

Building Websites with
HTML5 to Work with
Mobile Phones

Matthew David

 AMSTERDAM • BOSTON • HEIDELBERG • LONDON • NEW YORK • OXFORD
 PARIS • SAN DIEGO • SAN FRANCISCO • SINGAPORE • SYDNEY • TOKYO

 Focal Press is an imprint of Elsevier

Focal Press is an imprint of Elsevier
225 Wyman Street, Waltham, MA 02451, USA
The Boulevard, Langford Lane, Kidlington, Oxford, OX5 1GB, UK

© 2011 Elsevier Inc. All rights reserved.

No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical,
including photocopying, recording, or any information storage and retrieval system, without permission in writing
from the publisher. Details on how to seek permission, further information about the Publisher's permissions
policies and our arrangements with organizations such as the Copyright Clearance Center and the Copyright
Licensing Agency, can be found at our website: www.elsevier.com/permissions.

This book and the individual contributions contained in it are protected under copyright by the Publisher (other than
as may be noted herein).

Notices
Knowledge and best practice in this field are constantly changing. As new research and experience broaden our
understanding, changes in research methods, professional practices, or medical treatment may become necessary.

Practitioners and researchers must always rely on their own experience and knowledge in evaluating and using any
information, methods, compounds, or experiments described herein. In using such information or methods they
should be mindful of their own safety and the safety of others, including parties for whom they have a professional
responsibility.

To the fullest extent of the law, neither the Publisher nor the authors, contributors, or editors, assume any liability for
any injury and/or damage to persons or property as a matter of products liability, negligence or otherwise, or from
any use or operation of any methods, products, instructions, or ideas contained in the material herein.

ISBN: 978-0-240-81906-8

For information on all Focal Press publications
visit our website at www.elsevierdirect.com

iii

Building Websites with HTML5 to Work with Mobile Phones.........................1
Designing for the Mobile Web.. 5

The Leading Mobile Web Browsers.. 8

Additional Web Browsers... 8

HTML5 in Mobile Websites... 9

New HTML5 Elements...10

Blocking Content..10

Using the SECTION Element...11

Using the ARTICLE Element...11

Using the HEADER and FOOTER Elements... 12

Using the ASIDE Element.. 13

Using the FIGURE Element... 13

Using the NAV Element... 13

Using CSS3.. 14

Designing Your Web Page with CSS.. 15

Controlling Display with CSS.. 15

Embedding Fonts Using CSS3.. 17

Sizing Your Fonts with CSS Units of Measurement................................... 18

CSS3 Color Control... 20

Adding Drop Shadow Text Effects... 20

Working with Columns in CSS3.. 21

Increase Your Control over Gradient Colors... 23

Multiple Background Objects.. 24

Adding Rounded Corners to Layers.. 25

Contents

ivâ•‡â•‡ Contents

Dazzling Your Audience with CSS3 Animation... 26

Using Transitions in CSS.. 27

Creating Animation with CSS3.. 28

Using Class and Pseudo Styles... 29

Media Definition Control.. 30

Graphical Control with Bitmap, SVG, and CANVAS Elements.................... 32

Working with Bitmap Images on the Web.. 32

Working with CANVAS and SVG Graphics... 33

Adding Video to Your Web Pages.. 33

Controlling Video with VIDEO Tags.. 34

Using JavaScript to Control the VIDEO Element.. 35

Encoding Video and Audio for Web Delivery.. 37

Creating Video in H.264 Format.. 38

Creating Video in Ogg Theora and WebM Formats................................ 38

Ensuring Your Video Plays Back... 38

Streaming for Video Playback on Mobile Devices..................................... 39

Applying New Web API Functionality to Your Mobile Web Pages................ 40

Geolocation on Your Phone.. 41

Local Data Storage... 43

Developing for Specific Mobile Browsers... 46

Apple's Mobile Safari... 46

Google's Android Browser... 46

RIM's BlackBerry 6 and PlayBook.. 47

HP/Palm WebOS.. 49

Developing Websites for the Rest... 49

Nokia's MeeGo and Symbian.. 50

Windows Phone 6.5 and Earlier.. 50

Tablet Development... 50

Summary.. 51

Building Websites with HTML5 to Work with Mobile Phones. doi: 10.1016/B978-0-240-81906-8.00001-1
© 2011 Elsevier Inc. All rights reserved. 1

Do you have a mobile phone? Back in the mid-1990s there is
a good chance you did not. Today? Well, today, there is a good
chance you do not have a landline phone, but you certainly have
a mobile phone. According to Gartner, one in three people on
the planet have a mobile phone, with that number expected to
increase to two in three over the span of this decade. What does
that mean? Four billion people will have mobile phones by the
year 2020.

Today, mobile phones are broken into three broad categories:
call only, feature phone, and smart phone.

The call-only phone allows you to make calls and maybe to
send and receive text messages. Nothing fancy. A feature phone
comes with a camera, texting, and possibly a Facebook app, as
shown in FigureÂ€1.1.

The third category is smart phone. One phone has come to
symbolize all smart phones: Apple's iPhone. It is fair to compare
the iPhone to a computer. With an iPhone you have the following:
•	 GPS
•	 Hi-res camera
•	 Video recording
•	 Accelerometer
•	 Gyroscope
•	 Internet access

When the iPhone was launched in 2007, Apple CEO Steve Jobs
hailed the phone as three devices in one: the best phone, the
best iPod, and the best way to experience the web, as shown in
FigureÂ€1.2. Using an iPhone to surf the web you will see that the
mobile Â�experience is phenomenal. Web pages simply render as
they are meant to; The New York Times loads correctly, CNN looks
like CNN, and Facebook just works.

Building Websites with
HTML5 to Work with
MobileÂ€Phones

2â•‡â•‡ Building Websites with HTML5 to Work with MobileÂ€Phones

The reason for this is due to the browser,
Mobile Safari. Mobile Safari is not a stripped-
down version of a browser, as you will find in
older smart phones such as Windows Mobile
6.5, but a browser that stands shoulder-to-
shoulder with leading desktop browsers such
as Google's Chrome or Mozilla's Firefox.

Apple is able to do this because Mobile
Safari is built on top of the Open Source plat-
form called WebKit. The same WebKit that
is used in Mobile Safari is used in the desk-
top version of Safari and under the hood of
Google's Chrome. The key standout feature
for WebKit is its massive support for HTML5,

the new set of standards that allows you to build print quality
websites.

While Apple may have raised the bar for smart phones, it is
not the only player in town. It is becoming increasingly clear that
Google, with its mobile Android operating system (FigureÂ€1.3), is
now standing shoulder-to-shoulder with Apple.

FigureÂ€1.1â•‡ Feature phones.

FigureÂ€1.2â•‡S teve Jobs with the
original iPhone presented in
January 2007.

	 Building Websites with HTML5 to Work with MobileÂ€Phonesâ•‡â•‡ 3

Google's Android OS is now currently the most popular
mobile OS for smart phones. There is a simple reason for this:
Google gives the OS away for free as an Open Source proj-
ect. Anyone can download and use the Android OS. They can
even customize the OS and control how it is deployed. This is
clear when you buy a Verizon phone or an HTC phone. Both
run Android, but both can look very different, as shown in
FigureÂ€1.4.

At the heart of the Android phone experience is another
WebKit-enabled web browser. There are subtle differences
between Apple's WebKit implementation and Android's (we
will cover that in more detail elsewhere), but on the whole a
page that loads in one will load in another.

Today, Android and iPhones are the two leading phones, but
the whole smart phone market is very small and is expected to
grow exponentially. At the January 2011 quarterly result confer-
ence, Tim Cook, Apple's COO, made the comment that “in the
future there will not be feature phones or smart phones; they
will be all smart phones.” Cook's comments are accurate. The
rate of adoption of smart phones is like nothing the tech indus-
try has seen. To this end, both Apple and Google are going to
find their market space getting very crowded.

During 2011 three strong mobile operating systems will
join Android and iOS: Microsoft's Windows Phone 7, RIM's
BlackBerry 6, and HP/Palm's WebOS.

FigureÂ€1.3â•‡T he Google Android logo.

FigureÂ€1.4â•‡ Android running on
three different phones from
Motorola, HTC, and Samsung.

4â•‡â•‡ Building Websites with HTML5 to Work with MobileÂ€Phones

Microsoft lacked vision when it came to Mobile devices. At one
point, Microsoft owned the market. Losing can, sometimes, be a
great panacea. Microsoft's response is Windows Phone 7, a solid
contender to Apple's iOS (shown in FigureÂ€ 1.5). The Â�interface is
unique, employing a metaphor called tiles. Interestingly, though,
when Windows Phone 7 launched, it did not come with an
HTML5 browser. Microsoft addressed this issue during the sum-
mer of 2011 with a new release of the OS that includes a mobile
browser that can view HTML5 websites.

Like, Microsoft, RIM was also a leader of smart phone devel-
opment. Its response to Apple and Google has been slow, but it is
clear that it is coming back with a strong solution in its adoption
of the BlackBerry 6 operating system.

HP/Palm's WebOS is, to me, a success story waiting to hap-
pen. In many ways, when Palm launched the Pre (shown in
FigureÂ€ 1.6) and Pixi running WebOS, it was the bad hardware,
not the OS, that let the product down and eventually saw
Palm being Â� purchased by HP. The core development environ-
ment for WebOS is HTML5 standards (CSS, HTML, JavaScript,
etc.). Powering all this is an implementation of WebKit. HP has
already promised that WebOS will be back in style in 2011.

What is becoming clear, in these early days of smart phone
development, is that who the leader is today will change every
3 to 6 months. Unlike the days of the web back in the mid-
1990s when only two companies were vying for your attention
(Netscape and Microsoft), today you have many companies and
phone carriers. In addition, buying a new phone every 12 to 18
months for around $100 to $150 is not unreasonable. Indeed,

FigureÂ€1.5â•‡ Windows Phone 7
with the unique tile interface.

	 Building Websites with HTML5 to Work with MobileÂ€Phonesâ•‡â•‡ 5

Apple has an agreement with AT&T that allows you to upgrade
your phone every 12 months. The smart phone replacement
cycle is forcing companies to upgrade their software and hard-
ware on a rapid curve. Think about this for a moment: the smart
phone category we think of today did not exist until Â�mid-2007.
Only four years ago.

If you look at all five companies, Apple, Google, Microsoft, RIM,
and HP, and their mobile operating systems, one single common
thread can be seen among all of them: HTML5-enabled browsing.

Designing for the Mobile Web
Designing websites for a smart phone is not the same as

designing for a PC web browser. There are several top-level differ-
ences you need to consider when designing for mobile devices:
•	 Screen size
•	 Changing portrait/landscape views
•	 High-quality resolution
•	 Input devices
•	 HTML5 support

Over the last few years, a widescreen aspect has become the
norm for many laptop screen sizes. Typical screen sizes now run
1280×1024 pixels. In contrast, the first iPhone ran at 320×480 pix-
els. The Android OS can run many different screen resolutions

FigureÂ€1.6â•‡ WebOS running on a
Palm Pre.

6â•‡â•‡ Building Websites with HTML5 to Work with MobileÂ€Phones

(top-level devices such as the HTC EVO runs at 800×480;
whereas the entry level Android phones have a screen reso-
lution of 240×400). The iPhone 4 and 5 both have a screen
resolution of 960×640, double the size of the first three generations
of iPhone.

Physically, smart phones are unlikely to increase much
more in screen resolution for a simple reason: a phone can-
not be too large, otherwise you will not be able to hold it with
one hand. Dell's Android-powered Streak failed because it
was too large to hold with one hand. Come on, people, this is
not 1989 anymore (check out Gordon Gekko's phone in Wall
Street—wow!).

