memory
footprint, you might want to investigate SoftReferences, which are a useful way
of letting Java manage the memory issues for you. SoftReferences will hold onto
your object as long as they can, but will allow it to be collected when the heap is
under pressure. Swing uses this approach for managing various image resources
internally.

www.it-ebooks.info

http://www.it-ebooks.info/

142 CHAPTER 5 PERFORMANCE

Image Type
The examples we presented used an opaque image for the scaling example and a
transparent image for the smiley. It is also possible that you would need a translu-
cent image instead, depending on the type of rendering you need to cache in the
image. For example, antialiased text or geometry requires translucency in the desti-
nation, so our intermediate image would need to be translucent in order to represent
the rendering faithfully. The general rule is to use whatever image type makes sense
for your situation. If you require translucency, use a translucent image. If an opaque
image works for you, as in the earlier scaling example, then use an opaque image.

Translucent Image Performance
Java2D does not currently benefit from hardware acceleration for translucent
image copies by default on any platform. So if your main goal is to get hardware
acceleration for some rendering operations (prescaled images, text, whatever),
be aware that if you convert your graphics operations to translucent image cop-
ies, you may not get what you came for.18 Java 2D does offer hardware accelera-
tion for this type of operation through its OpenGL and Direct3D rendering
pipelines, but these pipelines are not enabled by default as of the Java SE 6
release. The OpenGL pipeline is available on releases since J2SE 5.0 on all Sun
platforms and is enabled by the command-line flag -Dsun.java2d.opengl=true.
The Direct3D pipeline is available on all Windows releases since J2SE 1.4.2 and
is enabled by the command-line flag -Dsun.java2d.d3d=true.19 The Java 2D
team is working on enabling hardware acceleration by default for this feature,
and many others, in a future release. Read more about the OpenGL and DirectX
pipelines in the section “Command-Line Flags” at the end of this chapter.

On the other hand, there is much to be gained from intermediate images, regardless
of whether any particular image is accelerated, so don’t let the lack of acceleration
for a particular operation deter you. Test it out and see if it works in your situation.

Summary
Intermediate images are not very difficult to understand or to program, as the
simple examples in this chapter hopefully demonstrate. The only tricks here are
getting the image type correct to account for transparent and translucent back-

18. This is why the non-antialiased examples use transparent (BITMASK) images instead; this type of
image does benefit from hardware acceleration by default on some platforms (e.g., Windows XP).

19. Prior to Java SE 6, translucent image acceleration required a different flag: -Dsun.java2d.
translaccel=true. As of Java SE 6, as long as you enable Direct3D, you will get translucent
image acceleration automatically.

www.it-ebooks.info

http://www.it-ebooks.info/

OPTIMAL PRIMITIVE RENDERING 143

ground situations and getting the cached image sized and positioned correctly to
match the size and position of the original rendering.

You can apply this technique across all of your graphics operations. Anything
that you draw repeatedly in the same way is a candidate for intermediate image
rendering. It may not be quite as graphics-geeky-cool as the 3D image-based
rendering algorithms we talked about earlier, but I figure anything that makes an
application perform better is pretty cool in its own right.

Optimal Primitive Rendering
This tip is a simple one. When rendering objects, tell Java 2D exactly what you
want it to do. To put it a different way: Simpler is faster.

Java 2D is not magic. It cannot tell exactly what you mean. And for several rea-
sons, it cannot afford to do serious amounts of analysis on your data to figure out
what you really meant to do:

• It would take time for the 2D team to implement that depth of analysis—
time that the team could be spending on problems of more general need,
like making everything go faster to begin with.

• The problem is unsolvable in many cases. For example, if you hand Java
2D a Shape, it’s going to be nearly impossible for the library to figure out
that you are really trying to draw text.

• Perhaps most importantly, runtime analysis to determine optimal render-
ing paths for simple operations would take time during execution and
would thus cause a performance hit to callers that did not need it.

For example, you could do, and people have done, something like this:

Shape line = new Line2D.Double(x1, y1, x2, y2);
graphics.draw(line);

But it would make a lot more sense to do this instead:

graphics.drawLine(x1, y1, x2, y2);

Similarly, you could fill a rectangle like this:

Shape rect = new Rectangle(x, y, w, h);
graphics.fill(rect);

But it would make a lot more sense to do this instead:

graphics.fillRect(x, y, w, h);

www.it-ebooks.info

http://www.it-ebooks.info/

144 CHAPTER 5 PERFORMANCE

These examples are encapsulated in the OptimalPrimitives demo on the
book’s Web site. The application shows the previous code in action and times
how long each operation takes. Figure 5-8 is a screenshot of the application run-
ning on my test system.

As you can see, the result of each operation is the same, but the rendering time is
significantly faster for the “good” primitives, which in this case are the more
sensible drawLine() and fillRect() calls.

As the preceding descriptions, code, and example make clear, telling Java 2D
exactly what you want to do instead of issuing more generic primitives can ben-
efit both your code simplicity and your application performance.

Benchmark
Here is a very quick performance tip, but one that comes up frequently in our
conversations with developers. It can be combined with any of the performance
approaches we discuss in the book.

Tip: When you want to figure out the best performance approach for a given situa-
tion, benchmark the alternatives.

Use existing application code if you have it, or write a prototype if not. Instru-
ment the code with timing facilities, as we do with various demos on the book’s
Web site. See how the different alternatives perform. Use a profiler, like the one
that comes with NetBeans. Test it under conditions and platforms that you think

ONLINE
DEMO

Figure 5-8 Rendering and performance results for different approaches to line and
rect operations.

www.it-ebooks.info

http://www.it-ebooks.info/

COMMAND-LINE FLAGS 145

your users are likely to have. Try out different approaches and see how they trade
off in terms of complexity versus performance.

All of the tips that we discuss in this chapter and this book are just that: tips. It’s im-
possible to know what would work best as a general solution, so you’ll have to ap-
ply these techniques to your code and benchmark them to see what works for you.

Command-Line Flags
Before we get into the details in this section, please note the following disclaimer:

Note: Most Swing developers will not need to use or know about these flags. Feel
free to skip this section. We don’t mind.

This disclaimer is actually fairly important. When you see some of the various
command-line flags that are available, it’s easy to get the impression that you
have to understand them all in order to write decent Java applications. That is not
the case. Everything in this book works well regardless of any command-line
flags you do or do not use. So feel free to ignore the flags and just get down to
the business of writing Filthy Rich Clients.

However, there are some situations in which it may be useful to know about
some of the flags, in case you are running into performance issues, debugging
issues, or issues related to interaction with other libraries. In these cases, you
might want to play around with some of the flags to see if they can help.

We provide a brief glimpse into some of the more relevant flags for creating and
running Filthy Rich Clients. We do not go into great depth on the flags, nor do
we cover the entire spectrum of flags available to you. For more information on
these and other graphics-related flags, please check out the latest document on
system properties, System Properties for Java 2D Technology, currently at http://
java.sun.com/javase/6/docs/technotes/guides/2d/flags.html. For a more general
site on 2D information overall, go to the Java 2D FAQ at http://java.sun.com/
products/java-media/2D/reference/faqs/index.html.

The flags discussed here are mostly about Java 2D, because Java 2D is the ren-
dering layer of Swing and these flags affect how that rendering happens. There
are also flags for Swing, AWT, and Java SE overall, but we focus specifically on
flags that relate to graphics-rich Filthy Rich Clients here, so we stick to graphics-
related 2D flags in particular. Feel free to spend the rest of your lives chasing

www.it-ebooks.info

http://java.sun.com/javase/6/docs/technotes/guides/2d/flags.html
http://java.sun.com/javase/6/docs/technotes/guides/2d/flags.html
http://java.sun.com/products/java-media/2D/reference/faqs/index.html
http://java.sun.com/products/java-media/2D/reference/faqs/index.html
http://www.it-ebooks.info/

146 CHAPTER 5 PERFORMANCE

down other flags that you might use (but again, you really won’t need flags in
most situations, so don’t panic).

Command-line flags are runtime parameters that are used when you first launch
a Java application. If you launch your application from the command line, you
simply type these flags inline with the launch command, like so:

java –D<flag>=<value> MyClass

where <flag> and <value> are one of the flag/value pairs described for each flag
in this section.

You can also specify these flags at the top of your main() method in an applica-
tion. The trick is to make sure that these flags are passed into the Java VM before
the graphics system is initialized, because the state of these flags is checked
when the Java graphics system starts up. For example, this code sets a flag value
as the first line of its main method:

public static void main(String args[]) {
 System.setProperty("flag", "value");
 // rest of main method
}

where "flag" and "value" are one of the flag/value pairs described for each flag
in this section.

Applets and Java Web Start applications can also use command-line flags, speci-
fied through the Java Control Panel. In Java SE 6, they are specified through the
Java tab in the appropriate Runtime Settings section. Note that setting the run-
time flags in code, as in the earlier main() example, will not work for applets in
general because the Java VM and the 2D graphics system are already running by
the time any of your applet code is executed.

You can also specify flags in your JNLP file for applications that use Java Web
Start. JNLP and Java Web Start are beyond the scope of this book. Please check
out information on those technologies at http://java.sun.com.

We can break down the relevant flags into two main categories: rendering and
debugging performance issues.

Rendering
There are numerous flags for controlling different aspects of 2D rendering. We
focus on just a couple of the more important ones that relate to Filthy Rich Cli-

www.it-ebooks.info

http://java.sun.com
http://www.it-ebooks.info/

COMMAND-LINE FLAGS 147

ents. If you want to see the full spectrum of 2D flags available, we encourage
you to check out the System Properties for Java 2D Technology site referenced
earlier.

OpenGL
The OpenGL pipeline is one of the mechanisms by which Java 2D can choose to
issue rendering commands to the display. This pipeline is not enabled by default.
To use this pipeline for Java 2D rendering, you need to run with this command-
line flag:

sun.java2d.opengl=true

The OpenGL rendering pipeline for Java 2D has had a tumultuous history
because of the availability and robustness of OpenGL drivers on the various plat-
forms that Java SE supports combined with the features from OpenGL that Java
2D requires. This pipeline, when enabled, is actually the best overall platform for
support and acceleration of nearly everything that Java 2D can manage to throw at
it. Gradients, transforms, image copies, shapes, buffering—all of these things run
blindingly fast in Java 2D when they are rendered through the OpenGL pipeline.
However, general robustness issues across the wide spectrum of platforms that
Java must support mean that this pipeline cannot yet be enabled by default. Driv-
ers and hardware support are improving for OpenGL, so this situation may
change in the future, and the pipeline could be more widely available.

In the meantime, the OpenGL pipeline is available via the command-line flag on
all Sun-developed JDK platforms since J2SE 5.0: Linux, Solaris, and Windows.

There are two important uses for this flag, depending on your situation:

• Java 2D performance: If you happen to be on a platform that has a good
hardware and driver combination to benefit from the pipeline, and if your
application is using some of the advanced drawing primitives and opera-
tions that could do with some serious acceleration, then enabling this flag
could result in significant performance improvements.

• JOGL: If you are using the Java Bindings for OpenGL (JOGL) API, which
enables high-performance 3D applications written in Java, then you may
want to enable Java 2D’s use of OpenGL so that Swing rendering can cohab-
itate in a better and faster way with JOGL rendering. This capability was
enhanced in Java SE 6, as Chris Campbell discusses in his blog at http://
weblogs.java.net/blog/campbell/archive/2005/09/java2djogl_inte_1.html.

www.it-ebooks.info

http://weblogs.java.net/blog/campbell/archive/2005/09/java2djogl_inte_1.html
http://weblogs.java.net/blog/campbell/archive/2005/09/java2djogl_inte_1.html
http://www.it-ebooks.info/

148 CHAPTER 5 PERFORMANCE

DirectX on Windows
DirectX is the default rendering pipeline for Java 2D on Windows. Its introduc-
tion in J2SE 1.4 enabled Swing to start taking advantage of hardware-acceler-
ated graphics for key operations such as storing the Swing back buffer in VRAM
and copying that buffer to the screen using the GPU. While the operations origi-
nally enabled in DirectX, such as rectangular fills and copies and horizontal and
vertical lines, were fairly basic to begin with, they actually make up a majority of
the GUI operations that Swing does in a typical application.

Work has continued on the DirectX pipeline, although by default it still acceler-
ates only the basic operations described previously. A future release of Java SE
should bring the DirectX pipeline up to the functionality and performance level
of the OpenGL pipeline, but hopefully with a guarantee of driver robustness on
Windows that would enable this acceleration pipeline to be enabled by default.

There are two reasons you might want to tweak flags for DirectX in some situations:

1. Enabling more acceleration: By turning on Direct3D capabilities, you
might get acceleration for more advanced primitives and operations, such
as translucent images.

2. Disabling: Some situations, including use of other libraries such as JOGL,
may come up that might benefit from turning off the DirectX pipeline.

To enable 3D acceleration, which accelerates such things as diagonal lines,
transforms, and translucent images, use the d3d flag:

sun.java2d.d3d=true

To disable Java 2D’s use of DirectX completely, use the noddraw flag:

sun.java2d.noddraw=true

Debugging Performance
Sometimes you may notice that your application is getting much poorer render-
ing performance than you think it should. Many of the tips explained in this
book should help in general, but you may just want to know what is going on
under that big 2D hood. That is why Java 2D introduced the trace flag. It out-
puts information about who is drawing what so that you can see if there is any-
thing unexpected happening.

www.it-ebooks.info

http://www.it-ebooks.info/

COMMAND-LINE FLAGS 149

This flag is more flexible than the other flags we covered. You do not simply
enable this flag, you tell it how you want it to work. The usage is as follows:

-Dsun.java2d.trace=[log],[count],[help],[out:filename]

where:

• log prints out a list of the drawing primitives as they occur.

• count tracks the unique drawing primitives and outputs the totals of each
one when the application quits.

• out prints the output in a specified file instead of on the command line.

• help prints out a more detailed explanation of the usage of trace than has
been done here.

The information printed by the trace command is not in the user-friendliest for-
mat. It outputs the names of the raw internal drawing operations that are called.
However, it can sometimes help to understand what Java 2D is doing and
whether it seems like the library is doing a lot more work through obtuse draw-
ing primitives than, say, the simple drawLine() operations you thought it would
execute. Please see the System Properties for Java 2D Technology document
mentioned earlier for more information on using this flag.

www.it-ebooks.info

http://www.it-ebooks.info/

This page intentionally left blank

www.it-ebooks.info

http://www.it-ebooks.info/

151

Part II

Advanced
Graphics

Rendering

www.it-ebooks.info

http://www.it-ebooks.info/

This page intentionally left blank

www.it-ebooks.info

http://www.it-ebooks.info/

153

6
Composites

COMPOSITES are very important tools for programmers of Filthy Rich Cli-
ents. A composite can be thought of as a rule that determines how to store or
combine the colors of a drawing primitive into the destination. A composite
could, for instance, state that only the red components of the drawing primitive
can be copied onto the graphics area. Composites are also known as blending
modes in graphics editing applications like Adobe Photoshop or The GIMP, in
which they are often used to create complex lighting effects. In Java, a Compos-
ite is an instance of the interface java.awt.Composite and can be set on a
Graphics2D by calling setComposite().

AlphaComposite
The Java platform comes with only one implementation of Composite, called
java.awt.AlphaComposite. This particular composite implements the basic
alpha compositing rules for achieving translucency effects. AlphaComposite
implements a set of 12 rules as described by T. Porter and T. Duff in a paper1

entitled “Compositing Digital Images.” All of the rules are based on mathemati-
cal equations defining the value of the color and alpha components of the result-
ing pixels given a source (the primitive you are drawing) and a destination (the
graphics area). The Java implementation introduces one additional parameter, an
alpha value that is used to modify the opacity of the source prior to blending.

1. Porter, Thomas, and Duff, Tom, “Compositing Digital Images.” Computer Graphics, 18:253–259,
July 1984.

www.it-ebooks.info

http://www.it-ebooks.info/

154 CHAPTER 6 COMPOSITES

Note: Components and Channels. Colors are encoded with three values, also
called components or channels. The most common encoding in software is called
RGB, which uses the red, green, and blue components. Yuv is another encoding,
which uses a luminance channel (Y) and two chrominance channels (u and v).

The alpha channel, or the alpha component, is a fourth component, independent from
the color encoding, which defines the level of translucency or opacity of the color. For
instance, a color with an alpha channel value of 50 percent will be semitransparent.

To decide what rule to use and when, it is important to understand the Porter-
Duff equations presented in the documentation of java.awt.AlphaComposite.
To avoid boring you to death with mathematical descriptions (and also because
my head hurts at the thought of going through 12 equations), let’s focus on one
of the most useful rules, Source Over, which composites the source over the des-
tination, as if the source were a translucent painting on a piece of glass being
held over the destination. The equation describing this rule is the following:

Ar = As + Ad * (1 – As)

Cr = Cs + Cd * (1 – As)

Factor A stands for the alpha channel of the pixel and C for each color compo-
nent of the pixel. The subscripts r, s, and d stand for result, source, and destina-
tion respectively. Putting these together means that As stands for the alpha
channel of the source, the primitive being drawn on the graphics area, and Ad for
the alpha channel of the pixels already on the graphics area. Those two values
are used to compute the resulting alpha channel, Ar. All of the values in these
equations are floats between 0.0 and 1.0, and the results are clamped to lie in this
range.

In your code, these values are converted to the ranges of the Java data types. For
instance, when colors are stored with unsigned byte components, each compo-
nent is a value between 0 and 255 instead of 0.0 and 1.0.

Note: Premultiplied Components. It is important to note that the Porter-Duff
equations are all defined to operate on color components that are premultiplied by
their corresponding alpha component.

What would happen if we drew a semi-opaque red rectangle on top of a blue
rectangle? Let’s start by writing down the equations as Java code, with each
color component fully represented:

www.it-ebooks.info

http://www.it-ebooks.info/

ALPHACOMPOSITE: THE 12 RULES 155

int srcA = 127; // semi-opaque source
int srcR = 255; // full red
int srcG = 0; // no green
int srcB = 0; // no blue

int dstA = 255; // fully opaque destination
int dstR = 0; // no red
int dstG = 0; // no green
int dstB = 255; // full blue

srcR = (srcR * srcA) / 255; // premultiply srcR
srcG = (srcG * srcA) / 255; // premultiply srcG
srcB = (srcB * srcA) / 255; // premultiply srcB

dstR = (dstR * dstA) / 255; // premultiply dstR
dstG = (dstG * dstA) / 255; // premultiply dstG
dstB = (dstB * dstA) / 255; // premultiply dstB

int resultA = srcA + (dstA * (255 - srcA)) / 255;
int resultR = srcR + (dstR * (255 - srcR)) / 255;
int resultG = srcG + (dstG * (255 - srcR)) / 255;
int resultB = srcB + (dstB * (255 - srcR)) / 255;

System.out.printf("(%d, %d, %d, %d)",
 resultA, resultR, resultG, resultB);

Running this program produces the following result:

(255, 127, 0, 128)

The resulting color is a fully opaque magenta, which is what you would expect
when placing a translucent red sheet over a blue background.2 While we highly
encourage you to follow the same process to understand each rule, nothing beats
screenshots.

AlphaComposite: The 12 Rules
Following is a list of Porter and Duff’s 12 rules with a short description of each
and a picture of a red oval drawn on top of a blue rectangle. Behind the scenes,
the actual rendering is as follows: An opaque blue rectangle is drawn onto a trans-
parent image, so we have a destination image with transparent pixels (alpha = 0)

2. Why you would do that, however, remains a mystery.

www.it-ebooks.info

http://www.it-ebooks.info/

156 CHAPTER 6 COMPOSITES

outside of the blue rectangle and opaque pixels (alpha = 1) inside the blue rectan-
gle. Then the red oval is drawn on top with the rule and extra alpha, as shown in
the application window of Figure 6-1. Finally, the image is copied to the Swing
component and results in the views of the window seen in the figure.

Each rule was set up with an extra opacity of 50 percent. You can try each com-
posite on your own by running the application AlphaComposites that you will
find on this book’s Web site. You can also compare the result produced by each
rule to the graphics shown in Figure 6-1, which shows the scene with the default
rule set on the Graphics2D, AlphaComposite.SrcOver with an alpha value of
100 percent.

The following rules are shown with the actual equations used to compute the
result. As in the Source Over description, A stands for the alpha channel of the
pixel and C for a color component of the pixel. The subscripts r, s, and d stand
for result, source, and destination respectively.

Note: Terminology. When we refer to a source pixel, we mean those areas of the
source that are not transparent. Similarly, a destination pixel refers to those areas of
the destination that are not transparent. So, for example, the phrase “area of the
source inside the destination” means those nontransparent source pixels being
drawn to nontransparent areas of the destination.

Besides reading the descriptions (and seeing how they compare to the screen-
shots, which might be more illuminating), you might want to check out the Java-
Doc for AlphaComposite, which goes into more detail on how these rules work.

ONLINE
DEMO

Figure 6-1 AlphaComposites demo with SRC_OVER rule and extra alpha of 100 percent.

www.it-ebooks.info

http://www.it-ebooks.info/

ALPHACOMPOSITE: THE 12 RULES 157

Clear
Ar = 0

Cr = 0

Both the color and the alpha of the destination are cleared. Whatever color or
shape you paint with, every pixel of the destination covered by the source will
disappear, as in Figure 6-2.

Dst
Ar = Ad

Cr = Cd

The destination is left untouched. Whatever you draw on the destination will be
discarded, as in Figure 6-3.

Figure 6-2 AlphaComposites demo with Clear rule.

Figure 6-3 AlphaComposites demo with Dst rule.

www.it-ebooks.info

http://www.it-ebooks.info/

158 CHAPTER 6 COMPOSITES

DstAtop
Ar = As * (1 – Ad) + Ad * As = As

Cr = Cs * (1 – Ad) + Cd * As

The part of the destination lying inside of the source is composed with the
source and replaces the destination. This results in the destination appearing to
be drawn on top of the source (Figure 6-4) instead of the other way around.

DstIn
Ar = Ad * As

Cr = Cd * As

The part of the destination lying inside of the source replaces the destination. It
is the opposite of DstOut, but with an alpha value of 50 percent, both operations
look the same (Figure 6-5).

Figure 6-4 AlphaComposites demo with DstAtop rule.

Figure 6-5 AlphaComposites demo with DstIn rule.

www.it-ebooks.info

http://www.it-ebooks.info/

ALPHACOMPOSITE: THE 12 RULES 159

DstOut
Ar = Ad * (1 – As)

Cr = Cd * (1 – As)

The part of the destination lying outside of the source replaces the destination. It
is the opposite of DstIn, but with an alpha value of 50 percent, both operations
look the same (Figure 6-6).

DstOver
Ar = As * (1 – Ad) + Ad

Cr = Cs * (1 – Ad) + Cd

The destination is composed with the source, and the result replaces the destina-
tion. The parts of the source outside of the destination are drawn normally, with
the added opacity of the composite, as in Figure 6-7.

Figure 6-6 AlphaComposites demo with DstOut rule.

Figure 6-7 AlphaComposites demo with DstOver rule.

www.it-ebooks.info

http://www.it-ebooks.info/

160 CHAPTER 6 COMPOSITES

Src
Ar = As

Cr = Cs

The source is copied to the destination. The destination is replaced by the source.
In Figure 6-8, the blue rectangle (the destination) does not appear underneath the
red oval because the red oval (the source) replaces it.

SrcAtop
Ar = As * Ad + Ad * (1 – As) = Ad

Cr = Cs * Ad + Cd * (1 – As)

The part of the source lying inside of the destination is composed with the des-
tination. The part of the source lying outside of the destination is discarded
(Figure 6-9).

Figure 6-8 AlphaComposites demo with Src rule.

Figure 6-9 AlphaComposites demo with SrcAtop rule.

www.it-ebooks.info

http://www.it-ebooks.info/

ALPHACOMPOSITE: THE 12 RULES 161

SrcIn
Ar = As * Ad

Cr = Cs * Ad

The part of the source lying inside of the destination replaces the destination.
The part of the source lying outside of the destination is discarded (Figure 6-10).

SrcOut
Ar = As * (1 – Ad)

Cr = Cs * (1 – Ad)

The part of the source lying outside of the destination replaces the destination.
The part of the source inside the destination gets discarded (Figure 6-11).

Figure 6-10 AlphaComposites demo with SrcIn rule.

Figure 6-11 AlphaComposites demo with SrcOut rule.

www.it-ebooks.info

http://www.it-ebooks.info/

162 CHAPTER 6 COMPOSITES

SrcOver
Ar = As + Ad * (1 – As)

Cr = Cs + Cd * (1 – As)

The source is composed or blended with the destination (Figure 6-12). SrcOver
is the default rule set on a Graphics2D surface.

Xor
Ar = As * (1 – Ad) + Ad * (1 – As)

Cr = Cs * (1 – Ad) + Cd * (1 – As)

The part of the source that lies outside of the destination is combined with the
part of the destination that lies outside of the source (Figure 6-13).

Figure 6-12 AlphaComposites demo with SrcOver rule.

Figure 6-13 AlphaComposites demo with Xor rule.

www.it-ebooks.info

http://www.it-ebooks.info/

CREATING AND SETTING UP AN ALPHACOMPOSITE 163

Creating and Setting Up an
AlphaComposite

An AlphaComposite can be set on a Graphics2D object at any time by calling
the method setComposite(). This method affects the operations of all future
graphics primitives, so it is important to restore the initial composite after you
are done with your drawing.

Tip: You can also use Graphics.create() to make a copy of the drawing surface
and throw it away when you’re done.

To get an instance of AlphaComposite, you have two choices. The first choice is
also the simplest and uses the instances predefined by the AlphaComposite
class. All of those instances are exposed as public, static fields whose names fol-
low the naming conventions of the classes. For instance, the Source Over instance
can be accessed with the expression AlphaComposite.SrcOver. Here is an
example of how to use this rule:

@Override
protected void paintComponent(Graphics g) {
 Graphics2D g2 = (Graphics2D) g;
 Composite oldComposite = g2.getComposite();

 g2.setComposite(AlphaComposite.SrcOver);
 g2.setColor(Color.RED);
 g2.fillOval(0, 0, 80, 40);

 g2.setComposite(oldComposite);
}

The predefined instances of AlphaComposite use an additional alpha value of
100 percent.

Another way to create an instance with an alpha of 100 percent is to use the get-
Instance(int) method. The previous code would be the same, save for the fol-
lowing line:

g2.setComposite(AlphaComposite.getInstance(
 AlphaComposite.SRC_OVER));

When you need to use an AlphaComposite with an alpha value lower than 100
percent, you must call getInstance(int, float). The second parameter is the

www.it-ebooks.info

http://www.it-ebooks.info/

164 CHAPTER 6 COMPOSITES

opacity, in the range 0.0f to 1.0f. The following line creates a Source Over
instance with an alpha value of 50 percent:

g2.setComposite(AlphaComposite.getInstance(
 AlphaComposite.SRC_OVER, 0.5f));

Create an AlphaComposite More Easily
One of my favorite features in Java SE 63 is the addition of two new methods in the
AlphaComposite class: derive(int) and derive(float). You can use them to get
a copy of an existing AlphaComposite instance with new settings. Here is an
example of converting a Source In composite to a Source Over:

AlphaComposite composite = AlphaComposite.SrcIn;
composite = composite.derive(AlphaComposite.SRC_OVER);

Calling derive() to change the rule retains the current alpha value and applies it to
the new rule. You can, instead, change the opacity of an existing alpha composite
but retain the rule. Instead of calling getInstance(int, float), write the
following:

g2.setComposite(AlphaComposite.SrcOver.derive(0.5f));

Calls to derive() can be chained to change the alpha value and the rule at the
same time, as an alternative to getInstance():

g2.setComposite(composite.derive(0.5f).derive(
 AlphaComposite.DST_OUT));

This code is easier to read and easier to maintain than the more verbose
getInstance() approach necessary prior to Java SE 6.

Common Uses of AlphaComposite
AlphaComposites are a versatile and powerful tool when used properly. While
we can’t tell you when and where you will use the 12 rules, we can present you
the four most useful ones: Clear, Src, SrcOver, and SrcIn.

3. In fact, it is my favorite. Try to use AlphaComposite every day and you will soon rather swallow
your desk than call getInstance(int, float) one more time.*

* Yes, it is that bad.

www.it-ebooks.info

http://www.it-ebooks.info/

COMMON USES OF ALPHACOMPOSITE 165

Using Clear
Clear can be used when you want to reuse a transparent or translucent image. It
is an easy way to erase a background so that the image is totally transparent.
Remember the equation for Clear:

Ar = 0

Cr = 0

As you can see, the result does not depend on the source or the destination.
Hence, you can draw anything you want to erase the picture. This also means
that the opacity of the composite does not matter. The net effect is that an opera-
tion with this rule will simply cut a hole in it in the shape of the primitives you
draw. In this case, Clear can be seen as the eraser tool from Adobe Photoshop or
any popular alternative. The following code shows how to erase the content of a
translucent image:

// The picture has an alpha channel
BufferedImage image = new BufferedImage(200, 200,
 BufferedImage.TYPE_INT_ARGB);
Graphics2D g2 = image.createGraphics();
// Draw stuff
// ...
// Erase the content of the image
g2.setComposite(AlphaComposite.Clear);
// The Color, the Paint, etc. do not matter
g2.fillRect(0, 0, image.getWidth(), image.getHeight());

The Clear rule lets you erase areas of arbitrary shape.

Using SrcOver
SrcOver is the default composite set on the Graphics2D context. This composite
ensures that the source is drawn entirely, without any modification, on the desti-
nation. You can use it to ensure that the graphics area is correctly set up and that
the rendering will not suffer from any mischief done on your Graphics object by
another component of your application.

You can also use SrcOver to draw translucent objects without affecting the desti-
nation. Take a look at the application in Figure 6-14.

In this screen, you may notice several places where SrcOver was used to achieve
translucency effects. The dialog box in the middle and the palettes on the edges
are all translucent.

www.it-ebooks.info

http://www.it-ebooks.info/

166 CHAPTER 6 COMPOSITES

You can control the opacity of the source by changing the alpha value associated
with the instance of AlphaComposite, as we saw in the section “Creating and
Setting Up an AlphaComposite.”

Remember that composites work with all drawing primitives, most notably with
pictures. You can also animate the alpha value of the SrcOver instance to create
interesting apparition and fading effects.

Using SrcIn
SrcIn is a useful and amazingly underutilized composite. It can be used whenever
you want to replace the content of an existing drawing. Figure 6-15 shows an
application that paints a simple shield on the screen and fills it with a blue gradient.

What if you wanted to draw a similar shield, but with a photo inside instead of
the gradient? This is easily achieved by setting the SrcIn alpha composite on the
graphics area:

// Draws the blue shield
g2.drawImage(image, x, y, null);
// Replaces the content of the shield with Grand Canyon
g2.setComposite(AlphaComposite.SrcIn);
g2.drawImage(landscape, x, y, null);

Figure 6-14 The result of the Source Over alpha composite.

www.it-ebooks.info

http://www.it-ebooks.info/

COMMON USES OF ALPHACOMPOSITE 167

Following the SrcIn rule, Java 2D replaces the destination with the pixels of the
source that lie within the destination, as shown in Figure 6-16.

You can use this technique to create frames for pictures, to cut out drawings or
images, or even to produce drop shadows. If you fill a black rectangle over the
original drawing, you will obtain a shadow. Paint the original drawing again, on
top and at an offset to the shadow, and you’ll get the desired effect, as seen in
Figure 6-17.

Note that you can change the opacity of the shadow by changing the opacity of
the SrcIn instance.

Figure 6-15 A simple gradient-filled shape.

Figure 6-16 The photo is clipped by the shape of the shield.

www.it-ebooks.info

http://www.it-ebooks.info/

168 CHAPTER 6 COMPOSITES

The complete source code of these examples can be found in the project
SourceIn on this book’s Web site.

Note: Soft-Clipping. This example shows that the SrcIn rule can be used to per-
form soft-clipping, or antialiased clipping, with arbitrary shapes.

Issues with AlphaComposite
Some of the AlphaComposite rules might yield strange results when you use
them to draw on a Swing component. You know this has happened when you see
a large black hole in places meant to be empty or of a different color on your
drawing, as shown in Figure 6-18.

This problem occurs when you are drawing directly on a destination that has no
alpha value, such as the Swing back buffer or another non-alpha image, with a
rule that requires the value of the alpha channel of the destination in its equation.
This is the case, for instance, of SrcOut,

Ar = As * (1 – Ad)

Cr = Cs * (1 – Ad)

The color and the alpha values of the result are computed according to the alpha
value of the destination. When you draw on a Swing component, the destination
is the Swing back buffer, an image with no alpha channel. In this situation, all
destination pixels are treated as being opaque, and the alpha value (Ad) is always
1.0. This is rather unnatural because, as developers, we think of user interfaces
as layered documents. When you look at the screenshot in Figure 6-18, you

Figure 6-17 A simple drop shadow.

ONLINE
DEMO

www.it-ebooks.info

http://www.it-ebooks.info/

ISSUES WITH ALPHACOMPOSITE 169

probably see one layer of gray (the background), one layer of blue (the rectan-
gle), one layer of black (the oval), and so on. You may therefore think it obvious
that the blue rectangle is surrounded by transparent pixels. In reality, a Swing
window is flat, not layered. Each time you draw something on a Swing compo-
nent, the Swing back buffer represents a unique, opaque picture.

So why is the oval still black?

If we solve the previous equations and replace Ad by its value 1.0, we obtain the
following results:

Ar = As * (1 – 1) = 0

Cr = Cs * (1 – 1) = 0

A color with all of its components set to 0 is black. Even though the resulting
alpha channel is 0, or completely transparent, it does not matter because the
Swing back buffer does not take alpha into account. Every time you draw on a
Swing component, or on another opaque destination, with a composite rule that
reads the alpha value of the destination, you will get a wrong result.

The solution to this problem is thankfully simple to implement. Instead of draw-
ing directly onto a Swing component, you must first draw into an image with an
alpha channel and then copy the resulting image onto the screen:

@Override
protected void paintComponent(Graphics g) {
 // Creates a picture with an alpha channel
 // This image could be cached for better performance
 BufferedImage image = new BufferedImage(getWidth(),
 getHeight(), BufferedImage.TYPE_INT_ARGB);

continued

Figure 6-18 The black oval was supposed to be red in this composition with SrcOut.

www.it-ebooks.info

http://www.it-ebooks.info/

170 CHAPTER 6 COMPOSITES

 Graphics2D g2 = image.createGraphics();
 g2.setRenderingHint(RenderingHints.KEY_ANTIALIASING,
 RenderingHints.VALUE_ANTIALIAS_ON);

 g2.setColor(Color.BLUE);
 g2.fillRect(4 + (getWidth() / 4), 4,
 getWidth() / 2, getHeight() - 8);

 // Sets the composite
 g2.setComposite(AlphaComposite.SrcOut);
 g2.setColor(Color.RED);
 g2.fillOval(40, 40, getWidth() - 80, getHeight() - 80);
 g2.dispose();

 // Draws the image onto the screen
 g.drawImage(image, 0, 0, null);
}

A picture with an alpha channel is completely empty after its creation; every
pixel is transparent by default. Thus, the equations work as promised.

Tip: Temporary Offscreen Images. Creating a temporary offscreen image is an
extra step that can be costly if you do it every time the component is painted, so you
probably want to reuse the picture. You can either cache the finished drawing, cach-
ing the results of your rendering, or just cache the BufferedImage object and paint
onto it every time paintComponent() is called. If you choose the latter, do not for-
get to clear the picture beforehand.

Whenever you see unexpected black pixels on the screen, make sure that the des-
tination has an alpha channel. Failing that, use an offscreen image to solve the
problem.

Create Your Own Composite
As of Java SE 6, AlphaComposite is the only implementation of Composite
available in the core platform. For most applications, this is more than sufficient,
as most of the other rules are rarely used. Nevertheless, it can be useful to have
other kinds of composites available, particularly when you must implement a
mockup created by a visual or graphics designer.

We developers live in a world made of IDEs and compilers, but visual designers
are surrounded by powerful graphics editing tools like Adobe Photoshop. Such

www.it-ebooks.info

http://www.it-ebooks.info/

CREATE YOUR OWN COMPOSITE 171

tools let the user apply various blending modes, or composites, to the layers
making up the artwork, and most designers do not hesitate to put those blending
modes to good use.

Implementing visual designs built with those blending modes can become a
daunting task if you stick to the core composites offered by the JDK. But do not
despair; you can write your very own composite!

The Add Composite
Writing a composite does not require a lot of work. In fact, the most difficult part
is coming up with an interesting compositing rule, not coding it.

This book’s Web site offers a project called BlendComposites, which contains
31 new composites, all inspired by the blending modes found in graphics editing
tools like Adobe Photoshop. We show you how to implement one of them here:
Add. You can refer to the project to see how the others are implemented.

The Add blending mode, as its name suggests, simply adds the value of both the
source and the destination:

Ar = As + Ad

Cr = Cs + Cd

Figure 6-19, Figure 6-20, and Figure 6-21 illustrate the effect of this composite.

ONLINE
DEMO

Figure 6-19 The destination of the composite.

www.it-ebooks.info

http://www.it-ebooks.info/

172 CHAPTER 6 COMPOSITES

Here is the first step is to create a new class that implements the interface
java.awt.Composite:

public class AddComposite implements Composite {
 private static boolean checkComponentsOrder(ColorModel cm) {
 if (cm instanceof DirectColorModel &&
 cm.getTransferType() == DataBuffer.TYPE_INT) {
 DirectColorModel directCM = (DirectColorModel) cm;

Figure 6-20 The source of the composite.

Figure 6-21 The result of the composition: Dark pixels in the source have less effect on
the result.

www.it-ebooks.info

http://www.it-ebooks.info/

CREATE YOUR OWN COMPOSITE 173

 return directCM.getRedMask() == 0x00FF0000 &&
 directCM.getGreenMask() == 0x0000FF00 &&
 directCM.getBlueMask() == 0x000000FF &&
 (directCM.getNumComponents() == 3 ||
 directCM.getAlphaMask() == 0xFF000000);
 }

 return false;
 }

 public CompositeContext createContext(
 ColorModel srcColorModel, ColorModel dstColorModel,
 RenderingHints hints) {
 if (!checkComponentsOrder(srcColorModel) ||
 !checkComponentsOrder(dstColorModel)) {
 throw new RasterFormatException(
 "Incompatible color models");
 }

 return new BlendingContext(this);
 }
}

A composite is actually a very simple class because only one method,
createContext(), needs to be implemented. The checkComponentsOrder()
method is used by createContext() to guarantee that the source and the desti-
nation are in the expected format. The code checks the color model and ensures
the pixels are stored as integers. It also makes sure that the color components are
in the following order within an integer: alpha (if present), red, green and blue.

Besides this, the documentation urges developers to make their composites
immutable.

Note: Why Is Immutability Important? When you are given an instance of an
immutable composite class, it is not possible for you to change its internal values.
Try to imagine what would happen if a background thread changed the settings of
a composite while this composite is used to paint a primitive on the screen. With
immutable composites, you can guarantee the result of a drawing operation.

You can see how immutability was achieved in AlphaComposite by looking at
its documentation. The only methods that let you modify the values of the com-
posite actually return a new instance: getInstance() and derive(). There is
absolutely no way to get the composite currently set on the graphics area and to
modify its settings.

www.it-ebooks.info

http://www.it-ebooks.info/

174 CHAPTER 6 COMPOSITES

The AddComposite class shown previously respects this rule, since no setter is
publicly available. The AddContext instance returned by the createContext()
method is part of the implementation and is shown next.

Implementing the CompositeContext
All of the work of a composite is performed by its CompositeContext, returned
by createContext(). Once again, the documentation warns against multi-
threaded environments and explains that several contexts can be used at the same
time. This is why the method as implemented in AddComposite returns a new
instance of AddContext. If your composite contains parameters, for instance, an
alpha value as in AlphaComposite, you can pass them to the constructor of your
context. The method createContext() is the place where you can save the con-
text you need to perform the compositing operation.

Here are the two methods that a class that implements the CompositeContext
interface needs to implement:

void compose(Raster src, Raster dstIn, WritableRaster dstOut);
void dispose();

The first method, compose(), is where the actual composition is performed. The
second method is called when the composition has finished and can be used to
clear any resources you might have cached in the constructor or in compose().

Implementing compose() requires a good understanding of its three parameters. A
Raster is a Java representation of a rectangular array of pixels. The src Raster,
therefore, is the array of pixels representing the source, which is the drawing
primitive to compose onto the graphics area. The dstIn Raster represents the
array of pixels of the destination, or the pixels that are already in the graphics
area. Finally, dstOut is the array of pixels where the result of the composition
will be stored. Both src and dstIn are read-only, and new data will be stored in
dstOut. A Raster holds quite a lot of information, including the size of the array
and its storage type.

For simplicity’s sake, AddContext works only with Rasters storing pixels as
integers. For example, if you try to draw a picture of type BufferedImage.
TYPE_3BYTE_BGR with this composite, an exception will be thrown.

To implement the Add composite, there is no need to cache values, so the dispose()
method will be empty. Before writing any code in compose(), you need two util-
ity methods called fromRGBArray() and toRGBArray(). Since this composite
works on pixels stored as integers, all four components (alpha, red, green, and

www.it-ebooks.info

http://www.it-ebooks.info/

CREATE YOUR OWN COMPOSITE 175

blue) are represented as a single integer. To apply our equation defined earlier, it
is essential to break up the pixel integer into four integers, each representing one
component. The methods fromRGBArray() and toRGBArray() are simple help-
ers that turn pixels into color components and color components into pixels. The
incomplete implementation of AddContext looks like this:

private class AddContext implements CompositeContext {
 public void dispose() {
 }

 public void compose(Raster src, Raster dstIn,
 WritableRaster dstOut) {
 // More code to come
 }

 private static void toRGBArray(int pixel, int[] argb) {
 argb[0] = (pixel >> 24) & 0xFF;
 argb[1] = (pixel >> 16) & 0xFF;
 argb[2] = (pixel >> 8) & 0xFF;
 argb[3] = (pixel) & 0xFF;
 }

 private static int fromRGBArray(int[] argb) {
 return (argb[0] & 0xFF) << 24 |
 (argb[1] & 0xFF) << 16 |
 (argb[2] & 0xFF) << 8 |
 (argb[3] & 0xFF);
 }
}

Composing the Pixels
The first step in implementing compose() is to define the area on which the com-
posite must be applied. You can query the dimensions of the input Rasters, but
they are not necessarily the same. For instance, the source can be smaller than
the destination. To avoid reading or writing beyond the bounds of a Raster, you
must find the dimensions common to both Rasters:

int width = Math.min(src.getWidth(), dstIn.getWidth());
int height = Math.min(src.getHeight(), dstIn.getHeight());

Because of the equations defined earlier, the composite must go through all the
pixels of the source and the destination in the area you just defined and blend
them together. To achieve this task, you could simply write two loops, one for

www.it-ebooks.info

http://www.it-ebooks.info/

176 CHAPTER 6 COMPOSITES

each row and one for each column, read the pixels by calling src.getPixel()
and dstIn.getPixel(), and perform the composition.

This approach works flawlessly but requires you to call Raster.getPixel()
two times for every pixel in the composition area, which easily amounts to sev-
eral hundreds of thousands of method invocations. You can reduce this number
and improve performance by using Raster.getDataElements() instead. This
method lets you grab an entire rectangular area of pixels at once.

Imagine we are blending a 640 × 400 picture onto a 640 × 400 graphics area: We
can either call getPixel() 512,000 times or read the Rasters line by line and
call getDataElements() only 800 times. Calling methods in an inner loop
should be avoided when possible, and getDataElements() offers a very effi-
cient way to avoid those numerous method calls. The size of the area you read
with getDataElements() is up to you. The larger the area is, the fewer calls are
necessary, but more memory will be required for each addition in the loop.

In this case, we read the Rasters line by line, a good trade-off between speed
and memory use. Now that the strategy to read the Rasters has been defined,
you can declare the data structures in which the composite will store the pixels:

// Temporary storage for the blending operation
// Stores the color components of one source pixel
int[] srcPixel = new int[4];
// Stores the color components of one destination pixel
int[] dstPixel = new int[4];
// Stores one row of the source raster
int[] srcPixelsArray = new int[width];
// Stores one row of the destination raster
int[] dstPixelsArray = new int[width];
// Stores the result of the blending
int[] result = new int[4];

The most important part of the composite is yet to be implemented. An outer
loop goes through all the rows of the composition area and stores them in
srcPixels and dstPixels. The role of the inner loop is to read all of the pix-
els stored in a row and to perform the composition. The results are stored in
dstPixelsArray and written in the dstOut Raster:

// For each row in the graphics area
for (int y = 0; y < height; y++) {
 // Reads one scanline from the input rasters
 src.getDataElements(0, y, width, 1, srcPixelsArray);
 dstIn.getDataElements(0, y, width, 1, dstPixelsArray);

www.it-ebooks.info

http://www.it-ebooks.info/

SUMMARY 177

 // For every pixel in a row
 for (int x = 0; x < width; x++) {
 // Extracts the color components
 toRGBArray(srcPixelsArray[x], srcPixel);
 toRGBArray(dstPixelsArray[x], dstPixel);

 // Performs the blending
 result[0] = Math.min(255, srcPixel[0] + dstPixel[0]);
 result[1] = Math.min(255, srcPixel[1] + dstPixel[1]);
 result[2] = Math.min(255, srcPixel[2] + dstPixel[2]);
 result[3] = Math.min(255, srcPixel[3] + dstPixel[3]);

 // Retains the result
 dstPixelsArray[x] = fromRGBArray(result);
 }
 // Writes one row in the destination raster
 dstOut.setDataElements(0, y, width, 1, dstPixelsArray);
}

Implementing a composite requires a lot of boilerplate code. If you look closely
at AddComposite and AddContext, you will notice that only four lines are really
tied to the equations that define the composite. The project BlendComposites
implements 32 composites in less than 600 lines of code by creating generic
Composite and Context classes and by defining each blending mode with the
four lines of code required to do the actual work.

Summary
Composites are difficult to understand at first but soon prove to be useful in
many situations. By creating your own composites, you can even go further than
what the teams behind the JDK imagined possible with Java 2D and easily dupli-
cate some of the most common features of graphics editing applications such as
Adobe Photoshop.

www.it-ebooks.info

http://www.it-ebooks.info/

This page intentionally left blank

www.it-ebooks.info

http://www.it-ebooks.info/

179

7
Gradients

GRAPHICS design follows trends, and a current trend is to use gradients
everywhere. Beyond the fashion, gradients are easy and versatile tools that can
be used to create advanced effects like reflections and fade-out. Because of their
versatility and ease of use, they are the most widely used Paint state of the
Graphics object.

Up to J2SE 5.0, drawing a gradient was as simple as creating a new instance of
java.awt.GradientPaint and setting it on a Graphics object. This class is
very useful but sports some limitations. For example, you can draw only linear
gradients, and you can specify only two colors. If you work with graphic design-
ers, who use advanced tools like those found in Adobe Photoshop, you might
find yourself in a difficult situation where you need to decompose a multistops
gradient into several Java 2D two-color gradients.

Note: A multistops gradient is a gradient made of more than two colors.

Java SE 6 addresses these issues with two brand new Paint implementations,
called LinearGradientPaint and RadialGradientPaint. These new gradients
open the door to a host of rendering techniques and effects and can even simplify
some of your existing code.

Two-Stops Linear Gradient
A two-stops linear gradient, or regular gradient, is an instance of java.awt.
GradientPaint, the only gradient you can safely use with J2SE 1.2 up to J2SE 5.0.

www.it-ebooks.info

http://www.it-ebooks.info/

180 CHAPTER 7 GRADIENTS

Regular gradients are normally used to mimic volumes. With carefully chosen
colors, you can easily lower a component or, on the contrary, raise it. To achieve
these effects, gradients are often designed to simulate a particular lighting condi-
tion. Mac OS X scrollbars are a good example of how to use gradients to simu-
late depth.

If you take a close look at Figure 7-1, you will notice a dark gray-to-white gradi-
ent in the scrollbar track. The dark gray at the top simulates a shadow cast by the
border of the component, creating an impression of depth.

Note: Lighting from Above. Shading such as that shown in the scrollbar track in
Figure 7-1 falls under the guideline that people typically presume a light (like the
sun) always shines from above them, not below them.

You can also create a gradient from a light color to a dark one to make a compo-
nent stand out of the window, as in Figure 7-2.

The following code example shows how to use a GradientPaint to achieve an
effect similar to Figure 7-2.

public class DepthButton extends JButton {
 public DepthButton(String text) {
 super(text);
 // Prevents Swing from painting the background
 setContentAreaFilled(false);
 }

 @Override
 protected void paintComponent(Graphics g) {
 Graphics2D g2 = (Graphics2D) g;

Figure 7-1 Mac OS X scrollbars simulate depth with gradients.

Figure 7-2 Button with simulated depth.

www.it-ebooks.info

http://www.it-ebooks.info/

TWO-STOPS LINEAR GRADIENT 181

 // Creates a two-stops gradient
 GradientPaint p;
 p = new GradientPaint(0, 0, new Color(0xFFFFFF),
 0, getHeight(), new Color(0xC8D2DE));

 // Saves the state
 Paint oldPaint = g2.getPaint();

 // Paints the background
 g2.setPaint(p);
 g2.fillRect(0, 0, getWidth(), getHeight());

 // Restores the state
 g2.setPaint(oldPaint);

 // Paints borders, text...
 super.paintComponent(g);
 }
}

DepthButton extends JButton and overrides paintComponent() to change the
background of the component. Figure 7-3 shows what the result looks like.

When you create a new GradientPaint, you must specify the coordinates and
the color at which the gradient both starts and ends. For a vertical gradient that
fills the button entirely, as in Figure 7-3, the coordinates (0, 0) and (0, button
height) are specified. A diagonal gradient can be created by using (width, height)
as the second coordinates, and you can also choose coordinates that are outside
or inside the bounds of the component. In this figure, white is the start color and
light blue is the end color.

The complete example, TwoStopsGradient, can be found on the book’s Web
site.

Two-stops linear gradients can be used for purposes other than regular painting.
You can use advanced rendering techniques that rely on gradients to add beauti-
ful effects to your application.

Figure 7-3 Swing buttons painted with a regular gradient.

ONLINE
DEMO

www.it-ebooks.info

http://www.it-ebooks.info/

182 CHAPTER 7 GRADIENTS

Special Effects with Regular Gradients
Filthy Rich Clients need more than your average components; they need details
and special effects. Reflections are one of the most widely popular effects in
Filthy Rich Clients and are, surprisingly, one of the easiest to implement. The
idea behind reflections is to enhance the realism of the user interface by mimick-
ing reflective materials such as shiny plastic and polished metals.

Aerith, an example of a Filthy Rich Client whose source code can be found at
http://aerith.dev.java.net, uses reflections in several places to give a more modern
and realistic look to the user interface. These reflections can be seen in Figure 7-4.

To achieve the same effect, you need a GradientPaint, an AlphaComposite,
and a bit of theory. Creating a reflection is a three-step process:

1. Render the subject as you normally would.

2. Render an upside-down clone of the subject, as if it were seen in a mirror
on the ground.

3. Mask portions of the clone to make it fade out as it gets farther from the
original subject.

In effect, you want to paint a gradient not with colors but with an arbitrary object.
Although it is not possible to perform such an operation directly, you can cheat
with an alpha mask and the appropriate AlphaComposite, as shown in Figure 7-5.

Figure 7-4 Aerith paints reflections to enhance realism.

www.it-ebooks.info

http://aerith.dev.java.net
http://www.it-ebooks.info/

SPECIAL EFFECTS WITH REGULAR GRADIENTS 183

An AlphaComposite can be used to blend the pixel values of a source, in this
case the alpha mask, with the pixel values of a destination, the mirrored clone
of the subject. The idea is to blend the subject with a gradient that goes from a
fully opaque color to a fully transparent color. Therefore, we need a composit-
ing rule that mixes the alpha value of the source and the destination. Luckily,
AlphaComposite.DstIn matches exactly our needs. Its equation is the following:

Ar = Ad * As

As in our discussion of composites in Chapter 6, “Composites,” Ar represents the
resulting alpha value, Ad the alpha value of the destination, and As the alpha
value of the source. Imagine blending an alpha mask with a fully opaque destina-
tion. Following this rule, painting an opaque pixel from the alpha mask (As = 1)
onto the destination results in a fully opaque pixel (Ar = 1 * 1 = 1). By contrast,
painting a transparent pixel from the alpha mask (As = 0) onto the destination
results in a fully transparent pixel (Ar = 1 * 0 = 0). Thus, each pixel of the desti-
nation gets an alpha value from the mask, creating the desired effect. Since the
alpha channels are multiplied together, it also works with translucent destina-
tions, as in Figure 7-5. Once you know which AlphaComposite to use, writing
the code becomes quite easy:

private BufferedImage createReflection(BufferedImage image) {
 int height = image.getHeight();

 BufferedImage result = new BufferedImage(image.getWidth(),
 height * 2, BufferedImage.TYPE_INT_ARGB);
 Graphics2D g2 = result.createGraphics();

continued

Figure 7-5 The three steps required for a reflection.

www.it-ebooks.info

http://www.it-ebooks.info/

184 CHAPTER 7 GRADIENTS

 // Paints original image
 g2.drawImage(image, 0, 0, null);

 // Paints mirrored image
 g2.scale(1.0, -1.0);
 g2.drawImage(image, 0, -height - height, null);
 g2.scale(1.0, -1.0);

 // Move to the origin of the clone
 g2.translate(0, height);

 // Creates the alpha mask
 GradientPaint mask;
 mask = new GradientPaint(0, 0, new Color(1.0f, 1.0f,
 1.0f, 0.5f),
 0, height / 2, new Color(1.0f, 1.0f, 1.0f, 0.0f));
 g2.setPaint(mask);

 // Sets the alpha composite
 g2.setComposite(AlphaComposite.DstIn);

 // Paints the mask
 g2.fillRect(0, 0, image.getWidth(), height);

 g2.dispose();
 return result;
}

This method takes a BufferedImage as input and returns another BufferedImage
containing the original one and its reflection. In this code, we first create a new,
empty, translucent BufferedImage with twice the height of the original picture
so that the reflection will fit below the original.

After copying the original picture onto the new image, we paint the mirrored
subject. This operation is a simple matter of using a negative scale transform on
the y-axis (see Chapter 3, “Graphics Fundamentals,” for more on transforms).
By setting this transform on the Graphics context, every pixel drawn at the top
will appear at the bottom, and so on down the picture as each pixel is inverted
vertically. Be aware that the coordinates are also inverted, as you can see in the
values used by the drawImage() call.

To paint the clone below the original subject, you must paint it at the y-coordinate
of value (–height – height). To facilitate the next steps, we reset the scale trans-
form and translate the origin to the position of the clone.

Applying the alpha mask is a simple matter of setting the appropriate AlphaComposite
on the Graphics context and painting a gradient on top of the clone. The gradient

www.it-ebooks.info

http://www.it-ebooks.info/

SPECIAL EFFECTS WITH REGULAR GRADIENTS 185

is a regular two-stops gradient, which starts from the origin and goes to half of the
height of the clone. You can play with the gradient’s coordinates to change the dis-
tance of the reflection. The most important thing is to choose a transparent final
color with an alpha channel value of 0. The alpha channel of the starting color is
arbitray; just avoid choosing a fully opaque color because it would simulate a per-
fect mirror, something we don’t find very often in the real world. Also note that the
actual color of the gradient does not matter.

Last but not least, we fill a rectangle over the clone, with the DstIn composite
and the alpha mask set on the Graphics context. Be sure to cover the entire
clone, or you will get artifacts, since any part of the clone lying outside the gra-
dient will remain unaffected. You can test the result of this method by running
the example entitled Reflection, found on the book’s Web site. You should see
a window similar to Figure 7-6.

The final effect seen Figure 7-6 is achieved with the following code:

BufferedImage image = null;

@Override
protected void paintComponent(Graphics g) {
 if (image == null) {
 try {

continued

ONLINE
DEMO

Figure 7-6 Example of a reflection created with AlphaComposite.DstIn.

www.it-ebooks.info

http://www.it-ebooks.info/

186 CHAPTER 7 GRADIENTS

 image = ImageIO.read(getClass().getResource(
 "Mirror Lake.jpg"));
 image = createReflection(image);
 } catch (IOException ex) {
 }
 }

 g.drawImage(image, 0, 0, null);
}

After loading the picture, the application calls createReflection(), which
returns the original picture and its reflection in a single BufferedImage.

Tip: The DstIn composite can be used for any situation in which you want to fade
out an object. Reflection is probably the best-known case of fade-out, but it is not
the only one.

Figure 7-7 shows the same technique used to fade out the content of a list, indi-
cating the user that there are other items on both sides (note the fade effect on the
extreme right and left of the picture).

Tip: Work on Offscreen Images. The technique just described works only with
translucent destinations. Therefore, you should not attempt to perform the same
operations directly on a Swing component, because Swing’s back buffer is opaque.
Doing so would lead to unpredictable results, dependent on the underlying imple-
mentation of the Java platform. This restriction is related to the AlphaComposite
rules’ reliance on having alpha in the destination surface, as discussed in Chapter 3.

Gradient and AlphaComposite can be used together to create very interesting
effects that will help you build your own Filthy Rich Clients. Take the time to
learn how to use both of these classes and you will soon get excellent feedback
from your users.

Figure 7-7 The fade-out on the sides uses AlphaComposite.DstIn.

www.it-ebooks.info

http://www.it-ebooks.info/

MULTISTOPS LINEAR GRADIENT 187

Multistops Linear Gradient
The GradientPaint supplied in Java releases J2SE 1.2 through J2SE 5.0 is use-
ful but lacks a very convenient feature: the ability to specify more than two col-
ors at once. A current trend among graphics designers is the use of dual
gradients. Such effects can be seen in some Windows XP themes, in Windows
Vista, on Mac OS X, and on most Web 2.0 Web sites. Figure 7-8 shows an exam-
ple of a dual gradient.

Dual gradients are used for their ability to mimic shiny, highlighted materials.
Multistops linear gradients can also be used to draw better-looking gradients.
Graphic designers often use them because they are extremely easy to create in
applications like Adobe Photoshop. This means that whenever you have to
implement a visual design, you may need to write the Java code to reproduce a
multistops gradient. Although it is possible prior to Java SE 6, it is quite a pain.

Let’s try to implement the example of Figure 7-8 with J2SE 5.0. To do so, we use
the java.awt.GradientPaint class whose constructor is defined as follows:

public GradientPaint(float x1, float y1, Color color1,
 float x2, float y2, Color color2)

As shown by this constructor, a gradient is made of two locations and two colors.
The gradient is the interpolation of color1 and color2 between the start point
and the end point. Here is the code that creates the effect seen in Figure 7-8.

GradientPaint p;

p = new GradientPaint(0, 0, new Color(0x63a5f7),
 0, 10, new Color(0x3799f4));
g2.setPaint(p);
g2.fillRect(0, 0, getWidth(), getHeight() / 2);

p = new GradientPaint(0, 10, new Color(0x2d7eeb),
 0, 20, new Color(0x30a5f9));
g2.setPaint(p);
g2.fillRect(0, getHeight() / 2, getWidth(),getHeight() / 2);

Gradient 2
Gradient 1

Figure 7-8 Dual-gradient effects are common among modern applications and Web sites.

www.it-ebooks.info

http://www.it-ebooks.info/

188 CHAPTER 7 GRADIENTS

The component has an overall height of 20 pixels. An initial gradient is painted
from the top to the middle of the component: from (0, 0) to (0, 10). Then a sec-
ond gradient is painted from the middle of the component to the bottom: from (0,
10) to (0, 20). Drawing these two gradients makes the code more difficult to read
and, worse, harder to maintain. If you wanted to change the length of both gradi-
ents, you would have to change four lines of code. Using constants to define
those lengths would not help much, since you would likely end up with many
similar constants.

Java SE 6 offers a better solution with the class java.awt.LinearGradientPaint.
It works in a very similar way to GradientPaint; you define the coordinates of
the start and end points of the gradient. The difference lies in the number of
colors you can specify and how you define their positions. The constructor of
LinearGradientPaint takes two arrays, one of floats and one of colors:

public LinearGradientPaint(float startX, float startY,
 float endX, float endY,
 float[] fractions,
 Color[] colors)

The first one contains the position, in percentage of the total length, of each
color used in the gradient. Each position/color couple is called a stop. This
makes it easier to write the previous example:

LinearGradientPaint p;

p = new LinearGradientPaint(0.0f, 0.0f, 0.0f, getHeight(),
 new float[] { 0.0f, 0.499f, 0.5f, 1.0f },
 new Color[] { new Color(0x63a5f7),
 new Color(0x3799f4),
 new Color(0x2d7eeb),
 new Color(0x30a5f9) });
g2.setPaint(p);
g2.fillRect(0, 0, getWidth(), getHeight());

The gradient still spans from (0, 0) to (0, 20) but only one rectangle is filled this
time. The first color used in the dual gradient is positioned at the top, at 0 percent
of the overall length; two others are put in the middle, at 49.9 percent and 50 per-
cent; and the last one is at the bottom, at 100 percent. Note that you cannot put
two colors at the exact same position; we therefore use the values 49.9% and
50% for the middle colors. This code not only is clearer than the previous one
but also runs faster, since it avoids changing the state of the Graphics context
twice when calling setPaint().

www.it-ebooks.info

http://www.it-ebooks.info/

RADIAL GRADIENT 189

The full example is available on the book’s Web site in the project
MultiStopsGradient.

Tip: Multistops Gradients for J2SE 5.0. If you desperately need a multistops lin-
ear gradient in a project targeted at J2SE 5.0 or earlier, one alternative is to down-
load Batik, an Apache SVG toolkit. You can achieve the same results with this tool-
kit because it also contains a class called LinearGradientPaint, which works
exactly as its equivalent in Java SE 6.

Radial Gradient
Until Java SE 6, Java did not offer any way to create radial, or circular, gradients.
This kind of gradient is especially useful for drawing specular highlights (bright
spots of light that appear on shiny objects when illuminated).

Specular highlights are important because they provide a strong visual clue for
the shape of an object. They are most often used to create images of spheres.
Illuminated spheres are yet another popular trend in current graphic design. Mac
OS X and Vista provide many examples of this effect. Figure 7-9 shows how
specular highlights can be used to paint spheres.

Try as you might, you will never be able to easily achieve the same result with
any JDK prior to Java SE 6. To implement this drawing, you have to use a new
class in Java SE 6 called java.awt.RadialGradientPaint. Just like the other
new class, LinearGradientPaint, RadialGradientPaint is a multistops gradi-
ent. The example in Figure 7-9 is actually composed of three different radial gra-
dients, as shown in Figure 7-10.

A radial gradient is a bit harder to manipulate than a linear gradient because it
provides more control over the drawing. Besides the color stops, which are

ONLINE
DEMO

Figure 7-9 Specular highlights can be used to draw spheres.

www.it-ebooks.info

http://www.it-ebooks.info/

190 CHAPTER 7 GRADIENTS

defined in the same manner as those in LinearGradientPaint, you need to
define at least a center point and a radius:

public RadialGradientPaint(Point2D center,
 float radius,
 float[] fractions,
 Color[] colors)

To draw the sphere, the first step is to fill a circle with a radial gradient:

// The gradient is centered in the sphere
p = new RadialGradientPaint(new Point2D.Double(
 getWidth() / 2.0,
 getHeight() / 2.0), getWidth() / 2.0f,
 new float[] { 0.0f, 1.0f },
 new Color[] { new Color(6, 76, 160, 127),
 new Color(0, 0, 0, 204) });
g2.setPaint(p);
g2.fillOval(0, 0, getWidth(), getHeight());

The center and the radius of the circle are the same as the center of the gradient
in this example. As defined here, the radial gradient goes from blue in the center
to black on the edges.

The second radial gradient of the sphere is used to paint a slight highlight at the
bottom. This step is interesting because the gradient is not circular, but elliptic.
Since RadialGradientPaint lets you define only a center and a radius, the only
way to create an ellipse, rather than a circle, is to use an AffineTransform with
the following constructor:

Figure 7-10 The sphere in Figure 7-9 are drawn with these three successive radial
gradients.

www.it-ebooks.info

http://www.it-ebooks.info/

RADIAL GRADIENT 191

public RadialGradientPaint(Point2D center,
 float radius,
 Point2D focus,
 float[] fractions,
 Color[] colors,
 MultipleGradientPaint.CycleMethod cycleMethod,
 MultipleGradientPaint.ColorSpaceType colorSpace,
 AffineTransform gradientTransform)

This gradient is much more complicated than the previous one. In addition to the
center, the radius and the color stops, you must define the focus point, the cycle
mode, the color space, and an AffineTransform.

The focus point defines the position at which the gradient actually starts. When the
focus is not defined, as was the case in the first gradient, it is set at a default of the
center point. The RadialGradientPaint interpolates the colors in a circle. The
color of each pixel depends on its distance from the focus point. Figure 7-11 shows
an oval filled with a radial gradient whose focus point is different from its center.

The cycle mode allows you to repeat (RadialGradientPaint.CycleMethod.
REPEAT) or reflect (RadialGradientPaint.CycleMethod.REFLECT) the colors
when the area covered by the gradient is larger than the radius. The default cycle
mode is RadialGradientPaint.CycleMethod.NO_CYCLE, which does nothing.

The color space defines how the colors are interpolated between the stops. You
can choose between a linear space and the sRGB space. The latter is the default
and should be used most of the time.

The last parameter of the constructor is an AffineTransform that can be used to
alter the shape of the circular gradient. It lets you, for instance, scale or rotate the
gradient.

Oval filled

Gradient
Gradient center

Focus point

Figure 7-11 Anatomy of a radial gradient.

www.it-ebooks.info

http://www.it-ebooks.info/

192 CHAPTER 7 GRADIENTS

The following code shows how to use these parameters to create the gradient
detailed in Figure 7-11.

// The gradient is horizontally centered, located toward
// the bottom. The focus point is set lower than the
// center of the gradient
p = new RadialGradientPaint(
 new Point2D.Double(getWidth() / 2.0,
 getHeight() * 1.5),
 getWidth() / 2.3f,
 new Point2D.Double(getWidth() / 2.0,
 getHeight() * 1.75 + 6),
 new float[] { 0.0f, 0.8f },
 new Color[] { new Color(64, 142, 203, 255),
 new Color(64, 142, 203, 0) },
 RadialGradientPaint.CycleMethod.NO_CYCLE,
 RadialGradientPaint.ColorSpaceType.SRGB,
 AffineTransform.getScaleInstance(1.0, 0.5));
g2.setPaint(p);
g2.fillOval(0, 0, getWidth(), getHeight());

In this example, the focus is set at the bottom of the sphere to simulate lighting
from below. The scaling AffineTransform is defined to squeeze the gradient ver-
tically and make it looks like an ellipse. By dividing the height by 2, using a scale
factor of 0.5 on the y-axis, the ellipse becomes two times wider than it is tall.

The third and last gradient composing the sphere is set up to simulate a specular
highlight to emphasize the 3D appearance of the drawing. To do this, we define a
focus point located in the upper-left region of the sphere:

p = new RadialGradientPaint(
 new Point2D.Double(getWidth() / 2.0,
 getHeight() / 2.0),
 getWidth() / 1.4f,
 new Point2D.Double(45.0, 25.0),
 new float[] { 0.0f, 0.5f },
 new Color[] { new Color(1.0f, 1.0f, 1.0f, 0.4f),
 new Color(1.0f, 1.0f, 1.0f, 0.0f) },
 RadialGradientPaint.CycleMethod.NO_CYCLE);
g2.setPaint(p);
g2.fillOval(0, 0, getWidth(), getHeight());

You can play with the distance and the opacity of the gradient to make the sphere
look more like plastic (opaque gradient) or glass (translucent gradient).

This demo is available on the Web site in the project called RadialGradient.ONLINE
DEMO

www.it-ebooks.info

http://www.it-ebooks.info/

OPTIMIZING GRADIENTS 193

Optimizing Gradients
In most situations, Java 2D paints gradients very quickly—so quickly, in fact,
that you needn’t bother optimizing your drawing code.1 There are some cases,
however, in which gradient performance will haunt you. Drawing a gradient is
an expensive operation when you are filling a large area. Actually, any large
drawing is expensive, but gradients require some involved calculations to com-
pute the colors, and gradients can become a source of problems if your applica-
tion needs a lot of processing power to draw other interesting things, like
animations.

Aerith, the first application christened as a Filthy Rich Client, is a great example
of why gradients might need to be optimized. Indeed, its background is a huge,
full-frame gradient, as show in Figure 7-12.

When developing this application, our team ran into some minor performance
issues whose root cause was soon identified as being the background gradient.
Aerith is a window of about 700 × 500 pixels, and drawing a gradient on such a
large area requires many CPU cycles to compute and draw all of the different
colors.

Caching the Gradient
The solution used to work around this problem was to turn the gradient into an
image and paint only that image.2 Caching a gradient that way is very easy and

1. Life is sweet when smart people at nice companies do all the work for you.
2. This is a great example of the intermediate image performance tip, which is covered in Chapter 3.

Figure 7-12 Aerith draws a huge gradient on its backdrop.

www.it-ebooks.info

http://www.it-ebooks.info/

194 CHAPTER 7 GRADIENTS

can help when you need to squeeze out as much performance as you can from
your code:

private BufferedImage gradientImage = null;
@Override
protected void paintComponent(Graphics g) {
 if (gradientImage == null ||
 gradientImage.getWidth() != getWidth() ||
 gradientImage.getHeight() != getHeight()) {
 gradientImage = new BufferedImage(getWidth(), getHeight(),
 BufferedImage.TYPE_INT_RGB);
 Graphics2D g2d = (Graphics2D) gradientImage.getGraphics();
 g2d.setPaint(backgroundGradient);
 g2d.fillRect(0, 0, getWidth(), getHeight());
 g2d.dispose();
 }

 g.drawImage(gradientImage, 0, 0, null);
}

The first time the paintComponent() method is called, this code creates a new
BufferedImage the size of the enclosing frame and draws the gradient in it.
Every successive painting of the background will copy this image, which is a
very fast operation even at that size. Whenever the frame is resized, the current
cached image is discarded and recreated with the appropriate dimension.

Caching a gradient in a picture outperforms a direct gradient drawing by a factor
of more than 3,200 on Windows. The only caveat is the large memory consump-
tion. The gradient shown in the screenshot in Figure 7-12 takes about 500kb in
memory. Depending on the number of gradients you plan draw and the amount
of memory you are willing to spend, this memory consumption may or may not
suit you.3 But there is another solution, which is both fast and memory friendly,
although it works for only two kinds of gradients.

Smarter Caching
When you draw a vertical (or horizontal) gradient, every column (or row) is the
same as the previous one. Given this fact, is it really necessary to store all the
duplicates in memory in a big fat image? It is not, and the solution is quite sim-

3. Although filthy, it does not mean your rich clients can forget about good behavior and pleasing
manners. Save the memory!

www.it-ebooks.info

http://www.it-ebooks.info/

OPTIMIZING GRADIENTS 195

ple. Whenever you draw an image on a Graphics surface, you can ask Java 2D
to stretch it at the same time by supplying its new dimensions. This means we
can optimize our gradient by painting it in a single-column (or row) image and
then stretching that image to cover the whole target area:

private BufferedImage gradientImage = null;

protected void paintComponent(Graphics g) {
 if (gradientImage == null ||
 gradientImage.getHeight() != getHeight()) {
 gradientImage = GraphicsUtil.
 createCompatibleImage(1, getHeight());
 Graphics2D g2d = (Graphics2D) gradientImage.getGraphics();
 g2d.setPaint(backgroundGradient);
 g2d.fillRect(0, 0, 1, getHeight());
 g2d.dispose();
 }

 g.drawImage(gradientImage, 0, 0, getWidth(),
 getHeight(), null);
}

This example is very similar to the previous one except it creates an image only
one pixel wide. The appropriate width is set in the call to drawImage(). Instead
of using 500kb of RAM, the application now uses only 700 bytes! Best of all, the
speed is 800 times faster than the regular gradient on Windows.

Tip: Profile before Optimizing. These optimization techniques are very tempting
but must be handled with care. The speed improvement numbers given to illustrate
our purpose are true only for Swing applications running on Windows XP with the
default rendering pipeline (DirectDraw, as of Java SE 6).

On Mac OS X, using images gives a speed increase of only four times faster.
On Windows, with the OpenGL pipeline enabled (with the command-line flag
–Dsun.Java2d.opengl=true), there is no speed difference at all between the three
techniques.

Optimization with Cyclic Gradients
If you want to draw a nonhorizontal, nonvertical gradient and can’t afford the
memory consumption induced by the caching of a large gradient, there is one
last trick you can use. Java 2D always creates acyclic gradients by default. This

www.it-ebooks.info

http://www.it-ebooks.info/

196 CHAPTER 7 GRADIENTS

feature is very important when you fill a primitive larger than the area covered
by the gradient paint. Take a look at the following example:

@Override
protected void paintComponent(Graphics g) {
 Graphics2D g2 = (Graphics2D) g.createGraphics();
 g2.setPaint(new GradientPaint(0.0f, 0.0f, Color.WHITE,
 0.0f, getHeight() / 2.0f, Color.DARK_GRAY);
 g2.fillRect(0, 0, getWidth(), getHeight());
}

In this painting code, a rectangle covering the whole graphics area is filled with a
gradient with a height only half the total height of the component. If you execute
this code, you will see that Java 2D paints the gradient from (0, 0) up to (0,
height/2) and fills the remaining pixels with the last color of the gradient, a dark
gray. To do so, Java 2D must constantly check whether the current pixel lies out-
side of the gradient area. This is a simple test, but performed against thousands
of pixels, it can take significant time.

Instead of repeating the last color, a cyclic gradient would be repeated until the
whole area is filled. In our example, you would see the same gradients twice: one
between (0, 0) and (0, height/2) and the other between (0, height/2) and (0, height).

Painting a cyclic gradient is much faster because Java 2D does not have to check
whether the current pixel is outside the gradient area. Because the gradient is
constantly cycling, the GradientPaint implementation has some clever code to
generate the correct color that never needs tests to deal with boundary condi-
tions. Since conditional tests in an inner rendering loop cause performance prob-
lems, the cyclic code can run much faster by avoiding these tests.

This means you can improve performance by using cyclic gradients in your
applications. Be aware, though, that cyclic gradients can replace acyclic gradi-
ents only when the gradient area coincides with the bounds of the primitive you
are drawing. Finally, creating a cyclic gradient is very easy, no matter what kind
of gradient you are using:

// Cyclic gradient paint
new GradientPaint(new Point(0, 0), Color.WHITE,
 new Point(0, getHeight(), Color.DARK_GRAY, true);

// Cyclic linear gradient paint
new LinearGradientPaint(new Point(0, 0),
 new Point(0, getHeight()),
 new float[] { 0.0f, 1.0f }, new Color[] {
 Color.WHITE, Color.DARK_GRAY },
 MultipleGradientPaint.CycleMethod.REPEAT);

www.it-ebooks.info

http://www.it-ebooks.info/

OPTIMIZING GRADIENTS 197

The boolean parameter of GradientPaint constructors must be set to true
to define a cyclic gradient, false otherwise. LinearGradientPaint and
RadialGradientPaint offer more control over this behavior; you can choose
from among three options: acyclic, repeated cyclic, and reflected cyclic. These
behaviors are defined by the enumeration called MultipleGradientPaint.
CycleMethod. CycleMethod.REFLECT is similar to a cyclic GradientPaint,
whereas CycleMethod.REPEAT starts the gradient over each time it gets repeated.
No matter which one you choose, the result will be faster than regular acyclic
gradients.

Performance Tip: Donald Knuth is famous for, among other things, a very impor-
tant statement: “Premature optimization is the root of all evil.” Keep this in mind
when trying to optimize your gradients. Are your gradients big enough to justify the
added complexity to your code? Does your application repaint those gradients often
enough to merit the effort? Will the user notice the speed difference?

The more you optimize your code, the messier it gets, and the messier it gets, the
more expensive it is to maintain.

The gradients offered by the Java platform are very powerful tools to create both
modern and good-looking user interfaces. The new gradient classes introduced
in Java SE 6 not only make your code easier to read and maintain but also bring
you new capabilities with which you can create even more impressive graphical
effects.

www.it-ebooks.info

http://www.it-ebooks.info/

This page intentionally left blank

www.it-ebooks.info

http://www.it-ebooks.info/

199

8
Image Processing

IMAGE-PROCESSING tools such as Adobe Photoshop and The GIMP offer a
wide variety of filters you can apply on your pictures to create various special
effects (see Figure 8-1). When you are designing a user interface, it is very
tempting to use those effects. For instance, you could use a filter to blur an out-
of-focus element in the UI. You could also increase the brightness of an image as
the user moves the mouse over a component.

Figure 8-1 Applications like Adobe Photoshop have advanced
image-processing capabilities.

www.it-ebooks.info

http://www.it-ebooks.info/

200 CHAPTER 8 IMAGE PROCESSING

Image Filters
Despite the impressive-looking results, image processing is not a difficult task to
implement. Processing an image, or applying a filter, is just a matter of calculat-
ing a new color for each pixel of a source image. The information required to
compute the new pixels varies greatly from one filter to another. Some filters, a
grayscale filter for instance, need only the current color of a pixel; other filters,
such as a sharpening filter, may also need the color of the surrounding pixels;
still other filters, such as a rotation filter, may need additional parameters.

Since the introduction of Java 2D in J2SE 1.2, Java programmers have access to a
straightforward image-processing model. You might have learned or read about the
old producer-consumer model of Java 1.1. If you did, forget everything you know
about it because the new model is much easier and more versatile. Java 2D’s
image-processing model revolves around the java.awt.image.BufferedImage
class and the java.awt.image.BufferedImageOp interface.

A BufferedImageOp implementation takes a BufferedImage as input, called the
source, and outputs another BufferedImage, called the destination, which is
altered according to specific rules. Figure 8-2 shows how a blur filter produces
the final image.

While the JDK does not offer concrete image filters, it does provide the founda-
tions for you to create your own. If you need a sharpening or blurring filter, for
example, you must know how to provide parameters to a ConvolveOp filter. We
teach you such techniques in this chapter. Before we delve further into image-
processing theory, let’s see how we can use a BufferedImageOp to process an
image.

