

HTML5

HTML5
designing rich
internet
applications

Matthew DaviD

AMSTERDAM  •  BOSTON  •  HEIDELBERG  •  LONDON  •  NEW YORK  •  OXFORD
PARIS  •  SAN DIEGO  •  SAN FRANCISCO  •  SINGAPORE  •  SYDNEY  •  TOKYO

Focal Press is an imprint of Elsevier

Focal Press is an imprint of Elsevier
30 Corporate Drive, Suite 400, Burlington, MA 01803, USA
The Boulevard, Langford Lane, Kidlington, Oxford, OX5 1GB, UK

© 2010 Elsevier, Inc. All rights reserved.

No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical,
including photocopying, recording, or any information storage and retrieval system, without permission in writing
from the Publisher. Details on how to seek permission, further information about the Publisher's permissions
policies and our arrangements with organizations such as the Copyright Clearance Center and the Copyright
Licensing Agency, can be found at our website: www.elsevier.com/permissions.

This book and the individual contributions contained in it are protected under copyright by the Publisher (other than
as may be noted herein).

Notices
Knowledge and best practice in this field are constantly changing. As new research and experience broaden our
understanding, changes in research methods, professional practices, or medical treatment may become necessary.

Practitioners and researchers must always rely on their own experience and knowledge in evaluating and using any
information, methods, compounds, or experiments described herein. In using such information or methods they should
be mindful of their own safety and the safety of others, including parties for whom they have a professional responsibility.

To the fullest extent of the law, neither the Publisher nor the authors, contributors, or editors, assume any liability for
any injury and/or damage to persons or property as a matter of products liability, negligence or otherwise, or from
any use or operation of any methods, products, instructions, or ideas contained in the material herein.

Library of Congress Cataloging-in-Publication Data
David, Matthew, 1971-
 HTML5 : designing rich Internet applications / Matthew David.
 p. cm.
 Includes index.
 ISBN 978-0-240-81328-8
 1. HTML (Document markup language) 2. Multimedia communications. 3. Web site development. I. Title. II. Title:
Visualizing the Web.
 QA76.76.H94D4184 2010
 006.7'4–dc22 2010018716

British Library Cataloguing-in-Publication Data
A catalogue record for this book is available from the British Library.

ISBN: 978-0-240-81328-8

10 11 12 13 14 5 4 3 2 1

Printed in the United States of America

For information on all Focal Press publications
visit our website at www.elsevierdirect.com

http://www.elsevier.com/permissions
http://www.elsevierdirect.com

Praise for the Book
HTML5 isn't one thing, but many different improvements rolled under
one name. Knowing where to start can be tricky. Fortunately, this book
presents the major concepts in a logical sequence. Topics flow easily
from explanations to bite-sized projects, flavored with the author's
practical advice. It's a handy introduction to HTML5, and I'm looking
forward to the paper copy!

—Sam Wan, UI engineer

With the arrival of HTML5 and CSS3, those working with the web
face a host of new challenges. HTML5: Designing Rich Internet
Applications puts solutions at your fingertips; the content is concise
and easily referenced, and the accompanying projects help convert
learning to real-world action.

—Toby Pestridge, Toby James Creative

Matthew David proves that developing in HTML5 right now can
be exceptionally rewarding with this the first major update to the
language in over ten years. Matthew has provided us a great frame of
reference of what's to come and what we can start using now!

—Conrad Fuhrman, partner/lead developer, ThreeSphere LLC

HTML5 is quickly gaining technological influence as more devices
and browsers support it every day. Matthew David introduces you to
key concept, and dives in for a comprehensive look to prepare you for
tomorrow's internet.

—Joel Martinez, Codecub.net

Matthew David has continued his mastery of presenting new and
seemingly complex topics in a practical, easy-to-understand manner.
This book will not only bring programmers and designers into the next
generation of web development, but also redefine their concept of what
can be done in a browser—presenting limitless opportunities for years
to come.

—Ryan Moore, author of Foundation ASP.NET for Flash

vii

Dedication

No one person writes a book. For this book to be published
I need to thank a lot of people. First, I have to thank Focal Press
and, in particular, Paul Temme who took a risk on developing one
of the first HTML5 books and working with me to develop the
Visualizing series. I also have to thank Anais Wheeler for always
ensuring I hit my deadlines and checking that I had sent her all
the files needed.

I also want to thank my friends and colleagues at Jewelers
Mutual who listened to me talk about CSS3, HTML5, and which
browser supported what technology. I will take the glassy-eye
looks they gave me as deep, attentive interest.

Finally, I need to thank my beloved family who put up with
me disappearing for hours at a time to write my next great book.
I love you guys. I could not have completed this project without
you.

xiii

Preface
Incredibly, it has been more than 20 years since the first release of
HTML, the HyperText Markup Language. In the early days of web
development, HTML underwent a series of rapid evolutions from
simple text to including images and adding CSS to format text.

Then in 1997 the introduction of HTML4 hit the market and
everything came to a stop. Sure, we saw the release of XHTML, but
there was very little advancement in HTML as a language. Why
the hold up? The reason is based on three major factors: comput-
ers were limited in what they could process, the connection to
the Web was limited to the speed of a user’s dial-up modem, and
the Web was busily being molded into a new medium.

However, the Web has evolved. Today, computers are blinding
fast with many of us running SmartPhones faster than desktop
behemoths of just 6 years ago. Connection to the Web is now
measured in megabytes per second, and the Web is now a stan-
dard we all rely on. It has become increasingly apparent that
HTML4 just does not cut it for modern Web users. Bottom line:
We need a new standard.

A group called the Web Standards Project began developing
HTML5 in 2007. The goal of the project is ambitious: Develop an
HTML standard that is capable of running full applications in a
web browser. HTML5 introduces a broad set of new technologies,
including:
•	 New	HTML	elements
•	 Geolocation	APIs
•	 Drag-and-drop	APIs
•	 Local	data	APIs
•	 Forms	2.0
•	 Video	and	audio	support
•	 SVG	and	CANVAS	graphics
•	 CSS3
•	 Two-	and	three-dimensional	animation
•	 JavaScript	2.0

It seemed, for a while, that the new HTML5 standard would
not	come	to	pass.	Nay-sayers	scoffed	that	the	standard	was	good	
in print, but would never make it to the Web. Then a funny thing
happened:	 FireFox	 began	 adopting	 elements	 of	 HTML	 and	 was	
quickly followed by Apple’s Safari web browser. Three final actions
drove home the importance of HTML5:

xiv Preface

•	 Google	 released	 the	 web	 browser	 Chrome	 with	 HTML5	 as	 a	
key feature.

•	 The	World	Wide	Web	 Consortium	 Group	 (W3C)	 halted	 work	
on XHTML 2.0 and adopted HTML5 as the new Web standard.

•	 The	Web	went	mobile.
It can be argued that the implementation of feature-rich web

browsers on iPhones, Android phones, and WebOS phones has
clinched the deal for HTML5. Today, mobile web developers can
build web sites that surpass desktop equivalents.

The missing part in all of this technology was Microsoft.
Uncharacteristically, Microsoft was silent about their support for
HTML5. Many saw Internet Explorer dying slowly, to be surpassed
by newer, more nimble browser technologies. This changed in
spring 2010 when Microsoft released a developer copy of Internet
Explorer 9 and formerly joined the HTML5 working group. All
major web browsers are now adopting HTML5.

The focus of this book is to introduce you to HTML5. You will
be taken behind the scenes of this new technology and shown
how you can integrate HTML5 into your web sites today. The five
sections in the book include an article and a project, which build
on to each other to deliver a final, 100% HTML5-compliant web
site.

HTML5 is not a flash-in-the-pan technology. It is a firmly
 supported standard that will be used to build web applications
for	 the	 next	 10	 years.	 Now	 is	 the	 time	 to	 start	 learning	 how	 you	
can use this new standard to wow your clients.

HTML5. doi: 10.1016/B978-0-240-81328-8.00006-9
© 2010 Elsevier Inc. All rights reserved. 3

HtML5 tag Structure

The core to all Web design is HTML, the code that sits behind
every web page and allows users to create stunning web sites.
Today’s web sites can do amazing things. Can you imagine not
being able to use solutions such as Google’s Gmail, Microsoft’s
Bing, or view content on YouTube? Web sites have moved from
static pages to complex applications. The core HTML language
requires more and more functionality to meet our needs. To this
end, a new standard has been introduced—HMTL5.

Where HtML code can Be Found
Not sure how to find HTML? It can be located on any web page

by right-clicking your mouse and selecting View Page Source, as
shown in Figure 1.1.

It will depend on your web browser how the HTML code is
presented. No matter what you are doing on the Web—developing
a PHP shopping cart, implementing an ASP.NET application,
updating your latest blog entry, or playing an online game—every
solution on the Web must use HTML at some point. If not, then
your web browser will not be able to view the page correctly.

4 HTML5 Tag STrucTure

the evolution of the Web
Back in the days of 1995 when the Web was just gaining main-

stream attention, it was assumed that you needed a computer
(preferably Windows 95) running Microsoft’s Internet Explorer to
view the Web. Yes, you could also use Netscape’s Navigator, but
Microsoft took care of that problem by 1999. There was not much
of a change to this model for about ten years.

The change to the desktop PC Internet browsing model began
with the easy installation and adoption of wireless networks. A
bulky computer or even a laptop to connect online was no lon-
ger needed; rather, users only needed a device that had enough
power to go online and get what they needed wherever they
were.

The first few Internet-powered devices were crude at best, but
it did not take long for mobile devices to catch up with PCs.
The change came with Apple’s release of the iPhone and iPod
Touch, which both support one of the most advanced web brows-
ers. Apple’s mobile devices shipped running a mobile version
of their web browser called Safari. Does “mobile version” mean
that features were cut from the full Mac OS X version? In a word:
No. Mobile Safari is built using an open-source web browser
called WebKit. Apple makes the bold claim that their iPhone web
browser displays web pages exactly the same way as a full browser
running on a Windows PC. Indeed, to add insult to injury, Apple

Figure 1.1 HTML code can be
viewed in any web browser.
Here, google’s chrome is color
coding the HTML code.

 HTML5 Tag STrucTure 5

took the boast even further: The iPhone web browser supports
much of the latest core Web technologies that Microsoft’s Internet
Explorer does not support. Namely, the iPhone, back in 2007, was
already supporting HTML5 and Microsoft was a long way from
this support (Figure 1.2).

Today, we assume that most devices will connect to the
Internet. It is not just the realm of the PC—game systems, Blu-
Ray DVDs, MP3 players, cameras, storage SD flash cards, and
more devices connect to the Internet every day. HTML, this core
language that runs how we view the Web, is changing to support
a post-PC world that connects to the Internet.

Figure 1.2 The iPhone’s
mobile Safari already boasts
strong support for HTML5
technologies.

6 HTML5 Tag STrucTure

the rocky road from HtML4 to HtML5
Tim Berners-Lee developed the Hypertext Markup Language

(HTML) in 1989. The Internet has been around since the 1950s,
but it had a fundamental flaw—connecting from one discon-
nected source to another was very difficult. Tim Berners-Lee
addressed this issue by creating two technologies:
•	 HTTP,	 the	 Hypertext	 Transfer	 Protocol,	 a	 service	 protocol	 to	

enable web servers to run.
•	 HTML,	 the	Hypertext	Markup	Language,	a	scripting	 language	

to allow the presentation of text with embedded links to docu-
ments on the same server or a different server.
The revolutionary spin on Berners-Lee’s HTML language is

that the link embedded in the page did not need to know if the
web page it was linking to existed. If the page did not exist, then
you received an error. If the page did exist, then you jumped from
one web site to another.

A second reason for the success of HTML is that the language
is very easy to learn and use. HTML uses a simple concept of tags
that start and end a section. For instance, the following will show
as a block of text when viewed through a web browser.

<p>
Lorem ipsum dolor sit amet, consectetur adipiscing

elit. Nam ac tortor elit, ac posuere erat. Nullam non
lectus libero, in vestibulum ligula. Lorem ipsum dolor sit
amet, consectetur adipiscing elit. Nam venenatis faucibus
arcu, consectetur blandit magna pellentesque et.

</p>

The tag concept for writing web pages is easy to learn and
use. Needless to say, the World Wide Web really caught on. By
the early 1990s it was becoming clear that the Web, in particular
HTML, was going to be a very big thing. At that time a fortunate
event happened: Tim Berners-Lee decided not to cash in on the
success of the Web and instead formed a coalition to standard-
ize popular Web technologies. This group, called the World Wide
Web Consortium (W3C; www.w3c.org) is an open standards body
made up of representatives from many different companies such
as Apple, Microsoft, Adobe, Sun, Google, Real Networks, Oracle,
IBM, and many more. A goal of the W3C is to prevent any one
company from forcing a technology onto users. This is important,
as Microsoft was effectively trying to do this as they dominated
the Web from 1997 to 2007.

The W3C has produced many popular technologies used by
software companies each and every day. These include HTML,
XML, Web Services Protocol (SOAP), and the PNG graph-
ics format, among many others. Each of these standards are

http://www.w3c.org

 HTML5 Tag STrucTure 7

 proposed, defined, ratified, and published with group approval.
One of the first set of standards to go through this process was
HTML.

Berners-Lee’s first version of HTML is very different from the
version we use today. For instance, Berners-Lee did not care for
design and did not include any way to format text in the first
release of HTML. Images were also an afterthought. Between
1989 and 1997 HTML went through four major standard
ratifications.

The last major release of the HTML standard was in 1997 with
HTML4. The standard proposed the inclusion of Cascading Style
Sheets Level 1, or CSS1, as a method of controlling the design
of pages; the use of PNG graphics as an open bitmap graphics
standard; the adoption of a standard Document Object Model
to allow JavaScript applications to run consistently across web
browsers; and introduced the first release of XML to control data
structure. As HTML matures as a language, the demands for what
it can accomplish increase.

Web 2.0 applications and Solutions
The challenge with today’s Web is that it is not the same

place created in the 1990s. The W3C tried addressing the evolu-
tion of the HTML standard with a new, updated standard called
XHTML 2.0. The contributing vendors did not warmly accept
the technology standard and a subsequent standard, HTML5,
developed by the Web Hypertext Application Technology
Working Group (WHATWG), is now in active development. The
result is XHTML 2.0 has died on the vine, and all of the major
technology companies, including Microsoft, are pledging to
support HTML5.

Overall, all web browsers have adopted the HTML4 stan-
dard. Web site development can now be easily accomplished
using tools such as Adobe’s Dreamweaver and Microsoft’s
Expression Web. But, it has taken a decade to get here.
Arguably, Microsoft is the company that has been the weak-
est in supporting Web HTML standards with their Internet
Explorer. It is only with the release of Internet Explorer 8 that
Microsoft was compliant with HTML4—a full 12 years after the
standard was published.

New web browsers (Apple’s Safari, Opera Web Browser,
Google’s Chrome, and Mozilla’s FireFox) and new Web-enabled
devices (Apple’s iPhone, Google’s Android, Palm’s Pre, and RIM’s
BlackBerry) are pushing what can be done on the Web. Each of
these competitive companies agrees on one thing: HTML5 is the
next standard, and they are already supporting it.

8 HTML5 Tag STrucTure

What is included in HtML5
Unlike earlier improvements to HTML, the new HTML5 speci-

fications are taking a much broader look at what is needed to
support web site development and programming for the next
decade and beyond. HTML5 can effectively be broken down into
the following segments:
•	 Core	page	structure
•	 Visual	presentation
•	 Graphical	tools
•	 Rich	media	support
•	 Enhancements	to	JavaScript
The structure of this book follows these five distinct categories for
HTML5.

enhancements to core tag Language
Raise your hand if you have ever written any HTML code? Okay,

everyone’s hand is now in the air. The reality is that most of us have
grown up building and using HTML4/XHTML code syntax structure.
Now along comes HTML5: Do we have to relearn everything? No,
and that is good news. HTML5 gracefully supports older code prac-
tices. This allows you to migrate code from one standard to another.

For instance, the following XHTML code is supported in HTML5.

Lorem ipsum dolor sit amet, nec a ultricies.

Egestas ipsum in, praesent ut et, vulputate vel.

Dapibus magna a.

Felis sit, vestibulum pede.

You can also write this example in HTML5 and older web
browsers will view the content. Let’s take the previous example
and write it using new HTML5 element syntax.

Lorem ipsum dolor sit amet, nec a ultricies.

Egestas ipsum in, praesent ut et, vulputate vel.

Dapibus magna a.

Felis sit, vestibulum pede.

The break line element,
, in HTML5 has dropped the
XHTML support for the closing /. The code, however, will work in
XHTML browsers.

Of course, this does not mean that HTML5 is all backwards
compatible. Many of the new HTML5 elements are not supported
in older web browsers. Browsers supporting HTML5 are:
•	 FireFox	3.0+	(all	operating	systems)
•	 Safari	 3.0+	 (Windows	 OS	 X	 and	 iPhone	 OS	 1.0+	 operating	

systems)

 HTML5 Tag STrucTure 9

•	 Google	Chrome	(all	operating	systems)
•	 Opera	9.5+	(all	operating	systems)

new elements are introduced to HtML5
HTML5 introduces new elements to allow you to con-

trol your code. Broadly, the new elements cover these main
functions:
•	 Blocking	of	content	on	the	page
•	 Media	management
•	 Form	structure

The blocking of content in HTML is traditionally accom-
plished using either complex tables or the infamous DIV ele-
ment. HTML5 introduces several new elements that allow you to
easily insert blocks of content into the page. Conveniently, these
new elements have names that identify what the block of content
accomplishes:
•	 HEADER
•	 SECTION
•	 ARTICLE
•	 ASIDE
•	 FOOTER
•	 NAV

The role of the new page layout elements is to better
describe specific parts of a document. Think of the new tags as
behaving in a similar way to how you approach writing a docu-
ment in Microsoft Word. A typical Word document is built up of
sections of content that can be separated in paragraphs, side-
bars, and header and footer sections. The new blocking ele-
ments in HTML5 approach HTML code in logical sections, or
blocks.

The FORM element, in HTML5, has also received its first major
upgrade since HTML2, back in 1994. Forms 2.0, as it is sometimes
referred to, enables you to add the following visual effects to form
fields:
•	 Format	the	form	for	adding	only	telephone	numbers.
•	 Allow	a	 form	field	 that	 is	picking	a	web	address	 to	validate	 it	

against the client browser history.
•	 Format	a	field	to	only	accept	valid	email	addresses.
•	 Enable	a	field	to	pick	from	a	calendar	to	choose	a	date.
•	 Force	a	field	to	be	the	first	default	field	in	the	form.
•	 Highlight	fields	that	are	required.

With Forms 2.0, the rich functionality you need in a form is
built directly into HTML—there is no need for Ajax, Flash, or any
other technology.

10 HTML5 Tag STrucTure

Blocking content on the Page
The updated HTML5 structure is looking to more accurately

describe areas of content on the screen. This is called blocking in
HTML5. We use blocking every day as we develop web pages. An
example of this is a typical blog posting. The structure of a blog is
something like this:
•	 Title	the	blog	post.
•	 Add	a	date	for	the	post.
•	 Add	links	to	related	content.
•	 Add	the	content	the	blog	is	about.
•	 Include	figures	to	support	your	content.
•	 Possibly	add	a	side	note	about	the	content.
•	 Allow	users	to	post	comments	on	your	post.
•	 Include	a	central	navigation	to	the	site.
•	 Add	a	header	and	footer	to	the	page.

Using conventional HTML4 markup techniques you can list
all of this information in either complex tables, paragraph ele-
ments (<p>), or use the DIV element to block content on the page.
The following example is an extract from Wikipedia describing
HTML5 using HTML4 techniques (see also Figure 1.3). The HTML
elements are in italics.

<p>HTML5 is the next major revision of HTML (Hypertext Markup
Language), the core <a href=“/wiki/Markup_language”
title=“Markup language”>markup language of the World
Wide Web. The <a href=“/wiki/Web_Hypertext_
Application_Technology_Working_Group” title=“Web Hypertext
Application Technology Working Group”>Web Hypertext
Application Technology Working Group (WHATWG) started
work on the specification in June 2004 under the name Web
Applications 1.0<sup id=“cite_ref-0” class=“reference”><a

Figure 1.3 HTML4 code
displayed in google’s chrome.

 HTML5 Tag STrucTure 11

href=“#cite_note-0”>[1]<
/sup>. The <a href=“/wiki/W3C” title=“W3C” class=“mw-
redirect”>W3C adopted the draft in May 2007 as its
basis for review. The specification was published as a
First Public Working Draft at the W3C on January 22,
2008.</p>

Unfortunately, the HTML4 approach does not tell much about
what the data mean. A role of HTML5 is to make syntax more
meaningful. Using HTML5 you can leverage the new ARTICLE
element to block out the section of the page for your main article.
Additional emphasis to specific content can be applied using the
MARK element. Finally, date/time information within your HTML
can be highlighted using the TIME element.

Here is the same content from www.wikipedia.org, but in
HTML5 (see also Figure 1.4).

<article>
<m>HTML5</m> is the next major revision of <a href=“/

wiki/HTML” title=“HTML”>HTML (Hypertext Markup
Language), the core <a href=“/wiki/Markup_language”
title=“Markup language”>markup language of the

World Wide Web. The <a href=“/wiki/Web_Hypertext_
Application_Technology_Working_Group” title=“Web Hypertext
Application Technology Working Group”>Web Hypertext
Application Technology Working Group (WHATWG) started
work on the specification in <time>June 2004</time>
under the name Web Applications 1.0<m><a href=“#cite_
note-0”></m>. The <a href=“/wiki/W3C” title=“W3C”
class=“mw-redirect”>W3C adopted the draft in <time>May
2007</time> as its basis for review. The specification was
published as a First Public Working Draft at the W3C on
<time>January 22, 2008</time>.

</article>

Figure 1.4 The content is
displayed using HTML5 in
google’s chrome. The display
looks the same visually, but
the code is structured more
logically.

http://www.wikipedia.org

12 HTML5 Tag STrucTure

The structure, emphasis, and description of different types of
content are wrapped using the new ARTICLE, MARK, and TIME
elements. The code is much easier to read and the content has
more meaning.

The new move to describing more accurately the web page
content has several benefits. The first is for search engines,
such as Google.com or Microsoft’s Bing.com, which can use the
blocked content to identify regions on the page. The second is
with organization. It is simply easier to organize content when
you know what the content is. Finally, more effectively organizing
content allows for the future development of the Semantic Web,
a device where content is found, shared, and created across web
site domains more easily.

In this chapter you will see how to content block your HTML
code using the following:
•	 The	 new	 DOC	 type	 to	 identify	 the	 web	 page	 as	 containing	

HTML5 content.
•	 The	SECTION	element	to	separate	content	more	easily.
•	 The	ARTICLE	element	to	identify	the	main	content	on	a	page.
•	 The	NAV	element	to	identify	navigation	on	a	screen.
•	 Use	HTML	Forms	2.0	to	have	even	more	control	over	your	web	

forms.
•	 Apply	new	HTML	element	attributes.
•	 Understand	 why	 specific	 elements	 are	 not	 included	 in	

HTML5.

Modifications to content Sections
The vast majority of content on the Web is text based. You

can look at sites such as Wikipedia, Twitter, and Facebook for
validation. Millions and millions of pages of content are cre-
ated every day. In mid-2008 Google hit a significant milestone
where their search engine indexed its trillionth web site (that is,
1,000,000,000,000—yes, 12 zeros!).

A goal of HTML5 is to make finding, organizing, and sharing
billions and billions of pages more easy. With HTML5, you are
looking to place meaning to the content that you are adding to
the page.

There are several different categories of content type in
HTML5. Broadly speaking, HTML5 now allows you to do the
following:
•	 Block	the	overall	content	of	a	page
•	 Text-level	content	structure
These two levels of content structure will add meaning to your
web page.

 HTML5 Tag STrucTure 13

Making Doc type easier to Work With
The first line of HTML in any web page identifies the version

of HTML the page contains. This is called the DOCTYPE. The
DOCTYPE has its roots tied to SGML. SGML requires a DTD (doc-
ument type definition) reference to accurately render the web
page. With XHTML three different DOCTYPEs were introduced.
Ultimately, this was complex to manage.

With HTML5 you have one, simple DOCTYPE, which is
<!DOCTYPE html>. The new DOCTYPE will automatically inform
the web browser that the page content is in HTML5. The DOCTYPE
is not case sensitive.

organizing code using Blocking elements
There are few ways in HTML4 to define content. The most

common is to use the P element to identify the start and end of
a paragraph, or the DIV element to identify the start and end of
a section of content. Both do not adequately describe the con-
tent. You can see blocking applied to most web pages. Figure 1.5
illustrates how you may block out a web page such as www.
focalpress.com.

With HTML5 a new element, the SECTION element, clearly
identifies a block of content. This method is called block level
semantics. With HTML5 there are several elements that block
content:
•	 SECTION
•	 ARTICLE
•	 HEADER
•	 FOOTER
•	 ASIDE
•	 FIGURE
•	 NAV

The new names for each of these elements identify the type of
content they block on a page.

http://www.focalpress.com
http://www.focalpress.com

14 HTML5 Tag STrucTure

Figure 1.5 The Focal Press web
site is split into logical blocks of
content.

 HTML5 Tag STrucTure 15

using the SecTION element
The SECTION element is part of a new set of elements that

describe the content on a page. You can think of the SECTION
element as enclosing a significant part of a page, in the same
way that a chapter in a book is a significant section of the book.
An example of the SECTION element follows.

<SECTION>
<ARTICLE>
<P>Nulla facilisis egestas nulla id rhoncus. Duis

eget diam nisi, quis sagittis nulla. Fusce lacinia
pharetra dui, a rhoncus sapien egestas ut. Ut lacus
ante, semper sed interdum a, posuere egestas ante. Nullam
luctus arcu sed sapien dignissim quis posuere ipsum
placerat.</P>

</ARTICLE>
<ARTICLE>
<P>Lorem ipsum dolor sit amet, consectetur

adipiscing elit. Nunc vehicula ipsum sit amet eros
adipiscing volutpat. Sed gravida urna vel sapien commodo
pretium.</P>

</ARTICLE>

Praesent ut sapien quam.
Aliquam erat volutpat.

</SECTION>

You can clearly see in Figure 1.6 that the two paragraphs,
wrapped in the P element, and the two bullet points are part of
the same content wrapped in the SECTION element.

The SECTION element is an efficient way to organize content
in your code. Figure 1.6 The role of the

SecTION element is to organize
content into logical sections.

16 HTML5 Tag STrucTure

using the arTIcLe element
The ARTICLE element is used to clearly identify content in

a web page. Blogs are a good example where content is clearly
identified. The main section of a page is the content that you can
wrap using the ARTICLE element. You can have additional HTML
elements included within an ARTICLE. The following blog from
http://blog.whatwg.org/ is an example that shows how you can use
the ARTICLE element in HTML.

<ARTICLE>
<H1>Spelling HTML5</H1>
<P> <TIME>September 10th, 2009</TIME> by Henri Sivonen</P>
<P> What’s the right way to spell “HTML5”? The short

answer is: “HTML5” (without a space).</P>
</ARTICLE>

In Figure 1.7 you can see how the ARTICLE content is dis-
played in a web browser.

More than one ARTICLE can be added to a page. You should
think of the ARTICLE element as a tool that logically breaks up
content. Similar content separated by the ARTICLE element can
be contained within a SECTION element.

using the HeaDer and FOOTer elements
The top and bottom of a page created with Microsoft Word

or any other word processing software is a place reserved for the
header and footer information page. This includes page number,
copyright notice, and other details. Web pages are no different.
Header and footer information is found on most web pages. You

Figure 1.7 use the arTIcLe
element to block the main
content on your page.

http://blog.whatwg.org/

 HTML5 Tag STrucTure 17

can see in Figure 1.8 on Focal Press’ web site that header infor-
mation is used.

You can see the use of the header on the page. It contains the
Focal Press logo, the element line, high-level links, and a search box.
HTML5 allows this area of content to be clearly identified as either a
header or a footer using the new HEADER and FOOTER elements.

For instance, a HEADER for Focal Press would look like the
following.

<HEADER>
<SECTION><img src=“/images/fplogo.png”

border=“none” alt=“Focal Press logo” title=“Focal Press
Home”/> learn | master | createSECTION>

<NAV>
<a title=“Digital Imaging and Photography”

class=“first”
href=“/photography.aspx”>Photography<a
title=“Production, Postproduction, and Motion Graphics”
href=“/film_video.aspx”>Film & Video<a
title=“Animation, 3D, and Games”
href=“/animation_3d.aspx”>Animation & 3D<a
title=“Audio Engineering and Music Technology”
href=“/audio.aspx”>Audio<a
title=“Broadcast and Digital Media”
href=“/broadcast.aspx”>Broadcast<a
title=“Theatre and Live Performance”
href=“/theatre.aspx”>Theatre<a class=“offsite
last”

Figure 1.8 The Focal Press
header section.

18 HTML5 Tag STrucTure

href=“http://www.elsevierdirect.com/imprint.jsp?iid=100001”
>Bookstore </NAV>

</HEADER>

The FOOTER section to a page is also viewed on most web
pages. An example FOOTER in HTML5 will look as follows:

<FOOTER>
<P>Copyright © 2009 Focal Press, Inc.</P>
</FOOTER>

Unlike normal page layout, the HEADER and FOOTER are not
exclusive to just the head and foot of a web page. You can have a
header and footer placed around the ARTICLE or SECTION ele-
ment if those pieces require specific header and footer content.

using the aSIDe element
The role of the ASIDE element is to describe content that is

related to but is not part of the main content on the web page.
You can think of the ASIDE element as fitting the role of a side-
bar reference or an aside found in books and articles. The follow-
ing example shows how the ASIDE element can be used with the
ARTICLE element.

<ARTICLE>
<P>Lorem ipsum dolor sit amet, consectetur adipiscing

elit. Vivamus sed eros at metus pulvinar convallis id quis
purus. Sed lacinia condimentum viverra.</P>

<P>Lorem ipsum dolor sit amet, consectetur adipiscing
elit. Vivamus sed eros at metus pulvinar convallis id quis
purus. Sed lacinia condimentum viverra.</P>

<ASIDE>
<H1>What is Lorem Ipsum?</H1>
<P>Lorem Ipsum is simply dummy text of the printing and

typesetting industry.</P>
</ASIDE>
</ARTICLE>

The main content of the page and a support aside can be
clearly separated using the ASIDE element, as shown in Figure 1.9.

Apply formatting, using CSS, to visually show where the ASIDE
is on the screen.

http://www.elsevierdirect.com/imprint.jsp?iid=100001

 HTML5 Tag STrucTure 19

using the DIaLOg element
Conversation and comments are common place on the Web.

The DIALOG element allows you to identify conversation on a
screen. There are three main parts to the DIALOG element:
•	 The	wrapping	DIALOG	element	that	identifies	a	conversation.
•	 A	DT	element	that	identifies	the	speaker.
•	 A	DD	element	that	identifies	the	conversation.

Using the DIALOG element to block conversation can look as
follows.

<DIALOG>
<DT>Josie Smith </DT>
<DD>HTML5 is a great way to block semantic elements on

a page. </DT>
<DT>Ian Jones </DT>
<DD>Yes, you are absolutely right. </DD>
<DT>Josie Smith </DT>
<DD>Conversation can now be easily identified. </DT>
<DT>Ian Jones </DT>
<DD><P>Blocking allows you to accomplish several things

such as:</P>

Clearly identifying blocks of content on a page
Making it easier to construct page designs

</DD>
</DIALOG>

Figure 1.10 illustrates how this may be presented on the screen.

Figure 1.9 The aSIDe element
allows you to easily add sidebar
content to your page.

20 HTML5 Tag STrucTure

Opening and closing the conversation is the main DIALOG
element. Each new conversation starts with a DT element that
identifies the speaker. For instance, Ian Jones is identified using
the following DT element:

<DT>Ian Jones </DT>

Ian’s conversation is then wrapped between a DD element.
Here is a close-up example.

<DD><P>Blocking allows you to accomplish several things
such as:</P>

Clearly identifying blocks of content on a page
Making it easier to construct page designs

</DD>

You can see that additional HTML elements can be placed
within the DD DIALOG element such as list, paragraph, or even
an article.

using the FIgure element
Inserting images into a web page is common practice.

Identifying the image and supporting text as a figure is much
more difficult. The FIGURE element clearly identifies an image
and supporting description as being part of a set. This set is
called a figure group. As with many of the previous new HTML5

Figure 1.10 You can control
comments and conversation
with the DIaLOg element.

 HTML5 Tag STrucTure 21

elements, the FIGURE element is a method of blocking related
content with itself.

<FIGURE>
<LEGEND>Figure 12. Using the FIGURE element </LEGEND>
<IMG alt=“The FIGURE element is another example

of block semantics in HTML5” src=“figure_element.jpg”
border=“0” height=“140” width=“240”/>

</FIGURE>

As with the DIALOG element, the FIGURE element also has an
additional element you can use within it. The LEGEND element
identifies the text that is to be associated with the image. The
FIGURE element can be used multiple times on a page.

using the NaV element
The final HTML5 blocking element is NAV. Navigation is

important to any web site. The role of the NAV element is to
clearly identify groups of links that when grouped together form
navigation.

Navigation can take many different roles on a single web page.
The different types of content that can be grouped together as
navigation include, but are not limited to, the following:
1. Top-level links typically found in the top right corner of a web

page.
2. Links that move you through data such as “Next” and

“Previous.”
3. Links found in the footer of a web page.

The following is an example of navigation grouped using the
NAV element.

<NAV>
Home | About Us | Contact Us

</NAV>

Of all the blocking elements in HTML5, the NAV element is
one of the easiest to use.

text-Level Semantic additions and changes
HTML5 is expanding text-level semantic changes. The goal

of these additional elements is to clearly identify fundamental
qualities such as time, numbers, progress, and emphasis. These
elements augment existing HTML4 elements that include VAR,
CODE, KBD, TT, and SAMP.

22 HTML5 Tag STrucTure

using the MarK element
Do you want to highlight or place emphasis on a section of text

without necessarily having the text formatted? The MARK element
looks to do exactly that. The following example from Wikipedia
shows that the word “HTML5” should have extra emphasis.

<P><M>HTML5</M> is the proposed next standard for HTML
4.01, XHTML 1.0, and DOM Level 2 HTML. <M>HTML5</M> has
been said to become a game-changer in Web application
development, making obsolete such plug-in-based rich
Internet application (RIA) technologies as Adobe Flash,
Microsoft Silverlight, and Sun JavaFX.</P>

It is important to note that unless you apply CSS to the MARK
element, you will not see the emphasis change on the HTML on
the screen.

using the TIMe element for Measurement
In addition to drawing emphasis to a section of text using the

MARK element, you can also identify text as being a measure-
ment of time. The TIME element identifies a specific time and
can be added as follows:

<TIME>April 23, 2010</TIME>

This format is acceptable. A more complete use of the TIME
element is to add a datetime attribute. The following example is
more easily understood by machines.

<TIME datetime=”2009-12-24T23:00:00”>11:00 O’Clock on
Christmas Eve</TIME>

The goal of the TIME element is to describe the date/time text
on the page.

using the MeTer element
The METER element identifies a numeric value over a specific

range. For instance, you can use it to identify the distance of a
runner in a race, the price for groceries, or any numeric value. In
the following example you can see that the price for a can of tuna
is a value with the METER element wrapped around it.

<P>Tuna is going on sale today for the amazing price of
just <METER>$2.00<METER>!</P>

Additional specific attributes can be added to the METER ele-
ment to show a range in the value. The attributes you can use are:
•	 value
•	 min

 HTML5 Tag STrucTure 23

•	 max
•	 low
•	 high
•	 optimum

The following example demonstrates using the additional
METER attributes.

<P>The distance you swam in the contest was<METER
value=“120” min=“0” max=“200” low=“80” high=“200”
optimum=“200”>120 yards</meter></P>

The value is the number of yards actually swam. The mini-
mum is the minimum number of yards you can swim, with the
maximum number of yards being 200. The low value is the lowest
number of yards actually swam, and the high value represents the
most yards swam with the optimum value representing the opti-
mum number of yards.

using the PrOgreSS element
The PROGRESS element represents the progress for an ongo-

ing process. For instance, you can use this element if you are
downloading an image on a web page, a file, or loading up some
new data.

There are two attributes for the PROGRESS element for value and
max. The value is the current value for a download at this specific
point in time. The maximum value is the total value. For instance,
you can identify a downloaded file in the following example:

<PROGRESS value=”245998” max=”100000”>25%</PROGRESS>

The PROGRESS element is, by itself, static. You will need to tie
the element to a JavaScript program to track the progress of what
you are tracking.

applying HtML5 to Make HtML code
easier to read

Let’s take the example of the blog identified at the start of this
chapter and show how a typical web page is now changing with
HTML5 markup. Following is a typical blog entry with HTML4
markup. The code is split into several main sections:
•	 Header	content
•	 Link	to	the	main	blog
•	 Blog	article
•	 Comments	on	the	blog
•	 Navigation
•	 Footer	and	header	information

Are Elements Case
Sensitive?

You can write your
 HTML elements in
 lowercase and
uppercase. Heck, you can
even mix it around. For
example, the following
three are all acceptable.

<SECTION>FIRST
SECTION</SECTION>

<section>second
section</section>

<Section>Third
Section</Section>

For consistency, pick and
use a standard that makes
the most sense to you.

24 HTML5 Tag STrucTure

The following section is the header content, or the hidden
content in a web page that describes the document.

<?xml version=“1.0” encoding=“UTF-8”?>
<html xmlns=“http://www.w3.org/1999/xhtml”>
 <head>
<title>Example Blog in HTML4</title>

</head>
<body>

The following section is the top header content of the HTML4
page. You will see that the code is forced to use the DIV tag along
with additional ID information to describe the content.

<div id=“page”>
<div id=“header”>
<h1>HTML

Element Language is Awesome</h1>
</div>

The following content is the main article for the blog post. Again,
notice the use of the DIV element. In this instance you will see that
the code requires DIV elements to be nested within each other.

<div id=“container”>
<div id=“center” class=“column”>
<div class=“post” id=“html_element_language”>
<h2><a href=

“/blog/html/html_element”>
HTML Elements are Awesome</h2>
<div class=“entry”>
<p>Yesterday I started to write in Word and

realized that everything uses markup to separate content,
we simply don’t always see it. For instance, in Word you
define the start and end of content; if you want to create
a table of contents you define specific content to be for
a TOC; you define specific content for figures and page
structure. This is the same as HTML5!</p>

</div>
</div>

Here you can see comments made on the blog. Holy nested
DIV elements, Batman!

<div id=“comments”>
<div id=“speaker”>
<p id=“comment”>You bring up a great point. </p>
<p id=“comment”>It is great that you take time to make

these comments. </p>
<p id=“comment”>You hit the nail on the head. </p>
</div>
</div>
</div>

http://www.w3.org/1999/xhtml
http://www.someblogpost.com

 HTML5 Tag STrucTure 25

Here is the navigation to move you back and forth between
blog entries.

<div class=“navigation”>
<div class=“alignleft”>
« Previous

Entries
</div>

<div class=“alignright”></div>
</div>

</div>

Here is the navigation to place a sidebar for the blog.

<div id=“right” class=“column”>
<ul id=“sidebar”>
<h2>Info</h2>

Comment

Policy
Keyword List

List

</div>

The final part of the page is the footer section.

<div id=“footer”>
<p>Copyright 2009 Matthew David</p>
</div>

</div></body></html>

As you can see from the example the DIV element is used
extensively to structure content. The content, however, does not
have any semantic organization. What does all this content mean?

Now, let’s look at the same content structured for HTML5. The
opening meta-information, including DOCTYPE, opens the code.

<!doctype html>
<head>
<title>Example Blog in HTML4 </title>

</head>
<body>

The first action is to define the content that will appear at the
top of the web page using the HEADER element, as follows.

<header>
<h1>HTML

Element Language is Awesome</h1>
</header>

The main blog and comments are wrapped together with a
SECTION element. As you look at the HTML code you can see
that the content is associated.

http://www.someblogpost.com

26 HTML5 Tag STrucTure

<section><h2><a href=
“/blog/html/html_element”>
HTML Elements are Awesome</h2>

The main content on the page is wrapped in an ARTICLE
 element, as follows.

<article>
<p>Yesterday I started to write in Word and

realized that everything uses markup to separate content,
we simply don’t always see it. For instance, in Word you
define the start and end of content; if you want to create
a table of contents you define specific content to be for
a TOC; you define specific content for figures and page
structure. This is the same as HTML5!</p>

</article>

The associated comments at the bottom of the page are
blocked together using the DIALOG element.

<dialog>
<dt>John Smith</dt>
<dd> It is great that you take time to make

these comments.</dd>
</dialog>

It is typical to find navigation at the end of a blog posting that
lets you move to the next or previous article. You can use the NAV
element to block the links.

<nav>
« Previous Entries
</nav>

The closing SECTION element clearly shows the end of the
content:

</section>

The bottom of the page is a footer section with additional
navigation.

<footer>
<nav>

<h2>Info</h2>

Comment

Policy
Keyword List

</nav>
<p>Copyright 2009 Matthew David</p>

</footer>
</body>
</html>

 HTML5 Tag STrucTure 27

It is clear where the main article for the page starts as it is
wrapped in the ARTICLE element; it is clear where comments are
added as they are placed within the DIALOG element. The same
can be said for navigation, headers, and footers on the page.
There are no clustered DIV tags in this example.

Working with HtML5 Forms
If you have ever shopped online and purchased a book, CD,

or gift, then you have used a form during the checkout process
to enter your name, address, and credit card information. The
FORM elements you are using are the same elements added to
HTML2 in 1994 and they have not changed since. In contrast,
your use of the Web has changed dramatically.

With HTML5 comes a well-needed update to web forms and
data management. The W3C had already begun modernizing
the FORM element, called Forms 2.0, before HTML5. However,
it has now been rolled into HTML5. The new implementation of
FORMS now includes support for features that previously had to
be accomplished with clever JavaScript and Ajax tricks.