In addition to a smaller screen, web pages on smart phones
have a second, unique experience: constant change between
landscape and portrait view. All the leading smart phones will
allow you to twist your phone around to get a better view of the
web page. Hardware accelerators in the phone can detect that
the phone is rotating and will change the view from landscape to
portrait accordingly.

The challenge different screen sizes offer is simple: your design
must be flexible, stretching to meet the correct Â�proportions for
the screen on which it is presented. You will see, as you read
Â�further, how this is accomplished with each of the frameworks
we will work with.

An interesting challenge that smart phones provide design-
ers is resolution. For many years web designers have been told
that they can keep their web graphics set to 72 DPI (dots per
inch). During 2010 this changed. First Apple and Google added
Â�functionality that allows for hi-resolution images to be added to
apps and web pages. The reason for this is related to how we use
our phones. Typically, you hold your phone about 8 to 12 inches
from your face. Your eye can see the detail you will miss on a
monitor. Top-end devices now have DPI resolution far in excess of
240 DPI (the iPhone 4 has a DPI of 334 that is branded as “Retina
Display”). The result is close to print-quality graphics on your
phone. Incredible and beautiful. The challenge this offers is that
images that are higher in resolution are much larger in file size,
as shown in the comparison between iPhone 3GS and iPhone 4 in
FigureÂ€1.7.

Desktop and laptop computers have an input model of a
mouse and keyboard. Both of these inputs are very precise. The
primary input device for your smart phone is your finger (if you
are lucky, you have eight and two thumbs versus the one mouse a
computer has).

A digit is not precise. Apple's human user interface manual
suggests that buttons that you tap with your finger are 44×44

	 Building Websites with HTML5 to Work with MobileÂ€Phonesâ•‡â•‡ 7

Â�pixels at a minimum. When your screen size is only 320×480, you
can see how much space you must provide for buttons tapped
with a finger.

A key element that is supported across leading smart phone
manufacturers is support for HTML standards. HTML5 is a great
buzzword (throw it in the same group as dHTML, Web 2.0, Ajax,
Cloud, etc.) that means a lot to a lot of people. HTML5 even
comes with its own logo, as shown in FigureÂ€1.8. At its core,
HTML5 is a new set of HTML elements and attributes—
tags in other words. For the most part, the new tags are
designed to make blocking content on your web pages
easier. Some tags, such as VIDEO, AUDIO, and CANVAS,
add rich media solutions that allow you to add standards-
based video and audio and rich Flash-like animation.

Just from this list you can see that mobile web develop-
ment offers many challenges and opportunities you do not
experience on a laptop. Do not think that coming to the
mobile platform is the same as desktop. The customer expe-
rience is simply too different.

FigureÂ€1.7â•‡R etina display
quality on iPhone 4.

FigureÂ€1.8â•‡HT ML5 logo.

8â•‡â•‡ Building Websites with HTML5 to Work with MobileÂ€Phones

The Leading Mobile Web Browsers
Today, two companies dominate browser use for smart phones:

Google and Apple. It would be fair to say that close to 99% of all
mobile web traffic comes from these two platforms.

Apple's Mobile Safari and Android's web browser are both
built using WebKit as a foundation. This does not mean they are
both equal. For instance, Mobile Safari has supported SVG graph-
ics since version 1.0 whereas Android did not start support for
SVG until the release of Honeycomb (3.0).

The two browsers enjoy huge support for a simple reason: they
are the default browsers installed on the hardware.

Android does allow you to install additional web browsers but
adoption rates are very low. Apple takes things one step further
and prohibits additional web browsers from being submitted to
the App Store.

Fortunately both browsers do have great support for Â�modern
web technologies allowing you to deliver amazing web Â�experiences
to your customers.

Additional Web Browsers
Mobile Safari and Android are not the only browsers in town.

In addition, there are:
•	 Mobile Firefox (known as Fennec)
•	 Mobile Opera
•	 Chrome OS
•	 Mercury

Mobile Firefox is a port of Firefox 3.6
for the mobile Â�platform. Currently it has
limited support on Nokia Maemo phones,
but there is a beta release for Android and
Windows Phone 6, as shown in FigureÂ€1.9.

Outside of the default browsers that
come with Android and iOS, Opera Mobile
is the most popular browser. Opera has been
creating a mobile version of its browser since
2000, with each major release supporting
almost all the same features as its desktop
version. The current release has broad sup-
port for HTML5. FigureÂ€ 1.10 shows Opera
running on an HP iPAQ.

Opera Mobile runs on many plat-
forms including Android, Windows
Mobile, Maemo, and Symbian. The fol-
lowing phones all ship with Opera Mobile
installed:

FigureÂ€1.9â•‡ Mobile Firefox (code
name Fennec) running on an
HTC Windows 6 phone.

	 Building Websites with HTML5 to Work with MobileÂ€Phonesâ•‡â•‡ 9

•	 Nokia N90
•	 Sony Ericsson P1
•	 Sony Ericsson XPERIA X1
•	 HTC Touch Viva
•	 HTC Touch Diamond
•	 HTC Touch Diamond2
•	 HTC Touch Pro
•	 HTC Touch Pro2
•	 HTC Touch HD
•	 HTC HD2
•	 Meizu M8
•	 Creative Zii
•	 Samsung i900 Omnia
•	 Samsung i8000 Omnia II
•	 Motorola ROKR E6

While Opera is still a niche player on the desktop, it is a major
player in the mobile arena.

The final mobile browser worth considering as you design
you web pages is Chrome OS. Google is performing a strange
development cycle between Android and Chrome OS. If you
did not know, you would think that they compete with one
another. Chrome OS is built on top of Google's Chrome web
browser. Google has confirmed that Chrome OS will be installed
on netbooks but Google has not declared where else it will be
installed.

HTML5 in Mobile Websites
The next section dives deep into HTML5. HTML5 is an emerg-

ing standard that is the most dramatic evolution of web devel-
opment standards in more than a decade. HTML5, however, has

FigureÂ€1.10â•‡O pera browser
running on an iPAQ.

10â•‡â•‡ Building Websites with HTML5 to Work with MobileÂ€Phones

come to mean a lot more than just a new set of tags. The term
now encompasses a whole set of technologies that include:
•	 HTML5 elements
•	 CSS3
•	 New graphic control (PNG, SVG, and CANVAS)
•	 Enhanced JavaScript
•	 Web APIs

There is even more. Amazingly, mobile browsers are ahead
of desktop browsers in support for these technologies. All of the
following technologies will work on Android, iOS, WebOS, and
BlackBerry 6. You will need to wait for 2011 summer release of
HTML5 support in Windows Phone 7 to support HTML5.

New HTML5 Elements
The blocking of content in HTML is traditionally accomplished

using either complex tables or the infamous DIV Â�element. HTML5
introduces several new elements that allow you to easily insert
blocks of content into the page. Conveniently, these new elements
have names that identify what the block of content accomplishes:
•	 HEADER
•	 SECTION
•	 ARTICLE
•	 ASIDE
•	 FOOTER
•	 NAV

The role of the new page layout elements is to better describe
specific parts of a document. Think of the new tags as behav-
ing in a similar way to how you approach writing a document in
Microsoft Word. A typical Word document is built up of sections
of content that can be separated in paragraphs, sidebars, and
header and footer sections.

Blocking Content
There are few ways in HTML4 to define content. The most

common is to use the P element to identify the start and end of
a paragraph, or the DIV element to identify the start and end of a
section of content. Both do not adequately describe the content.
You can see blocking applied to most web pages.

With HTML5 a new element, the SECTION element, clearly iden-
tifies a block of content. This method is called block-level semantics.
With HTML5 there are several elements that block content:
•	 SECTION
•	 ARTICLE
•	 HEADER
•	 FOOTER
•	 ASIDE

	 Building Websites with HTML5 to Work with MobileÂ€Phonesâ•‡â•‡ 11

•	 FIGURE
•	 NAV

The new names for each of these elements identify the type of
content they block on a page.

Using the SECTION Element
The SECTION element is part of a new set of elements that

describe the content on a page. You can think of the SECTION
element as enclosing a significant part of a page, in the same way
that a chapter in a book is a significant section of the book. An
example of the SECTION element follows.

<SECTION>
<ARTICLE>
<P>Nulla facilisis egestas nulla id rhoncus. Duis eget

diam nisi, quis sagittis nulla. Fusce lacinia pharetra
dui, a rhoncus sapien egestas.</P>

</ARTICLE>
<ARTICLE>
<P>Lorem ipsum dolor sit amet, consectetur adipiscing

elit. Nunc vehicula ipsum sit amet eros adipiscing
volutpat. Sed gravida urna vel sapien commodo pretium.</P>

</ARTICLE>

Praesent ut sapien quam.
Aliquam erat volutpat.

</SECTION>

You can see clearly that the two paragraphs, wrapped in the
P element, and the two bullet points are part of the same content
wrapped in the SECTION element.

The SECTION element is an efficient way to organize content
in your code.

Using the ARTICLE Element
The ARTICLE element is used to clearly identify content in

a web page. Blogs are a good example where content is clearly
identified. The main section of a page is the content that you can
wrap using the ARTICLE element. You can have additional HTML
elements included within an ARTICLE. The following blog from
http://blog.whatwg.org/ is an example that shows how you can use
the ARTICLE element in HTML.

<ARTICLE>
<H1>Spelling HTML5</H1>
<P><TIME>September 10th, 2009</TIME> by Henri
Sivonen</P>
<P>What's the right way to spell “HTML5”? The short

answer is: ”HTML5" (without a space).</P>
</ARTICLE>

12â•‡â•‡ Building Websites with HTML5 to Work with MobileÂ€Phones

More than one ARTICLE can be added to a page. You should
think of the ARTICLE element as a tool that logically breaks up
content. Similar content separated by the ARTICLE element can
be contained within a SECTION element.

Using the HEADER and FOOTER Elements
The top and bottom of a page created with Microsoft Word

or any other word processing software is a place reserved for the
header and footer information page. This includes page number,
copyright notice, and other details. Web pages are no different.
Header and footer information is found on most web pages.

You can see the use of the header on the page in the following
HTML example. It contains the Focal Press logo, the element line,
high-level links, and a search box. HTML5 allows this area of con-
tent to be clearly identified as either a header or a footer using
the new HEADER and FOOTER elements.

For instance, a HEADER for Focal Press would look like the
following.

<HEADER>
<SECTION><img src=“/images/fplogo.png”

border=“none” alt=“Focal Press logo” title=“Focal Press
Home”/> learn | master | createSECTION>

<NAV>
<a title=“Digital Imaging and Photography”

class=“first” href=“/photography.aspx”>Photography
<a title=“Production, Postproduction, and Motion
Graphics” href=“/film_video.aspx”>Film & Video</
li><a title=“Animation, 3D, and Games” href=
“/animation_3d.aspx”>Animation & 3D
<a title=“Audio Engineering and Music Technology” href=
“/audio.aspx”>Audio<a title=“Broadcast

and Digital Media” href=“/broadcast.aspx”>Broadcast
<a title=“Theatre and Live Performance” href=
“/theatre.aspx”>Theatre<a class=“offsite last”
href=“http://www.elsevierdirect.com/imprint.jsp?iid=100001”

>Bookstore </NAV>
</HEADER>

The FOOTER section to a page is also viewed on most web
pages. An example FOOTER in HTML5 will look as follows:

<FOOTER>
<P>Copyright © 2011 Focal Press, Inc.</P>
</FOOTER>

Unlike normal page layout, the HEADER and FOOTER are not
exclusive to just the head and foot of a web page. You can have
a header and footer placed around the ARTICLE or SECTION
Â�element if those pieces require specific header and footer
content.