BufferedImage
The source

BufferedImageOp
The filter

BufferedImage
The destination

Figure 8-2 Filtering an image with Java 2D.

www.it-ebooks.info

http://www.it-ebooks.info/

PROCESSING AN IMAGE WITH BUFFEREDIMAGEOP 201

Processing an Image with
BufferedImageOp

Filtering a BufferedImage can be done onscreen at painting time or offscreen.
In both cases, you need a source image and an operation, an instance of
BufferedImageOp. Processing the image at painting time is the easiest approach;
here is how you might do it:

// createImageOp returns a useful image filter
BufferedImageOp op = createImageOp();
// loadSourceImage returns a valid image
BufferedImage sourceImage = loadSourceImage();

@Override
protected void paintComponent(Graphics g) {
 Graphics2D g2 = (Graphics2D) g;
 // Filter the image with a BufferedImageOp, then draw it
 g2.drawImage(sourceImage, op, 0, 0);
}

You can filter an image at painting time by invoking the drawImage(BufferedImage,
BufferedImageOp, int, int) method in Graphics2D that filters the source image
and draws it at the specified location.

Warning: Use Image Filters with Care. The drawImage(BufferedImage,

BufferedImageOp, int, int) method is very convenient but often has poor runtime
performance. An image filter is likely to perform at least a few operations for every
pixel in the source image, which easily results in hundreds of thousands, or even mil-
lions, of operations on medium or large images. Besides, this method might have to
create a temporary image, which takes time and memory. For every filter you want
to use, you will have to see whether the runtime performance is acceptable or not.

Here is an example of how to preprocess an image by doing all the operations
offscreen:

BufferedImageOp op = createImageOp();
BufferedImage sourceImage = loadSourceImage();
BufferedImage destination;

destination = op.filter(sourceImage, null);

www.it-ebooks.info

http://www.it-ebooks.info/

202 CHAPTER 8 IMAGE PROCESSING

Calling the filter() method on a BufferedImageOp triggers the processing of
the source image and the generation of the destination image. The second
parameter, set to null here, is actually the destination image, which, when set to
null, tells the filter() method to create a new image of the appropriate size.
You can, instead, pass a non-null BufferedImage object as this parameter to
avoid creating a new one on each invocation. Doing so can save performance by
reducing costly image creations.

The following code example shows how you can optimize a routine applying the
same filter on several images of the same size:

BufferedImageOp op = createImageOp();
BufferedImage[] sourceImagesArray = loadImages();
BufferedImage destination = null;

for (BufferedImage sourceImage : sourceImagesArray) {
 // on the first pass, destination is null
 // so we need to retrieve the reference to
 // the newly created BufferedImage
 destination = op.filter(sourceImage, destination);
 saveImage(destination);
}

After the first pass in the loop, the destination will be non-null and filter()
will not create a new BufferedImage when invoked. By doing so, we also make
sure that the destination is in a format optimized for the filter, as it is created by
the filter itself.

Processing an image with Java 2D is an easy task. No matter which method you
choose, you will need to write only one line of code. But we haven’t seen any con-
crete BufferedImageOp yet and have just used an imaginary createImageOp()
method that was supposedly returning a useful filter. As of Java SE 6, the JDK
contains five implementations of BufferedImageOp we can rely on to write
our own filters: AffineTransformOp, ColorConvertOp, ConvolveOp, LookupOp,
and RescaleOp.

You can also write your own implementation of BufferedImageOp from scratch
if the JDK does not fulfill your needs. Before learning how to write your own,
let’s take a closer look at what the JDK has to offer. Each filter we investigate
will be applied to the sample picture shown in Figure 8-3 to give you a better
idea of the result.

The complete source code for all the examples can be found on this book’s Web
site in the project named ImageOps.

ONLINE
DEMO

www.it-ebooks.info

http://www.it-ebooks.info/

AFFINETRANSFORMOP 203

AffineTransformOp
An AffineTransformOp is a geometry filter. It does not work on the actual color
of the pixels but on the shape of the picture. As its name suggests, however, it is
not meant to perform any kind of geometry transformation. Instead, it is limited
to linear mapping from 2D coordinates in the source image to 2D coordinates in
the destination image.

This kind of filter is created with an AffineTransform instance, which you
should be familiar with if you have worked with the Graphics2D class (this class
is also discussed in Chapter 3, “Graphics Fundamentals”). An AffineTransform
can be used to rotate, scale, translate, and shear objects in a 2D space.

The following code illustrates how to divide the size of an image by two using an
AffineTransformOp:

BufferedImage dstImage = null;
AffineTransform transform =
 AffineTransform.getScaleInstance(0.5, 0.5);
AffineTransformOp op = new AffineTransformOp(transform,
 AffineTransformOp.TYPE_BILINEAR);
dstImage = op.filter(sourceImage, null);

The AffineTransformOp constructor used in this example takes two parameters:
an AffineTransform, in this case a scale operation of 50 percent on both axes,

Figure 8-3 The image used in our filter examples.

www.it-ebooks.info

http://www.it-ebooks.info/

204 CHAPTER 8 IMAGE PROCESSING

and an interpolation type, which is equivalent to the interpolation rendering hint
you can find in the RenderingHints class (see Chapter 3). You can also pass a
RenderingHints instance instead of the interpolation type, in which case the
interpolation rendering hint will be used.

Figure 8-4 shows the result of our scaling operation.

ColorConvertOp
This BufferedImageOp implementation performs a pixel-by-pixel color conver-
sion of the source image into the destination image. This particular image-
processing operation has an interesting feature: It transforms a given pixel from
one color model to another. To do this, the filter needs the color value of only this
single pixel, which means that it is possible to use the same image as both the
source and the destination.

Converting an image from one color model to another has little practical use if
you are not building an advanced imaging tool. And it is definitely useless if
terms like “CMYK,” “sRGB,” and “Adobe RGB 1998 color profile” mean nothing
to you. Color spaces are very useful, but describing them and their applications
goes way beyond the scope of this book. Even so, we can use a ColorConvertOp
to create something more basic and potentially useful to us: a grayscale version
of a source image.

Figure 8-4 The size of the original image is reduced by 50 percent with an
AffineTransformOp.

www.it-ebooks.info

http://www.it-ebooks.info/

COLORCONVERTOP 205

You first need to create a ColorSpace instance that represents the color model to
which you want to convert your image. A ColorSpace can be instantiated by
invoking ColorSpace.getInstance(int) and passing one of the five following
constants:

ColorSpace.CS_CIEXYZ
ColorSpace.CS_GRAY
ColorSpace.CS_LINEAR_RGB
ColorSpace.CS_PYCC
ColorSpace.CS_sRGB

You might have already guessed which one is best suited to our purpose of per-
forming a grayscale conversion:

BufferedImage dstImage = null;
ColorSpace colorSpace = ColorSpace.getInstance(
 ColorSpace.CS_GRAY);
ColorConvertOp op = new ColorConvertOp(colorSpace, null);
dstImage = op.filter(sourceImage, null);

Similar to AffineTransformOp, ColorConvertOp can use a set of RenderingHints
to control the quality of the color conversion and the dithering. Figure 8-5 shows
the result of the our color conversion.

Last but not least, it is important to know that performing such a conversion on an
image may make it incompatible with your graphics display hardware, thus hurt-
ing the performance if you need to paint the filtered image to the Swing window.

Figure 8-5 ColorConvertOp can be used to create a grayscale version of an image.

www.it-ebooks.info

http://www.it-ebooks.info/

206 CHAPTER 8 IMAGE PROCESSING

You may want to convert the image to be a compatible image instead for general
usage. See Chapter 3 for more information.

ConvolveOp
The ConvolveOp is the most complicated BufferedImageOp but also the most
versatile. It is the only BufferedImageOp you should master and know by heart.
A ConvolveOp is used to perform a convolution from the source image to the
destination. If you never took any math courses, or more likely, if you forgot
everything about what you learned during those classes, a convolution is a spa-
tial operation that computes the destination pixel by multiplying the source pixel
and its neighbors by a convolution kernel.1 Don’t be frightened: You will soon
understand what this gobbledygook means.

Any convolution operation relies on a convolution kernel, which is just a matrix
of numbers. Here is an example:

The kernel defined here represents a 3 × 3 matrix of floating-point numbers.
When you perform a convolution operation, this matrix is used as a sliding mask
over the pixels of the source image. For instance, to compute the result of the
convolution for a pixel located at the coordinates (x, y) in the source image, the
center of the kernel is positioned at these coordinates. In the case of a 3 × 3 ker-
nel, here are the coordinates, in the source image, of the pixels that each corre-
sponding kernel value is applied to:

1. And if this does not make sense to you, consider the mathematical definition from the Wikipedia:
“Convolution is a mathematical operator which takes two functions, f and g, and produces a third
function that in a sense represents the amount of overlap between f and a reversed and translated
version of g.” At least my version talks about pixels.

kernel
1/9 1/9 1/9

1/9 1/9 1/9

1/9 1/9 1/9

=

kernel coordinates
x 1, y– 1– x, y 1– x 1, y 1–+

x 1, y– x, y x 1+ , y

x 1, y– 1+ x, y 1+ x 1, y 1+ +

=

www.it-ebooks.info

http://www.it-ebooks.info/

CONVOLVEOP 207

To compute the value of the destination pixel at (x, y), Java 2D multiplies the
kernel values with their corresponding color values in the source image. Imagine
a 3 × 3 white image with a single black pixel in its center, as suggested in
Figure 8-6.

To convolve the black pixel with our 3 × 3 kernel, we must start by placing the
matrix over the pixels, as shown in Figure 8-7.

Figure 8-6 A black pixel surrounded by white pixels. The numbers show the RGB
value of each pixel.

Figure 8-7 Each color value is multiplied by the corresponding value of the kernel.

www.it-ebooks.info

http://www.it-ebooks.info/

208 CHAPTER 8 IMAGE PROCESSING

Now we can compute all the multiplications, add up the results, and get the color
value of the destination pixel:

The destination pixel is therefore a light gray; its RGB value is (227, 227, 227),
or #E3E3E3. By now, you might have guessed what this kernel does: It replaces
each pixel by the average color of its surroundings. Such a convolution operation
is commonly known as a blur. We discuss blurring filters in more detail in Chap-
ter 16, “Static Effects.”

Constructing a Kernel
There are no particular restrictions about the size and contents of the kernels you
can use with Java 2D. However, you should be aware of several important char-
acteristics of kernels.

First, the values of a kernel should add up to 1.0 in the typical case, as in the pre-
vious example where all nine entries have the value 1/9. If these values do not
add up to 1.0, the luminosity of the picture will not be preserved. This can, how-
ever, be turned to your advantage. For instance, you can increase the luminosity
of a picture by 10 percent with a 1 × 1 kernel containing the value 1.1. Similarly,
you can darken a picture by 10 percent with a 1 × 1 kernel containing the value
0.9. When dealing with larger kernels, the sum of the values defines the new
luminosity. For instance, if the sum equals 0.5, then the luminosity will be cut in
half. Keep that in mind when creating a kernel.

The size of a kernel defines the strength of a filter. For instance, a 3 × 3 blurring
kernel produces a slightly blurry picture, whereas a 40 × 40 blurring kernel pro-
duces an indistinguishable blob from the original image.

The dimensions of the kernel are equally important. Kernels are usually odd-
sided. While it is perfectly safe to use a 4 × 4 or a 12 × 12 kernel, it is not recom-
mended. An even-sided kernel will not be centered over the source pixel and
might give unbalanced visual results, which you should avoid. Also, it is easier
for code readers to understand how an odd-sided kernel will behave. The Java
2D documentation defines the value of the matrix used as the center of the kernel

R 255 1
9
--- 255 1

9
--- 255 1

9
--- 255 1

9
--- 0 1

9
--- 255 1

9
--- 255 1

9
--- 255 1

9
--- 255 1

9
--- 255 8

9
---⋅+⋅+⋅+⋅+⋅+⋅+⋅+⋅+⋅+⋅=

B 255 1
9
--- 255 1

9
--- 255 1

9
--- 255 1

9
--- 0 1

9
--- 255 1

9
--- 255 1

9
--- 255 1

9
--- 255 1

9
--- 255 8

9
---⋅+⋅+⋅+⋅+⋅+⋅+⋅+⋅+⋅+⋅=

G 255 1
9
--- 255 1

9
--- 255 1

9
--- 255 1

9
--- 0 1

9
--- 255 1

9
--- 255 1

9
--- 255 1

9
--- 255 1

9
--- 255 8

9
---⋅+⋅+⋅+⋅+⋅+⋅+⋅+⋅+⋅+⋅=

www.it-ebooks.info

http://www.it-ebooks.info/

CONVOLVEOP 209

as being the one at the coordinates (w – 1)/2, (h – 1)/2. This definition makes it
harder to know which value is used as the center.

Your kernels do not have to be square shaped. Vertical kernels, for example with
a 1 × 5 matrix, and horizontal kernels, for example with a 5 × 1 matrix, can be
used to apply effects that work in only one direction. Chapter 16 presents exam-
ples of such kernels.

Last but not least, avoid using large kernels. When convolving a picture with a
3 × 3 kernel, Java 2D performs at least 17 operations (9 multiplications and 8
additions) per color component per pixel. Convolving a 640 × 480 picture
requires at least 640 × 480 × 3 × 17 = 15,667,200 operations! That’s quite a lot.2

And this number does not even include the operations of reading and writing the
actual pixel values from and to the source and destination pictures. We therefore
strongly advise you not to perform convolve operations at painting time. Instead
perform the operations once prior to painting and cache the results instead.

No matter what kernel you create, writing the code to perform the convolution is
simple:

BufferedImage dstImage = null;
float[] sharpen = new float[] {
 0.0f, -1.0f, 0.0f,
 -1.0f, 5.0f, -1.0f,
 0.0f, -1.0f, 0.0f
};
Kernel kernel = new Kernel(3, 3, sharpen);
ConvolveOp op = new ConvolveOp(kernel);
dstImage = op.filter(sourceImage, null);

In Java 2D, a kernel is an array of floats and two dimensions. In this case, we use
a 3 × 3 sharpening kernel to create an array of nine floats and tell the Kernel
class that we want this array to be treated as a 3 × 3 matrix.

Figure 8-8 shows the result of the convolution with the 3 × 3 sharpening kernel
shown in the previous code example.

Working on the Edge
Everything is not perfect yet. Take a close look at the generated result: You should
see a black border surrounding the picture. During the convolve operation, Java

2. Even with today’s CPU, it’s still a lot. Really. And we are talking about convolving a small picture
with a small kernel.

www.it-ebooks.info

http://www.it-ebooks.info/

210 CHAPTER 8 IMAGE PROCESSING

2D always matches the center of the kernel with one pixel of the source image.
This works well for every pixel except the ones on the edges of the picture. Try to
line up a 3 × 3 kernel with any pixel on the edge of an image and you will see that
some parts of the kernel lie outside of the image. To work around this problem,
Java 2D replaces the pixels it cannot compute with black pixels, which results in
darkened edges because of the extra black introduced into the convolve opera-
tions for these edge pixels. To avoid this result, you can instruct Java 2D to do
nothing and to keep the original color:

// the default is ConvolveOp.EDGE_ZERO_FILL
// the last parameter is the RenderingHints set
ConvolveOp op = new ConvolveOp(kernel,
 ConvolveOp.EDGE_NO_OP, null);

Unfortunately, neither of these solutions generates good-looking results. To get
rid of any problem on the edges, you can simply increase the size of the original
picture, as follows:

int kernelWidth = 3;
int kernelHeight = 3;

int xOffset = (kernelWidth – 1) / 2;
int yOffset = (kernelHeight – 1) / 2;

BufferedImage newSource = new BufferedImage(
 sourceImage.getWidth() + kernelWidth – 1,
 sourceImage.getHeight() + kernelHeight – 1,
 BufferedImage.TYPE_INT_ARGB);
Graphics2D g2 = newSource.createGraphics();

Figure 8-8 The sharpened picture shows enhanced details.

www.it-ebooks.info

http://www.it-ebooks.info/

LOOKUPOP 211

g2.drawImage(sourceImage, xOffset, yOffset, null);
g2.dispose();

ConvolveOp op = new ConvolveOp(kernel,
 ConvolveOp.EDGE_NO_OP, null);
dstImage = op.filter(newSource, null);

The original image is drawn centered into a new, larger, transparent image.
Because we added enough transparent pixels on each side of the original image,
the convolution operation will not affect the pixels of the original image. It is
important to use the ConvolveOp.EDGE_NO_OP edge condition so you will keep
the pixels transparent around the image. This technique of adding transparent
pixels on the sides provides better-looking results, but you have to take the extra-
neous pixels into account.

LookupOp
A LookupOp maps the color values of the source to new color values in the desti-
nation. This operation is achieved with a lookup table that contains the destina-
tion values for each possible source value.

Lookup operations can be used to generate several common filters, such as nega-
tive filters, posterizing filters, and thresholding filters. Negative filters are interest-
ing because they help illustrate how lookup tables work. Pixel colors are usually
represented using three components (red, green, and blue) stored in 8 bits each.
As a result, the color values of a negative image are the 8 bits’ complements of
the source image color values:

dstR = 255 – srcR;
dstG = 255 – srcG;
dstB = 255 – srcB;

To apply such a conversion to the source image, you must create a lookup table that
associates all the values in the 8 bits range (from 0 to 255) to their complements:

short[] data = new short[256];
for (short i = 0; i < 256; i++) {
 data[i] = 255 - i;
}

BufferedImage dstImage = null;
LookupTable lookupTable = new ShortLookupTable(0, data);
LookupOp op = new LookupOp(lookupTable, null);
dstImage = op.filter(sourceImage, null);

www.it-ebooks.info

http://www.it-ebooks.info/

212 CHAPTER 8 IMAGE PROCESSING

Figure 8-9 shows the result of this negative filter.

The LookupTable from this example contains only one lookup array, used for all
of the color components of the source image, resulting in the same conversion of
all of the color components.

To perform a different conversion for each component, you simply need to create
one lookup array per color component in the source image. Since the example
relies on an RGB picture, we can create a filter that inverts only the red compo-
nent by defining three lookup arrays:

short[] red = new short[256];
short[] green = new short[256];
short[] blue = new short[256];

for (short i = 0; i < 256; i++) {
 red[i] = 255 - i;
 green[i] = blue[i] = i;
}

short[][] data = new short[][] {
 red, green, blue
};

BufferedImage dstImage;
LookupTable lookupTable = new ShortLookupTable(0, data);
dstImage = op.filter(sourceImage, null);
LookupOp op = new LookupOp(lookupTable, null);

Figure 8-9 A simple lookup operation can be used to produce a negative image.

www.it-ebooks.info

http://www.it-ebooks.info/

RESCALEOP 213

You do not need to provide a lookup array for the alpha channel of your picture,
if present. In this case, Java 2D will simply preserve the original alpha values.
Whenever you create a new LookupOp, ensure that the number and size of your
lookup arrays match the source image structure.

RescaleOp
RescaleOp does not scale the size of an image as you would expect it to. Instead,
RescaleOp performs a rescaling operation by multiplying the color value of each
pixel in the source image by a scale factor and then adding an offset. Here is the
formula applied to each color component of the source pixels:

dstR = (srcR * scaleFactor) + offset
dstG = (srcG * scaleFactor) + offset
dstB = (srcB * scaleFactor) + offset

Rescaling operations can be used to brighten, darken, or tint images. The follow-
ing code example increases the overall brightness of the picture by 10 percent:

BufferedImage dstImage = null;
RescaleOp op = new RescaleOp(1.1f, 0.0f, null);
dstImage = op.filter(sourceImage, null);

The first two parameters of the RescaleOp constructor are respectively the scale
factor and the offset. Note that a RescaleOp with an offset of 0 is no different
from a ConvolveOp with a 1 × 1 kernel. You can also adjust each color compo-
nent independently:

BufferedImage dstImage = null;
float[] factors = new float[] {
 1.4f, 1.4f, 1.4f
};
float[] offsets = new float[] {
 0.0f, 0.0f, 30.0f
};
RescaleOp op = new RescaleOp(factors, offsets, null);
dstImage = op.filter(sourceImage, null);

In this case, the overall brightness is increased by 40 percent, and all of the pixel
colors are shifted toward the blue color. The offset of 30 increases the blue com-
ponent of each pixel by 12 percent (30/256). Remember, the offset is added to
the color value and must therefore be a value between 0 and 255, as opposed to
the scale factor, which acts as a percentage.

www.it-ebooks.info

http://www.it-ebooks.info/

214 CHAPTER 8 IMAGE PROCESSING

Figure 8-10 shows the result produced by a RescaleOp with a scale factor of 1.4
for each component and an offset of 30 for the blue component.

Just as in LookupOp, the number of values used in the scale factors and offset
arrays depend on the number of components in the source image. Working on
TYPE_INT_RGB or TYPE_INT_ARGB pictures is therefore easier than working on
other types of BufferedImage. When the source image contains an alpha chan-
nel, you do not need to specify a factor and an offset for the alpha component.
Java 2D automatically preserves the original values.

These five BufferedImageOps will probably be all you need for most situations.
Nevertheless, you might want to create your own specialized BufferedImageOp
to create advanced graphical effects.

Custom BufferedImageOp
Creating a new filter from scratch is not a very complicated task. To prove it, we
show you how to implement a color tint filter. This kind of filter can be used to
mimic the effect of the colored filters photographers screw in front of their
lenses. For instance, an orange color tint filter gives a sunset mood to a scene,
while a blue filter cools down the tones in the picture.

You first need to create a new class that implements the BufferedImageOp inter-
face and its five methods. To make the creation of several filters easier, we first

Figure 8-10 The image is brighter and the blues are bluer after processing.

www.it-ebooks.info

http://www.it-ebooks.info/

CUSTOM BUFFEREDIMAGEOP 215

define a new abstract class entitled AbstractFilter. As you will soon discover,
all filters based on this class are nonspatial, linear color filters. That means that
they will not affect the geometry of the source image and that they assume the
destination image has the same size as the source image.

The complete source code of our custom BufferedImage is available on this
book’s Web site in the project entitled CustomImageOp.

Base Filter Class
AbstractFilter implements all the methods from BufferedImageOp except for
filter(), which actually processes the source image into the destination and
hence belongs in the subclasses:

public abstract class AbstractFilter
 implements BufferedImageOp {
 public abstract BufferedImage filter(
 BufferedImage src, BufferedImage dest);

 public Rectangle2D getBounds2D(BufferedImage src) {
 return new Rectangle(0, 0, src.getWidth(),
 src.getHeight());
 }

 public BufferedImage createCompatibleDestImage(
 BufferedImage src, ColorModel destCM) {
 if (destCM == null) {
 destCM = src.getColorModel();
 }

 return new BufferedImage(destCM,
 destCM.createCompatibleWritableRaster(
 src.getWidth(), src.getHeight()),
 destCM.isAlphaPremultiplied(), null);
 }

 public Point2D getPoint2D(Point2D srcPt,
 Point2D dstPt) {
 return (Point2D) srcPt.clone();
 }

 public RenderingHints getRenderingHints() {
 return null;
 }
}

ONLINE
DEMO

www.it-ebooks.info

http://www.it-ebooks.info/

216 CHAPTER 8 IMAGE PROCESSING

The getRenderingHints() method must return a set of RenderingHints when
the image filter relies on rendering hints. Since this will probably not be the case
for our custom filters, the abstract class simply returns null.

The two methods getBounds2D() and getPoint2D() are very important for spa-
tial filters, such as AffineTransformOp. The first method, getBounds2D(),
returns the bounding box of the filtered image. If your custom filter modifies the
dimension of the source image, you must implement this method accordingly.
The implementation proposed here makes the assumption that the filtered image
will have the same size as the source image.

The other method, getPoint2D(), returns the corresponding destination point
given a location in the source image. As for getBounds2D(), AbstractFilter
makes the assumption that no geometry transformation will be applied to the
image, and the returned location is therefore the source location.

AbstractFilter also assumes that the only data needed to compute the pixel for
(x, y) in the destination is the pixel for (x, y) in the source.

The last implemented method is createCompatibleDestImage(). Its role is to
produce an image with the correct size and number of color components to con-
tain the filtered image. The implementation shown in the previous source code
creates an empty clone of the source image; it has the same size and the same
color model regardless of the source image type.

Color Tint Filter
The color tint filter, cleverly named ColorTintFilter, extends AbstractFilter
and implements filter(), the only method left from the BufferedImageOp
interface. Before we delve into the source code, we must first define the opera-
tion that the filter will perform on the source image. A color tint filter mixes
every pixel from the source image with a given color. The strength of the mix is
defined by a mix value. A mix value of 0 means that all of the pixels remain the
same, whereas a mix value of 1 means that all of the source pixels are replaced
by the tinting color. Given those two parameters, a color and a mix percentage,
we can compute the color value of the destination pixels:

dstR = srcR * (1 – mixValue) + mixR * mixValue
dstG = srcG * (1 – mixValue) + mixG * mixValue
dstB = srcB * (1 – mixValue) + mixB * mixValue

If you tint a picture with 40 percent white, the filter will retain 60 percent (1
or 1 – mixValue) of the source pixel color values to preserve the overall lumi-
nosity of the picture.

www.it-ebooks.info

http://www.it-ebooks.info/

CUSTOM BUFFEREDIMAGEOP 217

The following source code shows the skeleton of ColorTintFilter, an immuta-
ble class.

Note: Immutability. It is very important to ensure that your filters are immutable
to avoid any problem during the processing of the source images. Imagine what
havoc a thread could cause by modifying one of the parameters of the filter while
another thread is filtering an image. Rather than synchronizing code blocks or
spending hours in a debugger, go the easy route and make your BufferedImageOp
implementations immutable.

public class ColorTintFilter extends AbstractFilter {
 private final Color mixColor;
 private final float mixValue;

 public ColorTintFilter(Color mixColor, float mixValue) {
 if (mixColor == null) {
 throw new IllegalArgumentException(
 "mixColor cannot be null");
 }

 this.mixColor = mixColor;
 if (mixValue < 0.0f) {
 mixValue = 0.0f;
 } else if (mixValue > 1.0f) {
 mixValue = 1.0f;
 }
 this.mixValue = mixValue;
 }

 public float getMixValue() {
 return mixValue;
 }

 public Color getMixColor() {
 return mixColor;
 }

 @Override
 public BufferedImage filter(BufferedImage src,
 BufferedImage dst) {
 // filters src into dst
 }
}

www.it-ebooks.info

http://www.it-ebooks.info/

218 CHAPTER 8 IMAGE PROCESSING

The most interesting part of this class is the implementation of the filter()
method:

@Override
public BufferedImage filter(BufferedImage src,
 BufferedImage dst) {
 if (dst == null) {
 dst = createCompatibleDestImage(src, null);
 }

 int width = src.getWidth();
 int height = src.getHeight();

 int[] pixels = new int[width * height];
 GraphicsUtilities.getPixels(src, 0, 0, width,
 height, pixels);
 mixColor(pixels);
 GraphicsUtilities.setPixels(dst, 0, 0, width,
 height, pixels);

 return dst;
}

The first few lines of this method create an acceptable destination image when
the caller provides none. The javadoc of the BufferedImageOp interface dic-
tates this behavior: “If the destination image is null, a BufferedImage with an
appropriate ColorModel is created.”

Instead of working directly on the source and destination images, the color tint
filter reads all the pixels of the source image into an array of integers. The impli-
cations are threefold. First, all of the color values are stored on four ARGB 8-bit
components packed as an integer. Then, the source and the destination can be the
same, since all work will be performed on the array of integers. Finally, despite
the increased memory usage, it is faster to perform one read and one write oper-
ation on the images rather than reading and writing pixel by pixel. Before we
take a closer look at mixColor(), where the bulk of the work is done, here is the
code used to read all the pixels at once into a single array of integers:

public static int[] getPixels(BufferedImage img,
 int x, int y,
 int w, int h,
 int[] pixels) {
 if (w == 0 || h == 0) {
 return new int[0];
 }

www.it-ebooks.info

http://www.it-ebooks.info/

CUSTOM BUFFEREDIMAGEOP 219

 if (pixels == null) {
 pixels = new int[w * h];
 } else if (pixels.length < w * h) {
 throw new IllegalArgumentException(
 "pixels array must have a length >= w*h");
 }

 int imageType = img.getType();
 if (imageType == BufferedImage.TYPE_INT_ARGB ||
 imageType == BufferedImage.TYPE_INT_RGB) {
 Raster raster = img.getRaster();
 return (int[]) raster.getDataElements(x, y, w, h, pixels);
 }

 return img.getRGB(x, y, w, h, pixels, 0, w);
}

There are two different code paths, depending on the nature of the image from
which the pixels are read. When the image is of type INT_ARGB or INT_RGB, we
know for sure that the data elements composing the image are integers. We can
therefore call Raster.getDataElements() and cast the result to an array of
integers. This solution is not only fast but preserves all the optimizations of man-
aged images performed by Java 2D.

When the image is of another type, for instance TYPE_3BYTE_BGR, as is often the
case with JPEG pictures loaded from disk, the pixels are read by calling the
BufferedImage.getRGB(int, int, int, int, int[], int, int) method. This
invocation has two major problems. First, it needs to convert all the data elements
into integers, which can take quite some time for large images. Second, it throws
away all the optimizations made by Java 2D, resulting in slower painting opera-
tions, for instance. The picture is then said to be unmanaged. To learn more
details about managed images, please refer to the Chapter 5, “Performance.”

Note: Performance and getRGB(). The class BufferedImage offers two variants of
the getRGB() method. The one discussed previously has the following signature:

int[] getRGB(int startX, int startY, int w, int h,
 int[] rgbArray, int offset, int scansize)

This method is used to retrieve an array of pixels at once, and invoking it will punt
the optimizations made by Java 2D. Consider the second variant of getRGB():

int getRGB(int x, int y)

This method is used to retrieve a single pixel and does not throw away the optimi-
zations made by Java 2D. Be very careful about which one of these methods you
decide to use.

www.it-ebooks.info

http://www.it-ebooks.info/

220 CHAPTER 8 IMAGE PROCESSING

The setPixels() method is very similar to getPixels():

public static void setPixels(BufferedImage img,
 int x, int y,
 int w, int h,
 int[] pixels) {
 if (pixels == null || w == 0 || h == 0) {
 return;
 } else if (pixels.length < w * h) {
 throw new IllegalArgumentException(
 "pixels array must have a length >= w*h");
 }

 int imageType = img.getType();
 if (imageType == BufferedImage.TYPE_INT_ARGB ||
 imageType == BufferedImage.TYPE_INT_RGB) {
 WritableRaster raster = img.getRaster();
 raster.setDataElements(x, y, w, h, pixels);
 } else {
 img.setRGB(x, y, w, h, pixels, 0, w);
 }
}

Performance Tip: Working on a TYPE_INT_RGB or TYPE_INT_ARGB results in better
performance, since no type conversion is required to store the processed pixels into
the destination image.

Reading and writing pixels from and to images would be completely useless if
we did not process them in between operations. The implementation of the color
tint equations is straightforward:

private void mixColor(int[] inPixels) {
 int mix_a = mixColor.getAlpha();
 int mix_r = mixColor.getRed();
 int mix_b = mixColor.getBlue();
 int mix_g = mixColor.getGreen();

 for (int i = 0; i < inPixels.length; i++) {
 int argb = inPixels[i];

 int a = argb & 0xFF000000;
 int r = (argb >> 16) & 0xFF;
 int g = (argb >> 8) & 0xFF;
 int b = (argb) & 0xFF;

www.it-ebooks.info

http://www.it-ebooks.info/

CUSTOM BUFFEREDIMAGEOP 221

 r = (int) (r * (1.0f - mixValue) + mix_r * mixValue);
 g = (int) (g * (1.0f - mixValue) + mix_g * mixValue);
 b = (int) (b * (1.0f - mixValue) + mix_b * mixValue);

 inPixels[i] = a << 24 | r << 16 | g << 8 | b;
 }
}

Before applying the equations, we must split the pixels into their four color com-
ponents. Some bit shifting and masking is all you need in this situation. Once
each color component has been filtered, the destination pixel is computed by
packing the four modified color components into a single integer. Figure 8-11
shows a picture tinted with 50 percent red.

The above implementation works well but can be vastly improved performance-
wise. The ColorTintFilter class in the CustomImageOp project on this book’s
Web site offers a better implementation that uses a few tricks to avoid doing all
of the computations in the loop.

Note: As an exercise, you can try to improve this implementation on your own
before looking at the final version. (Hint: You can use lookup arrays.)

Figure 8-11 A red-tinted picture.

ONLINE
DEMO

www.it-ebooks.info

http://www.it-ebooks.info/

222 CHAPTER 8 IMAGE PROCESSING

A Note about Filters Performance
Image filters perform a lot of operations on images, and performance can easily
degrade if you do not pay attention to a few details. Whenever you write a filter
assuming the source image will be of type INT_RGB or INT_ARGB, make sure the
source image is actually of that type.

Usually, compatible images (images created with GraphicsConfiguration.
createCompatibleImage()), which are designed to be in the same format as the
screen, are stored as integers. It is often the case that the user’s display is in 32-
bit format and not the older 8-, 16-, and 24-bit formats. Therefore, it is a good
idea to always load your images as compatible images.

The CustomImageOp demo loads a JPEG picture, which would normally be of
type 3BYTE_BGR, and turns it into a compatible image of type INT_RGB. You can
look for the call to GraphicsUtilities.loadCompatibleImage() in the source
code of the demo and replace it with ImageIO.read() to see the difference when
moving the sliders of the user interface. As a rule of thumb, do not hesitate to use
the various methods from the GraphicsUtilities class to always use compati-
ble images.

Summary
Java 2D offers several powerful facilities to perform image processing on your
pictures. The built-in BufferedImageOp implementations let you write your
own custom filters very quickly. And if you need more flexibility, you can even
create a new BufferedImageOp implementation from scratch.

www.it-ebooks.info

http://www.it-ebooks.info/

223

9
Glass Pane

THE glass pane is one of the most marvelous features of Swing. Despite a mis-
leading name, the glass pane has proven over the years to be a unique asset to any
Swing developer who wants to create advanced effects in user interfaces. To
understand the qualities of the glass pane and why it is so important to Filthy Rich
Clients, you first need to understand the layout of Swing’s frames and dialogs.

Despite their appearance, JFrame, JDialog, JWindow, and JInternalFrame are
not flat containers. Swing windows always contain a single child, an instance of
JRootPane. A root pane is a unique container, made of a glass pane and of a
JLayeredPane. We explore JLayeredPane in more detail later, but you need to
know that the root pane’s layered pane contains, among other things, the content
pane and the menu bar of Swing windows.

The glass pane sits on top of everything in the JRootPane and fills the entire
view. This particular position allows two distinct capabilities:

• Intercepting mouse and keyboard events

• Drawing over the entire user interface

It is the second item that is particularly interesting for Filthy Rich Clients. Draw-
ing over the existing UI becomes essential in producing some of the effects seen
in this book. Component painting is always limited within the boundaries of the
components themselves, thus preventing drawing across several widgets. For
example, a button can draw only within the confines of the button area, not over
other content outside of the button. With a glass pane, however, this constraint
disappears, and the application is free, for example, to draw pictures that overlap
several components in the UI.

www.it-ebooks.info

http://www.it-ebooks.info/

224 CHAPTER 9 GLASS PANE

Figure 9-1 and Figure 9-2 show the visual hierarchy of a JFrame and how the var-
ious containers relate to each other. The actual GUI of your Java applications is
contained in the layered pane, just beneath the glass pane, as shown in Figure 9-1.

As shown in Figure 9-2 a glass pane is a simple java.awt.Component. As such,
you can install any Swing component of your choice as the glass pane. Most, if
not all, of the time, though, you will use a custom component, for there is not
much benefit in installing a JLabel or a JTable as the glass pane.

Remember that the glass pane sits on top of the whole user interface of a JFrame.
Therefore, it is wise to set up a translucent glass pane to let the user see the com-

Figure 9-1 The glass pane sits on top of every other component in a Swing UI.

JFrame

JRootPane

Component JLayeredPane

Component JMenuBar

Glass Pane

Content Pane

Figure 9-2 Component hierarchy of a JFrame.

www.it-ebooks.info

http://www.it-ebooks.info/

PAINTING ON THE GLASS PANE 225

ponents beneath. Common glass pane implementations rely on a JComponent or
a nonopaque JPanel.

Installing a glass pane on a frame is as easy as calling one method:

JFrame frame = new JFrame();
frame.setGlassPane(new CustomGlassPane());

However, most developers are bewildered by the ensuing result: Nothing hap-
pens. The confusion comes from the expected behavior of Swing that ensures
that your components are visible when you add them into a frame. The glass
pane is treated in a very different manner because it is made nonvisible by
default. As a result, you need to call setVisible(true) on your glass pane:

JFrame frame = new JFrame();
frame.setGlassPane(new CustomGlassPane());
// ...
frame.getGlassPane().setVisible(true);

This behavior is actually very sensible because glass panes are mostly used for
temporary operations. Hence, the glass pane is usually installed beforehand and
made visible only when necessary, as we will see in several examples. Keeping the
glass pane visible when it is not needed might also cause a performance penalty.

Tip: Glass Pane Visibility. When you install a glass pane, its visibility is changed to
match that of the current glass pane. If you call getGlassPane().setVisible(true)
and then call setGlassPane(), the new glass pane will be visible.

Painting on the Glass Pane
The glass pane is a great place to put custom paintings. Its position in the frame
hierarchy lets you create visual effects not typically seen. Actually, it lets you
create visual effects that are just not possible in any other way.

To paint on a glass pane, you first need to create a custom component. Most of
the time, you will want to use the glass pane as a large drawing canvas rather
than a full-fledged component. Since the glass pane sits on top of the whole UI,
it is generally a good idea to let the user see through to the rest of the UI. That

www.it-ebooks.info

http://www.it-ebooks.info/

226 CHAPTER 9 GLASS PANE

means you need a nonopaque component to paint on, which is easily achieved in
two different ways:

// First technique: JComponent
public class CustomGlassPane extends JComponent {
 @Override
 protected void paintComponent(Graphics g) {
 // do some painting
 }
}

// Second technique: JPanel
public class CustomGlassPane extends JPanel {
 public CustomGlassPane() {
 setOpaque(false);
 }

 @Override
 protected void paintComponent(Graphics g) {
 // do some painting
 }
}

Unless you have a perfectly valid reason to use a JPanel as the parent class, you
are better off with a JComponent. You can use it as a regular panel by setting a lay-
out and adding child components, but it has the advantage of being nonopaque by
default. And don’t tell me you’re not happy with saving only one line of code!

On the contrary, if you know that your glass pane will be fully opaque, it is a
good idea to choose JPanel over JComponent. The only important difference
between a JComponent and a JPanel is that the latter is opaque and will be dec-
orated by the appropriate look and feel UI delegate.1

Whatever your decision, all that is left is to override paintComponent(), as in
the following example:

public class CustomGlassPane extends JComponent {
 @Override
 protected void paintComponent(Graphics g) {
 Rectangle clip = g.getClipBounds();
 Color alphaWhite = new Color(1.0f, 1.0f, 1.0f, 0.65f);
 g.setColor(alphaWhite);
 g.fillRect(clip.x, clip.y, clip.width, clip.height);
 }
}

1. A JPanel is opaque in most look and feels, but it is not a requirement.

www.it-ebooks.info

http://www.it-ebooks.info/

PAINTING ON THE GLASS PANE 227

This particular glass pane draws a translucent white area on top of the frame, a
simple technique to visually disable a user interface. A similar effect can be
achieved with the help of an AlphaComposite, especially when you want to
draw more complex primitives, like pictures or text.

Custom glass panes are easy to implement but can result in surprisingly awful
performance once you get it running. Remember that the glass pane covers the
whole frame. Therefore, if you have created a nonopaque glass pane, Swing will
repaint all of the components when you call repaint() on your glass pane. You
will probably never notice any problem in small projects, but as soon as you
install a glass pane on a frame containing dozens of complex components, all
hell breaks loose.2

Tip: Repaint Performance. To prevent performance problems, repaint only what
is necessary. The first thing to do is to make sure you honor the clipping rectangle
set on the graphics context. This is exactly what the previous code example does. It
fills the only part of the frame that has been damaged and needs to be repainted.

You also must avoid calling repaint() when you know the area that needs updat-
ing; call repaint(x, y, width, height) instead.

Optimized Glass Pane Painting
This book’s Web site hosts a project entitled GlassPanePainting. This applica-
tion shows a simple user interface with a Start Download button at the bottom
right. When the button is pressed, a glass pane shows up with an animated
progress bar that fakes the progress of a file download task. The screenshot in
Figure 9-3 shows what the glass pane looks like.

The animation is driven by a simple thread that repetitively calls the method
setProgress(int) on the glass pane. A first, naïve implementation of this method
might look like this:

public void setProgress(int progress) {
 this.progress = progress;
 repaint();
}

2. Okay, I might have exaggerated a bit. I promise you won’t see headless minions come out of your
closet when you call repaint(). But just in case, try repaint(x, y, w, h). After all, if flying
bloodthirsty imps did come out of your closet, you would have a hard time explaining the result-
ing delay in the project to your client. In the end, it’s your call: a fast and responsive application
or a legion of doomed souls and an angry client.

ONLINE
DEMO

www.it-ebooks.info

http://www.it-ebooks.info/

228 CHAPTER 9 GLASS PANE

This code simply saves the progress value in an instance field and then calls
repaint() to refresh the progress bar. Assuming the parameter progress is a
positive number between 0 and 100, the painting code would look like this:

@Override
protected void paintComponent(Graphics g) {
 // gets the current clipping area
 Rectangle clip = g.getClipBounds();

 // sets a 65% translucent composite
 AlphaComposite alpha = AlphaComposite.SrcOver.derive(0.65f);
 g2.setComposite(alpha);

 // fills the background
 g2.setColor(getBackground());
 g2.fillRect(clip.x, clip.y, clip.width, clip.height);

 // computes x and y, draws the text
 // [...] snipped [...]

 // computes the size of the progress indicator
 int w = (int) (BAR_WIDTH * ((float) progress / 100.0f));
 int h = BAR_HEIGHT;

 // draws the content of the progress bar
 Paint gradient = new LinearGradientPaint(x, y, x, y + h,
 GRADIENT_FRACTIONS, GRADIENT_COLORS);

Figure 9-3 The glass pane simulates a download task.

www.it-ebooks.info

http://www.it-ebooks.info/

PAINTING ON THE GLASS PANE 229

 g2.setPaint(gradient);
 g2.fillRect(x, y, w, h);

 // cleans up stuff
}

The painting code first fills the clipping rectangle with a white color and then
draws the progress bar with a gradient. Notice how the length of the bar, denoted
by w in the code, is computed from the field progress previously set in the method
setProgress(int). Even though this piece of code takes into account the clip-
ping rectangle to avoid unnecessary and expensive operations, all of our efforts are
ruined by the aforementioned call to repaint() in setProgress(int) because it
sets a clipping rectangle as large as the glass pane itself. By repainting the glass
pane every time, we trigger the repaint of the underlying frame, thus dragging per-
formance down.

As you may have guessed, the solution to our problem is to replace the call to
repaint() with a call to repaint(x, y, width, height). This fix involves just
a simple rewrite of setProgress(int):

public void setProgress(int progress) {
 int oldProgress = this.progress;
 this.progress = progress;

 // computes the damaged area
 // always assume that progress > oldPogress
 int w = (int) (BAR_WIDTH * ((float) oldProgress / 100.0f));
 int x = w + /* centers the bar on screen */;
 int y = /* centers the bar on screen */;

 w = (int) (BAR_WIDTH * ((float) progress / 100.0f)) - w;
 int h = BAR_HEIGHT;

 repaint(x, y, w, h);
}

The method now looks a bit more complicated, but it does a much more decent
job at repainting the progress bar. The first computation of the variable w com-
putes the current width of the progress bar as seen on the screen. Then the value
x is computed to match the end of the current progress bar. Finally, w is com-
puted again, this time containing the length difference between the new progress
bar and the old one. By using these values in our call to repaint(x, y, w, h),
we can now tell Swing to repaint only the few pixels of the screen that have
changed since the last invocation of setProgress(int). All the computations

www.it-ebooks.info

http://www.it-ebooks.info/

230 CHAPTER 9 GLASS PANE

assume that the new progress value is greater than the current progress value
because the progress bar can only fill up in this particular application.

Previously, the application was repainting an area of 553 × 394 pixels, whereas
now it repaints only a rectangle of about 4 × 10 pixels. This difference can
amount to a huge savings in performance, and the more complicated the under-
lying GUI, the more time it will save.

Glass pane painting can bring a lot of fun to your development and can tremen-
dously improve the quality and richness of your applications.

Blocking Input Events
While the previous example looks fine, it contains a very serious flaw. If you try
to click on the table, you will be able to select one of the rows. Likewise, you can
click the Start Download button and watch the application go wild. The problem
is that, while the glass pane looks like it has taken over the user interface, the
events are still going directly through the glass pane to the UI objects underneath.

To avoid these issues, you can set up the glass pane to intercept all mouse and
keyboard events and prevent them from being dispatched to the other compo-
nents. To intercept events on the glass pane, you need to add mouse and key lis-
teners. To consume these events and prevent them from reaching the underlying
components, you can use empty listeners, as in the following example:

public NullEventsGlassPane() {
 addMouseListener(new MouseAdapter() { });
 addMouseMotionListener(new MouseMotionAdapter() { });
 addKeyListener(new KeyAdapter() { });
}

In this new example, all of the events are caught by the glass pane and ignored.
But something is still not quite right. While mouse events are handled correctly,
keyboard events are still going through because Swing sends the keyboard event
to the currently focused component. If a component already has the focus, which
in this case is the table, it will still be able to receive key events. Even worse, you
can press Tab and Ctrl-Tab to navigate focus between the various controls.

Giving the focus to the glass pane is the only remedy to this problem. The solu-
tion seems easy at first; you simply need to call requestFocusInWindow() to
grab the focus. Unfortunately, this approach works only when the component
requesting the focus is visible. Here is the code you need to put in the construc-
tor of your glass pane:

www.it-ebooks.info

http://www.it-ebooks.info/

BLOCKING INPUT EVENTS 231

addComponentListener(new ComponentAdapter() {
 public void componentShown(ComponentEvent evt) {
 requestFocusInWindow();
 }
});

This ComponentListener is invoked as soon as the glass pane is made visible,
providing a great mechanism to grab the focus. If you run your application with
this code, you will be pleased to see that the keyboard events are indeed trapped
in the glass pane. But it’s not over yet because the user can still press the Tab key
to give the focus back to one of the components lying beneath the glass pane.
Once again, the solution is easy and requires only one more line of code in the
constructor of the glass pane:

setFocusTraversalKeysEnabled(false);

This method call disables the focus traversal keys (usually the Tab key), effec-
tively preventing the user from moving the focus away from the glass pane.

The full source code of this example can be found on this book’s Web site in the
project InterceptEvents.

Mouse Events Issues
Despite what you must do to block all input events in the glass pane, there is a
situation in which the glass pane will block some events by itself. Create a new
frame and put some components in it, making sure you have at least a couple of
text components. The resulting UI might look like the one in Figure 9-4.

ONLINE
DEMO

Figure 9-4 The mouse cursor changes when it moves over a text component.

www.it-ebooks.info

http://www.it-ebooks.info/

232 CHAPTER 9 GLASS PANE

When you run the application, you can see the mouse cursor change to a text
caret when you move it over a text field or a text area. This behavior is expected,
but it does not happen when a glass pane is set, even if the glass pane is transpar-
ent (Figure 9-5).

In Figure 9-5, the glass pane simply paints a picture in the lower right corner of
the frame. Implemented as a JComponent, the glass pane is nonopaque and lets
the user see through it to the components underneath. But if you move the mouse
over one of the text components, the cursor will remain the same, as shown in
the screenshot; it will not react to being over the text area. This is rather surpris-
ing, since we have not installed any mouse listener on the glass pane, or any
event listener for that matter.

The problem here is that Swing shows the mouse cursor of the topmost visible
component. Even though the glass pane looks transparent, it remains visible and
is therefore seen by Swing as the topmost element.

To fix this issue, all you need to do is to make the glass pane transparent to mouse
events by overriding the method called contains(x, y). This method returns true
when the mouse cursor is within the component’s bounds, and false otherwise.3 To

3. Even though we do not discuss this approach in great depth here, it can be used to create nonrect-
angular components. For instance, to implement a triangle-shaped button, you could override
contains() and return true only when the mouse cursor is actually in the triangle.

Figure 9-5 A glass pane, even a transparent one, prevents mouse cursor changes.

www.it-ebooks.info

http://www.it-ebooks.info/

BLOCKING INPUT EVENTS 233

allow the mouse cursor to change appropriately, here is how you should imple-
ment this method:

@Override
public boolean contains(int x, int y) {
 return false;
}

This code ensures that your glass pane will receive no more mouse events.
Therefore, you might need a more robust implementation of contains():

@Override
public boolean contains(int x, int y) {
 if (getMouseListeners().length == 0 &&
 getMouseMotionListeners().length == 0 &&
 getMouseWheelListeners().length == 0 &&
 getCursor() == Cursor.getPredefinedCursor(
 Cursor.DEFAULT_CURSOR)) {
 return false;
 }
 return super.contains(x, y);
}

In this case, adding a mouse listener or changing the default cursor of the glass
pane will prevent contains() from rejecting the mouse events. Unfortunately,
this behavior would lead back to the original problem.

The definitive solution is to ignore mouse events in transparent areas of the glass
pane, even when mouse listeners have been added or the mouse cursor has been
changed. In our example, we simply need to check whether the cursor is over the
bottom-left picture instead of simply returning false:

if (image == null) {
 return false;
} else {
 int imageX = getWidth() - image.getWidth();
 int imageY = getHeight() - image.getHeight();

 return x > imageX && x < getWidth() &&
 y > imageY && y < getHeight();
}

You can further refine this approach by ignoring mouse events only when the
mouse is over the opaque pixels of the picture. If you look at Figure 9-5, you
can see that the picture of the shield contains transparent areas. With the

www.it-ebooks.info

http://www.it-ebooks.info/

234 CHAPTER 9 GLASS PANE

implementation above, the mouse cursor will not change even when the mouse
cursor is over these areas.

To remedy this problem, you must check the value of the alpha channel of the
pixel under the mouse cursor. The previous code example becomes the following:

if (image == null) {
 return false;
} else {
 int imageX = getWidth() - image.getWidth();
 int imageY = getHeight() - image.getHeight();

 // if the mouse cursor is on a nonopaque pixel,
 // mouse events are allowed
 int inImageX = x - imageX;
 int inImageY = y - imageY;

 if (inImageX >= 0 && inImageY >= 0 &&
 inImageX < image.getWidth() &&
 inImageY < image.getHeight()) {

 int color = image.getRGB(inImageX, inImageY);
 return (color >> 24 & 0xFF) > 0;
 }

 return x > imageX && x < getWidth() &&
 y > imageY && y < getHeight();
}

The code computes the location of the mouse cursor within the image’s bounds
and retrieves the color of the corresponding pixel by calling getRGB(). Finally,
the code returns true and accepts mouse events if the alpha channel of the pixel
is greater than 0, which means that the pixel is not transparent.

The complete source code for this example can be found on this book’s Web site
in the project called MouseCursor.

You can also look at the project entitled GlassDragAndDrop, which shows how
to combine glass pane painting and mouse event handling to display thumbnails
of pictures dragged from the file explorer onto the application’s window, as
shown in Figure 9-6.

Using a glass pane in your application is surprisingly easy and relies mostly on
custom painting code. The overlay capabilities offered by a glass pane let you
create impressive effects.

ONLINE
DEMO

ONLINE
DEMO

www.it-ebooks.info

http://www.it-ebooks.info/

BLOCKING INPUT EVENTS 235

Figure 9-6 The application displays thumbnails that follow the mouse
when a picture file is dragged onto the frame.

www.it-ebooks.info

http://www.it-ebooks.info/

This page intentionally left blank

www.it-ebooks.info

http://www.it-ebooks.info/

237

10
Layered Panes

THE glass pane offers numerous possibilities when it comes to creating
advanced user interfaces. However, it suffers from two annoying limitations:

1. You can set up only one glass pane at a time on a given frame. While one
is enough in most cases, you might encounter situations in which you need
two or more glass panes to paint several effects on the user interface.
Things get even worse when the glass pane is set up by code you have no
control over, like an external Java library.

2. A glass pane must also cover the entire frame, which makes it difficult to
write custom glass panes that paint on top of a particular component or set
of components.

Fortunately, Swing offers a solution to this problem with the JLayeredPane. You
can refer to the Chapter 9, “Glass Pane,” to get a better understanding of the rela-
tionship between a glass pane and a layered pane in a frame. The advantage of
the layered pane over a glass pane is that you can use one wherever you want to
in the component hierarchy. Even though every Swing frame contains at least
one layered pane, you are free to create a new instance of JLayeredPane and add
it to any other container. This is the main difference between the layered pane
and the glass pane. There may be several layered panes, whereas there is only
ever one unique glass pane.

Using layered panes is fairly easy, especially when you are already familiar with
glass panes, but you must be aware of some issues that might arise when using
them.

www.it-ebooks.info

http://www.it-ebooks.info/

238 CHAPTER 10 LAYERED PANES

Using Layered Pane Layers
As its name suggests, the JLayeredPane component is a Swing container, a
panel that holds several layers of children. Swing frames rely on a layered pane
to display specific components that must span across other components. For
instance, a button’s tooltip might appear over both the button and a text field next
to it. Frame menus and popup menus are also common examples of components
drawn over the frame’s other widgets.

Each layer of a layered pane is identified by an integer defining the depth in the
layer’s stack. The highest values denote the highest layers in the stack or the lay-
ers that sit on top of the others; lower values refer to bottommost layers. The
lowest layer has a depth of 0. For convenience, the JLayeredPane offers several
layer identifiers to ease the insertion of components into the right layer. Those
identifiers are the following, from the lowest layer to the highest one:

• JLayeredPane.DEFAULT_LAYER: This is the bottommost layer where all
regular components, like buttons and tables, should be placed. Its identifier
is 0.

• JLayeredPane.PALETTE_LAYER: This layer is meant for palettes and float-
ing toolbars. Its identifier is 100.

• JLayeredPane.MODAL_LAYER: This layer is used for modal dialogs. Its
identifier is 200.

• JLayeredPane.POPUP_LAYER: This layer is meant to display popup win-
dows, including tooltips, combo-box drop-down lists, the frame’s menus,
and contextual menus. Its identifier is 300.

• JLayeredPane.DRAG_LAYER: This layer is used to display items during
drag-and-drop operations. You could use it to show components being
dragged in an IDE’s GUI builder, for example. Its identifier is 400.

As you can see, Swing sets these layers with identifiers 100 units apart so that
you can easily insert your own layers in between without causing problems.

This book’s Web site offers a project entitled Layers, which shows how to add a
component into a layered pane. The application consists of a single frame con-
taining various input fields. When the user types in a value and navigates to
another field, the program performs a validation process. The user interface indi-
cates invalid values, like a phone number containing letters, with a small icon in
the bottom left of the input fields, as shown in Figure 10-1.

The component responsible for drawing the warning signs is called Validator.
It extends JComponent and overrides the paintComponent() method to draw a

ONLINE
DEMO

www.it-ebooks.info

http://www.it-ebooks.info/

USING LAYERED PANE LAYERS 239

BufferedImage over each invalid component. The complete source code of this
component is simple and quite short:

public class Validator extends JComponent {
 private Set<JComponent>
 invalidFields = new HashSet<JComponent>();
 private BufferedImage warningIcon;

 public Validator() {
 loadImages();
 }

 public void removeWarning(JComponent field) {
 if (invalidFields.contains(field)) {
 invalidFields.remove(field);
 repaintBadge(field);
 }
 }

 public void addWarning(JComponent field) {
 invalidFields.add(field);
 repaintBadge(field);
 }

 private void repaintBadge(JComponent field) {
 Point p = field.getLocationOnScreen();
 SwingUtilities.convertPointFromScreen(p, this);

continued

Figure 10-1 The layered pane is used to paint the warning signs on top of the
components.

www.it-ebooks.info

http://www.it-ebooks.info/

240 CHAPTER 10 LAYERED PANES

 int x = p.x - warningIcon.getWidth() / 2;
 int y = (int) (p.y + field.getHeight() -
 warningIcon.getHeight() / 1.5);

 repaint(x, y, warningIcon.getWidth(),
 warningIcon.getHeight());
 }

 private void loadImages() {
 try {
 warningIcon = ImageIO.read(getClass().getResource(
 "images/dialog-warning.png"));
 } catch (IOException ex) {
 ex.printStackTrace();
 }
 }

 @Override
 protected void paintComponent(Graphics g) {
 for (JComponent invalid : invalidFields) {
 if (invalid.getParent() instanceof JViewport) {
 JViewport viewport = (JViewport) invalid.getParent();
 // the parent of the viewport is a JScrollPane
 invalid = (JComponent) viewport.getParent();
 }

 Point p = invalid.getLocationOnScreen();
 SwingUtilities.convertPointFromScreen(p, this);

 int x = p.x - warningIcon.getWidth() / 2;
 int y = (int) (p.y + invalid.getHeight() –
 warningIcon.getHeight() / 1.5);

 if (g.getClipBounds().intersects(x, y,
 warningIcon.getWidth(), warningIcon.getHeight())) {
 g.drawImage(warningIcon, x, y, null);
 }
 }
 }
}

Calling removeWarning() and addWarning() respectively hides and shows the
warning sign. As you can see, Validator simply retains the list of invalid input
fields and draws an image over their lower-left corners in paintComponent().
To do this properly, the location of each component is first converted into the
Validator’s coordinate space.

www.it-ebooks.info

http://www.it-ebooks.info/

USING LAYERED PANE LAYERS 241

To use this component, we need to set it up on top of regular Swing components.
Therefore, we want to use a layer whose identifier is greater than JLayeredPane.
DEFAULT_LAYER. In this case, we choose DEFAULT_LAYER + 50 as the identifier,
since there is room for 99 layers between DEFAULT_LAYER and the next layer,
PALETTE_LAYER. By referring to the documentation, we learn that we must add a
Validator instance to the layered pane by passing an Integer instance during
the add() call:

// calls add(Component, Object)
aLayeredPane.add(aComponent, new Integer(50));

Adding a Validator instance is extremely easy when you specify an absolute
value as the layer identifier, but things are much harder when you need a relative
value, as in our example.

J2SE 5.0 Subtlety
Prior to J2SE 5.0, the only way to use a relative identifier was to create a new
Integer:

int value = JLayeredPane.DEFAULT_LAYER.intValue() + 50;
aLayeredPane.add(aComponent, new Integer(value));

As of J2SE 5.0, we can take advantage of the autoboxing feature of the language to
make the code easier to write and read:

aLayeredPane.add(aComponent, JLayeredPane.DEFAULT_LAYER + 50);

Does this code work? If you think it does not, can you guess why?

Unfortunately, it does not work. The javac compiler will automatically unbox
the DEFAULT_LAYER Integer instance into an int primitive and add another int
primitive of value 50. As a result, the call will be add(Component, int), not
add(Component, Object), which has a totally different meaning. To prevent
this problem, you can use the following idiom:

aLayeredPane.add(aComponent,
 (Integer) (JLayeredPane.DEFAULT_LAYER + 50));

In this new version, we force the compiler to box the computed int primitive into
a new Integer instance. Autoboxing is a very powerful feature, but you must
sometimes be careful of the results.

www.it-ebooks.info

http://www.it-ebooks.info/

242 CHAPTER 10 LAYERED PANES

Finally, we can add the Validator to the frame’s layered pane:

validator = new Validator();

JLayeredPane layeredPane = getRootPane().getLayeredPane();
layeredPane.add(validator,
 (Integer) (JLayeredPane.DEFAULT_LAYER + 50));

When this code is executed, however, you will soon notice another problem: The
Validator is apparently invisible. Unlike the glass pane, JLayeredPane’s chil-
dren are visible by default, so the problem lies elsewhere. In fact, layered panes
do not have any layout by default, which means the Validator has no dimen-
sion. This problem can be fixed easily by calling setBounds():

validator.setBounds(0, 0, getWidth(), getHeight());

Setting the bounds directly in this way works only when the frame already has a
size. Also, the component does not expand accordingly when the user resizes the
frame. To solve this problem, you need to set up a layout manager on the layered
pane. Unfortunately, this task proves to be more complicated than with regular
Swing containers. Before we delve any further into this topic, there is another
feature of JLayeredPane that you should be aware of.

Ordering Components within
a Single Layer

We have seen how to add a single component into a specific layer of a layered pane.
We have not yet addressed a very common use case: What happens when you add
several components into the same layer? You can control the order of the compo-
nents within a layer by setting another property, called position. The position, akin
to the layer identifier, is an integer (but not an instance of the Integer class!)
whose value defines the depth of component within the layer. To make things more
complicated, the numbering scheme is different from the layer identifiers. For
instance, the layer 0 is the bottommost layer, whereas the position 0 indicates the
topmost component in the layer. The higher the position value, the lower the depth
is. Here is a small code example that shows how to set the position of a component:

layeredPane.add(blue, new Integer(10), 15);
layeredPane.add(green, new Integer(10), 42);
layeredPane.add(red, new Integer(5));

With this configuration, the red component is at the bottom of the frame, and
then we have both blue and green components on the same layer. Because the

www.it-ebooks.info

http://www.it-ebooks.info/

LAYERED PANES AND LAYOUTS 243

blue component has a lower position value than the green one, it sits on top.
Therefore, the component stack is the following:

Blue (topmost)
Green

Red (bottommost)

The position property is very important when you expect other parts of your
application to use the same JLayeredPane as your own code. Instead of relying
on the layer identifiers, pick one layer and stack all your components inside
using the position properties.

Layered Panes and Layouts
Layered panes, like any other Swing or AWT container, can use a layout man-
ager to compute their children’s locations and dimensions. Traditional layout
managers do not work very well with layered panes because they work in a 2D
space, whereas layered panes work in a 3D space. Therefore, traditional layout
managers, when used with a JLayeredPane, arrange the components as if they
all had the same depth—as if they were all on the same layer.

The book’s Web site offers a small application showing the effect of a FlowLayout
set up on a layered pane. In Figure 10-2, you can see several photos next to one
another and a loupe (magnifier) overlapping some of the photos. In reality, each

ONLINE
DEMO

Figure 10-2 Traditional layout managers do not bother checking the depth of layered
pane children.

www.it-ebooks.info

http://www.it-ebooks.info/

244 CHAPTER 10 LAYERED PANES

photo and the loupe belong to a different layer in the layered pane. Nevertheless,
because the application uses a FlowLayout, the components are simply laid out
side by side. You can change the layer of the loupe to clearly see that every photo
is on its very own layer. The source code for this application can be found in the
project called LayeredPaneLayout.

The only efficient ways to use a layout with a layered pane are to write your own
or to use the least-known layout of all time, java.awt.OverlayLayout. This
very simple layout stacks the components on top of each other and we can use
this layout to fix the previous application (the project called Layers). The fol-
lowing code snippet shows how to set up the Validator component on the
frame without experiencing frame resizing issues:

validator = new Validator();

JLayeredPane layeredPane = getRootPane().getLayeredPane();
layeredPane.setLayout(new OverlayLayout(layeredPane));
layeredPane.add(validator,
 (Integer) (JLayeredPane.DEFAULT_LAYER + 50));

To write a custom layout that takes the depth into account, you must read a spe-
cific property in each component to be laid out. The following code snippet reads
the layer identifier of a component:

Integer layered = (Integer)
 aComponent.getClientProperty("layeredContainerLayer");

You can also ask the layered pane for the layer identifier of a given component.
This technique is much cleaner, but it implies that you know that the component
belongs to a layered pane:

int layeredId = layeredPane.getLayer(aComponent);

Layers can be used to add depth support to Swing component hierarchies.
Another way to achieve the effect of depth is through the use of layouts, as we
see in the next section.

Alternative to JLayeredPane
with Layouts

There may be situations in which you need layered components without the has-
sle of using a JLayeredPane. This might happen when you are working on an

www.it-ebooks.info

http://www.it-ebooks.info/

ALTERNATIVE TO JLAYEREDPANE WITH LAYOUTS 245

existing, complicated code base or when you simply do not want to deal with the
API of JLayeredPane. Starting with J2SE 5.0, there is an easy way to add depth
support to regular Swing containers through two new methods that were added
to java.awt.Container: setComponentZOrder() and getComponentZOrder().

The z-order defines the position of a component along the z-axis, which you can
think of as an axis perpendicular to the Swing window itself. In simpler terms, it
defines the depth of a component. The lower the number is, the higher the com-
ponent is in the stack. For instance, a component with a z-order of 10 will be
painted on top of a component of z-order 0.

You will find a project called StackLayout on this book’s Web site. This project
contains a sample application that relies on a custom layout manager named
StackLayout. When you add a component to a container using StackLayout,
you can choose to add it at the top or at the bottom of the display stack. The
demo application, as seen in Figure 10-3, is a photo chooser with three different
layers: a background gradient, the photos, and the animated white curves.

The StackLayout API is a simpler approach to achieving depth than using
JLayeredPane, but you can add components only at the top or at the bottom of
the stack, as seen in the following code:

JPanel pane = new JPanel();
pane.setLayout(new StackLayout());

continued

ONLINE
DEMO

Figure 10-3 Any container can support depth with the appropriate layout manager.

www.it-ebooks.info

http://www.it-ebooks.info/

246 CHAPTER 10 LAYERED PANES

// gradient background
GradientPanel gradient = new GradientPanel();
// pictures selector
AvatarChooser chooser = new AvatarChooser();
// animated curves
CurvesPanel curves = new CurvesPanel();

pane.add(gradient, StackLayout.TOP);
pane.add(chooser, StackLayout.TOP);
pane.add(curves, StackLayout.TOP);

For this application, each component is added on top of the previous one, effec-
tively creating the visual stack I was looking for. Whenever a component is
added to a container with a StackLayout, it is added to a list, depending on its
position in the stack:

public class StackLayout implements LayoutManager2 {
 public static final String BOTTOM = "bottom";
 public static final String TOP = "top";

 private List<Component> components =
 new LinkedList<Component>();

 public void addLayoutComponent(Component comp,
 Object constraints) {
 synchronized (comp.getTreeLock()) {
 if (BOTTOM.equals(constraints)) {
 components.add(0, comp);
 } else {
 components.add(comp);
 }
 }
 }

 // ...
}

Thanks to this implementation, the components list always contains the compo-
nent in the appropriate order. The layout then needs to set the z-order of the com-
ponents according to their position in the list:

public void layoutContainer(Container parent) {
 synchronized (parent.getTreeLock()) {
 int width = parent.getWidth();
 int height = parent.getHeight();

www.it-ebooks.info

http://www.it-ebooks.info/

ALTERNATIVE TO JLAYEREDPANE WITH LAYOUTS 247

 Rectangle bounds = new Rectangle(0, 0, width, height);

 int componentsCount = components.size();

 for (int i = 0; i < componentsCount; i++) {
 Component comp = components.get(i);
 comp.setBounds(bounds);
 parent.setComponentZOrder(comp, componentsCount - i - 1);
 }
 }
}

Akin to a BorderLayout, a StackLayout expands each component so it fills up
all the available space. Finally, the layout manager calls setComponentZOrder()
on the parent container to give each component its appropriate depth. Since the
lower values designate the topmost components, the z-order value of a compo-
nent is the opposite of the component’s index in the list. The complete source
code of the layout manager can be found in the StackLayout project on the
book’s Web site.

Layers are extremely useful, no matter how you decide to create them, with a
JLayeredPane, a custom layout manager, or a combination of both. They can
solve many headaches when you want your application to support several glass
panes, but they are unfortunately very often overlooked.

Tip: Remember the Layered Pane. As a rule of thumb, consider switching to a
layered pane whenever you are about to use the glass pane. This is especially impor-
tant in complex applications in which the glass pane may be overused or layered
panes may offer the additional flexibility that you need.

Small or very simple applications may not justify the burden of using a layered pane
instead of a glass pane.

ONLINE
DEMO

www.it-ebooks.info

http://www.it-ebooks.info/

This page intentionally left blank

www.it-ebooks.info

http://www.it-ebooks.info/

249

11
Repaint Manager

SWING is a powerful and flexible toolkit. Most of the time, Swing does the
right thing. However, there are situations when you need to outsmart Swing and
change its default behavior. The RepaintManager is a special class that lets you
hook into Swing’s internals and that will prove to be very useful in this chapter
to create advanced visual effects.

When Swing Gets Too Smart
Swing’s painting mechanism always attempts to repaint only what’s necessary. It
paints only the regions of those components that need to be repainted. This is
very useful from a performance perspective but can hinder some particular
visual effects.

To highlight the problem that might arise with Swing, let’s examine the example
of the project called TranslucentPanel that you can find on the book’s Web
site. The following TranslucentPanel class extends JPanel and makes all its
children translucent:

public class TranslucentPanel extends JPanel {
 BufferedImage image = null;

 @Override
 public void paint(Graphics g) {
 if (image == null ||
 image.getWidth() != getWidth() ||
 image.getHeight() != getHeight()) {

continued

ONLINE
DEMO

www.it-ebooks.info

http://www.it-ebooks.info/

250 CHAPTER 11 REPAINT MANAGER

 image = (BufferedImage) createImage(getWidth(),
 getHeight());
 }

 Graphics2D g2 = image.createGraphics();
 g2.setClip(g.getClip());
 super.paint(g2);
 g2.dispose();

 g2 = (Graphics2D) g.create();
 g2.setComposite(AlphaComposite.SrcOver.derive(0.2f));
 g2.drawImage(image, 0, 0, null);
 }
}

On painting, this component creates a temporary offscreen image, draws its con-
tent inside with a translucency of 20 percent, and displays the image on screen.
Figure 11-1 shows what the result looks like when you add a JTable and a few
JButtons inside a TranslucentPanel.

At first glance, the TranslucentPanel seems to work perfectly. Unfortunately,
the truth is not so pretty. If you run the application and click on the table or on
one of the buttons, the component will suddenly become opaque, as shown in
Figure 11-2. There is no need to double-check the code in TranslucentPanel;
there is no error.

The problem comes from Swing’s painting mechanism: Swing tries to repaint
only the components and regions that need to be repainted. When you click a
JButton, for instance, Swing calls the paint() method of the JButton but not

Figure 11-1 A JTable and three JButtons painted by the TranslucentPanel.

www.it-ebooks.info

http://www.it-ebooks.info/

MEET THE REPAINTMANAGER 251

that of its parent. So the paint() method in TranslucentPanel, which is respon-
sible for enabling the translucency, is not invoked.

Note: Nonopaque Components. Swing may actually call the paint() method of
the parent when the component that needs to be repainted is nonopaque. Unfortu-
nately, we cannot ask the users of our TranslucentPanel to make sure that every
component it contains is nonopaque.

The only solution to this problem is to change the way that Swing decides which
components need to be repainted and force it to repaint TranslucentPanel
instead of its children. The RepaintManager is the key to this solution.

Meet the RepaintManager
The role of the RepaintManager is to optimize the repaint processing of Swing
components. It does so by intercepting all repaint requests on Swing components
and by keeping track of what needs to be repainted. The regions of components
that need to be updated are called dirty regions.

After intercepting a repaint request, the RepaintManager uses SwingUtilities.
invokeLater() to post the request on the event dispatch thread. The EDT then
processes the request and dispatches it to the components that need to be updated.

Figure 11-2 When a child gets repainted, the translucency is lost.

www.it-ebooks.info

http://www.it-ebooks.info/

252 CHAPTER 11 REPAINT MANAGER

As a result a repaint request is posted to the RepaintManager whenever the
repaint(), or repaint(int, int, int, int), method is invoked on a JComponent.
The RepaintManager manages coalescing successive calls to repaint() into as
few requests as possible to the EDT.

Figure 11-3 summarizes how the RepaintManager interacts with JComponent
and the EDT.

The most interesting method in RepaintManager is the following:

void addDirtyRegion(JComponent c, int x, int y, int w, int h)

The addDirtyRegion() method is responsible for tracking the dirty regions of
the components that need to be repainted. This method is always invoked after a
call to repaint() and thus can be used to catch all of the repaint requests. More
interestingly, addDirtyRegion() can be used to extend the dirty region. We see
later why this feature is useful.

Managing the RepaintManager
In Sun’s Swing implementation, there is only one global RepaintManager. You
can get the current RepaintManager by calling either one of the following meth-
ods in the RepaintManager class:

static RepaintManager currentManager(Component c)
static RepaintManager currentManager(JComponent c)

The parameters are currently unused since the same RepaintManager will always
be returned. You can also replace the current RepaintManager with your own:

void setCurrentManager(RepaintManager aRepaintManager)

JComponent.repaint()

RepaintManager

EDT

JComponent.paint()

Figure 11-3 The RepaintManager intercepts all repaint events.

www.it-ebooks.info

http://www.it-ebooks.info/

A REFLECTION ON REPAINTMANAGER 253

A Reflection on RepaintManager
To explain how to use the RepaintManager, we use the project called RepaintManager
on the book’s Web site. This project contains an extension of JPanel called
ReflectionPanel. This class paints a reflection for every child it contains. You
can use it, for instance, to add a nice reflection effect to a movie, as shown in
Figure 11-4. If you run the application, you will see the reflection being updated
in real time.

Warning: Playing Movies with the Demo. To run the example application with a
movie, you must have QuickTime installed on your system. If QuickTime is not
present, on Linux for instance, the application will automatically display regular
Swing components instead, as shown in Figure 11-5. In this case, the reflection will
react to any change on the Swing components. For instance, when you press a but-
ton, the reflection will also appear pressed.

Making Room for the Reflection
By default, a JPanel has a preferred size that is just large enough to display all
of its children. Therefore, there is no empty space in the panel where the
ReflectionPanel can paint the children’s reflections.

ONLINE
DEMO

Figure 11-4 ReflectionPanel paints a real-time reflection effect for any child it contains.

www.it-ebooks.info

http://www.it-ebooks.info/

254 CHAPTER 11 REPAINT MANAGER

To be able to paint the reflection, we must enlarge the size of the ReflectionPanel,
as shown in Figure 11-6. The ReflectionPanel is actually made up of a content
pane, an embedded JPanel where the components will be added, and empty
space.

The height of the empty space, and thus of the ReflectionPanel, depends on
the height of the content pane and the length of the reflection. The reflection’s
length is a number between 0.0 and 1.0. For instance, a reflection length of 0.5
will produce a reflection length equal to half of the height of the content pane.

The ReflectionPanel uses the GridBagLayout layout to anchor the content
pane at the top of the component. The bottom part of the ReflectionPanel is
filled with a vertical glue, created by the Box class. A glue is an empty compo-
nent that takes as much space as possible in one direction.

It is possible to override the getPreferredSize() method and extend the height of
the ReflectionPanel. The following code shows how ReflectionPanel is built:

Figure 11-5 The reflection reacts to all component updates thanks to a special
RepaintManager.

www.it-ebooks.info

http://www.it-ebooks.info/

A REFLECTION ON REPAINTMANAGER 255

public class ReflectionPanel extends JPanel {
 private JPanel contentPane;
 private boolean initialized = false;
 private float length = 0.65f;

 public ReflectionPanel() {
 super(new GridBagLayout());
 setOpaque(false);

 buildContentPane();
 buildFiller();

 initialized = true;
 }

 private void buildContentPane() {
 contentPane = new JPanel(new BorderLayout());
 contentPane.setOpaque(false);

 add(contentPane,
 new GridBagConstraints(0, 0, 1, 1, 1.0, 0.0,
 GridBagConstraints.CENTER,
 GridBagConstraints.BOTH,
 new Insets(0, 0, 0, 0), 0, 0));
 }

 private void buildFiller() {
 add(Box.createVerticalGlue(),

continued

height of content pane
×

(1.0 + reflection length)

Empty Space
height of content pane

×
reflection length

Content Pane

ReflectionPanel

Figure 11-6 Empty space is added to the panel to make room for the reflection.

www.it-ebooks.info

http://www.it-ebooks.info/

256 CHAPTER 11 REPAINT MANAGER

 new GridBagConstraints(0, 1, 1, 1, 1.0, 1.0,
 GridBagConstraints.CENTER,
 GridBagConstraints.VERTICAL,
 new Insets(0, 0, 0, 0), 0, 0));
 }

 @Override
 public Dimension getPreferredSize() {
 Dimension size = contentPane.getPreferredSize();
 size.height *= 1.0f + length;
 return size;
 }
}

ReflectionPanel must also make sure that components added by the user of the
class are actually added to the content pane, not to the ReflectionPanel itself.
The boolean variable initialized plays an important role in delegating the
calls to add(), remove(), and setLayout() to the content pane:

@Override
protected void addImpl(Component comp,
 Object constraints, int index) {
 if (initialized) {
 contentPane.add(comp, constraints, index);
 } else {
 super.addImpl(comp, constraints, index);
 }
}

@Override
public void remove(int index) {
 contentPane.remove(index);
}

@Override
public void remove(Component comp) {
 contentPane.remove(comp);
}

@Override
public void removeAll() {
 contentPane.removeAll();
}

@Override
public void setLayout(LayoutManager mgr) {
 if (initialized) {
 contentPane.setLayout(mgr);

www.it-ebooks.info

http://www.it-ebooks.info/

A REFLECTION ON REPAINTMANAGER 257

 } else {
 super.setLayout(mgr);
 }
}

After the ReflectionPanel is initialized, all of the calls are delegated to the
content pane.