What Has changed in HTML Forms 2.0
The biggest change with HTML5 Forms is the extension of the

core INPUT element with new attribute types. The following is a
list of the new types you can use in HTML5:
•	 <input type=“search”>: This attribute allows you to specify the

element for searching.
•	 <input type=“number”>: This attribute allows you to convert

the input type into a visual spin box.
•	 <input type=“range”>: This attribute allows you to convert

the input type into a visual scrub bar.

additional HtML5 elements You May or May not use
The HTML5 elements covered are the most common elements you will use. There are additional elements, including:
•	 The	EVENT-SOURCE	element	catches	server-sent	messages.
•	 The	OUTPUT	element	sends	messages	you	may	get	from	a	JavaScript	program.
•	 The	RUBY,	RT,	and	RB	elements	allow	you	to	add	Ruby	annotations.

Browsers Supporting Forms 2.0
The	updated	FORM	element	is	very	new	and	is	only	now	starting	to	be	included	in	the	latest	web	browsers.	At	the	time	
of	writing,	only	the	Opera	10	web	browser	supports	Forms	2.0.	However,	it	is	widely	expected	that	FireFox,	Chrome,	and	
Safari	will	soon	too	support	Forms	2.0.

28 HTML5 Tag STrucTure

•	 <input type=“color”>: This attribute allows you to convert
the input type into a visual color picker.

•	 <input type=“tel”>: This attribute allows you to format the
input for a telephone line.

•	 <input type=“url”>: This attribute allows you to specify a
web address.

•	 <input type=“email”>: This attribute allows you to specify
an email address.

•	 <input type=“date”>: This attribute converts automatically
into a date picker.

•	 <input type=“month”>: This attribute automatically converts
into a month picker.

•	 <input type=“week”>: This attribute automatically converts
into a picker that allows you to select a week.

•	 <input type=“time”>: This attribute allows you to add a
timestamp.

•	 <input type=“datetime”>. This attribute is for precise, abso-
lute date and timestamps.

•	 <input type=“datetime-local”>: This attribute is for local
dates and times.
As you might expect, the new attributes still support the exist-

ing text, password, and submit attributes. Using the new INPUT
elements will look as follows for a form.

<FORM>
<label >First Name </label>
<input name=“FirstName” type=“text”>
<label >Last Name </label>
<input name=“LastName” type=“text”>
<label >Date Of Birth </label>
<input name=“DOB” type=“date”>
<label >Email Address </label>
<input name=“email” type=“email”>
<label >Your Personal Web Site</label>
<input name=“WebSite” type=“URL”>
<label >How Many Hours Do You Surf The Web Each Week?

</label>
<input name=“SurfWeb” type=“range” min=“1” max=“20”

value=“0”><output name=“result” onforminput=“value=a.
value”>0</output>

</FORM>

As you can see from Figure 1.11, applying the different INPUT
attributes is very easy in HTML5. The only exception is the sliding
RANGE type. The RANGE is a visual tool that allows you to choose
a value by sliding a scrub bar. The scrub bar allows you to select a
value between the minimum (min) and maximum (max) values.
The value is then captured and sent back to the form using the
OUTPUT element.

 HTML5 Tag STrucTure 29

Inserting the cursor automatically into a
Specified Field

A second, and useful, addition is the ability to set a form ele-
ment to be the default starting element in the form. The autofocus
attribute can only be used one time in a form. The attribute does
not have a value. If you elect to add it to an INPUT value then the
cursor will automatically focus on that element. The following
shows how to set the focus for an INPUT element:

<input name=“FirstName” type=“text” autofocus>

You can only use the autofocus attribute once per form.

Making an INPuT Field required
You can also set an INPUT element using the required attri-

bute. As with the autofocus attribute, the required attribute has
no values. If you add the attribute then the form field is required.
Here is an example using the required attribute.

<input name=“FirstName” type=“text” required>
<input name=“MiddleName” type=“text”>
<input name=“LastName” type=“text” required>

In this example you can see that the first and third INPUT ele-
ments are required and the second is not. If the field does not
have any data entered into it then a message will pop up asking
for a value (Figure 1.12).

adding the Placeholder Text
As you can see, HTML5 added many additional tweaks that

allow you to control data captured in your forms. A further
 addition is an attribute called placeholder. You have probably
seen placeholder text in many forms online. FireFox has a place-
holder in the browser’s search box. The light-gray box specifies

Figure 1.11 The new FOrM
types allow you to easily create
complex forms.

Figure 1.12 an error message
pops up if you do not enter
a value when the required
attribute is set.

30 HTML5 Tag STrucTure

the default search engine. When you click on the field the text
 disappears. See Figure 1.13.

Following is how you add placeholder text to an input field.

<FORM>
<input name=“search” type=“text” placeholder=“Google

Search”>
<input type=“submit” value=“Search”>
</FORM>

You can put all of these different techniques together to create
compelling HTML5 Forms. The following example can be accom-
plished with JavaScript in current web browsers without the use
of HTML5. The difference is that HTML5 accomplishes the same
results in far less code.

<FORM>
<label >First Name </label>
<input name=“FirstName” type=“text” autofocus required>
<label >Last Name </label>
<input name=“LastName” type=“text” required >
<label >Date Of Birth </label required>
<input name=“DOB” type=“date”>
<label >Email Address </label>

Figure 1.13 using the
placeholder attribute to add
text that prompts user input.

 HTML5 Tag STrucTure 31

<input name=“email” type=“email”>
<label >Your Personal Web Site</label>
<input name=“WebSite” type=“URL” placeholder=“Enter

your own Web site address”>
<label >How Many Hours Do You Surf The Web Each Week?

</label>
<input name=“SurfWeb” type=“range” min=“1” max=“20”

value=“0”><output name=“result” onforminput=“value=a.
value”>0</output>

</FORM>

The new attributes for HTML5 have been highlighted so you
can see how they are used.

controlling Data with HtML5
Forms are used to add, modify, and delete data. HTML5 is the

first version of the HTML standards to directly address the need
for managing data both on the server and locally on your com-
puter. There are three key ways in which data can be more effec-
tively managed in HTML5:
•	 Extending	the	functionality	of	HTML5	Forms
•	 Displaying	data
•	 Storing	data

The following sections explore these three different methods.

extending the Functionality of HTML5
A dropdown list in a web form is typically accomplished using

the SELECT element. With HTML5 you can replace the values in
a SELECT element by extending the default INPUT element with
dropdown options. This is accomplished using the new DATALIST
element. The DATALIST element allows you to create an array
that can be associated with an INPUT element (Figure 1.14). The
following example demonstrates the DATALIST element used to
list different colors.

<label>Select a color</label>
<input list=“mylist” type=“text”>
<datalist id=“mylist”>
<option label=“Red” value=“Red”>
<option label=“Blue” value=“Blue”>
<option label=“Green” value=“Green”>
</datalist>

The attribute value of “mylist” binds the DATALIST with the
INPUT element. The values of the DATALIST can be shared with
other elements on the screen.

Figure 1.14 The DaTaLIST
element gives you more control
over how to organize an array
of data in HTML.

32 HTML5 Tag STrucTure

Displaying Data in HTML5
The DETAILS and DATAGRID elements are two ways in which

to add interactivity to your data. The DETAILS element allows
for additional information to be highlighted on the content.
For instance, the following example will show additional
information.

<p>Click for Additional Information.
<details open=“open”>
<p>The details for this content will be shown when you

select it with the mouse.</p></details>
</p>

Additional interactivity is accomplished with the inclusion
of the DATAGRID element. DATAGRID gives you interactivity
that you would expect to see with a grid control in a tool such
as Microsoft’s Access. It is simply a way to structure data. The
resulting data can be displayed in tree, list, or tabular format
(Figure 1.15).

<datagrid>
<p>HTML5</p>
<p>Ajax</p>Figure 1.15 The DaTagrID

element is used to organize
content in a default list format.

 HTML5 Tag STrucTure 33

<p>XHTML</p>
<p>HTML 4</p>
</datagrid>

The data can be formatted with CSS.

Storing Data Locally using Web Storage
Cookies are the typical way you save and store data locally for

a web site. With HTML5 the amount of data you can store locally
has been dramatically increased. The new Web Storage standard
that is included with HTML5 allows for massive amounts of data
to be stored. Instead of using text-based cookies, Web Storage is a
local database that sits within the web browser.

The significant benefit of having a database in the web
browser is that you can now program your web applications to
store data locally and continue running when they are not con-
nected to the Internet. You can see this already being used with
Google’s Gmail, Calendar, and Docs services. The web applica-
tions run whether you are connected to the Web or not.

The advantage of offline web application management does
not make much sense for traditional PCs, but it becomes very
important when your web application is running through a
mobile device such as Apple’s iPhone. Google’s Gmail service
for the iPhone is designed to allow you to work even when you
are not connected to the Internet. For instance, you are waiting
to take your commuter train and you are checking your Gmail
account. You get on the phone as you’re reading an email and
decide to reply to the message. As you are typing your mes-
sage the train starts to move and you are taken out of a 3G or
EDGE network and loose Internet connectivity. The HTML5
Web Storage feature allows your application to keep running.
You can reply to your email message and even write new mes-
sages without ever knowing that you are not connected to the
Internet. The local database stores your contacts and a specific
number of emails and responses. The next time your phone
is connected to a network, your email messages are sent and
new messages are received. It is all done without you even
knowing.

How are Data Stored Locally?
The	database	being	used	by	Google,	Opera,	Apple,	and	FireFox	to	enable	HTML5	Web	Storage	and	offline	browsing	
support	is	the	open-source	database	called	SQLite.	You	can	get	more	information	at	www.sqlite.org.

http://www.sqlite.org

34 HTML5 Tag STrucTure

Web Storage is achieved using JavaScript. The following exam-
ple is of a form that allows you to enter a value. When you click
the mouse out of the area of the INPUT element, the data will be
stored locally in your web browser using the Web Storage database.

<section>
<header> <h1>Using Web Storage</h1> </header>
<article>
<section>
<p>Enter a value and then click out of the INPUT

field for the value to be stored</p>
<label for=“local”>Enter a Value </label>
<input type=“text” name=“local” value=“”

id=“local” required autofocus>
</section>

 </article>
</section>

The main guts of the code are managed through JavaScript.
Below your HTML elements add the following SCRIPT elements.
You are going to add JavaScript in the SCRIPT elements.

<script>
</script>

Add the following JavaScript function.

function getStorage(type) {
var storage = window[type + “Storage”],
delta = 0,
li = document.createElement(“li”);

if (storage.getItem(“value”)) {
 delta = ((new Date()).getTime() - (new Date()).

setTime(storage.getItem(‘timestamp’))) / 1000;
 li.innerHTML = type + “Storage: ” + storage.

getItem(“value”) + “(last updated: ” + delta + “s ago)”;
} else {
 li.innerHTML = type + “Storage is empty”;

}
document.querySelector(“#previous”).appendChild(li);

}

The JavaScript is completing three tasks:
1. It is creating a new local database called Storage.
2. A field called value is being added to the Storage

database.
3. A timestamp field is also added to the Storage database.

The following JavaScript will save any value you enter into the
INPUT element.

getStorage(“local”);
addEvent(document.querySelector(“#local”), “keyup”,

function () {

 HTML5 Tag STrucTure 35

localStorage.setItem(“value”, this.value);
localStorage.setItem(“timestamp”, (new Date()).

getTime());
});

You can now enter a value into the INPUT field. The value is
captured and stored in a database. If you close the web page and
then reopen it, the value you entered will be saved.

new HtML5 attributes
An attribute is a setting that allows you to apply additional

functionality to your element. Elements often have specialized
attributes such as the INPUT element’s use of the required attri-
bute to specify the field as being required. There are, however,
some new global attributes you can use in HTML5.

The new draggable attribute has a value of true or false. This
attribute is tied to the new drag-and-drop application program-
ming interface (API) included with HTML5 that allows you to
drag any element on the page.

The contenteditable attribute allows you to specify if con-
tent can be edited in the web page. The following example allows
you to edit all of the content within the SECTION element.

<section contenteditable=“true”>
<h1>Edit this content</h1>
<p>You can select, edit, and create your own content

in this space</p>
</section>

Most of the attributes from XHTML and HTML4, such as id,
class, and style, are still available in HTML5.

What is not Being Supported in HtML5
HTML5 is dropping support for several older and less used

HTML elements from earlier versions of the HTML language. You
will see a trend that many of the elements that are being dropped
were previously used to apply formatting or design to an object on

adding Style to Your elements
All	of	the	elements	covered	in	the	chapter	define	blocks	of	content	on	a	web	page.	They	do	not,	however,	add	any	
visual	style	to	the	content.	This	is	done	using	Cascading	Style	Sheets	(CSS).	The	class	attribute	from	HTML4,	used	to	
reference	specific	styles	in	a	CSS	document,	still	applies	in	exactly	the	same	way	with	HTML5.	The	only	difference	is	the	
CSS3	gives	you	many	more	options	for	creating	visually	pleasing	designs.

36 HTML5 Tag STrucTure

the screen. For instance, the MARQUEE element, which allowed
you to create a scrolling text in your web page, is now dropped. You
can now duplicate the same scrolling bar using JavaScript, stan-
dard HTML, and CSS. There is no need to keep the older element.

The following is list of the elements that are not supported by
HTML5:
•	 BASEFONT—can	be	duplicated	with	CSS
•	 BIG—can	be	duplicated	with	CSS
•	 CENTER—can	be	duplicated	with	CSS
•	 FONT—can	be	duplicated	with	CSS
•	 S—can	be	duplicated	with	CSS
•	 STRIKE—can	be	duplicated	with	CSS
•	 TT—can	be	duplicated	with	CSS
•	 U—can	be	duplicated	with	CSS
•	 FRAME—can	be	duplicated	with	iFrame	or	CSS
•	 FRAMESET—can	be	duplicated	with	iFrame	or	CSS
•	 NOFRAMES—can	be	duplicated	with	iFrame	or	CSS
•	 ACRONYM—can	use	the	ABBR	element
•	 APPLET—can	use	the	OBJECT	element
•	 ISINDEX—use	FORM	controls	instead
•	 DIR—has	been	widely	replaced	by	the	UL	list	element

In addition to elements that have been removed, there are
some elements that have modified functions, including:
•	 The	A	anchor	element	without	an	HREF	attribute	now	repre-

sents a “placeholder link.”
•	 The	ADDRESS	element	 is	now	scoped	by	the	new	concept	of	

sectioning.
•	 The	B	element	now	represents	a	span	of	text	to	be	stylistically	

offset from the normal prose without conveying any extra
importance.

•	 The	 HR	 element	 now	 represents	 a	 paragraph-level	 thematic	
break.

•	 For	 the	 LABEL	 element	 the	 browser	 should	 no	 longer	 move	
focus from the label to the control unless such behavior is
standard for the underlying platform user interface.

•	 The	MENU	element	is	redefined	to	be	useful	for	actual	menus.

Depreciated element Support in Web Browsers
HTML5	does	not	support	a	bunch	of	older	elements.	This	does	not	mean	that	your	favorite	web	browser	will	drop	support	
for	these	elements.	You	will	need	to	check	on	a	browser-by-browser	basis	for	which	elements	are	being	supported	in	an	
effort	to	allow	web	pages	to	render	correctly.

 HTML5 Tag STrucTure 37

•	 The	SMALL	element	now	represents	small	print	(for	side	com-
ments and legal print).

•	 The	STRONG	element	now	represents	importance	rather	than	
strong emphasis.

•	 Quotation	marks	for	the	Q	element	are	now	to	be	provided	by	
the author rather than the user agent.
In addition to HTML elements not being supported in HTML5,

there are also several attributes being dropped. You will see that
the attributes are being dropped as they replicate stylistic presen-
tations already handled by CSS.
•	 The	 align attribute on CAPTION, IFRAME, IMG, INPUT,

OBJECT, LEGEND, TABLE, HR, DIV, H1, H2, H3, H4, H5, H6, P,
COL, COLGROUP, TBODY, TD, TFOOT, TH, THEAD, and TR.

•	 The	alink, link, text, and vlink attributes on BODY.
•	 The	background attribute on BODY.
•	 The	bgcolor attribute on TABLE, TR, TD, TH, and BODY.
•	 The	border attribute on TABLE, IMG, and OBJECT.
•	 The	cellpadding and cellspacing attributes on TABLE.
•	 The	char and charoff attributes on COL, COLGROUP, TBODY,

TD, TFOOT, TH, THEAD, and TR.
•	 The	clear attribute on BR.
•	 The	compact attribute on DL, MENU, OL, and UL.
•	 The	frame attribute on TABLE.
•	 The	frameborder attribute on IFRAME.
•	 The	height attribute on TD and TH.
•	 The	hspace and vspace attributes on IMG and OBJECT.
•	 The	marginheight and marginwidth attributes on IFRAME.
•	 The	noshade attribute on HR.
•	 The	nowrap attribute on TD and TH.
•	 The	rules attribute on TABLE.
•	 The	scrolling attribute on IFRAME.
•	 The	size attribute on HR, INPUT, and SELECT.
•	 The	type attribute on LI, OL, and UL.
•	 The	valign attribute on COL, COLGROUP, TBODY, TD, TFOOT,

TH, THEAD, and TR.
•	 The	width attribute on HR, TABLE, TD, TH, COL, COLGROUP,

and PRE.

How to gracefully Migrate Sites to
Work with the new HtML5 Standard

HTML5 introduces a lot of new features. This can be daunting
for web developers who have to support current browsers such as
Microsoft Internet Explorer 6–8. There needs to be a way to grace-
fully migrate web sites to the new technologies in HTML5.

38 HTML5 Tag STrucTure

Fortunately, Modernizr is a great open-source solution that allows
you to detect the use of HTML5-specific technologies and provide
options for HTML5 browsers to use older HTML4 technologies to
still correctly display the page. You can download the JavaScript files
for Modernizr at www.modernizr.com. The compressed files are only
7 Kb and will not take up much space on your web site.

Add the Modernizr files to the root of your web site. You can
reference them from your web page as follows.

<!DOCTYPE html>
<html>
<head>
 <title>Detecting HTML5 content with Modernizr</title>
 <script src=“modernizr.min.js”></script>

</head>
<body>

With the JavaScript added to the page you can now write
script that allows you to swap in HTML5 when the web browser
can support it or insert an older format for older browsers. For
instance, you can have the following HTML5 INPUT element on
your page:

<input type=“date” name=“DOB” id=“DOB”>

Add the following JavaScript to reference Modernizr, and older
web browsers will swap out the HTML5 attribute with an Ajax
alternative.

if (!Modernizr.inputtypes.date){
createDatepicker(document.getElementById(DOB));

}

Using tools such as Modernizr ensures that all users coming to
your web site can view the content and that new HTML5 content
is targeted to the right audience.

What You Have Learned
In this chapter you have been introduced to key new elements

found in HTML5. The purpose of the HTML5 elements is to iden-
tify blocks of text specified using the SECTION, ARTICLE, NAV,
DIALOG, ASIDE, FIGURE, HEADER, and FOOTER elements.

Within a block of text are additional elements that place spe-
cific emphasis on content. Using the MARK element you can add
emphasis to a specific section. Time and measurement can also
be emphasized with the TIME and METER tags.

Finally, applications are becoming first-class citizens on the
Web with the introduction of enhanced FORM elements and the
new data management tools in HTML5.

http://www.modernizr.com/

ProjeCT 1: Building a WeB
SiTe uSing HTMl5 BloCking
eleMenTS
Styling Your Site
with CSS
The project in this
chapter is no exception.
A Cascading Style Sheets
(CSS) style document is
included with the project
files. Look for the file
called “style.css” that is
used to apply all of the
visual design elements
used in this project.

Professional Tools You
Can Use to Manage
Your Site
Tools such as Adobe’s
Dreamweaver and
Microsoft’s Expression
Web support Dynamic
Web Templates (DWT) files
that you can use to create
a template to reuse in your
site. This will save you a
lot of time as you manage
your web site.
In the article chapter of this section you were introduced to the
new SECTION, ARTICLE, NAVIGATION, ASIDE, HEADER, and
FOOTER elements in HTML5 that allow you to apply a more
easily readable structure to your web site design. In this project
chapter you will be building an entire web site that uses the
new HTML5 blocking elements to illustrate how you can more
 effectively structure your code.

The site will consist of four pages, as follows:
•	 Home	page
•	 Product	page
•	 News	page
•	 Contact	us	page

Each of these pages demonstrates how you can use HTML5 in
your web site design. By the time you have completed this project
you will able to apply blocking to your new site design.

Creating a Template for Your Web Site
Each of the pages in the site will highlight specific elements

used in HTML5. To make things easy for you, let’s set up one
page that you can reuse as a template for the other pages in
the project site. It is easier to manage your site when the HTML
code is consistent on each page. Finding and replacing sections
becomes a matter of cut and paste. For this project, the default
home page contains all of the elements and structure you
will need for the entire site. The home page will be used as the
template.

Before you start coding your HTML let’s take some time to
explore how the default home page is structured. You will want
to use a tool that allows you to easily draw blocks on the page
to visually show where you will place the content. Figure	1.1Proj
uses	PowerPoint	to	block	out	the	page.

HTML5. doi: 10.1016/B978-0-240-81328-8.00001-X
© 2010 Elsevier Inc. All rights reserved. 39

40 Project 1: Building a WeB Site uSing HtMl5 Blocking eleMentS

Figure 1.1Proj rectangles
drawn into a PowerPoint slide
visually illustrate the different
areas of content in the home
page.
Figure	1.1Proj shows that there are four basic sections to each
web page. HTML5 allows you to block out the following sections:
•	 Header
•	 Section
•	 Navigation
•	 Footer

The basic structure for the page looks like the following in
HTML5.

<!DOCTYPE html>
<head>
<meta content=“en-us” http-equiv=“Content-Language”/>
<meta content=“text/html; charset=utf-8” http-equiv=

“Content-Type”/>
<link href=“style.css” rel=“stylesheet” type=“text/

css”/>
<title>Company Home Page</title>
</head>
<body>
<header> </header>
<navigation> </navigation>
<section> </section>
<footer> </footer>
</body>
</html>

The	 default	 page	 opens	 with	 the	 HTML5	 DOCTYPE	 	element	
that declares that the page supports HTML5. The rest of the
HTML code within the HEAD element has not changed in
HTML5. It is not until you start creating the content for the home
page that you will see the new HTML5 elements.

The new blocking elements in HTML5 accurately describe
where the content goes. In HTML4 and XHTML you can only

http://equiv=Content-Language
http://equiv=Content-Type
http://equiv=Content-Type

 Project 1: Building a WeB Site uSing HtMl5 Blocking eleMentS 41
achieve this same type of layout using DIV elements that are
 difficult to manage. It is easier to understand what each section is
attempting to achieve when you name the elements as HEADER,
FOOTER, SECTION, and NAVIGATION.

Now that you have a basic structure for the page, you can start
 filling in each section with content.

Customizing the Header element
The HEADER element in the project example contains only

one key part: a search engine. To add a Google Search engine,
insert the following code.

<header id=“header” class=“headerStyle”>
<form method=“get” action=“http://www.google.

com/search”>
<input type=“text” name=“q” size=“15”

maxlength=“255” value=““ placeholder=“Search”/>
<input type=“submit” value=“GO”/>
<input type=“hidden” name=“sitesearch” value=

“www.focalpress.com”/>
</form>

</header>

The HEADER element has two additional attributes: id and
class. The id is a value that, if you insert JavaScript into the
page, you can use to identify the HEADER element on the page.
The class attribute headerStyle links to a style defined in the
CSS file. The headerStyle describes the placement and visual
 presentation of the HEADER element on the screen.

Inside the HEADER element is the FORM element. The FORM
	element	takes	any	content	entered	in	the	INPUT	element	and	sends	
it	to	Google.	The	first	INPUT	element	is	using	a	new	HTML5	Forms	
attribute. The placeholder attribute allows you to add ghosted text
into the input form that disappears when you start typing your own
content, as shown in Figure	 1.2Proj.	 A	 final	 	hidden	 INPUT	 element	
forces the search engine results to only search www.focalpress.com.
Figure 1.2Proj the form on the
page uses the placeholder
attribute to add content.

http://www.focalpress.com

42 Project 1: Building a WeB Site uSing HtMl5 Blocking eleMentS

Figure 1.3Proj the naVigation
element is placed on the left
side of the page.
Customizing the naVigaTion element
The NAVIGATION block contains the links that will be used in

the site. The following HTML describes the links on the screen.

<navigation id=“NavigationLink”
class=“navigationStyle”>

Home|Products|<a href=“news.
html”>News|Contact Us

</navigation>

The NAVIGATION element, as with the HEADER element,
has two attributes: id and class. The class attribute links to
the CSS style navigationStyle. You will see in Figure	 1.3Proj
that there is additional content around the NAVIGATION
element.
A SECTION element is used to define where the company
name and NAVIGATION are placed on the screen.

<section id=“navigation” class=“leftSection”>
<p id=“CompanyName” class=“companyNameStyle”>COMPANY

NAME</p>
<navigation id=“NavigationLink” style=”” class=

“navigationStyle”>
Home|

<ahref=“products.html”>Products|<a href=“news.
html”>News|Contact Us

</navigation>
</section>

 Project 1: Building a WeB Site uSing HtMl5 Blocking eleMentS 43

How to Format
Vertical Text
A CSS3 feature called
Transform is used to
change the angle of the
text from horizontal to
vertical.
You can see from this code example that the SECTION
	element	 contains	 both	 P	 and	 NAVIGATION	 elements.	 Each	
 element now accurately describes the different types of content
on the screen.

Customizing the Main SeCTion element
The center area of the web page is reserved for the main

 content. The HTML for this section can be described as easily as
follows:

<section> </section>

Typically, you will find that the main section of any web page
will contain more content. The template page is going to be
set up with two areas for additional content within the SECTION
 element, as shown in Figure	1.4Proj and the following code.
Figure 1.4Proj the Section
element contains two article
elements.
<section>
<div id=“section_articleOneIdentifier” style=“position:

absolute; left: 355px; top: 105px; width: 1px; height:
60px; z-index: 3”>

<hr class=“style2” style=“height: 60px; width:
1px”/></div>

<article id=“article_one” style=“position: absolute;
left: 420px; top: 100px; width: 315px; height: 195px;
z-index: 2”>

<h1>Header 1</h1>
<p>Add Content here</p></article>

<div id=“section_articleOneIdentifier” style=“position:
absolute; left: 355px; top: 355px; width: 1px; height:
60px; z-index: 3”>

44 Project 1: Building a WeB Site uSing HtMl5 Blocking eleMentS
<hr class=“style2” style=“height: 60px; width:
1px”/></div>

<article id=“article_two” style=“position: absolute;
left: 420px; top: 350px; width: 315px; height: 195px;
z-index: 2”>

<h1>Header 2</h1>
<p>Add Content here</p>

</article>
<hr class=“HRstyle” style=“position: absolute; left:

420px; top: 320px; width: 315px; height: 2px; z-index: 3”/>
</section>

Two ARTICLE elements are placed within the SECTION
 element. The id attribute for both ARTICLE elements is unique
to allow you to easily identify which element is which. Instead
of linking to an external CSS class, a style attribute is used for
both ARTICLE elements. The style attribute is using CSS, but it
is localized to that single element and is not shared with other
elements.

Each	 ARTICLE	 element	 also	 contains	 H1	 and	 P	 elements.	
The H1 element is a header that will be used to lead in each
article	 title.	 The	 P	 element	 is	 a	 paragraph	 element	 for	 	content.	
Placeholder	 text	 is	 added	 to	 the	 H1	 and	 P	 tags	 so	 you	 can	 see	
where the content is when you view the page in an HTML5-
compliant web browser.

The final HR element is a visual separator between the two
ARTICLE elements.

Customizing the FooTer element
The final element to modify is the FOOTER element. The

 following code describes the FOOTER element.

<footer id=“footer” class=“footerStyle”>
<hr class=“HRstyle”/>
<p class=“Copyright”>Copyright © 2010 Focal

Press</p>
</footer>

Typically, the FOOTER element does not contain much
 information. An HR (horizontal rule) element is used to visually
separate the FOOTER element from the content on the page.
Below	 the	 HR	 element	 is	 a	 P	 (paragraph)	 element	 that	 contains	
copyright information. Again, CSS is used to style and position
the elements on the screen.

 Project 1: Building a WeB Site uSing HtMl5 Blocking eleMentS 45

Figure 1.5Proj a template web
page created using HtMl5
blocking elements.

Using Lorem Ipsum
Lorem Ipsum is a fake
language you can use to
fill up space on a screen
to illustrate where text
should be placed. This
prevents your customers
from reading the text and
commenting on typos
instead of looking at the
overall visual presentation.
At this point you can save your HTML. Name your file
 “template.html.” Your page should look the same as Figure	1.5Proj.

Creating the Site’s Home Page
In many ways, the home page for your site is the easiest to

create. You have already done all the heavy lifting in creating the
template for the site. For the home page, all you have to do is
switch out the content you entered as placeholder text with the
text you want to have displayed on your home page.

Open the “template.html” file and save the file as “default.
html.” This will be your new home page file.

Each of the ARTICLE elements in the main SECTION element
will	 be	 modified	 to	 reflect	 new	 content.	 Using	 a	 unique	 ID	 for	
each ARTICLE makes it easier to work with each section. Find the
ARTICLE with the ID article_one and replace the HTML code
with the following.

<article id=“article_one” style=“position: absolute;
left: 420px; top: 100px; width: 315px; height: 195px;
z-index: 2”>

46 Project 1: Building a WeB Site uSing HtMl5 Blocking eleMentS
<p id=“section_articleOneIdentifier” style=“position:
absolute; left: 355px; top: 105px; width: 1px; height:
60px; z-index: 3”>

<hr class=“style2” style=“height: 60px; width: 1px”/>
</p>

<h1>Welcome to our Site</h1>
Cras ut justo eu arcu varius viverra

in a enim. Nulla varius pharetra luctus. Ut scelerisque
consequat velit at accumsan.

Sed euismod eros ut massa commodo
egestas. Ut fringilla tincidunt ligula quis blandit. In et
vestibulum orci.

Donec et metus sed purus ultrices
interdum vel non purus. Nulla nisi velit, vulputate nec
sodales vitae, dignissim quis odio. Praesent malesuada
pulvinar leo, vel ultricies metus eleifend at.
</article>

This code keeps the content within the ARTICLE element.
A search engine, such as www.Google.com or www.Bing.com,
can now accurately identify this content as informational and
 pertinent to the page. Identifying pertinent information is the
goal of a search engine and will help in allowing a page to appear
higher in the list of Google or Bing’s search results page.

The second ARTICLE element contains the following HTML
code.

<article id=“article_two” style=“position: absolute;
left: 420px; top: 350px; width: 315px; height: 195px;
z-index: 2”>

<p id=“section_articleOneIdentifier” style=“position:
absolute; left: 355px; top: 355px; width: 1px; height:
60px; z-index: 3”>

<hr class=“style2” style=“height: 60px; width: 1px”/>
</p>

<h1>What we do</h1>
<p>Nullam tincidunt pulvinar ornare.</p>
<p>Our Products</p>
<p>Phasellus dictum elementum erat, rutrum pellentesque

tellus imperdiet ac. Sed quis porttitor eros.</p>
<p>Our Services</p>
<p>Etiam gravida dui a purus sollicitudin tempus

blandit sem pulvinar.</p>
</article>

The second ARTICLE uses different HTML to format the
text. The new HTML elements do not restrict you from using
 additional elements within them, giving you maximum creative
freedom to code a page the way you want it coded.

This is it. Save the page and view it through your favorite
HTML5-compliant web browser. It should look like Figure
1.6Proj.

http://www.Google.com
http://www.Bing.com

 Project 1: Building a WeB Site uSing HtMl5 Blocking eleMentS 47

Figure 1.6Proj the home page.
adding a Product Page That uses
the Mark element

The product page, when viewed through your web browser,
will look very similar to the home page. Figure	1.7Proj shows the
product page.
Figure 1.7Proj the product
page.

48 Project 1: Building a WeB Site uSing HtMl5 Blocking eleMentS

Figure 1.8Proj the news page
uses the aSide element to
define a sidebar on the page.
The difference with the product page is that, behind the scenes,
the MARK element is being used to specify content in each ARTICLE
element. The MARK element is another way in which you can
 specify content on a page for a search engine to pick up and use.

The following HTML is from the ARTICLE with the ID
article_one.

<h1><m>The Gizmo Product</m></h1>
<m>The Gizmo Product</m>varius viverra in a enim. Nulla

varius pharetra luctus. Ut scelerisque consequat velit at
accumsan.

Sed euismod eros<m>The Gizmo
Product</m> egestas. Ut fringilla tincidunt ligula quis
blandit. In et vestibulum orci.

Donec et metus sed purus ultrices
interdum vel non purus. Nulla nisi velit, vulputate nec
sodales <m>The Gizmo Product</m> quis odio. Praesent malesuada
pulvinar leo, vel ultricies metus eleifend at.</article>

The goal of the product page is to emphasize the placement of
specific words on a page.

adding a news Page That uses the TiMe
and aSide elements

The third page you are going to create is the news page. The
news page uses two elements that help provide additional
 information about content and provide structure content on the
screen. Figure	1.8Proj shows what the news page looks like.

 Project 1: Building a WeB Site uSing HtMl5 Blocking eleMentS 49
Let’s start by adding the sidebar shown on the screen in the
figure. Open the “template.html” file and save it as “news.html.”
The sidebar is created using the ASIDE element. As with other
blocking elements, the goal of the ASIDE element is to help you
structure your content. In this example, you are going to go one
step further and format the position and presentation of the
ASIDE element using CSS.

The following HTML code creates the ASIDE.

<aside id=“aside” style=“position: absolute; left:
740px; top: 200px; width: 150px; height: 190px; z-index: 6;
background-color: #808080; color: #FFFFFF;-moz-border-radius:
10px;-webkit-border-radius: 10px;padding: 5px;”>

</aside>

The style attribute defines the position, background color,
and border radius so you can see the ASIDE element on the
page.	 Place	 the	 ASIDE	 element	 within	 the	 SECTION	 element.	
The following HTML can be added within the ASIDE element
tags. This is the content for the ASIDE.

For additional information on press releases please
contact:

Production Information

John Marshall

jmarshall@email.com

Corporate Information

Jenny Smythe

jsmythe@email.com

Phone Calls:

(920) 555-1212

Both of the ARTICLE elements contain information that is
newsworthy. A date for each news article specifies the publication
date.	Using	the	TIME	element	you	can	highlight	the	time	content	
for each article on the page.

Following is the title and date for the first article.

<h1>The news is hot!</h1>
<p><time>April 1, 2010</time></p>

In this instance, the TIME element captures the information
between the two tags and identifies it as a date. The second news
headline uses the datetime attribute to be more specific with the
date.

<h1>What we do</h1>
<p><time datetime=”2010-03-15T10:32:17”>March 15, 2010

</time></p>

Here, the text between the TIME elements states March 15,
2010. The datetime attribute allows additional information to be

50 Project 1: Building a WeB Site uSing HtMl5 Blocking eleMentS

Figure 1.9Proj HtMl5 Forms
support many new tools that
enable you to capture data.

Web Browser Support
for HTML5 Forms
Currently, Opera 9.5+ has
the strongest support for
HTML5 Forms. Google’s
Chrome, Apple’s Safari,
and Mozilla’s FireFox are
incrementally building
support for HTML5 Forms
into each successful release
of their browsers. Google,
in particular, is anxious
to build stronger support
for HTML5 Forms to help
support the evermore
complex web services,
such as Gmail and Docs.
added. In this case, the datetime attribute adds a timestamp to the
date explaining that the article was published at 10:32 am and 17
seconds.

Creating a Contact us Page That uses
the new Form inPuT attributes

Earlier in this chapter you built a search engine form that sends
requests	to	Google.	The	Contact	Us	form	builds	on	the	fundamen-
tals introduced with the Google Search form and introduces you
to more complex ways in which you can display data.

Figure	1.9Proj	shows	the	Contact	Us	form	as	it	is	presented	in	
Opera 10. As you use the form you will see the following interac-
tions have been included:

 Project 1: Building a WeB Site uSing HtMl5 Blocking eleMentS 51
•	 The	 form	 automatically	 places	 the	 focus	 of	 the	 cursor	 into	
the First Name field and the field is required.

•	 The	 Middle Name field is disabled, preventing a user from
entering data into it.

•	 The	Age field is a numeric scroll that allows you to pick from
an age range of 18–100.

•	 The	Email field has a visual cue to tell you that you must enter
a valid email address.

•	 The	How did you hear about us field is a dropdown menu that
allows you to choose from several options.

•	 The	When would you like us to contact you field is a selectable
date tool.

•	 The	 final	 field,	 How many of our products do you own, is a
slider allowing you to choose from 0–10.
The	 new	 attributes	 for	 the	 INPUT	 element	 enable	 you	 to	

accomplish complex design without having to develop complex
scripting solutions or leverage nonstandard technologies such as
Adobe Flash or Microsoft SilverLight.

What has not changed in HTML5 Forms is the way you send
data using computer graphic interface (CGI) or server-side-
technologies	 such	 as	 PHP,	 ASP.NET,	 ColdFusion,	 or	 JSP.	You	 can	
use any CGI solution to transmit data captured in a web form.
HTML5 only gives you more options to capture the data. Once
you have the data, they are still data.

To	create	the	Contact	Us	form	you	will	need	to	take	a	copy	of	
the “template.html” file and save it as “contactus.html.” Open the
“contactus.html” file in your favorite text editor. The form will be
added to the main SECTION block of the page.

The first elements to add are the opening and closing FORM
elements, as follows.

<h1>Contact Us</h1>
<p>For more information, contact us:</p>
<form method=“POST” action=“http://fp1.formmail.com/

cgi-bin/fm192”>
</form>

In this code you have a title and brief sentence introducing
the form. The FORM element uses the POST method to submit
the contents of the form. In this example I am using the free
FormMail service to submit the contents of the form. You can use
this for your forms, too; the action=“http://fp1.formmail.com/
cgi-bin/fm192” submits the data from the form to a free CGI/
Perl	script.

INPUT	form	elements	are	placed	in-between	the	opening	and	
closing	 FORM	 elements.	 The	 following	 three	 INPUT	 elements	
are	hidden.	The	role	of	these	elements	is	to	pass	data	to	CGI/Perl	

http://fp1.formmail.com/cgi-bin/fm192
http://fp1.formmail.com/cgi-bin/fm192

52 Project 1: Building a WeB Site uSing HtMl5 Blocking eleMentS
script letting it know that the form is valid and where to send the
results when someone has completed the form.

<input type=“hidden” name=“_pid” value=“119137”>
<input type=“hidden” name=“_fid” value=“FNNZXGED”>
<input type=“hidden” name=“recipient” value=

“matthewadavid@gmail.com”>

Here you can swap out the recipient email with your own.
The	 visual	 elements	 of	 the	 form	 use	 the	 LABEL	 and	 INPUT	

elements to present themselves on the page. The LABEL element
identifies the text as a label and is typically used with forms. As
with the TIME, MARK, and METER elements, the LABEL element
is	a	new	HTML5	blocking	feature.	Each	form	INPUT	element	has	
a preceding LABEL describing the element. The LABEL element
does not have any additional attributes. The following is the
LABEL for the first field in the form:

<label>First Name:</label>

A BR element is used to force a single line break after the
LABEL element.

The following HTML code allows you to force the cursor to
start in this field by adding the autofocus attribute. The required
attribute also prevents the form from being submitted until a
value has been entered into the First Name field.

<label>First Name:</label>
<input name= “FirstName”
type=“text” autofocus required>

The	Middle	Name	INPUT	field	has	been	visually	disabled.	You	
can use the disable feature to lock and unlock fields dynamically
using JavaScript.

<label>Middle Name:</label>
<input
name=“MiddleName” type=“text” disabled>

The Last Name field is also a required field using the required
attribute.

<label>Last Name:</label>
<input name=“LastName”
type=“text” maxlength=“25” required>

The Age field is a numeric stepper tool that allows you to
scroll through a specific range of numbers. In this case, you can
choose a number from 18–100. Figure	 1.10Proj shows age 27
selected.

 Project 1: Building a WeB Site uSing HtMl5 Blocking eleMentS 53

Figure 1.10Proj the numeric
stepper tool allows you to
choose a number from a range.
The visual effect of the numeric stepper is created through set-
ting the attribute settings of type, min, and max. Following is the
HTML code for the Age field.

<label>Age:</label>
<input name=“age” type=“number”
min=“18” max=“100”>

The type	attribute	identifies	the	INPUT	element	as	a	numeric	
stepper.	Placing	a	minimum	and	maximum	value	forces	the	ele-
ment to be restricted between those two numbers.

54 Project 1: Building a WeB Site uSing HtMl5 Blocking eleMentS

Figure 1.11Proj the email field
uses the Email attribute to add
a visual icon indicating that the
field requires a valid email.
The	Email	 field	uses	 the	INPUT	type	attribute	Email to force
the visual email icon to appear at the beginning of the field.
Figure	 1.11Proj shows the use of the Email type and required
attribute.

The code to add these Email and required visual cues is as
follows.

<label>Email:</label>
<input name=“email”
type=“email” required>

As	 you	 can	 see,	 all	 you	 need	 to	 do	 is	 identify	 the	 INPUT	 as	
type=“email” and insert the required attribute.

The	most	complex	INPUT	element	allows	you	to	choose	from	
three items in a dropdown menu, as shown in Figure	1.12Proj.

 Project 1: Building a WeB Site uSing HtMl5 Blocking eleMentS 55

Figure 1.12Proj using the
new dataliSt feature, you
can add more complex data to
dropdown menu selections.
The dropdown menu is accomplished by creating a datalist
and	 linking	 it	 to	 an	 INPUT	 element.	The	 following	 code	 creates	
the list. The key attribute is the id attribute in the first line; the ID
in the datalist can be linked to other elements on the page.

<datalist id=“mylist”>
<option label=“google” value=“http://google.com”>
<option label=“yahoo” value=“http://yahoo.com”>
<option label=“Bing” value=“http://bing.com”>
</datalist>

An	INPUT	element	can	now	be	linked	to	the	datalist	using	the	
following code.