	 Building Websites with HTML5 to Work with MobileÂ€Phonesâ•‡â•‡ 13

Using the ASIDE Element
The role of the ASIDE element is to describe content that is

related to but is not part of the main content on the web page.
You can think of the ASIDE element as fitting the role of a sidebar
reference or an aside found in books and articles. The Â�following
example shows how the ASIDE element can be used with the
ARTICLE element.

<ARTICLE>
<P>Lorem ipsum dolor sit amet, consectetur adipiscing

elit. Vivamus sed eros at metus pulvinar convallis id quis
purus. Sed lacinia condimentum viverra.</P>

<ASIDE>
<H1>What is Lorem Ipsum?</H1>
<P>Lorem Ipsum is simply dummy text of the printing and

typesetting industry.</P>
</ASIDE>
</ARTICLE>

The main content of the page and a support aside can be
clearly separated using the ASIDE element.

Apply formatting, using CSS, to visually show where the ASIDE
is on the screen.

Using the FIGURE Element
Inserting images into a web page is common practice.

Identifying the image and supporting text as a figure is much more
difficult. The FIGURE element clearly identifies an image and sup-
porting description as being part of a set. This set is called a figure
group. As with many of the previous new HTML5 elements, the
FIGURE element is a method of blocking related content with itself.

<FIGURE>
<LEGEND>FigureÂ€12. Using the FIGURE element
</LEGEND>
<IMG alt=“The FIGURE element is another example

of block semantics in HTML5” src=“figure_element.jpg”
border=“0” height=“140” width=“240” />

</FIGURE>

The FIGURE element has an additional element you can use
within it. The LEGEND element identifies the text that is to be
associated with the image. The FIGURE element can be used
multiple times on a page. The Border attribute is deprecated but
it is still used by most browsers.

Using the NAV Element
The final HTML5 blocking element is NAV. Navigation is impor-

tant to any website. The role of the NAV element is to clearly Â�identify
groups of links that when grouped together form navigation.

14â•‡â•‡ Building Websites with HTML5 to Work with MobileÂ€Phones

FigureÂ€1.11â•‡ jQuery Mobile
leverages CSS3 to manage the
presentation of content.

Navigation can take many different roles on a single web page.
The different types of content that can be grouped together as
navigation include, but are not limited to, the following:
•	 Top-level links typically found in the top-right corner of a web page
•	 Links that move you through data such as “Next” and

“Previous”
•	 Links found in the footer of a web page

The following is an example of navigation grouped using the
NAV element.

<NAV>
Home | <a href=“aboutUs.

html”>About Us | Contact Us
</NAV>

Of all the blocking elements in HTML5, the NAV element
is one of the easiest to understand: the NAV element is used to
define a section of HTML for navigation on the page.

Using CSS3
Tags are used in HTML5 to place and organize content at a

level that is descriptive. This does not mean that the page will
look good. Presentation of content on the page is controlled using

Cascading Style Sheets Level 3, or CSS3, in HTML5.
Using CSS to describe how your page should look,

however, is not new. The technology was first introduced
in 1997 and is now, in HTML5, in its third major release,
named CSS3. The good news is that all CSS1 and CSS2 stan-
dards are fully supported by Â�popular web browsers.

For mobile web design you will use CSS to format your
web pages. There are good reasons why you want to do
this. The first, and most important, is that CSS is a tool
that allows you to Â�easily apply page styling techniques to a
whole website from one or more shared documents. This
means you can quickly change the visual layout of a page,
selection of pages, or your entire site.

The second is that Apple has GPU accelerated Â�support
for CSS. What this means is that CSS simply runs faster.
Animations, rounded corners, embedded fonts, and trans-
forms all look great on the iPhone. The powerful new Nvidia
and Qualcomm chipsets appearing in most smart phones
really give presentation in your web pages an edge. The result
is that you can use CSS to design native app-like solutions
without having to write native code. Just CSS.

In a later article you will see how jQuery Mobile enables
you to build stunning solutions, with CSS3 playing a major
role in the presentation. FigureÂ€ 1.11 shows a website that

	 Building Websites with HTML5 to Work with MobileÂ€Phonesâ•‡â•‡ 15

uses CSS3 in jQuery Mobile to build a website that looks like a
native Â�application on the iPhone.

This section will not go into detail about CSS creation and devel-
opment. For a more detailed analysis of CSS3 in HTML5, check out
the book HTML5: Designing Rich Internet Applications (David, 2010).

Designing Your Web Page with CSS
CSS is much easier to master than more complex parts of

HTML5 such as Local Data Storage, Geolocation, and JavaScript.
The basic premise for all CSS is that you have a definition that
requires a value. For instance, if you want to define the size of a
particular font, you write the correct CSS definition (font-size)
and place a value. Here is the code:

font-size: 60px;

There are four rules you must follow:
1.	 Use a valid CSS definition.
2.	 Place a colon after the definition.
3.	 Add a valid value for the definition.
4.	 Complete the statement with a semicolon.

Follow these four rules and you are golden.
For basic CSS manipulation there are some great tools you can

use. Adobe's Dreamweaver and Microsoft's Expression Web both
support CSS2 design definition. Both of these tools are offer visual
editors you can easily use to write CSS. Unfortunately your choices
drop significantly when you start to look for more advanced CSS3
tools. This is in part due to the rapid development of CSS3. Check
out visualizetheweb.com for the latest information on CSS3 tools.

When CSS was first released in 1997 there were about a dozen
or so definitions you could use to control visual aspects such as
font size, color, and background color. Now you have hundreds
of Â�different definitions that can be used extensively with any
Â�element on the screen.

Controlling Display with CSS
One of the easiest places to start learning how to use CSS

definitions is through font control. CSS1 and CSS2 support nine
Â�different definitions within the font family. They are:
•	 Font-family
•	 Font-size
•	 Color
•	 Text-shadow
•	 Font-weight
•	 Font-style
•	 Font-variant
•	 Text-transform
•	 Text-decoration

16â•‡â•‡ Building Websites with HTML5 to Work with MobileÂ€Phones

The font-family definition allows you to select a font for your
design. Here is how you write the definition:

font-family: Arial;

The challenge you have in using the font-family definition
is that the number of fonts you can select from is limited to the
fonts installed on the device viewing your web page. Web brows-
ers and operating systems install a core set of fonts that you can
use in your designs. The list of fonts you have available that are
“web safe” includes the following:
•	 Arial/Helvetica
•	 Times New Roman/Times
•	 Courier New/Courier
•	 Verdana
•	 Georgia
•	 Comic Sans MS
•	 Trebuchet MS
•	 Arial Black
•	 Impact
•	 Palatino
•	 Garamond
•	 Bookman
•	 Avant Garde
This list is not very exhaustive and you run into issues where
the fonts will not match. For instance, you may select the font
Tahoma and it will look great on Windows Phone 7 but will not
look the same on the iPhone. Often you will find that there are
similar fonts on devices, but they simply have different names.
For instance, you can select the following font family:

font-family: “Courier New”, Courier, monospace;

This collection of fonts will allow the text to be presented
Â�correctly no matter the system viewing the page. In this instance,
“Courier New” is the Windows Phone name for “Courier” on
iOS. Monospace is a Unix/Linux equivalent that you will find on
Android.

Here is a collection of safe font-family names you can use:
•	 Arial, Arial, Helvetica, sans serif
•	 Arial Black, Arial Black, Gadget, sans serif
•	 Comic Sans MS, Comic Sans MS, cursive
•	 Courier New, Courier New, Courier, monospace
•	 Georgia, Georgia, serif
•	 Impact, Impact, Charcoal, sans serif
•	 Lucida Console, Monaco, monospace
•	 Lucida Sans Unicode, Lucida Grande, sans serif
•	 Palatino Linotype, Book Antiqua, Palatino, serif
•	 Tahoma, Geneva, sans serif
•	 Times New Roman, Times, serif

	 Building Websites with HTML5 to Work with MobileÂ€Phonesâ•‡â•‡ 17

•	 Trebuchet MS, Helvetica, sans serif
•	 Verdana, Verdana, Geneva, sans serif
•	 Wingdings, Zapf Dingbats (Wingdings, Zapf Dingbats)

Embedding Fonts Using CSS3
A way to get around the problems of creating font-fam-

ily lists is to embed the font directly into your CSS. CSS3
finally allows you to do this across your web browsers.
The technology for font embedding, however, is not new.
Netscape Navigator 4 was the first web browser that allowed
you to support font embedding using a plug-in technology
called TrueDoc by Bitstream. To compete with Navigator 4,
Microsoft released a “me too” technology called Embedded
Open Type in the Windows version of Internet Explorer 4.

As you might expect, HTML5 has driven new technolo-
gies to enable true font embedding. Three standards are
now recommended to embed fonts. They are:
•	 TrueType
•	 Scalable Vector Graphic Fonts
•	 WOFF

Embedding a font into your CSS document is now very
easy. FigureÂ€1.12 shows Google's Web Font directory of free
HTML5 web fonts you can use now.

To embed a font into a web page you need only two
things: the font file and definition in CSS linking to the font.

The font myCustomFont.ttf is being used in the CSS code
below.

You need to create a new font-family in your CSS Â�document that
links to the TrueType font. The following CSS code shows, in line 2,
where you can create a new font-family called “myCustomFont” and,
in line 3, you are linking to the font and identifying the type of font.

@font-face{
font-family: 'myCustomFont';
src: url('MYCUSTOMFONT.ttf') format('truetype');
}

You now have a new font-family that you can reference in your
normal CSS. Here, a P element is being formatted using the new
font-family:

p {
text-align: center;
font-family: 'myCustomFont';
font-size:3cm;
}

Now your web pages will display the embedded font Â�correctly
no matter what web browser is viewing your design. Font Â�freedom
has finally come to the web!

FigureÂ€1.12â•‡ Free fonts from
Google you can use on your
website.

18â•‡â•‡ Building Websites with HTML5 to Work with MobileÂ€Phones

Sizing Your Fonts with CSS Units of Measurement
After selecting a font-family for your text you will also want

to select the size of the font. By default, all web browsers have
a preinstalled definition for a standard font size. This font
size is usually 12 pt. You can use this as a size for your fonts as
they appear on the screen using the following CSS font-size
definition:

Font-size:medium;

If you want your font to appear smaller or larger on the screen
you can use the following sizes for your fonts:
•	 Xx-small (approximately 7.5 pt)
•	 X-small (approximately 9 pt)
•	 Small (approximately 10 pt)
•	 Medium (approximately 12 pt)
•	 Large (approximately 14 pt)
•	 X-large (approximately 18 pt)
•	 Xx-large (approximately 24 pt)
•	 Smaller
•	 Larger

Each of these font sizes are relative to the core browser
defaulted font size. If the person who owns the web browser
has changed that default then the sizes will dynamically
change.