Painting the Reflection
The next step is to paint the reflection:

1. Paint the content of the panel in an offscreen image (the content buffer).

2. Paint the content buffer onscreen.

3. Create the reflection of the content buffer in another image (the reflection
buffer).

4. Paint the reflection buffer onscreen.

The paint() method of ReflectionPanel requests the painting first of the con-
tent, then of the reflection:

@Override
public void paint(Graphics g) {
 paintContent(g);
 paintReflection(g);
}

The paintContent() method processes the first two operations at the same
time: it creates the content buffer and paints it on screen. The implementation is
as follows:

private BufferedImage contentBuffer = null;
private Graphics contentGraphics = null;

private void paintContent(Graphics g) {
 if (contentBuffer == null ||
 contentBuffer.getWidth() != contentPane.getWidth() ||
 contentBuffer.getHeight() != contentPane.getHeight()) {
 if (contentBuffer != null) {
 contentBuffer.flush();
 contentGraphics.dispose();
 }

continued

www.it-ebooks.info

http://www.it-ebooks.info/

258 CHAPTER 11 REPAINT MANAGER

 contentBuffer = new BufferedImage(contentPane.getWidth(),
 contentPane.getHeight(), BufferedImage.TYPE_INT_ARGB);
 contentGraphics = contentBuffer.createGraphics();
 }

 Graphics2D g2 = contentGraphics;

g2.clipRect(contentPane.getX(), contentPane.getY(),
 contentPane.getWidth(), contentPane.getHeight());

 // because the content buffer is reused, the image
 // must be cleared
 g2.setComposite(AlphaComposite.Clear);
 Rectangle clip = g.getClipBounds();
 g2.fillRect(clip.x, clip.y, clip.width, clip.height);

 g2.setComposite(AlphaComposite.SrcOver);
 g2.setColor(g.getColor());
 g2.setFont(g.getFont());

 super.paint(g2);

 g.drawImage(contentBuffer, 0, 0, null);
}

This code contains a few optimizations. For instance, the same content buffer is
used over and over unless the size of the panel has changed. This behavior saves
a lot of time when repaints occur often, as is the case with video. Also, note that
the clip is intersected with the content pane’s bounds, which is necessary when
the repaint() request covers part of the ReflectionPanel’s empty area.

Painting the reflection is a bit more complicated. First, the reflection itself must
be generated in the reflection buffer, and then the reflection buffer must be
painted in the ReflectionPanel’s empty space:

private void paintReflection(Graphics g) {
 int width = contentPane.getWidth();
 int height = (int) (contentPane.getHeight() * length);
 createReflection(g, width, height);

 Graphics2D g2 = (Graphics2D) g.create();
 g2.scale(1.0, -1.0);
 g2.drawImage(reflectionBuffer, 0, -contentPane.getHeight()
 - height, null);
 g2.dispose();
}

www.it-ebooks.info

http://www.it-ebooks.info/

A REFLECTION ON REPAINTMANAGER 259

The call to scale(1.0, -1.0) should not be a surprise if you read Chapter 7, “Gra-
dients,” in which we explained how to create a reflection effect. Please refer to the
section called “Special Effects with Regular Gradients” in Chapter 7 to see how the
createReflection() method invoked in our current code example was created.

The painting code is now complete. However, if you try to run the application,
you will run into the same issue that was exposed with the example of the
TranslucentPanel. As shown in Figure 11-7, the reflection is not updated
when the movie plays. Indeed, when the movie component asks to be repainted,
the default RepaintManager figures there is no need to ask its parent, the
ReflectionPanel, to update itself. The reflection therefore remains stuck on the
first frame of the movie.

To solve this issue, all we need is a custom RepaintManager that will tell the
ReflectionPanel to update itself.

A Dumber, Therefore Smarter, RepaintManager
To make our reflection work, we must install our own RepaintManager. This
new RepaintManager will be dumber in that it will repaint components that

Figure 11-7 Without a special RepaintManager, the reflection does not update
when it should.

www.it-ebooks.info

http://www.it-ebooks.info/

260 CHAPTER 11 REPAINT MANAGER

Swing deems unnecessary to update. Installing the RepaintManager is quite
easy:

private void installRepaintManager() {
 ReflectionRepaintManager manager =
 new ReflectionRepaintManager();
 RepaintManager.setCurrentManager(manager);
}

The ReflectionRepaintManager overrides only the addDirtyRegion() method.
Remember that this method is invoked whenever a repaint request is issued to a
component.

For every component that needs to be repainted, our addDirtyRegion()
implementation traverses the parents of the component to find an instance of
ReflectionPanel. When such an instance can be found, the dirty region is
extended to cover both the old dirty region and the corresponding area in the reflec-
tion. Figure 11-8 shows the dirty regions used by the default RepaintManager and
the ReflectionRepaintManager.

With the ReflectionRepaintManager, the dirty region expands over the reflec-
tion. Therefore, when paint() is invoked in ReflectionPanel, the clip bounds
of the Graphics will also cover the reflection, allowing updates to that area.

Empty Space

Content Pane

Default RepaintManager

Original
Dirty Region

Empty Space

Content Pane

ReflectionRepaintManager

Extended
Dirty Region

Figure 11-8 The ReflectionRepaintManager extends the dirty region of the content
pane to cover the reflection.

www.it-ebooks.info

http://www.it-ebooks.info/

A REFLECTION ON REPAINTMANAGER 261

The complete source code of the ReflectionRepaintManager is as follows:

private class ReflectionRepaintManager extends RepaintManager {
 public void addDirtyRegion(JComponent c,
 int x, int y, int w, int h) {
 Rectangle dirtyRegion = getDirtyRegion(c);

 int lastDeltaX = c.getX();
 int lastDeltaY = c.getY();

 Container parent = c.getParent();
 // as long as we can find a parent
 while (parent instanceof JComponent) {
 // if the parent is not visible,
 // neither is the component
 if (!parent.isVisible()) {
 return;
 }

 if (parent instanceof ReflectionPanel) {
 x += lastDeltaX;
 y += lastDeltaY;

 // extends the dirty region to cover the
 // corresponding area in the reflection
 int gap = contentPane.getHeight() - h - y;
 h += 2 * gap + h;

 lastDeltaX = lastDeltaY = 0;

 // the component that needs to be repainted
 // is now the ReflectionPanel
 c = (JComponent) parent;
 }

 // calculates the location delta between
 // the parent and the dirty component
 lastDeltaX += parent.getX();
 lastDeltaY += parent.getY();

 parent = parent.getParent();
 }

 // posts the repaint request in the EDT
 super.addDirtyRegion(c, x, y, w, h);
 }
}

www.it-ebooks.info

http://www.it-ebooks.info/

262 CHAPTER 11 REPAINT MANAGER

This code simply retrieves the parent of the “dirty” component and checks
whether it is an instance of ReflectionPanel. If not, it continues with the par-
ent’s parent, and so on.

When a ReflectionPanel is found, the height of the dirty region is modified to
include the area of the reflection corresponding to the area of the original dirty
region. The component to be updated, called c in the code, is finally replaced by
the ReflectionPanel.

At the end of the loop, the code invokes super.addDirtyRegion() and passes
the ReflectionPanel and the extended dirty region. The super class’s method
takes care of posting the repaint request in the EDT for us.

Note: Fixing the TranslucentPanel. Given the previous example, try to implement
a RepaintManager that can fix the issues of the TranslucentPanel. The translucent
repaint manager does not need to extend the dirty region but only change which
component needs to be updated.

Summary
The RepaintManager lets you hook into Swing’s repainting mechanism. It can
be used to catch repaint requests as well as to create visual effects that are other-
wise very difficult to implement correctly. Be aware, however, that only one
RepaintManager can exist at a time. You should create your own RepaintManager
only when necessary.

www.it-ebooks.info

http://www.it-ebooks.info/

263

Part III

Animation

www.it-ebooks.info

http://www.it-ebooks.info/

This page intentionally left blank

www.it-ebooks.info

http://www.it-ebooks.info/

265

12
Animation

Fundamentals

It’s About Time
Animation is one of the key concepts and techniques behind Filthy Rich Clients,
giving our applications a more dynamic feel as the interface moves smoothly in
response to user actions. Animation is a large and diverse topic, covering opera-
tions as simple as copying an image around on the screen or as complex as the
latest 3D shooter game or animated movie. For our purposes, we focus on a spe-
cific use of the term and technique: Animation is the time-based alteration of
graphical objects through different states, locations, sizes, and orientations.
There are two important concepts to grasp from this simple definition: time-based
and alteration.

Alteration is easy to explain. It simply means that we need to change the way we
are drawing objects. We learned how to do this for Swing applications in earlier
chapters; we change the graphics state and re-render GUI and graphics objects
appropriately.

Time-based is perhaps less obvious and is at the heart of the next few pages. The
basic idea is that we define how objects are supposed to change over time and
then render the objects accordingly as time ticks on.

www.it-ebooks.info

http://www.it-ebooks.info/

266 CHAPTER 12 ANIMATION FUNDAMENTALS

Fundamental Concepts
Frame-Based Animation
In the real world, the world outside my computer of which I’ve heard occasional
rumors, we see an animation by watching the continuous changes occur in front
of our eyes. The fly buzzes past, my hand swats it, the fly hits the wall, and the
fly drops down to the ground.1 In computer animation, as in movies, we see the
changes of an animation as a series of still pictures, which our mind puts
together as a smooth flow. See Figure 12-1 and Figure 12-2.

In Figure 12-1 and Figure 12-2 we see the before and after positions of a fly,
along with the path that the fly takes in getting from the before to the after posi-
tion. In Figure 12-3, we see individual pictures taken during the fly’s journey,
which, if shown in rapid sequence, could approximate the actual flight closely
enough to convince our minds that we saw the fly moving and not just a series of
pictures of the fly standing still in different locations.2

1. No animals were harmed in the making of this book. At least none that people care about.
2. I considered doing a flip-book animation in the book, in the lower corner of the pages, like I remem-

ber from the Mad magazines of my youth. While this is a great demonstration of the frame-based
animation technique, it’s also a great way to get a lot of dog-eared copies of our books on the store
shelves. So I’ve opted for the more boring and theoretical figures in this discussion. I leave it as an
exercise for you to cut out the pictures in Figure 12-3 and make a flip-book animation for yourself.
Besides being a nifty demonstration of the technique, it will make the time fly. Or the fly timed. But
please wait to perform this experiment until after you’ve purchased the book.

Figure 12-1 Before.

www.it-ebooks.info

http://www.it-ebooks.info/

FUNDAMENTAL CONCEPTS 267

Figure 12-2 After.

Figure 12-3 Flies timed while you’re having fun: individual animation frames
for the fly’s movement.

www.it-ebooks.info

http://www.it-ebooks.info/

268 CHAPTER 12 ANIMATION FUNDAMENTALS

This picture-based, or frame-based, animation approach works fine in most situ-
ations. As long as we show the frames fast enough, the mind construes the series
as fluid motion. There are other tricks that can help fool our minds,3 and they are
covered in Chapter 13, “Smooth Moves.”

Frame Rate
One of the terms we should mention up front, since we use it often, is frame rate.
Each separate view of an animation is called a frame, and an animation is a suc-
cession of these frames. The rate at which these frames are displayed is called,
not surprisingly, the frame rate. This rate is determined by a combination of the
rate required to achieve smooth motion and the rate that is possible to achieve
given the performance of your system and the complexity of what you are trying
to render in each frame.

Time-Based Motion
The simplest approach to animated rendering is to change a scene in steps and
draw the new versions sequentially. For example, assume that you want to animate
movement of an image from the left of the window to the right. You could accom-
plish this task by drawing the object on the left and then on the right, like this:

public void paintComponent(Graphics g) {
 int imgW = img.getWidth();
 int imgH = img.getHeight();
 // Draw image in first location
 g.drawImage(img, 0, 0, null);
 // Erase first location
 g.setColor(bgColor);
 g.fillRect(0, 0, imgW, imgH);
 // Draw image in final location
 g.drawImage(img, windowWidth – imgW, 0, null);
}

There are several of problems with this approach:

Teleportation != Animation

This example is really not much of an “animation” if the object just appears in
the start and then the end locations. The desirable effect for any animation is

3. Without resorting to chemicals.

www.it-ebooks.info

http://www.it-ebooks.info/

FUNDAMENTAL CONCEPTS 269

for the object to gradually move from one location to the other, not to simply
appear in the final location.

Tip: In fact, getting applications to smoothly animate graphics is one of the goals
of this entire book. Filthy Rich Clients are trying to get away from the traditional
model of applications in which objects, GUI elements, text, and application state
simply change immediately. There should be movement and transition in the appli-
cation, not abrupt and discontinuous change.

Too Fast

By drawing the start and end versions directly after one another, we are effec-
tively showing the user only the end location. In Swing, as we discuss later,
the user would see only the end version, not the initial drawing at (0, 0). But
even in toolkits in which both of the versions would be drawn onscreen, it
would all happen so fast that it would end up being just a blip of the object in
the initial location, and then the object would appear in the final location. This
kind of animation is not so much a flick as a flicker.

Swing Buffering

Because of the rendering model of Swing, discussed in Chapter 2, “Swing
Rendering Fundamentals,” the user sees only the final result. The user won’t
even see a glimpse of the initial rendering because all Swing rendering hap-
pens offscreen on a back buffer. The result of Swing’s double-buffering is that
all commands in the paintComponent() method draw to the back buffer, at
the completion of which the buffer is copied to the screen. The previous code
draws the first location, erases it, and then draws the final version. The user
sees only the final version, not the intermediate drawing and erasure. So there
are no disturbing flicker artifacts—but there is actually no animation at all,
only a single rendering of the image in its final location.

Motion Should Be Time-Based

There is nothing governing how fast the object gets from the left to the right
apart from the speed of the system on which the code is run. If we want realis-
tic animations that the user accepts, we must use some time-based algorithm
to control the motion of an object.

www.it-ebooks.info

http://www.it-ebooks.info/

270 CHAPTER 12 ANIMATION FUNDAMENTALS

Let’s see what we can do to address all of these issues.

Movement, Not Teleportation
The first issue is easy. We add intermediate steps to the animation to make it
more gradual. In the extreme case, we could try to make the animation as smooth
as possible by moving the image only one pixel between each rendering, as in
the following code:

public void paintComponent(Graphics g) {
 int imgW = img.getWidth();
 int imgH = img.getHeight();
 for (int i = imgW; i <= windowWidth; ++i) {
 // Erase old location
 g.setColor(bgColor);
 g.fillRect(i – imgW - 1, 0, imgW, imgH);
 // Draw image in next location
 g.drawImage(img, i – imgW, 0, null);
 }
}

This new approach renders the image many times, each time erasing the old
image and then drawing it again one pixel to the right. Instead of teleporting the
image from the left to the right, we are moving it incrementally through all of the
intervening pixels.

The other problems we identified, however, are still present. For one thing, the
animation happens entirely too quickly, even when we shift it one pixel at a
time.

Slow It Down
When we draw one frame right after the other, whether using the original tele-
portation approach or the improved pixel-by-pixel version, we’re still updating
the frames at the speed of the system, which is too fast for our purposes. Users
need to see movement that is gradual, not as fast as the machine can perform it.
What we need, then, is a mechanism to pause between each frame of the anima-
tion to give the user time to soak in the new image position or at least to see what
is happening. Such code might look something like this:

int imgX, imgY;
int prevImgX, prevImgY;

www.it-ebooks.info

http://www.it-ebooks.info/

FUNDAMENTAL CONCEPTS 271

public void paintImage(Graphics g) {
 g.setColor(bgColor);
 g.fillRect(prevX, prevY, img.getWidth(),img.getHeight());
 g.drawImage(img, imgX, imgY, null);
 prevX = imgX;
 prevY = imgY;
}

public void paintComponent(Graphics g) {
 imgX = prevX = imgY = prevY = 0;
 imgW = img.getWidth();
 for (int i = imgW; i <= windowWidth; ++i) {
 paintImage(g);
 // ... some time passes
 imgX = i – imgW;
 }
}

This second attempt is slightly more intelligent about how it draws the two ver-
sions. It refactors the painting code into the paintImage() method and uses the
variables imgX and imgY to determine where the image will be drawn when the
method is executed.

There is a big unknown in this version in the comment line that says “// ... some
time passes.” How much time? How do we pass that time? Do we spin in a loop
waiting for time to pass? Spinning in a tight loop is a bad idea. Occupying the
CPU just to let time pass is considered a breach of application etiquette. Other
applications and that are running, as well as the operating system itself, have
enough to contend with without some application pegging the CPU for this pur-
pose. As we see in the next section, there are convenient mechanisms in the Java
class libraries, as in other GUI toolkits, for providing this time-passing function-
ality in a system-friendly way.

Swing Buffering
We still have the problem of the Swing window not showing anything in these
examples except the final frame. As we saw in our discussion of double buffering
in Chapter 2, the contents of a Swing window are copied to the screen only after
the window is completely finished with being updated. In the previous examples,
the component is not done with rendering in its paintComponent() method until
the animation has ended. So although the entire animation will be rendered to
the back buffer, and the image will be drawn and erased in all of its positions as
a part of that process, the only result that the user will see on the screen is the
final one with the image at the endpoint of the animation.

www.it-ebooks.info

http://www.it-ebooks.info/

272 CHAPTER 12 ANIMATION FUNDAMENTALS

The fix for this issue is that we must work within the Swing painting model,
which means completing a component’s painting after each frame of the anima-
tion, as opposed to our previous model in which we rendered all frames of the
animation in one tight loop inside paintComponent(). This task is actually quite
simple. Instead of performing our animation inside the paintComponent()
method, we perform the animation elsewhere and then call repaint() on the
component for each frame. Swing then calls our component to render the anima-
tion for that particular frame. Making this change to the example looks like this:

int imgX, imgY;
int prevImgX, prevImgY;

public void paintComponent(Graphics g) {
 g.setColor(bgColor);
 g.fillRect(prevX, prevY, img.getWidth(),img.getHeight());
 g.drawImage(img, imgX, imgY, null);
 prevX = imgX;
 prevY = imgY;
}

public void someMethod() {
 imgX = prevX = imgY = prevY = 0;
 imgW = img.getWidth();
 for (int i = imgW; i <= windowWidth; ++i) {
 repaint();
 // ... some time passes
 imgX = i – imgW;
 }
}

Of course, this code is still academic; we glibly wave our hands with that vague
“// ... some time passes” comment. We obviously need to fill in some details
there; how do we effectively pass some time for the application?

Most GUI toolkits, and many system-level libraries, provide various timing mecha-
nisms intended exactly for this sort of purpose. We learn more about them in a few
pages, but first we have to solve the last problem: motion should be time-based.

Realistic Motion
The final problem with our example is that the movement of the image is com-
pletely unrealistic. No matter how much time passes between each step of the
object, we are still moving it one pixel at a time. One problem with this approach
is that the behavior of the animation will vary widely between systems. Maybe it
looks good on your fast development system but takes twice as long on some

www.it-ebooks.info

http://www.it-ebooks.info/

FUNDAMENTAL CONCEPTS 273

other user’s system.4 Surely there is a better way to move an object than to just
bump its position by some hard-coded increment.

Indeed, there is a better way: we need time-based movement. In fact, for all anima-
tions that we want to do in GUIs, be they moves or fades or whatever, we should
base the animations on time. That is, we should define how much to alter some
property, like the position of the image in this example, over some period of time.
Then, during the animation, we can calculate the correct value for that property
according to how much time has passed. With this approach, it doesn’t matter how
fast or slow a system is or whether there were any hiccups during the animation.
The object being animated will always be in the right place at the right time.

The simplest approach to time-based animation is to use a linear interpolation of
values based on their starting value, their end value, and the fraction of time that
has elapsed during the animation.

The equation for linear interpolation of any value x is the parametric equation:

x = x0 + t * (x1 – x0)

where:

• x = the value we want to calculate during the animation.

• x0 = the starting value.

• x1 = the ending value.

• t = the elapsed fraction of the animation duration, from 0 to 1.

We can see how this approach changes our example:

int imgX, imgY;
int prevImgX, prevImgY;

continued

4. There was a demo I saw years ago advertising a cool, new graphics card. This hardware was pret-
ty fast at drawing lines and the demo did a really nice job of showing this off. The application
showed a wireframe piano as the camera zoomed around it in 3D. The piano was playing a tune
and you could see the keys moving, the hammers striking, and the strings vibrating, all synchro-
nized with a soundtrack. It was a great piece of work.

I happened to see the demo years later on a different system with even faster graphics
hardware ... and it looked silly. All of the frames of the animation were displayed in about a
tenth of the time that the demo author had planned, so the piano was done playing the piece
while the music was still wafting out of the speakers.

In this case, the positions of the objects were not calculated according to the time that had
elapsed, but rather to some hard-coded formula that broke down once the demo was run on a
platform with different speed characteristics.

www.it-ebooks.info

http://www.it-ebooks.info/

274 CHAPTER 12 ANIMATION FUNDAMENTALS

public void paintComponent(Graphics g) {
 g.setColor(bgColor);
 g.fillRect(prevX, prevY, img.getWidth(),img.getHeight());
 g.drawImage(img, imgX, imgY, null);
 prevX = imgX;
 prevY = imgY;
}

public void someMethod() {
 int imgW = img.getWidth();
 int startX = 0;
 int endX = windowWidth – imgX;
 imgX = prevX = imgY = prevY = 0;
 // Note: getTime() is pseudo-code, not a real method
 long currentTime = getTime();
 long startTime = currentTime;
 long endTime = currentTime + animationDuration;
 while (currentTime < endTime) {
 long elapsedTime = currentTime – startTime;
 float f = (float)(elapsedTime / animationDuration);
 imgX = startX + f * (endX – startX);
 repaint();
 // ... some time passes
 currentTime = getTime();
 }
}

There are several new elements in this version of the example. The getTime()
function is a placeholder for a real function to get the current time. We discuss
this topic in depth in the next few pages. For now, just assume that there is such
a function. Given the time we start, startTime, and the time during any iteration
through the loop, currentTime, we can calculate the elapsedTime. With
elapsedTime and some animationDuration, we can calculate the fraction
elapsed (f) of animationDuration. And given f, we can calculate the position of
the image at any point between its starting (startX) and ending (endX) positions:

imgX = startX + f * (endX – startX);

This calculation should look a lot like the linear interpolation function that we
discussed earlier.

This time-based approach gives us much more flexibility in our animations. We
can start to specify animations in terms of what we want to do during the anima-
tion, such as move an object from x0 to x1 or fade a button between alpha values
a0 and a1, and how long we want the animation to take. The calculations of the

www.it-ebooks.info

http://www.it-ebooks.info/

TIMING (AND PLATFORM TIMING UTILITIES) 275

interim values during the animation handle the details of changing object proper-
ties accordingly.

This approach also addresses the need for the animation to run similarly across a
wide spectrum of user platforms, which Java has been known to do. Just because
a simple pixel-by-pixel animation might look good on your development system
does not mean it will look good on someone else’s computer. But since different
computers still measure time the same,5 calculations of animations based on
elapsed time would get the same results even on wildly different platforms.
Moving to a time-based animation approach smooths out these issues and helps
animations look the same wherever they happen to run.

We glossed over a lot of details here, from the “// ...some time passes” com-
ment to the fake “getTime()” function. The next few pages resolve these issues
and show how to make the fake functionality work for real in Java.

Timing (and Platform Timing Utilities)
There are various situations in which we need to use time in applications, and
there are different utilities provided by any runtime platform for those purposes.
We see the various categories of timing functionality in this section, along with
how these facilities are provided by Java.

“What Time Is It?”
One of the most fundamental time queries that an application needs is simply
finding out the current time. This functionality may be required because the
application needs to know the actual time, say, for time-stamping a transaction,
but for our purposes applications usually need the information more for relative-
time purposes. That is, an application does not necessarily care what time it is as
an absolute but rather how much time has passed since some other event.

For example, maybe an application would like to measure the performance of cer-
tain operations. Or maybe it would like to do a particular action, like render the
next frame of an animation, at some predetermined interval. In such situations, we
need to know how much time has passed since some previous operation.

5. This premise assumes, of course, that the computers are in the same time continuum. Develop-
ment of multidimensional Filthy Rich Client applications is beyond the scope of this book. We’ll
have to see if we can cover that topic in a sequel.

www.it-ebooks.info

http://www.it-ebooks.info/

276 CHAPTER 12 ANIMATION FUNDAMENTALS

Modern runtime platforms generally provide one or more mechanisms for que-
rying the current time. The format in which the times are reported can vary, but it
is straightforward to compare with other times of similar format so that applica-
tions can calculate the difference.

Java provides a couple of methods for this purpose: System.currentTimeMillis()
and System.nanoTime().

Java Time: currentTimeMillis() and nanoTime()
System.currentTimeMillis()

System.currentTimeMillis() has existed since Java’s original 1.0 release.
This simple function returns the number of milliseconds since January 1, 1970, a
date known as the UNIX Epoch. It seems unlikely that anyone would want to
know how many milliseconds have passed since this arbitrary date in the past,
but for the purpose of determining relative times, this result is fine. For example,
suppose we want to know our animation frame rate, or how many frames per
second (fps) are currently being drawn. We can determine the fps by measuring
the time that has passed since the last frame in our paintComponent() method:

private long previousTime = 0;
private float fps = 0.0f;
public void paint(Graphics g) {
 long currentTime = System.currentTimeMillis();
 long delta = (currentTime – previousTime);
 if (delta > 0) {
 // only calculate fps for positive delta times
 fps = 1000.0f / (float)delta;
 }
 previousTime = currentTime;
 // ... actual rendering operations
}

This example tracks the exact fps for every frame we render by dividing 1 sec-
ond—1,000 ms—by the number of milliseconds elapsed since the last time we
were in this method. There are some quirks to this measurement that are worth
noting:

First Frame Rate Wrong

Because we set previousTime from the old currentTime, the first time we
calculate delta, the previousTime is incorrect, leading to an incorrect delta.
In practice, we would either ignore this initial value or start calculating fps
some time after the first frame.

www.it-ebooks.info

http://www.it-ebooks.info/

TIMING (AND PLATFORM TIMING UTILITIES) 277

High Volatility

The time between frames may be quite different, like 15 ms for one frame and
then 60 ms for the next. Rather than see our frame rate jump wildly between
these different values, it is probably more useful to track the fps over a longer
time period to smooth out the volatility and measure an average frame rate
instead.

Resolution

One of the factors that contribute to interframe volatility is the resolution of
the timing mechanism, which is discussed further under “Resolution” later in
this chapter. Again, we get better results by calculating an average frame rate,
eliminating the per-frame volatility.

Let’s see another example that addresses these issues:

private long startTime = 0;
private int numFrames = 0;
private float fps = 0.0f;
private float getFPS() {
 ++numFrames;
 if (startTime == 0) {
 startTime = System.currentTimeMillis();
 } else {
 long currentTime = System.currentTimeMillis();
 long delta = (currentTime – startTime);
 // Average the fps over each second
 if (delta > 1000) {
 fps = numFrames / delta * 1000;
 numFrames = 0;
 startTime = currentTime;
 }
 }
 return fps;
}
public void paintComponent(Graphics g) {
 float fps = getFPS();
 // ... actual rendering operations
}

In this version, we calculate fps over periods of about a second. That is, we cal-
culate fps only when the delta, which measures the time between now and the
last time we calculated fps, is greater than 1000 ms. For intermediate values, we

www.it-ebooks.info

http://www.it-ebooks.info/

278 CHAPTER 12 ANIMATION FUNDAMENTALS

simply return the previous fps value. Note that our initial fps values are bogus,
since fps equals 0 until we have passed our first second of measurements, so
there are no real fps results until after this warm-up period.

This is just a simple example. Other methods of measuring and calculating the
fps could be used that better account for initial values, calculate the frame rate
over longer or shorter periods, or account for particular application situations.
But this example at least shows the basics of how you might do this in your
application, using Java’s simple System.currentTimeMillis() timer.

System.nanoTime()

System.nanoTime() was introduced in J2SE 5.0 as a means of getting a higher-
resolution time value. Resolution is further discussed later, but it is important to
note that nanoTime() offers better resolution in two senses: It offers time values
in nanoseconds, or billionths of a second, and the times may be measured by a
higher-resolution timer in the operating system than is the case with current-
TimeMillis().

I have found that I rarely have the need for sub-millisecond timings. But the reso-
lution issue is huge, as we’ll see later, and the improved resolution of nanoTime()
makes it a very attractive alternative to currentTimeMillis(). For example, on
some systems, currentTimeMillis() cannot time anything accurately at less
than 16 ms, whereas nanoTime() can time accurately down to the millisecond
range. This degree of accuracy can make nanoTime() critical for situations in
which you need to need to know how much time has passed and the coarser res-
olution of currentTimeMillis() is just not enough. In practice, you use this
function exactly like currentTimeMillis(), adjusting the values according to
the time increments you need. In the previous example, the only change apart
from the method name is that we multiply delta by 1,000,000,000 instead of
1,000 to get the right answer for fps:

if (startTime == 0) {
 startTime = System.nanoTime();
} else {
 long currentTime = System.nanoTime();
 long delta = (currentTime – startTime);
 if (delta > 1000) {
 fps = numFrames / delta * 1000000000;
 numFrames = 0;
 startTime = currentTime;
 }
}

www.it-ebooks.info

http://www.it-ebooks.info/

TIMING (AND PLATFORM TIMING UTILITIES) 279

“Can I Get a Wake-up Call?”
Another common usage for time utilities is to ask for a wake-up call, just like at
a hotel.6 A wake-up call is exactly the need we have in our simple animation
examples in which the program wanted to “pass some time” without simply
spinning in a tight loop. In this situation, the application would like to hand con-
trol back to the system, with the agreement that the application will get woken
up at some specified time.

This process is called sleeping, because the thread that requests this wake-up call
is put to sleep by the system. Most GUI and system libraries have some kind of
mechanism for putting a thread to sleep, like a function called something catchy,
say sleep(). Typically, a sleep() function is called with a number denoting the
duration that the thread would like to remain asleep. The system puts the thread
to sleep, hands control over to other running threads and processes, and eventu-
ally awakens that initial thread after the sleep duration has passed.

Thread.sleep()

Tip: Another mechanism that has some characteristics in common with
Thread.sleep() is Object.wait(). We can also call wait() to specify a timeout
period after which we wish to be woken up. However, wait() is actually more
suited to other situations (where other threads can force our waiting thread to wake
up), so we skip it here, since it is not something we would typically use in this sit-
uation. We will come back to wait() later on in our discussion on resolution, since
it is used under the covers by our use of the Swing timer.

In Java, the wake-up functionality is handled by the method Thread.sleep(ms),
where ms is the number of milliseconds that the thread would like to remain
asleep. The method may throw an exception if the system causes the thread to be
interrupted during its sleep cycle, so the full procedure for calling sleep() is as
follows:

try {
 // sleep for 100 milliseconds
 Thread.sleep(100);
} catch (InterruptedException e) {
 // handle exception appropriately
}

6. Except that this wake-up call saves you the price of the hotel room.

www.it-ebooks.info

http://www.it-ebooks.info/

280 CHAPTER 12 ANIMATION FUNDAMENTALS

Now let’s return to our previous animation example and substitute this sleep
functionality for our hand-wavy “some time passes” as follows:

int imgX, imgY;
int prevImgX, prevImgY;

public void paint(Graphics g) {
 g.setColor(bgColor);
 g.fillRect(prevX, prevY, img.getWidth(),img.getHeight());
 g.drawImage(img, imgX, imgY, null);
 prevX = imgX;
 prevY = imgY;
}

public void someMethod() {
 imgX = prevX = imgY = prevY = 0;
 for (int i = 0; i <= windowWidth; ++i) {
 repaint();
 try {
 Thread.sleep(30);
 } catch (InterruptedException e) {
 // handle exception
 }
 imgX = window – img.getWidth();
 }
}

This code should look better than it did before. It even looks like you might actu-
ally be able to compile and use it. In its current form, it now pauses for 30 ms,
which would make the animation run at about 33 fps, and then renders the next
frame of the animation.

But this approach to the problem doesn’t scale beyond this tiny example. An
application that sleeps for long periods of time just to get a reasonable frame rate
doesn’t seem very workable. What about the rest of the work that an application
might want to do besides calculating object positions and sleeping? We can do
better than this; let’s check out the timers.

“Call Me Again. And Again. And Again.”
sleep() is useful for getting a single wake-up call. But what if you want to per-
form an operation repeatedly with similar time increments? You could keep per-
forming individual sleep() calls, which works adequately in some situations,
but there is a more convenient mechanism in most libraries for this situation. It’s
called a timer. In addition to the convenience of not having to manually call

www.it-ebooks.info

http://www.it-ebooks.info/

TIMING (AND PLATFORM TIMING UTILITIES) 281

sleep() every time, you have the powerful capability to continue doing what-
ever you need to do, knowing that you will get a call when you need it.

Let’s overload our previous hotel wake-up call metaphor a bit more to illustrate the
advantages here. First, let’s look at the repetitive nature of wake-up calls. Suppose
you are staying at the hotel all week, and every day you want to wake up at the
same time to get yourself to work. You could call the front desk every night and
ask for a wake-up call some number of hours and minutes in the future and then
fall immediately asleep. This approach is the equivalent to our sleep() method.
But wouldn’t it be more convenient to call the front desk once when you arrive and
ask for a regular wake-up call at some specified time every morning that week?

But here’s an even better reason for using timers instead of sleep(): parallel
processing. In the original hotel wake-up call scenario, we asked for a wake-up
call and then went straight to sleep. How often does this really happen? Isn’t it
more likely that we would make this request during the evening, and then we
would watch some TV, work a little, toss and turn, read the phone book, make
crank calls, and generally do whatever it is we do when we can’t sleep in our
awful little hotel room?

The sleep() approach does not work as a general solution. We cannot necessar-
ily go to sleep right after we schedule our wake-up call. There’s just too much to
do in life. What we really need is a pending wake-up call request while we go
about our regular business, hopefully falling asleep sometime between when we
made the request and when the phone rings. This is what timers are for. We put
in the request and the system logs that request. Then we go ahead and do what-
ever else we need to do, knowing that the wake-up call will occur at the right
time, regardless of what we do in the meantime.

Timers exist to help you perform repetitive operations at regular time intervals in
a way that allows other work to happen asynchronously. Imagine a text-insertion
caret that wants to blink once per second. Now imagine if the GUI thread tried to
implement this through the sleep() call. It could do so—but it could not do any-
thing else because it would be sleeping in between the last blink and the next
one. Instead, it should use a timer to request a callback once per second. It can
then do whatever else it needs to do to service the overall user interface, such as
processing user events and drawing other GUI components. Every second, the
GUI thread will receive a call to its timer callback method that tells it that a sec-
ond has elapsed, and it can make the cursor flash as appropriate.

Timers are fairly simple objects with just a few parameters driving them, the
most important of which are the frequency with which the wake-up call will
occur and the method that will be called with the wake-up message.

www.it-ebooks.info

http://www.it-ebooks.info/

282 CHAPTER 12 ANIMATION FUNDAMENTALS

Let’s see how timers are implemented in the Java platform.

java.util.Timer
java.util.Timer creates a separate Thread that schedules TimerTasks that you
schedule with Timer. Each TimerTask is a Runnable object whose run() method
is called by Timer according to the frequency you specify when you schedule the
task. You can schedule tasks to occur either at fixed-rate or fixed-delay intervals.
Fixed-rate tasks occur at an overall rate that is consistent, say 30 times per second,
although the delay between any particular occurrences may vary from that aver-
age. For example, if one task takes longer to complete than the delay requested,
subsequent delays may be shorter than the requested delay until the timer catches
up. Fixed-delay tasks occur with regular frequency, and each task occurs close to
the specified delay after the previous begins. If any particular task takes longer to
complete than the delay requested, all subsequent events are shifted by that delay,
because the system tries to issue callbacks only at fixed delays from previous
requests and does not compensate for any hiccups during processing.

Example: UtilTimerDemo
Let’s look at an example to see how this timer works. This example is found on
the book’s Web site in the project UtilTimerDemo. In this demo, we run an ani-
mation that calls back into our code every 100 ms (DELAY) for a total duration of
a half second (DURATION). Just to make the example slightly more interesting, we
add a PROCESSING_TIME constant that is incurred while processing each callback
to see how it affects the timings. Also, we add an INITIAL_PROCESSING_TIME of
twice the normal timer delay, which is incurred only the first time we are called.

private static final long DELAY = 100;
private static final long DURATION = 5 * DELAY;
private static final long PROCESSING_TIME = 30;
private static final long INITIAL_PROCESSING_TIME = 2 * DELAY;

We set up the Timer to schedule a TimerTask, an abstract class that is extended
by our class. We want to compare the fixed-delay to the fixed-rate approach, so
we create and run two different timers in our main() method, one at a time.
First, we create and start the fixed delay timer:

timer = new Timer();
startTime = prevTime = System.currentTimeMillis();
timer.schedule(new UtilTimerDemo(), DELAY, DELAY);

ONLINE
DEMO

www.it-ebooks.info

http://www.it-ebooks.info/

TIMING (AND PLATFORM TIMING UTILITIES) 283

The timer is scheduled with an instance of UtilTimerDemo, which extends
TimerTask and overrides the run() method, and with DELAY for both the initial
delay before the first event and for subsequent delays between events.

Next, we sleep for some amount of time to allow the first timer to complete:

try {
 Thread.sleep(DURATION * 2);
} catch (Exception e) {}

Next, we create our fixed-rate timer. This is exactly like the other timer, except
that we call the scheduleAtFixedRate() method instead of schedule().

timer = new Timer();
startTime = prevTime = System.currentTimeMillis();
timer.scheduleAtFixedRate(new UtilTimerDemo(),
 DELAY, DELAY);

Finally, we implement the run() method of our class, which is abstract in
TimerTask. This method receives the timing events. In this method, we calculate
the elapsed time since the last call to run() and the total time since this timer began.
We stop the animation if totalTime exceeds the DURATION. We then sleep for either
INITIAL_PROCESSING_TIME, the first time through, or PROCESSING_TIME millisec-
onds to simulate performing real work in this routine:

public void run() {
 long nowTime = System.currentTimeMillis();
 long elapsedTime = nowTime - prevTime;
 long totalTime = nowTime - startTime;
 if (totalTime > DURATION) {
 timer.cancel();
 }
 prevTime = nowTime;
 try {
 if (firstTime) {
 Thread.sleep(INITIAL_PROCESSING_TIME);
 firstTime = false;
 } else {
 Thread.sleep(PROCESSING_TIME);
 }
 } catch (Exception e) {}
}

www.it-ebooks.info

http://www.it-ebooks.info/

284 CHAPTER 12 ANIMATION FUNDAMENTALS

The results from a sample run of this program are shown here:

Fixed Delay Times
Elapsed time = 101
Elapsed time = 200
Elapsed time = 100
Elapsed time = 100

Fixed Rate Times
Elapsed time = 102
Elapsed time = 200
Elapsed time = 36
Elapsed time = 63
Elapsed time = 100

These results show how much time passed since the previous call into our run()
method. Note first that the INITIAL_PROCESSING_TIME delay incurred in the first
time through the run() method causes a hiccup in the results, but in different
ways for each timers. For the fixed-delay timer, the subsequent events occur at
the regular DELAY intervals, as if nothing had happened. The fixed-rate timer,
however, compensates for that one huge delay by speeding up the next couple of
events until the average time equals the specified DELAY.

Note, also, that the normal PROCESSING_TIME delay spent sleeping in run()
causes no problems for either timer. The delay between events is based on when
the run() method is called, not how long the method took to process work. As
long as the time spent in run() does not exceed the interevent delay, as it does in
the case of the first time through our run() method, subsequent events occur
regularly.

javax.swing.Timer
Timer was such a great name for a class implementing timing functionality that it
was also used for the Swing class javax.swing.Timer.7 This Timer’s functional-
ity is similar to that of java.util.Timer, with a few important distinctions:

Callbacks on Swing Event Thread

This difference is probably the most important distinction between these two
Timer classes, especially for Swing programmers.

7. And the class javax.management.Timer. Clearly, this is a class name whose time has come.

www.it-ebooks.info

http://www.it-ebooks.info/

TIMING (AND PLATFORM TIMING UTILITIES) 285

Tip: All callbacks for javax.swing.Timer occur on the Event Dispatch Thread
(EDT).

This timer’s integration with the EDT is particularly useful for Swing appli-
cations because GUI operations, such as blinking a cursor or pulsating a but-
ton, must happen on the EDT. Rather than receiving callbacks on an arbitrary
thread and having to forward GUI-related operations to the EDT, applica-
tions using the Swing timer can simply perform the GUI operations directly
in the callback method, knowing that they are on the proper thread already.
For more information about thread management issues with these timers, see
Chapter 2.

Fixed-Delay and Fixed-Rate Approaches

By default, the Swing timer uses the fixed-delay approach in which each call-
back occurs after a specified delay after the previous callback. Actually, it’s a
bit more involved than this. The thread that posts the events posts them at the
specified delay regardless of what else is happening in the system or how long
any particular event takes to process.

However, by default, the Swing timer coalesces timing events, much like it
does with repaint requests as discussed in earlier chapters, so that some
timing events may get thrown away if they are not serviced fast enough.
This ends up having slightly different characteristics than the fixed-delay
behavior of java.util.Timer. You can change this behavior by calling
setCoalesce(false), which would result in behavior similar to java.util.Timer
running with fixed-rate delays: The system would catch up after hiccups
because there would be additional pending requests on the queue that would
get serviced sooner than the requested delay. We see both approaches illus-
trated in the next example.

Single Timer Thread

There is no danger of spawning arbitrary numbers of timing threads, since
there is exactly one thread that creates all timer events.

Actions, Not Tasks

Instead of creating a TimerTask to receive the callbacks, Swing timer clients
provide an ActionListener to the timer. This listener’s actionPerformed()
method is called for each timing event.

www.it-ebooks.info

http://www.it-ebooks.info/

286 CHAPTER 12 ANIMATION FUNDAMENTALS

Example: SwingTimerDemo
The SwingTimerDemo application on the book’s Web site shows how to use the
Swing timer. This demo looks and performs much like UtilTimerDemo. In fact,
most of the code is exactly the same. The only real differences are the following:

• SwingTimerDemo uses actionPerformed() instead of run() to receive
the timing callbacks.

• SwingTimerDemo creates a javax.swing.Timer()with an ActionListener
object, which is an instance of SwingTimerDemo() itself, instead of the
TimerTask that java.util.Timer requires.

• The timer is started with timer.start() instead of the schedule()
method of java.util.Timer.

The variables used are exactly the same as in UtilTimerDemo:

private static final int DELAY = 100;
private static final int DURATION = 5 * DELAY;
private static final int PROCESSING_TIME = 30;

Once again, we create and run two separate timers to show the difference in
behavior due to coalescing. Here is the first timer:

// Run a default fixed-delay timer
timer = new Timer(DELAY, new SwingTimerDemo());
startTime = prevTime = System.currentTimeMillis();
timer.start();

This setup is similar to that of UtilTimerDemo, although there are a couple of
important differences. First of all, the call to create the timer is different from
that for java.util.Timer. This timer constructor takes the inter-callback delay
and the ActionListener as arguments. In java.util.Timer, these parameters
are passed into the schedule() method instead. Also, the timer is started differ-
ently here than in UtilTimerDemo. A Swing timer must be started manually by
calling start(), whereas a java.util.Timer is started implicitly through
scheduling the TimerTask object.

After sleeping for some time to let the first timer finish, the same as we did in
UtilTimerDemo, we create and run a fixed-rate timer:

// Run a timer with no coalescing to get fixed-rate behavior
timer = new Timer(DELAY, new SwingTimerDemo());
startTime = prevTime = System.currentTimeMillis();

ONLINE
DEMO

www.it-ebooks.info

http://www.it-ebooks.info/

TIMING (AND PLATFORM TIMING UTILITIES) 287

timer.setCoalesce(false);
timer.start();

This code is the same as the previous code except for the added call to
setCoalesce(false), which tells the timer to post and handle all timing events
and not to combine any duplicate requests that might occur.

The actionPerformed() method is nearly the same as UtilTimerDemo’s run()
method, although this time we stop our timer with a call to stop() instead of the
cancel() method of java.util.Timer.

public void actionPerformed(ActionEvent ae) {
 long nowTime = System.currentTimeMillis();
 long elapsedTime = nowTime - prevTime;
 long totalTime = nowTime - startTime;
 System.out.println("Elapsed time = " + elapsedTime);
 if (totalTime > DURATION) {
 timer.stop();
 }
 prevTime = nowTime;
 try {
 if (firstTime) {
 Thread.sleep(INITIAL_PROCESSING_TIME);
 firstTime = false;
 } else {
 Thread.sleep(PROCESSING_TIME);
 }
 } catch (Exception e) {}
}

For comparison to the earlier UtilTimerDemo, here is the output from
SwingTimerDemo:

Fixed Delay Times
Elapsed time = 105
Elapsed time = 299
Elapsed time = 101

Fixed Rate Times
Elapsed time = 102
Elapsed time = 201
Elapsed time = 31
Elapsed time = 70
Elapsed time = 101

Note that the results from the fixed-delay approach are slightly different from
results for UtilTimerDemo. Coalescing events is not the same as simply issuing

www.it-ebooks.info

http://www.it-ebooks.info/

288 CHAPTER 12 ANIMATION FUNDAMENTALS

the next event at a set time after the previous event. But the results for fixed-rate
are very similar to what we saw before. Removing the coalescing behavior causes
the same catch-up behavior as the fixed-rate approach for java.util.Timer.

As you can see, using the Swing timer is quite similar to using the java.util.
Timer object. The Swing timer tends to be easier to deal with in general for
Swing applications. The lack of an extra TimerTask object simplifies program-
ming the timer, and receiving the timing events on the EDT simplifies GUI-
related operations.

Tip: javax.swing.Timer is a better mechanism in general for Swing applications
than java.util.Timer, particularly because of its EDT-friendly timing event
processing.

Resolution
The amount of time between events of a timer is called the resolution. The reso-
lution determines the frame rate of an animation. For example, if an animation
has a resolution of 30 ms, then the animation will achieve performance of about
33 fps (1,000 milliseconds/30 ms/frame = 33.3 fps).

Note: A thorough discussion of frame rates, animation, and the human visual system
is slightly beyond the scope of this book. But in general, animations that want to
appear smooth to the user should aim for a ballpark frame rate of 20 to 30 fps or more.
At around this speed or greater, the human eye stops seeing separate events and sees
smooth motion instead. For example, movies in the theater typically play at 24 fps. Of
course, some animations may use much higher frame rates to get even smoother
motion. Video games, for example, run at the refresh rate of computer monitors, which
ranges from 60 times per second to 70, 75, 85, or even higher. And some animations
appear perfectly smooth at much lower frame rates, as we see later in some fading ani-
mation examples. But 20 to 30 fps tends to be a nice number to shoot for in general.

There are a couple of important application elements that can prevent us from
achieving our desired frame rate:

• Performance: If the system is not capable of doing everything we are ask-
ing of it for each animation frame, then we will necessarily spend longer
doing the work of each frame. We will end up getting a lower frame rate,
since we necessarily render fewer frames per second.

www.it-ebooks.info

http://www.it-ebooks.info/

RESOLUTION 289

• Timer resolution: In some situations, we may need a very high frame rate,
which requires a very low resolution. Depending on the timing mechanism
we use, the timer may be unable to deliver that resolution.

For the first situation, performance, the solution depends on your situation, but
you have the following choices:

• Optimizing the performance of what you are attempting to do, using
appropriate techniques including the numerous tips and approaches cov-
ered in this book.

• Trying to do less in each frame, such as offloading non-GUI processing
onto different threads or lowering the frequency of some operations.

• Setting your expectations lower and being satisfied with a lower frame
rate. Remember, the goal is to make the animation smooth to the user;
there is no hard rule as to how fast it has to run, as long as it looks good.

Tip: This is one of my favorite maxims of computer graphics in general: It just has
to look good. There has been much work done over the decades to get computer
graphics techniques ever closer to reality, which has enabled the onslaught of all of
the computer-animated films in recent years. We can model light reflection, object
surfaces, object movement, and anthropomorphized cars much more realistically,
but at the end of the day, it usually matters only whether it looks good enough, not
how “correct” it is.8

Tip: If you are shooting for a frame rate of 90 fps because that’s what your favorite
gore-game achieves, ask yourself whether your application actually requires that
animation rate. Perhaps your favorite game benefits from the faster rate because of
all the quick and extreme changes happening in every frame. Does your GUI appli-
cation have that same dynamic? Or will your users detect smooth movement at a
much lower rate? Remember: The main requirement is that your application has to
look good, not achieve some theoretical perfection.

Tip: It is also worth noting that computer displays have a maximum refresh rate typ-
ically between 60 and 85 times per second. For example, many LCD displays gen-
erally have a refresh rate of only 60 Hz. Any animation running faster than that rate
is therefore wasting cycles by updating a screen that is being viewed by the user at
a slower rate.

8. My kids and mother couldn’t give a hoot about physically correct lighting calculations, but they
appreciate when something looks good.

www.it-ebooks.info

http://www.it-ebooks.info/

290 CHAPTER 12 ANIMATION FUNDAMENTALS

For the second situation, timer resolution, we must understand how the timer
you use affects the callback frequency. On one hand, most of the timing mecha-
nisms that we use in this book’s examples are low-resolution timers, so there is a
definite limit for resolution beyond which we cannot effectively go. This limit
means that we also have a limit for achievable frame rate, which generally does
not match the high frame rates used by 3D video games.

On the other hand, the animations we deal with generally do not need super-high
frame rates. Frame rates of 30 fps, or even 60 fps, are quite achievable with the
current, easy-to-use mechanisms, and we have found these frame rates to be
quite effective for dynamic content in Filthy Rich Clients. There are ways to
achieve higher resolution in timers, but we leave that discussion for another
time, since we have what we need for now with the built-in mechanisms of Java.

Even though the timing mechanisms built into Java are sufficient for our pur-
poses, it is important to understand the resolution of the timers that we use so
that we can understand the implications they have on frame rates and on possible
animation artifacts that we may otherwise see.

In general, the built-in timing mechanisms of Java use the low-resolution timer
of each native platform, which means that the resolution of the Java timers is
limited by the resolution of these native timers. It also means that the resolution
is platform-dependent, since all platforms use different mechanisms that may not
have the same resolution. Fortunately, all of the different platforms have timers
that perform well enough for our situation. For our investigations here, we use
Windows XP running on a laptop.9

Note: As proof of the unpredictability of timing resolution, I offer my laptop.9 I
originally wrote and ran all of these tests on this system and got very consistent
results, represented by the tables of timings that follow. I ran these tests originally
when I was running Windows XP. Now I have Windows Vista installed and get com-
pletely different results. For example, my sleep() resolution is slightly worse than
what we see in this chapter, while my wait() resolution is far better than what I
experienced before. The resolution for currentTimeMillis() has improved and
seems quite close to that of nanoTime(). Also, the resolution of wait() as well as
the Swing timer that depends on wait() have improved and are close to the resolu-
tion of sleep(). All of this goes to show that if you really want to understand the
resolution on your system, you’ll need to do some testing yourself. Or, perhaps this
is a better approach: Satisfy yourself that the results are good enough for your needs
and go think about something else instead.

9. For comparison purposes, or just for anyone who really likes to know these things, my laptop has
a 2-GHz Intel Pentium M processor with 2 GB of RAM and an ATI Mobility Radeon X300 graph-
ics processor.

www.it-ebooks.info

http://www.it-ebooks.info/

RESOLUTION 291

We examine the resolution of the different timing mechanisms explored previ-
ously with sample code that demonstrates the results (and which you could use
to do similar investigations).10

Resolution of System.currentTimeMillis()
and System.nanoTime()
System.currentTimeMillis() is, on Windows, built upon a low-resolution tim-
ing mechanism and returns times according to this native timer. We have found
that this particular timing mechanism contributes more to artifacts than do the tim-
ers discussed later, so it is useful to understand the implications of this resolution.

On the Windows XP system tested, we found that currentTimeMillis() has a
resolution of about 16 ms. This means that currentTimeMillis() will return
values that are correct only to 16 ms boundaries.

For example, suppose we are measuring an activity that takes exactly 5 ms. We
may get measurement results similar to the following:

Note that the timing mechanism does not round to the nearest 16 ms value but
rather acts like a floor function, since the underlying timer increments only to
the next 16 ms level when it has passed it. System.nanoTime(), on the other
hand, appears from experience to be correct to within about 2 to 3 ms on this
same system.

Now, let’s look at a sample application that we use for the measurements discussed
here. The TimeResolution application on the book’s Web site has several func-
tions in it that correspond to the different topics we explore in this chapter.

10. If you are sitting around late at night with nothing to do and decide that you need to figure out
the resolution on that old Linux system you have, feel free to perform your own thorough
investigation.

Real time elapsed currentTimeMillis elapsed time
0 0
5 0

10 0
15 0
20 16
25 16
30 16
35 32

ONLINE
DEMO

www.it-ebooks.info

http://www.it-ebooks.info/

292 CHAPTER 12 ANIMATION FUNDAMENTALS

In the measureTimeFunctions() method of our application, we sleep for
“increment” milliseconds each iteration and measure the elapsed time by both
currentTimeMillis() and nanoTime(). Each time, we print out the elapsed
time according to our internal counter, the amount we have supposedly slept so
far, and our two measurements.

void measureTimeFunctions(int increment, int max) {
 long startTime = System.currentTimeMillis();
 long startNanos = System.nanoTime();
 long elapsedTimeActual = 0;
 long elapsedTimeMeasured = 0;
 long elapsedNanosMeasured = 0;
 System.out.printf("sleep currentTimeMillis nanoTime\n");
 while (elapsedTimeActual < max) {
 try {
 Thread.sleep(increment);
 } catch (Exception e) {}
 long currentTime = System.currentTimeMillis();
 long currentNanos = System.nanoTime();
 elapsedTimeActual += increment;
 elapsedTimeMeasured = currentTime - startTime;
 elapsedNanosMeasured =
 (currentNanos - startNanos) / 1000000;
 System.out.printf(" %3d %4d %4d\n",
 elapsedTimeActual, elapsedTimeMeasured,
 elapsedNanosMeasured);
 }
}

Here are the results for a run with increment set to 5 and max set to 50:

You can see here that currentTimeMillis() is incrementing its values by 15 to
16 ms. You can also see that nanoTime() is much closer to the theoretical

sleep currentTimeMillis nanoTime
5 16 8

10 16 15
15 31 21
20 31 27
25 31 33
30 47 38
35 47 44
40 63 50
45 63 56
50 63 62

www.it-ebooks.info

http://www.it-ebooks.info/

RESOLUTION 293

sleep() time, but that it’s also not dead-on. In fact, you can see that the differ-
ence between nanoTime() and sleep() grows as the total sleep time increases.
Given this result, it appears that our sleeps of 5 ms may in fact be taking longer.
It’s time to measure sleep().

Sleeping Resolution
To get an accurate measurement for Thread.sleep(), we must discount any inac-
curacies in the times we get. We can do this by simply sleeping for a longer time to
reduce the significance of any inaccuracies. For example, sleeping for a second
would make even the 16 ms resolution of currentTimeMillis() good enough,
since the inaccuracy of any particular measurement would be at most 16/1000, or
1.6%. But it’s more likely that sleep() inaccuracies, which we are trying to deter-
mine here, would occur at smaller sleep intervals, so sleeping for a longer time
would be somewhat beside the point. The workaround is to sleep for small incre-
ments but to do it many times successively. Then we can compare the theoretical
sleep time, the amount we slept each time multiplied by the number of times we
slept, to the measured sleep time, using currentTimeMillis() or nanoTime().

Here is our simple sleep measurement function:

private void measureSleep() {
 System.out.printf(" " +
 "measured\n");
 System.out.printf("sleep time iterations total time" +
 " per-sleep\n");
 for (int sleepTime = 0; sleepTime <= 20; ++sleepTime) {
 int iterations = (sleepTime == 0) ? 10000 :
 (1000 / sleepTime);
 long startTime = System.nanoTime();
 for (int i = 0; i < iterations; ++i) {
 try {
 Thread.sleep(sleepTime);
 } catch (Exception e) {
 }
 }
 long endTime = System.nanoTime();
 long totalTime = (endTime - startTime) / 1000000;
 float calculatedSleepTime = totalTime / (float)iterations;
 System.out.printf(" %2d %5d %4d" +
 " %5.2f\n", sleepTime, iterations,
 totalTime, calculatedSleepTime);
 }
}

www.it-ebooks.info

http://www.it-ebooks.info/

294 CHAPTER 12 ANIMATION FUNDAMENTALS

In this function, we use nanoTime() to get as close as possible to the real time,
but tests using currentTimeMillis() showed similar results because the larger
inaccuracies of currentTimeMillis() were marginalized, as explained earlier.
We sleep for as many times as necessary to get an accurate measurement. In gen-
eral, the test sleeps for about a second or so. The exception is with a sleepTime
of 0, which is going to be so quick that we threw in an extra order of magnitude
to get a better measurement.

We can see from the following table how the experiment worked out. The main
columns to pay attention to are the leftmost, the amount of time we tried to
sleep, and the rightmost, the actual amount of time we slept. In general, the
results show that sleep() is mostly accurate, at least much more so than
currentTimeMillis() in our previous tests, although reality diverges from the-
ory by 1 to 2 ms in general. As with our currentTimeMillis() findings, this
inaccuracy becomes less important the longer we sleep: An inaccuracy of .74 ms
for a sleep time of 20 (3.7%) is less important that the inaccuracy of 1.01 ms for
a sleep time of 1 (101%). We can also see that sleeping for 0 is almost like not
sleeping at all; doing it 10,000 times took only 10 ms. This is great if you don’t
want to sleep much, but it could get you into the same CPU-pegging situation
that we were trying to avoid by calling sleep() in the first place. On the other
hand, sleep() is a handy way to hand over control to other threads if they need
it, so if you’re okay with handing control over briefly but you want it back very
soon, sleep(0) can be a reasonable alternative.

measured
sleep time iterations total time per-sleep

0 10000 10 0.00
1 1000 2007 2.01
2 500 1533 3.07
3 333 1343 4.03
4 250 1247 4.99
5 200 1192 5.96
6 166 1309 7.89
7 142 1192 8.39
8 125 1116 8.93
9 111 1100 9.91

10 100 1160 11.60
11 90 1086 12.07
12 83 1075 12.95
13 76 1048 13.79
14 71 1051 14.80

www.it-ebooks.info

http://www.it-ebooks.info/

RESOLUTION 295

We can run this same test with Object.wait(timeout). We do not discuss this
mechanism of sleeping because it is not one we would typically use in our cases of
interest. Thread.sleep() is convenient and direct. Object.wait() is more useful
for cases in which another thread may want to wake this one up. Typically, a thread
will put itself to sleep with Object.wait(), and another will wake it up with
Object.notify().

Even though we have not discussed wait(), it is useful to examine its resolution
issues here because some of the mechanisms on which we depend use wait()
under the hood,11 so those other mechanisms are limited by the underlying reso-
lution of wait().

We can use the same code as measureSleep() except for a few minor differences:

private synchronized void measureWait() {
 System.out.printf(" " +
 "measured\n");
 System.out.printf("wait time iterations total time" +
 " per-wait\n");
 for (int sleepTime = 1; sleepTime <= 20; ++sleepTime) {
 int iterations = (sleepTime == 0) ? 10000 :
 (1000 / sleepTime);
 long startTime = System.nanoTime();
 for (int i = 0; i < iterations; ++i) {
 try {
 wait(sleepTime);
 } catch (Exception e) {}
 }
 long endTime = System.nanoTime();
 long totalTime = (endTime - startTime) / 1000000;
 float calculatedSleepTime = totalTime / (float)iterations;

continued

measured
sleep time iterations total time per-sleep

15 66 1079 16.35
16 62 1118 18.03
17 58 1024 17.66
18 55 1030 18.73
19 52 1035 19.90
20 50 1037 20.74

11. In particular, javax.swing.Timer uses wait() internally.

www.it-ebooks.info

http://www.it-ebooks.info/

296 CHAPTER 12 ANIMATION FUNDAMENTALS

 System.out.printf(" %2d %5d %4d" +
 " %5.2f\n", sleepTime, iterations,
 totalTime, calculatedSleepTime);
 }
}

The differences between this method and the previous measureSleep() method
include the following:

synchronized method

The use of synchronized ensures that this object, on which we call wait(),
holds the monitor when wait() is called.

for (int sleepTime = 1;...)

wait(0) is equivalent to waiting until some other thread wakes us up, which
is different from sleep(0), which is equivalent to waking up almost immedi-
ately if no other thread needs to run in the meantime. We opted to skip the
measurement at 0 because of this difference, so we start from sleepTime=1
instead of sleepTime=0 in this version. All we are after is a rough idea of res-
olution at low wait times, so having results from 1 to 20 is sufficient.

wait(sleepTime)

Instead of calling Thread.sleep(sleepTime), we call Object.wait(sleepTime).
The semantics of wait() are a bit different. For one thing, our thread can be
woken up by means other than the timeout. But in this case, it should be func-
tionally equivalent to using Thread.sleep(), since there is no external mech-
anism to wake up our thread, so we will wake up after the sleepTime amount
has expired.

Here are the results from running the measureWait() test:

measured
wait time iterations total time per-wait

1 1000 15753 15.75
2 500 7806 15.61
3 333 5233 15.71
4 250 3905 15.62
5 200 3124 15.62
6 166 2592 15.61
7 142 2217 15.61
8 125 1952 15.62
9 111 1733 15.61

www.it-ebooks.info

http://www.it-ebooks.info/

RESOLUTION 297

As you can see, these results are significantly different from those of sleep(). In
our sleep() test, we saw that it was possible to sleep() for roughly within a
millisecond or so of the requested duration . But here, we seem to be waiting for
increments of nearly 16 ms. Does this ring a bell? It should. It is the same resolu-
tion we saw earlier in our currentTimeMillis() testing. It looks like wait() on
our test system is falling prey to the same low-resolution clock that is used for
currentTimeMillis(), which should help explain the results of our next and
final resolution test: measureTimer().

Timer Resolution
To measure the Swing timer, we use code similar to that which we used for the
other timing mechanisms, although the logic is split into two functions because
of the callback nature of timers. In one function, measureTimer(), we set up the
timer and start it, then wait around until the measurements on that timer are
done. Note that we once again use the technique of measuring the timer over a
longer period of time to eliminate inaccuracies in our measurement mechanisms.
We do this for every value that we want to test the timer against. In this case, we
iterate through timer delay values of 0 to 20 ms, similar to the sleep() and
wait() tests. Here is our measureTimer() function:

public void measureTimer() {
 System.out.printf(" " +
 "measured\n");
 System.out.printf("timer delay iterations total time" +
 " per-delay\n");

continued

measured
wait time iterations total time per-wait

10 100 1561 15.61
11 90 1405 15.61
12 83 1297 15.63
13 76 1185 15.59
14 71 1108 15.61
15 66 1046 15.85
16 62 1934 31.19
17 58 1811 31.22
18 55 1717 31.22
19 52 1614 31.04
20 50 1561 31.22

www.it-ebooks.info

http://www.it-ebooks.info/

298 CHAPTER 12 ANIMATION FUNDAMENTALS

 for (int sleepTime = 0; sleepTime <= 20; ++sleepTime) {
 iterations = (sleepTime == 0) ? 1000 :
 (1000 / sleepTime);
 timerIteration = 1;
 timer = new Timer(sleepTime, this);
 startTime = System.nanoTime();
 timer.start();
 while (timerIteration > 0) {
 try {
 Thread.sleep(1000);
 } catch (Exception e) {}
 }
 }
}

The actionPerformed() method receives regular callbacks until we stop the
timer, which is done after the number of times called exceeds the number of iter-
ations we wanted to run. We then measure the total time between when we
started the timer and when it finished, and then calculate the actual delay time
per callback.

public void actionPerformed(ActionEvent ae) {
 if (++timerIteration > iterations) {
 timer.stop();
 timerIteration = 0;
 endTime = System.nanoTime();
 long totalTime = (endTime - startTime) / 1000000;
 float calculatedDelayTime = totalTime / (float)iterations;
 System.out.printf(" %2d %5d %4d" +
 " %5.2f\n", sleepTime, iterations,
 totalTime, calculatedDelayTime);
 }
}

Here are the results for the measureTimer() test:

measured
wait time iterations total time per-wait

0 1000 15884 15.88
1 1000 15640 15.64
2 500 7826 15.65
3 333 5217 15.67
4 250 3906 15.62
5 200 3124 15.62

www.it-ebooks.info

http://www.it-ebooks.info/

RESOLUTION 299

These results should look familiar; they look just like our wait() test results
above. No matter how long a delay we specify, we usually get an actual delay
equal to the next greater increment of ~16 ms.

As eerily foreshadowed12 in the section on wait(), the low resolution of wait()
is affecting the resulting low resolution of our Swing timer. The way that timer
events are scheduled uses wait(), so it’s not surprising, then, that we would see
the same resolution results from this related timer.

Resolution about Resolution
So where does this leave us? What impact does the inaccuracy of any given tim-
ing facility have on our code or our programming practices? Not much.

Note: In general, our animations will be running at rates that make inaccuracies in
the timing mechanisms insignificant.

measured
wait time iterations total time per-wait

6 166 2608 15.71
7 142 2218 15.62
8 125 1951 15.61
9 111 1734 15.62

10 100 1562 15.62
11 90 1406 15.62
12 83 1296 15.61
13 76 1249 15.43
14 71 1109 15.62
15 66 1045 15.83
16 62 1546 24.94
17 58 1827 31.50
18 55 1717 31.22
19 52 1624 31.23
20 50 1562 31.24

12. I’m trying hard to build a sense of suspense and tension into a section on timing resolution
analysis. Is it working?

www.it-ebooks.info

http://www.it-ebooks.info/

300 CHAPTER 12 ANIMATION FUNDAMENTALS

For example, if we want to run an animation at a reasonable rate of 30 fps,
nanoTime()’s and sleep()’s abilities of coming within a couple of milliseconds
of the true time should be more than sufficient, and even the lower-resolution
Swing timer and currentTimeMillis() time measurement have a far lower
error boundary than this rate.

However, it is important to understand the issue of resolution so that if you are in
a situation in which you need to run faster, to get accurate timing for your cur-
rent frame rate, or to simply understand some of the timing results you are see-
ing, you can understand the limitations and workings of the timing mechanisms
available to you. For example:

• Do not call currentTimeMillis() around a fast operation and automati-
cally trust the result when it tells you that it took either 0 or 16 ms. Find a
better way to measure the operation to make sure you are getting a reliable
answer.

• Do not try to use the Swing timer for an animation that must run at greater
than 60 fps13 because, depending on your runtime platform, the timer may
simply not call back into your code often enough to match that frame rate.

• If high, consistent frame rates are critical to your application, make sure
you test the resolution of the timing facilities on which you rely for your
target platforms. The examples we presented are specific to our Windows
XP test system and do not reflect the behavior of these Java facilities on
other platforms.14

The demo code shown previously is available on the book’s Web site in the
application TimeResolution. If you want to run tests on your target platform,
this might be a good tool with which to start.

Animating Your Swing Application
Now that we have seen how to use the timing facilities in Java, we can discuss
how to animate your Swing application. Beyond the timing facilities, there are
two things to understand in animating Swing applications: animating graphics in
general and animating GUIs in particular.

13. But, again, you do not need to use frame rates greater than this for Filthy Rich Clients. Games?
Sure. GUI animations? More than 60 fps is overkill.

14. Such as the same test system running Windows Vista. It pays to test your code to see what’s re-
ally going on.

www.it-ebooks.info

http://www.it-ebooks.info/

ANIMATING YOUR SWING APPLICATION 301

Animated Graphics
We saw in Chapter 2 how to draw graphics into a Swing component. Animating
graphics in a component uses the same techniques except that the graphics you
draw vary over time, using timing facilities like the ones discussed in this chapter.

Recall our discussion of the exciting OvalComponent demo in Chapter 2. In
this demo, we created a custom Swing component in which the following
paintComponent() method rendered a gray oval:

public void paintComponent(Graphics g) {
 g.setColor(getBackground());
 g.fillRect(0, 0, getWidth(), getHeight());
 g.setColor(Color.GRAY);
 g.fillOval(0, 0, getWidth(), getHeight());
}

Example: AnimatedGraphics
What if we wanted to have the color of the oval change over time, between gray
and black? We did this in the AnimatedGraphics demo on the book’s Web site.
The resulting code for paintComponent()looks much like the code above except
that the color is variable, determined by a calculation performed at intervals of the
animation. Here, the only change is the second call to setColor(), which uses
the variable currentColor instead of the earlier hard-coded GRAY color:

public void paintComponent(Graphics g) {
 g.setColor(getBackground());
 g.fillRect(0, 0, getWidth(), getHeight());
 g.setColor(currentColor);
 g.fillOval(0, 0, getWidth(), getHeight());
}

First, we declare some variables that will be useful during the animation:

Color startColor = Color.GRAY; // where we start
Color endColor = Color.BLACK; // where we end
Color currentColor = startColor;
int animationDuration = 2000; // animation will take 2 seconds
long animStartTime; // start time for each animation

In order to vary the currentColor value, we create and start an animation in the
constructor, using the Swing timer discussed earlier in this chapter. We store the

ONLINE
DEMO

www.it-ebooks.info

http://www.it-ebooks.info/

302 CHAPTER 12 ANIMATION FUNDAMENTALS

time that we are starting in animStartTime so that we can determine how long
we’ve run at any future point in time. We also set an initial delay just to give
Swing a chance to get everything set up before we start running the animation.15

public AnimatedGraphics() {
 Timer timer = new Timer(30, this);
 // initial delay while window gets set up
 timer.setInitialDelay(1000);
 animStartTime = 1000 + System.nanoTime() / 1000000;
 timer.start();
}

Finally, we vary the value of currentColor in our timer callback method
according to how much time has elapsed in our 2-second animation. Our color
calculation is a simple linear interpolation between the start and end colors,
according to the fraction of the animationDuration that has elapsed.

public void actionPerformed(ActionEvent ae) {
 // vary color between start and end values using
 // interpolation fraction below
 long currentTime = System.nanoTime() / 1000000;
 long totalTime = currentTime - animStartTime;
 if (totalTime > animationDuration) {
 animStartTime = currentTime;
 }
 float fraction = (float)totalTime / animationDuration;
 fraction = Math.min(1.0f, fraction);
 int red = (int)(fraction * endColor.getRed() +
 (1 - fraction) * startColor.getRed());
 int green = (int)(fraction * endColor.getGreen() +
 (1 - fraction) * startColor.getGreen());
 int blue = (int)(fraction * endColor.getBlue() +
 (1 - fraction) * startColor.getBlue());
 currentColor = new Color(red, green, blue);
 repaint();
}

Note that the repaint() call at the end of this method simply tells Swing to re-
render the component. When Swing does so, our paintComponent() method is
called and the currentColor that we calculated here is used when the oval is
redrawn.

15. Waiting for Swing to get set up is just a workaround for this micro-demo. A typical Swing ap-
plication would not need to wait because the Swing window would already be up and ready to
go by the time any particular animation was started.

www.it-ebooks.info

http://www.it-ebooks.info/

ANIMATING YOUR SWING APPLICATION 303

Admittedly, this is a simple example, but in its essence, animating graphics is a
simple operation. We combine our knowledge of how to draw graphics into a
Swing component and our knowledge of how to schedule timers and calculate
in-between values to vary the rendering over time to create whatever graphics
animation we desire. This example happens to use simple Java 2D graphics
primitives, but it could just as easily have used more involved graphics like
images, translucency, gradients, and complex shapes. The example could also
have used more complex timing models. But more complex animations would
all be based on the same simple principle of varying properties over time and
rendering the scene with those varying properties.

Animated GUIs
Now that we know how to animate graphics rendering, let’s learn how to animate
GUI elements, bringing us closer to the effects that we use in Filthy Rich Cli-
ents. Recall in our discussion of the TranslucentButton demo in Chapter 2 that
we created a custom button as follows:

public class TranslucentButton extends JButton {
 public TranslucentButton(String label) {
 super(label);
 setOpaque(false);
 }

 public void paint(Graphics g) {
 // Create an image for the button graphics if necessary
 if (buttonImage == null ||
 buttonImage.getWidth() != getWidth() ||
 buttonImage.getHeight() != getHeight()) {
 buttonImage = (BufferedImage)createImage(
 getWidth(), getHeight());
 }
 Graphics gButton = buttonImage.getGraphics();
 gButton.setClip(g.getClip());

 // Have the superclass render the button for us
 super.paint(gButton);

 // Make the graphics object sent to this
 // paint() method translucent
 Graphics2D g2d = (Graphics2D)g;
 AlphaComposite newComposite = AlphaComposite.getInstance(
 AlphaComposite.SRC_OVER, .5f);
 g2d.setComposite(newComposite);

continued

www.it-ebooks.info

http://www.it-ebooks.info/

304 CHAPTER 12 ANIMATION FUNDAMENTALS

 // Copy the button's image to the destination
 // graphics, translucently
 g2d.drawImage(buttonImage, 0, 0, null);
 }
}

In this case, we override paint() to render the button with a translucent effect,
which we get by calling the superclass to paint the standard button to an image,
altering the composite on the Graphics object and drawing the image to the
now-translucent Graphics object.

What if we wanted to alter the translucency of the button over time? You will see
later how we use very similar approaches to create dynamic effects, such as
glowing, pulsing, or cross-fading between different states. These effects all build
on approaches similar to the simple one we are about to demonstrate.

Example: FadingButton
The following example is available on the book’s Web site in the FadingButton
project. Just like our previous example with animated graphics, animating the
button’s translucency is as easy as altering the alpha value programmatically on
the basis of a value we calculate during the animation. First of all, we make one
small change to the paint() method:

AlphaComposite newComposite = AlphaComposite.getInstance(
 AlphaComposite.SRC_OVER, alpha);

As you can see, the only change here is that we use the calculated value alpha
value instead of the previous hard-coded value .5f.

As in the previous animated graphics example, we set up some instance vari-
ables to help track our animation values:

float alpha = 1.0f; // current opacity of button
Timer timer; // for later start/stop actions
int animationDuration = 2000; // animation will take 2 seconds
long animStartTime; // start time for each animation

We create the timer that runs the animation in our constructor, as in the previous
demo. This time, however, we do not start the animation in the constructor. Since
we’re animating a button, let’s use the button as a trigger to start and stop the
animation. We do this by adding the button as an ActionListener and starting
the timer in the actionPerformed() method.

ONLINE
DEMO

www.it-ebooks.info

http://www.it-ebooks.info/

ANIMATING YOUR SWING APPLICATION 305

public FadingButton(String label) {
 super(label);
 setOpaque(false);
 timer = new Timer(30, this);
 addActionListener(this);
}

Because we are listening to the button for actions, or mouse clicks, and listening
to the timer for actions, or timing events, as well, there are two distinct parts of
our actionPerformed() method. The first part is executed when there is a but-
ton click:

public void actionPerformed(ActionEvent ae) {
 if (ae.getSource().equals(this)) {
 // button click
 if (!timer.isRunning()) {
 animStartTime = System.nanoTime() / 1000000;
 this.setText("Stop Animation");
 timer.start();
 } else {
 timer.stop();
 this.setText("Start Animation");
 // reset alpha to opaque
 alpha = 1.0f;
 }
 } else {
 // second part, shown later...
 }
}

This code checks whether the animation is currently running. If not, it sets the cur-
rent animStartTime, changes the button label, and starts the animation. If the ani-
mation is already running, it stops the animation, changes the button label, and
resets our alpha variable to the default opaque value. Note that resetting the value
to opaque is not actually necessary but is just a behavior we chose for this demo.

The second part of our actionPerformed() method is intended for handling the
animation. This code is called when the timer events occur:

public void actionPerformed(ActionEvent ae) {
 if (ae.getSource().equals(this)) {
 // first part, shown earlier...
 } else {
 // timer event
 long currentTime = System.nanoTime() / 1000000;

continued

www.it-ebooks.info

http://www.it-ebooks.info/

306 CHAPTER 12 ANIMATION FUNDAMENTALS

 long totalTime = currentTime - animStartTime;
 if (totalTime > animationDuration) {
 animStartTime = currentTime;
 }
 float fraction = (float)totalTime / animationDuration;
 fraction = Math.min(1.0f, fraction);
 // This calculation will cause alpha to go from
 // 1 to 0 and back to 1 as the fraction goes from 0 to 1
 alpha = Math.abs(1 – (2 * fraction));
 repaint();
 }
}

This code calculates the current fraction elapsed in our animation and sets the
alpha value on the basis of this fraction. In this case, we want alpha to vary from
1 to 0 and back to 1 as the fraction goes from 0 to 1. After we have our new alpha
value, we force a repaint(), which causes Swing to paint our button. Then, in
our custom paint() method, we set the Composite according to the new alpha
value and render the button appropriately. The resulting fading button is shown
in Figure 12-4.

Example: MovingButton
Now let’s examine a slightly different GUI animation in which the button moves
instead of fading. This new application is much like the previous FadingButton
application except that clicking on the button causes it to animate down and back

Figure 12-4 FadingButton demo: Checkerboard pattern can be seen through our
translucent component.

ONLINE
DEMO

www.it-ebooks.info

http://www.it-ebooks.info/

ANIMATING YOUR SWING APPLICATION 307

up by some amount over the same animation time of 2 seconds. This demo is
also available on the book’s Web site, under the project name MovingButton.

We start with the same code used earlier and make small changes to alter the
translation of the Graphics object. First, here is the paint() method that
enables us to move the button:

public void paint(Graphics g) {
 g.translate(0, translateY);
 super.paint(g);
}

This animation technique is simpler than the previous translucency. There is no
need for an image to hold the intermediate results, no need to create a Composite
object for achieving the translucency effect, and no need to copy the image to the
screen—all we need to do is reposition the location where the Graphics object
renders.

The actionPerformed() callback that calculates the translation is also rela-
tively simple. The first part is mostly the same as in the previous FadingButton
example except we reset the translation factor instead of the alpha factor when
the animation is stopped:

public void actionPerformed(ActionEvent ae) {
 if (ae.getSource().equals(this)) {
 if (!timer.isRunning()) {
 animStartTime = System.nanoTime() / 1000000;
 this.setText("Stop Animation");
 timer.start();
 } else {
 timer.stop();
 this.setText("Start Animation");
 // reset translation to 0
 translateY = 0;
 }

The second part is similar to our translucency example except that we vary the
translateY value over time instead of the alpha value:

 } else {
 long currentTime = System.nanoTime() / 1000000;
 long totalTime = currentTime - animStartTime;
 if (totalTime > animationDuration) {
 animStartTime = currentTime;
 }

continued

www.it-ebooks.info

http://www.it-ebooks.info/

308 CHAPTER 12 ANIMATION FUNDAMENTALS

 float fraction = (float)totalTime / animationDuration;
 fraction = Math.min(1.0f, fraction);
 // translateY will go from 0 to MAX_Y and back to 0
 // as the fraction goes from 0 to 1
 if (fraction < .5f) {
 translateY = (int)(MAX_Y * (2 * fraction));
 } else {
 translateY = (int)(MAX_Y * (2 * (1 - fraction)));
 }
 repaint();
 }
}

But there is a disturbing rendering artifact that we see in the demo. The button is
clipped to the original button area in the window, no matter where we reposition
the button with our translation operation. For example, Figure 12-5 shows a
screenshot of the demo in its starting position, with the button drawn in its origi-
nal location.