<label>How Did you hear about us:</label>
<input
name=“HowDidYouHear” type=“uri” list=“mylist”>

56 Project 1: Building a WeB Site uSing HtMl5 Blocking eleMentS

Figure 1.13Proj Selecting a
date in HtMl5 is easy with th
new date type.
The	 INPUT	 element	 uses	 the	list attribute to link the ID of
the	datalist.	The	datalist	values	are	now	injected	into	the	INPUT	
element.

Frequently, you will see a tool used in web pages that enables
you to select a date. With HTML5 you can add a date picker
	simply	by	 identifying	the	INPUT	element	as	the	DATE	type.	The	
following code is all you need to add.

<label>When would you like us to contact you:</label>

<input name=“ContactDate” type=“date”>

You can see from Figure	 1.13Proj that changing the type
 attribute to date adds a sophisticated date picker.
e
Before selecting the Submit button, you can answer the last
question in the form by using the slider and choosing a number
from 0–10. The value you select appears as a number to the right
of the slider.

Using	the	slider	and	displaying	the	value	you	select	uses	both	
a new type	 attribute	 in	 the	 INPUT	 field	 and	 the	 new	 OUTPUT	
field. The slider uses the new range attribute. As with the
number attribute, the range attribute also supports minimum

 Project 1: Building a WeB Site uSing HtMl5 Blocking eleMentS 57
and maximum values. You can also force the slider to start at a
specific number using the value attribute. The following code
defines	the	INPUT	as	a	range with the min set at 0, the max set at
10, and the value set at 5, positioning the slider in the center.

<label>How many of our products do you own:</label>

<input id=“slider” name=“sliderValue” type=“range”
min=“1” max=“10” value=“5”></input>

You	will	also	see	in	this	code	that	the	ID	of	the	INPUT	element	
is sliderValue.	The	OUTPUT	element	can	link	to	the	ID	and	post	
the value into the web page. The following code shows you how
to do this.

<output name=“NumberOfProducts” value=“5” onforminput=
“value=sliderValue.value”>5</output>

The	final	element	to	add	to	the	FORM	is	the	BUTTON		element,	
as follows:

<button type=submit>Submit</button>

As	 you	 can	 see,	 nothing	 special	 is	 applied	 to	 the	 BUTTON	
 element. Sorry, just plain old-fashioned HTML here, folks.

Summary
The project covered in this chapter illustrates how you can

successfully use the HTML5 blocking elements to more effectively
manage your HTML code. Without having to resort to complex
and confusing HTML TABLES or DIV elements, the new HEADER,
SECTION, ARTICLE, ASIDE, NAVIGATION, and FOOTER elements
logically place content on the screen.

Additional elements M, TIME, METER, and LABEL allow
you to highlight specific elements on the page. This is useful for
search engines to find specific content you want to emphasize.

The new FORM attributes allow you to add a slew of new
visual	 tools	 to	 capture	 data.	 The	 new	 INPUT	 types	 are	 both	
sophisticated and simple to insert. You no longer need to work
with complex Ajax libraries to add a date picker. All you need to
do	is	modify	an	INPUT	type.

The role of these new elements is to enable you to more easily
control the content as it is presented in HTML. How that data are
presented is controlled using CSS. This chapter introduced you to
CSS, but it is covered in much more detail over the next section of
the	book,	Picture	CSS3.

HTML5. doi: 10.1016/B978-0-240-81328-8.00007-0
© 2010 Elsevier Inc. All rights reserved. 61

Picture cSS3

Tags are used in HTML5 to place and organize content at a level
that is descriptive. This does not mean that the page will look
good. Presentation of content on the page is controlled using
Cascading Style Sheets Level 3, or CSS3, in HTML5.

Using CSS3 to describe how your page should look, however, is
not new. The technology was first introduced in 1997 and is now,
in HTML5, in its third major release, named CSS3. The good news
is that all CSS1 and CSS2 standards are fully supported by popu-
lar web browsers.

For this book you will use CSS to format web pages. There are
good reasons why you want to do this. The first, and most impor-
tant, is that CSS is a tool that allows you to easily apply page
styling techniques to a whole web site from a single, text-based
document. This means you can quickly change the visual layout
of a page, selection of pages, or the entire site.

cSS as a Designer’s tools
The Web is not a forgiving place for a designer. By themselves,

HTML elements on a page look boring. The World Wide Web
Consortium (W3C) manages the Web’s standards. Part of this
management is the visual design and presentation of content
using CSS. Without CSS, the Web would look very dull. See the
example in Figure 2.1 of a page that has not been formatted with
CSS.

CSS gives you the control you need to format content on the
screen. Think of CSS as a set of instructions that explain how a
document should be presented. Figure 2.2 is the same page from
Figure 2.1, formatted with CSS.

CSS has been designed to be easily reused and shared
throughout your web site. To this end, it is very easy to switch out
design elements. Figure 2.3 is the same page illustrated in Figure
2.1 but with a new CSS design.

You, as a designer, now have much greater freedom in your
design. The good news is that working with CSS is not too hard.

62

Figure 2.1 CSS has not been
used to format the design of
this page.

Figure 2.2 CSS is used to
format the design of this page.

 PiCture CSS3 63

cascading Your Designs
There are three ways in which you can apply CSS to your

HTML content:
•	 Directly	within	the	HTML	element.
•	 Locally	on	a	web	page.
•	 Externally	using	a	special	CSS	file	to	manage	your	styles	for	an	

entire site.
Styles can be applied directly to an HTML element. This is

done using the style attribute. The following is a section of basic
HTML.

<h1>
This is Heading 1
</h1>
<p> It’s just something I threw together. This

sentence contains a link
to W3C, which you have probably visited. This sentence
contains a link to someplace
else. This is <a href=“http://www.htmlhelp.com/”
class=“offsite”>an offsite link. In the beginning was
the word. And the word wrapped. I’ll be looking soon for
opportunities to style this text. In the meantime it will
do merely to occupy space.

</p>

Figure 2.3 CSS allows you to
easily switch design elements.

64 PiCture CSS3

<h2>
I’m Heading 2
</h2>
<p>
This is a paragraph. It’s just something I threw

together. In the beginning was the word. And the word
wrapped. I’ll be looking soon for opportunities to style
this text. In the meantime it will do merely to occupy
space.

</p>

Presented in a web page, Figure 2.4 shows how the HTML code
looks.

The style attribute can now be used to format each element.
Take, for instance, the first H1 element; the following style can be
applied using CSS.

<h1 style=“font-family: Verdana, Geneva, Tahoma,
sans-serif;font-size: 24px;color: #FF3300;font-weight:
bolder;”>

This is Heading 1
</h1>

Figure 2.5 illustrates the change using the new style.
The challenge using the style attribute on a specific element

is that the style cannot be easily shared with other elements on
the page. There is a way to use CSS to format elements that are
used frequently on a page. The CSS style definition for a page is
located	 within	 the	 HEADER	 element.	The	 following	 code	 shows	
where the CSS style is placed.

<head>
<meta content=“text/html; charset=utf-8” http-

equiv=“Content-Type”/>
<title>A sample CSS page</title>
<style type=“text/css”>
H1 {

font-family: Verdana, Geneva, Tahoma, sans-serif;
font-size: 24px;

Figure 2.4 unformatted HtML
code.

Figure 2.5 the style attribute
is used to format the H1
element.

 PiCture CSS3 65

color: #FF3300;
font-weight: bolder;

}
</style>
</head>

This sample HTML code has moved the style definition for the
H1 element into the style document. You can expand the docu-
ment to format additional elements on the page. For instance,
moving the CSS style definition to the top of the web page allows
all of the P (paragraph) elements to look the same. The following
CSS	document	placed	in	the	HEAD	section	of	the	page	will		format	
all of the content on the screen.

<head>
<meta content=“text/html; charset=utf-8” http-

equiv=“Content-Type”/>
<title>A sample CSS page</title>
<style type=“text/css”>
H1 {

font-family: Verdana, Geneva, Tahoma, sans-serif;
font-size: 24px;
color: #FF3300;
font-weight: bolder;

}
h2 {

font-family: Verdana, Geneva, Tahoma, sans-serif;
font-size: medium;
color: #FF0000;

}
p {

font-family: “Gill Sans”, “Gill Sans MT”, Calibri,
“Trebuchet MS”, sans-serif;

font-size: small;
}
body {

margin: 2px}
</style>
</head>

Figure 2.6 shows that the two paragraphs now look the same.

Figure 2.6 Placing the CSS
style information within the
HeAD element of a page allows
elements to share the same
design layout.

66 PiCture CSS3

Cascading styles, however, have one additional trick up their
sleeve. No web site is comprised of just one page. You have many,
possibly hundreds or thousands, of pages in your web site. You do
not want the burden of having to open each page and change the
formatting each time you need to change the styles for your site.

Using CSS, you can now create a separate document in your
site containing your style information and share it with all of your
web pages. To create a shared CSS style document you need to
create a text file with Notepad on a PC or TextEdit on a Mac. Copy
your styles to the text file and save it to your site, naming the
 document with the extension .css. The final step is adding a line
of code to the HTML that links to your web pages and points to
the CSS document. The link is accomplished using the LINK ele-
ment	within	the	HEAD	element	in	your	web	page.	The	following	
example is linking to a CSS document called “style.css.”

<head>
<meta content=“text/html; charset=utf-8”

http-equiv=“Content-Type”/>
<title>A sample CSS page</title>
<link href=“style.css” rel=“stylesheet” type=“text/css”/>
</head>

The result is that you can create multiple web pages that share
the same look and feel, as shown in Figure 2.7.

CSS is a very flexible design tool you can use to control the
presentation of your content in any web page.

Figure 2.7 Sharing a single CSS
file allows the style formatting
to be easily controlled over
multiple web pages.

 PiCture CSS3 67

the Format of cSS
Cascading Style Sheets is essentially a document that lists the

visual presentation of your content. You have seen that there are
different places you can store CSS information. There are dif-
ferent ways in which the CSS style definition can be applied to
elements.

There are four main ways in which you can easily apply CSS to
elements on a page:
•	 Modify	an	element’s	visual	characteristics.
•	 Create	a	share	class.
•	 Create	a	pseudo	class.
•	 Create	a	pseudo	element.

Modifying elements with CSS
Elements can be formatted directly in your code using the

style attribute. More likely you will want to share the style you
create with other elements on the page or site. Earlier in the
chapter an H1 and P element were modified with a custom style.
To do this you should use the style sheet document.

You declare that you are going to modify an element in your
style document by printing the element name. The following
example demonstrates how to format a P element.

P {
}

The curly brackets following the P element identify where you
can place the formatting elements for the P tag. The following
example shows style information for the P element.

p {
font-family: Arial, sans-serif;
font-size: medium;
color: #888;
padding-left: 25px;
padding-right: 50%;

}

Figure 2.8 illustrates how all of the P elements are modified by
one style.

Where to Get the Latest information on cSS
The World Wide Web Consortium is the best place to go for the latest information on CSS. Check out the CSS Current
Work Status page at http://www.w3.org/Style/CSS/current-work.

http://www.w3.org/Style/CSS/current-work

68 PiCture CSS3

Styles can be shared among several elements if you want them
to have a common style. For instance, the following example lists
five different elements that each have different styles but are all
the same color and font-family.

<H1>Lorem Ipsum Header</H1>
<p>In vestibulum, ipsum consectetur cursus porttitor,

mi tellus euismod purus, ac egestas nisl risus ac risus.
Suspendisse a nisi mi, nec rutrum nisi. Suspendisse
pretium aliquet convallis. </p>

<h2>Lorem ipsum dolor sit amet</h2>
<p>Aliquam sollicitudin elementum est, commodo gravida

lorem imperdiet ac. Donec rhoncus turpis vitae risus commodo
ac mollis ligula aliquam. Donec in mi arcu, id vulputate
turpis. Nullam nunc dui, euismod vel lobortis nec, suscipit
non velit. Aliquam ornare, nibh eget facilisis lobortis,
ligula velit suscipit sem, id condimentum est turpis ut
magna. Morbi vitae hendrerit nibh. </p>

<h3>consectetur adipiscing elit</h3>
<p>In hac habitasse platea dictumst. Suspendisse

eleifend ligula quis massa porta rutrum. Praesent in dolor
laoreet leo interdum pulvinar sit amet quis lectus.</p>

<h4>Etiam accumsan convallis odio<h4>
<p>vitae semper mi pretium laoreet.</p>

The CSS is built up by applying first the shared styles between
all five elements (H1, H2, H3, H4, and P). The first line in the style
document lists all of the elements and then, between the curly
brackets, the common font and color style is defined.

h1, h2, h3, h4, p{
font-family: “Arial Narrow Bold”, sans-serif;
color: #CC3300;

}

Figure 2.8 A single P element
style is shared by all P elements
on the page.

 PiCture CSS3 69

Each element can now have its own style defined, as follows.

h1 {
font-size: xx-large;
font-weight: bolder;

}
h2 {

font-size: medium;
}
h3 {

font-size: small;
}
h4 {

font-size: xx-small;
}
p {

font-size: large;
padding-left: 25px;

}

Figure 2.9 shows how the common styles can be shared among
the different elements.

The good news is that you can apply CSS to any element on
the	 screen,	 including	 new	 HTML5	 elements	 such	 as	 ASIDE,	
HEADER,	 FOOTER,	 SECTION,	 ARTICLE,	 and	 DIALOG.	 The	 fol-
lowing HTML can be formatted with CSS.

<H1>Sample Header</H1>
<ASIDE>
<H1>The Headline is formatted with CSS</H1>
<P>The PARAGRAPH element inherits the font style

formatting from the ASIDE element.</P>
<P >A link to another web page is added here.</P>
</ASIDE>

You can use the following style to format the presentation of
the	ASIDE	element.

Figure 2.9 Common style
definitions can be applied to
many different elements at
once.

70 PiCture CSS3

aside {
margin: 2px;
border-style: dashed;
font-family: Verdana, Helvetica, Arial,

sans-serif;
font-size: 18px;
line-height: 1.2em;
text-align: left;
position: absolute;
color: #999;
background-color: ivory;
position: absolute;
left: 25px;
top: 75px;
width: 500px;
height: 250px;

}
a {

text-decoration: none;
color: #0000FF;

}
h1 {
font-size: 20px;
}
p{
font-size: 12px;
}

Figure 2.10 shows the results.

Creating Class Styles
There are times when you do not want all of the elements on

the page to look the same. In fact, there are a lot of times when
you want to apply custom styles to sections of text or to whole sec-
tions. The CSS class definition is your assistant in these situations.

Figure 2.10 All HtML5
elements, including new
elements like ASiDe, can be
stylized with CSS.

 PiCture CSS3 71

The CSS class works in a very similar way to the elements’
style definition. You define the CSS class either in the style region
within	 your	 HEAD	 element	 or	 in	 the	 CSS	 style	 document.	 The	
 following is an example of a CSS class style.

.mainTitleStyle {
font-family: Cambria, Cochin, Georgia, Times,

“Times New Roman”, serif;
font-size: 30px;
font-weight: bolder;
color: #008000;

}

As you can see, the main structure for defining the class style
is the same as an element. The difference is that the class is iden-
tified by a leading period and the class name is all one word. You
cannot use spaces in your class name.

After you have created your style you can apply it to any ele-
ment in your web page. The element attribute class is used to
associate the element with the CSS class. Here is an example.

<p class=“mainTitleStyle”>Lorem Ipsum Header</p>
<p>In vestibulum, ipsum consectetur cursus porttitor, mi

tellus euismod purus, ac egestas nisl risus ac risus. </p>
<p class=“mainTitleStyle”>Lorem ipsum dolor sit amet</p>
<p>Aliquam sollicitudin elementum est, commodo gravida

lorem imperdiet ac. </p>
<p class=“mainTitleStyle”>consectetur adipiscing elit</p>
<p >Lorem ipsum dolor sit amet</p>

You can see that the P element is used for each line of text. The
titles for each section are highlighted using the class attribute.
Figure 2.11 shows how the style looks in a web browser.

There is no limit to the number of CSS class style definitions
you can have. Class styles are very flexible and are used in many Figure 2.11 A custom CSS

class is used to define the titles
for each section.

72 PiCture CSS3

web sites. Check out the CSS styles for sites such as www.bbc.
co.uk, www.cnn.com, and www.Google.com for examples of the
CSS class used to define sections of HTML.

using Pseudo Class Styles
CSS gives you a third method for styling your content called a

pseudo class, a special extension to the element style definition.
The	 most	 common	 use	 for	 pseudo	 classes	 is	 with	 the	 ANCHOR	
element.	The	way	an	ANCHOR	element,	which	identifies	links	on	
a web page, is defined in CSS is as follows.

a {
text-decoration: none;
color: #0000FF;

}

The	 ANCHOR	 element,	 however,	 completes	 several	 different	
activities. It has the default style, a different style when the link
is being selected, a style for when the link has been visited, and a
style for when you move your cursor over the link. Each of these
different activities can be identified with pseudo classes. The
 following shows the pseudo class for a link that has been visited.

a:visited {
color: #FF0000;

}

The	 ANCHOR	 element	 is	 listed	 first	 in	 your	 style	 docu-
ment and is followed by a colon with the special pseudo
class name called visited. In your web page, the visited link
will now have a different color, as shown in Figure 2.12.

The	 ANCHOR	 element	 has	 four	 pseudo	 classes:	 link,	
active, hover, and visited. The following style shows how you
can define these four pseudo classes.

a{
color: #0000FF;

}
a:link {

text-decoration: none;
}
a:hover {

text-decoration: underline;
}
a:active {

text-decoration: line-through;
}

a:visited {
color: #FF0000;

}

Figure 2.12 Pseudo classes
can be used to control different
states of the ANCHOr element.

http://www.bbc.co.uk
http://www.bbc.co.uk
http://www.cnn.com
http://www.Google.com

 PiCture CSS3 73

The result is that you can now control the different actions of the
ANCHOR	tag.

CSS3 introduces additional pseudo class styles you can use.
The complete list is:
•	 Active—the	active	element
•	 Focus—the	element	with	focus
•	 Visited—a	visited	link
•	 Hover—the	state	when	your	cursor	is	over	a	link
•	 Link—an	unvisited	link
•	 Disabled—the	state	of	an	element	when	it	has	been	disabled
•	 Enabled—the	state	of	an	element	when	it	has	been	enabled
•	 Checked—a	form	element	that	has	been	checked
•	 Selection—when	a	user	selects	a	range	of	content	on	the	page
•	 Lang—the	designer	can	choose	which	language	is	used	for	the	

style
•	 Nth-child(n)—an	element	 that	 is	a	specified	child	of	 the	 first	

sibling
•	 Nth-last-child(n)—an	 element	 that	 is	 a	 specified	 child	 of	 the	

last sibling
•	 First-child—the	first	use	of	an	element	on	the	page
•	 Last-child—the	last	use	of	an	element	on	the	page
•	 Only-child—the	only	use	of	a	element	on	the	page

using Pseudo elements
New to CSS3 is a new extension called pseudo elements.

A pseudo element allows you to control aspects of an element in
the page. For instance, you may want special text treatment for
the first letter of each paragraph you write. There are four pseudo
elements you can use:
•	 First-letter
•	 First-line
•	 Before
•	 After

The definition for pseudo elements is very similar to pseudo
classes. The following style applies first-letter pseudo element
styles to the P element. Note that the pseudo element leads with
two colons.

p::first-letter {
font-size: 60px;
}

Figure 2.13 illustrates how this is presented in the web
browser.

Note how the leading letter of each line is much larger
than the rest of the line. At this time there are few pseudo
elements.

Figure 2.13 Pseudo elements
modify specific parts of the
element.

74 PiCture CSS3

Designing Your Web Page with cSS
CSS is much easier to master than more complex parts of

HTML5	 such	 as	 Web	 Workers,	 Geo	 Location,	 and	 JavaScript.	
The basic premise for all CSS is that you have a definition that
requires a value. For instance, if you want to define the size of a
particular font, you write the correct CSS definition (font-size)
and place a value; for example:

font-size: 60px;

There are four rules you must follow:
1. Use a valid CSS definition.
2. Place a colon after the definition.
3. Add a valid value for the definition.
4. Complete the statement with a semi-colon.
Follow these four rules and you are golden.

When CSS was first released in 1997 there were about a dozen
or so definitions to control visual aspects such as font size, color,
and background color. Now there are hundreds of different defini-
tions that can be used extensively with any element on the screen.

controlling Font Display with cSS
One	 of	 the	 easiest	 places	 to	 start	 learning	 how	 to	 use	 CSS	

definitions is through font control. CSS1 and CSS2 support nine
 different definitions within the font-family:
•	 Font-family
•	 Font-size
•	 Color
•	 Text-shadow
•	 Font-weight
•	 Font-style
•	 Font-variant
•	 Text-transform
•	 Text-decoration

tools to Help with Your cSS Designs
For basic CSS manipulation there are some great tools you can use. Adobe’s Dreamweaver and Microsoft’s Expression
Web both support CSS2 design definition. Both of these tools offer visual editors you can easily use to write CSS.
Unfortunately, your choices drop significantly when you start looking for more advanced CSS3 tools. This is in part due to
the rapid development of CSS3. Check out www.visualizingtheweb.com for the latest information on CSS3 tools.

http://www.visualizingtheweb.com

 PiCture CSS3 75

The font-family definition allows you to select a font for your
design. Here is how to write the definition:

font-family: Arial;

The challenge in using the font-family definition is that
the number of fonts you can select from is limited to the fonts
installed on the computer of the person who is viewing your web
page. Web browsers and operating systems install a core set of
fonts that you can use in your designs. The list of fonts available
that are “Web safe” include:
•	 Arial/Helvetica
•	 Times	New	Roman/Times
•	 Courier	New/Courier
•	 Verdana
•	 Georgia
•	 Comic	Sans	MS
•	 Trebuchet	MS
•	 Arial	Black
•	 Impact
•	 Palatino
•	 Garamond
•	 Bookman
•	 Avant	Garde

This list is not very exhaustive and you run into issues where
the fonts will not match. For instance, you may select the font
Tahoma	and	it	will	look	great	on	Windows	XP,	Vista,	and	7,	but	will	
not	 look	 the	 same	 on	 a	 Mac	 or	 iPhone.	 Often	 you	 will	 find	 that	
there are similar fonts on Windows and Mac computers, but they
simply have different names. For instance, you can select the fol-
lowing font-family:

font-family: “Courier New”, Courier, monospace;

This collection of fonts will allow the text to be presented cor-
rectly no matter the system viewing the page. In this instance,
“Courier New” is the PC name for “Courier” on the Apple Mac;
“monospace”	is	a	Unix/Linux	equivalent.

Here is a collection of safe font-family names you can use:
•	 Arial,	Arial,	Helvetica,	sans	serif
•	 Arial	Black,	Arial	Black,	Gadget,	sans	serif
•	 Comic	Sans	MS,	Comic	Sans	MS,	cursive
•	 Courier	New,	Courier	New,	Courier,	monospace
•	 Georgia,	Georgia,	serif
•	 Impact,	Impact,	Charcoal,	sans	serif
•	 Lucida	Console,	Monaco,	monospace
•	 Lucida	Sans	Unicode,	Lucida	Grande,	sans	serif
•	 Palatino	Linotype,	Book	Antiqua,	Palatino,	serif
•	 Tahoma,	Geneva,	sans	serif

76 PiCture CSS3

•	 Times	New	Roman,	Times,	serif
•	 Trebuchet	MS,	Helvetica,	sans	serif
•	 Verdana,	Verdana,	Geneva,	sans	serif
•	 Wingdings,	Zapf	Dingbats	(Wingdings,	Zapf	Dingbats)

embedding Fonts using CSS3
A way to get around the problems of creating font-family lists

is to embed the font directly into the CSS. CSS3 finally allows
you to do this across your web browsers. The technology for font
embedding, however, is not new. Netscape Navigator 4 was the
first web browser that allowed you to support font embedding
using	a	plug-in	technology	called	TrueDoc	by	Bitstream.	To	com-
pete with Navigator 4, Microsoft released a “me too” technology
called	 Embedded	 Open	 Type	 (EOT)	 in	 the	 Windows	 version	 of	
Internet Explorer 4. The technology has not been removed from
the Microsoft browser and is still supported in Internet Explorer 8.

Embedded	 Open	Type	 is	 a	 method	 of	 creating	 a	 file	 that	 can	
be	downloaded	to	the	web	browser.	The	file	is	an	EOT	file.	To	pro-
tect	 the	 copyright	 of	 the	 original	 font	 developer	 the	 EOT	 file	 is	
created using a font outline of the original font. You can down-
load the free Microsoft Web Embedding Font Tool (WEFT) from
Microsoft	 to	 create	 your	 own	 EOT	 files	 (http://www.microsoft.
com/typography/web/embedding/).

The	 EOT	 format	 is	 not	 an	 open	 format	 and	 has	 not	 been	
adopted by modern web browsers or embraced by W3C.

Without a shared standard for embedding fonts, designers have
been forced to use other techniques to emulate font embedding.
These	have	included	creating	JPEG	images	of	text	with	custom	fonts	
or using third-party plug-in technologies such as Adobe’s Flash.

As you might expect, HTML5 has driven new technologies to
enable true font embedding. Three standards are now recom-
mended to embed fonts:
•	 TrueType
•	 OpenType
•	 Scalable	vector	graphic	fonts

It	is	quite	likely	that	you	already	have	TrueType	and	OpenType	
fonts installed on your computer. They are, by default, the stan-
dard	 Windows	 font	 format.	 SVG	 fonts	 are	 more	 complex	 and	
will	be	covered	in	more	detail	in	the	Section	3	article,	Rendering	
HTML5 Illustration.

Embedding a font into your CSS document is now very easy.
Figure 2.14 shows text in a web page using a custom font.

To embed a font into a web page you need only two things:
the font file and the definition in CSS linking to the font. The font
BlackJar.ttf	is	used	in	Figure 2.14. Figure 2.15 shows you what the
TrueType font looks like.

http://www.microsoft.com/typography/web/embedding/
http://www.microsoft.com/typography/web/embedding/

 PiCture CSS3 77

You need to create a new font-family in your CSS document that
links to the TrueType font. The following CSS code shows, in line
2,	that	you	are	creating	a	new	font-family	called	“BlackJar”	and,	in	
line 3, you are linking to the font and identifying the type of font.

@font-face{
font-family: ‘BlackJar’;
src: url(‘BLACKJAR.ttf’) format(‘truetype’);
}

You now have a new font-family that you can reference in your
normal CSS. Here, a P element is being formatted using the new
font-family.

p {
text-align: center;
font-family: ‘BlackJar’;
font-size: 3cm;
}

You can now use the font within your page design. If you
want to also use the font with Internet Explorer you can add the
Embedded	Open	Type	with	your	new	font-family.	You	only	need	
to modify the @font-face description as follows.

@font-face{
font-family: ‘BlackJar’;
src: url(‘BLACKJAR.ttf’) format(‘truetype’);
src: url(‘BLACKJAR.eot’);
}

The	 fourth	 line	 links	 to	 an	 EOT	 version	 of	 the	 BlackJar	 font.	
You will notice that you do not need to add a format value for
EOT	 fonts.	 Now	 your	 web	 pages	 will	 display	 correctly	 no	 mat-
ter what web browser is viewing your design. Font freedom has
finally come to the Web!

Figure 2.14 CSS3 now allows
you to embed truetype and
Opentype fonts directly into your
web pages.

Figure 2.15 the truetype
font BlackJar.tff can now be
embedded into a web page.

78 PiCture CSS3

Sizing Fonts with CSS units of Measurement
After selecting a font-family for your text you will also want to

select the size of the font. By default, all web browsers have a pre-
installed definition for a standard font size. This font size is usu-
ally 12 point (pt). You can use this as a size for your fonts as they
appear on the screen using the following CSS font-size definition:

font-size:medium;

If you want your font to appear smaller or larger on the screen
you can use the following sizes for your fonts:
•	 Xx-small	(approximately	7.5	pt)
•	 X-small	(approximately	9	pt)
•	 Small	(approximately	10	pt)
•	 Medium	(approximately	12	pt)
•	 Large	(approximately	14	pt)
•	 X-large	(approximately	18	pt)
•	 Xx-large	(approximately	24	pt)
•	 Smaller
•	 Larger

Each of these font sizes are relative to the core browser–
defaulted font size. If the person who owns the web browser has
changed that default, then the sizes will be dynamically changed.

As a designer you are limited by the default font-size list. The
good news is that CSS allows you to leverage units of measure-
ment to add precise size to your font. The following are all valid
CSS units of measurement you can use:
•	 cm—centimeter
•	 in.—inch
•	 mm—millimeter
•	 pc—pica	(1	pc	=	12	pts)
•	 pt—point	(1	pt	=	1/72 in.)
•	 px—pixels
•	 rem—font	size	of	the	root	element

Using these different font sizes, the following styles are all
valid.

.default {
font-family: “Segoe UI”, Tahoma, Geneva, Verdana;
font-size: medium;

}
.px {

font-family: “Segoe UI”, Tahoma, Geneva, Verdana;
font-size: 15px;

}

 PiCture CSS3 79

.cm {
font-family: “Segoe UI”, Tahoma, Geneva, Verdana;
font-size: .5cm;

}
.mm {

font-family: “Segoe UI”, Tahoma, Geneva, Verdana;
font-size: 2mm;

}
.inch {

font-family: “Segoe UI”, Tahoma, Geneva, Verdana;
font-size: .25in;

}
.pica {

font-family: “Segoe UI”, Tahoma, Geneva, Verdana;
font-size: 2pc;

}
.point {

font-family: “Segoe UI”, Tahoma, Geneva, Verdana;
font-size: 10pt;

}
.rem {

font-family: “Segoe UI”, Tahoma, Geneva, Verdana;
font-size: 1rem;

}

These font styles are applied to the following HTML code.

<p class=“default”>In hac habitasse platea dictumst.</p>
<p class=“px”>Lorem ipsum dolor sit amet, consectetur

adipiscing elit. Etiam accumsan convallis odio, vitae
semper mi pretium laoreet.</p>

<p class=“cm”>In vestibulum, ipsum consectetur cursus
porttitor, mi tellus euismod purus, ac egestas nisl
risus ac risus. Suspendisse a nisi mi, nec rutrum nisi.
Suspendisse pretium aliquet convallis.</p>

<p class=“mm”>Aliquam sollicitudin elementum est,
commodo gravida lorem imperdiet ac.</p>

<p class=“inch”>In hac habitasse platea dictumst.</p>
<p class=“pica”>Donec rhoncus turpis vitae risus

commodo ac mollis ligula aliquam. Donec in mi arcu, id
vulputate turpis.</p>

<p class=“point”>Nullam nunc dui, euismod vel lobortis
nec, suscipit non velit.</p>

<p class=“rem”>Aliquam ornare, nibh eget facilisis
lobortis, ligula velit suscipit sem, id condimentum est
turpis ut magna.</p>

Figure 2.16 shows how these fonts are presented in your web
browser.

80 PiCture CSS3

Color Control for Fonts
As with size, color has many different units of measure. The

default for Web design is hexadecimal, a combination of six let-
ters and numbers. CSS3 provides a much broader palette of col-
ors to choose from that include:
•	 Color	name—you	can	create	names	for	colors	such	as	brown,	

black, red, or even cyan
•	 Full	 hexadecimal—a	 hexadecimal	 value	 comprised	 of	 six	

alpha-numeric values
•	 Short	 hexadecimal—a	 hexadecimal	 value	 comprised	 of	 three	

alpha-numeric values
•	 RGB—a	combination	of	red,	green,	and	blue	values
•	 RGBA—a	 combination	 of	 red,	 green,	 and	 blue	 values	 with	 a	

transparency value (alpha)
•	 HSL—a	combination	of	hue,	saturation,	and	lightness
•	 HSLA—a	combination	of	hue,	saturation,	and	lightness	with	a	

transparency value (alpha)
The following CSS uses these values to show you can create

the color red in several different ways.

.name {
color: red;

Figure 2.16 You have absolute
control over your text using the
many different units of measure
available in CSS3.

 PiCture CSS3 81

}
.fullHexVersion {
color: #FF0000;
}
.shortHexVersion {
color: #F00;
}
.rgb {
color: rgb(255,0,0);
}
.rgba {
color: rgba(255,0,0,100);
}
.hsl {
color: hsl(0%, 100%, 50%);
}
.hsla {
color: hsl(0%, 100%, 50%, 100%);
}

These different values are used in different places within the
design community.

Adding Drop Shadow text effects
Love them or hate them, you cannot get away from the

handy design technique of drop shadows. CSS3 now supports
drop shadow effects and they are very easy to add to your
designs.

There are four elements that you can use to control the drop
shadow definition:
•	 horizontal-offset	(length,	required)
•	 vertical-offset	(length,	required)
•	 blur-radius	(length,	optional)
•	 shadow-color	(color,	optional)

The following CSS definition is an example of the use of drop
shadow.

.dropShadow {
font-family: “Segoe UI”, Tahoma, Geneva, Verdana;
font-size: medium;
color: #CC3300;
text-shadow: 0.25em 0.25em 2px #999;

}

The effect draws a light-gray drop shadow with a slight blur, as
shown in Figure 2.17.

Different	 colors	 and	 units	 of	 measurement	 can	 be	 used	 with	
the drop shadow effect. The following CSS definition uses pixels
and	RGBA	for	the	measurement	and	color.

Figure 2.17 CSS now allows
you to add drop shadows to
your text.

82 PiCture CSS3

.transparentDropShadow {
font-family: “Segoe UI”, Tahoma, Geneva, Verdana;
font-size: 15px;
color: rgba(255,0,0,1);
text-shadow: 5px 5px 5px rgba(0, 0, 0, 0.5);

}

Finally, you can use the drop shadow effect to force a “cut-out”
effect with your text. Apply the following CSS to text on the
screen.

.cutout {
font-family: “Segoe UI”, Tahoma, Geneva, Verdana;
font-size: 2pc;
color: white;
text-shadow: 0em 0em 2em black;

}

Figure 2.18 demonstrates the effect of the drop shadow as a cut
out.

Additional Font Definitions
The remaining values within the font-family do not have

ranges and can be summarized as:
•	 Font-weight—boldness	 value	 from	 100–900,	 with	 300	 being	

normal
•	 Font-style—italic,	normal,	oblique
•	 Font-variant—normal,	small	caps
•	 Text-transform—capitalize,	lowercase,	normal

Figure 2.18 You can use the
drop shadow to create cut-out
effects.

 PiCture CSS3 83

•	 Text-decoration—underline,	 overline,	 line-through,	 none,	
blinking
As you can see, CSS gives you an amount of control over how

your text is displayed on the screen.

Working with columns in cSS3
A challenge for any web page is to create content that is split

over two or more columns on the page. Creating columns often
requires using complex tables structured together. Though not
strictly part of the text family of CSS definitions, the new multi-
column layout is best at home when used with text on the screen.

The goal of the multicolumn definition is to allow your con-
tent to be spread evenly over two or more columns. There are
three parts to a column layout:
•	 Number	of	columns
•	 Gap	between	the	columns
•	 Column	design	(optional)

The following CSS demonstrates how you can set up multiple
columns	to	display	in	Safari/Chrome	and	FireFox.

.simple {
font-family: “Segoe UI”, Tahoma, Geneva, Verdana;
font-size: 12px;
color: #444;
text-align: justify;
-moz-column-count: 4;
-moz-column-gap: 1em;
-webkit-column-count: 4;
-webkit-column-gap: 1em;

}

In this example, the column count is four and the gap is 1em.
Figure 2.19 shows how this is displayed in your web browser.

You can add a column design between each column. The
structure is as follows.

-moz-column-rule: 1px solid #222;
-webkit-column-rule: 1px solid #222;

For each column design you can identify the width, border style,
and color. You can use the standard measurement and color CSS for-
matting. The number of border styles you have to choose from is: Figure 2.19 A simple,

four-column layout.

84 PiCture CSS3

•	 None
•	 Hidden
•	 Dotted
•	 Dashed
•	 Solid
•	 Double
•	 Groove
•	 Ridge
•	 Inset
•	 Outset

Additional	 elements,	 such	 as	 the	 IMG,	 can	 be	 used	 with	 text	
content in the column layout. Figure 2.20 illustrates a complex
use of a multicolumn layout.

The CSS to create this layout is as follows.

.complex {
font-family: “Segoe UI”, Tahoma, Geneva, Verdana;
font-size: 1.2pc;
color: #444;
text-align: left;
-moz-column-count: 3;
-moz-column-gap: 1em;
-moz-column-rule: 2px dotted #999;
-webkit-column-count: 3;
-webkit-column-gap: 1em;
-webkit-column-rule: 2px dotted #999;

}

The style in this column layout is applied to a P element that
contains	 both	 text	 and	 an	 IMG	 element.	 You	 should	 experi-
ment	with	columns—they	are	certainly	much	easier	 to	use	than	
 complex tables.

Figure 2.20 Columns can have
decoration between each
column.

 PiCture CSS3 85

using cSS3 to control Visual Display
While most of your time working with CSS will be formatting

text, CSS is not just the domain of text on the screen. Indeed, CSS
is expanding in scope to allow you to control as much as possi-
ble on the screen. The final two sections look at CSS control over
static and animated elements on the screen.

Positioning Design elements with CSS
Have you used HTML tables to align elements in your web

page? If so, it is a pain in the neck, isn’t it? Using tables to con-
trol layout presents two key problems. First, the layout is flat with
images “sliced” to fit correctly on the screen. Second, if you want
to make a change to your design you need to relayout the whole
table. Tables are simply not a sensible solution for design layout.

Fortunately, all web browsers now support positioning within
CSS to give you absolute control over your design. The difference
between using positioning in CSS to using HTML tables is dra-
matic. First, an element can be placed at any point on the screen
using CSS positioning. There are no limitations. A second benefit
is that you can layer elements on top of each other. If you are used
to working with layers in PhotoShop or a similar graphics tool then
you already understand the value of this feature. Layers allow you to
segment regions of your design. When you need to make changes to
your design, you only need to modify the layer with your content.

Use the following definitions to position an element on the
screen:
•	 Position—values	include	absolute,	relative,	fixed,	inherit
•	 Width—the	width	of	the	layer
•	 Height—the	height	of	the	layer
•	 Left—where	from	the	left	margin	the	layer	starts
•	 Top—where	from	the	top	margin	the	layer	starts
•	 Overflow—how	to	present	content	that	goes	beyond	the	scope	

of the layer
•	 Z-index—the	stack	order	for	layers	on	the	screen

The following CSS can be applied to any HTML element to
control the positioning of the element on the screen.

.firstLayer{
Background-color: orange;
position: absolute;
width: 295px;
height: 160px;
z-index: 1;
left: 439px;
top: 28px;
overflow

}

86 PiCture CSS3

The following HTML code has the layer definition applied to it
using a CSS class:

<article class=“firstlayer”></article>

The orange box in Figure 2.21 is okay by itself, but what can
you do with it? The position of any HTML element can be con-
trolled with positioning. The orange box in this example is an
HTML	 ARTICLE	 element.	 Any	 text,	 tables,	 graphics,	 or	 other	
HTML	 elements	 can	 be	 inserted	 into	 the	 ARTICLE.	 Figure 2.22
illustrates	 an	 image	 wrapped	 by	 text	 inside	 of	 an	 ARTICLE	
 element positioned absolutely on the page.

Positioning is key to your design work in your web pages. With
wide support of CSS positioning, you now have the control you
need.

Figure 2.21 the positioning of
the orange box is controlled
using CSS positioning.

Figure 2.22 Content within
a layered element inherits
the positioning of the parent
element.

 PiCture CSS3 87

increase Control over Color
Control over the use of color has increased significantly with

CSS3. You saw earlier that you can now use long hexadecimal,
short	hexadecimal,	RGB,	RGBA,	HSL,	and	HSLA	to	have	access	to	
millions of colors. In addition to solid colors, CSS3 gives you the
ability to add gradients.

You can currently create two different types of gradient: linear
and radial, as shown in Figure 2.23.

The gradient definition is comprised of several key elements:
•	 Type—either	radial	or	linear
•	 Point—two	space-separated	values	that	explain	where	the	gra-

dient starts (this can be achieved with a number, percentage,
or using the keywords “top,” “bottom,” “left,” and “right”)

•	 Radius—the	radius	is	a	number	that	you	only	need	to	specify	
when you use the radial type

•	 Stop—the	 function	 of	 the	 stop	 value	 is	 to	 identify	 the	 blend	
strength as a percentage or number between 0 and 1 (such as
0.75 or 75%) and a color. You can use any CSS3-supported color.
Putting	all	of	these	together	will	give	you	a	gradient.	Gradients	

can be used with the following definitions:
•	 Background-image
•	 Border-image
•	 List-style-image
•	 Content	property

The following example adds a gradient that goes from red to
orange to orange to yellow.

body {
background-image: -webkit-gradient(linear, left top,

left bottom, from(red), to(yellow), color-stop(0.5,
orange), color-stop(0.5, orange));}

As you can see, the gradient is substituting an image in the
background-image definition. The first definition identifies the
gradient as linear. The next definition explains the gradient is
going to go from top to bottom. The two elected colors are red
and yellow. The stop function has the colors blending halfway
through to orange. The result is displayed in Figure 2.24.

A radial gradient is completed in a similar way. The following
adds a radial gradient that moves from red to orange to yellow.

body {
background-image: -webkit-gradient(radial, 45 45, 15, 100

100, 250, from(red), to(yellow), color-stop(50%, orange));}

In this instance, the numbers following the radial declaration
determine the shape of the radius. The first two numbers dictate
the angle of the ellipse in degrees. The third number dictates the
size of the inner circle. The fourth and fifth numbers dictate the

Figure 2.23 You can create
(a) linear and (b) radial
gradients in CSS3.

88 PiCture CSS3

position of the gradient (left and top). The final number dictates
the final size of the radius. Figure 2.25 is the result.

Currently, gradients are only supported in Safari and Chrome.
This is expected to change with FireFox 4.0.