As a designer you are limited by the default font size list. The
good news is that CSS allows you to leverage units of measure-
ment to add precise size to your font. The following are all valid
CSS units of measurement you can use.
•	 Cm: Centimeter
•	 In: Inch
•	 Mm: Millimeter
•	 Pc: Pica (1â•›p = 12 pts)
•	 Pt: Point (1â•›pt = 1/72 inch)
•	 Px: Pixels
•	 Rem: Font size of the root element

Using these different font sizes, the following styles are all
valid:

.default {
font-family: “Segoe UI”, Tahoma, Geneva, Verdana;
font-size: medium;

}
.px {

font-family: “Segoe UI”, Tahoma, Geneva, Verdana;
font-size: 15px;

}

	 Building Websites with HTML5 to Work with MobileÂ€Phonesâ•‡â•‡ 19

.cm {
font-family: “Segoe UI”, Tahoma, Geneva, Verdana;
font-size: .5cm;

}
.mm {

font-family: “Segoe UI”, Tahoma, Geneva, Verdana;
font-size: 2mm;

}
.inch {

font-family: “Segoe UI”, Tahoma, Geneva, Verdana;
font-size: .25in;

}
.pica {

font-family: “Segoe UI”, Tahoma, Geneva, Verdana;
font-size: 2pc;

}
.point {

font-family: “Segoe UI”, Tahoma, Geneva, Verdana;
font-size: 10pt;

}
.rem {

font-family: “Segoe UI”, Tahoma, Geneva, Verdana;
font-size: 1rem;

}

These font styles are applied to the following HTML:

<p class=“default”>In hac habitasse platea dictumst.</p>
<p class=“px”>Lorem ipsum dolor sit amet, consectetur

adipiscing elit. Etiam accumsan convallis odio, vitae
semper mi pretium laoreet. </p>

<p class=“cm”>In vestibulum, ipsum consectetur cursus
porttitor, mi tellus euismod purus, ac egestas nisl
risus ac risus. Suspendisse a nisi mi, nec rutrum nisi.
Suspendisse pretium aliquet convallis. </p>

<p class=“mm”>Aliquam sollicitudin elementum est,
commodo gravida lorem imperdiet ac. </p>

<p class=“inch”>In hac habitasse platea dictumst
. </p>

<p class=“pica”>Donec rhoncus turpis vitae risus
commodo ac mollis ligula aliquam. Donec in mi arcu, id
vulputate turpis. </p>

<p class=“point”>Nullam nunc dui, euismod vel lobortis
nec, suscipit non velit. </p>

<p class=“rem”>Aliquam ornare, nibh eget facilisis
lobortis, ligula velit suscipit sem, id condimentum est
turpis ut magna. </p>

FigureÂ€1.13 shows you how these fonts are presented in your
mobile browser.

FigureÂ€1.13â•‡T he @ font-face
is used to embed fonts in the
above web page.

20â•‡â•‡ Building Websites with HTML5 to Work with MobileÂ€Phones

CSS3 Color Control
As with size, color has many different units of measurement.

The default for web design is hexadecimal, a combination of six
letters and numbers. CSS3 provides you a much broader palette
of colors to choose from that include the following:
•	 Color Name: You can use a name for color such as Brown,

Black, Red, or even Cyan.
•	 Full Hexadecimal: A hexadecimal value comprised of six

alphanumeric values.
•	 Short Hexadecimal: A hexadecimal value comprised of three

alphanumeric values.
•	 RGB: A combination of red, green, and blue values.
•	 RGBA: A combination of red, green, and blue values with a

transparency value (Alpha).
•	 HSL: A combination of hue, saturation, and lightness.
•	 HSLA: A combination of hue, saturation, and lightness with a

transparency value (Alpha).
The following CSS uses these values to show how you can cre-

ate the color red different ways:

.name {
color: red;
}
.fullHexVersion {
color: #FF0000;
}
.shortHexVersion {
color: #F00;
}
.rgb {
color: rgb(255,0,0);
}
.rgba {
color: rgba(255,0,0,100);
}
.hsl {
color: hsl(0%, 100%, 50%);
}
.hsla {
color: hsl(0%, 100%, 50%, 100%);
}

These different values are used in different places within the
design community.

Adding Drop Shadow Text Effects
Love them or hate them, you cannot get away from the handy

design technique of drop shadows. CSS3 now supports drop
shadow effects, and they are very easy to add to your designs.

	 Building Websites with HTML5 to Work with MobileÂ€Phonesâ•‡â•‡ 21

There are four elements that you can use to control the drop
shadow definition. They are:
•	 Horizontal-offset (length, required)
•	 Vertical-offset (length, required)
•	 Blur-radius (length, optional)
•	 Shadow-color (color, optional)

The following CSS definition is an example of the use of the
drop shadow, illustrated in FigureÂ€1.14.

.dropShadow {
font-family: “Segoe UI”, Tahoma, Geneva, Verdana;
font-size: 3cm;
color: #CC3300;
text-shadow: 0.25em 0.25em 2px #999;

}

The effect draws a light gray drop shadow with a slight blur.
Different colors and units of measurement can be used with

the drop shadow effect. The following CSS definition uses pixels
and RGBA for the measurement and color.

.transparentDropShadow {
font-family: “Segoe UI”, Tahoma, Geneva, Verdana;
font-size: 25px;
color: rgba(255,0,0,1);
text-shadow: 5px 5px 5px rgba(0, 0, 0, 0.5);

}

Finally, you can use the drop shadow effect to force a “cut out”
effect with your text. Apply the following CSS to text on the screen:

.cutout {
font-family: “Segoe UI”, Tahoma, Geneva, Verdana;
font-size: 3cm;
color: white;
text-shadow: 0em 0em 2em black;

}

FigureÂ€1.15 demonstrates the effect of the drop shadow as a cut out.

Working with Columns in CSS3
A challenge for any web page is to create content that is split

over two or more columns on the page. Creating columns often
requires using complex tables structured together. Though not
strictly part of the text family of CSS definitions, the new multicol-
umn layout is best when used with text on the screen.

The goal of the multicolumn definition is to allow your con-
tent to be spread evenly over two or more columns. There are
three parts to a column layout:
•	 The number of columns
•	 The gap between the columns
•	 Column design (optional)

FigureÂ€1.14â•‡ A CSS3 drop shadow.

FigureÂ€1.15â•‡T he CSS3 drop
shadow effect can also be used
as a cut-out effect.

22â•‡â•‡ Building Websites with HTML5 to Work with MobileÂ€Phones

The following CSS demonstrates how you can set up multicol-
umns to display in WebKit-enabled browsers.

.simple {
font-family: “Segoe UI”, Tahoma, Geneva, Verdana;
font-size: 12px;
color:#444;
text-align: justify;
-moz-column-count: 2;
-moz-column-gap: 1em;
-webkit-column-count: 2;
-webkit-column-gap: 1em;
}

In this example, the column-count is two and the gap is 1 em.
FigureÂ€1.16 shows how this is displayed in your web browser.

You can add a column design between each column. The
structure is:

-moz-column-rule: 1px solid #222;
-webkit-column-rule: 1px solid #222;

For each column design you can identify the width, border
style, and color. You can use the standard measurement and color
CSS formatting. You can choose from the following border styles:
•	 None
•	 Hidden
•	 Dotted
•	 Dashed
•	 Solid
•	 Double
•	 Groove
•	 Ridge
•	 Inset
•	 Outset

Additional elements, such as the IMG, can be used with text
content in the column layout. FigureÂ€ 1.17 illustrates a complex
use of a multicolumn layout.

FigureÂ€1.16â•‡ A simple two-
column layout using CSS3.

FigureÂ€1.17â•‡ A complex three-
column layout.

	 Building Websites with HTML5 to Work with MobileÂ€Phonesâ•‡â•‡ 23

The CSS to create this layout is:

.complex {
font-family: “Segoe UI”, Tahoma, Geneva, Verdana;
font-size: 1.2pc;
color:#444;
text-align: left;
-moz-column-count: 3;
-moz-column-gap: 1em;
-moz-column-rule: 2px dotted #999;
-webkit-column-count: 3;
-webkit-column-gap: 1em;
-webkit-column-rule: 2px dotted #999;
}

The style in this column layout is applied to P element, which
contains both text and an IMG element. You should Â�experiment
with columns. They are certainly much easier to use than
Â�complex tables.

Increase Your Control over Gradient Colors
Control over your use of color has increased significantly

with CSS3. You saw earlier that you can use long hexadecimal,
short hexadecimal, RGB, RGBA, HSL, and HSLA to have access to
Â�millions of colors. In addition to solid colors, CSS3 gives you the
ability to add gradients.

You can currently create two different types of gradient: linear
and radial. FigureÂ€1.18 illustrates the two different gradient types
you can create.

The gradient definition is comprised of several key elements.
They are:
•	 Type: Either radial or linear
•	 Point: Two space-separated values that explain where the

Â�gradient starts (this can be achieved with a number, per-
centage, or by using the keywords top, bottom, left, and
right)

•	 Radius: The radius is a number that you only need to specify
when you use the radial type

•	 Stop: The function of the Stop value is to identify the blend
strength as a percentage or number between 0 and 1 (such
as .75 or 75%) and a color; you can use any CSS3 supported
color
Putting all of these together will give you a gradient. Gradients

can be used with the following definitions:

background-image
border-image
list-style-image
content property

FigureÂ€1.18â•‡ CSS3 allows you to
add gradient colors.

24â•‡â•‡ Building Websites with HTML5 to Work with MobileÂ€Phones

The following example adds a gradient that goes from red-to-
orange-to-orange-to-yellow:

body {
background-image: -webkit-gradient(linear, left top,

left bottom, from(red), to(yellow), color-stop(0.5, orange),
color-stop(0.5, orange));}

As you can see, the gradient is substituting an image in the
background-image definition. The first definition identifies the
gradient as linear. The next definition explains that the gradient
is going to go from top to bottom. The two elected colors are red
and yellow. The stop function has the colors blending halfway
through to orange.

A radial gradient is completed in a similar way. The follow-
ing adds a radial gradient that moves from red-to-orange-to-
yellow:

body {
background-image: -webkit-gradient(radial, 45 45, 15, 100

100, 250, from(red), to(yellow), color-stop(50%, orange));}

In this instance, the numbers following the radial declaration
determine the shape of the radius. The first two numbers dictate
the angle of the ellipse in degrees. The third number dictates the
size of the inner circle. The fourth and fifth numbers dictate the
position of the gradient (left and top). The final number dictates
the final size of the radius.

Multiple Background Objects
You quickly run into limitations when you can use only one

background image. With CSS3 you can now run multiple back-
ground images. Any element that supports the background-
image definition now supports multiple background images.
Using background images is very easy. You can start by listing the
images you want to use. Take for instance the following:

background-image:
url(http://upload.wikimedia.org/wikipedia/commons/3/36/

Team_Singapore_fireworks_display_from_Singapore_Fireworks_
Festival_2006.jpg), url(http://upload.wikimedia.org/
wikipedia/commons/b/b2/OperaSydney-Fuegos2006-342289398.
jpg);

You can specify where you want each background to appear
on the screen using the background-position definition. The
Â�definition is paired for the position of the background.

background-position: bottom left, top right;

FigureÂ€1.19 shows the end result.
FigureÂ€1.19â•‡ Multiple
backgrounds.

	 Building Websites with HTML5 to Work with MobileÂ€Phonesâ•‡â•‡ 25

As you might expect, you can mix gradients and multiple
background images together. The following CSS blends a radial
gradient with two background images.

<html>
<head>
<title>Multiple Backgrounds</title>
<style>
body {
background-image:
url(http://upload.wikimedia.org/wikipedia/

commons/3/36/Team_Singapore_fireworks_display_from_
Singapore_Fireworks_Festival_2006.jpg),

url(http://upload.wikimedia.org/wikipedia/
commons/b/b2/OperaSydney-Fuegos2006-342289398.jpg),
-webkit-gradient(radial, 45 45, 15, 100 100, 250, from(gold),
to(magenta), color-stop(50%, black));

background-repeat: no-repeat;
background-position: bottom left, top right;

background-color:black;}
</style>

</head>
<body>
</body>
</html>

Adding Rounded Corners to Layers
Adding rounded corners is not a new technique for the web.