Figure 12-6 shows a screenshot of the demo during the animation: The button
has moved slightly down from the original location and has its bottom cut off by
the clip area of the original button.

What’s going on here? Why isn’t our drawing area matching the area of the
object we are drawing?

Tip: The problem shown in Figure 12-5 and Figure 12-6 for the MovingButton
application is that there is a difference between an object being drawn in a different
location and actually being located in a different location. In this application, we are
not actually changing the location of the Swing button but merely the location of
where that button is rendered.

Figure 12-5 MovingButton demo, before the animation starts.

www.it-ebooks.info

http://www.it-ebooks.info/

ANIMATING YOUR SWING APPLICATION 309

Swing tells us to draw a component whose bounds are known to Swing, and it
sets up the clip area appropriately. In this case, it sets up the clip to correspond to
the known location of the button. This clip area is different from the location in
which we want to draw the animating button. How we decide to render our but-
ton inside that area is completely up to us—as long as we don’t expect any ren-
dering to happen outside of that area.

This problem did not come up in the previous FadingButton animation example
because the effect of translucency did not change the location of the button but
merely the appearance of the button in its normal location.

We clearly need a different approach for effects that alter the location of an
object. There are several ways of attacking the problem, including the following:

Work at the Container Level

So far, we have been trying to alter rendering at the component level, where
the component is restricted to the area set aside by the container. Instead, we
could alter the rendering of the Container, the parent in which a component
resides.

Change the Actual Position of a Component

Instead of modifying the rendering of a component, it is possible to move the
component itself, and Swing will draw it in the correct place. This approach is
complicated by LayoutManagers, since a non-null LayoutManager will want
to position the component and may ignore attempts to move the component
within the layout. There are ways to work around this constraint, such as

Figure 12-6 MovingButton artifact: The translated button is clipped to the original
button display area.

www.it-ebooks.info

http://www.it-ebooks.info/

310 CHAPTER 12 ANIMATION FUNDAMENTALS

using a null LayoutManager to begin with16 or using a null LayoutManager
temporarily during an animation. In any case, this solution tends to be more
complex than we want to deal with for simple animations like the one here.

Use the GlassPane

One way to get the effect of moving a component absolutely without having
to live within the constraints of the current LayoutManager is to use the
GlassPane layer to render the component during the animation. This is the
approach taken by some of the effects covered later in the book, such as those
discussed in Chapter 18, “Animated Transitions.”

For the purposes of keeping this example simple and showing how to solve the
problem in a straightforward way, we use the first approach and work at the
Container level.

Example: MovingButtonContainer
Our previous examples have subclassed the actual component of interest, in this
case a JButton. In our subclass, we overrode paint() to alter the Graphics
used to render the component.

Our new approach in the demo MovingButtonContainer, which resides on the
book’s Web site does something very similar, but instead of subclassing the com-
ponent we want to move, we subclass the Container that our button lives within
and do a similar override of paint() in the Container’s class.

In this case, most of the code that we showed earlier is exactly the same. The
only difference is the class in which that code is implemented. For example, our
actionPerformed() method is exactly the same. It still listens for clicks on the
button and calculates the translationY factor according to how long the anima-
tion has been running.

The button here is no longer a custom class but merely a standard JButton that
we add to our new custom JComponent subclass. The paint() method is also
quite similar; we need only alter the translation of the Graphics object and then

16. Using a null LayoutManager is not a great recommendation in general. LayoutManagers are
quite useful, and it would be a shame to throw away their power just for this component-movement
ability.

ONLINE
DEMO

www.it-ebooks.info

http://www.it-ebooks.info/

ANIMATING YOUR SWING APPLICATION 311

defer to the superclass to render our component. But in this case, that paint()
method is in the Container subclass instead of in the JButton subclass.

public void paint(Graphics g) {
 g.translate(0, translateY);
 super.paint(g);
}

The call to the superclass to paint this component is now rendering the entire
container. In this case, it will render the children of the container as well, includ-
ing the button, and in the process of doing so it will draw the button in the trans-
lated position.

There are a few interesting items to note here in order to understand how things
work:

Events

Clicks on the button are still received in the original location of the button, no
matter where the button is actually being drawn. This is another example of the
difference between where the button is drawn and where the button is physi-
cally located. As far as Swing is concerned, that button still resides where it
always has, in its original, untranslated location. Any transformations per-
formed on the Graphics object of the button or the container are irrelevant to
where the button is located. Therefore, any button events will still occur through
that original location. There are a couple of workarounds for this situation that
are worth noting:

• Disable: We could disable clicks during an animation. Indeed, this seems
like a reasonable idea in many situations.17 And it’s at least better than
allowing clicks in the wrong area.

• Transform: We could transform input events just as we transform rendering
so that clicks will be interpreted correctly based on the current rendering.

17. Romain and I went back and forth on this for entirely too many e-mails. As an engineer, it seems
odd that you would not want to receive clicks on a GUI object at its visible location, no matter
what was happening on the screen. But Romain pointed out that this brings up complicated user-
experience issues. For example, if a button turns transparent, do you actually want the user to be
able to click on this invisible object? Or if objects are moving around during an animation, do
you want your user to be able to easily click on the wrong object? There is a strong usability
argument for simply ignoring clicks entirely during animations, especially the kinds of animated
transitions that we see later in chapters 17 and 18.

www.it-ebooks.info

http://www.it-ebooks.info/

312 CHAPTER 12 ANIMATION FUNDAMENTALS

We do not go into detail here, but anyone interested in this approach should
check out Alexander Potochkin’s experimental JXTransformer project18

in which he shows how to arbitrarily transform Swing transform compo-
nents and their events.

Children

The translation that we apply in our container’s paint() method will be
applied to all children of this container. In this simple application, that’s fine;
the button is the only child we are drawing. But in a more complicated con-
tainer, we would need to take a different approach unless we wanted to trans-
late the rendering of all components in the container.

setOpaque(false)

We still need to set the opaque property to false for the button, just as we did in
the FadingButton example. This is perhaps not obvious,19 but it makes sense
when you think about it. Comment out the call to button.setOpaque(false)
in the demo code. Go ahead, I’ll wait. . . . Now, run the application and move
the mouse over the original area of the button—can you see a flicker of the
original button while the animating button is being rendered elsewhere?

Tip: This artifact results from Swing performing an optimized rendering of the but-
ton when it thinks that it is completely opaque. When Swing updates the button for
the mouseover state, it doesn’t bother redrawing anything behind the button, includ-
ing our container, because it knows that the button is opaque.

Why render everything behind the button when all it needs to do is update the
rendering for the button itself to reflect that the button is in mouseover state?
But in this case, we need to have the parent container perform a repaint in
order to get the translation set correctly for our button rendering, so we must

18. http://weblogs.java.net/blog/alexfromsun/archive/2006/07/jxtransformer_t.html.
19. In fact, it was not obvious to me when I wrote the demo to go along with this section. I usually

use setOpaque(false) in cases of translucent components or components with transparent
regions (such as rounded corners). The idea of a nonopaque component that’s completely
opaque didn’t occur to me until I saw the rendering artifacts and divined the optimization that
Swing was using on its assumption of an opaque component.

www.it-ebooks.info

http://weblogs.java.net/blog/alexfromsun/archive/2006/07/jxtransformer_t.html
http://www.it-ebooks.info/

ANIMATING YOUR SWING APPLICATION 313

somehow force Swing to re-render the container itself. This parent rendering
is requested by telling Swing that the button is not opaque. If the button is set
to be nonopaque, then any time Swing wants to draw the button, it will force a
repaint of the contents behind the button. This repaint on the container will
call our paint() routine, which will make things look correct.

Force repaint() When Done

Our previous example did not have to force a repaint() when the animation
finished; we had just changed the text of the button, which forced the label
region to repaint itself automatically. But in this case, changing the text of the
button will force an update only of the button’s physical area, not the area
where we may be drawing the button. The effect that you get without the
repaint is that the last animated position of the button may be left unerased in
the window while the new, reset position of the button is drawn in the original
location, as seen in Figure 12-7.

The fix is to simply call repaint() after we call timer.stop() to ensure that
we update our container appropriately.

With all of these fixes in the code for the various artifacts, we get what we origi-
nally wanted, a moving button, as shown in Figure 12-8.

Figure 12-7 Artifact: The final animation rendering is not erased without a final
call to repaint().

www.it-ebooks.info

http://www.it-ebooks.info/

314 CHAPTER 12 ANIMATION FUNDAMENTALS

Summary
Animation is not hard to understand, and with the right approaches, timing utili-
ties, and use of Swing and Java 2D, it is possible to perform very easy anima-
tions of graphical and GUI applications. In later chapters, we see how to expand
on these simple animation ideas to create more complex animations and truly
Filthy Rich Clients.

Figure 12-8 Moving button, working as desired.

www.it-ebooks.info

http://www.it-ebooks.info/

315

13
Smooth Moves

THIS chapter covers techniques that can help you create smooth, realistic, and
effective animations. We discuss some of the artifacts that contribute to anima-
tions being choppy and some of the underlying causes of those artifacts. We talk
about solutions to the issues as we go, and you can see some of the problems and
solutions in the demo application called SmoothMoves, available on the book’s
Web site.

Background: Why Does My Animation
Look Bad?

I was working on some animation code recently and ran into some artifacts that
made the animation look choppy. In this particular example, there was an anima-
tion that faded a large scene in and out, and there was another animation that
moved a small image in the view. The fade looked great, but the motion anima-
tion stuttered. The difference in visual quality between these animations seemed
particularly odd to me, since the fade happened over the entire screen, whereas
the moving animation occupied only a small portion of the screen.

It seemed obvious to me that the fading animation must have a higher frame rate
than the motion animation, which must have been hitting some performance bot-
tleneck. Some simple timing code in both animation loops contradicted this
assumption. Strangely, I found that the fade was happening at a rate of about 10
frames per second (fps). As we discussed in Chapter 12, “Animation Fundamen-
tals,” smooth animations are typically 20 to 30 fps or more, so this rate seemed a

www.it-ebooks.info

http://www.it-ebooks.info/

316 CHAPTER 13 SMOOTH MOVES

bit on the slow side. Stranger still, I found that the motion animation was getting
about 15 to 20 fps, a rate faster than the visually smoother fading animation.

So here was the quandary: Why did the large fading animation with a lower
frame rate look better than the moving animation with the higher frame rate?

Then it dawned on me that I had discovered another example of perceived
performance.

Tip: Perceived performance comes up often in the GUI application world, where
the true performance of an application is often not as important as how fast the user
thinks it is. This is why, for example, you should run your long, nongraphical oper-
ations on a separate thread from the GUI thread, so that if your application has to
go out and query the database for several seconds, at least the GUI is not frozen
while it waits for that action to finish. Make the application GUI snappy, and the
user will be happier with the performance of the application.

In this case, I perceived the fading animation to be faster than the moving anima-
tion simply because it looked smoother. After this realization, I figured that it
was time to investigate the factors that could affect the smoothness of an anima-
tion. What makes an animation appear choppy? And what can we do to reduce or
eliminate choppiness?

What Makes Animations Choppy,
and How to Smooth Them Out

Various elements contribute to choppy animations, some of which were factors
in my application but all of which are worth considering whenever you develop
animation code.

The demo application SmoothMoves, found on the book’s Web site, demon-
strates some of the problems and solutions that we discuss in this chapter. The
application shows two animations: The animation on the left fades an object in
and out, and the animation on the right moves a similar object back and forth.
We can see the demo in action in Figure 13-1. The animations are run at the
same frame rate, but the difference in choppiness between these animations is
obvious when you run the application.

Many of the problems and solutions we discuss are implemented as options in
the demo, which you can toggle with various keys while the demo is running.
For each problem that can be manipulated with the demo, there is a “Demo”

ONLINE
DEMO

www.it-ebooks.info

http://www.it-ebooks.info/

WHAT MAKES ANIMATIONS CHOPPY, AND HOW TO SMOOTH THEM OUT 317

section in this chapter that describes how to enable a potential solution in the
application.

We can break down the choppiness factors into three main categories: timing,
color, and vertical retrace.

Timing Is (Nearly) Everything
In general, you want your animations to be speedy. I don’t mean that they should
zip across the screen as fast as possible (you have to give the player the chance to
actually hit the alien spaceship, don’t you?), but rather that the animations
should move quickly in small increments. There are various elements related to
the speed at which an animation can run: raw performance, frame rate, consis-
tency, realistic timing, and realistic movement.

Problem: Performance
Raw performance is one of the most important factors affecting animation
smoothness and is probably the most obvious. The faster you run your anima-
tion, the smoother it tends to look because the amount of change between each
frame of your object is smaller, and thus the eye tends to perceive the motion as
more continuous.

Solution: Optimization One way to improve the performance of your applica-
tion is by making your Swing and 2D code render faster. We discuss general
solutions to performance issues in Chapter 5, “Performance,” and throughout the

Figure 13-1 SmoothMoves demo: The rectangle on the left fades in and out while the
rectangle on the right move back and forth.

www.it-ebooks.info

http://www.it-ebooks.info/

318 CHAPTER 13 SMOOTH MOVES

book in general. Look first to those solutions if your problems are performance
related.

Problem: Slow Frame Rate
Frame rate is closely related to performance. You want to make the time between
sequential frames of your animation as short as possible, because slow frame
rates contribute to slow perceived performance of the application.

Solution: Optimize the Resolution One way to affect frame rate is to improve
the performance of your rendering code, as we discussed previously. Another
approach is to run your animation at a different resolution. At the core of your
animation is a timer (discussed in Chapter 12), which causes timing events at
specified intervals. You can set up this timer to call you every half-second, which
would result in a very unanimated animation running at a whopping 2 fps. Or
you can set it up to call you every 30 ms, which would give you a more reason-
able 33 fps, assuming your application could complete its rendering in less than
30 ms in order to maintain this frame rate.

Run your application and determine, visually, an appropriate frame rate for
smoothness. Remember that you want the interval to be as small as it needs to be
to make your animations smooth without being too small and causing the appli-
cation to demand too much of the CPU. See the section “Resolution” in Chapter 12
for more information on resolution constraints.

Demo: Increase or Decrease the Resolution If you use the up and down
arrow keys in the SmoothMoves application, you will change the resolution from
its default down to 0 ms, or as quickly as Swing can animate it, and up to 500
ms, which is only 2 fps. It should be visually obvious that the moving animation
gets much smoother as the resolution decreases and fps increases.

Problem: Consistency
Ideally, you will have as small a timer resolution as possible so that your anima-
tion can begin to render the next frame very quickly. However, if some frames
require significantly more time to render, or if other things are happening in your
program or on the system that make this frame rate unachievable, then you will
end up with intermittent pauses in your animation. These pauses do not have to
be very long to be noticeable to the user. Suppose that your animation runs
swimmingly at 30 fps most of the time but takes a time hit of 100 ms, or three
times your normal interframe delay, every fourth frame. The net result is that the
user would see your animation pause and jump several times per second.

www.it-ebooks.info

http://www.it-ebooks.info/

WHAT MAKES ANIMATIONS CHOPPY, AND HOW TO SMOOTH THEM OUT 319

Solution: Set a Reasonable Resolution An animation running at a consis-
tent 20 fps is better than one running at 30 fps with occasional but noticeable
lags and jumps. Just because some frames can run at a rate of 1,000 per second
doesn’t mean they should. Or, rather, don’t try to run your animation at that rate
just because you can achieve it sometimes. Instead, you should set a reasonable
rate that you can achieve consistently.

Tip: It is far better to set a frame rate that you know is achievable in most situations
than to have a jumpy animation.

Problem: Realistic Timing
Related to consistency is use of time-based animation rather than speed-based
animation. We discussed this topic in Chapter 12. A very simple animation
engine updates the animation state to some next sequential step each time it is
called. This behavior works on systems in which timing is very predictable, but
it breaks down when run on differently configured systems or when events hap-
pen to perturb the timing between steps. It is far better to base an animation state
on the real time that has elapsed. That way, the animation will always proceed in
a logical fashion regardless of how much time passes between individual steps.

Solution: Use a Timer Our discussion in Chapter 12 of the various timing facil-
ities, ending with the Timer utilities, was no mistake. These timers are convenient
utilities for ensuring that your animations can use a realistic timing scenario. Gone
are the days of step-based animations that ran more quickly when you pushed the
Turbo button on your PC. Welcome to the world of time-based animation.

Problem: Realistic Motion
The simplest motion to calculate is linear interpolation. That is, for any fraction
of the elapsed animation, you move the object by that fraction between the start-
ing and ending points of the animation. The code for this calculation is straight-
forward. For any starting value x0 and ending value x1, we can calculate the
linearly-interpolated value x for any elapsed fraction between 0 and 1 as:

x = x0 + (x1 – x0) * fraction

Unfortunately, this calculation results in movement that looks unnatural to
humans. We simply don’t live in a linearly interpolated world. With effects like
gravity, anticipation, acceleration, and deceleration,1 we are used to objects

1. Not to mention, in my case, tripping, stumbling, falling, and crashing.

www.it-ebooks.info

http://www.it-ebooks.info/

320 CHAPTER 13 SMOOTH MOVES

moving with a much different feel than a linearly interpolated animation would
display. The other problem with linear interpolation is that it is very easy for our
eyes to detect inconsistencies in movement in strictly linear motion. If an object
is moving at a constant rate and pauses briefly, the pause will be quite obvious to
the user. If, on the other hand, the object is moving in a nonlinear fashion, slight
pauses are much harder to discern.

Solution: Nonlinear Interpolation There are many ways to calculate nonlin-
ear movement, depending on the kind of effect you want to achieve. Do you
want the motion to speed up at the beginning and slow down at the end? Or have
constant acceleration? Or have a gravity-like motion?

In simple terms, you want to take the fraction of time elapsed in your animation
and perform a function on it to return a nonlinear value from that fraction. You
can then perturb your motion on the basis of that nonlinear fraction instead. We
talk more about nonlinear interpolation in our discussion of the Timing Frame-
work in Chapters 14 and 15.

Demo: Bouncing Animation You can toggle the linearity of object motion in
the demo by hitting the L (for linear) key on your keyboard, which toggles the
movement between the default linear motion and a motion that is more like a
bounce: the animation decelerates up to the halfway point and accelerates back
to the start. It is particularly interesting that changing this behavior makes the
moving animation on the right appear smoother but has little effect on the
smoothness of the fading animation.

Color: What’s the Difference?
The effect of color on the animation is perhaps less obvious than performance
issues, but it turned out to be the largest contributor to the choppiness I wit-
nessed in my original investigation. For example, in the demo application, the
display pixels affected by each of the two animations are changing at some rate,
and that rate is perceived to be smoother in the case of the fading animation.

Tip: The apparent smoothness of an animation is closely related to the rate of
change of the pixel colors affected.

www.it-ebooks.info

http://www.it-ebooks.info/

WHAT MAKES ANIMATIONS CHOPPY, AND HOW TO SMOOTH THEM OUT 321

Let’s take a step back and think about what makes an animation smooth in gen-
eral. It is fairly obvious that having a higher frame rate results in a smoother ani-
mation. Let’s see why.

Imagine trying to animate an image from the left side of this page to the right
over the course of one second. You could simply move it from left to right in one
step. The image sits over on the left until the animation begins, at which time
you erase it from the left side and draw it on the right side. You’ve just animated
that movement at a whopping 1 fps. Of course, it’s only “animated” in the tech-
nical sense. It didn’t really animate at all, it simply performed a single move-
ment. I think you’ll agree that that animation would be just a bit choppy.

Let’s try for something a little better. Let’s divide the total distance into 10 steps
and perform the animation by moving the image to each of those steps in turn,
ending up at the same place as before at the end of a second. This looks a little
better. At least it looks like the image is moving this time instead of just appear-
ing in the end location. Now we’re getting a more reasonable 10 frames per sec-
ond, which is a rate that at least allows us to consider it an animation—but it’s
still pretty choppy.

Now let’s take it up another order of magnitude. Imagine dividing the space into
100 equal parts and doing the same as before: We copy the image to each place
along the way, reaching the end position at the end of a second. Now we’re get-
ting somewhere; the image is moving much more smoothly than before, at a rate
of 100 fps. You may still notice some choppiness, but you can at least consider
this an “animation.”

The key that made this image movement an animation was increasing the frame
rate and decreasing the amount of movement per interval so that each step was
small enough that the overall movement began to appear smooth to our eyes.
This interval-decreasing was done in the time and space dimensions, decreasing
the time between steps and the space between each movement. Now imagine
doing the same for color.

In particular, think about the color of each pixel being affected by an animation.
How much do they change between each step? For each step, do we have large
numbers of pixels changing drastically or small numbers of pixels undergoing
minor changes?

In the first case, in which we moved the object from the left to the right in one
single frame, we changed all of the pixels at the origin, erasing them to the back-
ground color, and all of the pixels at the final destination, changing them from
the background color to the image color. Many pixels underwent significant
change in one step, twice the number of pixels in the image, in fact. In the final

www.it-ebooks.info

http://www.it-ebooks.info/

322 CHAPTER 13 SMOOTH MOVES

animation, however, in which we moved the object gradually from the left to the
right, the only pixels affected in each step were those on the leading and trailing
edges of the object. The changes to those pixels may have been just as drastic,
since the pixels were changing between the background and foreground colors in
one step, but because far fewer pixels were affected in each step, the animation
appeared much smoother than the first attempt.

Tip: In order to smooth out an animation, we want to minimize the amount of color
change per pixel in each step of the animation.

Let’s think about the animations in the original application in which I noticed
these artifacts. In that animation, the fade occupied the entire window of 800 ×
800 pixels, and the motion animation occupied a much smaller area of only
about 200 × 50 pixels. In the fading animation, each pixel was modulating
between the original color and the new color at a rate of 10 fps. In the extreme
case of a pixel moving between black, (0,0,0) in RGB space, and white, (255,
255, 255) in RGB space, the change for every step would be 10 percent of that
color difference, or (25.5, 25.5, 25.5). We can calculate this Euclidean distance
in RGB space as:

distance = sqrt(25.52 + 25.52 + 25.52) = 44.17

Alternatively, we could use the HSB (hue, saturation, brightness) representation
of these colors and calculate our color difference in that space instead.2 Black
has an HSB value of (0, 0, 0) and white has an HSB value of (0, 0, 1). Every step
in gray between these values is proportional in brightness to the percentage
change, so a 10 percent increment in RGB color difference would be a change of
(0, 0, .1) in HSB space. This gives us the following distance calculation in the
HSB color space:

distanceHSB = sqrt(0 + 0 + .12) = .1

2. A complete description and treatment of color spaces and the human visual system is way beyond
the scope of this chapter, this book, and anything else that I will probably ever write. There are
various things about RGB space that make it less ideal than other color spaces when speaking of
colors with relation to how our eyes perceive them. The HSB color space is good to use here in-
stead because the change in color that we see here is purely in the brightness factor of HSB, since
we are only varying between black and white. So it is interesting to see how the calculations work
out in this alternative color space that is more closely aligned with how we perceive things. A full
treatment of the subject would go much further, but the intent here is to give a sense of what’s
going on and to leave a deep-dive into the subject to other references.

By the way, HSB is a handy alternative in Java, since there are easy methods in Color to
convert from and to RGB and HSB, such as Color.RGBtoHSB() and Color.HSBtoRGB().

www.it-ebooks.info

http://www.it-ebooks.info/

WHAT MAKES ANIMATIONS CHOPPY, AND HOW TO SMOOTH THEM OUT 323

Meanwhile, the moving animation was changing pixels between the background
color and the object color in one step for all of the pixels affected by each move-
ment step of that animation. In the extreme case of a black object and white
background, pixels would change as much as (255, 255, 255) in each step, for a
Euclidean distance of ten times the fading amount, or 441.7 in RGB space:

distance = sqrt(2552 + 2552 + 2552) = 441.7

Performing this distance calculation in HSB space, given the values of (0, 0, 0)
and (0, 0, 1) for black and white, gives us the following:

distanceHSB = sqrt(0 + 0 + 12) = 1

By either the RGB or HSB calculation, each pixel in the moving animation, in
the extreme case of black–white color difference, is changing 10 times the
amount of any pixel in the fading animation.

One of the interesting things in this investigation is that the amount of color
change of individual pixels appears to be much more significant than the amount
of color change in the application window overall. That is, a large color change
happening over a small number of pixels is far more detectable than a small
change happening across a large number of pixels. The fading animation occu-
pied the entire 800 × 800 window. At 10 fps fading from black to white, this
means there were 640,000 pixels changing by 44.17 in RGB space or .1 in HSB
space for each frame of the animation. It seems reasonable to think that all of
that color change would be easily detectable by our eyes.

Meanwhile, the moving animation affected only an area of about 200 × 50, or
10,000 pixels. Also, the moving animation did not actually affect every pixel in
that area, since it involved only some objects shifting slightly every time.
Assuming that the scrolling animation affected only a quarter of the pixels in
that region, there were only about 2,500 pixels affected each frame. In the
extreme black–white case again, we have a color change of 441.7 in RGB space
for each of these pixels. That’s 44.17/pixel change for 640,000 pixels versus
441.7/pixel change for only 2,500 pixels. Using a comparison in HSB space, this
is .1/pixel change for 640,000 pixels versus 1/pixel change for the smaller 2,500-
pixel area. By numbers alone, it seems the fade effect is much more significant.
Nevertheless, the fade looked far smoother.

I’m going to go out on a limb here and make this wild claim:

Tip: The amount of change of any single pixel is more significant than the total
change over a group of pixels.

www.it-ebooks.info

http://www.it-ebooks.info/

324 CHAPTER 13 SMOOTH MOVES

Imagine it this way: If you have an entire screen of a million pixels changing by
just one incremental color value, it will be far less noticeable than a single pixel
in the middle of the screen flickering between color extremes.

Playing around with the SmoothMoves demo can help you verify the color differ-
ence issue for yourself, but let’s look at some pictures from a different applica-
tion to make the situation clearer. The screenshots presented here come from the
ColorDifference application on the book’s Web site. This application draws
two different black rectangles with some white space separating them, as seen in
Figure 13-2.

The application runs a timer in the background that animates changes for both
black rectangles. For the rectangle on the left, the color is toggled between
black, with RGB values (0, 0, 0), and a color that is 1 percent brighter, with RGB
values (3, 3, 3). The rectangle on the right continues to draw with a black back-
ground, but every other frame it also draws a 4 × 4 white square in the middle.
We can see this alternating frame of the animation in Figure 13-3.

ONLINE
DEMO

Figure 13-2 ColorDifference application: The same black rectangle is drawn on both
the left and right of the application window.

Figure 13-3 ColorDifference: In this alternate frame of the animation, the rectangle
on the left is drawn with a slightly lighter color than before, and the rectangle on the
right has a white square drawn in the middle. Which one looks more noticeably different
from its previous version in Figure 13-2?

www.it-ebooks.info

http://www.it-ebooks.info/

WHAT MAKES ANIMATIONS CHOPPY, AND HOW TO SMOOTH THEM OUT 325

The question for you is: Which of these rectangles looks more obviously differ-
ent from its previous version?

The answer should be obvious: The rectangle on the right is clearly different
from its previous version. You simply can’t miss that white square in the middle
of all of that black. Meanwhile, you can study the versions of the rectangle on
the left for some time and still not see the difference.

In terms of the numbers of pixels affected, or the raw amount of change in RGB
space, the rectangle on the left is clearly affecting more pixels. The entire rectan-
gle of 20,000 (100 × 200) pixels on the left is having its color shifted by 1 per-
cent. Meanwhile, the only change to the pixels on the right are from that single
square in the middle of 16 pixels, or less than .1 percent of the total pixels in that
black rectangle area. But the impact of the changes on the right to far fewer pix-
els is significantly greater than that of the changes on the left. Once again, we see
that the amount of change to individual pixels has greater effect than the total
change over a large group of pixels.

Maybe it comes from our ability to edge-detect very well. Or maybe it’s from
ancient instinct, evolved through millennia of being hunted by flickery pixels in
the wastelands of Cro-Magnon times. I have no idea, but I do know that’s what it
looks like, and in computer graphics, it’s all about how it looks.

Various factors contribute to color difference problems. They are presented next
along with solutions and “Demo” sections.

Problem: Object Color versus Background Color
One of the largest contributing factors to color difference during an animation is
the colors that the pixels are changing between. If a black object is moving on a
white background, the user sees the maximum color shift possible for each pixel
that changes during every animation frame. On the other hand, if that object
were very light gray on a white background, then the user would see far less
color change, and the animation would appear far smoother.

Solution: Minimize Contrast One approach is to change the color of the
object or of the background color. This is not really a general solution for most
cases, but it is interesting to note the effect that this change has on perceived
smoothness. An object that is closer to the background color causes the pixels to
shift less as it moves around on that background; the background pixels do not
need to shift as much in RGB space to represent the object color, and this differ-
ence in color shift results in smoother perceived movement for the object.

www.it-ebooks.info

http://www.it-ebooks.info/

326 CHAPTER 13 SMOOTH MOVES

Demo: Lighter Object Color Hitting the C key in the SmoothMoves applica-
tion toggles the object color between its default black, seen in Figure 13-4, and a
light gray, seen in Figure 13-5. Note how the lighter color causes less pixel color
shift during the animation and results in a smoother resulting animation.

Problem: Hard Edges
Again, imagine a black object moving on a white field. If the edge of the object
is straight, then the pixels on the edge would change be between black and
white, causing the maximum RGB shift possible. But what if this black object
had edges that blended between the internal color, black, and the background
color, white? In this case, the pixels affected during movement would shift
through gray shades between black and white, and each individual pixel color

Figure 13-4 Default black color contrasts sharply with white background pixels.

Figure 13-5 Lighter gray color has less contrast against white background pixels.

www.it-ebooks.info

http://www.it-ebooks.info/

WHAT MAKES ANIMATIONS CHOPPY, AND HOW TO SMOOTH THEM OUT 327

change would be far less than the black–white shift on the edge of the original
object.

Solution: Antialiasing One approach is to use antialiasing. Instead of using an
object with hard edges that sharply contrast with the pixels the object moves
over, you could soften those edges by fading out the object color translucently
on the edges. Doing so has the net effect of a smoother blend to the object color
and back to the background color as the object moves around over the back-
ground.

Demo: Antialiasing Hitting the A key in the SmoothMoves application toggles
the antialiasing setting from no antialiasing, the default, to antialiased, where the
outside edges of the object are drawn with increasing translucency from opaque
to transparent through an external edge 5 pixels wide, as seen in Figure 13-6.
The choppy effects along the edge are much harder to detect when this option is
enabled.

Problem: Straight Edges
This problem is related to the hard edges issue. Picture the black rectangle
against the white background in the SmoothMoves demo. The rectangle will cre-
ate a perceptibly more choppy animation than one with a less linear shape. One
thing you will notice is that hard-edge movement trips up your eyes more than
irregular-edge movement. The eye is very good at detecting artifacts in a column
of pixels that marches along, but tracking artifacts in an irregular shape is more
difficult, making artifacts easier to disguise with nonlinear shapes.

Figure 13-6 Antialiased edges provide smooth transition from the black interior color
to the white background color.

www.it-ebooks.info

http://www.it-ebooks.info/

328 CHAPTER 13 SMOOTH MOVES

Solution: Curves and Irregular Edges This solution works well with modern
user interfaces, which tend to have fewer rectangles and more curves than previ-
ous generations of GUIs. It doesn’t take much to reduce the number of hard and
straight edges in your applications: rounded corners, oval buttons, images for
icons. All of these are viable elements in a modern user interface and are apt to
enable smoother animations than do rectangular UI elements.

Demo: Use an Image Hitting the I key in the SmoothMoves application swaps
out the default rectangle for a far more interesting image of Duke, seen in
Figure 13-7. Even with all other factors in the demo set to the default, Duke
appears to have a much smoother animation simply because there are no hard
edges for our eyes to detect while the image is moving.

Problem: Jumpy Motion
This effect is related to the hard edges issue. As the object moves around, all of
the pixels change between the background color and the full object color in one
step.

Solution: Motion Blur As with the antialiasing solution proposed, the more we
can do to smoothly transition pixels up to and down from the object color as the
object moves through the pixels, the more we can minimize the color differences
of each individual pixel. One approach to this problem is to simulate “motion
blur,” smearing the object as it moves. Blurring causes an automatic transition
from the object color to the background color on the trailing edge of the object
movement.

Figure 13-7 Duke substitutes for the black rectangle to show that motion of irregular
edges appears smoother.

www.it-ebooks.info

http://www.it-ebooks.info/

WHAT MAKES ANIMATIONS CHOPPY, AND HOW TO SMOOTH THEM OUT 329

Note: Motion blur is not just a computer graphics hack; we have been seeing motion
blur in movies for decades. Take a look at any individual movie frame during a
scene with movement. Chances are very good that the objects that are moving in
that scene will be blurry in the frame. The camera that took that frame recorded a
range of positions occupied by the moving object during that frame. When these
frames are run in sequence, our eye does not see blurriness, but instead sees smooth
movement of the objects. Without the effect of blurring on the individual frames, we
would see much choppier movement, more like what we see in the old movies from
the 1920s. In those older movies, each frame was a distinct, crisp picture, which
does not create a smooth animation nearly as well as the blurred photos of modern
movies. This film technique made its way into computer graphics, so scenes in an
animated film are now rendered with motion blur to create the same smooth motion
effect that we see in live-action films. Art imitates life.

Motion blur in graphics is implemented by drawing ghost images of the object as
it moves around. There are various ways to do motion blur, some more correct
than others and some faster than others. The demo offers a very simple approach,
drawing trailing versions of the object translucently in locations recently occu-
pied by the object. The effect is similar to the cursor trails available as an option
on some desktop systems. This effect does not impact the rate of color change
for the pixels on the leading edge of the object movement. Because we are still
drawing the object in its current location with its true colors, the background
pixels still shift immediately to that color as the leading edge of the object moves
over those pixels. But blurring the past locations of the objects allows a
smoother transition back to the background color from the object color.

Demo: Motion Blur Hitting the B key in the SmoothMoves application toggles
motion blur between off, the default, and on. Hitting the numbers 1 through 9
changes the number of ghost images painted, for shorter or longer ghost trails in
the motion blur. An example of this effect can be seen in Figure 13-8. Note that
this effect is more pronounced with smaller timing resolutions; if successive
positions of the object are sufficiently far away from each other, as they are with
a large resolution, then the effect is less smooth and more confusing. But with a
small resolution and an accordingly tight motion blur trail, the effect is a smooth
ramp-down from the object color to the background color in a way that fools our
eyes, since motion blur is such a natural way of seeing smooth animation.

Vertical Retrace: That Syncing Feeling
Another major factor that was noticeable in my original investigations was the
impact of the vertical retrace of the display. This has little to do with the problems

www.it-ebooks.info

http://www.it-ebooks.info/

330 CHAPTER 13 SMOOTH MOVES

and solutions discussed previously, so I’m putting this issue in its very own
section.

Here is the problem: A typical computer display updates the screen from video
memory at some frequency, typically 60 times per second for LCD displays and
anywhere from 60 to 90 times per second for older-style monitors. You can think
of this as a linear process whereby every pixel on the screen is updated one by
one, left to right, and top to bottom. It’s done so fast and seamlessly that you
would not usually notice it happening. But fast animations on the screen can
cause an artifact called tearing that makes vertical retrace an issue.

Imagine that the vertical retrace is in the middle of refreshing the screen, and it
happens to be refreshing the pixels in the area where your application is copying
pixels to the screen. The effect will be that the pixels below and to the right of
the refresh location will show up in their new location, but the pixels to the left
and above that location will still be shown in their old location. This artifact hap-
pens because the refresh has already updated the pixels above and to the left, and
is only updating the pixels to the right and below on this refresh cycle. This
effect does not last long. It is fixed by the next refresh, which will be in only one-
sixtieth of a second for a typical LCD display. Since the artifact is not perma-
nent, you might not even notice or be disturbed by it. And the effect is visible
only on animations of moving objects; anything that stays in the same place,
such as the fading animation in SmoothMoves, is unaffected by this artifact. But
if your user interface is moving things constantly, and if those animations are
happening in large increments, then the tearing will be so obvious that it will add
to any perception of a choppy animation.

Figure 13-8 Motion blur using trailing ghost images provides a smooth transition from
the object color to the background color. Here, the object is moving from right to left.

www.it-ebooks.info

http://www.it-ebooks.info/

WHAT MAKES ANIMATIONS CHOPPY, AND HOW TO SMOOTH THEM OUT 331

This is a graphics book; we should show this effect with a picture. Suppose we
are trying to move our image between a position in frame 1 and a different posi-
tion in frame 2, as seen in Figure 13-9.

Now suppose that the vertical retrace, represented by the horizontal line, is hap-
pening right in the middle of this area as the object is being drawn in the position
it occupies in frame 2, as seen in Figure 13-10.

The net result is that the user sees frame 2 very briefly as having a torn object in
it until it is fixed by the next refresh.

Frame 1

Frame 2

Figure 13-9 Position of the object in two successive frames of an animation.

Frame 1

Frame 2

Vertical retrace

Vertical retrace

Figure 13-10 The object is drawn to the position in frame 2 of the animation as the
vertical retrace line is just passing through that same area.

www.it-ebooks.info

http://www.it-ebooks.info/

332 CHAPTER 13 SMOOTH MOVES

The problem is that copies to the screen do not, by default, pay any attention to
the state of the vertical retrace process. So it is entirely possible, even likely, that
animations will run into this rather jarring, if transient, artifact.

Solution: Don’t Worry About It
What kind of solution is that? Don’t worry about it? I just got done explaining
that this is a noticeable factor, and if you have run the SmoothMoves demo, you
may have noticed it already. And now you’re just supposed to forget about it?

Yes. And no.

For one thing, all of the tips we discussed should contribute to making the verti-
cal retrace effects less noticeable. There are various workarounds for this issue,
mostly related to the same problems and solutions described for color, including
the following:

• Minimizing color differences: The tearing artifact of vertical retrace is
made worse by high-contrast changes in an animation. The smaller the dif-
ference is between the background color and the object color, the less
noticeable will be the tearing artifact. All of the approaches that address
high-contrast changes are applicable here.

• Minimizing linear shapes: The tearing artifact is particularly noticeable in
objects like the rectangle in our example and in the SmoothMoves demo.
Our eyes notice that what is supposed to be a straight line is no longer
straight. Vertical straight lines are particularly susceptible to this artifact,
since the tearing occurs along vertical, not horizontal, lines. If the object
has irregular edges instead, then tearing artifacts are harder to spot and
therefore less disturbing.

• Minimizing distance between frames (or increasing the frame rate): The
further an object moves between frames, the more obvious any tearing arti-
facts. Figure 13-10 shows a pretty horrid tear that consumes nearly a third
of the object width. If that object moved only one pixel instead, the tear
would be far less noticeable.

For the most part, this artifact should simply go away, or at least be negligible, in
your animations. But what if you wanted to actually do something to address this
artifact? There is a Windows-specific workaround that you can experiment with
in the original article that this chapter is based on: http://today.java.net/pub/a/
today/2006/02/23/smooth-moves-solutions.html. This article has pointers to
source code and a variation on the SmoothMoves demo that shows how you can
potentially work around the vertical retrace artifact. (Hint: We use a small bit of

www.it-ebooks.info

http://today.java.net/pub/a/today/2006/02/23/smooth-moves-solutions.html
http://today.java.net/pub/a/today/2006/02/23/smooth-moves-solutions.html
http://www.it-ebooks.info/

WHAT MAKES ANIMATIONS CHOPPY, AND HOW TO SMOOTH THEM OUT 333

native code to wait until the vertical retrace is between refreshes to update the
Swing window.)

We do not include that approach here because it is, frankly, a hack;3 the solution
is for Windows only, and even so, it is neither a general nor a complete fix. It is
actually still possible to see the artifact, depending on where the window is on
the screen (this factor is discussed further in the original article).

There is no good general approach for a Swing application because Swing is at
the mercy of the window system and cannot control when the vertical refresh
happens. There is a solution for some situations, using a FlipBufferStrategy.
BufferStrategy is a mechanism by which you can double-buffer your applica-
tion, much like Swing does. In fact, Swing uses a BufferStrategy internally as
its double-buffering solution.4 You can create a BufferStrategy for your top-
level window, calling the following method in Window and its subclasses:

public void createBufferStrategy(int numBuffers)

By default, createBufferStrategy attempts to create a FlipBufferStrategy.
FlipBufferStrategy uses graphics hardware facilities to ensure that the screen
is only updated between vertical refreshes. In this approach, an application’s
back buffer is actually swapped with the front buffer (a process that is usually
called a flip). This switch happens so quickly that it can be scheduled to occur
between the vertical retrace events.

FlipBufferStrategy is not, however, always available by default. It is avail-
able if the OpenGL rendering pipeline, described in Chapter 5, is enabled. It is

3. Here is a philosophical tangent: What is a hack? There is a fine line between a hack and a cool
bit of code. And that line can vary widely between contexts. In this case, the fix to the vertical
retrace artifact was perfectly valid for the article I wrote. Articles tend to be short-lived descrip-
tions that point out items of interest to the current audience. I figured it was fair game to show
something that Windows developers might want to play around with. At the very least, it’s an in-
teresting exploration into how this bit of arcane graphics technology works. But books tend to sit
on the shelves a bit longer than articles ride on Web site front pages, so the solution should be a
bit more robust and generally applicable. Since the “fix” here is so platform-specific (Windows,
pre-Vista), in contrast with the cross-platform nature of Java, and since it is actually not a com-
plete fix (we cannot prevent Swing from copying to the screen during a vertical retrace but merely
try to time it a bit better), it just didn’t make the “no hacks, please” bar for inclusion in the book.
But feel free to check out the article and demo at the URL provided if you want to learn more
about it. My little hack is lonely and would appreciate the company.

4. Note that Swing uses a BltBufferStrategy by default, not a FlipBufferStrategy. So just
because Swing is using a BufferStrategy to double-buffer the application doesn’t mean that
Swing will fix the tearing artifacts automatically.

www.it-ebooks.info

http://www.it-ebooks.info/

334 CHAPTER 13 SMOOTH MOVES

also available on UNIX/X11 platforms in general. On Windows, with the default
rendering pipeline enabled, FlipBufferStrategy is available only for applica-
tions running in full-screen mode, and UI applications are typically windowed
applications. I would not advocate using full-screen mode for your GUI applica-
tions just to access this one piece of technology.

Tip: Since Swing already manages double-buffering for your application, you gener-
ally should not do your own double-buffering in addition to Swing’s. BufferStrategy
is mentioned only by way of completeness for anyone who really needs vertical
retrace sync behavior and is on a platform or rendering pipeline that can provide it.
FlipBufferStrategy is not a general solution for Swing v-sync behavior.

The other solution is a long-term solution, but it’s a good one: the operating sys-
tem will fix it. This sounds trite and optimistic, but in fact the solution is already
partially here today. On the Macintosh, the solution is built into recent versions
of OS X. On Windows, the solution is in Windows Vista, which has been avail-
able since early 2007.

On these operating systems, and probably others from other vendors eventually,
the desktop that the user sees is actually double-buffered, just like Swing itself.
Application windows are actually drawn to offscreen video memory and compos-
ited together onto the back buffer of the screen. This back buffer is then swapped
with the screen buffer, in exactly the same process as the FlipBufferStrategy,
thus completely avoiding the vertical retrace issue.5

So in the medium and long terms, the vertical retrace issue simply goes away. In
the short-term, on the platforms that do not fix the problem for you, minimize
choppy animation artifacts as you would for the other problems we’ve discussed,
and these fixes will all contribute to fewer vertical retrace artifacts as well.

5. I find it amusing to think about all of the buffers involved in a Swing application on Vista. First,
there’s the screen (that’s 1). Then there’s the back buffer for the screen (2). Then there’s the off-
screen representation of the Swing window (3). Then there’s Swing’s back buffer (4). In some
cases, we may have an extra buffer to account for different kinds of rendering to the window (5).
That’s a quintuple-buffered application—some serious buffering! Note that this is all just an in-
ternal implementation detail of Swing and the operating system; these extra buffers are not add-
ing performance overhead from extra copies, since the speed of copies and flips between these
buffers are at hardware-accelerated GPU speeds.

www.it-ebooks.info

http://www.it-ebooks.info/

SMOOTHMOVES: THE DEMO 335

SmoothMoves: The Demo
The SmoothMoves demo is mentioned in several places in this chapter, and you
are encouraged to go to the book’s Web site to run the demo and look at the code
directly. But it is worth discussing the basic implementation and operation of the
demo, since it shows some functionality of Swing and Java 2D graphics and ani-
mation in action.

Creating the Graphics Objects
Before rendering, the application creates the graphics objects that it will render
to the screen. In all cases, the application creates an image that will be copied
later using drawImage() during the animation. In the default case, the contents
of this image are created by rendering a solid black rectangle. Here is the image-
creation routine:

void createAnimationImage() {
 GraphicsConfiguration gc = getGraphicsConfiguration();
 image = gc.createCompatibleImage(imageW, imageH,
 Transparency.TRANSLUCENT);
 Graphics gImg = image.getGraphics();
 gImg.setColor(Color.BLACK);
 gImg.fillRect(0, 0, imageW, imageH);
 gImg.dispose();
}

First, we get the GraphicsConfiguration object from the component, which
we will need to create a compatible image, as discussed Chapter 5. Note that we
create the image to be translucent. That capability is not actually needed in the
default case, since the default image is an opaque black rectangle. But we use the
translucency of the image with some of the application options discussed later.
We then get the Graphics for the object, set the color, and fill the rectangle with
solid black.

Running the Timer
The next step is to start a timer, which runs the animation loop:

private void startTimer(int resolution) {
 if (timer != null) {
 timer.stop();

continued

ONLINE
DEMO

www.it-ebooks.info

http://www.it-ebooks.info/

336 CHAPTER 13 SMOOTH MOVES

 timer.setDelay(resolution);
 } else {
 timer = new Timer(resolution, this);
 }
 timer.start();
}

This method creates a Timer object, if none exists, with the given resolution and
ActionListener, the SmoothMoves instance itself. If a timer already exists, this
code stops that timer and sets a new resolution value on it. It then starts the timer.
The resolution used is set at runtime to either the default for the demo, 50 ms, or
a new value set by the user during program execution with the arrow keys.

The timer calls into the actionPerformed() method at intervals determined by
the resolution we set on the timer.

public void actionPerformed(ActionEvent ae) {
 long currentTime = System.nanoTime() / 1000000;
 long totalTime = currentTime - cycleStart;
 if (totalTime > CYCLE_TIME) {
 cycleStart = currentTime;
 }
 float fraction = (float)totalTime / CYCLE_TIME;
 fraction = Math.min(1.0f, fraction);
 fraction = 1 - Math.abs(1 - (2 * fraction));
 animate(fraction);
}

In this method, we calculate a fraction of the animation that has elapsed, accord-
ing to the CYCLE_TIME variable. Note that a single animation cycle will move or
fade the object to one extreme and back, so we calculate the fraction accord-
ingly. The fraction will go from 0 to 1 as we approach the halfway mark of our
cycle and 1 to 0 as we approach the full cycle time. We reset cycleStart to our
current time whenever we exceed the maximum CYCLE_TIME so that totalTime
always reflects the time elapsed in the current cycle.

After we have the timing fraction, we call animate() to alter the values that we
care about during the animation:

public void animate(float fraction) {
 opacity = fraction;
 int prevMoveX = moveX;
 moveX = moveMinX + (int)(.5f + fraction *
 (float)(moveMaxX - moveMinX));
 repaint();
}

www.it-ebooks.info

http://www.it-ebooks.info/

SMOOTHMOVES: THE DEMO 337

Here, we set the opacity to the fraction value so that our object will vary between
completely transparent, 0, and completely opaque, 1. We calculate the moveX
value, which is the location at which the moving image will be drawn, as the lin-
ear interpolation between the minimum and maximum X values with the given
timing fraction (the added .5f is for rounding). After we set these values, we call
repaint() to force the application to render itself.

Rendering
Finally, let’s look at the meat of the application: rendering the graphics during
the animation. There are three main tasks in the paintComponent() method:
erasing to the background color, drawing the fading animation, and drawing the
moving animation.

Erasing the Background
This step is simple; we just erase to white, like so:

g.setColor(Color.WHITE);
g.fillRect(0, 0, getWidth(), getHeight());

Drawing the Fading Animation
In this step, we use the current value of opacity, calculated by our animate()
function, to create a new AlphaComposite object and set it on the Graphics2D
object. Then we render our existing image using this Graphics2D object.

Graphics2D gFade = (Graphics2D)g.create();
gFade.setComposite(AlphaComposite.SrcOver.derive(opacity));
gFade.drawImage(image, fadeX, fadeY, null);
gFade.dispose();

Note that we create and dispose a new Graphics2D object here, cloned from the
Graphics object passed into paintComponent(). Doing so allows us to set the
composite on the Graphics object without having to worry about resetting it
when we are done, so the rendering of other objects using the original Graphics
object does not suffer side effects of this change. The opacity variable is set
during the calls to animate(), described earlier. fadeX and fadeY are constant
instance variables that declare where the fading image will be drawn.

Render the Moving Animation
This step is straightforward:

g.drawImage(image, moveX, moveY, null);

www.it-ebooks.info

http://www.it-ebooks.info/

338 CHAPTER 13 SMOOTH MOVES

We simply copy the image into the appropriate location, determined by the
moveX and moveY parameters. moveY is constant: We are moving the object only
in the X direction. moveX is set during each call to animate(), as seen previously.

Rendering Options
The tasks just discussed are all that we need for the default behavior of the appli-
cation. They create the image, set up the timer, and paint the two animations for-
ever. But there is more to this demo. There are keyboard commands that you can
use while the application is running to try out different approaches to rendering
to mitigate the choppiness and see the results. We covered these inline in the ear-
lier discussion of problems and solutions, but here is the comprehensive list of
options for the demo:

I (Image)
This option toggles the rendered object between a solid rectangle and an image.
Using this option gives your object an irregular shape, which makes it harder to
see some of the rendering artifacts seen when using the solid black rectangle.
The code to create this image is in createAnimationImage():

image = gc.createCompatibleImage(imageW, imageH,
 Transparency.TRANSLUCENT);
Graphics2D gImg = (Graphics2D)image.getGraphics();
if (useImage) {
 try {
 URL url = getClass().getResource("duke.gif");
 Image originalImage = ImageIO.read(url);
 gImg.drawImage(originalImage, 0, 0,
 imageW, imageH, null);
 } catch (Exception e) {
 System.out.println("Problems loading image file: " + e);
 }
}
gImg.dispose();

Note that we simply substitute these contents for the black rectangle contents we
created earlier. At rendering time, we just draw the same image to the window
that we drew before, but this time that image contains Duke instead of the black
rectangle.

C (Color)
This option toggles the color between the default, black, and light gray. You
should notice that the moving animation appears much smoother simply by

www.it-ebooks.info

http://www.it-ebooks.info/

SMOOTHMOVES: THE DEMO 339

decreasing the contrast, or color distance, between the object color and the back-
ground color. The code to change the object color is in createAnimationImage():

Color graphicsColor;
if (alterColor) {
 graphicsColor = Color.LIGHT_GRAY;
} else {
 graphicsColor = Color.BLACK;
}
gImg.setColor(graphicsColor);
gImg.fillRect(0, 0, imageW, imageH);

B (Blur)
This option toggles our simple motion blur effect, which causes the painting
code to render a trail of translucent ghost images in recent object locations.
Notice how the choppy artifacts on the trailing edge of the object are greatly
decreased. The code to create this effect is in paintComponent(). First, here is
the setup code to create the arrays of blur values:

if (motionBlur) {
 if (prevMoveX == null) {
 // blur location array not yet created; create it now
 prevMoveX = new int[blurSize];
 prevMoveY = new int[blurSize];
 trailOpacity = new float[blurSize];
 float incrementalFactor = .2f / (blurSize + 1);
 for (int i = 0; i < blurSize; ++i) {
 // default values, act as flag to not render these
 // until they have real values
 prevMoveX[i] = -1;
 prevMoveY[i] = -1;
 // vary the translucency by the number of the ghost
 // image; the further away it is from the current one,
 // the more faded it will be
 trailOpacity[i] = (.2f - incrementalFactor) -
 i * incrementalFactor;
 }
}

Next, we render each ghost image:

Graphics2D gTrail = (Graphics2D)g.create();
for (int i = 0; i < blurSize; ++i) {
 if (prevMoveX[i] >= 0) {
 // Render each blur image with the appropriate

continued

www.it-ebooks.info

http://www.it-ebooks.info/

340 CHAPTER 13 SMOOTH MOVES

 // amount of translucency
 gTrail.setComposite(AlphaComposite.SrcOver.
 derive(trailOpacity[i]));
 gTrail.drawImage(image, prevMoveX[i],
 prevMoveY[i], null);
 }
}
gTrail.dispose();

Finally, the ghost locations are updated at the end of the paintComponent
method:

if (motionBlur) {
 // shift the ghost positions to add the current position
 // and drop the oldest one
 for (int i = blurSize - 1; i > 0; --i) {
 prevMoveX[i] = prevMoveX[i - 1];
 prevMoveY[i] = prevMoveY[i - 1];
 }
 prevMoveX[0] = moveX;
 prevMoveY[0] = moveY;
}

It is worth noting again that there are various ways of implementing motion blur,
some of which are much more complex, time-intensive, and physically correct
than this simple approach. I was after a simple blur to show the visual effect of
motion blur on smoothing out the animation, and thus chose to implement a sim-
ple solution. You may want to experiment with more involved approaches in
your code.

1 to 9
These numbers toggle the length of the motion blur, from 1 ghost image to 9.
The more images, the more gradual the transition from the object color to the
background color and the less obvious the artifacts of the trailing edge. But with
more ghost images comes a potentially longer and less realistic trail behind the
object. The code for this effect is shown earlier in the section “B (Blur).” This
toggle affects the blurSize variable in that code.

A (Antialiasing)
This option toggles the use of antialiasing on the solid rectangle image. The
edges of the rectangle are now drawn with translucency that gradually fades out
to completely transparent. Like the motion blur effect discussed previously, anti-
aliasing results in a smoother transition from the object color to the background

www.it-ebooks.info

http://www.it-ebooks.info/

SUMMARY 341

color. But in this effect, the blur is on all sides of the object and not just the trail-
ing edge, as in the motion blur effect. The approach used is quite simple. We
draw increasingly faded outlines at the edges of the rectangle, as shown in this
code from createAnimationImage():

if (useAA) {
 gImg.setComposite(AlphaComposite.Src);
 int red = graphicsColor.getRed();
 int green = graphicsColor.getGreen();
 int blue = graphicsColor.getBlue();
 gImg.setColor(new Color(red, green, blue, 50));
 gImg.drawRect(0, 0, imageW - 1, imageH - 1);
 gImg.setColor(new Color(red, green, blue, 100));
 gImg.drawRect(1, 1, imageW - 3, imageH - 3);
 gImg.setColor(new Color(red, green, blue, 150));
 gImg.drawRect(2, 2, imageW - 5, imageH - 5);
 gImg.setColor(new Color(red, green, blue, 200));
 gImg.drawRect(3, 3, imageW - 7, imageH - 7);
 gImg.setColor(new Color(red, green, blue, 225));
 gImg.drawRect(4, 4, imageW - 9, imageH - 9);
}

Up and Down Arrows
The animation starts off at a somewhat slow frame rate, but the rate can be
increased or decreased by pressing the up and down arrows on your keyboard.
Each click increments or decrements the resolution by some number of millisec-
onds, to a minimum of 0 and maximum of 500.

L (Linearity)
This option toggles the interpolation mode of the animation. By default, the ani-
mation moves in a linear fashion. The L key toggles the animation to use a sim-
ple nonlinear sine function instead. The sine function gives the motion a
“bouncing” effect. Notice how this nonlinear movement makes it more difficult
to track individual frame discrepancies. It is more difficult for the eye to predict
exactly where the object is supposed to be when the motion is nonlinear than it is
when the motion is linear.

Summary
As you start to work with animations, you may notice some artifacts and want
your animations to run faster, better, smoother, cooler. The tips in this chapter

www.it-ebooks.info

http://www.it-ebooks.info/

342 CHAPTER 13 SMOOTH MOVES

may help you to identify and fix some of the problems you see in these anima-
tions. One of the keys to Filthy Rich Clients is not just making your GUIs move
but making them more dynamic and making users believe in the realistic and
smooth motion they see in the application. Ensuring that your animations are
smooth and realistic is an important part of developing these applications.

www.it-ebooks.info

http://www.it-ebooks.info/

343

14
Timing Framework:

Fundamentals

Introduction
When you first start working with animations in Swing, you quickly realize two
things about the built-in timers:

• Their simplicity makes building any kind of animation possible.

• Their simplicity makes building any kind of animation incredibly
difficult.1

That is, with a time-based callback mechanism like javax.swing.Timer, you
can perform any time-based task, such as varying Swing component characteris-
tics over time, and thus animate your GUI. But the details of implementing such
animations are prohibitively tedious, so most developers skip this step and opt
for the static component behavior that most GUI toolkits provide by default.

1. The timers illustrate the classical trade-off between simplicity and power. Sure, the ancient Egyp-
tians could build the pyramids and Sphinx with just a bunch of rocks, but it took monumental ef-
forts and lots of cheap labor to get it done. The English seem to have taken a more practical stance
on the problem in constructing Stonehenge and similar monuments, where the finished product
is just a small pile of large stones. The end result is not quite as impressive, but it must have been
a far sight easier to build than the pyramids. The same trade-off is made in most “rich client” ap-
plications today: Applications either skip animations entirely or implement only rudimentary an-
imations because the process of building more powerful ones is so tedious and time-consuming
and the software industry lacks the cheap labor that abounded in ancient Egypt.

www.it-ebooks.info

http://www.it-ebooks.info/

344 CHAPTER 14 TIMING FRAMEWORK: FUNDAMENTALS

This problem became evident when I first started experimenting with animations
in Swing and Java 2D. I just kept writing the same boilerplate code over and over
again to get the basic functionality that all of my animations required. This expe-
rience was the inspiration for the Timing Framework.

Note: The Timing Framework is a library that is being developed in a project at
http://timingframework.dev.java.net. We have taken a specific version of the library
and put it on the book’s Web site so that all text in the book and all code in the book’s
demos match the version of the framework available there. So if you want to use the
version of the framework that we discuss in the book, use the one on the book’s Web
site. If you want to use the latest/greatest version of the library, or you just want to
see what’s happening with ongoing development of the framework, check out the
project site on java.net.

The Timing Framework is a set of utility classes that provides a much more
capable animation system that handles many of the details that you would other-
wise need to implement in your application. The purpose of the library is to
enable you to create powerful animations in Swing without worrying about the
low-level implementation details.

The motivations for all of the features in the Timing Framework were twofold:

• Handle common tasks: Much of the code that we write in animating graph-
ics and GUIs is necessary for nearly all animations. For example, most
time-based animations need to figure out what fraction of the animation
has completed at any given time during the animation, so why not simplify
things by calculating that fraction automatically?

• Simple API: In providing more capabilities for animations, we do not want
to create an API that is prohibitively complex. It should be as easy to use
as possible.

The framework has a few distinct levels of functionality. At the core of the
framework is the timing package, with the fundamental building blocks that all
of the other pieces use. This group of classes provides the equivalent of the built-
in Timers but with significantly increased functionality. We cover this function-
ality in this chapter.

An additional level of functionality is provided in the triggers and interpolation

packages. Triggers associate animations with specific events and automate starting
animations on the basis of those events. Property setters in the interpolation
package provide the ability to animate properties of Java objects and to define
complex models of how those properties are interpolated between different val-

ONLINE
LIBRARY

www.it-ebooks.info

http://timingframework.dev.java.net
http://www.it-ebooks.info/

CORE CONCEPTS 345

ues. We cover triggers and property setters in Chapter 15, “Timing Framework:
Advanced Features.”

Core Concepts
Several key concepts and properties are embedded in the central classes used by
the Timing Framework:

• Animator: This class encapsulates most of the functionality discussed in
this chapter, but it is worth discussing it separately so that we can see how
an Animator, and the animation it defines, is created and run.

• Callbacks: An application must have a means to be notified of events dur-
ing the animation. In this way, an application can be involved in the ani-
mation to perform appropriate actions based on the state of the animation.
Event notification is handled through callbacks to an interface that appli-
cation code may implement. This mechanism is similar to what we saw
earlier in our discussion of the built-in Java timers, except that the Timing
Framework has more callbacks with more information to enable more flex-
ibility in your animations.

• Duration: The duration value defines the length of time that the animation
will last. An animation stops automatically when this duration has elapsed.
You may also specify that an animation should run indefinitely.

• Repetition: Some animations are intended to run once and then finish. Oth-
ers may run indefinitely. Still others may run with a finite duration and then
repeat when they are done.

• Resolution: The resolution of an animation controls the frame rate of the
animation. This concept was discussed at length in Chapter 12, “Anima-
tion Fundamentals.”

• Starting behavior: An animation may not want to start with the default
behavior of moving forward from the beginning. It may instead want to run
backwards or start from some other point than the beginning. It may also
want to delay for some time before starting.

• Ending behavior: By default, an animation holds its final value when it is
stopped. You might choose, instead, to have an animation reset to the start
state when finished.

• Interpolation: The easiest kind of interpolation is linear interpolation,
which we discussed in earlier chapters. But there are other kinds of inter-
polation that we can apply to give the animation nonlinear behavior.

www.it-ebooks.info

http://www.it-ebooks.info/

346 CHAPTER 14 TIMING FRAMEWORK: FUNDAMENTALS

Animator
Animator is the core class of the entire framework. Users of the Timing
Framework create Animators with information that details the animations they
want to run. The properties that define an animation are set through a combina-
tion of the constructors, which enable setting the most common properties, and
other methods in the class. Animations are started and stopped by calling
methods in this class. Finally, this class is responsible for issuing ongoing ani-
mation events while the animation is running, which is discussed in the next
section, “Callbacks.”

Creation
Animators are created through one of the three constructor methods:

Animator(int duration)

This method takes only a duration parameter, discussed later, which controls how
long the animation will run. Note that this constructor takes no TimingTarget
parameter. Callers would typically add one or more TimingTarget objects
later via the addTarget() method; otherwise the Animator will run but will
issue no events.2

Animator(int duration, TimingTarget target)

This variant, the most common, takes a duration and a TimingTarget. The
TimingTarget, discussed in the section “Callbacks,” contains the methods
that will be called with animation events as the animation runs.

Animator(int duration, double repeatCount,

 Animator.RepeatBehavior repeatBehavior,

 TimingTarget target)

This final variant takes the same duration and target parameters as before, but
also takes two other parameters that control how the animation is repeated
over time, as discussed in the section “Repetition.”

2. This is the animation equivalent of the great woodsy philosophical question: “If a tree falls in the
forest and no one is around to hear it, does it make a sound?” The parallel question for Animator
might be, “If an Animator runs and there is no TimingTarget around to receive the events,
does it do anything?” We may never really know.

www.it-ebooks.info

http://www.it-ebooks.info/

CORE CONCEPTS 347

Control Flow
There are several methods that control the running and stopping of the anima-
tion. Note that, as discussed in the section “Duration,” animations may stop
automatically. But animations may also be programmatically halted by some of
the methods of Animator described here.

void start()

This method starts the animation, which results in callbacks to the TimingTarget
begin() and timingEvent() methods, as described in the section “Callbacks.”

void stop()

This method stops the animation, which results in a call to the end() method
of TimingTarget, notifying any targets that the animation has completed.

void cancel()

This method is like stop() except that TimingTarget.end() will not be
called for any targets. It’s like pulling the plug on the animation instead of let-
ting it stop normally.

void pause()

This method pauses a running animation, which stops the animation in its cur-
rent state until and unless a later call to resume() is issued.

void resume()

This method resumes an animation that has been paused. The animation will
continue from its previously paused state, as if no time had passed between
pause() and resume(). This method has no effect on an animation that has
not been paused.

boolean isRunning()

This method queries whether the animation is currently running.

Controlling a Running Animation
It is worth noting that most of the parameters that control an animation, such as
the duration and repetition parameters, make sense only on a non-running ani-
mation. Once an animation is running, it is not clear how changes to these

www.it-ebooks.info

http://www.it-ebooks.info/

348 CHAPTER 14 TIMING FRAMEWORK: FUNDAMENTALS

parameters should be interpreted. Therefore, most of the methods of Animator
that set these parameters, except where noted, will throw an exception if called
while an animation is running.

Callbacks
TimingTarget
Animations in the Timing Framework run by having the animation code in
Animator call back into one or more TimingTarget implementations. A
TimingTarget object exists to receive timing events from an Animator. The
TimingTarget object is the connection between the animation running through
Animator and the animation actually doing something. The callback methods in
TimingTarget are given information about the current animation state and can
set up object state, calculate new property values, or do anything else appropriate
for the situation.

When you set up an Animator, you give it one or more TimingTarget objects
through one of the constructors for Animator and through the addTarget()
method of Animator. As the animation runs, the Animator object calls the meth-
ods in each of its TimingTarget objects.

The TimingTarget interface has four different event methods to implement:

public interface TimingTarget {
 public void begin();
 public void end();
 public void repeat();
 public void timingEvent(float fraction);
}

void begin()

This method is called by Animator when the animation is first started. It
allows the timing target to perform any necessary setup prior to running the
animation.

void end()

This method is called when the animation is finished, either because the anima-
tion completed naturally by running for the specified duration and number of
repetitions or because the stop() method was called on this target’s Animator.
This method allows the target to perform any necessary cleanup operations.
The end() method can be used as a mechanism to help sequence animations

www.it-ebooks.info

http://www.it-ebooks.info/

CORE CONCEPTS 349

together. For example, a target can use the end() call to signal that some other
dependent animation should start. Note, however, that triggers provide an even
easier mechanism for this functionality, as we see in Chapter 15.

void repeat()

This method is called during a repeating animation, every time the animation
begins another repetition. Repeating animations are discussed later.

void timingEvent(float fraction)

This method is the most important method in this interface and, in fact, in the
entire framework.3 timingEvent() provides the target with the fraction, from
0 to 1, of the animation that has elapsed. The target can then use this informa-
tion to change whatever properties need to be changed during the animation
and to schedule a repaint if necessary.

The fraction value is directly related to the duration property. If Animator is
given a duration of 2 seconds, then an animation that issues a timingEvent()
one second after starting would call timingEvent() with a fraction value
of .5.4

The fraction is a useful value to have. If you want to animate some variable
linearly between start and end values, it is important to know what fraction of
the animation has elapsed. If the animation is halfway through, then you know
to set your variable to halfway between its start and end values.

Some of the parameters of Animator, such as the start direction and the reversing
behavior, may make an animation run backwards. When this happens, the frac-
tion values received in timingEvent() run in reverse, too. That is, the fraction
always represents the elapsed fraction of the animation from the start to the end.
An animation running in reverse starts at the end point and runs in reverse. So,
for example, an animation that starts at the end and runs in reverse will issue val-
ues from 1 down to 0.

3. In fact, this method was the original inspiration for the entire framework. I just got so tired of
recoding the same “how much of my animation has elapsed?” logic in every animation, it seemed
like a much easier mechanism was called for—one that would have the timer give me the fraction
instead of my having to compute it by querying the system time and calculating it from starting
times, durations, and so on. So it doesn’t look like much, but the whole library grew from this
one small method.

4. Note that some nondefault properties of Animator, such as a nonlinear Interpolator or a non-
zero starting fraction, would change this simple example. We discuss these properties later.

www.it-ebooks.info

http://www.it-ebooks.info/

350 CHAPTER 14 TIMING FRAMEWORK: FUNDAMENTALS

TimingTargetAdapter
The TimingTargetAdapter class is a simple implementation of TimingTarget,
providing empty methods for that interface. This class is provided as a utility for
subclasses that want to receive only specific Animator events and do not want to
implement all of the TimingTarget methods just to get the one or two that they
really care about.

Duration
The discussion of timingEvent() relates directly to the duration property,
because the fraction elapsed of an animation is calculated from the time elapsed
so far and the total duration of that animation. The duration is specified in either
one of Animator’s constructors, as seen previously, or in the following method:

setDuration(int duration)

Both the setDuration() method and Animator’s constructors set the duration
for the animation in milliseconds. For example, an animation is assigned a dura-
tion of 2 seconds through a constructor, like this:

Animator myAnimation = new Animator(2000);

or through a later assignment to an existing animation:

myAnimation.setDuration(2000);

There is one additional, important value that a duration may have:
Animator.INFINITE, which tells Animator that this animation should run indef-
initely. Note that such animations will still call timingEvent() on a regular
basis, but the fraction value in that call will be meaningless because there can be
no elapsed percentage of an infinite amount of time.5

An important concept to note in relation to duration is that all animations are
tracked in Animator in fractional time. That is, an animation, regardless of
actual duration, may be thought of in terms of the percentage that the animation
has elapsed at any time. So any animation, other than one of INFINITE duration,
has a fractional duration of exactly 1. Calls to timingEvent() during the anima-
tion will use a fractional value instead of an actual duration. This mechanism
tends to be easier to deal with for callers, which get more useful information

5. This is why, when you are in a meeting or lecture that seems to drag on forever, you keep looking
at the clock and the minute hand has not moved at all. In fact, the meeting is of infinite duration
and elapsed time has no meaning.

www.it-ebooks.info

http://www.it-ebooks.info/

CORE CONCEPTS 351

from knowing that an animation is one-quarter elapsed than that it is 500 ms into
whatever its total duration may be. The concept of the elapsed fraction comes up
often. We typically discuss animations in terms of this fraction instead of the
total duration simply because that is what Animator keeps track of and reports to
its targets, and because it is much more powerful and useful to Animator’s users.

Repetition
A repeated animation is a common pattern. Repetition can take the form of run-
ning the same animation over and over, like an indefinite progress bar whose sta-
tus always crawls from the left to the right. A repeating animation can also be
constantly reversing, like a pulsating button that has a glow effect in which the
glow is constantly glowing toward full intensity and then dimming back down to
some default state. Instead of constructing separate animations for each repeti-
tion or creating one large animation that handles all of the repetitions as an
implementation detail, the framework provides the ability to define the core ani-
mation and then parameters for how that animation should be repeated.

There are two properties of Animator that control repetition: the number of
times the animation should be repeated and the behavior upon each repetition.
These properties are controlled through the following constructor and methods:

Animator(int duration, double repeatCount,
 Animator.RepeatBehavior repeatBehavior,
 TimingTarget target)

void setRepeatCount(double repeatCount)

void setRepeatBehavior(Animator.RepeatBehavior repeatBehavior)

In this constructor and these methods, the repetition behavior is controlled
through the repeatCount and repeatBehavior variables. repeatCount is sim-
ply the number of times that the animation should be repeated. This value can be
fractional, such as 2.5, to indicate that the animation may stop partway through.
repeatCount can also, like the duration value, take the value Animator.INFINITE,
which indicates that the animation should repeat indefinitely.

repeatBehavior can have a value of either RepeatBehavior.LOOP or
RepeatBehavior.REVERSE. LOOP repeats the animation in the same direction
every time. When the animation reaches the end, it starts over from the beginning.
So, for example, the animation fraction being passed into timingEvent() calls
will go from 0 to 1, then 0 to 1, and so on, until repeatCount is reached or the ani-
mation is otherwise stopped. REVERSE creates an animation that reverses direction
whenever it reaches the end of an animation. For example, the animation fraction
passed into timingEvent() calls will go from 0 to 1, 1 to 0, 0 to 1, and so on.

www.it-ebooks.info

http://www.it-ebooks.info/

352 CHAPTER 14 TIMING FRAMEWORK: FUNDAMENTALS

Resolution
The resolution of Animator controls the amount of time between each call to
timingEvent(). The default used by Animator is reasonable for most situations,
so developers should not need to change the value in general, but changing it is a
simple matter of calling setResolution():

void setResolution(int resolution)

This method sets the number of milliseconds between each call to timingEvent().
Recall from our discussion of resolution in Chapter 12, “Animation Fundamen-
tals,” that the actual resolution may be dependent on such factors as the internal
timing mechanism being used and the runtime platform. The Timing Framework
currently uses the Swing timer internally, and its resolution is thus constrained to
the resolution of that timer for now.6

Start Behavior
There are three factors about the starting state of the animation that you can con-
trol: the start delay, the direction, and the initial fraction.

Start Delay
Some animations may wish to have an initial delay before commencing. The
amount of this delay is controlled through the setStartDelay() method:

void setStartDelay(int startDelay)

where the startDelay value is in terms of milliseconds.

Start Direction
By default, an animation runs forward when it starts. The initial direction can be
changed to run the animation in reverse instead. This setting is controlled
through the setStartDirection() method:

void setStartDirection(Animator.Direction startDirection)

where startDirection can have the value of either Direction.FORWARD, which
is the default behavior, or Direction.BACKWARD.

6. A late addition to the Timing Framework added the ability to use an external timer. So while the
framework still uses the Swing timer by default, it is now possible to supply a timer with a dif-
ferent resolution. See the JavaDocs for TimingSource in the framework for more information,
but note that most users should not need anything but the default timer.

www.it-ebooks.info

http://www.it-ebooks.info/

CORE CONCEPTS 353

Start Fraction
By default, an animation begins at fraction 0. This setting can be changed to start
from any point during the animation by calling setStartFraction():

void setStartFraction(float startFraction)

where startFraction is a value from 0 to 1, representing the fraction elapsed of
the animation. Note that to run an animation from the end to the beginning, the
caller should set the initial fraction to 1 and the direction to BACKWARD. An exam-
ple of this behavior is shown in the FadingButtonTF demo later.

End Behavior
By default, an animation will hold its final value when it finishes. For example,
an animation that finishes a normal forward cycle from 0 to 1 will hold the value
1 at the end. This can be changed to reset to 0 at the end instead by calling
setEndBehavior():

void setEndBehavior(Animator.EndBehavior endBehavior)

where endBehavior can have the value of either EndBehavior.HOLD, which is the
default behavior, or EndBehavior.RESET, which sends out a final timingEvent()
with a fraction of 0 at the end of the animation.

Demo: FadingButton Reprise
We’re not quite done with the core Animator features. We still need to cover the
important area of Interpolator. But it’s time for a break to see some of the con-
cepts in action.

Let’s look at what we can do with just the classes that we have covered so far.
We have many classes in the framework yet to cover, but the power and flexibil-
ity of just the basic Animator and TimingTarget classes provides enough to
enable simple code that drives powerful animations. In particular, think of the
things that we had to do with the built-in timers to animate our GUIs in previous
chapters or the things that seemed unapproachably tedious, like cyclic, repeating
animations.

For a simple example, let’s revisit the FadingButton demo that we discussed
Chapter 12. While the application is not terribly complex, it is a useful example
for showing how using Animator helps make animations easier to program.

www.it-ebooks.info

http://www.it-ebooks.info/

354 CHAPTER 14 TIMING FRAMEWORK: FUNDAMENTALS

Recall in that example that we defined a custom JButton subclass with various
methods for rendering the button translucently and animating the value of alpha.
First, there were some instance variables to help track state:

float alpha = 1.0f; // current opacity of button
Timer timer; // for later start/stop actions
int animationDuration = 2000; // animation will take 2 seconds
long animationStartTime; // start time for each animation

In the constructor, we created the Timer object that ran the animation:

timer = new Timer(30, this);

Finally, we had an actionPerformed() method that served two purposes: It
caught clicks on the button and used them to start and stop the animation, and it
also received Timer events and animated the value of alpha with the following
code:

public void actionPerformed(ActionEvent ae) {

 // ... code to handle button clicks not shown here ...

 long currentTime = System.nanoTime() / 1000000;
 long totalTime = currentTime - animationStartTime;
 if (totalTime > animationDuration) {
 animationStartTime = currentTime;
 }
 float fraction = (float)totalTime / animationDuration;
 fraction = Math.min(1.0f, fraction);
 // This calculation will cause alpha to go from 1 to 0
 // and back to 1 as the fraction goes from 0 to 1
 alpha = Math.abs(1 - (2 * fraction));
 repaint();
}

Now that we have the power of Animator, let’s see how the code changes. You
can see and run the code for this version, called FadingButtonTF, on the book’s
Web site. First of all, we need fewer instance variables:

float alpha = 1.0f; // current opacity of button
Animator animator; // for later start/stop actions
int animationDuration = 2000; // each cycle takes 2 seconds

We do not need to track the animationStartTime because we no longer need to
calculate the fraction of the cycle elapsed. Animator does this for us.

ONLINE
DEMO

www.it-ebooks.info

http://www.it-ebooks.info/

CORE CONCEPTS 355

The constructor is similar to what it was before, although the declaration for
Animator is a bit different from that of Timer:

animator = new Animator(animationDuration/2, Animator.INFINITE,
 RepeatBehavior.REVERSE, this);

There are a few interesting bits about this call. First of all, we are using a dura-
tion of only half of animationDuration. This difference is because of how this
new animation will be handled. Previously, each individual animation would
consist of both the fade-out and fade-in portions, which we wanted to last for 2
seconds. With Animator, we can declare a more interesting reversing animation
that reverses every second, which gives us the same result. Also, we see that we
are going to be repeating infinitely, which is the same behavior as in the earlier
Timer example. We declare a REVERSE behavior so that the animation reverses
direction every time it repeats. And finally, we pass in this as the TimingTarget
that will be called with timing events. Our object implements the TimingTarget
interface in order to catch timingEvent() calls, just as the previous version of
the demo received events from Timer in its actionPerformed() method.

