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Preface

Fortran 90 is the latest version of the world's oldest and most widely used
scientific programming language, and was accepted as an international standard
language in the summer of 1991 after a twelve year development process
involving experts from around the world. The major development work was
carried out by the American Fortran Standards Committee (X3J3), of which all
three of us are long-standing members, with the final stages being directed by the
International Organization for Standardization's Fortran Working Group (WG5),
of which we are also all active members.

Fortran dates from 1954, when the first FORmula TRANslation system
was developed at IBM by a team led by John Backus. Since those early days there
have been a number of definitive stages in the development of Fortran -
FORTRAN II, FORTRAN IV, FORTRAN 66, FORTRAN 77 and now Fortran 90.
This latest step is, in many ways, the most important of all, for it marks the full
emergence of Fortran as a modem programming language, with many new
features based on the experience gained with similar concepts in other languages,
and others which provide Fortran's own contribution to the development of new
programming concepts.

This book is primarily intended for college students who are learning how
to program in Fortran 90, and is a natural successor to the similar book written by
one of us (TMRE) about FORTRAN 77 programming. We have therefore written
it in such a way as to encourage readers to utilize fully the power and flexibility
of Fortran 90 from the outset, while also making them aware of important older
constructs which remain in the language for compatibility with earlier versions.
These older constructs will often be found in existing programs, or in programs
written by Fortran programmers who learned their programming in an earlier age
and have not yet fully adapted to the current style and capability of Fortran 90.

Every chapter of the book follows a similar structure, and is introduced by
a short overview of the topic covered in that chapter, with an emphasis on the
class of problems that it helps to solve and the key techniques that are being
introduced. At several points within each chapter there are short self-test
exercises which should be used to check and to reinforce the material covered
thus far. Every chapter also includes a number of worked examples which
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vi Preface

illustrate both the features of the language that have most recently been
introduced and, equally importantly, a recommended approach to the design and
development of programs. Finally, at the end of each chapter, before the
programming exercises for that chapter, there is a brief checklist of the main
features of the chapter, together with a summary of all new syntax introduced.

It seems appropriate here to emphasize that the programming community
has, since the very beginning, consisted of both men and women, although in
recent years there seems to have been an unfortunate reduction in the number of
women entering it. We, therefore, very much hope that people of both sexes will
be reading this book. We believe that men and women make equally good
programmers, and will, wherever possible, avoid the use of words such as 'he' or
'she' throughout the book.

An important message for experienced Fortran
programmers

The book is also suitable for experienced FORTRAN 77 programmers who wish
to update their knowledge to take advantage of the new features of Fortran 90.
Although such readers will, inevitably, be tempted to simply dip into the book in
order to find out how a particular feature works, we would strongly urge them to
try to resist this temptation and to read the book from the beginning - although
they could omit Chapter 1 if they wish. The reason for this advice is that,
although Fortran 90 contains all of FORTRAN 77 within it and could, therefore,
be considered to be little more than FORTRAN 77 plus a set of additional
features to be incorporated in programs as and when appropriate, some of the
new features, notably modules and the new array processing features, will have
a profound effect on the way in which Fortran programs are designed and written
in the future. In order to appreciate our recommended approach to writing
Fortran 90 programs, therefore, even experienced Fortran programmers should
read the book from the beginning to the end, and not jump about at random (as
we are all tempted to do with, for example, the manual accompanying a new item
of software!).

How to use this book

Fortran 90 is a large language, partly because it contains many features which are
included for compatibility with earlier versions of the language - some of which
should never be used in new programs. We have, therefore, defined a smaller
language, which we shall refer to as the core language, and have concentrated
the bulk of the book on this pure Fortran 90 language.



In line with our overall philosophy of learning through experience, the
book is structured in two parts. The first part covers many of the main features of
Fortran 90, and it is possible to write programs to solve a very high proportion of
problems by using only these features. Each chapter contains a number of worked
examples, as well as self-test exercises and a substantial number of programming
exercises; sample solutions to a small proportion of the programming exercises
will be found at the end of the book, and sample solutions to many more can be
obtained by teachers from the publishers, both in printed form in the
accompanying Instructor's Guide and in electronic form on disk. The eight
chapters which make up Part I, together with the introductory Chapter 1, can
easily, therefore, form the basis of an introductory course in Fortran
programming.

Part II develops most of the topics covered in Part I to make the student
aware of other possibilities which will both help to solve most remaining
problems and introduce alternative, or beHer, ways of dealing with the more
straightforward ones. However, unlike Part I, it is not essential that the student
covers all the materia!. Although the order of presentation creates a logical
development, and will frequently utilize material that has been introduced in an
earlier chapter, it is feasible to omit certain chapters, or combinations of chapters,
for certain categories of students. The Instructor's Guide discusses this topic in
more detail for those involved in planning courses for particular categories of
students.

As already mentioned, every chapter contains several groups of self-test
exercises, as well as a set of programming exercises. We strongly recommend that
you should aHempt all the self-test exercises, and check your answers with those
included at the back of the book before proceeding. You should also carefully
study the worked examples in each chapter, as these illustrate not only how to
code a solution to a particular problem but, more importantly, how to design a
program to meet the requirements of the problem.

Once you have completed the chapter you should always aHempt some
of the programming exercises, and run your solutions on a computer, before
proceeding to the next chapter. Experience is even more important than
theoretical knowledge in programming. Sample solutions to one or two of these
exercises are included at the end of the book; more are included in the Instructor's
Guide. Your programs will, almost certainly, differ from these sample solutions. If
the difference is substantial then it is worth comparing them in order to establish
why they differ and how one of them might have been improved; differences as a
result of individual programming styles are, however, unimportant.

We have already mentioned that Fortran 90 contains all the features of
FORTRAN 77, although many of these features are not recommended for new
programs. The Fortran 90 standard identifies a small number of features which are
obsolete and which are candidates for removal from the formal definition of the
language at the next revision (or the one after!). However, language features
cannot be removed from the defining standard until some time after they have
ceased to be used in practice, and there are a number of other features of
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viii Preface

Fortran 90 which we believe should not be used, since much better alternatives
exist elsewhere in the language. Most of these are gathered together in Appendix
E, but are not discussed elsewhere in the book, while the remainder are identified
as obsolescent features when referred to in the appropriate chapter of the book,
and are not otherwise discussed. All of these features, which fall outside our core language, are

printed in a smaller font, identical to that used for this sentence, as a visual reminder that this feature is not

recommended for new programs. When discussing Fortran 90 features for which older,
obsolescent, alternatives are described in Appendix E, a special symbol will be
found in the margin to identify that fact; an example is shown on this page
adjacent to this sentence.

It is strongly recommended that new programs should never use any of these
obsolescent features of Fortran 90.

There is one major exception to this philosophy, namely the whole area
of storage association, and in particular COMMON blocks and EQUIVALENCE
statements. Although Fortran 90's new module facility eliminates the need for
COMMON as a means of providing global access to data, the concept of COMMON data
is so fundamental to all existing Fortran programs that we feel that it deserves a
more thorough treatment than would otherwise be given to an obsolete feature.
Chapter 17 therefore discusses this topic in some detail, although it must be
emphasized that we do not believe that this concept should be used in new
programs.

To the teacher

Since this book follows quite soon after the second edition of FORTRAN 77
Programming (by T.M.R. Ellis), it will come as no surprise to find that it shares
many of the same concepts as that book. Indeed, the FORTRAN 77 book was
quite deliberately written in the expectation that it would be followed quite
shortly by a Fortran 90 one, and the time lapse of over three years between the
two is mainly due to delays in the final processing of the Fortran 90 standard,
which was completed only in the summer of 1991 - almost a year later than had
been anticipated when the FORTRAN 77 book was being completed. Like that
book, therefore, this book contains a wealth of worked examples, all of which
have been fully tested, and a large number of programming exercises at the end
of each chapter. Sample solutions to some of these exercises will be found at the
end of the book, while sample solutions to a great many more are included in the
accompanying Instructor's Guide. In addition, each chapter contains several self-
test exercises by means of which students can assess their progress and
understanding; solutions to all the self-test exercises are provided at the end of
the book.

The Computing Teaching Centre (CTC) at the University of Oxford, of
which TMRE had the privilege to be the Director throughout its all-too-short life
of only eight years, was a central service department which taught courses about



all aspects of computing to students of all disciplines, both on a vocational basis
and through courses organized in conjunction with their own academic
departments. This gave the teaching staff of the CTC a unique perspective of
the problems found by widely differing types of student on different types of
courses, and we spent a great deal of time developing new approaches to
teaching in order to obtain the best results. In particular, we discovered that there
are very few textbooks for any language which introduce the features of the
language in what we had established to be the best order. The second edition of
TMRE's widely used textbook used this experience to create what was seen by
some as a radically new approach, but which was in reality simply a formalization
of the methods already developed at the CTC.

This book continues with this approach, with the added benefit that
Fortran 90 contains all the modem features necessary to enable programs to be
properly designed and written - which FORTRAN 77 did not. However, the
most important aspect of the ordering of the previous book was probably its
early treatment of procedures, and this practice is further developed in this book,
in which both procedures and modules are introduced at a very early stage,
before there is any discussion of control structures or, indeed, of anything other
than simple assignment and list-directed input! output. This means that
procedures are treated as a basic programming block, and that modules are
seen as a natural way of grouping similar entities, with the result that students
learn to develop programs in a modular fashion from the outset. The CTC
experience was that students have far less trouble with procedures and modules if
they are introduced at this early stage than if they are left until most of the other
features of the language have been met and the students' own programming
styles have begun to form.

Programming is nowadays recognized to be an engineering discipline
(information engineering), and as such it draws on both art and science. As with
any other branch of engineering it involves both the learning of the theory and
the incorporation of that theory into practical work. In particular, it is impossible
to learn to write programs without plenty of practical experience, and it is also
impossible to learn to write good programs without the opportunity to see and
examine other people's programs.

This book uses the concept of an English language structure plan as an aid
to program design, and from their first introduction in Chapter 2 structure plans are
developed for all the worked examples throughout the remainder of the book.
There are 51 such worked examples and a total of over 139 complete programs
and subprograms in this book, of which 107 are in the main text of the book and
the remainder are included as example solutions to some of the programming
exercises. All of these have been fully tested on an 80486-based PC using either the Lahey
Fortran 90 compiler or the Salford Software Fortran 90 compiler. Since many of these
programs, subroutines and functions may be of more general use there is a special
index to them at the end of the book. before the general index.

Each chapter contains two types of exercise for the student. The first type
are self-test exercises which do not require the writing of complete programs,
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and are designed to enable students to verify their understanding of the material
covered in the chapter, or in part of it. Every chapter has a set of these exercises
at the end, while some also contain a set in the middle of the chapter. Answers,
with explanations where appropriate, to all of these exercises are included at the
end of the book. The second type of exercises, which only appear at the end of a
chapter, are programming exercises for students to write and test on a computer.
Example solutions to some of these are also included at the end of the book.

Because students from many different subject areas need to learn Fortran,
great care has been taken to avoid any bias towards particular scientific or
engineering concepts in the worked examples. The purpose of these examples is to
help students to understand how to use particular programming concepts and how
to develop well-structured programs using these concepts. Many of these worked
examples are, therefore, intended to solve quite general and non-scientific
problems which will be understood by students of any background. One particular
group of examples is, however, worthy of special mention here.

One of the many improvements of Fortran 90 over FORTRAN 77 is its
ability to define new data types and the operators to enable them to be fully
integrated into the language. This provides the means for greater data abstraction
and the design of application-oriented data structures. As an example of this, one
of the worked examples in Chapter 3 creates two data types, for points and lines,
and a program to calculate the line joining two points. In subsequent chapters,
other two-dimensional geometric data types are added and a small library of
procedures is built up to solve certain types of interaction. In addition, several of
the programming exercises are also related to this topic. By the end of the book a
complete geometric module has been developed which could be used in simple
computer-aided design programs. This gradual development both illustrates the
various techniques being learned and also demontrates how a complex program,
procedure library or module can be developed in stages.

The 208 programming exercises are mainly drawn from a range of
different scientific and engineering disciplines, although there are a few more
general ones which do not assume any particular prior scientific knowledge. In
this way, students can be directed to those programming exercises that are most
appropriate for their specific background, while ensuring that students with a
different background can attempt a different set of exercises.

Mention has already been made of the accompanying Instructor's Guide.
This contains a shod summary of the major points involved in each chapter, with
a note of any particular areas where experience shows that students may have
problems. The Instructor's Guide also contains example solutions to all of the 176
programming exercises for which solutions are not included in this book. A disk
containing all the programs in this book and in the Instructor's Guide is also
available from your local Addison-Wesley office.

The programs in the book, but not those in the Instructor's Guide, are also
available on the Internet by anonymous FTP. In order to obtain the programs in
this way, you should type ftp aw. com on a computer which is connected to
the Internet and login as anonymous, giving your email address as a password.



You should then change to the appropriate directory by first typing
cd aw. computer. science, followed by cd Ellis. F90. The file READMEcontains
further information about the files in this directory. Note that case is significant in
typing these directory and file names. If you are not familiar with using FTP to
transfer files from remote computers, you should first consult your local computer
advisor.
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Those familiar with TMRE's earlier books on FORTRAN 77 program-
ming will be familiar with his penchant for bridges. The first edition of that book
showed the famous Iron Bridge in Shropshire, England - the first bridge in the
world to be built entirely of cast iron. As the preface records, 'You can read
whatever you like into this - building bridges, developing structures, elegance,
style, permanence, etc. - but at least it makes a change from abstract patterns and
punched cards!' The second edition showed the two Forth Bridges near
Edinburgh, Scotland, and the preface to that edition records that 'the old Forth
railway bridge in the foreground symbolizes old "brute force" technology that
has stood the test of time, while the more recent Forth road bridge in the distance
symbolizes newer, more elegant technology and the fact that this complements
but does not supersede its predecessor'. It also noted that the railway bridge
celebrated its centenary the year that the book was published and that the road
bridge was opened only a few days before the author wrote his first Fortran
program in 1964! It concluded by wondering 'which bridge we shall use for
Fortran 907'.

This question did give rise to considerable thought, and we hope that you
approve of the result! This bridge is, like the language described in this book,
much newer than those in the earlier books. It is the Fatih Sultan Mehmet Bridge,
which crosses the Bosporus just north of Istanbul, and was opened in 1988, the
same year that the technical content of Fortran 90 was finally agreed by the two
committees involved, X3J3 and WG5. It is the second longest suspension bridge
in the world, and one of only two bridges to link two continents, Europe and Asia
- the other being a few miles to the south; furthermore, it crosses the Bosporus
close to the point at which King Darius of Persia crossed it with half a million
men using a bridge of boats in 514 Be.

In the same spirit of whimsy that was reflected in the earlier covers, we
note that Fortran is the second most widely used programming language in the
world, that its parameterized data types allow it to be equally applicable in
different environments through its ability to process text in many character sets
and numbers of many precisions, and that. it has grown from an old, historical,
foundation to the modern language of today; We also think that it is a very
elegant bridge!

Finally, since everyone who has seen a draft of the cover has asked the
same question: the red stripe is a Turkish flag, blowing in the breeze!

Miles Ellis
Oxford, England

Ivor Philips
Bellevue, Washington, USA

Tom Lahey
Incline Village, Nevada, USA

March 1994
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Introduction
questions

Six key

1.1 What is Fortran 90? Why is it
important?

1.2 What do we mean by 'a computer'?

1.3 Where did Fortran come from?
H~w has it evolved?

1.4 Why learn Fortran 90?

Computers are today used to solve an almost unimaginable range of
problems, and yet their basic structure has hardly changed in 40 years.
They have become faster and more powerful, as well as smaller and
cheaper, but the key to this change in the role that they play is due almost
entirely to the developments in the programming languages which
control their every action.

Fortran 90 is the latest version of the world's oldest high-level
programming language, and is designed to provide better facilities for
the solution of scientific and technological problems and to provide a firm
base for further developments to meet the needs of the last years of the
20th century and of the early 21st.

This chapter explains the background to both Fortran 90 and its
predecessor, FORTRAN77, and emphasizes the importance of the new
language for the future development of scientific, technological and
numerical computation. It also establishes certain fundamental concepts,
common to all computers, which will provide the basis for further
discussion in later chapters.

1



2 Introduction - Six key questions

1.1 What is Fortran 90? Why is it important?

Computers first moved out of the research laboratory into industry and commerce
in the early 1950s. In many ways their basic design has not changed significantly
since then - they have got very much faster, very much more powerful, very much
smaller, and, paradoxically, very much cheaper. But, when you get down to details,
they work in much the same way now as they did then. Where the massive
changes have come, however, is in the problems to which computers are applied,
and the methods that are used in the solution of these problems. The key to
making better and more effedive use of computers lies in the programming
languages which are used to define the problem and to specify the method of its
solution in terms that can be understood by a computer system.

Note the use of the expression computer system, for nowadays we should
not simply think of a computer - which is a colledion of eledronic and
eledromechanical components and devices - but also of the many computer
programs without which it remains simply an inanimate colledion of bits and
pieces. For many years the actual computer has been referred to as the hardware,
while the programs that control it make up the software. There are many
different items of software on all computers, but whether a computer is a large
multi-million dollar supercomputer or a small hand-held notebook computer,
every single item of software has been written in one of a number of
programming languages.

A question that is often asked is 'why are there so many different
programming languages?', and in an ideal world it is possible that one such
language might be sufficient. However, just as there are thousands of natural
languages which have evolved over many centuries in different parts of the world,
so there are hundreds of programming languages which have evolved over a mere
50 years. Many of these are little used, but there are a small number which are very
widely used throughout the world and have been standardized (either through
formal international processes or as a result of de facto widespread acceptance) to
encourage their continuing use. Most of these major languages are particularly
suited to a particular class of problems, although this class is often very wide.
Fortran is one such language, and is particularly well suited for almost all scientific
and technological problems, as well as to a wide range of other problem areas -
especially those with a significant numerical or computational content.

Fortran 90 is the latest version of the Fortran language and provides a
great many more features than its predecessors to assist the programmer in
writing programs to solve problems of a scientific, technological or computational
nature. Furthermore, because of Fortran's pre-eminent position in these areas,
programs written in Fortran 90 can readily be transferred to run, and run correctly,
on other types of computers in a way that is not always possible when they are
written in other languages.

Nowadays, almost everyone in the developed world, and a great many
outside it, have at some time used a computer and believe that they are familiar
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with the basic concepts. Frequently, however, this knowledge only relates to a
small aspect of the whole computer system, and people are either completely
unaware of extremely important concepts or, at best, only partially understand
them. Before we start to examine the features of Fortran 90 and the ways in
which we can use them to solve problems, therefore, we should step back slightly
and establish (or even re-establish) some of the basic concepts to which we shall
return from time to time throughout the remainder of this book.

1.2 What do we mean by 'a computer'?

There cannot be any aspect of modem 20th century life that is not touched by
computers, and it is sometimes difficult to believe that they have only existed in
anything like their present form for about 50 years. It is hard to accept that the
$1000 notebook computer that can be purchased today in thousands of retail
outlets is more powerful than any computer that existed 40 years ago, and that,
furthermore, the most powerful computers in existence then cost well over 1000
times as much, and occupied at least 10,000 times as much space. Nevertheless, in
their essential characteristics such disparate machines are essentially the same - as
are virtually all computers anywhere in the world today.

However, even though computers have existed in essentially their
modem form for over 50 years, it is only since the early 1980s that they have
moved from the realm of the specialist into everyday use in schools, offices and
homes throughout the developed world, and there can be little doubt that most
of the people who use computers every day do not have any real idea of what a
computer actually is.

This book is not going to answer that question, other than to emphasize
that, essentially, a computer is merely an inanimate collection of electronic circuits
and devices with, usually, a certain amount of electromechanical equipment
attached to it. What sets a computer apart from other machines which may be
built from similar (or even identical) component parts is its ability to remember a
sequence of instructions and to obey these instructions at a predetermined point in
time. Such a sequence of instructions is called a program, and what we usually
refer to as a computer is more correctly called a stored-program computer.
How we write a program to instruct the computer to perform the task(s) that we
require of it is the subject of this book.

Although we do not need to know exactly how a computer works in
order to use it, it is useful to create a conceptual model of a computer which will
enable us to understand more easily exactly what we are doing when we write a
program.

We have already referred to a computer's ability to remember a sequence
of instructions and, not unreasonably, that part of a computer in which such
information is stored is known as the memory. In fact there are two main types
of information stored in a computer's memory, namely a program - instructions
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which the computer is to obey - and data - values (numbers, words etc.) which
the computer is to process in a way defined by a program.

This processing is carried out by the central processing unit (CPU)
which consists of (at least) two quite separate parts - a control unit, which
fetches instructions, decodes them and initiates appropriate action, and an
arithmetic unit, which carries out arithmetic and other types of operation on
items of data.

These two parts - the CPU and the memory - could be said to constitute
the computer, but there are other essential parts of the system still to be
discussed. To be of any practical use a computer must be able to communicate its
results to the outside world, and this calls for some form of output device, such
as a display or a printer. Similarly, there must be some way of getting both the
program and any variable data it requires into the computer, and therefore an
input device is needed, such as a keyboard or, on some older computers, a card
reader or a paper tape reader. Modem computers may have a wide range of input
and output devices attached, including those which interface with instruments or
other computers, but the essential concepts remain the same.

Finally, there is the question of large and/or long-term data storage. The
devices used to form the memory of a computer are normally transient devices -
when the power is switched off they lose the information stored in them and are
thus of no use for storage of information other than during the running of a
program. In addition, if the computer is to be able to access the information in the
memory rapidly it can only be of a relatively small size (typically of the order of a
few million characters). A memory of more than this size would place
unacceptable burdens on both power requirements and physical space.
However, magnetic media, such as disks or tapes coated with a fine magnetic
oxide (similar to that used on tapes for domestic cassette or videotape recorders),
and optical media, such as a disk whose surface is covered with tiny pits that can
be detected by a reflected laser beam, can be used to store very large amounts of
information easily and economically, although at the cost of slower access time.
Virtually all computers use magnetic media as a file store, enabling programs and
data to be stored in a permanent fashion within the overall computer system,
while the use of optical, or magneto-optical, media is becoming increasingly
popular due to the enormously greater amounts of data that can be stored in
these ways compared to purely magnetic methods. A single unit of program or
data is called a file.

Thus a computer can be represented by a simple diagram as shown in
Figure 1.1.

The memory and central processor are usually electronic; however, the
input, output and file store devices usually also contain mechanical components,
with the result that the speed of transfer of information between them and the
central processor is many times slower than that between the memory and the
central processor. Because of this disparity in speed, most computers arrange for
transfers between the central processor and input, output and file store devices to
proceed semi-autonomously - and in many cases bypass the central processor
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Figure 1.1 An idealized computer.

and transfer information directly to or from the memory. As a result of this, and
because in earlier computers they were usually physically separated from the
CPU, these types of device are often referred to as peripheral devices - a
distinction which has been emphasized in Figure 1.1 by enclosing the memory
and central processor in a dashed box.

This idealized structure applies to all computers, although a modem
supercomputer may be more elaborate and have thousands of processing units in
order to perform many simultaneous calculations; however, the underlying design
concepts are still the same. In recent years, however, the development of the
microcomputer has changed many people's perception of computers, for
whereas large computers such as a Cray X-MP supercomputer or a Digital
Equipment VAX 11-780 can easily be seen to consist of a number of discrete
parts, microcomputers such as an IBM PS/2 or an Apple Macintosh take up only
a few square inches of desk space and appear to consist of little more than a
television monitor, a keyboard and a small box, while in a notebook computer
everything is contained in a single, battery-powered box about the same size as a
rather thick pad of paper. Nevertheless, the keyboard is the main input device, the
monitor or screen is the main output device, and the small box contains a faster
CPU, more memory, and more file store than all but a handful of the most
powerful supercomputers of ten years ago!

Let us now return to the memory and consider its mode of operation.
Conceptually, we can use an analogy with a large number of glass boxes, each
containing a single ball on which is written a number, or a word, or any other
single item that we may wish to store. To distinguish one box from another each
has a label attached with an identifying name (see Figure 1.2). Clearly we can find
out what is in any of the boxes simply by looking at it, as long as we have the
name of the box. Equally clearly, if we wish to put another value in a box we shall
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Figure 1.2 A storage model.

first have to remove (or otherwise get rid of) the ball which is already there so as
to leave room for the new one. This is exactly the way in which a computer's
memory works - if we wish to find out what is stored in a particular location the
process does not affect what is stored there, whereas if we store a new value in
some location then whatever was stored there is destroyed and lost.

Now consider the names on the boxes, a, x and p, in Figure 1.2. It is quite
clear that these are the names of the boxes and not their contents, for if we were to
store a new ball with the value 6 in box a we would not alter its name, and if we
now looked at box a we would find that it contained the value 6 (Figure 1.3). We
shall come back to this when we start to write programs, but it is important to
realize from the outset that the names that are used to refer to storage locations in
the memory always identify the location and not the value that is stored there.

The boxes have, by implication, been open so that the current value may
be removed and a new one inserted. To complete the analogy with the
computer's memory we must have a rule that says that a box is never left empty;
every box must contain a ball, even if it is a blank one or one with the value zero.
Because such boxes, or rather the corresponding storage locations in the memory,
can have their contents changed at will they are referred to as variable storage
locations, or variables. Boxes which are identical with these except that they

Figure 1.3 An altered storage model.
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have a sealed lid can have their contents looked at, but it is not possible to replace
the contents by a new value. Such storage locations are called constant storage
locations, or constants.

1.3 Where did Fortran come from? How has it
evolved?

We have already emphasized that the key feature of a computer is its ability to
store a program, or sequence of instructions, and then to obey these instructions
in order to solve a particular problem. In the very early days of computing such
programs consisted of strings of Os and Is known as machine code and were
unique to a particular type of computer, as well as being almost totally
incomprehensible to a human being. It was not long, therefore, before a more
compact form was devised in which each group of three binary digits (or bits)
was replaced by a single number in the range 0-7 (the octal equivalent of the 3-
bit binary number). Thus the binary sequence

010100011 010 000 010111

would be replaced by the octal sequence

243 2 0 27

This was still a matter for a specialist, although, as there were only a handful of
computers in the world at that time, that in itself was of no great importance.
Even for a specialist, however, it was difficult to remember which code number
represented which operation, and where each data value was kept in the
computer's memory. The next development, therefore, was the creation of a
mnemonic form for the instructions, and the use of names to identify memory
locations. For example

LOA 2 X

meant load a special location in the CPU (register 2) with the contents of memory
location X. This is known as assembly language programming, and the principles
have survived almost unchanged to the present day.

Towards the end of 1953, John Backus proposed to his employers, the
International Business Machines Corporation (IBM), that it would be beneficial if
a small research group were to be set up to develop a more efficient and
economical method of programming their 704 computer than the assembly
language used at that time. The proposal was accepted and the group started
work almost at once. By mid-1954 an initial specification had been produced for a
programming language of considerable power and flexibility. This language
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was to be called the IBM Mathematical FORmula TRANslation System,
FORTRAN. The project was initially intended purely for use by IBM on a
single computer; however, soon after the preliminary report on the language was
produced word got out to some of IBM's customers, with the result that the
decision was made to make it available to anyone purchasing a 704 computer.

Although, as its name implied, FORTRAN was initially seen as a means of
converting mathematical formulae into a machine code or assembly language
form that the computer could use, it also embodied several other extremely
important concepts. By far the most important of these was that the program was
formulated in the user's terms, and not in those of the computer, as a result of
using an algebraic method of expressing formulae and a 'pidgin English' method
of describing the other (non-mathematical) operations. The resulting program was
subsequently said to use a high-level language, since the method enabled a
programmer to write programs without needing to know much about the details
of the computer itself.

Since a computer can only understand its own machine code, before a
high-level program can be obeyed by a computer it must be translated into the
appropriate machine code for that computer. A special program (a compiler) is
used to translate the high-level language program into a machine code program
for a specific computer in such a way that the machine code may be kept for use
on subsequent occasions. Since the compiler can only translate correct high-level
program statements, an important part of its task is to check the syntax (the
grammar or the structure) of each statement and to produce diagnostic
information to help the programmer to correct any errors.

The first Programmer's Reference Manual for the FORTRAN language was
released in October 1956 and the compiler was finally delivered to customers in
April 1957. This was followed twelve months later by FORTRAN II - an
improved version of the system with a considerably enhanced diagnostic
capability and a number of significant extensions to the language. Despite initial
resistance on the grounds that the compiled programs were not as efficient as
hand-coded ones, the language soon caught on, and by 1960 IBM had released
versions of FORTRAN for their 709, 650, 1620 and 7070 computers. The most
important development, however, was that other manufacturers started to write
compilers for FORTRAN and by 1963 there were over 40 different FORTRAN
compilers in existence! This led to a completely unexpected development of
enormous importance, namely program portability, since once a program had
been written for one computer in a high-level language such as FORTRAN it
could be easily moved to another computer with little or no change. This
development can, with the benefit of hindsight, be seen to have been the single
most important factor in the development of the computer age, for it led to large
gains in productivity and, moreover, to the possibility of developing programs
which were intended from the outset to be run on a wide range of computers.

One problem that was encountered by these early pioneers, however, was
that IBM FORTRAN used specific features of the 704 computer's instruction set
and, when they could, the other FORTRAN compilers tended to do likewise. In
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addition, the advantages to be gained by having a standard language were not
fully appreciated, and there were incompatibilities between different compilers,
even between those written by the same manufacturer. As a result of pressure from
their users as early as 1961, IBM set about developing a still further improved
FORTRAN which did away with the machine-dependent features of FORTRAN II.
This new system, FORTRAN IV, was released for the IBM 7030 (Stretch)
computer in 1962, and later for the IBM 7090/7094 machines. Because programs
written in FORTRAN IV were almost totally independent of the computer on
which they were to be run, such programs could easily be transferred to a quite
different computer, as long as that computer had a FORTRAN IV compiler, thus
paving the way for the development of programs which were not directed at any
particular type of computer, and which could therefore be used by a much larger
community of users than had ever been possible before.

Perhaps the most significant development of all, however, was the
decision of the American Standards Association (now the American National
Standards Institute, ANSI) to set up a committee in May 1962 to develop an
American Standard FORTRAN. This committee, in fact, defined two languages-
FORTRAN, based largely on FORTRAN IV, and Basic FORTRAN, which was
based on FORTRAN II but without the machine-dependent features. These
standards were ratified in March 1966.

The existence of an officially defined standard (ANSI. 1966), which was
also effectively an international standard, meant that further development of the
language had a firm and well-defined base from which to work. The 1960s and
early 1970s saw computers becoming established in all areas of society, and this
dramatic growth led, among other things, to a proliferation of different
programming languages. Many of these were oriented towards specific
application areas, but a substantial proportion were intended to be generaI-
purpose languages. Most noteworthy among these were ALGOL 60,
ALGOL 68, BASIC, COBOL, Pascal and PUI.

In the midst of all this language research and development FORTRAN did
not remain static. Computer manufacturers wrote compilers which accepted
considerable extensions to the standard FORTRAN, while in 1969 ANSI set up a
working committee to revise the 1966 standard. Partly because of the many
changes in the philosophy and practice of programming during this period, a
draft standard did not appear until some seven years had elapsed. During 1977
this draft was the subject of worldwide discussion and comment before a revised
version was approved as the new standard in April 1978 (ANSI. 1978); this was
subsequently ratified as an international standard in 1980.

The new (1977) standard FORTRAN replaced both the older (1966)
FORTRAN and Basic FORTRAN. In order to distinguish the new standard
language from the old one, the standard suggested that the new language should
be called FORTRAN 77.

Although the first FORTRAN 77 compiler (written largely by one of the
authors of this book, TML) was available even before the standard had been
approved, it was several years before compilers became widely available, and it
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was not until the mid-1980s that it could truly be thought of as the 'universal'
FORTRAN. In the meantime, however, the computing world had not stood still
and many new programming concepts were being developed, as well as many
new languages, such as Ada, C and Modula-2. A new ANSI committee, X3J3, was
therefore set up in 1980 to develop the next FORTRAN standard under delegated
authority from the International Organization for Standardization's Fortran
Working Group, WG5. These committees (of which the authors are all members)
had originally hoped to produce a new standard by 1986 but underestimated the
technical difficulties involved. Nevertheless, the new international standard was
finally published in August 1991 (ISO/lEe 1991), and, as on the previous
occasion, the standard suggests an informal name for the new language to
distinguish it from its predecessor; that name is Fortran 90.

Note, incidentally, that the defining standard uses lower case letters to
spell Fortran 90, unlike the upper case letters used, officially, for FORTRAN 77
and its predecessors. In this book we shall use lower case letters whenever
referring to Fortran, unless we are specifically referring to FORTRAN 77.

One extremely important aspect of the work of the two committees
involved in the development of Fortran 90 (X3J3 and WG5) was that it should be
fully compatible with FORTRAN 77, in order that programs written in
FORTRAN 77 should function correctly when processed by a Fortran 90
processor. It is, however, important that the meaning of this commitment to full
FORTRAN 77 compatibility is properly understood.

The FORTRAN 77 standard was an extremely permissive standard, in the
sense that for a FORTRAN 77 processor to conform to the standard it had
merely to process any standard FORTRAN 77 program correctly. However, the
standard made no requirements on the processor regarding what it did with any
non-conforming programs. In particular, this meant that a fully standard
conforming processor could allow extensions to the language. Over the 12 years
since the FORTRAN 77 standard was issued the art of programming has
developed very considerably and, as a result, most, if not all, FORTRAN 77
compilers allowed a wide variety of extensions to the standard language.

Some of these extensions have been provided in the same way by many
different compilers, notably those which were specified in the US Military
Standard MIL STD 1753, but others have been done differently, if at all, in
different systems. The Fortran 90 standard only claims upward compatibility with
standard FORTRAN 77 programs; it would have been impossible to ensure that
all the myriad extensions were also standardized.

Any standard FORTRAN 77 program or procedure is therefore a valid
Fortran 90 program or procedure, and should behave in an identical manner - apart
from one minor problem area that is discussed in Chapter 4. Thus all the wealth of
existing Fortran code, written in accord with the FORTRAN 77 standard, can
continue to be utilized for as long as necessary without the need for modification.
Indeed, it is precisely this care for the protection of existing investment that
explains why Fortran, which is the oldest of all current programming languages, is
still by far the most widely used language for scientific programming.
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1.4 Why learn Fortran 90?

As we have seen, there are, today, a very great many programming languages
available throughout the world, some widely available, some not so widely, and
some only in one place. However, two languages stand head and shoulders above
the others in terms of their total usage. These languages are COBOL (first
released in 1960) and Fortran (first released in 1957).

COBOL is used for business data processing and it has been estimated
that over 70% of all programming carried out in 1990 used COBOL! Fortran
programs probably constitute around 60% of the remainder, with all the other
languages trailing far behind.

Fortran was originally designed with scientific and engineering users in
mind, and during its first 30 years it has completely dominated this area of
programming. For example, most of the analysis of the air flow past a modem
aircraft or the path of a NASA lunar capsule is performed by a Fortran program.
The dies which are used in pressing the body shells of virtually all mass-produced
motor vehicles are also made by machines controlled by Fortran programs. The
control of experiments investigating the sub-atomic particles which constitute the
matter of our universe and the analysis of the results of these experiments are
mainly carried out by Fortran programs. The structural analysis of bridges or
skyscrapers, the calculation of stresses in chemical plant piping systems, the
design of electric generators, and the analysis of the flow of molten glass are all
usually carried out using computer programs written in Fortran.

Fortran has also been the dominant computer language for engineering
and scientific applications in academic circles and has been widely used in other,
less obvious, areas, such as musicology, for example. One of the most widely
used programs in both British and American Universities is SPSS (Statistical
Package for the Social Sciences) which enables social scientists to analyse survey
or other research data (SPSS, 1988); SPSS is written in FORTRAN 77. Indeed,
because of the extremely widespread use of Fortran in higher education and
industry, many standard libraries have been written in Fortran in order to enable
programmers to utilize the experience and expertise of others when writing their
own Fortran programs. Two notable examples are the IMSL and NAG libraries
(Visual Numerics, 1992; NAG, 1988; Hopkins and Phillips, 1988), both of which
are large and extremely comprehensive collections of subprograms for numerical
analysis applications, to which we shall refer in Chapters 10 and 18 when
discussing numerical methods in Fortran 90 programs. Thus, because of the
widespread use of Fortran over a period of more than 30 years, a vast body of
experience is available in the form of existing Fortran programs. Fortran 90 allows
access to all this experience, while adding new and more powerful facilities to the
Fortran language.

Fortran has evolved over 35 years in what has often been a pragmatic
fashion, but always with the emphasis on efficiency and ease of use. However,
FORTRAN 77 did not have many of the features which programmers using
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other, newer, languages had come to find invaluable. Fortran 90, therefore,
rectifies this situation by adding a considerable number of very powerful new
features while retaining all of FORTRAN 77. In particular, many of the new features
that are present in Fortran 90' will enable Fortran programs to be written more
easily, more safely and more portably.

Fortran 90 has, therefore, given a new lease of life to the oldest of all
programming languages, and is already being used as the base from which still
more versions of the language are being de';"eloped, for. example to take
advantage of some of the new types of computers, such as massively parallel
computers, which are being developed as the 20th century draws to a close. The
ability to write programs in Fortran 90 will undoubtedly, therefore, be a major
requirement for a high proportion of scientific and technological computing in the
future, just as the ability to use FORTRAN 77, and before that FORTRAN IV,
was in the past.

This book introduces the Fortran 90 language in a way that will
encourage embryo programme"rs to develop a good style of programming and a
sound approach to the design of their programs. It must, however, be emphasized
that programming is a practical skill, and that to develop this skill it is essential
that as many programs as possible are written and tested on a computer. The
exercises at the end of each chapter will help here, but it should always be
realized that to write fluent, precise and well-structured programs requires both
planning and experience - and there are no short-cuts to gaining experience in
any walk of life! " .
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The most important aspect of programming is undoubtedly its design,
while the next most important is the thorough testing of the program. The
actual coding of the program, important though it is, is relatively
straightforward by comparison.

This chapter discusses some of the most important principles of
program design and introduces a technique, known as a structure plan,
for helping to create well-designed programs. This technique is
illustrated by reference to a simple problem, a Fortran 90 solution for
which is used to introduce some of the fundamental concepts of Fortran 90
programs.

Some of the key aspects of program testing are also briefly
discussed, although space does not permit a full coverage of this
important aspect of programming. We will return to this topic in the
Intermission between Parts I and II of this book.

Finally, the difference between the old fixed form way of writing
Fortran programs, which owed its origin to punched cards, and the
alternative free form approach introduced in Fortran 90 is presented.
Only the new form will be used in this book, but the older form is also
perfectly acceptable, although not very desirable in new programs.

15
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2.1 From problem to program in three basic steps

It has been claimed that programming is both an art (Knuth, 1969) and a science
(Gries, 1991). In fact, it contains elements of both art and science, but in reality it
is an engineering discipline, and as such it is governed by rules of procedure -
albeit rules which contain a large element of pragmatism.

The reason for writing a program, any program, is to cause a computer to
solve a specified problem. The nature of that problem may vary from
manipulating text, which will subsequently be printed on some form of printer
attached to the computer (word processing), to landing a spacecraft on a far-off
planet; it can vary from controlling the traffic lights in a large city centre to
analysing baseball statistics or cricket averages; it can vary from compiling a
Fortran 90 program to controlling all aspects of the computer system on which
the Fortran 90 compiler is running (the operating system). It should never be
forgotten that programming is not an end in itself.

The task of writing a program to solve a particular problem can be broken
down into three basic steps:

(I) Specify the problem clearly
(2) Analyse the problem and break it down into its fundamental elements

(3) Code the program according to the plan developed at step 2

There is also a fourth step which, as we shall see, is often the most difficult of all:

(4) Test the program exhaustively, and repeat steps 2 and 3 as necessary until
the program works correctly in all situations that you can envisage

We shall discuss the testing of programs briefly later in this chapter, and
also in the Intermission between Parts I and II of this book, but will, for reasons of
clarity and space, generally omit any reference to testing elsewhere in the book. It
is a vitally important part of programming, however, since no-one can guarantee
to write any program of any sophistication perfectly the first time, and no-one
would ever claim that a really complex program could be written in such a way
that all possible situations have been anticipated and dealt with correctly from the
outset.

Equally, it is important that the problem to be solved is specified clearly
and unambiguously from the outset. If you are not absolutely clear about what is
required it is extremely unlikely that your program will do exactly what was
wanted! Specifying exactly the problem that a computer program is to solve is
not always easy, but it is not the subject of this book. In all the examples and
exercises in this book the problem will be clearly defined at the outset; in real-life
programming, however, the problems will frequently not be so clearly defined
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and you will have to spend a significant amount of effort establishing exactly
what is required before starting to develop any programs.

Throughout this book, therefore, we shall concentrate on steps 2 and 3 -
especially in the numerous example programs which we shall use to illustrate the
concepts being explained. As an example of the approach that we shall use,
Example 2.1 illustrates how a simple problem can be converted into a Fortran 90
program.

[!] Problem
Write a program which will ask the user for the x and y coordinates of three
points and which will calculate the equation of the circle passing through those
three points, namely

and then display the coordinates (a, b) of the centre of the circle and its radius, r.

rn Analysis

There are a number of methods of analysing problems for which programming
solutions are required, both formal and informal. The approach that we shall use
throughout this book is a refinement of the one that was developed by one of us
(TMRE) for teaching Fortran 77, and which has been used with considerable
success to teach many thousands of Fortran programmers for more than a decade.
It involves creating a structure plan of successive levels of refinement until a
point is reached where the programmer can readily code the individual steps
without the need for further analysis. This top-down approach is universally
recognized as being the ideal model for developing programs although, as we
shall see, there are situations when it is necessary to also look at the problem from
the other direction (bottom-up).

In this example we shall start by listing the major steps required.

Now the first and last of these steps are fairly straightforward (once we know
something about input and output in Fortran 90), but the second step is more
complicated and might need further analysis. However we can defer that work
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until later, or can even delegate it to someone else, by writing this part of the
program as a procedure or subprogram. We shall not discuss this concept any
further at this stage, but will simply modify our structure plan to reflect the fact
that step 2 will be carried out in a procedure which we shall call calculate_circle.

Our structure plan now looks like this:

There is, however, one major potential problem which we have ignored, namely
what will happen if there is no solution possible. This might occur if, for example,
the points lie on a straight line, or nearly on a straight line, since this will cause
the equations which are to be solved to be ill-conditioned - a concept that we
shall examine further in Chapter 10. For the present we shall ignore this problem
in the name of simplicity, but it is an important one, and a proposed solution
should always be examined for potential problems before coding is started, and
appropriate recovery mechanisms devised. In this case, for example, it would not
be too difficult to check for the two situations mentioned before attempting to
solve the equations, and to print an appropriate message to the user.

rn Solution

A Fortran 90 program to implement this structure might look as follows:

PROGRAM circle
IMPLICIT NONE
! This program calculates the equation of a circle passing
! through three points
! Variable declarations
REAL:: xl,yl,x2,y2,x3,y3,a,b,r
! Step 1
PRINT *,"Please type the coordinates of three points"
PRINT *,"in the order xl,yl,x2,y2,x3,y3"
READ *,xl,yl,x2,y2,x3,y3 ! Read the three points
!Step 2
CALL calculate_circle(xl,yl,x2,y2,x3,y3,a,b,r)
!Step 3
PRINT *,"The centre of the circle through these points is &

&(",a,",",b,")"
PRIN~ *,"Its radi,s is ",r

END PROGRAM circle
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Please type the coordinates of three points
in the order x1,y1,x2,y2,x3,y3
4.71 4.71
6.39 0.63
0.63 3.03
The centre of the circle through these points is ( 3.510, 1.830)
Its radius is 3.120

Figure 2.1 The result of running the solution to Example 2.1.

We shall examine this program in some detail in Section 2.2, but even
without any knowledge of Fortran 90 it is relatively easy to see that this program
does reflect the structure plan that we had previously developed. Figure 2.1
shows how the screen might appear after running this program.

2.2 Some basic Fortran 90 concepts

The program written in Example 2.1 is a very simple one, but it does contain
many of the basic building blocks and concepts which apply to all Fortran 90
programs. We shall therefore examine it carefully line by line to establish these
concepts before we move on to look at the language itself in any detail. Before
doing so, however, we must emphasize that the code shown in Example 2.1 is not
the whole program, since the procedure calculate3ircle is also part of the
same program. What is shown is simply the main program or, more correctly,
the main program unit. We shall have more to say about the other types of
program unit later.

The first line of our program reads

PROGRAM circle

Every main program unit must start with a PROGRAM statement which consists of
the word PROGRAM followed by the name of the program. This name must follow
the rules which apply to all Fortran 90 names, namely

• It must begin with a letter - either upper or lower case
• It may only contain the letters A-Z and a-z, the digits 0-9, and the

underscore character
• It must consist of a maximum of 31 characters
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In Fortran 90 names and keywords, upper and lower case letters are treated as
identical, but can be used by the programmer to assist in the readability of the
program. In this book we shall use upper case for all words which have a special
meaning in Fortran, known as keywords, and will use lower case for names
created by the programmer.

The name of the program should be chosen to indicate what the program
does and should be different from any other names used for other purposes
elsewhere in the program.

Note also that the blank (or space) between the word PROGRAM and the
name circle is included, as in normal English, to make the program easier to read.
There may be any number of blanks between successive words in a Fortran 90
statement, as long as there is at least one, but they will be treated as though there
was only one by the compiler when it is analysing the program. It is not
necessary to include blanks between successive items in a list separated by
commas or other punctuation characters, although they may be included if
desired to make the program easier to read. However, it is not permitted to
include spaces within a Fortran keyword or a user-specified name, except when
using the older fixed form style of programming which is described in Section 2.6.

IMPLICIT NONE

This is a special statement which is used to inhibit a particularly undesir-
able feature of Fortran which is carried over from earlier versions of Fortran. We
shall explain its meaning in full in Chapter 3; for the present we shall merely state
that it should always be placed immediately after the PROGRAM statement.

This program calculates the equation of a circle passing
through three points

These two lines are comments.
A comment is a line, or part of a line, which is included purely for

information for the programmer or anyone else reading the program; it is ignored
by the compiler. A comment line is a line whose first non-blank character is an
exclamation mark, !; alternatively, a comment, preceded by an exclamation mark,
may follow any Fortran statement or statements on a line, as can be seen later in
this program. We shall normally use comment lines in example programs, but will
also use trailing comments where these are more appropriate.

You should always use comments liberally in your programs to explain
anything which is not obvious from the code itself. You should always err on the
side of caution, since what is clear to you may not be clear to someone else who
has to read your program. Indeed, it may not even be clear to you six months
after the code was written!

!Variable declarations
REAL :: xl,yl,x2,y2,x3,y3,a,b,r
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The first of these lines is a comment which indicates that the line
following contains one or more variable declarations. It is not obligatory, but
such comments help a reader to follow the program more easily.

The next line is a specification statement and provides important
information about the program to the compiler. In this case it specifies that the
nine names xl, y1, ... , r are the names of variables which will be used to hold
numeric information. As we shall see in Chapter 3, there are several ways in
which numeric information may be stored in a computer, but the most common
type is known as a real number. We shall examine the detailed syntax of variable
declarations in Chapter 3.

! Step 1
PRINT *,"Please type the coordinates of three points"
PRINT *,"in the order x1,y1,x2,y2,x3,y3"

The next block of statements is preceded by the comment Step 1, simply
to indicate that these statements correspond to step 1 of our structure plan.

The following two statements are the first statements to be obeyed
during the execution of the program, and are called executable statements. These
particular executable statements are known as list-directed output statements
and will cause the text contained between the quotation marks (or quotes) to be
displayed on your computer's default output device, probably the screen. We
shall examine the way in which these statements work in Chapter 3.

READ *,x1,y1,x2,y2,x3,y3 ! Read the three points

This statement is clearly closely related to the previous two statements
and has a very similar structure. It is called a list-directed input statement and
will read information from the keyboard, or other default input device. It will be
discussed in detail in Chapter 3. Note the use of a trailing comment.

! Step 2
CALL calculate_circle(x1,y1,x2,y2,x3,y3,a,b,r)

We now move on to step 2 of the structure plan. The CALL statement
causes the processing of the main program unit to be interrupted and processing
to continue with the procedure, or subroutine, whose name is given in the
statement. Thus, as we anticipated in our structure plan, we do not need to know
at this stage (or perhaps ever, if someone else writes it!) how the procedure will
calculate the coefficients of the equation which defines the required circle. The
items enclosed in parentheses following the procedure name are known as
arguments and are used to transmit information between the main program and
the procedure; in this case the relevant information required by the procedure is
the coordinates supplied by the user, while the information returned by the
procedure will be the coordinates of the centre of the circle and its radius. We
shall investigate the way in which procedures are used and written in Chapter 4,
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as soon as we have learned about the various types of data that Fortran can
process.

! Step 3
PRINT *,"The centre of the circle through these points is &

'(" ,a,", II ,b, ") n

PRINT *,"Its radius is ",r

Step 3 of the structure plan relates to the display of the required results.
The first PRINT statement, however, incorporates a new concept - that of a
continuation line. If the last non-blank character of a line is an ampersand, &,

then this is an indication that the statement is continued on the next line.
There are two cases here. If, as in this case, the ampersand occurs in a

character context, that is, in the middle of a character string enclosed in
quotation marks (or one enclosed in apostrophes), then the first non-blank
character on the next line must also be an ampersand, and the character string
continues from the character after that ampersand. Thus the two lines above are
identical to the single line

PRINT *,"The centre of the circle through these points is (",a,",",b,")"

(where the smaller type is used here solely to fit the whole statement on a single
line).

The other situation is where the first ampersand does not occur within a
character string enclosed in quotes or apostrophes. In this case there are two
possibilities. The first is that, as in the character string case, the first non-blank
character of the next line is an ampersand, in which case the effect is just as
before. However if the first non-blank character on the next line is not an
ampersand then the effect is as if the whole of that line follows the previous one
(excluding the ampersand). Thus, for example, the statement discussed earlier,
representing step 2 of the structure plan could also be written

CALL calculate_circle(xl,yl,x2,y2,x3,y3,&
&a,b,r)

which would be identical, as far as the compiler was concerned, with the original
version, or

CALL calculate_circle(xl,yl,x2,y2,x3,y3,&
a,b,r)

which would be treated as though there were a number of spaces before a,
although, as those spaces come between items in the list of arguments, they do
not matter.

These two PRINT statements are different from the earlier ones in that
they will print variable information as well as constant character strings. It should
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be obvious to the reader that they will print, or display, the appropriate text
followed by the value of the specified variable or variables, as calculated by the
procedure calculate3ircle. This extended use will be described in detail in
Chapter 3.

END PROGRAM circle

The final statement of a program must be an END statement. In this context
it can take three forms:

END

END PROGRAM

or

END PROGRAM name

where name, if present, must be the same as the name on the corresponding
PROGRAM statement. In general it is both good practice, and makes the program
easier to follow, to use the third, full, form of the statement, as we shall do in all
the examples in this book.

As might be expected, execution of the END statement brings the
execution of the program to an end, and control is returned to the computer's
operating system.

The overall structure of a Fortran 90 main program unit is shown in
Figure 2.2.

PROGRAM name
Specification statements

Executable statements

END PROGRAM name

Figure 2.2 The structure of a main program unit.
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SELF-TEST EXERCISES 2.1

Attempt all the following tests and then check your answers with the solutions at the end of
the book. If you do not get them correct,and you are not sure why your answer is wrong, you
should re-read the first two sections of this chapter before proceeding.

1 What are the three steps involved in writing a program?

2 What is usually the most difficult part of the programming process?

3 What are the rules for Fortran names?

4 What must be the first statement of a Fortran main program? And the last?

5 How is a Fortran statement continued onto a second line?

6 Why are comments important? Give two ways of including comments in your
programs.

2.3 Running Fortran programs on a computer

In the preceding sections we have considered a Fortran program in isolation, with
little reference to the method by which the program is input to the computer,
compiled and executed. This omission is deliberate and is due to the fact that
whereas the Fortran language is standardized the computer's operating system
is not. We shall, therefore, digress slightly at this point and look at the broad
principles of the overall computer system before returning to discuss the
Fortran 90 language in detail.

In the early days of computing, programmers had to do everything
themselves. They would load their programs (probably written in an assembly
language or even machine code) and press the appropriate buttons on the
machine to get it to work. When a program required data they would either type
it in or, more probably, load some data cards. When a program wanted to print
results, programmers would ensure that the printer (or other output device) was
ready. Before long, the computers developed in' two directions - first, magnetic
tapes (and later disks) were added to provide backing store, and second, high-
level languages such as Fortran became available. Now programmers had to load
the compiler first and get it to input their programs as data (of a special kind).
The compiled program (possibly on binary punched cards produced by the
compiler) would then be input as before. In addition, if any file storage was
required, programmers had to load the correct tapes. In some cases a full-time
operator was employed to carry out all these tasks, but this of course meant that
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detailed instrudions were required to ensure that the job was processed
corredly, and so many programmers still preferred to run their programs
themselves.

A major change was heralded by the development at the University of
Manchester, in Britain, of the multiprogramming system for the Atlas computer.
This took advantage of the high speed of a computer's arithmetic and logical
fundions compared with its input/ output fundions to process several programs
apparently simultaneously. The effed is similar to that experienced by amateur
chess-players when facing a chess master in a simultaneous display, where the
master plays against a number of opponents at the same time. In fact, of course,
the master moves from one board to another, but, because of his or her much
greater ability and speed in assessing the positions of the pieces, the master
appears to each opponent to be devoting most of the time to them. The Atlas
system took advantage of the (relatively) long delays during input or output of
even a single number to leave that program (whose input/output could proceed
autonomously) and start to process another.

The next major development took place more or less at the same time at
both Dartmouth College and the Massachusetts Institute of Technology in the
USA, and led to the concept of time-sharing, which placed the user at a terminal
through which most input/ output took place, with each user having a small slice
of time in turn. The much slower speed of a terminal allowed more programs to
run at once, but, because users were communicating directly with the computer,
their work was processed much more quickly in this new interactive mode of
operation than was possible with batch working.

The advent of first multiprogramming and then time-sharing meant that it
was no longer possible for a programmer, or even a full-time operator, to carry
out all the routine tasks associated with loading and executing a program; too
many things were happening in different jobs at the same time. Since the
computer was now doing several things at once it was natural that it should be
given the additional task of organizing its own work. Special programs were
therefore written, called operating systems, which enabled a programmer to
define what was required in the form of special instructions, and caused the
computer to carry out these instructions. What gradually emerged were new
languages (job control languages) with which programmers instructed the
computer how to run their jobs.

With the advent of microcomputers and personal workstations in the
1980s the situation changed again, and although some form of operating system
language always exists it is frequently hidden from users, who simply type a
single command on their keyboards or select an appropriate symbol with a
mouse.

Nevertheless, some action is required to run a Fortran program on a
particular computer and to identify any specific requirements, and this action will
be specific to the particular computer system and compiler being used.
Throughout the rest of this book we shall ignore this aspect of running
programs, and concentrate on the programs themselves. However, before any
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programs are actually compiled and executed it will be necessary for the reader to
establish exactly how to input the program, and then to compile and execute it,
on the particular computer system being used.

2.4 Errors in programs

It is an unfortunate fact that programs often (one might even say usually) contain
errors. These fall into two distinct groups - syntactic (or grammatical) errors and
semantic (or logical) errors. Before we examine how these two types of errors
may occur in Fortran programs, and in order to emphasize the difference between
them, we shall consider how they might occur in natural English by considering
the well-known saying (among those just starting to read and write) to the effect
that

The cat sat on the mat

If this sentence was being analysed by Some automatic device (a robot, perhaps?)
which had a good knowledge of English grammar and of the meaning of words,
but had no intuition or other means of interpreting what might have been
intended by the author, then the mis-typed sentence

The dat sat on the mat

would have no meaning. This is a syntactic error, since the word 'dat' does not
exist in the English language, and our robot would diagnose it as such. On the
other hand, the statement

The cat sat the on mat

coptains only valid English words, but the grammar is incorrect since a
preposition ('on') cannot appear between the definite article ('the') and a noun
('mat'). Once again, therefore, our robot would indicate that there was a syntactic
error in the sentence.

However, the sentence

'The mat sat on the cat

satisfies all the rules of grammar, and all the words are valid English words. Our
robot will, therefbre, move to the next stage and try to understand what the
sentence means. Here it may have a problem! This is, therefore, an example of a
semantic error, for there is nothing wrong grammatically (or syntactically) with
the sentence; it just doesn't make any logical sense.
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Notice, incidentally, that a typing mistake will not necessarily lead to a
syntadic error. For example the following sentences each have a single typing
error, but they are all syntadically corred, and even make sense - though not the
sense that was intended:

The cat spat on the mat
The cot sat on the mat
The cat sat on the man

We can see from these examples that a syntadic, or grammaticaL error is
relatively easy to de ted, and a Fortran compiler will always deted any such
errors in a program. On the other hand, a semantic, or logicaL error may result in
a nonsensical meaning, or it may result in a reasonable, but incorred meaning. In
programming terms, a semantic error may result in the program failing during
execution, or it may simply result in incorred answers.

Returning to consideration of Fortran programs, therefore, an example of
a syntadic error would be the omission of the asterisk in the first PRINT statement
of the program written in Example 2.1:

PRINT "Please type the co-ordinates of three points"

When the compiler is translating this statement it finds that it does not
match any of the valid forms of PRINT statement (there are several more, as we
shall see in Chapters 3 and 8), and the appropriate machine code cannot be
generated. It will therefore produce an error message such as

*** Syntax error

or probably a more helpful one such as

*** PRINT not followed by asterisk or format reference

although you should note that, since error messages are not standardized, the
adual message that will be produced will vary from machine to machine.

Since a program may contain more than one error, a compiler will usually
continue to check the rest of the program (although in some cases other apparent
errors may be caused which will disappear when the first one is correded).
However, no machine code will be produced, and no loading or execution will
take place (if these would have been automatically initiated). An editor will then
normally be used by the programmer to corred the program before it is re-
submitted to the compiler.

Errors deteded by the compiler (called compilation errors) are no great
problem. That they are there indicates a degree of carelessness on the part of the
programmer, but they can be easily correded and the program recompiled.
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Semantic errors are far more serious, since they indicate that there is an
error in the logic of the program. Occasionally this may lead to a compilation
error, but usually it will lead either to an error during the execution of the
program (an execution error), resulting in an abnormal end or in the program
producing incorrect answers. For example, if one number was accidentally divided
by zero, leading to a theoretical answer of infinity, this would result in an
execution error. On the other hand, if the READ statement in our program had
inadvertently been written as

READ *,xl,x2,x3,yl,y2,y3

then execution of the program would have led to the procedure being asked to
determine the circle passing through the points (xl, x2), (x3, yI) and (y2, y3) rather
than the one passing through the points (xl, yI), (x2, y2) and (x3, y3) as intended.

This latter example is a type of error with which the computer can give no
help, since the program is syntactically correct and runs without causing a failure.
It produces an incorrect answer because the logic was incorrect and only a
thinking human being can detect and correct it. You should never forget that
computers have no intelligence; they will only do what you tell them to do - no
matter how silly that may be - rather than what you intended them to do.

Because errors in the logic of a program are often quite difficult to find
(the trivial error in a very simple program shown above is hardly typical!) it is
very important that programs are planned carefully in advance and not rushed.
This discussion of errors underlines the importance of a planned structure to
programs and programming such as that already introduced in Example 2.1, and
you should get into the habit of developing structure plans before starting to
code even the simplest programs.

2.5 The design and testing of programs

In the subsequent chapters of this book we shall meet the full range of Fortran 90
statements and facilities, and will begin to appreciate the richness of the language
which is the basis of its ability to enable the Fortran programmer to solve an
enormously wide range of problems easily and efficiently. The exercises and
examples that will be used to illustrate that richness will, however, necessarily be
brief, so that their complexity will not get in the way of the points that they are
trying to make. Real programs will almost always be substantially larger than
those that you will find in this book.

Although all the worked examples will develop the program's design by
means of structure plans, it may sometimes seem that this is making the process
unnecessarily difficult. Such an attitude could not be more wrong!

Computer programming is an activity that is extremely interesting, and
one which can often exert a very considerable fascination upon those involved. It
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is so interesting because it requires a careful blend of knowledge from several
different areas, and because the programmer is involved in a creative process
which has almost no constraints, beyond the necessity to be logically consistent
and obey the syntax and semantics of the language being used. In this, it has
similarities with both pure mathematics and with the fine arts. As a consequence
of this freedom, the programmer is free to be very creative, but abuse of this
freedom will inevitably lead to poor programs.

In mathematics, a correct but ugly proof makes mathematicians uneasy,
and they will strive to find an elegant proof to replace it. The same is true for
computer programs, and a correct but ugly program will make people want to
redesign and rewrite it. It is important to emphasize that this is not just aesthetics
coming into play, for there are sound, very practical, reasons for writing elegant
programs.

• The first of these is that an ugly program is almost synonymous with
poor design, and with coding that was begun before the program was
well thought out. This results in programs that can only be made to work
correctly with considerable difficulty. Indeed, if a program is badly
enough constructed, even after it has solved several test cases correctly
the writer may have an uneasy feeling that it is not really reliable.

The experience of many people over many years has shown that
the time spent in careful initial design, before writing any code, is more
than regained during the process of verification (often called debugging).
The larger the project the more this principle comes into play. However,
this does not mean that small projects do not benefit from some initial
planning. Careful initial design always pays off, even on the smallest
project.

• A second issue, and to many people of even more importance than the
initial development of a program, is that of maintainability of programs.
Programs need maintenance for several reasons. If a programming project
goes beyond a certain small size, it will almost certainly, at some point
during its lifetime, be found to have errors in special circumstances that
were not thought of, or were incorrectly handled, during the initial
design. Programs often have an unexpectedly long life (sometimes to the
embarrassment of their authors!). Almost inevitably, most programs will,
therefore, be subsequently extended to deal with new problems not in the
original requirements. As a result, it is quite normal for more time and
effort to be spent in extending and maintaining a program than was spent
in originally developing it. The phrase 'write once and read many times' is
a truism in programming.

• Finally, if you have written a program of more than parochial interest,
you will undoubtedly receive requests from friends and colleagues for
copies. The world is full of different types of computers. Imagine your
colleagues' distress if they cannot readily compile and execute your
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program on their machines! You may also find that the computer on
which a program was originally developed is being replaced with a new
one - a circumstance that seems to be happening with ever-increasing
frequency. Therefore, writing portable programs is important. Only for
well-considered reasons should non-standard or obsolescent features of
Fortran be used.

In summary, programs should be well designed before they are begun.
This will lead to reliable, efficient, easily maintained, portable programs that are
enjoyable to create and to work with.

There are many elements that go into good program design, and many
approaches that have been developed to assist programmers to develop well-
designed programs. However, regardless of the detailed approach that is used,
there are a number of underlying principles that must always be incorporated in
the design of any program, of which the following are the most important:

• Completely understand what the program is supposed to accomplish.
What are the inputs and outputs supposed to be? This sounds too trivial
to be worth mentioning, but it is not. It is all too easy not to have all the
facts clearly understood before starting programming. This will lead to
much painful and expensive redesign at a later stage.

• Make the input and output clear to understand for the program user. Make
the input form as easy as possible and the output form as clear and useful
as possible.

• Have a clear design for the method to be used to solve the problem. Write
it down. We have already introduced one way to do this and will expand
on this in later chapters. However, there are other approaches, and you
should choose one that you feel comfortable with. It is surprising how
often this stage has to be reworked until a correct solution is found.

• Look to see what functionality you can find in existing procedure libraries.
We shall have more to say about this in Chapter 4, but we have already
seen in Example 2.1 how a subroutine can be used to avoid the need to
write all the program oneself. Reinventing the wheel is not an economical
use of your time!

• When writing the program use a modular design. We shall discuss this
topic in some detail in Chapter 4 and so will not say more here, except to
point out that a good rule of thumb is that no single block of code (or
procedure, see Chapter 4) should be longer than about 50 lines, excluding
any comments.

• Use descriptive names for variables and program units and be lavish with
comments. Code with few or no comments is usually impossible for even

• the author to understand once a few weeks have passed since its
creation.
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• Perform as much error checking on the input as is possible. Moreover,
perform checks on the success of the internal stages of a calculation.
Include, as part of the output, any problems the program detects and how
the accuracy of the answer is being affected. This is actually a somewhat
complicated topic and only a few introductory comments can be made
here.

For input error checking, try to catch, and report clearly back to
the user, every error that the input data might contain. For example, if one
of the data items is the number of items to be processed, this number
should be checked to see that it is not negative, and should also be
checked to see that it is not so large that the capacity of the program will
be exceeded. This is an obvious type of check to make. A less obvious
class of checks is on the self-consistency of the data. For example, if a
program is supposed to take three points as input and calculate the radius
and centre of the circle passing through them, the points should be
checked to see that they do not lie on a straight line. If they are exactly
collinear the radius is infinite and the coordinates of the centre have
become indeterminate. Another check is to test that all the points are
distinct. If they are not, then there are an infinite number of solutions.

For errors that can be detected while the program is executing,
consider checks on how many iterations are being performed in trying to
converge to a solution. If this becomes too large, the user should be
informed and given an option to terminate the process.

Returning to the problem of determining the circle through three
points, suppose the points are almost collinear or almost coincident. This
is more difficult to detect than exact collinearity or coincidence. What
does 'almost' mean here? How can a precise numerical value be given for
'almost'? There is a solution. The centre of the circle can be determined as
the result of solving a pair of simultaneous linear equations. There are well
established mathematical techniques, which are, however, outside the
scope of this book, for estimating the condition number of such linear
systems of equations. This analysis will detect near linearity or
coincidence of points and can be used to report back to the user how
many digits, if any, of the answer are accurate.

• Finally, test the program by using cases that execute every part of the
program, including your input error tests and calculation problem tests.
Although it may sound obvious, ensure that you know what the correct
answer should be for those tests which are designed to run to completion.
Just because your program produces an answer doesn't mean that it is the
correct one!

These techniques do not take the interest and challenge out of
programming, making it a mechanical process. Instead, they make a program
easier to develop and maintain, thereby making the process more interesting and
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less painful. All of us have, at some time in our lives, been faced with the problem
of trying to find the error in a badly written and badly documented program
(written by someone else, of course!) and we do not recommend it to anyone.

We shall return to the question of testing programs in the Intermission
between Parts I and II of this book, but we cannot overemphasize what a vitally
important part of the programming process it is. Even with apparently simple
programs, such as those which you will write in response to the exercises in the
first part of this book, you should always thoroughly test them to ensure that
they produce the correct answers from valid data, and react in a predictable and
useful manner when presented with invalid data.

2.6 The old and new Fortran 90 source forms

The short program written as part of Example 2.1, and discussed in detail in
Section 2.2, is written in a free form, in which the statements may be written
anywhere on the line, thus enabling the programmer to arrange the layout of a
program to suit any particular style preferences. There are relatively few
constraints on programs written in this way, namely:

• Blank characters are significant and must be used to separate names,
constants or statement labels from other names, constants or statement
labels, and from Fortran keywords

• Comment lines are identified by having an exclamation mark as their first
non-blank character

• Any characters following an exclamation mark, unless this is part of a
character string, form a trailing comment

• A line may contain a maximum of 132 characters
• A line may contain more than one statement, in which case a semicolon

separates each pair of successive statements
• A trailing ampersand indicates that the statement is continued on the next

line; if it occurs in a character context, then the first non-blank character of
the next line must also be an ampersand, and the character string
continues from immediately after that ampersand

• A statement may have a maximum of 39 continuation lines

• A statement label, if required, consists of up to five consecutive digits
representing a number in the range 1 to 99999, which precedes the
statement, and is separated from it by at least one blank

Note, incidentally, that statement labels are rarely needed in Fortran 90, although
they were much more common in earlier versions of Fortran; we shall meet them
briefly in Sections 6.5 and 8.4.
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PROGRAM circle
C This program calculates the equation of a circle passing
C through three points
C Variable declarations
C Step 1

PRINT *,"Please type the coordinates of three points"
PRINT *,"in the order xl,yl,x2,y2,x3,y3"
READ *,xl,yl,x2,y2,x3,y3

C Step 2
CALL calculate_coeffs(xl,yl,x2,y2,x3,y3,a,b,r)

C Step 3
PRINT *,"The centre of the circle through these points is",
* II (." ,a,", II ,b,ll) II

PRINT *,"Its radius is ",r
END PROGRAM circle

Figure 2.3 A fixed form version of the solution for Example 2.1.

All previous versions of Fortran used a quite different statement format,
which was originally defined as part of the first FORTRAN system in 1954, when
the only means of getting information into a computer was to punch it on special
punched cards. These cards would hold a maximum of 80 characters - which is
why, to this day, most computer terminals have 80 characters per line as the
default size for their screens. Because it was easy to drop (and hence scramble the
order of) a deck of punched cards, the last eight character positions were reserved
for a sequence number, thus limiting the number of usable characters to 72. This
older form of program layout is also available in Fortran 90 for compatibility with
older, FORTRAN 77, programs, but it is not recommended that any new
programs should use it.

In order to distinguish the two source forms, the old one is known as
fixed form while the new, Fortran 90, source form is known as free form. This
book will only use free form source, other than in Figure 2.3 which shows how
the program written in Example 2.1 would look in fixed form, but the rules
governing fixed form are summarized below:

• A Fortran statement is written in columns 7 to 72 only, with columns 1 to 6 being kept for special
purposes, as detailed below

• Blanks have no significance (except in a character context), and may be used freely anywhere,
even in the middle of words, or may be totally omitted

• The character C or the character * in the first character position of a line (column 1) indicates that
the line is a comment line; an exclamation mark may also be used to initiate comments in
Fortran 90, but not in FORTRAN 77, in the same way as in free form
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• Columns 7 to 72 of a line may contain more than one statement in Fortran 90, separated by
semicolons, although this is not. allowed in Fortran 77

• A statement which is blank in columns 1 to 5, and c6ntains any character other than zero in
column 6, is treated as a continuation of the previous non-comment line

• A statement may include a maximum of 19 continuation lines

• Any statement labels must. be written in columns 1 to 5 and consist, as in free form, of up to five
digits representing a number in the range 1 to 99999

SELF-TEST EXERCISES 2.2

1 What is the difference betw~e~ a syntactic error. and a semantic error? Into which
category do (a) compilation errors and (b) execution errors fall7

11'1

2 Give three reasons for the importance of well-designed programs.

3 Give four issues that should be considered before starting on the detailed design of a
program.

4 Give four issues that should be considered during the testing of a program.

5 What is the maximum number of characters that may occur in one line of a Fortran
program?

6 What is the maximum numb~r of lines that a Fortran statement may be spread over?

7 What is the maximum number of Fortran statements that may appear on a single line?
How are they separated?

SUMMARY

• Programming is an engineering discipline.

• The four basic steps involved in programming are specification, analysis and
design, coding and testing.

• A structure plan is a method for assisting in the design of a program.

• Top-down design involves refining the problem into successively greater
levels of detail.

• The programming of sub-problems identified during top-down design can be
deferred by specifying a subprogram for the purpose.
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A Fortran name consists of up to 31 characters, and may be made up from any
combination of the 26 upper case letters A-Z, the 26 lower case letters a-z, the
ten digits 0-9, and the underscore character _ ; the first character must be a
letter. Upper and lower case letters are considered to be identical in this
context.

Blank characters are significant and must not appear in names; at least one
blank must be used to separate names from each other, and from numbers.

Keywords are Fortran names which have a special meaning in the Fortran
language; other names are called identifiers.

Upper case and lower case letters are treated as identical in both Fortran
keywords and identifiers.

Every main program unit must start with a PROGRAM statement, and end with an
END or END PROGRAM statement.

An IMPLICIT NONE statement should always immediately follow a PROGRAM
statement.

A comment line is a line whose first non-blank character is an exclamation
mark, !; a trailing comment is a comment whose initial! follows the last
statement on a line. Comments are ignored by the compiler ..

Specification statements provide information about th~ program to the
compiler.

Execution statements are obeyed by the computer du~!ng the execution of the
program.

A list-directed input statement is used to obtain information from the user of a
program during execution.

A list-directed output statement is used to give information to the user of a
program during execution.