You see it all the time when you look at websites. The effect,
Â�however, is created through using images and tables to create the
Â�illusion of rounded corners. Adding images to the pages ensures
that the page takes longer to load and makes modifying the page
later more complex.

A simpler approach is to use the proposed Corner-Radius CSS
definition that is currently supported in Mobile Firefox, Mobile
Safari 3.0, and the Android web browser. The Corner-Radius defi-
nition is a line you can add to your CSS style. The following HTML
code has a style embedded that changes the presentation of the
block of text to have rounded corners with a heavy, black outline:

<p style=“-moz-border-radius: 10px;-webkit-border-radius:
10px;border: 4px solid #FF0000;”>Lorem ipsum dolor sit amet,
consectetur adipiscing elit. Nam porta, lacus in cursus
cursus, justo purus fringilla nisi, quis cursus urna velit vel
felis. Nulla ac mi. Phasellus sodales dui vel tortor. Praesent
dignissim. Vestibulum vulputate nibh rutrum purus. Nulla ante.
Sed porta. Vestibulum commodo, mi nec tincidunt laoreet, urna
risus ornare libero, in imperdiet sapien enim vel nisi.</p>

Your Â�content will now look like FigureÂ€1.20 on your web page.
FigureÂ€1.20â•‡R ounded corners in
your mobile site.

26â•‡â•‡ Building Websites with HTML5 to Work with MobileÂ€Phones

As you can see, the block of text now has a solid red line with
rounded corners. It is this style description that controls the
size of the radius, not an image. You can then easily modify the
description as shown here:

-moz-border-radius: 10px
-webkit-border-radius: 10px

The standard is currently only in proposal stage and has not
been adopted by all web browsers. For this reason, you need to
add two border-radius style descriptions: one for Firefox (-moz-
border-radius) and one for WebKit (-webkit-border-radius).
Changing the value of the border-radius will change the size of
the border. For instance:

Border-radius: 15 px
Border-radius: 25 px
Border-radius: 45 px

As you increase the border radius, you will also have to add
additional styles, such as padding, to ensure that your border
does not cut through your text as is shown in the example of
Â�border-radius: 45 px. Here is how you can add padding to man-
age your style.

<p style=“-moz-border-radius: 45px;-webkit-border-
radius: 45px;border: 4px solid #FF0000;padding: 12px;”>
Lorem ipsum dolor sit amet, consectetur adipiscing elit. Nam
porta, lacus in cursus cursus, justo purus fringilla nisi,
quis cursus urna velit vel felis. Nulla ac mi. Phasellus
sodales dui vel tortor. Praesent dignissim. Vestibulum
vulputate nibh rutrum purus. Nulla ante. Sed porta.
Vestibulum commodo, mi nec tincidunt laoreet, urna risus
ornare libero, in imperdiet sapien enim vel nisi.</p>

Without using complex images or tables, you have created a
series of tabs that can be easily managed through your CSS and
HTML.

Dazzling Your Audience with CSS3 Animation
CSS3 continues to expand what you can visually accomplish

in your web pages. Animation is now also available to you as
the design. Animation is split into two key parts: transitions and
transforms.

Transitions control the change of state for an element, such
as text fading in or changing color; transforms control the
Â�placement of an element.

The following two sections explain how you can control these
two new animation techniques in your CSS designs.

	 Building Websites with HTML5 to Work with MobileÂ€Phonesâ•‡â•‡ 27

Using Transitions in CSS
The transition effect is best used when you create a class and

then a “hover” pseudo class to illustrate when the effect is to hap-
pen (i.e., when your cursor moves over the element). The transi-
tion itself is made of three parts:
•	 Property: The linked property between the two classes
•	 Duration: How long in seconds the transition will take
•	 Timing-function

The timing function keywords control different types of ani-
mation sequence:
•	 Linear: The linear function just returns as its output the input

that it received.
•	 Ease: The default function, ease, is equivalent to cubic-bezier

(0.25, 0.1, 0.25, 1.0).
•	 Ease-in: The ease-in function is equivalent to cubic-bezier

(0.42, 0, 1.0, 1.0).
•	 Ease-out: The ease-out function is equivalent to cubic-bezier

(0, 0, 0.58, 1.0).
•	 Ease-in-out: The ease-in-out function is equivalent to cubic-bezier

(0.42, 0, 0.58, 1.0).
•	 Cubic-bezier: Specifies a cubic-bezier curve whose P0 and P3

points are (0,0) and (1,1), respectively. The four values specify
points P1 and P2 of the curve as (x1, y1, x2, y2).
The following example applies a transition effect on the color

definition in the PARAGRAPH element:

p {
-webkit-transition: color 2s linear;
font-size: medium;
font-family: Arial, Helvetica, sans-serif;
color: #FF0000;

}
p:active {

font-family: Arial, Helvetica, sans-serif;
color: #0000FF;

}

As you select any text using the PARAGRAPH element the text
will slowly change from red to blue.

The top paragraph is red, the third has transitioned to blue, and
the fourth is transitioning from one color to the next. You can elect
to have all the properties be selected as part of the transition by
changing the property value to “ALL” as in the following example.

p {
-webkit-transition: all 2s linear;
font-size: medium;
font-family: Arial, Helvetica, sans-serif;
color: #FF0000;

28â•‡â•‡ Building Websites with HTML5 to Work with MobileÂ€Phones

}
p:active {

font-family: Arial, Helvetica, sans-serif;
font-size: xx-large;
color: #0000FF;

}

For quick, simple animation sequences, transitions are great.

Creating Animation with CSS3
For more complex animation you will want to use the new

transform settings. The following HTML and CSS style allows you
to add a bouncing text block to the screen:

<html>
<head>
<title>Bouncing Box example</title>
<style type=“text/css” media=“screen”>
@-webkit-keyframes bounce {
from {
left: 0px;
}
to {
left: 400px;
}
}
.animation {
-webkit-animation-name: bounce;
-webkit-animation-duration: 2s;
-webkit-animation-iteration-count: 4;
-webkit-animation-direction: alternate;
position: relative;
left: 0px;
}
</style>
</head>
<body>
<p class=“animation”>
The text bounces back and forth
</p>
</body>
</html>

The animation is controlled through the use of the style sheet.
There are two parts you need to control. The first sets up the type
of animation you want to use. Here the setting is for an animation
sequence named “bounce.” The animation and the movement
will be from 0 px to the left 400 px:

@-webkit-keyframes bounce {
â•‡from {
left: 0px;

	 Building Websites with HTML5 to Work with MobileÂ€Phonesâ•‡â•‡ 29

}
to {
left: 400px;
}
}

The next step is to define what gets animated. In this exam-
ple you have a CSS class associated with the “bounce” anima-
tion described earlier. There are a couple of additional settings.
The duration setting controls how long each animation sequence
takes to play in seconds and the count setting specifies how many
times the animation plays. Together, it looks like this:

.animation {
-webkit-animation-name: bounce;
-webkit-animation-duration: 2s;
-webkit-animation-iteration-count: 4;
-webkit-animation-direction: alternate;
position: relative;
left: 0px;

All mobile browsers support these new animation techniques.

Using Class and Pseudo Styles
A pseudo class is a special extension to the element style

definition. The most common use for pseudo classes is with
the ANCHOR element. The way an ANCHOR element (the ele-
ment that identifies links on a web page) is defined in CSS is as
follows:

a {
text-decoration: none;
color: #0000FF;

}

The ANCHOR element, however, completes several different
activities. The ANCHOR element has the default style, but also
can have different styles when the link is being selected, when
the link has been visited, and when you move your cursor over
the link. Each of these different activities can be identified with
pseudo classes. The following shows the pseudo class for a link
that has been visited:

a:visited {
color: #FF0000;

}

The ANCHOR element is listed first in your style document
and is followed by a colon with the special pseudo class name
called “visited.” In your web page, the visited link will now have a
different color.

30â•‡â•‡ Building Websites with HTML5 to Work with MobileÂ€Phones

The ANCHOR element has four pseudo classes: link, active,
hover, and visited. The following style shows how you can define
these four pseudo classes.

a{
color: #0000FF;

}
a:link {

text-decoration: none;
}
a:active {

text-decoration: line-through;
}
a:visited {

color: #FF0000;
}

The result is that you can now control the different actions of
the ANCHOR tag.

CSS3 introduces additional pseudo class styles you can use.
The complete list is:
•	 Active: The active element
•	 Focus: The element with focus
•	 Visited: A visited link
•	 Hover: The state when your cursor is over a link (this feature of

CSS will not work on mobile devices)
•	 Link: An unvisited link
•	 Disabled: The state of an element when it has been disabled
•	 Enabled: The state of an element when it has been enabled
•	 Checked: A form element that has been checked
•	 Selection: When a user selects a range of content on the page
•	 Lang: The designer can choose which language is used for the

style
•	 Nth-child(n): An element that is a specified child of the first

sibling
•	 Nth-last-child(n): An element that is a specified child of the

last sibling
•	 First-child: The first use of an element on the page
•	 Last-child: The last use of an element on the page
•	 Only-child: The only use of a element on the page

Media Definition Control
As we discussed earlier, different devices have different screen

sizes. To help you, CSS3 has a final trick up its sleeve.
The media definition in CSS allows you to identify different

styles for different media types. Originally defined in CSS2, the
CSS3 expands the functionality of the CSS2 version to allow you
to specify any type of device.

	 Building Websites with HTML5 to Work with MobileÂ€Phonesâ•‡â•‡ 31

The easiest place to use the media definition is right when you
link to a CSS document in the head of the web page. Typically
you will write the following code to link to a CSS document:

<link rel=“stylesheet” type=“text/css” href=“style.css”>

The media definition now allows you to specify a style to be
associated with a device. Take for instance the following CSS link
reference to two styles documents.

<link rel=“stylesheet” type=“text/css” media=“screen”
href=“screen.css”>

<link rel=“stylesheet” type=“text/css” media=“print”
href=“print.css”>

The first link uses the media definition to target a CSS docu-
ment from the computer screen. The second CSS document
targets how data is presented when it is printed. Using this
Â�technique you can create two different presentation styles using
the same content. One style is used for screen presentation and
the other for print. Following is a list of the media names you can
use:
•	 All: Suitable for all devices
•	 Braille: Intended for Braille tactile feedback devices
•	 Embossed: Intended for paged Braille printers
•	 Handheld: Intended for handheld devices (typically small

screen, limited bandwidth)
•	 Print: Intended for paged material and for documents viewed

on-screen in print preview mode
•	 Projection: Intended for projected presentations; for example,

projectors
•	 Screen: Intended primarily for color computer screens
•	 Speech: Intended for speech synthesizers
•	 TTY: Intended for media using a fixed-pitch character grid

(such as teletypes, terminals, or portable devices with limited
display capabilities)

•	 TV: Intended for television-type devices (low resolution, color,
limited-scrollability screens, sound available)
Having the names is great, but it does not help when there are

so many different devices coming on to the market with different
screen resolutions. To help with this you can modify the media
type to look for screen resolutions and deliver the appropriate
style sheet. Using the property device-width you can specify a
style sheet for a specific width.

<link rel=“stylesheet” type=“text/css” media=“(device-
width: 320px)” href=“iphoneClassic.css”>

Using CSS you can dynamically change the presentation of the
content to best suit the device accessing the content.

32â•‡â•‡ Building Websites with HTML5 to Work with MobileÂ€Phones

Graphical Control with Bitmap, SVG,
andÂ€CANVAS Elements

Tags are used in HTML5 to place and organize content at a level
that is descriptive. This does not mean that the page will look good.