Additionally, since we want to start at an opaque value and animate toward
transparency, we need to make sure that we link up the animation fraction and
our alpha value correctly. Both values vary between 0 and 1 over the course of
the animation, so we’re almost there. But since our animation starts at 0 by
default and we want our alpha value to start at 1, or fully opaque, these values
are going to run opposite of each other. We can either have alpha represent the
inverse of the fraction, so that alpha would be 1 when fraction was at 0, or we
can use additional facilities in Animator to start the animation at the end, play-
ing backwards. This will ensure that the animation fraction starts at the same
value as we want for our alpha. We add the following code to set the Animator
properties accordingly:

animator.setStartFraction(1.0f);
animator.setStartDirection(Direction.BACKWARD);

Finally, let’s see the actual animation code for this new version of the demo. This
time, the code is in the timingEvent() method, which is the target for Animator’s
timing events, instead of the old actionPerformed() method. Compare the
code in actionPerformed() to this approach for timingEvent():

public void timingEvent(float fraction) {
 alpha = fraction;
 repaint();
}

www.it-ebooks.info

http://www.it-ebooks.info/

356 CHAPTER 14 TIMING FRAMEWORK: FUNDAMENTALS

Note that we do not need to calculate the fraction elapsed of the animation,
because it is given to us. Also, the flexibility in how we defined the animation,
starting at the end and running backwards in the first animation, simplified our
alpha calculation to simply equal the fraction itself. A screenshot of the applica-
tion is seen in Figure 14-1.

This new version of the demo behaves exactly like the old one, but with less
code. The demo is, by design, very simple, so it does not really show off the
power of the Timing Framework as much as the simpler code that is possible,
even for very easy animations. But it would help for us to develop a more inter-
esting demo that shows off more about the framework. We develop this demo,
The Racetrack Demo, throughout this chapter and the next one so that you can
see how the different elements of the framework work together to create more
interesting and complex animations.

The Racetrack Demo
This demo can be found on the book’s Web site in the various projects ending with
Race. There are several versions of the application that correspond to the different
features of the framework that we discuss in this chapter and the next.

Figure 14-1 FadingButtonTF: same as the FadingButton demo, but with less code.

ONLINE
DEMO

www.it-ebooks.info

http://www.it-ebooks.info/

CORE CONCEPTS 357

Background

First, we should explain how the application works in general. There are four main
classes in the demo package in use in all of the versions of this application:

ControlPanel: This is the panel with the Go and Stop buttons that you can see
at the bottom of the window in Figure 14-2. These buttons are added as listen-
ers elsewhere in the application to start and stop the race appropriately.

TrackView: This is the part of the application that handles drawing the car in
the current position and orientation on the track. Other code may call this class
to set the position and rotation of the car, and the paintComponent() method
of this class handles drawing the car appropriately.

RaceGUI: This class simply creates and manages the TrackView and
ControlPanel objects inside a JFrame.

*Race: Each variation of this demo that we will see is called *Race, according
to what it demonstrates. For example, the first version we will see is called
BasicRace. These classes handle the setup of the animation and the changing
of the car properties during the animation.

Figure 14-2 The Racetrack Demo.

www.it-ebooks.info

http://www.it-ebooks.info/

358 CHAPTER 14 TIMING FRAMEWORK: FUNDAMENTALS

Now that we understand the overall architecture, let’s see how the program actu-
ally works. We do not go into the details of the ControlPanel and TrackView
classes because they are quite simple and somewhat irrelevant for our discussions.
Instead, we cover the code in the *Race classes; that is where the animations occur.

BasicRace

BasicRace is the simplest version of the demo: It runs the car down the first stretch
of the track over some amount of time, showing how to use the basics of Animator
to perform this task.

There are some constants and instance variables that BasicRace uses:

public static final int RACE_TIME = 2000;
Point start = TrackView.START_POS;
Point end = TrackView.FIRST_TURN_START;
Point current = new Point();
Animator animator;

The start and end constants come from TrackView, which keeps track of the
eight corners of the race track. The variable current is used for storing the posi-
tion of the car. And the animator is, of course, the Animator that runs the show.

First of all, BasicRace is constructed. It creates a RaceGUI object that holds the track
and the control panel. It adds itself as a listener to the buttons in the control panel so
that it knows when to start and stop the race. And it creates the Animator object,
which will call our BasicRace object with timing events during the animation:

public BasicRace(String appName) {
 RaceGUI basicGUI = new RaceGUI(appName);
 basicGUI.getControlPanel().addListener(this);
 track = basicGUI.getTrack();
 animator = new Animator(RACE_TIME, this);
}

When one of the buttons is clicked, the actionPerformed() method is called,
which stops the current animation if Stop was clicked and starts a new one if Go
was clicked:

public void actionPerformed(ActionEvent ae) {
 if (ae.getActionCommand().equals("Go")) {
 animator.stop();
 animator.start();
 } else if (ae.getActionCommand().equals("Stop")) {
 animator.stop();
 }
}

ONLINE
DEMO

www.it-ebooks.info

http://www.it-ebooks.info/

INTERPOLATION 359

Interpolation
Haven’t you sometimes wished you could change time, slow it down, reverse it,
accelerate it, or just stop it altogether? That wasn’t exactly the motivation for the
interpolation features of the framework, but these are some of the things you can
do with interpolation, at least in the context of your animations.

We saw in Chapter 13, “Smooth Moves,” that nonlinear behavior of animations
is a good thing; acceleration, deceleration, and other techniques create a more
natural and smoother animation for the viewer.

By default, Animator reports linear fraction values in its calls to timingEvent().
That is, for any time elapsed t in an animation of length duration, the default
value for the elapsed fraction will be t/duration. TimingTarget objects are, of
course, free to use the fraction value to do whatever they want; thus they can cal-
culate nonlinear movement values given a linear time value. But wouldn’t it be
nice if the Timing Framework handled the pesky details?

The heart of the animation is in the implementation of the TimingTarget methods.
BasicRace extends TimingTargetAdapter, which implements all TimingTarget
methods, and BasicRace chooses to override only this one method:

public void timingEvent(float fraction) {
 // Simple linear interpolation to find current position
 current.x = (int)(start.x + (end.x - start.x) * fraction);
 current.y = (int)(start.y + (end.y - start.y) * fraction);

 // set the new position; this will force a repaint in TrackView
 // and will display the car in the new position
 track.setCarPosition(current);
}

The timingEvent() method is where the meat of the demo is. This method simply
calculates the current position of the car as a linear interpolation from the starting
point to the end point, based on the fraction elapsed in the animation. Then it sends
this car position to the TrackView object, which redraws the race track with the car
in the new location.

That’s it for the simplest version of the race. It doesn’t do much, but you can watch
the car run down the first stretch of the track, all powered by just a few lines of
code. We will see additional functionality added to the demo as we go through the
other sections in this chapter.

www.it-ebooks.info

http://www.it-ebooks.info/

360 CHAPTER 14 TIMING FRAMEWORK: FUNDAMENTALS

There are actually two mechanisms for controlling the linearity of the timing
fraction. The first mechanism, acceleration/deceleration, is quite easy to under-
stand and may be the best to use in many situations. The second mechanism,
Interpolator, is more involved, but also much more powerful.

Acceleration and Deceleration
The acceleration and deceleration parameters control whether there are periods
of acceleration or deceleration in the animation. They control the value of the
fraction passed into timingEvent. In a period of acceleration, which is always at
the beginning of an animation, the fraction is increasing faster than the fraction
based on the real elapsed time during the animation. In a period of deceleration,
which is always at the end of an animation, the opposite is true; the fraction is
increasing slower than the fraction based on real time elapsed.

Setting these values on an Animator is easy. Simply call the appropriate set
methods before the animation begins:

setAcceleration(float acceleration)
setDeceleration(float deceleration)

Both methods take a value from 0 to 1 that represents the fraction of the animation
that should be spent accelerating or decelerating. Note that the two periods are
exclusive from each other. An animation cannot be accelerating and decelerating in
the same time period of an animation, so (acceleration + deceleration) ≤ 1 by
necessity. These constraints are illustrated in Figure 14-3. Calling either method
with values that disobey these constraints results in an IllegalArgumentException.

During the period of acceleration, the speed increases at a constant rate of accel-
eration. The opposite is true for the deceleration period. As the figure shows, all

constant speed
(1 – acceleration – deceleration)

acceleration fraction deceleration fraction

t = 1t = 0

Figure 14-3 Acceleration, deceleration, and default (constant) fractions add up to 1, the
total duration of an animation.

www.it-ebooks.info

http://www.it-ebooks.info/

INTERPOLATION 361

animations have an initial fractional period of acceleration, whose default length
is 0, followed by some fractional period of constant speed, whose default length
is 1, or the entire animation, and they end with a fractional period of decelera-
tion, whose default length is also 0.

Think of the default situation, with no acceleration or deceleration, being an anima-
tion that goes from 0 to the full speed of the animation at the start and then from
full speed back to 0 at the end. The graph of speed over time is shown in Figure 14-4.

For comparison, imagine an animator anim with an acceleration period of .4 and
a deceleration period of .2. We would set these parameters with the following
statements:

anim.setAcceleration(.4f);
anim.setDeceleration(.2f);

This animation would ramp up smoothly from 0 to full speed over the first 40
percent of the animation, cruise at constant speed for another 40 percent of the
animation, and then ramp down from full speed to 0 over the final 20 percent.
The graph of speed over time for this animation would resemble Figure 14-5.

This acceleration/deceleration approach provides an experience of a smoother
animation compared to the sudden on/off speed behavior of the default behavior.

If we map the interpolated value over time, we get the graph in Figure 14-6. The
straight line is linear interpolation, for comparison.

If you recall from the beginning of this discussion, the value of the timingEvent()
fraction is being altered by the acceleration and deceleration values. So the

Sp
ee

d

Time
(fraction)

10

Figure 14-4 Default animation behavior, with no acceleration or deceleration: The
speed of animation is constant.

www.it-ebooks.info

http://www.it-ebooks.info/

362 CHAPTER 14 TIMING FRAMEWORK: FUNDAMENTALS

Sp
ee

d

Time
(fraction)

10

constant speed = 0.4

acceleration = 0.4 deceleration = 0.2

Figure 14-5 Speed of animation with acceleration (.4) and deceleration (.2) factors.

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

Linear vs. Nonlinear Interpolation

Linear
Nonlinear

Figure 14-6 Interpolated fraction with acceleration = .4 and deceleration = .2,
compared to linear time (straight line).

www.it-ebooks.info

http://www.it-ebooks.info/

INTERPOLATION 363

elapsed fraction values that you receive in your timingEvent() method will be
nonlinear and will enable you to easily calculate nonlinear values accordingly.
For example, if you look at the graph in Figure 14-6, you can imagine what
impact this might have on object movement calculations. If the interpolated frac-
tion, represented by the curved line, is being interpolated in this way while linear
time, represented by the straight line, marches on, then your calculations on
object movement will be affected the same way. If you do a parametric, linear
calculation on your object based on the incoming pre-interpolated fraction, then
your object will have slowly accelerating movement to begin with, will eventu-
ally be going faster than linear movement, and will then slow toward the end as it
reaches the final destination. This holds not just for acceleration and deceleration
but for the more general methods of interpolation as well.

Tip: Nonlinear motion can be created by performing simple linear interpolation cal-
culations using nonlinear timing values.

Tip: Acceleration/deceleration is an easy way to tap into nonlinear movement for
your animations; just tell Animator to accelerate and decelerate the timing fraction,
and your simple linear calculations take on this advanced, realistic nonlinear
motion.

Interpolator Race
Now let’s see how to apply our new knowledge of acceleration and deceleration to
our Racetrack demo to get a little more realistic motion out of that car.

In the previous version of the demo, BasicRace, the car looked pretty good rolling
down the track, but it seemed fairly unrealistic.7 In particular, it was strange how
the car went from 0 to full speed immediately and then simply halted suddenly at
the end of the first stretch. Wouldn’t it be more realistic to accelerate up to full
speed and then have some period of slowing down at the end?

For this demo, we want to reuse as much of BasicRace as possible. Therefore, we
simply create NonLinearRace as a subclass of BasicRace. This new class has no
functionality in it at all apart from a main() method to launch the application

7. Except for the rendering style of the track and car, which I think you’ll agree are very realistic.

ONLINE
DEMO

www.it-ebooks.info

http://www.it-ebooks.info/

364 CHAPTER 14 TIMING FRAMEWORK: FUNDAMENTALS

and a constructor. The constructor defers to the superclass, BasicRace, to do its
work and then makes two minor adjustments:

public NonLinearRace(String appName) {
 super(appName);
 animator.setAcceleration(.5f);
 animator.setDeceleration(.1f);
}

These calls into the animator object set the acceleration period to half of the ani-
mation duration and the deceleration to the last 10 percent. The result is that the car
speeds up to full speed over the first half and then slows down to 0 right at the end.

The reason we can make this change to have nonlinear movement so easily is, as
we explained earlier, setting the acceleration and deceleration values changes how
the fraction is interpolated against real time. During the first half of the animation,
the animation fraction is accelerating, or increasing faster than the real elapsed
fraction of time in our animation. When we take this fraction and compute the new
location of the car, in our existing BasicRace.timingEvent() method, our calcu-
lation results in the new location also being interpolated at that accelerating rate.
Similarly, use of the decelerating fraction toward the end results in decelerating
movement in our standard position calculations. So even though we use simple,
linear, parametric calculations for the car position in BasicRace.timingEvent(),
our use of acceleration and deceleration changed the results of those calculations
into more realistic nonlinear results by using a nonlinear timing fraction.

Run the demo. I think you will agree that the car’s movement looks a lot better
than it did in BasicRace.8 And with only these two lines of code to make it work, it
was well worth the effort.

Interpolator
Interpolator is a general and powerful mechanism for interpolating timing
values. Interpolator is, as we mentioned earlier, somewhat more involved than
acceleration and deceleration. Or at least it can be. It is actually quite easy to get
complex behavior from Interpolators without doing much work. And there is

8. I would put a picture here to show you, but it would look exactly the same as the earlier picture
of BasicRace. It is so difficult to get across time-based animation nuances when we have only
individual pictures to work with. We could spend the rest of the book on a flip-book animation of
the result. Maybe if we hadn’t gotten around to writing anything more, that’s what we would have
done here. But now you’ll have to satisfy your curiosity by going to the book’s Web site and run-
ning the demo directly.

www.it-ebooks.info

http://www.it-ebooks.info/

INTERPOLATION 365

plenty of built-in behavior handled for you in the existing Interpolator imple-
mentations. It all depends on what you want to do.

First, the API details: Interpolator is a deceptively simple interface consisting
of just one method:

float interpolate(float fraction)

This method takes a fractional value from 0 to 1 and returns a fractional value
from 0 to 1.

Tip: The complexity in Interpolator comes from its open-endedness; you can do
anything you want in this method and return values that have a huge impact on the
resulting animation.

However, there is built-in structure to Interpolator and its subclasses so that
you can get powerful effects without going completely into unknown territory.

The idea behind Interpolator is that it interpolates the timing fraction itself;
the value passed into interpolate() is the elapsed fraction of time in the cur-
rent animation. The fractional value returned from interpolate() will be used
by clients of the animation to calculate values based on the fraction.

Usage
An Interpolator object is set, implicitly or explicitly, on an Animator object.
By default, Animator uses a LinearInterpolator, supplied by the system, and lin-
ear interpolation is therefore the default for Animator. But the user of an Animator
can change the interpolation through the following method:

public void setInterpolator(Interpolator interpolator)

Types of Interpolators
While the power of implementing your own interpolate() method might be
appealing and even exciting, like standing at the edge of the Grand Canyon, it
may be a bit too much, like slipping while standing at the edge of the Grand
Canyon. Typical uses of interpolation can be much more constrained and there-
fore more approachable.

There are four different ways of using Interpolator:

• Linear interpolation, using the built-in LinearInterpolator class

• Discrete interpolation, using the built-in DiscreteInterpolator class

www.it-ebooks.info

http://www.it-ebooks.info/

366 CHAPTER 14 TIMING FRAMEWORK: FUNDAMENTALS

• Spline-based interpolation, using the built-in SplineInterpolator class

• Custom interpolation, using a class that you define

Linear Interpolation
Linear interpolation, as discussed in various places previously, is a means of cal-
culating a value between two boundary values by using the fraction elapsed
between the values as the multiplier of their difference, as seen in this standard
parametric equation:

v = v0 + t * (v1 – v0)

All that is needed to perform a linear interpolation on the values, then, is to have
the fraction t be the fraction of time elapsed in the interval. This is exactly what
the built-in LinearInterpolator class does. As mentioned, Animator uses lin-
ear interpolation by default; it does so by using LinearInterpolator.

LinearInterpolator exposes the interpolate() method of the Interpolator
interface, which performs the following simple functionality:

public float interpolate(float fraction) {
 return fraction;
}

It may seem a bit redundant to even have this class and method; if we are only
returning the value we are given, then are we supplying anything but overhead
here?9 The answer, obviously, is yes; we are supplying a general framework such
that any other interpolation mechanism may easily be substituted for the default
interpolator and the system will carry on perfectly with the new interpolator. Bit-
twiddlers, in whose company I occasionally count myself, may want to optimize
this special case out of general principle, but the overhead of a single function
call is insignificant compared to the flexibility it affords.

9. One might compare this to the way that kids clean their rooms, by simply shuffling objects from
one location to another. They are not actually cleaning anything but merely moving things
around so that it looks different. And, amazingly, it takes them so long to do it. The metaphor for
LinearInterpolator goes even a step further, however, since returning the same fractional
value is like kids picking up the objects and then putting them back exactly where they were be-
fore. So not only did they spend all day at the task, but it looks exactly the same at the end as it
did at the beginning. However, as with LinearInterpolator, this rabid inactivity has a pur-
posefulness that is difficult to fathom from the outside; eventually the parents will step in and as-
sist to get the job done. Kids aren’t dumb.

www.it-ebooks.info

http://www.it-ebooks.info/

INTERPOLATION 367

The LinearInterpolator class has one more method that allows users to get at
the single instance of this class:

static LinearInterpolator getInstance()

Because LinearInterpolator provides such a simple and standard implemen-
tation of the interpolate() method, there is no reason for more than one of
these objects in the runtime. There is also no reason for users to subclass
LinearInterpolator; thus it was made final. Instead, users of linear interpola-
tion should just get the singleton and use it as appropriate.

Discrete Interpolation
Discrete interpolation is a means of stepping, as opposed to sliding, from one
value to the next, as illustrated in Figure 14-7.

On the left of the figure, we see linear interpolation as the value slides smoothly
between 2 and 6 as the time varies from 0 to 1. On the right, we see discrete
interpolation as the value holds the value 2 until the time reaches 1, when the
value switches to the end value of 6.

The framework provides discrete interpolation through the cleverly named
DiscreteInterpolator class. Like LinearInterpolator, DiscreteInterpolator
is a singleton and provides a similar method to get at the DiscreteInterpolator
instance:

static DiscreteInterpolator getInstance()

Time
(fraction)

10

6

5

4

3

2

1

Time
(fraction)

10

6

5

4

3

2

1

Figure 14-7 Linear versus discrete interpolation. Linear interpolation takes on
values between 2 and 6, while the discrete interpolation maintains the original value
until the end.

www.it-ebooks.info

http://www.it-ebooks.info/

368 CHAPTER 14 TIMING FRAMEWORK: FUNDAMENTALS

The implementation of DiscreteInterpolator is, like LinearInterpolator,
quite simple:

public float interpolate(float fraction) {
 if (fraction < 1.0f) {
 return 0;
 }
 return 1.0f;
}

Basically, this method returns a fractional value that represents the start of the
animation, which is always zero until the very end of the animation. This result
ensures that calculations based on this interpolation will end up with the value at
the beginning of the interval except when the interval is completed, exactly as
illustrated in Figure 14-7.

The utility of DiscreteInterpolator may seem somewhat limited. In fact, it
does not appear as though animations using discrete interpolation are really ani-
mating at all. They just switch to a different value at the end of the animation.
The utility of DiscreteInterpolator will make a little more sense when we
revisit it later in the section on KeyFrames in Chapter 15. Here, we are discussing
interpolation over an entire animation. As we will see later, it is possible to create
an animation that consists of several smaller intervals. DiscreteInterpolator,
like any other Interpolator, can be used for each of these smaller intervals.
When this happens, it is easier to see some more interesting use cases for dis-
crete interpolation, as the intervals may be used, for example, to animate between
index values for an array. But for now, we are just working on the basics:
DiscreteInterpolator causes an animation to hold the beginning value until
the animation reaches the end.

Spline Interpolation
LinearInterpolator and DiscreteInterpolator are simple to explain and
understand. They perform a very basic operation on the input value and return a very
simple value. The next built-in interpolator that we discuss, SplineInterpolator, is
not as trivial. It is, however, much more interesting.

Defining a custom interpolator is, essentially, defining a function f(t), which will
return some sensible value for any given value t. SplineInterpolator allows
an application to define such a function through the use of Bézier splines, which
are smooth curves defined by four control points. Defining f(t) in this way allows
the user can get quite complex and arbitrary control functions through manipu-
lating just a handful of parameters. And by enforcing some simple constraints
about how we use splines, we can further reduce the amount of information that

www.it-ebooks.info

http://www.it-ebooks.info/

INTERPOLATION 369

we need from the caller so that only a couple of parameters need to be supplied
in order to define a spline curve.

A Bézier spline is defined by two anchor points, where the beginning and end of
the curve are located, and two control points, which control the path that the
curve takes between the two anchor points. You can think of the control points as
“pulling” the curve toward them, although the math is a bit more involved than
that. One of the constraints that we will impose is that the anchor points for our
splines will always be at (0, 0) and (1, 1). Because these points are predefined by
the system, the user needs to supply only the two control points for each spline
to define the curve.

It is probably easier to see some examples of what we mean than to get buried in
words and equations. Here are some diagrams that show different spline curves,
all with anchor points at (0, 0) and (1, 1), but with different control points, as
noted in the diagrams (Figures 14-8 through 14-11).

As you can see, the diagrams are attractive, and it is apparently very easy to cre-
ate interesting functions and curves with just these two values for control
points—but what do the diagrams mean?

As you have probably guessed, the curves define the interpolation for the timing
fraction used by Animator. The spline defines the curve along which the input
parameter, the real elapsed fraction of the animation, travels. The interpolated

Figure 14-8 Linear interpolation: Control points at (0, 0) and (1, 1).

www.it-ebooks.info

http://www.it-ebooks.info/

370 CHAPTER 14 TIMING FRAMEWORK: FUNDAMENTALS

Figure 14-9 Constant acceleration: Control points at (.5, 0) and (1, .5).

Figure 14-10 Fast in, slow out: Control points at (0, 1) and (0, 1).

www.it-ebooks.info

http://www.it-ebooks.info/

INTERPOLATION 371

value is calculated as the y-value, the vertical axis in the diagrams, at the given
point on the curve. That is, the input value of the elapsed fraction of the anima-
tion is interpreted as the length traveled along our spline curve. From that length,
we can calculate where we are on the curve and return the resulting y-value.

One way to think about splines is to visualize a diagram of the curve and see
how fast the curve is moving in the y-direction at any given point; that will give
you some feeling for how quickly the animation fraction is being interpolated at
that value.

Let’s look at how this works in the “ease-in, ease-out” curve, shown in
Figure 14-11. The curve starts out with a very shallow slope, proceeding much
faster in x than in y; this results in interpolated values that are far less than the
original values for this beginning part. Around x = .4, the slope picks up, going
vertical at the halfway point. After this point, the y-values are greater than the x-
values, and each small increment in the original value will result in a larger
increment in the interpolated value. Note, however, that the interpolated value
will come from an interpolation on the length of the curve, not the x-values. So
while the spline curve might look like we’re going to increase hugely in interpo-
lated values in this near-vertical area, the truth is that we are increasing in the
interpolated values greater than original values but not as much as the y-versus-x

Figure 14-11 Ease in, ease out: Control points at (1, 0) and (0, 1).

www.it-ebooks.info

http://www.it-ebooks.info/

372 CHAPTER 14 TIMING FRAMEWORK: FUNDAMENTALS

comparison might indicate. The length of the curve is steadily increasing in this
area as well, just not as rapidly as the y-values. Around x = .6, the slope decreases
dramatically and we get much slower progression of interpolated values.

Let us look at the SplineInterpolator API. One major difference between this
class and the other predefined Interpolator implementations is that there is a
public constructor and no factory method. The other classes, LinearInterpolator
and DiscreteInterpolator, offer the factory method getInstance() because
they are both singletons. For SplineInterpolator, however, it is possible to
vary the effects of the interpolator widely; in fact, that is the whole point of the
class, so it has a constructor for the class to enable this customization:

public SplineInterpolator(float x1, float y1,
 float x2, float y2)

In this constructor, the caller passes in the coordinates for the two control points,
(x1, y1) and (x2, y2). The anchor points, as noted earlier, are always set at (0, 0)
and (1, 1). The coordinates must always be in the range [0, 1], because splines
are always contained in the (0, 0) to (1, 1) square area. This is another simplify-
ing constraint that suits the use case of interpolating the elapsed fraction which is
also always defined to be in the range [0, 1].

Besides the constructor, SplineInterpolator defines the interpolate()

method from the Interpolator interface. This method uses the spline created by
the constructor to calculate the appropriate interpolation for the caller at runtime.

Demo: SplineInterpolatorTest
Now let’s see some code. There is a simple demo on the book’s Web site called
SplineInterpolatorTest, which looks like this:

public class SplineInterpolatorTest extends TimingTargetAdapter {

 private long startTime;
 private final static int DURATION = 5000;

 public void begin() {
 startTime = System.nanoTime() / 1000000;
 System.out.println("Real\tInterpolated");
 System.out.println("----\t------------");
 }

ONLINE
DEMO

www.it-ebooks.info

http://www.it-ebooks.info/

INTERPOLATION 373

 public void timingEvent(float fraction) {
 long currentTime = System.nanoTime() / 1000000;
 long elapsedTime = currentTime - startTime;
 float realFraction = (float)elapsedTime / DURATION;
 System.out.println(realFraction + "\t" + fraction);
 }

 public static void main(String args[]) {
 Animator animator = new Animator(
 DURATION, new SplineInterpolatorTest());
 SplineInterpolator interpolator = new SplineInterpolator(
 1f, 0f, 0f, 1f);
 animator.setInterpolator(interpolator);
 animator.setResolution(DURATION / 10);
 animator.setStartDelay(1000);
 animator.start();
 }
}

The point of SplineInterplatorTest is to compare the elapsed fraction, in real
time, to the elapsed fraction when using a sample SplineInterpolator.
SplineInterpolatorTest extends TimingTargetAdapter, since we really want to
implement only two of the TimingTarget methods: begin() and timingEvent().

In main(), we set up the Animator to run for a specific DURATION:

Animator animator = new Animator(
 DURATION, new SplineInterpolatorTest());

We then set the interpolator for the animation using a SplineInterpolator
with the same control points (1, 0), and (0, 1) as the ease-in, ease-out spline rep-
resented in Figure 14-11.

SplineInterpolator interpolator = new SplineInterpolator(
 1f, 0f, 0f, 1f);
animator.setInterpolator(interpolator);

We set the resolution at one tenth the total duration to avoid being buried in val-
ues; we want just enough to plot a basic curve:

animator.setResolution(DURATION / 10);

We set a startDelay of 1 second to make sure that our application is set up and
ready to go before the animation kicks in:

animator.setStartDelay(1000);

www.it-ebooks.info

http://www.it-ebooks.info/

374 CHAPTER 14 TIMING FRAMEWORK: FUNDAMENTALS

Finally, we start the animation:

animator.start();

In the begin() method, called by Animator when the animation starts, we
record the current time in milliseconds for later use in tracking the elapsed frac-
tion in real time:

startTime = System.nanoTime() / 1000000;

In the timingEvent() method, we calculate the real elapsed fraction, using the
original startTime and the current time:

long currentTime = System.nanoTime() / 1000000;
long elapsedTime = currentTime - startTime;
float realFraction = (float)elapsedTime / DURATION;

We then output this realFraction value compared to the fraction value we
received in the timingEvent() callback. This is the comparison between the
elapsed fraction of real time and the post-interpolated fraction according to
Animator. The comparison allows us to see how the interpolation changes over
time given this SplineInterpolator.

A sample run of this program resulted in the following output:

We can see in the table that the interpolated values change more slowly at the
start of the animation and more quickly after the midway point. A plot of the
points helps visualize this curve more clearly (Figure 14-12).

Now we can begin to have a clearer image of how this interpolation works over
time. As we start into the animation, our elapsed fraction increments very slowly,

Real Interpolated
0.00 0.00
0.10 0.01
0.20 0.06
0.30 0.17
0.40 0.33
0.50 0.50
0.60 0.67
0.70 0.83
0.80 0.94
0.90 0.99
1.00 1.00

www.it-ebooks.info

http://www.it-ebooks.info/

INTERPOLATION 375

which is the “ease-in” part. Around a quarter of the way through the animation,
the rate picks up and we start interpolating faster than the original values. Then
at the end of the animation, we slow down in our interpolation, incrementing the
interpolated values at a slower rate than our input values. This is the “ease-out”
portion of the animation.10

Note that the part in the middle where the curve is essentially straight looks quite
different from the middle section of our spline curve in Figure 14-11. The spline
curve shows a nearly vertical climb in y, whereas this curve is closer to, albeit
steeper than, 45 degrees. This is the crucial part to understand with the spline
curve representation. We should not compare the x-versus-y plot in the spline
curve graphs but rather the curve-length-versus-y plot. That can be harder to see
intuitively, but it gets easier over time with practice, with sample plots like we
just did, and with simply playing around with splines.

10. This curve is similar to the curve you would get with a default linear interpolator and accelera-
tion/deceleration factors of .5. You can see that splines are a more powerful and more general
mechanism, but that acceleration and deceleration are a simpler way to express an important
subset of this functionality.

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

Interpolated Values for SplineInterpolatorTest

Interpolated

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Real elapsed fraction

In
te

rp
ol

at
ed

 fr
ac

tio
n

Figure 14-12 Real versus interpolated fraction for control points (1, 0) and (0, 1), as
represented by the ease-in, ease-out spline in Figure 14-11.

www.it-ebooks.info

http://www.it-ebooks.info/

376 CHAPTER 14 TIMING FRAMEWORK: FUNDAMENTALS

Demo: SplineEditor
There is a demo on the book’s Web site, SplineEditor, for experimenting with
splines. The demo lets you change the control points dynamically to define a
spline curve and shows two sample animations, a moving ball and a scaling icon,
based on that spline. You can see a screenshot of the application in Figure 14-13.

There is a lot of detail about splines in general, Bézier splines in particular, and
how interpolation calculations are actually performed internally in the frame-
work, but I defer to other sources for that information. This book is mostly about
using all of these pieces to get Filthy Rich effects. As long as you understand the
basic functionality of splines, at least enough to be able to define the interpola-
tions you want, then you understand enough to use them for Filthy Rich Clients.

ONLINE
DEMO

Figure 14-13 SplineEditor demo: You create the spline by changing the control
points and watch the effect on the interpolated animations at the bottom.

www.it-ebooks.info

http://www.it-ebooks.info/

INTERPOLATION 377

Feel free to chase down more details about them in many references, both online
and in books. There are numerous resources for understanding the math behind
Bézier splines, including computer graphics books such as the canonical graph-
ics reference Computer Graphics: Principles and Practice by James D. Foley,
Andries van Dam, Steven Feiner, and John F. Hughes. A graphics book that I
found more helpful in this situation was The Geometry Toolbox for Graphics and
Modeling by Gerald E. Farin and Dianne Hansford. There are also numerous
online resources that explain the concepts and math fundamentals and allow
interactive spline manipulation in applets. Just do a search with your favorite
search engine on “spline applet.” Most of all, I defer to the Synchronized Multi-
media Integration Language (SMIL) specification, which can be found online at
www.w3.org/TR/SMIL/. SplineInterpolator and other elements in the Tim-
ing Framework were implemented specifically to be compatible with SMIL. The
method of defining and calculating splines is the same for SMIL as for the Tim-
ing Framework.

Custom Interpolation
All of the Interpolator classes we discussed are predefined in the Timing
Framework. But there is one more mechanism for Interpolator that is worth
mentioning: You can define your own.11 All you need to do is implement the sin-
gle interpolate() method and return any value you want between 0 and 1,
according to whatever interpolation you think would be interesting.

For example, you could provide a simple inverse interpolator with the following
class:

public class Inverter implements Interpolator {

 // return the inverse of the input fraction
 public float interpolate(float fraction) {
 return 1.0f - fraction;
 }

}

11. It is perhaps the bane of our entire industry that it is always more fun for engineers to write their
own stuff than to use what someone else has already written. But heck, why buck the trend? In
this case, I hope that the built-in classes provide most or all of what you would ever need, but if
you want to do anything not handled by one of them, it’s easy enough to do. And with only one
Interpolator method to implement, it’s not as though you’re going to spend the next several
years implementing your own custom Interpolator. At least I hope not.

www.it-ebooks.info

www.w3.org/TR/SMIL/
http://www.it-ebooks.info/

378 CHAPTER 14 TIMING FRAMEWORK: FUNDAMENTALS

Of course, there are other ways to achieve this simple inverse effect, such as set-
ting the direction of REVERSE for an Animator, but this will do for a simple
example of custom interpolation.

For a slightly more interesting example, you could provide simple sine-curve
behavior with the following class:

public class SineInterpolator implements Interpolator {

 public float interpolate(float fraction) {
 return (float)Math.sin(fraction * Math.PI);
 }
}

You can see that it’s really up to you and your mathematical imagination here;
what kind of effect do you want? Something cyclic? discrete? gravity-based?
erratic? random? You can implement your own Interpolator implementation
to suit your needs.

Summary
The core functionality covered in this chapter is powerful enough to create great
animations. Just the ability to create animations of finite durations with repeating
behavior and have your code called with the elapsed animation fraction is a big
step up from the built-in timers. With Interpolators thrown in, there are plenty
of great animated effects that you can create. But read on; the next chapter details
more functionality that makes animations even easier and more powerful.

www.it-ebooks.info

http://www.it-ebooks.info/

379

15
Timing Framework:

Advanced Features

IN Chapter 14, “Timing Framework: Fundamentals,” we covered the core fea-
tures of the Timing Framework. These fundamentals can be thought of as the
framework’s equivalent of the built-in timer facilities, only much more powerful
and flexible.

But now that we have these kinds of capabilities, why stop?1 In particular, given
our goal of providing an easy-to-use animations framework, we would like to
have very simple APIs that enable more capabilities for the user of the frame-
work. While some of the features described in this chapter, particularly the
KeyFrames discussion, can get somewhat involved, most of the functionality that
users need are embedded in very easy-to-use APIs that make animation creation
and running trivial.

There are two major additional areas of advanced functionality in the frame-
work: triggers and property setters.

Triggers
Triggers are a simple combination of the Timing Framework and Java’s
EventListener paradigm, enabling automatic starting of animations based on

1. As a great man (Spiderman’s uncle) once said, “With great power comes great responsibility.”
But I’m sure that he actually meant, “With great power comes great insatiability for more power.”

www.it-ebooks.info

http://www.it-ebooks.info/

380 CHAPTER 15 TIMING FRAMEWORK: ADVANCED FEATURES

specified events in the system. It is not necessary to use triggers to get this func-
tionality. You are free to set up your own event system for starting animations.
But triggers save effort and code and make it much easier to automate anima-
tions, leaving you free to concentrate on core application logic instead of anima-
tion scheduling logic.

The main idea behind triggers is that they catch and handle environmental events,
GUI events, timing events, or custom events that you define. Triggers start anima-
tions when those events occur. You can, for example, schedule an animation to
start when a mouse is hovering over a button in your GUI or when the mouse
clicks on a button. Triggers also allow you to sequence separate animations. For
example, one animation can be set up to start as some other animation ends.

The triggers API has two audiences. One audience is the users of the API, allow-
ing declaration of triggers to start animations based on certain events. The other
audience is the extenders of the API, allowing creation of new triggers that han-
dle events not yet built into the framework. We look primarily at the usage
aspects of the API. Developers wishing to create their own custom triggers need
only look at the source code for the simple triggers that exist already and model
their own after those examples.

First we look at the general concepts and superclasses in triggers. Then we
examine how these concepts apply in the various built-in triggers provided by
the framework.

Concepts and Usage
Using any type of trigger is straightforward:

Creation
Triggers are created by calling either the constructor or the addTrigger() fac-
tory method of the appropriate Trigger subclass. For the constructor, you pro-
vide information about the Animator you want the trigger to run, the event that
should cause the trigger to fire, and whether you want the trigger to “auto-
reverse,” which is discussed later. For the factory method addTrigger(), you
also provide an object that you want the trigger to add itself to as a listener.

Adding Listeners
Each built-in trigger implements a specific event listener. For example, the
ActionTrigger implements ActionListener, and the FocusTrigger imple-
ments FocusListener. Each trigger can be added to one or more objects as a lis-

www.it-ebooks.info

http://www.it-ebooks.info/

TRIGGERS 381

tener on those objects. For example, an ActionTrigger can be added to an object
that produces ActionEvents, such as a button. To enable the trigger to fire when a
specific button is clicked, you would call addActionListener(actionTrigger)
on that button.

The addTrigger() factory methods add listeners automatically. You pass in the
object that you want the trigger to listen to, and it will add the listener appropriately.

Firing
Firing, or starting the animation, is something that happens automatically on the
basis of information you provided to the factory method or constructor. The lis-
tener receives events from the object you specified, and when the right event
comes its way, it starts the Animator you specified.

Disarming
You may cancel a trigger at any time by calling the disarm() method of a trigger.

Auto-Reversing
Some triggers have the ability to auto-reverse the animation. Auto-reversing means
that when an opposite event is received from the event you specified in the con-
structor or in addTrigger(), the animation will be stopped and started in reverse
at the same point. This functionality can be useful for tasks such as automatically
causing a roll-off animation by specifying an auto-reversing rollover animation.

Note: The key concept behind triggers is that all of the work is in the setup: You
create a trigger, and it handles any later actions appropriately without further assis-
tance from you.

Now let’s look at the two superclasses in the triggers package.

Triggers Superclasses
Trigger
This class is the superclass of all the built-in triggers and any custom triggers
that you might want to implement. It holds common constructors, variables, and
information that subclasses will need. Trigger’s methods are not used directly
by application developers except for the single disarm() method:

public void disarm()

www.it-ebooks.info

http://www.it-ebooks.info/

382 CHAPTER 15 TIMING FRAMEWORK: ADVANCED FEATURES

This method disables a trigger; any future events that would have triggered the
animation of this trigger will no longer have any effect.

TriggerEvent
This superclass is set up to provide a way for Trigger subclasses to specify
events specific to those triggers. This mechanism enables TriggerEvents to be
accessed by the Trigger superclass in a generic way, which offloads some of the
logic from Trigger subclasses. Application developers will not typically call
TriggerEvent directly, but will instead deal with one of the simple subclasses
that define events specific to a particular Trigger subclass.

There is one public method in TriggerEvent, called getOppositeEvent().
Even though this method is public, it is not intended to be called directly by
applications. Instead, it is a utility method that subclasses will override and that
will be called by Trigger in the process of running an auto-reversing animation.

The Built-In Triggers
So much for the superclasses. We now discuss the specific triggers that come
with the library and that you may want to use in your applications. All of the
triggers have the same pattern between their constructors and factories. The fac-
tories are called addTrigger() and take one extra argument that is used to spec-
ify an object to which the trigger adds itself as a listener.

To help you understand how to use triggers in an application, we show screen-
shots and code from the ingeniously named Triggers demo on the book’s Web
site. This application shows five colored spheres plus a couple of buttons for
controlling the demo, as shown in Figure 15-1.

Each sphere in the demo has an associated animation that causes it to bounce
down to the bottom of the window and back. The sphere painting and animating
functionality is embedded in the separate SpherePanel class, which creates the
animation and handles painting for a single sphere. The creation of these panels
with specific sphere images is seen here:

action = new SpherePanel("yellow-sphere.png");
focus = new SpherePanel("blue-sphere.png");
armed = new SpherePanel("red-sphere.png");
over = new SpherePanel("green-sphere.png");
timing = new SpherePanel("gray-sphere.png");

The Animator is defined through a PropertySetter, using multiple values to
move it from the top of the screen to the bottom and back. We have not yet seen

ONLINE
DEMO

www.it-ebooks.info

http://www.it-ebooks.info/

TRIGGERS 383

property setters, but they’re coming soon, so here is a tantalizing preview of how
they work:

bouncer = PropertySetter.createAnimator(1000, this, "sphereY",
 0, (PANEL_HEIGHT - sphereImage.getHeight()), 0);
bouncer.setAcceleration(.5f);
bouncer.setDeceleration(.5f);

Here, the Animator is given a duration of one second, during which it changes
the value of the property sphereY in the SpherePanel object from 0 to the bot-
tom of the panel and back. We set acceleration and deceleration properties on the
Animator to give it a bouncing motion.

Painting the sphere in the proper location is handled in this simple paintComponent()
method in SpherePanel:

@Override
protected void paintComponent(Graphics g) {
 g.setColor(Color.white);
 g.fillRect(0, 0, getWidth(), getHeight());
 g.drawImage(sphereImage, sphereX, sphereY, null);
}

For each of the following built-in triggers, we will see how each trigger kicks off
this same animation for the different spheres in the Triggers demo window.

Figure 15-1 Triggers demo. Various triggers have been set on the Trigger button. Each
trigger causes a different sphere to bounce down to the bottom of the window and back.

www.it-ebooks.info

http://www.it-ebooks.info/

384 CHAPTER 15 TIMING FRAMEWORK: ADVANCED FEATURES

ActionTrigger
ActionTrigger is the simplest trigger in the framework because it handles only
one type of event: java.awt.event.ActionEvent. This means that this trigger
does not need a TriggerEvent because the only event that causes the trigger to
fire is implicit.

Constructor
ActionTrigger(Animator animator)

Factory
addTrigger(Object source, Animator animator)

The animator is the animation that will be started when an ActionEvent is
received. The object argument in the factory method is the object to which this
trigger will add itself as a listener. Note that Object is a more generic source
than the other Trigger subclasses use because there are various unrelated
classes that can send events to an ActionListener. It is the responsibility of the
caller of addTrigger() to provide an Object that has an addActionListener()
method so that ActionTrigger can call that method successfully.

Example
Suppose you have a JButton and Animator as follows:

JButton button;
Animator anim;

You could have anim start automatically when button is clicked as follows:

ActionTrigger.addTrigger(button, anim);

Demo: Triggers
In the Triggers demo, clicking on the Trigger button animates the bouncing
motion of the first sphere, as shown in Figure 15-2. The code to create this trig-
ger is as follows:

ActionTrigger.addTrigger(triggerButton, action.getAnimator());

where action is the SpherePanel that contains the leftmost sphere and the asso-
ciated Animator.

ONLINE
DEMO

www.it-ebooks.info

http://www.it-ebooks.info/

TRIGGERS 385

FocusTrigger
FocusTrigger starts animations according to whether a component gains or
loses focus. This trigger implements the FocusListener interface and is added,
either by the caller or implicitly in the factory methods, as a listener to a compo-
nent. Future focus events on that component will cause the animation to begin.

Constructors
FocusTrigger(Animator animator, FocusTriggerEvent event)
FocusTrigger(Animator animator, FocusTriggerEvent event,
 boolean autoReverse)

Factories
addTrigger(JComponent component, Animator animator,
 FocusTriggerEvent event)
addTrigger(JComponent component, Animator animator,
 FocusTriggerEvent event, boolean autoReverse)

The animator is the animation that will be started when the event is received.
The event is one of the following:

• FocusTriggerEvent.IN, when the component receives focus

• FocusTriggerEvent.OUT, when the component loses focus

See the JavaDocs for FocusListener for more information on these events; they
map exactly to those in the FocusListener interface. The autoReverse flag is

Figure 15-2 ActionTrigger: First sphere animates when the Trigger button is clicked.

www.it-ebooks.info

http://www.it-ebooks.info/

386 CHAPTER 15 TIMING FRAMEWORK: ADVANCED FEATURES

used to specify that the trigger should stop, reverse, and restart the animation
when it receives the opposite event from the one specified by the event argument.
The component argument in the factory methods is a Swing component to which
this trigger will add itself as a listener.

Example
Suppose you have a JButton and Animator as follows:

JButton button;
Animator anim;

Suppose further that anim animates a transition between the unfocused and
focused states of the button. You could have anim start automatically when the
button receives focus by calling the following:

FocusTrigger.addTrigger(button, anim, FocusTriggerEvent.IN, true);

The final argument tells addTrigger() to make this an auto-reversing trigger.
This means that an IN event will cause anim to start as usual, and a subsequent
OUT event will cause anim to stop, reverse, and restart at the same point.

Demo: Triggers
The second sphere is animated whenever the Trigger button receives focus, as
seen in Figure 15-3. This trigger is the reason for Other Button in the demo, as it
creates another GUI object to receive focus. Hitting the Tab button or clicking
the mouse on either button changes focus appropriately. The code to create this
trigger is as follows:

FocusTrigger.addTrigger(triggerButton, focus.getAnimator(),
 FocusTriggerEvent.IN);

where focus is the SpherePanel that contains the second sphere and the associ-
ated Animator.

MouseTrigger
MouseTrigger starts animations on the basis of mouse events in a component.
This trigger implements the MouseListener interface and is added, either by the
caller or implicitly in the factory methods, to a component. Future mouse events

ONLINE
DEMO

www.it-ebooks.info

http://www.it-ebooks.info/

TRIGGERS 387

on that component will cause the animation to begin. These events can be useful
for running animations according to a component’s rollover state, when the
mouse is hovering over the component, or armed state, when the mouse has been
pressed but not released in the component.

Constructors
MouseTrigger(Animator animator, MouseTriggerEvent event)
MouseTrigger(Animator animator, MouseTriggerEvent event,
 boolean autoReverse)

Factories
addTrigger(JComponent component, Animator animator,
 MouseTriggerEvent event)
addTrigger(JComponent component, Animator animator,
 MouseTriggerEvent event, boolean autoReverse)

The animator is the animation that will be started when the event is received.
The event is one of the following:

• MouseTriggerEvent.ENTER, when the mouse enters a component’s area

• MouseTriggerEvent.EXIT, when the mouse leaves a component’s area

• MouseTriggerEvent.PRESS, when the mouse button is pressed in a com-
ponent’s area

Figure 15-3 FocusTrigger: Second sphere animates when Trigger button receives focus.

www.it-ebooks.info

http://www.it-ebooks.info/

388 CHAPTER 15 TIMING FRAMEWORK: ADVANCED FEATURES

• MouseTriggerEvent.RELEASE, when the mouse button is pressed in a
component’s area is released

• MouseTriggerEvent.CLICK, when the mouse button is clicked, pressed,
and released in a component’s area

See the JavaDocs for MouseListener for more information on these events; they
map exactly to those in the MouseListener interface. The autoReverse flag is
used to specify that the trigger should stop, reverse, and restart the animation
upon receiving the opposite event from the one specified by the event argument.
The component argument in the factory methods is a Swing component to which
this trigger will add itself as a listener.

Example
Suppose you have a JButton and Animator as follows:

JButton button;
Animator anim;

Suppose further that anim animates a transition between the default and rollover
states of the button. You could have anim start automatically when the button
receives a mouse-entered event by calling the following:

MouseTrigger.addTrigger(button, anim,
 MouseTriggerEvent.ENTER, true);

The final argument tells addTrigger to make this an auto-reversing trigger. This
means that an ENTER event will cause anim to start as usual, but an EXIT event
will cause anim to stop, reverse, and restart at the same point.

Demo: Triggers
There are two animations in the Triggers demo tied to MouseTrigger. The first
animation is started when the Trigger button is “armed,” which happens when
the button is pressed, as seen in Figure 15-4. The other animation begins when the
mouse is “over” the Trigger button, as seen in Figure 15-5. The code to create
these triggers is as follows:

MouseTrigger.addTrigger(triggerButton,
 armed.getAnimator(), MouseTriggerEvent.PRESS);
MouseTrigger.addTrigger(triggerButton,
 over.getAnimator(), MouseTriggerEvent.ENTER);

ONLINE
DEMO

www.it-ebooks.info

http://www.it-ebooks.info/

TRIGGERS 389

where armed and over are the SpherePanels that contain the third and fourth
spheres and the associated Animators.

TimingTrigger
TimingTrigger is useful in sequencing separate animations. It allows you to
specify that one Animator object should start when another stops, repeats, or
starts. This trigger implements the TimingTarget interface and is added, either
by the caller or implicitly in the factory methods, to an Animator object.

Figure 15-4 MouseTrigger: Third sphere is animated when Trigger button is pressed.

Figure 15-5 MouseTrigger: Fourth sphere is animated when mouse is over
Trigger button.

www.it-ebooks.info

http://www.it-ebooks.info/

390 CHAPTER 15 TIMING FRAMEWORK: ADVANCED FEATURES

Constructors
 TimingTrigger(Animator animator, TimingTriggerEvent event)
 TimingTrigger(Animator animator, TimingTriggerEvent event,
 boolean autoReverse)

Factories
 addTrigger(Animator source, Animator animator,
 TimingTriggerEvent event)
 addTrigger(Animator source, Animator animator,
 TimingTriggerEvent event, boolean autoReverse)

The argument animator is the animation that will be started when the event is
received. The event is one of the following:

• TimingTriggerEvent.START, when a source animation begins

• TimingTriggerEvent.STOP, when a source animation ends

• TimingTriggerEvent.REPEAT, when a source animation repeats

See the JavaDocs for TimingTarget for more information on these events; they
map exactly to the begin(), end(), and repeat() methods in the TimingTarget
interface. The autoReverse flag is used to specify that the trigger should stop,
reverse, and restart the animation upon receiving the opposite event from the one
specified by the event argument. The source argument in the factory methods is
an Animator to which this trigger will add itself as a target.

Example
Suppose you have two animations as follows:

Animator anim1, anim2;

Suppose further that you want anim2 to start when anim1 stops. You could set up
this sequence as follows:

TimingTrigger.addTrigger(anim1, anim2, TimingTriggerEvent.STOP);

Demo: Triggers
The last sphere is animated whenever the animation on the first sphere, which is
triggered by clicking on the Trigger button, stops. This TimingTrigger anima-
tion is seen in Figure 15-6. The code to create this trigger is as follows:

TimingTrigger.addTrigger(action.getAnimator(),
 timing.getAnimator(), TimingTriggerEvent.STOP);

ONLINE
DEMO

www.it-ebooks.info

http://www.it-ebooks.info/

TRIGGERS 391

where action is the SpherePanel that contains the leftmost sphere and the asso-
ciated Animator and timing is the SpherePanel that contains the rightmost
sphere.

Demo: TriggerRace
It is time to revisit our racetrack demo from Chapter 14. Now that we understand
triggers, we can simplify the code that we saw previously in NonlinearRace and
create another version, TriggerRace, also found on the book’s Web site. In partic-
ular, we can automate the race to start when the Go button is clicked. We still need
our actionListener to stop the race, but starting the race based on the Go button
is much easier. Instead of setting up an ActionListener on goButton and imple-
menting the logic in our actionPerformed() method to start the race, we simply
do the following:

ActionTrigger.addTrigger(goButton, animator);

This trigger handles clicks on the goButton inside the ActionTrigger and starts
our race automatically.

Figure 15-6 TimingTrigger: The rightmost sphere is animated when the animation on
the leftmost sphere, started by clicking on Trigger, completes.

ONLINE
DEMO

www.it-ebooks.info

http://www.it-ebooks.info/

392 CHAPTER 15 TIMING FRAMEWORK: ADVANCED FEATURES

Property Setters
Property setters are a great mechanism for specifying animations that automati-
cally alter object properties over time without having to involve you and your
application code in the process. Just like triggers, property setters are all about pro-
viding mechanisms for callers to set up an animation and then performing the tasks
of the animation automatically. But where triggers handle the functionality of
starting animations, property setters handle the core functionality of actually mod-
ifying objects during the animation, which is a powerful thing to have automated.

Note: Property setters take animations from the world of manually handling anima-
tion events and changing properties on the fly in your application code to the more
automated, declarative world of specifying animations in terms of what you want to
animate and letting the property setter do the work for you.2

The complete functionality of TriggerRace is as follows:

public class TriggerRace extends NonLinearRace {
 public TriggerRace(String appName) {
 super(appName);
 JButton goButton = controlPanel.getGoButton();
 ActionTrigger trigger = ActionTrigger.addTrigger(
 goButton, animator);
 }

 public void actionPerformed(ActionEvent ae) {
 if (ae.getActionCommand().equals("Stop")) {
 animator.stop();
 }
 }
 // main() method deleted for brevity
}

This class, like NonLinearRace itself, depends on the functionality of its superclass
for setting up the race, and then adds a trigger on the Go button. Triggers currently
only start animations, so we still need a mechanism, the actionPerformed()
method, to stop the animator when the user clicks the Stop button.

2. The difference between using property setters and not is a bit like the difference between taking
a cab and driving a car. They may both get you to your destination, but one method requires you
to do a lot more of the work. Hopefully property setters are a little safer and less adrenaline-
producing than a typical cab ride, however.

www.it-ebooks.info

http://www.it-ebooks.info/

PROPERTY SETTERS 393

Generally, you will be creating or using animations for your applications in
which you will vary object properties over time: the translucency of a compo-
nent, the placement of a button, the text in a label, and so on. Using the core
Animator and TimingTarget classes, you now know how to perform these ani-
mations, and you can do so in a much easier way than by using Java’s built-in
timers. But most of these types of operations can be automated by property set-
ters, using simple definitions of how objects should be modified over time.

That is, instead of your application code manually doing the work of altering
values over time according to some formula, you can let the Timing Framework
do it for you. For example, suppose you want to change some integer property
myInt from a value of 0 to a value of 10 in a linear fashion over a period of a sec-
ond. You might do so with the core Timing Framework facilities as follows:

public class MyIntAnim {
 private int myInt;
 public void setMyInt(int newValue) {
 myInt = newValue;
 }

 public MyIntAnim() {
 // Set up the animation
 TimingTarget myTarget = new TimingTargetAdapter() {
 public void timingEvent(float fraction) {
 setMyInt((int)(fraction * 10));
 }
 };
 Animator anim = new Animator(1000, myTarget);
 anim.start();
 }
}

In this demo, found on the book’s Web site under MyIntAnim, the implementa-
tion of timingEvent() calls the setMyInt() method to vary the value of myInt
as the animation runs.

Property setters allow you to simply specify the object and property you want to
modify, and let the framework change the property’s value for you. For this
example, the code in the constructor could be simplified to just the following,
which you can see in the MyIntAnimPS demo on the book’s Web site:

public MyIntAnimPS() {
 // Set up the animation
 Animator anim = PropertySetter.createAnimator(
 1000, this, "myInt", 0, 10);
 anim.start();
}

ONLINE
DEMO

ONLINE
DEMO

www.it-ebooks.info

http://www.it-ebooks.info/

394 CHAPTER 15 TIMING FRAMEWORK: ADVANCED FEATURES

Note that this version has no implementation of timingEvent(), because that
functionality is embedded within the PropertySetter itself. This means that all
your code needs to do is tell PropertySetter what you want to vary and how
you want to vary it, and the setter takes care of the rest.

In order to handle this functionality for you, property setters have some impor-
tant constraints. Most of them are related to the mechanism used to do this work:
reflection. Property setters take the information you provide and construct a call-
back mechanism into the object you specify using reflection. This mechanism
requires certain important assumptions about the property and object specified.

First of all, the system must have access to the object and property you specified,
which implies several things:

Public

The object must have public access. Since the PropertySetter will be call-
ing into this object from a different package, the object must have access that
allows this call to happen. If you hand in a private object to PropertySetter,
then the system will attempt to get the information it needs from that object
and will fail due to access privileges.

Setter

The property must be the name of a property that is accessible through a pub-
lic JavaBean-like set*() method. In the example with the property "myInt",
the PropertySetter expects to find the method setMyInt(int) in the object
this. If such a method is not found in the object, PropertySetter will fail as
it tries to set up the reflection mechanism for future calls to that method.

Getter

A get*() method may also be needed. One usage of PropertySetter
requires just one value for your variable, as opposed to the two values used in
the above example. Specifying just one value tells the system to use the cur-
rent value, whatever it is when the animation starts, as the starting value for
the property. In order to do this, the system must be able to call an appropriate
get*() method for the property to query its current value. For example, if we
had specified only the end-value of 10 for myInt like this:

Animator anim = PropertySetter.createAnimator(
 1000, this, "myInt", 10);

then the PropertySetter would have expected to find, in this, the method

public int getMyInt()

www.it-ebooks.info

http://www.it-ebooks.info/

PROPERTY SETTERS 395

Known Types

The types of values provided to PropertySetter must be in a type that the
system understands. The system currently knows of various common built-in
types, such as all of the primitive types plus the Object equivalents: int and
Integer, float and Float, and so on. The system also knows of a few more
common GUI types, such as Point, Dimension, and Rectangle. If you are pro-
viding values for a type of which the system is not aware, PropertySetter will
throw an exception at creation time. In this case, you must provide the system
with a way of understanding and interpreting that type: You must provide an
appropriate Evaluator object, which we discuss later.

Now let’s see the classes used in property setters. In particular, let’s go over
PropertySetter itself, Evaluator, and KeyFrames and its related classes.

PropertySetter
PropertySetter is, not surprisingly, the main class that you interact with when
dealing with property setters in the Timing Framework. You use this class to
declare the object and property that you want to modify and the manner in
which you want the property to be modified over time. You can declare a sepa-
rate Animator that defines the animation parameters, but PropertySetter also
has utility createAnimator() factory methods, as we saw earlier, for creating
both the PropertySetter and Animator that are needed to drive the animation.

PropertySetter implements the TimingTarget interface, which is how it han-
dles the timing events from the associated Animator in order to modify properties.

Constructors
There are three constructors for PropertySetter and three parallel factory
methods.

PropertySetter(Object object, String propertyName,
 T... params)

This constructor takes an object, which holds the property to be modified, the
name of the property to be modified, and a list of values. The funky T notation is
an indicator that generics, a feature of the Java language since JDK 5.0, are at
play. Another giveaway of J2SE 5.0+ features is the “...” notation of the
varargs feature. Varargs may be familiar to old C/C++ hackers, but the feature
is new in the Java language since J2SE 5.0. These two features together mean
that there can be an arbitrary number of parameters (because of varargs) of any
type (because of generics). Part of the magic here is that the system knows how

www.it-ebooks.info

http://www.it-ebooks.info/

396 CHAPTER 15 TIMING FRAMEWORK: ADVANCED FEATURES

to interpret arbitrary types, which is accomplished through the Evaluator class
that we discuss later.

An example of how this constructor is used is as follows. Suppose, to use our
earlier MyIntAnimPS example again, that you want the property setter to vary the
integer property myInt of the object this between 0 and 10. You might call the
constructor like this:

new PropertySetter(this, "myInt", 0, 10);

The number of values provided here is worth discussing. The typical case for
most animations is two values: the value at which the property starts and the
value to which it will animate. A degenerate case uses a single value, which will
be used as the final value, where the starting value will be determined dynami-
cally when the animation begins. But it is also possible to provide three or more
values. So what do these additional values mean?

Multiple values in the PropertySetter constructor mean that the property will
take on each of these values in the course of the overall animation, moving from
one value to the next over the full duration of the animation. The length of time
spent in the intervals between the values will be equal by default. For example, if
three values are provided, the property will start at the first value, at an elapsed
animation fraction of 0; reach the second value halfway through the animation,
at an elapsed animation fraction of .5; and reach the final value at the end, at an
elapsed animation fraction of 1. We can see how this works in Figure 15-7.

In Figure 15-7 we can see how prop takes on the values 10, 20, and 100 at times
that evenly divide the duration. That is, prop equals 10 at time t = 0, 20 at t = .5,
and 100 and t = 1. We can also see how prop takes on values that are linearly inter-
polated between the values for times that lie between 0 and .5 and .5 and 1.0. This
is the default interpolation behavior for the simple case in which PropertySetter

prop = 10

t = 0.0

prop = 15

t = 0.25

prop = 20

t = 0.5

prop = 60

t = 0.75

prop = 100

t = 1.0

new PropertySetter(obj, prop, 10, 20, 100);

Figure 15-7 PropertySetter with three values supplied in the constructor.

www.it-ebooks.info

http://www.it-ebooks.info/

PROPERTY SETTERS 397

is constructed with values only. We see later how we can vary this default inter-
polation behavior.3

PropertySetter(Object object, String propertyName,

 Evaluator evaluator, T... params)

This constructor is exactly like the one before except that this one takes an
Evaluator. This class is provided when you want to provide your own mecha-
nism for calculating values in between the ones you provide in params. One
important reason to provide a custom Evaluator is for interpolating between
types that are unknown to the framework. Another possible use case for a custom
Evaluator is for providing a different calculation of in-between values than the
framework provides by default.

We describe Evaluator in more detail later. For now, suffice it to say that
Evaluator provides a means of calculating values that lie in between the values
provided in the constructor.

PropertySetter(java.lang.Object object, String propertyName,

 KeyFrames keyFrames)

This final constructor is the most powerful and flexible because it takes a KeyFrames
structure instead of simple values. KeyFrames are described completely later in
the chapter. Briefly, KeyFrames provide a mechanism to describe not only the
values that the property should take on during the animation but also the times at
which those values are assigned and the manner of interpolating between those
values. PropertySetter ends up using a KeyFrames structure internally. The
other constructors that do not take a KeyFrames object make more assumptions
about the elements in KeyFrames, and the resulting animations are therefore
simpler. A more complex animation may be constructed by creating a custom
KeyFrames object. For example, KeyFrames is important in creating a multistep
animation, with more than just simple from and to values.

Factory Methods
There are three parallel factory methods in PropertySetter that are exactly like
the constructors just described but with one important difference: They also take a
duration parameter, and they return an Animator object. Calling one of these fac-
tory methods is equivalent to calling one of the PropertySetter constructors and
then creating an Animator using the simple constructor that takes a duration and

3. Extra credit for anyone who guessed that the Interpolator class has something to do with this.

www.it-ebooks.info

http://www.it-ebooks.info/

398 CHAPTER 15 TIMING FRAMEWORK: ADVANCED FEATURES

a TimingTarget. Here, the PropertySetter created in the factory method is set
as a target for the Animator. For example, to animate the myInt property of this
from 0 to 10 over a period of one second, we could either do this:

PropertySetter ps = new PropertySetter(this, "myInt", 0, 10);
Animator anim = new Animator(1000, ps);
anim.start();

or this:

Animator anim = PropertySetter.createAnimator(
 1000, this, "myInt", 0, 10);
anim.start();

There is no functional difference between these approaches; the factory methods
are provided merely as a convenience for common cases.

TimingTarget Methods
The only other methods in PropertySetter are from the TimingTarget inter-
face. To be completely accurate, they are overrides of TimingTargetAdapter
methods, which PropertySetter subclasses:

void begin()
void timingEvent(float fraction)

These methods are not intended for public use by your code but rather are there
for use by Animators that use this PropertySetter as a TimingTarget. These
methods are the means by which PropertySetter turns all of the setup informa-
tion passed into its constructor or factory method into the action of modifying
the property during an animation.

Demo: SetterRace
Now, let’s see how using property setters affects the racetrack demo that we saw
in Chapter 14. This version is found on the book’s Web site in the application
SetterRace.

Recall from the original BasicRace that setting up and running the animation con-
sisted of creating the animator in the constructor:

animator = new Animator(RACE_TIME, this);

ONLINE
DEMO

www.it-ebooks.info

http://www.it-ebooks.info/

PROPERTY SETTERS 399

Evaluator
Evaluator is a simple class for calculating intermediate values for specific types:

public abstract class Evaluator<T> {
 Evaluator();
 abstract T evaluate(T v0, T v1, float fraction);
}

This class is used by PropertySetter, discussed earlier, and KeyValues, dis-
cussed later, for calculating values in between boundary values during the course of
an animation. For example, in the SetterRace example, the PropertySetter takes
two Point values for the starting and ending positions of the car. An Evaluator
that knows how to interpolate between Points is responsible for calculating the
intermediate values of carPosition during the animation.

and changing the position of the car in the timingEvent() method:

Point start = TrackView.START_POS;
Point end = TrackView.FIRST_TURN_START;
Point current = new Point();

public void timingEvent(float fraction) {
 current.x = (int)(start.x + (end.x - start.x) * fraction);
 current.y = (int)(start.y + (end.y - start.y) * fraction);
 track.setCarPosition(current);
}

Now let’s see how we handle that same functionality in SetterRace. Here is the
call to create the Animator in the constructor:

animator = PropertySetter.createAnimator(RACE_TIME,
 basicGUI.getTrack(), "carPosition",
 TrackView.START_POS, TrackView.FIRST_TURN_START);

And that’s it. Here, we are creating a PropertySetter with:

• RACE_TIME: the duration for the animation

• basicGUI.getTrack(): the object that will have its property modified

• "carPosition": the name of the property we wish to animate

• START_POS and FIRST_TURN_START: the values we wish to animate from
and to

The PropertySetter handles the rest, automatically calculating and setting the
value of carPosition as the animation runs.

www.it-ebooks.info

http://www.it-ebooks.info/

400 CHAPTER 15 TIMING FRAMEWORK: ADVANCED FEATURES

There are several Evaluators built into the system that understand many of the
core types that GUI and graphics animation code might care about. The primi-
tive types, int, long, short, float, double, and byte, are covered, as are many
types of concern to graphics and GUI developers, such as Rectangle2D,
Point2D, Dimension, and Color. Each Evaluator performs simple linear inter-
polation between values of the specified type:

v = v0 + ((v1 - v0) * fraction)

For example, here is the implementation of the evaluate() method of
EvaluatorFloat, which gets called by the system whenever floating-point val-
ues need to be interpolated:

public Float evaluate(Float v0, Float v1,
 float fraction) {
 return v0 + ((v1 - v0) * fraction);
}

For a slightly more interesting example that works on a more complex object,
here is the built-in Evaluator for Dimension2D, which is used to interpolate
between Dimension and Dimension2D values:

public Dimension2D evaluate(Dimension2D v0, Dimension2D v1,
 float fraction) {
 double w = v0.getWidth() +
 ((v1.getWidth() - v0.getWidth()) * fraction);
 double h = v0.getHeight() +
 ((v1.getHeight() - v0.getHeight()) * fraction);
 Dimension2D value = (Dimension2D)v0.clone();
 value.setSize(w, h);
 return value;
}

More built-in Evaluators can be seen in the source code for Evaluator in the
Timing Framework project on the book’s Web site.4

There are two cases in which you may want to implement your own Evaluator:

• The system has no support for some type that you are using.

• You want to perform a custom evaluation on some type.

4. To spare you the gripping suspense, all of the built-in Evaluators are exactly like the two ex-
amples we just saw. They simply take in boundary values of some type plus a fraction and then
compute a simple linear interpolation appropriate for that type.

www.it-ebooks.info

http://www.it-ebooks.info/

PROPERTY SETTERS 401

New Evaluator Type
Although the system supports many built-in types, it may not support some type
that you need. For example, the system does not currently support the type
AffineTransform, so if you want to support interpolating between transform
objects, you could supply your own Evaluator to KeyValues that would be
called by the system to interpolate intermediate AffineTransform values:

class EvaluatorTransform extends Evaluator<AffineTransform> {
 public AffineTransform evaluate(AffineTransform v0,
 AffineTransform v1,
 float fraction) {
 // Insert your interpolation here
 }
}

Then you can use your Evaluator when creating your PropertySetter for
some object, "propName", and AffineTransform objects xform0 and xform1:

PropertySetter ps = PropertySetter(object, "propName",
 new EvaluatorTransform(), xform0, xform1)

Custom Evaluator
You might also be interested in supplying your own Evaluator for a custom inter-
polation between values. For example, the code inside the evaluate() method in
EvaluatorTransform could really return anything of type AffineTransform,
which makes Evaluator an interesting place to plug in custom behavior. We
already discussed the more general mechanism for providing arbitrary interpola-
tion, Interpolator, in Chapter 14, but Evaluator is an alternative means of
providing custom interpolation. Given the two input values and fraction, your
implementation is free to return whatever result makes it happy.

Usually, Evaluators are supplied automatically by the framework as needed.
When a PropertySetter is created with values of a given type, the system
searches for an Evaluator that knows how to interpolate between values of that
type. If you use a type that is unknown to the system, or you wish to use your
own Evaluator for some other reason, you can use the PropertySetter con-
structor or factory method that takes an Evaluator argument. Similarly, you can
supply a custom Evaluator to the KeyValues.create() routine, discussed later,
to have that KeyValues object use your Evaluator instead of any default sup-
plied by the framework.

www.it-ebooks.info

http://www.it-ebooks.info/

402 CHAPTER 15 TIMING FRAMEWORK: ADVANCED FEATURES

KeyFrames
Key frame is a term from traditional animation that defines an object’s state at a
particular point in time. At any time between two key frames, the object’s state can
be interpolated from its states at the surrounding key frames. For example, suppose
we want to animate Duke between two key frames defined for times t = 0 and
t = 1, where the position and rotation are defined for each key frame. Calculating
the position and rotation for Duke for any time in between these key frames is
straightforward. In Figure 15-8, we show a sample frame calculation at t = .5.

In the Timing Framework, each key frame defines a time from 0 to 1 in the
elapsed animation and a value associated with that time. A KeyTimes structure
holds the times, a KeyValues structure holds the values, and a KeyFrames object
holds these KeyTimes and KeyValues objects. These structures work hand in
hand with the property-setting capabilities. The values defined are for the prop-
erty that we wish to alter over time, and the times correspond to the elapsed
times during the animation when the property should take on the associated val-
ues. During the animation, if the current fraction equals one of the times in the
KeyTimes structure, then the object’s property will be set to the corresponding
value in KeyValues. If the current fraction is between two times in the KeyTimes
structure, the value will be interpolated between the values at the two surround-
ing times.

There is an additional element that makes KeyFrames even more powerful and
flexible: Interpolator. For every interval of time defined by the KeyTimes struc-
ture, there is an associated Interpolator. Just as with Animator overall, the
default Interpolator for each interval is LinearInterpolator. But KeyFrames

Keyframe 0
t = 0.0
position = (0, 0)
rotation = 0

Calculated
t = 0.5
position = (50, 0)
rotation = 45

Keyframe 1
t = 1.0
position = (100, 0)
rotation = 90

Figure 15-8 Interpolating position and rotation at t = .5 between key frames at t = 0
and t = 1.

www.it-ebooks.info

http://www.it-ebooks.info/

PROPERTY SETTERS 403

can be created to use different Interpolators for its intervals instead, making
for much more interesting animation behavior.

We can picture, with the help of Figure 15-9, a KeyFrames object as a series of
time/value pairs, along with Interpolator objects that define how values get
interpolated between the specified times.

As we mentioned earlier, KeyFrames uses linear interpolation by default. So for
any fraction f between 0 and 1, where f lies between the times tn-1 and tn in the
KeyTimes object, and xn-1 and xn are the values in the KeyValues object that cor-
respond to tn-1 and tn, we can calculate the appropriate value x(f) for the prop-
erty at f as follows:

t = (f - tn) / (tn - tn-1);
x(f) = xn-1 + t * (xn - xn-1);

This is exactly the calculation being performed in Figure 15-7. For (f = .75), we
get a value tn-1 of .5 and tn = 1, and values of xn-1 and xn of 20 and 100 respec-
tively. This gives us the following equations:

t = (f - tn-1) / (tn - tn-1)
 = (.75 - .5) / (1 - .5)
 = (.25 / .5)
 = .5
x(f) = xn-1 + t * (xn - xn-1)
 = 20 + .5 * (100 – 20)
 = 20 + 40
 = 60

One of the powerful things with KeyFrames is the ability to modify the interpola-
tion for each interval. The above interpolation is the default behavior if none

t0 = 0.0
v0

t1
v1

tm–1
vm–1

tm
vm

tn–1
vn–1

tn = 1.0
vn

Animator Duration

interpolator0 interpolatorm–1 interpolatorn–1

Figure 15-9 KeyFrames are specified by times (t), values (v), and interpolators
(interp). Note that the intervals need not be of equal length in time.

www.it-ebooks.info

http://www.it-ebooks.info/

404 CHAPTER 15 TIMING FRAMEWORK: ADVANCED FEATURES

other is specified, but the creator of a KeyFrames object can use Interpolator
and Evaluator to customize this behavior.

Helper Classes: KeyValues, KeyTimes, Evaluator, and Interpolator
In order to better understand the KeyFrames class, it is helpful to understand
the classes that it depends on and how they all fit together, as the flow chart in
Figure 15-10 illustrates.

Figure 15-10 shows how data moves through the system during an animation.
An Animator object sends timing events to a PropertySetter, which is a
TimingTarget. The PropertySetter holds a KeyFrames object internally, even if
the PropertySetter was not created explicitly with a KeyFrames object. The
KeyFrames object is queried for an appropriate value given the elapsed fraction of
the animation, f. KeyFrames calculates and returns the proper value on the
basis of information from KeyTimes, KeyValues, Evaluator, and Interpolator.
This value is then sent to the appropriate setter method in the object with which
PropertySetter was created.

We have already seen how Evaluator and Interpolator work. Let’s see how
the additional helper classes of KeyFrames are constructed and how they help
store and retrieve the necessary information.

KeyValues KeyValues is a class that exists to hold an arbitrary number of val-
ues of any type.

Animator PropertySetter Object
“property”

KeyFrames

timingEvent(f) setProperty(v)

KeyTimes
t0 ..., tn

KeyTimes
v0 ..., vn

Evaluator

Interpolators
i0 ..., in–1

v = getValue(f)

Figure 15-10 Flow of data during an animation.

www.it-ebooks.info

http://www.it-ebooks.info/

PROPERTY SETTERS 405

Tip: All values in a KeyValues object must be of the same type. Creating KeyValues
with objects of different types can lead to problems with the system not knowing
how to interpolate between values of some generic superclass type.

You can create a KeyValues object with one of two factory methods:

static <T> KeyValues<T> create(T... params)

If the generics syntax (<T>) in this method confuses you, you’re not alone.5 For-
tunately, you really don’t need to understand generics in order to use this
method. In fact, your calling code won’t have any generics syntax in it at all. For
example, you could create a KeyValues object to hold integers 1, 2, and 3 like
this:

KeyValues values = KeyValues.create(1, 2, 3);

The reason that the <T> syntax is in the method declaration is that the method
uses the generics language feature to create a KeyValues object of the appropri-
ate type, depending on the type of the parameters used in the call. One non-
generics alternative would be to create a single KeyValues class that just held
Objects, which would then need to be cast and instanceof-ed at runtime in a
continuing effort to figure out what the objects were. Another possibility would
be to have numerous subclasses and constructors of KeyValues that were type-
specific. Generics allows us to have the same functionality as type-specific ver-
sions without all of the API litter. We just have to deal with a little <> syntax to
get there.

One thing to note is that KeyValues depends on another JDK 5.0 feature called
autoboxing6 to choose the type most appropriate for the values you pass in. Auto-
boxing provides us the ability, for example, to pass in parameters of type int and
have them cast automatically into the Object type Integer.7 This action should
have no impact on your code. You can pass in values of type int or Integer, and

5. I’m right there with you. I don’t believe generics help make this code very readable. However, it
does help tremendously in being able to have a compact API without a lot of type-specific sub-
classes that would otherwise be necessary. For more information on Generics in general, check
out the release notes for J2SE 5.0, when this feature was first introduced: http://java.sun.com/
j2se/1.5.0/docs/guide/language/generics.html.

6. http://java.sun.com/j2se/1.5.0/docs/guide/language/autoboxing.html.
7. Life before autoboxing was sometimes truly and inexplicably painful. I know that an int is an

Integer. You know that an int is an Integer. Surely, the compiler can figure it out, right? Well,
now it can.

www.it-ebooks.info

http://java.sun.com/j2se/1.5.0/docs/guide/language/generics.html
http://java.sun.com/j2se/1.5.0/docs/guide/language/generics.html
http://java.sun.com/j2se/1.5.0/docs/guide/language/autoboxing.html
http://www.it-ebooks.info/

406 CHAPTER 15 TIMING FRAMEWORK: ADVANCED FEATURES

these values can be used to act on variables that are of type int or Integer. But
this implicit use of autoboxing helps explain the background to some of the type-
conversion details that follow.

The main thing to understand with this method is that it needs to be called with
types that are all the same. Otherwise, the system may make some bad guesses
as to what you mean. For example, suppose you try to create the same KeyValues
object as before with values 1, 2, and 3, but you pass in a double for one of the
values:

KeyValues values = KeyValues.create(1, 2, 3.0);

You won’t get a KeyValues object that holds ints. You won’t even get one that
holds doubles. You’ll get one that holds objects of type Number. KeyValues will
automatically pick the most general Object type that fits all of the parameters. In
this case, the ints will be autoboxed to Integer and the double to Double. The
common superclass of these is Number, so that is what the compiler will choose
for the type of this KeyValues instance that you create. This KeyValues<Number>
object is probably not the result you were looking for. In particular, this object
may be unable to do anything useful with the resulting types, because there may
be no Evaluator available that can interpolate between values of this more gen-
eral type.

Tip: There is no Evaluator for values of type Number. Be sure to supply values all
of the same type unless you are supplying an Evaluator to your KeyValues object
that knows how to interpolate between types that the system does not understand.

The solution here is to create KeyValues objects with parameters of the same
type. In the previous situation, you should either call:

// returns KeyValues<Integer>
KeyValues values = KeyValues.create(1, 2, 3);

or

// returns KeyValues<Double>
KeyValues values = KeyValues.create(1.0, 2.0, 3.0);

but not

// returns KeyValues<Number>
KeyValues values = KeyValues.create(1, 2, 3.0);

www.it-ebooks.info

http://www.it-ebooks.info/

PROPERTY SETTERS 407

Finally, it is worth noting that if KeyValues is used to operate on a property
assigned in PropertySetter, then the types used in KeyValues should be the
same as the type of that property. So if you have a property of type Dimension,
you should create a KeyValues with parameters of type Dimension. Similarly, if
you have a property of type int or Integer, you need to create a KeyValues
object with ints or Integers. Mixed or double variants will not suffice for this
situation. The result of a mismatch is that the system may fail to call your prop-
erty-setting method, since it will not be able to find a method that takes the type
that KeyValues has stored.

The other factory method for KeyValues is quite similar, but takes one extra
parameter:

static <T> KeyValues<T> create(Evaluator evaluator, T... params)

Evaluator tells KeyValues how to interpolate between values of the type
passed in to params. We saw the Evaluator class earlier, in our discussion of
PropertySetter. That earlier usage of Evaluator actually boils down to
exactly this usage: PropertySetter creates a KeyValues object internally, and
if you give PropertySetter an Evaluator, it will create the KeyValues with
that Evaluator. Most uses of KeyValues will probably not need this capability,
because the system has several Evaluators stored already for common types.8

But there may be cases in which your application either needs to use a type that
the system does not know about or you want to provide an Evaluator that per-
forms a custom interpolation between types. In either case, you would supply a
custom Evaluator to KeyValues.