A CALL statement is used to transfer processing to a subroutine, using
information passed to the subroutine by means of arguments, enclosed in
parentheses.

There is an older fixed form method of writing programs which has slightly different rules .

Fortran 90 syntax introduced in Chapter 2:

Initial statement

End statement

Implicit type
specification statement

Variable declaration
statement

PROGRAM name

END PROGRAM name
END PROGRAM
END

IMPLICIT NONE

REAL :: list of names

'f'
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List-direded input and
output statements

Subroutine call

READ ., list of names
PRINT ., list of names and! or values

CALL subroutine_name (argumentl, argument2, ... )

PROGRAMMING EXERCISES

Exercises whose numbers are preceded by an asterisk (for example, 2.2 and 2.3) have sample
solutions at the end of this book.

2.1 Find out how to use the editor on your computer to type and corred a Fortran
program. Also find out how to submit your program for compiling and execution.

"2.2 The following simple program contains a nurtlber of errors. Identify them and
produce a correded version.

number

a number of errors ,
of Fortran 90 at all!

! Trailing
! comments!

PROGRAM exercise 2.2
IMPLICIT NONE

REAL :'number
! This program contains
is not'a good example
PRINT .,"This ,

'is a silly
'program "

PRINT .,"Type a number"
READ ., "number"
PRINT "Thank you. ,

Your number was"
END exercise

Run the correded program on your computer to check that it does indeed work. If it still
does not work, then keep correding it until it does!

"2.3 Enter the following program exactly as shown:

PROGRAM test
! This program contains four major errors ,
, and three examples of bad programming style
PRINT .,Please type a number .
READ • numbr
PRINT .,"The number you typed was ",number

END
The program contains four errors, only three of which will probably be deteded by the
compiler. There are also three additional mistakes in the program which, although not
errors, are very poor programming pradice. Can you find all seven? Now compile the
program, corred only those errors deteded by the compiler, and run it again, typing the
value 123 when requested. Was the answer that was printed corred? If not, why not?

How could you improve this program so that the compiler found more of the
errors?
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2.4 How many mistakes can you Rnd in the following program?

PROGRAM final test
! This program contains several errors

IMPLICIT :: NONE
REAL:: var-l,var 2,var_3,var4
PRINT "Please type four numbers ,

separated by commas"
READ var-l,var 2,var_3,var4
! Now print the numbers to check that they were
! input correctly
PRINT *,"The numbers you typed were:
PRINT *,var-l,var 2,var_3,var4
PRINT *,"That's all for now. ,

, "How many errors did you find?"
END PROGRAM final_test

2.5 Write a Fortran 90 program that prints the following message when it is run:

Hello World!

Now modify your program so that it prints a message similar to the following:

Hello World!
My name is Natasha Rudikova, and this is my first program.
It won't be my last one, though!
Au revoir!

2.6 Write a program that expects three numbers to be entered, but only uses one READ
statement, and then prints them out so that you can check that they have been input
correctly.

When typing in the numbers at the keyboard try typing them all~9n one line

(a) separated by spaces
(b) separated by commas
(c) separated by semicolons"

Then run the program again, but type each of the three numbers on a separate line,
followed by RETURN (or ENTER).

This exercise should help you to appreciate how a Fortran program expects input
to a list of variables.

2.7 Write a program that asks for the time in the form hh, mmand then prints that time
as a message in the following form:

The time is mm minutes after hh
What do you notice about the result of running this program?





Essential data handling

3.1 The two fundamental types of
numbers

3.2 REAL and INTEGER variables
3.3 Arithmetic expressions and

assignment
3.4 List-directed input and output of

numeric data

3.5 Handling CHARACTER data
3.6 Initial values and constants
3.7 Creating your own data types
3.8 Obsolete forms of declaration,

initialization and constant
definition

There are two fundamental types of numbers in both mathematics and
programming - namely those which are whole numbers, and those which
are not. In Fortran these are known as integers and real numbers,
respectively, and the difference between them is of vital importance in all
programming languages. A third fundamental data type allows character
information to be stored and manipulated.

This chapter discusses these three basic data types, the ways in
which they may be used in calculations or other types of expressions,
and the facilities contained within Fortran for the input and output of
numeric and textual information.

Finally, an important feature of Fortran 90 is its ability to allow
.programmers to create their own data types, so that they may more
readily express problems in their own terms, rather than in an arbitrary
set of more basic functions. This is an important new development in
Fortran 90, and one which will be developed further in subsequent
chapters.

39
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3.1 The two fundamental types of numbers

When the first FORTRAN processor was developed in 1954 it introduced two,
quite different, ways of storing numbers and of carrying out arithmetic. These
have remained essentially unaltered in Fortran since that time, and before
proceeding any further we must establish what they are and how they differ.

An integer is a whole number and is stored in the computer's memory
without any decimal (or fractional) part. However, because of the way in which it
is stored, there are always limits to its size. These limits vary from one computer
to another and depend upon the physical design of the computer's memory. We
can illustrate this by considering a hypothetical computer which (for ease of
comprehension!) stores its data in decimal form instead of the binary (base 2)
system used by almost all computers. This means that a single digit will be
recorded by means of some device which has 10 states (corresponding to the 10
digits) instead of one with two states (for instance, on and off) as required for
binary numbers. Each location in the memory used for storing integers will
consist of a fixed number of these devices, say eight for the purposes of
illustration, which will impose a limit on the size of the number - in this case up
to 99999999. There remains the question of the sign of the numbers.

Suppose that the device which stored the integer was an electronic
equivalent of a milometer or odometer, such as that fitted to a car to record the
distance travelled (see Figure 3.1). If the reading is 00 000 000 and the car moves
forward 2 miles (that is, adds 2) the milometer will read 00 000 002. However, if
the (;:arnow reverses for 3 miles (that is, subtracts 3) the reading will successively
go t.() 00 000 001, 00 000 000 and finally 99999999. Thus the same reading is
obtained for a value of -1 as for + 99 999 999, and adding 1 to 99 999 999 will
give zero. We could therefore adopt a convention which says that readings from
1 to 49 999 999 will be considered to be positive, whereas 50 000 000 to
99 999 999 will be considered to be negative, and equivalent to - 50 000 000

(a) 0 0: 0 0: 0 0 0 01 initial milometer reading

(b) 0 0; 0 0 0 0 0 21 after two miles

(e) ~. 0 0 0 0 0 1 I after reversing one mile

(d) I O. 0 O. 0 0, 0 0 01 after reversing one more mile

(e) [99~9 9: 9 9 9 9J after reversing one more mile

Figure 3.1 Milometer readings during travel.
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(a) 15:0!o'oI01010101 represents -50000000

(b) 150:0 0[°1°]0]11 represents -49999999

(c) 19'9[9:9[919:9:91 represents -1

(d) 10:°10:0[0;0;0:°1 represents °

(e) ~I ° ' ° : ° : ° ' ° : 1 1 represents + 1

(f) 14:91
9:9[9[9:9:91 represents + 49 999 999

Figure 3.2 Storage of a-digit integers.

to -1 respectively. Almost all computers work in a similar manner to this,
although when using the binary system the effect is that if the first binary digit (or
bit) is a one then the number is negative, while if it is zero the number is positive.

Using the convention just described our eight-digit memory location can
hold a whole number in the range -50 000 000 to + 49 999 999, as shown in
Figure 3.2.

The other type of number is called a real number. A real number can be
regarded as consisting of an integer part and a string of digits representing the
fractional part, and clearly one way of storing such a number in an eight-digit
memory location would be to assume that, for example, the first four digits come
before the decimal point and the second four after it. However this would mean
that the numbers could only lie between -5000.0 and + 4999.9999, using the
same convention as before regarding the sign, and that all numbers would be
stored with exactly four decimal places. Clearly this is too restrictive and another
way must be found. One solution might be to allow more digits, but the problem
with this approach is that a large number of them will be wasted on many
occasions. For example if 16 digits were allowed, so as to give the same range as
for integers, but with eight places of decimals, then on the one hand a number such
as 100 000 000.0 cannot be stored because it needs nine digits before the decimal
place, even though none of those after it are needed, while on the other a number
such as 0.000 000 004 would have to be treated as zero because it needs nine
decimal places even though none of the eight before the decimal point are needed.

One solution for our hypothetical computer would be to consider any
non-zero real number as a fraction lying between 0.1 and 1.0, called the mantissa,
which is multiplied or divided by 10 a certain number of times, where this number
is called the exponent. Thus 100000000.0 would be the same as 0.1 X 109, and
0.000 000 004 would be the same as 0.4 --;-108, or 0.4 X 10-8•
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I

(a) ~ represents 0.413702 x 103 = 413.702

I

(b) ~ represents -0.315085 x 104 = -3150.85

I

(e) 19: 714 11 ! 3 !~ represents 0.413702 x 10-3 = 0.000413702

I

(d) ~ represents -0.315085 x 10-2 = -0.00315085

I

Figure 3.3 Floating-point numbers.

Using this approach, we could define a method of representation which
says, for example, that the last six digits represent the mantissa as a fraction to six
decimal places (with the first being non-zero), while the first two represent the
exponent; that is, the number of times that the fraction is to be multiplied or
divided by 10. The same technique as was used for integers to distinguish positive
and negative numbers will be used for both the mantissa and the exponent. Figure
3.3 illustrates this method, which is known as floating-point representation.

This method of representation has two main implications. The first is that
all numbers, whatever their size, are held to the same degree of accuracy. In the
example being used they will all be stored to an accuracy of six significant digits.
Thus the problem of wasted digits does not arise. The second implication is that
the limits for the size of the numbers are very much greater than was the case for
integers. In our hypothetical computer, for example, real numbers can lie
anywhere in the range from -5 x 1048 to +4.99999 x 1048, and at the same
time the smallest number that can be differentiated from zero is 0.1 x 10-50

(i.e. 10-51).
In our hypothetical computer, therefore, the number 03413702 represents

the real value 413.702 or the integer value 3413702, depending upon whether it
is interpreted as a floating point number or as an integer. Note that there is
nothing in the number 03413702 itself to indicate which of these two is intended;
in this hypothetical example it would be the programmer's responsibility to
remember which was intended.

In a real computer exactly the same situation arises and it is essential that
the two methods of number representation are clearly defined; we shall see in the
next section how to instruct the computer which method to use. We can already
see, however, that it is extremely important that the difference between an
integer and a real number is thoroughly appreciated:

• An integer is a whole number, is always held exactly in the computer's
memory, and has a (relatively) limited range (between about -2 X 109

and +2 x 109 on a typical 32-bit computer).
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• A real number, on the other hand, is stored as a floating-point number, is
held as an approximation to a fixed number of significant digits and has a
very large range (typically between about _10'38 and +10'38 to seven or
eight significant digits on the same 32-bit computer).

3.2 REAL and INTEGER variables

The whole question of storage of different types of information in a computer can
become quite complicated, and we shall return to this topic several times as we
develop a fuller understanding of the power and flexibility of the Fortran
language. In the last section we saw the importance of informing the computer
what type of information is to be processed, and the main way in which we
do this is by means of a variable declaration. At its simplest this takes the
form'

TYPE:: name

where TYPE specifies the data type for which memory space is to be reserved,
and name is a name chosen by the programmer with which to refer to the
variable that has been declared.

In Chapter 1we used an analogy with a series of glass boxes to represent
the memory of a computer, and we can extend this analogy so that the box now
contains two identifying symbols (see Figure 3.4), one of which is the name used
in the earlier example, while the other identifies the typ~ of information which
may be stored in the box.

In generaL there will be more than one variable of the same type being
declared and so a list of names may be given:

TYPE :: name 1I name2 I •••

Thus we may declare three real variables by a statement such as

REAL :: a,b,c

or

REAL first_real_variable I second_real_variable I &
third_real_variable

Note that real values are represented as floating-point numbers.

@
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Figure 3.4 A typed storage model..

In a similar way, integer variables are declared as follows:

INTEGER :: first_inteqer,second_inteqer

We have already met the rules for Fortran names in Sedion 2.2, and in
this book we have adopted the widely used convention that upper case will be
used for Fortran keywords, such as REI\.Land INTEGER, while lower case will
be used for names created by the programmer, such as first_real_variable etc.

There is, however, one rather serious problem which arises because of the
age of the Fortran language, and the need to retain compatibility with earlier
versions of. the language. This is known as implicit declaration.

In the early days of programming, many programmers resented having to declare their variables
before using them and so Fortran provided an alternative form of determining the type of a variable based
on its initial letter. In Fortran 90, therefore, if you omit to declare a variable it will not normally lead to an
error when it is first used; instead it will be implicitly declared to be an integer if the first letter of its name
lies in the range I-N, and will be implicitly declared to be a real variable otherwise. This is exlremely
dangerous, and should be avoided al all cosls.

Fortunately, Fortran 90 provides the means to avoid this problem by
instruding the compiler that all variables must be declared before use, and that
implicit declaration is not to be allowed. This is achieved by including the
statement

IMPLICIT NONE

as the first statement after the initial PROGRAM statement.
It is extremely important that this statement appears at the beginning of every

program in order that implicit declarations of variables are forbidden. There are a great
many stories, some apocryphal and some true, about major catastrophes in
Fortran programs that would never have happened had implicit declaration not
masked a programming error.
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3.3 Arithmetic expressions and assignment

Once we have declared one or more variables then we can start to use them to
solve problems. First, however, we must establish how particular values are
stored in the memory locations associated with the specified variables.

In fact, there are only two ways in which a variable can be given a value
during the execution of a program - by assignment or by a READ statement. We
met the READ statement in Chapter 2, and will discuss it in some detail in the next
section; however, by far the most common means of giving a value to a variable
is through an assignment statement. This takes the form

name = expression

where name is the name of a variable, and expression is an arithmetic, or other,
expression which will be evaluated by the computer to calculate the value to be
assigned to the variable name. Thus the statement

a = b + c

takes the value currently stored in b, adds to it the value currently stored in c, and
stores the resulting value in a.

If a, band c are all real variables, and the values in band c were 2.8 and
3.72 before the statement was obeyed then the value assigned to a would be 6.52
- or rather it would be a very close approximation to 6.52, remembering that real
arithmetic is always an approximation. Similarly, if a, band c are all integer
variables, and the values in band c were 17 and 391 before the statement was
obeyed then the value assigned to a would be 408; in this case the answer would,
of course, be exact.

Figures 3.5 and 3.6 illustrate what has happened, by reference to the
storage model used earlier, but what about the situation shown in Figure 3.77 In

a=b+c

Figure 3.5 Real arithmetic and assignment.
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a=b+c

Figure 3.6 Integer arithmetic and assignment.

this example, the expression uses two real variables, and so the result is clearly
real. However the variable a is an integer and so cannot hold a real value.

In this situation the result of the expression is truncated to an integer by,
in effect, throwing away the fractional part, or, more formally, by rounding
towards zero. Thus, if the values in band c were 2.8 and 3.72 before the
statement was obeyed, as before, then the value of the expression would be 6.52,
which would be truncated to 6 before being assigned to a.

In the reverse case, where the value of the expression is an integer but the
variable to be assigned the value is real, there is less of a problem since the integer
result can easily be converted to its real equivalent without any loss of accuracy
unless it is so large that it has more precision than a floating-point number can
provide. For example, using the hypothetical computer used in Section 3.1 the
integer number 12345678 has eight digits of precision and would need to be
converted to 0.123457 X 108 (or 12345700.0).

A related problem occurs when not all of the entities making up the
expression are of the same type, for example if b were real, while c were integer.
In this case the rule is quite simple, namely that the integer is converted to real
before the calculation is carried out. (This is an oversimplification, to which we
shall return shortly, but it is sufficiently accurate for the present.)

Figure 3.7 Mixed-mode assignment.
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Operator Meaning

+ addition
subtraction

* multiplication
/ division
** exponentiation (or 'raising to the power of')

Figure 3.8 Arithmetic operators in Fortran.

We must now examine the form of an arithmetic expression in more
detail. As in mathematics, an arithmetic expression is created by use of the five
primary arithmetic operations - addition, subtraction, multiplication, division and
exponentiation (or 'raising one number to the power of another'). Although the
addition and subtraction operators use the conventional mathematical operators +
and -, it is not possible to express the other three operations in quite the same
way as in conventional mathematics. Figure 3.8 shows the symbols used in
Fortran.

We may create expressions of arbitrary complexity, subject to the limit on
the length of a statement, by means of these operators, such as

a = b+c*d/e-f**g/h+i*j+k

However it is not at all obvious, at first sight, how the above expression will be
evaluated!

In this situation, Fortran assigns the same priorities to operators as does
mathematics, namely that exponentiation is carried out first, followed by
multiplication and division, followed by addition and subtraction, as shown in
Figure 3.9.

Within the same level of priority, addition and subtraction or
multiplication and division, evaluation will proceed from left to right, except in

Operator Priority

** High
* and / Medium
+ and - Low

Figure 3.9 Arithmetic operator priorities.
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the case of exponentiation, where evaluation proceeds from right to left. Thus the
evaluation of the above expression proceeds as follows:

(1) Calculate £**g and save it in temp_l

(2) Calculate c*d and save it in temp_2
(3) Calculate temp_2/e and save it in temp_3

(4) Calculate temp_l/h and save it in temp_4

(5) Calculate i*j and save it in temp_5

(6) Calculate b+temp_3 and save it in temp_6

(7) Calculate temp_6-temp_4 and save it in temp_7

(8) Calculate temp_7+temp_5 and save it in temp_B

(9) Calculate temp_B+k and~store it in a

In practice, many of the temporary variables temp_l ... temp_B will not
actually be used as the computer will keep the intermediate results in special high-
speed memory locations (called registers) to speed up the calculation, but the
principle is correct - namely that the calculation proceeds step by step with each
step consisting of the evaluation of a sub-expression consisting of one operator
having two operands.

This leads us to a refinement of the earlier statement regarding what
happens in a mixed-mode expression, where not all the operands are of the
same type. The evaluation of the expression proceeds as already defined until a
sub-expression is to be evaluated which has two operands of different types. At
this point, and not before, the integer value is converted to real. The importance
of this can be seen by considering the evaluation of the statement

a = b*c/d

where b is a real variable whose value is 100.0, while c and d are integers having
the values 9 and 10, respectively.

Following the rules that have been already described, the value of b*c is
first evaluated, with the value of c being first converted to the real value 9.0, to
give an intermediate result of 900.0, after which the value of d is converted to its
real equivalent before the division is carried out, to give a result to be assigned to
a of 90.0.

Now consider what would have happened if the expression had been
written in the different, but mathematically identical, way

a = c/d*b

Now, when the first operation is carried out both the operands are integers and so
the sub-expression c/d is evaluated as an integer operation. Since integers can
have no fractional parts the same procedure is carried out as was described for
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assignment, namely the mathematical result (0.9) is truncated to give an
intermediate result of zero. This is then converted to its real equivalent (O.O!)
before being multiplied by the real value of b, but it is already too late, and the
result that will be assigned to a is also zero.

This phenomenon, known as integer division for obvious reasons, has
caught out many a programmer (including all of the authors at some time in their
careers!). In general, integer division is to be avoided except in situations where
programmers know exactly what they are doing and wish to take advantage of
the automatic truncation. Normally, however, it is preferable to carry out this
type of arithmetic using real arithmetic and then deal with the result as required at
the end of the calculation.

The reader should not assume, however, that the order of evaluation does
not matter in real arithmetic, for consider the following statement:

w = x-y+z

where x, y and z all have the values 5.678. Clearly the correct value for
assignment to w is also 5.678, and with the expression written as above this is,
indeed, the result. However, consider what might happen if the statement was
written in the mathematically identical form

w = x+z-y

and the program was executed on a computer which only held real numbers to
four significant digits. In this case the first operation (5.678 + 5.678) would result
in a 'true' value of 11.356 which would be saved (to four significant digits) as
11.36 before the subtraction took place leading to a result of 5.682 - an error of
0.004, or 0.07% on a simple addition and subtraction!

In practice, because modem computers carry out their arithmetic in special
areas of memory capable of much greater precision than the main memory, this
particular example would present no difficulty, but the principle that order of
evaluation matters is an important one which will be taken up in more detail in
Chapter 10.

We have seen that long expressions can become difficult to read and that
the order of evaluation is often important; there are, however, two steps that can
be taken to improve matters.

The first of these involves the use of parentheses which, just as in
mathematics, alter the order of evaluation. Thus the statement

w = x* (z-y)

will result in the evaluation of the sub-expression z-y first, with the result being
multiplied by x to obtain the value to be assigned to w.
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The other thing that can be done is purely cosmetic and involves the use
of spaces to make expressions more readable. For example, the expression used
earlier in this section could be made easier to read and understand by writing it as

a = b + c*d/e - (f**g)/h + i*j + k

The spaces are purely for the human reader and are ignored by the Fortran
compiler. In this instance, the parentheses are also only for the benefit of the
human reader since the exponentiation would, in any case, be carried out first. We
shall use spaces around the lowest priority operators in this way in most of the
programs in the remainder of this book, but it must be emphasized that this is
merely the authors' own style; programmers will develop their own styles as their
experience grows.

There are two remaining points to be made at this stage concerning
arithmetic expressions.

The first of these concerns the addition and subtraction operators. All five
operators have been presented as binary operators thus far; that is they have
always had two operands. This is always true of the multiplication, division and
exponentiation operators, but the add!tion and subtraction operators can also be
used as unary operators, having only one argument:

p = -q
x = +y

The meaning of these unary operators is obvious and the result is identical to the
binary case if a zero were placed before the operator.

The other point to be made concerns constants. In Chapter 1, when
discussing the concept of a variable by analogy with a glass box containing a ball
representing a value, we mentioned that if the box was sealed so that its value
could not be changed then it was called a constant. Such constants may have
names like variables, as we shall see in Section 3.6, or they may simply appear in a
Fortran statement by writing their value. In this latter case they are called literal
constants because every digit of the numbers is specified literally. We shall see
later that there are other ways of specifying constants.

All the program examples that have been presented in this section have
only used variables, but in most expressions there are also some constant items.
Numeric literal constants are usually written in the normal way, and the presence
or absence of a decimal point defines the type of the constant.

Thus these are integer constants:

123
1000000
-981
o
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while the following are real constants:

1.23
1000.0
-9.81
0.0

There is one exception to the rule that real constants must have a decimal
point, namely the exponential form. This is typically used for very small or very
large numbers and takes the form

mEe

where m is called the mantissa and e is the exponent. The mantissa may be
written either with or without a decimal point, whereas the exponent must take
the form of an integer. Thus the value 0.000 001, or 10-6, may be written in any
of the following ways:

1E-6
100E-8
O.lE-S

etc.

3.4 List-directed input and output of numeric data

We have already met the list-directed input/output statements in Chapter 2,
and with our new knowledge about variables and the real and integer data types
it is now appropriate to define the format of these statements in more detail. In
the form that we shall use them at present they have an almost identical syntax,
as follows:

The main difference between them is that the list of items in a READ statement
may only contain variable names, whereas the list in a PRINT statement may also
contain constants or expressions. These lists of names and/or other items are
referred to as an input list and an output list, respectively. The asterisk
following the READ or PRINT indicates that list-directed formatting is to take
place. We shall see in Chapter 8 how other forms of input and output formatting
may be defined, but the list-directed form is more than adequate for the present.
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The list-directed READ statement will take its input from a processor-
defined input unit known as the default input unit, while the list-directed PRINT
statement will send its output to a processor-defined unit known as the default
output unit. In most systems, such as workstations or personal computers, these
default units will be the keyboard and display, respectively; we shall see in
Chapter 8 how to specify other input or output units where necessary.

The statement

will therefore read three values from the default input unit, normally the
keyboard, and store them in the three variables real_ varl, real_ var2 and
int_var. A value that is input to a real variable may contain a decimal point, or
the decimal point may be omitted, in which case it is treated as though the integer
value read were followed by a decimal point. A value that is to be input to an
integer variable must not contain a decimal point, and the occurrence of one will
cause an error.

The term 'list-directed' is thus used because the interpretation of the data
input, or the representation of the data output, is determined by the list of items
in the input or output statement. We shall see in Chapter 8 how to specify our
own formatting instead of the default one supplied by the Fortran processor.

One important point that must be considered with list-directed input
concerns the termination of each data value being input. The rule is that each
number, or other item, must be followed by a value separator consisting of a
comma, a space, a slash (/) or the end of the line; any of these value separators
may be preceded or followed by any number of consecutive blanks (or spaces). If
there are two consecutive commas, then the effect is to read a null value, which
results in the value of the corresponding variable in the input list being left
unchanged. Note that a common cause of error is to believe that the value will be
set to zero!

If the terminating character is a slash then no more data items are read,
and processing of the input statement is ended. If there are any remaining items in
the input list then the result is as though null values had been input to them; in
other words, their values remain unchanged.

We can illustrate how this works by considering the following short
program:

PROGRAM list_directed_input_example
IMPLICIT NONE

INTEGER:: int_l,int_2,int_3
REAL :: real_l,real_2,real_3

Initialize all variables to zero
int_l = 0; int_2 = 0; int_3 = a
real_l = 0.0; real_2 = 0.0; real 3 = 0.0
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Read data
READ *,int_l,real_l,int_2,real_2,int_3,real_3

Print new values
PRINT *,int_l,real_l,int_2,real_2,int_3,real_3

Figure 3.10 shows the result of reading several different sets of data with this
program. Note that the number of decimal places printed is not defined and will
vary according to the Fortran 90 system being used.

It is also permitted to include special data items of the form n*c or n*
where n is an unsigned non-zero integer constant and c is a real or integer data
item. The first of these two forms represents n consecutive occurrences of the
data item c, while the second represents n consecutive occurrences of a null value.
These can be useful where it is required to read a large number of identical values.

We have already used the list-directed PRINT statement, and the statement

will output the values of entity_I, entity_2 and entity_3 to the default output unit,
normally the display, where each of the three items in the output list may be a
variable name, a constant or an expression. The only 'point to mention here
concerns the layout, or format, of the results. On output, list-directed formatting
causes the processor to use an appropriate format for the values being printed.
Exactly what form this takes is processor-dependent, but it is usually perfectly
adequate for simple programs and for initial testing. In general, however, more

Data Printed result
1,2.0,3,4.0,5,6.0 1 2.000 3 4.000 5 6.000
1 2.0 3 4.0 5 6.0 1 2.000 3 4.000 5 6.000
1 2.0
3 4.0
5 6.0 1 2.000 3 4.000 5 6.000
1" ,4.0, ,6.0 1 0.000 0 4.000 0 6.000
.1 , , 3 ,6.0 1 0.000 3' 0.000 0 .6.000
1,
3,
5,6.0 1 0.000 3 0.000 5 6.000
1,2.0,3,4.0/ 1 2.000 3 4.000 0 0.000
/ 0 0.000 0 0.000 0 0.000

Figure 3.10 Examples of list-directed input.
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control is required over the layout of results and we shall see in Chapter 8 how
this may be achieved.

We have already discussed the form of integer and real constants in the
context of arithmetic expressions and assignment, and they may, of course, be
included within an output list if appropriate. Far more usefuL however, is the
ability to use character constants in output statements to provide textual
information. Thus the program that was introduced in Chapter 2 contained a
statement of the form

PRINT *,"The centre of the circle is (",a,",",b,")"

which causes five items to be printed (or displayed), namely

(1) The character string: The centre of the circle is
(2) . The value of the variable a

(3) The character string: ,

(4) The value of the variable b

(5) The character string: )

It can easily be deduced from .this example that a character literal constant
consists of a string of characters chosen from those available to the user on the
computer system being used,' enclosed between double quotation marks.

There is, however, an alternative form in' which the character string is
enclosed between apostrophes:

PRINT *,'This is a character literal constant', &
" and so is this"

As long as the same character is used at the beginning and the end it does not
matter which is used. One situation where the choice is important is where it is
required to include an apostrophe or a quote within a character string:

PRINT *,"This string's got an apostrophe in it", &
, and this includes a "quotation"!'

If it is not possible, to do this then two consecutive apostrophes in a character
constant delimited by apostrophes, or two consecutive quotes in a character
string delimited by quotes, are treated as a single one:

PRINT *,'This string"s got an apostrophe in it', &
" and this includes a ""quotation''''!''

In FORTRAN 77 only apostrophes could be used to delimit character constants
and so the problem was a serious one. In Fortran 90 the need for this double
apostrophe, or double quote, is much rarer.
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[!] Problem .

Write a program to read a Centigrade temperature and convert it to Fahrenheit,
using the formula

9C
F=-+32

5

~ Analysis

This is a very simple problem (the ciassic 'first program'!) and can probably be
written down without much difficulty. Nevertheless, we shall write a strudure
plan first.

rn Solution

PROGRAM centigrade_to_fahrenheit
IMPLICIT NONE
, A program to convert a Centigrade temperature to Fahrenheit
, Variable declarations
REAL :: temp_c,temp_f
! Ask for Centigrade temperature
PRINT *, "What is the Centigrade temperature? ,i"
READ *,temp_c
! Convert it to Fahrenheit
temp_f = 9.0*temp_c/S.0 + 32.0
!Print both temperatures
PRINT *,temp_c, "C = ", temp_f, "F"

END PROGRAM centigrade_to_fahrenheit

Note that some of the lines in the above program are printed in blue. In every
worked example in this book some of the program statements will utilize features
that have been discussed in the current chapter, and these will be highlighted in
this way. Notice also that the program name and the names of the two variables
have been chosen so as to indicate what their purpose is. We could have chosen
any names of up to 31 charaders which satisfy the Fortran 90 naming rules, but it
is usually sensible to keep variable names somewhat less than this maximum in
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order to minimize typing and to make the program easier to read. A statement
such as

fahrenheit_temperature = 9.0*centiqrade_temperature/S.0 &
+ 32.0

is perfectly valid, but is much too verbose - to the extent that it would not fit on
one line!

The only exception to this is that the name of the main program, which
only appears on the PROGRAM and END PROGRAM statements, is often rather longer in
order to describe the purpose of the program.

Note also that we have written the calculation in a form that avoids any
mixed-mode expression. As we have already' seen, it would be perfectly
acceptable to write

and allow the processor to convert the three integer constants to their real
equivalents before carrying out the calculation. However, this is rather lazy
programming and can easily lead to mistakes such as writing the mathematically
equivalent form

which causes an integer division to take place, with the result that the statement is
effectively reduced to

which is clearly wrong!
Of course, the best way to write this statement is actually

since this eliminates a division operation. However this is less clearly related to the
formula, and it might be preferable, therefore, to include a comment to elaborate:

! Use the formula F=9C/S+32 (i.e. F=l.8C+J2)
temp_f = l.8*temp3 + 32.0

Finally, note that, since we can include expressions in an output list, we
could have replaced the last two statements, and their associated comments by,.

! Use the formula F=9C/S+32 (i.e. F=1.8C+32)
! and print both temperatures
PRINT *, temp_c, "C = ",1. 8*temp_c+32. 0, "F""
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We can also, of course, now remove the declaration of the variable temp_f from
the program.

SELF-TEST EXERCISES 3.1

1 What is the difference between an integer and a real number?

2 What is the primary advantage of an integer over a real number?

3 What are two advantages of a real number over an integer?

4 What is a declaration statement?

5 Write declaration statements for variables which are to be used for the following
purposes:

(a) to store the number of men, women and children living in a community, and the
ratio of adults to children;

(b) to store the dimensions, in feet and inches, of a rect~gular box;
(c) to store the dimensions, in metres and centimetres, of a rectangular box;
(d) to store the number of seconds that an experiment lasts, and the number of

photons detected by a piece of experimental apparatus during that time.

6 What is implicit declaration? How can it be prevented? Why?

7 What is an assignment statement?

8 What are Fortran's five arithmetic operators? What are their respective
priorities?

9 Write a statement to calculate the average of two numbers. Include the declaration of
any necessary variables.

10 What will be printed by the following program?

PROGRAM test3_1_10
IMPLICIT NONE
REAL :: a,b,p,q,r
INTEGER:: x,Y,z
a = 2.5
b = 4.0
P = a+b
x = a+b
q = a*b
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y = a*b
r = p/q
z = x/y
PRINT *,p,q,r
PRINT *,x,y,z

END PROGRAM test3_1_10

11 Give four different ways of typing the data so that the statement

READ *,a,b,c,d

will cause the real variables a, b, c and d to take the values 1.2, 3.456, 7.89 and 42.0.

3.5 Handling CHARACTER data

Having used CHARACTER constants in some of our PRINT statements it is now
appropriate to consider how we may declare CHARACTER variables and manipulate
CHARACTER data within a program. First, however, we must emphasize that
characters and numbers are stored very differently in any computer.

As we have already seen, REAL and INTEGER variables can hold a wide
range of numbers in a single variable. We must now introduce the concept of a
numeric storage unit, which is that part of the memory of the computer in
which a single REAL or INTEGER number can be stored. On most modem
computers a numeric storage unit will consist of a contiguous area of memory
capable of storing 16, 32, 48 or 64 bits, or binary digits. A 32-bit numeric storage
unit is capable of storing integers in the range from about - 2 X 109 to
+2 X 109, or real numbers in the range -1038 to + 1038 to an accuracy of about
seven significant digits.

Characters, on the other hand, are stored in character storage units,
typically occupying 8 or 16 bits, each of which can hold exactly one character in a
coded form. A character variable consists of a sequence of one or more
consecutive character storage units. There is no assumption about the
relationship, if any, between numeric and character storage units, although, in
practice, most computers will use the same physical memory devices for both
types so that, for example, four 8-bit character storage units may be kept together
in what would otherwise be a single 32-bit numeric storage unit.

Programs in the Fortran language are written using characters taken from
the Fortran Character Set, which consists of the 26 letters of the Latin alphabet,
the ten decimal digits, the underscore character and 21 additional special
characters. These 58 characters are shown in Figure 3.11. Note that lower case
letters are treated as identical to upper case letters when they appear in Fortran
keywords or identifiers, although they are, of course, treated as different in data
or in a character string.
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ABC D E F G H I J K L M N 0 P Q R STU V W x y z
o 1 2 3 4 5 678 9
+=+-*/ (),.':! "%&;<>?$

(where • represents the space, or blank, character)

Figure 3.11 The Fortran Character Set.

However, any particular implementation will almost certainly have codes
for other characters and these may be used as part of a character constant, may be
stored in character variables, may be input or output, and may appear in
comments, although such a program may not then work on a different computer.
The processor may, indeed, support several different families of characters, as we
shall see in Chapter 14. For the present, however, we shall only concern ourselves
with the default character set, which is that set of characters normally available
on the computer system being used without any special action on the part of the
user.

A character variable is declared in a very similar manner to that used for
integer and real numbers, with the important difference that it is necessary to
specify how many characters the variable is to be capable of storing. The
declaration statement can take a number of similar forms, of which the
fundamental one is as follows:

CHARACTER (LEN=length) :: name 1 , name2,

This declares one or more CHARACTER variables, each of which has a length of
length. This means that each of the variables declared will hold exactly length
characters.

There are two additional ways of writing this statement:

CHARACTER (length) :: nameI,name2, ...
CHARACTER * length :: name 1 , name2 , . 0 •

Although both of these are slightly shorter, we recommend, for the sake of
greater clarity, that you use the full form of the declaration statement in your
programs, as we shall do in this book.

If no length specification is provided, then the length is taken to be one.
Of course it is frequently the case that not all the character variables in a

program are required to have the same length, and it is permitted to attach a
length specification directly to the variable names in any of the above forms of
declaration:

CHARACTER (LEN=length) o. nameI,name2*len_2,name3*len_3, ...
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In this example the variable name1 is of length length, as are any other
variables in the list without a specific length specification. name2, however, has a
length of len_2 while name3 has a length of len_3. However, it is clearer, and less
prone to error, to write separate declarations for character variables of different
lengths, and we strongly recommend that you should adopt this approach.

The length specification may be either a positive integer constant or an
integer constant expression; in the latter case it must be enclosed in parentheses
if it is attached to a variable name. Thus the following three sets of declarations
have an identical effect:

(1) CHARACTER(LEN=6) :: a,b,c
(2) CHARACTER(LEN=l2-6) :: a,b,c

(3) CHARACTER::a*6,b*(8-2) ,c*(2*3)

The fact that character variables always hold a specified number of
characters leads to a number of potential problems when carrying out assignment
or input. For example, what will be stored in the three variables a, band c by the
following program?

PROGRAMcharacter_example
IMPLICITNONE
CHARACTER(LEN=3) .. string_l
CHARACTER(LEN=4) string_2,string_3
string_l = "End"
string_2 = string_l
string_3 = "Final"

ENDPROGRAMcharacter_example

Here we have three character variables declared, two of length four, and one
(string_l) of length three. The first assignment statement assigns the character
constant End to string_l. We can readily see that the value to be assigned (the
constant) has a length of three and so it exactly occupies the three storage units
which constitute the variable string_l, and all is well.

The next assignment statement is, however, more of a problem. string_l
has a length of 3 and contains the three characters End; string_2, however, has a
length of 4, so what will be stored in the four storage units?

The answer is that if a character string has a shorter length than the length
of the variable to which it is to be assigned then it is extended to the right with
blank (or space) characters until it is the correct length. In this case, therefore, the
contents of string_l will have a single blank character added after the letter d,
thus making a length of four, before being assigned to string_2.

The third assignment statement poses the opposite problem. Here the
character constant to be assigned has a length of 5, whereas the variable,
string_3, only has a length of 4. In this case the string is truncated from the right
to the correct length (4) before assignment.
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At the end of this program, therefore, the three variables string_l,
string_2 and string_3 contain the character strings End, End. and Fina,
respectively, where • represents a blank, or space, character.

The importance of this extension and truncation makes it desirable that
we restate these rules more formally:

• When assigning a character string to a character variable whose length is
not the same as that of the string, the string stored in the variable is
extended on the right with blanks, or truncated from the right, so as to
exactly fill the character variable to which it is being assigned.

A similar situation can arise during the input of character data by a READ

statement if the number of characters which form the input data is different from
the length of the variable into which they are being read. Before discussing this in
detail, however, we must examine the way in which character data is input and
output by list-directed input/output statements.

The form of any character data to be read by a list-directed READ

statement is normally the same as that of a character constant. In other words it
must be delimited by either quotation marks or by apostrophes. There are some
exceptions to this rule, however, in order to cater for common situations where
the need for the apostrophes or quotes would be annoying. The delimiting
characters are not required if all of the following conditions are met:

(1) the character data does not contain any blanks, any commas or any
slashes (that is, it does not contain any of the value separators discussed
earlier);

(2) the character data is all contained within a single record or line;

(3) the first non-blank character is not a quotation mark or an apostrophe,
since this would be taken as a delimiting character;

(4) the leading characters are not numeric followed by an asterisk, since this
would be confused with the multiple data item form (n*c).

In this case the character constant is terminated by any of the value separators
which will terminate a numeric data item (blank, comma, slash or end of record),
and it may be repeated by means of a multiple data item of the form n*c.

If the character data which is read by a list-directed READ statement is too
long or too short for the variable concerned then it is truncated or extended on
the right in exactly the same way as for assignment.

The output situation is rather simpler, and a list-directed PRINT statement
will output exactly what is stored in a character variable or constant, including
any trailing blanks, without any delimiting apostrophes or quotation marks.

Thus we could modify our earlier program to print the values of the three
variables as follows:
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PROGRAM character_example
IMPLICIT NONE
CHARACTER (LEN=3) .. string_l
CHARACTER (LEN=4) .. string_2,string_3
string_l = "End"
string_2 = string_l
string_3 = "Final"
PRINT *,string_l,string_2,string_3

END PROGRAM character_example

The result of running this program would be the following line of text:

EndEnd Fina

The ability to assign a character literal constant, or the string stored in a
character variable, or to input and output character data, does not in itself take us
very far. Just as we can write arithmetic expressions, therefore, so we can also
create character expressions. The major difference between character expressions
and the other types of expressions, however, is that there are very few things we
can actually do with strings of characters!

One thing that we can do, though, is combine two strings to form a third,
composite, string. This process is called concatenation and is carried out by
means of the concatenation operator, consisting of two consecutive slashes:

char = "Fred"//"die"

The composite string will, of course, have a length equal to the sum of the
lengths of the two strings which were concatenated to form it, and the variable
char will contain the string Freddie, as long as it has a length of at least 7.

This is the only operator provided in Fortran for use with character
strings; Fortran does, however, include one important additional capability,
namely the identification of substrings. This is achieved by following the
character variable name or character constant by two integer expressions
separated by a colon and enclosed in parentheses. The two integer values
represent the positions in the character variable or constant of the first and last
characters of the substring. Either may be omitted, but not both, in which case the
first or last character position is assumed, as appropriate.

Thus the substring "rhubarb" (2:4) specifies a substring consisting of the
three characters hub taken from positions 2 to 4 of the character constant. In a
similar way alpha (5:7) represents a three character substring of the value of the
character variable alpha, while beta (4:) represents a substring starting at the
fourth character of the value of beta and continuing to the last character, and
gamma (:6) represents a substring consisting of the first six characters of the value
of gamma.

It is also permitted to assign a value to a substring without altering the
rest of the variable. Thus the following program fragment will result in the
variable ch having the value Alpine ••,where, as before, • represents a space:
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PROGRAM substring
IMPLICIT NONE
CHARACTER (LEN=8) .. ch
ch = "Alphabet"
ch(4:) = "ine"

It is instructive to examine this in detail.
The substring ch (4 :) is the substring from character 4 to the end of ch - a

total of five characters. The character constant" ine" only has a length of 3 so it is
extended by adding two blank characters before being assigned to ch (4 : ). The
assignment means that the old substring value ("habet") is replaced by the new
value ("ineH"), leaving the rest of ch unchanged. The final result, therefore, is
that ch contains "Alpine "

IT] Problem

Write a program which asks fhe user for her title, first name and last name, and
then prints a welcome message using both the full name and first name.

m Analysis

This program is simply an exercise in simple character manipulation. However,
there are some slight difficulties in combining the title, first and last names in a
form which will avoid multiple spaces within the composite name. For example, if
variables with a length of 12 characters were chosen, then the name Kathy would
be followed by seven spaces.

In Chapter 2 we pointed out that many of the detailed aspects of
programs can often be carried out in procedures which can be written later, or can
be written by someone else, or which may already exist somewhere else. The
Fortran language contains a large number of special procedures, known as
intrinsic procedures, which provide a great many useful additional features. We
shall examine this topic in some detail in Chapter 4, but for the present we shall
simply note that there are several intrinsic procedures whose purpose is to assist
in the manipulation of character strings. A list of all the intrinsic procedures in
Fortran 90 will be found in Appendix A.

The most useful intrinsic procedure, for our present purpose, is TRIM,
which removes any trailing blanks from the character string provided as its
argument. There would still be a difficulty if the user types one or more blanks
before the name, but we shall assume that this does not happen and ignore the
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problem for the present - although there is another intrinsic procedure that could
be used to deal with it.

Armed with this intrinsic procedure we can develop our structure plan:

o Solution

PROGRAM welcome
IMPLICIT NONE

This program manipulates character strings to produce a
properly formatted welcome message

Variable declarations
CHARACTER (LEN=20) title,first_name,last_name
CHARACTER (LEN=40) :: full_name

! Ask for name, etc
PRINT *,"Please give your full name in,the form requested"
PRINT *,"Title (Mr./Mrs./Ms./Professor/etc: "
READ *,ti tle

PRINT *, "First name: "
READ *,first_name

PRINT' *, "Last name: ",'
READ *,last_name

! Create full name
full_name = TRIM(title)lI" "//TRIM(first_name)//" "//last_name

~
! Print messages
PRINT *,"Welcome ",full_name
PRINT *,"May I call you ",TRIM(first_name),"?"

I,

END PROGRAM welcome

Notice that TRIM has been used in the second PRINT statement to ensure that the
question mark at the end of the question comes immediately after the name, and
not separated from it by sever~l spaces.
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SELF-TEST EXERCISES 3.2

'1 What is the difference between the Fortran Character Set and the default character set?

2 What is the most obvious difference between the declaration of an integer or real
variable and the declaration of a character variable?

3 Write declaration statements for six character variables, of which four are to contain
character strings of up to 20 characters, one is to contain only a single character, and
one is to contain the month of the year. I.

4 Write a single declaration statement for the same variables as in Question 3.

5 What will be printed by the following program?

PROGRAM test3_2_S
IMPLICIT NONE
CHARACTER (LEN=16) .. a,b,c,d
a = "A kindly giant"
b = "A small man"
c = b(:8)//"step"
d = "for a"//b(8:)
b = " "//d(:4)//b(9:11)//a(3:6)
a = a(:2)//a(lO:lS)//"leap"
PRINT *,c(:13),d
PRINT *,TRIM(a(:12)),b

END PROGRAM test3_2_S

3.6 Initial values and constants

There is one other method of giving a value to a variable, namely to provide an
initial value for a variable as part of the declaration of the variable. This is
achieved quite simply by following the name of the variable by an equals sign
and the initial value:

REAL :: a=O.O, b=l.S, c, d, e=lE-6
INTEGER :: max = 100
CHARACTER (LEN=10) :: name="Undefined"

These initial values will be assigned to the variables by the Fortran processor
before the execution of the program commences, thus avoiding the need, when
the program is executed, either to obey a series of initial assignments or to read
an initial set of values. By separating the initialization of the variables from any
assignment during execution it is also easier to keep these two phases of a
program more clearly delineated.
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Any initial value specified must either be a literal constant or a constant
expression, that is an expression whose component parts are all constants.

A related issue concerns creating and giving names to constants.
Frequently, a program will use certain constant values in many places, and

it is not necessarily obvious what a particular constant represents. For example, it
might be required to establish a maximum number of items that could appear in
some data set, but using the same literal constant in all the places where it must
be referred to is prone to error both when typing the program and, even more,
when subsequently modifying it, and is less readable than would be the case if a
name were used. Furthermore, there are a great many occasions when physical or
natural constants, such as the value of 7f, are required in programs, and there is
clearly no intention for these to be altered. Fortran allows us a convenient
method of dealing with these situations by defining what are called named
constants by use of the parameter attribute in a declaration statement:

REAL, PARAMETER:: pi=3.1415926, pi_by_2=pi/2.0
INTEGER, PARAMETER :: max_cases = 100

In this example pi is defined to be a constant, and then pi_by _2 is defined by
means of a constant expression involving pi. Since the statement is processed
from left to right this is acceptable; if the two constants were listed in the
opposite order then there would be an error. There will never be any need to
change the values of these two constants, and their definition is purely to make
the program easier to read and to avoid errors in typing long constants since,
instead of writing, for example

area = 3.1415926*r*r

we can write

area = pi*r*r

On the other hand, the integer constant max_cases might need to be
changed if the size of problem being processed were to change. This is a case
where there might be many places where the constant value of 100 appears, not
all of which refer to the maximum number of cases. Modifying the program to
change the maximum would then be highly prone to error. By making the
maximum value a named constant the program is easier to read and any change
subsequently required need only be made in one place.

Finally, we note that, since the whole reason for giving an entity the
parameter attribute is to declare a named constant, it is not permitted to attempt
to change its value at a subsequent point in the program. The only way that its
value can be changed is by modifying the declaration statement accordingly, and
recompiling the program.
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3.7 Creating your own data types

We have now met the three major types of data that can be processed by Fortran
programs, although there are three more that we shall meet later. These six data
types are called intrinsic data types, and were the only data types in all earlier
versions of Fortran. However, Fortran 90 also includes the capability for
programmers to create their own data types to supplement the intrinsic types
provided within the Fortran language. Because these new data types must be
derived from the intrinsic data types and! or previously defined new data types
they are called derived types.

A derived type is defined by a special sequence of statements, which in
their simplest form are as follows:

TYPE new_type
component_definition

END TYPE new_type

There may be as many component definitions as required, and each takes the
same form as a variable declaration. The concept is best illustrated by an example.

Let us imagine that a particular program is being used to coiled data about
individuals, and that each individual is identified by their name (first name, middle
initial, last name), their age, their sex and their social security number. We could
define a new data type called person which would contain all this information:

TYPE person
CHARACTER(LEN=12)

INTEGER :: age
CHARACTER:: sex
CHARACTER(LEN=ll) "

END TYPE person

first_name, middle_initial*l, &
last_name

!M or F
social_security

Once we have defined a new type then we may declare variables of that type in a
similar way to that used for intrinsic types, except that the type name is enclosed
in parentheses and preceded by the keyword TYPE:

TYPE(person) :: jack, jill

A constant value of a derived type is written as a sequence of constants
corresponding to the components of the derived type, enclosed in parentheses
and preceded by the type name:

jack = person ("Jack" , "R", "Hagenbach" ,47, "M", "123-45-6789")
jill = person ("Jill" , "M", "Smi th" , 39, "F" ," 987-65-4321")
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This form of defining a constant value for a derived type is called a structure
constructor. Note that it is quite different from the form of a constant for any of
the intrinsic types. " .

In a similar fashion, a READ statement will expect a sequence of data values
which matches the components in both type and order, while a PRINT statement
will output the value of a derived type variable as a sequence of its component
parts.

We may refer directly to a component of a derived type variable by
following the variable by a percentage sign and the name of the component. Thus
the following statement changes the last name of jill to that of jack, for
example, if she had agreed to follow the common practice in many cultures
following their marriage! ,r ."

jill%last_name = jack%last_name

We may also, of course, use a previously defined derived type in the
definition of another derived type:

TYPE employee
TYPE (person) :: employee
CHARACTER (LEN=20) department
REAL :: salary

END TYPE employee
II,.

Note that it is permissible for a component name of a derived type to be the same
as the name of the derived type itself, although' it will usually be clearer if the
names are kept distinct.

If pat is a variable of type employee whose sex had been incorrectly
coded, it could be changed by a statement of the form

pat%employeehex = "F"

ill Problem
Define two data types, one to represent a point by means of its coordinates (in
two-dimensional space only) and the other to represent a line (also in two-
dimensional space) by the coefficients of its defining equation. Write a program
which reads the coordinates of two distinct points and which then calculates the
line joining them, printing the equation of the li~e.
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~ Analysis

This is the first of a set of examples which will develop a geometric sub-system
for use in such areas as computer-aided design and geometric modelling. Many of
the subsequent chapters of this book will contain examples and/or programming
exercises which will, together, provide many of the components of this sub-
system. Although each of these examples and exercises is complete in itself, the
whole set will illustrate how large programming projeds can be tackled in a
modular fashion in a series of interrelated stages. In order that they can be more
easily identified, all the examples and exercises of this type have an identifying f1ii:\
symbol in the margin. 'eJ

We must first establish the format of the two derived types - point and
line.

The first of these is easy, as it will consist of two real components,
representing the x and y coordinates, respedively.

The representation of a straight line is, however, slightly more difficult. A
straight line is defined by an equation of the form

ax+by+c=o

and at first sight we could simply use the three coefficients of this equation as the
representation of a line. However, these three coefficients are not unique, since,
for example, the equations

5x- 4y+ 7 = a

and

lax - 8y + 14 = a

are identical apart from the fad that all the coefficients of the second equation are
twice those of the first, and they both, therefore, represent the same line. This
will, however, not cause any problems in the use of this data type as long as it is
remembered that any non-zero multiple of a, band c represents the same line.

Simple algebra (see Figure 3.12) then leads us to the conclusion that

a = yz - Yr
b = Xr - Xz
c = YrXz - YzXr

We shall therefore define a line as having three coefficients.
Finally, we should note that our program should check that the two points

input are not coincident, since in that event it is impossible to define a line joining
them. We do not yet have the tools to make this check, but will return to this
problem in Chapter 5. We shall ignore this problem here, therefore, and assume
that the user does not supply two identical points.
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y

x

The equation of the line is ax + by + c = o.
The slope of the line is (Y2 - YI)/(X2 - Xl) if Xl "I X2'
At any point (x, y), other than (Xl' YI), the slope is (y - YI)/(X - Xl)'
Therefore

Y - YI Y2 - YI "
--=--- for Xl "lX2, X"lXI, Y"lYI
X - Xl X2 - Xl

Therefore

(X2 - XI)(Y - YI) = (Y2 - Yd(x - Xl) (1)

Now, the point (XI,YI) also satisfies equation (1) in this form, so we can
drop the prohibition that ~x,y) "I (XllYI)' .

Also, if Xl = X2 the equation becomes

(2)

In this case, YI "I Y2' since if it did the two points (XI,YI) and (X2,Y2) would
coincide and, hence, would not define a straight line. Consequently, we can divide
equation (2) by (Y2 - YI) and obtain .

X - Xl = 0

In the case where Xl = X2, this is the equation of the line joining the two points.
Thus, in all cases, equation (1) is the equation of the straight line joining the

two (distinct) points. Rearranging (1), we have

(Y2 - YI)X + (Xl - X2)Y - Y2XI + YIXI + YIX2 - YIXI = 0

or

(Y2 - YI)X + (Xl - X2)Y + YIX2 - Y2XI = 0

Therefore

a = Y2 - YI
b = Xl - X2

C = YIX2 - Y2XI

Figure 3.12 Calculation of the equation of a line joining two points.
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We can now develop our structure plan:

o Solution
PROGRAM geometry

IMPLICIT NONE
! A program to use derived types for two-dimensional
! geometric calculations
! Type definitions
TYPE point

REAL :: x,y Cartesian coordinates of the point
END TYPE point
TYPE line

REAL :: a,b,c ! coefficients of defining equation
END TYPE line
! Variable declarations
TYPE (point) :: pl,p2
TYPE (line) :: pl_to-p2
! Read data
PRINT *,"Please type co-ordinates of first point"
READ *,pl
PRINT *,"Please type co-ordinates of second point"
READ *,p2
!Calculate coefficients of equation representing the line
Pl_to-p2%a = p2%y - pl%y
pl_to-p2%b = pl%x - p2%x
pl_to-p2%c = pl%y*p2%x - p2%y*pl%x
! Print result
PRINT *,"The equation of the line joining these two points is"
PRINT *,"ax + by + c = 0"
PRINT *,"where a = ",pl_to_p2%a
PRINT *," b = ",pl_to-p2%b
PRINT *," c = ",pl_to_p2%c

END PROGRAM geometry
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[] Problem

Define a data type which can be used to represent complex numbers, and then use
it in a program which reads two complex numbers and calculates and prints their
sum, their difference and their product.

~ Analysis

Complex numbers are used mainly by electrical engineers and by mathematicians,
and consist of two parts - a real part and an imaginary part. A complex number is
mathematically equivalent to x + jy, where x is the real part, Y is the imaginary
part, and j represents the square root of -1. It is often written in the form (x, y).

The rules for addition and subtraction are very simply derived:

(Xl + jYl) + (xz + jyz) = ((Xl + Xz) + j(Yl + Yz))
(Xl + jYl) - (xz + jyz) = ((Xl - Xz) + j(Yl - Yz))

while that for multiplication is n~t much more difficult (as long as we remember
that jZ is equal to -1):

Division is more difficult to work out - which is why we are not bothering with it
in this example!

We can express these rules using the parenthesized form of representation
as

(Xl, Yl) + (xz, Yz) = (Xl + Xz, Yl + Yz)
(Xl' Yl) - (xz, Yz) = (Xl - Xz, YI- Yz)
(Xl, Yl) X (xz, Yz) = (Xl X Xz - Yl X Yz, Xl X Yz + Xz X Yl)

We can now write a structure plan:
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rn Solution

PROGRAM complex_arithmetic
IMPLICIT NONE

A program to illustrate the use of a derived type to perform
complex arithmetic

! Type definition
TYPE complex_number

REAL:: real_part,imaginary_part
END TYPE complex_number

! Variable definitions
TYPE (complex_number) .. cl,c2,sum,diff,prod

! Read data
PRINT *,"Please supply two complex numbers"
PRINT *,"Each complex number should be typed as two numbers,"
PRINT *, "representing the real and imaginary parts &

&of the number"
READ * ,c1,c2

! Calculate sum, difference and product
sum%real_part= c1%real_part + c2%real-part
sum%imaginary_part = c1%imaginary-part + c2%imaginary_part

diff%real_part = c1%real-part - c2%real_part
diff%imaginary-part = c1%imaginary-part - c2%imaginary_part

prod%real_part = c1%real_part*c2%real_part - .&
c1%imaginary_part*c2%imaginary_part

prod%imaginary_part = c1%real_part*c2%imaginai::y_part + &
c1%imaginary_part*c2%real-part

! Print results
PRINT *, "The sum of the two numbers is ",sum c,
PRINT *,"The difference between the two numbers is ",diff
PRINT *, "The product of the two numbers is ",prod

END PROGRAM complex_arithmetic

Figure 3.13 shows the result of running this program, and it can be seen
that a slight improvement would be to print out the three!esult as parenthesized
pairs using statements such as

PRINT *,"The sum of the two numbers is (",sum%real-part, &
", ",sum%imaginary_part,")"

This example illustrates a common dilemma when reading and writing derived
data types, namely that in order to properly control the layout of results, or even
of data, it is necessary to work at the component level, whereas one of the
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Please supply two complex numbers
Each complex number should be typed as two numbers,
representing the real and imaginary parts of the number
12.5 8.4
6.5 9.6
The sum of the two numbers is 19.0000 18.0000
The difference between the two numbers is 6.0000 -1.2000
The product of the two numbers is 0.6100 174.6000

Figure 3.13 Results produced by the program written for Example 3.4.

advantages, as we shall see later, of using derived types is that the underlying
data structure can be ignored. We shall demonstrate how to resolve this dilemma
in Chapter 12.

Note, incidentally, that Fortran does contain an intrinsic COMPLEX type
which we shall meet in Chapter 14. Nevertheless, we shall continue to explore the
development of our own complex_number derived type in future chapters as a
readily comprehensible use of derived types.

3.8 Obsolete forms of declaration, initialization and
constant definition

Before Fortran 90. variable declarations did not contain a double colon:

INTEGER first_integer, second_integer

Although this form is perfectly adequate for the simple case shown here, the newer form, with the double
colon, is the only form of declaration which can be used when making use of many of the new features in
Fortran 90 that will be met in subsequent chapters. Indeed, we have already met two new features which
are not available when using the obsolete form of variable declaration, namely the inclusion of initial values
in the declaration and the use of the PARAIIETER attribute to define a named constant.

In earlier versions of Fortran, initial values were assigned by means of a separate DATA statement,
while constants were declared in a PARAIIETER statement. Both of these statements are now redundant and
should not be used in new programs. They are briefly described in Appendix E, together with other
obsolete features of Fortran 90 which readers may come across in older programs that they are having to
maintain or modify.

SELF-TEST EXERCISES 3.3

1 What is the difference between giving an initial value to an entity and giving it the
PARAMETER attribute?
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2 What is a derived type? From what is it derived?

3 Why are derived types useful?

4 Define a type to store a typical domestic address in your country's standard form.

5 Write a declaration for a variable of the type defined in Question 4, and a single
assignment statement to assign your own address to this variable.

6 Define a type to store a person's name and address and the necessary statement or
statements to read the user's name and address into a variable of this type.

SUMMARY

• Variables are locations in the computer's memory in which variable
information may be stored; constants are locations in which information is
stored which cannot be altered during the execution of the program.

• An integer is a whole number; its representation in a computer is always
exact.

• A real number may have a fractional part; it is represented in a computer as a
floating-point number which is a close approximation to its true value.

• Integers and real numbers are both stored in numeric storage units.

• All Fortran processors support the 58 characters which constitute the Fortran
Character Set; most processors also support a number of other characters as
part of their default character set.

• Characters in the default character set may be used to form character strings;
each character is stored in a separate character storage unit.

• All variables should be declared in a type declaration statement before their
first use; a character variable must have its length declared.

• An IMPLICIT NONEstatement should always be placed immediately after the
initial statement of the main program unit to force the compiler to require that
all variables appear in a type declaration statement.

• A variable declaration may include the specification of an initial value.

• A named constant declaration takes the same form as a variable declaration
specifying ah initial value, except that the name has the PARAMETER attribute.

• The priority of arithmetic operators in an arithmetic expression is the same as
in mathematics; evaluation of the expression proceeds from left to right, within
a priority level, except for exponentiation which is carried out from right to left,
but may be altered by the use of parentheses.
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• If one of the operands of an arithmetic operator is real, then the evaluation of
that operation is carried out using real arithmetic, with any integer operand
being converted to real.

• If an integer value is assigned to a real variable it is converted to its real
equivalent before assignment; if a real value is assigned to an integer variable
it is truncated before conversion to integer, and any fractional part is lost.

• Character strings may be concatenated to form a longer character string.

• Character substrings may be used wherever the character variables or
character constants of which they are substrings may be used.

• Character strings are extended with blanks to the right, or truncated from the
right, before assignment to make them the same length as the variable they
are being assigned to.

• A list-directed READ statement takes its data from the default input unit, and a
list-directed PRINT statement sends its results to the default output unit.

• A derived type is a user-defined data type, each of whose components is
either an intrinsic type or a ,previously defined derived type.

• Derived type literal constants are specified by means of structure
constructors.

• Input and output of derived type objects takes place component by component.

• Fortran 90 syntax introduced in Chapter 3:

Derived type definition

Variable declarations

Initial value specification

Named constant
declaration

Assignment statement

Character substring
specification

Arithmetic operators

Character operator.

TYPE type_name I

1st_component _declaration
2nd_component _declaration
,.

END TYPE type_name

REAL :: list of variable names
INTEGER :: list of variable names
CHARACTER (LEN=length) :: list of variable names
TYPE (derived_type_name) :: list of variable names

type:: name=initiatvalue, ...

type, PARAMETER:: name=initial_value, ...

variable_name = expression

name (first ""position: last""position)
name (first ""position: )
name ( : last ""position)
**,i;*, I, +, _
I I' '
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PROGRAMMING EXERCISES

-"'3.1 Write and run a program which will read 10 numbers and find their sum. Test the
program with several sets of data, including the following:

1,5,17.3,9, -23.714, 12.9647,0.0005, -2974,3951.44899, -1000

Were the answers what you expected?

3.2 The following program is intended to swap the values-of var_l and var_2:
PROGRAM swap

IMPLICIT NONE
REAL:: var_l=111.111,var_2=222.222
! Exchange values
var_2 = var_l
var_l = var_2
! Print swapped values
PRINT *,var_l,var_2

END PROGRAM swap

The program contains an error, however, and will not print the correct values. Determine
the error and correct it so that it works properly .•

Now modify the corrected program so that you can enter the two numbers from
the keyboard.

3.3 Write a program to input a number x and print the values of x-I, x+ 2 and
r+x- 2. ,.

3.4 The reduced mass of a diatomic molecule is given by the expression

rnarnb
/1=---

rna + rnb

Write a program that calculates /1, where you enter rna and rnbfrom the keyboard.

"'3.5 Write a program to print a list of the characters in the Fortran character set,
followed by their internal representation on your computer.

3.6 Write a program that reads a six word sentence, one word at a time, into six
variables, and then prints the sentence formed by concatenating the six variables.

3.7 Write a program that reads a six word sentence into a single variable. The
program should then read the number of characters in each of the six words and use this
information to store each word in a separate variable. Finally, the program should list these
six words, one to a line.

3.8 "When visitors come to dinner at his home in Copenhagen, Mr Schmidt always
makes them Danish Apple Cake. For four people this requires the following ingredients:
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675 g of apples
75 g of butter

150 g of sugar
100 g of breadcrurnbs
150 ml of cream

Write a program which inputs the number of people coming to dinner, and then prints the
amount of each ingredient required.

3.9 Write a program that contains two derived types. The first of these should contain
relevant details for an individual, such as first name, middle initial, last name, sex, age,
occupation, and anything else you think relevant. The second should contain an address in
an appropriate form for your environment.

Use a structure constructor to store your own details, or those of a friend, in
variables of these types and then print a message giving these details in a format similar to
that below:

My name is James D Smith
I am a 23 year-old male student, and I live at
871 rue de la Triomphe
Montmartre
Paris
France

3.10 - A woman wishes to build a brick wall 4 ft high along one side of her garden. The
bricks are 9 in long, 4 ~in wide, and 3 in high, and there should be ~in of mortar between
bricks. Write a program to calculate how many bricks she will need if the wall is to be
23ft 6 in long, and then use this program to calculate the number of bricks needed for
walls of different heights and lengths.

3.11 A small business wishes to use a computer program to calculate how to make up
the pay packets for its employees. The program should read the total amount to be paid,
and print the number of £20, £10 and £5 notes required, and the number ofEl, 50p, 20p,
lOp, 5p, 2p and Ip coins needed. It is a requirement that every pay packet should contain
at least 40p in coins, and at least one £5 note. SubjecHo this restriction, the pay packet
should contain as few coins and notes as possible. Note that £1 = lOOp.

Write a program to provide the required information, and test it with a wide
variety of cases, including those with a total pay of £125.39 and £65.40.

3.12 The equation of a circle can be written as

(x - XO)2 + (y - YO)2 = y2
;1';

where the point (xo, Yo) is the centre of the circle, and its radius is r.
Define a derived type, along similar lines to those used in Example 3.3, which can

be used to represent -a circle by its name, the coordinates of its centre, and its radius. Use
this derived type in a program whjch requests the userto provide the coordinates of the
centre of the circle, and of a point on its circumference, and calculates the radius of the
circle from this information. Finally, the program should print the coefficients of the
equation that defines the circle in the form -

:li.

ar+bV+cx+dy+e=O
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3.13 Using the two derived types that were defined for Exercise 3.9, create a third
derived type, called family, which contains the names of the father, mother, son and
daughter of a 'typical' four-person family, together with their home address. Use this in a
program which requests the relevant details for each member of the family, and where they
live, and then prints a summary of the family in a form similar to that shown below:

The Addison family live in Reading, MA
Wesley is 53
His wife Sheila is 47
Their daughter Lynne is 21 and their son Stephen is 24

3.14 A body that experiences a uniform acceleration moves a distance 5 in a time t,
where 5 is given by the formula

5 = ~at2 + ut

where a is the acceleration in metres/sec2, and u is the initial velocity in metres/sec.
A body falling freely under gravity is in such a situation, with a = g

= 9.81 metres/sec2•
Write a program that asks the userfor the body's initial velocity (in metres/sec)

and time of flight (in seconds). The program should then calculate and print the height from
which the body fell.

3.15 Calculate the Coulomb potential at a distance r from a particle with a charge of z.
The required formula is

cjJ(r) = ~
47rEr

where e = 1.6 x 10-19 C E = 8.86 X 10-12 F/m, and 7r = 3.1416. r is specified in metres
(m) and z is an integer number.
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Basic building blocks

4.1 Procedures, subprograms and
functions

4.2 Programs and program units
4.3 External functions
4.4 Subroutines
4.5 Actual arguments, dummy arguments

and local variables

4.6 Procedures as an aid to program
structure

4.7 Modules
4.8 Modules and derived data types
4.9 Modules and explidt procedure

interfaces
4.10 Modules as an aid to program design

In all walks of life, the easiest way to solve most problems is to break
them down into smaller sub-problems and deal with each of these in turn,
further subdividing these sub-problems as necessary.

This chapter introduces the concept of a procedure to assist in the
solution of such sub-problems, and shows how Fortran's two types of
procedures, functions and subroutines, are used as the primary building
blocks in well-designed programs.

A further encapsulation facility, known as a module, is also
introduced in this chapter as a means of providing controlled access to
global data, and is also shown to be an essential tool in the use of
derived (or user-defined) datatypes. Modules are also recommended as
a means of packaging groups of related procedures, for ease of
manipulation, as a means of providing additional security and to simplify
the use of some of the powerful features of Fortran 90 that will be met in
subsequent chapters.

81
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4.1 Procedures, subprograms and functions

The statements that we met in the last chapter enable us to write programs
consisting of a number of lines of instrudions that will be obeyed in sequence in
order to cause the required adions to take place. However this is not always the
way we do things in real life. For example, look at Figure 4.1. This is a note such
as might be left to instrud someone how to prepare the evening meal. It is a
sequence of instrudions but with one important difference - not all the instructions
are there. The main part of the preparation is covered in a cookery book (The Silver
Palate Cookbook, by Julee Rosso and Sheila Lukins), so, instead of writing it all
down, the writer simply referred to the appropriate page of the book. There was
no point in either copying it out or describing what to do in different words; it
was much easier to make use of what had already been written by the authors of
the book.

Figure 4.2 shows part of the adual recipe for Raspberry Chicken referred to
in the note in Figure 4.1, and we can see that even here the whole recipe is not
included. In this case the details of how to prepare the Chicken Stock and the Creme
Fraiche are to be found elsewhere in the book, on pages 342 and 339, respedively,
and it would be wasteful to keep repeating them in the many recipes that use either
or both. A cross-reference to the other recipes, therefore, saves space and,
incidentally, also keeps the main recipe less cluttered and thus easier to follow.

Both of these situations (use of standard procedures and avoidance of
duplication with consequent strudural improvements) appear in programming as
well. A special sedion of program which is, in some way, referred to whenever
required is known as a procedure.

Procedures fall into two broad categories, namely those which are written
by the programmer (or by some other person who then allows the programmer
to use them) and those which are part of the Fortran language. There is a further
categorization, based upon their mode of use, into what are called subroutines
and functions. Almost all of the procedures which are part of the Fortran 90
language are fund ions and are referred to as intrinsic functions. There are also
five intrinsic subroutines.

Miles,
I thou~ht "Wemisht have Raspberr';:\

Chicken roni5hr (see page 87 or ~he Silver
Palc.~ecookbook). I'll be Q bit la~ehome)
So could 'j0U make a S~Qr\- pleQse ?

Love

MCI'j~ie

Figure 4.1 An example of the use of a standard cooking procedure.
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RASPBERRY CHICKEN
Boneless chicken breasts are quick and economical to serve but
often dull to eat. In this recipe, ready in minutes, raspberry
vinegar lends a bit of welcome tartness, mellowed by chicken
stock and heavy cream. A handful of fresh raspberries, poached
briefly in the sauce just before serving, adds an elegant note.
Wild rice and a simple sauteed green vegetable would be good
accompaniments.

2 whole boneless, skinless chicken breasts, about 2 pounds
2 tablespoons sweet butter
1/4 cup finely chopped yellow onion
4 tablespoons raspberry vinegar*
lf4 cup Chicken Stock (seepage 342), or canned chicken broth
lf4 cup heavy cream, or Creme Frafche (seepage 339)
1 tablespoon canned crushed tomatoes
16fresh raspberries (optional)

1. Cut each chicken breast into halves along the breastbone
line. Remove the filet mIgnon, the finger-size muscle on the
back of each half, and reserve for another use. Flatten each
breast half or supreme by pressing it gently with the palm of
your hand.

2. Melt the butter in a large sk'
r'mes, and cook fo

Figure 4.2 Using cross-referencing to avoid duplication (reproduced with permission
from The Silver Palate Cookbook, by Julee Rosso and Sheila Lukins, published by Workman

Publishing, New York, 1982).

The purpose of a function is to take one or more values (or arguments)
and create a single result, and Fortran, for example, contains a number of intrinsic
functions for elementary mathematical functions, such as

SIN (x) which calculates the value of sinx (where x is in radians)
LOG (x) which calculates the value of loge x
SQRT (x) which calculates the value of -.Ix

As can be seen from these examples a function reference takes the general
form

name (argument)
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or, where there are two or more arguments

name(argl ,arg2, ... )

A function is used simply by referring'to it in an expression in place of a
variable or constant. Thus

a+b*LOG(c)

."
will first calculate loge c, then b x loge c, and finally add this to a. Similarly

-b + SQRT(b*b - 4.0*a*c)

will first calculate (b*b - 4. O*a*c), then use the function SQRT to find its square
root, and finally add this to -b.

There are 108 intrinsic functions available in Fortran 90, more than twice
as many as in Fortran 77;, some of these are concerned with standard
mathematical functions such as those illustrated above, but many deal with
other matters. We shall introd~ce the intrinsic functions, or families of related
intrinsic functions, at appropriate stages as we increase our knowledge and
understanding of the Fortran 90 language. A full list can be found in Appendix A
for reference.

Many of these functions can have arguments of more than one type, in
which case the type of the result will usually (though not always) be of the same
type as the arguments. Thus '

REAL:: x,y

y = ABS (x)

will produce the absolute value of the real variable x (that is the value ignoring
the sign) as a real value and assign it to the real variable y, whereas

INTEGER:: x,y

y = ABS(x)

will produce the absolute value of the integer variable x as an integer value and
assign it to the integer'variable y.