There are times, however, when you need to present graph-
ics, too. Typically, HTML has provided support for pixel-based
images only in JPG and GIF image format. With HTML5, you can
now create mathematically generated images. The new Â�formats
are Scalable Vector Graphics, SVG, and CANVAS. The difference
between the two is that SVG is an XML-based language that
describes how an image should be displayed in 2D constructs.
The CANVAS tag also describes 2D images, but it does so using
JavaScript. The CANVAS tag also allows you to easily integrate
interactivity within it using JavaScript.

Working with Bitmap Images on the Web
The web is not a friendly place for the designer. For many

years you have been limited in the number of the file formats
you can use. There are two predominant file formats used on
the web for creating graphics: JPG and GIF.

JPEG, PNG, and GIF image formats are raster images
created from pixels of individual color. Each has posi-
tives and negatives. JPEG images are an open standard
managed by the Joint Photographers Expert Group.
The JPEG file format allows you to create photo-realis-
tic images. A great place to go to view millions of JPEG
images is Yahoo's Flickr, as shown in FigureÂ€1.21. A JPEG
image is identified with either a JPEG or JPG extension .

The second file format used widely on the Internet is
GIF, Graphics Interchange Format. Unlike JPEG, which sup-
ports millions of colors, the GIF file format only allows you
to create images that support a color palette of 256 colors.
On the face of it, the GIF format appears to be inferior to
the JPEG format. However, the GIF format does have two
features the JPEG format does not: setting transparency as
a color and sequencing a series of images together to play
back as a simple animation. It also handles solid colors
more effectively.

Both JPEG and GIF image formats, however, are now being
superseded by a more sophisticated image format: PNG.

Portable Network Graphics, PNG, are a raster-based file
Â�format that gives you the best of both JPEG and GIF and a
Â�little more. PNG image will support 32-byte images for photoÂ�
realistic presentation. Additionally, backgrounds in PNG
images can be set to be transparent, the same as GIF images.

FigureÂ€1.21â•‡I mages loaded to
Flickr are in JPEG format.

	 Building Websites with HTML5 to Work with MobileÂ€Phonesâ•‡â•‡ 33

While PNG, GIF, and JPEG images are all great, it is diffi-
cult to programmatically change the graphical display of the
images. For instance, you cannot create a bar chart using
JPEG images that change as new data comes in. HTML5
introduces two solutions that address this problem: SVG and
CANVAS.

Working with CANVAS and SVG Graphics
The CANVAS HTML5 element allows you to create bit-

map images programmatically using JavaScript as the
designer. Through this technique complex animations and
interactive solutions can be created. Google has estab-
lished ChromeExperiments.com (www.chromeexperiments.
com/) to demonstrate powerful CANVAS and JavaScript
experiments.

The second technology, SVG, Scalable Vector Graphics, is
a vector-based technology that enables you to create images
and animation using XML syntax similar to HTML. SVG started
as an Open Standard in 1999. The support for SVG started out
patchy in the mobile community. For a long time, only Mobile
Safari on iOS devices supported SVG. However, the release of
Android 3.0 and 2.4 have changed this.

SVG is a vector-based image format very similar to
native Flash drawings. This gives you a great advantage
when it comes to hi-res screen displays. No matter how
detailed the screen is trying to be, the image will always
be crisp Â�without affecting the size of the file. In contrast,
PNG and other raster images need larger files for crisper
images at high Â�resolutions. FigureÂ€1.22 is an SVG illustra-
tion of the official SVG logo.

Unfortunately, although CANVAS drawings do render on
all mobile browsers, the processing needed by the JavaScript
engine is spotty. Apple does not use GPU enhancement for
CANVAS drawing, relying on an already overburdened CPU.
Some Android sellers running Android 2.2 can leverage the
speedy V8 JavaScript engine to speed up CANVAS redrawing.
This is a problem today, but will likely be mitigated by more
powerful and smarter devices coming out in 2011 and 2012.

Adding Video to Your Web Pages
Today, people will watch more than 2 billion Â�movies on

the Internet. That's right, two billion. Video is a big deal.
Fortunately, HTML5 makes it easier for you to add video
when you use a new HTML element called VIDEO, as shown
in the screen shot in FigureÂ€1.23.

FigureÂ€1.23â•‡ Video controlled by
HTML.

FigureÂ€1.22â•‡S VG graphics in iOS.

34â•‡â•‡ Building Websites with HTML5 to Work with MobileÂ€Phones

Mobile devices were among the first widely used devices that
supported the new VIDEO element. Over the last couple of years
there has been a lot of controversy over how you can use the
VIDEO element. Essentially, adding video with the VIDEO ele-
ment is very simple: you can use a tag in your web page with a
few attributes. Here is an example:

<video src=“mobileVideo.mp4” ></video>

This example links to an MPEG4-encoded video. That's it. No
fussing with plug-in OBJECT tags and parameters. Just use one
line to add a simple, powerful HTML5 element.

This new VIDEO element has instigated a war of words about
which video format the VIDEO element should play. There are
three formats jostling for votes (MPEG4, Ogg, and WebM). The
good news is, the top mobile web browsers now support VIDEO.
For instance, Apple's Mobile Safari for iPhone and iPad, Google's
Android and Chrome OS, and Mobile Opera and Mobile Firefox
all support the new HTML5 VIDEO element.

In this section, I introduce you to:
•	 The HTML5 VIDEO element
•	 The attributes used to control content within the element
•	 How to encode HTML5 VIDEO
•	 Whether or not you should be using HTML5 VIDEO in your

mobile website
By the time you reach the end of this article you will be

Â�comfortable working with the new HTML5 VIDEO element in
your mobile web pages.

Controlling Video with VIDEO Tags
As we've seen, adding a VIDEO element requires only one

line in your HTML. The following example adds opening and
Â�closing tags for the VIDEO element. The first tag includes an SRC
Â�attribute that points to a supported HTML5 video file (in this
example we're pointing to an MPEG4 video):

<video src=“mobileVideo.mp4” ></video>

That's it. Additional functionality can be added using the fol-
lowing attributes in the VIDEO element:
•	 Autoplay: The video will play immediately if already down-

loaded in your cache (this attribute does not work on iOS
devices, but does on Android)

•	 Controls: A simple playback head will be added with VCR-like
play and pause controls

•	 Height and Width
•	 Loop: You can loop the video
•	 Poster: Allows you to set a placeholder image for the video

	 Building Websites with HTML5 to Work with MobileÂ€Phonesâ•‡â•‡ 35

To get the most out of your video playback you'll want to use
some of these attributes. For instance, if you want your video to
start playing when the web page has finished loading, you should
use the Autoplay attribute as follows:

<video src=“mobileVideo.mp4” autoplay></video>

The video won't automatically play if you don't include it.
A second useful attribute to add is the Controls attribute:

<video src=“mobileVideo.mp4” autoplay controls></video>

Try viewing the Controls attribute in different mobile Â�browsers
such as Mobile Safari on the iPhone or iPad, and Android's
browser—you'll notice it looks different in each browser. Each
browser plays back the video differently, and each engine has its
own default control style. This can make it difficult to present a
video playback experience that's consistent from one browser to
another.

You can override the default video playback features with
some creative JavaScript and CSS.

Using JavaScript to Control the VIDEO Element
JavaScript is able to control any elements in HTML. The VIDEO

element is a valid, first-level element JavaScript can control. This
means you can control media using your own custom controls.
The following example will show you how to add a custom Play/
Pause button to your video.

Start with a blank HTML5 page:

<!DOCTYPE HTML>
<html>
<head>
<title>Adding Video to a Mobile App</title>
</head>
<body>
</body>
</html>

In the BODY section, add the VIDEO element and link to a
video file:

<video autoplay >
<source src=“mobileVideo.mp4”>
</video>

You can see here that the video file doesn't have any attributes
that control playback. You can add those controls programmati-
cally with JavaScript. Let's start by adding the controls that play
the movie:

Play/Pause

Note
The Autoplay
attribute doesn't

work with Mobile Safari
on the iPhone and iPad
but will work for Android
devices.

36â•‡â•‡ Building Websites with HTML5 to Work with MobileÂ€Phones

After the VIDEO element, add the following JavaScript:

<script>
var video = document.getElementsByTagName('video')[0];

</script>

This script gives the VIDEO element a name you can reference.
The final step is to add a script to the ANCHOR tag:

<a href=“#” onclick=“if (video.paused) video.play();
else video.pause()”>Play/Pause;

The ANCHOR element uses an on-click event to trigger an IF/
ELSE JavaScript command. If the button is pressed and the video
hasn't been played, then the video will start to play. Else, if the
video is playing and the button is selected it will pause the video.
Altogether your code will look like this:

<!DOCTYPE HTML>
<html>
<head>
<title>Adding Video to a Mobile App</title>
</head>
<body>
<video autoplay >
<source src=“mobileVideo.mp4”>
</video>
<script>
var video = document.getElementsByTagName('video')[0];
</script>

<a href=“#” onclick=“if (video.paused) video.play();

else video.pause()”>Play/Pause
</p>
</body>
</html>

An additional benefit of using JavaScript to control the presen-
tation of your controls is that you can use CSS to style them. Here
is a basic style applied to our video controls:

<!DOCTYPE HTML>
<html>
<head>
<title>Video in HTML5</title>
<style type=“text/css”>
a {

font-family: Arial, sans-serif;
font-size: large;
text-decoration: none;
color: #C0C0C0;

}
h1 {

	 Building Websites with HTML5 to Work with MobileÂ€Phonesâ•‡â•‡ 37

Arial, sans-serif;
font-size: 24pt;
color: #C0C0C0;

}
body {

background-color: #000000;
}
</style>
</head>
<body>
<h1 align=“center”>Video on your Mobile Device</h1>

<p align=“center”>
<video autoplay >
<source src=“mobileVideo.mp4”>

</video>
<script>
var video = document.getElementsByTagName('video')[0];
</script>

<a href=“#” onclick=“if (video.paused) video.play();

else video.pause()”> Play/Pause
</p>
</body>
</html>

There are other controls you can add to your VIDEO element.
You can add a playback head to track where you are in the video,
for example, as well as fast-forward and rewind.

Encoding Video and Audio for Web Delivery
The H.264 support, also known as MPEG4, is the video and

audio format supported on your iPhone and used by many com-
panies. Unfortunately, MPEG4 has patents that protect the tech-
nology. This has lead to confusion about whether or not you can
freely use MPEG4 video in your web pages. The patent group man-
aging MPEG4, the MPEG-LA group, has stated it will not charge
Â�royalties for the use of MPEG4 video embedded into web pages.
Check out the Â� comprehensive FAQ Microsoft put together here:
www.microsoft.com/windows/windowsmedia/licensing/mpeg4faq.
aspx.

The alternatives to H.264 are Theora and webM formats.
Technically, H.264 is cleaner at higher resolutions (you'd have to be
a videophile to see the difference), but overall the Â�quality Â�difference
between H.264 and Theora/WebM is minimal. Ultimately, con-
sumers of video/audio content will determine which CODEC will
become the format of choice.

The challenge we face now is identifying which browser
Â�supports which video format. TableÂ€1.1 provides a brief breakdown:
As you can see, not all browsers Â�support all video formats.

38â•‡â•‡ Building Websites with HTML5 to Work with MobileÂ€Phones

Creating Video in H.264 Format
Creating H.264-formatted video is relatively easy. There are

dozens of products on the market that will take almost any
video format and convert it to MPEG4, including Cucusoft, MP4
Convertor, and more. For Mac users, it's even easier; your copy of
iMovie already supports MPEG4 format.

Creating Video in Ogg Theora and WebM Formats
There are a few tools that allow you to create Ogg Theora

video. You can check out the latest solutions here: www.theora.
org/downloads/.