Multiple Background Objects
You quickly run into limitations when you can use only one

background image. With CSS3 you can now run multiple back-
ground images. Any element that supports the background-
image definition now supports multiple background images.
Using background images is very easy. You can start by listing the
images you want to use. Take for instance the following code.

background-image: url(http://upload.wikimedia.org/
wikipedia/commons/3/36/Team_Singapore_fireworks_display_
from_Singapore_Fireworks_Festival_2006.jpg), url(http://
upload.wikimedia.org/wikipedia/commons/b/b2/OperaSydney-
Fuegos2006-342289398.jpg);

You can specify where you want each background to appear
on the screen using the background-position definition. The
 definition is paired for the position of the background:

background-position: bottom left, top right;

Figure 2.25 the numbers
determine the shape and size of
the radius.

Figure 2.24 Gradients can
be used to create colored
backgrounds.

 PiCture CSS3 89

Figure 2.26 shows the end result.
As you might expect, you can mix gradients and multiple

background images together. The following CSS blends a radial
gradient with two background images.

<html>
<head>
<title>Multiple Backgrounds</title>
<style>
body {
background-image:

url(http://upload.wikimedia.org/wikipedia/commons/3/36/
Team_Singapore_fireworks_display_from_Singapore_Fireworks_
Festival_2006.jpg), url(http://upload.wikimedia.org/
wikipedia/commons/b/b2/OperaSydney-Fuegos2006-342289398.
jpg), -webkit-gradient(radial, 45 45, 15, 100 100, 250,
from(gold), to(magenta), color-stop(50%, black));
background-repeat: no-repeat;
background-position: bottom left, top right;

background-color:black;}
</style>

</head>
<body>
</body>
</html>

Figure 2.27 shows the results.
Again, as with gradients, multiple backgrounds are not cur-

rently supported by FireFox.

Figure 2.26 the two images
are being used as background
images

90 PiCture CSS3

Adding rounded Corners to Layers
Adding rounded corners is not a new technique for the Web.

Many web sites use this technique. The effect, however, is cre-
ated through using images and tables to create the illusion of
rounded corners. Adding images to the pages ensures that the
page takes longer to load and makes modifying the page later
more complex.

A simpler approach is to use the proposed corner-radius CSS
definition that is currently supported in FireFox 3.0, Safari 3.0,
Mobile	Safari	on	your	iPhone/iPod	Touch,	and	Google’s	Chrome.	
The corner-radius definition is a line you can add to your CSS
style. The following HTML code has a style embedded that
changes the presentation of the block of text to have rounded
corners with a heavy, black outline.

<p style=“-moz-border-radius: 10px;-webkit-
border-radius: 10px;border: 4px solid #FF0000;”>
Lorem ipsum dolor sit amet, consectetur adipiscing elit.
Nam porta, lacus in cursus cursus, justo purus fringilla
nisi, quis cursus urna velit vel felis. Nulla ac mi.
Phasellus sodales dui vel tortor. Praesent dignissim.
Vestibulum vulputate nibh rutrum purus. Nulla ante. Sed
porta. Vestibulum commodo, mi nec tincidunt laoreet, urna
risus ornare libero, in imperdiet sapien enim vel nisi.</p>

The style description has been highlighted in bold. Your con-
tent will now look like Figure 2.28 in your web page.

As you can see, the block of text now has a solid red line with
rounded corners. It is this style description that controls the
size of the radius, not an image. You can then easily modify the
description as shown in the following.

Figure 2.27 images and
gradients can be mixed to
create unique background
images.

 PiCture CSS3 91

-moz-border-radius: 10px
-webkit-border-radius: 10px

The standard is currently only in the proposal stage and has
not been adopted by all web browsers. For this reason, you need
to add two border-radius style descriptions: one for FireFox
(-moz-border-radius),	 and	 one	 for	 Safari/Chrome	 (-webkit-	
 border-radius). Changing the value of the border-radius will
change the size of the border. For instance:

Border-radius: 15 px
Border-radius: 25 px
Border-radius: 45 px

Figures 2.29 through 2.31 shows some border-radius
examples.

As you increase the border-radius, you will also have to add
additional styles, such as padding, to ensure that your border
does not cut through the text as is shown in Figure 2.31 for the
example of a 45-pixel border-radius. Here is how you can add
padding to manage your style.

<p style=“-moz-border-radius: 45px;-webkit-border-
radius: 45px;border: 4px solid #FF0000; padding:
12px;”>Lorem ipsum dolor sit amet, consectetur adipiscing
elit. Nam porta, lacus in cursus cursus, justo purus
fringilla nisi, quis cursus urna velit vel felis. Nulla ac
mi. Phasellus sodales dui vel tortor. Praesent dignissim.
Vestibulum vulputate nibh rutrum purus. Nulla ante. Sed
porta. Vestibulum commodo, mi nec tincidunt laoreet, urna
risus ornare libero, in imperdiet sapien enim vel nisi.</p>

Figure 2.32 shows how the content looks.

Figure 2.28 Layers can now
have rounded corners.

Figure 2.29 the border-radius
controls how round the corners
are.

Figure 2.30 A border-radius of
25 pixels.

Figure 2.31 A border-radius of
45 pixels.

Figure 2.32 the layer now
looks like a rectangle with
rounded corners.

92 PiCture CSS3

The new border-radius style also has the option of allowing
you to control which corner you want the border to appear on.
This can be useful when you want to create tabs for your web
page. For instance, the following style will add tabs to the top left
and top right corners.

.standardTabEffect{
font-family: Arial, Helvetica, sans-serif;
font-size: 15px;
background-color: #FFFF00;
-moz-border-radius-topleft: 15px;
-moz-border-radius-topright: 15px;
-webkit-border-radius-topleft: 15px;
-webkit-border-radius-topright: 15px;
border: 4px solid #FF0000;
padding: 10px;
color: #FF0000;
text-decoration: none;
font-weight: bold;

}

This style can now be added to a central style sheet link to the
content on your page. The content on your page can now refer-
ence the style. You can add the following HTML code to see this
effect.

This is Tab 1
This is Tab 2
This is Tab 3

Figure 2.33 shows how the HTML code will look
when you view the page.

As you might imagine, you can inherit existing
CSS formatting into your border-radius designs. For instance, you
can add a simple rollover effect when you include the following
style description. The important part is to add the :hover param-
eter. This instructs the web browser to only use this style when a
user is rolling over the link with the mouse.

.standardTabEffect:hover{
background-color: #FF0000;
border: 4px solid #FFFF00;
color: #FFFF00;

}

Figure 2.34 shows what the action looks like.
Without using complex images or tables, you

have created a series of tabs that can be easily
managed through CSS and HTML.

Figure 2.33 the border-radius
is used to create tabbed
buttons.

Figure 2.34 the hover pseudo
class can add an effect as you
move the mouse over a button.

 PiCture CSS3 93

Dazzling Your Audience with cSS3 Animation
CSS3 continues to expand what you can visually accomplish

in your web pages. Animation is now also available to you as a
design choice. Animation is split into two key parts: transitions
and transforms.
•	 Transitions	control	the	change	of	state	for	an	element,	such	as	

text fading in or changing color.
•	 Transforms	control	the	placement	of	an	element.

The following two sections explain how you can control these
two new animation techniques in your CSS designs.

using transitions in CSS
The transition effect is best used when you create a class and

then a hover pseudo class to illustrate when the effect is to hap-
pen (i.e., when your cursor moves over the element). The transi-
tion itself is made of three parts:
•	 Property—the	linked	property	between	the	two	classes
•	 Duration—how	long	in	seconds	the	transition	will	take
•	 Timing	function

The timing function keywords have the following definitions:
•	 Linear—the	linear	function	just	returns	as	its	output	the	input	

that it received.
•	 Ease—the	default	function,	ease,	is	equivalent	to	cubic-bezier	

(0.25, 0.1, 0.25, 1.0).
•	 Ease-in—the	 ease-in	 function	 is	 equivalent	 to	 cubic-bezier	

(0.42, 0, 1.0, 1.0).
•	 Ease-out—the	ease-out	function	is	equivalent	to	cubic-bezier	

(0, 0, 0.58, 1.0).
•	 Ease-in-out—the	ease-in-out	 function	is	equivalent	to	cubic-

bezier (0.42, 0, 0.58, 1.0)
•	 Cubic-bezier—specifies	 a	 cubic-bezier	 curve	 of	 which	 the	 P0	

and P3 points are (0,0) and (1,1), respectively. The four values
specify points P1 and P2 of the curve as (x1, y1, x2, y2).
The following example applies a transition effect on the color

definition in the P element.

p {
-webkit-transition: color 2s linear;
font-size: medium;
font-family: Arial, Helvetica, sans-serif;
color: #FF0000;

}
p:hover {

font-family: Arial, Helvetica, sans-serif;
color: #0000FF;

}

94 PiCture CSS3

As you move over any text using the P element the text will
slowly change from red to blue. When you move away from the
text it will change back. Figure 2.35 illustrates several paragraphs
of text using the P element.

In the figure, the top paragraph is red, the third has transi-
tioned to blue, and the fourth is transitioning from one color to
the next. You can elect to have all of the properties be selected as
part of the transition by changing the property value to all as in
the following example.

p {
-webkit-transition: all 2s linear;
font-size: medium;
font-family: Arial, Helvetica, sans-serif;
color: #FF0000;

}
p:hover {
font-family: Arial, Helvetica, sans-serif;
font-size: xx-large;
color: #0000FF;

}

When a user interacts with the web page all the elements that
can be transitioned are, as shown in Figure 2.36.

For quick, simple animation sequences, transitions are great.

Figure 2.35 the transition
effect allows you to move
simple animation from one state
to another.

 PiCture CSS3 95

Creating Animation with CSS3
For more complex animation you will want to use the new

transform settings. The following HTML and CSS style allow you
to add a bouncing text block to the screen.

<html>
<head>
<title>Bouncing Box example</title>
<style type=“text/css” media=“screen”>
@-webkit-keyframes bounce {
from {
left: 0px;

}
to {
left: 400px;

}
}
.animation {
-webkit-animation-name: bounce;
-webkit-animation-duration: 2s;
-webkit-animation-iteration-count: 4;
-webkit-animation-direction: alternate;
position: relative;
left: 0px;

}
</style>

</head>
<body>
<p class=“animation”>
The text bounces back and forth

</p>
</body>

</html>

Figure 2.36 All of the CSS
definitions that support
transitions can be animated.

96 PiCture CSS3

The animation is controlled through the use of the style sheet.
There are two parts you need to control. The first sets up the type
of animation you want to use. Here the setting is for an anima-
tion sequence named bounce. The animation and the movement
will be from 0 px to the left 400 px.

@-webkit-keyframes bounce {
from {
left: 0px;

}
to {
left: 400px;
}

}

The next step is to define what gets animated. In this example
you have a CSS class associated with the bounce animation. There
are a couple of additional settings. The duration setting controls
how long each animation sequence takes to play in seconds, and
the count setting specifies how many times the animation plays.
Together, it looks as follows.

.animation {
-webkit-animation-name: bounce;
-webkit-animation-duration: 2s;
-webkit-animation-iteration-count: 4;
-webkit-animation-direction: alternate;
position: relative;
left: 0px;

Currently, the examples above will only work in the latest ver-
sions	 of	 Safari	 and	 Google’s	 Chrome.	 If,	 however,	 you	 have	 an	
iPhone or iPod Touch then your version of Safari already supports
the new CSS animation sequences.

Delivering Solutions for the Mobile Market
Waiting for PC computers to catch up and support HTML5

may be eclipsed by the rapid adoption of smart phones and com-
pact mobile devices spilling onto the market.

Smart mobile phones are receiving a lot of attention from the
sheer power they pack. This power is extended to the mobile web
browsers installed on these devices. The popular Apple iPhone
runs Mobile Safari, a browser built from the open-source WebKit
project.	 Google’s	 Android	 mobile	 OS	 and	 Palm’s	 Pre	WebOS	 are	
also	 built	 from	WebKit.	 Not	 to	 be	 out	 done,	 Mozilla	 and	 Opera	
have mobile browsers, too. All of these browsers run HTML5.

The problem is screen size. The real estate space for a Windows
7 PC can be ten times greater than the humble 480 × 320 space of
the iPhone. To help you, CSS3 has a final trick up its sleeve.

 PiCture CSS3 97

The media definition in CSS allows you to identify different
styles	 for	 different	 media	 types.	 Originally	 defined	 in	 CSS2,	 the	
CSS3 expands the functionality of the CSS2 version to allow you
to specify any type of device.

The easiest place to use the media definition is right when you
link to a CSS document in the head of the web page. Typically you
will write the following code to link to a CSS document:

<link rel=“stylesheet” type=“text/css” href=“style.css”>

The media definition now allows you to specify a style to be
associated with a device. Take, for instance, the following CSS link
reference to two styles documents.

<link rel=“stylesheet” type=“text/css” media=“screen”
href=“screen.css”>

<link rel=“stylesheet” type=“text/css” media=“print”
href=“print.css”>

The first link uses the media definition to target a CSS docu-
ment from the computer screen. The second CSS document targets
how data are presented when the document is printed. Using this
technique you can create two different presentation styles using
the	same	content.	One	style	is	used	for	screen	presentation	and	the	
other for print. Below is a list of the media names you can use:
•	 All—suitable	for	all	devices
•	 Braille—intended	for	braille	tactile	feedback	devices
•	 Embossed—intended	for	paged	braille	printers
•	 Handheld—intended	 for	 handheld	 devices	 (typically	 small	

screen, limited bandwidth)
•	 Print—intended	for	paged	material	and	for	documents	viewed	

on screen in print preview mode
•	 Projection—intended	 for	 projected	 presentations	 (e.g.,	

projectors)
•	 Screen—intended	primarily	for	color	computer	screens
•	 Speech—intended	for	speech	synthesizers
•	 tty—intended	 for	 media	 using	 a	 fixed-pitch	 character	 grid	

(such as teletypes, terminals, or portable devices with limited
display capabilities)

•	 tv—intended	for	television-type	devices	(low	resolution,	color,	
limited-scrollability screens, sound available)
Having the names is great, but it does not help when there are

so many different devices coming on to the market with different
screen resolutions. To help with this, you can modify the media
type to look for screen resolutions and deliver the appropriate
style sheet. Using the property device-width you can specify a
style sheet for a specific width.

<link rel=“stylesheet” type=“text/css” media=”
(device-width: 3200px)” href=“iphone.css”>

98 PiCture CSS3

Using CSS you can dynamically change the presentation of the
content to best suite the device accessing the content.

What You Have Learned
CSS3 is an amazing advancement for Cascading Style Sheets.

In this chapter you have seen how you have absolute control over
your design using CSS to control placement of elements on the
screen, the font structure, measurement, and color. CSS3 extends
further from earlier versions of CSS to include basic and rich ani-
mation	techniques	and	media	management	tools.	Of	all	the	tech-
nologies in HTML5, CSS is arguably receiving the most attention.
The latest standards for CSS3 can be found at http://www.w3.org/
Style/CSS/current-work.

http://www.w3.org/Style/CSS/current-work
http://www.w3.org/Style/CSS/current-work

Project 2: APPlying cSS3
to your Web DeSign
The goal of this project is to expand on the HTML5 pages you
created in Project 1 by adding some color and flare. By them-
selves, HTML5 elements are not pretty. This is a good thing. Back
in the days of HTML3.2, a nasty tool made itself available to web
designs: the HTML FONT element. Brrr… I get shivers just think-
ing about. Today, Cascading Style Sheets (CSS) gives you greater
flexibility to design your web sites.

To illustrate how powerful CSS is, let’s take a look at the web
site shown in Figure 2.1Proj with no styles applied to it.
HTML5. 10.1016/B978-0-240-81328-8.00002-1
© 2010 Elsevier Inc. All rights reserved. 99

Figure 2.1Proj HTML
without CSS.

100 ProjeCT 2: APPLying CSS3 To your Web DeSign

Figure 2.2Proj CSS is used to
add style to the page.

Working with HTML5
You will want to use the
HTML5 pages created in
Project 1.
Not pretty. You can even see that the design is confusing.
Okay, now let’s take a look at the site with CSS applied, as shown
in Figure 2.2Proj.

Big difference, isn’t it? CSS gives you the ability to dramatically
change the position, style, and layout of your content. In this
project you will develop a style sheet that will be applied to your
HTML site.

linking to a Single cSS Document
There are several ways in which you can apply CSS to your site.

You can place styles directly in line with your HTML elements as
a style attribute or you can reference styles as class attributes
defined in each web page or linked to a single CSS document.
Linking to a single document allows you to use one file to man-
age the design for your entire site. You are going to use a link to a
single style document for your site. Here’s what you need to do:
1. Start by locating the HTML5 documents created in Project 1. You

can also download them from www.visualizingtheweb.com.
2. Place all of your HTML files into a single directory.
3. Open a text editor, such as Notepad or TextEdit, and create a

new text document. Save the file as “style.css.” Make sure to
save the file with a CSS extension.

http://www.visualizingtheweb.com

 ProjeCT 2: APPLying CSS3 To your Web DeSign 101

Embedding Fonts
The site www.FontSquirrel.
com is a great online
resource for downloading
legally free fonts for your
web pages.
4. Open “default.html.” You are now going to link the page
to the CSS file you created with the following HTML placed
 in-between the HEAD elements:

<link rel=“stylesheet” type=“text/css”
href=“style.css”>

5. Repeat this for each document.
At this point you have linked all of your documents to a single

style sheet. You can view the documents and you will see that
 nothing has changed visually at this time. From now on, all you
need to do is modify the single CSS document in your text editor.
Your edits will show in all of the web pages as you save your CSS file.

embedding Fonts
Before jumping in and creating visual designs, let’s think

about fonts. It is true that the Web limits your use of fonts to a
smattering of choices (Arial, Helvetica, Times, Times New Roman,
Courier), but with CSS3 you can now embed almost any type of
font into your web design.

The trick to embedding fonts is to understand which
 font-embedding technology to use with each web browser. For
the most part you need to support the following font types:
•	 EOT	(Embedded	OpenType)
•	 TTF	(TrueType	Font)
•	 WOFF	(Web	Open	Font	Format)
•	 SVG

Included with the files on www.visualizingtheweb.com are
 different formatted font files designed for use on the Web.

In this project you are going to use two fonts:
•	 ChunkFive
•	 Sansation
You need to copy the font files into the same directory as your
HTML files.

Open the CSS document, and at the top of the page paste the
following media definition for the ChunkFive font.

@font-face {
font-family: ‘ChunkFiveRegular’;
src: url(‘Chunkfive.eot’);
src: local(‘ChunkFive’), local(‘ChunkFive’), url

(‘Chunkfive.woff’) format(‘woff’), url(‘Chunkfive.ttf’)
format(‘truetype’), url(‘Chunkfive.svg#ChunkFive’)
format(‘svg’);

}

You will see that the font is referenced as ChunkFiveRegular in
the family name. This is a standard naming technique for fonts.

http://www.visualizingtheweb.com
http://www.FontSquirrel.com
http://www.FontSquirrel.com

102 ProjeCT 2: APPLying CSS3 To your Web DeSign
The Sansation font has three types: regular, light, and bold.
To differentiate the three, you need to add three new font media
definitions with unique font-family names, as shown in the
following.

@font-face {
font-family: ‘SansationRegular’;
src: url(‘Sansation_Regular.eot’);
src: local(‘Sansation’), local(‘Sansation’),

url(‘Sansation_Regular.woff’) format(‘woff’),
url(‘Sansation_Regular.ttf’) format(‘truetype’),
url(‘Sansation_Regular.svg#Sansation’) format(‘svg’);

}
@font-face {
font-family: ‘SansationLight’;
src: url(‘Sansation_Light.eot’);
src: local(‘Sansation’), local(‘Sansation-Light’),

url(‘Sansation_Light.woff’) format(‘woff’), url
(‘Sansation_Light.ttf’) format(‘truetype’), url(‘Sansation_
Light.svg#Sansation-Light’) format(‘svg’);

}
@font-face {
font-family: ‘SansationBold’;
src: url(‘Sansation_Bold.eot’);
src: local(‘Sansation’), local(‘Sansation-Bold’), url

(‘Sansation_Bold.woff’) format(‘woff’), url(‘Sansation_Bold.
ttf’) format(‘truetype’), url(‘Sansation_Bold.svg#Sansation-
Bold’) format(‘svg’);

}

From now on, in your CSS, you can reference these new fonts
by their font-family names.

Default Styles for content
Now that you have created both your CSS file and defined

two different fonts, it is time to use these tools to format the
page. Again, Figure 2.3Proj is a screenshot of the site without any
 formatted CSS. It is still very dull.

So let’s go ahead and format some basic styles on the page.
There are three sets of elements that should be formatted for
every project you work on: BODY, ANCHOR, and H1 to H3.

The BODY element assumes the defaults styles for the
page. The following CSS class definition for the BODY uses
SansationRegular as the font for the page.

body {
background-color: #EEEEEE margin: 0px;

font-family: SansationRegular;
font-size: 11px;

 ProjeCT 2: APPLying CSS3 To your Web DeSign 103

Figure 2.3Proj no CSS
formatting—very dull.
line-height: 1.2em;
text-align: left;
position: absolute;
color: #666666

}

You can see in Figure 2.4Proj that the Sansation font is now
being used in the web design. Again, it is important to know
that the font is only loaded into the web page as needed and is
not being installed on your computer. This prevents copyright
issues.

The next element to modify is the ANCHOR element, which
is used to define links from one page to another. You can lever-
age pseudo class definitions for the AHCHOR element that allow
different types of interaction from users with their mouses. In
this instance, the two different types of action are when you
actively select a link and when you move the cursor over the link
(Figure 2.5Proj).

The following code forces all the links on the page to not have
a line under them.

a:link {
text-decoration: none;
color: white;

}

104 ProjeCT 2: APPLying CSS3 To your Web DeSign

Figure 2.4Proj The embedded
font Sansation is being used as
the default font design for the
page.

Figure 2.5Proj The AnCHor
element has a visual effect
that shows when you are
interacting with the element
using your mouse.
The following CSS will show a line as you move your mouse
over a link on the page.

a:hover {
text-decoration: underline;

}

The following H1, H2, and H3 elements are used for format-
ting leading headlines in the text. As with other text elements on
the page, you are using the embedded font-family Sansation.

 ProjeCT 2: APPLying CSS3 To your Web DeSign 105
h1 {
font-size: 1.5em;
font-family: SansationBold;
font-weight: bold;
text-align: left;

}
h2 {

font-size: 1.3em;
font-family: SansationBold;
font-weight: bold;
text-align: left;

}
h3 {

font-size: 1.2em;
font-family: SansationLight;
font-weight: bold;
text-align: left;

}

At this point you have created the main CSS design needed to
control the font presentation. The next step is to block out where
your content will appear on the page.

Applying Styles to Main Sections
of content

Content has to be placed onto your page. You may have done
this in the past using complex table layouts. Nothing is easy
about styling your pages using tables. The following three class
definitions control where the main content for your site is placed
on the page using CSS. CSS positioning is simple and easy to
change.

The leftSection class outlines the left panel of the screen
(Figure 2.6Proj).

.leftSection {
border-style: solid;
border-color: #333333;
background-color: #333333;
position: absolute;
left: 0px;
top: 0px;
width: 230px;
height: 100%;
z-index: 1

}

The sectionOne class controls the main content of each page
(Figure 2.7Proj).

Figure 2.6Proj The leftSection
class controls how the left side
of the screen is presented.

Figure 2.7Proj The main
content for each page will be
formatted with the sectionone
class.

106

 ProjeCT 2: APPLying CSS3 To your Web DeSign 107

Figure 2.8Proj The FooTer
element now has its own CSS
style.
.sectionOne {
position: absolute;
left: 355px;
top: 105px;
width: 1px;
height: 60px;
z-index: 3;

}

The FOOTER element is placed at the bottom of the page.
A CSS class is used to define the FOOTER element. You can use
a footer style class definition in your CSS document, however,
the same styling will be used on all FOOTER elements you have
on a page if you have two or more (Figure 2.8Proj). Using a CSS
class allows you to control where the style is applied to your
elements.

.footerStyle {
font-family: SansationLight;
position: absolute;
left: 415px;
top: 620px;
width: 400px;
height: 40px;
z-index: 5;

}

108 ProjeCT 2: APPLying CSS3 To your Web DeSign

Figure 2.9Proj The
navigation section uses CSS3
transformation to rotate the te
270 degrees.
At this point you have the core styles needed for your pages.
The next area you will style is the main navigation.

Applying Styles to the navigation elements
CSS gives you the ability to control the position of content on

the screen and, when using CSS3 features, you can add new attri-
butes such as advanced color technique, embedded fonts, and
transformations.

The project you are working on has a particularly interesting
use of CSS3 in the navigation block. There are three elements
that form the navigation class style: the default design, specific
ANCHOR element formatting, and pseudo class style for the
ANCHOR element.

The following definition controls the overall style of the navi-
gation. There are two key elements you should notice: use of the
ChunkFiveRegular embedded font and the forced transformation
of the navigation to 270 degrees (Figure 2.9Proj).

xt

 ProjeCT 2: APPLying CSS3 To your Web DeSign 109
.navigationStyle {
color: #CCCCCC;
font-family: ChunkFiveRegular;
font-size: 16px;
font-weight: bolder;
line-height: 35px;
letter-spacing: normal;
position: absolute;
left: -1px;
top: 150px;
width: 450px;
height: 80px;
z-index: 4;
-webkit-transform: rotate(270deg);
-moz-transform: rotate(270deg);

}

There are links to different parts of your web site placed
within the navigation. Below is a specific style that targets just
the ANCHOR element within your navigation style definition.
By default, the ANCHOR style definition inherits all of the CSS
d efinitions created in the navigationStyle class and is then able
to add specific styles for the ANCHOR element.

.navigationStyle a {
color: #CCCCCC;
text-decoration: none;

}

Finally, a pseudo class style extends the ANCHOR element
within the navigationStyle class to add an underline as you
move your cursor over any links.

.navigationStyle a:hover {
text-decoration: underline;

}

You can see in this section how you can create a core class in
CSS and then extend it to different elements—in this case the
ANCHOR element—and pseudo characteristics within each
element.

Applying Styles to the Form elements
There is no need for you to have ugly forms (Figure 2.10Proj).

CSS gives you the control to build forms that look beautiful. The
key to working with forms is to understand the element that
 controls the data captured in the form: the INPUT element.

Following is a simple CSS style that changes the presentation
of all INPUT elements (Figure 2.11Proj).

Figure 2.10Proj A web form
that does not use CSS styles.

Figure 2.11Proj by adding a
few lines of CSS, the form looks
very different.

110

 ProjeCT 2: APPLying CSS3 To your Web DeSign 111
INPUT {
font-family: SansationLight;
font-size: 9pt;
font-weight: bold;
background-color: #336699;
border-color: #336699;
border-style: solid;
border-width: 2px;
color: gray;
height: 20px
-moz-border-radius: 10px;
-webkit-border-radius: 10px;

}

Notice that the style in the figure embeds a font into the
INPUT element. This means that you will be using the new font
when you type into the form fields. Also, you now have rounded
corners, colored text, and colored form fields. The end result is
a	 very	 different	 looking	 form	 field.	 Gone	 are	 the	 days	 of	 boring	
forms.

Additional Styles
There are a number of additional visual elements that require

styling. A feature that is present on each page is the company
name. A unique style is applied to the company name. As with the
navigation class you defined earlier, you will see that the company
NameStyle class uses an embedded font and rotates the text 270
degrees.

.companyNameStyle {
color: #FFFFFF;
font-family: ChunkFiveRegular;
font-size: 45px;
font-weight: bolder;
line-height: 35px;
letter-spacing: normal;
position: absolute;
left: -50px;
top: 150px;
width: 450px;
height: 80px;
z-index: 4;
-webkit-transform: rotate(270deg);
-moz-transform: rotate(270deg);

}

The news page has a section that is used for the ASIDE
 element. A specific style is used to present the ASIDE on the
screen. Below is the CSS style used in the presentation. It is worth
noting that the space occupied by the ASIDE is defined in the CSS
along with rounded corners and an embedded font.

112 ProjeCT 2: APPLying CSS3 To your Web DeSign

Figure 2.12Proj A little
housekeeping in your folder
structure will help with futu
site enhancements.
aside {
position: absolute;
left: 740px;
top: 200px;
width: 150px;
height: 190px;
z-index: 6;
background-color: #808080;
color: #FFFFFF;
-moz-border-radius: 10px;
-webkit-border-radius: 10px;
padding: 5px;
font-family: SansationLight;

}

Advanced cSS execution
Up to this point you have been controlling the layout of the

site with CSS. However, CSS does give you additional control.
With a little work you can make the CSS used in the site inter-
active. You are going to add an interactive menu to the site and
include a timeline tool, all developed with CSS.

There are distinct advantages to using CSS for simple, inter-
active content in your site. The first is ease of execution. CSS is
not like JavaScript. It is, relatively speaking, a simple language to
learn. A second reason is portability: CSS is designed to be shared
across your site.

Up to this point, you have been creating a simple web site.
For this design it has been okay to keep all of the files in the same
folder of the site. This does, however, lead to problems when you
start creating larger sites. Now is the time to do a little house-
keeping. Open up the folder structure and let’s move a few files
around.
1. Open up the folder you have been storing all of your web files

to. Create the following folders: CSS, Products, and News. See
Figure 2.12Proj.

re

 ProjeCT 2: APPLying CSS3 To your Web DeSign 113
2. Now, drag the CSS file “style.css” to the CSS folder.
3. Open up your web pages and change the link to the CSS file to

the following:

<link href=“css/style.css” rel=“stylesheet” type=“text/
css”/>

4. Open the new CSS folder. Create a subfolder and name it Fonts.
Drag your fonts into the new Fonts folder; this keeps all of your
fonts collected together. You will need to update your references
of the fonts. Open up “style.css” and change the URL source to
point to the Fonts subfolder. You can see the changes added to
the following CSS.

@font-face {
font-family: ‘ChunkFiveRegular’;
src: url(‘fonts/Chunkfive.eot’);
src: local(‘ChunkFive’), local(‘ChunkFive’),

url(‘fonts/Chunkfive.woff’) format(‘woff’), url(‘fonts/
Chunkfive.ttf’) format(‘truetype’), url(‘fonts/Chunkfive.
svg#ChunkFive’) format(‘svg’);

}
@font-face {
font-family: ‘SansationRegular’;
src: url(‘fonts/Sansation_Regular.eot’);
src: local(‘Sansation’), local(‘Sansation’),

url(‘fonts/Sansation_Regular.woff’) format(‘woff’),
url(‘fonts/Sansation_Regular.ttf’) format(‘truetype’),
url(‘fonts/Sansation_Regular.svg#Sansation’)
format(‘svg’);

}
@font-face {
font-family: ‘SansationLight’;
src: url(‘Sansation_Light.eot’);
src: local(‘Sansation’), local(‘Sansation-Light’),

url(‘fonts/Sansation_Light.woff’) format(‘woff’), url(‘fonts/
ansation_Light.ttf’) format(‘truetype’), url(‘fonts/
Sansation_Light.svg#Sansation-Light’) format(‘svg’);

}
@font-face {
font-family: ‘SansationBold’;
src: url(‘Sansation_Bold.eot’);
src: local(‘Sansation’), local(‘Sansation-Bold’),

url(‘fonts/Sansation_Bold.woff’) format(‘woff’),
url(‘fonts/Sansation_Bold.ttf’) format(‘truetype’),
url(‘fonts/Sansation_Bold.svg#Sansation-Bold’)
format(‘svg’);

}

5. Save the “style.css” file.
This little bit of housework will help keep your site more

 organized as you add more content.

114 ProjeCT 2: APPLying CSS3 To your Web DeSign

Figure 2.13Proj A 100% CSS
menu system.
creating a Menu with cSS
Having a menu system is a common feature for all web sites.

For your new HTML5 web site there is no reason why you, too,
cannot have a cool menu system. The current navigation uses
just text, but with a little more effort we can create an elegant CSS
solution. The screenshot in Figure 2.13Proj shows what the new
menu will look like.

The new menu is now more graphically pleasing and comes
with submenus that can link to different web sites. Believe it or
not, this menu is not created with JavaScript or Flash. It is all CSS.

There are three main elements to this menu:
•	 HTML	content
•	 Images	to	create	the	button	effects
•	 Lots	of	CSS

Let’s start by looking at the HTML. The current menu looks as
follows.

<navigation id=“NavigationLink” style=“” class=
“navigationStyle”>

Home|<a href=“products/
products.html”>Products|<a href=“news/news.
html”>News|Contact Us

</navigation>

You cannot add submenus to this structure. To add submenus
you need to control how the content is listed on the page.
Fortunately, HTML has the LIST element that allows you to

 ProjeCT 2: APPLying CSS3 To your Web DeSign 115

Figure 2.14Proj The new menu
will start as a list with sublists.
 easily indent lists. Using CSS you will see how to show and hide
top- and second-level list elements (Figure 2.14Proj). Your new
HTML will look like the following.

<navigation id=“NavigationLink” style=“” class=
“navigationStyle”>

<section class=“menu”>

<a class=“left_nosub” href=“default.

html”>Home
<a class=“center_hassub” href=“products/

products.html”>Products

Current

Projects
Clients
Archives
Submit An

Idea

<a class=“center_hassub” href=“news/news.

html”>News

Articles
Timeline

<a class=“right_nosub” href=“contactUs.

html”>Contact Us

</section>
</navigation>

The new menu you will be creating will have a significant
amount of CSS. To keep your design workspace clutter free let’s
go ahead and create a second CSS file. The great thing with
HTML is that you can have multiple CSS files in a single web
page.

Add the file “menu.css” to the CSS folder. Open “default.html”
and add the following link below your current “style.css” link:

<link href=“css/menu.css” rel=“stylesheet” type=“text/css”>

The next step is to create the images you will need in your
menu. Figure 2.15Proj shows a screenshot of the images and an
explanation for each image is as follows (see also Figure 2.16Proj):
1. center.png—center background image
2. center_hassub.png—center background image when you roll

cursor over it
3. left.png—left background image

116 ProjeCT 2: APPLying CSS3 To your Web DeSign

Figure 2.15Proj Here is the
collection of Png files you need
in your menu.

Figure 2.16Proj Here is how the
Png files are used in the menu
structure.
 4. left_hassub.png—left background image when you roll cursor
over it with a subimage

 5. left_nosub.png—left background image when you roll cursor
over it with no subimage

 6. right.png—right background image
 7. right_hassub.png—right background image when you roll

 cursor over it with a subimage
 8. right_nosub.png—right background image when you roll

 cursor over it with no subimage
 9. dropdown.png—gray background when dropdown menu

appears
10. sub_active.png—background image for submenu options
11. sub_hover.png—highlighted background when cursor hovers

over a submenu
Up to this point you have the HTML and images needed to create

your menu. The final step is to add the CSS. Looking at the HTML
above you will see that there are four main CSS class references
defined. Each reference refers to an HTML LIST on the page.
•	 The	SECTION	element	has	the	class	reference	“menu.”
•	 The	first	LIST	ITEM	has	the	class	reference	“left_nosub.”
•	 The	last	LIST	ITEM	has	the	reference	“right_nosub.”
•	 The	middle	LIST	ITEMs	have	the	reference	“center_hassub.”

These references are used in the CSS file “menu.css” to create
your design.
1. Open up “menu.css” and start adding CSS to build out the

menu. Begin by adding the reference to an embedded font.

@font-face {
font-family: ‘SansationRegular’;
src: url(‘fonts/Sansation_Regular.eot’);
src: local(‘Sansation’), local(‘Sansation’),

url(‘fonts/Sansation_Regular.woff’) format(‘woff’),
url(‘fonts/Sansation_Regular.ttf’) format(‘truetype’),
url(‘fonts/Sansation_Regular.svg#Sansation’) format(‘svg’);

}

2. The first class you need to define is the menu class. This forms
the basis for all of your definitions. The default is to apply the
font-family SansationRegular with the font size of 11 points.
The outline of the menu has a zero margin, and is positioned
relative to the placement of the SECTION elements on the page
with a z-index of 1000. The z-index is important, as it forces the
submenu items to be in front of any content on the screen.

 ProjeCT 2: APPLying CSS3 To your Web DeSign 117
.menu {
font-family: SansationRegular;
position: relative;
font-size: 11px;
margin: 0;
z-index: 1000;

}

3. The next step is to add the default style that will apply to all
elements—in this case the UNORDERED, LIST ITEM, and
ANCHOR elements. You will see a default font color (#f0f0f0) is
applied to all text items and all text is now centered. The “cen-
ter.png” image is now being used as the background image to
all items (you will see how to override this in a moment) and all
items have a default width and height. It is important to add the
width and height properties, otherwise the width and height
are defined by the text elements. Forcing a width and height
allows you to create a buttonlike effect.

.menu ul li a {
display: block;
text-decoration: none;
color: #f0f0f0;
font-weight: bold;
width: 81px;
height: 42px;
text-align: center;
border-bottom: 0;
background-image: url(‘../images/black/center.

png’);
line-height: 48px;
font-size: 11px;
overflow: hidden;
padding-left: 1px;

}

4. Because you are using CSS you can override elements. The fol-
lowing CSS adds custom left and right end caps to the menu. At
this point you can choose to up the ante by using the rounded
corners and gradients colors now supported in CSS. However, to
illustrate	how	PNG	files	can	also	be	used,	we	will	use	images.

.menu .left_nosub {
background-image: url(‘../images/black/left.

png’);
padding-left: 1px;
margin-right: -1px;

}
.menu .right_nosub {

background-image: url(‘../images/black/right.
png’);

}

118 ProjeCT 2: APPLying CSS3 To your Web DeSign
5. The next step is to add the default presentation for UL elements
that are contained within the menu class. Controlling elements
within classes is one of the strengths of CSS.

.menu ul {
padding: 0;
margin: 0;
list-style: none;

}
.menu ul li {

float: left;
position: relative;

}
.menu ul li ul {

display: none;
}

6. The next step is to add functionality as you move the cursor
over a link. The top-level navigation elements change the color
of the text and the background image as you move the cursor
over them. The following CSS does this for you.

.menu ul li:hover a {
color: #000;
background: url(‘../images/black/center_

hassub.png’);
}
.menu ul li:hover ul li a.center_hassub {

background: #6a3;
color: #000;

}
.menu ul li:hover ul li:hover a.center_hassub {

background: #6fc;
color: #000;

}
.menu ul li:hover ul li ul {

display: none;
}

7. The background image for the far-left and far-right buttons will
also be swapped out with the following.

.menu ul li:hover .left_nosub {
color: #000;
background: url(‘../images/black/left_nosub.png’);

}
.menu ul li:hover .right_hassub {

color: #000;
background: url(‘../images/black/right_hassub.png’);

}
.menu ul li:hover .right_nosub {

color: #000;
background: url(‘../images/black/right_nosub.png’);
}

 ProjeCT 2: APPLying CSS3 To your Web DeSign 119
 8. This menu structure is exciting because you can add
 submenus. The following CSS controls how the submenus
appear on the screen. You will see a display property is forc-
ing the objects in the submenu to flow down in a block format
and formats each object into a fixed area. As with the main
heading items, forcing the area of the item gives you the illu-
sion of a button effect.

.menu ul li:hover ul li a {
background-image: none;
display: block;
height: 28px;
line-height: 26px;
color: #000;
width: 142px;
text-align: left;
margin: 0;
padding: 0 0 0 11px;
font-weight: normal;

}

 9. The background image to each dropdown item is gray. The
 following CSS controls the presentation of the dropdown
image.

.menu ul li:hover ul {
margin: 0 0 0 3px;
padding: 0;
background-image: url(‘../images/black/

dropdown.png’);
background-repeat: no-repeat;
background-position: bottom left;

}

10. As you move the cursor over each item in the submenu, the but-
ton effect changes to a different background. This is achieved
with	a	PNG	file	called	“sub_hover.”	The	following	CSS	applies	
the hover effect.

.menu ul li:hover ul li a:hover {
color: #000 !important;
background-image: url(‘../images/black/sub_

hover.png’);
}
.menu ul li:hover ul li:hover ul {

display: block;
position: absolute;
left: 105px;
top: 0;

}
.menu ul li:hover ul li:hover ul.left {

left: -105px;
}

120 ProjeCT 2: APPLying CSS3 To your Web DeSign

Figure 2.17Proj CSS3
techniques and advanced CSS
class and element control were
used to create this timeline.
11. The final CSS definition changes the background image as
you click on the item selected.

.menu ul li:hover ul .sub_active {
background-image: url(‘../images/black/sub_

active.png’);
margin-right: 1px;

}

12. At this point you will want to save “menu.css” and preview
your page.

You now have a 100% CSS menu structure. Again, you will see
there is no JavaScript here.

Designing with cSS3
The improvements in CSS3 give you more opportunities for

creativity. This can be clearly seen in the final step of this project:
adding a timeline to your page. Each timeline item in the follow-
ing figure will now change as your roll your cursor over it.

 ProjeCT 2: APPLying CSS3 To your Web DeSign 121
Unlike the menu system created before, you will create the
whole timeline using just HTML and CSS, as follows. No stinking
images here!
1. Let’s start with creating a new web page. In the News folder, add

a file named “timeline.html.” You can also save one of your files
with a new name.

2. Open “timeline.html” and locate the ARTICLE element with
the ID “article_one.” Delete any content in the ARTICLE so
you have a clean page. Also remove any inline CSS style in the
ARTICLE element. The HTML for the ARTICLE should look as
follows.

<article id=“article_one”>
</article>

3.	 Go	ahead	and	add	a	SECTION	element	inside	of	the	ARTICLE,	
as follows.

<article id=“article_one”>
<section>
</section>
</article>

4. At this point you have created the placeholder for your content.
The content itself is, as with the navigation, controlled using LI
elements. The timeline is actually created using two lists. The
first list is used for the highlighted elements and the second
is used to show the different milestone markers. Both lists are
placed within the SECTION element.

5. The first list uses the following code.

New Grass Seed
<time>(April-August)</time>

Lawn Care
<time>(March-November)</time>

Harvest Tools
<time>(May-July)</time>

Research
<time>(All Year)</time>

New Sales
<time>(January-September)</time>

New Crop Cycle
<time>(January-November)</time>

122 ProjeCT 2: APPLying CSS3 To your Web DeSign

Figure 2.18Proj The lists do not
look like the timeline, yet!
Notice that the TIME element is being used to highlight the
months.