Those functions which exhibit this quality are referred to as generic
functions, since their name really refers to a group of functions, the appropriate
one of which will be selected by the compiler depending upon the types of the
arguments.
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It is also possible to refer directly to the actual function instead of using its generic name (for
example, lABS (x), although this is only to provide compatibility with earlier versions of Fortran which had
no generic capability; this practice is not recommended .

.• EXAMPLE 4.1

ill Problem

A farmer has a triangular field which he wishes to sow with wheat. Write a
program that reads the lengths of the three sides of the field (in metres), and the
sowing density (in grams per square metre). Print the number of 10 kilo bags of
wheat he must purchase in order to sow the whole field.

m Analysis

The key to the solution of this problem is the equation

area = Js(s - a)(s - b)(s - c)

for the area of a triangle whose sides have lengths a, b and c, where
2s = a + b + c. (This is known as Heron's formula, and dates from the first
century AD.)

Our strudure plan is then quite simple:

1

4

5

Step 5 is the only one of these which may cause some slight difficulty.
The solution can, however, be easily obtained by considering what will happen if
we simply divide the quantity of wheat (in grams) by 10000 to obtain the
number of 10 kilo bags. Unless the result of step 4 was an exad multiple of
10000 (and remember that real arithmetic is, anyway, only an approximation),
then there will be some fradional part in the answer. We may decide that if this is
less than 0.1 (one kilo) then we will ignore it, but that if it is more than that then
we shall need an extra bag - even though we shall not use all of that bag. If we
add 0.9 to the result of this division, therefore, the resulting figure will be the
number of bags required, probably plus a fradional part. This fradional part will
be lost through truncation when the result is assigned to an integer - which is, of
course, what the number of bags should be represented as since it has to be a
whole number. We can therefore modify step 5 as follows:
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5 Calculate the number of 10 kilo bags as 0,0001 X quantity + 0.9 (to allow
fora partly ~sed bag) ,

rn Solution

PROGRAM wheat_sowing
IMPLICIT NONE

A program to calculate the quantity of wheat required to
sow a triangular field

! Variable declarations
REAL :: a,b,c,s,area,density,quantity
INTEGER :: num_bags

!Read the lengths of the sides of the field
PRINT *,"Type the lengths of the three sides of the field'

'in metres: "
READ *,a,b,c

! Calculate the area of the field
s = O,5*(a+b+c) ~
area = SQRT(s*(s-a)*(s~b)*(s-c))

!Read sowing density
PRINT *,"What is the sowing density (~/sq.m,)? "
READ *,density

! Calculate quantity of wheat and the number of 10 kg bags
quantity = density*area
num_bags = O.OOOl*quantity + 0.9 ! Round up more than 1kg

! Print results
PRINT *,"The area of the field is ",area," sq. metres"
PRINT *,"and" ,num_bags," 10 kilo bags will be required"

END PROGRAM wheat_sowing ":I

4.2 Programs and p~ogram units

In the previous section we stated that a procedure may be part of the Fortran
language, in which case it is called an intrinsic procedure, or it may be provided
by the programmer. In the latter case it is normally implemented by means of a
Fortran subprogram,
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PROGRAM name

Specification statements etc.

Executable statements

END PROGRAM name

Figure 4.3 A main program unit.

• Up to this point we have not concerned ourselves with subprograms and
have considered our programs to consist of a sequence of statements starting
with a PROGRAM statement and finishing with an END PROGRAM statement, as shown
in Figure 4.3. Between these two statements there are two main groups of
statements, namely specification statements, of which declaration statements
are the only ones we have met so far, and executable statements. The purpose
of the specification statements is primarily to provide information to the Fortran
processor about the nature of the program, and we shall introduce several more
specification statements in subsequent chapters, as well as extending the
specification of those we have already discussed. Executable statements, on the
other hand, are the statements which cause the computer to carry out some
specified action during the execution of the program. All the specification
statements must precede the executable statements.

We have already used the term main program unit, and we must now
briefly introduce the four other types of program units. They all have the same
broad structure, consisting of an initial statement, any specification statements,
any executable statements and an END statement. These four program units are
two types of external subprograms, known as function subprograms and
subroutine subprograms, modules and block data program units (see Figures
4.4-4.7). We shall discuss the first three of these in this chapter, while the block
data program unit will be introduced in Chapter 17.

A program will normally consist of a number of different program units,
of which exactly one must be a main program unit. Execution of the program will
start at the beginning of the main program unit.

There may be any number of subprogram units in a complele program
and one of the most important concepts of Fortran is that one program unit need
never be aware of the internal details of any other program unit. The only link between
one program unit and a subsidiary program unit is through the interface of the
subsidiary program unit, which consists of the name of the program unit and
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FUNCTION name (arg, ... )

Specification statements etc.

Executable statements

END FUNCTION name

Figure 4.4 A function subprogram unit.

SUBROUTINE name(arg, ... )

Specification statements etc.

Executable statements

END SUBROUTINE name

Figure 4.5 A subroutine subprogram unit.

MODULE name

Specification statements etc.

Executable statements

END MODULE name

Figure 4.6 A module program unit.
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BLOCK DATA name

Specification statements etc.

END BLOCK DATA name

Figure 4.7 A block data program unit.

certain other public entities of the program unit. This very important principle
means that it is possible to write subprograms totally independently of the main
program, and of each other. This feature opens up the way for libraries of
subprograms: collections of subprograms that can be used by more than one
program. It also permits large projects to use more than one programmer; all the
programmers need to communicate to each other is the information about the
interfaces of their procedures.

4.3 External functions

The intrinsic functions available as part of the Fortran 90 language cover many of
the major mathematical functions, as well as meeting other common
requirements. However, when developing a program it is often necessary to
write our own function subprograms, frequently referred to as external
functions to distinguish them from the intrinsic functions.

An external function takes a very similar form to the programs we have
written so far, except that the first statement of the function is not a PROGRAM
statement but is a special FUNCTION statement which takes the form

type FUNCTION name(dJ ,d2, ... )

where dJ, d2, ... are dummy arguments which represent the actual arguments
which will be used when the function is used (or referenced), and type is the type
of the result of the function. For example, we could write a function to calculate
the cube root of a positive real number as follows:

REAL FUNCTION cube_root(x)
IMPLICIT NONE
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Function to calculate the cube root of a positive
real number

Dummy arqument declaration
REAL I INTENT (IN) :: x"

! Local variable declaration
REAL :: loq_x

!Calculate cube root by usinq loqs
loq_x = LOG (x)
cube_root = EXP(loq_x/3.0)

END FUNCTION cube_root

This function will only work for positive values of x because the method involves
taking the log of x. In Chapter 5 we shall see how we can extend this function to
handle negative or zero values of x successfully.

There are four very important points to notice about this function.
The first is that the variable loq_x is not accessible from outside the

function. It is called an internal variable (of the function in which it is declared),
or a local variable, and has no existence outside the function. Thus the main
program, or another procedure, could use the name loq_x for any purpose it
wished with no fear of the two uses of the same name being confused with each
other. It is this isolation of the inside of a procedure from the outside that
makes procedures such powerful tools in the writing of large or complicated
programs.

The second point is that the declaration of the dummy argument x takes a
slightly different form from the declarations that we have used up to now, namely
the inclusion of the phrase INTENT (IN) after the type, REAL. This is the second
attribute that we have met so far (PARAMETER was the other), and like all attributes
appears in a declaration statement in order to provide additional information
about the object being declared. In this case it informs the compiler that the
dummy argument x may not be changed by the function cube_root. We shall
discuss this attribute in detail in Section 4.5 when we discuss the relationship
between actual arguments and dummy arguments; for the present we shall simply
note that dummy arguments to functions should always be declared with
INTENT (IN).

The third point to note is that although the dummy argument x and the
variable loq_x have been declared, there is, apparently, one further variable called
cube_root which has not been declared. Furthermore, this variable has the same
name as the function, in an apparent direct contradiction of the rule we
established in Chapter I for the name of the program.

In fact this is a special variable, known as the result variable, and is the
means by which a function returns its value. Every function must contain a
variable having the same name as the function, and this variable must be assigned,
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or otherwise given, a value to return as the value of the function before an exit is
made from the function.

Now, of course, this special result variable must have a type, like any
other variable, but because it is also the name of the function it is permitted either
to declare its type as part of the FUNCTION statement, or to declare it by means of
a conventional type declaration statement. For example, it would also have been
permissible to write

FUNCTION cube_root(x)
IMPLICIT NONE
REAL .. cube_root

In the simple case shown here the first form is probably more satisfactory, but we
shall meet cases later where it is essential to use the second form.

The other important point concerns the last statement of the procedure.
As was the case with the END statement at the end of the main program unit, it is
not obligatory to include the function name, and any of the following are
acceptable:

END FUNCTION cube_root
END FUNCTION
END

We would, however, strongly recommend that the first form always be used, as
this helps to make the structure of the program clearer. It is, of course, a
requirement that the name included in this form of the END FUNCTION statement
matches the name on the initial FUNCTION statement!

When the END statement is obeyed, in whatever form it is written, it
causes execution of the program to return to the point in the calling procedure at
which the function was referenced as though a variable had been inserted in the
code at that point, having as its value the value calculated by the function. Thus
the statement

a = b*cube_root(c)+d

will cause the cube root of c to be calculated by the function, multiplied by b,
have d added, and the result to be stored in a. Note, however, that the function
cube_root must be declared in the calling program unit in a conventional
declaration statement in order that the Fortran processor is aware of its type, and
any other relevant information:

REAL :: cube_root
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Although it is not necessary, it is possibl~ to add an EXTERNAL attribute
specification to such a declaration by writing

REAL,EXTERNAL :: cube_root

The addition of this attribute iAforms the compiler that the name is that of a real
function and not of a real variable. Although this should be readily deducible
from the context in which the name cube_root occurs, it is a valuable security
check, and we recommend that this attribute is always included in the declaration
of external functions.

In Section 4.2 we said that only the interface of a subprogram was known
to any other program units, and in the case of a function subprogram this
interface consists of the name and type of the function (cube_root and real in this
example), and the number and type of its dummy arguments (one real dummy
argument in this case). We shall meet other items that may be part of the interface
in Chapter II.

Before leaving discussion of this function we should briefly mention the
situation where we wish to write a function which has no arguments. In this
situation we must still include the parentheses around the non-existent argument
when declaring the function, and also when using the function, as the presence of
the parentheses is one of the ways in which Fortran compilers recognize a
function reference. For example, we could define a function which prompts the
user to type a number and which then delivers this number to the program:

INTEGER FUNCTION next_intI)
IMPLICIT NONE

This function requests an integer from the keyboard

! Get number
PRINT *,"Please type an integer"
READ *,next_int

END FUNCTION next_int

This function could be used in the following program:

PROGRAM next_int_test
IMPLICIT NONE

This program displays the product of two numbers which are
typed at the keyboard

External function declaration
INTEGER, EXTERNAL :: next_int
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Please type an integer
17
Please type an integer
23
Their product is 391

Figure 4.8 Results produced by the program product using the function next_into

! Variable declaration
INTEGER :: product

product = next_int()*next_int()

PRINT *,"The product is ",product

When the first executable statement is executed, the first function reference
next_i tem () will cause the request for a number to be displayed, and when one
has been typed and control returned to the main program the second function
reference will repeat the process. Now that two values are available the product
can be calculated and the assignment carried out. The result of running this
program is shown in Figure 4.8.

Finally, we must emphasize that, although all the example functions
shown in this section have all been referenced in the main program, they can
equally well be referenced in another function or, as we shall see in the next
section, subroutine. However, a very important point is that a function must not
refer to itself, either directly or indirectly (for example, through referencing
another procedure which, in tum, references the original function). This is known
as recursion and is not allowed unless we take special action to permit it. This
will be discussed in Chapter 11.

4.4 Subroutines

In Section 4.1 we mentioned that there were two types of procedures in Fortran-
functions and subroutines. It is now time to examine how a subroutine differs
from a function.

The difference lies in how a subroutine is referenced and how the results,
if any, are returned.

A function, as we have seen, is referenced in the same way as a variable
simply by writing its name, followed by any arguments it may have enclosed in
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parentheses; such a function reference causes a transfer of control so that,
instead of continuing to process the current statement, the computer executes the
statements contained within the function. The execution of the function utilizes
the values provided as arguments to calculate a single value (the function value)
which is available as the value of the function reference, just as writing the name
of a variable in an expression provides a value - the value stored in a particular
memory location. A function reference, therefore, is not a complete statement
but is part of an expression, and may appear anywhere that an expression may
appear (for example, on the right-hand side of an assignment statement, in an
output list, as an argument in a function reference, etc.). We have already used a
number of intrinsic functions, which are defined within the Fortran language, and
external functions which we wrote ourselves, but both types are referenced in the
same way:

var = fun(argl, arg2, ...)
PRINT *,funl(argl, arg2, ...)
var = fun2 (a1, fun3 (argI, ar92, ... ), a2, a3, ... )

etc.
A subroutine, on the other hand, as we saw in Example 2.1, is accessed by

means of a CALL statement, which gives the name of the subroutine and a list of
arguments which will be used to transmit information between the calling
program unit and the subroutine:

CALL name (argl ,arg2, ... )

The CALL statement causes a transfer of control so that, instead of executing the
next statement in the program, the computer executes the statements contained
within the subroutine name. When the subroutine has completed its task it returns
to the calling program unit and execution continues with the next statement.

Unlike a function, which always returns the result of its execution as the
value of the function, a subroutine need not return anything to the calling
program unit; however, if it does return any values then they are returned by
means of one or more of its arguments.

We can see how this works by writing a subroutine, roots, which
calculates the square root, the cube root, the fourth root and the fifth root of a
positive real number. This is, clearly, somewhat similar to the function cube_root
developed in the last section, but will return four results instead of one; it must,
therefore, be written as a subroutine:

SUBROUTINE roots(x,square_root,cube_root,fourth_root,fifth_root)
IMPLICIT NONE

Subroutine to calculate various roots of a positive real
number supplied as the first argument, and return it in
the second to fifth arguments
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! Dummy argument declarations
REAL, INTENT (IN) :: x .
REAL, INTENT (OUT) :: square_root, cube_root, fourth_root, &

fifth_root .,

! Local variable declaration
REAL :: log_x

! Calculate square root using intrinsic SQRT
square_root = SQRT(x)

! Calculate other roots by using logs
loq_x = LOG (x)
cube_root = EXP(10q_x/3.0)
fourth_root = EXP(10g_x/4.0)
fifth_root = EXP(log_x/S.O)

END SUBROUTINE roots

Note that, although the code is very similar to that written for the
corresponding function, in this case the results of executing the subroutine are
assigned to variables which are themselves dummy arguments. Notice, also, that
these dummy arguments have been given an INTENT (OUT) attribute, to indicate that
they are to be used to transfer information from the subroutine back to the calling
program. We shall discuss the use of the INTENT attribute with subroutines in
Section 4.5, when we discuss the relationship between dummy arguments and
actual arguments in rather more detail. In the calling pr~gram unit the corres-
ponding actual argument will contain the results on return from the subroutine:

PROGRAM subroutine_demo
IMPLICIT NONE

A program to demonstrate the use of the subroutine roots

! Variable declarations
REAL :: pos_num,root_2,root_3,root_4,root_S

! Get positive number from user
PRINT *, "Please type a positive real number: "
READ *,pos_num

! Obtain roots
CALL roots(pos_num,root_2,root_3,root_4,root_S)

! Display number and its roots
PRINT *,"The square root of ",pos_num," is ",root_2
PRINT *, "The cube root of ",pos_num," is ",root_3
PRINT *,"The fourth root of ",pos_num," is ",root_4
PRINT *, "The fifth root of ",pos_num," is ",root_S

END PROGRAM subroutine_demo



96 Basic building blocks

Since the name of a subroutine is simply a means of identification and
does not have any type, the interface for a subroutine is the name of the
subroutine, together with the number and type of any dummy arguments.

If a subroutine has no arguments then the CALL statement takes the form

CALL sub

or

CALL sub()

although we recommend the simpler form without any parentheses.
Finally, as was the case for functions, a subroutine may call other

subroutines or reference functions, but it must not call itself, either directly or
indirectly (for example, through referencing another procedure which, in turn,
references the original subroutine). As with functions, such recursive calls are only
allowed if specific steps are taken to permit it, as ~ill be discussed in Chapter II.

i! II

4.5 Actual arguments, dummy arguments and local
variables

'" We have seen that, when a fu~ction or subroutine is referenced, information is
passed to it through its argum~nts; in the case of a subroutine, information may
also be returned to the calling program unit through its arguments. The
relationship between the actual arguments in the calling program unit and the
dummy arguments in the subroutine or function is of vital importance in this
process.

The actual mechanism used is unimportant, and may vary from one
computer system to another; the important thing to realize is that the dummy
arguments do not exist as independent entities - they are a simply a means by
which the procedure can identify the actual arguments in the calling program unit.

One very important point to stress is that the order and types of the actual
arguments must correspond exactly with the order aiid types of the corresponding dummy
arguments.

In Chapter 3 we refined a model that had first been introduced in Chapter
1so that variables were represented by glass boxes, their values by balls stored in
the boxes, and their names and types by labels on the boxes (Figure 4.9). We may
extend this model by the addition of a noticeboard for each procedure, with a
section for each dummy argument. When the procedure (function or subroutine)
is called from some other program unit we can imagine that a message is pinned
up for each dummy argument identifying the corresponding actual argument, as
shown in Figures 4.10 and 4.11. Whenever a reference is made to one of these
dummy arguments in the procedure the noticeboard will be used to show to
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Figure 4.9 A storage model.

which actual location in the memory (one of the actual arguments) reference is
being made.

For example, if the only executable statement in the subroutine was

x = y + z

then the effect of the call in Figure 4.10 would be as if it was replaced in the
calling program unit by the statement

a = c + d

Calling program unit
~ ~A~ ~

Figure 4.10 A representation of CALLsub(a,e,d).
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Calling program unit
A

i?i/SUBROU!I.NE. .sub( x ,.y. ~~»/U :
.-

EJ EJ EJ
'.

u:e
a .

..... : ....:.. .......
',',.;:~~::.::

Figure 4.11 A representation of CALL sub (b /e / a) .

whereas the effect of the call in Figure 4.11 would be as if it was replaced by the
statement

b = e + a

It follows from this model that whereas an actual argument may be a variable or
an expression (an open box), or a constant (a closed and sealed box), a dummy
argument is a pseudo-variable, in the sense that the corresponding area of the
noticeboard may have different notices pinned on it; in the procedure that defines
it, it can be used just like any other variable in the procedure. However, it has no
existence outside the procedure; whenever it is used it is always in the context of
the actual argument being substituted for it.

Because the arguments of a subroutine can be used to transmit
information from the calling program to the subroutine, or from the subroutine
to the calling program, or for both purposes, it is important that the distinction
between dummy arguments which are being used for these different purposes is
recognized. This is achieved, as has been already mentioned, by use of the INTENT
attribute, and it is now appropriate to examine this in more detail.

The INTENT attribute is one of a number of attributes that may follow the
type in a declaration statement,using the double colon, but which may not be used in the
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older form of declaration statement which does not use a double colon; note, however, that the
INTENT attribute may only be used in the declaration of a dummy argument. It can
take one of the following three forms:

• INTENT (IN) which informs the processor that this dummy argument
is used only to provide information to the procedure, and
the procedure will not be allowed to alter its value in any
way;

• INTENT (OUT) which informs the processor that this dummy argument
will only be used to return information from the pro-
cedure to the calling program. Its value will be undefined
on entry to the procedure and it must be given a value
by some means before being used in an expression, or
being otherwise referred to in a context which will
require its value to be evaluated;

• INTENT (INOUT) which informs the processor that this dummy argument
may be used for transmission of information in both
diredions.

As we have already indicated, a subroutine's arguments may have all
three forms of INTENT attribute. In the case of a fundi on, however, the arguments
should only be used for giving information to the fundion, with the result of the
fundi on always being returned through its result variable; the dummy arguments
in a fundion should always, therefore, be declared with INTENT (IN).

To illustrate the importance of always specifying the INTENT attribute for
dummy arguments let us examine the shoft program shown in Figure 4.12. The
subroutine problem_sub appears to be perfedly straightforward and simply
performs some simple arithmetic on its arguments. However, the description of
the subroutine contained in the initial commentary indicates that there is a typing
error in the assignment statement which should have read

arq3 = arql*arq2

and not as shown. Since this statement is syntadically corred the program will
compile without error. When the program is executed, however, the first call to
the subroutine will cause the values of the two dummy arguments arq2 and arq3,
which correspond to the adual arguments band c, to be multiplied together and
the result stored in the dummy argument arql. Thus the value 12 will be assigned
to arql. However, arql corresponds to the actual argument a, which is a named
constant! This may cause an error, but not all systems will deted it, and exadly
what will happen is somewhat indeterminate; on some processors, however,
reference to the literal constant 2 later in the program may result in the value 12
being used!
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PROGRAM intent_demonstration:
IMPLICIT NONE
INTEGER, PARAMETER :: a=2
INTEGER :: b=3, c=4 ,d
CALL problem_sub (a,b ,c) "
CALL problem_sub (b,c,d) ,
PRINT *,"a = ",a," and b = ",b

END PROGRAM intent_demonstration
SUBROUTINE problem_sub (arql',arq2,arq3)

IMPLICIT NONE
! This subroutine returns the product of its first two
! arquments via the third arqument
INTEGER :: arql,arq2,arq3
arql = arq2*arq3

END SUBROUTINE problem_sub

Figure 4.12 An example of confusion about the INTENT of dummy arguments.

Finally, if no execution error is caused by this attempt to change the value
of a constant the second call to the subroutine will probably do so. In this case the
third dummy argument, arq3, will take the value of the corresponding actual
argument, d. However, d has not been assigned any value at the time of the call to
the subroutine and its value is therefore undefined. Once again, the processor is
not required to detect this error (although most will), but if it does not then the
result of the calculation is obviously indeterminate!

If the declarations in the subroutine had read

INTEGER, INTENT (IN) :: arq1,arq2
INTEGER, INTENT (OUT) :: arq~

then the following assignment statement would have led to an error during
compilation because of the attempt to change the value of an INTENT (IN) dummy
argument. On the other hand, if it was the comment that was wrong, and the
assignment was correct, then the declarations should have been

INTEGER, INTENT (OUT) :: arq1
INTEGER, INTENT (IN) :: arq2,arq3

In this situation, since the first argument has the INTENT (OUT) attribute, the
attempted assignment to a constant will lead to an execution error. Ideally this
error would be detected at compilation time, but since often nothing is known
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about any procedures that are called by another program unit during compilation,
this is not possible unless special steps are taken. For the same reason, it is not
normally possible to detect the attempted use of the undefined actual argument d
during the program's compilation. There is, however, one very useful technique
which can be used to provide this additional security, as well as being mandatory
in other situations that we shall meet in later chapters. We shall discuss this in
Section 4.9, when we have introduced the additional concept required for this
purpose.

Returning to the noticeboard model that we used to illustrate the way in
which actual and dummy arguments are related, we find that even this simple
model highlights two further difficulties. All the examples that we have used so
far have involved either real or integer arguments, but not character or derived
type ones. Let us briefly examine how arguments of these types differ from
numeric arguments.

The problem with character arguments concerns the length of the
arguments, and can most easily be demonstrated by an example.

ill Problem
Write a procedure which will take two character arguments as input arguments,
containing two names (a 'first name' and a 'family name', respectively), and which
will return a string containing the two names with exactly one space separating
them.

rn Analysis

This problem is similar to that presented in Example 3.2, but with two
refinements.

The first, and major, difficulty is that the procedure, regardless of whether
it is a function or a subroutine, cannot know the length that will be declared for
each of the two names, so how can the corresponding dummy arguments be
declared?

As might be expected, this is such a common problem that Fortran
provides a solution - an assumed-length character declaration. This can only
be used for declaring a dummy argument and involves replacing the length
specifier by an asterisk:

CHARACTER (LEN=*) :: character_dummy_arg

This is called an assumed-length dummy argument because it assumes its length
from the corresponding actual argument when the procedure is executed. If the
correspondence between actual and dummy argument is carried out in a way
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analogous to the noticeboard used above then this is clearly no problem, as no
extra storage is required.

The second difficulty is concerned with removing any redundant spaces at
the beginning or the end of the two names and then inserting exactly one
between them. In Example 3.2 we met the TRIM intrinsic function, which removes
any trailing blanks from its argument. A second intrinsic function, ADJUSTL, which
moves its argument enough spaces to the left to remove any leading blanks, will
enable us to deal with the (unlikely) case that either of the arguments contains
leading blanks.

Although the solution ,I,to this problem could be written as either a
subroutine or a function, its purpose is to deliver a single result based on its
arguments, and so a function is more appropriate:

rn Solution

CHARACTER (LEN=*)
IMPLICIT NONE

FUNCTION full_name(first~name,last_name)
, ~

Function to J01n two names to form a full name with a
single space between the first and last names

Dummy argument declarations
CHARACTER (LEN=*) , INTENT (IN) :: first_name,last_name

! Use ADJUSTL to remo~e redundant leading blanks, and TRIM
! to remove redundant blanks at the end of first_name
full_name = TRIM(ADJUSTL(first_name)) II " "II &

ADJUSTL(last_name)

END FUNCTION full_name

Note that the result variable (full_name) is declared to be of assumed length. In
order for the processor to know what actual length to assume when the function
is referenced, the function name must appear in a declaration statement in any
program unit that references the function, and that declaration must specify the
length of the function:

CHARACTER(LEN=30), EXTERNAL .. full_name
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When the function is referenced the length of the result will be set at the declared
length of the function; that is, 30 in the example just given. If this is longer than
the result of the concatenation then the resulting full name will be extended on
the right with blanks in the usual way. If it is shorter then the result of the
concatenation will be truncated to the appropriate length. Because of this, there is
no point in causing the function to remove any extra blanks at the end of the
second name.

Note also that the result of the ADJUSTL function reference has been used
as an argument to TRIM. The first function, ADJUSTL, therefore moves its argument,
first_name, to the left to eliminate any leading blanks, and the second, TRIM,
takes the result and removes any trailing blanks, including any that were
introduced by ADJUSTL. Strictly speaking, it is not necessary to remove any
leading spaces from first_name since they do not affect the main problem, which
is ensuring that there is only one space between the two names, but while we are
tidying up we may as well do everything properly!

Another approach, which avoids the nested intrinsic function references, is
to declare two local variables and assign the two names, without leading blanks,
to them. There is an apparent difficulty with determining the length for these
variables, but once again an intrinsic function comes to our aid.
LEN (character _string) returns the length of its argument, and can be used in the
declaration of other character variables:

CHARACTER (LEN=*) FUNCTION full_name(first_name,last_name)
IMPLICIT NONE

Function to JOln two names to form a full name with a
single space between the first and last names

Dummy argument declarations
CHARACTER (LEN=*) , INTENT (IN) first_name, last_name

! Local variables
CHARACTER(LEN=LEN(first_name)) :: new_first_name
CHARACTER(LEN=LEN(last_name)) :: new_last_name

! Use ADJUSTL to remove redundant leading blanks
new_first_name = ADJUSTL(first_name)
new_last_name = ADJUSTL(last_name)

! Use TRIM to remove blanks at the end of new_first_name
full_name = TRIM(new_first_name) II 11 11 II new_last_name

END FUNCTION full_name

Notice that an alternative way of writing the function would be to move
the declaration of the type of the function to the body of the function:
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FUNCTION full_name(first_name,last_name)
IMPLICIT NONE

Function to JOln two names to form a full name with a
single space between the first and last names

Result type and dummy argument declarations
CHARACTER (LEN=*) , INTENT (IN) :: first_name, last_name
CHARACTER (LEN=*) .. full_name

Which of the two alternative forms of function declaration is used is largely a
matter of personal preference, although the authors pr~fer the first alternative. In
both cases, however, the length of the result variable will be the same as the
length that was specified in the declaration of the function name in the calling
program unit.

The fourth of the data types that we met in Chapter 3, on the other hand,
poses a much more fundamental problem. We can understand this problem if we
consider the derived data type complex_number that we defined in Example 3.4,
and then further consider how we might write a procedure which has one or more
arguments of this type.

In the procedure we will heed to declare the dummy arguments by means
of a statement of the form

TYPE (complex_number) :: argl,arg2,arg3

However, as we have repeatedly stressed, the only items within a procedure that
are known to any calling program unit are its name (and type if it is a function),
and the number and types of any dummy arguments. While we can have
variables and constants as actual arguments, we cannot have a type definition as
an argument.

So how can the calling program unit know about the definition of the new
derived type complex_number if that definition occurs in the called procedure, and
vice versa if the definition occurs in the calling program unit? It is not sufficient to
repeat the type definition, because this will create two different types, one of
them only for use within the procedure and one only for use outside it, just as
declarations of variables of the same name in two different program units create
two different variables. The answer to this difficulty requires a new concept that
we shall meet in Section 4.8.

This brings us back again to the very important principle of the locality
of variables. Each program unit is only aware of any variables declared within
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~ e.•.......
David Sarah
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Sarah Emma

e ~
Richard David

The Ellis children The Jones children

Figure 4.13 Local variables!

the program unit itself, referred to as its local variables, together with pseudo-
variables known as dummy arguments. There are, however, some occasions when
it would be useful for several procedures to be able to access the same variables,
or other entities, without the use of arguments, and, as we have just seen, there
are some things, such as type definitions, that cannot be passed as arguments. We
shall see how to deal with this situation later in this chapter, and will meet a
rather older, and less flexible approach, in Chapter 17; with the exception of these
techniques, every program unit is unaware of, and cannot access, any of the local
entities used in other program units.

This is extremely important because it means that when we are writing a
subprogram, or a main program, we do not need to be concerned with a clash of
names with those used in another program unit. This is exactly analogous to
names within a family.

The Ellis family in Figure 4.13 have called their children David, Sarah and
Richard, and refer to them within the family by those names, even though their
full names are David Ellis, Sarah Ellis and Richard Ellis. The Jones family, who live
a long way away and have never met the Ellis family, have called their children
Sarah, Emma and David. Because the two families are in different places and don't
even know each other there is never any confusion within their respective
families about who David and Sarah are; David and Sarah Ellis are local to the Ellis
family, while David and Sarah Jones ares not part of the Ellis family but are local
to the Jones family.

The importance of local variables combined with arguments cannot be
overemphasized, as it is the reason why it is possible to write libraries of useful
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subroutines and functions which can subsequently be used in other people's
programs. Someone whom you will never meet can write a procedure, freely
using any names for dummy arguments or local variables, secure in the
knowledge that there is no possibility of names 'clashing' with names that you
have chosen because the names used in the procedure are local to that procedure
only.

4.6 Procedures as an aid to program structure

One of the great advantages of subprograms is that they enable us to break the
design of a program into several smaller, more manageable sections, and then to
write and test each of these sections independently of the rest of the program.
This paves the way for an approach known as modular program development,
which is a key concept of software engineering.

This approach breaks the problem down into its major sub-problems, or
components, each of which can then be dealt with independently of the others.
In a large project these components may be developed by different people. If
necessary, a component may itself be sub-divided into further components, just as
in any other piece of engineering design. All that is necessary is that the interface
between each component and the rest of the program is well defined.

An example of this approach in mechanical engineering is the manufacture
of the Airbus A-300. The wings for this aircraft are manufactured in the United
Kingdom, while part of the fuselage is manufactured in Italy and the remaining
part in France. In order that the front and rear parts of the fuselage join correctly,
and that the wings fasten onto the fuselage properly, it is only necessary to
provide a detailed specification of exactly how the relevant parts will be joined -
the interface between these sub-assemblies.

The interface for a component of a Fortran program consists of two parts.
The first, the interface proper, is the list of arguments supplied to the component
(or rather to the subprogram which is, in effect, the main program unit of the
component); this is a concept that we have already discussed in the context of a
procedure interface. The second is the specification of the action of the
component.

A structure plan gives very great assistance in modular development as it
identifies, in a natural way, the major components of the program. Rather than
expanding these components within a single structure plan, as we have been
doing up to now, we can treat each of these major components as a separate sub-
problem whose solution is to be developed independently. Once developed, they
can be integrated to form the complete program according to the top-level
structure plan. We shall develop this idea further in later chapters, but for the
present we shall simply combine the concept of a structure plan with that of a
modular program structure.
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[!] Problem
Write a program which will read a set of ten experimental results and calculate
their mean and standard deviation.

m Analysis

We can readily identify the three major components of this problem - the input
of the data, fhe calculation of the mean and standard deviation, and the output of
the results. Even if we have no statistical knowledge whatsoever, therefore, we
could write a structure plan of the following nature:

Notice that we have specified that the input and output are carried out in
subroutines. As well as enabling us to keep the structure of the program as clear
as possible, this provides two major benefits.

The first of these is that it means that we can test each of the subroutines
separately, thus both simplifying the testing procedure and making it easier to
find 'any errors. For example, a substitute input subroutine can be used when
testing the main statistics subroutine:

SUBROUTINE input(x1,x2,x3,x4,xS,x6,x7,xB,x9,x10)
IMPLICIT NONE
REAL, INTENT (OUT) :, x1,x2,x3,x4,xS,x6,x7,xB,x9,x10
xl = 1.5
x2 = 3.7

x10 = -7.1
END SUBROUTINE input

The second benefit is that by breaking up a program into discrete s~ctions
in this way we can keep the size of each procedure down to manageable
proportions. Experience shows that the longer the procedure, the more difficult it
is to read and to test, and hence the less likely it is to work as well as possible. As
a rule of thumb, we would suggest that if a procedure, including any comments,
reaches a length of more than about 50 lines, so that it can no longer be printed
on a single sheet of paper or viewed easily on a screen, then you should examine
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it carefully to see whether the problem being solved by the procedure might not
be better split into two, or more, sub-problems, each of which could be the
subject of a separate, smaller, procedure.

We can, therefore, now write a second level of subsidiary structure 'plans,
such as:

This provides sufficient information for the main program unit to be written, since
the interface with the subroutine statistics is fully defined. The mathematics of
how to calculate the standard deviation can be left to the person who is to write
this subroutine, since he or she will know the exact form of the subroutine's
interface with the calling program unit.

We will not take this problem any further at this stage, however, as the
resulting program will be very limited and the concept of modular development
has been sufficiently well demonstrated.

SELF-TEST EXERCISES 4.1

1 Why should programs be broken into a main program and a set of procedures?

2 What is the difference between a subroutine and a function?

3 What is an intrinsic procedure?

4 What is a generic function?

5 What is the difference between a dummy argument which is declared with an
INTENT (INOUT)attribute, and one which is declared as INTENT (OUT)?

6 Write the initial statements and the declarations for any dummy arguments for
procedures designed to carry out the following tasks. (Don't worry if you don't know
how to write the procedure yet; you can specify its interface with a calling program
unit without knowing how to write it.)

(a) Count the number of times a specified character appears in a character string
(h) Find the roots of a quadratic equation of the form

td+bx+c=O
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(c) Establish whether a whole number is prime. (A number is prime if it is only
divisible by itself and by 1.)

(d) Reverse the order of the characters in a character string
(e) Print an error message based on an error code which may be -1 or an integer in

the range 1 to 10
(f) Read whatever is typed at the default input unit until a whole number greater

than zero is typed, and return that number

4.7 Modules

As we have seen, functions and subroutines are very similar in many ways and
represent two different types of procedures. Although we shall meet other ways
of writing procedures in Chapter 11, they are normally written as independent
program units in the form of external subprograms.

Another form of program unit, which is used for a rather different purpose
and did not exist in FORTRAN 77, is a module.

In a similar fashion to a function or a subroutine, a module starts with an
initial statement of the form

MODULE name

and ends with an end statement which, as might be expected, takes the form

END MODULE name

or one of the simpler forms

END MODULE
END

As usual, we recommend that the first form always be used.
The purpose of a module is quite different from a function or a subroutine.

Quite simply, a module exists in order to make some or all of the entities declared
within it accessible to more than one program unit. A wide range of items may be
declared within a module and made accessible to other parts of the program in a
way which provides an extremely powerful functionality. Before discussing the
full power of modules, however, it is necessary to understand more about some of
the other features of Fortran and so the main discussion of modules will be
deferred until Chapter 12. One very important use of modules which we can
introduce at this stage, however, relates to global accessibility of variables,
constants and derived type definitions.

As we have already pointed out, the only items in a procedure which are
accessible outside the procedure are those which are specified as dummy
arguments or as the result variable of a function. Similarly, the only items in a
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calling program unit which are accessible within a procedure are those which are
specified as actual arguments in the subroutine call or function reference. A
module allows a defined set of variables and/or constants to be made available to
any program units which access them by means of an appropriate USE statement.
The USE statement takes the form

USE name

where name is the name of the module in which the variables, constants and/or
derived type definitions are declared.

The concept is most easily explained by means of an example. Let us
suppose that several procedures wish to use the values of 1r and 1r/2 in
calculations, and that they all wish also to have access to five variables which we
shall call global_l, global_2, global_3, global_ 4 and global_5. A module to
declare these items would be as follows:

MODULE global_data
IMPLICIT NONE
SAVE
! Constant declarations
REAL, PARAMETER:: pi=3.l4l5926, piby2=pi/2.0
! Variable declarations
REAL :: global_l, global_2, global_3, global_4, global_5

END MODULE global_data

Note that the statement immediately following the IMPLICIT NONE statement
consists of the single word SAVE. This is recommended in order to avoid a theoret-
ical difficulty which will be described in Chapter 11. For the present, it should
always be included in any module which declares any variables.

Any program unit which wishes to access items from the module need
only include a statement of the form

USE global_data

to make all five variables and two constants available. Entities which are made
available in this way are said to be made available by USE association.

Note that the USE statement comes after the initial statement (PROGRAM,
SUBROUTINE or FUNCTION) but before any other statements:

SUBROUTINE component
USE global_data
IMPLICIT NONE
Any additional specification statements
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Executable statements

END SUBROUTINE component

As can be seen from this skeleton example, the use of modules can significantly
simplify the interface of procedures, although this is only a meaningful thing to
do when, as is often the case in large programs, several procedures wish to have
access to the same constants and variables and would otherwise have to pass this
information between themselves by means of long argument lists.

One point that should be e~phasized is that all procedures which use a
module that includes a SAVE statement are sharing the same copy of any variables,
constants, type definitions or other entities accessed from it by USE association, as
can be seen in the following example, which refers to the module global_data
defined above:

SUBROUTINE sub1
USE global_data
IMPLICIT NONE

global_1 = pi
PRINT *,global_1
CALL sub2
PRINT *,global_1

END

SUBROUTINE sub2
USE global_data
IMPLICIT NONE
global_1 = 2.5

END

both accessed from module
prints 3.14159 (approximately!)
global_1 now has the value 2.5
prints 2.5

variable is accessed from module

Note, incidentally, that one module can USE another module in order to
gain access to items declared within it, and those items then also become available
along with the module's own entities:

MODULE first
IMPLICIT NONE
SAVE
INTEGER :: first_int

END MODULE first

MODULE second
USE first
IMPLICIT NONE
SAVE
INTEGER :: second_int

END MODULE second
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SUBROUTINE module_user
USE second
IMPLICIT NONE
! This subroutine has access to second_int from the
! module second, and first_int from the module first

Finally, note that it is not allowed for a module to USE itself, either directly
or indirectly (via a recursive chain of other modules).

4.8 Modules and derived data types

A particularly important use of modules is in connection with derived data types.
It will be remembered that in Section 4.5 it was pointed out that it was not
possible to use derived type variables or constants as arguments to a procedure
because the procedure would not be aware of the type of actual arguments whose
type was defined in the calling program unit, and the calling program unit would
not be aware of the type of any dummy arguments whose type was defined in
the procedure. Simply defining two derived types with the same name and
identical components would not suffice, as this would define two different data
types, each one local to the program unit in which it was defined. A module,
however, enables us to resolve this problem by placing the type definition in a
module and then using it in any program units requiring variables or constants of
this type, as shown in the following example.

m Problem • I,

~_.

Write four functions for use in a complex arithmetic package using the
complex_number derived type which was created in Example 3.4.The functions
should each take two complex arguments and return as their result the result of
adding, subtracting, multiplying or dividing the two numbers.

I1J Analysis

We calculated three of these in Example 3.4, and we can easily confirm that
the result of dividing (XI,YI) by (xz,yz) is ((XIXZ+YIYZ)/(Xzz+yzZ),
(XZYI - XIYZ)/(XzZ + YzZ)). AI! that is necessary, therefore, is to define a
module containing the definition ..of the derived data type and use this in each of
the four functions.



Modules and derived data types 113

m Solution

MODULE complex_data
IMPLICIT NONE
SAVE

! This module defines a complex data derived data type
TYPE complex_number

REAL :: real-part,imaq-part
END TYPE complex_number

END MODULE complex_data

FUNCTION c_add(zl,z2)
USE complex_data
IMPLICIT NONE

! Declare function type and dummy arquments
TYPE (complex_number) :: c_add .
1YPE(complex_number), INTENT (IN) :: zl,z2

! Calculate function result
c_add%real-part = zl%real-part + z2%real-part
c_add%imaq-part = zl%imaq-part + z2%imaq-part

END FUNCTION c_add

FUNCTION c_sub(zl,z2)
USE complex_data
IMPLICIT NONE

! Declare function type and dummy arquments
TYPE (complex_number) :: c_sub
TYPE (complex_number) , INTENT (IN) :: zl,z2

! Calculate function result
c_sub%real-part = zl%real-part - z2%real_part
c_sub%imaq-part = zl%imaq-part - z2%imaq_part

END FUNCTION c_sub

FUNCTION c_mult(zl,z2)
USE complex_data
IMPLICIT NONE

! Declare function type and dummy arquments
TYPE (complex_number) :: c_mult
TYPE (complex_number) , INTENT (IN) :: zl,z2

! Calculate function result
c_mult%real-part = zl%real-part*z2%real-part - &

zl%imaq-part*z2%imag-part
c_mult%imaq-part = zl%real-part*z2%imaq-part + &

zl%imaq-part*z2%real-part
END FUNCTION c_mult
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FUNCTION c_div(zl,z2)
USE complex_data
IMPLICIT NONE

!Declare function type and dummy arguments
TYPE (complex_number) :: c_div
TYPE (complex_number) , INTENT (IN) :: zl,z2

!Local variable to save calculating denominator twice
REAL :: denom

! Calculate function result
denom = z2%real-part**2 + z2%imag-part**2
c_div%real-part = (zl%real-part*z2%real-part + &

zl%imag-part*z2%imag-part)/denom
c_div%imag-part = (z2%real-part*zl%imag-part - &

zl%real-part*z2%imag-part)/denom
END FUNCTION c_div

Any program or procedure that wishes to use these functions to carry out
complex arithmetic will also, of course, need to use the same module to obtain
access to the complex_number data type, as in the following example, ~hich uses
each of the above procedures:

PROGRAM complex_example
USE complex_data
IMPLICIT NONE

! Declare external functions
TYPE (complex_number) , EXTERNAL

! Declare two complex variables
TYPE (complex_number) :: zl,z2

!~ead data
PRINT *,"Please supply two complex numbers as two pairs &

&of numbers"
PRINT *,"Each pair represents the real and imaginary parts &

&of a complex number"
READ *,zl,z2

!Calculate and print sum, difference, product and quotient
PRINT *,"The sum of the two numbers is ",c_add(zl,z2)
PRINT *,"The difference between the two numbers is ", &

c_sub(zl,z2)
PRINT *,"The product of the two numbers is ",c_mult(zl,z2)
PRINT *,"The result of dividing the first number by the &

&second is ",c_div(zl,z2)
END PROGRAM complex_example
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4.9 Modules and explicit procedure interfaces

We have several times referred to the interface of a procedure in a relatively
informal manner, and have indicated that it consists of the name of the procedure
(and its type if it is a function), together with the number and type of its
arguments. We must now, briefly, examine this concept in slightly more detail.

Traditionally, in FORTRAN 77 and earlier versions of FORTRAN, a call to
a subroutine or reference to a function was made without the calling program unit
knowing anything about the procedure being called at all! After all the program
units that constituted the complete program had been compiled a special program
would link them together and would ensure that if, somewhere in the set of
program units being linked together, there was a call or reference to the procedure
MINE then a procedure called MINE was indeed available; if it was not, then an error
would be generated. When the call or reference to the procedure MINE was obeyed,
the actual arguments would be made available, in the correct order, and the
procedure MINE would use them, in the same order, as its dummy arguments.

This process meant that the calling program unit knew nothing about the
procedure, and vice versa. In this situation the called procedure is said to have an
implicit interface. Although this form of interface does not provide the
information necessary for checking that the actual arguments match the dummy
arguments, it was a convenient approach, and had the great advantage that
procedures could be written without any knowledge about other procedures
being utilized in the same program, apart from the programmer's knowledge of
the interface specification of any called procedures.

However, as we saw in Section 4.5, if the additional features provided in
Fortran 90 for security and other purposes are to operate properly, they need
more information about any procedures being used than is available from an
implicit interface. Furthermore, as we shall see in later chapters, some of the most
powerful features of Fortran 90 can only work if they have a full knowledge of
any relevant procedure interfaces. This requires that the procedures concerned
have an explicit interface.

We shall investigate exactly what is meant by an explicit interface in
Chapter 11, and will see how we can specify this to a calling program unit.
However, there is one way that we can always make the interface of a procedure
explicit, namely by placing the procedure in a module. The rules relating to
modules specify that

• the interfaces of all the procedures defined within a single module are
explicit to each other

• the interfaces of any procedures made available by USE association are
explicit in the program unit that is using the module

Although, as we shall see in Chapter 12, we can include procedure
definitions in the same modules as both type and variable declarations, there are
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certain complications that it is not appropriate to discuss at this stage. For the
present, therefore, we recommend that procedures are contained in one module,
or possibly more than one, while other entities are contained in a different
module, or modules.

There is one additional statement required in a module that contains a
procedure, which is occasioned by the fad that a procedure in a m~dule is a
program unit nested within another program unit. This statement consists of the
single word

CONTAINS

which must be placed. before the first procedure within a module. Thus, if the
subroutine problem_sub (see Figure 4.12) which was used earlier to illustrate the
use of the INTENT attribute were to be placed in a module, the module might be as
follows:

MODULE my_procedures
IMPLICIT NONE

CONTAINS
SUBROUTINE problem_sub(argl,arg2,arg3)

IMPLICIT NONE

This subroutine returns the product of its first two
arguments via the third argument

INTEGER:: argl,arg2,arg3

argl = arg2*arg3
END SUBROUTINE problem_sub

END MODULE my-procedures

The program that called the subroutine would then USE this module:

PROGRAM intent_demonstration
USE my-procedures
IMPLICIT NONE

INTEGER, PARAMETER a=2
INTEGER :: b=3,c=4,d

CALL problem_sub(a,b,c)
CALL problem_sub(b,c,d)

END PROGRAM intent_demonstration
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Because the subroutine problem_sub is made available through USE
association its interface is explicit in the calling program, and so checking that the
actual arguments and the corresponding dummy arguments agree in type as well
as in intent is carried out, thus providing much greater security at compile time. In
addition, if the module my-procedures contains several procedures, then each of
these has an explicit interface to all the other procedures within that module.
Thus a group of related procedures can all be encapsulated within a single
module, with consequent benefits in manipulation of the group and of their links
with each other.

If the procedures contained in one module reference procedures contained
in another module then, as we have already seen, the first module may USE the
second. However, care must be taken that the second module does not also, either
diredly or indiredly, USE the first one, for that is forbidden, as was stated in
Sedion 4.7.

We shall investigate the use of modules in more detail in Chapter 12 and
recommend that until then you keep your use of modules as simple as possible.
However, we strongly recommend that all procedures are encapsulated in a
module henceforth, both to enable the processor to carry out a higher level of
argument checking than might otherwise be the case and, possibly even more
important, so that some of the valuable features of Fortran that we shall meet in
the next few chapters, but which require an explicit interface, can be used without
any difficulty.

ill Problem
In Example 3.3 we created two geometric derived types, point and line, and
wrote a program to determine the line joining two points. Rewrite this example
so that the types are stored in a module, and the line is determined by a
procedure which is stored in another module. (We shall add further types and
procedures to these two modules in later chapters.)

11] Analysis
We have already carried out the analysis for this problem, and it merely remains
to create two strudure plans for the procedure and a main program with which to
test it:

1 Read coordinates of two points
2 Call subroutine (line_twoJoints) to calculate

3 Print the equation of the line
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rn Solution

MODULE geometric_data
IMPLICIT NONE
SAVE

! Type definitions
TYPE point

REAL:: x,y
END TYPE point

TYPE line
REAL:: a,b,c

END TYPE line

l'

Cartesian coordinates of the point

coefficients of defining equation

END MODULE geometric_data

MODULE geometric_procedures
USE geometric_data
IMPLICIT NONE

CONTAINS
SUBROUTINE line_two_points(line_l,point_l,point_2)

IMPLICIT NONE

! Dummy arguments
TYPE (line) , INTENT (OUT)
TYPE (point) , INTENT~IN) ,

line_l
point_l,point_2

! Calculate coefficients of equation representing the line
line_l%a = point_2%y - point_l%y
line_l%b = point_l%x - point_2%x
line_l%c = point_l%y*point_2%x - point_2%y*point_l%x

END SUBROUTINE line_two_points

END MODULE geometric_procedures

PROGRAM geometry
USE geometric_procedures
IMPLICIT NONE

! A program to test the subroutine line_two-points
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! Variable declarations
TYPE (point) :: pl,p2
TYPE (line) :: pl_to-p2

! Read data
PRINT *,"Please type coordinates of first point"
READ * ,pl
PRINT *,"Please type coordinates of second point"
READ * ,p2

!Call procedure to calculate the equation of the line
CALL line_two_points (pl_to-p2 ,pl ,p2)

! Print result
PRINT *,"The equation of the line joining these two points is"
PRINT *,"ax + by + c = 0"
PRINT *, "where a = ",pl_to-p2%a
PRINT *," b = ",pl_to-p2%b
PRINT *," c = ",pl_to-p2%c

END PROGRAM Geometry

Note that it is not necessary for the subroutine line_two-points to USE
the module geometric_data since the module geometric-procedures, in which it
is placed, already does so. In a similar fashion, it is not necessary for the program
geometry to USE both modules, since accessing geometric_procedures also makes
the entities declared in geometric_data available by USE association.

4.10 Modules as an aid to program design

Since Chapter 2 we have been designing all our programs with the aid of a
structure plan as an aid in planning the logic of our programs. Another important
aspect of programming is the design of the program's data structure.

Thus far, all the programs that we have written, or indeed that we have
been capable of writing, have had very simple data requirements, consisting of
little more than a handful of variables. However, in a real-world environment
programs are often manipulating hundreds or thousands of separate items of
information and the design and control of this data is every bit as important as
the design and control of the program itself. Modules are of great assistance in
this as they enable a programmer to group the data in such a way that all those
procedures that require access to a particular group can do so by simply using the
appropriate module.

This will become particularly relevant when we learn how to process sets
of similar data in Chapter 7, but can help in the design of programs even now.
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Consider, for example, a program that will be required to read data relating to a
series of experiments, and then to carry out certain preliminary statistical analyses
on the data before using it in the calculation of some of the physical properties of
the specimens which were the subject of the experiment. The data provided
might be as follows:

(1) Date of experiment (day, month, year)

(2) Time experiment started'(hours, minutes, seconds)

(3) Time experiment ended (hours, minutes, seconds)

(4) Sample number

(5) Material of sample

(6) Measurement 1 (start)

(7) Measurement 1 (end)

(8) Measurement 2 (start)
(9) Measurement 2 (end)
(10) Measurement 3 (start)

(11) Measurement 3 (end)

(12) Measurement 4 (start)

(13) Measurement 4 (end)

The statistical analysis will calculate three further items

(14) Statistical measure 1

(15) Statistical measure 2

(16) Statistical measure 3

and the four main analysis programs will calculate four physical properties of the
sample, each of which will be required in the calculation of the remaining three
physical properties and in the printing of the final analysis of the sample,

(17) Property 1

(18) Property 2

(19) Property 3

(20) Property 4

We can help to design the data structure for our program and for the
individual procedures within it by writing the various entities in three columns,
The first of these is a short description of the purpose of the entity, the second is
its type, and the third its name. A data design for the module that will be used to
implement the above data structure might, therefore, look as follows:



Purpose

A Global data types:
Date (day,month,year)
Time (hours,mins,secs)

B Global data:
Date of experiment
Times at start and end of
experiment

Sample number
Material type
Measurements 1-4 at start
Measurements 1-4 at end
Stats measurements 1-3
Properties 1-4

Type

[Int,lnt,lnt J
[Int,lnt,Real]

date
time

INTEGER
CHARACTER'20
REAL
REAL
REAL
REAL
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Name

date
time

experiment_date
start_time
end_time,
sample _number
material_type
start_measurement_1 , etc.
end_measurement_1 , etc ..
stats _measurement _1 , etc.
property ~1, ... etc.

This information could all be encapsulated in a module" such as the following:
" I~

MODULE data_design
IMPLICIT NONE

! Declare derived types
TYPE date

INTEGER :: day,month,year
END TYPE date

TYPE time
INTEGER:: hours,mins
REAL :: seconds

END TYPE time

!Declare global variables
TYPE (date) :: experiment_date
TYPE (time) :: start_time, end_time
INTEGER :: sample_number
CHARACTER (LEN=20) :: material_type
REAL, :: start_measurement_l,start_measurement_2, &

start_measurement_3,start_measurement_4, &
end_measurement_l,end_measurement_2, &
end_measurement_3,end_measurement_4, &
stats_measurement_l,stats_measurement_2, &
stats_measurement_3,property_l,property_2, &
property_3,property_4

END MODULE data_design

The various procedures responsible for reading the data, calculating the
various results required, and for outputting those res~lts to the appropriate
output device, can then use this module to obtain access to the relevant
information. For example, an output procedure might begin as follows:
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SUBROUTINE output_data
USE data_design
IMPLICIT NONE

PRINT *,"Experiment conducted on ",experiment_date%day, &
"/",experiment_date%month,"/",experiment_date%year

PRINT *,"At start time (",start_time%hours,":", &
start_time%mins,":",start_timehecs,") &
&measurements were:"

PRINT *,start_measurement_l
PRINT *,start_measurement_2
PRINT *,start_measurement_3
PRINT *,start_measurement_4

In all the programming examples throughout the remainder of this book
we shall, when appropriate, present a data design structure as well as a structure
plan before starting to write any Fortran code.

SELF-TEST EXERCISES 4.2

1 What is the purpose of a module?

2 What does USE association do? How?

3 Why are modules especially important in programs that use derived types?

4 What is the difference between an explicit and an implicit interface for a procedure?

5 Give three situations in which modules are either essential or highly beneficial in
Fortran 90 programs.

SUMMARY

• Fortran procedures may be subroutines or functions.

• Intrinsic procedures are a special class of procedures which form part of the
Fortran language.

• External procedures are normally implemented as Fortran subprograms.

• A Fortran 90 program consists of one main program unit, and any number of
external subprogram program units (function or subroutine), module program
units and block data program units.
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• A function is given information to operate on by means of one or more
arguments, and delivers a single result.

• A subroutine's arguments are used both to receive information to operate on
and to return results.

• The INTENT attribute is used to control the direction in which arguments are
used to pass information.

• Many intrinsic functions exist in several versions, each of which operates on
arguments of different types; such functions are called generic functions.

• The type of the result of a function can be specified either in the initial FUNCTION
statement, or in a declaration of a special result variable having the same
name as the function.

• Execution of a function is initiated by the appearance of the function name in
an expression; execution of a subroutine is initiated by a CALL statement.

• Only the arguments of a procedure are accessible outside the procedure; all
other variables and constants declared in the procedure are local to that
procedure.

• Modules allow more than one program unit to have access to the objects
declared or defined within the module.

• Objects of derived types can only be used as arguments to procedures if their
type is defined in a module which is used by the relevant program units.

• Procedures which are contained within a module have an explicit interface to
each other and to any program units which use that module; such an interface
is desirable for some security aspects, and essential for some of the language
features that will be met in future chapters.

• Procedures provide the basic building block for modular development and
top-down program design.

• Modules provide the basic encapsulation device for designing a program's
data structure.

• Fortran 90 syntax introduced in Chapter 4:

Initial statements

Function reference

Subroutine call

Module use

SUBROUTINE name (dummy argument list)
SUBROUTINE name
type FUNCTION name (dummy argument list)
type FUNCTION name ()
FUNCTION name (dummy argument list)
FUNCTION name ()
MODULE name

junction_name (actual argument list)
function_name ( )

CALL subroutine_name (actual argument list)
CALL subroutine_name

USE module_name



124 Basic building blocks

Assumed length
character declaration

Argument intent
attribute

External procedure
attribute

SAVE statement

CONTAINS statement

CHARACTER(LEN=(*)) :: characfer_dummy_arg
CHARACTER* (*) :: character_dummy_arg

INTENT (intent)
where intent is IN, OUT or INOUT

EXTERNAL

SAVE

CONTAINS

PROGRAMMING EXERCISES

Most larger programs are structured in such a way that each of the major functions (input of data,
calculation of each type of analysis, printing of results) is handled by a different procedure, or group
of procedures, which can be written and tested independently. In the following exercises you should
write your solutions in this way, even though it may not be strictly necessary.

Write a structure plan for the program before you start coding.

"4.1 Write a subroutine which, when supplied with the coordinates of two points
(XI, YI) and (xz, Yz), calculates the distance of each point from the origin and the distance
between the points.

Note that the distance dI of point 1from the origin is given by the formula

while the distance d between the two points is given by

Test your subroutine in a short program to cheek that it works correctly with
several different sets of data. .

4.2 Write a function which, when supplied with the coordinates of two points (XI, YI)
and (xz, Yz), calculates the distance between the points.

Test your function to make sure that it works correctly.
Now modify the subroutine that you wrote for Exercise 4.1 so that it uses this

function to carry out all the necessaly calculations.

4.3 Write a function to give the logarithm of a number to base b. (Use the equation
logbx = 10gIox/logIOb.)

,I"~

"4.4 Write a module that contains four integers. Use this module in a program which
contains a main program and three subroutines, one to input three integer values from the
keyboard, one to calculate the sum of the three integers, and the third to print the result of
adding the three numbers together.
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Although a trivial program (to put it mildly!) this approach mirrors that used in
larger programs where each of the three activities may be quite complicated, and the use of
a module to enable data to be easily shared is extremely useful.

4.5 A credit card company produces monthly statements for its customers. Each
statement shows the following information:

(a) The amount outstanding from last month
(b) The interest due on that amount for the month
(c) Any payment received since the last statement
(d) The total spent with the card since the last statement
(e) The total amount now outstanding

The customer can then pay any amount as long as it is at least 5% of the
outstanding amount.

Write a program which reads the amount outstanding, details of payments made
and total spending, and the current interest rate, and then produces an appropriate
statement.

4.6 Write a function which, when supplied with two arguments of type point, as
already defined on several occasions, returns the distance between the two points as its
result. (Note that this is similar to Exercise 4.2, but using derived type arguments.)

Test your function to ensure that it works correctly.

4.7 A builder, possibly the same one as in Exercise 3.10, wishes to calculate the
relative costs of building a wall using different sizes of bricks, and different types of mortar.
The thickness of the wall will always be one brick's depth. Regardless of the size of brick
and the type of mortar, the thickness of the mortar will always be f inch. Write a program
to help her.

The program should read the size of the bricks and their cost, the cost of the
mortar per cubic inch, and the height and length of the wall. It should calculate how many
bricks will be required and their cost, how much mortar is required and its cost, and the
total cost (excluding labour!).

4.8 The force F due to gravity between two bodies of masses mr and m2 is given by
the formula

where G = 6.673 X lO-Il Nm-2kg-2, r is the distance between the bodies (in metres),
and the masses mr and m2 are measured in kilograms.

Write a program that uses a REAL function to evaluate the force of gravity between
two bodies given their masses and separation. Define G as a parameter (and think about
where it should be specified).

4.9 In Einstein's famous equation E = mc2, the energy E is in joules if the mass m is in
kilograms and c is the speed of light in metres per second (=2.9979 X 108). Write a
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function to calculate the energy equivalent of a given mass. Roughly how much energy is
equivalent to the mass of a sugar cube (approximately 1gram)?

4.10 Write a program consisting of a main program and two subroutines. The main
program should read up to ten positive numbers. It should then use the first subroutine to
calculate the arithmetic mean of these numbers (that is, the sum of the numbers divided by
n, the number of numbers) and the second to calculate their geometric mean (the nth root
of the product of the n numbers). The main program should then print these two means.
(Note that the nth root of a real value can be obtained by raising it to the power of lin.)

Now modify the program so that the subroutines do not have any arguments, but
obtain their data, and return their results, through variables made available from a module
by USE association.

4.11 Write a function whose only argument is a time interval in seconds, and whose
result is the same time interval expressed in hours, minutes and seconds. (Hint: the result of
the function will have to have a derived type.)

4.12 Write a subroutine that calculates the position, velocity and acceleration of a body
undergoing simple harmonic motion using the equations given below:

position = a sin(nt + €)
velocity = na cos(nt + €)

acceleration = -an2 sin(nt + €)

"
Use as starting values n = 3.14159265, € = 0, a = 2.5. Test by specifying your own set
of values for t.

4.13 In Example 4.5 we wrote a subroutine which calculated the line joining two
points. Using the same derived types, write a further subroutine for the module
geometric-procedures which calculates the point at the intersection of two lines. Ignore
the possibility that the lines might be parallel and, therefore, have no point of intersection;
we shall see how to deal with this in the next chapter.

4.14 The escape velocity from the surface of a planet (the velocity that a spacecraft
must reach to escape from the gravitational field of the planet and travel bff into space) is
given by the expression:

where G is the gravitational constant (6.673 X 1o-II Nm-2 kg -2), M is the mass of the
planet (in kg) and R is the planet's radius (in metres).

Write a function that accepts the planetary mass and radius as its input and returns
the escape velocity. Use your function to compare the escape velocities from the Earth,
Jupiter and the Moon using the following data:



Planet
Earth
Moon
Jupiter

Mass (kg)
6.0 x 1024

7.4 X 1022

1.9 X 1027

Radius (m)
6.4 x 106
1.7 X 106

7.1 X 107
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4.15 Write a program to convert the ecliptic latitude f3 and longitude A of an
astronomical objed into right ascension a and declination 8 using the formulae

-1 sin A cos f - tan f3 sin f
a=tan A

cos

8 = sin-1 (sin f3 cos f + cos f3 sin f sin A)

where f = 0.4091. Assume that all quantities are in radians.
(Note: Use the ATAN2 intrinsic fundion for the first expression.)

In fad, the right ascension of an astronomical objed is generally given in units of
time, where 24 hours equals 360 degrees, while the declination is usually given in degrees.
Write a subroutine to convert the two quantities from radians into these units, and
incorporate it into your solution.
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Controlling the flow of
your program

5.1 Choice and decision-making
5.2 Logical expressions and LOGICAL

variables
5.3 The block IF construct

5.4 The logical IF statement
5.5 Comparing character strings
5.6 The CASE construct
5.7 Obsolete forms of control statements

Up to now, our programs have started at the beginning and proceeded to
the end without interruption. However, in practice, most problems require
us to choose between alternative courses of action, depending upon
circumstances which are not determined until the program is executed.
The ability of a program to specify how these decisions are to be made is
one of the most important aspects of programming.

This chapter introduces the concept of comparison between two
numbers or two character strings, and explains how such comparisons
can be used to determine which one of two, or more, alternative sections
of code are obeyed.

An alternative form of choice, which was not available in earlier
versions of Fortran, uses a list of possible values of some variable or
expression to determine which of the several alternative blocks of code is
actually executed.

129
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5.1 Choice and decision-making

All the programs that we have written so far have started execution at the
beginning of the main program, and have then proceeded to execute each
statement in tum, in the same unvarying sequential order, until the last statement
of the main program is executed. Even the use of procedures has not really altered
this sequential processing, for the effect has been to transfer control temporarily
to another part of the program, obey that sequentially, and then return to carry
on at the statement after the procedure reference. What makes computers so
powerful - apparently even mimicking some of the powers of the human brain -
is their ability to vary the order of execution of statements according to logical
criteria which are not determined until after the program has started execution.

In everyday life we frequently encounter a situation which involves
several possible alternative courses of action, requiring us to choose one of them
based on some decision-making criteria. For example, Figure 5.1 shows a
hypothetical discussion about how to get from Vienna to Budapest. Clearly there
are several answers, based upon the preferred method of travel and the time
available. If we eliminate the details of the answer we see that it has a definite
structure, as shown in Figure 5.2.

Each of the various alternative forms of transport (or 'actions') is preceded
by a condition or test of the form 'if some criterion holds then ... " apart from the
last form (travel by road) which is included as a final alternative if none of the
others are suitable and is preceded by the word otherwise.

Fortran 90 has a very similar construction, shown in Figure 5.3, which
uses the words IF and THEN exactly as they were used in the English language
example, the words ELSE IF where the English used but if, and the word ELSE

Q: How do I get to Budapest from Vienna?

A: It depends how you want to travel.
If you are in a hurry then

you should fly from Schwechat airport in Vienna to Ferihegy
airport in Budapest;

but if you are a romantic or like trains then
you should take the Orient Express from the Sudbanhof to
Budapest's Keleti palyudvar;

but if you have plenty of time then
you can travel on one of the boats which ply along the
Danube;

otherwise
you can always go by road.

Figure 5.1 An example of decisions in English.
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If criterion then
action

but if criterion then
action

but if criterion then
action

otherwise
action

Figure 5.2 English language alternatives.

instead of otherwise. In addition, so that there is no doubt about the end of the
final 'action', the words END IF are placed at the very end. The only other
difference is that the criterion on which the decision will be based is enclosed in
parentheses. This structure is known as a block IF construct and the initial IF
... THEN is called a block IF statement.

The way a block IF works is that each decision criterion is examined in
tum. If it is true then the following action or 'block' of Fortran statements is
executed. If it is not true then the next criterion (if any) is examined. If none of the
criteria are found to be true then the block of statements following the ELSE (if
there is one) is executed; if there is no ELSE statement, as in Figure 5.4, then no
action is taken and the computer moves on to the next statement; that is, the one

IF (criterion_I) THEN
action_l

ELSE IF (criterion_2) THEN
action_2

ELSE IF (criterion_3) THEN
action_3

ELSE
action_4

END IF

Figure 5.3 Fortran 90 alternatives.

IF (criterion) THEN
action

END IF

Figure 5.4 A minimal block IF.



132 Controlling the flow of your program

following the END IF statement. There must always be an IF statement (with its
corresponding block of statements) and an END IF statement, but the ELSE IF
statements and the ELSE statement may be omitted if they are not required.

Before we can start to use this facility for taking one of several alternative
courses of action we must define the criteria on which the decisions will be based.
These all consist of a new type of expression - a logical expression.

5.2 Logical expressions and LOGICAL variables

In the English language discussion about how to get from Vienna to Budapest the
decision depended upon the truth of certain assertions. Thus, 'if you are in a hurry
then travel by plane' could be expressed (rather quaintly) as 'if it is true that you
are in a hurry then travel by plane', and similarly for the other decision criteria.
We see therefore that each decision depends upon whether some assertion is true
or false.

The Fortran decision criterion is also an assertion which is either true or
false. This is a new concept, not to be confused with numbers or character strings,
in which the values true and false are called logical values, and an assertion (or
expression) which can take one of these two values is called a logical
expression. The simplest forms of logical expressions are those expressing the
relationship between two numeric values, thus

a > b

is true if the value of a is greater than the value of b, and

x == y

is true if the value of x is equal to the value of y. Notice that the sign for the
equality relation is two consecutive equals signs.

The two expressions shown above, which express a relationship between
two values, are a special form of logical expression called a relational
expression, and the operators are called relational operators. Figure 5.5 shows
the six relational operators which exist in Fortran 90, and a few moments'
thought will show that they define all possible relationships between two
arithmetic values. It will also be noticed that each of the six relational operators
has two possible forms. The first of these uses the conventional mathematical
symbols, or a slight variation on them, while the alternative form consists of two
letters enclosed between periods. This is because when Fortran was first defined
in 1954 it was not possible to punch signs such as <, > etc. onto cards and
therefore all relational operators consisted of two letters enclosed between
periods. These forms are still valid, but we recommend that you use the forms
based on mathematical symbols in your programs, for clarity.
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a < b and a. LT.b are true if a is less than b
a <= b and a. LE .b are true if a is less than or equal to b
a > b and a. GT. b are true if a is greater than b
a >= b and a. GE . b are true if a is greater than or equal to b
a == b and a.EQ.b are true if a is equal to b
a /= b and a.NE.b are true if a is not equal to b

Figure 5.5 Relational operators and expressions.

There is a certain amount of redundancy in this range of operators, which
leads to the possibility of expressing the same condition in several different ways.
An example of this is that the following four relational expressions are identical in
their effect and will always give the same results:

b**2 >= 4*a*c
b**2-4*a*c >= 0
4*a*c <= b**2
4*a*c-b**2 <= 0

The mathematically-oriented reader will recognize these as expressing the
condition for a quadratic equation to have real roots.

This variety means that programmers are free to choose their own way of
expressing such conditions. For example, two of the authors would always use
the first form shown above, as it is the way in which they always think of the
condition (that is, b2 ~ 4ac), while the third of us prefers the second form.

Notice that in these examples the values being compared are not
necessarily expressed as variables or constants but as arithmetic expressions. All
arithmetic operators have a higher priority than any relational operator and the
arithmetic expression, or expressions, are therefore evaluated before any
comparisons take place.

As we would expect, a relational operator may also be used to evaluate
the relation between two character expressions:

However, this is not quite as straightforward as it appears, as we must first
establish what we mean when we state that one character string is greater than
another. Because this issue has a number of complexities which are unrelated to
the primary question of controlling the flow of control in a program, we shall
therefore defer further discussion of comparison of character strings until Section
5.5, and will restrict ourselves to numeric comparisons until then.

We can now return to the consideration of relational expressions. We
have already established that the result of evaluating such an expression is a
logical value, taking one of the two values true or false, and it will come as no
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surprise to learn that we can declare LOGICAL variables in which to store such
values. A logical variable is declared in much the same way as a real or integer
variable:

Once we can declare logical variables the next question is how we can
write the two possible logical values, true and false in a Fortran program. We have
already mentioned that-in earlier versions of Fortran the six relational operators
were written as two letters enclosed between periods and, following the same
style, the logical literal constants are written as follows:

.TRUE .

.FALSE.

Moreover, since we can have logical variables and logical expressions it is natural
that we should also be allowed to write functions which deliver a logical value:

LOGICAL FUNCTION logical_fun(argl, ...)

or

FUNCTION logical_fun(argl, ...)
LOGICAL :: logical_fun

We now return to examining the nature of logical expressions, but before
doing that we shall return to consideration of the discussion about the best means
of travelling from Vienna to Budapest, which was shown in Figure 5.1. In this
discussion, the second decision took the following form

but if you are a romantic or like trains then

Here we have not one decision criterion but two criteria, only one of which needs
to be satisfied for the appropriate action to be taken:

you should take the Orient Express from the Sudbanhof to Budapest's
Keleti palyudvar.

A similar double criterion could have been used to cater for the fact that some
people are afraid of flying:
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If you are in a hurry and you are not afraid of flying then
you should fly from Schwechat airport in Vienna to Ferihegy airport
in Budapest.

In this case the use of the word and indicates that both the criteria must to satisfied
for the specified action to be carried out.

In Fortran we use the same two words to form composite logical
expressions, but written as .OR. and .AND. in the now familiar way. They are
called logical operators and are used to combine two logical expressions or
values. Thus we could write

(a<b) ,OR. (c<d)

or

(x<=y) .AND. (y<=z)

In fact the parentheses shown in these examples are not strictly necessary because
the relational operators have a higher priority than logical operators, but to
human eyes expressions such as

a<b.OR.c<d

can sometimes be confusing, although the judicious use of blank spaces can make
the meaning clear:

a<b .OR. c<d

The inclusion of (redundant) parentheses ensures that there is no room for doubt
over the true meaning of the expression, and hence of its value:

(a<b) .OR. (c<d)

The effect of the .OR. and .AND. operators is as one would expect, with
. OR. giving a true result if either of its operands is true, while .AND. gives a true
result only if both are true. Figure 5.6 illustrates this.

Ll
true
true
false
false

L2
true
false
true
false

Ll.OR.L2

true
true
true
false

Ll.AND.L2

true
false
false
false

Figure 5.6 The logical operators .OR. and .AND ..
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Ll L2 Ll.EQV.L2 Ll.NEQV.L2

true true true false
true false false true
false true false true
false false true false

Figure 5.7 The logical operators .EQV. and .NEQV ..