KeyTimes KeyTimes is a very simple class, especially compared to the type-
specific details we just covered in KeyValues. KeyTimes just stores a collection of
floating-point values that represent the times at which the values in KeyValues

8. In fact, this is where the whole discussion of types and getting KeyValues to store the correct
type really kicks in. If KeyValues cannot effectively determine the type of your parameters, such
as in the (1, 2, 3.0) case, then it may search for, and fail to find, an appropriate Evaluator for
that type. KeyValues, at the API level, is all about storing values. It’s just a place for you to store
the values for your key frames. But internally, KeyValues is used to calculate intermediate val-
ues between these stored values during animations. If it cannot determine the type, it cannot pick
an appropriate Evaluator and cannot calculate intermediate types. Don’t worry about it too
much. You probably won’t actually run into the problem, or if you do it will be in the form of
obvious compile-time errors, like the inability to find an Evaluator, or runtime errors, like the
inability to find a property setter with the KeyValues type. I’m just covering the details here so
that if and when you do see the errors, you’ll know why.

www.it-ebooks.info

http://www.it-ebooks.info/

408 CHAPTER 15 TIMING FRAMEWORK: ADVANCED FEATURES

should hold true for the KeyFrames. There are some important constraints to
KeyTimes that are worth noting:

Times Are Fractional

All time values are in the range [0,1] and represent the elapsed fraction of
an animation. For example, if you have an Animator with a 3-second dura-
tion, a keyTime value of .5 would represent 1.5 seconds in this particular
animation. But if you use that same KeyTimes structure on an Animator
with a duration of 10 seconds, a .5 time value would represent 5 seconds in
that second animation.

Times Are Monotonically Increasing

KeyFrames advance forward in time, and KeyTimes reflect that constraint.

Times Begin at 0, End at 1

KeyFrames must know what to do for all time values between 0 and 1, inclu-
sive, so there must be times, and associated values, for the start and end points
of 0 and 1. For example, a KeyTimes structure with only 2 entries would have
the times 0 and 1 only.

Number of Times Must Equal Number of Values

The number of times supplied in a KeyTimes structure must equal the number
of values supplied in a KeyValues structure with which it will be used.
KeyFrames matches up the values and times and expects to have the same
number of each.

The constructor, and only method, for KeyTimes is simple:

public KeyTimes(float... times)

To use a KeyTimes class, simply call the constructor and pass in the times at
which you will have KeyFrame information. Note the varargs notation in this
constructor, which matches similar varargs parameters in other methods dis-
cussed previously and allows this constructor to take an arbitrary number of
parameters.

Interpolator We discussed Interpolator earlier, in the context of Animator.
Animator’s Interpolator object is responsible for interpolating the elapsed
fraction of the animation. By default, Animator uses LinearInterpolator.

www.it-ebooks.info

http://www.it-ebooks.info/

PROPERTY SETTERS 409

Similarly, each interval during a KeyFrame animation uses a LinearInterpolator
by default, but it is possible to provide an alternate Interpolator to use instead.

The default facilities provided by KeyFrames will interpolate between values
that you supply, but they will do so in a linear fashion. If you want to change this
behavior, you must supply a different Interpolator for KeyFrames to use.

Interpolators come into play in the intervals between the times specified in
KeyTimes. Just as an Interpolator determines how an elapsed fraction is inter-
polated for Animator, an Interpolator determines how an elapsed fraction is
interpolated for an interval in KeyFrames. KeyFrames can be created with a single
Interpolator, which will be used for all intervals, or with a set of Interpolators
whose size is equal to the number of intervals. Each Interpolator will interpo-
late across an interval as if that interval were a complete animation in the range
[0, 1].

For an example of how Interpolators operate on intervals, let’s look at
DiscreteInterpolator. We saw in Chapter 14 that this interpolator returns an
interpolated value of 0 during an animation and 1 when the animation finishes.
When applied to the intervals of KeyFrames, the interpolator effectively creates
an animation that moves discretely between the values in the KeyValues struc-
ture, without interpolating between them.

For example, suppose we want to create an animation in which a variable moves
through, but not between, the values from 2 to 6, as shown in Figure 15-11.

We could create this animation using KeyFrames created as follows:

KeyValues keyValues = KeyValues.create(2, 3, 4, 5, 6);
KeyFrames keyFrames = new KeyFrames(keyValues,
 DiscreteInterpolator.getInstance());

Time
(fraction)

10

6

5

4

3

2

1

Figure 15-11 Discrete Animation from 2 to 6.

www.it-ebooks.info

http://www.it-ebooks.info/

410 CHAPTER 15 TIMING FRAMEWORK: ADVANCED FEATURES

Note that discrete interpolation need not happen on sequential values, as in this
example. To see how you can use DiscreteInterpolator to animate between
nonsequential values, check out the DiscreteInterpolation demo on the
book’s Web site. This application sets up a KeyFrames object just as we did pre-
viously, except that the values are nonsequential:

KeyValues keyValues = KeyValues.create(2, 6, 3, 5, 4);
KeyFrames keyFrames = new KeyFrames(keyValues,
 DiscreteInterpolator.getInstance());

An Animator is created to animate between these values over a duration of a sec-
ond, using a PropertySetter that calls into the DiscreteInterpolation demo
class to set the value of intValue during the animation:

Animator anim = PropertySetter.createAnimator(1000,
 new DiscreteInterpolation(), "intValue", keyFrames);
anim.start();

The property-setting method for intValue records the new value and prints it
out:

public void setIntValue(int intValue) {
 this.intValue = intValue;
 System.out.println("intValue = " + intValue);
}

The output from the program looks like this, with repeated entries replaced by
[...] for brevity:

intValue = 2
intValue = 2
[...]
intValue = 2
intValue = 6
intValue = 6
[...]
intValue = 6
intValue = 3
intValue = 3
[...]
intValue = 3
intValue = 5
intValue = 5
[...]
intValue = 5
intValue = 4

ONLINE
DEMO

www.it-ebooks.info

http://www.it-ebooks.info/

PROPERTY SETTERS 411

Note that there are duplicate values for every interim value except the final value
of 4. In graph form, the animation looks like the chart in Figure 15-12.

KeyFrames: The Class
Now that we have seen how the component pieces of KeyFrames work, we can
see how they fit together in constructing and running the KeyFrames object itself.

Constructors The constructors for KeyFrames range from simple to complete,
reflecting the different ways in which developers might use KeyFrames. Inter-
nally, all constructors get turned into the same information we saw in Figure 15-9:
a series of times, values, and interpolators. The difference between the construc-
tors is merely what the KeyFrames assume as a default versus what the caller
specifies explicitly.

At the simple end of the spectrum, the caller can use a constructor that requires
only a series of values, in the form of a KeyValues object:

public KeyFrames(KeyValues values)

These values become the (v0, ..., vn) values in Figure 15-13. The times
(t0, ..., tn) default to an even split of the interval [0, 1], so for (n + 1) values,
each time value t is (1/n) more than the previous one. For example, if the caller
provides three values (v0, v1, v2), we will have three corresponding times at 0,
.5, and 1.0:

The interpolation mechanism for this constructor defaults to simple linear inter-
polation, as noted earlier. That is, interpolation in each of the two intervals
defined by this case will use the default LinearInterpolator.

Time
(fraction)

10

6

5

4

3

2

1

Figure 15-12 DiscreteInterpolation demo: Values in a discrete interpolation need
not be sequential.

www.it-ebooks.info

http://www.it-ebooks.info/

412 CHAPTER 15 TIMING FRAMEWORK: ADVANCED FEATURES

There is one special case worth calling out. It is possible to define a KeyFrames
object with only one value. Or, to be more accurate, it is possible to define a
KeyFrames object that uses a KeyValues object with only one value, like so:

KeyFrames kf = new KeyFrames(KeyValues.create(v));

It does not make sense to have a KeyFrames object with only one value, because
KeyFrames are all about intervals, not single values.9 In this case, KeyFrames actu-
ally does create an interval internally, with the first value and time assumed. This is
a “to” animation for which you provide only the final value to animate toward. The
initial value is determined dynamically whenever the animation begins. We saw
something similar in our discussion of single-value PropertySetters. Internally,
these cases are the same, since PropertySetter creates a KeyFrames structure to
hold the property value information used during the animation.

Tip: Don’t go overboard. It is worth noting that although all KeyFrames construc-
tors take one or an arbitrary number of values, a typical use case normally has just
two values: the value animating from and the value animating to. The ability to pass
in more than two values with the magic of the varargs language feature makes it
easier to create multistep animations—but that does not mean you have to actually
do so. Feel free to create simple animations with just two values.

The next constructor takes the same KeyValues structure but also lets you supply
the times at which these values should be assigned to the property:

public KeyFrames(KeyValues keyValues, KeyTimes keyTimes)

9. A KeyFrame with only one time/value pair would be as useful as having a single glove (pop stars
from other planets excepted), or a single nostril, or a single sip of coffee. It’s just not enough.

t0 = 0.0
v0

t1 = 0.5
v1

t2 = 1.0
v2

new KeyFrames(KeyValues.create(v0, v1, v2));

Figure 15-13 KeyFrames for simple case with three values.

www.it-ebooks.info

http://www.it-ebooks.info/

PROPERTY SETTERS 413

In this constructor, the number of values in keyValues must match the number
of times in keyTimes. This constraint should be somewhat obvious from the ear-
lier discussions, because KeyFrames consists of a set of matched time/value
pairs. Each value in keyTimes, starting at 0, incrementing monotonically, and
ending at 1, is the time in the animation cycle at which the corresponding value
in keyValues will be assigned.

Figure 15-14 shows a sample KeyFrames created with four value/time pairs.

In the interval between each of the times in keyTimes, the value is interpolated
linearly, as in the previous constructor, using the default LinearInterpolator
of KeyFrames.

The third constructor is like the first, supplying only values, but this variant also
supplies a set of interpolators to be used in the intervals:

public KeyFrames(KeyValues values,
 Interpolator... interpolators)

In the first and second constructors, the lack of Interpolator objects for the
intervals meant that the default LinearInterpolator object would be assigned
for every interval between the values in KeyValues. In this version, the caller
supplies a set of Interpolator objects to be used for all intervals. These
Interpolators can include built-in singleton interpolators, LinearInterpolator
or DiscreteInterpolator, instances of the SplineInterpolator class, or
completely custom Interpolators. There should be either one Interpolator,
which will be used for all intervals, or exactly one less Interpolator than the
number of values in KeyValues, since the number of intervals is one less than
the number of values.

As in the first KeyValues-only constructor, this version computes an evenly
spaced set of KeyTimes to be used.

t0 = 0.0
v0

t1 = 0.1
v1

t3 = 1.0
v3

new KeyFrames(KeyValues.create(v0, v1, v2, v3)),
new KeyTimes(0, .1f, .8f, 1.0f));

t2 = 0.8
v2

Figure 15-14 Creating KeyFrames with multiple values and times. The number of times
supplied must equal the number of values.

www.it-ebooks.info

http://www.it-ebooks.info/

414 CHAPTER 15 TIMING FRAMEWORK: ADVANCED FEATURES

The final, most flexible constructor puts all of the elements together and accepts
values, times, and interpolators:

public KeyFrames(KeyValues values, KeyTimes times,
 Interpolator... interpolators)

This constructor is exactly like the previous one that took values and interpola-
tors except that the times are supplied explicitly to KeyFrames instead of calcu-
lated to be evenly spaced. The resulting KeyFrames object will be essentially
something like what is pictured in Figure 15-9, with the caller supplying values
(v0, ..., vn), times (t0, ..., tn), and interpolators (interp0, ...,

interpn-1).

KeyFrames Methods There is one single method, other than the constructors,
in KeyFrames:

int getInterval(float fraction)

This is a simple utility method that returns the interval for any given fraction
from 0 to 1. It is sometimes useful to be able to query the KeyFrames object in a
multistep animation to help figure out which interval an animation is in at any
given time. This capability is used, for example, in the MultiStepRace demo we
are about to see.

Demo: MultiStepRace
Let’s take one last look at our racetrack demo and how it changes given what we
now know about KeyFrames. This time, we take advantage of multistep animations
to make the car race around the entire track. You can find this version on the book’s
Web site under MultiStepRace.

Just as in the previous version, SetterRace, we use PropertySetter to handle the
animation. Also, just as in that previous version, all of the work is in the setup of
the Animator. The runtime processing of the animation is handled for us by the
Timing Framework.

In multistep animations, we need to define the KeyFrames that will handle all of the
time/value pairs and interval interpolators. First, let’s define the values that
carPosition will assume in going around the track:

Point values[] = {
 TrackView.START_POS,
 TrackView.FIRST_TURN_START, TrackView.FIRST_TURN_END,

ONLINE
DEMO

www.it-ebooks.info

http://www.it-ebooks.info/

PROPERTY SETTERS 415

 TrackView.SECOND_TURN_START, TrackView.SECOND_TURN_END,
 TrackView.THIRD_TURN_START, TrackView.THIRD_TURN_END,
 TrackView.FOURTH_TURN_START,
 TrackView.START_POS};
KeyValues keyValues = KeyValues.create(values);

The code for the key times, not shown here but available in the demo on the book’s
Web site, calculates the distance in every leg of the journey and bases the times on
those distances. There are other ways to get the times, some of them probably more
correct, but this will do for now. Once we have stored those times in an array, we
can create our KeyTimes object:

KeyTimes keyTimes = new KeyTimes(times);

If we created the KeyFrames object now, with just these values and times, the car
would go around the track, but it would look terribly unrealistic. Not only would
the car start off at full speed, but it would take the turns and other stretches of the
track at that same speed. With the ability to set interpolators for every leg of the
journey, we should be able to do better than this. There are basically four different
kinds of nonlinear movement that we will account for in this demo:

Initial acceleration: At the start of the race, the car begins at a speed of zero
and accelerates up to full speed.

Turns: All turns are taken with the same dynamic of starting off slower and
accelerating through the turn.

Straightaways: Except for the initial stretch, where the car is starting from a
dead stop, the car will start off a little slower coming out of the turn and then
accelerate.

Final stretch: On the final turn, we want the car to slow down even more as it
comes to rest.

We should note one important thing about the different sections of the race. In
order to be more realistic, we should make sure that the speeds at the end of one
segment and the beginning of another are close to each other. Otherwise, we may
end up with disjoint behavior. For example, the car may slow down through a turn
and then hit a straightaway where it is suddenly going much faster. This constraint
gives us something to aim for when setting up our SplineInterpolator objects.

Tip: It is worth pointing out that we used the SplineEditor demo, discussed
earlier and available on the book’s Web site, to help visualize these interpola-
tors and get appropriate acceleration behavior. You might want to do the same
when playing with SplineInterpolator, especially if you’re new to splines
and they do not yet feel intuitive to you.

www.it-ebooks.info

http://www.it-ebooks.info/

416 CHAPTER 15 TIMING FRAMEWORK: ADVANCED FEATURES

These interpolation behaviors are set up in the following SplineInterpolators:

Interpolator initialSpline = new SplineInterpolator(
 1.00f, 0.00f, 0.2f, .2f);
Interpolator curveSpline = new SplineInterpolator(
 0.50f, 0.20f, .50f, .80f);
Interpolator straightawaySpline = new SplineInterpolator(
 0.50f, 0.20f, .50f, .80f);
Interpolator finalSpline = new SplineInterpolator(
 0.50f, 0.00f, .50f, 1.00f);

Finally, we can set up our KeyFrames object with the values, times, and interpola-
tors defined previously:

KeyFrames keyFrames = new KeyFrames(keyValues, keyTimes,
 initialSpline, curveSpline,
 straightawaySpline, curveSpline,
 straightawaySpline, curveSpline,
 straightawaySpline, finalSpline);

And now that we have our KeyFrames, we can create our PropertySetter:

PropertySetter modifier = new PropertySetter(basicGUI.getTrack(),
 "carPosition", keyFrames);

Note that we did not use the utility factory method of PropertySetter to create
our Animator. Because we wish to add repeating behavior to the race, we construct
our own Animator instead.

animator = new Animator(RACE_TIME, Animator.INFINITE,
 RepeatBehavior.LOOP, modifier);

Now we can run our race and get the result shown in Figure 15-15.

Did you notice anything wrong in Figure 15-15? Perhaps you noticed that the car
looks ready to crash through the track wall?

The problem is that we are not rotating the car through the turns. The current setup
of KeyFrames handles the position of the car but not the rotation. We need to do a
little more work. We need another set of KeyFrames to handle rotation.

First of all, we need some values for our rotation:

keyValues = KeyValues.create(360, 315, 270, 225, 180,
 135, 90, 45, 0);

These rotation values align with the positions we set up earlier. So, for example,
the car starts at a rotation angle of 360 degrees. This is equivalent to a rotation of 0
but means that the car will spin the correct way when rotating to the next angle.

www.it-ebooks.info

http://www.it-ebooks.info/

PROPERTY SETTERS 417

The other angles are all 45 degrees from each other as the car goes into the turn
and then onto the next straightaway, ending up back at the starting rotation.

We would like to interpolate the rotations just as we did the motion, although here
we need just two splines to control rotation. The straightaway interpolation will
make the car go straight for most of the way and then start rotating toward the end
of the stretch. The curve interpolation will turn quickly at first and then slow down
the rotation toward the end, as if the car were skidding through each turn.

Interpolator straightawayTurnSpline = new SplineInterpolator(
 1.0f, 0.0f, 1.0f, 0.0f);
Interpolator curveTurnSpline = new SplineInterpolator(
 0.0f, 0.5f, 0.5f, 1.0f);

We use the same keyTimes as before, so we can now create our rotation
KeyFrames:

keyFrames = new KeyFrames(keyValues, keyTimes,
 straightawayTurnSpline, curveTurnSpline,
 straightawayTurnSpline, curveTurnSpline,
 straightawayTurnSpline, curveTurnSpline,
 straightawayTurnSpline, curveTurnSpline);

Figure 15-15 MultiStepRace with faulty steering wheel.

www.it-ebooks.info

http://www.it-ebooks.info/

418 CHAPTER 15 TIMING FRAMEWORK: ADVANCED FEATURES

And we can create the PropertySetter that modifies the rotation property on the
car over time:

modifier = new PropertySetter(basicGUI.getTrack(),
 "carRotation", keyFrames);

Finally, we can use the multitarget capabilities of Animator to simply add this new
PropertySetter as a target of the original Animator that we created:

animator.addTarget(modifier);

Now the scene, shown in Figure 15-16, looks correct, with the car actually turning
through the curves.

There is one final element to add to make this demo complete: sound. Unfortu-
nately, we could not figure out a way to embed an audio experience in the screen-
shots, so you will either have to download and run the demo from the book’s Web
site or make your own sound effects as you look at the screenshots on these pages.
But we can at least show you how the sound effects were implemented.

First, we create an instance of the SoundEffects class with our KeyFrames object:

soundEffects = new SoundEffects(keyFrames);

Figure 15-16 MultiStepRace with working steering wheel.

www.it-ebooks.info

http://www.it-ebooks.info/

PROPERTY SETTERS 419

This class implements TimingTarget so that it can react to timing events during
the animation. At construction time, SoundEffects caches the keyFrames variable
and sets up some sound resources for the straightaways and turns:

this.keyFrames = keyFrames;

URL url = SoundEffects.class.getResource("sounds/vroom.wav");
drivingClip = java.applet.Applet.newAudioClip(url);

url = SoundEffects.class.getResource("sounds/drift.wav");
turningClip = java.applet.Applet.newAudioClip(url);

The key to making the sound effects work is in knowing which interval the
car is in at any point in the animation. To track this information, we use the
KeyFrames.getInterval() method discussed earlier. For any elapsed fraction in
the animation, we can query what interval we are in and change sound effects as
appropriate. We play the drivingClip all of the time, but when we enter a turn we
also play the turningClip sound. For example, here is the code that plays the turn-
ing sound on the first turn:

if (keyFrames.getInterval(fraction) == 1) {
 turningClip.play();
}

Check out the SoundEffects code for more details, but the main logic is shown
here.

Now that we have created our SoundEffects object, which implements
TimingTarget, we can add it as another target to our original Animator:

animator.addTarget(soundEffects);

Finally, we can set up our Animator to start upon a click on the Go button with an
ActionTrigger, as we saw earlier in the TriggerRace version:

ActionTrigger trigger = ActionTrigger.addTrigger(goButton, animator);

Now the application is ready to go, and the car is ready to roll. Note that all of the
work described here was performed at construction time. The animation is com-
pletely set up and simply waiting for events. First, it waits for the Go button click
to start the animation. Then the various TimingTargets, the PropertySetters for
moving and rotating the car, and the SoundEffects object for playing the audio,
wait for timing events and perform their tasks appropriately.

Now we can sit back and enjoy the race. Over and over. That red car wins every
time.

www.it-ebooks.info

http://www.it-ebooks.info/

420 CHAPTER 15 TIMING FRAMEWORK: ADVANCED FEATURES

Summary
We hope this brief introduction to the Timing Framework has enabled you to see
what the framework has to offer in building complex and interesting animations
in any easy fashion. Go to the book’s Web site. Play with the demos. Check out
the code. Once you start using the framework, you will agree that it makes it
much easier to create GUI animations. And with animation creation this easy,
there is no reason not to starting adding animated touches to your Filthy Rich
Clients.

www.it-ebooks.info

http://www.it-ebooks.info/

421

Part IV

Effects

www.it-ebooks.info

http://www.it-ebooks.info/

This page intentionally left blank

www.it-ebooks.info

http://www.it-ebooks.info/

423

16
Static Effects

STATIC effects are nonanimated graphical effects that you can apply to make
your application look better. Static effects are very important to Filthy Rich Cli-
ents. They are used to improve the appearance of an application, and they serve
as the basis for more complex, animated visual effects. This chapter does not
present all of the static effects you may use in your user interface but focuses on
a few of the most common effects.

Blur
A blur effect is an image filter that removes finer details from a picture, blending
the graphics together to get a smoother, less crisp view.

Motivation
Blur may be used when your user interface contains design elements that might
distract the user’s attention. A blur effect reproduces a natural visual effect known
as depth of field. When your eyes focus on a very specific point in space, every-
thing else in the scene appears blurry. You can test this effect by moving very
close to an object, the top edge of this book for instance, and focusing your
vision on that object. You will notice that the background and surrounding
objects lose their details.

Photographers were the first to use blur effects as an artificial element of design.
Bokeh refers to out-of-focus areas in an image; it is produced with a camera lens
with focal length and aperture set to obtain a shallow depth of field. This technique

www.it-ebooks.info

http://www.it-ebooks.info/

424 CHAPTER 16 STATIC EFFECTS

is very common in macro or portrait photography because it emphasizes the pri-
mary subject.

The pictures in Figure 16-1 and Figure 16-2 show how effective blur can be in
focusing the viewer’s attention on the primary subject.

While user interfaces are not photographs, the same ideas apply. Many video
games use blur effects when a menu is shown. The menu shows on top of the
game itself, but in order to avoid too much visual clutter and player distraction,
the background is blurred.

The demo called Blur, available on this book’s Web site, shows how to use a
blurred background to focus the user’s attention on a progress bar, as seen in
Figure 16-3.

Figure 16-1 The blur, or bokeh, emphasizes the importance of the bishop and the pawn.

Figure 16-2 The blurred background helps the viewer concentrate on the subject.

ONLINE
DEMO

www.it-ebooks.info

http://www.it-ebooks.info/

BLUR 425

Blur effects may also be used to convey information without distracting the user. In
such situations, the effect is subtler than in the progress bar example. Figure 16-4
shows the main screen of Aerith, available online in source and binary form at
http://aerith.dev.java.net. On this screen, the two category labels, Tasks and Albums,
are slightly blurred. When users see this screen, they can read the labels without
being distracted by them, thus effectively focusing their attention more on the
interactive elements.

Figure 16-3 The blurred background draws the user’s attention to the progress bar.

Figure 16-4 A slight blur on the category labels helps convey the information without
distracting the user.

www.it-ebooks.info

http://aerith.dev.java.net
http://www.it-ebooks.info/

426 CHAPTER 16 STATIC EFFECTS

Simple Blur
There are many variations of blur filters, including box blur, Gaussian blur,
motion blur, and lens blur. The first two of these are particularly useful for user
interfaces and can be implemented using a ConvolveOp.

The purpose of a blur filter is to remove details from the source image. The easiest
way to do it is to compute the weighted average color value of a pixel and its neigh-
bors. Herein lies the difference between most blur effects: Which pixel neighbors
are used to produce the final result, and what weight is associated with each pixel?

The box blur is the simplest blur that you can implement. A box blur is defined
by a radius, which specifies how many neighbors on each side of the source pixel
must be included in the computations. The formula to find the size of a box blur
kernel given a radius r is the following:

kernelWidth = radius * 2 + 1
kernelHeight = radius * 2 + 1

According to this formula, a 3 × 3 kernel represents a box blur of radius 1.

A box blur uses the same weight for each pixel, making sure that the luminosity,
or brightness, is preserved. Therefore, all of the pixel weights must add up to 1.
The formula to find the weight of all of the pixels is as follows:

weight = 1 / (kernelWidth * kernelHeight)

According to this formula, the weight of each pixel for a box blur of radius 1 is
one ninth. The resulting kernel is the following:

The name box blur comes from the shape of the kernel. Because all of the
weights are the same, it has a boxlike pattern.

Constructing the appropriate kernel and ConvolveOp in Java is straightforward
with the previous formulas:

public static ConvolveOp getBlurFilter(int radius) {
 if (radius < 1) {
 throw new IllegalArgumentException("Radius must be >= 1");
 }

kernel
1/9 1/9 1/9

1/9 1/9 1/9

1/9 1/9 1/9

=

www.it-ebooks.info

http://www.it-ebooks.info/

BLUR 427

 int size = radius * 2 + 1;
 float weight = 1.0f / (size * size);
 float[] data = new float[size * size];

 for (int i = 0; i < data.length; i++) {
 data[i] = weight;
 }

 Kernel kernel = new Kernel(size, size, data);
 return new ConvolveOp(kernel);
}

You many now apply a blur effect on any BufferedImage:

BufferedImage image = // load image
image = getBlurFilter(5).filter(image, null);

Unfortunately, this approach is quite slow. On my test system, an Intel CoreDuo
2.0 GHz with 2 GB of RAM running on Mac OS X, a box blur of radius 10 takes
one second to complete when applied to a 640 × 480 picture.

Because of the mathematical properties of convolve operations and matrices, a
box blur can be implemented in a much more efficient way. The above code uses
a 3 × 3 kernel when the blur radius is 1. The resulting filter executes at least nine
operations per pixel in the source image. A better approach splits the 3 × 3 kernel
into two smaller kernels, one 3 × 1 kernel and one 1 × 3 kernel:

horizontal kernel = [1/3 1/3 1/3]

vertical kernel =

Through the wonders of matrix multiplication, we can see that performing these
two operations on any pixel is equivalent to the original 3 × 3 kernel. Multiplying
the vertical kernel by the horizontal kernel gives us our original 3 × 3 matrix with
all elements equal to one ninth.

Because we now use two kernels, we must also use two convolve operations:

image = getBlurFilter(radius, 0).filter(image, null);
image = getBlurFilter(0, radius).filter(image, null);

Each of these calls executes only three operations per pixel instead of nine, giv-
ing the same blur effect with a total of only six operations per pixel. On the same

1/3

1/3

1/3

www.it-ebooks.info

http://www.it-ebooks.info/

428 CHAPTER 16 STATIC EFFECTS

test system as before, a box blur of radius 10 with a split kernel blurs a 640 × 480
picture in only 150 ms.

The source code of both box blur implementations can be found in the project
called BoxBlur on this book’s Web site.

The two-kernels approach is much more efficient than the original 3 × 3 kernel
approach, but it can be further improved. The implementation just shown filters
the image twice, once for each separate kernel. A more efficient approach per-
forms the horizontal and vertical convolve operations in a single filter.

The demo called FastBlur on this book’s Web site offers a very efficient imple-
mentation of a box blur. The algorithm used is similar to using two kernels, but
everything is done in a single filter. The execution speed is also independent of
the blur radius. On the same test machine as before, a fast blur filters a 640 × 480
picture in about 50 ms, regardless of the radius size. Figure 16-5 shows an image
blurred with a fast blur of radius 100.

Gaussian Blur
Box blur effects are interesting because they are easy to understand and rela-
tively fast. However, they tend to produce bad results with high-contrast images
that contain sharp edges. Figure 16-6 shows a dark screen with a white arrow.
The contrast between the arrow and the background is strong, and a box blur
performs poorly, as shown in Figure 16-7.

ONLINE
DEMO

ONLINE
DEMO

Figure 16-5 FastBlur with a radius of 100. The execution speed of this approach is
independent of the radius size. But note that a blur with such a large radius makes the
image impossible to recognize.

www.it-ebooks.info

http://www.it-ebooks.info/

BLUR 429

If you look at Figure 16-7, at the place where the white arrow used to be, you
will notice a rectangular pattern. On this picture, it is impossible to recognize the
white arrow or even the dashed rectangle surrounding it.

A different type of blur effect can help in such situations. A Gaussian blur
works similarly to a box blur: It is a weighted average of pixels implemented as

Figure 16-6 The white arrow contrasts sharply with the dark background.

Figure 16-7 A box blur produces an unpleasant result from scenes with high contrast.

www.it-ebooks.info

http://www.it-ebooks.info/

430 CHAPTER 16 STATIC EFFECTS

a convolve operation. The only difference lies in the choice of the weight of each
pixel. A Gaussian blur computes the weights using a normal, or Gaussian, distri-
bution. Figure 16-8 shows what a Gaussian distribution looks like.

The curve shows the weight of each pixel in a kernel, where the pixel at the cen-
ter is represented by the center of the curve. The source pixel, the one at the cen-
ter of the kernel, has the highest weight. The further a pixel is from the center,
the lower is its weight.

The equation of a Gaussian distribution is the following:

In this formula, u is the horizontal distance from a pixel to the center, v is the
vertical distance from a pixel to the center, and σ (sigma) is the standard devia-
tion. You can set the standard deviation to any number, but the following value,
where r is the radius of the kernel, generates good results:

Here is a kernel constructed with the value we calculated for sigma and a radius
of 3:

0.000 0.001 0.003 0.004 0.003 0.001 0.000
0.001 0.007 0.033 0.054 0.033 0.007 0.001
0.003 0.033 0.147 0.242 0.147 0.033 0.003
0.004 0.054 0.242 0.399 0.242 0.054 0.004
0.003 0.033 0.147 0.242 0.147 0.033 0.003
0.001 0.007 0.033 0.054 0.033 0.007 0.001
0.000 0.001 0.003 0.004 0.003 0.001 0.000

Figure 16-8 A Gaussian distribution is often called a bell-shaped curve.

G u v,() 1

2πσ2
-----------------e u2 v2+()/2σ2–=

σ r
3
---=

www.it-ebooks.info

http://www.it-ebooks.info/

BLUR 431

The Gaussian distribution gives the kernel a circular shape. The center value,
denoted in bold, is the highest. The weights furthest from the center are the low-
est. You may also notice that this kernel is perfectly symmetrical.

For the same reason as before with the box blur, we are able to split this kernel
into two smaller kernels. Instead of using a 5 × 5 kernel, we use one 5 × 1 kernel
and one 1 × 5 kernel.

Here is the code to create such kernels:

public static ConvolveOp getGaussianBlurFilter(int radius,
 boolean horizontal) {
 if (radius < 1) {
 throw new IllegalArgumentException(
 "Radius must be >= 1");
 }

 int size = radius * 2 + 1;
 float[] data = new float[size];

 float sigma = radius / 3.0f;
 float twoSigmaSquare = 2.0f * sigma * sigma;
 float sigmaRoot = (float)
 Math.sqrt(twoSigmaSquare * Math.PI);
 float total = 0.0f;

 for (int i = -radius; i <= radius; i++) {
 float distance = i * i;
 int index = i + radius;
 data[index] = (float) Math.exp(-distance / twoSigmaSquare)
 / sigmaRoot;
 total += data[index];
 }

 for (int i = 0; i < data.length; i++) {
 data[i] /= total;
 }

 Kernel kernel = null;
 if (horizontal) {
 kernel = new Kernel(size, 1, data);
 } else {
 kernel = new Kernel(1, size, data);
 }
 return new ConvolveOp(kernel, ConvolveOp.EDGE_NO_OP, null);
}

www.it-ebooks.info

http://www.it-ebooks.info/

432 CHAPTER 16 STATIC EFFECTS

As with a box blur, you must apply the horizontal kernel and then the vertical
kernel to produce the desired result:

BufferedImage image = // load image
image = getGaussianBlurFilter(radius, true)
 .filter(image, null);
image = getGaussianBlurFilter(radius, false)
 .filter(image, null);

You can find a complete implementation in the project called GaussianBlur on
the book’s Web site.

Figure 16-9 shows the result of a Gaussian blur of radius 12 applied to the picture
in Figure 16-6. The effect looks much better than the previous attempt with a box
blur. The user can actually see the dashed rectangle and the arrow in this version.

Tip: Faster Gaussian Blurs by Approximation. In contrast to box blurs, Gaussian
blurs cannot be implemented in a very efficient manner. However, it is possible to
simulate a Gaussian blur by applying a box blur several times. If you use this tech-
nique, remember to use a smaller radius for the box blur.

The FastBlur demo, from this book’s Web site, contains a box blur implementation
called StackBlurFilter that lets you choose the number of times the blur is
applied. A box blur with three iterations produces a nice approximation of a Gaus-
sian blur.

ONLINE
DEMO

Figure 16-9 Gaussian blur effects generate visually pleasing results and retain more
information from the original high-contrast elements in the scene.

www.it-ebooks.info

http://www.it-ebooks.info/

BLUR 433

Performance Trick
As you may have guessed, blurring is an expensive operation, which can make it
difficult to use in animations. You won’t have any problem with small pictures,
like icons or banners, but you might want better performance in some specific
cases.

Java 2D offers a simple and easy way to improve the performance of any blur fil-
ter. Remember that blurring an image is really about losing details. Java 2D
already contains a similar operation: image resizing. When you scale an image
down to a smaller size and then back to its original size, you are effectively los-
ing details because of the color information necessarily lost during the scaling
operations. If you use a bilinear or bicubic rendering hint, then Java 2D will
interpolate the missing pixel data by averaging the values in the neighborhood of
each pixel. Hey, that sounds almost like a blur operation!

The idea is to let Java 2D and its highly optimized rendering paths do part of the
work for us. For example, if you want to blur an image with a blur of radius 15,
you can instead scale the image to half its size, apply a smaller blur of radius 7,
and finally scale the picture back to its original size. There are two ways that we
gain performance with this approach. First of all, we are operating on an image
with one quarter of the original pixels, so we are doing only a quarter of the
operations that we would have done on the original image. Second, each pixel
operation is faster because the radius is smaller.

Here is what the code looks like with this trick:

public static BufferedImage blurImage(BufferedImage image) {
 image = changeImageWidth(image, image.getWidth() / 2);
 image = getGaussianBlurFilter(radius / 2, true).
 filter(image, null);
 image = getGaussianBlurFilter(radius / 2, false).
 filter(image, null);
 image = changeImageWidth(image, image.getWidth() * 2);
}

public static BufferedImage changeImageWidth(
 BufferedImage image, int width) {
 float ratio = (float) image.getWidth() /
 (float) image.getHeight();
 int height = (int) (width / ratio);

 BufferedImage temp = new BufferedImage(width, height,
 image.getType());
 Graphics2D g2 = temp.createGraphics();

continued

www.it-ebooks.info

http://www.it-ebooks.info/

434 CHAPTER 16 STATIC EFFECTS

 g2.setRenderingHint(RenderingHints.KEY_INTERPOLATION,
 RenderingHints.VALUE_INTERPOLATION_BILINEAR);
 g2.drawImage(image, 0, 0,
 temp.getWidth(), temp.getHeight(),
 null);
 g2.dispose();

 return temp;
}

This code is available in the GaussianBlur project from the book’s Web site. On
my machine, a Gaussian blur of radius 20 without this performance tweak takes
280 ms to filter a 640 × 480 picture. Dividing the width of the picture by two
before applying a Gaussian blur of radius 10 on the same picture takes only 90
ms. The images produced by these two techniques are so close that the user can-
not tell the difference.

Blurring is an effective tool that you can use in many situations. You can generate
high-quality results quickly without hindering your application’s performance.

Reflection
Reflections are used to simulate a reflective surface, like a shiny metal plane or a
wet floor.

Motivation
At the time that this book is being written, reflections are very popular among
graphic designers. They can be seen everywhere, from software GUIs to adver-
tisements in the street. There are two main reasons to use reflections.

First, reflections are an easy way to simulate a surface supporting an object.
Doing so with other graphics techniques is harder because it requires advanced
drawing skills. Most of the time, reflections are also less graphically intrusive than,
for instance, drawing a realistic floor with the appropriate backdrop. Figure 16-10
shows how this effect is used in iTunes 7 to make it look like the album covers
lie on the same “wet floor.”

The second and most important reason reflections are used in GUIs is because
they look cool.

ONLINE
DEMO

www.it-ebooks.info

http://www.it-ebooks.info/

REFLECTION 435

Drawing Reflections
The code required to draw reflections in Java is explained in Chapter 7, “Gradi-
ents.” Reflections are also used in the demo called RepaintManager, presented
in Chapter 11, “Repaint Manager.”

The SwingX project, available at http://swingx.dev.java.net, offers a class called
ReflectionRenderer that you can use to easily generate reflections. The fol-
lowing code snippet shows how to use this class:

ReflectionRenderer renderer = new ReflectionRenderer();
BufferedImage image = loadImage();
image = renderer.appendReflection(image);

The appendReflection() method returns the original image and its reflection in a
single image. Another method, createReflection(), returns only the reflection.

Blurred Reflections
Reflections can be made a little more realistic by adding a blur effect. If you look
at the reflections of the cars on a wet road on a rainy day, you will notice they are
distorted and blurry. Figure 16-11 and Figure 16-12 show the difference between
a regular, clean reflection and a blurry one.

Blurring the reflection requires only applying a blur filter on the generated
reflection. The ReflectionRenderer class can take care of that for you, as in the
following example:

ReflectionRenderer renderer = new ReflectionRenderer();
renderer.setBlurEnabled(true);
BufferedImage image = loadImage();
image = renderer.appendReflection(image);

Figure 16-10 iTunes 7 album covers browser.

www.it-ebooks.info

http://swingx.dev.java.net
http://www.it-ebooks.info/

436 CHAPTER 16 STATIC EFFECTS

Figure 16-11 A regular reflection.

Figure 16-12 A blurry reflection.

www.it-ebooks.info

http://www.it-ebooks.info/

DROP SHADOWS 437

A complete example of how to use the ReflectionRenderer class and how to
generate blurry reflections can be found on this book’s Web site in the project
called BlurryReflection.

Drop Shadows
Drop shadows are one of the oldest and most widespread computer graphics
effects. They simulate lighting in a user interface.

Motivation
In the real world, every object casts a shadow when illuminated by a light
source. In the 2D world1 of user interfaces, there is no light source, so shadows
do not naturally occur. But drop shadow effects are very commonly used in user
interfaces.

Probably the most important reason for using drop shadows in a user interface is
to simulate depth. Windowing systems usually add drop shadows to pop-up
menus or mouse cursors to give the impression that these objects are floating
above the applications. Mac OS X casts drop shadows from every window onto
the items below the windows. The focused window casts a longer drop shadow
to give the impression of being closer to the user than the other windows.
Figure 16-13 shows this difference.

Drop shadows are also sometimes used to better distinguish elements that sit on
a cluttered background. Windows and Mac OS X render the text of the desktop’s
icons with a drop shadow to make it easy to read, no matter what background
picture you choose, as seen in Figure 16-14.

And do not forget that drop shadows simply look cool.2

1. At the time this book is being written, GUIs are still very much 2D, and it is very likely that they
will remain 2D for quite a while. Some desktop windowing systems, like Mac OS X and Win-
dows Vista, are able to apply some 3D effects, but the desktops are still essentially 2D interfaces.
Three-dimensional GUIs have the powerful advantage of being able to easily autogenerate drop
shadows for any object. But despite years of ongoing research into 3D interfaces, desktop inter-
action remains an essentially 2D-oriented task.

2. Coolness is an important factor of Filthy Rich Clients. Never underestimate the power of cool for
an application that you want your users to enjoy using.

ONLINE
DEMO

www.it-ebooks.info

http://www.it-ebooks.info/

438 CHAPTER 16 STATIC EFFECTS

Simple Drop Shadow
Drop shadows can be implemented in different ways. The easiest way consists of
drawing the same thing twice. First, paint the primitive with a translucent black
color, which becomes the drop shadow behind the object. Then draw the primitive
naturally, which is the actual object itself. Do not forget to offset the position of

Figure 16-13 The focused window has a stronger drop shadow to make it stand out.

Figure 16-14 Windows XP casts drop shadows under the desktop icons’ text to make
reading easier.

www.it-ebooks.info

http://www.it-ebooks.info/

DROP SHADOWS 439

the drop shadow by a few pixels if you want the user to see it. See Figure 16-13
and Figure 16-14 for examples of this offset effect.

The following code snippet demonstrates how to paint a drop shadow for a
rectangle:

Graphics2D g2 = // obtain a Graphics2D
Composite oldComposite = g2.getComposite();

// the drop shadow is 50% transparent
g2.setComposite(AlphaComposite.SrcOver.derive(0.5f));
g2.setColor(Color.BLACK);

// offset the drop shadow by (5, 5) pixels
g2.translate(5, 5);
g2.fillRect(0, 0, 100, 100);

// restore the graphics state
g2.translate(-5, -5);
g2.setComposite(oldComposite);

// paint the original subject
g2.setColor(Color.GREEN);
g2.fillRect(0, 0, 100, 00);

This technique works fine for simple shapes. However, casting shadows in this
manner for complex drawings requires many Graphics state changes that will
clutter your code. Also, this approach makes it impossible to cast a shadow for
images with transparent areas. The shadow would be improperly drawn for the
transparent areas. Indeed, the only shape you can use to draw a shadow under an
image, which is an inherently rectangular primitive, is a rectangle. Finding the
shape of the nontransparent pixels in an image requires more work.

Chapter 6, “Composites,” offers a solution to the problem of creating shadows
for more complex shapes and images. Creating a drop shadow for an arbitrary
shape or picture can be done with the AlphaComposite.SrcIn, as shown in the
following code snippet:

public static BufferedImage createDropShadow(
 BufferedImage image) {
 BufferedImage shadow = new BufferedImage(
 image.getWidth(), image.getHeight(),
 BufferedImage.TYPE_INT_ARGB);

 Graphics2D g2 = shadow.createGraphics();
 g2.drawImage(image, 0, 0, null);

continued

www.it-ebooks.info

http://www.it-ebooks.info/

440 CHAPTER 16 STATIC EFFECTS

 g2.setComposite(AlphaComposite.SrcIn);
 g2.setColor(Color.BLACK);
 g2.fillRect(0, 0, shadow.getWidth(),
 shadow.getHeight());

 g2.dispose();

 return shadow;
}

The original subject is first painted onto a new translucent image. After setting
the SrcIn composite, this code fills a black rectangle over the entire picture. This
operation paints black only in the nontransparent destination pixels.

Such drop shadows are not realistic enough, though. The two previous code snip-
pets produce very sharp shadows, as in the example shown in Figure 16-15. But
real-world shadows always have soft edges, because shadows are cast by the
many large and diffuse light sources in nature. Sharp shadows are produced only
by point light sources, like spotlights, which do not occur naturally in the world.
If we want user interfaces to look more realistic, we should improve the render-
ing of our drop shadows.

Realistic Drop Shadow
Our drop shadow is not perfect yet. We still need to smooth edges to make it
look more realistic. A blur filter is the easiest way to achieve this:

public static BufferedImage createDropShadow(
 BufferedImage image, int size) {
 BufferedImage shadow = new BufferedImage(
 image.getWidth() + 4 * size,
 image.getHeight() + 4 * size,
 BufferedImage.TYPE_INT_ARGB);

 Graphics2D g2 = shadow.createGraphics();
 g2.drawImage(image, size * 2, size * 2, null);

Figure 16-15 Duplicating the drawing results in sharp shadows.

www.it-ebooks.info

http://www.it-ebooks.info/

DROP SHADOWS 441

 g2.setComposite(AlphaComposite.SrcIn);
 g2.setColor(Color.BLACK);
 g2.fillRect(0, 0, shadow.getWidth(), shadow.getHeight());

 g2.dispose();

 shadow = getGaussianBlurFilter(size, true).
 filter(shadow, null);
 shadow = getGaussianBlurFilter(size, false).
 filter(shadow, null);

 return shadow;
}

Figure 16-16 and Figure 16-17 show the difference between hard- and smooth-
edged drop shadows.

The code shown for drop shadows is fast enough for most situations. However, it
requires between 20 and 100 ms on my test system, depending on the radius
used to smooth the shadow. The project called DropShadow, available on this
book’s Web site, offers both this implementation and a faster one.

The second implementation, written by Sébastien Petrucci for the SwingX
project, does everything in one step. Instead of first painting a black shadow and
then blurring it, the ShadowRenderer class blurs the original image and replaces
all color information by a black color at the same time.

Figure 16-16 The sharp drop shadow behind the caption bubble lacks realism.

ONLINE
DEMO

www.it-ebooks.info

http://www.it-ebooks.info/

442 CHAPTER 16 STATIC EFFECTS

Note: Fast drop shadow. The ShadowRenderer’s algorithm is, in fact, a modified
implementation of the fast box blur algorithm that we saw earlier in this chapter. As
a result of this speedup, ShadowRenderer can generate a drop shadow in 2 ms on
my test computer, compared to 100 ms for the slower approach.

Drop shadows add a touch of realism and professionalism to your user inter-
faces. Drop shadows are subtler than most effects and do not require a lot of
work from the programmer to be effective.

Highlights
Highlights simulate lighting in a user interface. In contrast to drop shadows, they
do not simulate a side-effect of lighting but the actual lighting itself.

Motivation
Highlights are used mainly to indicate interactive elements. The term highlight
covers a wide variety of techniques. Highlights are usually applied on a visual
element when the user moves the focus or the mouse over that element. Putting
the emphasis on interactive elements is vital in graphics-rich applications like

Figure 16-17 A smooth drop shadow behind the caption bubble looks more realistic.

www.it-ebooks.info

http://www.it-ebooks.info/

HIGHLIGHTS 443

Web pages and Filthy Rich Clients. These applications may use nonstandard
widgets, so they must help the user drive the interface.

Showing that an element, such as a button or a link, is interactive is often
achieved with one of the following techniques:

• Changing a grayscale icon to a colored icon (example: toolbar buttons)

• Adding a border to an icon (example: toolbar buttons)

• Changing an element’s color (example: links in a Web page)

• Changing the decoration of an element (example: links in a Web page)

• Increasing an element’s brightness (example: toolbar buttons)

• Lighting the element

In this section, you will learn how to implement the last two techniques.
Figure 16-18, Figure 16-19, and Figure 16-20 show some examples of highlights
in common applications.

Figure 16-18 This Web page changes the background and the border of the
highlighted item.

Figure 16-19 Safari, the Mac OS X default Web browser, changes the background
and the color of the highlighted bookmark in the toolbar.

Figure 16-20 Word 2004 for Mac OS X adds a border to the highlighted button
in its toolbars.

www.it-ebooks.info

http://www.it-ebooks.info/

444 CHAPTER 16 STATIC EFFECTS

Highlights may also be used to improve text readability. Windows Vista offers
translucent windows, which can make text on those windows difficult to read. To
counter that effect, the window system highlights window titles and the contents
of some text fields, as shown in Figure 16-21.

Brightening
You should increase the brightness of interactive pictures and text to emphasize
to the user that the current element is particularly important or active.

Brightening Text
To increase the brightness of text in Swing, you need to modify its color. The
java.awt.Color class offers an interesting method called brighter() that
seems to match our need. This method can be used to increase the brightness of
any color:

JButton button = new JButton(“Brighter”);
label.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent e) {
 JButton button = (JButton) e.getSource();

 Color c = button.getForeground();
 c = c.brighter();

 button.setForeground(c);
 }
});

This solution works, but it gives you very little control over the effect. The Color
class uses an undocumented, predefined brightening factor. In Sun’s current Java
SE implementation, this factor is 30 percent. Since this factor is not part of the
API, it might differ from one Java implementation to another.

You may, instead, get better control over brightness with other methods from the
Color class: RGBtoHSB() and getHSBColor(). RGBtoHSB() converts a color
encoded with RGB (red, green, and blue) components to the same color encoded

Figure 16-21 Windows Vista uses text highlighting in every window title bar.

www.it-ebooks.info

http://www.it-ebooks.info/

HIGHLIGHTS 445

with HSB (hue, saturation, and brightness) components. To increase the bright-
ness of a color, you can simply change the value of the brightness component in
the HSB format. The second method, getHSBColor(), turns a set of HSB com-
ponents into a new instance of Color.

The following code increases the brightness of a button’s text by 100 percent.
Note that HSB components are values between 0.0 and 1.0.

Color color = button.getForeground();
int r = color.getRed();
int g = color.getGreen();
int b = color.getBlue();

float[] hsb = Color.RGBtoHSB(r, g, b, null);

hsb[2] = Math.min(1.0f, hsb[2] * 2.0f);
Color brighter = Color.getHSBColor(hsb[0], hsb[1], hsb[2]);

button.setForeground(brighter);

The complete source code for text brightening is available in the project called
Brightness on this book’s Web site.

Aerith (http://aerith.dev.java.net) also contains an example of how to use bright-
ening on text. Figure 16-22 shows a section of the main screen of Aerith. When
the mouse cursor is over an interactive element, the text becomes white, as
opposed to the light gray color of the other text elements. The effect is subtle, but
powerful enough to be noticed by the user.

Brightening Images
To increase the brightness of a picture, you must use the RescaleOp image filter.
This filter was explained in detail in Chapter 8, “Image Processing.” As a reminder,

ONLINE
DEMO

Figure 16-22 The View Photos label is brighter than the others because the mouse
cursor is hovering above it.

www.it-ebooks.info

http://aerith.dev.java.net
http://www.it-ebooks.info/

446 CHAPTER 16 STATIC EFFECTS

here is a method that shows how to increase the brightness of a JLabel’s
picture:

public static void increaseImageBrightness(JLabel c,
 BufferedImage image) {
 // we use an image with an alpha channel
 // therefore, we need 4 components (RGBA)
 float[] factors = new float[] {
 1.4f, 1.4f, 1.4f, 1.4f
 };
 float[] offsets = new float[] {
 0.0f, 0.0f, 0.0f, 0.0f
 };
 RescaleOp op = new RescaleOp(factors, offsets, null);
 BufferedImage brighter = op.filter(image, null);
 c.setIcon(new ImageIcon(brighter));
}

The source code for this effect is also available in the Brightness project from
this book’s Web site.

Spotlighting
Increasing the brightness of an element is effective, but it does not always look
nice. This technique can turn a suitable darker color into an unattractive brighter
one. Another solution for highlighting an active element is to add a real lighting
effect to the element that you want to emphasize. Aerith3 uses this technique on
buttons, as shown in Figure 16-23 and Figure 16-24.

There are two different ways to implement these lighting effects. The first tech-
nique relies on radial gradients. You can refer to the Chapter 7 to learn more
about using radial gradients.

The second technique for this highlighting effect is a little more interesting.
Instead of drawing a radial gradient on the element, you must draw a picture. In
the examples shown in Figure 16-23 and Figure 16-24, the code simply paints
the image of a white, blurry ellipse in the background.

Compared to brightening, this technique has one drawback: You cannot achieve
this effect without subclassing the component and adding some code to the
paintComponent() method.

3. I hope you are used to reading references to Aerith by now.

ONLINE
DEMO

www.it-ebooks.info

http://www.it-ebooks.info/

HIGHLIGHTS 447

Figure 16-23 When the mouse moves over a button, a spotlight is added in the
background of the button.

Figure 16-24 The navigation path at the top of the window adds spotlights in the
background to show that the user can interact with these elements.

www.it-ebooks.info

http://www.it-ebooks.info/

448 CHAPTER 16 STATIC EFFECTS

The project called SheddingLight on this book’s Web site contains an example
of a button that becomes highlighted on mouseover events. The highlighting
code is short and simple:

@Override
protected void paintComponent(Graphics g) {}
 Graphics2D g2 = (Graphics2D) g;

 // paint background

 if (getModel().isRollover()) {
 g2.setRenderingHint(RenderingHints.KEY_INTERPOLATION,
 RenderingHints.VALUE_INTERPOLATION_BILINEAR);
 g2.drawImage(buttonHighlight, 2, 2,
 width - 4, height - 4, null);
 }

 // paint text
}

In this snippet, the variable buttonHighlight holds the picture of a white,
blurry ellipse. When this image gets drawn on the button, it is resized to cover
the entire background, which ensures that the effect is independent from the size
of the button.

Text Highlighting for Better Readability
Text highlighting, as seen in Windows Vista for example, can be implemented in
three different manners. The obvious solution is to paint a picture behind the
text, akin to the previous highlight code. This approach does not work very well,
however, because the generic highlight does not match the shape of the text.

The second solution consists of painting the text in an offscreen image, blurring
it, and painting the result prior to painting the real text. For this approach, please
refer to the “Blur” section earlier in this chapter.

The third solution is the most interesting. It requires only a few lines of code, it
looks good, and it’s much faster than blurring an offscreen picture. This tech-
nique is used in the project called TextHighlighting on this book’s Web site to
produce the effect shown in Figure 16-25.

When the user presses the Show Dialog button, located at the bottom of the
frame, a new internal window appears. This window title mimics an effect seen
in Windows Vista with the Aero theme. The content of the internal window
shows a blurred version of the parent frame, as if seen through a frosty glass

ONLINE
DEMO

ONLINE
DEMO

www.it-ebooks.info

http://www.it-ebooks.info/

HIGHLIGHTS 449

pane.4 Because of this translucency effect, the title of the window might become
hard to read in some situations.

To improve the text’s readability, a highlight is drawn around it. As this example
shows, highlights do not need to be white; you can use any color you wish. If you
look closely at this highlight, you will notice that it looks like a blurred version of
the text. The code actually simulates a blur effect by painting the text several times:

private void drawTextHighlight(Graphics2D g2, String title,
 int size, float opacity) {
 g2.setColor(Color.BLACK);

 for (int i = -size; i <= size; i++) {
 for (int j = -size; j <= size; j++) {
 double distance = i * i + j * j;
 float alpha = opacity;
 if (distance > 0.0d) {
 alpha = (float) (1.0f /
 ((distance * size) * opacity));
 }

continued

4. Note that all of the techniques used to create frost effect for this internal window have been pre-
sented in the book already. The blur and drop shadow effects were discussed earlier in this chap-
ter. The color tint filter was discussed in Chapter 8.

Figure 16-25 The highlight makes the internal window’s title easier to read.

www.it-ebooks.info

http://www.it-ebooks.info/

450 CHAPTER 16 STATIC EFFECTS

 g2.setComposite(
 AlphaComposite.SrcOver.derive(alpha));
 g2.drawString(title, i + size, j + size);
 }
 }
}

In this method, the size parameter has the same effect as the radius in a blur fil-
ter. With a radius of 3, the text is painted three times on the left, three times on
the right, three times on the top, and three times on the bottom. Every time the
code paints the text, it computes a new opacity, which decreases according to the
distance from the center. The entire effect is achieved with the following code:

String title = "Search in Message";
int size = 3;

g2.translate(x, y);
Composite oldComposite = g2.getComposite();

drawTextHighlight(g2, title, size, 0.8f);

g2.setComposite(oldComposite);
g2.setColor(Color.WHITE);
g2.drawString(title, size, size);

g2.translate(-x, -y);

This painting technique is not limited to text. It may be similarly applied to arbi-
trary drawing primitives. To use this technique with pictures containing transpar-
ent or translucent areas, you must first tint it with an opaque color. This can be
done easily with the ColorTintFilter shown in Chapter 8.

Highlights are a cheap and efficient way to point out interactive elements or to
improve the readability of specific elements in a user interface. Highlights are
even more important when your GUI contains customized visual components
that do not look like traditional widgets; they can significantly assist the user in
navigating a new UI experience.

Sharpening
A sharpen effect is an image filter that recovers finer details from a picture,
enhancing the edges in the scene to make a crisper, sharper view.

www.it-ebooks.info

http://www.it-ebooks.info/

SHARPENING 451

Motivation
Professional digital photographers know how important it is to master digital
sharpening tools. No matter how good your digital camera and lenses are, your
photos will always look soft in some places. This softening is due to the loss of
information that happens when the photons captured by the camera are turned
into pixels. Sharpening filters help compensate for this softness by emphasizing
the edges in the picture. Figure 16-26 shows a comparison between the photo-
graph as taken by a digital camera and a digitally sharpened copy. The brick pat-
terns are much softer on the original picture.

Sharpening’s utility is not constrained to digital photography, however. It can be
used any time you want to increase the sharpness of an image that looks too soft.

In Chapter 4, “Images,” you learned how to scale down an image to give a visu-
ally pleasing result. Unfortunately, the result is always softer than the original
image because the filtering used in scaling the image blends neighboring pixels.
You can therefore use a sharpening filter to further improve the downscaled
image by enhancing some details.

Original Image Sharpened Image

Figure 16-26 The picture on the left shows what the camera produced. The picture on
the right was digitally sharpened.

www.it-ebooks.info

http://www.it-ebooks.info/

452 CHAPTER 16 STATIC EFFECTS

Simple Sharpen
A sharpening filter works by increasing the contrast around edges. Edges, in dig-
ital images, can be defined as darker pixels next to lighter pixels. To increase the
contrast, we simply need to make dark values darker and light values lighter.

We discussed sharpening in Chapter 8. The technique proposed for sharpening
relies on a ConvolveOp and a simple kernel:

BufferedImage dstImage = null;
float[] sharpen = new float[] {
 0.0f, -1.0f, 0.0f,
 -1.0f, 5.0f, -1.0f,
 0.0f, -1.0f, 0.0f
};
Kernel kernel = new Kernel(3, 3, sharpen);
ConvolveOp op = new ConvolveOp(kernel);
dstImage = op.filter(sourceImage, null);

This kernel works by subtracting the value of pixels that are adjacent to each pixel
in the image. When a pixel is dark and surrounded by bright pixels, it becomes
darker. On the contrary, when the pixel is bright and surrounded by dark pixels, it
becomes brighter. To better understand this result, look at Figure 16-27.

This diagram represents an area of pixels in an image. Columns 2 and 3 repre-
sent an edge because the lighter tonal values in column 3 are next to darker tonal

1

2

3

1 2 3 4

Figure 16-27 Pixel columns 2 and 3 represent an edge in a picture. The values indicate
the RGB color of each pixel.

www.it-ebooks.info

http://www.it-ebooks.info/

SHARPENING 453

values from column 2. Now let’s see the effect of the sharpening filter by apply-
ing the kernel on a dark pixel, located at (2, 2):

result = (1, 1) * 0 + (1, 2) * -1 + (1, 3) * 0 +
 (2, 1) * -1 + (2, 2) * 5 + (2, 3) * -1 +
 (3, 1) * 0 + (3, 2) * -1 + (3, 3) * 0

If we replace each pair of coordinates by the corresponding pixel’s color value,
the result becomes, for each RGB color component:

result = 106 * 0 + 106 * -1 + 201 * 0 +
 106 * -1 + 106 * 5 + 201 * -1 +
 106 * 0 + 106 * -1 + 201 * 0

result = 11

The new pixel’s color is therefore (11, 11, 11), a very dark gray, almost black. If
we apply the same kernel on a bright pixel, for instance the pixel located at (2, 3),
we get the following result:

result = 106 * 0 + 201 * -1 + 201 * 0 +
 106 * -1 + 201 * 5 + 201 * -1 +
 106 * 0 + 201 * -1 + 201 * 0

result = 296

Because 296 does not fit on 8 bits, the value is clamped to 255, and the new
pixel’s color is (255, 255, 255), a pure white. Figure 16-28 shows the result of

1

2

3

1 2 3 4

Figure 16-28 Sharpening this image increases the contrast around the edge.

www.it-ebooks.info

http://www.it-ebooks.info/

454 CHAPTER 16 STATIC EFFECTS

the sharpening operation on the image presented in Figure 16-27. The contrast
has been increased around the edge between columns 2 and 3.

Note: Sharpening Kernels. The sharpening kernel used in this example is not the
only kernel you can use to sharpen a picture. Just make sure to use lower values for
the surrounding pixels, and remember to preserve the image brightness by choosing
values that add up to 1.0.

This sharpening technique is simple to use but very limited. First, you cannot
easily choose the amount of sharpening that you want to apply on an image. All
pixels in the image will be equally affected by the sharpening. As a result, pixels
that are not part of an edge will be modified, which can produce disturbing arti-
facts in noisy images. We need a better solution.

Unsharp Masking
Unsharp mask is the name of the image filter that most digital photographers use
to sharpen their photographs. This name sounds a bit confusing at first: Why use
an unsharp mask to sharpen an image?

The idea behind the unsharp masking technique (also called USM) is to subtract
a blurred copy of the image, the unsharp mask, from the original image. USM
filters start by applying a Gaussian blur to a copy of the original image. This
copy is compared to the original, and if the difference is greater than a pre-
defined threshold, the images are subtracted.

Because the user can set the threshold, it becomes possible to apply the sharpen-
ing filter only on image elements that differ more from each other than the rest of
the image. This leaves out small details like noise.

USM filters found in graphics editing tools like Adobe Photoshop usually
include three settings:

• Amount: This percentage controls how much contrast is added to the edges.

• Radius: This setting controls the radius of the Gaussian blur used for cre-
ating the mask and affects the size of the edges you want to enhance. Thus,
a small radius enhances small-scale details.

• Threshold: This setting controls how far apart adjacent tonal values have
to be for the filter to be applied. The threshold can therefore be used to
sharpen pronounced edges and leave subtle ones untouched.

Reading the “Blur” section of this chapter and reviewing Chapter 8 will help you
understand how to implement a USM filter.

www.it-ebooks.info

http://www.it-ebooks.info/

SHARPENING 455

Sharpening a Downscaled Image
An example of a USM filter implemented in Java can be found in the project
called UnsharpMask on this book’s Web site. This demo loads a 1024 × 673
image, scales it down to 300 × 197 using a progressive bilinear algorithm, and
applies a USM filter, as shown in Figure 16-29.

The UnsharpMaskFilter class extends AbstractFilter, detailed in Chapter 8.
After applying a Gaussian blur of the specified radius on the original image,
UnsharpMaskFilter calls the following method to subtract the images wherever
the tonal value is greater than the threshold:

static void sharpen(int[] original, int[] blurred,
 int width, int height, float amount, int threshold) {

 int index = 0;

 int srcR, srcB, srcG;
 int dstR, dstB, dstG;

 amount *= 1.6f;
continued

ONLINE
DEMO

Figure 16-29 The UnsharpMask demo reproduces Photoshop’s settings
for unsharp masking.

www.it-ebooks.info

http://www.it-ebooks.info/

456 CHAPTER 16 STATIC EFFECTS

 for (int y = 0; y < height; y++) {
 for (int x = 0; x < width; x++) {
 int srcColor = original[index];
 srcR = (srcColor >> 16) & 0xFF;
 srcG = (srcColor >> 8) & 0xFF;
 srcB = (srcColor) & 0xFF;

 int dstColor = blurred[index];
 dstR = (dstColor >> 16) & 0xFF;
 dstG = (dstColor >> 8) & 0xFF;
 dstB = (dstColor) & 0xFF;

 if (Math.abs(srcR - dstR) >= threshold) {
 srcR = (int) (amount * (srcR - dstR) + srcR);
 srcR = srcR > 255 ? 255 : srcR < 0 ? 0 : srcR;
 }

 if (Math.abs(srcG - dstG) >= threshold) {
 srcG = (int) (amount * (srcG - dstG) + srcG);
 srcG = srcG > 255 ? 255 : srcG < 0 ? 0 : srcG;
 }

 if (Math.abs(srcB - dstB) >= threshold) {
 srcB = (int) (amount * (srcB - dstB) + srcB);
 srcB = srcB > 255 ? 255 : srcB < 0 ? 0 : srcB;
 }

 int alpha = srcColor & 0xFF000000;
 blurred[index] = alpha | (srcR << 16) |
 (srcG << 8) | srcB;

 index++;
 }
 }
}

This algorithm is a lot simpler than it looks. Parameters include pixels from the
original image, pixels from the blurred copy, the amount, and the threshold. Pix-
els of the original image are called srcColor and are decomposed as srcR, srcG,
and srcB in the code. Similarly, blurred pixels are called dstColor and are
decomposed as dstR, dstG, and dstB.

Each color component from the original image is compared to the corresponding
color component from the blurred copy. When the difference is greater than or
equal to the threshold, then the pixel will be sharpened. Sharpening happens by
adding to the original image the difference between the two images multiplied
by the amount. With a positive difference, the pixel becomes brighter, and with a

www.it-ebooks.info

http://www.it-ebooks.info/

SHARPENING 457

negative difference, the pixel becomes darker. Pixels with a difference below the
threshold are left untouched, thus preserving subtle edges.

Tip: Clamp the Results. Because the sharpening operations can cause large values
to be added to or subtracted from the color components, the result might be negative
or greater than 255. To prevent rendering artifacts in the resulting image, remember
to clamp the values in the [0…255] range, as in this example.

Tip: Sharpening and Performance. Unsharp masking is not an expensive opera-
tion when you keep the radius small. With a radius of 1 pixel, an unsharp mask filter
is almost as fast as a simple sharpen filter implemented with a ConvolveOp.

Figure 16-30 shows a comparison between the original image and the sharpened
image, using the default settings: 70 percent of amount, two pixels of radius, and
two levels of threshold.

Sharpening your downscaled images can greatly improve their appearance.
However, such an operation can produce many odd-looking artifacts when used
with high values for the amount and radius settings.

Sharpening, more than any other visual effect, must be subtle. The UnsharpMask
demo will help you choose the appropriate settings easily. Change the values and
click the image to show the original image instead of the sharpened result. A

Original Image Sharpened Image

Figure 16-30 Comparison between the original image and the sharpened image.

www.it-ebooks.info

http://www.it-ebooks.info/

458 CHAPTER 16 STATIC EFFECTS

setting that seems to have no effect whatsoever is easier to see when the results
are compared to the original image.

Summary
Creating impressive user interfaces becomes easier with visual effects such as
those presented in this chapter. You should, however, use them carefully. It is
very tempting to use them in too many places and clutter the user interface.
Whenever you want to use one of these effects, think about what it means to the
users and whether or not it will help them appreciate your application.

www.it-ebooks.info

http://www.it-ebooks.info/

459

17
Dynamic Effects

LIFE does not stand still; neither should your applications. User experience
can usually be improved by adding simple animations to your user interfaces.
Animations are powerful, maybe too powerful. You must use them wisely so as
not to distract or annoy the users.1

This chapter offers a variety of dynamic, or animated, effects that you can use in
your applications. I should, however, emphasize that animations must be short and
simple. That is the most important thing to understand about animated effects.2

All of the effects presented in this chapter are built upon the animation capabili-
ties that were introduced earlier in Chapter 14, “Timing Framework: Fundamen-
tals,” and Chapter 15, “Timing Framework: Advanced Features.” The graphics
behind the effects are built upon the Swing and 2D elements developed in the
Part I of this book. If you read these earlier chapters,3 you should have no prob-
lem whatsoever understanding the source code for all of these effects.

1. Whenever I see an application with annoying animations, I can’t help thinking that the developers
are just using them as a vengeance against annoying users. This, of course, makes the users an-
grier and eventually even more annoying—which results in the next version of the application
having even more annoying animations. And on it goes.

2. Before you read further in this chapter, go outside and repeat the following until you are drooling
or getting really cold: “Animations must be short and simple.”

3. If you didn’t read those chapters yet, what are you doing here? That’s like reading the last page
of a mystery first. Or eating dessert before dinner. Or taking the final after skipping class all term.
If you want to go back and catch up on that material now, go ahead. We’ll wait.

www.it-ebooks.info

http://www.it-ebooks.info/

460 CHAPTER 17 DYNAMIC EFFECTS

Motion
Whenever you change an element’s location in a user interface, that element
should move smoothly, not teleport.

Motivation
Eons ago, hairy human beings used to hunt for food with powerful weapons like
nails and teeth. This task was not easy. Silly creatures with longer nails and teeth
thought that the hairy human beings were the food and made hunting even more
difficult. Because our ancestors did not enjoy dying, they became very good at
detecting movement in order to better detect and avoid these other creatures.

Unfortunately, our brain is not as good at quickly detecting the differences
between two similarly detailed scenes. Usually, when a user interface needs to
change the location of an element, it happens instantly. The user can easily
notice that something has changed yet cannot to say what exactly has changed.4

By changing things abruptly, the application disrupts our excellent spatial sense.

I call this the “undo/redo syndrome.” Whenever I find myself using an application
that teleports elements around, I use the undo and redo actions until I can finally
tell what elements have moved and where exactly they went. Teleportation would
be a great means of transportation, but it is a truly awful usability scenario.

The solution to this problem is obvious. You just have to go down to the street
and see how people and vehicles move from one point to another. They move
smoothly across all the points in space that separate them from their destination.
Our brain is so used to this kind of movement that your applications should take
a hint from what happens in reality.

Mac OS X successfully uses motion in a variety of situations. For instance, when
you minimize a window to the Dock, which is the equivalent of Windows’ task-
bar, an animation plays to show you where the window is going. Figure 17-1
shows this animation.

Exposé, an application that displays all of the currently open windows, behaves
similarly. When the user activates Exposé, all of the windows on the screen
move and shrink smoothly to form a tiled pattern, as shown in Figure 17-2. If

4. You have probably observed this same problem in real life. Whenever a new restaurant opens up
in a place where there used to be some other store or restaurant, it’s almost impossible to remem-
ber what used to be there. If only the switch had occurred in an animated way, we may have found
it easier to track the change.

www.it-ebooks.info

http://www.it-ebooks.info/

MOTION 461

Figure 17-1 A minimized window smoothly moves to the bottom of the screen
on Mac OS X.

Figure 17-2 Mac OS X’s Exposé mode shows all of the windows at once to let you
pick one easily.

www.it-ebooks.info

http://www.it-ebooks.info/

462 CHAPTER 17 DYNAMIC EFFECTS

this effect were not animated, it would be much harder to quickly choose the
window you want.

Drag and drop is another interesting use of motion. When a user interface allows
the user to drag an element around and drop it on a specific location, the user inter-
face often fails to correctly handle failed drops. This lack of feedback can lead to
confusion or bad assumptions on the part of the user. Using animation in this situa-
tion can help. For example, Aerith lets you mark waypoints on a map and drop pic-
tures onto these waypoints, as seen in Figure 17-3. However, if you drop the
picture outside of a waypoint, an animation shows the picture going back to its
original location to make you clearly understand that the drop operation failed.

Going, Going, Gone
Moving things around is simple with the Timing Framework. Every Swing com-
ponent has a property called location, which lets you get and set the position of
the widget in its parent container. Thanks to the Timing Framework’s ability to
interpolate Point instances, implementing an animated motion requires only a
few lines of code.5

5. I actually complained to Chet about the simplicity of the implementation. The Timing Frame-
work makes animations so easy that I don’t have anything to explain when I show the code of the
effect, thus making me feel a bit useless.

Figure 17-3 In Aerith, when an operation of dropping a picture onto a waypoint fails,
the picture moves smoothly back to the picture bar at the top.

www.it-ebooks.info

http://www.it-ebooks.info/

MOTION 463

Figure 17-4 shows a simple user interface in which two buttons lie to the right of
a text area. This application provides the user with the ability to change the lay-
out by moving the buttons to the left side of the text area instead, as shown in
Figure 17-5.

When the user clicks one of the buttons in the toolbar to change the layout, the
components do not change location instantly. Instead, the buttons move smoothly
from one side of the window to the other.

Figure 17-4 The toolbar buttons allow you change the layout of the text area
and buttons.

Figure 17-5 The transition between this layout and the previous one is animated.

www.it-ebooks.info

http://www.it-ebooks.info/

464 CHAPTER 17 DYNAMIC EFFECTS

To implement this animation, you need three classes from the Timing Frame-
work: Animator, PropertySetter, and ActionTrigger. The following snippet
shows how to set up a trigger on the Left Layout button to move the Save… and
Open… buttons to the left of the window and the text area to the right.

Animator leftAnimator = new Animator(200);
leftAnimator.setAcceleration(0.3f);
leftAnimator.setDeceleration(0.2f);

leftAnimator.addTarget(new PropertySetter(
 saveButton, "location",
 new Point(16, saveButton.getY())));

leftAnimator.addTarget(new Propert ySetter(
 openButton, "location",
 new Point(16, openButton.getY())));

leftAnimator.addTarget(new PropertySetter(
 textArea, "location",
 new Point(16 + saveButton.getWidth() +
 6, textArea.getY())));

First, this snippet creates an Animator instance with duration of 200 ms.

Tip: Keep the Animation Short. Any animation of duration between about 16 ms
and 200 to 300 ms follows the rule, “Animations should be short and simple.”

To make the motion more natural, you need nonlinear interpolation, which is
easily done via the acceleration and deceleration properties of the animator.

The rest of the code creates one PropertySetter per component that needs to
be moved. Each of these setters uses the property location. The single value
passed to the PropertySetter is the destination of the component. When the
animation starts, the Timing Framework interpolates the location between the
starting location of the component and the specified destination.

Finally, a trigger is added on the Left Layout button to start the animation upon a
user’s click:

ActionTrigger.addTrigger(leftLayoutButton, leftAnimator);

The complete source code of this example is available on this book’s Web site in
the project called Motion. This example should prove how easy it is to implement
motion in your user interface with the Timing Framework’s PropertySetter.

ONLINE
DEMO

www.it-ebooks.info

http://www.it-ebooks.info/

FADING 465

Note: Automating Motions. The motion effect is most appropriate when you need
to move one or only a few elements. It is better and easier to use the Animated Tran-
sitions library, presented in Chapter 18, “Animated Transitions,” when you need to
change the location of many elements at once or when you don’t know exactly
which elements will move between application states.

Fading
Whenever you need to make an element appear or disappear, you should do so
gradually, not abruptly.

Motivation
Human beings have a good spatial sense, which can be easily thrown off when
new elements are added to or removed from a user interface instantaneously. In
the same way that motion can be used to avoid dumbfounding the user when an
element changes its location, fading effects can be used to soothe the user’s spa-
tial sense.

Note: Fade-In and Fade-Out. There are actually two different fading effects,
called fade-in and fade-out. The latter is the one we usually refer to when we use
the verb to fade. A visual element fading out gradually grows fainter and finally dis-
appears.

The fade-in effect has the exact opposite result: A visual element fading in appears
and gradually grows clearer.

Fading effects are versatile and can be used in a wide variety of situations. Win-
dows XP, for instance, fades pop-up menus in and out when you invoke them
with the mouse’s right button. Similarly, Apple’s Aperture, shown in Figure 17-6,
fades palettes and tooltips in and out. In these examples, the fading effects
enhance the user experience by making the user interface smoother and gentler
to the eyes.

Fading effects can also be used to change the contents of an element. The most
common usage can be found in picture slideshows. When the next image needs
to be displayed, the current image fades out and the new image fades in. How-
ever, fading effects are too often limited as a means to create a transition
between two pictures. You can also use them to change the value of a text field or

www.it-ebooks.info

http://www.it-ebooks.info/

466 CHAPTER 17 DYNAMIC EFFECTS

a label. For instance, when you are watching a picture album in Aerith and pro-
ceed to the next slide, as shown in Figure 17-7, the current label fades out and
the new label fades in.

Fading between different values can be applied to an entire frame with all of its
child widgets. As such, you can use fading effects to create transitions between

Figure 17-6 The black palettes and tooltips of Aperture fade in and out when invoked.

Figure 17-7 The picture’s caption fades between old and new labels as the next
image is displayed.

www.it-ebooks.info

http://www.it-ebooks.info/

FADING 467

two screens. Figure 17-8, Figure 17-9, and Figure 17-10 show how Aerith fades
its loading screen out to progressively show the main menu.

Fading Strategies
Fading effects can be implemented in two different ways. A regular fading effect
relies on the opacity, or translucency, of the element. When you want to fade the
entire element, you need to be in control of the painting code. Indeed, you must

Figure 17-8 Aerith loading screen.

Figure 17-9 When the user is authenticated, the loading screen progressively fades out.

www.it-ebooks.info

http://www.it-ebooks.info/

468 CHAPTER 17 DYNAMIC EFFECTS

use an AlphaComposite.SrcOver instance on the Graphics to change the opac-
ity of the element.

When you cannot change the painting code, there is a simple workaround. The
Color class provides an alpha channel, which is always understood by Swing.
Therefore, if you can change the color of an element, you can change its opacity.
Note that if you change the alpha channel of a component’s background color,
you must make sure that the component is nonopaque; see the discussion of
setOpaque() in Chapter 2, “Swing Rendering Fundamentals,” for more infor-
mation on this topic.

AlphaComposite Fading
The AlphaComposite class makes the implementation of a fading effect simple.
The example called Fading, which you can find on the book’s Web site, displays
a help balloon, as shown in Figure 17-11, to entice the user to click the Next but-
ton to display the next picture. When the user clicks the button, the help balloon
fades out and disappears.

The painting code for the help balloon is the following:

@Override
protected void paintComponent(Graphics g) {
 Graphics2D g2 = (Graphics2D) g.create();

Figure 17-10 The main menu appears progressively as the loading screen fades out.