 6. The second list is used to define the quarters. Following is the
HTML code to create the second list below the first list.

1st Quarter
2nd Quarter
3rd Quarter
4th Quarter
Projected Quarter

Figure 2.18Proj shows the lists currently. Now you are ready to
crack open your CSS skills and turn the lists into art.

 7. Start by creating a new CSS file named “timeline.css” and save
it to your CSS folder.

 8. Open “timeline.html” and add a reference to “timeline.css.”
You need to modify the link because the “timeline.html” file is
in its own subfolder. The following code will point to the file.
You will see that there are leading “..” in front of the file. This
tells the HTML to load a file from a folder above the folder you
are currently in.

<link href=“../css/style.css” rel=“stylesheet”
type=“text/css” />

<link href=“../css/menu.css” rel=“stylesheet”
type=“text/css”>

<link href=“../css/timeline.css” rel=“stylesheet”
type=“text/css”>

 9. The easiest section of the timeline to create is the markers
along the bottom. You will see that the markers are all equally
spaced. This is controlled through a class file called “inter-
vals.” The intervals class modifies the UL element. The follow-
ing removes the standard bullet point used in an unordered
list.

ul.intervals {
list-style-type: none;
padding: 0;
display: block;

}

10. The timeline code is extendable, so you can add it to any page.
For this reason, a percentage is used to control the width of
the items. The width depends on the number of intervals. For
example, 100/5 = 20%; then subtract a little bit of room for
the borders. In this case you will see that the width is set to
19.5%. Many of the pages font settings identified in the CSS
document “style.css” are inherited. For this reason, the font

 ProjeCT 2: APPLying CSS3 To your Web DeSign 123
SansationRegular is used as the default font-family. Other
properties are overridden in the following definition.

ul.intervals li {
background: #fff;
border-right: 1px solid #ccc;
color: #999;
float: left;
font-size: 1.2em;
margin: 0;
padding: 15px 0;
text-align: center;
width: 19.5%;

}

11. You need to modify the HTML elements so that they can
 display the CSS correctly. Below is the list with a reference to
the intervals class.

<ul class=“intervals”>
1st Quarter
2nd Quarter
3rd Quarter
4th Quarter
Projected Quarter

12. When you test your page you will notice that all of the LI
 elements are equally spaced across the screen. What would tidy
up the design, however, is a gray border on the left side of the
first	element.	CSS	allows	you	to	inherit	styles.	Go	ahead	and	add	
a class to the first element in the list; name the class “first.”

<li class=“first”>1st Quarter

13. In your “timeline.css” file, add the following CSS definition.

ul.intervals li.first {
border-left: 1px solid #ccc;

}

14. It is very interesting what is happening here. You are referenc-
ing a class called “first” that is associated with the LI element,
but it must also be contained within the class called “ intervals”
in the UL element. Figure 2.19Proj shows you how it all looks
when packaged together.

15. The next step is to create the items in the timeline. The items
use two CSS techniques to define the content. The first is to
create the general presentation of each item; the second is to
finely tweak the presentation of each item. Let’s get started by
adding a new class to the leading UL element in the list. Name
the new class events as shown in the following.

124 ProjeCT 2: APPLying CSS3 To your Web DeSign

Figure 2.19Proj The intervals
defining each quarter are added
to the bottom of the HTML.
<ul class=“events”>
New Grass Seed
<time>(April-August)</time>

Lawn Care
<time>(March-November)</time>

Harvest Tools
<time>(May-July)</time>

Research
<time>(All Year)</time>

New Sales
<time>(January-September)</time>

New Crop Cycle
<time>(January-November)</time>

16. Open the “timeline.css” file. The following CSS changes the
presentation of the UL with the class name events to have no
formatting.

ul.events {
list-style-type: none;
margin: 0;
padding: 0 0 20px 0;

}

17. The next style defines how the events class will look like on
the page. It will come as no surprise that the border-radius is
being used to create the rounded corners of the rectangles.
The text color, padding, and alignment are modified, but the
font-family style is inherited from the main page.

ul.events li {
-webkit-border-radius: 11px;
-moz-border-radius: 11px;
border-radius: 11px;
background: #eee;
border: 1px solid #ddd;

 ProjeCT 2: APPLying CSS3 To your Web DeSign 125

1

1

color: #707070;
font-size: 1.2em;
font-weight: bold;
margin-bottom: 6px;
padding: 3px 0;
position: relative;
text-align: center;

}

8. Save your files. When you preview your web page you will see
that each item now has rounded corners (Figure 2.20Proj).

9. Inline styles within each list item can be used to control the
width and starting point from the left. The following HTML
code now includes the inline style you can use to format each
item (see also Figure 2.21Proj).

<li style=“width: 42%; left: 22%;”>New Grass Seed
<time>(April-August)</time>

<li style=“width: 55%; left: 18%;”>Lawn Care
<time>(March-November)</time>

Figure 2.20Proj each item in
the timeline now has rounded
corners.

Figure 2.21Proj The events in
the timeline are now spaced
correctly.

126 ProjeCT 2: APPLying CSS3 To your Web DeSign
<li style=“width: 404%; left: 28%;”>Harvest Tools
<time>(May-July)</time>

<li style=“width: 100%; left: 0%;”>Research
<time>(All Year)</time>

<li style=“width: 45%; left: 3%;”>New Sales
<time>(January-September)</time>

<li style=“width: 75%; left: 0;”>New Crop Cycle
<time>(January-November)</time>

20. There are a few minor CSS styles you can apply to format the
content further. Each item listed contains a TIME element.
The following will format text in the TIME element.

ul.events li time {
color: #aaa;
font-weight: normal;
font-size: 0.9em;

}

21. The final effect you can apply is some simple animation. As
you move the cursor over each item in the timeline, you can
transition the styles from one format to another. To do this you
need to modify ul.events li and add a hover pseudo type
by adding the transition property.

ul.events li {
-webkit-border-radius: 11px;
-moz-border-radius: 11px;
border-radius: 11px;
-webkit-transition: all 0.5s linear;
-moz-transition: all 1s linear;
transition: all 1s linear;
background: #eee;
border: 1px solid #ddd;
color: #707070;
font-size: 1.2em;
font-weight: bold;
margin-bottom: 6px;
padding: 3px 0;
position: relative;
text-align: center;

}

22. The following is the hover pseudo class. Three properties are
highlighted. The transition will happen over 0.5 seconds with
just these properties, leaving the remainder intact.

ul.events li:hover {
background: #707070;

 ProjeCT 2: APPLying CSS3 To your Web DeSign 127
border: 1px solid #ddd;
color: #eee;

}

23. The final step is to place the whole timeline content onto the
web page. The following HTML modifies the leading ARTICLE
element to place everything on to the page.

<article id=“article_one” style=“position: absolute;
left: 300px; top: 100px; width: 500px; z-index: 2;”>

24. Save your content and view your cool, interactive timeline as
shown in Figure 2.22Proj.
Figure 2.22Proj you can
now move the cursor over
each item, triggering a subtle
transition.
It is important to recognize that the effects you have accom-
plished in this chapter do not require JavaScript. This is all 100%
CSS.

Summary
Cascading Style Sheets are a powerful way to control the pre-

sentation of content in your web pages. HTML5 introduces CSS3
embedded fonts, rounded corners, transformation, and anima-
tion. The project you have created here illustrates how you can
easily add these complex technologies.

Advanced CSS solutions, such as the menu and timeline tool,
do take more time to create, but illustrate how flexible CSS is
becoming. You can, of course, extend the styles and create addi-
tional styles to format specific areas of content. This is just a
springboard to launch your creativity.

At this time you have all core styles needed for the site. Save your
style sheet and view your web site. It looks different, doesn’t it?

HTML5. doi: 10.1016/B978-0-240-81328-8.00009-4
© 2010 Elsevier Inc. All rights reserved. 177

HtML5 RicH Media
Foundation

In the last five years, high-speed Internet connections have
become the norm for residential users and businesses across
the globe. It is even expected that mobile phones can receive
 high-speed data feeds. Gone are the days of dial-up Internet.

The ability to push more data down Internet “pipes” now
enables you to access richer content online above and beyond
text and images. Two formats that benefit from higher bandwidth
rates are audio and video. To this end, HTML5 is now making
video and audio elements first-class citizens alongside the IMG
element for images and text on your web page.

In this article you will find out how to use the VIDEO and
AUDIO elements in your web pages, how to create content
that will play back through your web pages, and how to add
 interactivity via JavaScript to the new elements.

Working with Video and audio tags
There are two parts to controlling rich media content: the

 client and the server. In this section you will learn the details of how
to control the client piece, the HTML5 VIDEO and AUDIO tags, and
review the different ways media can be delivered by servers.

Unless you have not noticed, there is a lot of video on the
Internet. From sites such as Hulu to Vimeo to the massive
YouTube, video is the centerpiece to our digital world (Figure 4.1).
To address this demand, HTML5 includes support for two new
elements: VIDEO and AUDIO.

Today, the centerpiece technology for delivering media online
is Adobe’s Flash. Adobe has done a very good job of being a good
Internet citizen in providing a technology that is easy to use and
easy to consume. The challenge you have is that adding Flash-
based video to your web page is still hard to complete. To add
Flash-based media content yourself you need three things:

178 HTML5 RicH Media FoundaTion

•	 Video	or	audio	files
•	 Flash	authoring	tool
•	 Some	HTML	expertise	with	Flash

As an example, to create a video that is embedded in Flash you
need to take the following steps:
1. Open a Flash authoring tool (such as CS4 or CS5).
2. Import a digital version of your video.
3. Use the Adobe video conversion wizard and convert the video

to a format that will play back in Flash.
4. Publish your Flash movie (you now have two files: a video file

and a Flash SWF file).
5. Upload both files to your server.
6. Add the correct HTML to your web page.

Adding the HTML is the hard part with Flash. Following is an
example of how complex it can be to add a Flash video to your
web page.

<div id=“flashContent”>
<object classid=“clsid:d27cdb6e-ae6d-11cf-

96b8-444553540000” width=“550” height=“400”
id=“FlashVideo” align=“middle”>

<param name=“movie” value=“FlashVideo.swf”/>
<param name=“quality” value=“high”/>
<param name=“bgcolor” value=“#ffffff”/>
<param name=“play” value=“true”/>
<param name=“loop” value=“true”/>
<param name=“wmode” value=“window”/>

Figure 4.1 Vimeo allows
uploading and broadcasting
videos online.

 HTML5 RicH Media FoundaTion 179

<param name=“scale” value=“showall”/>
<param name=“menu” value=“true”/>
<param name=“devicefont” value=“false”/>
<param name=“salign” value=“”/>
<param name=“allowScriptAccess” value= “sameDomain”/>
<!--[if !IE]>-->
<object type=“application/x-shockwave-flash”

data=“FlashVideo.swf” width=“550” height=“400”>
<param name=“movie” value=“FlashVideo.swf”/>
<param name=“quality” value=“high”/>
<param name=“bgcolor” value=“#ffffff”/>
<param name=“play” value=“true”/>
<param name=“loop” value=“true”/>
<param name=“wmode” value=“window”/>
<param name=“scale” value=“showall”/>
<param name=“menu” value=“true”/>
<param name=“devicefont” value=“false”/>
<param name=“salign” value=“”/>
<param name=“allowScriptAccess” value=“sameDomain”/>
<!--<![endif]-->

<img src=“http://www.adobe.com/images/shared/download_

buttons/get_flash_player.gif” alt=“Get Adobe Flash player”/>

<!--[if !IE]>-->
</object>
<!--<![endif]-->
</object>
</div>

In contrast to using Flash CS4 to create the video you can also
use web sites such as Vimeo to convert the video. Following is an
example of the HTML code that Vimeo generates to enable you to
syndicate your media content.

<object width=“400” height=“300”><param
name=“allowfullscreen” value=“true”/><param
name=“allowscriptaccess” value=“always”/>

<param name=“movie” value=“http://vimeo.com/moogaloop.
swf?clip_id=8341236&server=vimeo.com&show_
title=1&show_byline=1&show_ portrait=0&color=&
amp;fullscreen=1”/>

<embed src=“http://vimeo.com/moogaloop.
swf?clip_id=8341236&server=vimeo.com&show_
title=1&show_byline=1&show_portrait=0&col
or=&fullscreen=1” type=“application/x-shockwave-
flash” allowfullscreen=“true” allowscriptaccess=“always”
width=“400” height=“300”></embed>

</object>

Both services generate complex code. HTML5 addresses this
problem dramatically. The native Flash authoring tool generates

180 HTML5 RicH Media FoundaTion

over 30 lines of code to embed a Flash movie that, in turn,
embeds a video file. In HTML5 all you need is a video file and one
line of code using the new VIDEO element, as follows:

<video src=“videoFile.mp4”></video>

Yes, it really is that simple.

using HtML5 Rich Media tags
HTML5 wants to make it easier for you to add video and

audio using the new VIDEO and AUDIO elements. The two new
 elements are supported by the following web browsers:
•	 FireFox	3.5,	3.6+
•	 Google	Chrome
•	 Apple’s	Safari	3.0,	4.0+
•	 Opera	Web	Browser	10.5+

As you can see, there is no support for the VIDEO and AUDIO
elements in Internet Explorer. If you have already read the pre-
vious articles in this book, then Microsoft’s lack of support for
HTML5 will come as no shock.

controlling Video with Video Tags
Using the VIDEO element is as easy as follows:

<video src=“myMovie.ogg”></video>

That’s it. There is no need to add complex OBJECT elements
and parameters. If you want to get crazy you can use the follow-
ing different attributes for the VIDEO element:
•	 autoplay—the video will play immediately if already down-

loaded in your cache
•	 controls—a simple playback head will be added with VCR-

like Play/Pause controls
•	 height and width
•	 loop—you can loop the video

To get the most out of your video playback you will want to
use some of these attributes. For instance, if you want your video
to start playing when the web page has finished loading you will
want to use the autoplay attribute as follows:

<video src=“google_main.mp4” autoplay></video>

The video will not automatically play if you do not include it.
A second useful attribute to add is the controls attribute, as follows:

<video src=“google_main.mp4” autoplay controls></video>

You will notice that the controls attribute looks different in
each browser. Figure 4.2 shows the controls attribute used in

 HTML5 RicH Media FoundaTion 181

Google Chrome, Figure 4.3 shows the attribute in Apple’s Safari,
and Figure 4.4 shows the attribute in FireFox.

Each browser uses a different playback video engine, and
each engine has its own default control style. This can become
a problem when it comes to presenting a video playback expe-
rience that is consistent from one browser to another. There is a
way to override this issue.

Figure 4.2 The playback video
controls in Google chrome.

Figure 4.3 The playback video
controls in apple's Safari.

182 HTML5 RicH Media FoundaTion

The VIDEO and AUDIO elements can be controlled with
JavaScript. This means you can control your media using your
own custom controls. As an example, the following steps will
allow you to add a custom Play/Pause button to your video.

You have to start with a blank HTML5 page as follows.

<!DOCTYPE HTML>
<html>
<head>
<title>Video in HTML5</title>
</head>
<body>
</body>
</html>

In the BODY element section add the VIDEO element and link
to a video file as follows.

<video autoplay>
<source src=“google_main.mp4”>

</video>

Figure 4.4 The playback video
controls in FireFox.

 HTML5 RicH Media FoundaTion 183

You can see here that the video file does not have any attributes.
These you will add programmatically with JavaScript.

Next, add an ANCHOR tag.

Play/Pause

The tag uses the # to create a fake link. Selecting this link will not
do anything.

Now, the next piece is to add the JavaScript to allow the Play/
Pause text to control the video. After the VIDEO element add the
following JavaScript.

<script>
var video = document.getElementsByTagName (‘video’)[0];

</script>

This script gives the VIDEO element a name that you can ref-
erence. The final step is to add a script to the ANCHOR tag.

<a href=“#” onClick=“if (video.paused) video.play();
else video.pause()”>Play/Pause

The ANCHOR element uses an onClick event to trigger an if/
else JavaScript command. Simply put, if the button is pressed and
the video has not been played, then the video will start to play.
Otherwise, if the video is playing and the button is selected it will
pause the video. All together your code will look as follows.

<!DOCTYPE HTML>
<html>
<head>
<title>Video in HTML5</title>
</head>
<body>
<video autoplay>
<source src=“google_main.mp4”>

</video>
<script>
var video = document.getElementsByTagName (‘video’)[0];
</script>

<a href=“#” onClick=“if (video.paused) video.play();

else video.pause()”>Play/Pause
</p>
</body>
</html>

As Figure 4.5 shows, the custom control does not look too
fancy, but what you have is a control that is consistent from
browser to browser. See also Figure 4.6.

An additional benefit to using JavaScript to control the pre-
sentation of your controls is that you can use CSS to style the
controls (Figure 4.7). The following code is a basic style applied to
our video controls.

184 HTML5 RicH Media FoundaTion

Figure 4.5 creating a custom
video playback control using
JavaScript previewed in Google
chrome.

Figure 4.6 The custom
JavaScript control looks the
same in apple's Safari.

 HTML5 RicH Media FoundaTion 185

<!DOCTYPE HTML>
<html>
<head>
<title>Video in HTML5</title>
<style type=“text/css”>
a {

font-family: “Franklin Gothic Medium”, “Arial
Narrow”, Arial, sans-serif;

font-size: large;
text-decoration: none;
color: #C0C0C0;

}
h1 {

font-family: “Franklin Gothic Medium”, “Arial
Narrow”, Arial, sans-serif;

font-size: 24pt;
color: #C0C0C0;

}
body {

background-color: #000000;
}
</style>
</head>
<body>
<h1 align=“center”>Video with Custom JavaScript

Controls</h1><p align=“center”>
<video autoplay>
<source src=“google_main.mp4”>

</video>
<script>
var video = document.getElementsByTagName (‘video’)[0];

</script>

Figure 4.7 using cSS to control
the presentation of the Play/
Pause controls.

186 HTML5 RicH Media FoundaTion

<a href=“#” onClick=“if (video.paused) video.play();

else video.pause()”> Play/Pause
</p>
</body>
</html>

There are other controls you can add to your VIDEO element.
For instance, you can add a playback head to track where you
are in the video, fast forward, and rewind as well. You can see
an example of HTML5 video support with custom controls at
YouTube (http://www.youtube.com/html5; see also Figure 4.8).

There is no doubt that, as the HTML5 VIDEO element matures,
tools to quickly create skins and themes for video players will be
developed.

controlling audio with audio Tags
Audio can be controlled in exactly the same way as video in

HTML5. Leveraging the new AUDIO element, you can embed
audio files directly into your web page. Again, as with the VIDEO
element, the process of embedding audio into your web page is
very easy. In order to embed audio into your web page you need
either an MP3/AAC or Ogg Theora–formatted audio file.

<audio autoplay controls>
<source src=“sample.mp3”>

</audio>

Figure 4.8 YouTube's
experimental HTML5 video
page.

http://www.youtube.com/html5

 HTML5 RicH Media FoundaTion 187

In the previous code, the AUDIO element has the autoplay and
controls attributes added. You will see in Figure 4.9 that the con-
trols are stripped-down versions of the AUDIO element controls.
As with the VIDEO element controls, there is nothing too fancy.

As with video, you can control the audio playing back using
JavaScript and some CSS. Let’s start with using JavaScript before
we make everything look pretty with CSS. The first step is to cre-
ate the base web page. The following HTML should be getting
familiar to you.

<!DOCTYPE HTML>
<html>
<head>
<title>Audio in HTML5</title>
</head>
<body>
</body>
</html>

Now, let’s add the AUDIO element between the BODY
elements.

<audio>
<source src=“sample.mp3”>

</audio>

You will see from the HTML code that the AUDIO element
does not have any attributes. The autoplay and controls attri-
butes have been removed. If you preview this code in your web

Figure 4.9 The playback
controls for audio are the
same as those for Video.

188 HTML5 RicH Media FoundaTion

browser you will see nothing on the page. Using JavaScript, you
will add controls onto the page.

Below the AUDIO element, add the following JavaScript.

<script>
var audio = document.getElementsByTagName (‘audio’)[0];

</script>

The role of this script is to create a new variable called “audio”
that will interact with your AUDIO element. The following HTML
ANCHOR element includes an onClick event that plays the audio
file.

<a href=“#” onClick=“if (audio.paused) audio.play();
else audio.pause()”>Play/Pause

At this point, you can preview your web page in Google’s
Chrome or Apple’s Safari. Pressing the Play/Pause link will play
the MP3 audio file.

The page, at this point, can now be dressed up using CSS. Add
the following CSS.

<style type=“text/css”>
a {

font-family: “Franklin Gothic Medium”, “Arial
Narrow”, Arial, sans-serif;

font-size: large;
text-decoration: none;
color: #C0C0C0;

}
h1 {

font-family: “Franklin Gothic Medium”, “Arial
Narrow”, Arial, sans-serif;

font-size: 24pt;
color: #C0C0C0;

}
body {

background-color: #000000;
}

</style>

At this point, you are using the AUDIO element, controlled by
JavaScript and styled using Cascading Style Sheets. Your entire
code should look as follows.

<!DOCTYPE HTML>
<html>
<head>
<title>Audio in HTML5</title>
<style type=“text/css”>
a {

font-family: “Franklin Gothic Medium”, “Arial
Narrow”, Arial, sans-serif;

 HTML5 RicH Media FoundaTion 189

font-size: large;
text-decoration: none;
color: #C0C0C0;

}
h1 {

font-family: “Franklin Gothic Medium”, “Arial
Narrow”, Arial, sans-serif;

font-size: 24pt;
color: #C0C0C0;

}
body {

background-color: #000000;
}
</style>
</head>
<body>
<h1 align=“center”>Custom JavaScript Controls for an

Audio file</h1><p align=“center”>
<audio>
<source src=“sample.mp3”>

</audio>
<script>
var audio = document.getElementsByTagName (‘audio’)[0];

</script>
<a href=“#” onClick=“if (audio.paused) audio.play();

else audio.pause()”>Play/Pause
</body>
</html>

Again, as with VIDEO element control and styling, you can
expect more third-party tools to emerge that allow you to more
effectively control AUDIO in your web page. One place to look
right now is the new iTunes LP Kit, TuneKit. Apple’s iTunes
now supports customizable themes for LPs in their store. The
styles and themes are created using HTML. Complete details
on how to use TuneKit can be downloaded at http://images.
apple.com/itunes/lp-and-extras/docs/TuneKit_Programming_
Guide.pdf.

encoding Video and audio for delivery
over the Web

Previous to HTML5 you would have to use a combination of
OBJECT and EMBED elements to add video to your web page.
Video requires support of a plug-in, such as Adobe’s Flash.
HTML5 attempts to sidestep support for Windows Media Player,
Flash, or RealPlayer plug-ins by adding video CODECs directly
to the browser. A CODEC (compression/decompression) is the

http://images.apple.com/itunes/lp-and-extras/docs/TuneKit_Programming_Guide.pdf
http://images.apple.com/itunes/lp-and-extras/docs/TuneKit_Programming_Guide.pdf
http://images.apple.com/itunes/lp-and-extras/docs/TuneKit_Programming_Guide.pdf

190 HTML5 RicH Media FoundaTion

technology that allows video files to be converted into smaller,
streamed files. Currently, two CODECs are gaining support for
HTML5.	They	are	the	H.264	video	standard	and	the	open-source	
Ogg package for Theora video and Vorbis audio.

Simply	 put,	 the	 H.264	 support,	 also	 known	 as	 MPEG4,	 is	
the video and audio format supported on your iPhone, but it is
widely used by many companies. The problem is that MPEG4 has
patents that protect the technology. You have to pay someone to
use the technology, sometimes.

In	 contrast	 to	 H.264	 is	 the	 open-source	 Theora	 video	 and	
Vorbis audio. These formats are free from patents. The audio and
video	 quality	 difference	 between	 H.264	 and	 Theora/Vorbis	 is	
very	minimal.	Technically,	H.264	is	cleaner	at	higher	resolutions,	
but you would have to be a video maniac to see the difference.
Ultimately, consumers of video/audio content will determine
which CODEC becomes the format of choice.

To add these video and audio files to your web site you must
convert content you have to either MPEG4 or Vorbis/Theora.

The first step is to create the original digital content. There
are a number of ways in which you can create video on your
computer. If you are running Windows XP, Vista, or 7 then you
need to try Windows Live Movie Maker. The tool is very easy
to use and will allow you to create video from still images and
video shot on your digital flip camera or digital camera. If you
are running a Mac then you can use iMovie to create your mov-
ies. Boasting more options and features than Movie Maker,
iMovie can be used to create professional-looking solutions very
easily.

When you are done creating your movies you will need to con-
vert your files so they can run on your web page. For video, you
need	 to	 convert	 your	 media	 in	 to	 Ogg	 Theora	 format	 or	 H.264	
(MP4).

creating Video in ogg Theora Format
Creating Ogg Theora video is more complicated to do than

creating	H.264/MP4	video	 files.	Fortunately,	 there	 is	a	great	 tool	
that works in FireFox you can use to convert your video.

The first step you will need to take is to go to www.firefogg.org.
On the home page you will see a link that allows you to install the
Firefogg tool into FireFox (Figure 4.10). When you have the tool
installed, Firefogg will present a message telling you that every-
thing is installed and ready to go.

To create an Ogg Theora video you will need to select “Make
Ogg Video” from the Firefogg home page. The first step you are
presented with asks you to browse for a video file on your com-
puter (Figure 4.11).

http://www.firefogg.org

 HTML5 RicH Media FoundaTion 191

Figure 4.10 Firefogg is a
FireFox tool that allows you to
create ogg Theora video files.

Figure 4.11 The Firefogg
conversion tool.

192 HTML5 RicH Media FoundaTion

You can, at this point, choose the “Save Ogg” button to cre-
ate the video file. However, you may want to choose to modify
the video using the six different customization types. The first
set of properties you can modify are the default video settings
(Figure 4.12). You can choose low, medium, and high video
encoding settings.

The second option you have is to choose if you want to start
converting your video at a specific number of seconds into the
movie and before the movie ends (Figure 4.13).

The basic quality options allow you to set high-level video and
audio quality settings (Figure 4.14). You will notice that the audio
setting is listed as Vorbis. This is because Theora video does not
have a default soundtrack. The soundtrack is created using Vorbis
audio and then packaged together into the final Ogg file. Using
the video and audio options gives you additional control over
your content.

The final step is to select “Save Ogg.” You will be asked for a
place to store the video on your computer. The amount of time
it takes to convert the video will depend on how long the video
is. The end result is a fully fledged Ogg Theora video file that you
can use for video playback in FireFox.

Figure 4.12 Preset file settings.

Figure 4.13 You can set the
conversion of the video to start
and finish at specific seconds.

Figure 4.14 Video and audio
quality settings.

 193

194 HTML5 RicH Media FoundaTion

creating Video in H.264 Format
Creating	 H.264-formatted	 video	 is	 relatively	 easy.	 There	 are	

dozens of products on the market that will take almost any video
format and convert it to MPEG4. Examples include CuCuSoft,
MP4 Convertor, and more. For Mac users, it is even easier. Your
copy of iMovie already supports MPEG4 format.

The rule of thumb when it comes to creating MPEG4 is simple:
Can you play the video back on your iPod or iPhone? If you can,
then it’s in MPEG4 format, and you can stick it in your web page.
What, you don’t have an iPod that plays video? Where have you
been? Come join the party.

creating audio That Plays Back through
Your Web Browser

Creating audio that will play back through a web browser
is easier to accomplish than video. Again, with WebKit-based
browsers, if you can hear the audio in an iPod then you have a
good chance of playing the content through Chrome or Safari.
For FireFox you will need to play back the video in Ogg Vorbis
format.

You can use iTunes on your PC or Mac to create MP3 or AAC
audio. iTunes has a neat audio convertor you can use that will
take WMV or WAV audio and convert it to MP3 or AAC. Right-click
on the converted file and select “Open File in Finder” for the Mac
or “Open File in Explorer” for Windows. Ta-da! You have an audio
file you can use.

Creating Ogg Vorbis audio takes a little more effort. The tool I
have found to be the most effective is an open-source tool called
Audacity (Figure 4.15).

Audacity is a complete audio editing tool. The best news is that
it is free. The better news is that you run Audacity on Windows
(98, ME, XP, Vista, and 7), Mac OS X, and Linux. The tool is an
open-source project that should be included with any rich media
designer’s tool chest. Go to www.audacity.org to download
the file you need.

To create an Ogg Vorbis audio file you will need to open an
audio file in Audacity and then select File → Export as Ogg
Vorbis. That’s it. Save the file to your hard drive and you are good
to go.

In addition to creating Ogg Vorbis audio you can export audio
in almost any format from Audacity. It is a great tool to have
installed on your computer.

http://www.audacity.org

 HTML5 RicH Media FoundaTion 195

ensuring That Your Video and audio Play Back
Currently, FireFox and WebKit do not support the same video

playback standards. FireFox supports Theora and WebKit (used
in	 Google’s	 Chrome	 and	 Apple’s	 Safari)	 uses	 H.264.	 Google	 does	
support Theora, too, but you are still left with the issue of juggling
different standards with different browsers. So how do you han-
dle this?

Well, HTML5 has that covered. The VIDEO element allows you
to add nested SOURCE elements, as follows.

<video autoplay controls>
<source src=“sample.mp4”>
<source src=“sample.ogv”>
</video>

Using this technique guarantees your HTML5-compliant web
browser will play back your video.

The same technique can be used with the AUDIO element. The
following shows the AUDIO element with two nested SOURCE
elements pointing to an MP3 audio source and a Vorbis audio file.

<audio autoplay controls>
<source src=“sample.mp3”>
<source src=“sample.ogg”>
</audio>

The VIDEO and AUDIO elements are extremely important
technologies. Do not expect the battle between Ogg Theora/

Figure 4.15 audacity is an
audio editing tool that saves
files in ogg Vorbis audio format.

196 HTML5 RicH Media FoundaTion

Vorbis	and	H.264	to	be	over	quickly.	Take	comfort	in	the	fact	that	
you can support both technologies in your HTML.

Serving Video from Your Servers
There are two ways to deliver audio and video to your web

page: streaming and download.
Streaming is a technique where the audio and video feed is

split into small packets of data and delivered in series of sequen-
tial pieces. The web browser receives the pieces and plays back
the audio or video as a whole. The end result is that the viewer
sees a single, seamless piece.

The download technique requires that a video file is fully
downloaded to your computer before it can be played backed.
The file is not delivered in packets. Technologies such as Adobe’s
Flash Video, MPEG4, and Microsoft’s WMV will allow the media
to start playing before the file is completely downloaded, faking
out the streaming technique.

There are benefits and detriments to both techniques. For
instance, the streaming technique allows you to broadcast live
events, such the 2008 Beijing Olympics. The challenge with
streaming, however, is that you do need a special server to deliver
live media. In contrast, on-demand media can be downloaded
from any web site. On-demand media, however, cannot broad-
cast live events.

Two additional protocols for delivering video over the Internet
are emerging. Apple’s QuickTime Live Streaming and Microsoft
IIS 7 Live Smooth Streaming are very similar technologies that
allow web servers (running the default HTTP protocol) to stream
live and prerecorded content over HTTP, a protocol that previ-
ously only allowed you to deliver on-demand content. Currently,
only Apple’s Live Streaming will work with AUDIO and VIDEO
 elements in HTML5; however, it is likely that Microsoft’s format
will, too, work with HTML5.

What You Have Learned
Video and audio are big news. Sites such as YouTube, Pandora,

and Last.FM are drawing millions of customers every week
because of their massive video and audio libraries. Seeing how
popular rich media is, HTML5 now includes native support with
the VIDEO and AUDIO elements.

Video	 is	 supported	 in	 two	 different	 formats:	 H.264	 and	 Ogg	
Theora. Support is currently fragmented between these two
 formats. Audio is being supported through use of MP3/AAC and

 HTML5 RicH Media FoundaTion 197

Ogg Vorbis. Again, as with video, support for these formats is
fragmented.

Tools, such as Firefogg, Audacity, and iTunes, make it easy to
create video and audio content that you can add to your web site.
Now is the time for you to start creating HTML5 rich media con-
tent and experimenting with the new elements.

The number of people accessing the Internet and demanding
rich media on their computers is only increasing. It may be some
time before a single standard is supported across all browsers. Of
course, as always, the browser that is not supporting the VIDEO
and AUDIO elements is Microsoft’s Internet Explorer. Hopefully
this will change.

ProjeCt 4: CreatinG SVG
LoGoS and CanVaS ChartS
SVG and CANVAS are two tools you can use to add illustrations
to your HTML5 web sites. In this project chapter you are going to
add an SVG logo and a CANVAS-drawn bar chart.

Creating an SVG Logo
First, let’s look at what you are going to create for your logo.

Figure 4.1Proj shows the final page with a logo used as a watermark.
The background image is created as a single SVG file.

Download the files for this project at www.visualizingtheweb.
com. The SVG file is called “logo.svg.” You can, of course, create
the logo by following these steps:
1. Create a new text document and save the file, labeling it “logo.svg.”
2. Open “logo.svg” and enter the following XML to define the

 content as an SVG image.

<?xml version=“1.0” standalone=“yes”?>
<svg version=“1.1”
viewBox=“0.0 0.0 800.0 600.0”
fill=“none”
stroke=“none”
stroke-linecap=“square”
stroke-miterlimit=“10”
xmlns=“http://www.w3.org/2000/svg”
xmlns:xlink=“http://www.w3.org/1999/xlink”>

3. The illustration is created through a path definition in SVG,
as follows.

<path d=“M506 36L498 243L650 306L583 469L490 431L488
476L311 469L316 359L229 323L223 465L46 458L54 251L-98
188L-31 25L62 63L64 18L241 25L236 135L323 171L329 29Z”

4. Fill and outline color are defined by the fill and stroke
 properties as follows.

fill-rule=“nonzero”
fill=“#ff9900”
HTML5. doi: 10.1016/B978-0-240-81328-8.00004-5
© 2010 Elsevier Inc. All rights reserved. 199

stroke=“#ffffff”

http://www.visualizingtheweb.com
http://www.visualizingtheweb.com

200 Project 4: creating SVg LogoS and canVaS chartS

Figure 4.1Proj the orange logo
is an SVg illustration.
 stroke-width=“2.0”

stroke-linejoin=“round”
stroke-linecap=“butt”>
</path>
</svg>

 5. At this point you can save the file. You have your completed
SVG logo (Figure 4.2Proj). Drawing SVG illustrations by writing
out the image coordinates is complicated. An easier solution
is to use a drawing tool. Google’s online Google Docs has an
SVG illustration tool built into the service.

 6. You will need to go to http://docs.google.com and create a
Google account if you do not already have one.

 7. Create a new document (Figure 4.3Proj).

http://docs.google.com

Figure 4.2Proj the SVg logo
by itself.

Figure 4.3Proj a blank
document created in google
docs.

201

202 Project 4: creating SVg LogoS and canVaS chartS

Figure 4.4Proj SVg illustrations
created in google docs.
 8. Select Insert → Illustration to open the illustration window in
Google Docs. The images you now create are all SVG. How cool
is that?

 9. Go ahead and use the illustration tools. In Figure 4.4Proj you
can see SVG text and SVG images have been added.

 10. When you have completed your illustration you can choose
to export the image from Google Docs by selecting Edit →
Download As → SVG. This will export the image as a single SVG
document. You now have your own SVG illustration without
having to install any software.

 11. Add the following IFRAME linking to the SVG document
below the BODY element in your HTML pages.

<iframe src=“logo.svg” name=“myframe” width=“1000”
height=“600” frameborder=“0” allowtransparency=“true”>
</iframe>

 12. Save your documents and preview the page through a web
browser. At this point, you now have an SVG document added
to your web site.

 Project 4: creating SVg LogoS and canVaS chartS 203
inserting a CanVaS-driven dynamic Chart
The second image-generation tool you can use in HTML5 is

CANVAS. The following project will add a dynamically drawn bar
chart to your page. The advantages of using dynamic images, such
as CANVAS, are that you can programmatically dictate the result.
For instance, the chart you will be drawing illustrates growth for
the last four quarters and the projected growth for the next quarter.

You can easily update the chart as your data are going to
be driven from a JavaScript array. There is no need to get out
Photoshop and update a JPEG image of the bar chart. You can
update the code in the web page and you are good to go.

Okay, so let’s get started. You are going to need to download
the files from www.visualizingtheweb.com.
1. Open the file named “news.html.” You are going to add the bar

chart. Add the following CANVAS tag to that section to give the
chart a place on your page.

<article id=“article_two” style=“position: absolute; left:
420px; top: 350px; width: 315px; height: 195px; z-index: 2”>

<h1>What we do</h1>
<p><time datetime=”2010-03-15T10:32:17”>March 15,

2010</time></p>
<H2>2010 Annual Report</H2>
<video controls><source src=‘2010 Report.ogv’></video>
<canvas id=“barChart” width=“600” height=“400”>

</canvas>
</article>

2. It is important to notice that the CANVAS element has an ID
labeled barChart. The barChart ID will be used to link the
JavaScript definition to the CANVAS element. Begin by adding
a new JavaScript element to the page. Place the new JavaScript
element inside of the HEAD element.

<script type=“text/javascript”>

3. The next step is to create a new function that defines the
CANVAS element.

function graph() {
var graphCanvas = document.getElementById(‘barChart’);

4. Ensure that the element is available within the DOM.

if (graphCanvas && graphCanvas.getContext) {

5. Open a two-dimensional context within the canvas.

var context = graphCanvas.getContext(‘2d’);

6. Draw the bar chart.

drawBarChart(context, data, 50, 100, (graphCanvas.
height - 20), 50);}

http://www.visualizingtheweb.com

204 Project 4: creating SVg LogoS and canVaS chartS
 7. The following array contains the data you will use to populate
the final bar chart.

var data = new Array(5);
data[0] = “First Quarter,200”;
data[1] = “Second Quarter,120”;
data[2] = “Third Quarter,80”;
data[3] = “Fourth Quarter,330”;
data[4] = “Projected Growth,345”;}

 8. The line of code draws the bar chart with the specified width,
height, and starting position.

function drawBarChart(context, data, startX, barWidth,
chartHeight, markDataIncrementsIn) {

 9. The following draws the X and Y axes onto your chart.

context.lineWidth = “1.0”;
var startY = 380;
drawLine(context, startX, startY, startX, 30);
drawLine(context, startX, startY, 570, startY);
context.lineWidth = "0.0”;
var maxValue = 0;
for (var i=0; i<data.length; i++) {

 10. The following will extract the data from the array.

var values = data[i].split(“,”);
var name = values[0];
var height = parseInt(values[1]);
if (parseInt(height) > parseInt(maxValue)) maxValue = height;

 11. The date is now written to the chart.

context.fillStyle = “gray”;
drawRectangle(context, startX + (i * barWidth) + i,

(chartHeight - height), barWidth, height, true);

 12. The following will add the column markers on the left side of
the chart.

context.textAlign = “left”;
context.fillStyle = “#000”;
context.fillText(name, startX + (i * barWidth) + i,

chartHeight + 10, 200);}

 13. Data markers are added to the Y axis.

var numMarkers = Math.ceil(maxValue/
markDataIncrementsIn);

context.textAlign = “right”;
context.fillStyle = “#000”;
var markerValue = 0;
for (var i=0; i<numMarkers; i++) {

context.fillText(markerValue, (startX - 5),
(chartHeight - markerValue), 50);

markerValue += markDataIncrementsIn;
}}

 Project 4: creating SVg LogoS and canVaS chartS 205

Figure 4.5Proj the canVaS
element is used to create the
bar chart without needing a
traditional image format such
as jPeg or Png.
 14. The following JavaScript will draw a line on the context start
and end points.

function drawLine(contextO, startx, starty, endx,
endy) {

contextO.beginPath();
contextO.moveTo(startx, starty);
contextO.lineTo(endx, endy);
contextO.closePath();
contextO.stroke();}

 15. The following draws a rectangle around the charts.

function drawRectangle(contextO, x, y, w, h, fill) {
contextO.beginPath();
contextO.rect(x, y, w, h);
contextO.closePath();
contextO.stroke();
if (fill) contextO.fill();

}
</script>

 16. An onLoad event is needed in the BODY element to load the
CANVAS JavaScript into the page.

<body onLoad=“graph();”>

 17. Save your document and view your CANVAS-driven chart
(Figure 4.5Proj). Try changing the data values in the array.
You will see that the chart updates automatically.

206 Project 4: creating SVg LogoS and canVaS chartS
Summary
SVG and CANVAS are technologies that have been a long

time coming for HTML. Using scripting languages, such as
XML and JavaScript, you can now programmatically create the
 illustrations you want on your page. You are not limited to the
forced restrictions a traditional pixel-based image, such as JPEG,
places on you.

In this project you have successfully added an SVG image to
your web site. In addition, you have seen how you can create your
own SVG illustrations using online cloud services such as Google
Docs. You also created a bar chart constructed using the CANVAS
object. In the next section of the book you are going to build onto
your knowledge of JavaScript and add complex interactivity with
Ajax libraries.

HTML5. doi: 10.1016/B978-0-240-81328-8.00010-0
© 2010 Elsevier Inc. All rights reserved. 209

HtML5 JavaScript ModeL

CSS, SVG, and Video are all great improvements to HTML5. The
role for HTML5, however, is not to simply add eye-candy, but to
enable developers to create applications in web browsers that
are equal in performance to desktop applications. To accom-
plish this, you need a powerful development language that gives
developers the ability to create sophisticated solutions. The
answer to this is JavaScript, the world’s most popular program-
ming language.

Currently, the belief is that web applications simply are not as
powerful as desktop applications. The reason for this is not due
to JavaScript, but the engines inside of your web browser that
process JavaScript. The faster a script can be processed, the more
sophisticated your applications can become.

During 2009, web browser companies played a game of leap
frog trying to reset speed benchmarks. FireFox, Safari, Google,
and Opera played constantly. Toward the end of the year it
appeared that the only company that would be left in the dark
was Microsoft with the Internet Explorer 8 browser. At the fall
2009 PDC presentation Microsoft showed off an early devel-
oper version of IE9 running standard JavaScript tests (such as
the SunSpider test at http://www2.webkit.org/perf/sunspider-0.9/
sunspider.html) that placed its JavaScript engine on par with its
competitors (see Figure 5.1).