Two other logical operators exist which do not have an exact equivalent
in normal English usage, namely .EQV. and .NEQV. The first of these (. EQV. )gives
a true result if its operands are equivalent (that is, they both have the same logical
value), while the other (. NEQV.) is the opposite (not equivalent) and gives a true
result if they have opposite logical values. Figure 5.7 illustrates this.

Essentially, these operators are used in logical expressions to simplify
their structure. Thus the following two expressions are identical in their effect:

(a<b .AND. x<y) .OR. (a>=b .AND. x>=y)
a<b .EQV. x<y

There is one further logical operator, .NOT. which, unlike all the other
relational and logical operators is a unary operator, and has a single operand. The
.NOT. operator inverts the value of the following logical expression.

Thus if the logical expression loqical_exp is true then .NOT .loqical_exp
is false, and vice versa. As is the case with the relational operators, the effect of
the .NOT. operator on an expression can always be obtained in some other way;
for example the following expressions are equivalent in their effect:

.NOT. (a<b .AND. b<c)
a>=b .OR. b>=c

and, of course

.NOT. (a<b .EQV. x<y)
a<b .NEQV.x<y

In some circumstances, especially when using logical variables, the .NOT. operator
can make a logical expression much clearer.

Just as with arithmetic operators, it is important that the relative priorities
of the various logical operators are understood. Figure 5.8 shows their priority
order, although it should be noted that, as with arithmetic operators, parentheses
can be used to change this order. It should also be noted that any arithmetic
operators or relational operators (in that order) have a higher priority than any
logical operators.

I
/

f



Operator

.NOT .

.AND .

.OR.

.EQV. and .NEQV.

Priority

highest

lowest
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Figure 5.8 Logical operator priorities.

5.3 The block IF construct

We can now return to the basic block IF construct which was informally intro-
duced in Section 5.1, and examine its structure in more detail. The initial statement
of the construct is a block IF statement which consists of the word IF followed by
a logical expression enclosed in parentheses, followed by the word THEN:

IF (logicaCexpression) THEN

This is followed by a sequence, or block, of statements which will be executed
only if the logical expression is true. The block of statements is terminated by an
ELSE IF statement, an ELSE statement or an END IF statement.

The ELSE IF statement has a very similar syntax to that of an IF
statement:

ELSE IF (logicaCexpression) THEN

It is followed by a block of statements which will be executed if the logical
expression is true, and if the logical expression in the initial IF statement of the
block construct, and those of any preceding ELSE IF statements are false. The
block of statements is terminated by another ELSE IF statement, an ELSE
statement or an END IF statement.

The ELSE statement simply consists of the single word ELSE and
introduces a final block of statements which will be executed only if the logical
expressions in all preceding IF and ELSE IF statements are false.

The construct is always ended by an END IF statement.
There are no restrictions upon what types of statements may appear

within a block of statements other than that any multi-statement constructs, such
as further block IF constructs, or the CASE and DO constructs that we shall meet
later, must be wholly contained within a single block. It is obvious that no other
situation would make any sense!

A block IF construct is, therefore, always introduced by a block IF
statement and terminated by an END IF statement. There may be any number of
ELSE IF statements, each followed by a block of statements, or there may be none.
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IF (logical expression) THEN
block of Fortran statements

ELSE IF (logical expression) THEN
block of Fortran statements

ELSE IF (logical expression) THEN

ELSE
block of Fortran statements

END IF

Figure 5.9 The block IF structure.

There may be one ELSE statement followed by a block of statements, or there
may be none; if there is an ELSE statement then it, and its succeeding block of
statements, must follow all ELSE IF blocks. This structure is shown in Figure 5.9.

[I] Problem

Example 4. I calculated the number of bags of wheat that were required to sow a
triangular field. Modify this program to deal with the situation in which an exact
number of full bags is required in a more aesthetically pleasing manner (and one
which is easier to follow).

rn Analysis

In Example 4.1 we added 0.9 to the result of dividing the quantity of seed
required by 10000 (to calculate the number of multiples of 10 kilos required). This
used the truncation mechanism to specify an extra bag (which will only be
partially used) if the true quantity is not an exact multiple of 10 kilos. A better
way would be to use a block IF. Since we have already fully analysed this
problem in Chapter 4 we shall not repeat the data design, but will merely show a
revised structure plan:
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We can find out if any more is needed by testing if the amount required is greater
than the amount in the bags.

!II Solution
PROGRAM wheat_sowing

IMPLICIT NONE
"

A program to calculate the quantity of wheat required to
sow a triangular field

! Variable declarations
REAL:: a,b,c,s,area,density,quantity
INTEGER :: num_bags

! Read the lengths of the sides of the field
PRINT *,"Type the lengths of the three sides of the field &

&in metres: "
READ *,a,b,c

! Calculate the area of the field
s = 0.5* (a+b+c)
area = SQRT(s*(s-a)*(s-b)*(s-c))

! Read sowing density
PRINT *, "What is the sowing density (gm/sq.m.)? "
READ *,density

!Calculate quantity of wheat in grams and the number of
! full 10 kg bags
quantity = density*area
num_bags = O.OOOl*quantity !Any part-full bag is excluded

! Check to see if another bag is required
IF (quantity> 10000*num_bags) THEN

num_bags = num_bags+l
END IF

! Print results
PRINT *,"The area of the field is ",area," sq. metres"
PRINT *," and ",num_bags ," 10 kilo bags will be required"

END PROGRAM wheat_sowing
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Multiply 25.39 by 17.25 to six significant figures:

25.39 x
17.25

2539
17773
5078
12695

4379775

Answer is 437.978

Figure 5.10 Rounding errors in hand calculations.

There are two important points to note here. The first is that the relational expres-
sion is comparing a real value (quantity) with an integer one (lOOOO*num_baqs). In
this case the expression is evaluated as if comparing the difference between the two
operands with zero; thus the expression

quantity> 10000*num_baqs

is evaluated as if it were

(quantity-10000*num_baqs) > 0.0

To do this, 10000*num_baqs is converted to its real equivalent and then 'the real
subtraction is performed.

The second point concerns the accuracy of real arithmetic. Real numbers
are stored in the computer as an approximation to a defined degree of accuracy,
and therefore when such numbers are used in arithmetic expressions the least
significant digits may get lost as a result of round-off. Figure 5.10 illustrates this
in the context of hand calculation to six digits of accuracy, where the product of
two four-digit numbers requires seven digits to be accurate; the answer is
therefore expressed as a six digit number after rounding the sixth digit. The
normal rule is that if the first digit to be omitted (the seventh in this case) is in the
range 0-4 then it (and any subsequent ones) are simply dropped, but if it is in the
range 5-9 (as in this example) then the last significant digit is increased by one
(from 7 to 8 in this case) before the remainder are dropped.

A computer operates in exactly the same way and therefore any real
arithmetic operation is liable to introduce such a rounding error. Frequently this is
of no consequence as the computer is working to a greater accuracy than required
for the problem. However there are four cases where it does matter a great deal.
One of these is where a large amount of numerical calculation is being carried out
and in this case a higher level of accuracy (or precision) can be specified, as we shall
see in Chapter 10. The second case was mentioned in Section 3.3 and relates to
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the situation when a large integer value is converted to its real equivalent, with a
consequent loss of precision. The third case is the related conversion problem in
which a real number is to be truncated before being stored as an integer. The final
case is more interesting, and concerns the situation in which we wish to compare
or subtract two real numbers which are almost exactly the same. We can illustrate
the last two situations by reference to the program we have just written.

Let us suppose that the sides of the field are 130 m, 100 m and 130 m, and
that the sowing density is 25 g/m2• A few moments' calculation shows that the
area of the field is 6000 m2, and hence that 150 kg of seed are required. num_bags
should therefore be 15 and the test should find that these contain exactly enough
seed. In practice, though, it probably won't be like that. For example, the
calculation of the area could lead to a value such as 5999.999999 (to 10
significant figures) or to 6000.000001. The subsequent calculation of the quantity
of seed will give further possible rounding errors leading to a (real) value for
O.OOOl*quantity of perhaps 14.99999999 or 15.00000001.

Although for all practical purposes these two values are the same as the
true value of 15, when they are truncated to calculate num_bags they will lead to
integer values of 14 and 15 respectively. In the first case quantity will clearly be
less than 10000*num_bags and so the situation will be compensated for. In the
second case, however, it is possible that quantity is fractionally more than
150000.0 (for instance 150000.000 1) and that the relational expression will be
true, leading to a calculation of 16 bags!

We can deal with this by never testing whether two real values are equal
(which is essentially what we are doing here in the borderline case) but rather by
testing whether their difference is acceptably small. In this case, therefore, we
could say that since the numbers being compared are of the order of 100 000
(actually 150 000 in this example) and since any errors in calculation will,
hopefully, be much less than 1%, we should alter the test to read

IF (quantity> 10000*num_bags+1000) THEN
num_bags = num_bags + 1

END IF

A better way might be to avoid any reference to num_bags and to express the test
as follows:

IF (O.OOOl*quantity - INT(O.OOOl*quantity) > 0.1) THEN
num_bags = num_bags + 1

END IF

thereby eliminating multiplying quantity by 0.0001, and then multiplying the
result by 1000. In this form, the intrinsic function INT calculates the integer
equivalent of 0.0001 *quanti ty, which is the value of num_bags, and subtracts it
from the original, real, value. The result of this will be the amount that was lost
through truncation, which in this case represents the amount of seed required in
the last, partially filled, bag as a fraction of one bag. We decided in Example 4.1
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that if such a bag was. less than 10% full then the amount of seed could be
ignored. It would probably be advisable, however, to add a comment to explain
the test, whichever one is used!

m Problem

Write an external function which will return the cube root of its argument.

~ Analysis

In Section 4.3 we wrote a function to meet this requirement which was only valid
for positive arguments. We can use a block IF construct to deal with the negative
and zero argument cases, which were not included in the earlier version.

, If the argument is negative then we can use the fact that \I( -x) = -.yfi.
The zero argument situation is, however, slightly more complicated, since

it is not possible to calculate the logarithm of zero. However, rather than
comparing the value of the argument with zero, which is not sensible when
working with real numbers, we should rather state that if the absolute value of the
argument is less than a specified small number then it is sufficiently close to zero
to create possible calculation problems in the log function, and we shall therefore
treat it as zero and return zero as the result of the function. Our data design and
structure plan are theref~re as follows:

Data design

Purpose Type Name

A Dummy argument:
Value whose cube REAL x
root is required

B Result variable:
Cube root of x REAL cube_root

C Local constant:.
A very small number REAL epsilon

Structure plan
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The only remaining question is what value to use for epsilon. Since the
cube root of a positive number less than 1.0 is greater than the number itself it
should not be too large, but equally it should not be so small that problems might
occur with the log function. We shall, somewhat arbitrarily, use the value 10-2°.

[II Solution
REAL FUNCTION cube_root(x)

IMPLICIT NONE

Function to calculate the cube root of a
real number
Dummy argument declaration

REAL, INTENT (IN) :: x

! Local constant
REAL, PARAMETER :: epsilon=lE-20

! Eliminate (nearly) zero case
IF (ABS(x)<epsilon) THEN

cube_root = 0.0

Calculate cube root by using logs
ELSE IF (x<O) THEN

! First deal with negative argument
cube_root = -EXP(LOG(-x)/3.0)

ELSE
! Positive argument
cube_root = EXP(LOG(x)/3.0)

END IF

END FUNCTION cube_root

One final point that should be made about this function is that calculating
the logarithm and then dividing by three is not a particularly good way of
calculating a cube root. We use it here to demonstrate the use of the block IF
rather than introducing the lengthy mathematics that a full solution would
involve!
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[!] Problem
In Example 4.5 we started to create two modules for use with various geometric
entities. When first introducing this topic in Example 3.3 we noted that the
calculation of a line joining two points required that the two points be distinct,
but were not, at that time, able to check for this situation. Modify the subroutine
line_two-points that was developed in Example 4.5 so that it returns an error
flag to indicate that either (a) the two points were distinct, and the equation of the
joining line was therefore calculated, or (b) it was not possible to calculate the line
because the points were coincident.

~ Analysis

For this example, a logical error flag would seem to be most appropriate, but for
some of the similar procedures which might be required for other geometric
calculations there will be more than one reason for error. It is preferable that all
the procedures in the module return their error information in the same way, and
we shall, therefore, use an integer flag. Following a commonly-used convention,
we shall return zero if the equation of the line was calculated satisfactorily, and a
non-zero value if there was an error. We shall arbitrarily return -1 if the two
points are coincident.

The structure plan can therefore be modified as follows:

rn Solution

We give the complete module so that the context of the subroutine is clear.

MODULE qeometric-procedures
USE qeometric_data
IMPLICIT NONE

CONTAINS
SUBROUTINE line_two-points(line_l,point_l,point_2,status)

IMPLICIT NONE
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! Dummy arquments
TYPE (line), INTENT (OUT) .. line 1
TYPE (point), INTENT (IN) :: point_1,point_2
INTEGER :: status
!Check to see whether points are coincident
IF (point_1%x==point_2%x .AND. point_1%y==point_2%y) THEN

! Points are coincident - return error flaq
status = -1

ELSE
! Points are distinct, so calculate the coefficients
! of the eq~ation representinq the line
line_1%a = point_2%y - point_1%y
line_1%b = point_1%x - point_2%x
line_1%c = point_1%y*point_2%x - point_2%y*point_1%x
!Set status to indicate success
status = 0

END IF
END SUBROUTINE line_two-points

END MODULE qeometric-procedures
Note that, in order to concentrate on the major issue, we have not included a
tolerance factor in the test for coincident points. Since we are comparing real
values for 'equality' this should be done in a final version.

5.4 The logical I F statement

Until the advent of FORTRAN 77, the most powerful decision-making statement
in Fortran was the logical IF statement, which took the form

IF (logical expression) Fortran statement

This is exactly equivalent to a block IF with a block consisting of a single
statement:

IF (logical expression) THEN
Fortran statement

END IF

Because the second part of the logical IF statement is only a single statement,
however, there are some restrictions which must be observed. Thus it is not
permissible to have a block IF statement, a SELECT CASE statement (see Section
5.5) or a DO statement (see Chapter 6) following the logical expression, nor is it
permissible to have another logical IF statement there.
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Although the logical IF statement is the chronological ancestor of the
block IF construct, because it is limited to making the execution of a single
statement conditional upon the value of a logical expression it should be
considered as merely a 'shorthand' version of the minimal block IF with a single-
statement block. Nevertheless, because it is more compact, it can be used in a
number of situations without any loss of clarity or efficiency. In particular, as we
shall see in Chapter 6, it is an extremely useful form of statement in the control of
blocks of statements which are to be repeated a number of times - a very
common programming requirement.

5.5 Comparing character strings

In Section 5.2 we mentioned that the six relational operators could be used to
compare character expressions and constants (or character strings as they are
usually referred to), but that the question of determining when one string was
greater than another would be left until later. The key to this determination is the
collating sequence of letters, digits and other characters. Fortran 90 lays down
six rules for this covering letters, digits and the space or blank character.

(1) The 26 upper case letters are collated in the following order:

ABC D E F G H I J K L M N 0 P Q R STU V W X Y Z
(2) The 26 lower case letters are collated in the following order:

abc d e f 9 h i j k 1 m n 0 p q r stu v w x y z
(3) The 10 digits are collated in the following order:

01234 5 6 7 8 9
(4) Digits are either all collated before the letter A, or all after the letter Z

(5) Digits are either all collated before the letter a, or all after the letter Z

(6) A space (or blank) is collated before both letters and digits

The other 22 characters in the Fortran character set, and any others which
may be available on a particular computer system, do not have any defined
position in the collating sequence. In practice they will usually be ordered
according to the internal code used by the computer as long as this code satisfies
the above rules.

When two character operands are being compared there are three distinct
stages in the process: .

II"

(1) If the two operands are not the same length, the shorter one is treated as
though it were extended on the right with blanks until it is the same
length as the longer one.
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(2) The two operands are compared character by character, starting with the
leftmost character, until either a difference is found or the end of the
operands is reached.

(3) If a difference is found, then the relationship between these two different
characters defines the relationship between the two operands, with the
character which comes earlier in the collating sequence being deemed to
be the lesser of the two. If no difference is found, then the strings are
considered to be equal.

The result of this process is that the relational expression always has the value we
would instinctively expect it to have. Thus

"Adam" > "Eve"

is false because A comes before E, and is thus less than E.

"Adam" < "Adamant"

is true because after Adam has been extended the relationship reduces to " " < "a"
after the first four characters have been found to be the same. Since a blank comes
before a letter, this is true.

"120" < "1201"

is true because the first difference in the strings leads to an evaluation of " " < "1",
which is true since a blank also comes before a digit.

Notice, however, that the values of the expressions

"ADAM" < "Adam"
"XA" < "X4"

and

"var_1" > "var-1"

are not defined in Fortran. In the first case the standard does not define whether
upper case letters corne before or after lower case letters or, indeed, whether they
are even interleaved, and so the value of "ADAM" < "Adam" will depend upon the
particular computer system being used. Similarly, in the second case the standard
does not define whether digits corne before or after letters. Finally, in the third
case the special characters are not defined at all in the collating sequence, so that,
once again, the value of "_" > "-" depends upon the computer system.

These undefined areas are not normally any problem. It is unlikely that
most applications would expect to compare character strings (other than for
equality) if the order was to be determined by characters other than letters, digits
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LGT(51,52) is the same as 51 > 52 using ASCII character ordering
LGE(51,52) is the same as 51 >= 52 using ASCII character ordering
LLE (51,52) is the same as 51 <= 52 using ASCII character ordering
LLT (51,52) is the same as 51 < 52 using ASCII character ordering

Figure 5.11 Intrinsic functions for lexical comparison.

or blanks. The concepts of alphabetic or numeric ordering are natural ones, as is
the concept of shorter strings coming before longer ones which start with the
same characters as the shorter one (that is, John comes before Johnson, alpha before
alphabet). The only practical area of doubt concerns the question of whether digits
come before or after letters.

If, for reasons of portability, it is required to define the ordering of all
characters, then another way of comparing them is available. This uses one of the
four intrinsic functions shown in Figure 5.11. These functions return the value true
or false after a comparison which uses the ordering of characters defined in the
American National Standard Code for Information Interchange (ANSI X3,4 1977),
which is usually referred to as ASCII. This code, which is widely used as an
internal code, is also defined in the International Reference Version (IRV) of the
International Standard ISO 646 : 1983; it is included, for reference, in Appendix D
of this book.

Thus, for example, whereas the value of

"Miles" > "miles"

cannot be defined with complete certainty, because the Fortran standard does not
state whether upper case letters 'come before or after lower case letters, the value
of

LGT("Miles","miles")

will always be true, because upper case letters do come before lower case letters in
the ASCII collating sequence.

[] Problem

Write a function which takes a single character as its argument and returns a
single character according to the following rules:
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• If the input charader is a lower case letter then return its upper case
equivalent

• If the input charader is an upper case letter then return its lower case
equivalent

• If the input charader is not a letter then return it unchanged

I1J Analysis

The major problem here is establishing the relationship between upper and lower
case letters, so that conversions may be easily made. Here we can use the ASCII
code (see Appendix D) to good effed due to the existence of the two intrinsic
fundions IACHAR and ACHAR. The first of these provides the position of its
charader argument in the ASCII collating sequence, while the second returns the
charader at a specified position in that sequence. Thus IACHAR (" A") is 65, while
ACHAR(97) is the charader a. An examination of the ASCII charader set (see
Figure D.1 in Appendix D) quickly shows that every lower case charader is
exadly 32 positions after its upper case equivalent. We now have both the
information and the means to carry out the conversion and so are ready to design
our fundi on.

Although we could simply add or subtrad 32 from the ASCII code for the
charader, as appropriate, it is not then obvious what is happening. We shall
therefore define a constant which has the value of this offset, calculated by
subtrading the code for an upper case letter from its lower case equivalent.
Furthermore, to avoid unecessary complication, we shall assume that the upper
case letters are contiguous in the processor's charader set (that is, there are no
other charaders intervening) and that the lower case charaders are also
contiguous in the processor's charader set. If we wished to guarantee this then
the tests could be carried out using the ASCII collating sequence by means of the
intrinsic fundions LLE etc., but this would be something of an overkill in this
instance!

Data design

Purpose Type Name

A Dummy argument:
Character to be CHARACTER"l char
converted

B Result variable:
Converted character CHARACTER"l change_case

C Local constant:
Offset between upper INTEGER upper_to _lower
and lower case in the
ASCII character set
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Structure plan

o Solution

CHARACTER FUNCTION change_case (char)
IMPLICIT NONE
!This function changes the case of its argument (if it
! is alphabetic)
! Dummy argument
CHARACTER, INTENT (IN) :: char
!Local constant
INTEGER, PARAMETER:: 'upper_to_lower = IACHAR("a")-IACHAR("A")
!Check if argument is lower case alphabetic, upper case
! alphabetic, or non-alphabetic
IF ("A"<=char .AND. char<="Z") THEN
!Upper case - convert to lower case
change_case = ACHAR(IACHAR(char)+upper_to_lower)

ELSE IF ("a"<=char .AND. char<="z") THEN
! Lower case - convert to upper case
change_case = ACHAR(IACHAR(char)-upper_to_lower)

ELSE
! Not alphabetic
change_case = char

END IF
END FUNCTION change_case

SELF-TEST EXERCISES SO. 1

1 What is the difference between a logical operator and a relational operator?
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2 What are the values of the following expressions?

(a) 1>2
(h) (1+3) .GE.4
(c) (1+3)<=4
(d) (0.1+0.3) .LE.0.4
(e) 2>1 .AND. 3<4
(f) 3>2 .AND. (1+2)<3 .OR. 4<=3
(g) 3>2 .OR. (1+2)<3 .AND. 4<=3
(h) 3>2 .AND. (1+2)<3 .EQV. 4<=3

If
3 What is the purpose of the block IF construct?

4 What is the advantage of a block IF construct over a logical IF statement?

5 What are the rules for collating characters?

6 What are the values of the following expressions?
1':

(a) "Me "("You II

(h) "Me"("ME" ,~

(c) "Me "<liMen II
h

(d) "Mell("Me?" I!, ,
(e) LLT("Me" ,"Me?") l",

'. .• S1-

5.6 The CASEconstruct

<

In some situations it is necessary to have an ordering built in to the decision as to
which choice to take because there is an overlap between 'some of the possible
decision criteria. For example, if you are a baseball addict, but especially a Cubs
fan, then the decision as to what to do 'on a Saturday afternoon might look like
this: ' ,~

If it is the baseball season and the Cubs are at home then
Go to Wrigley Field ;;,

Else if it is the baseball season and the Cubs game' is on TV then
Get a six-pack and watch the game on TV ",'

Else if it is the baseball season then
Go to any nearby baseball game

Else
Rent a baseball video and watch it at home.

It is very clear that the order in which the choices are considered is of vital
importance! • ,



152 Controlling the flow of your program

Frequently, however, the decision criteria are mutually exclusive, and
there is no overlap between them. For example, if you are a Liverpool fan, and are
only interested in watching football matches in which they are playing (whether
at home or away) then your Saturday afternoon decision plan might be rather
different:

If it is the football season and Liverpool are playing at home then
Go to Anfield and support the Reds

Else if it is the football season and Liverpool are playing away then
Go to wherever they are playing and support the Reds

Else
Get a six-pack and watch some of your old Liverpool videos at home.

Although this has been written in the same way as the previous example, there is
clearly no ordering involved in this decision process and the use of if ... else style
is rather misleading. An alternative approach would be to write

Select the appropriate case from the following alternatives:
Case 1: It is the football season and Liverpool are playing at home

Go to Anfield and support the Reds
Case 2: It is the football season and Liverpool are playing away

Go to wherever they are playing and support the Reds
Case 3: Any other situation

Get a six-pack and watch some of your old Liverpool videos at home.

As well as the block IF construct, which caters for the ordered choice
situation, Fortran 90 provides another form of selection, known as the CASE
construct, to deal with the alternative situation in which the various alternatives
are mutually exclusive, and the order in which they are expressed is unimportant.
Its overall structure is shown in Figure 5.12.

Both the block IF and the CASE constructs provide a means of selecting
one from a set of blocks of statements and executing that block, or of executing

SELECT CASE (case expression)
CASE (case selector)

block of Fortran statements
CASE (case selector)

block of Fortran statements

END SELECT

Figure 5.12 The CASE structure.
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none of them if none of the decision criteria is satisfied. As we have already
mentioned, one difference between the two constructs is that in the CASE

construct the decision criteria must not overlap. The other major difference is that
the expression which determines the selection must be a logical expression in a
block IF construct, but may be an integer expression, a character expression or a
logical expression in a CASE construct. This means that, in many situations, a more
natural form of defining the different cases can be used than is possible with any
form of IF construct.

The initial statement of a CASE construct takes the form

SELECT CASE (case_expression)

where, as already indicated, case_expression is either an integer expression, a
character expression or a logical expression; real expressions are prohibited for this
purpose. When the SELECT CASE statement is encountered the value of
case_expression is evaluated and the block of statements which follow the
appropriate CASE statement (if any) is executed.

Each CASE statement takes the form

CASE (case_selector)

or

CASE DEFAULT

although there may only be one CASE DEFAULT statement in a CASE construct.
The case_selector determines which, if any, of the blocks of statements will

be obeyed, while the CASE DEFAULT statement, if any, precedes the block of
statements to be obeyed if none of the other CASE statements produces a match.

The case_selector can take one of four forms:

case value
low_value:
:high_value
low_value: high_value

or it may be a list of any combination of these. Note, however, that only the first
form is permitted for logical values since it would be meaningless to list more
than one of the possible two values. The meaning of these four alternatives is
almost self-evident, but we shall elaborate them for the avoidance of any doubt:

(I) If the case_selector takes the form case_value then the following block of
code is executed if and only if case_expression == case_value, where
case_expression is an integer expression or a character expression, and if and
only if case_expression . EQV. case_value, where it is a logical expression.
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(2) If the case_selector takes the form low_value: then the following block of
code is executed if and only if low_value <= case_expression.

(3) If the case_selector takes the form :high_value then the following block of
code is executed if and only if case_expression <= high_value.

(4) If the case_selector takes the form low_value: high_value then the following
block of code is executed if and only if low_value <= case_expression .AND.
case_expression <= high_value.

If none of the specified values or value ranges matches the value of the
case_expression then the block of code following the CASE DEFAULT statement, if
any, is executed; if there is no CASE DEFAULT statement then an exit is made from
the CASE construct without any code being executed.

Notice that the order in which the various CASE statements, and their
following blocks of statements, are written does not matter, since the rules
governing CASE statements require that there is no overlap. However, we
recommend that, for clarity, any CASE DEFAULT statement be placed either as the
first CASE statement, or as the last, even though this is not necessary as far as the
syntax is concerned. The choice as to which is preferable depends upon whether
the CASE DEFAULT statement is expected to be the most normal selection, with the
specified cases being exceptions, or whether it is a 'catch-all' to deal with those
cases which are sufficiently rare not to justify individual treatment.

[] Problem

Read a date in the international standard form (yyyy-mm-dd) and print a message
to indicate whether on this date in Sydney, Australia, it will be winter, spring,
summer or autumn. For the purpose of this exercise we shall assume that winter
consists of June and July, that spring is August, September and October, that
summer is from November until March, and that the autumn is April and
May.

~ Analysis

There are clearly four mutually exclusive cases, depending upon the value of the
character string mm, and so the problem is ideally suited for a CASE statement.
Although it might be reasonable to assume that the date will be a valid one, this
is, in general, a dangerous assumption and we should always check that data is
valid. In this example a CASE DEFAULT statement can easily be used to identify any
invalid data. Our data design and structure plan will be as follows:
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Data design

Purpose

Date (yyyy-mrn-dd)
Month (for CASE)

Structure plan

Type

CHARACTER' 10
CHARACTER'2

Name

date
month

[II Solution
PROGRAM seasons

IMPLICIT NONE
A program to calculate in which season a specified date lies

! Variable declarations
CHARACTER (LEN=10) :: date
CHARACTER (LEN=2) :: month
! Read date
PRINT *,"P1ease type a date in the form yyyy-mm-dd"
READ *,date
! Extract month number
month = date(6:7)
! Print season
SELECT CASE (month)
CASE ("08":"10")

PRINT * ,date," is in the spring"
CASE ("11","12","01":"03")

PRINT *,date," is in the summer"
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CASE ("04", "05")
PRINT *,date," is in the autumn"

CASE ("06","07")
PRINT *,date," is in the winter"

CASE DEFAULT
PRINT *,date," is not a valid date"

END SELECT
END PROGRAM seasons

Note that, because the case selector is a character expression, the case
values must be expressed as character constants. Furthermore, ~e have assumed
that there are no possible two-character strings which will lie between "08" and
"ro" other than "09", or between "01" and "03" other than "02". No character
coding system known to the authors fails to encode the ten digits 0 to 9 in
successive places, but there is no formal requirement to do so. An alternative
would be to write the selectors for the spring and summer as

CASE ("08", "09", "10")

and

CASE ("11", "12", "01", "02", "03")

respectively.
Another alternative would be to convert the month to integer form, but

since this is slightly awkward it would be difficult to justify in such a simple
program, and we shall leave it as an exercise for the adventurous reader.

Finally, it is not necessary to use the variable month at all. The SELECT CASE
statement could equally well have been written as

SELECT CASE (date(6:7))

although it is then marginally less clear what is going on.

[I] Problem

Write a program to read the coefficients of a quadratic equation and print its
roots.

[!] Analysis
This program will use the formula
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-b:!: J(b2 - 4ac)
x=-------

2a

where

a~ + bx + c = 0 and a -I 0
It is immediately apparent that there are three possible cases:

(1) b2 > 4ac
in which case the equation will have two real roots

(2) b2 = 4ac
in which case the equation will have one root (or two coincident roots)

(3) b2 < 4ac
in which case the equation will have no roots (or at least no real roots, and
we are not concerned with imaginary roots in this example)

At first sight, since there are three mutually exclusive cases, this seems a
natural problem in which to use a CASE statement. However, there are two major
difficulties.

The first of these is that the values of the coefficients in this sort of
problem will normally be real, and therefore the expression b2 < 4ac will also be
real. The case_expression in a CASE statement must, however, be integer, character
or logical.

The other problem concerns case 2, where the value of the expression is
zero. We have stressed on many occasions that real arithmetic is only an
approximation. In particular we should never compare two real numbers for
equality, as two numbers which are mathematically equal will often differ very
slightly if they have been calculated in a different way. We avoid this difficulty by
comparing the difference between two real numbers with a very small number.
Thus we could rewrite the second case as follows:

(2) I b2
- 4ac I< epsilon

where epsilon is a very small number, in which case the equation will have
one root

If we wish to use a CASE statement then we could deal with both of these
problems at the same time by dividing the value of b2 - 4ac by epsilon and then
assigning the result to an integer for use in the CASE statement. This will mean that
if Ib2 - 4ac I< epsilon the result of the division will be between -1 and +1,and
the integer stored will, as a result of truncation, be zero. If b2 - 4ac > epsilon then
the result stored will be a positive integer, while if b2 - 4ac < epsilon the result
stored will be a negative integer. Notice, however, that there is a further problem
in choosing the value of epsilon arising from the fact that we shall be dividing
b2 - 4ac by this very small number; it is always possible that dividing by a very
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small number might lead to a result which is larger than the largest number that can
be stored on the computer! This indicates that the approach that we have chosen is
not a particularly good one and should not be used in a real programming situation;
it will, however, suffice for this example of how to use CASE statements.

Note that this analysis has also ignored two other theoretical difficulties.
The first of these is the situation if a = O. In this situation the equation is not a
quadratic equation and so for this example, in which the coefficients are being
typed at the keyboard, we shall simply assume that a non-zero value will be
typed for a; it would not be difficult to test for this case and return an appropriate
value for x. It does not, of course, matter if b or c is zero, since the equation will
still be a quadratic.

The second problem is that the calculation of b2 and that of 4ac could lead
to problems if a, b or c is so large that the resulting calculation leads to a value
greater than the maximum capable of being stored on the computer system being
used (a condition known as overflow). Again, since the coefficients are being
typed at the keyboard we shall assume that they are 'reasonable' numbers, and
will ignore this problem here. Both of these situations should be considered in a
comprehensive solution to this, apparently simple, problem. They are discussed in
more detail in Chapter 18.

We can now design our program:

Data design

Purpose Type Name

A Local constant:
A small value REAL epsilon

B Local variables:
Coefficients REAL a,b,c
Intermediate value REAL d
CASE selection value INTEGER selector

Structure plan
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We may note here that, since all possible cases have been covered, any
one of these cases could be treated as the default case. However, for clarity it is
preferable, in this example, to specify all three conditions explicitly, with the
result that no default case need be specified.

Before writing the actual program we shall note that, despite the fact that
the problem appears to be suitable for a CASE statement, the awkwardness in
calculating a suitable value for use as a case selector might make the use of a block
IF construct more appropriate. In this case a suitable design would be:

Data design

Purpose

A Local constant:
A small value

B Local variables:
Coefficients
Intermediate values

Structure plan

Type

REAL

'REAL
REAL

Name

epsilon

In this situation, the order in which the tests are carried out does matter.
First we test whether b2 - 4ac is greater than or equal, to epsilon, since this is
anticipated to be the most usual case. If it is not then it is zero (for our purpose) or
negative. We now test whether it is greater than a very small negative value
(epsilon). If it is, then, since it is also less than a very small positive value, it can be
considered to be zero. If neither of these cases holds then there can be no roots.

Which of these two approaches is used is largely a matter of personal style.
However, in most cases it will be quite clear which approach is to be preferred.

We shall write programs in bo~h the ways planned above.

@] Solution
(a) Using a CASE construct
PROGRAM quadratic_by_CASE

IMPLICIT NONE
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A program to solve a quadratic equation using a CASE
statement to distinguish between the three cases

! Constant declaration
REAL, PARAMETER :: epsilon=lE-6
! Variable declarations
REAL:: a,b,c,d,sqrt_d,x1,x2
~INTEGER :: selector
! Read coefficients
PRINT *,"Please type the three coefficients a, band c"
READ *,a,b,c
! Calculate b**2-4*a*c and resulting case selector
d = b**2 - 4.0*a*c
selector = d/epsilon
! Calculate and print roots, if any
SELECT CASE (selector)
CASE (1:)

!Two roots
sqrt_d = SQRT(d)
xl = (-b+sqrt_d)/(a+a)
x2 = (-b-sqrt_d)/(a+a)
PRINT *,"The equation has two roots: ",xl," and ",x2

CASE (0)
! One root
xl = -b/(a+a)
PRINT *,"The equation has one root: ",xl

CASE (:-1)
!No roots
PRINT *,"The equation has no real roots"

END SELECT

(b) Using an IF construct

PROGRAM quadratic_by_block_IF
IMPLICIT NONE
! A program to solve a quadratic equation using a block IF
! statement to distinguish between the three cases
! Constant declarations
REAL, PARAMETER :: epsilon=lE-6
! Variable declarations
REAL:: a,b,c,d,sqrt_d,x1,x2
! Read coefficients
PRINT *,"Please type the three coefficients a, band c"
READ *,a,b,c
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! Calculate b**2-4*a*c
d = b**2 - 4.0*a*c

! Calculate and print roots, if any
IF (d>=epsilon) THEN

! Two roots
sqrt_d = SQRT(d)
xl = (-btsqrt_d)/(ata)
x2 = (-b-sqrt_d)/(ata)
PRINT *, "The equation has two roots: ",xl," and" ,x2

ELSE IF (d>-epsilon) THEN
! One root
xl = -b/(ata)
PRINT *,"The equation has one root: ",xl

ELSE
!No roots
PRINT *,"The equation has no real roots"

END IF

5.7 Obsolete forms of control statements

During the period of almost 40 years since the first Fortran system was
developed a great deal has been learned about programming style, and its effect
upon programming efficiency and the reliability of programs. One of the most
obvious effects of this learning process has been the development of new
approaches to the ways of controlling the flow of programs. As a result,
Fortran 90 contains a number of additional control constructs and statements
whose use we do not recommend, but which may, nev'ertheless, frequently be
encountered in older programs. Most of these are now so rare that they will not
be described here, although a brief description will be found in Appendix E. One
of these older constructs is, however, briefly mentioned here, owing to its
widespread use in Fortran 77 programs, although it must be emphasized that its
use in new programs is strongly discouraged.

This statement is the computed GOTO, which has been replaced by the CASE construct, and, to a lesser extent,
by the block IF construct. It consists of a statement of the form

GOTO (labeCl ,label_2, ... ) ,integer_expression
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'and caused ,a transfer of control to one of the statements identified by the labels specified in the
parenthesized list; It is described in more detail, for reference, in Appendix E. Its use in new programs is,
however, strongly discouraged.

As well as the computed GOTO, Fortran 90 contains two even older, and even less desirable
control constructs which are relics from its long past; these are the arithmetic IF and the assigned GOTO.
Neither of these should be used in new programs, and both had largely fallen into disuse by the time that
Fortran 90 was released. They are briefly described in Appendix E for reference.

SELF-TEST EXERCISES 5.2

1 What is the main difference between a CASE construct and a block IF construct (apart
from their syntax)?

2 What restrictions, if any, are there on the case expression in a SELECT CASE statement?

3 What forms may a case selector take? Are there any restrictions on any of these
forms?

4 What is meant by overflow on a computer?

5 In a multiple choice situation, when should you use a CASE construct, and when should
you use a block IF construct?

SUMMARY

• The ability of a computer program to choose which one of two or more
alternative sequences of statements to obey is a major factor in making
computers such powerful tools.

• The block IF construct and the CASE construct provide the means for a program
to select one of several alternative courses of action.

• The logical IF statement provides a simpler alternative to the block IF
construct in a limited number of cases.

• Relational operators are used to derive logical values from a compa(ison of
two numeric expressions or two character expressions.

• 'Character expressions are compared by the relation operators using the
Fortran collating sequence.

• Character expressions may be compared using the ASCII collating sequence
by using special intrinsic functions.

• Logical operators are used to combine two logical values, and thus to allow
more complex comparisons.

• Logical variables take one of two values: .TRUE. or .FALSE.
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• Fortran 90 syntax introduced in Chapter 5:

Variable declaration

Block IF construct

CASE construct

Logical IF statement

Relational operators

Logical operators

:i
LOGICAL :: list of variable names
IF (logicaLexpression) THEN

block_of-code
ELSE IF (logicaLexpression) THEN

block_of-code .

ELSE
block_of-code

END IF

SELECT CASE (case_expression)
CASE (case_selector)

block_of-code

CASE DEFAULT
block_of-code

END SELECT

IF (logical_expression) Fortran_statement
>, >=, <=, <, ==, /=
• GT ., •GE ., . LE ., . LT ., . EQ ., . NE .

.AND., .OR., .EQV., .NEQV., . NOT .

PROGRAMMING EXERCISES

~5.1 Write a program which will request a number to be typed at the keyboard and will
then inform the user whether the number is positive, negative or zero.

Now modify your program so that if it used a block IF construct it now uses a
CASE construct, and vice versa. .

5.2 . Write a function that does not use any intrinsic functions which will determine the
larger of two numbers.

5.3 Write a program to print out the truth tables for .OR., • EQV. and .NEQV. in the
same form as the following table for .AND .

A B A.AND.B

T T T
T F F
F T F
F F F
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where the value for the third column is printed as the result of executing a logical
expres'sion (and not by working out the result and simply printing the table!).

5.4 The logical NAND operation is the equivalent of performing the .AND. operation
on two operands, followed by a .NOT. operation on the result. Thus

a NAND b is the same as not(a and b)

Write a logical function to perform the NAND operation on its two logical arguments.

5.5 Write a program which reads a number between 1 and 6 from the keyboard and
prints out the corresponding word: .'one', 'two' etc. If a number outside this range is typed
the program should print an appropriate message.

Now modify your program so that if it used a block IF construct it now uses a
CASE construct, and vice versa.

5.6 Write a program that accepts a positive integer as its input and informs the user of
all the following:

(a) whether the number is odd or even
(b) whether it is divisible by seven
(c) whether it is a perfect square (that is, its square root is a whole number).

Modify your program to find the first even number that is divisible by 7 and is a
perfect square.

5.7 Write a program that will determine how much income tax a person pays, given
the following basis for taxation:

Income

first £5000
next £15000
everything over £20 000

Tax rate

0%
25%
32%

5.8 It is often difficult to compare the value of items priced in different currencies.
Write a function to convert an amount in anyone of the eight currencies shown below to
an equivalent amount in one particular currency, which we shall call the standard currency.
Use this function in a program which reads two amounts in any two of these currencies and
calculates which is the lower.

Use the following table to specify the currencies and their relationships:

1 UK pound

1US dollar

1.52 US dollars
2.45 Deutschmarks
8.60 French francs
52.65 Belgian francs

103.95 Japanese yen
1.40 Swiss francs
1.31 Canadian dollars
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5.9 The current I drawn by an electrical appliance of power P watts from a supply
voltage V volts is given by the formula:

P
I = Vamps

An electical supplier stocks three types of cable, suitable for currents of up to
5 amps, 13 amps and 30 amps, respectively. Write a program that asks the user for the
power rating and supply voltage of an appliance, and displays the most suitable cable, or a
warning if the appliance cannot be safely used with any of the cables in stock.

'"5.10 A firm produces digital watches and sells them for £15 each. However it gives a
discount for multiple orders as follows:

Number ordered

2-4
5-9
10-29
30-99
100-299
300+

Discount

5%
10%
15%
20%
25%
30%

Write a program to input the number of watches required and to print the gross cost, the
discount (if any), and the net cost.

5.11 The brightness of a binary star varies as follows. At time t = 0 days its magnitude
is 2.5, and it stays at this level until t = 0.9 days. Its magnitude is then determined by the
formula

3.355 -In(1.352 + COS(7T(t - 0.9)/0.7))

until t = 2.3 days. Its magnitude is then 2.5 until t = 4.4 days, and it is then determined
by the formula

3.598 -In(1.998 + COS(7T(t - 4.4)/0.4))

until t = 5.2 days. It then remains at 2.5 until t = 6.4 days, after which the cycle repeats
with a period of 6.4 days.

Write a program which will input the value of the time t and print the brightness
of the star at that time.

5.12 Exercise 4.13 required the writing of a subroutine to calculate the point of
intersection of two lines, but ignored the problem of lines which were parallel and did not,
therefore, intersect. In a similar way to that used in Example 5.3, modify your solution for
Exercise 4.13 to return an error flag to indicate whether it ;"as possible to calculate the
coordinates of the point of intersection.

5.13 Write a function which has two dummy arguments, first-JIerson and
second-JIerson, both of a derived type which contains, among other things, the first
and last names of a person, the age of the person, and the sex of the person. The function
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should return an integer value indicating the relationship between the two people
represented by the arguments, according to the following rules:

• If the last names are the same then they are related, otherwise they are unrelated,
and the function result should be zero.

• If they are related then a difference in age of over 20 years indicates a parent-
child relationship; a difference of less than 20 years, and both ages over 20 implies
a marital relationship; a difference of less than 20 years, and at least one aged 20
or less, implies a sibling relationship.

The value of the function should then be as follows:

Husband-wife 1
Father-son 2
Father-daughter 3
Mother-son 4
Mother-daughter 5
Brother-brother 6
Sister-sister 7
Brother-sister 8

If the person represented by the first dummy argument is the older then the result is as
shown; if that person is the younger then the value is negated (that is, daughter-father is
returned as -3).

. Test your functio~ in a program which either reads two sets of personal details
from the keyboard or has them as initial values in the main program and uses the function
to cause an appropriate message to be printed, along the following lines:

Sarah Ellis is the daughter of Miles Ellis

5.14 Write a program which reads three real numbers representing three distances. The
program should use these as the arguments to a subroutine which will set three further
arguments as follows:

triangle is set true if the three distances could represent the sides of a
triangle; that is, no number is greater than the sum of the other two
numbers

isosceles is set. true if triangle is true and exactly two of the sides are of
equal length; that is, an isosceles triangle

equilat is set true if triangle is true and all three sides are of equal length;
that is, an equilateral triangle

The program should then display an appropriate message.

5.15 Write a logical function which has two CHARACTERarguments, and which returns
the value true if the first argument contains the second, and false otherwise. Thus, if the
fun.ction is called within, then

within("Just testing", "test")

is true, while

within("Just testing", "Test")

is false. (Hint: one of the intrinsic functions will help here.)
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Test your function with a driver program which inputs pairs of character strings
from the keyboard, and uses the result of a function reference to cause one of the following
forms of message to be displayed:

(a) Thephrase' test' is contained wi thin' Just testing'
(b) Thephrase' Test' is not contained wi thin' Just testing'





Repeating parts of your
program

6.1 Program repetition and the block DO
construct

6.2 Count-controlled DO loops
6.3 More flexible loops

6.4 Giving names to control constructs
6.5 Dealing with exceptional situations
6.6 Obsolete forms of loops

A very large proportion of mathematical techniques rely on some form of
iterative process, while the processing of most types of data requires the
same, or similar, actions to be carried out repeatedly for each set of data.
One of the most important of all programming concepts, therefore, is the
ability to repeat sequences of statements either a predetermined number
of times or until some condition is satisfied.

Fortran has a very powerful, yet simple to use, facility for
controlling the repetition of blocks of code, and this chapter explains how
this facility can be used to control iterative processes as well as more
simple repetitive tasks.

The use of repetitive techniques, however, often leads to
situations in which it is required to end the repetition earlier than had
been anticipated, and Fortran contains a number of statements to assist
in these exceptional cases. By their nature, however, such statements
interrupt the normal flow of control through the program and must be
used with care if they are not to lead to other problems.

169
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6.1 Program repetition and the block DO construct

So far, most of our programs have taken rather longer to write than it would have
taken to solve the problem by hand! This is because they have consisted of a
series of instructions which are executed in sequence once only. In many cases the
programs would be much more useful if they could be repeated with different sets
of data. For instance, Example 3.1 converted a single Centigrade temperature to
Fahrenheit; it would be much more useful if it could convert a series of
temperatures or create a table of equivalent temperatures.

Before we see how we can do this in Fortran let us re-examine the
structure plan for Example 3.1:

1 Read Centigrade temperature

2 Calculate Fahrenheit equivalent

3 Print bQth temperatures

There are three main ways in which we could modify this plan to enable
the program to convert more than one temperature. The first of these simply
states that the process is to be repeated a predetermined number of times, say 10:

1~~t't6etonQwing 10 times
1.1" ,Read Centigrade temperature
1.~ 'Calculate Fahrenheit equivalent
1.3 Print both temperatures

A more flexible approach would be to ask the user how many
temperatures are to be converted:

1 Read number of temperatures to be eonvetfed

2 Rep,~~tthfffQllowing Hum times
4fl:;, ' 't~ntigrade ,temperature

" '?-~~".'~"'..".., ' , .. Fahrenheit equivalent
z.:f,Pt{ntboth temperatures

A variation on this would be to ask after each conversion if any more
conversions were required:

1 Repeat the following
1.1 Read Centigrade temperature
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Repeat the following 10 times:

1.1 Read Centigrade temperature

1.2 Calculate Fahrenheit equivalent

1.3 Print both temperatures

Figure 6.1 A program loop.

Another variation would be to produce a table of equivalent temperatures
in the following way:

Clearly this will produce a table of equivalent temperatures at 5 °C intervals from
a °C to 100 °C without the need for any data to be read at all.

The repetition of a block of statements a number of times is called a loop
(see Figure 6.1) and is so important that Fortran contains a special construct with
exactly the features that are required. It is called a DO construct and takes one of
the following forms:

DO count=initial, final, inc

block of statements

END DO

@
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or

DO count=initial, final

block of statements

END DO

or simply

DO

block of statements

END DO

A loop created by use of a DO construct is called a DO loop.

6.2 Count-controlled DO loops

The first statement of a DO loop is called a DO statement and, as we have already
seen, takes one of the forms:

DO count=initial, final, inc
DO count=initial, final
DO

The first two alternatives define a count-controlled DO loop in which an
integer variable, known as the DO variable, is used to determine how many times
the block of statements which appear between the DO statement and the END DO
statement are to be executed. We shall discuss the third alternative in Section 6.3.
There are also two other forms of the DO statement which we do not advocate
using, but which will be briefly discussed in Section 6.6. .

Informally, we can consider the second, slightly simpler, form, in which inc
is absent, as meaning that the loop is executed for count taking the value initial the
first time that the loop is executed, initial+ 1 the. next time, and so on until it
takes the value final oli the last pass through the loop.

In a similar manner, we can informally consider the first form to mean that
the loop is executed for count taking the value initial the first time that the loop is
executed, initial+ inc the next time, and so on, with the value of count being
incremented by inc for each subsequent pass; in this case the final pass through
the loop will be the one which would result in the next pass having a value of
count greater than final.
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DO i=1,10
DO j=20,50,5
DOp=7,19,4
DO q=4, 5,6
DO r=6, 5,4
DOx=-20,20,6
DOn=25,0,-5
DOm=20, -20,-6

Iteration count

10
7
4
I

°7
6
7
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DO variable values

1,2,3,4,5,6,7,8,9,10
20,25,30,35,40,45,50
7,11,15,19
4
6
-20,-14,-8,-2,4,10,16
25,20,15,10,5,0
20,14,8,2,-4,-10,- 16

Figure 6.2 Some examples of DOstatements and their effect.

The formal definition of this process is that when the DO statement is
executed an iteration count is first calculated using the formula

MAX ( (final-initial+inc) / inc, 0)

and the loop executed that many times. On the first pass the value of count is
initial, and on each subsequent pass its value is increased by inc. If inc is absent
then its value is taken as 1. The effect of the MAX function is that if final < initial
and inc > 0 then the iteration count will be zero, and the statements in the loop
will not be executed at all. Notice, however, that count will be set to the value
initial since this assignment takes place before the iteration count is tested.

The DO variable, count, must be an integer variable, while initial, final and
inc must be integer expressions.

Because of its special role, it is not permitted to alter the value of the DO variable
between the initial DO statement and the corresponding END DO statement by any means
other than the automatic incrementation which is part of the DO loop processing.

Figure 6.2 shows some examples of the iteration counts for a number of
different DO statements, and the values that will be taken by the DO variable on
each pass through the corresponding loops, and it can be seen that our informal
description is perfectly adequate as long as care is taken over the last value. It
must always be remembered, however, that the way that a loop works is not by
looking at the value of the DO variable on each pass, but by calculating the
iteration count once and then decrementing it by one after each pass is
completed. One effect of this is that once the loop has been completed (that is, it
has been executed the number of times defined by the iteration count) the DO

variable will have the value that it would have had on the next pass through the
loop, if there had been one. Another effect is that if the values of initial, final and,
if it is present, inc are such as to result in a zero or negative value for the iteration
count then the loop is not obeyed at all, because the value of the iteration count is
examined immediately before commencing execution of each pass.
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[!] Problem
Write a program which first reads the number of people siHing an exam. It should
then read their marks (or scores) and print the highest and lowest marks, followed
by the average mark for the class.

[!] Analysis
This is a straightforward problem which will use a DO loop to repeatedly read a
mark and use it to update the sum of all the marks, the maximum mark so far, and
the minimum mark so far. -

Data design

Purpose

Number of people (data)
Mark (data)
Max and min marks
Sum of all marks
Average of all marks
DO variable

Structure plan

Type

INTEGER
INTEGER
INTEGER
INTEGER
REAL
INTEGER

Name

number
mark
,maximum, minimum
sum
average
i

Since the DO variable is only used to control the loop we will follow normal
programming (and mathematical) conventions and use the name i for this purpose.

One aspect that must be very carefully considered is the initialization of
the three variables which will be used to save the accumulated sum of the marks,
and the maximum and minimum marks. In this example the cumulative sum must
obviously start at zero, but what about the maximum and minimum marks? What
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we shall do (at steps 3.3 and 3.4) is to compare each mark that is read with the
highest (or lowest) read previously and store the higher (or lower) as the new
maximum (or minimum). It follows, therefore, that initially the maximum must be
set to a lower value than any actual marks can take, and the minimum must be set
to a higher value than is possible as a mark. If marks are to lie, for example, in the
range 0-100 then any values less than zero or greater than 100 could be used for
the initial maximum and minimum, respectively. However, as the intrinsic function
HUGE is a generic function we can use it to provide the largest possible integer
value, which will be more than large enough!

Finally, as there a~e only three variables to be initialized we could use
assignment statements, but as a general rule it is preferable to always carry out
such initialization in the declaration statement as this causes the initial values to
be stored when the program is first loaded, as well as making it clear that these
are initial values which will be changed when the program is executed.

ill Solution
PROGRAM examination_marks

IMPLICIT NONE

This program prints statistics about a set of exam results

!Variable declarations
INTEGER :: i,number,mark, &

sum=O,maximum=-HUGE(l) ,minimum=HUGE(l)
REAL :: average

!Read number of marks, and then the marks
PRINT *,"How many marks are there? "
READ *,number
PRINT *, "Please type ",number," marks: "

!Loop to read and process marks
DO i=l,number

READ * ,mark
!On each pass, update sum, maximum and minimum
sum = sum+mark
IF (mark>maximum) maximum=mark
IF (mark<minimum) minimum=mark

END DO

! Calculate average mark and output results
average = REAL(sum)/number
PRINT *,"Highest mark is ",maximum
PRINT *,"Lowest mark is ",minimum
PRINT *,"Average mark is ",average

END PROGRAM examination_marks
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Notice, incidentally, the line after the end of the loop in which the average is
calculated. Since both sum and number are integers the expression sum/number
would cause integer division to take place, which would not be appropriate when
calculating an average. The intrinsic function REAL converts an integer to its real
equivalent, thus forcing a real division to take place.

It must be emphasized that there are no restrictions on the types of
statements that may appear in the block of statements which constitute the range
of a DO loop. In particular, other DO loops may be nested within a DO loop,
although the whole of the nested loop must, of course, lie within the outer loop.
Example 6.2 shows an example of a nested DO loop.

ill Problem
Write a program to print a set of multiplication tables from 2 times up to 12
times, where each table should take the form:

x times 1is x
x times 2 is 2x

x times 12 is 12x

~ Analysis

This is an extremely simple program to visualize:

Data design

Purpose

Two values in table

Structure plan

Type

INTEGER

Name

i,j
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~ Solution

PROGRAM multiplication_tables
IMPLICIT NONE

A program to print multiplication tables from 2 to 12 times

Variable declarations
INTEGER .. i,j

!Outer loop defines which 'times table'
DO i=2,12

PRINT *," "
PRINT *,i," times table"
DO j=1,12

PRINT *,i," times ",j," is ",i*j
END DO

END DO
END PROGRAM multiplication_tables

Figure 6.3 shows part of the results produced by running this program.

3 times 9 is 27
3 times 10 is 30
3 times 11 is 33
3 times 12 is 36
4 times table
4 times 1 is 4
4 times 2 is 8
4 times 3 is 12
4 times 4 is 16
4 times 5 is 20
4 times 6 is 24
4 times 7 is 28
4 times 8 is 32
4 times 9 is \ 36
4 times 10 is 40

Figure 6.3 Part of the results producedby multiplication_tables.
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[I] Problem

Write a program to print a set of multiplication tables from 2 times up to 12
times, where each table only goes up to 'x times x is :r'."

rn Analysis

This is a very similar problem to that in Example 6.2, except that the final value of
the DO variable in the inner loop will be different each time it is entered to print a
new table. This is more like the situations in which counting loops are normally
used, in which some or all of the controlling values are variables, rather than
constants.

Data design

Purpose

Two values in table

Structure plan

Type

INTEGER

Name

i,j

I1J Solution

PROGRAM multiplication_tables
IMPLICIT NONE

A program to print multiplication tables from 2 to 12 times

Variable declarations
INTEGER :: i,j

!Outer loop defines which 'times table'
DO i=2,12

PRINT *," "
PRINT *,i," times table"
DO j=l,i

PRINT *,i," times ",j," is ",i*j
END DO

END DO
END PROGRAM multiplication_tables
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3 times 1 is 3
3 times 2 is 6
3 times 3 is 9

4 times table
4 times 1 is 4
4 times 2 is 8
4 times 3 is 12
4 times 4 is 16
5 times table
5 times 1 is 5
5 times 2 is 10

Figure 6.4 Part of the results produced by the revised multiplication_tables.

Figure 6.4 shows part of the results produced by running this program.

6.3 More flexible loops

The examples that have been discussed above all use the DO variable to control
the number of times that the loop is executed. However, there are a great many
situations in which it is not possible to determine this number in advance, for
example in a mathematical calculation which is to be terminated when some value
becomes less than a predetermined value. In this situation we can use the third
form of the DO statement mentioned in Section 6.1, together with a new
statement, EXIT, which causes a transfer of control to the statement immediately
following the END DO statement. Since this statement will, when executed, cause all
the remaining statements in the loop to be omitted, it follows that it is
always used in association with one of the control statements discussed in
Chapter 5.

Thus, for example, the following loop will continue to be executed until
the value of term becomes less than the value of epsilon:
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DO

IF (term < epsilon) EXIT

END DO
!After obeying the EXIT ,statement execution continues
! from the next statement

However, using this form of the DO statement does incur the risk that the
condition for obeying the EXIT statement may never occur. In that situation the
loop will become what is known as an infinite loop, and will continue executing
until the program is terminated by some external means such as exceeding a time
limit or switching off the computer! In order to avoid this possibility, we strongly
recommend that this non-counting form of the DO statement is only used when
the programmer can be absolutely certain that there is no possible situation in
which the terminating condition will not occur. Since such a 100% certainty is
rare, we recommend that such loops should normally contain a fail-safe
mechanism in which a DO variable is used to limit the number of repetitions to a
predefined maximum. Thus, the simple example above should be extended as
follows:

DO count=l,max_iterations

IF (term < epsilon) EXIT

I'After obeying the EXIT statement, or after obeying
the loop max_iterations' times, execution continues
from the next statement

One additional advantage of this approach is that the number of times
that the loop was executed is always available after an exit has been made from
the loop. If this exit was made because the maximum number of iterations had
been carried out then the rules stated in Section 6.2 tell us that the count will have
the value that it would have ha,d on the next iteration (max_iterations+l in the
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example above). It is therefore trivially easy to determine whether the loop ended
because the terminating condition was met, or whether it had carried out the
maximum number of allowable iterations without achieving the terminating
condition, which, in some cases, may indicate that there is an error in the logic of
the program. Example 6.4 illustrates this situation, and also shows how using a DO
variable can bring other benefits to loops that do not apparently require one.

[!] Problem
A set of exam marks, or scores, for a class is provided consisting of three items for
each examinee: a number which will be used to identify the student, the mark and
a code (F= female, M = male) to indicate the sex of the examinee. The data is
terminated by a record containing anything other than F or M for the sex code. It
is required to calculate the average mark for the class, and also the average mark
for the boys and girls separately.

m Analysis

The program for this problem needs to produce a sum of all the marks and to
count the examinees in order to calculate the class average, and also needs to do
the same for the boys and the girls separately. We can use the DO variable to
count the total number of examinees. Our design is therefore as follows:

Data design

Purpose

A Constants:
Codes for malelfemale
Max no. of marks

B Variables:
Student number (data)
Exam mark (data)
Sex code (data)
Number of each sex
Total marks and by sex
DO variable

Structure plan

Type

CHARACTER
INTEGER

INTEGER
INTEGER
CHARACTER
INTEGER
INTEGER
INTEGER

Name

male. female
max-pupils

student
mark
code
num_boys. num..$irls
total_marks. marks_boys. marks..$irls
num-pupils
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Notice that we have defined two constants (male and female) to represent the
relevant codes (M and F). This is not strictly necessary, especially in such a simple
program as this, but it makes the program easier to follow and is good
programming practice. Notice also that, since the three averages are not required
except at the very end for printing, it is not necessary to declare any variables in
which to store them. The only remaining difficulty is deciding on the maximum
number of times we shall allow the loop to be repeated. Since the problem refers
to a school class a maximum of 100 should be more than sufficient.

@] Solution
PROGRAM examination_statistics

IMPLICIT NONE

This program calculates some simple examination statistics

! Constant and variable declarations
CHARACTER, PARAMETER :: male="M",female="F"
INTEGER, PARAMETER :: max-pupils=lOO
INTEGER:: student,mark,num-pupils,num_boys=O,num_girls=O, ,

total_marks,marks_boys=O,marks_girls=O
CHARACTER :: code

! Read at most max-pupils sets of data
PRINT *,"Type up to ",max-pupils," exam results."
PRINT *,"Each result must consist of the student number, ,

'the mark, and a code"
PRINT *,"The code is F for a female student and M for a male"
PRINT *,"Data should be ended by a zero student number and'

'mark, followed by any code other than M or F"

DO num-pupils=l,max_pupils
! Read next mark and code
READ *,student,mark,code
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! Select appropriate action
SELECT CASE (code)

! Female pupil
CASE ("F")

num_girls = num_girls+l
marks_girls = marks_girls+mark

! Male pupil
CASE ("M")

num_boys = num_boys+l
marks_boys = marks_boys+mark

End of data
CASE DEFAULT

EXIT
END SELECT

END DO

! Adjust num-pupils to correct number
num-pupils = num-pupils-l

!Calculate total marks
total_marks = marks_boys+marks_girls

! Calculate and print averages
IF (num-pupils == 0) THEN

PRINT *,"There was no data!"
ELSE

! Deal with no terminator case
IF (num-pupils == max-pupils) THEN

PRINT *,max-pupils," sets of data read without a &
&terminating record"

PRINT *, "Results are based on these pupils only"
END IF
PRINT *, "There are" ,num-pupils," pupils. Their average &

&mark is ",REAL(total_marks)/num-pupils
IF (num_girls > 0) THEN

PRINT *, "There are ",num_girls," girls. Their &
&average mark is",REAL(marks_girls)/num_girls

ELSE
PRINT *,"There are no girls in the class"

END IF
IF (num_boys > 0) THEN

PRINT *,"There are ",num_boys," boys. Their average &
&mark is ",REAL(marks_boys)/num_boys

ELSE
PRINT *,"There are no boys in the class"

END IF
END IF

END PROGRAM examination_statistics
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Notice that at the exit from the loop we subtracted 1 from num-pupils. We
should briefly examine why this was done. There are two cases to consider -
either the special terminator data is read, or the maximum number of marks are
read with no terminator. Let us look at each of these cases separately.

Assume that the class has 35 pupils. On the first pass through the loop
num-pupils is 1 and the first pupil's mark is read. On the next pass num-pupils is
2 and the second pupil's mark is read. On the 35th pass num-pupils is 35 and the
35th, and last, pupil's mark is read. On the next pass num-pupils is therefore 36
and the terminator data is read. On exit from the loop num-pupils is thus one
more than the number of pupils.

If no terminator is read, then after max-pupils marks have been read the
loop will finish. In Section 6.2 we saw that if a DO loop completes its specified
number of iterations then the DO variable will have the value it would have had on
the next iteration. In our case this will be max-pupils+l - one more than the
number of pupils whose marks were read.

In both cases therefore the number of pupils is num_pupils-l.
Nevertheless, it is appropriate to print a warning message in the latter case to
draw attention to the possible omission of some marks if the fail-safe action of the
DO loop came into effect before data for all the pupils had been processed.

There are two points to note about the calculation and printing of the
averages. The first is that a test is made to see if there are any pupils in each
category (so as to avoid dividing by zero) and a suitable message printed if there
are not. The second concerns the calculation of the average. The program has
assumed that the marks are integers, and of course the number of pupils is an
integer. An expression such as total_marks/num_pupils would therefore lead to
an integer division being carried out and the average given in integer form
(truncated, not even rounded!). This is not suitable and so steps must be taken to
force a real division.

One approach would be for the sums of marks to be kept in real variables.
The ensuing expressions would be mixed-mode and would therefore be evaluated
using real arithmetic. Alternatively, the sums can be converted to real form once
they have been calculated. The easiest way to do this is to use the intrinsic
function REAL which simply produces as its result the real equivalent of its
argument, thus once again leading to a mixed-mode expression. It is not
necessary to also make the divisor real as the compiler will take care of this
anyway when processing the mixed-mode expression.

The program written for Example 6.4 omitted to deal with one important
situation, namely what happens if the data supplied is invalid, for example if a
mark is read which is outside an acceptable range (for example, 0-100). A more
serious situation would be if the code was incorrectly typed, leading to premature
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exit from the loop before all the data had been read. Defining a termination code,
say X, and treating anything other than M, F or X as an error would deal with
this, if we knew what to do once we had detected the error.

The difficulty, therefore, is not how to detect these situations, but what to
do when we have done so. Here we can make use of another new statement,
CYCLE. This is very similar to the EXIT statement except that instead of
transferring control to the statement after the END DO statement it transfers control
back to the start of the loop in exactly the same way as if it, in fact, transferred
control to the END DO statement. This means, of course, that the iteration count is
decreased by one and the DO variable, if any, incremented appropriately, before a
test is made to determine whether another pass through the loop is required.
Although the use of a CYCLE statement will, therefore, avoid incorrectly updating
the various counts and sums it will lead to the wrong figure for the total number
of pupils. This is easily dealt with, however, by using the sum of the number of
boys and the number of girls for this purpose.

A possibly more serious problem is that this will reduce the maximum
number of iterations of the loop, and hence the maximum number of sets of data
that can be read. Since this maximum number is meant to be a fail-safe value, and
should never even be closely approached, we shall ignore this problem for the
moment.

An additional case can therefore be added to the CASE construct in the DO
loop to deal with an invalid code:

! End of data
CASE ("X")
EXIT
! Invalid code
CASE DEFAULT
PRINT * I "Invalid code - please re-enter data"
CYCLE

END SELECT

In a similar manner, the two cases which deal with the boys and girls
could be modified to deal with invalid marks, using either a nested CASE construct
or a block IF construct:

! Female pupil
CASE ("F")
SELECT CASE (mark)
CASE (0:100)
num_girls = num_girls+l
marks_girls = marks_girls+mark

CASE DEFAULT
PRINT * I "Invalid mark - please re-enter data"
CYCLE

END SELECT
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or

! Male pupil
CASE ("M")
IF (mark>=O .AND. mark<=100) THEN
num_boys = num_boys+l
marks_boys = marks_boys+mark

ELSE
PRINT *,"Invalid mark - please re-enter data"
CYCLE

END IF

SELF-TEST EXERCISES 6.1

1 What is a DO loop?

2 What restrictions (if any) are there on the statements which can appear in a DO loop?

3 What is the difference between a count-controlled DO loop and other DOloops? When
should the count-controlled form be used?

4 What is a DO variable? What restrictions (if any) are there on the ways in which it is
used?

5 What is the iteration count? How is it calculated?

6 How many times will each ofthe loops controlled by the following DO statements be
executed?

(a) DO i=-5,5
(b) DO j=l,12,2
(c) DOk=17 ,15, -1
(d) DO1=17,15
(e) DOm=100 ,350 ,IS
(f) DOn=10, 10 ,10

,
II,

7 What is the value of the DOvariable after normal termination of a DO loop?

8 What will be printed by the following programs?

(a) PROGRAM1oop_test_1
IMPLICIT NONE
INTEGER :: i=1,j=2,k=4,1=8,m=0,n=0
DO i=j,k,1

k=i
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DO j=l,m,k
n=j
DO k=l,n

DO l=i,k
m=k*l -1

END DO
END DO

END DO
END DO
PRINT *,i,j,k,l,m,n

END PROGRAM loop_test_l
(b) PROGRAM loop_test_2

IMPLICIT NONE
INTEGER:: i=1,j=2,k=4,1=8,m=O,n=O
DO i=j,k,l

k=-i
DO j=l,m,k

n=j
DO k=l,n

DO l=i,k
m=k*l

END DO
END DO

END DO fn"
END DO

PRINT *,i,j,k,l,m,n
END PROGRAM loop_test_2

9 What is an infinite loop? How can it be avoided?

10 What is an EXIT statement used for?What is the effect of executing one?

j

11 What is a CYCLE statement used for?What is the effect of,executing one?
"

6.4 Giving names to control constructs

The examples that we have given above of the use of the EXIT and CYCLE
statements should cause no confusion regarding the next statement to be
executed. However the situation with nested loops is less clear. For example, to
which statement will the EXIT statement in Figure 6.5 transfer control?

! The rule for determining this is that the EXIT statement transfers control
to the statement immediately following the END DO statement belonging to the
innermost DO construct that contains the EXIT statement. Thus, in the code
fragment shown in Figure 6.5 the EXIT statement will transfer control to the first
executable statement following the second END DO. This is ,usually what is wanted,
but there will be occasions when it is required to exit from all of th: enclosing
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DO

DO

DO

EXIT

DO

END DO
! This one (1)?

END DO
! or this one (2)?

END DO
! or this one (3)?

END DO
! or this one (4)?

Figure 6.5 Exiting from a nested DO loop.

loops, or even from more than the immediately enclosing loop, but not from all of
them. A similar rule applies to the CYCLE statement.

For this reason, it is possible to give a name to a block DO construct, by
preceding the DO statement by a name, which follows the normal Fortran rules for
names and is separated from the DO by a colon, and by following the corresponding
END DO by the same name:

block_name: DO

END DO block name

Note that if the initial DO statement is named in this way then it is mandatory
for the same name to appear on the corresponding END DO statement, and vice
versa.

The CYCLE and EXIT statements may also be followed by the name of an
enclosing DO construct, in which case control is transferred to, or after,
respectively, the END DO statement having the same name:
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outer: DO

inner: DO

SELECT CASE (n)
CASE (1)

EXIT outer
CASE (2)

EXIT inner
CASE (3)

CYCLE outer
CASE (4)

CYCLE inner
END SELECT

END DO inner

END DO outer

Note that, in this example, the references to inner in two of the case selections is
redundant, since that is where they would transfer control to in any case, if no
construct name was speCified. However it helps to ensure that there is no doubt in
the (human) reader's mind about what is intended. .

A similar naming facility also exists for the block IF and CASE constructs
as shown in Figures 6.6 and 6.7, but in these cases the names are purely for clarity
in the case of complex structures. Similar rules apply in these cases as for the
block DO as regards the requirements for matching names on corresponding IF
and. END IF statements, and on corresponding SELECT CASE and END SELECT
statements. '!

iLconstruct_name: IF (conditi~~) THEN

END IF iLconstruct_name

Figure 6.6 A named block IF construct.
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case_construct_name: SELECT CASE (case_expression)
CASE (case_range_l)

END SELECT caseJonstruef _name

Figure 6.7 A named CASE construct.

There is no requirement for any of the ELSE IF or ELSE statements in
a named block IF construct to include a name, but if they do then it must be
the name of the block IF construct of which they are a part, as shown in
Figure 6.8.

Similarly, there is no requirement for any of the CASE statements in a CASE
construct to include a -name, but if they do then it must be the name of the CASE
construct of which they are a part.

outer_iLconstruct: IF (condition_I) THEN

ELSE IF (condition_2) THEN outer_iLconstruct

inner_iLconstruct: IF (condition_3) THEN

ELSE IF (condition_4) THEN inner_iLconstruct

ELSE inner_iLconstruct

END IF inne,:_iLconstruct

ELSE outer_if Jonstruct

END IF outer_iLconstruct

Figure 6.8 Comprehensively named nested block IF constructs.
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As a general rule we do not recommend the naming of any of these
structures except when there is a clear need for a name to be used with an EXIT or
CYCLE statement in a DO loop, as the syntax is rather messy. Nevertheless, there
will be occasions such as, for example, where an IF, SELECT CASE or DO statement
is a long way from the corresponding END IF, END SELECT or END DO statement
when the use of named constructs will make the program easier to follow for the
human reader.

6.5 Dealing with exceptional situations

All of the control constructs that we have discussed so far have shared one
common feature, namely that the construct is entered at only one place (the IF,
SELECT CASE or DO statement) and is only left at one place (the corresponding
END IF, END SELECT or END DO statement). This is good programming practice, as
it enables the programmer to control the logic of the program much more
easily than would otherwise be the case. Nevertheless, there are occasionally
situations in which this is either inconvenient, or makes programming very
difficult, and three additional statements exist to help us in these exceptional
situations.

The first of these statements simply terminates execution without the
need to find a way of reaching the END statement of the main program unit. It
consists of the word

STOP

and causes execution of the program to be terminated immediately. Typically this
statement will be used when the program has detected some error from which it
is not possible to recover.