The challenge to WebM as a new CODEC is support in creating
WebM files. Fortunately, the group managing WebM as an Open
Standard, the WebM Project, has a website with open-source
tools you can use to encode video into WebM formats. Check it
out at www.webmproject.org/code.

Ensuring Your Video Plays Back
Currently, not all mobile browsers support the same video

playback. This leaves you with a thorny problem: How do you
support video across all these different browsers?

Well, HTML5 has that covered. The VIDEO element allows you
to add nested SOURCE elements:

<video autoplay controls>
<source src=“sample.mp4”>
<source src=“sample.ogv”>
<source src=“sample.webm”>
</video>

Using this technique guarantees your HTML5-compliant web
browser will play back your video by selecting the first file that
matches a CODEC installed on your device.

TableÂ€1.1â•‡S upported HTML5 Video CODECs
 MPEG4 Ogg Theora WebM

Mobile Firefox No Yes No
Chrome OS No Yes Yes
Mobile Safari Yes No No
Windows Phone 7 No No No
Mobile Opera No Yes No

	 Building Websites with HTML5 to Work with MobileÂ€Phonesâ•‡â•‡ 39

Streaming for Video Playback on Mobile Devices
In addition to controlling whether or not video will actually

play on your mobile device, you also need to know whether or
not the bandwidth streaming to the phone will allow the video to
play back.

There are two ways you can control the playback of video:
download or streaming.

Downloading files requires that the whole video is either first
downloaded or, if the CODEC allows for it, will start playing back
as the video is being downloaded, a feature known as progres-
sive download. The MPEG4 format has progressive download
built into the architecture. This allows for rented movies to start
playing within a couple of minutes of selecting the title on your
iPad. You do not need to wait for two to three hours for the whole
movie to download.

Streaming is a method where the video is delivered in a series
of small packets to the device. Unlike progressive download
where the whole movie is downloaded to the browser cache,
streaming does not leave any file on the device. The method
allows for live video to be streamed to a device. The downside
to streaming is that you must have a constant connection to the
Internet for it to work.

Network connectivity is the largest challenge for delivering
video to mobile devices. Today, four main data speeds are used to
send data to a mobile device:
•	 WiFi
•	 4G LTE
•	 3G CDMA
•	 EDGE

The size of the screen, such as handheld or tablet, will deter-
mine what size video stream you are sending. For instance, for a
phone, you can stream smaller video simply because the screen
is smaller. However for a tablet device you will want to stream an
HD quality video file to fill up the larger screen.

Larger video images will require faster Internet connections.
Both 4G and WiFi are more than capable of streaming HD quality
video. A 3G signal will be able to stream only a sub-DVD quality
video, whereas EDGE, the slowest connection speed, will be able
to stream only very small video images.

By default, HTML5 does not allow you to switch files as deter-
mined by network connection. Fortunately, you can use a Â�feature
built into modern web servers, such as Microsoft's Internet
Information Server 7, called HTTP Live Streaming. With HTTP
Live Streaming you can add a single file reference in the web page
and the server can then dynamically select the appropriate video
for the network bandwidth.

40â•‡â•‡ Building Websites with HTML5 to Work with MobileÂ€Phones

For HTTP Live Streaming to work, the web browser does need to
understand and support the protocol. Fortunately, iOS, BlackBerry
PlayBook, and Android do. It is also very likely the Windows Phone
7 will support HTTP Streaming when the browser adopts HTML5.

Applying New Web API Functionality
to Your Mobile Web Pages

CSS, SVG, and Video are all great improvements to HTML5. The
role for HTML5, however, is not simply to add eye-candy, but to
enable developers to create applications in web browsers that are
equal in performance to desktop applications. To accomplish this
you need a powerful development language that gives developers
the ability to create sophisticated solutions. The answer to this is
JavaScript, the world's most popular programming language.

Currently, the belief is that web applications are simply not
as powerful as desktop applications. The reason for this is not
due to JavaScript, but the engines inside your web browser that
Â�process JavaScript. The faster a script can be processed, the more
Â�sophisticated your applications can become.

HTML5 is expanding to support application programming
interfaces (APIs) that enable complex system integration inside
your web page. The new APIs, such as geolocation and local data
storage, are complex and require sophisticated use of JavaScript
to make them work.

JavaScript is not a new technology. The roots of JavaScript
go back to 1993 when Netscape Communications included a
scripting technology called LiveScript with its web browser.
Incorporating even a simple programming language that enables
interactivity in the web browser became extremely popular.

The current release of JavaScript has dramatically matured
the original LiveScript language. Unlike desktop applications that
run code optimized for an operating system, JavaScript must be
interpreted within a virtual machine translator running inside the
web browser. This process inherently forces JavaScript Â� solutions
to run more slowly. To compensate for this, Google uses a tech-
nology called V8 that dramatically improves the processing of
JavaScript code in Android 2.2. Competitors such as Apple and
Microsoft have not brought their speedy JavaScript accelerators
to the mobile platform (yet).

Today's JavaScript allows you to build desktop-like applica-
tions that run inside your web browser. Google's Wave Â�solution is
an excellent example of a massively complex Â�application that is
run using JavaScript.

JavaScript is the most popular development language in the
world with millions of users. The technology is not too Â�complex

	 Building Websites with HTML5 to Work with MobileÂ€Phonesâ•‡â•‡ 41

to learn; indeed if you have any experience with C#, Java, or
ActionScript, then you will likely pick up JavaScript quickly.

JavaScript is so popular that it has its own standard. ECMA
International is an industry association founded in 1961 and ded-
icated to the standardization of Information and Communication
Technology (ICT) and Consumer Electronics (CE). The standard-
ized version of JavaScript is managed by ECMA. The full Â�standard
name is ECMA-262, but is often referred to as EcmaScript.
Â�ECMA-262 as a standard is well-supported by all web browsers.

Geolocation on Your Phone
There is no doubt that the tech world is going mobile. Devices

now need to know where they are geographically. In preparation
for this, HTML5 includes support for geolocation. The iPhone
and Android phones are already geolocation enabled, as shown
in FigureÂ€1.24.

The following example uses Google Map's service and the
browser's geolocation API to tell you where you are located. The
first step is to load the Map services.

<script src=“http://maps.google.com/maps?file=api&am
p;v=2&sensor=false&key=ABQIAAAAiUzO1s6QWHuyzxx-
JVN7ABSUL8-Cfeleqd6F6deqY-Cw1iTxhxQkovZkaxsxgKCdn1OCYaq7Ub
z3SQ” type=“text/javascript”></script>

The Google Map services are publically accessible. Now you
need to start writing JavaScript. The first step is to define a series
of variables that you can use in your code:

var map;
var mapCenter
var geocoder;
var fakeLatitude;
var fakeLongitude;

With your JavaScript variables defined, you can create the
first function that initializes the geolocation services in your web
browser:

function initialize()
{

if (navigator.geolocation)
{

navigator.geolocation.getCurrentPosition(
function (position) {

mapServiceProvider(position.coords.latitude,position.
coords.longitude);

},
}
else
{

Use of Google
Maps on a
website requires a

unique key. You can get
all the information for
getting a key at the web
address code.google.
com/apis/maps/.

FigureÂ€1.24â•‡G oogle can use the
GPS in your phone to detect
where you are.

42â•‡â•‡ Building Websites with HTML5 to Work with MobileÂ€Phones

alert(“I'm sorry, but Geolocation services are
not supported by your browser or you do not have a GPS
device in your computer. I will use a sample location to
produce the map instead.”);

fakeLatitude = 49.273677;
fakeLongitude = -123.114420;
mapServiceProvider(fakeLatitude,fakeLongitude);
}

}

The next function instructs the geolocation services to use the
Google Map service.

function mapServiceProvider(latitude,longitude)
{

mapThisGoogle(latitude,longitude);
}
function mapThisGoogle(latitude,longitude)
{

var mapCenter = new GLatLng(latitude,longitude);
map = new GMap2(document.getElementById(“map”));
map.setCenter(mapCenter, 15);
map.addOverlay(new GMarker(mapCenter));
geocoder = new GClientGeocoder();
geocoder.getLocations(latitude+','+longitude,

addAddressToMap);
}

The final code completes the mapping:

function addAddressToMap(response)
{

if (!response || response.Status.code != 200) {
alert(“Sorry, we were unable to geocode

that address”);
} else {

place = response.Placemark[0];
$('#address').html('Your address: '+place.

address);
}

}
window.location.querystring = (function() {
var collection = {};
var querystring = window.location.search;
if (!querystring) {
return { toString: function() { return “”; } };

}
querystring = decodeURI(querystring.substring(1));
var pairs = querystring.split(“&”);
for (var i = 0; i < pairs.length; i++) {
if (!pairs[i]) {
continue;

}
var separatorPosition = pairs[i].indexOf(“=”);

	 Building Websites with HTML5 to Work with MobileÂ€Phonesâ•‡â•‡ 43

if (separatorPosition == -1) {
collection[pairs[i]] = “”;

}
else {
collection[pairs[i].substring(0, separatorPosition)]

= pairs[i].substr(separatorPosition + 1);
}

}
collection.toString = function() {
return “?” + querystring;

};
return collection;

})();

The final result is that you can use geolocation to determine
where you are using just your web browser. This is very Â�useful
in mobile web browsers where you can link map services to
Â�geographically based tools.

Local Data Storage
Key to applications is the ability to store data. In the past

you have been able to do this by using complex cookies or
Ajax Â�commands that leverage the ability to send data back
to a Â�database. The ability to store data locally in your web
browser is dramatically improved with the implementation of
LocalStorage.

LocalStorage is essentially the ability to have an SQL-like data-
base running in your web browser. An example of LocalStorage
being used is Google's version of Gmail for the iPhone/Android.
Using LocalStorage, you can view and send e-mail with Gmail with-
out having a web connection. The e-mail is resynchronized with
the mail servers when a new network connection is established.

You access LocalStorage in your JavaScript by using the
GlobalStorage object. The following example demonstrates
LocalStorage being used.

The first step for the example in the previous image is to Â�create
an area where you can type some text. You will use Â�standard form
controls:

<textarea id=“text” class=“freetext”>
</textarea> Item name <input id=“item_name” type=“text”

value=“new item” />

An event will be added to the INPUT submit button to trigger
the JavaScript to run:

<input onclick=“writeLocal();” type=“button” value=“Save” />

The LocalStorage posts the data stored in the browser to the
web page. An area with the ID “items” is defined.