The goal of this article is to review JavaScript, including how
it is used in HTML5, how you can build upon the work of others
through Ajax, and how to implement popular Ajax libraries into
your work.

http://www2.webkit.org/perf/sunspider-0.9/sunspider.html
http://www2.webkit.org/perf/sunspider-0.9/sunspider.html

210 HTML5 JavaScripT ModeL

Understanding JavaScript
The goal of this article is to show how JavaScript can be used

with HTML5 by a designer to give exceptional visual control to
the layout of your web page. In addition, HTML5 is expanding to
support application programming interfaces (APIs) that enable
complex system integration inside your web pages. The new
APIs, such as Web Workers, Geolocation, and local data storage,
are complex and require sophisticated use of JavaScript to make
them work.

JavaScript is not a new technology. The roots of JavaScript
go back to 1993 when Netscape Communications included a
scripting technology called LiveScript in their web browser.
Incorporating even a simple programming language that enables
interactivity in the web browser became extremely popular.

The current release of JavaScript has dramatically matured
the original LiveScript language. Unlike desktop applications
that run code optimized for an operating system, JavaScript
must be interpreted within a virtual machine translator run-
ning inside of the web browser. This process inherently forces
JavaScript solutions to run more slowly than desktop applica-
tions. To compensate for this, Google uses a technology called

Figure 5.1 ie9 posts dramatic
improvements in JavaScript
processing speeds over old
versions of internet explorer.

 HTML5 JavaScripT ModeL 211

V8 that dramatically improves the processing of JavaScript code.
Competitors Mozilla, Apple, and Microsoft also have their own
JavaScript engines that compete closely with Google’s V8. Their
engines—Rhino (FireFox) and SquirrelFish (Safari)—bring web
applications extremely close to desktop speed. Sorry, Microsoft
does not have a cool name for the JavaScript engine; they just
call it JS—not very sexy.

Today’s JavaScript allows you to build desktop-like applica-
tions that run inside of your web browsers. Google’s Wave solu-
tion is an excellent example of a massively complex application
that is run using JavaScript (Figure 5.2).

JavaScript is the most popular development language in the
world, with millions of users. The technology is not too complex
to learn; indeed, if you have any experience with C#, Java, or
ActionScript, then you will likely learn JavaScript quickly.

JavaScript is so popular that it has its own standard. Ecma
International is an industry association founded in 1961 and ded-
icated to the standardization of information and communication
technology (ICT) and consumer electronics (CE). The standard-
ized version of JavaScript is managed by Ecma. The full standard
name is ECMA-262, but is often referred to as EcmaScript. ECMA-
262 as a standard is well supported by all web browsers, including
Microsoft’s Internet Explorer.

Figure 5.2 complex JavaScript
powers Google’s Wave.

212 HTML5 JavaScripT ModeL

JavaScript as programming Language
Fortunately, as programming languages go, JavaScript is

not too complicated to learn. By the time you get to the end of
this section you will understand what is needed to write basic
programs.

There are two ways in which you can insert JavaScript into
your web page:
•	 Insert	your	JavaScript	directly	into	your	web	page	between	two	

SCRIPT elements.
•	 Add	your	JavaScript	to	a	text	file	and	link	the	web	page	to	the	

text file.
To get started, we will use SCRIPT elements on a page to

separate the code. Later, you will create separate files for your
JavaScript. Following is a simple JavaScript file.

<html>
<body>
<script type=“text/javascript”>
document.write(“Welcome to JavaScript”);
</script>
</body>
</html>

This is a normal web page with opening and closing HTML
elements. Within the BODY element you can see the opening and
closing SCRIPT element. You place your JavaScript code within
the SCRIPT element.

The SCRIPT element will default to JavaScript as a scripting
language. There is, however, more than one scripting language
you can use. A popular alternative to JavaScript is Microsoft’s
VBScript, a version of the VB language in script format. VBScript
is natively supported by Microsoft’s Internet Explorer. Other web
browsers can support VBScript through a plug-in.

This next example JavaScript has one line of code:

document.write(“Welcome to JavaScript”);

The document is referencing an object. In this case, the doc-
ument object is the web page itself. The write script is a prop-
erty of the document object that allows you to add code. Figure
5.3 shows what your page will look like when you run this
script.

JavaScript can also be placed inside of the HEAD element of
a page and executed by an event action. Event actions are driven
when something happens. For instance, when a web page loads,
you can add an event action called onLoad (see Figure 5.4). The
following is an example of inserting JavaScript into the HEAD
 element on the page.

 HTML5 JavaScripT ModeL 213

<html>
<head>
<script type=“text/javascript”>
function popUpAlert()
{
alert(“Welcome to JavaScript”);
}
</script>
</head>
<body onLoad=“popUpAlert ()”>
</body>
</html>

The JavaScript runs a function. A function is a block of code
that executes when it is called by another code. In this case, the
other code is an onLoad command in the BODY element.

As you might imagine, you can mix up code in the HEAD
 element and in the main page as shown in the following
example.

Figure 5.3 The text on the
web page is created using
JavaScript.

Figure 5.4 You can force a
JavaScript alert box to pop up
when you load a web page.

214 HTML5 JavaScripT ModeL

<html>
<head>
<script type=“text/javascript”>
function popUpAlert()
{
alert(“Welcome to JavaScript”);
}
</script>
</head>
<body>
<script type=“text/javascript”>
document.write(“<H1>Welcome to JavaScript</H1>”);
</script>
Click me
</body>

You will see in the above JavaScript that there is the same
function called popUpAlert(). What is different is that the event
to call that script has been moved into the main content of the
web page. An ANCHOR element is now controlling when the
JavaScript function is executed:

Click me

The ANCHOR element cannot be used with the onLoad event,
so it is using an onClick event to run the popUpAlert() function.
This JavaScript will only run when you click on the link.

Above the ANCHOR element is a JavaScript that dynamically
adds content to the page, as follows.

<script type=“text/javascript”>
document.write(“<H1>Welcome to JavaScript</H1>”);
</script>

In addition to adding dynamic text, the JavaScript also inserts
HTML H1 elements. Figure 5.5 shows how this all looks in your
web page.

A third way to run your scripts is through an external file.
Keeping your files in an external file allows you to share the file
with other web pages and keep your HTML cleaner.

The external file you will use is really just a text file. Open your
favorite text editor such as Notepad, paste the JavaScript func-
tion into the file, and save it, naming the file “popup.js.” Paste the
 following JavaScript into your new JS file.

function popUpAlert()
{
alert(“Welcome to JavaScript”);
}

You will notice that the JavaScript does not have a leading and
closing SCRIPT element. You do not need one when you move
your code to an external file. The “js” extension identifies the
 document as a JavaScript file (see Figure 5.6).

 HTML5 JavaScripT ModeL 215

Figure 5.5 JavaScript can be
placed within the Head and
BodY elements.

216 HTML5 JavaScripT ModeL

Now you can link the SCRIPT element in your web file to the
JS file:

<script type=“text/javascript” src=“popup.js”>
</script>

You will see that your JavaScript runs just fine in your web
browser.

Figure 5.6 You can add your
JavaScript to externally linked
files.

 HTML5 JavaScripT ModeL 217

Working with variables
JavaScript is a programming language and, as part of this,

comes loaded with ways in which you can create data. A simple
way to create data is through variables. A variable is a declared
object that contains data. For instance, the following is a variable
called color with the value of red:

Var color=“red”

Now, you can write a JavaScript where you are referencing the
variable color to substitute the value red.

<script type=“text/javascript”>
document.write(“<p>My favorite color is “+color+”

</p>”);
</script>

The variable named color is dynamically added to the con-
tent on the page.

Using Math in Your Scripts
Variables can also have mathematical values (see Figure 5.7).

For instance, the following two variables can be used to create the
value of a third variable.

<script type=“text/javascript”>
var myFirstNumber=4;
var mySecondNumber=3;
var myThirdNumber=myFirstNumber*mySecondNumber;
</script> Figure 5.7 You can

mathematically control the
values of variables.

218 HTML5 JavaScripT ModeL

You can see that the first two variables are multiplied (the * is
the multiplier value) to generate the third variable. The following
JavaScript presents the final value in the web page:

document.write(“<p>My favorite number is
“+myThirdNumber+”</p>”);

There are seven arithmetic operators you can use in JavaScript:
•	 +	 addition
•	 -	 subtraction
•	 *	 multiplication
•	 /	 division
•	 %	 modulus
•	 ++	 increment
•	 --	 decrement

The following example uses all seven operators to demon-
strate how you can use them in your code (see also Figure 5.8).

<html>
<head>
<script type=“text/javascript”>
var varNumber=7;
var varAddition=varNumber+3;
var varSubtraction=varNumber-3;
var varMultiplication=varNumber*3;
var varDivision=varNumber/3;
var varModulus=varNumber%3;
var varIncrement=++varNumber;
var varDecrement=--varNumber;
</script>
</head>

Figure 5.8 JavaScript has
seven different arithmetic
operators you can use to
control the value of content
dynamically.

 HTML5 JavaScripT ModeL 219

<body >
<script type=“text/javascript”>
document.write(“<p>7+3=“+varAddition+”</p>”);
document.write(“<p>7-3=“+varSubtraction+”</p>”);
document.write(“<p>7*3=“+varMultiplication+” </p>”);
document.write(“<p>7/3=“+varDivision+”</p>”);
document.write(“<p>7%3=“+varModulus+”</p>”);
document.write(“<p>Increment 7=“+varIncrement+” </p>”);
document.write(“<p>Decrement 7=“+varDecrement+” </p>”);
</script>
</body>

assessing values Using operators
In addition to mathematical operators, JavaScript also has com-

parison operators that allow you to take two or more values and
compare the differences. There are seven comparison operators:
•	 ==	 is	equal	to
•	 ===	 is	exactly	equal	to
•	 !=	 is	not	equal	to
•	 >	 is	greater	than
•	 <	 is	less	than
•	 >=	 is	greater	than	or	equal	to
•	 <=	 is	less	than	or	equal	to

Comparison operators become extremely valuable when you
start to write functions that have potentially two or more outcomes.

controlling outcomes with if/else
and Switch Statements

Common to almost all programming languages is the use of
if/else	 statements.	 Essentially,	 the	 if/else	 statement	 looks	 for	 a	
condition and, depending on the value, will execute a statement.
Take for instance the following code.

<script type=“text/javascript”>
var myColor=“red”;
if (myColor==“red”)
{
document.write(“The correct color”);
}

</script>

A variable called myColor is created with a string value of red.
The script then uses an if statement to look for a value using the
comparison	 operator,	 ==.	 If	 the	 exact	 value	 is	 met	 then	 the	 text	
“The correct color” is printed on the page.

If the variable myColor is changed to blue, then the if state-
ment will not run. To help show if an alternative option is avail-

220 HTML5 JavaScripT ModeL

able you can use an else statement to show a second option, as
follows.

<script type=“text/javascript”>
var myColor=“blue”;
if (myColor==“red”)
{

document.write(“The correct color”);
}

else (myColor==“red”)
{

document.write(“This is not the correct color”);
}

</script>

The	 if/else	statement	can	have	a	 third	condition	set	using	 the	
else/if	statement.	For	instance,	the	following	allows	you	to	have	two	
correct answers (red and blue), but when the value in the myColor
is changed to any other value, then a third result is printed.

<script type=“text/javascript”>
var myColor=“green”;
if (myColor==“red”)
{
document.write(“The correct color”);
}

else if (myColor==“blue”)
{
document.write(“This is a good color”);
}

else
{
document.write(“The wrong color was chosen”);
}

</script>

If there is a chance for you to have three or more valid choices
then you will want to use switch statements to allow you to match
your choice from a list of choices. Let’s start by creating a variable
that we can match different choices to:

var myColor=“green”;

The switch statement can now look for the condition of the
variable myColor and match it against possible answers. The fol-
lowing switch statement creates three different answers depend-
ing whether the variable is green, red, or blue. A final, default
value will run if none of the conditions are met.

switch (myColor)
{
case “red”:
document.write(“You picked red”);
break;

 HTML5 JavaScripT ModeL 221

case “green”:
document.write(“You picked green”);
break;

case “blue”:
document.write(“You picked blue”);
break;

default:
document.write(“You did not make a valid choice”);

}

When you run this script the case statement that matches
the string value green will print “You picked green” in the web
page. Try changing the myColor variable value to red and blue to
change the value printed to the page.

JavaScript supports many other tools you can use to control
content. For instance, you can create a loop statement that will
look through a list to match the correct results. The following uses
an array with a for loop to print the results in the web page (see
Figure 5.9).

<html>
<body>
<script type=“text/javascript”>
var mycolor;
var mycolors = new Array();
mycolors[0] = “Red”;
mycolors[1] = “Green”;
mycolors[2] = “Blue”;
mycolors[3] = “Yellow”;
mycolors[4] = “Orange”;
for (mycolor in mycolors)

Figure 5.9 a for statement
loops through an array to print
the results on the screen.

222 HTML5 JavaScripT ModeL

{
document.write(mycolors[mycolor] + “
”);
}

</script>
</body>
</html>

Specific objects You can Use in JavaScript
JavaScript can be extended further inside of the web browser

through the use of objects. JavaScript is an object-oriented
programming (OOP) language in the same way that languages
such	as	Java,	C++,	and	C#	are	OOP.	This	means	you	can	create	
and use objects. By default, web browsers support the follow-
ing objects:
•	 String—this	is	text
•	 Date—allows	you	to	use	date	and	time
•	 Array—allows	you	to	build	a	structured	collection	of	data
•	 Boolean—true	or	false
•	 Math—allows	you	to	use	mathematical	operators
•	 RegExp—allows	you	to	use	regular	expressions	to	define	a	pat-

tern, such as social security number or phone number
Using these objects enables you to create complex solutions.

Do the final solutions meet the same demands of desktop appli-
cations? Five years ago I would have said no; today, it is extremely
close and tomorrow’s solutions will certainly outpace what you
can do on the desktop.

developing JavaScript for HtML5
New APIs in HTML5 can be programmatically interfaced with

JavaScript. There are three APIs that stand out:
•	 Web	Workers
•	 LocalStorage
•	 Geolocation-aware	systems

Using JavaScript, you can interface with these new APIs to cre-
ate new, Web-centric solutions.

Using Web Workers
JavaScript is a scripting solution that, when runs, will

execute the code line by line. Many other development lan-
guages, such as C# and Java, can have multiple processes run-
ning simultaneously. Web Workers is a technology that frees
JavaScript from sequential execution. You can now run multiple
scripts at once.

 HTML5 JavaScripT ModeL 223

This is easily done in JavaScript. In the following script you
will declare a new variable, called myWebWorker, as a new Web
Workers file:

var myWebWorker = new Worker(“webWorker.js”);

The example is loading a second script. In the JavaScript JS file
is a second script that triggers another, duplicate Web Workers
file to run. The loop forces two programs to run at once. The
JavaScript for webWorker.js is as follows.

var results = [];
function resultReceiver(event) {
results.push(parseInt(event.data));
if (results.length == 2) {
postMessage(results[0] + results[1]);
}

}
function errorReceiver(event) {
throw event.data;

}
onmessage = function(event) {
var n = parseInt(event.data);
if (n == 0 || n == 1) {
postMessage(n);
return;

}
for (var i = 1; i <= 2; i++) {
var myWebWorker = new Worker(“webWorker.js”);
myWebWorker.onmessage = resultReceiver;
myWebWorker.onerror = errorReceiver;
myWebWorker.postMessage(n - i);

}
}

The final for statement triggers the same webWorker.js file to
reload. This forces the script to run multiple times.

In your main HTML page you will add the following HTML
and JavaScript to load the Web Workers file.

<html>
<title>Test threads fibonacci</title>
<body>
<div id=“result”></div>
<script language=“javascript”>
var myWebWorker = new Worker(“webWorker.js”);
myWebWorker.onmessage = function(event) {
document.getElementById(“result”).textContent =

event.data;
dump(“Got: “ + event.data + ”\n”);

};
myWebWorker.onerror = function(event) {

224 HTML5 JavaScripT ModeL

dump(“Web Worker error: “ + event.data + ”\n”);
throw event.data;

};
myWebWorker.postMessage(“Success, Web Workers are

working”);
</script>
</body>

</html>

Enabling multiple JavaScripts to execute simultaneous is
essential for complex applications. There is a quick test you
can take to see massive numbers of JavaScript programs run-
ning. Go to www.Gmail.com and log into Google’s Web-based
email service. The service will run a simple version of the site if
you visit Gmail with IE7 or earlier. If you are using FireFox 3.6 or
Google’s Chrome then you are presented with a jet-fueled alter-
native loaded with JavaScript. The high-performance alternative
requires that the browser can support technologies such as Web
Workers to process scripts simultaneously.

Storing data with LocalStorage
Key to applications is the ability to store data. In the past you

have been able to do this through using complex cookies or Ajax
commands that leverage the ability to send data back to a data-
base. The ability to store data locally in your web browser is dra-
matically improved with the implementation of LocalStorage.

LocalStorage is essentially the ability to have an SQL-
like database running in your web browser. An example of
LocalStorage being used is Google’s version of Gmail for the
iPhone. Using LocalStorage, you can view and send email with
Gmail without having a Web connection. The email is resyn-
chronized with the mail servers when a new network connec-
tion is established.

You access LocalStorage in your JavaScript by using the
GlobalStorage object. Figure 5.10 demonstrates LocalStorage
being used.

The first step for the example in Figure 5.10 is to create an area
where you can type some text. You are going to use standard-form
controls.

<textarea id=“text” class=“freetext”>
</textarea> Item name <input id=“item_name” type=“text”

value=“new item”/>

An event is going to be added to the INPUT submit button to
trigger the JavaScript to run:

<input onClick=“writeLocal();” type=“button”
value=“Save”/>

http://www.Gmail.com

 HTML5 JavaScripT ModeL 225

The LocalStorage is going to post the data stored in the
browser to the web page. An area with the ID items is defined.

<div id=“items”>
</div>

The first function run in your JavaScript is to define that the
content on the page is going to be associated with the web site
your page is being hosted on.

function $(id) { return document.getElementById (id); }
var host = location.hostname;
var myLocalStorage = globalStorage[host];

The second function allows you to store data using the
LocalStorage API.

function writeLocal() {
var data = $(‘text’).value;
var itemName = $(‘item_name’).value;
myLocalStorage.setItem(itemName, data);
updateItemsList();

}

As with any SQL database you need to be able to delete
entries. The following function allows you to delete items using
the removeItem property.

function deleteLocal(itemName) {
myLocalStorage.removeItem(itemName);
updateItemsList();

}

The following sample shows you the whole program with
some simple CSS styling for presentation.

<html><head><title>HTML5 Web Storage / localStorage</
title></head>

<style>

Figure 5.10 data can be stored
locally in web browsers using
the LocalStorage object.

226 HTML5 JavaScripT ModeL

.freetext {
width: 100%;height: 40%;overflow: hidden;

background: #FFE;font-family: sans-serif;font-size: 14pt;-
moz-border-radius: 10px;-webkit-border-radius: 10px;

}
li {
padding: 4px;width: 400px;

}
input {
margin: 2px;border-style: solid;-moz-border-radius:

10px;-webkit-border-radius: 10px;color: #666;padding: 2px;
}
body {
font-family: “Lucida Sans”, “Lucida Sans Regular”,

“Lucida Grande”, “Lucida Sans Unicode”, Geneva, Verdana,
sans-serif;color: #FF0000;font-size: medium;

}
</style>
<body><textarea id=“text” class=“freetext ”> </

textarea> Item name <input id=“item_name” type=“text”
value=“new item”/><input onClick= “writeLocal();”
type=“button” value=“Save”/> <div id=“items”></div>

<script>
function $(id) { return document.getElementById(id); }
var host = location.hostname;
var myLocalStorage = globalStorage[host];
function writeLocal() {
var data = $(‘text’).value;
var itemName = $(‘item_name’).value;
myLocalStorage.setItem(itemName, data);
updateItemsList();

}
function deleteLocal(itemName) {
myLocalStorage.removeItem(itemName);
updateItemsList();

}
function readLocal(itemName) {
$(‘item_name’).value=itemName;
$(‘text’).value=myLocalStorage.getItem(itemName);

}
function updateItemsList() {
var items = myLocalStorage.length
// list items
var s = ‘<h2>Items for ‘+host+’</h2>’;
s+= ‘’;
for (var i=0;i<items;i++) {
var itemName = myLocalStorage.key(i);
s+= ‘’+
‘<div style=“float:right;”>’+
‘<input type=“button” value=“Load” onClick=

“readLocal(\‘‘+itemName+’\’);”/‘+’> ’+

 HTML5 JavaScripT ModeL 227

‘<input type=“button” value=“Delete” onClick=“dele
teLocal(\‘‘+itemName+’\’);”/‘+’> ’+

‘</div>’+
‘’+itemName+‘’+
‘’;

}
$(‘items’).innerHTML = s+‘’;
}

window.onLoad = function() {
updateItemsList();
$(‘text’).value=[

‘Quick and dirty Web Storage sample:’,‘’,
‘1) Write some text’,
‘2) Give it some name’,
‘3) Click Save button’,‘’,
‘Data is stored and retrieved using Web Storage

(no cookies and no server side).’].join(‘\n’);
}
</script></body></html>

As you can see, the implementation of LocalStorage allows
you to store data without using cookies from a server-side
database.

controlling Geolocation devices with JavaScript
There is no doubt that the tech world is going mobile. Devices

now need to know where they are geographically. In prepara-
tion for this, HTML5 includes support for geolocation (see Figure
5.11). The iPhone and Android phones are already geolocation
enabled.

The following example uses Google Map’s service and the
browser’s Geolocation API to tell you where you are located. The
first step is to load the Map services.

<script src=“http://maps.google.com/maps?file=api &
;v=2&sensor=false&key=ABQIAAAAiUzO1s6QWHuyzxx-
JVN7ABSUL8-Cfeleqd6F6deqY-Cw1iTxhxQkovZkaxsxgKCdn1OCYaq7Ub
z3SQ” type=“text/javascript”></script>

The Google Map services are publicly accessible. Now you
need to start writing JavaScript. The first step is to define a series
of variables that you can use in your code.

var map;
var mapCenter
var geocoder;
var fakeLatitude;
var fakeLongitude;

228 HTML5 JavaScripT ModeL

With your JavaScript variables defined, you can create the
first function that initializes the geolocation services in your web
browser.

function initialize()
{

if (navigator.geolocation)
{
navigator.geolocation.getCurrentPosition

(function (position) {
mapServiceProvider(position.coords.

latitude,position.coords.longitude);
},

}
else
{
alert(“I’m sorry, but geolocation services are not

supported by your browser or you do not have a GPS device
in your computer. I will use a sample location to produce
the map instead.”);

fakeLatitude = 49.273677;
fakeLongitude = -123.114420;
mapServiceProvider(fakeLatitude, fakeLongitude);
}

}

Figure 5.11 Web browsers can
now know where they are using
the Geolocation api.

 HTML5 JavaScripT ModeL 229

The next function instructs the geolocation services to use the
Google Map service.

function mapServiceProvider(latitude,longitude)
{

mapThisGoogle(latitude,longitude);
}
function mapThisGoogle(latitude,longitude)
{

var mapCenter = new GLatLng(latitude, longitude);
map = new GMap2(document.getElementById (“map”));
map.setCenter(mapCenter, 15);
map.addOverlay(new GMarker(mapCenter));
geocoder = new GClientGeocoder();
geocoder.getLocations(latitude+‘,’+longitude,

addAddressToMap);
}

The final code completes the mapping.

function addAddressToMap(response)
{

if (!response || response.Status.code != 200) {
alert(“Sorry, we were unable to geocode that

address”);
} else {

place = response.Placemark[0];
$(‘#address’).html(‘Your address: ’+place.

address);
}

}
window.location.querystring = (function(){

var collection = {};
var querystring = window.location.search;
if (!querystring) {

return{toString: function(){return “”; }};
}
querystring = decodeURI(querystring.substring(1));
var pairs = querystring.split(“&”);
for (var i = 0; i < pairs.length; i++) {

if (!pairs[i]) {
continue;

}
var seperatorPosition = pairs[i].indexOf (“=”);
if (seperatorPosition == -1) {

collection[pairs[i]] = “”;
}
else {

collection[pairs[i].substring(0,
seperatorPosition)]

= pairs[i].substr(seperatorPosition + 1);
}

}

230 HTML5 JavaScripT ModeL

collection.toString = function() {
return “?” + querystring;

};
return collection;

})();

The final result is that you can use geolocation to determine
where you are using just your web browser. This is very useful
in mobile web browsers where you can link map services to
 geographically based tools.

integrating JavaScript with HtML5
It will come as no surprise to find out that JavaScript is tightly

integrated with all elements of HTML5. This is clearly seen
with the use of the CANVAS element. By itself, the CANVAS ele-
ment cannot do much. It is the use of JavaScript that allows it to
become fully interactive.

The following JavaScript example demonstrates how you can
use JavaScript, CANVAS, and a little CSS to create a simple game
where you can control a crowd of people. Called “Crowd Control,”
the goal of this simple game is to chase the people on the screen.
What you will find is that each person on the screen will run away
from your cursor as you move toward it.

The first step is to create a basic HTML5 page with some sim-
ple CSS to control the color of the page. The following will do.

<!DOCTYPE HTML> <html> <head> <title>Canvas Example -
Crowd Control</title>

<style type=“text/css”>
body{

margin: 0;
padding: 0;
overflow: hidden;
background: yellow;
color: white;
text-align: right;
font-family: Arial, Helvetica, sans-serif;
font-size: 0.8em;

}
</style>
</head>
<body>

</body>
</html>

In-between the BODY elements you will need to add the
 following CANVAS element. Notice that the CANVAS ele-
ment has the ID crowdControl. You will link to this ID using
JavaScript.

 HTML5 JavaScripT ModeL 231

<canvas id=“crowdControl”></canvas>

Following this you will start your JavaScript. The first action is
to define the contextual structure of the CANVAS element.

<script type=“text/javascript”>
var context = document.getElementById

(‘crowdControl’).getContext(‘2d’);
var mousex=0,mousey=0;

The crowdControl JavaScript will add copies of a PNG file
onto the screen. You will want to create a new image object vari-
able that can then point to the PNG file.

var imagine=new Image();
imagine.src=“people.png”;

Now you can start building your functions. The function will
declare where on the page the crowd can move.

function crowd(){
this.x=Math.random()*context.canvas.width;
this.y=Math.random()*context.canvas.height;
this.vx=0;
this.vy=0;
this.move=crowd_move;
this.draw=crowd_draw;

}
function crowd_move(){

this.x+=this.vx;
this.y+=this.vy;
this.vx*=0.9;
this.vy*=0.9;
this.vx+=(Math.random()-0.5) *0.1;
this.vy+=(Math.random()-0.5) *0.1;
this.x=(this.x*500+context.canvas.width/2)/501;
this.y=(this.y*500+context.canvas.height/2)/501;

}

Next, let’s add the JavaScript that will actually draw the crowd.

function crowd_draw(){
context.save();
context.beginPath();
context.translate(this.x,this.y)
context.rotate(angle(this.vx,this.vy));
context.drawImage(imagine,-10,-5);
context.fillStyle = ‘white’;
context.fill();
context.restore();

}

The next two functions will allow your mouse to push the peo-
ple around the screen and allow you to interact with them.

232 HTML5 JavaScripT ModeL

var people=new Array();
function begin(){

for(var i=0;i<100;i++){
var temp=new crowd();
people.push(temp);

}
}
function work(){

var x;
context.save();
context.beginPath();
context.fillStyle = ‘yellow’;
context.strokeStyle =‘white’;
context.rect(0,0,context.canvas.width,context.

canvas.height);
context.fill();
context.stroke();
context.restore();
for(x in people){

var y;
for(y in people){

if(y!=x){
var dx=people[y].x-people[x].x;
var dy=people[y].y-people[x].y;
var d=Math.sqrt(dx*dx+dy*dy);
if(d<40){

people[x].vx+=20* (-dx/(d*d));
people[x].vy+=20* (-dy/(d*d));

}else if(d<100){
people[x].vx+=0.07* (dx/d);
people[x].vy+=0.07* (dy/d);

}
}

}
var dx=mousex-people[x].x;
var dy=mousey-people[x].y;
var d=Math.sqrt(dx*dx+dy*dy);
if(d<100){

people[x].vx+=1* (-dx/(d));
people[x].vy+=1* (-dy/(d));

}
people[x].move();
people[x].draw();

}
}

The final functions set the size of the CANVAS element on the
screen.

function mmouse(event) {
mousex=event.pageX;
mousey=event.pageY;

 HTML5 JavaScripT ModeL 233

}
context.canvas.onmousemove = mmouse;
function resize_context(){

context.canvas.width=window.innerWidth;
context.canvas.height=window.innerHeight;

}
window.onresize=resize_context;
onLoad=resize_context();
onLoad=begin();
setInterval(work,10);
</script>

The final result is shown in Figure 5.12.
JavaScript is central to adding interaction to the CANVAS ele-

ment. This is where the root power of JavaScript can be found—
JavaScript allows you to interact with any HTML5 element on the
screen, whether it is HTML, SVG, CSS, or CANVAS. This gives you
great control.

taking JavaScript to the next
Level with ajax

The good news is that there are a lot of tools that break down
the barrier to complex development with JavaScript. You can
download JavaScript libraries of code that come prebuilt with
functionality such as animation, form validation controls, and data

Figure 5.12 The caNvaS
element relies heavily on
JavaScript to add interactivity.

234 HTML5 JavaScripT ModeL

manipulation. These libraries are called Ajax libraries. Originally,
called AJAX (Asynchronous JavaScript and XML) the term has now
been changed to Ajax (note the lowercase letters) to allow support
for a broader range of technologies beyond just XML.

Using ajax in Your Work
At the core, Ajax is a set of well-written JavaScript programs

that you can interact with. Each Ajax library has slightly differ-
ent ways in which you can use it. The following example demon-
strates how you can use the most popular Ajax library, jQuery, in
your web site.

There are hundreds of different Ajax libraries, but jQuery is
the one that is stepping above the crowd. The library itself is
robust and will work with all popular web browsers, including
Microsoft’s Internet Explorer. The popularity of jQuery is so great
that Microsoft is now supporting jQuery as their default Ajax tool
in ASP.NET. This means any ASP.NET solution can integrate with
the jQuery Ajax library seamlessly.

To get jQuery you need to go to www.jquery.com, as shown in
Figure 5.13.Figure 5.13 jQuery can be

downloaded at www.jquery.com.

http://www.jQuery.com
http://www.jquery.com

 HTML5 JavaScripT ModeL 235

You can either download the latest jQuery JavaScript library
or simply connect to it over the Internet. The following example
will connect jQuery from the Web. Start by creating an empty web
page, as follows.

<!DOCTYPE html>
<html lang=“en”>
<head>
1.1 </head>
1.2 <body>
1.3 </body>
1.4 </html>
In the BODY section of the page, let’s add some

content.
<section id=“container”>
<article class=“article”>

<h1>A Christmas Carol</h1>
<p class=“thebody”>Marley was dead: to begin with.

There is no doubt whatever about that. The register of
his burial was signed by the clergyman, the clerk, the
undertaker, and the chief mourner. Scrooge signed it. And
Scrooge’s name was good upon ‘Change, for anything he
chose to put his hand to.
</p>

<ul class=“actions”>

</article>
<article class=“article”>

<h1>David Copperfield</h1>
<p class=“thebody”>Whether I shall turn out to

be the hero of my own life, or whether that station
will be held by anybody else, these pages must show. To
begin my life with the beginning of my life, I record
that I was born (as I have been informed and believe) on
a Friday, at twelve o’clock at night. It was remarked
that the clock began to strike, and I began to cry,
simultaneously.
</p>

<ul class=“actions”>

</article>
</section>

When you preview this page you will see that there is no
formatting or interaction. What you have is a list of Charles
Dickens’ books followed by the opening paragraph. This
amount of content will get difficult to read if you have lots of
entries to skim through. Using a little jQuery you can insert a
show/hide	action	to	show	and	hide	the	opening	paragraph	(see	
Figure 5.14).

236 HTML5 JavaScripT ModeL

In the HEAD section of the page, insert the following code to
call and use the jQuery library.

<script src=“http://jquery.com/src/jquery-latest.js”>
</script>

The next JavaScript interacts with the jQuery library to create
simple interaction.

<script> //<![CDATA[
// When the page is ready
$(document).ready(function(){
$(“.article .thebody”).hide();
$(“#container .article ul”)
.prepend(“<li class=‘readbody’><a href=‘’

title=‘Read/Hide Article’>Read/Hide”);
$(“.actions li.readbody a”).click(function (event){
$(this).parents(“ul”).prev(“.thebody”).toggle();

// Stop the link click from doing its
normal thing

event.preventDefault();
});

Figure 5.14 jQuery allows you
to add effects, such as a show
and hide effect, with very few
lines of code.

http://jquery.com/src/jquery-latest.js

 HTML5 JavaScripT ModeL 237

});
//]]></script>

Finally, insert a little CSS to make the page look pleasing, as
follows.

<style type=“text/css”>
section {

width: 500px;
}
ul {

list-style-type: none;
right: 0px;
font-family: “Franklin Gothic Medium”, “Arial

Narrow”, Arial, sans-serif;
font-size: xx-small;
text-decoration: none;

}
h1 {

font-family: Cambria, Cochin, Georgia, Times,
“Times New Roman”, serif;

font-size: x-large;
font-weight: bolder;

}
p {
font-family: “Franklin Gothic Medium”, “Arial

Narrow”, Arial, sans-serif;
font-size: small;

}
</style>

Now you can test your page. You will see that you can select the
show/hide	text	 to	make	the	opening	paragraph	appear	or	disap-
pear. This makes skimming through the content much easier.

The jQuery library comes with hundreds of extensions you can
use to expand the effects you can add to your web pages. Check
out http://plugins.jquery.com/, where you can find the jQuery
extensions.

popular ajax Libraries
There are quite literally hundreds of Ajax libraries. While

jQuery is the most popular, there are many that fill specific niche
needs. Below is a list of some really good libraries you can use in
your web applications.

Adobe’s Spry Framework
Adobe has an Ajax library called Spry. The Spry frame-

work makes this list simply because it is tied directly into
Dreamweaver (see Figure 5.15). Dreamweaver is a great web site

http://plugins.jquery.com/

238 HTML5 JavaScripT ModeL

development tool and now comes with tight integration with
the Spry framework. Adding Ajax, interaction controls such as
form validation, animation, and data control are very easy for
nondevelopers.

You can download the library at www.labs.adobe.com/
technologies/spry/.

YUI: Yahoo Interface Library
Yahoo is well known for their web services. They’re less well

known for their work on web standards and functionality. The
YUI library is Yahoo’s set of Ajax tools you can use in your web
site. You can find out more information on the YUI tools at the
Yahoo Developer Network at http://developer.yahoo.com/ (see
Figure 5.16).

Controlling Forms with wForms
At some point you will want to control how users complete

forms in your web site. Form control covers elements such as how
users enter data into the forms, how form fields are controlled

Figure 5.15 adobe’s Spry
framework is a mature ajax
library that is built directly into
adobe’s dreamweaver web site
management tool.

http://www.labs.adobe.com/technologies/spry/
http://www.labs.adobe.com/technologies/spry/
http://developer.yahoo.com/

 HTML5 JavaScripT ModeL 239

by	other	elements	on	the	page,	and	how	to	hide/show	form	ele-
ments depending on how your users enter data. These functions
are all handled easily by wForms (http://www.formassembly.com/
wForms/). The library is small and well documented.

Animation Control with $fx()
Need a way to add animation in your web page? The $fx()

library (http://fx.inetcat.com/) allows you to easily add animation
in your site.

Visualizing Data with JSCharts
Data visualization is a big thing. The days of just presenting

data in rows and columns is dead. We need to have ways in which
the data we are looking at mean something. The Ajax library
JSCharts (http://www.jscharts) will give you ways in which you
can transform HTML tables into line charts, bar charts, and pie
charts. They look fantastic (see Figure 5.17).

At the end of the day, Ajax libraries are a great way to extend
what you are doing with your web page. Coupling CSS, SVG,
HTML, and all of the HTML5 family of tools together, you can
create compelling web applications.

Figure 5.16 Yahoo’s developer
Network.

http://www.formassembly.com/wForms/
http://www.formassembly.com/wForms/
http://fx.inetcat.com/
http://www.jscharts

240 HTML5 JavaScripT ModeL

What You Have Learned
Throughout this chapter you have learned how JavaScript, the

programming language within HTML, is evolving to allow you to
develop large, complex applications. Sites such as Google’s Gmail
are excellent examples of Web-based applications that run with
the same level of efficiency as desktop equivalents. The next step
for you to take is to download an Ajax library, such as jQuery, and
begin to create applications on the Web.

Figure 5.17 ajax libraries allow
you to convert HTML tables into
charts.

241
HTML5. 10.1016/B978-0-240-81328-8.00005-7
© 2010 Elsevier Inc. All rights reserved.

The speed and power of JavaScript are growing exponentially.
All modern web browsers, including Google’s Chrome, Mozilla’s
FireFox, Apple’s Safari, and Microsoft’s Internet Explorer, can
render JavaScript at close to machine code levels. In addition,
work by standards groups, such as W3C and WASP, ensures
that JavaScript will run consistently from one web browser to
another.

Ajax libraries are great examples of demonstrating JavaScript
running effectively between browsers. In this final project you are
going to extend a popular Ajax library, jQuery, to create a simple
lightbox effect to a product photo library.

Working with jQuery
There are many Ajax libraries you can use to rapidly

extend what you can do on your web site. You can download
the files for this project at www.visualizingtheweb.com. You
will see that there are two Ajax libraries included in the pack-
age: jQuery and Spry. Both libraries are open source. The first,
jQuery, is arguably the most popular Ajax library. You can
check out www.jquery.com for detailed information on how
to use the library. The second library, Spry, is developed as
an open-source project managed by Adobe (Figure 5.1Proj).
Adobe’s web management tool, Dreamweaver, now ships with
native support for Spry.

Allowing the core jQuery script to be extended has allowed for
hundreds of jQuery extensions to be written and made available.
A jQuery extension is written in JavaScript, which makes it
 difficult to protect. For this reason, you will find that most jQuery
extensions are managed as open-source projects.

Project 5: Working With
javaScriPt

http://www.visualizingtheweb.com
http://www.jquery.com

242 Project 5: Working With javaScriPt

Developing a Lightbox image
Management tool

A lightbox effect enhances what you can do with image
 libraries on the screen. Traditionally, if you have images in a web
page, you either provide the complete image or a link to a larger
version of the image. The lightbox effect adds a thumbnail image
to a page (Figure 5.2Proj).

When you select the thumbnail the main page darkens and a
larger version of the image is loaded (Figure 5.3Proj). Navigation
buttons allow you to tab from one image to another image in your
library. The key is that you never leave the page you are on.

The entire lightbox effect is created through a combination of
images, jQuery, custom JavaScript, CSS, and HTML.

creating the images
The first step in this project is to create the images you need

for the thumbnails and full-size images (Figure 5.4Proj). You
can use your favorite editing tool, such as PhotoShop, Gimp, or
Expression Design. Take your original file and create a thumbnail
version of the image at 72 pixels by 72 pixels.

Figure 5.1Proj adobe’s
home page for the Spry ajax
framework.

Figure 5.2Proj the page
contains a lightbox effect. each
thumbnail can be selected.

Figure 5.3Proj the lightbox
effect is used to zoom in on
each image.

243

244 Project 5: Working With javaScriPt

Create a subfolder in your web site and call it Photos. Place
your thumbnail and full-size images into the new folder.

A second folder, called Images, contains all the files that you
will use for navigation buttons to move from image to image.

Working with javaScript
The most complex part to creating the lightbox functionality is

the JavaScript library you need to create.
Create a new folder called JS in the same folder containing all

of the files in the site. Download from www.jquery.com the latest
version of the jQuery JavaScript library and add it to the JS folder.
A version is included with the downloaded files for this project.

Create a new JavaScript file and label it “lightbox.js.” Open the
“lightbox.js” file in your favorite text editor. You will need to add
the following JavaScript. You will see the use of a $ sign. This is an
alias that connects to the jQuery object.