A closely related statement causes a return from a procedure without the
need to find a way of reaching the END statement of the procedure. It consists of
the word

RETURN

and causes execution of the procedure to be terminated immediately and control
transferred back to the program unit which called or referenced the procedure.

The third statement is quite different and causes a transfer of control to
any specified statement in the program unit currently being executed. This is,
potentially, an extremely dangerous thing to do since it interrupts the normal
processing flow in an almost arbitrary way; however, as we shall see, there are
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some situations in which it is the only way out of an awkward situation. This
statement takes either of the forms

GOTO label

or

GO TO label

where label is a statement label which identifies the statement to which control is
to be transferred. Since a GOTO statement causes an unconditional transfer of
control to the specified statement it follows that it should always be used under
the control of an IF or CASE construct, as any statements immediately following it
will otherwise be inaccessible (unless they are labelled and are also the target of a
GOTO statement elsewhere in the program; this leads rapidly to so-called spaghetti
pr~grams, because of their heavily intertwined logical structure, and is to be
deplored).

A statement label consists of from one to five consecutive digits, at least
one of which must be non-zero, and which precedes the statement being labelled.
The statement label must be separated from the statement it is labelling by at
least one space: .

100 READ *,a

001 STOP

99999 PRINT *,error_number

In the old fixed form source a statement label must be written in columns 1-5 of the line, with th~
statement starting in, or after, column 7.

Each statement label is interpreted as though it were an integer, with the
result that the labels 00123, 0123 and 123 are treated as being identical. Every
statement label in a program unit must be unique (for obvious reasons!).

Wherever possible, the use of GOTO statements should be avoided, as experience
over many years has shown them to be the single biggest cause of bad programming
habits and consequent programming errors. Like the STOP and RETURN statements,
however, they are sometimes needed to recover from an error situation.

6.6 Obsolete forms of loops

It has been pointed out in earlier chapters that Fortran 90 contains a number of
statements and constructs which are included for compatibility with earlier
versions of Fortran, but which should not be used in new programs. Nowhere is
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this more apparent than in the areas of program control and looping, where
programming ideas and pradice have developed markedly over the last 20 years.
In particular, there are several alternative forms of the DO loop available, but
whose use we do not recommend in new programs.

The first of these constructs is known as the DO WHILE construct and takes a similar form to the DO
construct already discussed earlier, except that the initial statement takes the form

DO WHILE (logicaCexpression)

The interpretation of this form of DO statement is identical to the two consecutive statements

DO
IF (. NOT. logical_expression) EXIT

and this is, in fact. the way in which the Fortran 90 standard defines it. This construct was not. in fact, part
of FORTRAN 77, although it did exist as an extension in several FORTRAN 77 compilers, and its inclusion
in Fortran 90 is a reflection of an earlier style of programming, since it does not mean that the loop is to be
executed while (or as long as) the logical expression is true, but rather that the next iteration will be initiated
as long as the logical expression is true at the point at which the decision is fmlde about another iteration; that is,
in the DO statement. The use of an EXIT statement under the concrol of an IF statement makes it clear
exactly what is happening and is, in any case, far more flexible since it may be placed anywhere in the loop
and not only at the beginning.

A second variation on the DO construct allows the inclusion of a statement label on the END DO
statement. and a reference to the same label in the corresponding DO statement:

DO label, oar-initial, final
DO label, oar-initial, final, inc
DO label, WHILE (logical_expression)

A third variation, which was the only standard possibility prior to Fortran 90, uses either of the first two
forms above as the initial statement of the loop, but instead of an END DO statement the final statement of
the loop may be one of a wide range of Fortran statements, with the same label as that referred to in the
corresponding DO statement. More information about this form of loop will be found in Appendix E.

SELF-TEST EXERCISES 6.2

1 What is the purpose of naming a block DO construct? What form does the name
take?

2 What is the purpose of naming a block IF construct or a CASEconstruct?

3 What does a RETURN statement do? When should it be used?

4 What does a STOP statement do? When should it be used?"

5 What does a GOTO statement do? When should it be used?

6 What is a statement label? What restrictions (if any) are there on statement labels?
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SUMMARY

• A sequence of statements which are repeated is called a loop.

• The DO construct provides the means for controlling the repetition of
statements within a loop.

• In a count-controlled DO loop the number of times the loop is repeated is
determined by the value of t!"Jeiteration count, which is calculated before the
first iteration.

• In a count-controlled DO loop the DO variable is incremented on each pass
through the loop.

• It is not permitted for the program to alter the value of a DO variable during
the execution of the loop, other than through the automatic incrementation
process.

• On normal completion of a count-controlled DO loop the DO variable will have
the value that it would have had on the next pass through the loop, had there
been one.

• Block DO constructs, block IF .constructs and CASE constructs may be named.

• Execution of an EXIT statement in a loop causes the next statement to be
executed the one immediately after the END DO statement of the innermost loop
surrounding the EXIT statement, unless the EXIT statement is named, in which
case it will be the statement immediately after the END DO statement having the
same name.

• Execution of a CYCLE statement in a loop causes the next statement to be
executed to be as though execution had continued with the END DO statement of
the innermost loop surrounding the EXIT statement, unless the EXIT statement
is named, in which case it will be as though execution had continued with the
END DO statement having the same name.

• The STOP statement causes an immediate termination of the execution of the
program.

• The RETURN statement causes an immediate termination of the execution of the
current proce~ure.

• A statement label may be used to identify a statement.

• A GOTO statement transfers execution to the statement in the same procedure
having a specified label.

• Fortran 90 syntax introduced in Chapter 6:

Block DO construct DO do_ var=initiaIJinal, inc

END DO
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DO do_ var=initial ,final

END DO

DO

Loop control statements

Named block construct
statements

STOP statement

RETURN statement

GOTO statement

END DO

EXIT
CYCLE

do_block_name: DO do_var=inifial,final, inc
do_block_name: DO do_var=initial,final
do_block_name: DO

EXIT do_block_name
CYCLE do_block_name
END DO do_block_name

iLblock_name: IF (logicatexpression) THEN

ELSE IF (logical_expression) THEN iLblock_name
ELSE if_block_name
END IF iLblock_name

case_block_name: SELECT CASE. (case_expression)

CASE (case_selector) case_block_name
CASE DEFAULT case_block_name
END SELECT case_block_name
STOP

RETURN

GOTO label
GO TO label

PROGRAMMING EXERCISES

6.1 Halley's comet appears approximately every 76 years, and its last appearance was
in 1986. Write a program to display the dates of the comet's next 10 appearances.

6.2 Write a program that prints a 'countdown', starting at a count which is input
from the keyboard, and which ends by printing 'Blast Offt' when the count reaches
zero.
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Load

Figure 6.9 Diagram for Exercise 6.6.

6.3 Write a program that produces the sine, cosine and tangent of an angle typed in at
the keyboard.

Modify the program so that the user can try more than one angle without having
to rerun the program, but can stop the program from executing when desired.

"'6.4 Find out how many characters there are in the character set used by your
computer; it will probably be 64, 128 or 256. Then write a program to print a list of all the
characters in the order of their internal representation (that is, from 0 to 63, 0 to 127, 0 to
255 etc., as appropriate).

6.5 The international standard paper sizes, such as A4, are defined by the formula

21/4-n/z X 2-1/4-n/Z metres

where n is the number following the letter A. Write a program to print the international
paper sizes in both centimetres and inches (1 inch = 2.54 em) from AO down to A6.

6.6 A lever is the simplest machine known to mankind, and provides a means of lifting
loads that would otherwise be too heavy.

In Figure 6.9, the relationship between the human Effort and the actual Load is
given by the equation

Effort x d1 = Load x dz

Write a program that will produce a table of the effort required to raise a load of
2000 kg when the distance of the load from the fulcrum (dz) is fixed at 2 metres. The
program should print out the effort required for levers of lengths differing in steps of
2 metres between two limits (minimum and maximum), which should be input from the
keyboard.

Use the results produced by the program to determine the shortest lever that
could be used to raise the load if the maximum effort is equivalent to 25 kg.

6.7 Mrs Smith is moving from Cambridge, Massachusetts, to Cambridge, England,
and wants to be able to convert her recipes from American measures to British measures
using the following conversions:



US
1 cup flour
1 cup butter
1 cup sugar
1 cup confectioner's sugar
1 cup milk

British
4 oz flour
8 oz butter
6 oz sugar
4 oz icing sugar
8 fl oz milk or 0.4 pints milk
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Write a program which will read lines of the recipe, each containing the quantity,
followed by a space, then the units (which may be ignored), followed by another space and
then the name of the ingredient. Your program should convert this data into the number of
ounces of the ingredient (or the number of pints in the case of milk), and print the revised
list of ingredients. Any lines not containing one of the above ingredients should be left
unaltered.

6.8 A sheet metal stamping company buys its metal in rectangular sheets of various
sizes: 2, 5 or 10 metres long by 2, 4 or 6 metres wide. It has an order for a number of
circular discs of a given diameter (less than one metre) and wishes to waste as little metal as
possible.

Write a subroutine which takes the number and diameter of discs required and the
size of the sheet, and then calculates the number of sheets of this size required and the
percentage of the metal wasted.

Use this subroutine in a program which requests the number and diameter of discs
required, and then cycles through all the available sheet sizes automatically and prints the
relevant information for each sheet size so that the user can decide which sheet size will
produce least wastage.

Finally, modify the program so that the program decides which sheet size to use,
based on the least amount of metal wasted.

6.9 The yield of a chemical reaction after time t seconds at a temperature of TOC is
given by 1 - e-kt, where k = e-q and q = 2000/(T + 273.16).

Write a program which allows the user to enter the temperature, and which then
prints out the yield for each minute until it reaches 95%.

6.10 A simple method of determining whether an integer is a prime number is to try
dividing it by all integers less than or equal to its square root, and checking to see whether
there is any remainder.

Write a function which will determine whether a number is a prime using this
method, and will return the value of the first factor found or one if it is a prime.

Test this function by including it in a simple test program that reads a number
from the keyboard and either informs the user that it is a prime or displays one of its
factors.

Finally, modify your program to print a list of primes less than 32768.

6.11 The length, L, of a bar of metal at a temperature T is given by the equation

L = Lo + ETLo

where the temperature is measured in degrees Celsius, Lo is the length of the bar at O°c,
and E is the coefficient of expansion.
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Write a program that will produce a set of tables showing the lengths of various
bars of metal at various temperatures, assuming that each bar is exactly one metre long at
20°C. For each type of metal the program should read the coefficient of expansion and the
range of temperatures to be covered.

6.12 The Fibonacci Sequence of numbers is one in which each number is the sum of the
previous two. It starts 'I .

1, 1, 2, 3, 5, 8, ... etc.

Write a program to generate the first 36 members of the sequence.
The ratio of consecutive numbers in the series (111, 1/2, 213, 3/5, ... ) tends to the

so-called Golden Ratio:

Modify your program so as to dete~ine how far along the sequence you have to go until
the difference between the Golden Ratio and that of consecutive numbers is less than
10-6•

6.13 The value of sinx (where x is in radians) can be expressed by the infinite series

xl r" x7 x9
sin x = x - - + - - - + - - ...

3! 5! 7! 9!

where n! = n X (n - 1) X (n - 2) X ... X 2 X 1

Write a function that uses the above series to calculate sin x to an accuracy that is
provided as an argument, to the function.

(Hint: sin(x + 2ft) = sinx and we may therefore use a value of x which lies
between -1r and +1r to reduce the size of the terms of the expression. Once this has been
done every term after the second is smaller than its predecessor, and so it is easy to know
when to stop the calculation.)

Use this function in a program that calculates the sine of an angle input from the
keyboard to an accuracy which is also input from the keyboard.

Finally, modify this program so that it produces a table showing the value of sin x
for x taking values from 0° to 90° in steps of 1, where 360° = 21r radians. Each line should
show the angle (in degrees), the value of sinx calculated by the program, and the value of
sin x calculated by use of the intrinsic function SIN.

'! ,.

'"6.14 The pressure inside a can of carbonated drink is given by the expression

0.00105 X T2 + 0.0042 X, T + 1.352 arm
• • I' .

where Toe is the temperature of the drink. When the pressure exceeds 3.2 arm the can will
explode.

Write a program to print the pressure inside the can for the temperature rising in
one degree steps from 15 °e until the can explodes.
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6.15 In a simple simulation of a lunar lander, the downward speed V at time T + 1
seconds is related to the speed at time T by the expression:

V(T + 1) = V(T) + 5 - F

where the number 5 allows for the acceleration due to gravity, and F is the number of units
of fuel burnt in that second. The height H of the lander above the moon's surface changes
according to the equation

H(T + 1) = H(T) - V(T)

Write a program to implement this simple simulation. The lander starts at a height
of 200 units, and the user may choose every second how much fuel to burn (between 0 and
10 units). The user should try to achieve a soft landing (which means having a speed of less
than 10 units when H first drops below zero) using the minimum total quantity of fuel.

Your program should print an appropriate message when the lander reaches
ground level!
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7.1 The array concept
7.2 Array declarations
7.3 Array constants and initial values
7.4 Input and output with arrays
7.5 Using arrays and array elements in

expressions and assignments

7.6 Using intrinsic procedures with
arrays

7.7 Arrays and procedures
7.8 Array-valued functions
7.9 Arrays as components of derived

types

In scientific and engineering computing it is commonly necessary to
manipulate ordered sets of values, such as vectors and matrices. There
is also a common requirement in many applications to repeat the same
sequence of operations on successive sets of data.

In order to handle both of these requirements, Fortran provides
extensive facilities for grouping a set of items of the same type as an
array which can be operated on either as an object in its own right, or by
reference to each of its individual elements.

This chapter explains the principles of Fortran 90's array
processing features. These are considerably more powerful than those of
any other programming language, and include the construction of array-
valued constants, the input and output of arrays, the use of arrays as
arguments to procedures, and the returning of an array as the result of a
function. For ease of comprehension, the description in this chapter is
restricted to arrays having one subscript only; arrays having more than
one subscript will be discussed in Chapter 13.

201
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7.1 The array concept

In all that we have said so far, and in all the programs we have written, we have
used one name to refer to one location in the computer's memory. However there
are a great many situations when we should like to repeat a sequence of
operations on a set of related entities, either by repeating the statements in a loop
and having the computer use different variables for each iteration, or by simply
referring to a complete set and instructing the computer to carry out the same
operations on each item in the set.

One way to do this would be to have a group, or array, of locations in
the memory, all of which are identified by the same name but with an index, or
subscript, to identify individual locations. Figure 7.1 illustrates this concept,
using the same types of boxes as were originally used in Chapter 1to introduce
the concept of named memory locations.

In this example the whole set of n boxes is called A, but within the set we
can identify individual boxes by their position within the complete set.
Mathematicians are familiar with this concept and refer to an ordered set like this
as the vector A, and to the individual elements as AI, A2, ••. An.

In Fortran we call such an ordered set of related variables, which have the
same name and type, an array, and we refer to the individual items within the
array as array elements. In Fortran, we cannot use the exact mathematical
notation for a subscript to identify these elements (although we do borrow the
name); instead we follow the name of the array by an identifying integer value
enclosed in parentheses:

A(l), A(2), .,,' A(n)

More precisely, an array element is defined by writing the name of the
array followed by a subscript, where the subscript consists of an integer

A

Figure 7.1 An array of memory locations.
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expression (known as the subscript expression) enclosed in parentheses. Thus, if
x, y and z are arrays, of any type, and i, j and k are integer variables, then the
following are all valid ways of writing an array element:

x(lO)
y(i+4)
z(3*i+MAX(i,j,k))
x(INT(y(i)*z(j)+x(k))

Notice that function references are allowed as part of the subscript expression, as
are array elements (including elements of the same array).

7.2 Array declarations

Up to this point all the variables that we have used have been scalar variables,
and the declaration of such a variable (or its first use if implicit typing is being used) has
caused the compiler to allocate an appropriate storage unit to contain its value.
When we declare an array variable, however, the compiler will need to allocate
several storage units, and the form of the declaration must be modified to provide'
information about the size of the array, and hence the number of storage units
that will be required.

There are two ways of doing this, using either a dimension attribute or
an array specification applied to the variable name.

Let us consider, for example, a situation in which we require three real
arrays, each containing 50 elements. The easiest way to declare these is as
follows:

REAL, DIMENSION (50) :: a,b,c

This informs the compiler that each of the three variables specified is an array
having 50 elements. The alternative approach is to provide the dimension
information with the variable name:

REAL :: a(50),b(50),c(50)

In a similar way to that used in declaring the length of character variables,
the two forms may be combined in a single declaration statement, in which case
the value specified in the dimension attribute applies to all variables which do not
have their own array specification:

REAL, DIMENSION (50) :: a,b,c,x(20) ,y(20),z

As with character lengths, however, we recommend that you should always write
a separate declaration for arrays of different sizes:

@
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REAL, DIMENSION (SO)
REAL, DIMENSION (20)

a,b,e,z
.. x,y

By default the subscripts will start at 1, but if we wish the subscripts to
have a different range of values then we may, instead, provide the lower bound
and the upper bound explicitly, separated by a. colon:

REAL, DIMENSION(11:60) :: a,b,e
REAL, DIMENSION(-20:-1) :: x
REAL, DIMENSION(-9:10) :: y
REAL, DIMENSION(0:49) ::.z

Notice that both negative and zero subscript values are allowed, and that the sizes
of the six arrays declared in this declaration are identical to those declared in the
earlier declaration; only their bounds are different.

At this point we must mention five technical terms that are of great
importance when discussing arrays in Fortran.

• Although all the arrays that have been discussed so far have only had one
subscript, Fortran permits up to seven subscripts, each of which relates to
one dimension of the array. For each dimension there are two bounds
which define the range of values that are permitted for the corresponding
subscript, the lower bound and the upper bound.

• The number of permissible subscripts for a particular array is called its
rank.

• The extent of a dimension is the number of elements in that dimension,
and is equal to the difference between the upper and lower bounds for
that dimension plus one. .

• The size of the array is the total number of elements which make up the
array; this is, of course, the same as the extent for a rank-one array.

• Finally, the shape of an array is determined by its rank and the extent of
each dimension; it is possible to store the shape of any array in a rank-one
array where the value of each element represents the extent of the
corresponding dimension.

In this chapter we shall only consider rank-one arrays, since this is
sufficient for many purposes and will enable us to appreciate many of the
particular features of Fortran's array processing facilities without undue
complexity. Chapter 13 will then build on this knowledge and experience to
discuss the full range of array features.

An array declared in the way shown in the above examples is called an
explicit-shape array because its bounds are declared explicitly. As we shall see
later in this chapter and in Chapter 13, there are other forms of array which do
not need explicit declaration of the bounds. For the present, we shall also assume



PROGRAM array_or_function
IMPLICIT NONE
REAL, DIMENSION (10) :: first
REAL :: second
INTEGER:: i
REAL:: first_i,second_i

first_i = first(i)
second_i = second(i)
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first is an array
second is not an array

Figure 7.2 Array and function references.

that the bounds are constant, although Section 7.7 will discuss situations in which
this restriction may be lifted.

Although the primary reason for declaring an array is to enable the
compiler to allocate sufficient storage space, there is also another reason which
arises from the fact that an array reference and a function reference look the same.
A Fortran compiler, just like a human reader, can only tell which is intended by
looking at the specification statements and seeing whether a dimension attribute
has been specified. This can be illustrated by considering the program extract
shown in Figure 7.2.

It can clearly be seen that the two executable statements have exactly the
same form in every way, and that the only way of determining what is intended
is by noting that the declaration for first includes a dimension attribute, while
that for second does not. The first executable statement therefore assigns the
value of the array element first(i) to the variable first_i. Since there is no
dimension attribute specified for second the second executable statement is
assumed to refer to a real external function second, and the compiler will insert
the appropriate instructions to transfer control to the function second with the
actual argument being specified by i; the value returned by the function will then
be assigned to the variable second_i. It is not unknown, therefore, for missing
array declarations to result in misleading error messages about missing functions!

7.3 Array constants and initial values

Before we examine how to use arrays we must establish how an array constant is
defined. Since an array consists of a number of array elements it is necessary to
provide values for each of these elements by means of an array constructor. In
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its simplest form an array construdor consists of a list of values enclosed between
special delimiters, the first of which consists of the two charaders (/ and the
second of the two charaders /): .

If arr is an integer array of size 10, its elements could therefore be set to the
values 1, 2, ... , 10 by the following statement:

arr = (I 1,2,3,4,5,6,7,8,9,10 I)

This is perfedly satisfadory for a small array, but what if the array had
been 500 elements in size? To deal with this situation, as well as for the general,
and very common, situation in which an array constant is required which has
some regular pattern, we can use an implied DO. This is a special syntax used with
arrays in a number of situations which uses the DO loop counting control
mechanism to step through a set of values and/or array elements. It takes the
general form

where the implied_do_confrol takes exadly the same strudure as the DO variable
control specification in a DO statement. Thus the assignment statement shown
above for the array arr could also be written in the more compad, and less error-
prone, form

arr = (I (i,i=1,10) I)

An implied DO element does not have to appear on its own, and may be
freely mixed with single constants, or other implied DO elements, in the overall list
of values which make up an array construdor. For example, the following array
construdor defines the sequence of 50 values which are all zero except for the
first, which take the values -1, and the last, which takes the value 1:

(/ -1, (0,i=2,49),1 /)

Note that the values of i in this example are only used for counting and that
using the values from 2 to 49 is simply to emphasize to the human reader which
elements will have zero values. We could equally well have written

(/ -1, (0,i=1,48),1 /)

or even, somewhat confusingly,

(/ -1, (0,i=37 ,84),1 /) :'..
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Although the above examples only have a single ih~min the list of values
controlled by the implied DO, there may be as many as required, including other
(nested) implied DO elements if necessary. Thus the following array construdor
defines a sequence of 100 values which are all zero apart from every tenth value,
which takes the value of its position in the list:

(/ ((0,i=1,9) ,10*j,j=1,10) /)

The list of values in an arrayconstrudor must contain exadly the same
number of values as the size of the array to which it is being assigned in either an
assignment statement or in an initial value assignment in the array declaration
statement:

INTEGER, DIMENSION (SO) :: an_array = (/ (0, i=l,SO) /)
INTEGER, DIMENSION (100) :: another_array = &

(/ ((0,i=1,9) ,10*j,j=1,10) I)

The first of these two initial value declarations can, in fad, be further
simplified, as we shall see in Sedion 7.5 when we examine the way in which
arrays are used in expressions and assignment statements.

7.4 Input and output with arrays

Before we can start to use arrays in our programs, however, we must be able to
input data to arrays and output results from arrays. There are three possibilities
here, depending upon whether we wish to refer to individual array elements, to
groups of array elements, or to complete arrays.

• Array elements are heated in just the same way as scalar variables, and so
need no further discussion.

• An array name may appear in an input or output list, in which case it
refers to the whole array. I

• Part of an array may be identified in an input or output list by use of an
implied DO in a similar manner to the way that this feature is used in an
array construdor. In this case, the item in the input or output list takes the
form

Thus, for example, the following statement would output the odd-numbered
elements of the array p whose subscripts lie in the range 1to 99, followed by the
third and fourth elements of the array q and the whole of the array r:
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PRINT*, (p(i) ,i=1,99,2) ,q(3) ,q(4),r

One point 'to note is that it is permitted for one or more of the controlling
values for an implied DO in an input statement to be themselves input by the same
statement:

READ*,first,last, (arr(i) ,i=first,last)

This form of input statement must, however, be used with care, for it opens the
door to a frequent cause of errors. Consider, for example, what would happen if
the value read for first was less than the lower bound of the array arr, or if the
value read for last was more than the upper bound. The READstatement would
read these values and then, under the control of the implied DO list, would read
sufficient data to occupy the array elements arr (first) to arr (last).
Unfortunately, checking that the subscript value is within the defined bounds
is a time-consuming task and many compilers will only insert the code for such
checking into the compiled program upon request, for example during testing. If
such checking is absent or inactive the program will store the input values in
consecutive storage units starting at what it believes to be arr (first), even if
this involves using other memory locations which are not part of the array arr!

The fact that these memory locations have been overwritten may not be
immediately apparent, and the subsequent incorrect results and/or program

PROGRAM array_input
IMPLICIT NONE
INTEGER, PARAMETER :: lower=-50,upper=50
INTEGER:: first,last,i
REAL,DIMENSION(lower:upper) :: arr

READ *,first,last
IF (first>=lower .AND. last<=upper) THEN

READ *, (arr(i) ,i=first,last)
ELSE

PRINT *,'Invalid array subscript specification!'

END IF

END PROGRAM array_input

Figure 7.3 A safe way of reading data with an implied DO.
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failure can be very difficult to identify. In order to guard against this possibility it
is often preferable first to read the controlling information and check that it is
acceptable before reading the full set of data. Figure 7.3 shows one way in which
this might be done for the case shown above.

7.5 Using arrays and array elements in expressions
and assignments

An array element can be used anywhere that a scalar variable can be used. In
exactly the same way as a scalar variable, it identifies a unique location in the
memory to which a value can be assigned or input, and whose value may be used
in an expression or output list, etc. The great advantage is that by altering the
value of the array element's subscript it can be made to refer to a different
location.

The use of array variables within a loop therefore greatly increases the
power and flexibility of a program. This can be seen in Figure 7.4, where a short

PROGRAM survey_analysis
IMPLICIT NONE
TYPE person

CHARACTER (LEN=12) first_name, middle_initial*l, &
last_name

INTEGER :: age
CHARACTER :: sex ! M/F
CHARACTER (LEN=ll) .. social_security
REAL :: height, weight

END TYPE person
INTEGER, PARAMETER :: max-people=100
INTEGER:: i
TYPE (person) ,DIMENSION (max-people) :: individual

DO i=l,max-people
READ * ,individual (i)
IF (individual (i)%age) < 0) EXIT

END DO

END PROGRAM survey_analysis

age<O ends data

Figure 7.04. Inputting data to an array.
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loop enables up to 100 sets of survey data to be input and stored for subsequent
analysis in a way which is not otherwise possible.

In FORTRAN 77, and most other programming languages, this is the
only way that arrays can be used in most types of operations. However Fortran 90
enables an array to be treated as a single object in its own right, in much the same
way as a scalar object. We have already used this fact when we assigned an array
constant to an array variable in the previous section with a statement of the form

array_name = (/ list of values /)

and we should now establish the rules for working with whole arrays.

• Two arrays are conformable if they have the same shape

• A scalar, including a constant, is conformable with any array

• All intrinsic operations are defined between two conformable objects

When two conformable arrays are the operands in an intrinsic operation
then the operation is carried out on an element-by-element basis. Thus the
following code fragment will result in the arrays a and b having identical values:

REAL, DlMENSION(20)

a = c*d

DO i=1,20
b(i) = c(i)*d(i)

END DO

a,b,c,d

Fortran 90 array processing

FORTRAN 77 style
array manipulation

It is immediately obvious that the Fortran 90 style is much easier to read than the
earlier FORTRAN 77 style, as well as avoiding the need for the extraneous DO
loop variable, i.

An important point to notice is that the rule is that the shapes of two
arrays must be the same for them to be conformable. This means that the arrays
must have the same rank (that is, the same number of dimensions) and the same
extent in each dimension. It does not mean that the range of the subscripts need
be the same. The importance of this can be seen from Figure 7.5, which shows
exactly the same program fragment as that above, except that the bounds of the
four arrays are all different, even though their extents are the same. Here the
advantage of the Fortran 90 array processing capability becomes really apparent!
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REAL a(1:20) ,b(0:19) ,c(10:29) ,d(-9,10)

a = c*d Fortran 90 style
DO i=1,20

b(i-l) = c(i+9)*d(i-10)
END DO

FORTRAN 77 style

"

Figure 7.5 Fortran 90array processing.

The rule that a scalar is conformable with any ai-ray means that we can
write statements such as

which will cause every element of the array array_I, whatever its shape, to be
assigned a value 10 times the corresponding element of the array array_2, as
long as its shape is the same as that of array_I. Furthermore, it means that the
statement

arr = 0

will set every element of the array arr to zero, regardless of its rank and size. In
particular, this means that all the elements of an array may be initialized to zero in
exactly the same way as for scalar variables:

REAL:: a=O.O, b=O.O
REAL, DIMENSION (SO) :: c=O.O, d=O.O

7.6 Using intrinsic procedures with arrays

The Fortran intrinsic procedure library, as we have already seen, contains a
considerable number of functions and subroutines which are of great importance
in many programming situations. A particularly valuable aspect of the Fortran 90
array processing facilities is that of elemental intrinsic procedures, whereby
arrays may be used as arguments to many of the intrinsic procedures in just the
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same way that scalars are. If an elemental function has an array as an argument
then the result of the function reference will be an array with the same shape as
the argument. Thus the statement

assigns the sine of each element of the array array_2 to each corresponding ele-
ment of the array array_1.Where an intrinsic function has more than one argument
then they must all be conformable, as we would expect. Thus the statement

arr_max = MAX(lOO.O,a,b,c,d,e)

will assign to the elements of arr_max the maximum value of the corresponding
elements of the arrays a, b, c, d and e, or 100.0 if that is greater, as long as the five
arrays are all conformable; the scalar value 100.0 is, of course, conformable with
any array.

All of the intrinsic functions which it might be reasonable to expect to
work with either array-valued or scalar arguments are elemental, so that, in
particular, the wide range of mathematical functions may be applied equally to
array or scalar arguments.

There are also two elemental intrinsic subroutines which can take either
scalar or array arguments, MVBITS and RANDOM_NUMBER. The list of all intrinsic
procedures in Appendix A indicates, among other things, which ones are
elemental.

SELF-TEST EXERCISES 7.1

1 What is an array? What is an array element?

2 What is the difference between an array variable and a scalar variable?

3 How is an array specification written? What is the difference between a dimension
attribute and an array specification?

4 What (if any) are the constraints on a subscript expression?

5 What are the rank, extent, size and shape of an array?

6 Write declarations for suitable arrays in which to store the following sets of data:

(a) The information collected in an (anonymous) survey of people attending a
meeting of Gamblers Anonymous. Each person is asked how much they earn
each week, how many times they go gambling each week, how much they lose
on average each week gambling, what is their largest single win, what is their
largest single loss, and how many weeks they have been a gambling addict.
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(b) The data collected in an experiment in which a sample piece of metal (or other
material) is fixed in a device which then allows it to be repeatedly hit by a mass
of variable weight (but fixed for each experiment) dropped from a specified
height until the sample fractures. The mass, height and number of blows are
recorded. .

(c) The heights above a base plane at various points on the surface of a three-
dimensional model. .

(d) The temperature at 6 a.m.,noon, 6 p.m. and midnight on each day of a year, and
the number of days on which the noon temperature was below - 10°C, was
exactly 10 0C, -9°C, -8 0C, ... +30°C, and was over 30°C.

o. "

7 What is an array constructor?

8 What is an implied DO?How is one used with an array constructor?

9 What are the differences (if any) between input and output to and from arrays and
input and output to and from scalars?

10 What differencesare allowed between an impliedDOused in an array constructor, and
an implied DOused in a READ statement?

11 What is meant by the statement that two arrays are conformable?

12 What is the particular importance of conformable objects?

13 How can arrays be used in expressions?

14 What is an elemental procedure?

7.7 Arrays and procedures

So far, all the array declarations that we have used have had constant bounds.
However, the requirement for constant bounds would cause a great many
difficulties when working with procedures, as can readily be seen by examining
the situation that arises if we wish to use an array as an argument to a procedure,
for how can we declare the dummy argument array in the procedure when we do
not know any details about the size or shape of the actual arguments that may be
used in references to the procedure?

As we saw in Chapter 4, one of the most important aspects of the
argument-passing mechanism is that the procedure does not need to know the
details of the calling program unit, and that program unit, in turn, does not need to
know anything about the procedure except the information about its arguments
which form part of the procedure's interface. It would make no sense at all for the
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bounds of a dummy argument array to be fixed, and for all arrays passed as actual
arguments to be required to have the same bounds!

One solution to this is the assumed-shape array.
An assumed-shape array is a dummy argument array whose shape, as its

name implies, is not known but which assumes the same shape as that of any
actual argument that becomes associated with it.' The shape of an array, as we
have already seen, is defined by its rank and the extent of each of its dimensions,
but since we are only concem~d with rank-one arrays at present we need only
consider the extent.

The array specification for an assumed shape array can take one of two
forms:

(lower_bound: )

or, simply

(:)

The second form is equivalent to the first with a lower bound equal to 1. In both
cases the upper bound will only be established on entry to the procedure, and will
be whatever value is necessary to ensure that the extent of the dummy array is
the same as that of the actual array argument. An example will make this clear.

Let us consider a subroutine which starts with the following statements:

SUBROUTINE array_example(dummy_array_l,dummy_array_2)
IMPLICIT NONE
REAL, DIMENSION(:) .. dummy_array_l,dummy_array_2

If this subroutine is called from. a program unit which contains the declarations

REAL,DIMENSION(lO:30) .. a,b,.

by the statement

CALL array_example(a,b)

then the two dummy argument arrays will both have lower bounds of 1and
upper bounds of 21. If it is subsequently called from another program unit (or
even from the same one) which. contains the declarations

REAL:: p(-5:5) ,q(lOO)
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by the statement

CALL array_example(p,q)

then on this occasion both dummy argument arrays will have a lower bound of 1,
while the upper bound of dummy_array_1 will be 11 and the upper bound of
dummy_array_2 will be 100.

One very important point must be made here. In Section 4.9 we stated
that there are some situations in which the calling program unit must have full
details about the interface of the called procedure, in other words the procedure
must have an explicit interface available at the point of the call. A call or reference
to a procedure which has an assumed-shape dummy argument is one of those
situations. We have already recommended that, at least for the time being, all
procedures should be placed in a module to avoid this problem, and until we meet
an alternative solution in Section 11.2 it is essential that any procedures having
assumed-shape dummy arguments are treated in this way.

For many purposes this may be all that is needed, but there will also be
occasions when it will be necessary for the procedure to know the size and/or the
bounds of its dummy argument arrays. To resolve this problem there are three
intrinsic procedures available to provide the necessary information. These are
designed to work with arrays of any rank, and we may specify them in a slightly
simplified form as long as we are only dealing with rank-one arrays; a complete
specification will be given in Chapter 13. For a rank-one array argument arr the
three procedures are used as follows:

• SIZE (arr)

• LBOUND (arr ,I)
• UBOUND (arr,l)

returns the size of the rank-one array arr

returns the lower bound of the rank-one array arr
returns the upper bound of the rank-one array arr

The second argument for LBOUND and UBOUND specifies that the value returned is to
be the lower or upper bound for the first dimension (the only one for a rank-one
array) and must be present, even though its value is always 1 for a rank-one
array.

[!] Problem
Write a subroutine which will sort a set of names into alphabetical order.

rn Analysis

The need to sort data into numerical or alphabetical order is a very common one
in many computer programs, and is a need which is easily satisfied with the tools
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Initial order CD CD 8 4 6 3 5 2

After first exchange I CD 8 4 6 3 5 0
After second exchange I 2 0 4 6 0) 5 7

After third exchange I 2 3 CD 6 8 5 7

After fourth exchange I 2 3 4 @ 8 CD 7

After fifth exchange I 2 3 4 5 0 @ 7

After sixth exchange I 2 3 4 5 6 0 0
After seventh exchange I 2 3 4 5 6 7 8

Figure 7.6 Sorting by straight selection.

we now have at our disposal. Sorting is a subject into which much research has
been carried out over many years; however, for our purposes a simple general-
purpose sorting method will suffice. If small amounts of data are to be sorted it is
perfectly adequate; but if large amounts are to be sorted one of many specialist
sorting methods, such as Quicksort or Pigeon Sort, should be used.

We shall investigate the method of straight selection because it is
reasonably efficient and easy to understand. Essentially the method involves
searching through all the items to be sorted and finding the one which is to go at
the head of the sorted list. This is then exchanged with the item currently at the
head of the list. The process is then repeated, starting immediately after the item
just sorted into its correct place, and so on. Each time, one more item is moved to
its correct place. Figure 7.6 shows the progress of such a sort, in which eight
numbers are sorted so that the lowest is on the left and the highest is on the right.
The two numbers to be exchanged at each stage are circled, although it should be
noted that the fourth exchange does not actually take place because the number
at the head is already in the correct place.

This is quite a simple method to code in Fortran, but before planning the
logic we must first consider how the data to be sorted will be provided, and how
the sorted list of names will be returned. The major question to be decided is
whether the original data is to be sorted, or whether a copy is to be made and
sorted so that the data is also available in its original order. A third possibility,
which we shall briefly discuss later, is to leave the original data unchanged
but to provide a sorted index array which can be used to access the data in
alphabetical order. For this example, however, we shall simply re-order the
original data.

We can now prepare our data design and structure plan:
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Da~a design

Purpose Type Name

A Argument
Array of names to be sorted CHARACTER'(') name(:)

B Local variables
Number of items to be sorted INTEGER number
First name on this pass CHARACTER'n first

[n=LEN(name)]
Subscript of first name INTEGER index
Temp for swapping names CHARACTER'n temp
DO variables INTEGER i, j

Structure plan

rn Solution '

SUBROUTINE alpha_sort(name)
IMPLICIT NONE
A subroutine to sort the contents of the array name into
alphabetic order
THIS SUBROUTINE MUST HAVE AN EXPLICIT INTERFACE WHERE CALLED
Dummy argument

CHARACTER (LEN=*) ,DIMENSION(:) ,INTENT (INOUT) .. name
! Local variables
CHARACTER(LEN=LEN(name)) .. first,temp
INTEGER :: number,index,i,j

! Set number to the number-of names to be sorted
number = SIZE(name)

! Loop to sort number-l names into order
DO i=l,number-l

! Initialize earliest so far to be the first in this pass'
first = name (i)
index = i
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! Search remaining (unsorted items) for earliest one
DO j=i+l,nuD1ber

IF (name(j) < first) THEN
first = name(j)
index = j

END IF
END DO

IF (index /= i) THEN
temp = name(i)
name (i) = name(index)
name (index) = temp

END IF
END DO

END SUBROUTINE alpha_sort

An earlier name was found
so exchange it with the
'head' of the list

Notice, in particular, that this subroutine can be written without any
knowledge of either the length of the character strings being sorted, because the
array name is declared with assumed length, or the number of items being sorted,
because it is an assumed-shape array.

The length is needed for the declaration of the two temporary character
variables first, which is used to store the current earliest name on each iteration,
and temp, which is used for temporary storage when two names are being
exchanged. It is obtained by use of the intrinsic function LEN applied to the
dummy array name.

The number of items to be sorted is required in order to control how
many times the two loops are to be obeyed, and is obtained by use of the
intrinsic function SIZE. It should be noted, however, that this will return the
number of elements in the actual argument associated with the dummy argument
array name; if the actual argument array is not full with data to be sorted then the
value returned will not, in fact, be the number of items to be sorted. An easy way
round this problem would be to provide the number of items to be sorted as a
second argument. However a more elegant way is to use an array section in the
calling program unit to pass only that part of the array which is to be sorted. We
shall discuss the use of array sections in Chapter 13.

Finally, note that the array. argument name is declared to have
INTENT (INOUT) since the array must be defined with a set of values before
entry to the subroutine (as otherwise there would be nothing to sort!), but it is
also used to return the sorted array. If it was required to keep the original order as
well as having a sorted array then a slightly modified version of the subroutine
might have two array arguments, one with INTENT (IN) and the other with
INTENT (OUT) .
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One problem with an assumed-shape array, however, is that only the
shape of the dummy argument array is known, and hence the extent in each
dimension, but not the bounds of the actual argument array. Frequently this does
not matter, but if the bounds are required then we may use an explicit-shape array,
but with the bounds supplied though other arguments, or by some other means.

In the simplest case this might take the form:

SUBROUTINE explicit(a,b,lower,upper)
IMPLICIT NONE
INTEGER, INTENT (IN) :: lower,upper
REAL, DIMENSION (lower:upper) ,INTENT (IN) .. a,b

However, it is not necessary for the relevant values to be provided by
means of a dummy argument if they can be provided in some other way, for
example in a module:

SUBROUTINE explicit_2(a,b)
USE database This module includes the lower

and upper bounds of a large group
of arrays, including a and b
These are called lower and upper

IMPLICIT NONE
REAL,DIMENSION(lower:upper) ,INTENT (IN) a,b

There are a number of other ways in which the bounds might be made
available, such as by host association (see Chapter 11), or in a COMMON block (see
Chapter 17). Whatever the means by which they are made available, or values
from which they may be calculated are made available, the bounds are determined
using the values that the relevant variables had on entry to the procedure, and any
subsequent change in their value has no effect on the array bounds.

In Example 7.1 we created two temporary variables in which to save
information during (part of) the execution of the procedure, but whose values
were not required outside the procedure. Where there is a requirement for scalar
variables of this type there is no problem, but if a local array is required for the
duration of the execution of the procedure, how do we know what size to declare
it? It cannot be declared as an assumed-shape array, since these must be dummy
argument arrays. However, there is a special form of explicit-shape array, known
as an automatic array, which is provided for this precise purpose.

An automatic array is an explicit-shape array which is not a dummy
argument array, and whose bounds, or the information necessary to calculate the
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bounds, are made available through dummy arguments, by use association from a
module, or by any other means which can provide the necessary information at
the time of entry to the procedure. An automatic array is declared, therefore, in a
very similar manner to an explicit-shape array which has non-constant bounds,
except that the automatic array is not a dummy argument.

It is important to emphasize that there are only three situations in which
an explicit-shape array may have non-constant bounds:

• if the array is a dummy argument of a procedure

• if the array is an automatic array in a procedure

• if the array is the result of a function

We have met the first two of these cases in this section; the third will be discussed
in the next section.
There is one further type of dummy argument array which is known as an assumed-size array, and which
was the only form of non-constant array in earlier versions of Forhan apart from an explicit-shape dummy
array argument with variable bounds. For a rank-one array the declaration of an assumed-size array takes
the form:

INTEGER,DIMENSION«) :: a5_siuyrr_I

or

INTEGER : : as_size_arr_ 2 (< )

For rank-one arrays, whose shapes are, in effect the same as their sizes, there is little significant difference
between an assumed-shape array and an assumed-size array. However, when we investigate the use of
more sophisticated arrays in Chapter 13 it will be apparent that the assumed-size array is far less useful than
the assumed-shape array.

We strongly recommend that you do not use assumed-size arrays in any
new programs.

7.8 Array-valued functions

We have now met most of the ways in which arrays can be passed to procedures
as arguments, and in which a subroutine can return information by means of an
array. However, it would often be convenient for a function to return its result in
the form of an array of values, rather than as a single scalar value. Such a function
is called an array-valued function.

There is one important difference between the initial statement of an
array-valued function and the initial statements of the functions that we have
been writing up to now, namely that the type of an array-valued function is not
specified in the initial FUNCTION statement, but in a type declaration in the body of
the function, which must also specify the appropriate dimension attribute:
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FUNCTION' name ( ... )
IMPLICIT NONE
REAL, DIMENSION (dim) name

The type declaration for name is, of course, actually a type declaration for the
result variable and this may be an explicit-shape array, including an automatic
array, without any difficulty. Thus, for example, the following function will return
an array which is the same size as its dummy argument arr:

FUNCTION name(arr, ... )
IMPLICIT NONE
REAL, DIMENSION (:) :: arr
REAL, DIMENSION(SIZE(arr)) name

It is, of course, the responsibility of the program unit which references this
function to ensure that its result is assigned to a large enough array. Although it
is not a requirement, the result variable of an array-valued function will usually be
an automatic array, linked to the size of one or more of its dummy arguments.

Note, however, that the result of an array-valued function cannot be an
assumed-shape array because, as was stated in S~ction 7.7, such arrays must be
dummy arguments. Nevertheless, it is possible to achieve the same effect inr
another way.

Let us first consider a trivial subroutine which simply adds two arrays
together, returning the result through a third dummy argument array:

SUBROUTINE trivial_sub(a,b,c)
IMPLICIT NONE
REAL,DIMENSION(:) ,INTENT (OUT) :: a
REAL,DIMENSION(:) ,INTEN~(IN) :: b,c
a = b+c

END SUBROUTINE trivial_sub

In this situation all three dummy argument arrays are assumed-shape arrays and
the result will be returned through the dummy argument c, whose shape (the
extent in this rank-one case) is determined by the corresponding actual argument.

It would seem more natural to write this procedure as a function, but
although we can still have two assumed-shape dummy arguments, what about
the result array variable? The answer in this case is that, since it must be
conformable with the two dummy arguments in order for the assignment to take
place, we can use their shape in the declaration of the result variable:
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FUNCTION trivial_fun(x,y)
IMPLICIT NONE
REAL,DIMENSION(:),INTENT(IN) :: x,y
REAL,DIMENSION(SIZE(x)) .. trivial_fun
trivial_fun = x+y

END FUNCTION trivial_fun

Note that since all three arrays x, y and the result array variable trivial_fun
must be conformable they must all have the same size and it does not matter
which of the two dummy arguments is referred to in the array specification for
trivial_fun. Of course, if this function was being written for other than
demonstration purposes it would be advisable to check that the two arrays were
conformable by means of a statement such as

IF (SIZE(x) /= SIZE(y)) THEN
! Take appropriate error action

In most cases where an array-valued function, of varying size or shape, is
required there will be at least one dummy argument which can be used to provide
the information necessary for the declaration of result array variable.

Although the concept of an array-valued function is a very straight-
forward one, it was not available in earlier versions of Fortran because they did
not allow any whole-array operations, and without the ability to assign a whole
array an array-valued function could not have been used!

[!] Problem
Write a function which takes two real arrays as its arguments and returns an array
in which each element is the maximum of the two corresponding elements in the
input arrays.

~ Analysis

This is a very simple exercise which only requires a very simple data design and
structure plan. The only complication would be if the two input arrays were of
different sizes; however, we shall ignore this and assume that they have identical
bounds:
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Data design

Purpose Type Name

A Dummy arguments 1~.

Input arrays REAL(:) array_I, array _2

B Local variables ,1<
Result variable REAL(:) max_array

Structure plan

@] Solution
FUNCTION max_array(array_l,array_2)

IMPLICIT NONE

This function returns the maximum of two arrays on an
element by element basis

Dummy arquments
REAL, DIMENSION(:) .. array_l,array_2

! Result variable
REAL, DIMENSION (SIZE (array_l)) :: max_array"

! Use the elemental intrinsic MAX to compare. elements
max_array = MAX(array_l,array_2)

END FUNCTION max_array

Note that the use of the intrinsic function MAX in an elemental fashion avoids the
need to write a loop of the form

DO i=l,SIZE(array_l)
max_array (i) = MAX (array_l (i),array_2(i))END DO
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7.9 Arrays as components of derived types

When we introduced the derived type concept in Chapter 3 we simply stated that
the definitions of the various components took a similar form to the declaration of
variables of the same type. As we might expect, therefore, we may include array-
valued components in a derived type definition:

TYPE golfer
CHARACTER (LEN=15) .. first_name, last_name
INTEGER :: handicap, last_rounds (10)

END TYPE golfer

In this type definition the fourth component, last_rounds, is an array having
bounds of 1 and la, and will, presumably, be used to record the golfer's most
recent scores.

It is important to fully understand the placing of the subscript expression
in a reference to an element of an array component of an array object. If the
details of the members of a golf club are to be held in an array declared as

TYPE (golfer) ,DIMENSION(250) :: member

then the last name of an individual golfer will be referred to as

member(i)%last_name

and the third of the golfer's last ten rounds will be referred to as

member (i)%last_rounds (3)

An array component of a derived type definition must be an explicit-shape array
having constant bounds. It may also be a deferred-shape array, but further
discussion of this last type of array will be left until Chapter 13.

One important restriction is that, in a reference to an object of a derived
type having one, or more, array components, at most one array must have a rank
greater than zero. In other words, all array components, except possibly one,
must be subscripted. It is therefore permitted to write

member%last_rounds(i) = 72

in order to set the ith round for every member to 72, and it is permitted to write

member(j)%last_rounds = 72
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in order to set every round for the jth member to 72. However, the statement

member%last_rounds =72 ! ILLEGAL

is not allowed, because both member and last_rounds are rank-one arrays.

II] Problem

Write a function which will take as its arguments an array of type golfer (as
defined above) and an array of golf scores for the same set of golfers. For each
golfer, the function should move the golf scores in elements 1-9 of the
last_rounds component to elements 2-10, and insert the new score in the first
element. The function should then create an internal sorted list of the aggregate
scores for the last five rounds, taking into account their handicaps, and should
return as its result an array containing the names of the leading six members of
the club over the last five rounds, and their average scores over those rounds,
after taking into account their handicaps; this array is to be of type competitor,
where this is defined in the same module, golf_details, as the type golfer and
has two components - an index to the main list of members and the average
score:

TYPE competitor
INTEGER :: index,score

END TYPE competitor

Note (for non-golfers): In golf, each player has an official handicap, which is
the number of strokes by which, in theory, the golfer is expected to exceed the--
par, or standard number of strokes, for a round of 18 holes. The net score is,
therefore, obtained by subtracting the handicap from the actual number of strokes
taken to complete the round. If everyone played exactly to their handicaps then
all the net scores would be the same, but it isn't usually like that! In this example,
in order to calculate the net scores for the last five rounds it will be necessary,
therefore, to add the actual scores for the last five rounds together and then
subtract five times the player's handicap. The leading player is, of course, the one
with the lowest net total.

~ Analysis

This problem requires some simple manipulation of the elements of the array,
followed by a sort of the arrays into ascending order of subtotals. As these are
quite separate processes, however, it is preferable to carry each out in a separate
procedure. An initial structure plan for the function might be as follows:
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A refinement would be to use an index array to the aggregate scores as an
actual argument to the sorting subroutine, both to simplify the sorting and to
provide exactly the form of result that will be required for the final result array.

The data design for this function is straightforward, and will use two
automatic arrays for the aggregate totals and the index array:

Data design

Purpose Type Name

A Result:
Array of six leading players COMPETITOR leaders(6)

B Arguments:
Array of players and scores GOLFER members(:)
Array of recent scores INTEGER scores(:)

C Local variables
Array of total scores INTEGER total(n)

[n=SIZE(scores)]
Index array INTEGER index(n)
Number of players INTEGER number
DO variable INTEGER

Structure plan

The two subsidiary subroutines are both so straightforward that we shall not give
further details, but will proceed to the solution.

[II Solution
FUNCTION leaders(members,scores)

USE golf_details
IMPLICIT NONE
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A function to determine the leading golfers in a golf club

! Result and argument declarations
TYPE (competitor) ,DIMENSION (6) :: leaders
TYPE (golfer) ,DIMENSION(:) ,INTENT (IN) :: members
INTEGER,DIMENSION(:) ,INTENT (IN) :: scores

! Local variables
INTEGER,DIMENSION(SIZE(members)) .. total,member_index
INTEGER :: i, number
number = SIZE(members)

! Update golfers records and create array of aggregate
! scores for the last five rounds, allowing for handicaps
CALL update(members,scores,number,total)

! Set up initial index array
member_index = (I Ji,i=l,number) I)

! Sort index array to members and totals into ascending
! order of totals
CALL sort(total,member~index,number)

! Indexes sorted, so return first six
DO i=1,6

leaders(i)%index = member_index(i)
! Round average scores
leaders(i)%score = REAL(total(member_index(i)))/5.0 + 0.5

END DO

END FUNCTION leaders

SUBROUTINE update(members,scores,n,total)
USE golf_details
IMPLICIT NONE

This subroutine updates the records of a set of golfers,
and then creates an array of aggregate scores for their
last five rounds, allowing for their individual handicaps

Dummy arguments
TYPE (golfer) , DIMENSION(n), INTENT (IN) :: members
INTEGER, DIMENSION(n), INTENT (IN) :: scores
INTEGER, INTENT (IN) :: n
INTEGER, DIMENSION(n), INTENT (OUT) :: total

! Local variable
INTEGER:: i

! Move most recent 9 scores into last_rounds 2-10
DO i=9,1,-1
members%last_rounds(i+l) = members%last_rounds(i)

END DO
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! Insert latest scores into last_rounds(l)
members%last_rounds(l) = scores

! Calculate aggregate scores allowing for handicap
total = members%last_rounds(l) + &

members%last_rounds(2) + &
members%last_rounds(3) + &
members%last_rounds(4) + &
members%last_rounds(5) - 5*members%handicap

END SUBROUTINE update

SUBROUTINE sort(total,index,n)
USE golf_details
IMPLICIT NONE

This subroutine sorts an index array to the array total

! Dummy arguments
INTEGER, DIMENSION (n) , 'INTENT (IN) :: total
INTEGER, DIMENSION(n), INTENT (INOUT) :: index
INTEGER, INTENT (IN) n

! Local variables
INTEGER :: i,j,temp,first,i_first

I

! Sort index array into ascending order of aggregate scores
DO i=l,n-l

! Initialize lowest so far to be first in this iteration
first = total(index(i))
i_first = i

! Search remaining unsorted items for lowest one
DO j=i+l,n

IF (total(index{j)) < first) THEN
first = total{index{i))
i_first = j

END IF
END DO

! Exchange indexes'if necessary
IF (i_first 1= i) THEN

temp = index (i)
index (i) = index(i_first)
index (i_first) = temp

END IF
END DO

END SUBROUTINE sort
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Note that the function declares two automatic arrays and then uses these as actual
arguments to the two subsidiary procedures. In those procedures the
corresponding dummy arguments are both declared as explicit-shape arrays,
with the extent being passed as an argument from the calling procedure.

Note also that near the end of the subroutine update there is a rather
lengthy summation of the members' last five rounds, while near the end of the
function leaders a loop is used to calculate and store the averages for the leading
six players. Both of these could be greatly simplified by use of the array sections
that will be described in Chapter 13.

SELF-TEST EXERCISES 7.2

1 What is an assumed-shape array? When can one be used?

2 What are the advantages of an assumed-shape array over an explicit-shape array?
What are the disadvantages?

3 What is an automatic array?

4 What are the three situations in which an explict-shape array may have non-constant
bounds?

5 How is the type of an array-valued function declared? What restrictions (if any) are
there on the form of the array that it may return as its value?

6 What are the restrictions (if any) on the inclusion of an array-valued component in a
derived type definition?

SUMMARY

• An array is an ordered set of related variables which are referred to by a
single name.

• The individual items in an array are called array elements.

• Array elements are identified by following the name of the array by an
integer subscript expression, enclosed in parentheses.

• An array may have up to seven subscripts, each of which relates to one
dimension of the array.
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• Each dimension of an array has a lower and an upper bound which,
together, define the range of allowable subscript values for that dimension.

• The number of permissible subscripts for an array is called its rank.

• The extent of a dimension is the number of elements in that dimension.

• The size of an array is the total number of elements in the array.

• The shape of an array is determined by its rank and the extent of each
dimension.

• The declaration of an array must specify its rank and the bounds for each
dimension.

• An explicit-shape array is an array whose bounds are specified explicitly.

• An assumed-shape array is a dummy array argument whose bounds are not
specified in the declaration of the array, but which assumes the same shape
as the corresponding actual array argument.

• An automatic array is an array in a procedure, which is not a dummy
argument, which has non-constant bounds, and which obtains the
information required to calculate its bounds from outside the procedure at
the time of entering the procedure .

An array-valued constant is specified by a structure constructor, which may
include one or more implied DO elements .

•

•

•

•
•

•

•

•

Input and output of arrays may be specified element-by-element, by whole
arrays, or by use of an implied DO .

Two arrays are conformable if they have the same shape; a scalar is
conformable with any array .

All intrinsic operators are defined for conformable arrays in addition to
scalars .

Intrinsic operations on arrays take place element-by-element.

Many intrinsic procedures are elemental and may be used with array
arguments to deliver array-valued results .

An array valued function must have the bounds of the array-valued result
variable declared in a type declaration statement within the body of the
function subprogram .

Derived type definitions may have arrays as components, provided that they
are explicit-shape arrays having constant bounds .

Fortran 90 syntax introduced in Chapter 7:

Array declaration type, DIMENSION (extent) :: list of names
type, DIMENSION(extent) :: name_l ,name_2(extent), ...
type, DIMENSION(/ower_bnd:upper_bnd) :: list of names
type, DIMENSION(lower_bnd:) :: list of names
type, DIMENSION ( :) :: list of names
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array_name (integer_expression)
(/ list of values I)
(/ (value_list,int_var=initial,final,inc) I)
READ *, array_element, array_name
PRINT *, (array_element _list, int_ var=initial ,final, inc)

a = b*c
etc., where a, b and c are conformable arrays

PROGRAMMING EXERCISES

7.1 Write a program which will read up to 20 integer numbers and print them out in
the reverse order to that in which they were typed.

7.2 The normal probability fundion 4J is defined as:

14J(x) = - e-i'/2
.;z:ff

Write a program to evaluate 4J(x) for values of x from -3.0 to +3.0 in steps of
0.2, and store these in an array. Display the results in a table, with five values to a line.

7.3 In a psychology experiment volunteers are asked to carry out ten simple tests, and
a record is kept of which tests they pass and which they fail. This record consists of a one
for a pass, and a zero for a fail.

Write a program which inputs the test results of a set of volunteers and prints the
percentage of the volunteers who passed each test.

(Hint: Use an array of size ten in which to accumulate the passes.)
11

"7.4 Write a subroutine that has an explicit-shape array with variable bounds as one of
its arguments, providing a set of angles (in radians) at which it is required to evaluate the
sine of the angle. The subroutine should print a table of all the angles and their sines.

Write a simple program to enable you to test your subroutine. Use an array
construdor to establish the set of angles to be used.

Modify your program so that the subroutine uses an assumed-shape array for the
angles instead of an explicit-shape array.

7.5 In a television quiz game, each of six competitors takes part in five rounds and is
awarded a score of between 0 and 10 for each round. The winner of each round gains a
bonus of five points.

Write a program which reads the names and scores in each round for each
competitor. The program should then calculate any bonuses due for winning a round
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before calculating the final score for each competitor. Finally, the program should print the
names and scores (round by round and total) for the winner and runner-up.

7.6 Write a program that reads and stores two distinct sets of integer numbers and
then finds and prints their union and their intersection. (The union is the collection of those
items that are in at least one of the sets; the intersection is the collection of those items that
are in both sets.)

Use an array in which to store a set, with unused elements being set to a special
value which is not allowed to appear in the set, and write one subroutine to determine the
union, and another to determine the intersection.

When you are satisfied that the two subroutines work correctly, alter your
program so that the union and intersection are calculated by array-valued functions.

7.7 In an examination a student is awarded a distinction if he or she has obtained more
than 30% above the average obtained by the whole class. To ensure fair marking, the
students are identified only by a unique number in the range 1000 to 1999.

Write a program which will input the marks obtained by the members of the class,
and which will then print out the average mark, and the identifying numbers of any
students obtaining distinction, together with their marks.

7.8 In Philipsville all goods sold in shops, other than food, attract a 5% City sales tax.
In addition, all goods other than printed materials (books, newspapers etc.) attract a State
tax of 3% intended to subsidize the State Printing House.

Write a program which takes as its input the details about a number of purchases,
each consisting of the price and a sales code (I = food, 2 = books, 3 = newspapers,
4 = other printed material, 9 = other items), and prints a bill in the following order:

(I) The number of food purchases, their basic cost, the State tax, and the total
cost

(2) The number of book and other printed material purchases, their basic cost,
the City tax, and the total cost

(3) The number of other purchases, their basic cost, the City and State taxes, and
the total cost

(4) The total cost of the goods, the total City tax, and the total State tax

7.9 Modify the program that you wrote for Exercise 7.6 so that a set is represented by
a derived type consisting of two components: an array to contain the members of the set,
and an integer count of the number of elements in the set. This avoids the problem of
determining which elements of the array are not being used.

7.10 The number of entries in a cycle race is so large that it is decided to divide them
into two separate races, based upon their times in an initial time trial.

Write a program which reads the total number of riders and then, for each rider,
the rider's name, race number and time in the trial. All those whose time is less than the
mean time of all the riders will be in race A, with the remainder being in race B. The
program should print a list, showing each rider's name and number and the race (A or B) to
which the rider has been allocated.
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7.11 The bubble sort is a very simple (and very inefficient) means of sorting an array. It
works as follows.

Compare the first and second elements of the array; if they are in the wrong order
then exchange them, otherwise do nothing. Repeat this process for the second and third
elements, then for the third and fourth elements, etc. At the conclusion of this process the
last value in the sorted sequence will have 'bubbled' along to the last element of the array,
and will therefore be in the correct place. Now repeat the process, which will result in the
next-to-Iast value being moved to the next-to-Iast element. Repeat the process until all the
values have been moved to their correct places. ,"

(Clearly, improvements can be made by, for example, examining all n elements of
the array in the first pass, the first n - 1 elements in the second pass etc., but you should
not feel any obligation to refine your program in this way - the simplest approach will be
sufficient for now.)

Write a subroutine to sort the contents of a CHARACTER array using a bubble sort.
and test it in a program that reads a set of words from the keyboard.

107.12 Write two procedures to convert an 8-digit binary number to its decimal
equivalent. and vice versa. Note that you can store the binary number in an eight-
element integer array, in which each array element contains either a 1 or o.

Use these procedures in a program which requests two positive binary numbers in
the range 00000000 to 11111111 and calculates their sum by converting them both to
integers, adding the integers, and converting the result back to a binary representation.
(Hint: you will need to read and write the binary numbers as character strings.)

7.13 An 8-bit binary number can also be stored in an eight-element LOGICAL array,
where a true value indicates a 1, and a false value indicates a o.Write a program to add two
8-bit binary numbers by using LOGICAL arrays to represent the numbers.

7.14 The dot product of two three-dimensional vectors R and b is defined as

where R is the vector (all az, a3) and b is the vector (br, bz, b3).
The vector product, c, of the same vectors R and b is defined as the vector

c=Rxb

Write and test two functions to calculate the dot product and the vector product
of two such vectors.

Now use these functions in a third function to evaluate the scalar triple product of
three vectors R, b and c, which is defined as

[abc] = R • (b x c)

Write a program to test this function and also to determine the relationship
between [abc], [bea] and [eab].
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7.15 An (unordered) set S of the integers between 1 and 100 can be represented as a
LOGICAL array A of dimension 100, where n is an element of S if A(n) is true. Write and test
subroutines to give the union and intersection of sets represented in this way.

Unfortunately, using a LOGICAL array with a very large number of elements may
take up more space than is available. Devise a way of using an INTEGER array to represent a
LOGICAL array in such a way that more than one LOGICAL value can be stored in one
INTEGER value. (Hint: remember that integers are stored as binary numbers consisting of a
fixed number of bits, each of which can take the value 0 or 1.)

Write a subroutine to insert a LOGICAL value into such a simulated logical array,
and a LOGICAL function to obtain the value of any given element, and use them to modify
your earlier program so as to allow for sets of integers between 1 and 4000.
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The input and output facilities of any programming language are
extremely important, because it is through these features of the language
that communication between the user and the program are carried out.
However, this frequently leads to a conflict between ease of use and
complexity and Fortran 90, therefore, provides facilities for input and
output at two quite different levels.

The list-directed input and output statements that we have been
using up to now provide the capability for straightforward input from the
keyboard and output to the printer. These statements, however, allow the
user very little control over the source or the layout of the input data, or
over the destination or layout of the printed results.

This chapter introduces the more general input/output features of
Fortran 90, by means of which the programmer may specify exactly how
the data will be presented and interpreted, from which of the available
input units it is to be read, exactly how the results are to be displayed,
and to which of the available output units the results are to be sent.
Because of the interaction with the world outside the computer, input and
output has the potential for more execution-time errors than most other
parts of a program, and Fortran's approach to the detection of such
errors is also briefly discussed.

235
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8.1 The interface between the user and the computer

We have now learned how to instruct the computer to manipulate both numeric
and character information, to repeat sequences of instructions and to take
alternative courses of action depending upon decisions which are only made
during the execution of the program. We have seen how we may use procedures
to simplify our program structure while simultaneously adding greatly to the
-~xibility of the options before us, and we have even been able to create new
data types to meet our own particular needs. Compared with the sophistication of
which we are now capable in these areas, our control over the layout and
interpretation of input data and the presentation of results has so far been
woefully primitive. The problem arises because it is in this area that the world of
the computer (where everything is stored as an electric, magnetic or optical signal
in one of only two states) comes face-to-face with the world of the human
computer user (where there are an almost infinite number of ways of storing or
presenting information). It is the interface between these two worlds that we
must now examine.

123456789

Figure 8.1 A line of input data.

A graphic example of this problem can be seen in the line of data shown in
Figure 8.1, which has the digits 1 to 9 typed in the first nine positions. There are an
enormous number of possible interpretations of this, apparently simple, line.

• It could be the number 123456789

• Or it could be the nine numbers 1, 2, 3, 4, 5, 6, 7, 8 and 9

• Or it could be the three numbers 123, 456, 789

• Or it could even be the number 12345.6789

• Or it could be the four numbers 1.23, 0.45, 67 and 8900

• Or it could be one of hundreds of other valid interpretations of these nine
digits

Although these are all real possibilities, we have had little difficulty in
dealing with input from the keyboard since the rules that were laid down in
Section 3.4 accord with the natural way of presenting data, in most cases, and
lead to a quite unambiguous interpretation of what has been typed.

The situation with output, however, has been more problematical since
there have been many occasions when we should have liked to have had more
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control over the way in which the results are laid out on the screen. For example,
if we wished to print the character string The answers are followed by the values
of two variables (which are approximately 12.34 and -7.89) we have a
potentially vast choice of ways in which to arrange our results. They could all be
on one line like this:

The answers are 12.34 -7.89

or they could be on three lines:

The answers are

12.34 -7.89

or

The answers are
12.34
-7.89

or a number of other variations. They could also be printed immediately below
the last item, or separated from it by one or more blank lines, or at the top of a
new page, or in the middle of one. The number might be printed with two
decimal places, or with five, or in any other way that we might wish. The
possibilities are enormous.

As if this was not enough, there is also the question of where the data
comes from and where the results are to be sent. The data will often be typed
directly at a keyboard, but in larger systems, or for large amounts of data, it will
probably be first input to a file in the file store by some quite different means and
then read from there. In a similar fashion, results may be displayed on a screen,
printed on a printer, or sent to a file. Furthermore, the peripheral device being
used for the input or the output may be a local one which is more or less directly
attached to the computer, or it may be at some remote site, possibly many miles
away.

All of these questions need to be resolved every time any data is input to,
or results are output from, a program.

Up to this point all our input and output has been carried out using list-
directed READ and PRINT statements, and we have not, apparently, considered any
of these difficulties at all! In fact, however, the Fortran processor has been taking
care of everything on our behalf, and it is now time for us to learn how to specify
those aspects over which we wish to exercise control - while leaving the
processor to look after the rest.

If we consider the READ statement first. we find that the source of the data
is dealt with by a neat piece of sleight-of-hand. When first introducing the list-
directed input and output statements in Chapter 3 we said that the data would be
read from the default input unit, which is defined by the particular computer
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system being used; typically, for personal computers and workstations, it will be
the keyboard. In a similar way, the PRINT statement sends its results to the default
output unit, which is also processor-dependent, but which will usually be the
computer's display or printer.

The interpretation of the data by a list-directed READ statement has been
dealt with primarily by treating a space or a comma (or a /) as a separator
between items of data, and using the 'obvious' interpretation of the data items
between the separators.

We should now define more formally how this process actually operates.
The data is considered to be a sequence of alternating values and value

separators, with the occurrence of a value separator indicating the termination of
the previous value. The value separators are of four types:

• a comma, optionally preceded and/or followed by one or more blanks
• a slash (I), optionally preceded and/or followed by one or more blanks

• one or more consecutive blanks
• the end of the record (that is, of the line), optionally preceded by one or

more blanks

If there are no values between two consecutive value separators, for
example there are two consecutive commas, then the effect is to read a null
value. The effect of this is to leave the value of the corresponding variable in the
input list unchanged. This often surprises people!

If a slash value separator is encountered then no more data items are read,
and processing of the input statement is ended. If there are any remaining items in
the input list then the result is as though null values had been input to them; in
other words, their values remain unchanged.

For numeric data, that is all that is to be said, but for character data there is
the further rule concerning the requirement for delimiting apostrophes or
quotation marks. Because of the above rules concerning terminators, character
strings being input by a list-directed READ statement must be delimited by
matching apostrophes or quotation marks unless all of the following conditions
are met:

•

•
•
•

the character data does not contain any blanks, any commas or any
slashes (that is, it does not contain any of the value separators discussed
earlier)
the character data is all contained within a single record or line

the first non-blank character is not a quotation mark or an apostrophe,
since this would be taken as a delimiting character
the leading characters are not numeric followed by an asterisk, since this
would be confused with the multiple data item form (n*c)
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If all of these conditions are met, which essentially means that the character data
being input is a single 'word' then it is treated in exactly the same way as numeric
data and, in particular, is terminated by any of the value separators which will
terminate a numeric data item (blank, comma, slash or end of record); it may also
be repeated by means of a multiple data item of the form n~c.

For a great many purposes, therefore, list-directed input is perfectly
satisfactory. However, the layout of the results by a list-directed PRINT statement
has been less satisfactory, since each PRINT statement causes output to start at the
beginning of the next line and prints the various items in a 'reasonable' format.
Although the style in which each type of data is output is defined in general
terms by the Fortran standard, the detail is left to the processor to determine; in
particular, the field width and the number of decimal places displayed for real
values is entirely processor-dependent. The effect is that the results will always be
printed in a readable fashion, but the programmer has virtually no control over
their layout.

These two list-directed input! output statements are thus restricted in their
ability to define both the format of the information and, especially, its source or
destination. The remainder of this chapter will examine how we can provide the
flexibility needed in many cases for both input and output.

8.2 Formats and edit descriptors

An input statement must contain three distinct types of information - where the
data is to be found, where it is to be stored in the computer's memory, and how it
is to be interpreted. Similarly an output statement must define where the results
are currently stored, where they are to be sent, and in what form they are to be
displayed. These processes are illustrated in diagrammatic form in Figure 8.2, and

External media Computer's memory

INPUT
Keyboard Integer
Disk file Convert to Real scalar
Magnetic tape internal form Character array
etc. etc.

OUTPUT
Display Integer
Printer Convert to Real scalar
Diskfile external form Character array
Magnetic tape etc.
etc.

Figure 8.2 Input and output editing.
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it can be seen that both processes are, in one sense, the same in that they both
take information from one place, transform (or edit) it into a different format, and
put the edited version in another place.

We have already discussed in some detail how the relevant locations in
the computer's memory are identified and, although some minor extensions to
the methods already discussed will be presented in later chapters, there is nothing
more to add in this regard for the present.

Furthermore, the input! output statements that we have been using so far
do not allow us to specify the nature of the external medium, but always use the
default input or output unit. We shall see how to change this situation in Section
8.6.

The key element in both the input and output processes, however, is the
editing of information in one form for presentation in another form, and it is this
aspect of input and output which we shall now examine in some detail.

The input and output statements that we have been using thus far have
taken the forms

READ *, input Jist
PRINT *, output_list

but this has, in fact, been a considerable simplification. Each of these statements
actually has three forms:

READ ch_ var , input_list
READ label, input_list
READ *, input_list

and

PRINT ch_ var , output_list
PRINT label, output_list
PRINT *, output_list

where ch_var is a character constant, character variable, character array, character
array element or other character expression, and label is a statement label.

In all three variations the item following the keyword (READ or PRINT) is a
format specifier which provides a link to the information necessary for the
required editing to be carried out as part of the input or output process. This
information is called a format and consists of a list of edit descriptors enclosed
in parentheses:

The first variation, where the format specifier is a character expression, is
called an embedded format because the format itself appears as part of the READ
or PRINT statement:
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READ '(edit_descriptor _list) , ,input_list

or

READ "(edit_descriptor_list)" ,input_list

Because, as we shall see, an output format will often contain a character constant
it is usually more convenient to use apostrophes to delimit character constants
which represent formats than to use quotation marks. We shall always use the
first of the two forms shown above, therefore, although it must be emphasized
that either is permissible.

In the second variation of the READ and PRINT statements, however, the
statement label is the label of a new type of statement called a FORMAT statement
which contains the appropriate format. In the third variation, the asterisk indicates
that the format to be used is a list-directed format which will be created by the
processor to meet the perceived needs of the particular input or output list -
hence its name.