ONLINE
DEMO

www.it-ebooks.info

http://www.it-ebooks.info/

FADING 469

 Point p = nextButton.getLocationOnScreen();

 p.x += nextButton.getWidth() / 2 - 16;
 p.y += nextButton.getHeight() / 2 –
 helpImage.getHeight() + 10;

 SwingUtilities.convertPointFromScreen(p, this);

 g2.setComposite(AlphaComposite.SrcOver.derive(alpha));
 g2.drawImage(helpImage, p.x, p.y, null);
}

The last two lines are the most interesting part of this snippet. The component, a
glass pane, sets an AlphaComposite.SrcOver instance with an opacity value of
alpha. This value is an instance variable that can be queried and modified with
the appropriate getter and setter:

public void setAlpha(float alpha) {
 this.alpha = alpha;
 repaint();
}

public float getAlpha() {
 return this.alpha;
}

Figure 17-11 The help balloon fades out when a user clicks the Next button.

www.it-ebooks.info

http://www.it-ebooks.info/

470 CHAPTER 17 DYNAMIC EFFECTS

These two methods are used to animate the fading effect with the help of the
Timing Framework. When the user clicks the Next button, a new Animator is
created and started:

Animator animator = new Animator(100);
animator.addTarget(new PropertySetter(glass, "alpha", 0.0f));
animator.setAcceleration(0.2f);
animator.setDeceleration(0.4f);
animator.start();

The PropertySetter changes the value of the alpha property of the glass object,
an instance of the class that paints the help balloon, from its current value to
0.0f. When alpha reaches the value 0.0f, the help balloon disappears. Finally, the
animation is made nonlinear by using acceleration and deceleration.

Color Fading
Run the Fading project and press the Next and Previous buttons. You should
notice that the value of the text field, located at the top of the window, smoothly
changes as the pictures change. Because we cannot modify the painting code of
the text field, at least not without extending the JTextField class, we must use
the foreground color property to perform the fading effect.

To fade out the current text and fade in the new text, you must use a series of
KeyFrames. The KeyFrames are used to make the color change from fully
opaque to transparent and finally back to fully opaque. The following code snip-
pet shows how to create a property setter that changes the foreground color of a
JTextField to make the text fade out then fade in:

KeyFrames keyFrames = new KeyFrames(
 KeyValues.create(
 new Color(0.0f, 0.0f, 0.0f, 1.0f),
 new Color(0.0f, 0.0f, 0.0f, 0.0f),
 new Color(0.0f, 0.0f, 0.0f, 1.0f)
));
PropertySetter setter = new PropertySetter(
 titleField, "foreground", keyFrames);

Because we did not specify the time fraction of each KeyFrame, the Timing
Framework will divide the time equally between each KeyFrame. The first
KeyFrame will happen when the elapsed fraction of the animation equals 0.0, the
second when the elapsed fraction equals 0.5, and the last when the elapsed frac-

www.it-ebooks.info

http://www.it-ebooks.info/

FADING 471

tion equals 1.0. As a result, the text will become totally transparent halfway
through the animation.

Finally, you need to create an Animator and a TimingTarget that will change
the text when the color has become transparent so that the user cannot see the
change happen:

Animator animator = new Animator(200, setter);
animator.addTarget(new TimingTargetAdapter() {
 private boolean textSet = false;

 public void timingEvent(float fraction) {
 if (fraction >= 0.5f && !textSet) {
 titleField.setText(text);
 textSet = true;
 }
 }
});
animator.start();

As soon as the animation is more than halfway through, and if the text has not
been changed already, the TimingTarget sets a new value on the text field.

This technique works with numerous Swing components, like JTextArea, JLabel,
and JComboBox. To animate a value change in any Swing text component, you
can use the following method:

setTextAndAnimate(myTextField, "New Text");
// ...

public static void setTextAndAnimate(
 final JTextComponent textComponent,
 final String text) {
 Color c = textComponent.getForeground();

 KeyFrames keyFrames = new KeyFrames(KeyValues.create(
 new Color(c.getRed(), c.getGreen(), c.getBlue(), 255),
 new Color(c.getRed(), c.getGreen(), c.getBlue(), 0),
 new Color(c.getRed(), c.getGreen(), c.getBlue(), 255)
));
 PropertySetter setter = new PropertySetter(textComponent,
 "foreground", keyFrames);

 Animator animator = new Animator(200, setter);
 animator.addTarget(new TimingTargetAdapter() {
 private boolean textSet = false;

continued

www.it-ebooks.info

http://www.it-ebooks.info/

472 CHAPTER 17 DYNAMIC EFFECTS

 public void timingEvent(float fraction) {
 if (fraction >= 0.5f && !textSet) {
 textComponent.setText(text);
 textSet = true;
 }
 }
 });
 animator.start();
}

Cross-Fading
Cross-fading is a common variation of the fading effect. A cross-fade is actually
a fade-in of one element and a fade-out of a different element happening at the
same time. In the Fading demo we saw earlier in Figure 17-11, the pictures are
cross-faded when you press the Next and Previous buttons:

@Override
protected void paintComponent(Graphics g) {
 Graphics2D g2 = (Graphics2D) g.create();

 g2.setComposite(AlphaComposite.SrcOver.derive(1.0f - alpha));
 g2.drawImage(firstImage, 0, 0, null);
 g2.setComposite(AlphaComposite.SrcOver.derive(alpha));
 g2.drawImage(secondImage, 0, 0, null);
}

As you can see, a cross-fade is implemented by using an alpha value for one ele-
ment and an inverse value (1.0 – alpha) for the other element. Cross-fade can be
implemented only when you control the painting code because both elements,
the old one and the new one, must be painted at the same time. As such, you can-
not rely on the color-fade technique.

Fading Made Easy
SwingX (www.swinglabs.org) is a library of advanced Swing components that can
be used to make fading effects easier to implement. The JXPanel class, which
works as a substitute for Swing’s JPanel, supports translucency thanks to its
getAlpha() and setAlpha() methods. Even better, all of the components inside
a JXPanel inherit the translucency. Combined with the Timing Framework, this
class lets you fade entire forms in and out with just a few lines of code.

www.it-ebooks.info

www.swinglabs.org
http://www.it-ebooks.info/

PULSE 473

Pulse
A pulse is an animation that is played repeatedly forward and backward.

Motivation
Pulsating effects have two primary purposes. Their repeated animation helps
attract the user’s attention. They can also be used to denote indeterminate progress.

The Alloy look and feel for Swing, available from www.incors.com, offers an
example of a pulsating effect used to attract the user’s attention. A dialog’s
default button contains an animated inner glow, shown in Figure 17-12, which
distinguishes that button from other buttons. Mac OS X also uses a pulsating
effect for the same reason.

Word 2004 for Mac uses a pulsating effect to notify users when they are using a
feature that might not be compatible with previous Word versions; the back-
ground of a toolbar button pulsates from transparent to red and back.

Aerith relies on a pulsating effect to create an indeterminate progress indicator.
When the application starts, the user can enter a Flickr (www.flickr.com) account
name, and Aerith attempts to authenticate the user. Because this process involves
a network operation, there is no reliable way to predict how long it will take to
complete. An indeterminate progress indicator shows the user that the applica-
tion is still running and will continue the current task for an unknown period of
time. Figure 17-13 shows this indeterminate progress indicator, which is a glow
that gradually appears and disappears behind the logo.

Figure 17-12 The Alloy look and feel uses a pulse effect by drawing an inner
glow on the border.

www.it-ebooks.info

www.incors.com
www.flickr.com
http://www.it-ebooks.info/

474 CHAPTER 17 DYNAMIC EFFECTS

Note that pulsating effects can break the rule6 that animations should be short
and simple. A fast animation conveys an impression of urgency to the user. That
urgency might be what you intend when, for example, you want to attract the
user’s attention to an error in the application. When you want to use a pulsating
effect as an indeterminate progress indicator, however, the animation is paced
more slowly to show users that everything is fine and that they should not feel
pressured. In this case, the duration between repetitions of the animation can be
between 500 milliseconds and 1 second.

It is equally important to use subtle transitions between the extreme states of the
pulse. For instance, don’t make a pulse effect go from full red to full green. The
animation should be enough for the user to notice the effect but not enough to be
jarring or nauseating.

Feel My Pulse
One of the easiest pulse implementations works by animating a glow behind the
element you want to emphasize. Thanks to your studious reading of every page of
this book so far, you already know how to generate a glow for any visual element.

A glow is simply a blurred copy of the original item, tinted to increase the
brightness. The project called Pulse from the book’s Web site reuses techniques
covered in Chapter 8 and in the “Blur” section of Chapter 16, “Static Effects.”

Figure 17-14 shows the original picture that we want to animate with a pulsating
glow. The glow itself is shown in Figure 17-15. The final application paints the
original picture on top of the glow to produce the result seen in Figure 17-16.

6. I would never have imposed this rule on you at the beginning of this chapter if I didn’t have the
intention of breaking it at some point.

Figure 17-13 Aerith’s indeterminate progress indicator uses a pulsating effect.

ONLINE
DEMO

www.it-ebooks.info

http://www.it-ebooks.info/

PULSE 475

Figure 17-14 The element that we want to animate with a pulsating glow.

Figure 17-15 The glow generated from the original picture.

Figure 17-16 The picture and its glow.

www.it-ebooks.info

http://www.it-ebooks.info/

476 CHAPTER 17 DYNAMIC EFFECTS

The following code snippet shows how to generate the glow from the original
picture:

// "image" is the original picture
// "glow" is the glow of "image"

// Create an image with the same dimensions
// as the original picture
glow = GraphicsUtilities.createCompatibleImage(image);

// Duplicate the original picture
g2 = glow.createGraphics();
g2.drawImage(image, 0, 0, null);
g2.dispose();

// Apply a two-pass Gaussian blur filter
BufferedImageOp filter = getGaussianBlurFilter(24, true);
glow = filter.filter(glow, null);
filter = getGaussianBlurFilter(12, false);
glow = filter.filter(glow, null);

// Turn the image white
filter = new ColorTintFilter(Color.WHITE, 1.0f);
glow = filter.filter(glow, null);

The original picture is first duplicated and then blurred with a Gaussian blur fil-
ter. To increase the brightness of the picture and make it white, this piece of code
applies a ColorTintFilter, described in Chapter 8. As constructed here, the
ColorTintFilter replaces the color of every pixel in the image with the color
white, preserving the transparency.

When the glow is ready, you paint it behind the original picture:

@Override
protected void paintComponent(Graphics g) {
 int x = (getWidth() - image.getWidth()) / 2;
 int y = (getHeight() - image.getHeight()) / 2;

 Graphics2D g2 = (Graphics2D) g.create();

 g2.drawImage(glow, x, y, null);
 g2.drawImage(image, x, y, null)
}

To make the glow pulsate, we just need to vary its opacity. The glow is the result
of a blur operation, which means that the pixels located the furthest from the

www.it-ebooks.info

http://www.it-ebooks.info/

PULSE 477

original edges are also the pixels with the lowest alpha values. Thus, if we paint
the glow with an AlphaComposite.SrcOver instance and progressively decrease
its alpha value, the farthest pixels will disappear first, as shown in Figure 17-17.
The painting code must be changed as follows:

g2.setComposite(AlphaComposite.SrcOver.derive(getAlpha()));
g2.drawImage(glow, x, y, null);
g2.setComposite(AlphaComposite.SrcOver);
g2.drawImage(image, x, y, null);

To animate the glow, the alpha value must gradually change from 0.0 to 1.0, then
from 1.0 to 0.0, and so on. The Timing Framework allows creating animations
that repeat infinitely and that reverse when they reach the end of each repetition:

PropertySetter setter =
 new PropertySetter(this, "alpha", 0.0f, 1.0f);
Animator animator = new Animator(600, Animator.INFINITE,
 Animator.RepeatBehavior.REVERSE, setter);
animator.start();

Figure 17-17 The white border shows the boundaries of the glow when alpha = 1.0.
When alpha is lower, pixels disappear on the edges.

www.it-ebooks.info

http://www.it-ebooks.info/

478 CHAPTER 17 DYNAMIC EFFECTS

Contrary to the other animations presented in this chapter, this one will not stop
unless you call animator.stop().

Automatic Glow
A popular variation of the glow effect is called bloom. This effect can be seen in
many modern video games. The bloom is a diffuse halo around bright areas in
the scene. Figure 17-18 shows the same game, Quake 3, without and with the
bloom effect. The bloom was exaggerated to emphasize the difference.

Bloom can be applied effectively on all kinds of graphics, like logos and splash
screens, as shown in Figure 17-19.

Figure 17-18 Quake 3 without and with the bloom effect.

No Bloom Bloom

Figure 17-19 A bloom effect applied on Aerith’s splash screen.

www.it-ebooks.info

http://www.it-ebooks.info/

PULSE 479

A bloom effect is created by a progression of blur effects. In our sample, we use a
series of six steps to create the effect. These steps are illustrated in Figure 17-20
to Figure 17-26. The original picture that we start from is shown in Figure 17-20.

1. A bright-pass filter is applied to the original image to keep only the bright-
est pixels. The result is shown in Figure 17-21.

2. The filtered image is blurred with a Gaussian blur of radius 2. The result is
shown in Figure 17-22.

Figure 17-20 The original image on which we apply the bloom.

Figure 17-21 The bright-pass filter keeps only the brightest pixels.

Figure 17-22 A Gaussian blur of radius 2 is applied to the filtered image.

www.it-ebooks.info

http://www.it-ebooks.info/

480 CHAPTER 17 DYNAMIC EFFECTS

3. Step 2 is repeated with a Gaussian blur of radius 5. The result is shown in
Figure 17-23.

4. Step 2 is repeated with a Gaussian blur of radius 10. The result is shown in
Figure 17-24.

5. Step 2 is repeated with a Gaussian blur of radius 20. The result is shown in
Figure 17-25.

Figure 17-23 A Gaussian blur of radius 5 is applied to the filtered image.

Figure 17-24 A Gaussian blur of radius 10 is applied to the filtered image.

Figure 17-25 A Gaussian blur of radius 20 is applied to the filtered image.

www.it-ebooks.info

http://www.it-ebooks.info/

PULSE 481

6. The original images and the four blurred copies are composed in a single
image by adding their values. The result is shown in Figure 17-26.

The Gaussian blur implementation used in this effect is presented in Chapter 16.
The AddComposite used to generate the final image of the bloom is explained in
the Chapter 6, “Composites.”

The bright-pass filter relies on a single algorithm. For each pixel in the image, it
compares the luminance to a threshold. When the luminance is lower than the
threshold, the pixel is not bright enough and is made completely black. The for-
mula to compute the luminance of an RGB pixel in the YCC7 color space is the
following:

luminance = 0.2125 * red + 0.7154 * green + 0.0721 * blue

The complete source code of the bright-pass filter and of the bloom effect can be
found in the project called Bloom on this book’s Web site.

Note: High-Performance Bloom. Because the bloom effect involves several Gaus-
sian blurs, the performance can be disappointing on large images. Even though the
Bloom demo from this book’s Web site uses several performance tricks explained
in this chapter, the algorithm is almost unusable on animated graphics.

Video games provide high-performance bloom effects by implementing them using
pixel shaders. All of the work is deferred to the GPU, which can run shaders quite
fast and get good performance for these types of operations. The project called

7. YCC is a convenient color space to use when dealing with the luminance values of colors, as we
are doing here.

Figure 17-26 The final bloom effect.

ONLINE
DEMO

www.it-ebooks.info

http://www.it-ebooks.info/

482 CHAPTER 17 DYNAMIC EFFECTS

BloomOpenGL available on this book’s Web site contains an OpenGL implementation
of the bloom effect that runs much faster than the pure Java 2D version. This demo
requires the Java bindings for OpenGL (JOGL) library to compile and execute.
JOGL is available for Mac OS X, Windows, Solaris, and Linux and can be found at
http://jogl.dev.java.net.

Palpitating Pulse
Pulsating effects also work on regular Swing components. For instance, the
project called PulseField on the book’s Web site shows how to create a pulsat-
ing border for a text field, as shown in Figure 17-27.

The pulsating effect is painted by an implementation of the Border interface.
The pulsating border draws a blue rectangle with a thickness varying between
0.0 and 2.0 and an opacity ranging from 0.0 to 1.0:

public static class PulsatingBorder implements Border {
 private float thickness = 0.0f;
 private JComponent c;

 public PulsatingBorder(JComponent c) {
 this.c = c;
 }

 public void paintBorder(Component c, Graphics g,
 int x, int y, int width, int height) {
 Graphics2D g2 = (Graphics2D) g.create();
 g2.setRenderingHint(RenderingHints.KEY_ANTIALIASING,
 RenderingHints.VALUE_ANTIALIAS_ON);

 Rectangle2D r = new Rectangle2D.Double(x, y,
 width - 1, height - 1);
 g2.setStroke(new BasicStroke(2.0f * getThickness()));

 g2.setComposite(AlphaComposite.SrcOver.
 derive(getThickness()));
 g2.setColor(new Color(0x54A4DE));
 g2.draw(r);
 }

 public Insets getBorderInsets(Component c) {
 return new Insets(2, 2, 2, 2);
 }

 public boolean isBorderOpaque() {
 return false;
 }

ONLINE
DEMO

www.it-ebooks.info

http://jogl.dev.java.net
http://www.it-ebooks.info/

PULSE 483

 public float getThickness() {
 return thickness;
 }

 public void setThickness(float thickness) {
 this.thickness = thickness;
 c.repaint();
 }
}

Because the thickness is defined as a float value, it is important to enable anti-
aliasing on the Graphics2D surface. It allows Java 2D to draw lines that are less
than one pixel wide by using clever antialiasing tricks. You should also note that
the border’s constructor takes a component as a parameter. This component is
used in the setThickness() method to force a repaint during the animation.

Note: Custom Components. Forcing a repaint during an animation is an important
point in some of our Filthy Rich Clients that use custom components. In this case,
changing the value of the internal thickness variable does not otherwise cause any
repaint to occur.

This is one of the situations in which our code knows that a repaint needs to happen
even though Swing does not. If we change state that Swing knows about, such as
the text of a label or the size of a button, then a repaint will happen automatically.
But if we change state local to our subclass of a Swing component and that state
affects the rendering of the component, then we must alert Swing to that fact and
cause a repaint.

Figure 17-27 The text field contains a pulsating inner border.

www.it-ebooks.info

http://www.it-ebooks.info/

484 CHAPTER 17 DYNAMIC EFFECTS

The border can be installed on any rectangular Swing component. In the
PulseField example, the border is installed on a JTextField. Creating a com-
pound border containing both the existing border and a pulsating border pre-
serves the existing border. The pulsating border is designated as the inner border:

JTextField field = new JTextField(20);

PulsatingBorder border = new PulsatingBorder(field);
field.setBorder(new CompoundBorder(
 field.getBorder(), border));

The animation code is exactly the same as in the previous pulsating effect exam-
ple. All you need to do is create a PropertySetter and an infinitely repeating
Animator:

PropertySetter setter =
 new PropertySetter(border, "thickness", 0.0f, 1.0f);
Animator animator = new Animator(900, Animator.INFINITE,
 Animator.RepeatBehavior.REVERSE, setter);
animator.start();

This example barely scratches the surface of what’s possible with pulsating bor-
ders in Swing. It shows, however, how easy it can be to add such an effect to
existing components. Pulsating effects can also be very interesting to use with
the Timing Framework’s triggers. You could, for example, start a pulsating effect
when the mouse enters the boundaries of a component or when a component
gains focus.

Spring
Animate launch actions with a spring effect to show the user that the application
is working.

Motivation
Users are accustomed to launching applications and documents in a desktop
environment, usually by double-clicking an icon. Most of the time, there is no
visual feedback to confirm that the launch is actually taking place. When you
double-click an icon on your Windows XP desktop, the only thing that indicates
that you performed the action correctly is that the mouse cursor switches to an
hourglass briefly. The problem is that the hourglass is associated with many
meanings other than launching an application.

www.it-ebooks.info

http://www.it-ebooks.info/

SPRING 485

Mac OS X uses another technique, called the spring effect. When you double-
click a document or an application on the desktop or in a folder, you can see the
icon grow and fade out, as shown in Figure 17-28. This animation gives the
impression of “launching” the icon upward, toward the user.

This effect is very good at providing visual feedback for a launch action. It can
also be successfully used to indicate that an element can be clicked to launch an
action. On Aerith’s main screen, for instance, a spring effect plays when the user
moves the mouse over the clickable elements, as show in Figure 17-29.

Figure 17-28 The spring animation on Mac OS X when the user double-clicks
a document.

Figure 17-29 A spring effect plays when the mouse is over the element.

www.it-ebooks.info

http://www.it-ebooks.info/

486 CHAPTER 17 DYNAMIC EFFECTS

If you have read the rest of this book, you should be able to understand how to
implement a spring effect. Let’s see how it might look in code.

Spring Fever
You will find an implementation of a spring effect in the project called Spring
on the book’s Web site. The example displays a launch window in which the user
can choose among various applications to launch, as shown in Figure 17-30.

Because a spring effect requires increasing the size of the clicked element, this
implementation paints the animation on a glass pane. The glass pane needs an
image, the boundaries of the original image, a magnifying factor, and the current
zoom level:

public static class SpringGlassPane extends JComponent {
 private static final float MAGNIFY_FACTOR = 1.5f;

 private Rectangle bounds;
 private Image image;

 private float zoom = 0.0f;
}

ONLINE
DEMO

Figure 17-30 Clicking any of the icons triggers the spring effect.

www.it-ebooks.info

http://www.it-ebooks.info/

SPRING 487

During the animation, the glass pane increases the size of the image by
MAGNIFY_FACTOR * zoom. Thus with a MAGNIFY_FACTOR of 1.5, when zoom
equals 0.0, the image is painted with the original size, and when zoom equals
1.0, the image is 150 percent larger.

Because we would also like the image to fade out during the animation, we can
reuse the zoom value. The opacity of the image is alpha equals 1.0 minus zoom.
Thus, when zoom equals 0.0, the image is totally opaque (alpha = 1.0) and when
zoom equals 1.0, the image is totally transparent (alpha = 0.0).

The painting code for the effect is as follows:

@Override
protected void paintComponent(Graphics g) {
 if (image != null && bounds != null) {
 // Increase the image size
 int width = image.getWidth(this);
 width += (int) (image.getWidth(this) *
 MAGNIFY_FACTOR * getZoom());

 int height = image.getHeight(this);
 height += (int) (image.getHeight(this) *
 MAGNIFY_FACTOR * getZoom());

 // Center the image on the original element
 int x = (bounds.width - width) / 2;
 int y = (bounds.height - height) / 2;

 // Draw the translucent, blown-up image
 Graphics2D g2 = (Graphics2D) g.create();
 g2.setRenderingHint(RenderingHints.KEY_INTERPOLATION,
 RenderingHints.VALUE_INTERPOLATION_BILINEAR);

 g2.setComposite(AlphaComposite.SrcOver.derive(
 1.0f - getZoom()));
 g2.drawImage(image, x + bounds.x, y + bounds.y,
 width, height, null);
 }
}

This method first computes the new size of the image and the new location so
that the spring effect is always centered over the original image. The method
then sets up a bilinear interpolation on the Graphics2D surface to ensure that the
image will look good once magnified on screen. Finally, the code uses an

www.it-ebooks.info

http://www.it-ebooks.info/

488 CHAPTER 17 DYNAMIC EFFECTS

AlphaComposite.SrcOver instance, whose alpha value is 1.0 minus zoom, as
suggested earlier, to draw the translucent image.

The animation starts when the application passes an image and the boundaries of
the clicked element to the glass pane:

public void showSpring(Rectangle bounds, Image image) {
 this.bounds = bounds;
 this.image = image;

 Animator animator = PropertySetter.createAnimator(
 250, this, "zoom", 0.0f, 1.0f);
 animator.setAcceleration(0.2f);
 animator.setDeceleration(0.4f);
 animator.start();

 repaint();
}

public float getZoom() {
 return zoom;
}

public void setZoom(float zoom) {
 this.zoom = zoom;
 repaint();
}

Once again, the animation code is very simple, thanks to the Timing Frame-
work. The animator changes the value of the zoom property between 0.0 and
1.0 over a period of 250 ms. To improve the quality of the effect, the animator
uses a nonlinear interpolation, as described by the acceleration and the deceler-
ation factors.

The result of the spring effect in the Spring project is shown in Figure 17-31.

In this example, the spring effect is painted over the clickable item to enforce the
impression of launching an application. When you use the spring effect to high-
light an element on mouseover, it is preferable to paint the effect behind the ele-
ment, as in Figure 17-29. The difference is subtle, but users should not get the
impression that they have actually launched something—only that it is possible
to launch something with that element.

www.it-ebooks.info

http://www.it-ebooks.info/

MORPHING 489

Morphing
Morphing is a visual effect that changes one shape into another through a seam-
less transition.

Motivation
In contrast to all of our previous dynamic effects, morphing is not widely used in
traditional user interfaces, mainly because of the obvious difficulty of morphing
one arbitrary shape into another.

Figure 17-31 The spring effect in action.

www.it-ebooks.info

http://www.it-ebooks.info/

490 CHAPTER 17 DYNAMIC EFFECTS

Mac OS X offers two examples of how to use morphing in a user interface. Fig-
ure 17-1, at the beginning of this chapter, shows the effect rendered by Mac OS
X when the user minimizes a window. The window moves to the bottom of the
screen and morphs at the same time into a small thumbnail.

Figure 17-32 shows some Dashboard widgets from Mac OS X that you can drag
and drop onto the screen to launch a new mini-application. Figure 17-33 shows
what the Dictionary widget, seen in Figure 17-32, looks like after the user drops
it. What’s interesting is the animation played by the system before the drop
occurs. While the user drags the widget, the widget icon morphs into the widget
itself. In the case of the Dictionary, the square icon seamlessly becomes a wide
rectangle. Figure 17-34 shows what the icon being dragged looks like halfway
through the morphing animation.

Morphing is common in Adobe Flash animations, found on many Web sites,
because it can be used to create complex animations. Adobe Flash refers to mor-
phing as shape tweening.

You can successfully use morphing in your user interfaces. For instance, mor-
phing can help create richer and better-animated splash screens or animated
About dialog boxes. You can also use morphing to convey more information than
with a regular shape and thus improve the user experience. For example, imagine

Figure 17-32 Dashboard widgets in Mac OS X.

Figure 17-33 The Dictionary widget as it appears after being dropped on the screen.

www.it-ebooks.info

http://www.it-ebooks.info/

MORPHING 491

a delete button that morphs into a trashcan when the mouse is over it, enforcing
the idea that the button disposes of something.

Morphing Buttons
The project called Morphing on the book’s Web site contains a simple applica-
tion that lets the user navigate back and forth between two pictures. Figure 17-35
shows what the user interface looks like. The user can press the two Backward
and Forward buttons to flip through the pictures. Because those buttons have a
standard shape, the user is most likely to understand that they should be pressed.

Figure 17-34 The widget icons morphs into the widget.

ONLINE
DEMO

Figure 17-35 The two buttons can be pressed to navigate through the pictures.

www.it-ebooks.info

http://www.it-ebooks.info/

492 CHAPTER 17 DYNAMIC EFFECTS

Wouldn’t it be more interesting to graphically show the user what each button is
supposed to do? Most user interfaces would simply add an icon in each button, in
this case perhaps arrows pointing to the left and right. Icons can be distracting, how-
ever, and it is hard to find a set of icons that works well across operating systems.

It is also possible to change the shape of the buttons themselves and paint them
as arrows. Unfortunately, arrow shapes are not very common for buttons, and the
user might be confused as to their purpose.

Another solution is to use morphing. When the mouse pointer enters the button,
the button morphs into an arrow pointing in the appropriate direction, as shown
in Figure 17-36. This effect is animated to make the transition look smooth. Fig-
ure 17-37 shows what the button looks like in the middle of the morphing
sequence.

The Morphing example is based on the Morphing2D class, written by Jim
Graham,8 member of the Java 2D team at Sun Microsystems, and the class is avail-
able under the LGPL license in the SwingX project (http://www.swinglabs.org).

8. The Morphing2D class is complicated, and it would not be possible to explain its 600 lines of
code in detail here. Every Shape is made of segments, which can be straight lines, quadratic
curves, or Bézier curves. The idea behind Morphing2D’s algorithms is to match all of the seg-
ments of the start shape to all of the segments of the end shape. If there are not enough segments
in either shape, new segments must be interpolated from the existing ones. Those of you who love
mathematics or feel courageous enough should read Morphing2D.java. I did when I commit-
ted the class to SwingX and did very simple code refactoring. I stopped when I started drooling,
and it took me a few days to recover from the damage that my brain suffered. Superman’s weak-
ness is kryptonite. Mine is mathematics.

Figure 17-36 The button turns into an arrow when the mouse is over it.

www.it-ebooks.info

http://www.swinglabs.org
http://www.it-ebooks.info/

MORPHING 493

Morphing2D implements the java.awt.Shape interface and can therefore be
used like any other Java 2D shape, such as Rectangle and Ellipse2D. A
Morphing2D instance is created with two other Shape instances, which represent
the start and end shapes. The setMorphing() method controls the amount of
interpolation, or morphing, between the two shapes. When the morphing amount
is 0.0, only the start shape shows. When the morphing amount is 1.0, only the
end shape shows. Any other value between 0.0 and 1.0 will show a shape that is
a mix between the start shape and the end shape.

The following code comes from the DirectionButton class and shows how to
create a Morphing2D shape that starts with a rounded rectangle and ends with an
arrow pointing to the left:

private Morphing2D createMorph() {
 // Start shape is a rounded rectangle
 Shape sourceShape = new RoundRectangle2D.Double(2.0, 2.0,
 getWidth() - 4.0, getHeight() - 4.0, 12.0, 12.0);

 // End shape is a left pointing arrow
 GeneralPath.Double destinationShape =
 new GeneralPath.Double();
 destinationShape.moveTo(2.0, getHeight() / 2.0);
 destinationShape.lineTo(22.0, 0.0);
 destinationShape.lineTo(22.0, 5.0);
 destinationShape.lineTo(getWidth() - 2.0, 5.0);
 destinationShape.lineTo(getWidth() - 2.0, getHeight() - 5.0);

continued

Figure 17-37 Mid-morph: The rounded rectangle morphs seamlessly into an arrow.

www.it-ebooks.info

http://www.it-ebooks.info/

494 CHAPTER 17 DYNAMIC EFFECTS

 destinationShape.lineTo(22.0, getHeight() - 5.0);
 destinationShape.lineTo(22.0, getHeight());
 destinationShape.closePath();

 return new Morphing2D(sourceShape, destinationShape);
}

Note that the two shapes can be of arbitrary size and location. To paint the mor-
phing shape, proceed as you would with any other Java 2D shape:

@Override
protected void paintComponent(Graphics g) {
 Graphics2D g2 = (Graphics2D) g.create();

 LinearGradientPaint p;
 p = new LinearGradientPaint(0.0f, 0.0f, 0.0f, getHeight(),
 new float[] { 0.0f, 0.5f, 0.501f, 1.0f },
 colors);
 g2.setPaint(p);

 Morphing2D morph = createMorph();
 morph.setMorphing(getMorphing());

 g2.fill(morph);
}

The morphing animation relies entirely on the TimingFramework. An animator
is created to change the value of the button’s morphing property between 0.0 and
1.0. This animator is attached to a MouseTrigger that takes care of playing the
animation when the mouse enters the button’s boundaries:

private void setupTriggers() {
 Animator animator = PropertySetter.createAnimator(
 150, this, "morphing", 0.0f, 1.0f);
 animator.setAcceleration(0.2f);
 animator.setDeceleration(0.3f);

 MouseTrigger.addTrigger(this, animator,
 MouseTriggerEvent.ENTER, true);
}

public float getMorphing() {
 return morphing;
}

public void setMorphing(float morphing) {
 this.morphing = morphing;
 repaint();
}

www.it-ebooks.info

http://www.it-ebooks.info/

SUMMARY 495

The last parameter of the addTrigger() method tells the Timing Framework to
reverse the animation when an opposite event is received by the trigger. In this case,
the event opposite to MouseTriggerEvent.ENTER is MouseTriggerEvent.EXIT.
Automatically, the arrow morphs back to a rounded rectangle when the mouse
exits the button’s boundaries.

Note: Leaving the Animation Partway Through. The Timing Framework also
handles events that occur during the animation. For instance, if the mouse exits the
button when the animation has played for only 40 percent of the total duration, the
reverse animation starts at 40 percent of the total duration.

Morphing is an impressive visual effect underused in today’s user interfaces. There
are many situations in which it can be useful. For instance, imagine a combo-box
morphing into its drop-down menu when clicked. Morphing2D and the Timing
Framework let you add this kind of effect very easily into your applications.

Summary
Dynamic visual effects are very efficient mechanisms to spice up your user inter-
faces. They improve the user experience by providing a better visual feedback on
what the application is doing, and they also make your product look great. You
should not, however, abuse them. Animated effects must be used for specific pur-
poses and be as seamless and natural as possible. Always think about the added
value for the end user when you implement a new animation in your user interface.

www.it-ebooks.info

http://www.it-ebooks.info/

This page intentionally left blank

www.it-ebooks.info

http://www.it-ebooks.info/

497

18
Animated
Transitions

THIS chapter1 introduces a library called Animated Transitions. This library
works in conjunction with the Timing Framework library, described earlier. Like
the Timing Framework library, the Animated Transitions library is available on
the book’s Web site. This chapter details the motivations for the Animated Tran-
sitions library as well as how to use the API. We discuss example applications
that show what the library can do.

Animating Application State Segues
Picture a typical forms-based application. The user is presented with a GUI con-
sisting of various widgets such as text fields, buttons, list boxes, and checkboxes,
which they fill out, select, and click appropriately. The user then clicks on the
ever-present Submit button, which usually results in this GUI disappearing and,

1. We weren’t actually sure where to place this chapter. Animated Transition is kind of an Effect that
you can use in your applications, so it belongs in the Effects section. But it’s also an animation-
enabling library, so it belongs in the Animations section. In the end, we decided to place it here in
the Effects section because it’s more of a nifty effect than a base library like the Timing Frame-
work. But if we could put links in a book, we would put a link here from Part III. I tried to link the
chapter using UNIX symlinks, like this: ln –s PartIII/Chapter18 PartIV/Chapter18. But
the book had a page fault.

ONLINE
LIBRARY

www.it-ebooks.info

http://www.it-ebooks.info/

498 CHAPTER 18 ANIMATED TRANSITIONS

after some delay, being replaced by a completely different GUI. More text fields,
more information, more buttons, and often more confusion for the user.

They puzzle over the new GUI for a bit. Then they proceed to fill out the infor-
mation, click another Submit button, and thus continue on their journey in this
fascinating application until either the server crashes or they retire.

This application is typical of HTML-based Web applications in which the GUIs
tend to be very static and the capabilities of the browser container tend to be
more limited than, say, a rich-client toolkit. But this experience is really the
same in most client-server applications, regardless of language and toolkit. It is
simply the easiest and most obvious way for such applications to work. Users
complete information required by the application, they submit this information,
the server thinks about it and sends a response, and then the application displays
the results and asks for more information.

This may be the most straightforward way for the developer to write the appli-
cation. But is it the easiest way for the user to use the application? And is the
ease of development for the programmer worth the trade-off in the poor user
experience?

The difficulty for users comes in the form of being constantly confronted with new
GUIs that they must decipher before proceeding. And hopefully, the users don’t
take a break away from the display. Or click a button they didn’t mean to. Or blink.
They may be faced with some screen they have not seen before, and they may not
know how they got there—or how to get back to where they were before.

The Big Idea
What if you could maintain some logical connection between these different
application states? What if moving from one screen of the application to another
happened in a way that flowed smoothly and logically, so that users could see
how they got here from there and how they might even get back to where they
were before? More importantly, what if keeping these logical connections
between the application states made it easier for users to figure out what they
were supposed to do on each screen, and they were therefore more productive in
their use of your application?

Tip: Maintaining a logical and visual connection between application states is the
idea behind Animated Transitions. An application GUI animates between its differ-
ent states to create a smoother and more logical flow for the user.

www.it-ebooks.info

http://www.it-ebooks.info/

ANIMATING APPLICATION STATE SEGUES 499

The old model of application transitions consists of abrupt erasures of the cur-
rent screen followed by painting of entirely new screens with potentially radi-
cally different appearance. The new model of animated transitions makes state
transitions smoother by moving things around on the screen in a seamless fash-
ion to make it more obvious how the different screens and application states
relate to each other.

For example, imagine a search engine with an initial screen consisting of some
explanatory text, a Search label, and a text entry field, as seen in Figure 18-1.
Typing text into the search field and hitting Enter causes the GUI to change to a
screen that shows the results of the search. A traditional version of this applica-
tion might simply erase the first screen and replace it with a screen that holds the
results of the search. It would be easy, and typical, to at least include another text
entry field and Search label on this second screen, as shown in Figure 18-2.

Figure 18-1 Simple search engine GUI.

Figure 18-2 Results of search.

www.it-ebooks.info

http://www.it-ebooks.info/

500 CHAPTER 18 ANIMATED TRANSITIONS

What if the first screen did not just disappear but instead transitioned smoothly
into the second screen? For example, the text entry field and Search field could
move themselves to the top of the screen while the search results faded or moved
into view. If this happened, chances are better that users would automatically
know where to go to enter a new search. They would see the search field compo-
nent move up to the top, so they would know where that entry field was on the
new GUI. Also, if the connection between the old GUI and the new GUI with the
results listing was made in a very obvious way, it would be much clearer to users
that this page full of information came from that initial search page.

Of course, this example is very simple, and the need for connecting the screens
is probably less critical. But typical forms-based applications, such as enterprise
database applications or online shopping sites, are much more complicated, and
it is easy to get lost in all the new and old GUI objects popping in and out
between all the application screens. Even in these more complex applications,
we could apply the smooth transition approach to make these screen changes
much more user friendly:

• Move and scale components that are shared between screens.

• Fade or slide in GUI objects that are appearing.

• Fade or slide out GUI objects that are disappearing.

The holdup, of course, is complexity of implementation. A little more pain for
the developer will usually pay off well if it makes things better for the user. But a
lot more pain for the developer usually means it simply won’t happen, regardless
of any potential user benefits. Many GUI programmers may view the kinds of
things discussed here as too complicated to implement. Animation, fading, slid-
ing, scaling—for someone used to using a GUI builder to place components, or
coding components with a layout manager, it is probably not obvious how to
accomplish these effects. It is also not obvious how to add these effects without
throwing your application into contortions and spending a lot more development
time on whizzy animations that you would rather spend just making the applica-
tion logic work correctly.2

What developers need is a way to encapsulate the ideas and actions involved in ani-
mated transitions into a system that they can easily plug into existing or new appli-
cations. If we can make this behavior as simple as flipping a switch, or calling a
method or two, maybe we can make it easier for developers to actually incorporate

2. I, for one, really like the idea of spending most of my development time on whizzy effects. But
then there’s that pesky reality bell that chimes occasionally, telling you that you need to actually
finish the application in order to get paid.

www.it-ebooks.info

http://www.it-ebooks.info/

ANIMATED TRANSITIONS: THE LIBRARY 501

it into their applications. And if we can make it radically easier, maybe applications
will actually start using this capability on a regular, instead of exceptional, basis.

Help is on the way.

Animated Transitions: The Library
Please welcome the Animated Transitions library, a framework for making tran-
sitions between different application states smooth and easy. All that it requires
from you and your application is a little bit of setup to tell it what you want to
transition, and the library takes care of the rest.

Animated Application State
Typical effects in Swing applications are limited to individual components, such
as buttons that pulsate, scrolling lists that expand smoothly, and images that fade
in or out. While these effects are interesting and useful, imagine the potential
when you can do these kinds of things at the application level instead of the
component level.

Tip: Animated transitions encompass more than simply animating the translucency
of a button or the location of some other component. They comprise all of this and
more for potentially every component in the application.

Imagine an application that has several simple components in its GUI: text entry
fields, labels, icons, buttons, and so on. Clicking on a Submit button causes the
application to switch to a different screen where many of these elements are the
same, but they are in different locations, or they are of different sizes, or they are
in different orientations. Meanwhile, many of the components on the first screen
went away and some new components joined the GUI. What if we could animate
all of these transitions or whatever subset was deemed interesting and productive
for this application?

GUI States
A key concept in animated transitions is that an application changes state several
times in its lifetime. Entering data on one screen causes a query to some database,

www.it-ebooks.info

http://www.it-ebooks.info/

502 CHAPTER 18 ANIMATED TRANSITIONS

which results in data and entry fields displayed on a different screen of the applica-
tion. Entering data or otherwise interacting with that new screen causes the appli-
cation to show a different screen, again with a different set of GUI components.

Whether these screens are static, with content that is predetermined at code-
writing time, or dynamic, with content that is determined at runtime by process-
ing user data, the application will understand these conditions as different states.
And if it can understand and separate these separate states of the application, it
can work with the Swing effects that we discuss here. It can make the screen
transitions smoother and more effective than the typical transitions that re-create
the GUI completely in traditional GUI applications.

The animated transitions framework centers on the ability of an application to
define these different screens or states of an application. In particular, it cares
only about two states of an application at any given time: the current state of the
application that the user is about to leave and the next state that the user is about
to enter into. Given this before and after information, the framework can calcu-
late and render an animation that transitions smoothly between these two states.

The API
The basic usage of the Animated Transitions framework is simple. You create a
ScreenTransition object, which manages the transition for you, and then tell it
to start(). Here are the ScreenTransition constructors:

public ScreenTransition(JComponent transitionComponent,
 TransitionTarget transitionTarget,
 Animator animator)

public ScreenTransition(JComponent transitionComponent,
 TransitionTarget transitionTarget,
 int duration)

The transitionComponent parameter is the container in your GUI in which the
transition takes place. The transitionTarget parameter is an object that
receives callbacks during the transition. The animator parameter in the first con-
structor describes the actual animation. You can optionally provide a duration,
as in the second constructor, and the ScreenTransition will construct its own
Animator object internally. Note that the container you provide does not need to
encompass the entire client area of your application window. You can have the
transitions occur in subcomponents of your window.

www.it-ebooks.info

http://www.it-ebooks.info/

ANIMATED TRANSITIONS: THE LIBRARY 503

The container that you provide to ScreenTransition can be set up normally,
including the use of LayoutManagers as necessary. There is no special layout
constraint when using transitions, which the later examples will demonstrate.

You call ScreenTransition.start() when you want the transition to begin:

public void start();

Once start() is called, ScreenTransition is in control and your application will
only need to respond to a single callback. The rest of the details are handled by the
framework. The callback you must implement is the method setupNextScreen(),
defined in the TransitionTarget interface:

public interface TransitionTarget {
 public void setupNextScreen();
}

This method is called after your call to start(), when the framework needs you
to arrange your container’s GUI according to what you want it to look like when
the transition ends. In this method, you add, remove, resize, and arrange the
components in the application container to suit the application’s needs. From
this revised GUI in the container, ScreenTransition infers the state of the com-
ponents that it needs to animate to during the transition. After you return from
setupNextScreen(), the transition begins. The framework has everything that it
needs to calculate and run the animation and then put the application in the final
screen state when it is finished.

Example: SearchTransition
Let’s use our earlier search engine GUI as an example. We’ll see if we can
improve the experience with animated transitions. The code for this application
is found in the SearchTransition project on the book’s Web site.

On the first screen of the application, there is a simple label and text entry field,
along with some textual instructions, as seen in Figure 18-3. Once the user enters
text into the field and hits Enter, a second screen appears that displays the search
results along with the repositioned label and text entry field.

Without animated transitions, the application would behave as follows:

• The user enters text in the text field and hits Enter.

• The text-entry screen is erased, and the results screen appears.

ONLINE
DEMO

www.it-ebooks.info

http://www.it-ebooks.info/

504 CHAPTER 18 ANIMATED TRANSITIONS

With animated transitions, the application could connect the experience of the
two screens more smoothly:

• The user enters text in the text field and hits Enter.

• The label and text field smoothly move into place at the top right of the
results screen.

• The instructions fade or move out of the view.

• The results fade or move into view.

What we have in this transition are components that are undergoing one of three
state changes:

• Some elements change their position between screens (the label and text
field).

• Some elements go away between the first and second screens (the
instructions).

• Some elements come into view between the first and second screens (the
results).

The process of the transition is shown in Figure 18-3 through Figure 18-7.

It is certainly possible to animate each of these elements individually. Using
what we know about animations, the Timing Framework, Swing components,
Java2D, and animated effects rendering, we could create for each element sepa-
rate custom animations that do the right thing: move, scale, fade, or whatever.
But given the myriad of effects that we might need and the large numbers of ele-
ments and screens that a typical application has to manage, this seems like a lot

Figure 18-3 Start screen of application: awaiting user input.

www.it-ebooks.info

http://www.it-ebooks.info/

ANIMATED TRANSITIONS: THE LIBRARY 505

Figure 18-4 User enters search phrase.

Figure 18-5 Mid-transition: the search label and entry field are moving,
the results are fading and moving in, and the instructions are fading out.

Figure 18-6 Still transitioning.

www.it-ebooks.info

http://www.it-ebooks.info/

506 CHAPTER 18 ANIMATED TRANSITIONS

of work for a developer. The result would probably be that the work would not
get done, or not even get started, which helps explain why there are not more
applications using animated transitions out there today.

Let’s see how we can use the Animated Transitions library to get the job done.
SearchTransition simulates an application with two screens. The user navi-
gates from one screen to the other by hitting the Enter key in the text field. First,
let’s look at the GUI in each of these two screens.

For the first screen, shown in Figure 18-3, we have a label, a text entry field, and
some instructions. The application defines these as simple components:

JLabel instructions = new JLabel("Search and ye shall find...");
JLabel searchLabel = new JLabel("Search:");
JTextField searchField = new JTextField("");

We set up the positions of these components in the method setupSearchScreen():

private void setupSearchScreen() {
 // assignment of searchX/searchY/etc. variables omitted
 add(instructions);
 add(searchLabel);
 add(searchField);
 instructions.setBounds(instructionsX, instructionsY,
 INSTRUCTIONS_W, INSTRUCTIONS_H);
 searchLabel.setBounds(searchX, searchY, LABEL_W, LABEL_H);
 searchField.setBounds(fieldX, fieldY, FIELD_W, FIELD_H);
}

Figure 18-7 Transition complete: the second screen is now displayed.

www.it-ebooks.info

http://www.it-ebooks.info/

ANIMATED TRANSITIONS: THE LIBRARY 507

Tip: We happen to use a null LayoutManager in this application, which is merely a
simplification for this trivial example. Real applications with complex, attractive,
and robust GUIs should use real LayoutManagers instead.

We similarly define the additional scroll pane component used in the second
screen, shown in Figure 18-7:

JEditorPane results = new JEditorPane("text/html",
 "My Life with Dung Beetles
" +
 "Beetle Bailey Gets Latrine Duty
" +
 "Evolution's Oddities
" +
 "Society's Parasites
" +
 "You Dung Me Wrong: A Country Music History
" +
 "Ding, Dung, The Witch is Dead
" +
 "'To be or not to beetle'
" +
 "Gross Insects of the World
" +
 "Nature's Sanitation Engineers
 +" +
 "Why are they here?
 +" +
 "</body></html>");;
JScrollPane scroller = new JScrollPane(results);

Yes, we hard-code the results for this demo.3

We define the placement of all of the GUI elements in the second screen in the
method setResultsScreen():

public void setupResultsScreen() {
 // assignment of searchX/searchY/etc. variables omitted
 add(searchLabel);
 add(searchField);
 add(scroller);
 searchLabel.setBounds(searchX, 10, LABEL_W, LABEL_H);
 searchField.setBounds(fieldX, fieldY, FIELD_W, FIELD_H);
 scroller.setBounds(RESULTS_X, resultsY,
 getWidth() - (2 * RESULTS_X),
 getHeight() - resultsY - 20);
}

3. I tried to implement a complete, searchable knowledge base on insects just for this demo, but alas,
there were too many bugs. But it makes me wonder: Do they hard-code the results in real search
engines too? It would explain why they’re so fast. With all of the junk on the Web, how would we
ever know?

www.it-ebooks.info

http://www.it-ebooks.info/

508 CHAPTER 18 ANIMATED TRANSITIONS

We create our ScreenTransition object as follows:

 Animator animator = new Animator(500);
 animator.setAcceleration(.2f);
 animator.setDeceleration(.4f);
 ScreenTransition transition = new ScreenTransition(this,
 this, animator);

This transition lasts for a half-second, it accelerates for the first 20 percent, and it
slows down for the final 40 percent. We use this, the JComponent that holds the
GUI components, as the container for the transition. We also use this, which
implements the TransitionTarget interface, as the target of the transition’s
callback to set up the next screen.

We use the Enter key as the event to display the results screen, so we add a
KeyListener and implement an actionPerformed() method as follows:

public void actionPerformed(ActionEvent ae) {
 // Change currentScreen, used in setupNextScreen() callback
 currentScreen = (currentScreen == 0) ? 1 : 0;
 transition.start();
}

Starting the transition results in a callback to our setupNextScreen() method,
which is implemented as follows:

public void setupNextScreen() {
 removeAll();
 switch (currentScreen) {
 case 0:
 setupSearchScreen();
 break;
 case 1:
 setupResultsScreen();
 break;
 default:
 break;
 }
}

The removeAll() function simply removes all components from the container,
which is an easy way to clear out the state between screens and set things up
cleanly. An alternative approach would be to figure out the difference in GUI
state between the current screen and the next screen and to remove, add, and
rearrange components individually, as appropriate. But removing everything and

www.it-ebooks.info

http://www.it-ebooks.info/

ANIMATED TRANSITIONS: THE LIBRARY 509

setting up all components for the next screen seems a bit easier, at least in this
situation.

The switch statement calls the appropriate setupSearchScreen() or
setupResultsScreen() method, as described previously, depending on which
screen we are transitioning from. This is a simple mechanism that assumes we
are toggling between these two screens. A real application would have more
involved logic here to determine what the next screen should look like.

Our code review of SearchTransition is nearly complete. As we saw earlier,
the API of AnimatedTransitions is very simple. Most of the functionality is
hidden from view. The framework figures out internally how components
change between screens and runs the animated transition between those changes.
In particular, if your application can use the standard transition effects of the
library and does not need custom effects, all you need is explained earlier: create a
ScreenTransition, start() it, and handle setupNextScreen() appropriately.

There is, however, one more piece to our SearchTransition demo that is key to
part of its functionality. It uses a custom effect for the sliding/fading results
screen. To show you how your application can do something similar, we need to
discuss effects.

Effects
By default, the Animated Transitions library uses standard effects for compo-
nents during the animation.

• Components that go away use a fading-out effect.

• Components that appear use a fading-in effect.

• Components that move and/or resize use a moving/scaling effect.

While these effects work well as defaults, it seems reasonable to expect that
developers may want to supply custom effects for their applications.

In order to simplify customizing the behavior of transitions, the effects used by
the library were implemented as pluggable objects. So while the framework cur-
rently uses certain standard effects by default, it can easily be configured to use
custom effects that you supply instead.

Let’s look at the Effects API and how you can use it to create and use custom
effects in your applications.

www.it-ebooks.info

http://www.it-ebooks.info/

510 CHAPTER 18 ANIMATED TRANSITIONS

Effects: The API
There are two different uses of the Effects API: instantiating and using existing
effects and creating custom effects. We cover both of these topics.

Instantiating Effects First, let’s look at the various effects that the current
framework offers:

Move

This effect renders the component at a position that moves from the compo-
nent’s starting point in the first screen to its end point in the second screen.

Scale

This effect renders the component by resizing it between the starting and end-
ing sizes of the component in the two screens. Because scaling can cause
some components, especially those with text or whose internal layout changes
with their size, to alter their appearance as their size changes, use of this effect
triggers an internal flag that tells the system to render the component during
the animation instead of using a snapshot image of the component. Scaling an
image of the component produces results that don’t look right in general,
causing distortion during the transition and a disturbing “snap” to the real
look when the transition completes and the real component is rendered. Ren-
dering the actual component during the animation solves this problem and
eliminates the artifacts.

FadeIn

This effect renders the component in varying degrees of translucency, from
invisible to completely opaque, as the component fades into place between
the first and second screens.

FadeOut

This is the opposite of the FadeIn effect, rendering the component from com-
pletely opaque to invisible as the transition runs between the first and second
screens.

Rotate

This effect can be used to spin a component by some specified degrees around
a given center of rotation.

www.it-ebooks.info

http://www.it-ebooks.info/

ANIMATED TRANSITIONS: THE LIBRARY 511

Unchanging

This effect does nothing and is simply a utility for having an effect that causes
the component to be rendered in its original state during the transition.

Instantiating one of these effects is easy, requiring a simple call to its construc-
tor. Most of these effects have a default constructor that takes no arguments. For
example, to create a Move effect, you would simply call this:

Move moveEffect = new Move();

The data for the appropriate start and end states is set in the effect by the frame-
work when the transition begins, so no additional information is needed at con-
struction time. Some of the effects take additional information if they require
more than the component’s position and size. For example, the Rotate effect
needs to know the angle and center of rotation. You can create this effect with a
given rotation center, like this:

Rotate rotateAroundXY = new Rotate(degrees, x, y);

where (x, y) is a position relative to the origin of the component that it is applied to.

You can also create a Rotate effect with a center that is calculated for you on the
basis of the center of a given component:

Rotate rotateAroundCenter = new Rotate(degrees, component);

Using Effects Once you have an Effect object, you must tell the framework
how and when to use it. This is done through the EffectsManager’s setEf-
fect() method:

static void setEffect(JComponent component, Effect effect,
 TransitionType transitionType)

setEffect() takes the component to be rendered with this effect, the effect to
be used, and the TransitionType under which the effect should be used. The
transition type is one of the following:

• TransitionType.APPEARING: This transition occurs when the component
is in the second screen, but not the first.

• TransitionType.DISAPPEARING: This transition occurs when the compo-
nent is in the first screen, but not the second.

• TransitionType.CHANGING: This transition occurs when the component is
in both screens.

www.it-ebooks.info

http://www.it-ebooks.info/

512 CHAPTER 18 ANIMATED TRANSITIONS

The effects set on the components in this way are set globally for the application.
They are not specific to any current or future transition. To remove an effect for a
component and transition type, call the setEffect() method with null for the
effect.

For example, to install the rotation effect that we created previously, we would
do the following:

EffectsManager.setEffect(component, rotateAroundCenter,
 TransitionType.CHANGING);

This code tells the framework to use the rotateAroundCenter effect on this par-
ticular component when that component is on both screens of a transition.

When the transition starts, the system figures out whether and how each com-
ponent in the container is changing between the two current screens. From
that information, the framework determines the TransitionType to use. The
EffectsManager is then queried to see if a custom effect is installed for this
component/TransitionType pair. If no such custom effect is set in the system,
the library falls back to the default for each TransitionType:

• FadeIn for APPEARING

• FadeOut for DISAPPEARING

• Move, Scale, or Move/Scale for CHANGING

Speaking of the Move/Scale effect, one more built-in Effect that is useful to know
about is CompositeEffect. This effect does nothing on its own but instead uses
multiple child effects to create a new effect that is a combination of all of its child
effects. So, for example, the Move/Scale effect is actually a CompositeEffect
that performs both a Move and a Scale operation on the component during the
transition.

There are two constructors for CompositeEffect:

CompositeEffect composite = new CompositeEffect();
CompositeEffect composite = new CompositeEffect(someEffect);

The only difference is whether it starts out with an initial child effect. Additional
effects are added by calling the addEffect() method:

composite.addEffect(someOtherEffect);

www.it-ebooks.info

http://www.it-ebooks.info/

ANIMATED TRANSITIONS: THE LIBRARY 513

For example, the framework internally creates a Move/Scale effect as follows:

Effect move= new Move();
Effect scale = new Scale();
CompositeEffect composite = new CompositeEffect(move);
composite.addEffect(scale);

Creating Custom Effects As we mentioned earlier, it is possible to create
your own custom effects and to tell the EffectsManager to use those effects dur-
ing transitions. The effects provided in the framework so far should cover the
basics, but there are many more effects possible.

The API for creating custom effects is fairly simple. There are four main things
that your effect might consider doing, most of which are optional:

• Constructor: If your effect takes any custom parameters, such as a posi-
tion to start from or a color, then you need a specialized constructor to set
these values. You can see custom parameters used earlier in the Rotate
example, where the effect required the degrees and center of rotation.

• init(): The framework calls your effect’s init() method at the start of any
transition using the effect. You may need to override it to create any special
animation properties. For example, you can create PropertySetters in
init() to animate any custom parameters during the transition. The
Animator object that ScreenTransition uses is passed into init(), so
you can add new targets to the animator, such as new PropertySetter
objects, at this time.

• setup(): This method is called during each animation frame of the transi-
tion to set up the Graphics object appropriately for rendering this effect.

• paint(): This method is called after the call to setup(). It is the method
in which the rendering of the object actually occurs.

Tip: Most of these methods are optional for Effect subclasses. The init() method
is really the only one that you need to override in general, depending on your situ-
ation. For example, the Effect superclass handles the setup() and paint() for
components that simply need to draw themselves using the known position and size
of the component.

For an idea of how you might go about building a custom effect, let’s look at the
code for some of the built-in effects in the system.

www.it-ebooks.info

http://www.it-ebooks.info/

514 CHAPTER 18 ANIMATED TRANSITIONS

Move Effect Implementation The Move effect simply moves a component from
its start position to its end position over the course of the transition.

Move defines two constructors: one takes no arguments, expecting that its states
will be set up later when the transition is initialized, and the other takes start and
end states:

public Move() {}

public Move(ComponentState start, ComponentState end) {
 setComponentStates(start, end);
}

The animation to change the component’s location over time is set up in Move’s
init() method with a PropertySetter targeting the location property in the
Effect superclass:

public void init(Animator animator, Effect parentEffect) {
 Effect targetEffect = (parentEffect == null) ?
 this : parentEffect;
 PropertySetter ps;
 ps = new PropertySetter(targetEffect, "location",
 new Point(getStart().getX(), getStart().getY()),
 new Point(getEnd().getX(), getEnd().getY()));
 animator.addTarget(ps);
 super.init(animator, null);
}

The logic with parentEffect handles the situation in which the Move effect is
part of an overall CompositeEffect. In that case, Move varies the location of
the CompositeEffect instead of its own location, since it is actually the
CompositeEffect that will later be rendered.

The PropertySetter is a simple object that varies the location from its starting
point to its ending point. The setter is then assigned as a target on the animator
object, which is the animator used by ScreenTransition to run the overall
transition.

For rendering, Move requires no functionality beyond that in the Effect super-
class. Effect automatically translates the Graphics2D object in Effect.setup()
to the proper location, which is being animated by the PropertySetter cre-
ated in Move.init(). Effect then renders a snapshot of the component in
Effect.paint().

And that’s all. Move was implemented with just these methods.

www.it-ebooks.info

http://www.it-ebooks.info/

ANIMATED TRANSITIONS: THE LIBRARY 515

For a slightly more involved example, let’s look at Rotate.

Rotate Effect Implementation The Rotate effect rotates a component around a
rotation center by a specified number of degrees. It has three constructors to han-
dle different situations:

public Rotate(int degrees, int xCenter, int yCenter)
public Rotate(int degrees, Component component)
public Rotate(ComponentState start, ComponentState end,
 int degrees, int xCenter, int yCenter)

The first constructor provides the angle and center for the rotation, but no start
and end states. Rotate, like all effects, expects these to be provided later at tran-
sition initialization time.

The second constructor is provided as a utility variant on the first, which fixes
the center of rotation at the center of the given component. Calling this construc-
tor is equivalent to the following:

Rotate(degrees,
 component.getWidth()/2, component.getHeight()/2);

The third constructor is the same as the first except that it provides the start and
end states for the component. Normally, this version is not needed because the
start and end states are determined and set dynamically by the framework.

Rotate differs from Move because it must store and track variables beyond those
provided in the Effect superclass. Rotate also needs to expose a public setter
method to be called by PropertySetter during the transition to vary the current
rotation variable:

private double radians;
public void setRadians(double radians) {
 this.radians = radians;
}

Rotate’s init() method is similar to Move.init() except that Rotate does not
care about any CompositeEffect, which knows nothing about the radians vari-
able. It must set the value in this local class instead:

public void init(Animator animator, Effect parentEffect) {
 PropertySetter ps;
 ps = new PropertySetter(this, "radians", 0.0, endRadians);
 animator.addTarget(ps);
 super.init(animator, null);
}

www.it-ebooks.info

http://www.it-ebooks.info/

516 CHAPTER 18 ANIMATED TRANSITIONS

A simple PropertySetter is created in this method and added as a target to the
transition’s Animator object. This PropertySetter varies the value of the rota-
tion radians from 0 to endRadians, which equals the “degrees” passed into the
constructor, converted to radians.

Unlike Move, which lets the Effect superclass handle the translation to the
appropriate location in its setup() method, Rotate must override setup() in
order to modify the Graphics state to account for the rotation:

@Override
public void setup(Graphics2D g2d) {
 g2d.translate(xCenter, yCenter);
 g2d.rotate(radians);
 g2d.translate(-xCenter, -yCenter);
 super.setup(g2d);
}

Here, the Graphics2D object is translated by the center of rotation and back, as
we saw earlier in Chapter 3, “Graphics Fundamentals.” The Graphics2D object
is rotated by the radians that are being animated by the PropertySetter.
Finally, it calls super.setup() to perform any other setup steps necessary in the
Effect superclass.

Like Move, Rotate chooses to not override Effect.paint() because it requires
no special rendering beyond that which Effect.paint() already provides. The
component itself, or a snapshot image of the component, will be rendered appro-
priately using the Graphics2D object that has had its state altered by the rotation
operation.

Example: SearchTransition Revisited:
Customization

Now that we understand how effects work and how to create custom effects, it is
time to revisit our SearchTransition example to see how we implemented the
custom effect for the results screen.

By default, a component with a TransitionType of APPEARING uses the stan-
dard FadeIn effect. For this application, we want the results to move up into
place as well as fade in, so we need a custom effect to make this work.

We can already rely on the built-in FadeIn effect to do the fading. What we
need, then, is a CompositeEffect that uses FadeIn as one of its child effects.

ONLINE
DEMO

www.it-ebooks.info

http://www.it-ebooks.info/

ANIMATED TRANSITIONS: THE LIBRARY 517

But we also need a new effect to move the component into place. The framework
has a Move effect already, but that effect works only on components that exist in
both screens and thus have a location on both screens to move between. In our
case, we want to move a component that does not exist on the first screen of the
transition. We want an effect that moves a component from a given location to its
dynamically determined end state. We define a new MoveIn subclass of Effect
that handles this functionality.

First, we use a variable to store the initial location that we want to move from:

private Point startLocation = new Point();

Next, we have the constructor that sets the value of our start location:

public MoveIn(int x, int y) {
 startLocation.x = x;
 startLocation.y = y;
}

And finally, we have the overridden init() method that sets up the animation:

public void init(Animator animator, Effect parentEffect) {
 Effect targetEffect = (parentEffect == null) ?
 this : parentEffect;
 PropertySetter ps;
 ps = new PropertySetter(targetEffect, "location",
 startLocation,
 new Point(getEnd().getX(), getEnd().getY()));
 animator.addTarget(ps);
 super.init(animator, parentEffect);
}

This init() method is very similar to the one that we saw for the built-in Move
effect. The logic with parentEffect is the same as we described before, which
handles the case in which there is a CompositeEffect, as in this situation. The
animation is run by creating a simple PropertySetter from the startLocation,
set at construction time, to the end location, set dynamically by the system, and
adding this property setter to the animator. Finally, we call the superclass’s init()
method to make sure that everything is initialized appropriately for this effect.

Now that we have our MoveIn effect, we create the overall effect that we want by
creating a CompositeEffect based on this MoveIn effect and the built-in FadeIn
effect. We create this effect in our setupBackgroundAndEffect() method,
which is called by the paintComponent() method whenever the height of our
component has changed. This dependency on the height of the component comes

www.it-ebooks.info

http://www.it-ebooks.info/

518 CHAPTER 18 ANIMATED TRANSITIONS

from the nature of our MoveIn effect, which needs to move the component in
from the bottom of the window. So if the height of the window changes, we must
re-create the effect to make sure we change things accordingly.

private void setupBackgroundAndEffect() {
 // init the background gradient according to current height
 bgGradient = new GradientPaint(0, 0,
 Color.LIGHT_GRAY.brighter(),
 0, getHeight(),
 Color.DARK_GRAY.brighter());
 // init resultsEffect with current component size info
 MoveIn mover = new MoveIn(RESULTS_X, getHeight());
 FadeIn fader = new FadeIn();
 moverFader = new CompositeEffect(mover);
 moverFader.addEffect(fader);
 EffectsManager.setEffect(scroller, moverFader,
 EffectsManager.TransitionType.APPEARING);
 prevHeight = getHeight();
}

The GradientPaint created here is not related to our transition but is a nice
demonstration of using a rich background for this simple application.4

We instantiate the MoveIn effect with the starting location that we want: the
x-value is the same as that used for the final location of the results component
and the y-value is equal to the bottom of the container. These values ensure that
MoveIn slides the component in vertically from the bottom of the window.

We create the desired fading-in effect simply by using the built-in FadeIn effect.
And we create our CompositeEffect by constructing it with the mover effect
and then adding the fader effect.

Finally, we register our custom moverFader effect with the system by setting it
on the results component, scroller, with the APPEARING transition type. This
tells the EffectsManager to use this particular effect whenever this component
is undergoing a transition that makes it appear on the next screen.

That’s all there is to this demo. There is some other simple Swing code in
SearchTransition to create and display the application window, but all of the
interesting transition logic is covered here. Obviously, this application is quite
limited in scope, and a real application would be much more involved. On the
other hand, you can see how easy it is to add transition capabilities, including
custom effects, to an otherwise standard Swing application.

4. Never miss an opportunity to enrich your application’s interface.

www.it-ebooks.info

http://www.it-ebooks.info/

ANIMATED TRANSITIONS: THE LIBRARY 519

Example: ImageBrowser
The SearchTransition demo was graphically limited so that we could focus on
the basic functionality of the Animated Transitions library. But it is worth seeing
another application that drives home the point about the ease and utility of the
library in a more graphically rich way. The following example can be found in
the ImageBrowser project on the book’s Web site.

Most of us have probably used some kind of photo-browsing software, whether
it is a desktop application or an online utility. A standard control in the interface
of these applications is the zoom factor, where you can change the size of the
picture thumbnails that you are looking at. Adjusting the zoom is typically done
through a slider, which is dragged back and forth to make the thumbnails of the
pictures larger or smaller.

When thumbnails are resized, it affects how everything in the GUI is laid out. All
of the thumbnails change size, so they all must reposition themselves accord-
ingly. Wouldn’t it be nice if these layout changes were animated to smoothly
transition between the before and after states of the resize operation?

ImageBrowser is a simple application that reads in all of the images from a direc-
tory and displays their thumbnails, as seen in Figure 18-8. There is a slider on the
bottom to control the current thumbnail size. As the slider is moved, the thumbnail
sizes change. This resize event forces the LayoutManager, a FlowLayout, to repo-
sition all of the images accordingly.

The Animated Transitions library is used to animate the transition between any
two before and after screens. For example, we can see the transition as the
thumbnails from Figure 18-8 are resized larger in the successive screenshots in
Figure 18-9, Figure 18-10, and Figure 18-11. Notice how, for example, the pic-
ture on the right-hand side of the top row in Figure 18-8 moves down gradually
to its final position as the second picture in the second row of Figure 18-11.
Meanwhile, all of the other images are moving toward their final positions, and
all pictures are scaling up gradually to their new thumbnail sizes.

Most of the animated transition functionality taking place in ImageBrowser was
discussed earlier, with both the SearchTransition demo and the descriptions of
the Animated Transitions API. However, there are a couple of important pieces
in this application that are worth pointing out.

First of all, note that this demo, unlike SearchTransition, uses a LayoutManager.
SearchTransition opted for a null LayoutManager just to simplify placement
of the components in specific areas of its window. But in ImageBrowser, the
LayoutManager is a key piece of functionality in the application. I certainly

ONLINE
DEMO

www.it-ebooks.info

http://www.it-ebooks.info/

520 CHAPTER 18 ANIMATED TRANSITIONS

Figure 18-8 ImageBrowser demo: Animated transitions occur when the user
changes the size of the picture thumbnails.

Figure 18-9 ImageBrowser: starting the transition to a larger thumbnail size.

www.it-ebooks.info

http://www.it-ebooks.info/

ANIMATED TRANSITIONS: THE LIBRARY 521

Figure 18-10 ImageBrowser: nearly done with the transition.

Figure 18-11 ImageBrowser: done with the transition.

www.it-ebooks.info

http://www.it-ebooks.info/

522 CHAPTER 18 ANIMATED TRANSITIONS

don’t want to have to reposition all of the thumbnails according to how large
they are and how large the window is. I would essentially be writing my own
LayoutManager in order to do that. So the code uses FlowLayout, which
arranges the pictures nicely in left-right/top-bottom order.

This is an important point to make. I made it earlier, but it was rather theoretical,
since we didn’t see it in action. So here it is again:

Tip: Animated Transitions works well with a LayoutManager. It uses absolute posi-
tioning during the transition to animate the components to their new locations, sizes,
and orientations. But it is perfectly capable of respecting any layout system in place
in either or both of the before and after screens. In fact, layout managers in the two
screens need not even be the same. One layout manager could be used in the before
screen, and a different one could be in the after screen, and the transition would
work just fine.

Another important point that this application demonstrates is about where the
transition happens in the window. In SearchTransition, the transition occupied
the entire window, but this need not be the case:

Tip: Transitions can happen in any container within the application window. The
transition need not occupy the entire Swing window but can instead be constrained
to any container within that window.

In this case, we wish to run the transition only on the picture viewing area. The
area containing the slider is separate from the picture viewer and is not included
in the transition animation.

Another point to make is that we’re using a slightly modified version of progres-
sive bilinear scaling, introduced in Chapter 4, “Images.” This technique allows
us to get very good image scaling quality while also getting good performance.
The scaling approach is critical to getting decent performance and quality in this
kind of application, since all of these thumbnails obviously require a lot of scal-
ing from the original images.

Now, having discussed why this application is interesting, let’s see a bit of the
code that makes it work. We won’t go over all of the code here, so please check
out the book’s Web site for all of the details. But we’ll see how the most interest-
ing parts work, especially with respect to animated transitions.

www.it-ebooks.info

http://www.it-ebooks.info/

ANIMATED TRANSITIONS: THE LIBRARY 523

GUI Structure
The window consists of a JFrame, which contains a JSlider on the bottom for
controlling the thumbnail size, and our custom JComponent ImageBrowser,
where the images are shown:

JFrame f = new JFrame("Image Browser");
f.setLayout(new BorderLayout());
ImageBrowser component = new ImageBrowser();
f.add(component, BorderLayout.CENTER);
JSlider slider = new JSlider(1, 400 / SLIDER_INCREMENT,
 currentSize / SLIDER_INCREMENT);
f.add(slider, BorderLayout.SOUTH);

Pictures and ImageHolder
The pictures in the view are actually JLabel objects with ImageIcons set on
them. These ImageIcon objects are created with images that we load in from a
directory on disk. For each image, we create an ImageHolder object, which
stores multiple versions of the image from the original size down to a very small
size. We scale the original down by half, scale that new version down by half,
and so on, until we reach MIN_SIZE, storing each resulting scaled image along
the way. Here is the constructor for ImageHolder, which takes an Image, stores
it, and then creates and stores all downscaled versions in an ArrayList.

private List<BufferedImage> scaledImages =
 new ArrayList<BufferedImage>();

ImageHolder(BufferedImage originalImage) {
 int imageW = originalImage.getWidth();
 int imageH = originalImage.getHeight();
 scaledImages.add(originalImage);
 BufferedImage prevImage = originalImage;
 while (imageW > MIN_SIZE && imageH > MIN_SIZE) {
 imageW = imageW >> 1;
 imageH = imageH >> 1;
 BufferedImage scaledImage = new BufferedImage(imageW,
 imageH, prevImage.getType());
 Graphics2D g2d = scaledImage.createGraphics();
 g2d.setRenderingHint(RenderingHints.KEY_INTERPOLATION,
 RenderingHints.VALUE_INTERPOLATION_BILINEAR);
 g2d.drawImage(prevImage, 0, 0, imageW, imageH, null);
 g2d.dispose();
 scaledImages.add(scaledImage);
 }
}

www.it-ebooks.info

http://www.it-ebooks.info/

524 CHAPTER 18 ANIMATED TRANSITIONS

In graphics, storing prescaled versions of an original image is known as a mip-
mapping. The technique is commonly used in games, where textures that are
applied to 3D objects in the game may be stored at several different sizes. In
our case, as in 3D games, there are two reasons for taking this approach: qual-
ity and speed.

The quality issue was raised in Chapter 4. By successive downscaling by 50 per-
cent using bilinear filtering each time, we can achieve high quality for very small
thumbnails without the performance hit that some other scaling approaches
require.5

The speed issue is not just for this initial downscale but also for scaling opera-
tions for future thumbnail sizes. Whenever the user chooses a new thumbnail
size, the application must provide an image of that size to the JLabel in the form
of a new ImageIcon. It could always downscale from the original image, but it is
much faster to simply downscale from some image that is already close to the
size we need. ImageHolder retains these different scaling sizes of the original
image for just this purpose. Whenever we need to supply a new thumbnail size,
we simply ask ImageHolder for that size and ImageHolder scales from the
most appropriate prescaled version. For example, here is the code that sets an
ImageIcon on a JLabel from a new image of size currentSize requested from
an ImageHolder object:

label[i].setIcon(
 new ImageIcon(images.get(i).getImage(currentSize)));

We can see this getImage() operation here, where ImageHolder takes the width
desired and returns a version of the image that has been proportionally scaled to
fit that width:

BufferedImage getImage(int width) {
 for (BufferedImage scaledImage : scaledImages) {
 int scaledW = scaledImage.getWidth();
 // This is the one to scale from if:
 // - the requested size is larger than this size
 // - the requested size is between this size and
 // the next size down
 // - this is the smallest (last) size
 if (scaledW < width || ((scaledW >> 1) < width) ||
 ((scaledW >> 1) < MIN_SIZE)) {

5. If you skipped or forgot that section, go back and read it. Or at least remember this message:
Don’t use getScaledInstance(). The progressive bilinear approach used here, and discussed
in depth in the earlier chapter, gives similar quality in a fraction of the time.

www.it-ebooks.info

http://www.it-ebooks.info/

ANIMATED TRANSITIONS: THE LIBRARY 525

 if (scaledW != width) {
 // Create new version scaled to this width and
 // scale the height proportionally
 float scaleFactor = (float)width / scaledW;
 int scaledH = (int)(scaledImage.getHeight() *
 scaleFactor + .5f);
 BufferedImage image = new BufferedImage(width,
 scaledH, scaledImage.getType());
 Graphics2D g2d = image.createGraphics();
 g2d.setRenderingHint(
 RenderingHints.KEY_INTERPOLATION,
 RenderingHints.VALUE_INTERPOLATION_BILINEAR);
 g2d.drawImage(scaledImage, 0, 0, width, scaledH, null);
 g2d.dispose();
 scaledImage = image;
 }
 return scaledImage;
 }
 }
 // shouldn't get here
 return null;
}

ScreenTransition
The setup of the ScreenTransition object is quite similar to what we saw
before for the SearchTransition application. We create an Animator, set some
nonlinear behavior on it to make the animation look good, and then create the
ScreenTransition object. We use our custom ImageBrowser component as
both the TransitionTarget for the setupNextScreen() callback and the con-
tainer for the transition animation:

Animator animator = new Animator(500);
animator.setAcceleration(.1f);
animator.setDeceleration(.4f);
ScreenTransition transition = new ScreenTransition(
 this, this, animator);

When a slider event occurs, our class gets a callback to the stateChanged()
method. This method sets the value of our currentSize variable, which controls
the width of our thumbnails. Then it calls transition.start():

public void stateChanged(ChangeEvent ce) {
 currentSize = slider.getValue() * 25;
 transition.start();
}

www.it-ebooks.info

http://www.it-ebooks.info/

526 CHAPTER 18 ANIMATED TRANSITIONS

At the start of the transition, we get a callback to our setupNextScreen()
method, which resizes all of our thumbnails by setting new ImageIcons based on
images that ImageHolder creates for us according to the new currentSize. This
sets up the next screen that the transition will animate to, and the animation then
runs to completion:

public void setupNextScreen() {
 for (int i = 0; i < images.size(); ++i) {
 label[i].setIcon(
 new ImageIcon(images.get(i).getImage(currentSize)));
 }
 revalidate();
}

One final piece is worth calling out here: We use a custom effect to perform our
Move/Scale effect on the thumbnails. The library, by default, actually uses an
effect that is very similar except for one important aspect: It forces the compo-
nent to redraw itself every frame. This approach to rendering avoids the image
tricks that most other effects use, where we simply manipulate a predrawn image
of the component during the transition. The forced-redraw approach happens by
default for any Scale effect because scaling many components looks awful by
default, causing artifacts during the transition. But in this case, our JLabel is an
image, so scaling the component using image tricks works perfectly. So we cre-
ate a custom Move/Scale effect that tells the system that it’s okay to use images
during the transition via the setRenderComponent() method:

Effect effect = new Move();
Effect scaleEffect = new Scale();
effect = new CompositeEffect(effect);
((CompositeEffect)effect).addEffect(scaleEffect);
effect.setRenderComponent(false);
EffectsManager.setEffect(label[i], effect,
 TransitionType.CHANGING);

The main code for this application is covered previously. But be sure to check
out the application on the book’s Web site for all of the details. It’s a pretty good
application to start from for playing around with some of the effects and func-
tionality of the Animated Transitions library. So go play, already!

www.it-ebooks.info

http://www.it-ebooks.info/

ANIMATED TRANSITIONS: UNDER THE HOOD, OR HOW DO YOU GET SWING TO DO THAT? 527

Animated Transitions: Under the Hood,
or How Do You Get Swing to Do That?

Ignore the man behind the curtain.

—The Wizard of Oz by Frank L. Baum

Everything you need to use the library is presented in the previous sections of this
chapter. But if you’re like us, and if you managed to get this far in a book on Swing
and graphics, you are probably curious how some of this stuff actually works.
There are a lot details about how Animated Transitions does its job. For the really
nitty-gritty stuff, we encourage you to check out the source code to the library on
the book’s Web site. But here are some details that Swing programmers might find
interesting about how we got Animated Transitions to do the right thing.