(function($) {
$.fn.lightBox = function(settings) {

Figure 5.4Proj You will need to
create a thumbnail and full-size
version of each image you want
to see in the lightbox photo
library.

http://www.jquery.com

 Project 5: Working With javaScriPt 245

1. The first set of properties control how you want the lightbox to
appear on the screen. The overlayBgColor attribute sets the
background color when you select an image, and the overlay-
Opacity attribute defines how transparent the background is.

settings = jQuery.extend({
overlayBgColor: ‘black’
overlayOpacity:0.8

2. The following configuration points to the images used for the
navigation.

fixedNavigation:false
imageLoading:‘images/lightbox-ico-loading.gif’,
imageBtnPrev:‘images/lightbox-btn-prev.gif’
imageBtnNext:‘images/lightbox-btn-next.gif’
imageBtnClose:‘images/lightbox-btn-close.gif’,
imageBlank:‘images/lightbox-blank.gif’,

3. The containerBorderSize attribute sets the padding around
the container that opens with the full-size image.

containerBorderSize:10,

4. The following setting specifies in milliseconds how fast the
window will open and close.

containerResizeSpeed:400,

5. The following controls the text that appears in the lightbox. You
can customize all of these settings to your own preferences.

txtImage:‘Image’,
txtOf:‘of’,

6. The following properties allow you to use the keyboard to navi-
gate through the lightbox. The “c” key will close the lightbox,
and the “p” and “n” keys will move to the previous and next
image in the set, respectively.

keyToClose:‘c’,
keyToPrev:‘p’,
keyToNext:‘n’,

7. The following will set up the dynamic array that will correctly
load the data for each image.

imageArray:[],
activeImage:0
},settings);

8. The next function allows you to start extending the default
jQuery objects.

var jQueryMatchedObj = this;
function _initialize() {

246 Project 5: Working With javaScriPt

 9. This script uses the jQuery object to determine if the user has
selected a thumbnail on the screen.

_start(this,jQueryMatchedObj);
return false;
}

 10. The following function will dynamically create the lightbox as it
appears on the screen. You will see at the end of this script the
dynamically generated HTML. You can modify this HTML to
include your own content—for instance, you can add a dynamic
title.

function _start(objClicked,jQueryMatchedObj) {
$(‘embed, object, select’).css({ ‘visibility’ :

‘hidden' });
_set_interface();
settings.imageArray.length = 0;
settings.activeImage = 0;
if (jQueryMatchedObj.length == 1) {
settings.imageArray.push(new Array(objClicked.

getAttribute(‘href’),objClicked.getAttribute(‘title’)));
} else {
for (var i = 0; i <jQueryMatchedObj.length; i++) {
settings.imageArray.push(new

Array(jQueryMatchedObj[i].getAttribute(‘href’),jQueryMatc
hedObj[i].getAttribute(‘title’)));

}
}
while (settings.imageArray[settings.activeImage][0] !=

objClicked.getAttribute(‘href’)) {
settings.activeImage++;
}
_set_image_to_view();
}
function _set_interface() {
$(‘body’).append(‘<div id=“jquery-overlay”></div>

<div id=“jquery-lightbox”><div id=“lightbox-container-
image-box”><div id=“lightbox-container-image”><img
id=“lightbox-image”><div style=““ id=”lightbox-nav”>
<a href=“#”
id=“lightbox-nav-btnNext”></div><div id=“lightbox-
loading”><img
src=“‘ + settings.imageLoading + ’”></div></div>
</div><div id=“lightbox-container-image-data-box”><div
id=“lightbox-container-image-data”><div id=“lightbox-
image-details”><span id=“lightbox-image-details-
caption”><span id=“lightbox-image-details-
currentNumber”></div><div id=“lightbox-secNav”>
<img src=“‘ +
settings.imageBtnClose + ’”></div></div></div>
</div>’);

 Project 5: Working With javaScriPt 247

 11. The following script will determine the page size and set
the CSS settings along with adding the correct navigation
buttons.

var arrPageSizes = ___getPageSize();
$(‘#jquery-overlay’).css({
backgroundColor:settings.overlayBgColor,
opacity:settings.overlayOpacity,
width:arrPageSizes[0],
height:arrPageSizes[1]
}).fadeIn();
var arrPageScroll = ___getPageScroll();
$(‘#jquery-lightbox’).css({
top:arrPageScroll[1] + (arrPageSizes[3]/10),
left:arrPageScroll[0]
}).show();
$(‘#jquery-overlay,#jquery-lightbox’).click(function() {
_finish();
});
$(‘#lightbox-loading-link,#lightbox-secNav-btnClose’).

click(function() {
_finish();
return false;
});
$(window).resize(function() {
var arrPageSizes = ___getPageSize();
$(‘#jquery-overlay’).css({
width:arrPageSizes[0],
height:arrPageSizes[1]
});
var arrPageScroll = ___getPageScroll();
$(‘#jquery-lightbox’).css({
top:arrPageScroll[1] + (arrPageSizes[3]/10),
left:arrPageScroll[0]});});}

 12. Set the parameters for the animation as you load an image.

function _resize_container_image_box(intImageWidth,
intImageHeight) {

var intCurrentWidth = $(‘#lightbox-container-image-
box’).width();

var intCurrentHeight = $(‘#lightbox-container-image-
box’).height();

var intWidth = (intImageWidth + (settings.
containerBorderSize * 2));

var intHeight = (intImageHeight + (settings.
containerBorderSize * 2));

var intDiffW = intCurrentWidth - intWidth;
var intDiffH = intCurrentHeight - intHeight;
$(‘#lightbox-container-image-box’).animate({

width: intWidth, height: intHeight },settings.
containerResizeSpeed,function() { _show_image(); });

248 Project 5: Working With javaScriPt

if ((intDiffW == 0) && (intDiffH == 0)) {
if ($.browser.msie) {
___pause(250);
} else {
___pause(100);}}
$(‘#lightbox-container-image-data-box’).css({ width:

intImageWidth });
$(‘#lightbox-nav-btnPrev,#lightbox-nav-btnNext’).

css({ height: intImageHeight + (settings.
containerBorderSize * 2) });};

 13. The following function prepares the images for preloading.

function _set_image_to_view() {
$(‘#lightbox-loading’).show();
if (settings.fixedNavigation) {
$(‘#lightbox-image,#lightbox-container-image-data-box,

#lightbox-image-details-currentNumber’).hide();
} else {
$(‘#lightbox-image,#lightbox-nav,#lightbox-nav-

btnPrev,#lightbox-nav-btnNext,#lightbox-container-image-
data-box,#lightbox-image-details-currentNumber’).hide();}

var objImagePreloader = new Image();
objImagePreloader.onLoad = function() {
$(‘#lightbox-image’).attr(‘src’,settings.

imageArray[settings.activeImage][0]);
_resize_container_image_box(objImagePreloader.width,

objImagePreloader.height);
objImagePreloader.onLoad=function(){};};
objImagePreloader.src = settings.imageArray[settings.

activeImage][0];};

 14. You can now run a function that will load the image, followed
by a second function that will present the associated thumb-
nail with the image.

function _show_image() {
$(‘#lightbox-loading’).hide();
$(‘#lightbox-image’).fadeIn(function() {
_show_image_data();
_set_navigation();});
_preload_neighbor_images();};

function _show_image_data() {
$(‘#lightbox-container-image-data-box’).

slideDown(‘fast');
$(‘#lightbox-image-details-caption’).hide();
if (settings.imageArray[settings.activeImage][1]) {
$(‘#lightbox-image-details-caption’).html(settings.

imageArray[settings.activeImage][1]).show();}
if (settings.imageArray.length> 1) {
$(‘#lightbox-image-details-currentNumber’).

html(settings.txtImage + ‘ ’ + (settings.activeImage + 1)
+ ‘ ’ + settings.txtOf + ‘ ’ + settings.imageArray.
length).show();}}

 Project 5: Working With javaScriPt 249

 15. The final sets of scripts control the navigation buttons and
keyboard controls. Start by adding the following function.

function _set_navigation() {
$(‘#lightbox-nav').show();
$(‘#lightbox-nav-btnPrev,#lightbox-nav-btnNext’).

css({ ‘background' : ‘transparent url(‘ + settings.
imageBlank + ’) no-repeat’ });

 16. The following JavaScript controls how the previous button
works.

if (settings.activeImage != 0) {
if (settings.fixedNavigation) {
$(‘#lightbox-nav-btnPrev’).css({‘background’ : ‘url(‘

+ settings.imageBtnPrev + ’) left 15% no-repeat’})
.unbind()
.bind(‘click’,function() {
settings.activeImage = settings.activeImage - 1;
_set_image_to_view();
return false;});
} else {
$(‘#lightbox-nav-btnPrev’).unbind().hover(function() {
$(this).css({‘background’ : ‘url(‘ + settings.

imageBtnPrev + ’) left 15% no-repeat’ });
},function() {
$(this).css({‘background’ : ‘transparent

url(‘ + settings.imageBlank + ’) no-repeat’ });
}).show().bind(‘click’,function() {
settings.activeImage = settings.activeImage - 1;
_set_image_to_view();
return false;});}}

 17. Now add the controls for the next button.

if (settings.activeImage != (settings.imageArray.
length-1)) {

if (settings.fixedNavigation) {
$(‘#lightbox-nav-btnNext’).css({ ‘background’ :

‘url(‘ + settings.imageBtnNext + ’) right 15% no-repeat’ })
.unbind()
.bind(‘click’,function() {
settings.activeImage = settings.activeImage + 1;
_set_image_to_view();
return false;
});
} else {
$(‘#lightbox-nav-btnNext’).unbind().hover(function() {
$(this).css({ ‘background’ : ‘url(‘ + settings.

imageBtnNext + ’) right 15% no-repeat’ });
},function() {
$(this).css({ ‘background’ : ‘transparent url(‘ +

settings.imageBlank + ’) no-repeat’ });

250 Project 5: Working With javaScriPt

}).show().bind(‘click’,function() {
settings.activeImage = settings.activeImage + 1;
_set_image_to_view();
return false;});}}

 18. The following function checks that the images have loaded
correctly.

function _preload_neighbor_images() {
if ((settings.imageArray.length -1)> settings.

activeImage) {
objNext = new Image();
objNext.src = settings.imageArray[settings.activeImage

+ 1][0];}
if (settings.activeImage> 0) {
objPrev = new Image();
objPrev.src = settings.imageArray[settings.activeImage

-1][0];}}
function _finish() {
$(‘#jquery-lightbox’).remove();
$(‘#jquery-overlay’).fadeOut(function() { $(‘#jquery-

overlay’).remove(); });
$(‘embed, object, select’).css({ ‘visibility’ :

‘visible’ });}

 19. The following will allow you to use the keyboard to navigate
through the image library.

_enable_keyboard_navigation();}
function _enable_keyboard_navigation() {
$(document).keydown(function(objEvent) {
_keyboard_action(objEvent);});}
function _disable_keyboard_navigation() {
$(document).unbind();}

 20. The following functions confirm that the key is selected correctly.

function _keyboard_action(objEvent) {
if (objEvent == null) {
keycode = event.keyCode;
escapeKey = 27;
} else {
keycode = objEvent.keyCode;
escapeKey = objEvent.DOM_VK_ESCAPE;}
key = String.fromCharCode(keycode).toLowerCase();
if ((key == settings.keyToClose) || (key == ‘x’) ||

(keycode == escapeKey)) {
_finish();}
if ((key == settings.keyToPrev) || (keycode == 37)) {
if (settings.activeImage != 0) {
settings.activeImage = settings.activeImage - 1;
_set_image_to_view();
_disable_keyboard_navigation();}}
if ((key == settings.keyToNext) || (keycode == 39)) {

 Project 5: Working With javaScriPt 251

if (settings.activeImage != (settings.imageArray.length - 1)) {
settings.activeImage = settings.activeImage + 1;
_set_image_to_view();
_disable_keyboard_navigation();}}}

 21. Save your file.
At this time you have completed the JavaScript for your

 lightbox application.

Stitching it all together in htML
At this point you have the groundwork completed for your

project. The final step is to stitch it all together with HTML.
1. Let’s start by opening “products.html.” In the HEAD element

of the HTML add the following links to the CSS and JavaScript
libraries you have created.

<link rel=“stylesheet” type=“text/css” href=“../style-
projects-jquery.css”/>

<script type=“text/javascript” src=“js/jquery.js”>
</script>

<script type=“text/javascript” src=“js/lightbox.js”>
</script>

<link rel=“stylesheet” type=“text/css” href=“css/
jquery.lightbox-0.5.css” media=“screen”/>

2. Next, add a localized function for your lightbox application.

<script type=“text/javascript”>
$(function() {
$(‘#gallery a’).lightBox();

});
</script>

3. The final code that needs to be added to the HEAD element is
an extended CSS style.

<style type=“text/css”>
/* jQuery lightBox plugin - Gallery style */
#gallery {
background-color: #444;
padding: 10px;
width: 420px;
}
#gallery ul { list-style: none; }
#gallery ul li { display: inline; }
#gallery ul img {
border: 5px solid #3e3e3e;
border-width: 5px 5px 20px;
}
#gallery ul a:hover img {
border: 5px solid #fff;

252 Project 5: Working With javaScriPt

border-width: 5px 5px 20px;
color: #fff;
}
#gallery ul a:hover { color: #fff; }
</style>

4. The final step is to insert into the main BODY element a new,
updated ARTICLE element that contains a DIV tag with the ID
gallery linking it to the JavaScript lightbox application.

<article id=“article_one” style=“position: absolute;
left: 420px; top: 100px; width: 315px; height: 195px;
z-index: 2”> <h1><m>Horticultural Products</m></h1>

<div id=“gallery”>

 <a href=“photos/image2.jpg” title=“Red leaf

trees was a popular seller this last quarter. $('#gallery
a’).lightBox();”> <img src=“photos/thumb_image2.jpg”
width=“72” height=“72” alt=””/>

 <a href=“photos/image3.jpg” title=“Green will
be our next area of horticultural expansion $(‘#gallery
a’).lightBox();”> <img src=“photos/thumb_image3.jpg”
width=“72” height=“72” alt=””/>

 <a href=“photos/image4.jpg” title=“ $(‘#gallery
a’).lightBox();”> <img src=“photos/thumb_image4.jpg”
width=“72” height=“72” alt=””/>

 <a href=“photos/image5.jpg” title=“ $(‘#gallery
a’).lightBox();”> <img src=“photos/thumb_image5.jpg”
width=“72” height=“72” alt=””/>

</div>
</article>

At this time you can save the project. Preview the “products.
html” page in your favorite modern browser to view the interactive
lightbox solution.

controlling Forms with jQuery
You can do a lot with jQuery. This section discusses how you

can use jQuery to control how people fill out forms. Even with
enhanced functionality in HTML5 Forms, forms can still miss
certain key features. Validating data is a key element. The goal of
this section is to add form validation to the contact us page in the
web site.

The best place to start is with the default form (Figure 5.5Proj).
Open up “contactus.html.” Following is the code.

<form method=“POST” action=“http://fp1.formmail.com/
cgi-bin/fm192”>

<input type=“hidden” name=“_pid” value=“119137”>

 Project 5: Working With javaScriPt 253

<input type=“hidden” name=“_fid” value=“FNNZXGED”>
<input type=“hidden” name=“recipient”

value=“matthewadavid@gmail.com”>
<label>First Name:</label>

<input name=“FirstName” type=“text” maxlength=“25”

required>

<label>Middle Name:</label>

<input name=“MiddleName” type=“text” disabled>

<- disabled

<label>Last Name:</label>

<input name=“LastName” type=“text” maxlength=“25”

required>

<label>Age:</label>

<input name=“age” type=“number” min=“18”

max=“100”>

<label>Email:</label>

<input name=“email” type=“email” required>

Figure 5.5Proj this is a
standard form in htML5.

254 Project 5: Working With javaScriPt

<label>How Did you hear about us:</label>

<input name=“HowDidYouHear” type=“uri” list=“mylist”>

<datalist id=“mylist”>
<option label=“google” value=“http://google.com”>
<option label=“yahoo” value=“http://yahoo.com”>
<option label=“Bing” value=“http://bing.com”>
</datalist>
<label>When would you like us to contact you:</label>

 <input name=“ContactDate” type=“date”>

<label>How many of our products do you own:</label>

<input id=“slider” name=“sliderValue” type=“range”

min=“0” max=“10” value=“5”>
</input>
<output name=“NumberOfProducts” value=“5” onforminput=

“value=sliderValue.value”>5</output>

<button type=submit>Submit</button>
</form>

Now, let’s add some Ajax that will check to see if the content
entered into the form is correct. Start by adding a reference link
to the latest release of jQuery, as shown here.

<script src=“http://ajax.googleapis.com/ajax/libs/
jquery/1.4/jquery.min.js” type=“text/javascript”></script>

A key element to jQuery is its extensibility. To demonstrate this
you are going to build your own set of rules that will extend the
functionality of the form so that it requires that all fields must be
entered before the form can be submitted. To accomplish this you
will extend the default jQuery library with your own plug-in library.

Start by creating a new JavaScript text file in the JS library.
Name the new JavaScript file “jquery.formvalidation.js.” You will
notice that it is standard to add the prefix “jquery” for all plug-ins.

You are going to start by adding a base object that you can
call from anywhere in your code. This is called a singleton. The
 following is the base validation. The code creates everything with
 anonymous IDs. This allows you to easily reuse the code. Here
you are creating a variable named rules that tests for email, URL
address, and required content.

var Validation = function() {
var rules = {

The following definition is your email rule. Notice that the
 pattern uses a regular expression to format the rule.

email : {
check: function(value) {
if(value)

return testPattern(value,“.+@.+\..+”);
return true;
},

 Project 5: Working With javaScriPt 255

msg : “Enter a valid e-mail address.”
},

The following definition is for a valid URL rule. As with the
email rule, a regular expression is set up to create a pattern that
is used by the validation rule. The validation rule then checks the
content entered into the form field to confirm it is valid.

url : {
check : function(value) {
if(value)
return testPattern(value,“https?://

(.+\.)+.{2,4}(/.*)?”);
return true;

},
msg : “Enter a valid URL.”

},

The final validation rule is simply looking to see if any content
has been entered into the field.

required : {
check: function(value) {
if(value)
return true;

else
return false;

},
msg : “This field is required.”

}
}

A test pattern extends the script you are creating to mimic the
jQuery format by adding a $. This makes is easier to integrate the
plug-in with other jQuery plug-ins.

var testPattern = function(value, pattern) {
var regExp = new RegExp(“^”+pattern+“$”,“”);
return regExp.test(value);

}
return {
addRule : function(name, rule) {
rules[name] = rule;

},
getRule : function(name) {
return rules[name];

}
}

}

To control HTML Forms in the DOM, where Ajax is run, you
need to communicate with the form. The following form factory
code achieves this.

var Form = function(form) {
var fields = [];

256 Project 5: Working With javaScriPt

form.find(“input[validation],
textarea[validation]”).each(function() {

fields.push(new Field(this));
});
this.fields = fields;

}
Form.prototype = {
validate : function() {
for(field in this.fields) {
this.fields[field].validate();

}
},
isValid : function() {
for(field in this.fields) {
if(!this.fields[field].valid) {
this.fields[field].field.focus();

return false;
}

}
return true;
}

}
var Field = function(field) {

this.field = $(field);
this.valid = false;
this.attach(“change”);

}

The JavaScript looks to see if you have entered content into
the form as you are typing in the form fields. The following pro-
totype object looks to see the activity in the field. The keyup
 command instructs the script to run as you complete releasing a
key on your keyboard.

Field.prototype = {
attach : function(event) {

var obj = this;
if(event == “change”) {

obj.field.bind(“change”,function() {
return obj.validate();

});
}
if(event == “keyup”) {

obj.field.bind(“keyup”,function(e) {
return obj.validate();

});
}

},
The following function adds the error message onto the screen.

In this instance, you will see that the error message is added as an
unordered list (UL) element. Of course, you can change this. This

 Project 5: Working With javaScriPt 257

is the beauty of working with jQuery. You can change the error to
a label or tie additional CSS to the error.

validate : function() {
var obj = this,
field = obj.field,
errorClass = “errorlist”,
errorlist = $(document.createElement(“ul”)).

addClass(errorClass),
types = field.attr(“validation”).split(“ ”),
container = field.parent(),
errors = [];

field.next(“.errorlist”).remove();
for (var type in types) {
var rule = $.Validation.getRule(types[type]);
if(!rule.check(field.val())) {

container.addClass(“error”);
errors.push(rule.msg);

}
}
if(errors.length) {

obj.field.unbind(“keyup”)
obj.attach(“keyup”);
field.after(errorlist.empty());
for(error in errors) {

errorlist.append(“”+ errors[error] +“”);
}
obj.valid = false;

}
else {

errorlist.remove();
container.removeClass(“error”);
obj.valid = true;

} }}

The final step in the JavaScript library extends the base form val-
idation rules in the core jQuery library with your new extensions.

$.extend($.fn, {
validation : function() {
var validator = new Form($(this));
$.data($(this)[0], ‘validator’, validator);
$(this).bind(“submit", function(e) {
validator.validate();
if(!validator.isValid()) {

e.preventDefault();
}

});
},
validate : function() {

var validator = $.data($(this)[0], ‘validator’);

258 Project 5: Working With javaScriPt

validator.validate();
return validator.isValid();

}
});
$.Validation = new Validation();

})(jQuery);

At this point you can save your JavaScript file. Now you need
to add the functionality to your form. Open “contactus.html” in
a text editor. Add a reference to your new “jquery.formvalidation.
js” library, as follows:

<script src=“js/jquery.formValidation.js”></script>

The code you created in your “jquery.formvalidation.js”
JavaScript file is generic. You need to now associate it directly
with a form field.

At this point you now can add your validation rules to your
form elements in your web page, and it could not be easier. You
have created three validation rules: required, email, and URL. All
you have to do to apply them to a form is to insert a new attri-
bute, called validation, and specify which rule you would like to
apply. Following is an example of the required rule.

<label>Last Name:</label>

<input name=“LastName” type=“text” maxlength=“25”
validation=“required” required>

The whole form looks like the following.

<form action=“submit” id=“html5Form” method=“post”>
<fieldset>
<legend>Contact Us</legend>
<label>First Name:</label>

<input name=“FirstName” type=“text” maxlength=“25”

validation=“required” required>

<label>Middle Name:</label>

<input name=“MiddleName” type=“text” disabled>
<- disabled

<label>Last Name:</label>

<input name=“LastName” type=“text” maxlength=“25”

validation=
“required” required>

<label>Age:</label>

 Project 5: Working With javaScriPt 259

<input name=“age” validation=“required” type=“number”
min=“18” max=“100”>

<label>Email:</label>

<input name=“email” type=“email” validation=“email”

required id=“emailTo”>

<label>How Did you hear about us:</label>

<input name=“HowDidYouHear” validation=“url” type=“uri”

list=“mylist”>

<datalist id=“mylist”>
<option label=“google” value=“http://google.com”>
<option label=“yahoo” value=“http://yahoo.com”>
<option label=“Bing” value=“http://bing.com”>
</datalist>
<label>When would you like us to contact you:</label>

<input name=“ContactDate” validation=“required”

type=“date">

<label>How many of our products do you own:</label>

<input id=“slider" name=“sliderValue" type=“range"

min=“0” max=“10” value=“5”>
</input>
<output name=“NumberOfProducts” value=“5”

onforminput=“value=sliderValue.value”>5</output>

<div class=“submit-area”>
<input value=“Validate on Submit” type=“submit"/>
</div>
</form>

Below the Submit button input element, add the following
JavaScript code, linking the form by name to the HTML form name.

<script>
var thisForm = $(“#html5Form”);
thisForm.validation();
</script>

At this point you can test your form in your web browser. If
you do not complete the form correctly, the validation messages
will appear (Figure 5.6Proj).

A final step you can do is to add CSS to style the error mes-
sages. The following CSS will change the error messages to red
with no bullet points.

fieldset ul, fieldset ul {
margin: 0px 0 0px 0px;

260 Project 5: Working With javaScriPt

}
fieldset li, fieldset li {

list-style-type: none;
margin-bottom: 0px;
line-height: 12px;
font-size: 16px;

}
fieldset li {

font-size: 12px;
color: red;
margin-bottom: 0px;

}

Save the CSS to “style.css” and preview the page. You now have
clear, recognizable error messages. What is more, you can now
use this library with any web form you create.

Figure 5.6Proj validation
messages appear when a field
is not completed correctly
according to the jQuery plug-in
extension you created.

 Project 5: Working With javaScriPt 261

inserting a tabbed interface to Build on top
of Your existing jQuery Projects

Blocking Ajax/JavaScript solutions into reusable libraries allows
you to build complex web pages very quickly. The next library you
will add to the web site will introduce a tabbed window that allows
you to navigate through different screens of content without
 having to leave the current page (Figure 5.7Proj).

To demonstrate how you can quickly begin building com-
plex web pages, the tabbed interface is going to be added to the
 contact us page. Let’s refresh what is going on in this page so far:

Figure 5.7Proj tabs give you a
tool to clearly organize content
on the page.

262 Project 5: Working With javaScriPt

•	 HTML5	Forms	elements	add	richer	controls.
•	 An	HTML5	search	form	is	located	in	the	top	right	corner.
•	 CSS	is	used	to	format	the	page.
•	 CSS	is	used	to	create	the	navigation.
•	 A	reusable	custom	jQuery	plug-in	is	used	to	add	validation	to	

the form.
•	 The	final	step	is	to	add	a	reusable	jQuery	plug-in	to	add	tabs.

There is a lot going on in this page. Let’s keep adding. The
 latest web browsers have no problems rendering pages like this.

The first thing to do is to create a custom jQuery JavaScript
 plug-in. In keeping with the default jQuery plug-in standard, create
a new JavaScript file in your JS folder and name it “jquery.tabbed.js.”
Open “jquery.tabbed.js” and you can begin to add the JavaScript.

The tab plug-in inherits and extends a lot of functionality
built into jQuery. Below you will see the $ sign used by jQuery to
extend the functionality you need on the page. In this instance,
you are telling jQuery to apply the tabbed feature when it sees the
DIV element that contains the “tabs” class.

$(function () {
var tabContainers = $(‘div.tabs> div’);
tabContainers.hide().filter(‘:first’).show();
$(‘div.tabs ul.tabNavigation a’).click(function () {
tabContainers.hide();
tabContainers.filter(this.hash).show();
$(‘div.tabs ul.tabNavigation a’).removeClass(‘selected’);
$(this).addClass(‘selected’);
return false;
}).filter(‘:first’).click();
});

Save your JS file. That’s it. Nice and neat.
Open up your “contactus.html” page. Find the SECTION

 element at line 51. It should look like this:

<section id=“section_articleOneIdentifier” class=
“sectionOne”>

There are three parts to the tab interface: first is the main
container that allows JavaScript to see that you are using a tab;
second is the tabs you will select; and third is the content that
appears in the container under the tabs. The third DIV element
defines the container area for the tabs. Notice that the class is
called “tabs” as called out by the JavaScript library created above.

<div class=“tabs”>
</div>

The tabs across the top start life as LI elements. A pseudo link
on each LI element is used to show a container.

<ul class=“tabNavigation”>

 Project 5: Working With javaScriPt 263

First
Second
Third

Each of the following DIV elements contains an ID that is the
same as the pseudo link in the LI elements above. Selecting each
LI element will show and hide the following containers.

<div id=“first”>
 <h2>First</h2>
 <p>content goes here<p>

</div>
<div id=“second”>
 <h2>Second</h2>
 <p>content goes here<p>

</div>
<div id=“third”>
 <h2>Third</h2>
 <p>content goes here<p>

</div>

In theory, you could stop your design here and be done. But,
let’s face it, the design does not look like tabs. All you have is a list
of links that shows and hides sections of the page. The next step
is to add CSS to give your design the look it deserves.

Create a new CSS file named “tabbed.css” and save it to the
CSS folder. Open the CSS file in your favorite text editor. The most
complex element is changing the LI elements into tabs. So, let’s
start there. The first CSS class is to remove the default styling you
have with the UL element.

UL.tabNavigation {
list-style: none;
margin: 0;
padding: 0;

}

Now you can begin to design how you want the LI elements to
be shown. First, let’s modify the display to inline.

UL.tabNavigation LI {
display: inline;

}

Now that you have your lists running horizontally, you can
control the visual layout. You will see in the following CSS that
rounded corners are being used to create a tabbed effect.

UL.tabNavigation LI A {
padding: 3px 5px;
background-color: #ccc;
color: #000;
text-decoration: none;

264 Project 5: Working With javaScriPt

border-top-right-radius: 10px;
border-top-left-radius: 10px;
-moz-border-top-right-radius: 10px;
-moz-border-top-left-radius: 10px;
-webkit-border-top-right-radius: 10px;
-webkit-border-top-left-radius: 10px;

}

With this all being CSS you can add a hover style to the abs to
visually show users which tab they are about to select.

UL.tabNavigation LI A.selected, UL.tabNavigation LI
A:hover {

background-color: #333;
color: #fff;
padding-top: 7px;

}
UL.tabNavigation LI A:focus {

outline: 0;
}

You now have the styles for the tabs created. The next step is
to modify the container for the content on the screen. This takes
just one style.

div.tabs> div {
padding: 5px;
background-color:#FFF;
margin-top: 3px;
border: 5px solid #333;
border-bottom-right-radius: 10px;
border-bottom-left-radius: 10px;
-moz-border-bottom-right-radius: 10px;
-moz-border-bottom-left-radius: 10px;
-webkit-border-bottom-right-radius: 10px;
-webkit-border-bottom-left-radius: 10px;

}

Save your files. Test the page—you can tab through the content.
At this point you can copy the Contact Us form you created

earlier and paste it into one of the tabs. The JavaScript, HTML,
and CSS will all behave very nicely.

Using additional ajax Libraries: Working
with adobe’s Spry Framework

Up to this point we have talked a lot about jQuery and how
you can use it and extend it with your own JavaScript. True,
jQuery is very powerful, but it is not the only Ajax library you can
use. In fact, there are loads of great libraries you can use. If you

 Project 5: Working With javaScriPt 265

are a user of Adobe’s Dreamweaver then you can take advantage
of their Spry Ajax framework.

Spry is an open-source library that can be easily extended
in much the same way as jQuery. There is, however, some great
functionality built into the core framework that you can apply
directly to your web sites.

Spry can be downloaded from http://labs.adobe.com/technologies/
spry/home.html. The files contain a core script and several additional
scripts that extend the functionality of the core. Expand the downloaded
ZIP file and extract the files to your web site into a new root folder called
SpryAssets.

You are going to add to the “contactus.html” page. This time, you
are going to add content as follows to the first tab, “Who We Are,” to
allow users to see who is located at the company (Figure 5.8Proj).
1. The control you are going to create allows you to select the

person’s name and see additional information such as his or
her title, email, and phone number. Data change and come
from many sources. In this instance, the data are coming from
another web page. You can use both XML and HTML as data
sources within the Spry framework. In this example you are
going to use a web page for the source data.

2. Begin by creating a new HTML web page in the root of the site
and name it “whoweare.html.” The web page contains a TABLE
element. The TABLE has the ID whoweare. The ID will be used

Figure 5.8Proj the Spry
framework is using a taBLe
element in a second web page
to show data.

http://labs.adobe.com/technologies/spry/home.html
http://labs.adobe.com/technologies/spry/home.html

266 Project 5: Working With javaScriPt

by the JavaScript to know it has the correct data source. Add the
following HTML TABLE element.

<table width=“100%” border=“1” id=“whoweare”>
<tr>
<td>Name</td>
<td>Title</td>
<td>Email</td>
<td>Phone</td>

</tr>

3. The first row of the table created identifies the values of each
column of data. Adding the data source to the “contactus.html”
file is very easy. The rest of the following rows are entries in the
table. Following are the core data.

<tr>
<td>Jane Smith</td>
<td>CEO</td>
<td>jsmith@

acorngardens.com</td>
<td>(212) 555-1212</td>

</tr>
<tr>
<td>Jack Miles</td>
<td>COO</td>
<td>jmiles@

acorngardens.com</td>
<td>(212) 555-1213</td>

</tr>
<tr>
<td>Sandy Smiles</td>
<td>VP-Sales</td>
<td>

ssmiles@acorngardens.com</td>
<td>(212) 555-1214</td>

</tr>
<tr>
<td>Ian Wilson</td>
<td>CIO</td>
<td><a href=“mailto:iwilson@acorngardens.

com”>iwilson@acorngardens.com</td>
<td>(212) 555-1215</td>

</tr>
<tr>
<td>Cormick Leary</td>
<td>CFO</td>
<td>cleary@

acorngardens.com</td>
<td>(212) 555-1216</td>

</tr>
</table>

 Project 5: Working With javaScriPt 267

4. Open “contactus.html” and add a link to the two following Spry
JavaScript files in the SpryAssets folder.

<script src=“SpryAssets/SpryData.js” type=“text/
javascript”></script>

<script src=“SpryAssets/SpryHTMLDataSet.js” type=“text/
javascript”></script>

5. You only need one line of additional JavaScript to link to the
table with the ID of whoweare in the web page “whoweare.
html.” The following script is added to the HEAD element of
the page.

<script type=“text/javascript”>
var ds1 = new Spry.Data.HTMLDataSet(“whoweare.html”,

“whoweare”);
</script>

6. If you leave the script as is, then the email links will come
in as plain text. You can, however, change this by adding the
 following to convert the column called “Email” into HTML.

ds1.setColumnType(“Email”, “html”);

7. As this point everything is very functional. Cascading Styles
Sheets to the rescue! From the SpryAssets folders you can find
a file called “sprymasterdetail.css.”

.MasterDetail
{

font: 100% Verdana, Geneva, sans-serif;
margin: 2px;

}

8. This is the selector for the MasterContainer element, which
 manages all the MasterColumn classes. By default the master
 column occupies about 35% from the width of the entire
structure.

.MasterDetail .MasterContainer
{

background-color: #EAEAEA;
border: 1px solid gray;
width: 35%;
float: left;
overflow: hidden;

}

9. This is the selector for a MasterColumn element that holds the
actual data for a master column.

.MasterDetail .MasterColumn
{

font-size: 75%;
background-color: #CCCCCC;

268 Project 5: Working With javaScriPt

padding: 5px;
cursor:pointer;

}

 10. This is the selector for a highlighted MasterColumn element.

.MasterDetail .MasterColumnHover
{

background-color: #EAEAEA;
}

 11. This is the selector for a selected MasterColumn element.

.MasterDetail .MasterColumnSelected
{

background-color:#848484;
color: white;

}

 12. This is the selector for the DetailContainer element, which
houses all the DetailColumn classes. By default the detail col-
umn occupies about 60% from the width of the entire structure.

.MasterDetail .DetailContainer
{

border: 1px solid gray;
padding: 10px;
width: 60%;
float: right;
overflow: auto;

}

 13. This is the selector for a DetailColumn element that holds the
actual data for a detail column. In addition, there are selector
styles to format ANCHOR elements.

.MasterDetail .DetailColumn
{

margin-bottom: 1px;
}

.DetailColumn a:hover{color:#F00}

.DetailColumn a{color:gray}

 14. Save your files and review the site.
You should now be able to save the file and preview the

 content. Data can be added to the HTML TABLE being used
for the data source. The next time the “contactus.html” page is
reloaded then the new data will be added.

 Project 5: Working With javaScriPt 269

Working with additional ajax Libraries:
Using Yahoo’s YUi Framework

Think that Adobe and jQuery are the only two big players in
the Ajax market? Yahoo also shifts some major weight with the
implementation of their YUI framework. The core YUI framework
is structured the same as Spry and jQuery. What you have is a
series of anonymous scripts that you can tie into your own pages.
Again, as with other frameworks, you can extend the functionality
of the YUI framework with your own extensions.

In the following example, you are only going to add a small
feature to the current Contact Us form. The feature is a comments
box—nothing too special. Using the YUI framework you will
change the comments box from plain HTML into a rich text box
editor. Let’s get started.
1. Start by opening up the “contactus.html” page. In the HEAD

element add the following link to the YUI frameworks. You can,
of course, copy these frameworks to your web site.

<script type=“text/javascript” src=“http://yui.
yahooapis.com/2.8.0r4/build/yahoo-dom-event/yahoo-dom-
event.js”></script>

<script type=“text/javascript” src=“http://yui.
yahooapis.com/2.8.0r4/build/animation/animation-min.js”>
</script>

<script type=“text/javascript” src=“http://yui.
yahooapis.com/2.8.0r4/build/connection/connection-min.js”>
</script>

<script type=“text/javascript” src=“http://yui.
yahooapis.com/2.8.0r4/build/element/element-min.js”>
</script>

<script type=“text/javascript” src=“http://yui.yahooapis.
com/2.8.0r4/build/container/container-min.js”></script>

<script type=“text/javascript” src=“http://yui.
yahooapis.com/2.8.0r4/build/menu/menu-min.js”></script>

<script type=“text/javascript” src=“http://yui.
yahooapis.com/2.8.0r4/build/button/button-min.js”></script>

<script type=“text/javascript” src=“http://yui.
yahooapis.com/2.8.0r4/build/editor/editor-min.js”></script>

2. Now you need to extend the scripts with your own plug-in.
Create a new JavaScript file, name it “yui.editor.js,” and save
it into your JS folder. Open your favorite text editor. The first
function sets up the default configuration for the rich text area.
Add the following.

(function() {
var myConfig = {
height: ‘300px’,
width: ‘600px’,

270 Project 5: Working With javaScriPt

animate: true,
dompath: true,
focusAtStart: true
};

3. The following links the rich editor control to your HTML text
area form field.

YAHOO.log(‘Editor created..’, ‘info’, ‘example’);
myEditor = new YAHOO.widget.Editor(‘editor’, myConfig);
YAHOO.util.Event.onAvailable(‘iconMenu’, function() {
YAHOO.log(‘onAvailable: (#iconMenu)’, ‘info’,

‘example’);
YAHOO.util.Event.on(‘iconMenu’, ‘click’, function(ev) {
var tar = YAHOO.util.Event.getTarget(ev);
if (tar.tagName.toLowerCase() == ‘img’) {
var img = tar.getAttribute(‘src’, 2);
YAHOO.log(‘Found an icon, fire inserticonClick Event’,

‘info’, ‘example’);
var _button = this.toolbar.

getButtonByValue(‘inserticon’);
_button._menu.hide();
this.toolbar.fireEvent(‘inserticonClick’, { type:

‘inserticonClick’, icon: img });
}
YAHOO.util.Event.stopEvent(ev);
}, myEditor, true);
});
myEditor.on(‘toolbarLoaded’, function() {
YAHOO.log(‘Editor Toolbar Loaded..’, ‘info’, ‘example’);

4. The following variable allows overlays to be added to the
application.

var imgConfig = {
type: ‘push’, label: ‘Insert Icon’, value:

‘inserticon’,
menu: function() {
var menu = new YAHOO.widget.Overlay(‘inserticon’, {

width: ‘165px’, height: ‘210px’, visible: false });
var str = ‘’;
for (var a = 0; a < 9; a++) {
for (var i = 1; i < 9; i++) {
str += ‘<img src=“assets/suit’ + i + ‘.gif”

border=“0”>’;
}
}
menu.setBody(‘<div id=“iconMenu”>’ + str + ‘</div>’);
menu.beforeShowEvent.subscribe(function() {
menu.cfg.setProperty(‘context’, [myEditor.toolbar.

getButtonByValue(‘inserticon’).get(‘element'), ‘tl’, ‘bl’]);
});
menu.render(document.body);

 Project 5: Working With javaScriPt 271

menu.element.style.visibility = ‘hidden’;
return menu;
}()
};
YAHOO.log(‘Create the (inserticon) Button’, ‘info’,

‘example’);
myEditor.toolbar.addButtonToGroup(imgConfig,

‘insertitem’);
myEditor.toolbar.on(‘inserticonClick’, function(ev) {
YAHOO.log(‘inserticonClick Event Fired: ‘ + YAHOO.lang.

dump(ev), ‘info’, ‘example’);
var icon = ‘’;
this._focusWindow();
if (ev.icon) {
icon = ev.icon;
}
this.execCommand(‘inserthtml’, ‘<img src=“‘ + icon + ’”

border=“0”>’);
return false;
}, myEditor, true);
});
myEditor.render();
})();

5. Save your JavaScript file.
6. Now you need to add some HTML to your “contactus.html” file.

All you have to do is add the following text area to your form.
The ID links the form to the JavaScript.

<textarea id=“editor” name=“editor” rows=“20”
cols=“75”>

</textarea>

7. The final step is to make the form look nice. Fortunately, the
YUI framework comes with a set of prepackaged CSS files you
can link to over the Web. Add the following to the web page.

<link rel=“stylesheet” type=“text/css” href=“http://
yui.yahooapis.com/2.8.0r4/build/menu/assets/skins/sam/
menu.css”/>

<link rel=“stylesheet” type=“text/css” href=“http://
yui.yahooapis.com/2.8.0r4/build/button/assets/skins/sam/
button.css”/>

<link rel=“stylesheet” type=“text/css” href=“http://
yui.yahooapis.com/2.8.0r4/build/fonts/fonts-min.css”/>

<link rel=“stylesheet” type=“text/css” href=“http://
yui.yahooapis.com/2.8.0r4/build/container/assets/skins/
sam/container.css”/>

<link rel=“stylesheet” type=“text/css” href=“http://
yui.yahooapis.com/2.8.0r4/build/editor/assets/skins/sam/
editor.css”/>

272 Project 5: Working With javaScriPt

8. Of course, as with any CSS implementation, you can extend
the designs. The following are an extension to the core YUI CSS
files. Add this style to the HEAD element of the page.

<style>
.yui-skin-sam .yui-toolbar-container .yui-toolbar-

inserticon span.yui-toolbar-icon {
background-position: 1px 0px;
left: 5px;

}
.yui-skin-sam .yui-toolbar-container .yui-button-

insertdate-selected span.yui-toolbar-icon {
background-position: 1px 0px;
left: 5px;

}
#inserticon {
border: 1px solid #808080;
padding: 5px;
background-color: #F2F2F2;

}
#inserticon a {
display: block;
float: left;
border: 1px solid #F2F2F2;

}
#inserticon a:hover {
border: 1px solid #808080;

}
</style>
<style>
.yui-toolbar-group-insertitem {
*width: auto;

}
</style>

9. Save your work.
You now have a fully functional, rich text editor in your web

page. No more boring comments box.

Linking to content hosted on Different
Web Sites

As we come to the end of the book, I want to take some time to
remind you that HTML5 is built on top of the Web you are already
used to working with. To this end, there are some techniques you
can use to add content from other web sites into your own.

Open up “contactus.html” and locate the section for the third
tab. Add the following HTML into the third content.

<div id=“third”>
<h2>How to Find Us</h2>

 Project 5: Working With javaScriPt 273

<iframe width=“400” height=“300” frameborder=“0”
scrolling=“no” marginheight=“0” marginwidth=“0”

src=“http://dev.virtualearth.net/embeddedMap/
v1/silverlight/road?zoomLevel=16¢er=44.263_-
88.2885&pushpins=44.263_-88.2885”/>

</div>

The iFrame above adds a link directly to a bing map in
SilverLight. Wait! I hear you scream, this is an HTML5 book, why
add SilverLight? The reason is simple: Web technologies are com-
plex. New solutions are always coming forward that you need to
be able to integrate with. Fortunately, SilverLight is a technology
that is easily integrated into your HTML.

Save your file. Your final web site is magnificent. This is what
you have done:
•	 Built	your	web	site	with	100%	HTML5	elements.
•	 Have	images	constructed	from	PNG	files,	CANVAS,	and	SVG.
•	 CSS3	techniques	are	used	on	every	page	to	tilt	the	angle	of	text	

and add rich animation.
•	 Built	complex	Ajax	libraries	using	jQuery,	Spry,	and	YUI	open-

source frameworks.
•	 Integrated	SilverLight	mapping	technology.