The first two variations are, therefore, identical in their effect; the
difference lies solely in the manner in which the format is actually provided. In the
next section we shall present the details of the various edit descriptors, and the
ways in which they are used, in the context of an embedded format, since this is
usually the more convenient approach in most Fortran programs. Section 8.4 will
then show how the same concept is implemented using FORMAT statements.

8.3 Input editing using embedded formats

We shall start by considering the various edit descriptors that are used for input
in conjunction with a READ statement, since these are the easiest to understand.
They fall into two categories - those concerned with the editing of actual data,
and those concerned with altering the order in which the characters in the input
record are edited. Figure 8.3 shows most of the available edit descriptors, and it
will be seen that the first five fall into the first category; we shall investigate these
first.

The first, and simplest, edit descriptor is used for inputting whole numbers
which are to be stored in an integer variable, and takes the form

Iw

This indicates that the next w charaders are to be read and interpreted as an
integer. Thus if we wished to read the line shown in Figure 8.1 (which had the
digits 1 to 9 typ~d in positions 1 to 9) as a single integer to be stored in the
integer variable n we could write
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Descriptor

Iw
Fw.d
Ew.d

Aw

A

Lw

nX

Tc
TLn
TRn

Meaning

Read the next w characters as an integer
Read the next w characters as a real number with d digits
after the decimal place if no decimal point is present
Read the next w characters as characters
Read sufficientcharacters to fill the input list item,
stored as characters
Read the next w characters as the representation of a
logical value
Ignore the next n characters
Next character to be read is at position c
Next character to be read is n characters before (TL) or
after (TR) the current position

Figure 8.3 Edit descriptors for input.

READ ' (19)' ,n

If we wished to read the same line as three separate integers (123, 456,
789) then we could write

READ ' (13,13,13)', nl,n2,n3

where nl, n2 and n3 are integer variables. This format interacts with the rest of
the READ statement in the following way:

• First the READ statement recognizes that it requires an integer to store in
nl; the format indicates that the first item to be read is an integer
occupying the first three character positions (13). The characters '123' are
therefore read and converted to the internal form of the integer 123
. before being stored in nl.

• The READ statement then requires another integer and the format indicates
that this is to come from the next three character positions (13). The
characters '456' are therefore read and converted to the internal form of
the integer 456 before being stored in n2.

• Finally, the process is repeated a third time, causing the characters '789' to
be read, converted, and stored in n3 as the integer 789.

• The READ statement is now satisfied, since data has been read for all of the
variables in its input list, and so input of this line of data is complete.
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Notice that there is an implied concept of an index which is always
indicating which is the next character of the input record to be read. Normally
this index is moved through the record as characters are read; however the x, T,
TL and TR edit descriptors allow the index to be moved without any characters
being read.

The X edit descriptor takes the form nX and causes the index to be moved
forward across n characters. The next character to be read will be n positions to
the right of the current position and the effect is to ignore the next n characters.
Thus, using the same data line as before, the statement

READ ' (4X,IS)', num

will ignore the first four columns and then read the next five as an integer; the
value 56789 will therefore be stored in num. Similarly, the statement

READ ' (I2,3X,I3)', i,j

will cause the value 12 to be stored in i and 678 in j. Notice that in this case the
9 typed in character position 9 is ignored because the format only specifies the
first eight positions.

The next three edit descriptors are, essentially, three variations on a single
theme:

Tc
TRn
TLn

The first of these causes a tab to character position c; in other words the next
character to be read will be from position c. Thus the statement

READ ' (T4,I2,T8,I2,T2,I4)', x,y,z

will, when used with the same line of data, first move the index to position 4 and
read the number 45 into x, then move it to position 8 before reading 89 into y,
and then move it to position 2 before reading the number 2345 into z. The T edit
descriptor thus provides a means of not only skipping over unwanted characters,
but also of going back in the record and reading it (or parts of it) again.

The T edit descriptor moves to a character position which is defined
absolutely by its position in the record, or line of data. The TL and TR edit
descriptors, on the other hand, specify a relative tab - that is a move to a character
position which is defined relative to the current position. The letters TR followed
by a number n indicate that the next character is to be n positions to the right of
the current position; it is thus identical in its effect to nX. The letters TL followed
by a number n specify a tab to the left, and cause the next character to be n
positions to the left of (or before) the current position. If TLn would cause the
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next position to be before the first character of the record then the pointer is
positioned at the start of the record (at the beginning of the line of input data).

The next data edit descriptor is the F edit descriptor, which is used for
reading real values, and takes a slightly more complicated form than any of the
other edit descriptors that we have met so far:

Fw.d

This edit descriptor can be used in two rather different ways, depending upon the
layout of the data.

If the data is typed with a decimal point in the appropriate position then
the edit descriptor causes the next w characters to be read and converted into a
real number. The value of d is irrelevant (although it must be included in the
format).

On the other hand, if the w columns which are to be read as a real number
do not contain any decimal point then the value of d indicates where one may be
assumed to have been omitted, by specifying that the number has d decimal
places. Thus (assuming our usual input record, as shown in Figure 8.1) the
statement

READ' (F9.4)', real_num

will cause the first nine characters to be read as a real number with four decimal
places. The variable real_num will therefore have the number 12345.6789 stored
in it. In a similar way

READ ' (F3.1,F2.2,F3.0,TL6,F4.2)', rl,r2,r3,r4

will cause the value 12.3 to be stored in rl, 0.45 in r2, 678.0 in r3, and 34.56 in
r4.

Let us now consider what will happen if the same statement is used to
read the line shown in Figure 8.4. The first edit descriptor requires three columns
to be read, and since these (.23) contain a decimal point the second part of the edit
descriptor is ignored and the value 0.23 stored in rl. In a similar way the F2. 2
descriptor causes the characters '.5' to be read, and r2 is therefore given the value
0.5. The F3. 0 edit descriptor also has its second part overridden by the decimal
point in 6.8 and so this is the value stored in r3. Finally, TL6, F4 . 0 causes the
characters '3.56' to be read, .and so this value is stored in r4. Figure 8.5
summarizes the result of reading these two lines of data .

.23.56.8

Figure 8.4 Another line of data.
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READ ' (F3.1,F2.2,F3.0,TL6,F4.2)', r1,r2,r3,r4

Data: 123456789.23.56.8

A contains 12.3 0.23
B contains 0.45 0.5
C contains 678.0 6.8
o contains 34.56 3.56

Figure 8.5 The effect of the F edit descriptor during input.

As a general rule, data which is to be stored as real values will be
presented to the computer with the decimal points in their correct places.
However sometimes, and especially when the data has been collected
independently from the programmer, it is presented as whole numbers which
need to be processed by the computer as real numbers.

There is also an E edit descriptor, which takes a very similar form to the F

edit descriptor:

Ew.d

and, on input, is interpreted in an identical way. On output, however, as we shall
see, it is different from an F edit descriptor.

The third major data edit descriptor is the A edit descriptor, which is used
to control the editing of character data. It takes one of the forms

Aw
A

During input, the edit descriptor Aw refers to the next w characters Gust as Iw and
Fw.d refer to w characters). However, a character variable has a defined length
and any string which is to be stored in it must be made to have the same length.
If we assume that length of the input list item is len then the following rules
apply:

• If w is less than len then extra blank characters will be added at the end so
as to extend the length of the input character string to len. This is similar
to the situation with assignment.

• If w is greater than len, however, the rightmost len characters of the input
character string will be stored in the input list item. This is the opposite of
what happens with assignment! The reason for this apparent incongruity
will become apparent when we consider the outputting of characters in
Section 8.5.
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An A edit descriptor without any field width w is treated as though the
field width was identical to the length of the corresponding input list item. Thus,
if the three variables ch1, ch2 and ch3 are declared by a statement of the form

CHARACTER :: chl*10, ch2*6, ch3*15

then the following two statements will have an identical effect:

READ ' (A10,A6,A15)', ch1,ch2,ch3
READ ' (A,A,A)', ch1,ch2,ch3

Since the form without a field width requires the READ statement to provide
exactly the same number of characters as the length of the variable into which
they are to be stored, the question of blank padding or truncation never occurs.

The remaining data edit descriptor is used with logical data, and takes the
form

Lw

This edit descriptor processes the next w characters to derive either a true value, a
false value, or an error. There are exactly two ways of representing true and false
in the data, namely as a string of characters in one of the following forms,
optionally preceded by one or more spaces:

Teee ... e or . Teee ... e

and

Feee ... e or . Feee ... e

where e represents any character.

Data items interpreted
as true

T
TRUE
.T
.T.
.TRUE
.TRUE.
Truthful
terrible

true
.t

Data items interpreted
as false

F
FALSE
.F
.F.
.FALSE
.FALSE.
Fanciful
futile

false
.f

Figure 8.6 Logical data for input with an L8 edit descriptor.
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The lower case letters t and f are treated as being equivalent to the upper case
letters T and F in a logical input field. Figure 8.6 shows some examples of data
which would be interpreted by the edit descriptor L8 as either true or false. If the
first non-blank character, other than a period, is not Tor F, or their lower case
equivalents, then an error will occur.

m Problem

A survey, consisting of a maximum of 1000 respondents,. has recorded the name,
age, sex, marital status, height and weight of a number of people. The information
has been recorded as follows:

First name

Last name

Sex

Marital status

Age (yrs)

Height (cm)

Weight (kg)

in columns 1-15

in columns 21-40

coded in column 43
F = female
M = male
coded in column 45
o single
1 married
2 widowed
3 divorced
4 cohabiting
9 unknown
in columns 47, 48

in columns 51-53

in columns 56-62 in the form kkk.ggg

The data is terminated by a line which has ENDOFDATAtyped in columns 1 to 11.
Write and test a procedure to read this data and store it in a form suitable

for subsequent analysis. Such analysis will require the heights to be stored in
metres.

A module, Global_Data, is available which contains, among other things,
the type definition for a type person with components defined as follows

CHARACTER(LEN=15) :: first_name
CHARACTER(LEN=20) :: last_name
CHARACTER:: sex ! M or F
INTEGER:: marital_status, age
REAL:: height, weight
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ill Analysis
When developing a large program it is always a good idea first to write and
thoroughly test an input procedure. When developing the rest of the program we
can then be confident that the data is being correctly input, and can concentrate
on the other parts of the program.

The procedure will use a DO loop to carry out the input, and the only areas
to require any particular attention will be the detection of the terminating
condition and the conversion of the height in centimetres into metres. This last
matter can be dealt with during input by use of an edit descriptor of F3 . 2, which
will cause the data to be interpreted as though it had a decimal point in the
required place. The data will be stored in an array of type person which will be
supplied as an argument to the 'procedure. The maximum number of respondents
is not relevant as far as the procedure is concerned since this can be provided as
another argument or, better, derived by the procedure from the shape of the
actual argument array.

Data design

Purpose

A Arguments:
Array of personal data
Number of people in survey

B Local variables:
Maximum number of data sets
DO variable

Structure plan

Type

PERSON
INTEGER

INTEGER
INTEGER

Name

people
number Jleople

maxJleople

Although the problem, as specified, did not ask for the number of sets of data that
were read, this is clearly information that will probably be required during any
subsequent processing, and so it seems sensible to provide it.
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o Solution

SUBROUTINE input(people,number-people)
USE Global_Data
IMPLICIT NONE
! An input subroutine for a survey
! Dummy arguments
TYPE(person),DIMENSION(:) :: people
INTEGER :: number-people
! Local variables
INTEGER :: i,max-people
!Store maximum number of allowable data sets
max-people = SIZE(people)
!Display data format
PRINT *,"Type data as follows: "
PRINT *,"Cols. 1-15 First name"
PRINT *,"Cols. 21-40 Last name"
PRINT *,"Col. 43 Sex (F=female, M=male)"
PRINT *,"Col. 45 Marital status (O=single, l=married,"
PRINT *," 2=widowed, 3=di vorced, 4=cohabi ting ,"
PRINT *," 9=unknown)"
PRINT *,"Cols. 47,48 Age (in years)"
PRINT *,"Cols. 51-53 Height (in em)"
PRINT *,"Cols. 56-62 Weight (in kg in the form kkk.ggg)"
PRINT *," "
PRINT *,"Data should be terminated by

,'END OF DATA' typed in cols.
PRINT * " ",
! Loop to read data
DO i=l,max-people

READ '(A15,5X,A20,2X,I1,lX,I1,lX,I2,2X,F3.2,2X,F7.3)', ,
people (i)

! Check if this is the terminator record
IF (people (i)%first_name (1:11) -- "END OF DATA") EXIT

END DO
!Check to see if a terminator was found
IF (i>max-people) THEN

PRINT *,"Maximum number of records (",max-people,") read"
PRINT *,"with no terminator - input halted"
! Save number of data records read
number-people = max-people

ELSE
number-people = i-1

END IF
END SUBROUTINE input
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8.4 FORMAT statements

We have now seen how the format, which defines the layout of the data and how it
is to be interpreted, works together with the READ statement, which specifies where
the data is to come from and where the converted data is to be stored. The inclusion
of the format as part of the READ statement is normally the most natural way to link
these two aspects of the input process, but there are occasions when this can lead to
confusing statements or to unnecessary duplication. For example, if the nature of a
program is such that there are several READ statements, all requiring the identical
format, then it is both wasteful and potentially a source of errors to repeat the
format in each of the READ statements. In these circumstances we can define
the format in a special, non-executable, FORMAT statement which takes the form

label FORMAT (edit_descriptorJist)

A FORMAT statement must always be preceded by a label because that is the only
means by which it can be referenced in a READ statement, which will take the
second of the three forms introduced in Section 8.2:

READ label, outpuUist

The labelled FORMAT statement may appear anywhere in the program unit
after the initial statement and any USE statements, and before the END statement.
As we shall see in Chapter 11, it must also come before any internal procedures.
We recommend that any FORMAT statements in a program unit should be kept
together for. ease of reference, either near the start of the program unit, for
example immediately after the declarations and other specification statements and
before the start of the executable statements, or after all the executable statements
in the program unit.

Figure 8.7 shows part of a program in which personal data in the same
format as that used in Example 8.1 is read into one of three arrays, depending on
the value of an integer variable, and it can be seen that the use of a single FORMAT

statement helps to keep the structure of the program clearly visible.

8.5 Output editing

As we might expect, the edit descriptors used for output are essentially the same
as those used for input, although there are some additional ones that are only
available for output and the interpretation of the others is slightly different.
Figure 8.8 shows the main edit descriptors that are available for output, and we
shall briefly examine each in tum.

The I edit descriptor (Iw) causes an integer to be output in such a way as
to utilize the next w character positions. These w positions will consist of (if
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SUBROUTINE format_statement_demo(group_l,group_2,group_3)
USE Global_Data
IMPLICIT NONE
! An input subroutine for a survey"
! Dummy arguments
TYPE (person) ,DIMENSION(:) :: group_l,group_2,group_3
! Local variables
INTEGER :: il,i2,i3,code

Input format
100 FORMAT (A1S,SX,A20,2X,Il,lX,Il,lX,I2,2X,F3.2,2X,F7.3)

SELECT CASE (code)
CASE (:-1) ! code<O - group_l

READ 100,group_l(il)

CASE (0) ! code=O - group_2
READ 100,group_2(i2)

CASE (1:) ! code>O - group_3
READ 100,group_3(i3)

END SELECT

END SUBROUTINE input

Figure 8.7 An example of the use of FORMAT statements.

necessary) one or more spaces, followed by a minus sign if the number is
negative, followed by the value of the number. Thus the statements

tom = 23
dick = 715
harry = -12
PRINT' (15,15,15)' ,tom,dick,harry

will produce the following line of output (where the symbol. represents a space)

••• 23 •• 715 •• -12
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Descriptor

Iw
Fw.d

Ew.d

Aw

A

Lw

nX
Tc

TLn
TRn
IIC1C2 .•. en"
I CIe2 ... en'

Meaning

Output an integer in the next w character positions
Output a real number in the next w character positions with d decimal places
Output a real number in the next w character positions using an exponent format with d
decimal places in the mantissa andJour characters for the exponent
Output a character string in the next w character positions
Output a character string, starting at the next character position, with no leading or
trailing blanks
Output w - 1 blanks, followed by T or F to represent a logical value
Ignore the next n character positions
Output the next item starting at character position c
Output the next item starting n character positions before (TL) or
after (TR) the current position
Output the string of characters C1C2 ••• Cn starting at the next character
position

Figure 8.8 Edit descriptors for output.

If the output is to go to the computer's printer then the results which
actually appear will be very slightly different, as the first character on the line (a
space in this example) will not be printed; the reason for this is discussed in
Section 8.7. If it is sent to a display screen, or most other peripheral devices, the
layout will normally be exactly as defined, although in some cases it may be the
same as if it had been sent to the printer.

The F edit descriptor operates in a similar way, and Fw. d indicates that a
real number is to be output occupying w characters, of which the last d are to
follow the decimal point. Note that the real value to be output is rounded (not
truncated) to d places of decimals before it is sent to the relevant output device.
Rounding is carried out in the usual arithmetic way. Thus the statements

x = 3.14159
Y = -275.3024
z = 12.9999
PRINT' (Fl0.3,F10.3,Fl0.3)' ,x,y,z

will produce the following line of output:

••••• 3.142 •• -275.302 •••• 13.000
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361.764
3.61764+2
361764-3
0.0361764E4
3617.64D-1
3.61764E +2
361.764+0

Figure 8.9 Some of the ways in which the real data item 361.764 may be written.

Notice that, because the edit descriptors each specify only three places of
decimals, the value of x is printed as 3.142 (rounded up), the value of y as
-275.302 (rounded down), and the value of z as 13.000 (rounded up).

The E edit descriptor is also used for outputting real numbers, but using a
form of notation which represents the number as a mantissa and an exponent.
Before discussing it, however, we must briefly review the representation of the
format of real numbers.

We have already seen, in Section 3.3, that a real constant may be written
followed by an exponent (for instance, 1. 5E- 6) and a similar format is allowed for
numbers being input by a READ statement. In this case the exponent may take one
of three forms:

• a signed integer constant
• E followed by an optionally signed constant

• D followed by an optionally signed constant

In the latter two cases the letter (D or E) may be followed by one or more spaces.
Thus a real data value may be written in a great many different ways; for

example, some of the ways in which the number 361.764 may occur in data are
shown in Figure 8.9.

As was mentioned in Section 8.3, such data may be input using either the
Fw. d or Ew. d edit descriptors. However, on output the two edit descriptors
operate in quite different ways.

We have already seen that Fw.d will output a real number rounded to d
decimal places with an external field of width w. The E edit descriptor, however,
produces a representation of a real number consisting of a decimal fraction, m, in
the range 0.1 :::;m < 1.0, with d digits of precision, followed by a four character
exponent; the whole number will occupy a field width of w characters. It is
therefore much more flexible, and will cater more easily than the F edit descriptor
with very large or very small numbers. The number 0.000036 1764, for instance,
will be output as shown below with various edit descriptors:
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F10.4
F12.6
F14.8
E10.4
E12.6
E14.8

•••• 0.0000
•••• 0.000036
•••• 0.00003618
0.3618E-04
0.361764E-04
0.36176400E-04

If the exponent is greater than 99, or less than -99, then the exponent will be
output as a plus or minus sign, followed by a three digit exponent. Some
Fortran 90 processors may choos~ to use this form of representation for all values
of the exponent.

It is important to realize that, for all numeric edit descriptors, if the
number does not require the full field width w it will be preceded by one or more
spaces. By allowing more room than is necessary, several numbers may be spaced
across the page and the printing of tables becomes relatively easy, as can be seen
in Figure 8.10. In this case the format being used specifies that the three items to
be printed (x, yIX, yIx) are all to use an edit descriptor of F15.4. The three
numbers are therefore spread evenly across the page, with the next three directly
below them, and so on.

As we might expect, the A edit descriptor works in a similar fashion for
output as for input. Aw will, therefore, cause characters to be output to the next w
character positions of the output record, and, as was the case for input, we need

PROGRAM tabular_output
IMPLICIT NONE
REAL,PARAMETER .. third=1.0/3.0
REAL:: x
INTEGER:: i
DO i=1,10

x=i
PRINT' (F15.4,F15.4,F15.4)', x,SQRT(x),x**third

END DO
END PROGRAM tabular_output
The output from this program will be

1.0000
2.0000
3.0000
4.0000
5.0000
6.0000
7.0000
8.0000
9.0000

10.0000

1.0000
1.4142
1.7321
2.0000
2.2361
2.4495
2.6458
2.8284
3.0000
3.1623

1.0000
1.2599
1.4422
1.5874
1.7100
1.8171
1.9129
2.0000
2.0801
2.1544

Figure 8.10 An example of tabular printing ..
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to establish exadly what happens if the length of the output list item is not
exadly w. The rules that apply here are similar to those that we had for input,
where len is the length of the charader variable or constant being output:

• If w is greater than len then the charader string will be right-justified
within the output field, and will be preceded by one or more blanks. This
is similar to what happens with the I, F and E edit descriptors.

• If w is less than len then the leftmost w charaders will be output.

It will be remembered that, during the discussion of the use of the A
format for input in Sedion 3.3, the apparent incongruity between the truncation
on the left during input and truncation on the right during assignment was raised.
We can now see that this was necessary to ensure compatibility between input
and output. If a charader string is output to a field larger than its length then it
will have spaces added at the beginning, as with all other types of data. If that
sameextemal representation were to be subsequently read back into the
computer, using the same format, then it is necessary that the extra blanks at the
beginning be removed, and not the important charaders at the end! The apparent
incompatibility with assignment is, therefore, much less important than the major
incompatibility between input and output that would occur if a charader string
were to be input with truncation at the right.

Note, however, that for list-directed input assignment rules apply, and a
charader string which is too long for the variable it is to be input to will be
truncated on the right.

Just as was the case with input, we may omit the field width with an A edit
descriptor, in which case the charader string being output will occupy exadly the
space it requires, with neither leading nor trailing blanks. This form of the A edit
descriptor is, therefore, particularly useful on output, since it can enable the same
basic format to be used with charader variables of different lengths.

Finally, there is the L edit descriptor for use in outputting a representation
of logical values. This is perfedly straightforward, and the descriptor Lw will
cause w - I blanks to be output, followed by the letter T or the letter F to
indicate true or false.

There is one further point that should be made at this stage. In the
example shown in Figure 8.10, as in several other programs in this sedion, the
same edit descriptor has been repeated several times. A number, called a repeat
count, may be placed before the I, F, E, A or L edit descriptors to indicate how
many times they are to be repeated. Thus the format

(IS,IS,IS,F6.2,F6.2,F6.2,F6.2)

could be written more succindly, and more clearly, as

(3IS,4F6.2)
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A repeat count may be used in formats for both input and output to cause
repetition of an edit descriptor which is used in conjunction with an input or
output list item; it cannot be used to repeat the other edit descriptors, such as X,
TL, etc.

For output there is also a common requirement to display a fixed text
string to identify, or otherwise clarify, the meaning of the results being output.
We have used this feature extensively in list-directed output statements of the
form

PRINT *,"The result is ",result

A format may also include a character constant edit descriptor, which takes the
form of a character constant, and is output at the next character position. Thus,
the above example could also be written as

PRINT' ("The result is ",IS)', result

It is because of the frequent requirement for character constant edit descriptors in
most output formats that we have been adopting the convention that
apostrophes will be used to delimit embedded formats. We could, of course,
have equally well written

PRINT" ('The result is ' ,IS)", result

and if you prefer to normally use apostrophes to delimit character constants then
you should use this form for embedded formats. The important thing is to be
consistent.

The remaining edit descriptors that we shall discuss here are all concerned
with layout. The X edit descriptor (nX) operates in a similar manner to that which
was described for input, and is used to ignore, or skip over, the next n character
positions. If no output has yet been sent to these positions the effect is to insert n
spaces; if some output has already been sent to these position, however, the X edit
descriptor merely moves the index recording where the next character is to be
output. The effect of nX is best appreciated by assuming that an output record
always consists of spaces before the start of a PRINT statement, and that nX always
moves the index n character positions to the right.

The T, TL and TC edit descriptors also operate in essentially the same way
as for input, if we assume that the output record consists initially of spaces, and
enable items to be positioned in an exact place in the record (or line).

SELF-TEST EXERCISES 8.1

1 What is a value separator during list-directed input?
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2 What are the possible value separators during list-directed input?

3 Under what circumstances may character data be read by a list-directed READ
statement without being enclosed between apostrophes or quotation marks?

4 What is an embedded format?What is a FORMAT statement?

5 When is it preferable to use an embedded format, and when is it preferable to use a
FORMAT statement?

6 What is an edit descriptor?

7 If the user responds to the following program by typing the nine digits I to 9 without
any intervening characters,what exactly will be printed?

PROGRAM testl
IMPLICIT NONE
INTEGER:: a,b
REAL :: c,d
READ 101,a,b,c,d
PRINT 200,a,b,a-b,c,d,c-d
101 FORMAT(T6,I4,TL6,I4,TL6,F4.1,TL6,F4.2)
200 FORMAT(SX,I4," minus",IS," is",IS,TR4,F6.2, &

" minus",F6.2," is",F8.3)
END PROGRAM testl

8 If the user responds to the following program by typing the nine digits I to 9without
any intervening characters, what exactly will be printed?

PROGRAM test2
IMPLICIT NONE
CHARACTER (LEN=6) :: a,b,c
READ ' (A8,Tl,A4,Tl,A)' ,a,b,c
PRINT' (SX,A8,SX,A4,SX,A)' ,a,b,c
PRINT' (SX,A,SX,A,SX,A)' ,a,b,c

END PROGRAM test2

8.6 READ, WRITE and PRINT statements

Now that we have discussed all the major edit descriptors that can be used to
assist in the interpretation of data and the presentation of results, it is time to
return to the question that we deferred in Section 8.2, namely the source of data
and the destination of results.

The three variants of the READ statement that we have used up to now
have taken their input from the default input unit. In order to vary this source of



258 More control over input and output

data, and also to allow the possibility of monitoring the success or otherwise of
the reading process, we must use a more general form of READ statement:

READ (cilist) input_list

where cilist is a control information list consisting of one or more items, known
as specifiers, separated by commas. There are a number of specifiers that can be
used in conjunction with the READ statement, but we shall only discuss three of
them here; further specifiers will be introduced as they are needed in Chapters 9
and 15. All specifiers take the same basic form:

keyword = value

although the keyword may be omitted in two cases, in certain circumstances.
Such specifiers as are used in a particular case may appear in any order as long as
the full form (with keyword) is used.

There must always be a unit specifier in the control information list,
which takes the form

UNIT = unit

where unit is the input device (or unit in Fortran parlance) from which input is to
be taken. unit may also be the name of an internal file, as we shall see in Chapter
15. It either takes the form of an integer expression whose value is zero or
positive, or it may be an asterisk to indicate that the default input unit is to be
used. The way in which the unit number is related to a particular peripheral
device is, to a large extent, dependent upon the computer system being used.
Normally, some units will be preconnected and will be automatically available to
all programs. The default input unit and the default output unit will always be
preconnected in this way, but each Fortran 90 implementation may well have
different unit numbers associated with them. Any other peripheral devices or files
which the program requires must be given a unit number and connected to the
program by an OPEN statement (see Section 9.3).

The default input unit will usually be preconnected as unit 1 or unit 5.
(This is purely for historical reasons, since IBM, and several other manufacturers,
used unit 5 for the card reader and unit 6 for the printer in their early Fortran
systems, while others used units 1 and 2 for these devices. A great many
programs written in earlier versions thus expect their input from unit 1 or 5 and
send their results to unit 2 or 6, depending upon the type of computer being used.
For compatibility, a Fortran 90 system is likely to preserve the convention
previously in use at a particular site.) We shall assume that it is unit 5, but it must
be emphasized that this is only an assumption; a particular implementation may use
any positive number, or zero, for the default input unit.
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With this assumption we may write

UNIT = 5

or

UNIT = *

to identify the default input unit. If, and only if, the unit specifier is the first item in
the control information list we may omit the UNIT keyword and the = sign, and
simply write ,~

5

or

*

For clarity, however, we recommend that the UNIT keyword should always be
included.

Normally the input will need to be converted from some external form,
such as the characters sent by a keyboard, to an internal form suitable for storing
in the computer's memory. To carry out this c'onversion we have already seen
that we need a format, and this is identified by a format specifier which takes
one of the forms .~,~

FMT = ch var
FMT = label
FMT=*

in an analogous fashion to the format specifications discussed earlier in this
chapter. If the format specifier is the second item in the control information list
and the first item is a unit specifier without any keyword then the FMT keyword
and = sign may also be omitted from the format specifier: Thus the following are
all acceptable alternatives for the same statement:

READ (UNIT=5,FMT=' (3F6.2)') x,y,z
READ (FMT=' (3F6.2)' ,UNIT=5) x,y,z
READ (5,FMT=100) x,y,z
READ (5,100) x,y,z
READ (5,' (3F6.2)') x,y,z
100 FORMAT (3F6.2)

As with the UNIT keyword, however, we strongly recommend that the FMT
keyword should always be included.
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We can also see that the statement

READ (*,*) a,b,c

is identical in its effect to the earlier list-directed input statement

READ *,a,b,c

The remaining specifier that we shall discuss here is concerned with
monitoring the outcome of the reading process, ~nd takes the form

IOSTAT = io_status

where io_status is an integer variable. At the conclusion of the execution of the
READ statement io_status will be set to a value which the program can use to
determine whether any errors occurred during the input process. There are four
possibilities:

• The variable is set to zero to indicate that no errors occurred.

• The variable is set to a processor-dependent positive value to indicate that
an error has occurred. ,i

• The variable is set to a processor-dependent negative value to indicate that
a condition known as anend-of-file condition has occurred; we shall discuss
this condition, and the situations in which it can occur, in Chapter 9.

• The variable is set to a processor-dependent negative value to indicate
that a condition known as an end-of-record condition has occurred; we
shall discuss this condition, and the situations in which it can occur, in
Chapter 15.

For the present, therefore, we may simply use IOSTAT to determine whether or
not the reading of data was carried out successfully by testing the value of the
variable in an IF or CASE construct:

READ (UNIT=*,FMT=' (5F6.3)' ,IOSTAT=ioerror) p,q,r,s,t
IF (ioerror /= 0) THEN ! ioerror is non-zero

! Print error/warning message
! and take remedial action
! before exit from p~ocedure

RETURN
END IF
!Continue with normal processing
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Output is essentially the reverse of input so far as the transfer of
information is concerned, and as one would expect, the facilities available are
essentially the same. The most obvious difference is that for input the word READ
is used in all cases, but for output we have two words. We have used the PRINT
statement for list-directed output for user-formatted output to the default output
unit. To take advantage of the full range of facilities, however, we must use a
different word, WRITE, in a form of statement which is almost identical to that
used for input:

WRITE (cilist) output_list

Exactly the same specifiers are available as was the case for the READ statement,
although it is impossible to encounter an end-of-file condition or an end-of-record
condition during output. The only other difference is the obvious one that an
asterisk as a unit identifier refers to the default output unit.

As was the case for input, the choice of a unit number for the default
output unit is dependent upon the particular implementation. It will usually be 6
(when 5 is used for input) or 2 (when 1 is used for input). In this book we shall
assume that the default output unit is 6 and that, therefore, the following statements
are equivalent:

WRITE (UNIT=6,FMT=150) d,e,f
WRITE (UNIT=*,FMT=150) d,e,f

8.7 Printer control characters

We have seen how a format can be used to define the layout of data or of results.
However, when the results are being output on a printer there is one further level
of control possible, namely a (limited) control of the vertical spacing of the
printed output.

When a line of output is to be sent to the output device designated as the
printer, the Fortran output system will remove the first character of the line and
interpret it as a printer control character which determines how much the paper
is to be moved up before any remaining characters of the line are printed. This
apparently bizarre behaviour reflects the way in which some of the very early
printers, back in the 1950s, actually worked and has remained in Fortran ever
since.

There are four characters which have a particular significance in this
regard, as shown in Figure 8.11. If the first character is not one of these four then
the effect on the printer is undefined; in practice, however, any other character
will usually have the same effect as does a space, that is, printing will take place
on the next line.
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Character

• (space)
o (zero)
1 (one)
+ (plus)

Vertical spacing before printing

one line
two lines
first line of next page
no paper advance (overprint)

Figure 8.11 Printer control characters.

Because the first character is removed and not printed it is important that
we insert an extra (control) character at the start of each record that is to be
output to the printer; Figure 8.12 shows what can happen if we do not do so.

Because the edit descriptor in format 200 (F5. 2) only allowed room for
two digits before the decimal point, and format 201 only allowed room for one,
the output records actually produced are as follows:

+3.00
+4 ,00
12.00
0.750

The first character, however, will be removed for printer control. In the first two
lines this merely means that the leading space, shown as +, is removed, causing
the correct number to be printed on the next line. The third line, however, starts
with a one. This is removed and the remainder of the record (2.00) is printed at
the top of the next page, as specified by the (apparent) control character (1). In a
similar way, the leading zero of the last line causes double spacing (that is, a blank
line before printing).

There are several ways in which a control character can be inserted at the
start of a line, especially if it is a space (as is usu~lly the case). It is preferable to
include the control character explicitly, rather than simply incorporating it into
the first format specifier, so that it stands out as not being part of the format
proper, and will not get removed inadvertently when modifying the program at a
later date. It is also easier to modify the program to remove the printer control
character at a subsequent date, if required, if it is physically separate from the next
edit descriptor. The two formats shown in Figure 8.12 could therefore be
rewritten as

200 FORMAT (lX,F5.2)
201 FORMAT (lX,F5.3)

It is important to realise that this only applies to the printer, or to other units
which the compiler designates as printing units, including, in some cases, the
computer's display screen; other output devices, including, possibly, others which
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PROGRAM poor-printer_control
IMPLICIT NONE
REAL :: x,y
x = 3.0
Y = 4.0
WRITE (ONIT=*,FMT=200) x
WRITE (UNIT=*,FMT=200) Y
WRITE (ONIT=*,FMT=200) x*y
WRITE (UNIT=*,FMT=201) x/Y
200 FORMAT (F5.2)
201 FORMAT (F5.3)

END PROGRAM poor-printer_control
The output from this program will be

3.00
4.00

(new page)
2.00
.75Q fu

"Figure 8.12 An example of printer control errors.

-,.
produce some form of printed output. do not need a control character and will
print the complete record. Note also that the PRINT statement automatically
inserts a (space) control character at the start of each line if the default output unit
is the printer.

8.8 More powerful formats

This chapter has described the means whereby a program may define formats for
both input and output of considerable complexity. However, a number of other
features are available to facilitate still more control of input and output. Probably
the most important of these concern multi-records formats, and the repetition of
formats.

Let us consi~er a program that wishes to read 12 real numbers into an
array arr, of size 12, typed four to a line. With our present knowledge we could
write

READ 100, (arr(i) ,i=1,4)
READ 100, (arr(i),i=5,8)
READ 100, (arr(i),i=9,12)
100 FORMAT (4F12.3)
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However, consider what would happen if we wrote

READ100,arr

which is the same as writing

READ100, (arr(i) ,i=1,12)

After the READstatement has used the format to input four real numbers (which
are placed in the first four elements of arr) it finds that the input list is not yet
exhausted, and that another real number is required. The format is completed,
however, and it follows that this input record contains no more useful
information. There is only one sensible thing to d~ at this stage - namely to read
a new record and interpret its contents using the same format. This is exactly
what happens.

Whenever a format is fully used up and there are still items in the input (or
output) list awaiting processing the format will be repeated. The rules governing
the point from which it will be repeated are straightforward:

• If there are no nested parentheses then the format is repeated from the
beginning.

• If the format contains any nested parentheses then it is repeated from
immediately after the left parenthesis cdrresponding to the rightmost
nested parenthesis.

• If the left parenthesis defined above is preceded by a repeat count then the
format is repeated including the repeat count.

The following examples should make this clear; an arrow (j) is shown below the
point from which repetition (if any) will take place:

(I6,10X,IS,3F10.2)
i
(I6,10X,IS, (3F10.2))

i
(I6, (10X,IS) ,3F10.2)
i

(F6. 2, (2F4.1 ,2X, 14, 4 (I7 , F7. 2) ))
i

(F6.2,2 (2F4.1,2X,I4),4 (I7 ,F7 .2))
i .

(F6. 2, (2 (2F4. 2 ,2X, 14) ,4 (I7 ,F7 .2)))
i

((F6.2,2(2F4.2,2X,I4) ,4(I7,F7.2)))
i

The repetition of a format can be extremely useful; however, in many
cases it is also desirable to be able to define a format which processes two or more
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- - - --- .-- -, (new page)

The sum of 12.25 and 23.50 is 35.75
Their product is 287.875

Figure 8.13 An example of a multi-line output format.

separate lines, or (more accurately) records. This is achieved by the I edit
descriptor, which can, but need not be, separated f~om any preceding or
succeeding descriptor by a comma, and which indicates the end of the current
record.

On input, a I causes the rest of the current record to be ignored and the
next input item to be the first item oHhe next record. On output, a I terminates
the current record and starts a new one. Thus the statement

READ' (3F8.2/3I6)' ,a,b,c,p,q,r

will read three real numbers from the first record and three integers from the
second.

Similarly, the statements

WRITE (UNIT=6,FMT=20l) a,b,a+b,a*b
201 FORMAT ("1" ,T10, "Mul ti-record example" I

"O","The sum of",F6.2," and",F6.2,"
lX,"Their product is",F10.3)

&
is",F7.21 &

will cause output as shown in Figure 8.13 to be printed starting at the top of a
new page.

Multiple consecutive I descriptors cause input records to be skipped or
null (blank) records to be output. Thus the statement

READ ' (3F8.2113I6)' ,a,b,c,p,q,r

will cause three real numbers tb be read from the first record and three integers
from the third. Tne second record will be skipped and not read.

Multiple I descriptors are particularly useful on output, as we can see in
the following variation of the program extract used earlier, which will produce
the output shown in Figure 8.14:

WRITE (UNIT=6,FMT=202) a,b,a+b,a*b
202 FORMAT("1"IIIIT10,"Another multi-record example"lll &

lX,"The sum of",F6.2," and",F6.2," is",F7.211 &
lX,"Their product is",F10.3111/)
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- - - - - - - - - - - - - - - - - - - - - - - - - (new page)

Another multi-record example

The sum of 12.25 and 23.50 is 35.75

Their product is 287.875

Figure 8.14 Another example of multi-line output formatting.

Finally, it should be pointed out that the combination of a / edit
descriptor and a repeated format can provide a very powerful degree of
flexibility; thus the following format

(I6/(I4,3F12.2))

specifies that the first record consists of a single integer, and that the following
ones all consist of an integer followed by three real numbers, since the format will
be repeated as many times as necessary from the left parenthesis before the 14
descriptor.

[!] Problem
A piece of experimental apparatus is monitoring the radioactive decay of a
specimen. At approximately regular intervals it records the time since the start of
the experiment (in hundredths of a second), the number of a-particles emitted
during the interval, the number of ,8-particles emitted and the amount of
'Y-radiation in the same period. These are output as an eight-digit number (for the
time) and three six-digit numbers. There are five spaces between each number.

Write a program to read this data and to print a table containing the
following information: a sequence number for each interval, the length of the
interval, the three readings obtained and the average emission of a-particles,
,8-particles and 'Y-rays (per second) during the interval. After 1000 time intervals
print the time interval which had the highest rate of emission of 'Y-radiation.

~ Analysis

This is a straightforward problem, which is primarily concerned with the use of
formats to read the data and layout the results. We shall use constants (in and
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out) in which to store the unit numbers, thus making it much easier to change
these if it should subsequently be desired to do so.

Data design

Purpose

A Constants:
I/O unit numbers
Maximum number of readings

B Variables:
. Time since start (data)

Experimental readings (data)
DO variable (and sequence no.)
Time of last reading and interval
Average emissions
Maximum average gamma
Interval with max ave. gamma

Structure plan

Type

INTEGER
INTEGER

REAL
INTEGER
INTEGER
REAL
REAL
REAL
INTEGER

Name

in, out
max_readings

time
alpha, beta, gamma
i
last_time, period
av_alpha, av_beta, av~amma
max_ av ~amma
max_interval

This is fairly straightforward except for step 2. We shall be printing a table with
eight columns and it is sensible to identify these by headings. We can do this by
means of a WRITE statement which has no output list, but which uses a format
consisting solely of character constant edit descriptors together with any
necessary positioning descriptors.

We also need to consider the formats for both input and output. As is
often the case, the format of the data is already defined and our format definition
must therefore reflect it. In this case it is quite simple:

(FB.2,5X,I6,5X,I6,5X,I6)

The time is provided in hundredths of a second so the easiest approach is
to read it as a real number in seconds with an implied decimal point before the
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last two digits. The other items are all integers. Notice that we have a repeated
sequence (5X,I6) in the format shown above. We can shorten this format in one
of two ways, either by enclosing this sequence in parentheses and preceding it by
a repeat count, or by including the leading spaces as part of the numeric field -
although this could be dangerous as there is no guarantee that there is not some
other data in the input records that we are ignoring (i.e. not reading):

(F8.2,3(5X,I6))

or

(F8.2,3Ill)

Notice that, although we stated earlier that only data edit descriptors
were repeatable, the X edit descriptor in the first alternative has also been
repeated. This is allowed when it is part of a repeated sequence which contains at
least one repeatable edit descriptor.

Output is always rather different from input in one important respect,
namely that we usually have complete control over its format. In this case we
wish to produce a table of eight items - a sequence number, a time interval (to
one hundredth of a second), three integer values and three averages. Although, at
first sight, a suitable format might be

(I6,F8.2,3I8,3F8.2)

more detailed examination of the layout, and of the expected size of the results,
leads to the conclusion that a more aesthetically pleasing layout might be
obtained with the format

(I6,F8.2,2I6,I7,2F9.2,FlO.2)

Notice that all the edit descriptors in this format have a field width wider than is
necessary in order to space the columns across the page, and also to leave room
for column titles.

~ Solution

PROGRAM Radioactive_decay
IMPLICIT NONE

This program processes experimental data relating
to radioactive decay

!Constant declarations
! max_readings is maximum number of sets of data
! in and out are the unit numbers for reading and writing
INTEGER, PARAMETER :: max_readings=lOOO,in=5,out=6
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! Variable declarations
INTEGER :: alpha,beta,gamma,i,max_interval=O
REAL :: time,last_time=O.O,period, ,

av_alpha,av_beta,av_gamma,max_av_gamma=O.O

! Print headings
WRITE (UNIT=out,FMT=201)

! Process max_readings sets of data in a loop
DO i=l,max_readings

READ (UNIT=in,FMT=101) time,alpha,beta,gamma

!Calculate interval since last readings
period = time-last_time
last_time = time

! Calculate average rates of emission
av_alpha = alpha/period
av_beta = beta/period
av_gamma = gamma/period

!Print statistics for this interval
WRITE (UNIT=out,FMT=202) i,period,alpha,beta,gamma, ,

av_alpha,av_beta,av_gamma

!Check for maximum gamma radiation in this period
IF (av_gamma > max_av_gamma) THEN

max_av_gamma = av_gamma
max_interval = i

END IF
END DO

! Print details of interval with maximum gamma radiation
WRITE (UNIT=out,FMT=203) max_av_gamma,max_interval

! Format statements
101 FORMAT (F8.2,3(5X,I6))
201 FORMAT ("1","Interval",Tll,"Time",T17,"Alpha", ,

T24, "Beta" ,T30, "Gamma" ,T37, "Average" ,T46, "Average", ,
T55,"Average"/ ,
T38, "Alpha" ,T4 7, "Beta" ,T56, "Gamma")

202 FORMAT (I6,F8.2,2I6,I7,2F9.2,F10.2)
203 FORMAT ("0",T3,"Maximum average gamma radiation was", ,

F7.2," in interval",I5)

END PROGRAM Radioactive_decay

An example of part of the results produced by this program can be seen in Figure
8.15.

This example is typical of the class of problems for which the E edit
descriptor will often be better than the F edit descriptor, since the size and range
of the results may be unknown when it is written and may vary quite widely
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Interval Time Alpha Beta Gamma Average Average Average
Alpha Beta Gamma

990 2.56 175 23 401 68.36 8.98 156.64
991 2.59 168 22 395 64.86 8.49 152.51
992 2.48 181 27 412 72.98 10.89 166.13
993 2.51 177 25 410 70.52 9.96 163.35
994 2.48 166 29 391 66.94 11.69 157.66
995 2.54 181 25 397 71.26 9.84 156.30
996 2.51 169 28 407 67.33 11.16 162.15
997 2.58 159 23 388 61.63 8.91 150.39
998 2.51 177 26 401 70.52 10.36 159.76
999 2.47 173 24 398 70.04 9.72 161.13

1000 2.52 183 28 403 72.62 11.11 159.92
Maximum average gamma radiation was 174.28 in interval 741

Figure 8.15 Results produced by the Radioactive_decay program.

between different experiments. Thus, while the average values for alpha particles
shown in Figure 8.15 are all printed to four significant digits, the averages for
beta particles vary between three and four and the average gamma radiation
always has five significant digits. And yet all data was collected at the same time
with, presumably, the same intrinsic level of accuracy. Using an E edit descriptor

Int. Time A B G Average Average Average
Alpha Beta Gamma

990 2.56 175 23 401 0.68359E+02 0.89844E+01 0.15664E+03

990 2.56 175 23 401 0.68359E+02 0.89844E+01 0.15664E+03
991 2.59 168 22 395 0.64865E+02 0.84942E+01 0.15251E+03
992 2.48 181 27 412 0.72984E+02 0.10887E+02 0.16613E+03
993 2.51 177 25 410 0.70518E+02 0.99602E+01 0.16335E+03
994 2.48 166 29 391 0.66935E+02 0.11694E+02 0.15766E+03
995 2.54 181 25 397 0.71260E+02 0.98425E+01 0.15630E+03
996 2.51 169 28 407 0.67331E+02 o . 11155E+02 0.16215E+03
997 2.58 159 23 388 0.61628E+02 0.89147E+01 0.15039E+03
998 2.51 177 26 401 0.70518E+02 0.10359E+02 0.15976E+03
999 2.47 173 24 398 0.70040E+02 0.97166E+01 o . 16113E+03

1000 2.52 183 28 403 0.72619E+02 o . 11111E+02 0.15992E+03
Maximum average gamma radiation was 0.17428E+03 in interval 741

Figure 8.16 Results produced by the modified Radioactive_decay program.
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for these three values will enable them all to be shown to the same level of
accuracy.

Do not, however, fall into the trap of believing that just because the
results are printed to d digits of precision that they are necessarily accurate to that
degree! We shall have more to say about this in Chapter 10.

Figure 8.16 shows the result of running a slightly modified version of the
same program with the same data as before. The only change is to the three
format statements 201, 202 and 203 to allow all averages to be printed to five
digits of precision.

SELF-TEST EXERCISES 8.2

1

2

Find out which are the default input and output units for the computer that you are
using, and also if any other units are preconneded.

~"
What is the major difference between a WRITE statement and a PRINT statement?

3 What is the purpose of an IOSTAT specifier?

4 What is a printer control charader? What values of the printer control charader have
specified effeds?

5 When is a format, or part of one, repeated?

6 If necessary, where will each of the following formats be repeated from?

(a) (3I8,2F8.2)
(h) (3I8,2(3X,F5.2»
(e) (3(3X,I5) ,2F8.2)
(d) (3(3X,I5) ,2(3X,F5.2))
(e) (3I8/2F8. 2)
(f) (3I8/2(3X,F5.2)

7 Write formats and associated input or output statements to read or print the
dimensions of a box as follows: .!'

;u
(a) Read the dimensions in metric form, where each side is less than ten metres and

the data is typed in the form ~

m.cc by m.cc by m.cc
(b) Print the dimensions and the volume of the box in the form

~ a * b * c (=v cubic metres)
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(c) Read the dimensions in feet and inches, where each side is less than 30 feet and
the data is typed in the form

ff'ii" by ff'ii" by ff'ii"

(d) Print the dimensions and the volume of the box in the form

a * b * c (=v cubic feet)

j

SUMMARY

• During list-directed input data values are separated by value separators,
each of which may be a comma, a slash, a blank, or the end of record,
preceded and/or followed by any number of consecutive blanks.

• If there is no value between two consecutive value separators then a null
value is read, leaving the corresponding input list item unchanged.

• Character data read by a list-directed READstatement must be delimited by
apostrophes or quotation marks unless it is contained on a single line, does
not contain any blanks, commas or slashes, does not begin with an
apostrophe or quotation mark, and does not begin with a sequence 'of digits
followed by an asterisk.

• A format specifier is used to provided user-specified data editing on input
and output, and may be embedded in the input/output statement or
contained in a separate FORMATstatement.

• I edit descriptors are used to edit integer data.

• For E edit descriptors are used to edit real data;

• A edit descriptors are used to edit character data.

• L edit descriptors are used to edit logical data.

• x, T, TLand TRedit descriptors are used to control where data is read from in
an input record and where it is placed in an output record.

• / edit descriptors are used to identify the end of a record.

• Formats, or parts of formats, are repeated as many times as required until
the input or output list has been exhausted.

• READand WRITEstatements with control information lists are used to provide
greater flexibility than is possible with the simple READand PRINTstatements
which always use the default input and output units.

• The control information list in a READor WRITEstatement consists of a list of
specifiers which provide additional information for use during input or
output.

• A UNITspecifier is used to specify the input or output unit to be used for a
READor WRITEstatement.
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An FMT specifier is used to specify the format to be used with a READ or WRITE
statement.

• An IOSTAT specifier is used to determine whether a READ or WRITE statement
was executed without any error, and to provide information about the type of
error if one occurred.

• The first character of each output record being sent to the unit designated by
the processor as a printer is removed before printing takes place and used
to control vertical printer movement; it is called the printer control character.

• Fortran 90 syntax introduced in Chapter 8:

Input/output statements

Format specifier

FORMAT statement

Edit descriptors

Control information
list specifiers

READ (cilist) input_list
WRITE (cilist) output_list
(list of edit descriptors)
label FORMAT (list of edit descriptors)
Iw, Fw.d, Ew.d, AW, A, Lw
nX, Tc, TLn, TRn, /
UNIT = unit
UNIT = *
FMT = label
FMT = 'format_specifier'
FMT=*
IOSTAT = int_var

PROGRAMMING EXERCISES

8.1 Find out which are the standard input and output units for the computer that you
are using. Also find out if any other units are preconneded. If In represents the default
input unit, and Out represents the default output unit, find out what happens if you refer to
unit * and either In or Out in the same program.

When you have established the answers to these questions run the following
programs to see if they behave as you exped.

PROGRAM unit_test_l
IMPLICIT NONE
! Note that "input_unit" and "output_unit" should be
! replaced in the following declaration by the correct
! unit numbers for the computer you are using
INTEGER, PARAMETER :: in=input_unit, out=output_unit
INTEGER :: numl,num2
WRITE (UNIT=*,FMT=*) "Please type a 4 digit integer"
READ (UNIT=*,FMT=*) numl
WRITE (UNIT=out,FMT=*) "Please type a 3 digit integer "
READ (UNIT=in,FMT=*) num2
WRITE (UNIT=out,FMT=*) "The numbers you typed were &

&as follows"
PRINT' (" ",I4," and",I4)' ,numl,num2

END PROGRAM unit_test_l
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PROGRAM' unit_test_2
IMPLICIT NONE
! Note that "input_unit" and "output_unit" should be
! replaced in the following declaration by the correct
! unit numbers for the computer you are using
INTEGER, PARAMETER :: in=input_unit, out=output_unit
INTEGER:: numl,num2
WRITE (UNIT=out,FMT=*) 'Please type a 4 digit integer'
READ (UNIT=in,FMT=*) numl
WRITE (UNIT=*,FMT=*) 'Please type a 3 digit integer'
READ (UNIT=*, FMT=*) num2
PRINT *, 'The numbers you typed were as follows'
WRITE (UNIT=out,FMT=' (" ",14," and", 14)') numl,num2

END PROGRAM unit_test_2

8.2 The actual implementation of printer control characters, especially + (to produce
output on the same line as the previous record) and 1 (to start a new page) can vary -
especially when the output device is a display screen. Run the following program to
establish what happens on your computer system.

PROGRAM ptest
IMPLICIT NONE
! This program tests the effect of printer control
! characters on the display and on the printer
In the following declaration statement display_unit
should be replaced by the unit number of the display
on your computer, and printer_unit by the unit number
of the printer (if one is available)

INTEGER, PARAMETER .. display=display_unit, &
printer=printer_unit

output to the display
&

integer"

INTEGER:: n
WRITE (UNIT=display,FMT=100)
WRITE (UNIT=printer,FMT=100)
100 FORMAT &
("l","This line should be at the top of a new page"l &
" ","This should be on the next line"l &
"0" ,"This line should be after a blank line" I &
" ", "This line should be" I &
"+"," on the next line" I &
"0" ,23X, "after a blank line" I &
"+", "And this one should be")
wait until you have checked the

WRITE (UNIT=display,FMT=*)
"Check the display and then type an

READ *,n
! Repeat the output - to see what happens to the display
WRITE (display,FMT=100)
WRITE (printer,FMT=lOO)

END PROGRAM ptest

8.3 Write a program to display a 'multiplication square'. The numbers 1-12 should run
across the top of the table and down the side, with the entries holding the relevant
product. Thus the first few lines would be:
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1 2 3 4 5 6 7 8 9 10 11 12
X

1 1 2 3 4 5 6 7 8 9 10 11 12
2 2 4 6 8 10 12 14 16 18 20 22' 24
3 3 6 9 12

etc. "!:,

8.4 Write a program which will input a date in the form dd mmm yyyy, where dd and
yyyy are numeric, and mmm is a 3-letter representation of the month, and convert it to the
number of days since 1 January 1900.

8.5 Write a program that finds the positive difference between two 3-digit integer
numbers and produces the result of the calculation in the form:

The positive difference between nl and n2 is n3,

Use formatted READ and PRINT statements in your program.

"8.6 Store twelve 5-digit numbers in an array. Purely by changing the output format,
print the numbers as

(a) a single column of numbers
(b) four rows of three numbers
(c) a single line of numbers

Now modify the program so that the format is unchanged, but that altering the way in
which a single READ statement is used can produce the same three f~rmats for the results.

8.7 A railway timetable has to be produced in the following form

Station no. Arrival Departure
1 1.20
2 2.05 2.15
3 2.35 2.45
4 3.20 3.30
5 3.40

Write a program that prints out the timetable on the screen as given above.

8.8 Find a printed four-figure logarithm table. Write a program to print such a table.

8.9 Write a program to print a bank statement. The user should be asked for the
opening balance and the amount of each of a number of transactions, which may be debits
or credits. Once all transactions have been entered, the program should calculate the final
balance and generate a printout of the form:

Opening balance: 123.45
Transactions:
Debit Credit Total "11.23 112.22
50.00 62.22

25.00 87.22
Closing balance: 87.22

Is the REAL data type suitable for such financial calculations?
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8.10 The expression

. . (cos(B-</»-cos(B+</»)
sm Bsm </> - ----------

2

should be zero for all values of B and </>. Write a program which will produce a square table
showing the calculated values of the function for values of B and </> between 0 and 3 radians
in steps of 0.25.

8.11 Angles are often expressed in degrees, minutes and seconds, where there are 360
degrees in a full circle, 60 minutes in a degree, and 60 seconds in a minute.

Define a derived type suitable for this form of representation. Then write a
program that reads an angle as three integer values, representing the degrees, minutes and
seconds, and which then computes its value as a decimal number of degrees, and also its
value in radians (where there are 271" radians in a full circle, and 71" may be taken as
3.14159236). The program should display the angle in all three forms, using four decimal
places for the value in decimal degrees, and an appropriate number of decimal places for
the value in radians.

8.12 A chemist makes five measurements of the rates of three different reactions. The
data collected is shown below:

Reaction A Reaction B Reaction C
20.6 16.9 90.6
31.2 20.2 100.2
10.9 30.7 98.7
15.4 30.2 117.2
12.1 30.0 88.6

Write a program that calculates the mean rate and standard deviation for each
reaction. The standard deviation is given by the formula

where N is the number of measurements, J.l is the mean and Xi is the ith measurement for
each reaction. Use formatted output to produce a table consisting of three columns for the
experimental data followed by the mean and standard deviation for.each reaction.

"'8.13 Following an earthquake it is required to print out the seismic measurements
recorded at a number of different centres around the world. Write a program which reads
several sets of data from the keyboard, each consisting of the longitude and latitude of the
recording instrument (as two pairs of integer numbers) and the strength measured on the
Richter scale (as a real number). Each set of figures should be stored in a derived type array,
each element of which holds the position and strength of the measurement.

Latitudes to the west of the Greenwich meridian are recorded as negative values
(thus 23°48' W is recorded as -23,48), and those to the east as positive values. Similarly,
longitudes north of the equator are recorded as positive, and those to the south as
negative.
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Your program should read all the data, and then print the measurements as a table
in the following form:

Seismic measuremnts recorded after Laheytown earthquake
Recording Station Richter
Longitude Latitude Strength
nnonn' N nnnonn' W nn.nn
nnonn' S nnnonn' E nn.nn

8.14 Even on a computer without graphics facilities, simple plots can be produced by,
for instance, printing an asterisk in the appropriate column of the screen to represent a
point. Use this technique to make a plot of the function y = cos x for x taking values from 0
to 47r radians. Can you make the x-axis run across the page instead of down?

8.15 Write and test a subroutine which prints a real number x, using a field width of 8,
accor,ding to the following rules:

(a) If x = INT(x) then the number should be displayed as an integer
(b) Otherwise, if it is possible, x should be printed in fixed point format to at least
3 significant figures
(c) Otherwise x should be printed in floating point format to as many decimal
places as will fit in the space available
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One of the most important aspects of computing is the ability for a
program to save the data that it has been using for subsequent use either
by itself or by another program. This involves the output of the data to a
file, usually on some form of magnetic or optical medium, for input at
some later time. Files may be written and read sequentially or, on some
types of media, the information in a file may be written and read in a
random order. In either case the file may be stored permanently within
the computer system, for example on a magnetic or magneto-optical disk
which is an integral part of the computer, or it may be stored on some
medium, such as a disk or tape, which may be removed from the
computer either for safe-keeping or for physical transport to another
computer.

This chapter shows how the READ and WRITE statements discussed
in Chapter 8 can be used to read data from a file and write data to a
file, in a sequential manner, and introduces several additional
statements which are required when dealing with files. More
sophisticated uses of files, including random access to information
stored in a file, is discussed later, in Chapter 15.
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9.1 Files and records

The input and output facilities that we have met so far allow us to input data and
to output results in a wide variety of different ways; however there has been one
major omission which we shall now address. All the programs that we have
written have been based on the assumption that when the program is run it reads
some data from the keyboard (or other default input unit), processes it, produces
some results which are displayed on the screen or sent to a printer, and
finishes. Once the program has finished nothing remains within the computer
system.

This ignores two very important aspects of the normal computing
process.

The first is that if there are more than a few lines of data it is usually far
more appropriate to type the data into a file, possibly using the same editor as is
used to type and edit the program, and for the program to then read the data
directly from the file. This has the advantage that the data need only be typed
once; on all subsequent runs of the program (for example, during testing) there is
no need to retype the data. Even if it is not intended to process the data more
than once this mode of operation is preferable for larger amounts of data, since it
allows for error corrections and/or changes to be made to the data before it is read
by the program.

For similar reasons, where there are more than a few lines of results to be
displayed it is often more convenient to send them to a file which can
subsequently be displayed in sections or sent to a printer, or both, as appropriate.

The second aspect that we must consider occurs when the results
produced by one program, or some of the results, are required as data for another
program, or even another run of the same program. Examples of this type of
application range from data processing activities such as payroll calculation or
financial accounting, where past records are essential, to analysis of scientific
experiments over a period of time, control of airline reservations, scheduling of
production, or any other activity which requires knowledge of some past events
of the same or similar type.

The file store of the computer system is used for this purpose. This
consists of special input! output units usually, though not always, based on either
magnetic disks or magnetic tapes, or a combination of the two. Information may
be transferred to and from these units by using READ and WRITE statements in a
similar manner to that used for data and results transferred via the default input
and output units. However, before we examine this in more detail, we must first
define two important concepts, namely those of a record and of a file.

We have already referred to records informally when discussing input and
output, and have understood it to refer to a sequence of characters such as a line
of typing or a printed line of results. However, a record does not necessarily
correspond in this way to some physical entity, but refers to some defined
sequence of characters or of values. There are three types of records in Fortran 90,
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formatted, unformatted and endfile records, and we shall discuss these in some
detail in the next section.

A sequence of records forms a file, of which there are two types - external
and internal. We shall investigate external files in more detail before we start to
examine the records of which they are comprised; internal files will be discussed
in Chapter 15.

An external file is an identifiable sequence of records which is stored on
some external medium. Thus a sheet of printed results is a file. Although this is
the formal definition of a file, in general usage a file is normally understood to
refer to a file which is part of the computer system's file store. As we have already
indicated, there are two main types of storage medium used for this purpose,
magnetic tape and magnetic or optical disk, and before discussing files any further
it is important to recognize one very important difference between these two
types of storage medium, and the effect that this has on the use of files in Fortran
programs.

A magnetic tape, which is the older storage medium, is a sequential
storage medium, in that each record written will normally be written directly after
the previous record, so that the normal way of reading magnetic tape records is in
the same order as that in which they were written. Magnetic tapes on large
computer systems are typically over 2000 ft long (or almost 0.75 km) and may
contain as many as 50 million characters or their equivalent, although standard
audio cassettes are also used on some small computers, and it would be extremely
time-consuming to search for individual records in a random order. On the other
hand, magnetic tapes are easy to store and the tape decks that are used to read
and write information are relatively economical to manufacture.

A magnetic or optical disk, however, does not record information in a
single spiral, like a record, but stores it in the form of a large number of concentric
circular tracks. This means that information can be retrieved from any part of the
surface of the disk in a fraction of a second since, at worst, the read head only
needs to travel a few inches to position itself on the required part of the disk.
Such a storage unit can therefore be used for random access of information as
well as sequential access. Moreover, because the technology used in the
manufacture of disk drives permits data to be stored very much more densely
than is possible on a magnetic tape, a 3~ inch diameter exchangeable diskette (or
floppy disk) on a personal computer can hold almost 3 million characters, while
the disks attached to larger computers may store as much as several billion
characters.

Because the information anywhere on a magnetic disk (or other similar
device) can be accessed so rapidly, and because a disk can hold so much
information, a single disk will usually store a large number of separate files of
information. Most computers will have some disks permanently (or semi-
permanently) mounted, while others will only be loaded when required. On a
personal computer, for example, there will normally be a permanently mounted
fixed disk (or hard disk) capable of storing between 100 million and 500 million
characters, while diskettes of 1-3 million characters will be loaded as and when
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required to provide more transitory data storage, or to provide a second copy for
backup or for transfer of information to another computer.

In the case of computers which are used simultaneously by more than one
user, the files on a single disk will often belong to a number of different users of
the computer, and it is the job of the computer's operating system to keep a
catalogue of all the files so that the correct files can be made available to a
program when required. Because of the problems associated with sequential
access, on the other hand, a magnetic tape often consists of a single file, but the
computer's operating system will often catalogue this so that a record is kept of
which file is stored on which physical magnetic tape. Thus the operating system
will, usually, be able to request that the appropriate tape be loaded whenever a
program wishes to use a file which is stored on that tape.

For most purposes we may ignore the differences between the various
types of file store units and simply consider their mode of access - sequential or
direct. In this chapter, moreover, we shall only consider sequential access files; the
use of direct access files will be discussed in Chapter 15. However, before we start
to use any type of file we must investigate in more detail the three types of
record which may make up a file.

9.2 Formatted, unformatted and endfile records

The first type of record is called a formatted record, and consists of a sequence
of characters selected from those which can be represented by the processor
being used - that is the 58 characters in the Fortran character set plus any other
characters which may be available. A formatted record is written by the same
type of formatted output statement that we introduced in Chapter 8:

or by an output statement which uses list-directed formatting:

Each such output statement creates a new record, or several new records if the
format used defines multiple records.

A formatted record may also be created by some means other than a
Fortran program; for example it may be typed at a keyboard.

A formatted record is read by a formatted input statement, including one
which uses list-directed formatting.

A formatted record is formatted so that it can be represented in a form
that human beings (or a different type of computer) can understand. The work
involved in converting values from their internal (binary) representation into
character form, or vice versa, imposes a considerable overhead, and if the
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information is being written to a file so that the same program, or another one on
the same computer, can subsequently read it back there is clearly no need to
convert it to character form. Furthermore, where real numbers are concerned, the
process of converting them to character form and then converting back to
internal form will almost invariably introduce round-off errors due to the
difference in precision of the internal and external (character) representations.
Fortran 90 therefore contains a second type of record, called an unformatted
record, which consists of a sequence of values (in a processor-dependent form)
and is, essentially, a copy of some part, or parts, of the memory of the computer.
An unformatted record can only be produced by an unformatted output
statement, which is the same as a formatted WRITE statement but without any
format specifier:

WRITE (UNIT=9) var_l,var_2,var_3
WRITE (UNIT=3,IOSTAT=ios) x,y,z

As we might expect, an unformatted record can only be read by an unformatted
input statement:

READ (UNIT=9) var_4,var_S,var_6
READ (UNIT=3,IOSTAT=io_status) a,b,c

One important difference between the input! output of formatted and
unformatted records is that whereas a formatted input or output statement may
read or write more than one record by use of a suitable format, for example

WRITE (UNIT=3,FMT=' (2I8/(4F12.4))') int_l,int_2,arr

an unformatted input or output statement will always read or write exactly one
record. The number of items in the input list of an unformatted READ statement
must therefore be the same as the number in the output list of the unformatted
WRITE statement that wrote it, or fewer (in which case the last few items in the
record are ignored).

As well as formatted and unformatted records there is a third type of
record which is particularly important for files which are to be accessed
sequentially; this is the endfile record, which is a special type of record which
can only occur as the last record of a file and is written by a special statement

END FILE unit

or

END FILE (auxlist)

In the first case unit is the output unit to which an endfile record is to be written,
while in the second case auxlist consists of a UNIT specifier and, optionally, an
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IOSTAT specifier, where these specifiers are the same as those already introduced
in Section 8.6 for use with a WRITE statement. As is the case with the READ and
WRITE statements, the UNIT= may be omitted if the unit specifier is the first
specifier in the list, but, as for those statements, we strongly recommend that, for
clarity, the full form is used.

An ENDFILE statement writes a special endfile record to the specified file
and leaves the file positioned after that record. Any information which physically
exists after an endfile record becomes inaccessible thereafter, and may be
considered to have been deleted. It is not subsequently possible to write to, or
read from, that file without first repositioning it by using either a REWIND or a
BACKSPACE statement (see Section 9.4).

An endfile record has no defined length, but if it is read by an input
statement it will cause an end-of-file condition which can be detected by an
IOSTAT specifier in a READ statement. If it is not specifically detected in this wayan
error will occur and the program will fail.

It is good practice to place an endfile record at the end of all sequential
files in order that a program which subsequently reads the file can easily detect
the end of the information in the file without the need for any other special
records or counts. It also acts as a safeguard against an error which might cause
the program not to detect the end of the information in the file.

9.3 Connecting external files to your program

There is one further important difference between input and output using files
and the forms of input and output that we have been concerned with up to now,
and that concerns the identification of the input or output unit which is to be
used. Before any input or output unit can be used by a program to read or write
data it has to be connected to the program, although certain peripheral units
(such as the default input unit and the default output unit) will always be
preconnected. We need to examine how we can connect a particular file to our
program and what implications this has.

Every computer system normally has a very large number of files which,
in some sense or other, belong to that computer. Some, such as a printer listing, do
not belong to it for very long, while others, such as files in its permanent file
store, may belong to it for a considerable period of time. These files have been
created by the various users of the computer, or by those who are responsible for
its operation, or even by the computer's own operating system, and have various
levels of accessibility. For example, a file containing a library of widely used
subroutines, or a Fortran 90 compiler, will probably be available to all users of the
computer; a file created by a user to contain private research data, on the other
hand, will almost certainly only be accessible by the user, or by the user and a
small group of colleagues working on the same project. At any given time,
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UNIT = unit number
FILE = file_~ame
STATUS = file_status
FORM = format_mode
ACTION = allowed actions
POSITION = filey-;sition
IOSTAT = ios

Figure 9.1 Some of the specifiers available for use with OPEN.

therefore, a particular program will only be allowed to access a certain number of
the files held by the computer; only these files are said to exist for that program.

Before a file can exist it must be created, and in Fortran's terminology
creating a file means causing a file to exist that did not previously exist. Notice
that this action does not necessarily have any effect on the total number of files
known to the whole computer system - the act of creating a file simply means
that the file exists for the program that creates it. For example, a program may
wish to access a file belonging to another user; the act of creating the file in this
case merely means granting access to it, whereupon it will exist for this program.
In a similar way, closing a file means terminating the existence of a file; once
again it does not necessarily mean that the file is removed from the computer
system. One effect of this is that a file may exist and yet not contain any records,
for example when it has just been created but not yet written to.

For any information to be transferred between a file and a program the file
must be connected to a unit; in other words, a logical connection, or relationship,
must be established between the file and the unit number that will be used in any
READ or WRITE statements which are to use that file. In some cases a physical
connection must also be established, such as, for example, loading a particular
diskette into a personal computer. This connection is initiated by means of an
OPEN statement, which takes the form

where open_specifier_list is a list of specifiers, as shown in Figure 9.1, although we
shall meet some further permissible specifiers in Chapter 15.

The UNIT specifier must be present, and takes the same form as in the READ,
WRITE and ENDFILE statements. All the remaining specifiers are optional and
enable us to specify various requirements regarding the file that is to be opened
and to monitor the opening process itself.

If we are concerned with files in the file store they will normally have a
name by which they are known to the computer system. This name is specified by
using the FILE specifier, which takes the form
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where file_name is a character expression which, after the removal of any trailing
blanks, takes the form of a filename for the particular computer system. Thus, jf
the name of the required file is MILES-ELLIS,we could connect the file of that
name to a program by means of a statement such as

OPEN(UNIT=9,FILE="MILES-ELLIS")

which will connect unit 9 to the specified file; thereafter any input or output using
unit 9 will read from or write to that file.

Alternatively, we could read the name of the required file from the
keyboard by a program fragment such as the following:

PRINT*,"Please give the name of the input file"
READ' (A)" in_file
OPEN(UNIT=9,FILE=in_file,IOSTAT=open_status)

We sometimes wish to define certain restrictions on our use of the file; for
example we may wish to ensure that we do not overwrite an existing file by
accident. We can use the STATUSspecifier for this purpose by writing

STATUS= file_status

where file _status is a character expression which, after removing any trailing
blanks, is one of OLD,NEW,REPLACE,SCRATCHor UNKNOWN.Note that file_status is a
character expression and therefore we actually write

STATUS="OLD"
STATUS="NEW"

etc.

If file _status is OLDthen the file must already exist, whereas if it is NEWthen it
must not already exist. If NEWis specified then the OPENstatement will attempt to
create the file, and if successful will change its status to OLD,after which any
subsequent attempt to open the file as NEWwill fail.

If file_status is REPLACE,and the file already exists, then it is deleted and an
attempt made to create a new file with the same name; if this is successful the
status is changed to OLD.If the file does not already exist then the action taken
will be the same as if NEWhad been specified.

If file _status is SCRATCHthen a special un-named file is created for use by
the program; when the program ceases execution (or when the file is CLOSEd,see
Section 15.1) the file will be deleted and will cease to exist. Such a file can
therefore be used as a temporary file for the duration of execution only. It is not
permitted, for obvious reasons, to specify that the status of a named file (one with
a FILE specifier) is SCRATCH.
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Finally, if file_status is UNKNOWN, or if no STATUS specifier is included, the
status of the file is dependent upon the particular implementation. In most cases if
the file exists it will be treated as OLD, whereas if it does not exist it will be treated
as NEW. Some implementations, however, have different interpretations of UNKNOWN
status, and so no assumptions should be made without checking on the exact
situation for the Fortran system being used. We strongly recommend, therefore,
that you should always be specific in order to avoid potential problems if the
program is subsequently moved to a different system.