Setting Up the Next Screen—Quietly
The first question that might occur to a Swing programmer is, How can we
define the next screen with all of the proper layout details, but without the user
seeing what we’re doing? That is, when setupNextScreen() is called, your
code will have to set up the components in the container properly, including
Swing validation. But doing so normally means that the user would see the com-
ponents being rearranged on the screen before the animated transition runs.6

Fortunately, there are ways to perform a Swing layout validation without causing
onscreen updates that are visible to the user. We tried a couple of approaches
while implementing the framework, and both seemed to work well.

Hide in Plain Sight
This approach uses the glass pane of the window to hide the details of layout.
When the transition process starts, the framework automatically determines the
current screen information and creates an image that is a snapshot of this screen,
like a Hollywood backdrop with a painting of a castle that takes the place of a
real castle in the distance. It paints this image into the frame’s glass pane and

6. I’d probably call an effect like this a “bug” instead of an “animated transition.”

www.it-ebooks.info

http://www.it-ebooks.info/

528 CHAPTER 18 ANIMATED TRANSITIONS

then makes the glass pane visible. The image is opaque so that nothing below
shows through. Then the framework tells the application to rearrange the appli-
cation window according to the layout in the next screen. This layout happens
dynamically but is hidden from the user by the opaque glass pane. As far as the
user can tell, the application is still in the first screen state.7

Hide Out of Sight
The second approach, which is used in the current implementation, makes the
application’s container invisible prior to layout. This approach works the same
as the first one except that the user sees a different container set up to look just
like the previous screen instead of the true container for the components. Mean-
while, the framework asks the application to perform the layout changes neces-
sary for the second screen, which all occurs dynamically offscreen.

Tip: The real trick here is that layout of a container can be performed even on a non-
visible container.

Once the layout changes are completed for the second screen, the framework can
determine the component information that it needs from the container and can
then run the animation. Note that the transition is necessarily quick in nature so
that there are no unexpected results, such as the user clicking on an image of the
application state and not getting a response from the components in that image.

Getting Layout to Lay Off: Animating
Layout Changes
A second question that might occur to a Swing programmer at this point is, How
do you animate a layout that changes between the screens? This problem seems
particularly tricky when there are layout managers involved, since they control
component position and size. Just as we cannot absolutely position a component
in a particular (non-null) layout manager and expect that position to override the
constraints imposed by the layout manager, we would have difficulty animating

7. The metaphor of the Hollywood backdrop breaks down here. A backdrop fakes the stuff behind
the action, but this glass pane trick is faking the stuff in front. What we’re talking about here is
more like the curtain on a stage, which hides what the stagehands are doing to change scenes. But
whereas a curtain is obviously a cover over the scene, the image we’re talking about here actually
looks like the scene itself. So it’s a backdrop and a curtain.

www.it-ebooks.info

http://www.it-ebooks.info/

ANIMATED TRANSITIONS: UNDER THE HOOD, OR HOW DO YOU GET SWING TO DO THAT? 529

the positions of components between screens if the animation had to adhere to
layout constraints.

The mechanism for this problem is actually fairly straightforward and involves
disconnecting the actual layout in the two screens from the animation of the GUI
components during the transition. The solution is to run the transition animation
in a separate container that exists solely for running the animation. This con-
tainer is set up with a null, or absolute, layout manager so that all components
inside of it can be moved and resized absolutely. During the animation, this ani-
mation container is the one that the user will see instead of the original applica-
tion container. When the transition is complete, the animation container is
replaced by the true application container, which now contains the layout of the
second screen. These container switches are transparent to the user8 because, by
definition, the animation container looks exactly like the application container’s
first screen at the start of the animation and exactly like the application con-
tainer’s second screen at the end of the animation.

Making Swing Sing: Performance
Besides all of the performance tips covered throughout this book, one of the keys
to making Animated Transitions perform well is the use of intermediate images,
discussed in Chapter 5, “Performance.”

Tip: You don’t need to re-render the actual component during the animation if it
looks the same in every frame. Instead, you can render an image of the component.
After all, Swing’s lightweight components are basically images anyway. And if we
can use an image instead, copying that image around instead of re-rendering a com-
plex component will gain real performance and will help make transitions smoother.

8. “transparent to the user” here means “unknown by the user,” and not anything related to graphical
transparency or Swing opacity.

Clearly, we need more words in English to express things in a less ambiguous way. The
whole approach to overloading in the English language is not applied in a very systematic way.
Perhaps if words were declared final by default, it would have avoided much confusion over
the years. Unfortunately, due to backwards compatibility constraints, we cannot now change or
remove meanings without breaking existing applications, such as books and speech. It may be
time to introduce a more completely and consistently designed version, which I will dub
“English 2.0.” This was attempted some centuries ago in America, but those changes, such as
simplifying the spelling of some words like “colour” to the easier “color.” are now seen as minor
optimizations and Ease of Use changes, and resulted in merely an update release, “English 1.0.1.”
We need far more radical and useful changes next time around.

www.it-ebooks.info

http://www.it-ebooks.info/

530 CHAPTER 18 ANIMATED TRANSITIONS

Some effects, like scaling, will disable this approach, since it does not work with
what those effects need to do. We discussed earlier some of the issues regarding
scaling images of components versus rendering components. But many effects,
such as the Move effect, use the intermediate images approach with great success.

Summary
Animated Transitions can provide great, simple animation effects with very
little effort on your part. Even custom effects require only a small amount
of effort, depending on what you are trying to accomplish. Check out the
AnimatedTransitions library on the book’s Web site, play with the demo
applications, and let those transitions roll. Let’s get moving!

www.it-ebooks.info

http://www.it-ebooks.info/

531

19
Birth of a

Filthy Rich Client

CREATING a good-looking, easy-to-use application requires a lot of work.
The previous chapters provided you with the technical knowledge you need to
build such applications, but programming is not enough. Visual design plays a
crucial role in the birth of a Filthy Rich Client.

This book cannot pretend to fulfill the role of a user interface design library.
However, we can at least show you how we created the Aerith demo that you
have already seen screenshots of in the previous chapters. Our hope is to deliver
tips that will help you get from a design scribbled on a piece of paper to a func-
tional Java program.

Aerith
Aerith was born at Sun Microsystems as a demo for JavaOne 2006, the largest
Java conference in the world, held every year in San Francisco. The idea of this
demo was to show a mashup1 of Web Services in a rich client and to show the
results in a keynote in order to reach as many developers as possible. The team
also wanted to make it look very good to prove how cool Swing can be.

1. Chet decided to call Aerith a “smashup,” for “Swing mashup.”

www.it-ebooks.info

http://www.it-ebooks.info/

532 CHAPTER 19 BIRTH OF A FILTHY RICH CLIENT

Between two and three people worked on Aerith over the span of two weeks,
with more than 80 percent of the work achieved during the first week.2 The core
team included Richard Bair, Joshua Marinacci, and myself, Romain Guy. We
also received a lot of help3 from various members of the Swing and Java 2D
teams, including Chet Haase, Chris Campbell, and Scott Violet.

This short development cycle was made possible by all of the work previously
done by the team and presented in this book. Most visual effects, such as reflec-
tions and drop shadows, and supporting libraries, such as the Timing Frame-
work, were already available to us. After reading this book, you will find
yourself in the exact position we were in when we started Aerith.4,5

After a successful presentation at JavaOne 2006, Sun Microsystems decided to
release the source code under the BSD license at https://aerith.dev.java.net/.

Note that Aerith is not a finished application. It was developed in a very short
time purely as a technology demo. So there are some rough edges to the applica-
tion and the project. Nevertheless, it is a great demonstration of many of the
Filthy Rich Clients effects we discuss in this book, as well as other great Java
and Swing technologies, so it is well worth a closer examination.

Running Aerith
To get Aerith running, follow these steps:

• Download and install Java SE 6 or better (http://java.sun.com or http://
java.com).

• Download and install JOGL (http://jogl.dev.java.net) in the Java SE 6
extension directory (C:\Program Files\Java\jre1.6.0\lib\ext on Windows,
/Library/Java/Extensions on Mac OS X).

• Download and install NetBeans 5.5 or better (http://www.netbeans.org).

• Check out the code for Aerith using Subversion (http://subversion.
tigris.org): svn check out https://aerith.dev.java.net/svn/aerith/
trunk aerith (username: guest).

• Open the aerith/ directory in NetBeans as a project.

2. The first week included very short nights.
3. And pizza from our manager, Jeff Dinkins.
4. You actually benefit from better APIs, since many of the building blocks of Aerith were in a much

earlier stage of development than they are now.
5. Hopefully, you will get more sleep while working on your applications than we did while work-

ing on Aerith.

www.it-ebooks.info

https://aerith.dev.java.net/
http://java.sun.com
http://java.com
http://java.com
http://jogl.dev.java.net
http://www.netbeans.org
http://subversion.tigris.org
http://subversion.tigris.org
https://aerith.dev.java.net/svn/aerith/trunk
https://aerith.dev.java.net/svn/aerith/trunk
http://www.it-ebooks.info/

WORKFLOW PAPER DESIGN 533

• Resolve broken references (you will need to specify your Java SE 6 instal-
lation in the project properties).

• Hit the Run button.

Note: User Name? Upon startup, Aerith requires a Flickr (http://www.flickr.com)
user name. Because of time constraints,6 Aerith works only with Flickr accounts
that include at least five photo sets, or albums. If you do not have a Flickr account,
or if your Flickr account does not meet this requirement, use the name romainguy.

Finding Your Way Around
All of the classes containing animations and visual effects are located in these
two packages:

• com.sun.javaone.aerith.g2d, which contains graphics-oriented sup-
port classes. For example, this package has utilities to generate drop
shadows.

• com.sun.javaone.aerith.ui, which contains all of the GUI code.

Workflow Paper Design
Designing your application on paper is the first thing you must do before delving
into the code. While this will sound natural to most of you, the process of
designing on paper plays a different role in the creation of a Filthy Rich Client
than in a more typical GUI application.

Starting with paper design does not mean that you draw UML diagrams on paper
before writing the code. It means that you diagram the overall features and work-
flow of the application to get a better sense of what you intend the user to do.
Designing on paper helps you identify where and how to include visual effects in
your application.

Figure 19-1 and Figure 19-2 show how Aerith’s workflow was designed on paper.

The actual workflow, defined in Figure 19-2, is interesting because it makes clear
that no two “screens” can be shown at the same time. It also indicates that the

6. And lack of sleep, caffeine, and pizza.

www.it-ebooks.info

http://www.flickr.com
http://www.it-ebooks.info/

534 CHAPTER 19 BIRTH OF A FILTHY RICH CLIENT

user must go through the “Lobby,” or main screen, before going anywhere else.
This approach is why Aerith is a single-window application that works like a
wizard.

Whenever the user goes to another screen, the new screen replaces the current
one, which allows us to implement animated transitions between the screens. For
instance, when you proceed from the Lobby to the Albums list, an animated
cross-fade is played, as shown in Figure 19-3.

Figure 19-1 Defining Aerith’s features.

Figure 19-2 Defining Aerith’s workflow.

www.it-ebooks.info

http://www.it-ebooks.info/

THE VISION 535

Once you have the workflow of your application on paper, you can proceed to
the next step, the vision.

The Vision

Note: In this second step, you put paper and pen aside and use a graphics editing
application. Adobe Photoshop is probably the one most used, but there are other
options as well, some free and some not. Here is a short list of applications that I
recommend you try if you do not own a license for Adobe Photoshop:

• The GIMP for Linux; free: http://www.gimp.org
• Seashore for Mac OS X; free: http://seashore.sourceforge.net
• Corel Paint Shop Pro for Windows; commercial: http://www.paintshoppro.com
• Paint.NET for Windows; free; http://www.getpaint.net
• Photoshop Elements for Windows and Mac OS X; commercial:

http://www.adobe.com
• Pixel Image Editor for Windows, Linux, and Mac OS X; commercial:

http://www.kanzelsberger.com/
• Inkscape for Windows, Linux, and Mac OS X; free: http://www.inkscape.org

The vision is a mockup of one or two screens of your application that will set the
tone for further visual design. The vision is not a mockup that you will actually
implement. It exists solely to give you and your team a concrete idea of the final
product. As such, the vision does not need to pay too much attention to usability,
ease of implementation, and other important real-world considerations.

In the Aerith project, I drew two pictures for the vision. The first one, shown in Fig-
ure 19-4, was meant to be the splash screen. Even though there is no splash screen
at all in the final version of the application, this picture contains key elements of the
final design: dark color theme, reflections, nice photographs, and gradients.

Figure 19-3 Cross-fade between two screens.

www.it-ebooks.info

http://www.gimp.org
http://seashore.sourceforge.net
http://www.paintshoppro.com
http://www.getpaint.net
http://www.adobe.com
http://www.kanzelsberger.com/
http://www.inkscape.org
http://www.it-ebooks.info/

536 CHAPTER 19 BIRTH OF A FILTHY RICH CLIENT

The second picture of the vision, shown in Figure 19-5, is supposed to represent
the album selection screen. The final design looks nothing like this picture, but
once again some key design elements are present. Compare this picture to the final
result in the application, shown in Figure 19-6, and try to find the similarities.

At this point, there should be no concern about how you will implement the
application, so feel free to experiment with anything you have in mind. The
vision lets you express your creativity. You will worry about how to implement

Figure 19-4 Aerith vision: the splash screen.

Figure 19-5 Vision of the album selection screen.

www.it-ebooks.info

http://www.it-ebooks.info/

SCREEN PAPER DESIGN 537

the application in the next steps. For now, just make sure that your pictures con-
vey what you have in mind and get people excited.

When your vision is ready, you can go back to paper.

Screen Paper Design
The workflow and the vision should give you enough information to start design-
ing each screen individually. You can now start worrying about usability, layout,
and implementation issues. Design each screen on paper. You do not need to
choose the colors yet, nor think of every single detail.

As shown in Figure 19-7, screen paper designs should give a precise idea of
what the screen will look like. However, some details are left aside. For instance,
this design does not indicate that the navigation bar at the top of the screen must
be painted with a gradient.

Once each screen is clearly defined on paper, you can proceed to the final step
before the implementation.

Figure 19-6 Final version of the album selection screen.

www.it-ebooks.info

http://www.it-ebooks.info/

538 CHAPTER 19 BIRTH OF A FILTHY RICH CLIENT

Mockup
For this last step, you must go back to your graphics editing application. A mockup
is a picture of each screen that is supposed to be the final design. It contains all of
the design elements and information required to implement the application.

Figure 19-8 shows the mockup of the Lobby screen. You can see that it is faithful
to the paper design and reuses design elements from the vision. The dark color
theme, the reflections, and the gradients all come from the vision pictures. But
note that this mockup also adds its own design elements and details. For exam-
ple, the blurry title “Select a Task” appears for the first time in this picture.

In reality, the implementation will never be 100 percent true to the mockup. Some
design elements may be too hard to implement and some subtle differences will
show up for various reasons. For instance, Adobe Photoshop’s gradients algo-
rithm is different from Java’s, and you will never be able to produce a pixel-
perfect conversion of a Photoshop gradient with Java 2D. In the final implementa-
tion, shown in Figure 19-9, the lighting effect behind the word Lobby in the navi-
gation bar has disappeared, and the blur on the title Tasks is subtler.

Other major differences can arise after the mockup is drawn. If you look at Fig-
ure 19-9, you can see a whole new area at the bottom of the screen. This Albums
selector was added late in the process without updating the mockup first. Never-
theless, the mockup gave all of the necessary information to build this screen.

Figure 19-7 Paper design of the Lobby screen.

www.it-ebooks.info

http://www.it-ebooks.info/

MOCKUP 539

Figure 19-8 Mockup of the Lobby screen, drawn in Adobe Photoshop.

Figure 19-9 The implementation is not 100 percent faithful to the mockup.

www.it-ebooks.info

http://www.it-ebooks.info/

540 CHAPTER 19 BIRTH OF A FILTHY RICH CLIENT

From Mockup to Code
Implementing a mockup with real code is the most difficult, and often the most
frustrating, part of creating a Filthy Rich Client. Because you let your imagina-
tion run wild during the early design stages, you end up with designs that are
sometimes harder to implement than your regular Java applications. One thing is
certain: You will need quite a few custom components. There are, however, a few
things that you can do to ease this process.

Use Layers
Any decent graphics-editing tool lets you add layers in your drawings. Layers
are stacked on top of one another, allowing you to view the other layers beneath
through transparent pixels.

By using layers, you can separate each design element from the others. The ben-
efit of doing so is twofold. First, you can easily extract the element from the pic-
ture. For instance, if you draw a button, you might need to export it into an
external file that will be loaded by your Java application. Second, isolating ele-
ments lets you work with multiple designs at once. If you duplicate an element
and then alter its appearance, you can hide or show the layers to see how the new
appearance works with the overall design.

Figure 19-10 shows one of the designs for Aerith with a black background. This
background was drawn in a layer called Alternate Background that you can see
in the layers palette at the bottom right of the picture. When the layer containing
the black background is made invisible, another background appears. This new
background, shown in Figure 19-11, is a gradient from black to blue to white,
drawn in a layer called Background.

Before settling on the dark background, I was able to switch from one back-
ground to the other whenever I wanted because I kept them in separate layers.

To understand the importance of layers in the design of Aerith, go back to Fig-
ure 19-7 and try to imagine how many layers I used in Photoshop to design this
screen. The correct answer is 47. I used 47 layers to create this simple picture,
and they are all shown in Figure 19-12. Each design element has its own layer.
For example, a task is made of four layers: one for the icon, one for the icon’s
reflection, one for the task’s title, and one for the task’s description.

Layers offer the most flexibility to design and implement a user interface. You
must use them.

www.it-ebooks.info

http://www.it-ebooks.info/

FROM MOCKUP TO CODE 541

Figure 19-10 The black background is in the layer called Alternate Background.

Figure 19-11 This lighter background appears when the alternate background layer is
made invisible.

www.it-ebooks.info

http://www.it-ebooks.info/

542 CHAPTER 19 BIRTH OF A FILTHY RICH CLIENT

Blending Modes
Graphics-editing applications with support for layers let you choose how to blend
layers together. A layer’s blending mode defines how its pixels are combined with
those of the layers beneath it before it is displayed on the screen. In Figure 19-8, I
created the lighting effect behind the word Lobby by setting the Overlay blending
mode on a layer containing a white gradient. This design element was dropped
from the final implementation because it was too difficult to implement at that time.

Because the Java SE platform does not offer the equivalent of most blending
modes in image-editing applications,7 try not to use them. If you cannot do with-
out them, go back to Chapter 6, “Composites” and review the class called
BlendComposite, which recreates 31 common blending modes in Java that can
be used as a Composite on a Graphics2D object.

7. Rumor has it that the Java 2D team is working on implementing some of the common blending
modes to make this feature much easier in JDK 7. For now, follow the advice outlined here.

Figure 19-12 The Lobby screen’s 47 layers.

www.it-ebooks.info

http://www.it-ebooks.info/

FROM MOCKUP TO CODE 543

Use Guides
Guides are vertical and horizontal lines that you can overlay on your drawing to
help you align elements and measure distances. Figure 19-13 shows one of Aer-
ith’s design pictures with all its guides displayed. You can compare it to Figure
19-5 to see the picture only.

Guides are one of your greatest assets. First, they help you re-create a layout grid
that can be duplicated with one of Java’s layout managers. Also, they help you
measure distances between elements. Those measurements must be precisely
noted and reused when writing the user interface code in Java.

Note: Where Are the Guides? Graphics-editing applications usually hide guides in
the feature called “rulers.” If your application provides none of these features, you
can use external applications to create guides. Mac OS X users can install xScope
(http://iconfactory.com/software/xscope) to benefit from systemwide rulers, guides,
and other equally useful tools. Windows users can try Screen Calipers (http://
www.seoconsultants.com) or Desktop Rulers (http://www.desktopruler.com).

Figure 19-13 Numerous guides were used to build this picture.

www.it-ebooks.info

http://iconfactory.com/software/xscope
http://www.seoconsultants.com
http://www.seoconsultants.com
http://www.desktopruler.com
http://www.it-ebooks.info/

544 CHAPTER 19 BIRTH OF A FILTHY RICH CLIENT

But . . . I’m Not an Artist!
And neither am I. Creating good-looking applications requires neither great
drawing skills nor an Arts degree. Figure 19-14 shows the best that I can do with
a piece of paper and a pen.8 You won’t need to be good at drawing unless you
want to draw your own icons. And even for that task, you can get away with poor
drawing skills most of the time.

8. I knew that I’d learn some skill from all my time in class.

Figure 19-14 Lack of great art skills doesn’t mean that you can’t design
great interfaces.

www.it-ebooks.info

http://www.it-ebooks.info/

CHOOSING NICE COLORS 545

Designing good-looking applications can actually be quite easy. Here are the
only rules you need to follow:

1. Steal ideas elsewhere.

2. Pay attention to the details.

3. Be consistent.

Get your inspiration from successful designs. Apple’s products, most Mac OS X
applications,9 and Microsoft’s latest products, such as Windows Vista and Office
2007, are great sources of inspiration.

While it is a good idea to find inspiration elsewhere, remember to be consistent.
You will always have to adapt your inspirations to your own application and
design to give it a coherent and solid look. Too many applications out there take
one or more design elements from other applications but don’t adapt them for
coherence. The result can be quite bad.

Similarly, you must pay a great deal of attention to the details.10 You must ensure
that every pixel is in the right place and be ready to fight with your development
team if it is not.11

Choosing Nice Colors
Colors are an important part of visual design, but they are very often hard to
choose. Unless we are true artists, we cannot choose colors naturally. Thank-
fully, several tools exist to assist us in this difficult task. These tools not only
offer you ready-to-use palettes of colors but also can tell you what colors work
well with other colors that you would like to use.

Figure 19-15 and Figure 19-16 show examples of such tools.

9. If you still don’t have a Mac OS X machine, please go buy one right now. You’ll do yourself and
your users a big favor.

10. If you have slight obsessive-compulsive disorders, you will probably be very good at that. En-
gineers should be very good at this task.

11. If you’ve ever seen the episode of the Seinfeld sitcom entitled “The Soup Nazi,” then you can
probably guess what the rest of the team called me during Aerith development.

9.

www.it-ebooks.info

http://www.it-ebooks.info/

546 CHAPTER 19 BIRTH OF A FILTHY RICH CLIENT

There are several tools that you can use to help you choose colors, but here are a
few that we recommend:

• Color Schemer Studio for Windows and Mac OS X; commercial: http://
www.colorschemer.com

• Color Schemer Online web site; free: http://www.colorschemer.com/
online.html

Figure 19-15 Color Schemer Studio for Mac OS X suggests a set of colors
 that work with a primary color you choose.

Figure 19-16 Color Schemer Studio can also tell you what text colors
are compatible with a given background color.

www.it-ebooks.info

http://www.colorschemer.com
http://www.colorschemer.com
http://www.colorschemer.com/online.html
http://www.colorschemer.com/online.html
http://www.it-ebooks.info/

READ DESIGN BOOKS 547

• Adobe kuler web site; free: http://kuler.adobe.com

• COLOURlovers web site; free: http://www.colourlovers.com

Adobe kuler and COLOURlovers offer hundreds of high-quality color palettes
that you can use for your designs.

Tip: Too Many Colors. No matter how you decide to choose colors for your appli-
cation, here is an important rule: Use as few colors as possible. Three or four is
good, and up to five or six is okay.

Tip: Choosing Colors for a Gradient. In most situations, try to use colors close to
one another in your gradients. Similar colors produce subtle gradients that are more
aesthetically pleasing than gradients using colors that are quite different from each
other.

Read Design Books
Even though the tips should help you, they cannot replace a good book about
user interface design or visual design. Here is a selection of books that we highly
recommend:

• About Face 2.0: The Essentials of Interaction Design, Alan Cooper and
Robert Reimann (Wiley, 2003).

• Designing Interfaces: Patterns for Effective Interaction Design, Jennifer
Tidwell (O’Reilly Media, 2005).

• Designing Visual Interfaces: Communication Oriented Techniques, Kevin
Mullet and Darrell Sano (Prentice Hall, 1994).

• GUI Bloopers: Don’ts and Do’s for Software Developers and Web Design-
ers, Jeff Johnson (Morgan Kaufmann, 2000).

• Paper Prototyping: The Fast and Easy Way to Design and Refine User
Interfaces, Carolyn Snyder (Morgan Kaufmann, 2003).

• The Humane Interface: New Directions for Designing Interactive Systems,
Jef Raskin (Addison-Wesley, 2000).

• The Non-Designer’s Design Book, 2nd ed., Robin Williams (Peachpit
Press, 2003).

• User Interface Design for Programmers, Joel Spolsky (Apress, 2001).

www.it-ebooks.info

http://kuler.adobe.com
http://www.colourlovers.com
http://www.it-ebooks.info/

548 CHAPTER 19 BIRTH OF A FILTHY RICH CLIENT

If you have little money and little time to spend on such books, consider reading
Designing Visual Interfaces by Kevin Mullet and Darrell Sano first. This small
book might seem outdated,12 since it was published in 1994, but its material is
still quite valid, and it will teach you everything you need to know about user
interface design in a very efficient and pleasing way.

Summary
Creating a Filthy Rich Client requires both a good preliminary design and the
tools to help implement that design. Designing a good visual interface is never
easy, but the information contained in this chapter should help you avoid some
issues, dispel some myths, and work toward a good design. And the tools pro-
vided throughout the rest of the book should help you carry through that design
to a final product that is Filthy Rich indeed.

12. Most pictures in the book are in grayscale because the example user interfaces really were in
grayscale, not because color-prints are more expensive.

www.it-ebooks.info

http://www.it-ebooks.info/

549

Conclusion

WE hope that you have enjoyed this journey through the techniques of build-
ing Filthy Rich Clients. More importantly, we hope that you learned enough to
go implement some of these techniques in your applications. We are not just
software developers. We are software users, too, and we look forward to the day
when more applications use these techniques to write better, more productive,
and more fun applications.

Where applicable, we tried to list external resources as we went along in the
book. But we thought it would be useful to provide a more comprehensive list to
assist you in further exploration into Filthy Rich Client development.

Projects
Although we focused mainly in this book on APIs that are either part of the core
Java class libraries or utilities that we wrote on top of those core libraries, there
are plenty of other approaches and libraries in the world that are also worth look-
ing into. We list a few of them here, but this is just a small sample. Go looking
around and you will find plenty more.

Timing Framework: The book’s Web site, http://filthyrichclients.org, will host
the version of the Timing Framework that matches that used for the book. The
Timing Framework project site, at http://timingframework.dev.java.net, may
have a different version that evolves as features are added. If you want to use
the Timing Framework and do not need the version that is kept static for the
book content, you should check out the latest version on the java.net site.

www.it-ebooks.info

http://filthyrichclients.org
http://timingframework.dev.java.net
http://www.it-ebooks.info/

550 CONCLUSION

Animated Transitions: Like the Timing Framework library, the Animated
Transitions library will have a static version on the book’s Web site so that the
material in the book can be used with this version of the library. In the mean-
time, the project will also live in its own project site, probably on java.net, so
that it may also evolve as necessary. The book’s Web site will have a reference
to the project site, so check there for more information on this library.

SwingLabs: The SwingLabs project, at http://swinglabs.dev.java.net, is known
as the breeding ground for future features for the core Swing library. This
project has many goodies for Swing developers, from new and exciting Swing
components to utility libraries that make Swing development easier. Some of
the effects and utilities in this book either come from or will probably be inte-
grated into SwingLabs. Check out the SwingLabs project to see how it can
help your Swing development.

JOGL: Java bindings for OpenGL, at http://jogl.dev.java.net, is a library that
allows Java applications to use the OpenGL 3D API, including the graphics
hardware acceleration that that library benefits from across most platforms. We
did not have a chance to spend much quality time on JOGL, but very rich appli-
cations are possible with this library. You should check out the current state of
this project and the demos on that site that show what you can do with JOGL.

Aerith: The Aerith project, at http://aerith.dev.java.net, is interesting to check
out to see how various effects we discussed were incorporated into an overall
application. Aerith is also a great example of integrating standard Web Ser-
vices into a rich Swing application.

And So On: There are many other projects and resources available to you, in
addition to the few called out in the book. Rather than try to list them all here,
we will endeavor to keep a list of some of the interesting projects and sites for
Filthy Rich Clients at the book’s Web site at http://filthyrichclients.org. Check
the site for a current list.

Java Sites
Besides projects and libraries, there are also lots of great places to find more
information on all of the stuff that we described in the book. We mentioned some
of these in the text when appropriate, but there is so much more available than
the few items we were able to cover. In particular, the Java development commu-
nity inside and outside of Sun has been very diligent in recent years about writ-
ing great blogs and articles as well as providing ongoing projects, such as some
of those mentioned previously.

www.it-ebooks.info

http://swinglabs.dev.java.net
http://jogl.dev.java.net
http://aerith.dev.java.net
http://filthyrichclients.org
http://www.it-ebooks.info/

AUTHORS’ SITES 551

Rather than point to specific blogs and articles, which we did throughout the
book, we just reference some general places to go searching for good content:

http://javadesktop.org: This is a great resource for all things Swing. It is a site
that lists URLs to blogs, articles, forums, projects, and applications of interest
to Java desktop developers.

http://java.sun.com: Most Java developers know this site, at the very least for
downloads of the JDK. But there is much more to this site, including forums,
articles, tech tips, and general information on Java for all developers. It’s a
good destination for learning about fundamental Java concepts.

http://java.net: This is a community site for Java. It is similar to javadesk-
top.org but with an eye on the entire developer community of Java, desktop
and otherwise.

http://filthyrichclients.org: The book’s Web site has all of the demos from the
book as well as the versions of the Timing Framework and Animated Transi-
tions libraries that were used in the book. There is also information on the site
about any other book-related material, including pointers to more resources
for Filthy Rich Client development.

Authors’ Sites
If you are interested in reading more from the authors, assuming they are able to
write more after their fingers grow back from the final slog to finish the manu-
script, check in with their blogs:

http://curious-creature.org: This is Romain’s blog, where he posts everything
from cool Swing effects demos to beautiful photography.

http://weblogs.java.net/blog/chet: This is Chet’s Java blog, where he posts
technical blogs and articles about Desktop Java, graphics, performance, and
anything in between. You might also find an occasional geeky joke there.

http://chetchat.blogspot.com: This has nothing to do with Java whatsoever.
It’s Chet’s humor blog. If you’ve had enough Java for the day and are looking
for something funny, you might take a peek here.

http://www.progx.org: This has something to do with Java. Sometimes. Not
very often. Quite rarely, actually. It’s Romain’s French blog with even more
photographs. If you can read French, you might find enjoyable stuff there.

www.it-ebooks.info

http://javadesktop.org
http://curious-creature.org
http://weblogs.java.net/blog/chet
http://chetchat.blogspot.com
http://www.progx.org
http://java.sun.com
http://java.net
http://filthyrichclients.org
http://www.it-ebooks.info/

552 CONCLUSION

[Insert Your Name]
We want to know about your projects. If you’ve created a beautiful, stunning,
and novel application, or if you have a library that can help facilitate develop-
ment of Filthy Rich Clients, please let us know and send us some screenshots.
You can contact us by email:

chet.haase@filthyrichclients.org

romain.guy@filthyrichclients.org

www.it-ebooks.info

http://www.it-ebooks.info/

553

Index

A
Abstract Window Toolkit (AWT), 12–13
Acceleration, interpolating, 360–363
ActionTrigger, 384
Acyclic gradients, 195–197
Add composite, 171–175
Adobe kuler, 547
Aerith

blending modes, 542
coding applications

blending modes, 542
layers, 540–542
from screen mockups, 540–544

history of, 531–532
online resources, 550
running, 532–533
screen mockups

coding from, 540–544
colors, 545–547
gradients, 547
guides, 543
required skills, 544–545
workflow design, 538–539

workflow design
with a graphics editor, 535–537
on paper, 533–535, 537–538
screen mockups, 538–543

Affine transforms, 63–70, 203–204
AffineTransformOp filter, 203–204
AJAX (Asynchronous JavaScript and

XML), 2–3
AlphaComposite. See also Composites.

antialiased-clipping, 168
Clear rule, 157, 165
common uses, 164–168

creating, 163–164
cutouts, 167
description, 153–155
destination pixels, 156
drop shadow, 167
Dst rule, 157
DstAtop rule, 158
DstIn rule, 158
DstOut rule, 159
DstOver rule, 159
erasing a background, 157, 165
picture frames, 167
Porter-Duff equations, 153–154
Porter-Duff rules, 155–162
problems with, 168–170
replacing existing drawings, 161, 166–168
setting up, 163–164
soft-clipping, 168
source pixels, 156
Src rule, 160
SrcAtop rule, 160
SrcIn rule, 161, 166–168
SrcOut rule, 161
SrcOver rule, 162, 165–166
temporary offscreen images, 170
translucency effect, 162, 165–166
Xor rule, 162

AlphaComposite class, 468–470
Anchor points, 369
Animated Transitions, 497–530
Animation. See also Motion effects.

frame rate
frame-based animation, 268
minimum required, 289–290
smoothing, 318, 332

www.it-ebooks.info

http://www.it-ebooks.info/

554 INDEX

Animation, continued
frame-based

flicker, 269
frame rate, 268
intermediate steps, 270
linear interpolation, 273–274
overview, 266–268
problems, 268–275
realistic motion, 272–275
speed, 269–271
Swing buffering, 269, 271–272

GUIs, 303–304
repeating, 345, 351–352
running, querying, 347
smoothing

antialiasing, 327, 340–341
apparent smoothness, 320
blur effect, 339–340
bouncing motion, 320
color effect, 320–329, 332, 338–339
color spaces, 322
consistency, 318–319
contrast, 325–326
demo, 335–341
double buffering, 334
frame rates, 318, 332
hard edges, 326–327
jumpy motion, 328–329
linear shapes, 332
motion blur, 328–329
object color, versus background,

325–326
perceived performance, 316
performance, 317–318
pixel color change, 322–323
realistic motion, 319–320
rendering, 337–341
resolution, optimizing, 318–319
straight edges, 327–328
tearing, 330
timing effect, 317–320
vertical retrace effect, 329–334

starting, 345, 347, 352–353
stopping, 347, 353

time-based
definition, 265
flicker, 269
intermediate steps, 270
linear interpolation, 273–274
problems, 268–275
realistic motion, 272–275
speed, 269–271
Swing buffering, 269, 271–272

timer resolution. See also Timing
Framework.

currentTimeMillis(), 291–293
definition, 288–289
increasing, 278
measuring, 297–299
milliseconds, 276–278, 291–293
nanoseconds, 278, 291–293
nanoTime(), 291–293
performance, 288, 290, 299–300
sleeping, 293–297

timer utilities. See also Timing
Framework.

callbacks, 284–285
currentTimeMillis(), 276–278
demos, 282–284, 286–288
fixed delay, 285
fixed rate, 285
interframe volatility, 277–278
milliseconds, 276–278
nanoseconds, 278
nanoTime(), 278
querying current time, 275–278
sleep(), 279–280, 293–297
sleeping, 279–282, 293–297
Timer (java.util), 282
Timer (javax.swing), 284–288
timers, 280–284
wait(), 279–280, 295–297
wake-up calls, 279–282

transitions. See Transitions.
Animator class

cancel(), 347
constructor methods, 346
control flow, 347

www.it-ebooks.info

http://www.it-ebooks.info/

INDEX 555

definition, 345
description, 346
isRunning(), 347
pause(), 347
resume(), 347
start(), 347
stop(), 347

Antialiased-clipping, 168
Antialiasing

demo, 56
description, 54–56
jaggies, 54
shapes, 57
smoothing animation, 327, 340–341
text, 57–59

AntiAliasingDemo demo, 56
Area averaging, image scaling, 103–104
Articles. See Books and publications.
Asynchronous JavaScript and XML

(AJAX), 2–3
Asynchronous paint requests, 17–19
Authors’ sites, xxiii, 551
Autoboxing, 405
Auto-reversing triggers, 381
AWT (Abstract Window Toolkit),

12–13

B
Back buffers, 29
Backgrounds

color, graphics state, 49, 50
color, versus object color, 325–326
erasing, 157, 165

BasicRace demo, 358–359, 363–364
Bicubic image scaling, 102–104
Bilinear image scaling, 102–104
Blending modes, 542. See also

AlphaComposite; Composites.
Blocking EDT, 31–32
Bloom effect, 6, 478–482
Blur

animation, 339–340
bokeh, 423–424

box, 426–428
depth of field, 423
description, 423–425
Gaussian, 428–432
motion blur, 328–329
performance, 433–434
reflection, 435–437
simple, 426–428

Bokeh, 423–424
Books and publications. See also Online

resources.
“Compositing Digital Images,” 153
Computer Graphics Principles and

Practices, 377
Filthy Rich Clients, online resources, 551
The Geometry Toolbox for Graphics and

Modeling, 377
“The Perils of

Image.getScaledInstance(),” 98
System Properties for Java 2D..., 145
user interface design, 547
visual design, 547

Borders, on components, 75
Boring stuff, not found
Box blur, 426–428
Bright spots, simulating, 189–192
Brightening, 213–214, 444–446
brighter(), 444
BufferedImage objects

advantages of, 95–96
converting images to, 96–97
definition, 93
transparent/translucent images, 97

BufferedImageOp filter, 201–203, 214–221
Buttons layer, 238

C
Caching

gradients, 193–195
intermediate images, 134–141

Callbacks
cleanup operations, 348–349
definition, 345

www.it-ebooks.info

http://www.it-ebooks.info/

556 INDEX

Callbacks, continued
Swing event thread, 284–285
timing events, receiving, 348–350
timing targets, 349–350

Campbell, Chris, 98, 111, 147
cancel(), 347
Canceling triggers, 381
Choppy animation. SeeAnimation, smoothing.
Circular gradients, 189–192
Clear rule, 157, 165
clip(), 61
The clip

constraining primitives to, 120
graphics state, 49, 61–62
honoring, 117–120
performance, 115–121

Clipping images
antialiased-clipping, 168
the clip, 121
soft-clipping, 168

clipRect(), 61
Coalescing paint requests, 18
Color Schemer Online, 546
Color Schemer Studio, 546
Color spaces, animation, 322
ColorConvertOp filter, 204–206
Colors

channels, 154
effects on animation, 320–329, 332,

338–339
fading, 470–472
graphics primitives, 63–64
mapping source/destination, 211–213
model conversion, 204–206, 211–213
object, versus background, 325–326
online resources, 546–547
opacity. See Opacity; Translucency;

Transparency.
rules for. See AlphaComposite;

Composites.
screen mockups, 545–547

COLOURlovers, 547
Combo-box drop-down layer, 238
Command-line flags, 145–149

Compatible images
converting to, 124–126
definition, 94
performance, 121–126
uses for, 122–123

compose(), 174–177
Composing pixels, 174–177
CompositeContext composite, 174–175
CompositeEffect effect, 512–513
Composites. See also AlphaComposite.

adding source/destination values, 171–174
composing pixels, 174–177
creating

Add composite, 171–175
CompositeContext composite,

174–175
overview, 170–171

defining area for, 174–177
graphics state, 49
immutability, 173
library of, 171

“Compositing Digital Images,” 153
Computer Graphics Principles and

Practices, 377
Consistency, animation, 318–319
Contrast, animation, 325–326
Control points, 369
Convolution kernel, 206–209
ConvolveOp filter, 206–211
Convolving images, 206–211
Cooler applications, 1–552
copyArea(), 83
CopyAreaPerformance demo, 83–87
Copying areas, 83–87
Cross-fading, 472
currentTimeMillis(), 276–278, 291–293
Custom interpolation, 377–378
Cutouts, 167
Cyclic gradients, 195–197

D
Darkening images, 213–214
Data binding, 1

www.it-ebooks.info

http://www.it-ebooks.info/

INDEX 557

DataBuffer, grabbing, 129–132
Deadlock, 35–37
Debugging performance, 148–149
Deceleration, interpolating, 360–363
Demos

animation
FadingButton, 304–306
MovingButton, 306–310
MovingButtonContainer, 310–314
SmoothMoves, 335–341
SwingTimerDemo, 286–288
UtilTimerDemo, 282–284

AntiAliasingDemo, 56
color, graphics primitives, 63–64
CopyAreaPerformance, 83–87
copying areas, 83–87
custom components, matching desktop

settings, 59–68
DiagonalLine, 74–75
donut shape, 79
drawing, 87–89
drawing shapes, 80–83
DrawShapes, 80–83
Fading, 468–470
FillDraw, 87–89
filling, 87–89
filling a blank canvas, 22–23
FontHints, 59–68
gradients, 180–181
graphics state

persistence, 71–72
setting, 51–54

image scaling
high resolution pictures, 109–111
photographs, 105–109
progressively larger images, 105–109
scale(), 63–64, 67–68
vector drawings, 105–109

ImageBrowser, 519–526
IntermediateImages, 137–142
loaded file names, displaying, 39–41
loading images from a hard drive, 39–41
Morphing, 491–495
performance, 137–142

PictureScaler, 109–111
Pulse, 474–478
PulseField, 482–484
reflection, 253–262
RepaintManager, 253–262
rotating objects, 63–64, 67–68, 68–74
RotationAboutCenter, 68–74
ScaleTest, 105–109
scaling images, 105–109, 109–111
SearchTransition, 503–509, 516–518
simulated depth, 180–181
SmoothMoves, 335–341
Spring, 486–489
text hints, setting, 59–68
Timing Framework

BasicRace, 358–359, 363–364
bouncing spheres, 382–392
FadingButton, 353–356
interpolation, 363–364
Interpolator, 372–378
interpolator race, 363–364
KeyFrames class, 414–419
MultiStepRace, 414–419
property setters, 393–395
PropertySetter class, 398
racetrack, 356–359, 398–399,

414–419
SetterRace, 398
spline interpolation, 372–375, 376–378
SplineEditor, 376–378
SplineInterpolatorTest, 372–375
triggers, 382–392

transformations, 63–64, 67–68
translating objects, 63–64, 67–68
translucency, 249–251
TranslucentPanel, 249–251

Depth of field, 423
derive(), 164
Design books, 547
Design tools. See Aerith.
Desktop Java Graphics APIs. See AWT

(Abstract Window Toolkit); Java
2D; Swing.

Destination pixels, 156

www.it-ebooks.info

http://www.it-ebooks.info/

558 INDEX

DiagonalLine demo, 74–75
DirectX, performance, 148
Dirty regions, 251
Discrete interpolation, 367–368,

409–411
DiscreteInterpolator class,

367–368
Displays

maximum refresh rate, 289
prototyping. See Screen mockups.

dispose(), 174–175
Double-buffering, 28–31, 334
Drag-and-drop, 238, 462
DRAG_LAYER, 238
draw(), 78
drawImage(), 76–77, 102–103
Drawing

fill versus draw, 87–89
rectangles, 78
shapes, 80–83

drawLine(), 77
drawRect(), 78
DrawShapes demo, 80–83
drawString(), 78
Drop shadow

AlphaComposite, 167
description, 437–438
realistic, 440–442
simple, 438–440

Dst rule, 157
DstAtop rule, 158
DstIn rule, 158
DstOut rule, 159
DstOver rule, 159
Duff, Tom, 153
Duration of animation, 345, 350–351
Dynamic effects. See also Static effects.

bloom, 6, 478–482
fading. See also Transitions.

AlphaComposite class, 468–470
color, 470–472
cross, 472
demo, 468–470
description, 465–467

library of components for, 472
strategies for, 467–468

morphing
buttons, 491–495
demo, 491–495
description, 489–491
shape tweening, 490

motion
description, 460–465
drag and drop, 462
moving objects, 462–465
undo/redo syndrome, 460

pulsating
bloom, 6, 478–482. See also Glow.
demos, 474–478, 482–484
description, 473–474
glow, 474–478. See also Bloom.

spring, 484–489

E
EDT (Event Dispatch Thread). See also

Events.
blocking, 31–32
deadlock, 35–37
definition, 31
description, 16
identifying, 35
perceived performance, 31–32
posting a runnable task, 34, 35–37
thread safety, 33–37
Timer class, 37–38
timers, 37–38

Effects
animated. See Dynamic effects.
CompositeEffect, 512–513
custom, creating, 513–516
description, 509
Effects API, 510–516
FadeIn, 510
FadeOut, 510
init(), 513
Move, 510, 514
nonanimated. See Static effects.

www.it-ebooks.info

http://www.it-ebooks.info/

INDEX 559

paint(), 513
removing, 512
Rotate, 510, 515–516
setEffect(), 511–513
setup(), 513
transition types, 511–513
Unchanging, 511
using, 511–513

Effects API, 510–516
end(), 348–349
End caps, 51
Evaluator class, 399–401
Event Dispatch Thread (EDT). See EDT

(Event Dispatch Thread).
Event handling. See Triggers.
Events. See also EDT (Event Dispatch

Thread).
automation timing, 348–350, 495
demos, 311–312
glass pane, 231–235
input, blocking, 230–235
mouse, 231–235
rendering, 16

Examples. See Demos.

F
FadeIn effect, 510
FadeOut effect, 510
Fading. See also Transitions.

AlphaComposite class, 468–470
buttons, demo, 353–356
color, 470–472
cross, 472
demo, 468–470
description, 465–467
in/out, 186
library of components for, 472
strategies for, 467–468

FadingButton demo, 353–356
Farin, Gerald E., 377
Feiner, Steven, 377
fill(), 78
FillDraw demo, 87–89

Filling
demo, 87–89
versus drawing, 87

fillRect(), 78
Filters

affine transformations, 203–204
AffineTransformOp, 203–204
applying to multiple images, 202
black border, removing, 209–211
brightening images, 213–214
BufferedImageOp, 201–203, 214–221
color model conversion, 204–206,

211–213
ColorConvertOp, 204–206
ConvolveOp, 206–211
convolving images, 206–211
creating, 214–221
darkening images, 213–214
edge problems, 209–211
grayscale conversion, 204–206
immutability, 217
LookupOp, 211–213
mapping source/destination color values,

211–213
offscreen processing, 201–202
overview, 200
at painting time, 201
performance, 219, 220, 222
picture shape, 203–204
RescaleOp, 213–214, 445–446
scaling color values, 213–214
scaling pictures, 203–204
tinting images, 213–214, 214–221

Filthy Rich Clients
definition, 1, 3–7
effectives, 3–7
overview, 3–7

Filthy Rich Clients, online resources,
551

Firing triggers, 381
Fixed delay, 285
Fixed rate, 285
Floating-toolbars layer, 238
FocusTrigger, 385–386

www.it-ebooks.info

http://www.it-ebooks.info/

560 INDEX

Foley, James D., 377
FontHints demo, 59–68
Fonts, graphics state, 49, 50–51
Foreground color, graphics state, 49, 50
Frame rates

frame-based animation, 268
minimum required, 289–290
smoothing, 318, 332

Frame-based animation. See Animation,
frame-based.

G
Gaussian blurs, 428–432
The Geometry Toolbox for Graphics and

Modeling, 377
getBackground(), 50
getColor(), 50
getComposite(), 62–63
getFasterScaledInstance(), 111–113
getFont(), 50–51
getGraphics(), 47–48
getHSBColor(), 444–445
getInterval(), 414
getPaint(), 63
getRenderingHint(), 53
getRGB(), 219
getScaledInstance()

performance, 102, 107, 109
“The Perils of

Image.getScaledInstance()”, 98
getStroke(), 51
getSubimage(), 120
Glass pane. See also Layered panes.

blocking input events, 230–235
in the JFrame hierarchy, 224
limitations, 237
mouse events, 231–235
optimized painting, 227–230
overview, 223–225
painting on, 225–230
root panes, 223
transitions, 527–528
visibility, 225

Glow, 474–478

GradientPaint class, 187–188
Gradients. See also Highlights; Reflection.

acyclic, 195–197
bright spots, 189–192
caching, 193–195
circular, 189–192
cyclic, 195–197
dual (multistops linear), 187–189
fading in/out, 186
nonhorizontal, 195–197
nonvertical, 195–197
optimizing, 193–197
performance, 193–197
radial, 189–192
reflection, 182–186
regular (two-stops linear), 179–186
screen mockups, 547
shiny surfaces, 187–189
simulated depth, 180–181
specular highlights, 189–192
spheres, 189–192

Graham, Jim, 111, 492
Graphics. See also Images.

antialiasing
demo, 56
description, 54–56
jaggies, 54
shapes, 57
text, 57–59

borders, on components, 75
copying areas, 83
demos

color, graphics primitives, 63–64
copying areas, 83–87
custom components, matching desktop

settings, 59–68
diagonal line, 74–75
donut shape, 79
drawing, 87–89
drawing shapes, 80–83
filling, 87–89
image scaling, 63–64, 67–68
rotating objects, 63–64, 67–68,

68–74
text hints, setting, 59–68

www.it-ebooks.info

http://www.it-ebooks.info/

INDEX 561

transformations, 63–64, 67–68
translating objects, 63–64, 67–68

drawing, 87
filling, 87
matrix math, 64–67
rectangles, drawing and filling, 78
rendering. See also Rendering, with

Swing.
description, 45–46
getting the Graphics object, 46–48
into images, 47–48
temporary state change, 46–47

rendering hints
definition, 49
image scaling, 53–54
KEY_ANTIALIASING, 57
KEY_INTERPOLATION, 53–54
KEY_TEXT_ANTIALIASING, 57–59
shape antialiasing, 57
text antialiasing, 57–59, 59–68
VALUE_ANTIALIAS, 57
VALUE_INTERPOLATION, 53–54
VALUE_TEXT_ANTIALIAS, 58–59

shapes, drawing and filling, 78
Graphics object

changing, 70
getting, 46–48
versus Graphics2D object, 44–45

Graphics state
background color, 49, 50
clips, 49, 61–62
clobbered, restoring, 73
clobbering, 72
composite, 49
description, 48–49
fonts, 49, 50–51
foreground color, 49, 50
image scaling, 53–54
paint property, 49
persistence, 71–72
properties, 48–51
setting, 51–54
stroke, 49, 51
temporary change, 46–47
transform property, 49

Graphics2D object, 44–45
Grayscale conversion, 204–206
GUI toolkits, 12–13
GUIs, animation, 303–304

H
Hansford, Dianne, 377
Hard edges, animation, 326–327
High resolution pictures, scaling, 109–111
Highlights (emphasis), on text, 448–450
Highlights (lighting). See also Gradients.

brightening, 444–446
description, 442–444
images, 445–446
text, 444–445

Hints
image scaling, 102–103
rendering

definition, 49
image scaling, 53–54
KEY_ANTIALIASING, 57
KEY_INTERPOLATION, 53–54
KEY_TEXT_ANTIALIASING, 57–59
shape antialiasing, 57
text antialiasing, 57–59, 59–68
VALUE_ANTIALIAS, 57
VALUE_INTERPOLATION, 53–54
VALUE_TEXT_ANTIALIAS, 58–59

Honoring the clip, 117–120
HSB color, converting to RGB, 444–445
Hughes, John F., 377

I
Image files, 94
Image I/O, 94
Image objects, 92
ImageHolder object, 523–525
Images. See also Graphics.

3D, 134–142
brightening, 213–214, 445–446
BufferedImage objects

advantages of, 95–96
converting images to, 96–97

www.it-ebooks.info

http://www.it-ebooks.info/

562 INDEX

Images, BufferedImage objects, continued
definition, 93
transparent/translucent images, 97

the clip, 115–121
clipping

antialiased-clipping, 168
the clip, 115–121
soft-clipping, 168

compatible
converting to, 124–126
definition, 94
performance, 121–126
uses for, 122–123

convolving, 206–211
darkening, 213–214
definition, 91
drawing, 76–77
filters. See Filters.
image files, 94
image I/O, 94
Image objects, 92
intermediate

caching, 141
definition, 94
image-based rendering, 134
performance, 134–142
translucency, 142

loading images from a hard drive, 39–41
managed

advantages of, 128–129
definition, 94
frequent rendering, 132–133
grabbing the DataBuffer, 129–132
history of, 126
performance, 126–133

mipmapping, 524
surface loss, 93
tinting, 213–214, 214–221
toolkit, 93–94
types of, 92–95
VolatileImage objects, 92–93

Images, scaling
affine transforms, 100
area averaging, 103–104

bicubic, 54, 102–104
bilinear, 54, 102–104
demos

high resolution pictures, 109–111
progressively larger images,

105–109
drawImage(), 77, 102–103
getFasterScaledInstance(),

111–113
getScaledInstance(), 102, 107,

109
graphics state, 53–54
hints for, 102–103
matrix math, 64–67
nearest neighbor, 53–54, 102–104
to a new image, 101
overview, 98–99
prescaled, 524
progressive bilinear, 104
quality versus performance, 101–104
rendering hints, 53–54
subregions of images, 100
translation, 100

Immutability, 173, 217
init(), 513
Interframe volatility, 277–278
Intermediate images

caching, 141
definition, 94
image-based rendering, 134
performance, 134–142
translucency, 142

IntermediateImages demo, 137–142
interpolate(), 366–367
Interpolation

acceleration, 360–363
anchor points, 369
control points, 369
deceleration, 360–363
definition, 345
demo, 363–364
description, 359–360
setAcceleration(), 360–363
setDeceleration(), 360–363

www.it-ebooks.info

http://www.it-ebooks.info/

INDEX 563

Interpolator class
custom interpolation, 377–378
demos, 372–378
description, 364–365
discrete interpolation, 367–368
DiscreteInterpolator class, 367–368
interpolate(), 366–367
key frames, 408–411
linear interpolation, 366–367
LinearInterpolator class, 366–367
spline interpolation, 368–372
SplineInterpolator class, 368–372
Timing Framework, 408–411
types of, 365–372
uses for, 365

Interpolator race demo, 363–364
invokeAndWait(), 35–37
invokeLater(), 34
isEventDispatchThread(), 35
isRunning(), 347

J
Jaggies, 54
Java 2D

description, 13
graphics capabilities, 43–45
Graphics object, 44–45
Graphics2D object, 44–45

Java sites, 550–551
JLayeredPane component. See also Layered

panes.
alternative to, 244–247
bottommost layer, 238
buttons layer, 238
combo-box drop-down layer, 238
drag-and-drop operations, 238
DRAG_LAYER, 238
floating-toolbars layer, 238
layers, 238
layout manager, 243–244
menus layer, 238
modal dialog layer, 238
MODAL_LAYER, 238

ordering components, 242–243
overview, 238–242
PALETTE_LAYER, 238
palettes layer, 238
popup window layer, 238
relative values, 241–242
tables layer, 238
tooltips layer, 238
warning messages, 238–239

JOGL project, online resources, 550

K
Key frames, 408–411
KEY_ANTIALIASING hint, 57
Keyboard animation commands, 338–341
KeyFrames class

constructors, 411–414
demo, 414–419
description, 402–404
getInterval(), 414
helper classes, 404–411
Interpolator class, 408–411
KeyTimes class, 407–408
KeyValues class, 404–407
methods, 414

KEY_INTERPOLATION hint, 53–54
KEY_TEXT_ANTIALIASING hint, 57–59
KeyTimes class, 407–408
KeyValues class, 404–407
Knuth, Donald, 197

L
Layered panes. See also Glass pane;

JLayeredPane component.
bottommost layer, 238
buttons layer, 238
combo-box drop-down layer, 238
drag-and-drop operations, 238
floating-toolbars layer, 238
versus glass pane, 237
layers, 238
layout manager, 243–244

www.it-ebooks.info

http://www.it-ebooks.info/

564 INDEX

Layered panes, continued
menus layer, 238
modal dialog layer, 238
ordering components, 242–243
overview, 238–242
palettes layer, 238
popup window layer, 238
relative values, 241–242
tables layer, 238
tooltips layer, 238
warning messages, 238–239

Layout manager, 243–244, 507, 522
Libraries

Animated Transitions library, 497–530, 550
Timing Framework, 343–420, 549

Lighting highlights. See Highlights (lighting).
Linear interpolation, 366–367
Linear shapes, animation, 332
LinearGradientPaint class, 188–189
LinearInterpolator class, 366–367
Lines

attributes, 51
end caps, 51
width, 51
width, and performance, 51

Listeners, adding, 380–381
LookupOp filter, 211–213

M
Main thread, 31–32
Managed images

advantages of, 128–129
definition, 94
frequent rendering, 132–133
grabbing the DataBuffer, 129–132
history of, 126
performance, 126–133

Matrix math, 64–67
Menus layer, 238
Milliseconds, 276–278, 291–293
Mipmapping, 524
Mockups. See Aerith.
Modal dialog layer, 238

MODAL_LAYER, 238
Monitors. See Displays.
Morphing

buttons, 491–495
demo, 491–495
description, 489–491
shape tweening, 490

Morphing2D class, 492–495
Motion blur, 328–329
Motion effects. See also Animation.

description, 460–465
drag and drop, 462
moving objects, 462–465
undo/redo syndrome, 460

MouseTrigger, 388–390
Move effect, 510, 514

N
Nanoseconds, 278, 291–293
nanoTime(), 278, 291–293
Nearest neighbor image scaling, 102–104
Nonhorizontal gradients, 195–197
Nonvertical gradients, 195–197

O
Online demos. See Demos.
Online resources. See also Books and

publications.
Adobe kuler, 547
Aerith project, 550
Animated Transitions library, 550
authors’ sites, xxiii, 551
Color Schemer Online, 546
Color Schemer Studio, 546
colors, 546–547
COLOURlovers, 547
Filthy Rich Clients, 551
Java 2D FAQ, 145
Java sites, 550–551
JOGL project, 550
SMIL (Synchronized Multimedia Integra-

tion Language), 377

www.it-ebooks.info

http://www.it-ebooks.info/

INDEX 565

Swing component library, 472
SwingLabs project, 550
Tiiming Framework library, 549

Opacity. See also Translucency; Transpar-
ency; Visibility.

drop shadow, 167–168
Java 2D, 27–28
painting, 21, 27–28
rendering, 27–28

OpenGL pipeline, 147–148
Optimizing

animation resolution, 318–319
gradients, 193–197
painting. See RepaintManager.
painting glass pane, 227–230

Ordering components. See JLayeredPane

component; Layered panes.

P
paint()

calling directly, 48
custom effects, 513
description, 19–20
overriding, 21, 24–27

Paint property, graphics state, 49
paintComponent(), 21–24
Painter’s algorithm, 21
Painting. See also paint(); repaint().

asynchronous requests, 17–19
coalescing requests, 18
description, 17
entire components, 18
on the glass pane, 225–230
opacity, 21, 27–28
optimizing. See RepaintManager.
over the user interface. See Glass pane.
setOpaque(), 21, 27–28
subregions of components, 18
synchronous requests, 19–20

PALETTE_LAYER, 238
Palettes layer, 238
Papers. See Books and publications.
pause(), 347

Pausing an animation, 347
Perceived performance

animation, 316
EDT (Event Dispatch Thread), 31–32
threading, 31–32

Performance. See also Perceived performance.
animation, 317–318
blur, 433–434
the clip, 115–121
command-line flags, 145–149
compatible images, 121–126
copying areas, 83–87
debugging, 148–149
demos, 137–142
diagonal lines, 120
DirectX, 148
EDT (Event Dispatch Thread), 31–32
filters, 219, 220, 222
gradients, 193–197
honoring the clip, 117–120
intermediate images, 134–142
line width, 51
managed images, 126–133
OpenGL pipeline, 147–148
versus quality, image scaling, 101–104
rendering, 143–145, 146–148
repaint(), 227
threading, 31–32
timer resolution, 288, 290, 299–300
transitions, 529–530

“The Perils of Image.getScaledInstance(),”
98

Petrucci, Sébastian, 441
Photographs

browsing, 519–526
scaling, 105–109

Picture frames, 167
PictureScaler demo, 109–111
Pixel color change, 322–323
Pixels, colors, 211
Popup window layer, 238
Porter, Thomas, 153
Porter-Duff equations, 153–154
Porter-Duff rules, 155–162

www.it-ebooks.info

http://www.it-ebooks.info/

566 INDEX

Posting a runnable task, 34, 35–37
Prescaled images, 524
Progressive bilinear image scaling, 104
Properties, graphics state, 48–51
Property setters

definition, 392
demos, 393–395
getter, 394
known types, 395
object access, 394
setter, 394

PropertySetter class
constructors, 395–397
definition, 395
demo, 398
evaluating intermediate types,

399–401
Evaluator class, 399–401
factory methods, 397–398
TimingTarget methods, 398

Prototyping. See Aerith.
Publications. See Books and publications.
Pulsating effects

bloom, 6, 478–482
demos, 474–478, 482–484
description, 473–474
glow, 474–478

Q
Querying running animations, 347

R
Racetrack demo, 356–359
Radial gradients, 189–192
RadialGradientPaint class, 189–192
rasterStolen variable, 132
Realistic drop shadow, 440–442
Realistic motion, 319–320
Reflection. See also Gradients.

blurred, 435–437
demos, 253–262
description, 434

drawing, 435
simulating, 182–186

Regular (two-stops linear) gradients,
179–186

Rendering
animation, 337–341
description, 45–46
getting the Graphics object, 46–48
image-based, 134
into images, 47–48
managed images, 132–133
performance, 143–145, 146–148
temporary state change, 46–47
text in drawing areas, 78

Rendering, with Swing. See also
Threading.

back buffers, 29
customized, 21–24
demos

buttons, painting, 23–24
buttons, translucent, 25–27
filling a blank canvas, 22–23

description, 20–21
double-buffering, 28–31
events, 16
flicker, 29–30
opacity, 27–28
paintComponent(), 21–24
painter’s algorithm, 21
painting. See also paint(); repaint().

asynchronous requests, 17–19
coalescing requests, 18
description, 17
entire components, 18
opacity, 21, 27–28
setOpaque(), 21, 27–28
subregions of components, 18
synchronous requests, 19–20

translucency, 27–28
triple-buffering, 28

Rendering hints
definition, 49
image scaling, 53–54
KEY_ANTIALIASING, 57

www.it-ebooks.info

http://www.it-ebooks.info/

INDEX 567

KEY_INTERPOLATION, 53–54
KEY_TEXT_ANTIALIASING, 57–59
shape antialiasing, 57
text antialiasing, 57–59, 59–68
VALUE_ANTIALIAS, 57
VALUE_INTERPOLATION, 53–54
VALUE_TEXT_ANTIALIAS, 58–59

repaint(), 18–19, 227
RepaintManager, 251–262
repeat(), 349
Repeating animations

definition, 345
description, 351–352
setRepeatBehavior(), 351–352
setRepeatCount(), 351–352

Replacing existing drawings, 161,
166–168

RescaleOp filter, 213–214, 445–446
Resolution

animation, optimizing, 318–319
definition, 345
description, 352
setResolution(), 352
smoothing, 318–319
timer. See Timer resolution.
Timing Framework, 345, 352

resume(), 347
Resuming an animation, 347
RGB color, converting to HSB, 444–445
RGBtoHSB(), 444–445
Rich clients, definition, 2
Root panes, 223
rotate(), 63–64, 67–68
Rotate effect, 510, 515–516
Rotating objects, 63–64, 67–68, 68–74
RotationAboutCenter demo, 68–74
Rules for colors, transparency, translucency.

See AlphaComposite;
Composites.

S
scale(), 63–64, 67–68
ScaleTest demo, 105–109

Scaling
color values, 213–214
images. See Images, scaling.
pictures, 203–204

Screen mockups. See also Aerith.
coding from, 540–544
colors, 545–547
gradients, 547
guides, 543
required skills, 544–545
workflow design, 538–539

Screens. See Displays.
ScreenTransition object,

525–526
setAcceleration(), 360–363
setBackground(), 50
setClip(), 61
setColor(), 50
setComposite(), 62–63
setDeceleration(), 360–363
setDuration(), 350–351
setEffect(), 511–513
setFont(), 50–51
setOpaque(), 21, 27–28
setPaint(), 63
setRenderingHint(), 53
setRepeatBehavior(), 351–352
setRepeatCount(), 351–352
setResolution(), 352
setStartDelay(), 352
setStartDirection(), 352
setStartFraction(), 353
setStroke(), 51
setTransform(), 63–64
setup(), 513
setupNextScreen(), 527–528
Shapes

antialiasing, 57
drawing, 78
filling, 78
tweening, 490. See also Morphing.

Sharpening
description, 450–451
downscaled images, 455–458

www.it-ebooks.info

http://www.it-ebooks.info/

568 INDEX

Sharpening, continued
simple, 452–454
USM (unsharp masking), 454

Sharpening kernels, 454
Shiny surfaces, simulating, 187–189
sleep(), 279–280, 293–297
Sleeping, 279–282, 293–297
SMIL (Synchronized Multimedia Integra-

tion Language), 377
Smoothing edges. See Antialiasing.
SmoothMoves demo, 335–341
Soft-clipping, 168
Source pixels, 156
Specular highlights, simulating, 189–192
Spheres, simulating, 189–192
Spline interpolation, 368–375, 376–378
SplineEditor demo, 376–378
SplineInterpolator class, 368–372
SplineInterpolatorTest demo, 372–375
Spotlighting, 446–448
Spring effect, 484–489
Src rule, 160
SrcAtop rule, 160
SrcIn rule, 161, 166–168
SrcOut rule, 161
SrcOver rule, 162, 165–166
start(), 347
Start delay, 352
Start direction, 352
Start fraction, 353
Starting animations

definition, 345
setStartDelay(), 352
setStartDirection(), 352
setStartFraction(), 353
start(), 347
start delay, 352
start direction, 352
start fraction, 353

Static effects. See also Dynamic effects.
blur

bokeh, 423–424
box, 426–428

depth of field, 423
description, 423–425
Gaussian, 428–432
performance, 433–434
simple, 426–428

drop shadow
description, 437–438
realistic, 440–442
simple, 438–440

highlights (emphasis), on text,
448–450

highlights (lighting)
brightening, 444–446
description, 442–444
images, 445–446
text, 444–445

reflection
blurred, 435–437
description, 434
drawing, 435

sharpening
description, 450–451
downscaled images, 455–458
simple, 452–454
USM (unsharp masking), 454

sharpening kernels, 454
spotlighting, 446–448

stop(), 347
Stopping animations, 347, 353
Straight edges, animation, 327–328
Stroke, graphics state, 49, 51
Surface loss, 93
Swing, 13. See also Rendering, with

Swing.
SwingLabs project, online resources,

550
SwingUtilities class, 38–41
SwingWorker class, 38–41
Synchronized Multimedia Integration

Language (SMIL), 377
Synchronous paint requests, 19–20
System Properties for Java 2D...,

145

www.it-ebooks.info

http://www.it-ebooks.info/

INDEX 569

T
Tables layer, 238
Tearing artifact, 330
Temporary offscreen images, 170
Text

antialiasing, 57–59, 59–68
brightening, 444–445
in drawing areas, 77
highlights (emphasis), 448–450, 482–484
highlights (lighting), 444–445
hints, setting, 59–68
pulsating border, 482–484

Thin clients, 1
Thread safety, 33–37
Threading. See also Rendering.

deadlocks, 35–37
description, 31–32
EDT (Event Dispatch Thread)

blocking, 31–32
deadlock, 35–37
definition, 31
description, 16
identifying, 35
perceived performance, 31–32
posting a runnable task, 34, 35–37
thread safety, 33–37
Timer class, 37–38
timers, 37–38

invokeAndWait(), 35–37
invokeLater(), 34
isEventDispatchThread(), 35
loaded file names, displaying, 39–41
loading images from a hard drive, 39–41
main thread, 31–32
perceived performance, 31–32
SwingUtilities class, 38–41
SwingWorker class, 38–41
toolkit thread, 31–32
utility classes for, 38–41

Threading model, 33–37
Time-based animation. See Animation,

time-based.
Timer (java.util), 37–38, 282

Timer (javax.swing), 38, 284–288
Timer resolution

currentTimeMillis(), 291–293
definition, 288–289
increasing, 278
measuring, 297–299
milliseconds, 276–278, 291–293
nanoseconds, 278, 291–293
nanoTime(), 291–293
performance, 288, 290, 299–300
sleeping, 293–297

Timer utilities
callbacks, 284–285
currentTimeMillis(), 276–278
demos, 282–284, 286–288
fixed delay, 285
fixed rate, 285
interframe volatility, 277–278
milliseconds, 276–278
nanoseconds, 278
nanoTime(), 278
querying current time, 275–278
sleep(), 279–280, 293–297
sleeping, 279–282, 293–297
Timer (java.util), 282–284
Timer (javax.swing), 284–288
timers, 280–284
wait(), 279–280, 295–297
wake-up calls, 279–282

Timers, 37–38, 280–284
Timing effects, animation, 317–320,

335–337
Timing events, receiving, 348–350
Timing Framework

Animator class, 345–347
autoboxing, 405
callbacks. See also TimingTarget object.

cleanup operations, 348–349
definition, 345
timing events, receiving, 348–350
timing targets, 349–350

controlling running animations, 347–348
definition, 344

www.it-ebooks.info

http://www.it-ebooks.info/

570 INDEX

Timing Framework, continued
demos

bouncing spheres, 382–392
fading button, 353–356
interpolator race, 363–364
KeyFrames class, 414–419
multistep race, 414–419
property setters, 393–395
racetrack, 356–359, 363–364,

391–392, 393–395, 398–399,
414–419

spline editor, 376
trigger race, 391–392
triggers, 382–392

duration of animation, 345, 350–351
ending behavior, 345
interpolation

acceleration, 360–363
anchor points, 369
control points, 369
deceleration, 360–363
definition, 345
demo, 363–364
description, 359–360
setAcceleration(), 360–363
setDeceleration(), 360–363

Interpolator

custom interpolation, 377–378
demos, 372–378, 414–419
description, 364–365
discrete interpolation, 367–368
DiscreteInterpolator class,

367–368
interpolate(), 366–367
linear interpolation, 366–367
LinearInterpolator class, 366–367
spline interpolation, 368–372
SplineInterpolator class, 368–372
types of, 365–372
uses for, 365

key frames, 402–414
KeyFrames class

constructors, 411–414
demo, 414–419

description, 402–404
getInterval(), 414
helper classes, 404–411
Interpolator class, 408–411
KeyTimes class, 407–408
KeyValues class, 404–407
methods, 414

online resources, 549
pausing an animation, 347
property setters

definition, 392
demos, 393–395
getter, 394
known types, 395
object access, 394
setter, 394

PropertySetter class
constructors, 395–397
definition, 395
demo, 398
evaluating intermediate types,

399–401
Evaluator class, 399–401
factory methods, 397–398
TimingTarget methods, 398

querying running animations, 347
repetition of animations, 345,

351–352
resolution, 345, 352
resuming an animation, 347
setDuration(), 350–351
starting an animation, 347
starting behavior, 345, 352–353
stopping an animation, 347
TimingTarget object, 348–350. See

also Callbacks.
triggers

ActionTrigger, 384
auto-reversing, 381
built-in, 382–384
canceling, 381
creating, 380
definition, 379–380
demos, 382–392

www.it-ebooks.info

http://www.it-ebooks.info/

INDEX 571

firing, 381
FocusTrigger, 385–386
listeners, adding, 380–381
MouseTrigger, 388–390
superclasses, 381–382
TimingTrigger, 389–390
Trigger class, 381–382
TriggerEvent class, 382

uses for, 344
Timing targets, 349–350
timingEvent(), 349
TimingTarget methods, 398
TimingTarget object, 348–350
TimingTargetAdapter class, 350
TimingTrigger, 389–390
Tinting images, 213–214, 214–221
Toolkit images, 93–94
Toolkit thread, 31–32
Toolkits for GUIs. See GUI toolkits.
Tooltips layer, 238
transform(), 63–64
Transform property, graphics state, 49
Transformations, 63–68
Transitions. See also Animated transitions;

Fading.
Animated Transitions library, 501
AnimatedTransitions API,

502–503
between application states, 497–501
effects

CompositeEffect, 512–513
custom, creating, 513–516
description, 509
Effects API, 510–516
FadeIn, 510
FadeOut, 510
init(), 513
Move, 510, 514
paint(), 513
removing, 512
Rotate, 510, 515–516
setEffect(), 511–513
setup(), 513
transition types, 511–513

Unchanging, 511
using, 511–513

glass pane, 527–528
GUI states, 501–502
image browser, 519–522
layout changes, animating, 528–529
layout details, hiding, 527–528
next-screen setup, 527–528
performance, 529–530
search engine, 503–509, 516–518
setupNextScreen(), 527–528

translate(), 63–64, 67–68
Translating objects, 63–64, 67–68
Translation, image scaling, 100
Translucency. See also Opacity;

Transparency.
BufferedImage objects, 97
demo, 249–251
effect, 162, 165–166
intermediate images, 142
painting, 27–28
rules for. See AlphaComposite;

Composites.
TranslucentPanel demo, 249–251
Transparency, 97. See also Opacity;

Translucency.
Trigger class, 381–382
TriggerEvent class, 382
Triggers

ActionTrigger, 384
auto-reversing, 381
built-in, 382–384
canceling, 381
creating, 380
definition, 379–380
demos, 382–392
firing, 381
FocusTrigger, 385–386
listeners, adding, 380–381
MouseTrigger, 388–390
superclasses, 381–382
TimingTrigger, 389–390
Trigger class, 381–382
TriggerEvent class, 382

www.it-ebooks.info

http://www.it-ebooks.info/

572 INDEX

Triple-buffering, 28
Tweening. See Morphing.
Two-stops linear (regular) gradients,

179–186

U
Unchanging effect, 511
Undo/redo syndrome, 460
UnsharpMaskFilter class, 455–458
User interface design, books and

publications, 547
USM (unsharp masking), 454

V
VALUE_ANTIALIAS hint, 57
VALUE_INTERPOLATION hint, 53–54
VALUE_TEXT_ANTIALIAS hint, 58–59
Van Dam, Andries, 377
VDTs. See Displays.
Vector drawings, scaling, 105–109
Vertical retrace effect, 329–334
Violet, Scott, 18, 46

Visibility. See also Opacity; Translucency;
Transparency.

the clip, 115–121
glass pane, 225

Vision feature, 535–537
Visual design, books and publications,

547
VolatileImage objects, 92–93

W
wait(), 279–280, 295–297
Wake-up calls, 279–282
Warning messages, 238–239
Web clients, 2
Web resources. See Online resources.
Workflow design. See also Aerith.

with a graphics editor, 535–537
on paper, 533–535, 537–538
screen mockups, 538–543

X
Xor rule, 162

www.it-ebooks.info

http://www.it-ebooks.info/

If you are interested in writing a book or reviewing
manuscripts prior to publication, please write to us at:

Editorial Department
Addison-Wesley Professional
75 Arlington Street, Suite 300
Boston, MA 02116 USA
Email: AWPro@aw.com

Visit us on the Web: http://www.awprofessional.com

You may be eligible to receive:

• Advance notice of forthcoming editions of the book

• Related book recommendations

• Chapter excerpts and supplements of forthcoming titles

• Information about special contests and promotions

throughout the year

• Notices and reminders about author appearances,

tradeshows, and online chats with special guests

at www.awprofessional.com/register

www.it-ebooks.info

www.awprofessional.com/register
http://www.awprofessional.com
http://www.it-ebooks.info/

	Filthy Rich Clients
	Contents
	Foreword
	Preface
	Acknowledgments
	About the Authors
	Introduction
	PART I: GRAPHICS AND GUI FUNDAMENTALS
	Chapter 1 Desktop Java Graphics APIs: Swing, AWT, and Java 2D
	Abstract Window Toolkit (AWT)
	Java 2D
	Swing

	Chapter 2 Swing Rendering Fundamentals
	Events
	Swing Painting
	Swing Rendering
	Double-Buffering
	Threading

	Chapter 3 Graphics Fundamentals
	Java 2D
	Rendering

	Chapter 4 Images
	Image Types
	BufferedImage
	Image Scaling

	Chapter 5 Performance
	Use the Clip
	Compatible Images
	Managed Images
	Intermediate Images
	Optimal Primitive Rendering
	Benchmark
	Command-Line Flags

	PART II: ADVANCED GRAPHICS RENDERING
	Chapter 6 Composites
	AlphaComposite
	AlphaComposite: The 12 Rules
	Creating and Setting Up an AlphaComposite
	Common Uses of AlphaComposite
	Issues with AlphaComposite
	Create Your Own Composite
	Summary

	Chapter 7 Gradients
	Two-Stops Linear Gradient
	Special Effects with Regular Gradients
	Multistops Linear Gradient
	Radial Gradient
	Optimizing Gradients

	Chapter 8 Image Processing
	Image Filters
	Processing an Image with BufferedImageOp
	AffineTransformOp
	ColorConvertOp
	ConvolveOp
	LookupOp
	RescaleOp
	Custom BufferedImageOp
	A Note about Filters Performance
	Summary

	Chapter 9 Glass Pane
	Painting on the Glass Pane
	Blocking Input Events

	Chapter 10 Layered Panes
	Using Layered Pane Layers
	Ordering Components within a Single Layer
	Layered Panes and Layouts
	Alternative to JLayeredPane with Layouts

	Chapter 11 Repaint Manager
	When Swing Gets Too Smart
	Meet the RepaintManager
	A Reflection on RepaintManager
	Summary

	PART III: ANIMATION
	Chapter 12 Animation Fundamentals
	It’s About Time
	Fundamental Concepts
	Frame-Based Animation
	Timing (and Platform Timing Utilities)
	Resolution
	Animating Your Swing Application
	Summary

	Chapter 13 Smooth Moves
	Background: Why Does My Animation Look Bad?
	What Makes Animations Choppy, and How to Smooth Them Out
	SmoothMoves: The Demo
	Summary

	Chapter 14 Timing Framework: Fundamentals
	Introduction
	Core Concepts
	Interpolation
	Summary

	Chapter 15 Timing Framework: Advanced Features
	Triggers
	Property Setters
	Summary

	PART IV: EFFECTS
	Chapter 16 Static Effects
	Blur
	Reflection
	Drop Shadows
	Highlights
	Sharpening
	Summary

	Chapter 17 Dynamic Effects
	Motion
	Fading
	Pulse
	Spring
	Morphing
	Summary

	Chapter 18 Animated Transitions
	Animating Application State Segues
	Animated Transitions: The Library
	Example: SearchTransition
	Example: SearchTransition Revisited: Customization
	Example: ImageBrowser
	Animated Transitions: Under the Hood, or How Do You Get Swing to Do That?
	Summary

	Chapter 19 Birth of a Filthy Rich Client
	Aerith
	Workflow Paper Design
	The Vision
	Screen Paper Design
	Mockup
	From Mockup to Code
	But . . . I’m Not an Artist!
	Choosing Nice Colors
	Read Design Books
	Summary

	Conclusion
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