<div id=“items”>
</div>

44â•‡â•‡ Building Websites with HTML5 to Work with MobileÂ€Phones

The first function run in your JavaScript is to define that the
content on the page is to be associated with the website on which
your page is being hosted:

function $(id) { return document.getElementById(id); }
var host = location.hostname;
var myLocalStorage = globalStorage[host];

The second function allows you to store data using the
LocalStorage API:

function writeLocal() {
var data = $('text').value;
var itemName = $('item_name').value;
myLocalStorage.setItem(itemName, data);
updateItemsList();
}

As with any SQL database you need to be able to delete
entries. The following function allows you to delete items using
the removeItem property:

function deleteLocal(itemName) {
myLocalStorage.removeItem(itemName);
updateItemsList();
}

The following sample shows you the whole program with
some simple CSS styling for presentation:

<html><head><title>HTML5 Web Storage / localStorage</
title></head>

<style>
.freetext {

width: 100%;height: 40%;overflow: hidden;background:
#FFE;font-family: sans-serif;font-size: 14pt;-moz-border-radius:
10px;-webkit-border-radius: 10px;

}
li {

padding: 4px;width: 400px;
}
input {

margin: 2px;border-style: solid;-moz-border-radius:
10px;-webkit-border-radius: 10px;color: #666;padding: 2px;

}
body {

font-family: “Lucida Sans”, “Lucida Sans Regular”,
“Lucida Grande”, “Lucida Sans Unicode”, Geneva, Verdana,
sans-serif;color: #FF0000;font-size: medium;

}
</style>
<body><textarea id=“text” class=“freetext ”></textarea>

Item name <input id=“item_name” type=“text” value=“new item” />
<input onclick=“writeLocal();” type=“button” value=“Save” />
<div id=“items”></div>

<script>

	 Building Websites with HTML5 to Work with MobileÂ€Phonesâ•‡â•‡ 45

function $(id) { return document.getElementById(id); }
var host = location.hostname;
var myLocalStorage = globalStorage[host];
function writeLocal() {
var data = $('text').value;
var itemName = $('item_name').value;
myLocalStorage.setItem(itemName, data);
updateItemsList();

}
function deleteLocal(itemName) {
myLocalStorage.removeItem(itemName);
updateItemsList();

}
function readLocal(itemName) {
$('item_name').value=itemName;
$('text').value=myLocalStorage.getItem(itemName);

}
function updateItemsList() {
var items = myLocalStorage.length
// list items
var s = '<h2>Items for '+host+'</h2>';
s+= '';
for (var i=0;i<items;i++) {
var itemName = myLocalStorage.key(i);
s+= ''+
'<div style=“float:right;”>'+
'<input type=“button” value=“Load” onclick=“readLocal

(\“+itemName+'\');”/'+'> '+
'<input type=“button” value=“Delete” onclick=“delete

Local(\“+itemName+'\');”/'+'> '+
'</div>'+
''+itemName+''+
'';

}
$('items').innerHTML = s+'';

}
window.onload = function() {
updateItemsList();
$('text').value=[
'Quick and dirty Web Storage sample:',”,
'1) Write some text',
'2) Give it some name',
'3) Click Save button',”,
'Data is stored and retrieved using Web Storage (no

cookies and no server side).'].join('\n');
}
</script></body></html>

As you can see, the implementation of LocalStorage allows you
to store data without using cookies or server side databases.

46â•‡â•‡ Building Websites with HTML5 to Work with MobileÂ€Phones

Developing for Specific Mobile Browsers
The standards covered up to this point will work on all HTML5

web browsers, whether they are on your phone, laptop, TV, or
tablet. Mobile phones have many additional features you can
support. The goal of this section is to highlight popular features
specific to different phones and to direct you to where you can
get additional information.

Apple's Mobile Safari
At the time of this writing, there is a clear winner when it comes

to advanced features in a mobile web browser: Apple. When iOS
was first presented in January 2007, Steve Jobs went to great lengths
to promise that Mobile Safari delivered “the whole web,” not a bro-
ken presentation. FigureÂ€1.25 is the first Mobile Safari logo.

On the whole, Apple has delivered on its promise. What you
will find as you move through these articles, is that all the solu-
tions will work on Apple's iOS. With that said, there is one major
web feature supported by all mobile operating systems that Apple
does not support: Adobe's Flash.

Apple and Adobe are now enjoying an infamous power play
over standards. Apple is pushing HTML5 and Adobe is pushing
Flash. While the battle is interesting, Flash-enabled websites,
such as game sites, do not work on the iPhone. Time will tell how
this battle will resolve itself.

With that said, Apple's standards support in Mobile Safari
is amazing. Mobile Safari has full support of SVG, embeddable
TrueType fonts, HTML5 Video (using MPEG4), web sockets,
and can even use hardware features such as Gyroscope and the
Accelerometer through a DeviceOrientation API.

There are some HTML5 features still missing in Mobile Safari, most
notably Web Workers. Web Workers are features in JavaScript that
enable two or more scripts to run simultaneously, a critical feature
forÂ€enterprise scale applications. Today, iOS does not allow for this.

You can find out more about specific iOS features in Mobile
Safari at Apple's developer website, as shown in FigureÂ€ 1.26
(http://developer.apple.com/ios).

Google's Android Browser
Google's Android browser, like Apple's, is built out from

WebKit. A big challenge with Android, however, is fragmenta-
tion. Google provides the operating system as a free solution that
can be adopted by any hardware company. The problem with
this approach is that mobile phone companies such as Motorola,
Samsung, and HTC can choose what they want to add and remove

FigureÂ€1.25â•‡ Mobile Safari logo.

	 Building Websites with HTML5 to Work with MobileÂ€Phonesâ•‡â•‡ 47

from the Android OS. For instance, some vendors include Google's
V8 JavaScript accelerated engine but others do not. The result is
that you do not have a consistent user experience. This does not
mean you should not develop for Android; it just means you need
to spend more time in your quality testing and controls.

Find out more about Android development at this site, as
shown in FigureÂ€1.27 (http://developer.android.com/guide/).

RIM's BlackBerry 6 and PlayBook
In many respects, RIM set the groundwork for today's smart

phones with the BlackBerry phone. Within many corporations
today, a BlackBerry phone is still very popular. But they are losing
ground fast.

To compete against Apple and Google, RIM has done some
solid soul searching and brought its core OS up to specification
with competing technologies. The new BlackBerry 6 is sleek. And,
guess what, the browser is based on WebKit. You know that means
lots of HTML5.

Here are links to developer sections on BlackBerry 6 (FigureÂ€1.28):
http://us.blackberry.com/apps-software/blackberry6/.

FigureÂ€1.26â•‡ iOS developer site.

48â•‡â•‡ Building Websites with HTML5 to Work with MobileÂ€Phones

FigureÂ€1.28â•‡RI M's developer site.

FigureÂ€1.27â•‡ Android
developer site.

	 Building Websites with HTML5 to Work with MobileÂ€Phonesâ•‡â•‡ 49

HP/Palm WebOS
HP acquired Palm and its WebOS platform in 2010. Since that

time, HP has been very quiet about the acquisition. It is clear,
however, that HP wants to enter the device market and that
WebOS will be a competitive advantage for the company. The key
to WebOS is that the whole OS is built using the web standards
CSS, JavaScript, and HTML5. For more information check out
http://developer.palm.com/ (see FigureÂ€1.29).

Developing Websites for the Rest
You may think that the term smart phone did not exist until

the iPhone hit the scene. But the term itself has been around for
many years, with many phones supporting web browsers since
2000. The problems they all share are poor Â�support for standards
and a terrible user experience. With that said, Nokia, the global
leader in phone sales, has placed hundreds of millions of phones
with web access into the hands of people around the world.

FigureÂ€1.29â•‡H P's WebOS
developer site.

50â•‡â•‡ Building Websites with HTML5 to Work with MobileÂ€Phones

Nokia's MeeGo and Symbian
Nokia owns the mobile phone market. So why is it scared? The

problem is that its two operating systems have not caught App
fever and are not seen as platforms in the same light that Android
and iOS are.

For this reason, Nokia is looking to change its core OS. Nokia
has now agreed to support Windows Phone 7 OS.

Until then, you have MeeGo and Symbian. Both allow for apps to
be downloaded, including web browsers. You can easily add Google
Analytics to your website and see how many people are surfing to
your website using Nokia phones. If your site does receive a lot of
traffic from Nokia devices and you need to support them, keep this
mantra close to your heart: keep it simple. Nokia phones are signifi-
cantly underpowered compared to smart phones and even text-only
web pages can take a long time to draw Â�correctly on the screen.

Windows Phone 6.5 and Earlier
Windows Phone 6.5 was a big step forward when it came to

the web browser even if those steps forward still placed it several
steps behind Mobile Safari. Windows has improved a lot since the
release of 6.5 with Windows Phone 7, but there are still a lot of 6.5
phones being used. When developing for these phones make sure
you pay attention to the amount of content you place on a page.
Too much will cause the page to take a very long time to load.
Finally, keep to simple HTML and do not use too much CSS or
JavaScript. The phone will choke.

Tablet Development
Much of this article places a focus on mobile development

for smart phones. But, there is a second category of device that
is gaining strong popularity—tablets. Tablet devices have been
around for more than a decade, but it took Apple's iPad to rein-
troduce the category to the world. Apple was able to sell more
than 17 million iPads from March through December of 2010.
Following suit, Google introduced Android 3.0 Honeycomb as
its competing tablet OS, RIM released the PlayBook, and HP is
working on new tablets. The 2011 CES show presented more
than 100 tablets. FiguresÂ€ 1.30 and 1.31 are images of the iPad
and Honeycomb tablets, respectively.

Seems like we cannot get enough of them now!
As smart phones and laptops have different user experiences,

so do tablets. Typically, tablet users are engaged with their con-
tent longer than smart phone users and the screen is much larger

	 Building Websites with HTML5 to Work with MobileÂ€Phonesâ•‡â•‡ 51

(though still smaller than a desktop). It still remains to be seen
how to develop for tablets, but 2012 will be the year you start
looking at tablets and considering how you need to ensure your
website works for them as well as for smart phones and laptop
computers.

Summary
The goal of this article was to introduce you to mobile web

development. In many ways it is very similar to desktop website
development—HTML5 is HTML5 no matter on which device you
install it.

What is different is how you use and interface with the device.
smart phones are just very different devices to a laptop.

The next articles will introduce and review popular frame-
works that allow you to quickly build out web sites that target
smart phones. It is important to remember that each of these
frameworks are built using the same HTML, CSS3, and JavaScript
you have covered in detail in this article. What this means is that
you can easily extend and enhance the Â�frameworks you are about
to use.

Let's roll up our sleeves and start creating web pages that
Â�target the device in your hand.

FigureÂ€1.30â•‡ Apple's iPad. FigureÂ€1.31â•‡G oogle's Honeycomb tablet.

	Building Websites with HTML5 to Work with Mobile Phones
	Copyright
	Contents
	Building Websites with HTML5 to Work with Mobile Phones
	Designing for the Mobile Web
	The Leading Mobile Web Browsers
	Additional Web Browsers

	HTML5 in Mobile Websites
	New HTML5 Elements
	Blocking Content
	Using the SECTION Element
	Using the ARTICLE Element
	Using the HEADER and FOOTER Elements
	Using the ASIDE Element
	Using the FIGURE Element
	Using the NAV Element

	Using CSS3
	Designing Your Web Page with CSS
	Controlling Display with CSS
	Embedding Fonts Using CSS3
	Sizing Your Fonts with CSS Units of Measurement
	CSS3 Color Control
	Adding Drop Shadow Text Effects
	Working with Columns in CSS3
	Increase Your Control over Gradient Colors
	Multiple Background Objects
	Adding Rounded Corners to Layers
	Dazzling Your Audience with CSS3 Animation
	Using Transitions in CSS
	Creating Animation with CSS3
	Using Class and Pseudo Styles
	Media Definition Control

	Graphical Control with Bitmap, SVG, and CANVAS Elements
	Working with Bitmap Images on the Web
	Working with CANVAS and SVG Graphics

	Adding Video to Your Web Pages
	Controlling Video with VIDEO Tags
	Using JavaScript to Control the VIDEO Element
	Encoding Video and Audio for Web Delivery
	Creating Video in H.264 Format
	Creating Video in Ogg Theora and WebM Formats

	Ensuring Your Video Plays Back
	Streaming for Video Playback on Mobile Devices

	Applying New Web API Functionality to Your Mobile Web Pages
	Geolocation on Your Phone
	Local Data Storage

	Developing for Specific Mobile Browsers
	Apple's Mobile Safari
	Google's Android Browser
	RIM's BlackBerry 6 and PlayBook
	HP/Palm WebOS

	Developing Websites for the Rest
	Nokia's MeeGo and Symbian
	Windows Phone 6.5 and Earlier

	Tablet Development
	Summary