Because of the different ways in which they are written and read, the
records in a file must either all be formatted or all be unformatted, and the
specifier

FORM = format_mode

is used to specify which is required. The character expression format_mode must
take one of the two values FORMATTED or UNFORMATTED, after the removal of any
trailing blanks; if it is omitted then the file is assumed to be formatted if it is
connected for sequential access, but unformatted if it is connected for direct access
(see Section 15.4). Thus the statement

OPEN (UNIT=9, FILE="DATAFILE")

will connect the file DATAFILE to unit 9 as a formatted sequential access file. On
the other hand

OPEN (UNIT=7,STATUS="SCRATCH",FORM="UNFORMATTED")

will create a temporary scratch file and connect it to unit 7 as an unformatted
sequential access file.

As well as specifying the initial status of the file, we may also wish to
specify what type of input/output actions are allowed with the file. The ACTION
specifier may be used for this purpose, and takes the form

ACTION = allowed actions

where allowed_actions is a character expression which, after the removal of any
trailing blanks, must take one of the three values READ, WRITE or READWRITE.

If allowed_actions is READ then the file is to be treated as a read-only file, and
only READ statements, together with the two file positioning statements
BACKSPACE and REWIND (see Section 9.4), are allowed on this file; WRITE and
ENDFILE statements are not allowed, thus preventing a program from accidentally
overwriting information in the file.

If allowed_actions is WRITE then the file is to be treated as an output file,
and only WRITE and ENDFILE statements, together with the two file positioning
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statements BACKSPACE and REWIND, are allowed on this file; READ statements are not
allowed.

If allowed_actions is READWRITE then all input/output statements are
allowed for this file.

If no ACTION specifier is included in an OPEN statement then the effect is
determined by the particular implementation. It will normally allow any input/
output actions (that is, it will behave as though ACTION = "READWRITE" had been
specified), but it is possible that some implementations might choose a different
set of allowable actions for a file depending upon its initial status.

Sometimes it is convenient, when opening a sequential file, to specify that
it is to be positioned at some point other than at the beginning, the most obvious
case being when a file is being used to store data in a cumulative fashion. The
POSITION specifier allows the programmer to instruct the OPEN statement to cause
the file to be positioned in this way, and takes the form

POSITION = fileyosition

where fileyosition is a character expression which, after the removal of any
trailing blanks, must take one of the three values REWIND, APPEND or ASIS.

If the file did not previously exist then this specifier is ignored and the
new file will always be positioned at its initial point. After all, there is nowhere
else to position a new file!

If the file does already exist and fileyosition is REWIND then the file is
positioned at its initial point and a subsequent READ or WRITE statement will either
read the first record in the file, or write a new first record, as appropriate.

If the file already exists and fileyosition is APPEND then the file is
positioned immediately before the endfile record, if there is one, or immediately
after the last record of the file (at its terminal point) if there is no endfile record. A
subsequent WRITE statement will therefore write the next record immediately after
the end of the existing information in the file; a READ st~tement would, of course,
lead to either an error or an end-of-file condition since the file has no records
remaining to be read other than an endfile record, if one exists.

The third possibility, that the file already exists and fileyosition is ASIS,
exists to allow for the possibility that a program attempts to open a file that is
already open and connected to the same unit. In this situation the inclusion of the
specifier POSITION = "ASIS" in the OPEN statement ensures that the position of the
file is not altered by the execution of the OPEN statement. If the file exists but is
not already connected then the position of the file after execution of the OPEN
statement is unspecified.

Rather surprisingly, if no POSITION specifier is included in an OPEN
statement the effect is as though ASIS had been specified; that is, the initial
position is not defined if the file already exists but is not connected. In practice,
however, it is probable that the Fortran 90 implementation will position an
existing file at its initial point, ready to read the first record, unless explicitly
instructed otherwise by means of a POSITION = "APPEND" specifier.
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The final specifier that will be discussed here, IOSTAT, is concerned with
recognizing when an error occurs during the connection process, for example if
the named file does not exist or is of the wrong type, and operates in the same
way as has already been discussed in connection with the READ, WRITE and
ENDFILE statements. In the event of an error during the opening of a file the
execution of the program will be terminated unless it is detected by the program:

OPEN(UNIT=13,FILE="Problem_file",IOSTAT=ios)
IF (ios /= 0) THEN

PRINT *, "Error during opening of 'Problem_file' "

END IF
! Continue processing

As we have already mentioned, in certain circumstances it is permitted to
obey an OPEN statement which refers to a unit which is already connected to a file.
These situations will be discussed in more detail in Chapter 15 when we examine
the remaining, more sophisticated, aspects of Fortran file-handling. However, we
should mention at this point that if a unit is already connected to a file when an
OPEN statement referring to the same unit but a different file is obeyed, then the
currently connected file is disconnected and the specified, new, file is connected
in its place. It is never permitted to attempt to connect a unit to a file if that file is
already connected to a different unit.

ill Problem
In Example 8.2 we wrote a program which read up to 1000 sets of experimental
data. This is clearly a situation in which it would be absurd to read the data
directly from the keyboard; it would be far more sensible to store the data in a file
and then to read the data from that file. In this way the data can be created at any
convenient time, not necessarily all at once, and checked for accuracy, before
being processed by the computer at a later time.

Rewrite the solution to Example 8.2 so that the data is read from a file
whose name is provided by the user when running the program.

rn Analysis

We have already carried out the main analysis for this problem, and the main
change is that an additional CHARACTER variable will be 'required for the name of
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the file containing the data, and an INTEGER variable to record the success, or
otherwise, of the attempt to open the required file, together with a small amount
of additional 'housekeeping' to open the file at the start of the program.

o Solution

PROGRAM Radioactive_decay
IMPLICIT NONE
! This program processes experimental data relating to
! radioactive decay which is stored in a file whose name
! is supplied at execution time

Constant declarations
max_readings is maximum number of sets of data

! in and out are the unit numbers for reading and writing
INTEGER, PARAMETER :: max_readings=lOOO,in=3,out=6

! Variable declarations
INTEGER:: alpha,beta,gamma,i,ios,max_interval=O
REAL:: time,last_time=O.O,period, &

av_alpha,av_beta,av_gamma,max_av_gamma=O.O
CHARACTER (LEN=20) :: data_file_name
!Obtain name of data file
DO

PRINT *,"Please give name of data file"
READ ' (A)' ,data_file_name

! Open data file on unit number "in"
OPEN (UNIT=in,FILE=data_file_name,STATUS="OLD",IOSTAT=ios)

! Repeat request if file not opened satisfactorily
IF (ios==O) EXIT
PRINT *,"Unable to open file - please try again"

END DO

! Print headings
WRITE (UNIT=out,FMT=201)

! Process max_readings sets of data in a loop
DO i=l,max_readings

READ (UNIT=in,FMT=lOl) time,alpha,beta,gamma
! Calculate interval since last readings
period = time-last_time
last_time = time

!Calculate average rates of emission
av_alpha = alpha/period
av_beta = beta/period
av_gamma = gamma/period

! Print statistics for this interval
WRITE (UNIT=out,FMT=202) i,period,alpha,beta,gamma, &

av_alpha,av_beta,av_gamma



File-positioning statements 291

! Check for maximum gamma radiation in this period
IF (av_gamma > max_av_gamma) THEN

max_av_gamma = av_gamma
max_interval = i

END IF
END DO

! Print details of interval with maximum gamma radiation
WRITE (UNIT=out,FMT=203) max_av_gamma,max_interval

! Format statements
101 FORMAT (FB.2,3(5X,I6))
201 FORMAT ("1","Interval",Tll,"Time",T17,"Alpha", &

T24, "Beta" ,T30, "Gamma" ,T37, "Average" ,T46, "Average", &
T55, "Average" / & '
T3B, "Alpha" ,T47, "Beta" ,T56, "Gamma")

202 FORMAT (I6,FB.2,216,I7,2F9.2,F10.2)
203 FORMAT ("0",T3,"Maximum average gamma radiation was", &

F7.2," in interval", IS)

END PROGRAM Radioactive_decay

Note, incidentally, that it was not necessary to '~pen unit out since this
was assumed to be the default output unit. However, if the output was being
saved to a file on a non-default output unit for subsequent use, then it would need
to have been explicitly opened. .

9.4 File-positioning statements

There are often situations in which it is required to alter the position in a file
without reading or writing any records, and Fortran proyides two additional file-
positioning statements for this purpose. The first of the~e

BACKSPACE unit_number

or

BACKSPACE (auxlist)

causes the file to be positioned just before the preceding iecord (that is, it enables
the program to read the immediately previously read record again). If the second
form is used then, as with the ENDFILE statement, auxlist consists of a UNIT specifier
and, optionally, an IOSTAT specifier.
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The other file-positioning statement is

REWIND unit number

or

REWIND (auxlist)

which causes the file to be posi'tioned just before the first record so that a sub-
sequent input statement will start reading or writing the file from the beginning.

These two statements are particularly important when we are dealing with
endfile records because, as was mentioned in Section 9.3, if a program has either
read or written an endfile record it cannot read or write any more records until
either a BACKSPACE or a REWIND statement has positioned the file before the endfile
record.

One further important point about the positioning of a file particularly
concerns the writing of information to a file in a sequential manner. The rule in
Fortran is that writing a record to a sequential file destroys all information in the file
after that record. This is, in part, a reminder of the days when all sequential files
were on magnetic tape and the physical characteristics of a magnetic tape unit had
exactly this effect.

Thus it is not possible to use BACKSPACE and/or REWIND in order to position a
file so that only one particular record can be overwritten by a new one, but only so
that the rest of the file can be overwritten, or so that a particular record or records
can be read. If it is required to overwrite individual records selectively within a file
then the file must be opened for direct access (see Section 15.4).

A common use of BACKSPACE in conjunction with ENDFILE is to add informa-
tion at the end of a previously written file, as in the following example:

Read up to end-of-file
DO

READ (UNIT=8,IOSTAT=ios) dummy
IF (ios<O) EXIT ! Negative ios means end-of-file

END DO
! Backspace to before end-of-file record
BACKSPACE 8
! Now add new information
WRITE (UNIT=8) ...

Terminate file with an end-of-file ready for next time
ENDFILE 8
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In FORTRAN 77 and earlier versions of FORTRAN this was the only
way of achieving this objective. However the use of the POSITION specifier in the
OPEN statement provides a much easier alternative in most such situations:

Open file at the end
OPEN (UNIT=8,FILE=datafile,POSITION="APPEND",IOSTAT=ios)
IF (ios 1= 0) ... ! Error during opening
! File is now positioned for adding new information
WRITE (UNIT=8) ...

Terminate file with an end-of-file ready for next time
ENDFILE 8 I.

[] Problem

A survey has been carried out to obtain statistics concerning the occupation of
people in a certain area. The results of the survey are available in a file for input to
the computer in the following format: -"

Columns 1-:'20 Name

23 SexColumn

Column

F if female
M if male

25 Job status == 1 if in full-time education
2 if in full-time employment

- 3 if in part-time employment
4 if temporarily unemployed
5 if not working or seeking a job

This is followed by one or more items depending upon the job status of the
respondent:
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Job status = 1 columns 28, 29 Age

2

3

columns 28-31

columns 28-31
columns 34-37

Monthly salary

Monthly salary
Other monthly income

4 columns 28, 29 Age
columns 32-34 No. of months unemployed

5 columns 28, 29 Age
column 31 Code

1if looking after children
= 2 if looking after other relatives
= 3 for any other reason

Since the data is stored in a file there is no need for any special
terminating record, as the end of the file can be easily recognized.

Write an input procedure to read the data for processing by another part
of the program.

~ Analysis

The major problem here is the variable format of the data, depending on the code
which is used to describe the job status (in column 25). In Chapter 15 we shall
meet two approaches which can be used to deal with this problem, but we can
deal with it here in a cruder, and more time-consuming, way by backspacing and
reading the record again using the correct format.

Although it was not specified in the problem, it will clearly be desirable to
define a derived type to represent the data for one person, and to place this
definition, together with the various codes, in a module which can be used by
both the input procedure and the other parts of the program which will deal with
the analysis of the data and the printing of results.

The form of this derived type will clearly allow for all possible variations
in the data, even though several of these will not be relevant for anyone person.
We must therefore set any unused fields to a special value to indicate that they
are unused. Since the relevant fields are all numeric, and none of them will be
negative, we can set the unused fields to a negative value, which will easily be
distinguished from the real data.

The other question which was not specified concerns the opening of the
input file. I,t would be possible for the main program to identify the appropriate
file and then open this on a particular unit, communicating this unit number to the
input procedure, or the ii:lput procedure could deal with this itself. If the file were
to be used elsewhere in the program then the former option would probably be
preferable, but if the file is only to be accessed to read the data then it would seem
better to keep all access to it within the one procedure. We shall adopt this
option. Nevertheless, to avoid possible unit number clashes, the unit number to
be used will be provided as an argument to the procedure.
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Finally, there is always the possibility that an input procedure may detect
an error when reading the data and it is important that the calling program unit is
aware of this. There are three obvious errors that might occur in a procedure such
as this:

(1) There is an error during the opening of the file. This will obviously mean
that no data has been read! However, it may be possible for the procedure
to advise the user of the difficulty if, as here, the filename is being
requested interactively, in which case it might be preferable to allow, say,
three attempts to open the file before failing.

(2) There is an error during the reading of the data.
(3) The maximum number of records is read without a terminator.

We shall return the value -1 in the first case, -2 in the second case, and -3 in
the last. In the last two cases the actual number of valid records read will also, of
course, be returned in the same way as for an error-free case. If there were no
errors then the value zero will be returned.

We can now define our data structure and write a structure plan.

Data design

MODULE survey_details

Purpose Type Name

A Constants:
Sex codes CHARACTER' I female; male
Job codes INTEGER ft_ed. ft-iob, pUob, no-iob,

at_home
At home codes INTEGER ch_minder, rel_minder, other
Code for unused data entries INTEGER unused

B Data type
Individual survey response [CHARACTER'20, survey_info

CHARACTER'I, it,'

INT,INT,INT,
INT,REAL,REAL]

Subroutine input (using survey_details)

Purpose

A Arguments:
Unit number for data
Maximum no of data sets
Survey data
Number of data sets read
Error code

Type

INTEGER
INTEGER
survey_info
INTEGER
INTEGER

Name

unit
max _ diltasets
survey _data(:)
num _datasets
error code-,



CHARACTER'30 data_file
INTEGER
INTEGER ios
CHARACTER'20 name
CHARACTER'l sex
INTEGER status
INTEGER age
INTEGER months
INTEGER code
REAL salary
REAL income
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B Local variables:
File name for data
DO variable
lOST AT return code
Name (current record)
Sex
Job status
Age
No. months unemployed
At home code
Monthly salary
Other monthly income

Structure plan

Note that a set of local variables are being used for initial input to simplify the
programming, and that when the full record has been read in the correct format
the final data is then copied to the next element of the main data array.

rn Solution
MODULE survey_details

IMPLICIT NONE
! This module contains a type definition and constants
!for use with the input and processing of survey data
! Type definition for survey response
TYPE survey_info

CHARACTER (LEN=20) :: name
CHARACTER :: sex
INTEGER:: job_status,age,months_jobless,at_home_code
REAL:: salary,other_income

END TYPE su~vey_info
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! Various codes
CHARACTER, PARAMETER .. female="F", male="M",
INTEGER, PARAMETER :: c&

ft_ed=1, ft_job=2 ,pt_job=3, &!
no_job=4,at_home=5, &!
ch_minder=1,rel_minder=2,other=3, &!
unused=-1 '" !

END MODULE survey_details

Sex

Job status

At home code
Unused code

SUBROUTINE input (unit,max_datasets, survey_data,num_datasets, &
error_code)

USE survey_details
IMPLICIT NONE

This subroutine reads up to max_datasets records prepared
as follows, returning the number read in num_datasets

Columns 1-20 Name
23 Sex (M or F)
25 Job status (1-5)
28,29 Age - for status 1, 4 or 5
28-31 Monthly salary - for status 2 and 3

! ' 32-34 Other monthly income - for status 3
32-34 Months unemployed - for status 4

31 Special code (1-3) - for status 5

Arguments
INTEGER, INTENT (IN) :: unit,max_datasets
INTEGER, INTENT (OUT) :: num_datasets,error_code
TYPE (survey_info) , DIMENSION(:), INTENT (OUT) ":: survey_data

! Local variables
CHARACTER (LEN=30) data_file
CHARACTER (LEN=20) .. name
CHARACTER :: sex
INTEGER:: i,ios,status,age,months,code
REAL :: salary,income

! Ask for name of data file
!A maximum of three attempts will be allowed to open the file
DO i=1,3

PRINT *, "Type name of data file"
READ ' (A)' ,data_file
! Open file at beginning
OPEN (UNIT=unit,FILE=data_file,POSITION="REWIND", &

IOSTAT=ios)
IF (ios==O) EXIT
! Error when opening file - try again
PRINT *, ,"Unable to open file - please trYIlagain"

END DO
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! If open was unsuccessful after 3 attempts return error=-1
IF (ios /= 0) THEN

error_code = -1
RETURN

! Successful file opening
error_code = 0

END IF

! Loop to read data
DO i=1,max_datasets

! Read (part of) next set.of data
READ (UNIT=unit,FMT=' (A20,2X~A1,1X,I1,2X,I2,1X,I1)', &

IOSTAT=ios) name, sex, status, age, code

Check for errors and end of file
SELECT CASE (ios)
CASE (:-1) ! End of file - no more data

EXIT

CASE (1:) Error during reading
error_code = -2
EXIT

END SELECT

! Process data read and backspace for more if necessary
SELECT CASE (status)
CASE (ft_ed,at_home)
! All data for this person already read
! Set unused items to unused code
months = unused
salary = unused
income = unused
IF (status == ft_ed) code = unused

CASE (ft_job,pt_job)
! Backspace and read financial details

BACKSPACE unit
READ (UNIT=unit,FMT=' (T28,F4.0,2X,F4.0)')sa1ary,income
! Set unused items to unused code
age = unused
months = unused
code = unused
IF (status == ft_job) income = unused

CASE (no_job)
! Backspace and read unemployment details

BACKSPACE unit
READ (UNIT=unit,FMT=' (T32,I3)')months
! Set unused items to unused code
salary = unused
income = unused
code = unused

END SELECT
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! Record is now fully input, so copy to main data array
survey_data (i) = survey_info (name,sex,status,aqe, &

months,code,salary,income)
END DO
! All data input - check if end of file was read
IF (i > max_datasets) error_code = -3
! Save number of records read and return
num_datasets = i-l

END SUBROUTINE input

Notice that the checks made that the reading of data from the data file has
been error-free have only been carried out the first time that a record is read. This
will deal with the problem of detecting the end of file, but there is always a
theoretical possibility of some hardware problem causing an error during reading,
and this should be checked for in all cases in a 'production' program.

Note also the use of the RETURN statement when the procedure is unable
to open the data file. This statement was introduced in Section 6.5 and provides a
means to return directly to the calling program unit without executing the END
statement. This is a good example of when it is particularly useful.

SELF-TEST EXERCISES 9.1

1 What is the difference between a formatted record and an unformatted record? When
should each type be used?

2 What is the difference between a formatted READ or WRITE statement and an unformatted
READ or WRITE statement?

3 What is an endfile record? How is one created?

4 Why must a file be connected to a program before it is used? How is this done?

5 Write appropriate OPEN statements to enable a program to use the following files in
the manner specified:

(a) A file called Payroll_Data which has been prepared by a data preparation
operator and is to be read by the program from unit 7

(b) A file called Intermediate_results-l which was produced by another program
which carried out the initial analysis of raw data, and which is to be read from
unit 11

(e) A file called Intermediate-results-2 which is to be produced by this program
for further analysis by another program, and which is to be written on unit 8
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(d) A file called Results which will be read from and written to on unit 10, and
contains experimental results to which additional results will be added as a result
of the program's execution

(e) A file which will be written to and read from on unit 9, and which will be used
for storing very large arrays, and other information, during the execution of the
program

(f) A file which will be written to on unit 10, and which will contain the tabulated
results produced as a result of the execution of the program

SUMMARY

• Information that is to be preserved after the execution of a program is ended
is stored in a file.

• A file consists of a sequence of records.

• The records in a file may be accessed in a sequential manner, or in a
random access manner.

• Writing to a sequential file destroys all records after the one written.

• A file may consist of formatted records and, optionally, one endfile record,
or it may consist of unformatted records and, optionally, one endfile record.

• A formatted record is written by a formatted WRITE statement, or by some
means external to Fortran, and consists of a sequence of characters; it is
read by a formatted READ statement.

• An unformatted record is written by an unformatted WRITE statement, and
consists of a sequence of values in a processor-dependent form; it is read
by an unformatted READ statement.

• An endfile record is written by an ENDFILE statement.

• Reading an endfile record causes an end-of-file condition, which will lead to
failure of the program unless detected, for example by use of an IOSTAT
specifier in a READ statement.

• A file must be connected to a program by an OPEN statement before it is first
used.

• An OPEN statement may include specifiers to specify the type of file, the type
of access allowed to the file, and the position at which reading or writing will
start in the file.

• BACKSPACE and REWIND statements may be used to position the fi Ie prior to a
READ or WRITE statement.

• Fortran 90 syntax introduced in Chapter 9:

File connection statement OPEN (open_specifier _list)



Unformatted input!
output statements

END FILE statement

File positioning
statements

Control information
list specifiers
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READ (controUnformationJist) inpuUist
WRITE (controUnjormationJist) input_list
where the controUnformation_list does not include
a format specifier

ENDFILE unit
ENDFILE (auxlist)
BACKSPACE unit
BACKSPACE (auxlist)
REWIND unit
REWIND (auxlist)
FILE = file_name
STATUS = file_status
where file_status is one of "OLD", "NEW",
"REPLACE", "SCRATCH" or "UNKNOWN"

FORM = format_mode
where format_mode is either "FORMATTED" or
"UNFORMATTED"

ACTION = allowed_actions
where allowed_actions is one of "READ", "WRITE"
or "READWRITE"

POSITION = fileyosition
where fileyosition is one of "REWIND", "APPEND"
or "ASIS"

PROGRAMMING EXERCISES

Most of the exercisesin this chapter involve the writing of a program to readdata from a file. Data
can be put in a file either by another program or by typing it into the file using your computer's
editor - normally the same one that you use when typing your program.

9.1 Establish how to type data into a file on your computer, and any conventions
and/or requirements imposed on you with regard to the names that you may give to your
files.

To ensure that you have the details corred, use your editor to create a file
containing three lines (or records) each containing four numbers (in any form you wish).
Then write a program which reads these 12 numbers into a 12 element array, prints the 12
numbers in any format that you choose, and writes them to a second file as four rows of
three. Finally, list the contents of this second file by whatever means is most appropriate on
your computer - other than by use of a Fortran program.

"9.2 A file contains a list of 10 integers, stored one per line. Write a program to read
this list and write it to another file with the order of the numbers reversed.
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9.3 Type the following data into a file:

21•••32.642••••0.103E6
48 41.001 0.792E7
62 12.608 0.465E5

where. indicates a space.
Write a program to read this data from the file using an appropriate format

statement, and display it on the screen in exactly the same format.

9.4 Exercise 5.8 involved writing a program to compare prices in different currencies.
Modify this program (or write a new one) so that the table of currency exchange rates is
read from a file. The table should consist of a series of records in the following format:

currI rate curr2

where currI and curr2 are codes of up to five characters which identify the two currencies
concerned, and rate is the number of units of curr2 which are equal to one unit of currI. The
first record in the file should consist of a single integer, which indicates how many
exchange rate records follow. A suitable table, based on the rates used in Exercise 5.8,
might be as follows:

7
UK£ 1.52 OS$
OK£ 2.45 DMark
OK£ 8.60 FFr
OK£ 52.65 BFr
OS$ 103.95 yen
OS$ 1.40 SwFr
OS$ 1.31 CanS

9.5 Modify your solution to Exercise 9.2 so that it can cope with a file with a variable
number of integers, up to a maximum of, say, 100. (Hint: you will need to use an IOSTAT
specifier in your READ statement to detect the end of the file.)

Can you think of a way of writing the program so it can deal with an arbitrary, and
possibly very large, number of integers (that is, so large that they cannot all be held in an
array)?

9.6 Type two or three paragraphs from this :')ook into a file. Then write a program to
locate the longest word in the file and display it on the screen, together with a count of the
number of letters in the word.

9.7 Write a program that allows a user to type a series of real numbers into a file. Your
program should enable the user to check that the data written to the file has been correctly
entered (by use of the BACKSPACE command).

9.8 Write a program to read in the following data from a file:

122.25
135.26
141.00
56.21
17.20

120.00
140.00
100.00
50.00
17.00
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The figures in the two columns represent actual and estimated costs of office
equipment for a university department. Calculate the error of each estimate as a percentage
of the estimate, and write a new file consisting of three columns, the first two being
those in the original file and the third column containing the percentage error in the
estimate.

Now modify your program so that the output data overwrites the original data in
the input file without closing and reopening the file.

9.9 Type the following data into a file:

12.36 0.004 1.3536E12
13.24 0.008 2.4293E15
15.01 0.103 9.9879E11
11.83 0.051 6.3195E13
14.00 0.001 8.0369E14

2320.326
5111.116
3062.329
8375.145
1283.782

(Note that this file will be used again for Exercise 15.5.)
By constructing an appropriate formatted input statement, read each line of data

from the file into four variables, and determine the number of numbers, n, there are in the
file and the absolute value of the largest number, m (that is, the largest number ignoring its
sign). Do not presume in your program that you know how many lines of data are in the
file.

Now read the data again, but this time store each number in an array as its input
value divided by the largest value, m. This process is known as normalizing the data. Print
the values of the normalized array four to a line.

"9.10 A file contains a list of names and telephone numbers in the format shown below:

Arthur Jones (365) 271-8912
John Smith (011-44-235) 135246
Simon Addison (699) 987-6543
Rachel Jones (444) 361-8990
Jean-Paul Maronne (011-33-1) 34567890
Hideo Takata (011-81-3) 3456-1212

etc.
Write a program to search the file for a particular name (surname, forename or

both) and display the line or lines with the phone number.

9.11 Using the same file as in Exercise 9.10, write a program to read the contents of the
file and sort it into alphabetical order as the names would appear in a telephone directory
(sorted first by surname, with identical surnames appearing in alphabetical order of first
name).

Now write a new program (or modify this one) which can be used to update the
master file by adding a new name and telephone number at the correct place in the file.

9.12 A file contains the text of a business letter - up to 100 lines with no more than 80
characters on a given line. Write a program to count the number of occurrences of the
word 'very' in the letter.
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Your program should cope with:

(a) 'Every care has been taken ... '
(b) 'Very sincerely yours:
(c) 'We are VERY concerned ... '

9.13 Modify the program you wrote for Exercise 8.13 so that the seismic data is read
from a file in which the data from each seismic recording ce~tre is stored as follows:

eeet t:f::ll,mmt t:f::LL,MMt trr. rr

where eee is the centre's identifying number, ll,mm are the degrees and minutes of latitude
of the centre (with negative degrees representing west of Greenwich and positive
representing east of Greenwich), LL,MM are the degrees and minutes of longitude of the
centre (with negative degrees representing north of. the equator and positive representing
south of the equator), rr.rr is the strength of the shock on the Richter scale, and t represents
a.space.

9.14 A bank wishes to write a simple program to produce statements from a file
containing details of the transactions that have taken place during a given period. Each
record of the file is laid out as follows:

aaaaaaaatttddtmmtyyttteeeeeet t tnnnnnnn.nn

where aaaaaaaa is the 8-digit account number
ddtmmHyy is the date of the transaction
eeeeee is the 6-digit cheque number for a debit, and is blank for a credit
nnnnnnn.nn is the (positive) amount of the credit or debit
A second file contains details of the balances on the various accounts at the

beginning of the period, with each record taking the form

aaaaaaaatt t :f::nnnnnnn.nn

is the 8-digit account number
is the balance at the end of the last statement period (positive or

aaaaaaaa
nnnnnnn.nn

negative)
The program should read an account number from the keyboard, find the existing

balance (if any), and print a statement showing all the transactions which have taken place
on that account in the form

where

Statement for Account aaaaaaaa

Previous balance :f::nnnnnnn.nn

dd/mm/yy
dd/mm/yy
dd/mm/yy

eeeeee
eeeeee

Debit
Debit
Credit

-nnnnnnn.nn
-nnnnnnn.nn

nnnnnnn.nn

:f::nnnnnnn.nn
:f::nnnnnnn.nn
:f::nnnnnnn.nn

dd/mm/yy

Current balance
:f::nnnnnnn.nn

:f::nnnnnnn.nn

The program should also produce an updated file containing the current balances
of all account holders. (Note: don't forget about any accounts where there has been neither
a credit nor a debit during the period.)



Programming exercises 305

9.15 The heliocentric coordinates L, R, 'l/J of a planet can be calculated from its elements
Mo, tp, e, i, n, a, w as follows.

Take D to be the number of days since 1 January 1990. Then M can be calculated
using the formula

M = 21r(D/tp - INT(D/tp)) +Mo

We can now solve Kepler's equation

E - esinE =M

for E by first setting E to the value of M, and then successively setting E to

E - esinE - M
E------

1- ecosE

until the change between successive estimates is less than 10-6•
Then

((
1 + e) 1/2 E)

1/ = 2 tan-I 1 _ e tan 2:

LI = 1/ + w

a(l -?)
RI=----

1+ ecos 1/

'l/J= sin-I (sin(LI) sin i)

L = tan-I (tan(LI) cos i)

R = Rlcos'l/J

Given the following elements for the Earth and Jupiter:

Planet Mo tp n a w

Earth 6.2435 365.2564 0.01672 0 0 1.0000 1.7906
Jupiter 3.9028 4332.287 0.04808 0.02277 1.7535 5.2026 4.8027

write a program which reads a date and calculates the heliocentric coordinates of the Earth
and Jupiter, and also calculates the ecliptic coordinates of Jupiter from the formulae
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Finally, your program should convert these coordinates to right ascension a and
declination 8 using the formulae

~1 sin>' COSE - tan,B sin Ea = tan --------
cos >.

8 = sin-1 (sin ,8 COSE + cos,B sin E sin >.)

(where E = 0.4091), as was carried out in Exercise 4.15.
When you have tested this program, modify if so that it reads a date from the

keyboard and writes the predicted weekly positions of Jupiter for the following twelve
months to a file (which can subsequently be inspected and/or listed).



INTERMISSION -
Designing, coding and
debugging programs

The first part of this book has presented the fundamental capabilities of the
Fortran 90 programming language. With the features that have been discussed it
is possible to write a program to solve almost any problem that you wish.
However, as in almost all human activities, providing more powerful capabilities
means that more complicated tasks can be more easily and efficiently
accomplished. Fortran 90 is no exception to this general principle, and the
second part of this book is devoted to describing the advanced features of
Fortran 90 that make programming tasks easier to accomplish.

More powerful features can, however, lead to confusion if they are not
used properly. Before presenting them, therefore, we shall return once more to a
brief discussion of programming techniques in general.

After completing the first part of this book, you should have developed a
clear programming style and a thorough understanding of the principles of good
programming design. In particular, we have frequently emphasized the
importance of developing a program by the method of incrementally refining
the design. From bitter experience, the authors are all aware of the temptation to
truncate the design stage prematurely and plunge into writing code - and of the
disastrous results that succumbing to this temptation usually brings. By
repeatedly reminding our readers that effort expended in the design stage
invariably saves more effort at later stages, we hope to save the readers of this
book from many frustrating experiences.

Unfortunately, in a book such as this, you can only be exposed to small
programs, and you are presented with solutions where you have not seen the
effort that went into creating them. You will not see any programs in this book
where, in terms of the order in which they are referenced, procedures are nested
ten or more deep; and yet such programs are commonplace in the real world of
programming.

Real-world problems take from weeks to years to develop and may, in
extreme cases, involve hundreds of programmers. In such situations, a disciplined
style of programming is essential, and it is important to develop good habits
when working with the relatively small problems presented in this book.
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It is impossible to be specific, because programming projects are so
enormously varied; however, when creating a program, it is reasonable to expend
about one-third of the total effort on the design phase. The writing of the code is
usually a relatively small part, perhaps less than one-fifth, of the total effort. What
consumes the remainder of the time - often more than half of the total effort - is
making the code function correctly, or debugging the code.

We advocate that you should always adopt an incremental approach to
both writing and debugging a program. In other words, you should always break
your code into small procedures, each one of which has a logically coherent,
single, purpose. Do not write procedures that do too many unrelated tasks. The
motivation is to keep different parts of a program from interacting with each
other in subtle and obscure ways. Breaking a program into procedures means that
such interactions can occur in a controlled way, only via procedure calling
sequences. A good rule of thumb here is to keep procedures to no more than 50
lines of code. In that way, they can be printed on a single sheet of paper and more
readily understood.

To debug a program incrementally, each procedure should be thoroughly
tested by itself. This means that input to the procedure is generated by another
part of the program, or by hand, and the output examined for correctness. The set
of inputs used to test a procedure should exercise all branches of the code it
contains.

It is often very tempting not to test every procedure but, instead, to start
trying to make a complete program function. This almost always results in errors
being looked for in the wrong place - which is probably the most time-
consuming and frustrating part of debugging a program.

Do not build your house without foundations. The incremental debugging
approach means that the lowest-level procedures are tested first, then the
procedures that use those procedures, and so on until the whole program is
verified. The process of developing a set of test problems can often take half of
the debugging effort.

Finally, you should keep all the test problems and the results produced
during testing. In the course of time almost all non-trivial programs will be
modified, and when that day comes it will both save time, and provide an added
degree of confidence, if the modified program can be shown to perform correctly
on the same sets of test data as the original version. This does not mean,
however, that you should not develop additional tests for any new features
added to the program. Thus over the life of a program the test suite will gradually
grow with each new modification.

During the second part of this book, many of the exercises at the ends of
chapters will involve writing rather more complex programs than has been the
case up to now. It will, therefore, be even more important than before that you
should develop good testing habits as well as good programming habits.
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10.5 Iterative solution of non-linear
equations

10.6 Obtaining increased precision with
DOUBLE PRECISION variables

The main area of application for Fortran programs is, and always has
been, the solution of scientific and technological problems - a process
which usually involves the solution of mathematical problems by
numerical, as opposed to analytical, means.

This chapter introduces some of the major limitations that are
imposed on numerical problem solving by the physical characteristics of
computers, as well as by the nature of the problems being solved, and
the means that are provided in Fortran 90 to ensure that the effects of
these constraints are both predictable and controllable. Two of the most
common numerical problems, the fitting of a straight line through a set of
experimental or empirical data and the solution of non-linear equations,
are then discussed, and examples given of how these problems may be
solved in Fortran.

For those particularly interested in this aspect of programming,
Chapter 18will return to the subject in rather more detail, with examples
of several other commonly required numerical methods.
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10.1 Numerical calculations, precision and rounding
errors

The Fortran language was originally designed to help in the solution of numerical
problems, and this is still, by far, the largest class of problems for which Fortran
programs are used. However, it is extremely important that the writer and the user
of such programs should be aware of the intrinsic limitations of a computer in this
area, and of the steps that may be taken to improve matters.

We have already met and used the two main types of numbers used in
Fortran programs (REAL and INTEGER), but it is appropriate at this stage to briefly
review their characteristics.

INTEGER numbers are stored exactly, without any fractional part, and all
calculations performed upon them, other than division, lead to a result which is
mathematically accurate. There could, however, be a problem if, for example, the
sum of two integers exceeded the largest integer that a computer could hold. In
the case of division, any fractional part in the (mathematical) result is discarded.
Typically, INTEGER numbers can be in the range -109 to + 109. INTEGER numbers
are normally used for counting and similar operations.

REAL numbers, on the other hand, are stored as an approximation to the
mathematical value using a floating-point representation which allows a wide
range of values to be stored with the same degree of precision. Typically, a REAL
number will be stored in a computer to about six or seven decimal digits of
precision, with an exponent range of around _1038 to +1038. Some computers,
typically those in the supercomputer class, exceed these ranges considerably.
Numerical calculations normally use REAL numbers and, unless otherwise stated,
the following discussion of numerical methods will assume that all numbers are
REAL numbers.

Having established that REAL numbers used in numerical calculations are
approximations, held to a specified degree of precision, we must analyse what
effect this may have on the results of such calculations. We discussed this briefly
in Chapter 5, when we referred to the manner in which we deal with precision
when carrying out manual calculations, but we must now examine the problem in
slightly more depth.

In order to illustrate this more easily, we shall assume the existence of a
computer which stores its numbers in a normalized decimal floating-point
form, Le. in a decimal equivalent of the way in which (binary) floating-point
numbers are stored in a typical computer. We shall further assume that these
numbers are stored with four digits of precision. Finally, we shall assume that the
exponent must lie in the range -9 to +9. Thus, a non-zero normalized decimal
number will be of the form 0.d1dzd3d4 X lOP, where d1 lies in the range 1-9, and
dz, d3 and d4 all lie in the range 0-9. The number 0.d1dzd3d4 is called the mantissa,
while p is called the exponent; we shall assume for this purpose that the exponent,
p, must lie in the range -9 to +9. Figure 10.1 shows some examples of the way
numbers will be stored in this computer.
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External value

37.5
123.456
123456789.12345
9876543210.1234
0.0000012345678
0.9999999999999
0.0000000000375

Internal representation

0.3750 x 102

0.1235 X 103

0.1234 X 109

cannot be represented - exponent is 10
0.1234 X 10-5

0.1 X 101

cannot be represented - exponent is -10

Figure 10.1 Number storage on the decimal floating-point computer.

Notice that two of the numbers shown in Figure 10.1 cannot be
represented on our decimal computer. The first of these, 9876543210.12345,
would require an exponent of 10, which is more than the computer will allow.
Any attempt to store a number whose exponent is too large, as here, will create a
condition known as overflow, and will normally cause an error at this stage of
the processing. Obviously, once a calculation has overflowed then any
subsequent calculations using this result will also be incorrect.

A similar situation arose with the final number shown in Figure 10.1,
0.0000000000375, which would have required an exponent of -10, which is
less than the computer will allow. This situation, which is known as underflow, is
less serious than overflow since the effect is that a number is too close to zero to
be distinguished from zero. Many computers will not report this form of error,
and will store the number as zero; in some numerical calculations, however, it is
important to know when underflow has occurred and so some computer systems
do report its occurrence as a non-fatal error. In particular, an unreported
underflow can result in an attempt to divide by zero if the divisor is very small, or
in the wrong result of a test for a number being zero.

We can now look at how our decimal computer will carry out simple
arithmetic calculations. Before progressing further, however, we note that most
computers carry out arithmetic in a special set of registers which allow more
digits of precision than does the main memory; we shall, therefore, assume that
our computer has arithmetic registers capable of storing numbers to eight decimal
digits of precision - that is, twice the memory's precision. When the result of an
arithmetic calculation is stored in memory we will assume that it will be rounded
to the computer precision - in our case, four decimal digits.

Consider first the sum of the two fractions 1119 and 1/3. The first number,
11/9, will be stored as 0.1222 X 101 on our computer, while the second, 1/3, will
be stored as 0.3333 X 100. However, before these two numbers can be added
together they must be converted so that they both have the same exponent,
where the digits following the space in the following description represent the
extra digits available in the arithmetic registers:
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0.1222 x 101+ 0.0333 3 x 101 ~ 0.1555 3 x 101

~ 0.1555 X 101
(in registers)

(in memory)

Observe that the process is to take the number with the lowest exponent, then
raise its exponent until it matches the exponent of the other number while
correspondingly shifting the mantissa to the right (thus denormalizing it).

The correct internal representation of (11/9 + 1/3), i.e. 14/9, is
0.1556 X 101 and it is worth noting that even this simple calculation, performed
in floating-point arithmetic, has therefore introduced an error in the fourth
significant figure due to round-off during the calculation.

Consider now the result of a slightly longer calculation in which the five
numbers 4, 0.0004, 0.0004, 0.0004 and 0.0004 are added together. Since
arithmetic on computers always involves only two operands at each stage, the
steps are as follows:

(1) 0.4000 X 101 + 0.0000 4 X 101 ~ 0.4000 4 X 101

~ 0.4000 X 101

(2) 0.4000 X 101 + 0.0000 4 X 101 ~ 0.4000 4 X 101

~ 0.4000 X 101

etc.

(in registers)

(in memory)

(in registers)

(in memory)

The result will be 0.4000 X 101, that is, 4.0, when we can easily see that it
should be 4.002 when rounded to four significant digits! The denormalization
has forced some of the numbers to be effectively zero as far as addition is
concerned.

Now consider what would have happened if the addition had been carried
out in the reverse order:

(1)

(2)

(3)

(4)

0.4000 X 10-3 + 0.4000 X 10-3 ~ 0.8000 X 10-3

~ 0.8000 X 10-3

0.8000 X 10-3 + 0.4000 X 10-3 ~ 1.2000 X 10-3

~ 0.1200 0 X 10-2

~ 0.1200 X 10-2

0.1200 X 10-2 + 0.04000 X 10-2 ~ 0.1600 X 10-2

~ 0.1600 X 10-2

0.0001 6 X 101 + 0.4000 X 101 ~ 0.4001 6 X 101

~ 0.4002 X 101

(in registers)

(in memory)

(in registers)

(in registers)

(in memory)

(in registers)

(in memory)

(in registers)

(in memory)

Thus, in this case the result will be 4.002, which is the correct answer to four
significant digits.
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This example shows that, whenever possible, it is preferable to add
positive numbers in order of increasing value in order to minimize errors due to
round-off. Similarly, it is preferable to add negative numbers in order of
decreasing value in order to minimize errors due to round-off.

A much more serious example of round-off problems comes when we
subtract two numbers. Consider, for example, the effect of subtracting 12/41 from
5117. 5117 is represented as 0.2941 X 100, and 12/41 as 0.2927 X 100, in our
decimal computer and so the subtraction proceeds as follows:

0.2941 X 100 - 0.2927 X 100 ----7 0.0014 X 100

----7 0.1400 X 10-2
(in registers)

(in memory)

However, 5/17 - 12/41 is equal to 1/697, or 0.1435 X 10-2. The error in the
calculation is, therefore, over 2.4%, which is hardly the accuracy we might expect
from a computer - even our hypothetical one.

This example illustrates that great care must always be exercised when
subtracting numbers which may be almost identical (or summing a series of
numbers that may be both positive and negative), as the loss of precision
resulting from floating-point calculations can seriously affect the accuracy of the
overall calculation.

The reader is cautioned that even though we used a hypothetical
computer with only four significant digits, real machines with six or more
significant digits encounter the same round-off problems. We have shown that
there can be ro\J.nd-off problems after only four or five additions. Modern
computers are capable of speeds in excess of a billion floating-point operations a
second. Moreover, some problems can run for days even on such fast machines.
The issue of determining the validity of the answers obtained by performing as
many as the 1014 floating point operations such problems may involve is an
important one.

It is not intended to continue this discussion here, since the question of
arithmetic precision is quite complicated, especially when we turn to
multiplication and division. It is enough at this stage to draw attention to the
problem. There are several excellent books on this topic if the problems are
particularly important for a particular class of work, some of which are listed in
the bibliography at the end of this book.

To mitigate the effects of round-off, attention must be paid to the
numerical algorithms to be employed and to the precision with which the
arithmetic operations are to be performed. The first topic is discussed in more
detail in books on numerical analysis. In this book we only discuss these topics in
an introductory matter. With regard to the second topic, the Fortran language
provides different types of numeric variable for those parts of a calculation where
loss of precision may be serious. For many problems, although not all, increasing
the accuracy of the floating-point calculations is sufficient to obtain satisfactory
answers. This is described in the next section.
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10.2 Parameterized REAL variables

As we have seen, a real value is an approximation which represents a numeric
value to a specified precision using a floating point representation. The accuracy
of this approximation is determined by the form of the floating point number
which is allocated a fixed number of bits for the mantissa (thus defining the
precision), and a fixed number for the exponent (thus defining the range of the
numbers). The precision and exponent range are potentially different for every
computer. This is a serious hindrance to portability. A program that executes
acceptably on one machine may fail on another because of less accuracy or a
smaller exponent range.

To permit more precise control over the precision and exponent range of
floating point numbers, REAL variables are, in fact, parameterized. That is, they
have a parameter associated with them that specifies minimum precision and
exponent range requirements. This is called the kind type parameter. When this
parameter is not specified explicitly, the type of the floating-point number is said
to be default real. The kind type parameter value assigned to a default real is
processor-dependent.

So far, in this book, all REAL variables have been of type default real. The
rest of this section will explain what the kind type parameter means, and how to
specify the kind type parameter explicitly.

The following statements illustrate the concept:

REAL:: a,b
REAL:: c,d
REAL,DIMENSION(lO) :: x,y
REAL:: p(20) ,q(40) ,r(60)
REAL (KIND=4) :: e,f
REAL (KIND=l) :: g,h
REAL (KIND=4) ,DIMENSION (10) .. u,v
REAL (KIND=2) :: 8(8) ,t(S)

The scalar variables a, b, c and d are of type default real, as are the arrays x, y, p, q
and r. The second set of variables have been given explicit values for their kind
type parameters. Thus, the scalar variables e and f are of kind type 4, as are the
arrays u and v. The scalars 9 and h are of kind type 1 and the arrays 8 and t are of
kind type 2.

For any variable or constant that is an intrinsic type, the value of its kind
type can be found by using the intrinsic function KIND. Thus

REAL (KIND=3) :: x
REAL:: y
INTEGER :: i, j
i = KIND(x)
j = KIND(y)
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will set i to 3 and j to have the value for the kind type of a default real number.
Note that the kind of y is processor-dependent, while that of x is not.

In the above statements the KIND= is optional. Thus the second set of type
declarations could be given as

REAL (4) :: e,f
REAL(l) :: 9,h
REAL(4),DIMENSION u,v
REAL (2) :: s(8),t(5)

However, we believe that including the KIND= is a clearer, less cryptic, way of
expressing the intent of the code.

The reader will note that, so far, no specific precision or exponent ranges
have been attached to a particular value for a kind type. In fact, each Fortran
processor is free to attach any precision and exponent range values to a particular
kind type value it wishes. Thus, at first sight, it appears that no portability has
been gained, since a variable of kind type 2, for example, may have 14 significant
digits of precision and an exponent range of 100 on one machine while it has 6
digits of precision and an exponent range of 30 on another.

However, using the kind type in association with the intrinsic function
SELECTED_REAL_KIND will provide complete portability. This intrinsic function has
two optional arguments P and R. (The subject of optional arguments is discussed
in detail in Section 11.3; for the present, references to this and similar functions
should be written exactly as shown.)

P is a scalar integer argument specifying the minimal number of decimal
digits required and R is a scalar integer argument specifying the minimal decimal
exponent range required. The result of the function is the kind type that meets, or
minimally exceeds, the requirements specified by P and R. If more than one kind
type parameter meets the requirements, the value returned is the one with the
smallest decimal precision. If there are several such values the smallest one is
returned. If the precision is not available the result is -1, if the range is not
available it is -2, and if neither is available it is -3.

The following statements illustrate the concept:

REAL(KIND=SELECTED_REAL_KIND(P=8,R=30)) .. m
REAL(KIND=SELECTED_REAL_KIND(P=6,R=30)) .. n

Most computers have provision to store floating-point numbers using one
of two precisions, usually referred to as single-precision and double-precision,
with corresponding hardware registers to perform arithmetic operations on them.
On a computer that has six significant digits and an exponent range of 40 for its
single-precision numbers, m will be stored as a double-precision number, and
arithmetic operations on it will be performed using double-precision hardware
registers. The variable n, on the other hand, will be stored on the same computer
as a single-precision number, and arithmetic operations on it will be performed
using single-precision registers.
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On a computer that has 15 significant digits and an exponent range of
300 for its single-precision numbers, however, both m and n will be stored as
single-precision numbers, and arithmetic operations on them will use single-
precision registers.

The important point to notice here is that, regardless of the computer on
which the above code is compiled and executed, it will not have to be changed in
any way to meet the specified precision and range requirements. The values
returned by the SELECTED_REAL_KIND function may change, but that is of no
consequence to the program as far as portability is concerned. In fact, because of
the lack of portability of the kind type parameter values, we recommend that they
only be used via the SELECTED_REAL_KIND function. The easiest way to do this is
to define a constant for use in subsequent variable declarations:

INTEGER, PARAMETER:: real_B_3D = SELECTED_REAL_KIND(P=B,R=3D)

Figure 10.2 shows the results of calculating the value of the expression

for different values of n.

Six digits of precision Fourteen digits of precision

n Result Time (s) Result Time (s)

10000 1.00001 0.07 0.99999999999998 0.10
20000 0.999995 0.13 0.99999999999998 0.19
30000 0.999993 0.21 0.99999999999999 0.29
40000 0.999988 0.27 0.99999999999998 0.38
50000 0.999989 0.34

"
0.99999999999998 0.48

100000 0.999941 0.69 0.99999999999998 0.98
500000 1.00084 3.43 0.99999999999994 4.75
1000000 1.00732 7.31 0.99999999999997 9.51
1500000 0.998708 10.60 0.99999999999987 14.23
2000000 0.985693 13.66 0.99999999999978 18.93
2500000 0.999439 17.06 0.99999999999980 23.72

Figure 10.2 A comparison of the effect of different precisions.
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The program was executed on a 32-bit workstation with the precision required
set first at six digits, then at 14 digits. Mathematically, the result of the calculation
should be 1, but round-off and truncation effects cause this not to happen exactly.
Such effects increase as n increases. Note that the precision 14 answers are better
than the precision 6 answers. This additional precision was, however, obtained at
the cost of increasing the execution time by 40%.

Real constants also, of course, have a kind type parameter and, as with
variables, if none is specified then the constant is of type default real. The kind
type parameter is explicitly specified by following the constant's value by an
underscore and the kind parameter:

-103.4_7
3.14_high
4.0E7_2
2.7

Real of kind type 7
Real of kind type high
Real of kind type 2
Default real (processor-dependent kind type)

Unfortunately, the kind mechanism can also lead to problems if used
without due care, and we must sound some notes of caution.

• In choosing values for the precision, you cannot, unfortunately, do so in
total abstraction, freely choosing any precision you might wish. For
example, many computers have a precision of between six and seven
decimal digits for their single-precision floating-point numbers. Thus, if
you choose a precision of 6 for your floating point variables on such a
computer, each real variable will be stored in one single-precision unit of
memory and the arithmetic will be performed using single-precision
registers. If you choose a precision of 7, on the other hand, then the
computer will use one double-precision unit of memory in which to store
each number and arithmetic will be performed using double-precision
registers. Thus, by choosing a precision of 7, you may have inadvertently
doubled the size of your program and made it run slower than necessary.

• Another effect of the underlying hardware may make you think a process
has converged when in fact it has not. Again, taking a computer with
between six and seven decimal digits of precision, suppose you ran a
program with precision set at 4, then ran it again with precision set at 5,
and then finally with precision set at 6. Suppose you notice that your
answers are not changing. You may not, as a consequence, conclude that
your computations have been proved correct. What is in fact happening is
that your calculations are all being performed at the same actual precision,
somewhere between six and seven decimal digits. If you re-read the
definition of the SELECTED_REAL_KIND function, you will notice that it
returns a kind type value that meets or minimally exceeds your requirements;
it does not have to match them exactly. Thus, in effect, you are executing
identical programs, even though you are specifying increasing precision.
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• A third class of difficulties can be experienced as a result of the computer
providing significantly more precision than requested. Suppose that you
specify a precision of 6 for your calculations, for example, and your
program executes successfully on a computer where the underlying
single-precision hardware has 14 digits of accuracy. This means that your
calculations are being executed with considerably more precision than
you specified. If this program is subsequently moved to a computer where
the underlying single-precision hardware has six digits of accuracy, the
program may now fail. This is because, on the second machine, you are
now executing with exactly the precision you specified. Thus, when you
move your program from a high-precision machine to a lower-precision
machine, you should test your program carefully to see if the precision
you initially specified should be increased.

Let us sound a final note of caution. The mechanism for specifying higher
precision or exponent range should not be used blindly to attempt to get out of
numerical difficulties.

You may, for example, be using an unstable algorithm or your problem
may be ill-conditioned. In such cases you should consider reworking the
algorithm or understanding why your problem is ill-conditioned; we shall discuss
this topic in Section 10.3.

Furthermore, you cannot specify arbitrarily high precision to get you out
of difficulties, as a processor is free to limit the amount of precision it provides.
Note that the SELECTED_REAL_KIND function will return a negative number when
asked for a precision or exponent range that the processor does not support.

Finally, we note that choosing the exponent range is frequently less
critical than choosing the precision correctly, and it is permissible to not specify a
value for R in a reference to SELECTED_REAL_KIND, in which case the range
provided will be the default range for the precision specified:

INTEGER, PARAMETER:: real_B = SELECTED_REAL_KIND(P=B)

10.3 Conditioning and stability

The previous two sections have shown how important it is for the programmer to
be aware of the effect of round-off errors in computer calculations, and have
indicated some of the approaches that can be used to contain the problem.
However, it is also important that the programmer is aware of the likelihood of a
particular calculation being seriously affected by such problems. Two factors that
are important in assessing this are the stability of a numerical process, and the
conditioning of a problem.

A well-conditioned problem is one which is relatively insensitive to
changes in the values of its parameters, so that small changes in these parameters
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only produce small changes in the output. An ill-conditioned problem, on the
other hand, is one which is highly sensitive to changes in its parameters, and
where small changes in these parameters produce large changes in the output.

If a problem is ill-conditioned even the best algorithm that can be applied
to it will lead to results that are suspect. In such cases the definition of the
problem should be examined to see if it can be redefined so that the results can be
obtained from different data which is better conditioned. If it is impossible to
improve the problem definition then the answer should be labelled as being
sensitive to the values of its input data. It might be appropriate to solve such a
problem for sets of slightly different input data to analyse the sensitivity of the
answer to the data. The reason for the concern in such situations is that physical
data can only be obtained to a certain problem-dependent accuracy. If the data are
ill-conditioned the reliability of any answer obtained is correspondingly suspect.

An example of an ill-conditioned problem is the quadratic equation

whose roots are 0.999 and 1.001. If the problem is changed slightly to be

the roots are now 0.9 and 1.1. Thus a change of 0.00999 in the constant term of
the equation has changed each root by 0.099; a ten times greater change.

This phenomenon does not only occur when the roots are almost equal.
Just how unstable the roots of a polynomial can generally be was well illustrated
by Wilkinson (1963), who gave a case of a 20th degree polynomial, where the
roots were 1, 2, 3, ... , 20, in which changing the coefficient of x19 very slightly
caused massive changes in about half of the roots.

Another example of an ill-conditioned problem is the pair of simultaneous
equations

x+ y = 10

1.002x+ y = 0

whose solution is clearly

x = -5000

Y = 5010

However, if some round-off, for example on the four decimal. digit machine
referred to in Section 10.1, had led to the second equation being expressed as

1.00Ix + y = 0



322 An introduction to numerical methods in Fortran 90 programs

then the solution would have been

x = -10000

Y = 10010

which is a very great change from the original solution, while if the round-off
error had led the coefficient of x in the second equation to be 1.000 (to four
significant digits) then the problem would have been insoluble!

Clearly, in this case the reason for this extremely ill-conditioned
behaviour is that the two equations represent two lines which are almost
parallel, and therefore a very small change in the gradient of one will cause a very
large movement of their point of intersection. Thus, a computer program which
generated these equations and then solved them would stand a high probability
of being so inaccurate as to be completely useless.

On the other hand, the two equations

x+ y = 10

1.002x - Y = 0

which have the solution

. x =4.995

Y = 5.005

are well-conditioned, and a change of the coefficient of x in the second equation
to 1.001 or 1.000 would lead to solutions of

x = 4.998

Y = 5.002

or

x= 5.0

Y = 5.0

respectively. This is because, in this case, the two lines are almost perpendicular
to each other.

There are techniques which will detect whether, for example, a system of
simultaneous linear equations is ill-conditioned, but a discussion of these is
beyond the scope of this book. An excellent description of these and other related
problems can be found in the book by Atkinson ef al. (1989).
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Related to the conditioning of a numerical process is its stability. A
numerical process (algorithm) is said to be stable if the answer it gives is the
mathematically exact answer to a problem that is only slightly different from the
problem given. It is said to be unstable if the answer it provides is to a problem
substantially different from the one given.

The two principal causes of unstable algorithms are round-off error,
which we have already discussed, and truncation error. Truncation error is the
name given to the error caused by terminating a calculation before it is
mathematically correct. For example, if a function is being evaluated by a power
series, on a computer, it will be necessary to sum only a finite number of terms. In
this case the truncation error is the sum of the infinite number of dropped terms.
Providing this sum is sufficiently small, and round-off errors are also small, the
algorithm will be stable. Other examples of truncation error are estimating the
derivative of a function by evaluating it at two close-together points, and
estimating the value of a definite integral by evaluating the function at a finite set
of well-chosen points.

An example of an unstable algorithm is the following method for
calculation of e-5. Suppose we use the power series expansion

-x x x? x3
e =1-,+,-,+ ...

1. 2. 3.

with x = 5. This series converges for all values of x. Moreover, if the series is
truncated after the nth term, it can be shown that the error, En' satisfies the
relationship

Ixln e-I:::;---
n!

for some t such that 0 < t < x. Thus, if x = 5, and we take the first 25 terms of
the series, we are guaranteed that the mathematical error (the truncation error)
will be no more than 2 x 10-8.

The following program to implement this algorithm was executed on a
computer with between six and seven decimal digits of precision:

PROGRAM exponential_unstable
IMPLICIT NONE
REAL :: x=5.0, ans=O.O, term=1.0
INTEGER:: i
PRINT' (T5, "i" ,T14, "TERMi" ,T29, "SUMi") ,
DO i = 1,25

ans = ans+term
PRINT' (I5,2X,2E15.6)' ,i,term,ans
term = term*(-x)/REAL(i)

END DO
END PROGRAM exponential_unstable
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i
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

TERMi
0.100000E+01

-0.500000E+01
0.125000E+02

-0.208333E+02
0.260417E+02

-0.260417E+02
0.217014E+02

-0.155010E+02
0.968812E+01

-0.538229E+01
0.269114E+01

-0.122325E+01
0.509687E+00

-0.196033E+00
0.700119E-01

-0.233373E-01
0.729290E-02

-0.214497E-02
0.595825E-03

-0.156796E-03
0.391990E-04

-0.933311E-05
0.212116E-05

-0.461122E-06
0.960671E-07

SUMi
0.100000E+01

-0.400000E+01
0.850000E+01

-0.123333E+02
0.137083E+02

-0.123333E+02
0.936806E+01

-0.613294E+01
0.355518E+01

-0. 182711E+01
0.864040E+00

-0.359208E+00
0.150479E+00

-0.455547E-01
0.244571E-01
o .111986E-02
0.841276E-02
0.626779E-02
0.686361E-02
0.670682E-02
0.674602E-02
0.673668E-02
0.673880E-02
0.673834E-02
0.673844E-02

Figure 10.3 Results produced by using an unstable algorithm to calculate e-s'

Figure 10.3 shows the results of running this program, and it can be seen that the
answer obtained is 0.673844 X 10-2. Since the correct answer, to six digits of
precision, is 0.673795 X 10-2, something has gone wrong!

The truncation error was controlled mathematically to be acceptable, and,
therefore, the problem must be due to round-off error. Note that each successive
term of the calculation is alternating in sign, and that, after the sixth term, they
are getting smaller in absolute value. This algorithm has, therefore, been designed
with bad round-off characteristics.

To produce a stable algorithm, we can rearrange the calculation as
follows. Observe that

The error, En, after truncating n terms of the series satisfies the relationship
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for some t such that 0 < t < x. Thus, if x = 5, and we take the first 25 terms of
the series, the truncation error is less than 2.9 X 10-6. Notice that now the terms
do not alternate in sign. The error in using the reciprocal of the truncated series as
an approximation to e-r is

Therefore, for x = 5 the error is less than 1.3 X 10-10. Proving this is left as an
exercise for the interested reader. '

A program to implement this algorithm is:

PROGRAM exponential_stable
IMPLICIT NONE

REAL:: x=5.0, r_ans=O.O, term=1.0
INTEGER:: i

PRINT ' (T5, "i" ,T14, "TERMi" ,T29, "SUMi") ,
DO i = 1,25

r_ans = r_ans+term
PRINT' (I5,2X,2E15.7)' ,i,term,1.0/r_ans
term = term*x/FLOAT(i)

END DO

END PROGRAM exponential_stable

Figure lOA shows the results of running this program, and this time the result
obtained, 0.673795 X 10-2, is accurate to six digits of precision. You will
observe that the sum does not change after the 21st addition; this is because, with
the modified algorithm, taking the first 23 terms of the series guarantees that the
truncation error is less than 3.1 X 10-9.

Before leaving this example we must express a final note of caution. This
method is almost certainly not the way that the EXP intrinsic function is
implemented by your compiler, which will probably use the techniques of range
reduction and a rational approximation. Our purpose in presenting this example
is to show that unstable algorithms can usually be replaced by something better.
Furthermore, while we have eliminated the problems caused by subtracting
numbers, we have not rearranged the calculations to accumulate the sum by
adding the various components in order of ascending magnitude. This omission is
simply to improve the clarity of the example, and we leave this improvement as
an exercise for the interested reader.
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i
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

TERMi
0.1000000E+Ol
0.5000000E+Ol
0.1250000E+02
0.2083333E+02
0.2604167E+02
0.2604167E+02
0.2170139E+02
0.1550099E+02
0.9688121E+Ol
0.5382289E+Ol
0.2691145E+Ol
0.1223248E+Ol
0.5096865E+00
0.1960333E+00
0.7001188E-Ol
0.2333729E-Ol
0.7292904E-02
0.2144972E-02
0.5958255E-03
0.1567962E-03
0.3919905E-04
0.9333106E-05
0.2121161E-05
0.4611219E-06
0.9606706E-07

SUMi
0.1000000E+Ol
0.1666667E+00
0.5405406E-Ol
0.2542373E-Ol
0.1529637E-0l
0.1093892E-Ol
0.8840321E-02
0.7774897E-02
0.7230282E-02
0.6959451E-02
0.6831505E-02
0.6774890E-02
0.6751576E-02
0.6742652E-02
0.6739471E-02
0.6738411E-02
0.6738080E-02
0.6737982E-02
0.6737955E-02
0.6737948E-02
0.6737946E-02
0.6737946E-02
0.6737946E-02
0.6737946E-02
0.6737946E-02

Figure 10.4 Results produced by using a stable algorithm to calculate e-s.

SELF-TEST EXERCISES 10.1

1 Define overflow and underflow. Which usually causes the most problems in numerical
calculations?

2 In each of the following cases two possible orders of calculation are shown which are
mathematically equivalent. Which is the best to use on a computer, and why?

Order 1 Order 2
(a) a x a - b x b (a + b) X (a - b)
(b) (a-b)le ale-ble .
(c) (a + b)le ale + ble
~ a+b+e+d+e e+d+e+b+a

(where 0 < a < b < e < d < e in both cases)
(e) alb - eld ((a X d) - (b X e))/(b x d)

3 How are REAL variables parameterized?

4 What does it mean to be of type default real?
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5 To achieve numeric portability, how should you use the KIND= capability of REAL
variables?

6 Which of the following two programs will give the more accurate results, assuming
that you use a machine that has about six digits of precision for single-precision
operations? Explain your answer.

PROGRAMtest_lOa
IMPLICIT NONE
REAL(KIND=SELECTED_REAL_KIND(P=3)) :: x,y,z
READ '(2F10.4)',x,y
Z = x-y
PRINT ' (5X, "The difference between" ,F14. 8," and", F14. 8, &

" is" ,F14.8)' ,x,y,z
END PROGRAMtest_lOa

PROGRAMtest_lOb
IMPLICIT NONE
REAL(KIND=SELECTED_REAL_KIND(P=12)) :: x,y,z
READ '(2F10.4)',x,y
z = x-y
PRINT' (5X,"The difference between",F14.8," and",F14.8,&

"is", F14.8)', x, y, z
END PROGRAMtest_lOb

7 What are the two types of effeds that determine the accuracy of a calculation?

8 What are the two effeds that contribute to the stability of an algorithm?

9 Define a well-conditioned problem and an ill-conditioned one.

10 Define a well-conditioned numerical process and an ill-conditionedone. What is the
effed of round-off errors on the stability of a numerical process?,

10.4 Data fitting by least squares approximation

A frequent situation in experimental sciences is that data has been collected
which, it is believed, will satisfy a linear relationship of the form

y=ax+b
1-:.

However, due to experimental error, the relationship between the data collected
at different times will rarely be identical, and can typically be represented
graphically as shown in Figure 10.5. Fitting a straight line through the data in
such a way as to obtain the fit which most closely reflects the true relationship is,
therefore, a widespread need. One well-established method is known as the
method of least squares.
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y

~

~

o x

Figure 10.5 Experimental data which exhibits a linear relationship.

r(x)x10
• • •

o~---------~- x

• • •

Figure 10.6 Residuals for the data from Figure 10.5.

This method can be applied to any polynomiaL or even to more general
functions, but for the present we shall only consider the linear case. If we assume
that the equation

y=ax+b

is a possible best fit then we can test its accuracy by calculating the predicted
values of y for the actual data values of x and comparing them with the
corresponding data values. The difference between a calculated value y' and an
experimental value y is called the residual, and the method of least squares
attempts to minimize the sum of the squares of the residuals for all the data
points. Figure 10.6 shows the residuals for the data in Figure 10.5 in graphical
form, and it can easily be seen that using the square of the residuals eliminates the
problem caused by some predicted values being too large and others being too
small.

Simple differential calculus leads to the conclusion that the equation that
minimizes the square of the residuals is when the two coefficients a and bare
defined as follows:
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2: Xi 2: Yi - n 2: Xi Yi
a = 2(I: Xi) - n 2:Xi2
b = I:Yi - a I:Xi

n

It is worth noting that it is quite common for one item (or sometimes more) of a
set of experimental data to be less accurate than the rest. Clearly this can lead to
an erroneous result, and it is therefore sometimes appropriate to ignore one item
of a data set and then to attempt to fit a straight line through the remaining items.

The value of the sum of the squares of the residuals, often referred to as
simply the residual sum, can be a good guide as to how closely the equation fits
the data. If it is a perfect fit then all data points will lie on the line and the residual
sum will be zero. If it is required to compare the goodness of fit of two or more
equations, then the one with the lowest residual sum can be taken to be the best
fit. It would clearly be possible to use this technique, for example, to first use all
data points, and then to repeat the fitting process leaving each data point out of
the calculation in tum. Points which contribute excessively to the residual sum
would then be candidates for being ignored, on the grounds that they contain too
much experimental error.

[II Problem
Figure 10.7 shows the results obtained from an experiment to calculate the
Young's modulus of the material used to make a piece of wire. Write a program
to calculate the value of Young's modulus for this material and the natural
(unstretched) length of the wire.

Weight Length

10 39.967
12 39.971
15 39.979
17 39.986
20 39.993
22 40.000
25 40.007
28 40.016
30 40.022

The diameter of the wire (in inches) is 0.025

Figure 10.7 Experimental data from Young's modulus experiment.
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m Analysis

In this experiment the extensions produced in the wire by suspending various
weights from it were measured very accurately. Young's modulus is defined by
the equation

stress
E=--

strain

which can be expressed as

f/AE=-
e/L

or
fL

E=-
Ae

where f is the applied force (the weight), A is the cross-sectional area of the wire
(measured at several points and averaged), e is the extension, and L is the
unstressed length of the wire.

In this case, in order to eliminate the effect of any curl or kinking in the
wire no measurements were taken in a completely unstressed condition, but the
length of the wire was measured instead under an initial load and then under
various heavier loads, as indicated in Figure 10.7.

From the above definition of Young's modulus we can derive the equation

e = kf

where

L '
k=-

AE

However, we do not have the value of e, but rather the value of I, where

e=I-L

We therefore need to fit the equation

l=kf+L

to the experimental data, We shall then be able to calculate the value of E.
We are now in a position to design our program, and, in accordance with

good practice, will place all the constants required for problem in a module so
that they can be easily accessed from any procedure in the program. As both the
main program and the subroutine which will carry out the least squares fitting
follow the method already discussed we shall omit the detailed data design and
structure plan and proceed directly to the program.
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o Solution

MODULE constants
IMPLICIT NONE
This module contains the physical and other constants
for use with the program youngs_modulus
Define a real kind type q with at least 6 decimal
digits and an exponent range from 10**30 to 10**(-30)

INTEGER,PARAMETER :: q = SELECTED_REAL~KIND(P=6,R=30)
! Define pi
REAL (KIND=q) ,PARAMETER:: pi = 3.1415926536_q
!Define the mass to weight conversion factor
REAL(KIND=q),PARAMETER :: g = 386.0_q
! Define the size of the largest problem set that can be
! processed
INTEGER, PARAMETER max_dat=100

END MODULE constants

PROGRAM youngs_modulus
USE constants
IMPLICIT NONE
This program calculates Young's modulus for a piece of wire
using experimental data, and also calculates the unstretched
length of the wire
Input variables

REAL (KIND=q) , DIMENSION (max_dat)
REAL (KIND=q) :: diam
INTEGER :: n_sets
!Other variables
REAL (KIND=q) :: k,l,e
INTEGER:: i
! Read data
PRINT *,"How many sets of data?"
READ *,n_sets

wt,len

! End execution if too much or too little data
SELECT CASE (n_sets)
CASE (max_dat+1: )

PRINT *,"Too much data!"
PRINT *, "Maximum permitted is ",max_dat," data sets"
STOP

CASE ( :1)
PRINT *, "Not enough data!"
PRINT *,"There must be at least 2 data sets"
STOP

END SELECT I
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PRINT *,"Type data in pairs: weight (in lbs), &
&length (in inches)"

DO i = l,n_sets
PRINT' ("Data set ", 14, II. ")',i
READ *,wt(i) ,lentil

END DO

PRINT *,"What is the diameter of the wire (in ins.)?"
READ *,diam

! Convert mass to weight
wt = g*wt

!Calculate least squares fit
CALL least_squares_line(n_sets,wt,len,k,l)

Calculate Young's modulus
e = (4.0_q*l)/(pi*diam*diam*k)

Print results
PRINT ' (// ,5X, "The unstressed length of the wire is", &

F7 .3,"ins. "),,1

PRINT' (5X,"Its Young's modulus is ",ElO.4, &
" lbs/in/sec/sec"//)',e

END PROGRAM youngs_modulus

SUBROUTINE least_squares_line(n,x,y,a,b)
USE constants
IMPLICIT NONE

This subroutine calculates the least squares fit line ax+b
to the x-y data pairs

Dummy arguments
INTEGER, INTENT (IN) :: n
REAL (KIND=q) ,DIMENSION(n) ,INTENT (IN) x,y
REAL (KIND=q) ,INTENT (OUT) :: a,b

!Local variables
REAL (KIND=q) :: sum_x,sum_y,sum_xy,sum_x_sq

! Calculate sums
sum_x = SUM (x)
sum_y = SUM(y)
sum_xy = DOT_PRODUCT(x,y)
sum_x_sq = DOT_PRODUCT(x,x)

! Calculate coefficients of least squares fit line
a = (sum_x*sum_y - n*sum_xy)/(sum_x*sum_x - n*sum_x_sq)
b = (sum_y - a*sum_x)/n

END SUBROUTINE least_squares_line
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How many sets of data?
9
Type data in pairs: weight (in lbs), length (in ins.)
Data set 1:
10 39.967
Data set 2:
,12 39,971
Data set 3:
15 39.979
Data set 4:
17 39.986
Data set 5:
20 39.993
Data set 6:
22 40.0
Data set 7:
25 40.007
Data set 8:
28 40.016
Data set 9:
30 40.022
What is the diameter of the wire (in ins.)?
0.025

The unstressed length of the wire is 39.938ins.
Its Young's modulus is 0.1131E+11 lbs/in/sec/sec

Figure 10.8 Results produced by the program youngs_modulus.

Figure 10.8 shows the result of running this program with the data shown in
Figure 10.7.

10.5 Iter~tive solution of non-linear equations

Although a straight line fit is often appropriate, many real-life situations will not
result in a straight line fit but, rather, in some non~linear relationship of the form

y = f(x)

If f(x) is a quadratic function then we can solve the equation

ax!'+bx+e = 0
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y

x

Figure 10.9 Y = f(x) and the roots of the equation f(x) = O.

as we showed in Example 5.6, although it should be noted that a deeper analysis
of this well-known, but. often imperfedly understood, problem will be found in
Sedion 18.2. In general, the equation will be more complex than a simple
quadratic and analytic solutions are not possible. In this sedion, therefore, we
shall start to investigate methods to solve the equation numerically; we shall
return to this topic in more detail in Sedions 18.3 and 18.4.