You have done well, grasshopper. Next-generation browsers,
such as Chrome, IE9, Safari, and FireFox, can now all view sites
using the technologies you have covered in this book. HTML5 is
not a future technology. It is available for you to use now.

Summary
The lightbox project exemplifies how you can take modern

JavaScript libraries and extend them to build your own solutions.
It is the strength of HTML5 technologies that enables you to
effectively build out these types of solutions.

jQuery is at the core of many of the web technologies used
today. The reason why so much of this chapter is dedicated to
this one specific Ajax library is because you can save yourself a
lot of time by learning jQuery and using the library techniques in
building your own extensions and plug-ins.

Processing JavaScript takes powers. The “contactus.html” page
by itself has close to 10,000 lines of JavaScript. You can even argue
that the page is very basic in its functionality. It is important
that web browsers have JavaScript engines powerful enough
to render these complex pages. Fortunately, all of the browser
 companies—Google, Apple, Mozilla, Opera, and Microsoft—are
building JavaScript engines that will render increasingly more
complex and massive JavaScript libraries. The time for building
applications online is now here.

275

Index

A
A (ANCHOR) elements, 36

applying styles to, 104f, 108, 109
building menus from, 117
default style for (example), 103
formatting with pseudo

classes, 72–73, 72f, 109
A code (PATH element), 142
ACRONYM elements

(unsupported), 36
active pseudo class, 72
addition operator (+), JavaScript,

218
ADDRESS elements, 36
Adobe Flash animation, 177. See

also CANVAS elements
Adobe’s Illustrator, 150
Adobe’s Spry framework,

237–238, 238f, 241,
264–268

after pseudo element, 73
Ajax, 233–239

Adobe’s Spry framework,
237–238, 238f, 241, 264–268

jQuery library, 233–239, 241
controlling forms with,

252–260
tabbed interface on

projects, 261–264
popular libraries, 237–239
YUI (Yahoo Interface Library),

269–272
align attribute, where

dropped, 37
alink attribute, where dropped,

37
all value (media attribute), 97
animation

with CANVAS images, 161–162
CSS transforms, 93, 95–96
CSS transitions, 93–94, 94f

designing a timeline
(example), 126

$fx() library, 239
anticlockwise property

(arc method), 157
Apple iPhone, 4–5, 5f
Apple iPod Touch, 4–5
Apple’s iTunes, 189
Apple’s QuickTime Live

Streaming, 196
APPLET elements

(unsupported), 36
arc method (CANVAS images),

157–158, 158f
arcs, drawing, 157–158, 158f
arithmetic, in JavaScript,

217–219
array objects (JavaScript), 222
ARTICLE elements, 9, 12, 16, 16f,

26, 43f, 44
examples of, 45, 46

ASIDE elements, 9, 18, 19f, 47f,
48f, 49

applying styles to (example), 111
formatting with CSS, 69

attributes
dropped in HTML5, 37
new in HTML5, 35

Audacity tool, 194, 195f
audio, 173–174

creating, 194
encoding for web delivery,

189–196
streaming vs. download

delivery, 196
AUDIO elements, 172, 173–174,

177, 186–189
ensuring browser

compatibility, 195–196
autofocus attribute (INPUT

element), 29, 52

autoplay attribute (AUDIO
element), 187–188

autoplay attribute (VIDEO
element), 180

AVI video format, 164, 165f
converting to Flash, 179
converting to MPEG4, 169
converting to Ogg, 164–166

B
B (boldface) elements, 36
background attribute, where

dropped, 37
background objects (images)

adding to menus, 115, 118
multiple, 88–89

background-image definition
(CSS), 87, 88

background-position definition
(CSS), 88

backwards compatibility of
HTML5, 8

bar chart, creating (example),
203–205

BASEFONT elements
(unsupported), 36

before pseudo element, 73
beginPath method (CANVAS

images), 155
Berners-Lee, Tim, 6
Bezier curves, drawing, 158
bgcolor attribute, where

dropped, 37
BIG elements (unsupported), 36
bitmap images, 132–133, 132f
blocking content, 9, 10–12, 39–57

ARTICLE elements, 9, 12, 16,
16f, 26, 43f, 44

examples of, 45, 46
ASIDE elements, 9, 18, 19f,

47f, 48f, 49

Note: Page numbers in italics refer to mentions within the Project chapters, and as such refer primarily
to examples in the text.

276 Index

blocking content (Continued)
applying styles to

(example), 111
formatting with CSS, 69

DIALOG elements, 19–20,
20f, 26

FIGURE elements, 20–21
FOOTER elements, 9, 16–18,

26, 40f, 44
defining style for, 107, 107f

HEADER elements, 9, 16–18,
17f, 25, 40f, 41

placing style information in,
65, 65f

LEGEND elements, 21, 37
NAV (NAVIGATION) elements,

9, 21, 26, 40f, 42, 42f
organizing code with, 18
SECTION elements, 9, 13, 15,

15f, 25, 26, 40f, 43, 43f
building menus from, 116

block-level semantics, 13
blur-radius definition (CSS), 81
BODY elements

attributes dropped from, 37
default style for (example),

102
JavaScript in, 212, 215f

Boolean objects (JavaScript), 222
border attribute, where

dropped, 37
border-image definition (CSS), 87
border-radius definition (CSS),

91, 91f, 92, 124
borders

of columns, style for, 83
rounded corners, 88–89, 91f

bounce animation, 95, 96
BR elements, 8, 52
braille value (media attribute), 97
break line elements. See BR

elements
browser support

CANVAS elements, 152
CSS animation, 96
depreciated elements, 36b
Forms 2.0, 27b, 50b
HTML5, in general, 8
Ogg vide format, 168
VIDEO and AUDIO elements,

180, 195–196

browsers, data storage in
LocalStorage objects, 224–227,

225f
Web Storage standard, 33–35

BUTTON elements, 57

C
C code (PATH element), 142
CAKE library, 161
CANVAS elements, 131, 132,

151–162
adding animation, 161–162
basics of, 152–153
coloring objects, 158–161
controlling shapes, 153–155
Crowd Control game, 230–233
dynamic chart, creating

(example), 203–205
SVG drawings vs., 151–152

caption, image. See LEGEND
elements

CAPTION elements, attributes
dropped from, 37

Cascading Style Sheets (CSS), 7,
35b, 39b, 61–98

class styles, 70–72
for company name

(example), 111
designing a timeline

(example), 122
menu class (example), 116
pseudo classes, 72–73, 109

color. See color
element styles, 67–70. See also

style attribute
examples of using, 99–127

default content styles, 102–105
form elements, 108–109
interactive menus, 112–113,

114–120, 114f
main sections of content,

105–108
navigation elements, 108–109
timeline design, 120–127,

120f
font control. See fonts
four simple rules of, 74
how to apply styles, 63–66,

100. See also external style
sheets

mobile device solutions, 96–98

multicolumn page layout,
83–84, 83f, 84f

pseudo elements, 73, 73f
tools for, 74b
transforms, 93, 95–96
transitions, 93–94, 94f

designing a timeline
(example), 126

for video and audio controls,
183, 185f, 188

visual display control, 85–92
gradients. See gradients
multiple background

objects, 88–89, 89f, 90f
positioning design

elements, 85–86
rounded corners, 88–89, 91f

web reference for, 67b
case sensitivity, 23b
case statement, JavaScript, 220,

221
CDATA elements, 150
cellpadding attribute, where

dropped, 37
cellspacing attribute, where

dropped, 37
CENTER elements

(unsupported), 36
char attribute, where dropped,

37
charoff attribute, where

dropped, 37
chart, CANVAS-driven

(example), 203–205
checked pseudo class, 73
CIRCLE elements, 136, 139, 140f,

141f
circles, drawing. See CIRCLE

elements
class attribute, 35, 71

HEADER elements, 41
NAV elements, 42

class styles, 70–72
for company name (example),

111
designing a timeline

(example), 122
menu class (example), 116
pseudo classes, 72–73, 109

clear attribute, where
dropped, 37

 Index 277

clearRect method (CANVAS
images), 154

closePath method (CANVAS
images), 155

cm (centimeter)
for font size, 78
for SVG drawing

measurements, 144
code

finding, 3
making easier to read, 23–27
organizing with blocking, 18

CODECs, 189–190
COL elements, attributes

dropped from, 37
COLGROUP elements, attributes

dropped from, 37
color

for CANVAS objects, 158–161
drop shadow text effects, 81
font, 80–81
gradients. See gradients
with SVG drawings, 143–147
transitions on, 93

color type (INPUT element), 28
columns on web pages, 83–84,

83f, 84f
comment content. See DIALOG

elements
compact attribute, where

dropped, 37
comparison operators,

JavaScript, 218f
compatibility of HTML5, 8
compatibility with browsers.

See browser support
conditional statements,

JavaScript, 219–222
Contact Us page, creating,

50–51, 50f
containerBorderSize attribute,

245
containerResizeSpeed attribute,

245
content blocking. See blocking

content
content interactivity. See

interactivity
content property definition

(CSS), 87
contenteditable attribute, 35

controlling flow with JavaScript,
219–222

controls attribute (AUDIO
element), 174, 187–188

controls attribute (VIDEO
element), 172, 180

conversation content. See
DIALOG elements

cookies, 33, 224
corner-radius definition

(CSS), 90
corners, rounded, 88–89, 91f
createLinearGradient method

(CANVAS images), 159
Crowd Control game, 230–233
CSS. See Cascading Style Sheets
.css documents, 66, 66f, 100–101

media-specific, 97
syntax for, 67–70, 102–105
using CSS folder for, 113

CSS folder, creating, 113
cubic-bezier timing function

(transition), 93
cursor default in forms, 29
cut-out text effect, 82, 82f
cx attribute (CIRCLE element),

140, 141f
cx attribute (RADIALGRADIENT

element), 145
cy attribute (CIRCLE element),

140, 141f
cy attribute (RADIALGRADIENT

element), 145

D
data attribute (OBJECT

element), 135
data storage, local

LocalStorage objects, 224–227,
225f

Web Storage standard, 33–35
data validation, with forms, 252,

254
data visualization, 239
DATAGRID elements, 32–33, 32f
DATALIST elements, 31, 54, 55f
date objects (JavaScript), 222
date pickers, 56
date type (INPUT element), 28, 56
date/time text, identifying. See

TIME elements

datetime attribute (TIME
element), 22, 28, 49–50

datetime-local type (INPUT
element), 28

DD elements, 19
decrement operator (--),

JavaScript, 218
design elements. See elements
DETAILS elements, 32–33
device-width property (LINK

element), 97
DIALOG elements, 19–20,

20f, 26
DIR elements (unsupported), 36
disabled attribute (INPUT

element), 52
disabled pseudo class, 73
display definition (CSS), 119
DIV elements, 9, 10, 24

attributes dropped from, 37
division operator (/), JavaScript,

218
DL elements, attributes dropped

from, 37
Docs. See Google Docs
DOCTYPEs, 13, 40
download-based delivery,

audio/video, 196
draggable attribute (global), 35
draw function (JavaScript), 153
drawings, SVG. See SVG
drawLine method (JavaScript), 205
drawRectangle method

(JavaScript), 205
drop shadow text effects,

81–82, 81f
dropdown lists, 31, 54, 55f
DT elements, 19
duration, transition, 93
DWT (Dynamic Web Templates),

39b
dynamic chart, creating

(example), 203–205
Dynamic Web Templates (DWT),

39b

E
ease timing function

(transition), 93
ease-in timing function

(transition), 93

278 Index

ease-in-out timing function
(transition), 93

ease-out timing function
(transition), 93

ECMA-262 standard, 211
editable content, identifying.

See contenteditable
attribute

element names, case sensitivity
of, 23b

elements. See also specific
element by name

formatting with CSS, 67–70,
102–105. See also style
attribute

gradients (color). See
gradients

new in HTML5. See HTML5,
components of

for page layout. See page
layout elements

positioning, with CSS, 85–86
pseudo elements (CSS), 73, 73f
rounded corners on, 88–89,

91f
unsupported in HTML5, 35–37

ELLIPSE elements, 136, 140, 141f
ellipses, drawing. See CIRCLE

elements; ELLIPSE elements
else/if statement (JavaScript), 220
E.M. PowerPoint Converter, 164,

164f
email address, validating, 254
email type (INPUT element), 28,

54, 54f
Embedded Open Type (EOT), 76
embedding

fonts into CSS, 76–77, 77f,
101–102

using for form inputs, 111
fonts into SVG, 148
video onto web page, 168–172

embossed value (media
attribute), 97

enabled pseudo class, 73
encoding video and audio,

189–196
endAngle property (arc

method), 157
EOT (Embedded Open Type), 76
equality operators, JavaScript, 219

events class (timeline example),
123

EVENT-SOURCE elements, 27
ExplorerCanvas plug-in, 152
external JavaScript files, 214
external style sheets, 66, 66f,

100–101
media-specific, 97
syntax for, 67–70, 102–105
using CSS folder for, 113

F
FIGURE elements, 20–21
figure groups, 20–21
fill attribute (SVG element), 134,

135
fill definition (CSS)

logo illustration (example), 199
with text in SVG drawings, 147

fill method (CANVAS images),
156

FILL property (style attribute),
143

fillRect method (CANVAS
images), 153

fillStyle method (CANVAS
images), 159

Firefogg tool, 164, 165f, 166f,
190, 191f

first-child pseudo class, 73
first-letter pseudo element, 73
first-line pseudo element, 73
Flash animation 177. See

CANVAS elements
flow control with JavaScript,

219–222
focus pseudo class, 73
FONT elements (unsupported), 36
font-family definition (CSS), 75,

101, 102
with text in SVG drawings, 147

fonts, 74–83
color control, 80–81
embedding into CSS, 76–77,

77f, 101–102
using for form inputs, 111

embedding into SVG, 148
sizing control, 78–79, 80f
text effects, 81–82, 81f
using font families, 74
Web-safe (list of), 75

Fonts folder, creating, 113
font-size definition (CSS), 78

with text in SVG drawings, 147
font-style definition (CSS), 82
font-variant definition (CSS), 82
font-weight definition (CSS), 82
FOOTER elements, 9, 16–18, 26,

40f, 44
defining style for, 107, 107f

for statement, JavaScript, 221,
221f

form buttons. See BUTTON
elements

FORM elements (FORMS 2.0), 9,
27–31, 29f, 41

applying styles to, 109–111
Contact Us page, creating,

50–51, 50f
dropdown lists with, 31, 54, 55f
required INPUT fields, 29

formats, image. See image
formats

formats, video
AVI video format, 164
Ogg and MPEG4 formats, 164

formatting web pages. See
Cascading Style Sheets

forms. See also FORM elements
(Forms 2.0)

browser support for, 27b, 50b
Contact Us page, creating,

50–51, 50f
controlling with jQuery,

252–260
controlling with Wforms

library, 238–239
date pickers, 56
default field for cursor, 29
dropdown lists with, 31, 54, 55f
stepper tool, 52, 53, 53f, 56–57

frame attribute, where dropped,
37

FRAME elements
(unsupported), 36

frameborder attribute, where
dropped, 37

FRAMESET elements
(unsupported), 36

full hexadecimal values for
colors, 80, 143

functions, JavaScript, 213

 Index 279

fx attribute (RADIALGRADIENT
element), 145

$fx() library, 239
fy attribute (RADIALGRADIENT

element), 145

G
Geolocation devices,

controlling, 227–230
GIF images, 132–133, 132f
global attributes, new in

HTML5, 35
GlobalStorage objects, 224
GLYPH elements, 148, 148f
Google Docs, 150, 200, 202
Google Map services, 227
Google Search engine, adding, 41
Google Wave, 211, 211f
Google’s V8 technology, 210–211
gradients (color), 87, 87f, 88f

blended with background
images, 89, 90f

with CANVAS objects, 159, 160
with SVG drawings, 144–147

multiple colors with, 146
multiple images with, 146
styling text with, 148, 148f

graphics. See images
groups of links. See NAV elements

H
H code (PATH element), 142
H1...H6 elements

attributes dropped from, 37
H1 elements, 44, 104
H2 elements, default style for

(example), 104
H3 elements, default style for

(example), 104
H.264 support. See MPEG4 video

format
handheld value (media

attribute), 97
HEAD elements, 40

JavaScript in, 212, 215f
HEADER elements, 9, 16–18, 17f,

25, 40f, 41
placing style information in,

65, 65f
headerStyle value (header

class), 41

headings. See H1...H6 elements
height attribute

CANVAS elements, 152
OBJECT elements, 135
RECT elements, 139
VIDEO elements, 180
where dropped, 37

height definition (CSS), 85
hexadecimal values for colors,

80, 143
hidden type (INPUT element),

41, 51–52
high attribute (METER element),

23
highlighting text. See MARK

elements
home page, creating, 45, 47f
horizontal rules. See HR elements
horizontal-offset definition

(CSS), 81
hosted content, linking to, 272–273
hover pseudo class, 72, 73, 92,

92f, 104
designing a timeline

(example), 127
for interactive menus, 118
transitions with, 93

HR elements, 36, 44
attributes dropped from, 37

HSL and HSLA color values, 80,
143, 144

hspace attribute, where
dropped, 37

HTML code. See code
HTML4

development into HTML5, 6–7
migrating sites to HTML5, 37–38

HTML5, components of, 8, 9
attributes, 35
block-level elements, 13
enhancements to code

tagging, 8–9
page-level elements. See page

layout elements
text-level elements, 22

HTML5, controlling data with,
31–35

HTML5, migrating sites to, 37–38
HTML5, readability of, 23–27
HTML5, what’s not supported

in, 35–37

HTML5, code. See code
HTML5, elements. See elements
HTTP (Hypertext Transfer

Protocol), 6
hyperlinks. See entries at link

I
id attribute

ARTICLE element, 44
CANVAS element, 152, 203
DATALIST element, 55
HEADER element, 41
NAV element, 42

if/else statement (JavaScript),
219–222

IFRAME elements, 202
attributes dropped from, 37
for SVG drawings, 136

IIS 7 Live Smooth Streaming, 196
Illustrator (Adobe), 150
image formats, 131
images. See also video

adding to menus, 115
animating. See animation
CANVAS. See CANVAS

elements
creating SVG graphics,

133–150. See also SVG
adding color with CSS,

143–144
adding gradients, 144–147
adding text to drawings,

147–149, 147f
adding to web pages, 135, 136
interactivity and JavaScript,

149–150
shapes basics, 136–142

dynamic chart, creating
(example), 203–205

figure groups, 20–21
lightbox project, 242

building HTML for, 251–252
controlling forms with

jQuery, 252–260
creating images for, 242–244
writing JavaScript for,

244–251
logos, creating with SVG,

199–202
multiple background objects,

88–89, 89f, 90f

280 Index

images (graphics), 131–162
IMG elements

attributes dropped from, 37
in multicolumn layouts, 84
not used for SVG drawings,

135
in. (inch)

for font size, 78
for SVG drawing

measurements, 144
increment operator (++),

JavaScript, 218
inequality operators, JavaScript,

219
InkSpace project, 150
inline styles. See STYLE

attribute
INPUT elements, 27, 41

applying styles to, 109, 110f
attributes dropped from, 37
Contact Us page, creating,

50–51, 50f
LABEL elements with, 52
placeholder attribute, 29–31,

41, 41f
input fields in forms

adding placeholder text,
29–31

date pickers, 56
defining default starting

element, 29
dropdown lists with, 31, 54,

55f
making required, 29, 29f
stepper tool, 52, 53, 53f,

56–57
interactivity

with CSS
building menus, 114–120,

114f
preparing for, 112–113

with SVG drawings, 149–150
Internet Explorer, 4
intervals class (timeline

example), 122
iPhone (Apple), 4–5, 5f
iPod Touch (Apple), 4–5
ISINDEX elements

(unsupported), 36
iTunes (Apple), 189

J
JavaScript, 209–240, 241–273

Ajax and, 233–239
basics of, 210–211
CAKE library, 161
controlling VIDEO and AUDIO

elements, 182
Crowd Control game, 230–233
describing rectangles with,

153–155
Geolocation devices,

controlling, 227–230
linking to hosted content,

272–273
LocalStorage objects, 224–227,

225f
as programming language,

212–222
comparison operators, 219
flow control, 219–222
math (arithmetic), 217–219
objects, 222
variables, 217

with SVG drawings, 149–150
video controls, 170–171
for Web Storage, 34. See also

Web Storage standard
Web Workers API, 222–224

JPEG images, 132–133, 132f
jQuery library, 233–239, 241

controlling forms with, 252–260
tabbed interface on projects,

261–264
.js files, 214
JSCharts libraries, 239, 240f

K
kerning definition (CSS), 147
keyup command, 256

L
L code (PATH element), 142
LABEL elements, 36, 52
lang pseudo class, 73
large value (font-size style), 78
larger value (font-size style), 78
last-child pseudo class, 73
layout, page. See page layout
layout elements. See page layout

elements
left definition (CSS), 85

LEGEND elements, 21
attributes dropped from, 37

LI (LIST) elements, building
menus from, 114–115, 115f,
116, 117

lightbox image management
tool (project), 242

building HTML for, 251–252
controlling forms with jQuery,

252–260
creating images for, 242–244
writing JavaScript for, 244–251

line breaks. See BR elements
LINE elements, 136, 137, 137f
linear gradients, 87, 87f

with CANVAS objects, 159
with SVG drawings, 144, 145f,

146, 148, 148f
linear timing function

(transition), 93
LINEARGRADIENT elements,

144, 145f
multiple colors with, 146
styling text with, 148, 148f

lines, drawing
with CANVAS, 156–157, 157f
with SVG, 136, 137, 137f

polylines, 136, 138, 138f, 142
lineTo method (CANVAS

images), 156, 157f
link attribute, where dropped, 37
LINK elements, accessing CSS

style sheets, 66, 66f
link groups. See NAV elements
link pseudo class, 72
linking to hosted content,

272–273
links. See also A (ANCHOR)

elements
list attribute (INPUT

element), 56
list-style-image definition

(CSS), 87
LiveScript technology, 210
local data storage

LocalStorage objects, 224–227,
225f

Web Storage standard, 33–35
LocalStorage objects, 224–227,

225f
logos, creating with SVG, 199–202

 Index 281

loop attribute (VIDEO
element), 180

loop statements, JavaScript, 221
Lorem Ipsum, 45b
low attribute (METER

element), 23
lowercase element names, 23b

M
M code (PATH element), 142
marginheight attribute, where

dropped, 37
marginwidth attribute,

where dropped, 37
MARK elements, 12, 22, 48
math, in JavaScript, 217–219
math objects (JavaScript), 222
max attribute

INPUT element, 53, 56–57
METER element, 23
PROGRESS element, 23

measurements of time. See TIME
elements

media. See animation; audio;
images; video

media attribute (LINK
element), 97

media-convert online service,
169, 169f

medium value (font-size style), 78
MENU elements, 36

attributes dropped from, 37
menus, interactive, 114–120, 114f
METER elements, 22–23
Microsoft IIS 7 Live Smooth

Streaming, 196
Microsoft Internet Explorer, 4
Microsoft PowerPoint,

converting to video,
163–164

Microsoft VBScript language,
212

migrating sites to HTML5, 37–38
min attribute (INPUT element),

53, 56–57
min attribute (METER

element), 22
mm (millimeter)

for font size, 78
for SVG drawing

measurements, 144

mobile device solutions, 96–98
controlling Geolocation

devices, 227–230
Mobile Safari, 4–5, 5f
Modernizr, 38
modulus operator (%),

JavaScript, 218
month type (INPUT elements), 28
moveTo method (CANVAS

images), 155
-moz-border-radius definition

(CSS), 91, 124
-moz-column-count definition

(CSS), 83
-moz-column-gap definition

(CSS), 83
-moz-column-rule definition

(CSS), 83
MPEG4 video format, 164, 190

converting AVI to, 169
creating video in, 194

multicolumn page layout, 83–84,
83f, 84f

multimedia. See animation;
audio; images; video

multiplication operator (*),
JavaScript, 218

N
names, color, 80, 143
names of elements, case

sensitivity of, 23b
NAV (NAVIGATION) elements, 9,

21, 26, 40f, 42, 42f
navigation

applying styles to navigation
elements, 108–109

link groups. See NAV elements
menus, interactive, 114–120,

114f
tabs, creating, 92, 92f

navigation panel (content).
See NAV elements

Netscape’s Navigator, 4
news page, creating, 48–49, 48f
NOFRAMES elements

(unsupported), 36
noshade attribute, where

dropped, 37
nowrap attribute, where

dropped, 37

nth-child pseudo class, 73
nth-last-child pseudo class, 73
number type (INPUT element),

27, 52, 53, 53f
numeric stepper (form input),

52, 53, 53f, 56–57
numeric values, identifying.

See METER elements

O
OBJECT elements

attributes dropped from, 37
for SVG drawings, 135

objects, with JavaScript, 222
offset attribute (STOP

element), 145
Ogg format, 190

converting video to, 164–166,
166f

creating Ogg Theora video,
190–192

creating Ogg Vorbis audio, 194
OL elements, attributes dropped

from, 37
onClick action, 214
onLoad action, 212, 213f
only-child pseudo class, 73
OpenType fonts, 76
operators, JavaScript

arithmetic operators, 218,
218f

comparison operators, 219
optimum attribute (METER

element), 23
OPTION elements, with

DATALIST elements, 31
organizing code with blocking, 18
OUTPUT elements, 27, 57
overflow definition (CSS), 85
overlayBgColor attribute, 245
overlayOpacity attribute, 245

P
P (PARAGRAPH) elements, 44

attributes dropped from, 37
formatting with CSS, 67, 68f

padding definition (CSS), 91,
91f

page elements. See elements
page formatting. See Cascading

Style Sheets

282 Index

page layout
defining columns with CSS,

83–84, 83f, 84f
footers. See FOOTER elements
headers. See HEADER

elements
positioning design elements,

85–86
sections. See SECTION elements

page layout elements, 9
ARTICLE elements, 9, 12, 16,

16f, 26, 43f, 44
examples of, 45, 46

ASIDE elements, 9, 18, 19f,
47f, 48f, 49

applying styles to
(example), 111

formatting with CSS, 69
DIALOG elements, 19–20, 20f,

26
FIGURE elements, 20–21
FOOTER elements, 9, 16–18,

26, 40f, 44
defining style for, 107, 107f

HEADER elements, 9, 16–18,
17f, 25, 40f, 41

placing style information in,
65, 65f

LEGEND elements, 21, 37
NAV (NAVIGATION) elements,

9, 21, 26, 40f, 42, 42f
organizing code with, 18
positioning. See positioning

design elements
rounded corners on, 88–89, 91f
SECTION elements, 9, 13, 15,

15f, 25, 26, 40f, 43, 43f
building menus from, 116

styling with CSS, 105–108.
See also Cascading Style
Sheets

paintStyle method (CANVAS
images), 160

password type (INPUT
element), 28

PATH elements, 135, 137, 142
logo illustration as, 199

pc (pica)
for font size, 78
for SVG drawing

measurements, 144

placeholder attribute
(INPUT element), 29–31,
41, 41f

Play/Pause button, 170–171,
174, 182

applying styles to, 183, 185f
playPauseAudio function, 174
playPauseVideo function, 171
PNG images, 132–133, 132f
point, gradient, 87
point attribute (POLYLINE

element), 138
POLYGON elements, 137, 141,

141f
POLYLINE elements, 136, 138,

138f, 142
popUpAlert() function, 214
Portable Network Graphics.

See PNG images
position definition (CSS), 85
positioning design elements,

85–86
POST method (forms), 51
PowerPoint slideshow,

converting to video,
163–164

PRE elements, attributes
dropped from, 37

print value (media attribute), 97
product page, creating, 47–48,

47f
PROGRESS elements, 23
projection value (media

attribute), 97
pseudo classes, 72–73, 109
pseudo elements, 73, 73f
pt (point)

for font size, 78
for SVG drawing

measurements, 144
px (pixel)

for font size, 78
for SVG drawing

measurements, 144

Q
Q (quotation) elements, 37
Q code (PATH element), 142
quadratic curves, drawing, 158
QuickTime Live Streaming

(Apple), 196

R
R attribute (CIRCLE element),

139
R attribute (RADIALGRADIENT

element), 145
radial gradients, 87, 87f

with background images, 89, 90f
with CANVAS objects, 160
with SVG drawings, 145, 146,

146f, 148, 148f
RADIALGRADIENT elements,

145, 146f
multiple colors with, 146
styling text with, 148, 148f

radius, gradient, 87
radius, rounded corners, 90
radius property (arc method), 157
range type (INPUT element), 27,

28, 56–57
RB elements, 27
RECT elements, 136, 139, 139f
rectangles, drawing

with CANVAS, 153
with SVG, 136, 139, 139f

regexp objects (JavaScript), 222
rem, for font size, 78
removeItem method, 225
REQUIRED element (INPUT

element), 29, 29f, 52
RGB and RGBA color values, 80,

143
rich media. See animation.

audio; images; video
rounded corners, 90–92
RT elements, 27
RUBY elements, 27
rules, horizontal. See HR

elements
RULES attribute, where

dropped, 37
rx attribute (ELLIPSE

element), 140
ry attribute (ELLIPSE

element), 140

S
S code (PATH element), 142
S elements (unsupported), 36
scalable vector graphics. See SVG
scale method (CANVAS

images), 162

 Index 283

screen value (media attribute),
97

SCRIPT elements, 34, 212
with SVG drawings, 149–150

scrolling attribute, where
dropped, 37

scrub bar, 27, 28
search engine, adding, 41
search type (INPUT element), 27
SECTION elements, 9, 13, 15,

15f, 25, 26, 40f, 43, 43f
building menus from, 116

sections of content, styling,
105–108

SELECT elements, 31
attributes dropped from, 37

selection pseudo class, 73
semantic elements

block-level, 13
text-level, 21–23

setItem method, 225
shadow-color definition (CSS), 81
shapes. See also specific shape

drawing with CANVAS
(JavaScript), 153–155

drawing with SVG, 136–142.
See also SVG

short hexadecimal values for
colors, 80, 143

sidebar content. See ASIDE
elements

SilverLight, 273
simultaneous execution of

JavaScripts, 224
singleton objects, 254
site migration to HTML5, 37–38
site template, creating, 39–40
size, device screen, 97
size, font, 78–79, 80f
size attribute, where dropped, 37
Sketsa tool, 150
sliders. See stepper tool (form

input)
slideshow, converting to video

(example), 163–164
SMALL elements, 37
small value (font-size style), 78
smaller value (font-size style), 78
sound. See audio
SOURCE elements, using

multiple, 195–196

speech value (media attribute), 97
Spry framework (Adobe),

237–238, 238f, 241, 264–268
SQLite, 33
startAngle property (arc

method), 157
stepper tool (form input), 52, 53,

53f, 56–57
stop, gradient, 87
STOP elements, 145, 146
storing data locally

LocalStorage objects, 224–227,
225f

Web Storage standard, 33–35
streaming video and audio, 196
STRIKE elements

(unsupported), 36
string objects (JavaScript), 222
stroke attribute (SVG

element), 135
stroke definition (CSS)

logo illustration
(example), 199

with text in SVG
drawings, 147

stroke-linecap attribute
(SVG element), 135

stroke-miterlimit attribute
(SVG element), 135

strokeRect method (CANVAS
images), 154

STRONG elements, 37
style attribute, 63, 64, 64f

ARTICLE elements, 44
ASIDE elements, 49
designing a timeline

(example), 125
STOP elements, 145
with SVG drawings, 143
TEXT elements, 147

style sheets, external, 66, 66f,
100–101

media-specific, 97
syntax for, 67–70, 102–105
using CSS folder for, 113

styles. See Cascading Style
Sheets

submenus. See menus,
interactive

submit type (INPUT
element), 28

subtraction operator (-),
JavaScript, 218

SVG (scalable vector graphics),
131, 132–133

CANVAS elements vs., 151–152
creating graphics, 133–150

adding color with CSS,
143–144

adding gradients, 144–147
adding text to drawings,

147–149, 147f
adding to web pages, 135,

136
interactivity and JavaScript,

149–150
shapes basics, 136–142

creating logo with, 199–202
drawing tools, 150–151
embedding fonts into, 148
for fonts, 76

SVG elements, 135
adding to HTML, 136

switch statement (JavaScript),
220

T
T code (PATH element), 142
tabbed interface on jQuery

projects, 261–264
TABLE elements, attributes

dropped from, 37
tables, to position elements, 85
tabs, creating, 92, 92f
tag language (HTML5), 8–9
tags. See elements
TBODY elements, attributes

dropped from, 37
TD elements, attributes dropped

from, 37
tel type (INPUT element), 28
template for web site, creating,

39–40
text attribute, where dropped, 37
text blocking, 45b. See also

blocking content
TEXT elements, 147–149, 147f
text formatting

drop shadow, 81–82, 81f
font definitions, 82–83.

See also fonts
text type (INPUT element), 28

284 Index

text-decoration definition (CSS),
83, 104

text-level semantics, 21–23
MARK elements, 12, 22, 48
METER elements, 22–23
PROGRESS elements, 23
TIME elements, 12, 22, 47f, 49

designing a timeline
(example), 121, 126

text-transform definition (CSS),
82

TFOOT elements, attributes
dropped from, 37

TH elements, attributes dropped
from, 37

THEAD elements, attributes
dropped from, 37

Theora video. See Ogg format
TIME elements, 12, 22, 47f, 49

designing a timeline
(example), 121, 126

time type (INPUT element), 28
timeline, creating (example),

120–127, 120f
timing function, transition, 93
top definition (CSS), 85
TR elements, attributes dropped

from, 37
Transform feature (CSS3), 43
transformed, CSS, 93, 95–96
transitions, CSS, 93–94, 94f

designing a timeline
(example), 126

triangles, drawing. See
POLYGON elements

TrueType fonts, 76
TT elements (unsupported), 36
tty value (media attribute), 97
TuneKit, 189
tv value (media attribute), 97
TYPE attribute

for INPUT elements. See
specific type value
(e.g., hidden type)

where dropped, 37

U
U elements (unsupported), 36
UL elements

attributes dropped from, 37
building menus from, 114–115,

115f, 117, 118

underlining links during
mouseover, 104, 109

units of font size measurement,
78, 80f

uppercase element names, 23b
url type (INPUT element), 28
URLs, validating, 255

V
V code (PATH element), 142
V8 technology (Google), 210–211
validating forms input, 252, 254
validation attribute, 258
valign attribute, where

dropped, 37
value attribute (METER

element), 22
value attribute (PROGRESS

element), 23
value sliders. See stepper tool

(form input)
variables, in JavaScript, 217

arithmetic with, 217–219
VBScript language, 212
version attribute (SVG

element), 135
vertical text formatting, 43b
vertical-offset definition (CSS), 81
video, 163–174

converting AVI to MPEG4, 169
converting AVI to Ogg, 164–166
converting to Flash, 179
creating, 163–164, 163b
creating MPEG4 video, 194
creating Ogg Theora video,

190–192
embedding onto web page,

168–172
encoding for web delivery,

189–196
Flash animation, 177. See also

CANVAS elements
streaming vs. download

delivery, 196
VIDEO elements, 168, 170, 177,

180–186
automatic controls, removing,

172
ensuring browser

compatibility, 195–196
Play/Pause button, 171, 182

View Page Source, 3, 4f

viewbox attribute (SVG
element), 135

drawing lines, 137
Vimeo, 178f, 179
visited pseudo class, 72
visual display control, 85–92

gradients. See gradients
multiple background objects,

88–89, 89f, 90f
positioning design elements,

85–86
rounded corners, 88–89, 91f

vlink attribute, where
dropped, 37

Vorbis audio. See Ogg format
vspace attribute, where

dropped, 37

W
W3C. See World Wide Web

Consortium
Web, evolution of, 4–5
Web 2.0, 7
web browsers. See entries at

browser
Web image formats. See image

formats
web pages, formatting. See

Cascading Style Sheets
web site template, creating, 39–40
Web Storage standard, 33–35
Web Workers API, 222–224
-webkit-animation definitions

(CSS), 95, 96
-webkit-border-radius definition

(CSS), 91, 124
-webkit-column-count

definition (CSS), 83
-webkit-column-gap definition

(CSS), 83
-webkit-column-rule definition

(CSS), 83
Web-safe fonts, list of, 75
week type (INPUT element), 28
Wforms library, 238–239
width attribute

CANVAS elements, 152
OBJECT elements, 135
RECT elements, 139
VIDEO elements, 180
where dropped, 37

width definition (CSS), 85

 Index 285

World Wide Web Consortium
(W3C), 6–7, 67

X
x attribute (TEXT element), 147
X property (arc method), 157
X1, X2 attributes

(LINEARGRADIENT
element), 144

XHTML 2.0 standard, 7
x-large value (font-size style), 78
XML syntax for SVG. See SVG

xmlns attribute (SVG element),
135

x-small value (font-size style), 78
xxlarge value (font-size style), 78
xx-small value (font-size style), 78

Y
y attribute (TEXT element), 147
Y property (arc method), 157
Y1, Y2 attributes

(LINEARGRADIENT
element), 144

Yahoo Interface Library (YUI),
238, 269–272

YUI (Yahoo Interface Library),
238, 269–272

Z
Z code (PATH element), 142
z-index definition (CSS), 85, 116

	Cover Page
	Front matter
	Copyright
	Praise for the Book
	Dedication
	Preface
	HTML5 Tag Structure
	Where HTML Code Can Be Found
	The Evolution of the Web
	The Rocky Road from HTML4 to HTML5
	Web 2.0 Applications and Solutions
	What Is Included in HTML5
	Enhancements to Core Tag Language
	New Elements Are Introduced to HTML5
	Blocking Content on the Page
	Modifications to Content Sections
	Making DOC Type Easier to Work With
	Organizing Code Using Blocking Elements
	Using the SECTION Element
	Using the ARTICLE Element
	Using the HEADER and FOOTER Elements
	Using the ASIDE Element
	Using the DIALOG Element
	Using the FIGURE Element
	Using the NAV Element

	Text-Level Semantic Additions and Changes
	Using the MARK Element
	Using the TIME Element for Measurement
	Using the METER Element
	Using the PROGRESS Element

	Applying HTML5 to Make HTML Code Easier to Read
	Working with HTML5 Forms
	What Has Changed in HTML Forms 2.0
	Inserting the Cursor Automatically into a Specified Field
	Making an INPUT Field Required
	Adding the Placeholder Text

	Controlling Data with HTML5
	Extending the Functionality of HTML5
	Displaying Data in HTML5
	Storing Data Locally Using Web Storage

	New HTML5 Attributes
	What Is Not Being Supported in HTML5
	How to Gracefully Migrate Sites to Work with the New HTML5 Standard
	What You Have Learned

	Project 1: Building a Web Site Using HTML5 Blocking Elements
	Creating a Template for Your Web Site
	Customizing the HEADER Element
	Customizing the NAVIGATION Element
	Customizing the Main SECTION Element
	Customizing the FOOTER Element
	Creating the Site’s Home Page
	Adding a Product Page That Uses the MARK Element
	Adding a News Page That Uses the TIME and ASIDE Elements
	Creating a Contact Us Page That Uses the New Form INPUT Attributes
	Summary

	Picture CSS3
	CSS as a Designer’s Tools
	Cascading Your Designs
	The Format of CSS
	Modifying Elements with CSS
	Creating Class Styles
	Using Pseudo Class Styles
	Using Pseudo Elements

	Designing Your Web Page with CSS
	Controlling Font Display with CSS
	Embedding Fonts Using CSS3
	Sizing Fonts with CSS Units of Measurement
	Color Control for Fonts
	Adding Drop Shadow Text Effects
	Additional Font Definitions

	Working with Columns in CSS3
	Using CSS3 to Control Visual Display
	Positioning Design Elements with CSS
	Increase Control over Color
	Multiple Background Objects
	Adding Rounded Corners to Layers

	Dazzling Your Audience with CSS3 Animation
	Using Transitions in CSS
	Creating Animation with CSS3

	Delivering Solutions for the Mobile Market
	What You Have Learned

	Project 2: Applying CSS3 to Your Web Design
	Linking to a Single CSS Document
	Embedding Fonts
	Default Styles for Content
	Applying Styles to Main Sections
of Content
	Applying Styles to the Navigation Elements
	Applying Styles to the Form Elements
	Additional Styles
	Advanced CSS Execution
	Creating a Menu with CSS
	Designing with CSS3
	Summary

	HTML5 Rich Media Foundation
	Working with VIDEO and AUDIO Tags
	Using HTML5 Rich Media Tags
	Controlling Video with VIDEO Tags
	Controlling Audio with AUDIO Tags

	Encoding Video and Audio for Delivery over the Web
	Creating Video in Ogg Theora Format
	Creating Video in H.264 Format
	Creating Audio That Plays Back through Your Web Browser
	Ensuring That Your Video and Audio Play Back

	Serving Video from Your Servers
	What You Have Learned

	Project 4: Creating SVG Logos and CANVAS Charts
	Creating an SVG Logo
	Inserting a CANVAS-Driven Dynamic Chart
	Summary

	HTML5 JavaScript Model
	Understanding JavaScript
	JavaScript as Programming Language
	Working with Variables
	Using Math in Your Scripts
	Assessing Values Using Operators
	Controlling Outcomes with If/Else and Switch Statements
	Specific Objects You Can Use in JavaScript

	Developing JavaScript for HTML5
	Using Web Workers
	Storing Data with LocalStorage
	Controlling Geolocation Devices with JavaScript

	Integrating JavaScript with HTML5
	Taking JavaScript to the Next Level with Ajax
	Using Ajax in Your Work
	Popular Ajax Libraries
	Adobe’s Spry Framework
	YUI: Yahoo Interface Library
	Controlling Forms with wForms
	Animation Control with $fx()
	Visualizing Data with JSCharts

	What You Have Learned

	Project 5: Working with JavaScript
	Working with jQuery
	Developing a Lightbox Image Management Tool
	Creating the Images
	Working with JavaScript
	Stitching It All Together in HTML
	Controlling Forms with jQuery
	Inserting a Tabbed Interface to Build on Top of Your Existing jQuery Projects
	Using Additional Ajax Libraries: Working with Adobe’s Spry Framework
	Working with Additional Ajax Libraries: Using Yahoo’s YUI Framework
	Linking to Content Hosted on Different Web Sites
	Summary

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