Numerical methods are usually based on calculating an approximation to
the true value of a root (or zero) of the equation

[(x) = 0

and then successively refining this approximation until further refining would
achieve no useful purpose.

Figure 10.9 shows the graphical representation of a continuous fundion
y = [(x) and it is-clear that the roots of the equation

[(x) = 0

are the values of x at which the curve interseds the y-axis. This leads us to a
simple, yet powerful, approach to calculating these roots, based on the
observation that if [(Xi) < 0 and [(xi) > 0 then there must be at least one
root in the interval Xi < X < Xi_ Notice, incidentally, that there may be more than
one root in the interval; in this discussion, however, we are only interested in
finding one of them.

The bisection method uses this fad by then evaluating the value of [(x)
at the point mid-way between Xi and Xi and then repeating the process until the
value of x is sufficiently close to the true value of the root. As in all iterative
methods the problem is in deciding when it is time to stop, or what the
convergence criteria for the problem are.

Essentially, there are three possible criteria that we might use to terminate
an iterative search for a root of the equation, all of which depend upon some
value becoming less than some small number E. Suppose that the iterative method
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y

o x

Figure 10.10 Finding an initial interval which contains a root of fIx) = o.

successively generates the values xo, Xl, X2, •••• Then the convergence criteria
are:

(1) The magnitude of the function [[(Xi) [ should be less than E.

(2) The error IXj - Xr I, where Xr is the true value of the root, should be less
than E;

(3) The difference between successive approximations IXi - xi-II should be
less than E.

Different methods will use different criteria to terminate the iteration.
In the case of the bisection method it is clear that at each step the interval

which surrounds the true value of the root is halved. For example, if the two
initial values [(xo) and [(Xl) have opposite signs then the root must lie between
them, as shown in Figure 10.10, and the value of [(X2) is calculated, where

Xo + Xl
X2 =---

2

If the sign of [(X2) is the same as that of [(xo) then the root must lie in the
interval X2 < X < Xl, while if it is opposite then the root must lie in the interval
Xo < X < X2. In either case the new interval is half the size of the first one (which
is, of course, the reason for the name of this method).

After n iterations the interval containing the root will therefore be of size
t, where

Xl - Xo
t=--

2"

The true root must, therefore, differ from any point within this interval by no
more than t and, in particular, must differ from the mid-point of this interval by
no more than tl2. Rather surprisingly, therefore, even though we do not know
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the value of the true root we can use criterion 2 to stop the iteration when we are
within a predetermined tolerance of the true value.

The observant reader will have noticed one problem with the procedure
outlined above, namely the assumption that we have two initial values Xo and Xl
between which the root lies. How do we find these two initial values? And how
do we ensure that there is only one root between Xo and Xl? For the moment we
shall ignore this problem and assume that we have already determined, possibly
by graphical means, an initial rough approximation to the root, which allows us
to choose suitable values for Xo and Xl; we shall return to this topic in Chapter 18.

• EXAMPLE 10.2

[II Problem

Write a program to find the root of the equationf(x) = 0 which lies in a specified
interval. The program should use an external function to define the equation, and
the user should input the details of the interval in which the root lies and the
accuracy required.

~ Analysis

We have already discussed the mathematics underlying this method, and so can
proceed directly to the design of our program.

An initial structure plan might be as follows:

1 Read range (left and right), tolerance and maximum_iterations
2 Callsubroufine bisect to find a root in the in.terval (left, .right)
3 If root found then

3.1 Print root
otherwise
3.2 Print error message

Subroutine bisect
Real dummy arguments: xtstart, xr_start, tolerance, zero, delta
Integer dummy arguments: max_iterations, num_bisecs, error

[Note that zero is the root, delta is the uncertainty in the root (it will not
exceed tolerance),num_bisecs is the number of interval bisections taken and
error is a status indicator)

1 If ~l_start and xr_start do not bracket a root then
1.1 Set error = -1 and return
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2 Set xJeft:i::xtstart,x_right;;;:rr_start

JR~eat ~0tertlt{q1J$times;,H,,:,;'... :i';a;;
3.1 CalCulate mid-point (x_mid) of Interval

If (~Jr.nid- . n~t~~e,tanceJ~7nexit \\fi~hW'o;=<t7mid
delfti*x_ .•.•...Je[t"ittlerrpt'#f;;'p tOin~catestiC{j~ss

3.3 Otherwise, determine which half interval the rooHies in

..•.••...• x_~5fand x:,,~~htaRB~~priatelY':>;J .... H;;:g'
4 '~o root¥~und 5~.:~et errJ~'\" ~2"lo indi~~t~failufJto con~~rge

quickly enough

The only slightly tricky step is step 3.3 in which we determine which of
the two half intervals the root lies in. We can expand this step as follows:

Step I will test for the initial condition in a similar way.
It will be noted that we appear to have overlooked the situation in which

f(x_mid) is equal to zero, that is, x_mid is the true root. This is not actually the case,
however, for we must be careful not to mix up different convergencecriteria.

We already know that since real numbers are approximations we should
never compare two real numbers for equality during this type of process, but
should rather compare their difference with a very small number. However, the
value of a function with a steep gradient near to a root may be quite large near to
the root, while a function with a small gradient may have quite small values
even at points distant from the root. It is to avoid these problems that the
bisection method uses the second convergence criterion, in which the size of the
bracketing interval is successively halved until it becomes less than a specified
tolerance.

It will be noticed that once a function value is calculated it is used again, if
possible, when the interval is bisected. That is, if the root is in the left half
interval, x_left does not change and so f(x_left) need not be recalculated. The same
is true for f(x_right) if the root is in the right half interval. This is valuable because
most functions encountered in engineering and scientific applications will be
expensive to evaluate. The prime measure of a root-finding algorithm's efficiency
is how many function evaluations it requires.

We shall not continue with a full data design and structure plan, but will
proceed to the solution.
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@] Solution
MODULE constants

IMPLICIT NONE
! Define a kind type q to have at least 6 decimal
! digits and an exponent range from 10**30 to 10**(-30)
INTEGER, PARAMETER :: q = SELECTED_REAL_KIND(P=6,R=30)

END MODULE constants
PROGRAM zero_find

USE constants
IMPLICIT NONE
This program finds a root of the equation f(x)=O in a
specified interval to within a specified tolerance of the
true root, by using the bisection method
Input variables
REAL (KIND=q) ,EXTERNAL:: f
REAL (KIND=q) :: left,right,tolerance
INTEGER :: maximum_iterations

! Other variables
REAL (KIND=q) :: zero,delta
INTEGER:: number_of_bisections,err
! Get range and tolerance information
PRINT *,"Give the bounding interval (two values)"
READ *,left,right
PRINT *,"Give the tolerance"
READ *,tolerance
PRINT *,"Give the maximum number of iterations allowed"
READ *,maximum_iterations
! Calculate root by the bisection method
CALL bisect(f,left,right,tolerance,maximum_iterations, &

zero,delta,number_of_bisections,err)
! Determine type of result
SELECT CASE (err)
CASE (0)

PRINT *,"The zero is ",zero,"+- ",delta
PRINT *,"obtained after ",number_oCbisections, &

" bisections"
CASE (-1)

PRINT *,"The input is bad"
CASE (-2)

PRIN.T *," The maximum number of itera tions has been &
&exceeded"

PRINT *, "The x value being considered was ",zero
END SELECT

END PROGRAM zero_find
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SUBROUTINE bisect(f,xl_start,xr_start,tolerance,max~~terations,&
zero,delta,num_bisecs,error) . .

USE constants
IMPLICIT NONE

This subroutine attempts to find a root in the interval
xl_start to xr_start using the bisection method

Dummy arguments
REAL (KIND=q) ,INTENT (IN) :: xl_start,xr_start,tolerance
INTEGER, INTENT (IN) :: max_iterations
REAL (KIND=q) ,INTENT (OUT) :: zero,delta
INTEGER,INTENT(OUT) :: num_bisecs,error

! Function used to define equation whose roots are required
REAL(KIND=q),EXTERNAL :: f

! Local variables
REAL (KIND=q) :: x_left,x_mid,x_right,v_left,v_mid,v_right

:I

! Initialize the zero-bounding interval and the function
!values at the end points
IF (xl_start < xr_start) THEN

x_left = xl_start
x_right = xr_start

ELSE
x_left = xr_start
x_right = xl_start

END IF

v_left = fIx_left)
v_right = fIx_right)

! Validity check
IF (v_lefttv_right >= 0.0 .OR. tolerance <= 0.0 .OR. &

max_iterations < 1) THEN
error = -1
RETURN

END IF

DO num_bisecs = O,max_iterations
delta = 0.5t(x_right-x_left)
x_mid = x_left+delta
IF (delta < tolerance) THEN

! Convergence criteria satisfied
error = 0
zero = x_mid
RETURN

END IF
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! ****************************************************
! Remove the following print statement when the
! program has been thoroughly tested
PRINT' ("Iteration",I3,4X,3Fl2.6," (",FlO.6,")")', &

& num_bisecs,x_left,x_mid,x_right,v_mid
! ****************************************************

IF (v_left*v_mid < 0.0) THEN
! A root lies in the left half of the interval
!Contract the bounding interval to the left half
x_right = x_mid
v_right = v_mid

ELSE
! A root lies in the right half of the interval
! Contract the bounding interval to the right half
x_left = x_mid
v_left = v_mid

END IF
END DO

! The maximum number of iterations has been exceeded
error = -2
zero = x_mid

END SUBROUTINE bisect

Note that the declaration of the function f specifies the EXTERNAL attribute, as
introduced in Section 4.3, in order to inform the compiler that it is the name of an
external function. The disadvantage of this approach is that the function must be
called f. In the next chapter we shall learn how to specify a procedure as an
argument to a procedure, which would eliminate this difficulty.

Note also that we have included an extra PRINT statement in bisect to
print the value of the various values being calculated at each iteration. Once the
program has been tested this statement would normally be removed.

Figure 10.11 shows the result of running this program using the following.
function subprogram to define the equation to be solved:

FUNCTION f (x)
USE constants
IMPLICIT NONE

! Function type
REAL (KIND=q) :: f

! Dummy argument
REAL (KIND=q) ,INTENT (IN) x

f = x + exp(x)

END FUNCTION f
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Give the bounding interval (two values)
-10, 0
Give the tolerance
lE-5
Give the maximum number of iterations allowed
100
Iteration 0 -10.000000 -5.000000 0.000000
Iteration 1 -5.000000 -2.500000 0.000000
Iteration 2 -2.500000 -1.250000 0.000000
Iteration 3 -1.250000 -0.625000 0.000000
Iteration 4 -0.625000 -0.312500 0.000000
Iteration 5 -0.625000 -0.468750 -0.312500
Iteration 6 -0.625000 -0.546875 -0.468750
Iteration 7 -0.625000 -0.585938 -0.546875
Iteration 8 -0.585938 -0.566406 -0.546875
Iteration 9 -0.585938 -0.576172 -0.566406
Iteration 10 -0.576172 -0.571289 -0.566406
Iteration 11 -0.571289 -0.568848 -0.566406
Iteration 12 -0.568848 -0.567627 -0.566406
Iteration 13 -0.567627 -0.567017 -0.566406
Iteration 14 -0.567627 -0.567322 -0.567017
Iteration 15 -0.567322 -0.567169 -0.567017
Iteration 16 -0.567169 -0.567093 -0.567017
Iteration 17 -0.567169 -0.567131 -0.567093
Iteration 18 -0.567169 -0.567150 -0.567131
The zero is -0.5671406 +- 9.5367432E-06
obtained after 19 bisections

( -4.993262)
( -2.417915)
( -0.963495)
( -0.089739)
( 0.419116)
( 0.157034)
( 0.031881)
( -0.029354)
( 0.001155)
( -0.014126)
( -0.006492)
( -0.002670)
( -0.000758)
( 0.000199)
( -0.000280)
( -0.000041)
( 0.000079)
( 0.000019)
( -0.000011)

Figure 10.11 The solution of x + eX = 0 using bisect.

For simplicity, we have determined if two values have opposite signs by
multiplying them together and testing whether their product is negative. This can
lead to underflow or overflow problems. The reader should consider alternate
approaches.

We shall present an alternative solution to this problem in Chapter 11
when we discuss the recursive use of procedures in Fortran 90.

SELF-TEST EXERCISES 10.2

1 What are the three main types of convergence criteria for an iterative process?

2 In the method of data fitting by least squares approximation, what is the meaning of
the residual and the residual sum?
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3 How is the residual sum used as a measure of goodness of fit in a least squares
approximation?

4 Name two potential problems with the bisection method for finding the roots of a
non-linear equation.

10.6 Obtaining increased precision with DOUBLE PRECISION

variables

As was shown in Section 10.2, the preCISIOnof a variable can be specified
precisely and portably by using parameterized REAL variables. However, before
the release of Fortran 90, real variables were not parameterized, and all REAL
variables were the equivalent of default reals in Fortran 90. If more precision was
required than a REAL variable provided, a second type of variable called DOUBLE

PRECISION was available for storing real numbers with both higher precision and,
usually, a wider exponent range than was provided for REAL entities.

When developing new programs you should use parameterized REAL
entities in preference to DOUBLE PRECISION, because they provide portable control
over precision and range. However, you may be required to maintain or convert a
program written in FORTRAN 77 involving DOUBLE PRECISION variables, and this
section therefore explains their principal features, even though we advocate not
using them.

A DOUBLE PRECISION variable uses two consecutive numeric storage units (although it does not necessarily
hold numbers to exactly twice as many significant digits of precision as a default real). Double precision
variables must be declared in a type specification statement which takes the form

DOUBLE PRECISION name!, name2, ...

The input and output oFdouble precision values is performed by F or E edit descriptors in exactly the same
way as for real values.

Double precision constants are written in the exponent and mantissa form, but with a D to
separate the two parts instead of an E as with real constants (see Section 3.3), thus

1D-7 is double precision 0.000 000 1 .
14713D-3 is double precision 14.713
9. 413D5 is double precision 941300.0

When using double precision values in a mixed-mode arithmetic expression a similar process
occurs to that with which we are already familiar. The expression is evaluated in stages using the normal
priority rules: if one operand is double precision and the other is real or integer, the latter is converted to
double precision before the operation is carried out, to give a double precision result. Note, however, that it
is not permitted to combine double precision and complex entities (see Section 14.7) in a single mixed-
mode expression.
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SUMMARY

•

•

•

•

REAL numbers are stored in a computer as floating-point approximations to
their true mathematical values.

All REAL calculations are subject to round-off errors, and the programmer
must take care to perform complicated calculations in such a way as to
minimize these effects.

Overflow will occur if a calculation would result in an exponent for a real
number being larger than the maximum possible exponent allowed.
Overflow results in an error condition.

Underflow will occur if a calculation would result in an exponent for a real
number being smaller than the minimum possible exponent allowed. The
result of underflow is that the result of the calculation is treated as zero; it is
not treated as an error by many processors.

• REAL variables may be parameterized in order to provide more than one
representation of real numbers, with differing degrees of precision or
exponent range.

• A processor which supports more than one representation of real numbers
will specify a different kind type parameter for each representation.

• A REAL variable or constant whose kind type parameter is not specified is of
default real type.

• The SELECTED_REAL_KIND intrinsic function may be used to determine the kind
type parameter of the real number representation on the current processor
which meets, at least, a specified degree of precision and exponent range.

• The use of parameterized REAL variables and constants, in conjunction with
the SELECTED_REAL_KIND intrinsic function, provides a portable means of
specifying the precision and exponent range for numerical algorithms.

• An ill-conditioned problem is one whose results are highly sensitive to
changes in its input parameters; a well-conditioned problem is relatively
insensitive to such changes.

• A stable numerical algorithm is one which provides a mathematically exact
answer to a problem that is only very slightly different from that specified;
an unstable process provides an answer to a substantially different problem.

• It is often possible to restate a numerical problem in order to provide a
stable algorithm for its solution instead of an unstable one.

• The method of least squares approximation is a simple and effective method
of fitting a straight line through a set of data points.
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• The residual sum of a least squares approximation can be a good guide as
to how closely the line fits the data, and can be used to improve the
approximation by omitting data points which contain too much experimental
error

• Iterative methods are normally used to solve non-linear equations.

• The bisection method is a simple iterative method for finding a root of a non-
linear equation in a specified interval.

• The DOUBLE PRECISION type is an older, and non-portable, method of obtaining
greater precision than is provided by REALnumbers.

• Fortran 90 syntax introduced in Chapter 10:

Variable declarations

Literal constant
definition

REAL(KIND=kind_fypel :: list of variable names

numeric _literal_kind _type

PROGRAMMING EXERCISES

10.1 Write a program that calculates 7r using default REALvariables. Print out the
answers to as many decimal places as your machine will allow and compare the result with
a tabulated value. Repeat this exercise using parameterized REALshaving KIND types giving
6, 10, 14 and 18 decimal digits of precision. What does this tell you?

10.2 Tabulate the values of 1 - cos x to four decimal places for x between 0 and 10-4 in
steps of 10-5, using a REALvariable, parameterized to have a precision of 6, for x. Repeat
this with a precision for x of 14.

Now repeat all of the abore using the fad that

1- cos x = 2sin2(x/2)

Are you getting better answers? If so, why?

"10.3 Write a program to evaluate the fadorial of 200. (Hint: use logs.)
Compare your res~lt with Stirling's approximation for large n:

log, (27r)
log,(n!) = (n + 0.5) log, n - n + ---

2

(Note that these are all logs to base e.)

10.4 The polynomial

63z3 - 183~ + 97x + 55
has three real roots between -10 and +10. Write a program to find them, using the
bisedion method.

(Hint: You must first find intervals in which the roots lie; this can be achieved by
tabulating the value of the polynomial for various values of x.)
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"'10.5 Use the program you wrote for Exercise 10.4 to find those roots of the following
equations which lie in the range. - 10 ~ x ~ 10.

(a) 10;2 - xZ - 69x + 72
(b) 20;2 - 52xZ + 17x + 24
(c) 5;2 - xZ - 80x + 16
(d) 10x4 + 13;2 - 163xZ - 208x + 48
(e) x4 + 2;2 - 23xZ - 24x+ 144
(f) 9x4 - 42;2 - 1040xZ + 5082x - 5929

10.6 The Taylor series is a method of calculating an approximation to a particular
function. For example, the Taylor series for the function sin (x) is .

;2 xS x7 x9 .

sin (x) = x - 3!+ 5! -71 + 9! - ...
where x is an angle in radians and n! is the factorial function of n, that is, n X (n - I)
x (n - 2) x ... x 2 x I.

Write a program to evaluate the first five terms of the above series, and compare
the accuracy achieved with the intrinsic function sin. The algorithm provided by your
compiler for the sin function is almost certainly more sophisticated than that given here.
'Now modify your program so that it uses a variable number of terms in the series, and
keeps adding terms until they become sufficiently small. Note that an efficient program
should calculate each term in the series from the previous one. Compare the accuracy
obtainable with REAL variables with the precision set to 6 and then set to 14. (Note that if
you are using a machine whose single-precision hardware has more than 14 digits of
precision you should set the precision to 14 and then 28 for this exercise.)

10.7 The following set of experimental data is to be fitted to a curve of the form
Y = etlI:

x 0.0 0.1
Y 1.07 1.40

0.2 0.3 0.4
1.56 2.30 2.92

0.5 0.6 0.7 0.8
3.52 4.57 6.00 7.33

0.9
9.69

1.0
12.04

This can be done as follows. The sum of the squares of the residuals is given by

10l.: (Yi - exp(a Xi))2
;=0

and this must be minimized with respect to a. Simple differentiation with respect to a,
therefore, tells us that the following equation needs to be solved for a:

10

l.: Xi (Yi - exp(axi)) exp(axi) = 0
i=O

Write a progr<lm to solve this using the bisection method, and hence find the
estimated value of a.

10.8 In engineering or scientific problems it is often required to calculate the derivative
of a function; frequently, however, such a derivative is expensive or impossible to compute



346 An introduction to numerical methods in Fortran 90 programs

analytically. One method of calculating the first derivative f' (x) of a function f(x) uses the
so-called Newton quotient:

f'(x) = f(x + h) - f(x)
h

where h is small. Write a program to compute the Newton quotient for the function

f(x) = .x2 - 3x + 2

at the point x = 2 (where we can readily calculate that the exact answer is 1). Your
program should print a table showing the value of h and the calculated value of f'(x), for
values of h starting at 1 and decreasing by a factor of 10 on each repetition. You will find
that when h becomes too small the calculation loses all semblance of accuracy due to
rounding errors.

Modify your program to use a new set of values for h in the region which showed
the greatest accuracy. What is the best value for h for this function when x = 2 ?

10.9 Exercise 10.8 showed how rounding errors affected the calculation of the first
derivative of a function by means of the Newton quotient. Repeat the exercise, but carry
out all the calculations using REAL numbers in which the precision is set to 14. (Once again,
if you are using a machine whose single-precision hardware has more than 14 digits of
precision you should set the precision to 14 and then 28 for this exercise.)

Now repeat the same process, using both default reals and the higher precision
reals used above, for the following functions at th~ points specified:

(a) .x2 - 3x + 2
(b) .r' - 6.x2 + 12x - 5
(c) .r' - 6.x2 + 12x - 5
(d) .r' - 6.x2 + 12x - 5

at x = 1.5 (exact value is 0)
at x = 1 (exact value is 3)
at x = 2 (exact value is 0)
at x = 3 (exact value is 12)

What does this tell you about choosing the value for h?

0, 1, 2, ..., 10for n

10.10 This exercise analyses an unstable algorithm. Write a program to calculate the
integrals 10'II, ... , !ro, where

In =11

xne-Z dx

by the recursion formula

10 = 1 - e-I

In = _e-I + nIn-I for n ~ 1

where e is the basis of the natural logarithms. Those who are mathematically inclined can
easily verify that this recursion formula is correct by integration by parts.

Use six significant decimal digits of accuracy. Mathematically, the results should
all be positive (and should decrease as the subscript increases). Your answers, unless you
are using considerably more than the specified accuracy, will show that something is
clearly going wrong. What is the problem?

Hint: think about what happens to the small round-off error made in calculating 10,
How does it get magnified in calculating II, 12, 13, etc.?
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A stable algorithm for this problem can be created in a very interesting way.
Rewrite the recursion formula as

ho = 0

I = e-1 + In+!
n n + 1

Write a program based on this algorithm. You will note that the values of 10, Jr, ... , 110 are
all positive and that the values decrease as the subscript increases. In fact, the answers
obtained are all correct to six figures of precision. How can this algorithm work when we
have arbitrarily set 120 to 0 and then worked backwards?

Hint: think about the error made in 119 by setting 120 = o. Then the resulting error

in 118" ••.

So, starting with an initial value that was good to six significant digits we obtained
wrong answers to the problem. However, starting with a very poor initial value, we were
able to obtain six figure accuracy. This demonstrates some of the power and elegance of
numerical analysis.
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11.1 A brief review of procedures
11.2 Procedure interfaces and interface

blocks
11.3 Actual and dummy arguments
11.4 Saving the values of local objects on

exit from a procedure

11.5 Recursive procedures
11.6 Writing generic procedures
11.7 Scope and scoping units
11.8 Internal procedures

Procedures were first introduced in Chapter 4 as one of the fundamental
building blocks in Fortran programming. This chapter re-examines some
of the concepts introduced in that and subsequent chapters and, in
particular, provides a more formal basis for the relationship between
actual and dummy arguments, as well as introducing the concept of
optional arguments.

Another important topic introduced in this chapter is concerned
with the relationship between the variables and other entities defined in
different parts of a program, where they are accessible, and the ways in
which they may be accessed in other parts of the program.

Several extensions to the simple procedures used up to now are
also introduced which allow for recursion, for the writing of generic
procedures which operate on different types of arguments in a similar
manner to generic intrinsic procedures, and for the nesting of procedures
within a main program or subprogram.

349
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11.1 A brief review of procedures

We have made extensive use of procedures throughout this book since first
introducing them in Chapter 4, but there are a number of other important features
relating to procedures and their use that we have not yet met. Before discussing
these, however, it is appropriate to review briefly what we have learned about
procedures so far and, in particular, to re-examine the relationship between actual
arguments and dummy arguments.

The primary purpose of a procedure is to enable a program to be broken
up into small segments, each of which carries out a single task. Not only does this
mean that it is easier to develop and test a program than would be the case if it
were written as a single program unit, but it provides many advantages in
efficiency and reusability. In particular, a well-designed procedure can deal with
many related problems through variations in its arguments.

We have seen that a procedure can interact with the program unit from
which it is invoked (that is, called, in the case of a subroutine, or referenced, in
the case of a function) in two ways. The first of these is through its arguments
and, in the case of a function, the result variable; we shall examine this process in
more detail in this chapter. The second form of interaction is through USE

association of data which is stored in a module; we shall examine ways in which
greater control can be exercised over this process in Chapter 12.

All of the procedures that we have met so far have been either intrinsic or
external. Intrinsic procedures are part of the Fortran 90 language and are supplied
automatically by the Fortran processor; many of the intrinsic functions in
Fortran 90 are generic functions which, in effect, exist in several versions suitable
for different types of arguments. External procedures are written in Fortran in the
form of a function subprogram or a subroutine subprogram. We shall meet a third
type of procedure in Section 11.8.

Unless some action is taken by the programmer, an external procedure has
what is called an implicit interface in any program units from which it is invoked,
with the result that the invoking program unit has no information about the
number and type of the arguments. For some purposes it is desirable, or even
essential, that such a procedure has an explicit interface. For many purposes an
explicit interface can be most easily provided simply by placing the procedure in
a module, since procedures which are contained within a module have explicit
interfaces inside that module, and also in any program unit that uses that module.
This approach also has the advantage of packaging groups of related procedures
in a single program unit, and we recommended in Chapter 4 that all procedures
should be encapsulated in modules in this way to avoid unforeseen problems.
Note, incidentally, that all intrinsic procedures automatically have explicit
interfaces in any program unit that invokes them.

However, it is not always appropriate to place all procedures in a module,
and the next section shows how an explicit interface for a procedure can be
provided wherever one is required without recourse to modules.
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11.2 Procedure interfaces and interface blocks

Although we have emphasized the difference between an implicit interface for a
procedure, as was the case for all procedures in FORTRAN 77 and earlier versions
of Fortran, and an explicit interface, as required for some of the new features in
Fortran 90, in order that the compiler has all the necessary information available,
we have not yet fully defined exactly what is meant by a procedure's interface. The
formal definition is actually quite complicated, but for most purposes we can adopt
a more informal definition:

The interface of a procedure determines the forms of reference through
which it may be invoked, and consists of the name of the procedure and
whether it is a subroutine or a function, the name and characteristics of
each of its dummy arguments, and, in the case of a function, the
characteristics of the result variable.

We shall not define exactly what is meant by the characteristics of a
dummy argument or result variable, as it is sufficient to state that they comprise
all the information which must appear in the declarations of a procedure's dummy
arguments or a function's result variable.

We have already advised that, when writing programs or developing
libraries, there are many advantages to be gained from placing groups of related
procedures in a module, one of which is that the interfaces of any procedures
contained within the module will be explicit in any program unit that uses the
module. However, this is not always possible or appropriate, and in these cases
the use of an interface block in the calling program unit will ensure that all
possible consistency checks can be carried out and that, when required, the
procedure's interface is explicit.

An interface block for a procedure is specified by duplicating the heading
information of that procedure, and takes the following form:

INTERFACE
interface_ body-I
interface_body _2

END INTERFACE

Each interface_body consists of the initial SUBROUTINE or FUNCTION statement of the
corresponding external procedure, the specification statements relating to its
dummy arguments and, where relevant, its result variable, and the final END
statement. Thus, an interface block for the subroutine written in Example 7.1 to
sort a set of names into alphabetical order might be as follows:
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INTERFACE
SUBROUTINE alpha_sort(name)

IMPLICIT NONE
CHARACTER(LEN=*), DIMENSION(:), INTENT (INOUT) name

END SUBROUTINE alpha~sort
END INTERFACE

Note that an interface block must not specify the interface of a procedure
in a module that is available by USE association, as the interface of such a
procedure is already explicit and it is not permitted to have two explicit interfaces
for a procedure available at the same time.

One other important point that must be made is that, although the
specifications of the dummy arguments in the interface block must be consistent
with those in the actual procedure, it is not necessary for their names to be the
same and it would be allowable for the interface block above to use, for example,
string3rray instead of name. However, we do not recommend this, as there is
no obvious advantage in changing the names and the possibility of introducing
errors is increased. It is suggested that, as already implied above, the best way to
create an interface block is to copy the relevant lines of code directly from the
procedure itself into the interface block in order to ensure that they are identical.

11.3 Actual and dummy arguments

The initial SUBROUTINE or FUNCTION statement normally contains a list of dummy
arguments, enclosed in parentheses ..A CALL to that subroutine, or a reference to
that function, contains a list of actual arguments which must agree, exactly, with
the dummy arguments with respect to the number of arguments and their types.
During the execution of a CALL statement or a function reference appropriate
steps will be taken to link the values of the dummy arguments with those of the
actual arguments. The method used is not important, but two common
approaches are

(1) to pass the locations of the actual arguments in the memory to the
procedure in such a way as to enable the dummy arguments to refer to the
same memory locations as did the actual arguments, and

(2) to copy the values of the actual arguments to variables in the procedure
representing the dummy arguments when the procedure is entered, and
then to copy the value of the dummy arguments back to the actual
arguments when the procedure has finished.

Both approaches may be used by a compiler, depending upon the type of an
argument, but the approach used will not affect the behaviour of the program.
However, it is possible for the programmer to constrain the way in which dummy
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arguments are used within a procedure by means of the INTENT attribute, as was
described in detail in Section 4.5.,

Up to this point, dummy arguments have been either scalar variables or
arrays. It is, however, also possible to pass the name of a procedure as an
argument to a procedure, in which case a new form of declaration is required for
the corresponding dummy argument.

In the case of a function dummy argument the declaration of the type of
the function dummy argument should include an EXTERNAL attribute:

REAL, EXTERNAL :: dummy Junction_name

This specifies that the dummy argument is the name of a function and not the name
of a data object, as would otherwise be the case. Th~ corresponding actual
argument must also be declared in the calling program unit with either an EXTERNAL
attribute or, if it is the name of an intrinsic function, an INTRINSIC attribute:

INTEGER, EXTERNAL :: myJunction
REAL, INTRINSIC :: SIN

Note that in the case of intrinsic functions that are passed as actual
arguments only the specific names of functions may appear in a declaration
statement specifying the INTRINSIC attribute; this is because the type of the
function must be specified in both the calling program unit and in the called
procedure. Some specific names are not allowed in such declarations, but these are
ones which it is difficult to imagine ever wanting to use in this way, such as the
lexical comparison functions (LLT etc.) and type conversion functions (REAL etc.); a
full list of those intrinsic function names which cannot be used in this way will be
found in Appendix A.

In the case of a subroutine dummy argument, since a subroutine name
does not have a type a different approach must be used, and the dummy
argument must be declared in a special EXTERNAL statement:

EXTERNAL dummy_subroutine _name

or

EXTERNAL list of dummy_subroutine names

In the calling program unit, the corresponding actual arguments must appear in an
EXTERNAL statement:

EXTERNAL' my_subroutine

or

EXTERNAL list of subroutine names
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It is not permitted to pass any of the intrinsic subroutine names as actual
arguments (and it is very difficult to imagine why anyone should ever want to!).

Notice also that the EXTERNAL statement does not contain a double colon.

[!] Problem

The intrinsic functions for higonometrical functions (SIN,COS, ASIN etc.) operate in
radians. Write a general purpose function which will calculate the sine (or cosine or
tangent) of an angle whose value is given in degrees, minutes and seconds of arc.
(For non-mathematicians, 27f radians = 360 degrees, where 7f= 3.1415926536,
and 1 degree = 60 minutes, 1 minute = 60 seconds.)

m Analysis

The function will operate by being passed the name of the intrinsic function to be
used and converting the angle to radians before using the appropriate intrinsic
function to calculate the required trigonometrical result. We shall assume that the
value of 7f is available from a general module Universal_Constants which
contains all the generally required physical and universal constants relevant to
our work. If such a module is not available, then one could be written for this
problem as follows:

MODULE Universal_Constants
IMPLICIT NONE

REAL, PARAMETER :: pi=3.1415926536

END MODULE Universal_Constants

We can now proceed with the data design and structure plan, both of
which are quite straightforward.

Data design

Purpose Type Name

angleREAL

A Dummy arguments
Degrees part of angle INTEGER degrees
Minutes part INTEGER minutes
Seconds part INTEGER seconds

B Global constant in module UniversatConslanls
7f REAL pi

C Local variable
Angle in radians
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Structure plan

@] Solution
REAL FUNCTION trig_fun_degrees(trig_fun,degrees,minutes,seconds)

USE Universal_Constants
IMPLICIT NONE
! This function is a general trigonometry procedure for
! angles in degrees, minutes and seconds.

Dummy arguments
REAL, EXTERNAL :: trig_fun
INTEGER, INTENT (IN) :: degrees,minutes,seconds

! Local variable
REAL :: angle

! Convert angle to radians
angle = (degrees + minutes/60.0 + seconds/3600.0)*pi/180.0

! Use supplied intrinsic to calculate required function
trig_fun_degrees = trig_fun(angle)

END FUNCTION trig_fun_degrees

An appropriate test program for this function is as follows:

PROGRAM test_for_trig_fun_degrees
IMPLICIT NONE

This program is a test program for trig_fun_degrees

! Declarations
REAL, INTRINSIC :: SIN,COS,TAN
REAL, EXTERNAL :: tri fun dearees
INTEGER :: degrees,mins,secs
CHARACTER :: answer

! Loop to ask for an angle
DO

PRINT *,"Please give an angle in degrees, minutes'
, and seconds"

PRINT *, "without any fractional parts"
PRINT *, "Degrees: "



356 More flexible procedures

READ *,deqrees
PRINT *,"Minutes (0-59): "
READ *,mins
PRINT *,"Seconds (0-59): "
READ * ,sees

! Calculate and display its sin, cosine and tanqent
PRINT *,"Its sine is ", &

triq_fun_deqrees(SIN,deqrees,mins,secs)
PRINT *,"Its cosine is ", &

triq_fun_deqrees(COS,deqrees,mins,secs)
PRINT *,"Its tanqent is ", &

triq_fun_deqrees(TAN,deqrees,mins,secs)

! Ask if another test is required
PRINT *,"Another one? (Y/N) "
READ *,answer
IF (answer/="Y" .AND. answer/="y") EXIT

! If answer was Y or y then repeat the loop
END DO

It will be seen that the three intrinsic functions SIN, COS and TAN are
declared with the INTRINSIC attribute. If this were not done, then the three
references to the function triq_fun_deqrees would be interpreted by the
compiler as though the first actual argument in each case was an implicitly defined
variable, and since IMPLICIT NONE has been specified, this would cause an error.

Note that if IMPLICIT NONE had not been specified, then this error would
not have been discovered until the program was executed, unless the function
being tested was placed in a module, or otherwise provided with an explicit
interface, in which case there would have been an apparent mis-match between
the types of the corresponding arguments which would have been discovered
during compilation.

We can now summarize the rules which relate to the association of actual
arguments with their corresponding dummy arguments when a procedure is
invoked:

• If the dummy argument is a scalar variable then the actual argument must
be a scalar object of the same type, such as a scalar variable, an array
element, a character substring, a constant or an expression. .
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• If the dummy argument is an array then the actual argument must be an
array of the same type.

• If the dummy argument is a procedure, then the actual argument must
either be the name of an external procedure or the specific name of an
intrinsic function.

However, there is still one important aspect of procedure arguments to
discuss.

Up to this point, we have always stated that the actual argument list and
the dummy argument list must match exactly, and that the first dummy argument
will correspond to the first actual argument, and so on. This was the situation in
FORTRAN 77 and earlier versions of Fortran, but in Fortran 90 it is permissible
to specify actual arguments for only some of the dummy arguments, or to present
them in a different order, as long as the interface of the procedure being called in this
way is explicit in the calling program unit. This is the second situation in which an
explicit interface is required (the first was the use of assumed-shape array dummy
arguments), and it may be provided either by placing the procedure in a module
and then accessing the module by USE association, as was recommended in
Section 4.9, or by including an interface block for the procedure in the calling
program unit, as discussed in Section 11.2.

These enhanced facilities are provided by keyword arguments in which
one or more of the actual arguments take the form

keyword = aetuaC argument

and keyword is the name of the dummy argument which is to be associated with
the actual argument specified.

This is most easily explained by means of an example. We shall assume
that a subroutine exists with the following initial statements:

SUBROUTINE keywords(first,second,third,fourth)
IMPLICIT NONE
INTEGER, INTENT (INOUT) :: first, second, third, fourth

If we wish to call this subroutine with the corresponding actual integer arguments
one, two, three and four then any of the following forms of the CALL statement
would have the identical effect:

CALL keywords(one,two,three,four)

CALL keywords(first=one,second=two,
third=three,fourth=four)

Positional

&! Keyword in
! same order
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CALL keywords(third=three,first=one,
fourth=four,second=two)

CALL keywords (one,fourth=four,
third=three,second=two)

&! Keyword in
! different order

&! Mixed positional
! and keyword

Note, especially, the last example. It is permitted to mix positional arguments and
keyword arguments, but once a keyword argument has appeared then all
remaining actual arguments must also be keyword arguments.

In itself, the ability to provide the actual arguments in a different order, at
the cost of rather more writing, does not seem to be any great advantage.
However, when combined with the ability to define optional arguments it can
become extremely useful.

An optional argument is specified by the inclusion of the OPTIONAL
attribute in the declaration of the dummy argument:

REAL, INTENT (IN) ,OPTIONAL:: dummy_argument_name

Obviously, it will normally be necessary for the procedure to know if an
actual argument corresponding to an optional dummy argument has been
specified or not, and a logical intrinsic function, PRESENT, is available for this
purpose. This function takes the name of an optional dummy argument as its
argument and returns the value true if there is a corresponding actual argument,
and false if there is no corresponding actual argument. Note that a procedure
having any optional arguments must have an explicit interface in the calling
program unit.

Thus if the subroutine keywords was modified so that its last three
arguments were all optional:

SUBROUTINE keywords(first,second,third,fourth)
IMPLICIT NONE
INTEGER, INTENT (INOUT) :: first
INTEGER, INTENT (INOUT) , OPTIONAL second, third, fourth

then it could be called with statements such as

CALL keywords(one,two)

CALL keywords(one,third=three)

CALL keywords(one,two,fourth=four)

and the procedure keywords would be able to detect which of the three optional
arguments had been supplied and take appropriate action. Note that without
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using keyword arguments it is only possible to omit arguments from the end of
the list of arguments; by using keyword arguments it is possible to omit any
argument.

[!] Problem
Write a function which calculates the mean of the elements of an array, which is
supplied as an argument. The function should use two optional arguments to
provide the possibility of ignoring values above or below specified values.

m Analysis

This is a very simple problem, apart from the use of the optional arguments to
eliminate some of the elements of the array from the calculation. One important
point to note, however, is that if both optional arguments are omitted then the
calculation can be carried out using whole array operations, whereas if either, or
both, of the optional arguments is provided then a loop will be required so that
each element can be checked against the limit(s) provided.

Data design

Purpose Type Name

A Dummy arguments
Data array REAL(:) array
Minimum value REAL, OPTIONAL min_value
Maximum value REAL, OPTIONAL max_value

B Local variables
Indication of upper limit LOGICAL maximum_check
Indication of lower limit LOGICAL minimum":' check.
Do loop variable INTEGER i
No. of elements used INTEGER count
Sum of elements used REAL sum_elems

Structure plan



360 More flexible procedures

rn Solution

REAL FUNCTION mean(array,min_value,max_value)
IMPLICIT NONE

This function calculates the mean of the elements of array,
ignoring any elements outside the range specified by the two
optional arguments

Dummy arguments
REAL,DIMENSION(:) ,INTENT (IN) :: array
REAL, INTENT (IN) ,OPTIONAL:: min_value,max_value

! Local variables
LOGICAL :: minimum_check,maximum_check
INTEGER:: i,count=O
REAL :: sum_elems=O.O

!Establish whether any limits are supplied
minimum_check = PRESENT(min_value)
maximum_check = PRESENT(max_value)

! Take different actions depending on whether any limits
! are set
SELECT CASE (minimum_check .OR. maximum_check)
CASE (.FALSE. )

! No limits - use whole array processing
sum_elems = SUM (array)
count = SIZE(array)

CASE (.TRUE. )
! One or both limits specified - examine each element
DO i=LBOUND(array,l) ,UBOUND(array,l)

! Ignore element if below minimum value - if specified
IF (minimum_check .AND. array (i)<min_value) CYCLE
! Ignore element if above maximum value - if specified
IF (maximum_check .AND. array (i)>max_value) CYCLE

! Include this element in the calculation
sum_elems = sum_elems + array(i)
count = count + 1

END DO

END SELECT
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Calculate mean
IF (count>O) THEN

mean = sum_elems/count
ELSE

PRINT *,"No items in specified range - zero returned"
mean = 0.0

END IF

END FUNCTION mean

Notice that the function checks to see if the value of count is zero, which would
be the case if all the elements of array were either greater than max_value or less
than min_value. As written, if count is zero the function prints a message and
then returns zero as the mean; a better solution would, perhaps, have been to
write the procedure as a subroutine and use another argument to return true if a
mean was calculated and false if there were no values to take the mean of.

Finally, it should be noted that the INTENT, INTRINSIC and OPTIONAL
attributes can also be specified by means of statements, in much the same way as
was possible for the EXTERNAL attribute:

INTENT (intent _specifier) list of dummy arguments
INTRINSIC list of specific names
OPTIONAL list of optional dummy arguments

It is strongly recommended that the attribute forms be used, rather than
the statement form, as all the attributes of an entity will then be present in one
statement, with consequent improvements in clarity. The only exception is the
case in which it is required to have an optional dummy subroutine argument,
when the statement form is the only possibility.

11.4 Saving the values of local objects on exit from a
procedure

We must now examine in more detail the role of local variables and arrays in a
procedure and, in particular, what happens to these local objects when an exit is
made from the procedure.

We have stated on many occasions that the local entities within a
procedure are not accessible from outside that procedure (unless, of course, they
are used as actual arguments in a call to another, subsidiary, procedure). It follows,
therefore, that once an exit has been made from the procedure then none of the
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local entities within that procedure can be accessed in any way from anywhere
else in the program; in effect, they cease to exist. But'what happens if a further
call is made to the procedure? Are its local variables still in the state in which they
were left when an exit was last made? Or are they, in effect, a new set of local
entities which will 'exist' only for this instance, or use, of the procedure? (An
instance of a procedure is the formal term for its being executed as a result of a
CALL or function reference, as appropriate.)

The simple answer is that if a local object is given an initial value in its
declaration then its value, whatever that may be by then, is preserved on exit
from the procedure; otherwise it is not. Formally, an object which is given an
initial value as part of its declaration has the save attribute.

An obvious example of a procedure which uses a saved object is one which
prints a heading at the top of the next page of output, including the page number:

SUBROUTINE new-page
IMPLICIT NONE

This subroutine prints a heading and the page number
at the top of the next page

Local variable
.INTEGER :: page=O

! Update page number and print heading
page = page + 1
PRINT ' ("1" ,20X, "Example Page Heading", lSX, I3//) ,,page

END SUBROUTINE new-page

In this example, the page number is initialized to zero at the time of the first entry
to the subroutine, but on each entry thereafter it has the same value that it had on
exit the previous time. Since its value is increased by one each time the subroutine
is entered, this has the desired effect.

An important point to note, arising from this, is that if a local variable which
is given an initial value has its value changed during the executi6n of the procedure
then the next time the procedure is entered the variable is not re-initialized, and will
retain the value that it had at the time of the last exit from the procedure.

Clearly, however, there will be many cases in which local variables are not
given an initial value, but are required to retain their values from one instance of the
procedure to the next. In such cases it is possible to specify that such a variable is to
have the save attribute by including the attribute SAVE in its declaration:

REAL, SAVE :: list of real variables

Note, however, that it is not possible to give the save attribute to a dummy
argument or to an automatic array (that is, an array whose bounds are only
determined on entry to the procedure).
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As with most other attributes, there is also a statement form:

SAVElist of variables to be saved

although, as usual, we recommend that you should always use the attribute form
in preference to the statement form.

There is, however, a special form of the SAVEstatement which is often
useful, in which the list of variables to be saved is omitted:

SAVE

This form of the SAVEstatement saves all local objeds in the procedure that could
be saved, and is thus a convenient way of ensuring that on each entry to the
procedure everything is just as it was at the time of the last exit. In pradice,
however, this situation does not often occur, and it is preferable for reasons of
clarity and efficiency to save only those objeds which are specifically required to
preserve their values from one instance to the next.

Finally, we should point out that, in our experience, the automatic saving
of all objeds which are given an initial value in their declarations covers almost all
of the situations in which it is required to save local objeds, and the need for
explicit use of the SAVEattribute or statement is relatively rare.

One point that must be made here, however, relates to the definition
status of variables that are declared in a module. In Chapter 4 we stated that all
modules which contain any variable declarations should also include a SAVE
statement, and we can now understand that this is to ensure that these variables
do not become undefined.

When an exit is made from a procedure that is accessing variables from a
module by USEassociation these variables will become undefined, just like local
variables, unless either they have the SAVEattribute or the module is also being
referenced by at least one other program unit at that time. If the module is being
USEdby the main program unit, or by another procedure that, diredly or indiredly,
calls the procedure from which an exit is being made, then all variables in the
module will, therefore, remain defined. To avoid the possibility of such module
variables ever becoming undefined, therefore, you should either include a SAVE
statement in the module, as recommended in Chapter 4, or include a USEstatement
for the module in the main program unit. Of course, if all the variables already have
the SAVEattribute, for example because they are initialized, then this is not
necessary.

11.5 Recursive procedures

In Chapter 4 we stated that it was not normally permitted for a fundion or
subroutine to reference itself, either diredly or indiredly. This was an absolute
prohibition in FORTRAN 77, but there are a number of classes of problem which
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lend themselves very naturally to a recursive solution, and Fortran 90 has
therefore added the possibility of specifying that a function or subroutine may
call itself recursively.

We shall examine the situation with subroutines first, since the concept is
easier to understand in this case, and will then extend it to functions.

If we wish to allow a subroutine to be called recursively, either directly or
indirectly, we simply add the word RECURSIVE before the initial statement:

RECURSIVE SUBROUTINE my_recursive_subroutine( ...)

We can illustrate how this may be used by considering the classic recursive
algorithm, namely the calculation of factorials.

[!] Problem

Write a subroutine to calculate n!

~ Analysis

The factorial of n is written by mathematicians as n! and is defined as follows:

n! = n X (n - I) x (n -'---2) x ... x 2 x I

Another, recursive, way of expressing this is:

for n ~ 0, and o! = I

for n > 0

for n = 0

n! = n x (n - 1)!
n! = I "

We note that n must be not less than zero, and we should therefore take
appropriate steps in our subroutine to deal with the situation in which it is called
with an illegal value for n. One approach, and the one that we shall adopt, is to
return zero in this case, since this is an impossible value for a factorial and can
easily be detected, therefore, by the calling program.

We can now easily develop a design for a subroutine to implement this
algorithm.

Data design

Purpose

Dummy arguments:
The number (n) whose
fadorial is required
n!

Type

INTEGER'

REAL

Name

n
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Structure plan

ill Solution
RECURSIVE SUBROUTINE factorial(n,factorial_n)

IMPLICIT NONE
! Dummy arguments
INTEGER, INTENT (IN) :: n
REAL, INTENT (OUT) :: factorial_n
! Determine whether further recursion is required
SELECT CASEIn)
CASE (0)

! Recursion has reached the end
factorial_n = 1.0

CASE (1:)
! Recursive callIs) required to obtain (n-1)!
CALL factorial(n-1,factorial_n)
! Now calculate n! = n*(n-1)!
factorial_n = n*factorial_n

CASE DEFAULT
! n is negative - return zero as an error indicator
factorial_n = 0,0

END SELECT
END SUBROUTINE factorial

It is clear that when this subroutine is called with a value of n which is greater
than ° then the subroutine is called again to calculate (n-1)!. Once (n-1)! has
been calculated, after further recursive calls if necessary, then n! is easily
calculated by multiplying the value returned for (n-1) ! by n.

If the subroutine is called with n being equal to 0, as will eventually be the
case, then the recursion will end, and a value of 1will be returned. Note that all
recursive algorithms need some condition to end the recursion!

.
\
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A great many mathematical algorithms lend themselves to a recursive
approach, and Example 11.4 is concerned with a more important use of recursion
than the simple example of the calculation of factorials. In Chapter 10 we
discussed the numerical technique known as the bisection method, which uses
repeated subdivision of an interval to find a root of the equation f(x) = O. A
program implementing this method was developed in Example 10.2 using an
iterative technique; however, the repeated subdivision lends itself so naturally to
a recursive approach 'that Example 11.4 develops an illternative solution to the
same problem, using a recursive method.

ill Problem
In Example 10.2 we used an iterative implementation of the bisection method to
find the roots of the equation f(x) = O. Rewrite this program to use a recursive
approach.

~ Analysis

We shall not'repeat the discussion of the mathematics of this solution, since that
was given in some detail in the discussion of Example 10.2. We simply note that
in this program, the recursive subroutine divide_interval calls itself whenever
an interval bisection is needed. One other change is that this solution uses the
(default) real variables that have been used throughout this book, apart from
Chapter 10; we shall examine other kinds of real variilbles in Chapter 14. Finally,
since only the subroutine bisect in the solution for Example 10.2 has been
changed, the main program is not included here.

@] Solution
SUBROUTINE bisect(f,xl_start,xr_start,tol,max_iter, &

zero,delta,n_bisecs,error)
IMPLICIT NONE
!Dummy arguments

,REAL, INTENT (IN) :: xl_start, xr--,start,tol
INTEGER, INTENT (IN) ::max_i ter
REAL, INTENT (OUT) :: zero,delta
INTEGER, INTENT (OUT) n_bisecs,error
!Local variables
REAL :: xl,xr
INTEGER :: iter_count
! External function
REAL, EXTERNAL :: f
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! Initialize the zero-bounding interval .
IF (xl_start < xr_start) THEN

xl = xl_start
xr = xr_start

ELSE
xl = xr_start
xr = xl start

END IF
! Check if a solution is possible
IF (f(xl)*f(xr»=O.O .OR. tol<=O.O .OR. max_iter<l) THEN

! No solution possible
error = -1

ELSE
! Solution is possible, call divide_interval to find it
iter_count = max_iter
CALL divide_interval(f,xl,xr,tol,iter_count,zero,delta, &

error)
n_bisecs = max_iter - iter_count

END IF
END SUBROUTINE bisect

RECURSIVE SUBROUTINE divide_interval(f,xl,xr,tol,iter30unt, &
zero,delta,error)

IMPLICIT NONE
! Dummy arguments
REAL, INTENT (IN) :: tol
REAL, INTENT (INOUT) :: xl,xr
INTEGER, INTENT (INOUT) :: iter_count
REAL, INTENT (OUT) :: zero,delta
INTEGER, INTENT (OUT) :: error
!Local variables
REAL:: xm
! External function
REAL, EXTERNAL :: f
! Remove the following PRINT statements when ,the
! program has been thoroughly tested
PRINT *, " "
PRINT *, " Iteration countdown" ,iter_count
PRINT *, xl,xr

delta = O.5*(xr-xl)
! Check to see if within the specifie~ tolerance of the root
IF (delta < toll THEN .~..

! Yes - return result
error = 0
zero = xl + delta

ELSE
! No root yet - check if maximum iterations reached
iter_count = iter_count - 1
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IF (iter_count < 0) THEN
!Maximum iterations with no solution - return error
error = -2
zero = xl + delta

ELSE
!More iterations permitted
xm = xl + delta
IF (f(xl)*f(xm) < 0.0) THEN

CALL divide_interval(f,xl,xm,tol,iter_count,zero, &
delta,error) .

ELSE
CALL divide_interval(f,xm,xr,tol,iter_count,zero, &

delta,error)
END IF

END IF
END IF

END SUBROUTINE divide_interval

Figure 11.1 shows the results produced by running the program written for
Example 10.2, with the above two subroutines in place of the original subroutine

Give the bounding interval (two values)
-10, 0
Give the tolerance
1E-5
Give the maximum number of iterations allowed
100
iteration countdown 100

-10.0000000 O.OOOOOOOE+OO
iteration countdown 99

-5.0000000 O.OOOOOOOE+OO
iteration countdown 98

-2.5000000 O.OOOOOOOE+OO
iteration countdown 97,

-1.2500000 O.OOOOOOOE+OO'
iteration countdown 96

-0.6250000 O.OOOOOOOE+OO

iteration countdown 82
-0.5671692 -0.5671310

iteration countdown 81
-0.5671501 -0.5671310

The zero is -0.5671406 +- 9.5367432E-06
Obtained after 19 bisections

Figure 11.1 The solution of x + eX = 0 using a recursive program.
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I

bisect. Not surprisingly, an identical root is found after the same number ofj
iterations. I

The situation with recursive functions is slightly more complicated than
with recursive subroutines because the function name is already used within the
body of the function as the result variable, and if it was also used as a recursive
reference to itself there could be ambiguities in some situations. In order to
resolve this problem, it is possible to specify that some name other than the name
of the function is used for the result variable. The initial statement of a recursive
function therefore takes the following form:

RECURSIVE FUNCTION function_name ( ... ) RESULT (result_name)

Note that this form of initial statement does not have aJype specification. The
type of the function will be specified in a type declaration'~tatement for the result
variable. Any reference to function_name in the body of the function will be
treated as a recursive reference to itself. ..

We can illustrate this by rewriting the solution to Example 11.3 as a
function:

RECURSIVE FUNCTION factorial(n) RESULT(factorial~n)
IMPLICIT NONE

! Result variable
REAL :: factorial_n

! Dummy argument
INTEGER, INTENT (IN) :: n

! Determine whether further recursion is reqdired
SELECT CASEIn)
CASE (0)

!Recursion has reached the end
factorial_n = 1.0

CASE (1:)
! Recursive callIs) required
factorial_n = n*factorial(n-1)

CASE DEFAULT
! n is negative - return zero as an error.indicator
factorial_n = 0.0

END SELECT

END FUNCTION factorial
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SELF-TEST EXERCISES 1,1.1

1 What is meant by invoking a procedure?

2 What is a procedure interface? What is the difference between an explicit interface and
an implicit interface? Why is an explicit interface sometimes necessary?

3 What is the purpose of an interface block?

4 Write an interface block for each of the fqllowing procedures:

(a) A subroutine, called demo, which has four real arguments, used for information
transfer in both directions, followed by an optional integer argument which is
only used to supply information to the subroutine.

(b) A function, mean, which takes an integer array as its only argument, and returns
the arithmetic mean (or average) of all the elements of the array.

(c) An input subroutine, input, which reads data relating to a mesh of points into an
array of type point, as defined in the module geometric_data, returning the
points and the number of points through its arguments.

5 When must an object be declared with the EXTERNAL attribute?

6 When must an object be declared with the INTRINSIC attribute?

7 What is the difference between a keyword argument and a positional argument?

8 What are the rules which govern the association of dummy arguments and their
corresponding actual arguments?

I

9 How is an optional argument.specified? How does a procedure establish whether an
optional dummy argument has a corresponding actual argument?

10 Which of the local variables in a procedure retain their values between calls to the
procedure?

11 What is the SAVE attribute?

12 What is the difference between a recursive procedure and a non-recursive procedure?
How is each type of procedure specified?

11.6 Writing generic,procedures

The form of an interface block discussed in Section 11.2 allows a program unit to
include an explicit interface for those procedures it invokes which do not already
have an explicit interface by some other means, such as, for example, being made
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accessible by USE association. A far more powerful use for an interface block,
however, is to enable you to define your own generic procedures.

We have used generic procedures throughout most of this book, for
example when writing ABS (x), where x can be real, integer or complex (see
Section 14.7), but these have all been intrinsic procedures. It is often useful,
however, to be able to define your own generic procedures so that a single
procedure name may be used at appropriate places in a program, with the precise
action taken being determined by the type of its arguments.

Obviously, since the type and other characteristics of the dummy
arguments of a procedure are fixed, it is not possible to write a single procedure
to work with alternative types of actual arguments; however a modified form of
interface block can be used to specify that two or more distinct procedures can be
referred to by the same name - the actual procedure to be used on each occasion
being determined by the compiler after examination of the actual arguments.

This is achieved by following the word INTERFACE at the start of the
interface block with the generic name to be used for all of the procedures defined
in that block:

INTERFACE generic_name
specific_interface _body_1
specific_interface _body- 2

END INTERFACE

It is obviously vital that all the procedures specified in interface bodies in such a
generic interface block can be unambiguously differentiated, and the following
rules apply for this purpose:

• All the procedures specified in a generic interface block must be
subroutines, or they must all be functions.

• Any two procedures in a generic interface block must be distinguishable
by reference to their non-optional dummy arguments, at least one of
which must be different when considered both as positional and as
keyword arguments.

The distinction between two procedures can therefore be made because one has a
dummy argument for which the other has no equivalent dummy argument, or for
which the equivalent dummy argument is of a different type or rank. The
compiler can then ensure that the correct procedure is used on each occasion that
the generic name is referenced.

There is an important further extension to our definition of an interface
block, however, which relates to procedures in modules. We said in Section 11.2 that
an interface block may not be used to specify an explicit interface for procedures
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which are available through uSE association. However, when using an interface
block to give a generic name to two or more procedures it is clearly possible that
either or both of these procedures may be encapsulated in a module. It is therefore
permitted to specify the names of any such module procedures in an interface
block, but not their interfaces. This is achieved by including, after the specification of
any external procedure interfaces, one or more statements of the form

MODULE PROCEDURElist of modlfle procedure names

where each name in the list is either the name of a procedure that is available
through USE association, or, if the interface block is itself in a module, is the name
of a procedure in the same module as the interface block.

Note that, as might be anticipated, if a reference is made to a procedure by
its generic name, then the procedure interface must be explicit in the calling
program unit.

[!] Problem
In earlier examples we have developed a number of procedures for use in a
geometric package. It is now required to provide a generic subroutine which will
provide as its result a line which either (a) passes through two specified points,
(b) passes through a point perpendicular to a specified line, or (c) passes through a
point and is tangent to a specified circle. In the last case, an additional argument
specifies which of the two alternatives is to be chosen.

rn Analysis
We developed a subroutine for the first of these cases in Example 5.3 and the
others would be relatively straightforward - the last is the subject of Exercise
11.2. It is clear, however, that although the first two arguments for each are a line
and a point, the types of the third argument are point, line and circle, respectively,
and so the rules for disambiguating are satisfied. All that remains is to write a
generic interface block. There are three cases to consider:

(a) An interface block to include in the module geometric_procedures so that
the generic name may ,be accessed by USE association as well as the
specific names.

(b) An interface block to include in a program unit that is accessing only the
specific names in the module geometric-procedures by USE association,
but which wishes to refer to them by a generic name.
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(c) An interface block for the situation in which the three procedures are not
accessed by USE association, but are only available as external procedures.

The final maHer to be considered is the generic name to be used to refer to the
three definitions. An obvious name might seem to be line, but this is not allowed
because the name of one of the derived types is line. We shall therefore use
qen_line for the generic name.

[II Solution

(a) In the module qeometric_procedures:

INTERFACE qen_line
MODULE PROCEDURE line_two-points
MODULE PROCEDURE line-point-perpto_line
MODULE PROCEDURE line-point_tanto_circle

END INTERFACE

(b) In a procedure that uses the module qeometric-procedures:

INTERFACE qen_line
MODULE PROCEDURE line_two_points
MODULE PROCEDURE line-point_perpto_line
MODULE PROCEDURE line-point_tanto_circle

END INTERFACE

This is, 'of course, identical to the interface block for case (a). However, the
inclusion of the interface block in the module in case (a) makes the generic
name qen_line available to any program unit that uses the module,
whereas case (b) only specifies the generic name for use in the procedure
which contains the generic interface block.

(c) In a procedure which refers to the three specific procedures as external
procedures, but which uses the module qeometric_data to obtain the
relevant geometric derived types:

INTERFACE qen~line
"SUBROUTINE line_two-points(line_l,point_l,point_2)

IMPLICIT NONE
TYPE (line) ,INTENT (OUT) :: line_l
TYPE (point) ,INTENT (IN) :: point_l,point_2

END SUBROUTINE line_two_points

SUBROUTINE line_point-perpto_line(line_l,point_l,line_2)
IMPLICIT NONE
TYPE (line) ,INTENT (OUT) :: line_l
TYPE (point) ,INTENT (IN) :: point_l
TYPE (line) ,INTENT (IN) :: line_2

END SUBROUTINE line-point_perpto_line
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SUBROUTINE line_point_tanto_circle(line_l,point_l, &
circle_l,modifier)

"

IMPLICIT NONE
TYPE (line) ,INTENT (OUT) :: line_l
TYPE (point) ,INTENT (IN) :: point_l
TYPE (line) ,INTENT (IN) :: circle_l
CHARACTER (LEN=6) :: modifier

END SUBROUTINE line-point_tanto~circle
END INTERFACE

In this case, because the three procedures are not module procedures their
full interfaces must be specified; this also, of course, has the effect of
making their interfaces explicit within the procedure that contains the
interface block.

11. 7 Scope and scoping units

When we introduced procedures in Chapter 4 we stated that the local variables in
a procedure were not accessible outside that procedure unless they were passed
as actual arguments to another procedure. In the same chapter we introduced
modules as a means of providing global entities (for example, variables and type
definitions) which were accessible to several program units by USE association.

We must now consider the relationship between the entities declared or
defined in different parts of a program in rather more detail, as it has several
important consequences which we have been able to ignore up to now. In
particular, we shall introduce the concept of the scope of an entity, where an
entity is most frequently a named object (for instance a variable, a procedure, a
derived type etc.), but may also be some other object such as an input/output unit
number or a statement label.

Procedures written in Fortran are Implemented as subprograms, and in
Chapter 4 we established that external subprograms, modules and the main
program are three types of program unit in Fortran 90. However, a program unit
may also be considered to consist of a set of non-overlapping scoping units,
where a scoping unit is one of the following:

• a derived type definition
• a procedure interface body, excluding any derived type definitions and

procedure interface bodies contained within it

• a program unit or subprogram, excluding any derived type definitions,
procedure interface bodies and subprograms contained within it



SUBROUTINE scoping_unit_example
IMPLICIT NONE
Type defini bon
TYPE date

INTEGER :: day
CHARACTER (LEN=3) .. month
INTEGER :: year

END TYPE date
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Line 1
Line 2

Line 5

Line 9
Procedure interface body
INTERFACE

SUBROUTINE get_date(day,month,year)
IMPLICIT NONE
INTEGER, INTENT (IN) :: day,year
CHARACTER (LEN=*) ,INTENT (IN) :: month

END SUBROUTINE get_date
END INTERFACE
Local variables
INTEGER:: day,year
CHARACTER (LEN=10) :: month
TYPE (date) :: today

END SUBROUTINE scoping_unit_example

Figure 11.2 An example of nested seoping units.

Line 12
Line 13

Line 17
Line 18

Line 21

Line 99

If one scoping unit surrounds another scoping unit then it is called the
host scoping unit or, more informally, simply the host of the inner, or nested,
scoping unit. Thus, for example, Figure 11.2 shows a subroutine subprogram unit
in which the host scoping unit consists of lines 1-4, lines 10-12 and lines 18-99,
while lines 5-;-9and lines 13-17 form two independent nested scoping units. Note
that it is the interface body, not the whole interface block, that forms the nested
scoping unit.

With a few minor exceptions, which will be discussed later in this section,
the names of all entities within a scoping unit must be different; entities in
different scoping units may have the same name. Thus, in the example shown in
Figure 11.2 the three names day, month and year appear in three sets of
declarations:

• The first set, in lines 6-8, refers to components of the derived type date
and appears within the scoping unit of the derived type definition.

• The second set, in lines 13, 15 and 16, refers to dummy arguments of the
subroutine get_date and appears within the scoping unit of the interface
procedure body.
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• The third set, in lines 21 and 22, refers to local variables declared in the
subroutine scoping_uni t_example and appears within the scoping unit of
the external subprogram, which is also host to the other two scoping units.

This brings us back to the consideration of the scope of an entity, and a
more formal definition of the concepts of global and local entities:

• Any entity whose scope is that of the whole program is called a global
entity. Program units, external procedures and COMMON blocks (see Chapter
17) are global entities and must all have distinct names.

• Any entity whose scope is that of a scoping unit is called a local entity.
Within a scoping unit all local entities must have distinct names except
that the names of any type components and the names of the arguments
of any procedures having an explicit interface may also be used as the
names of another entity in the same scoping unit.

It is also possible for an entity to only have the scope of a single
statement, or even part of a statement, in which case it is called a statement
entity. The only case that we have met so far of a statement entity is the DO
variable in an implied DO in an array constructor (see Section 7.3), in which case it
has the scope of the implied DO list only. In effect, this means that such an implied
DO variable is different from any variable in the same program unit having the
same name, and its appearance in an array constructor will not affect the value of
a variable having the same name.

The formal rules concerning the scopes of entities in a program are quite
complicated and are summarized in Appendix B for reference. For most purposes,
however, the situation is quite straightforward as long as sensible use is made of
names; a programmer who is determined to see how many entities in a program
unit can have the same name may, possibly, find one or two surprises!

One final point that should be made here concerns the accessibility in one
scoping unit of entities in the scope of another scoping unit. We have already met
one example of this in connection with modules, namely the concept of USE
association, by means of which entities such as derived type definitions, named
constants or variables within the module can be treated"as though they had been
declared within the program unit that is using the module. As we shall see in the
next section, and also in Chapter 12, it is also possible for entities in a host scoping
unit to be used within nested scoping units by a process known as host association.

11.8 Internal procedures

Since our first introduction to procedures in Chapter 4, we have either written
them as external procedures or as module procedures - the latter being, for all
practical purposes, the same as external procedures, but encapsulated in a module
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for convenience. However, there are many cases where a procedure will only be @
invoked by one particular program unit, and in this case it is permissible to
include that procedure as an integral part of the program unit that will invoke it
as an internal procedure.

An internal procedure is a form of subprogram, and must follow all the
executable statements of its host program unit, and be separated from them by a
CONTAINS statement. Thus if the subroutine inner is only used by the subroutine
outer it may be written as an internal procedure of outer in the following way:

SUBROUTINE outer(a,b,c)
IMPLICIT NONE
Specification statements

Executable statements

CONTAINS
SUBROUTINE inner(x,y,z)

END SUBROUTINE inner
END SUBROUTINE outer

Note that the CONTAINS statement and the internal procedure are not part of the
executable part of the procedure outer. Thus, if the statement immediately pre-
ceding the CONTAINS statement is executed, and the next statement is not a transfer
of control (for example, a RETURN, a STOP or a GOTO) then execution will proceed
with the END SUBROUTINE outer statement in the normal way, just as though the
CONTAINS statement and the following internal procedure were not there.

An internal procedure is the same as an external procedure with three
exceptions:

• The name of an internal procedure is not global - the procedure may only
be invoked by the host program unit.

• The name of an internal procedure may not be passed as an actual
argument to a procedure whose corresponding dummy argument is a
dummy procedure.

• An internal procedure has access to entities of its host by host association.

The first two of these are quite straightforward, and are what one might expect.
The third, however, brings us to the important new concept of host association,
which was briefly referred to in the previous section, and which we must now
discuss in some detail.



378 More flexible procedures

We can explain the concept most easily by considering the example
already used to demonstrate how an internal procedure is contained within a host
program unit, but with more detail included:

SUBROUTINEouter(a,b,c)
IMPLICITNONE
REAL,INTENT(INOUT) :: a,b,c !Dummyarguments
REAL:: aa,bb,cc ! Local variables
!Executable statements follow

CONTAINS
SUBROUTINEinner(x,y,z)

!Note that IMPLICITNONEis not allowed here
! as the IMPLICITNONEin the host is still in effect
REAL,INTENT(INOUT) :: x,y,z ! Dummyarguments
REAL:: a,bb,xx,yy,zz ! Local variables

xx = x+y
aa = y+z
bb = z+x

ENDSUBROUTINEinner
ENDSUBROUTINEouter

Assigns to xx in inner
Assigns to aa in outer
Assigns to bb in inner

In this example, the subroutine inner is a scoping unit in its own right, and has
full access to the eight variables declared within that scoping unit - the three
dummy arguments x, y and z, and the five local variables a, bb, xx, yy and zz. It
also has access by host association to all the entities of its host except for any which
have the same name as a local entity of the internal procedure. The Fortran standard
contains a long and somewhat complicated list of local entities which block host
association, which is summarized in Appendix B, but for most purposes this
simple rule will suffice.

Thus, in the example above, the internal subroutine inner also has full
access to four of the six variables declared in the scope of the host subprogram
outer - the two dummy arguments band c, and the two local variables aa and cc;
the dummy argument a and the local variable bb are, however, not accessible in
the scope of the internal procedure because of the declaration of variables of the
same names in that procedure.

An internal procedure, as one might intuitively expect, is therefore more
closely linked to its host than is the case with an external procedure and a
program unit that invokes it; in particular, its interface is explicit in the host. A
further consequence of this closeness is that it is frequently not necessary to use
many, or even any, arguments to pass information between an internal procedure
and its host, since host association may be used instead.
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• EXAMPLE 11.6

[!] Problem
Write a program, as a single main program unit, which reads a set of scientific
data consisting of the name and density of a number of materials, and then sorts
the data either alphabetically or into either increasing or decreasing density. The
data is terminated by a dummy item having a zero density. You may assume that
there will be no more than 100 materials.

~ Analysis

An initial strudure plan for this problem might be as follows:

1 Read data

2 A~J<which type of~ort is required
3 Seled one of the foUowing cases

3.1 Sort into alphabetic order
or... ..;;..:.
3.2 Sortfuto ord~~of incr~asing density
or
3 ..3 Sort}nto ord£!, of decr~~sing density

4 Print sorted list of materials and densities

We developed a subroutine to sort a charader array into alphabetic order
in Example 7.1, and it will not be difficult to develop a slightly modified version
to carry out a numeric sort. It is also clear that sorting into increasing or
decreasing order should be a maHer which can be determined by an argument to
the sort procedure. For clarity, we shall also carry out the input in a further
internal subroutine, and can, therefore, revise our strudure plan to refled this:

1 R.ead data:lising inpi-tt
2 Ask which type of sort is required

3 Select cas~ on sort•.Jype
3.1 sort_type is ic:ilphabetic'

Sort into alphabetic order using alpha_sort
3.2 sort_type is 'increasing density' or 'decreasing density'

Sortinto order of dertsity usingnumericyort
4 Print sorted list of materials and densities
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Since the data array and the number of data items will be declared within
the scope of the main program they can be accessed by host association by all the
subroutines and do not need to be passed as arguments. The same is true of the
information regarding the order of numeric sorting, but in this case it may be
clearer to the human reader if an argument is used to provide this information.
However, since "the more usual order is probably that of increasing density we
shall write the subroutine with an optional argument whose absence will indicate
that the arrays are to be sorted in order of increasing density. Our final data
design and structure plan for the main program is therefore as follows.

Data design

Purpose

Array of material names
Array of material densities
Number of data items
Implied DO variable
Type of sort required
A = alphabetic
I = increasing density
D = decreasing density

Structure plan

Type

CHARACTER'ZO(:)
REAL(:)
INTEGER
INTEGER
CHARACTER'l

Name

material
density
number

Since the input procedure is similar to several that have been written for
other examples, and the two sort procedures are very closely based on the
subroutine developed for Example 7.1, we shall not carry out a full data design
and structure plan here, but will proceed directly to the programming phase.

~ Solution

PROGRAM material_sort
IMPLICIT NONE
! This program reads a set of material names and densities
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and lists them in either alphabetical order or in order
of their densities, either increasing or decreasing

! Declarations
INTEGER, PARAMETER .. max_length=20,max_number=lOO
CHARACTER (LEN=max_length) ,DIMENSION (max_number+l) .. material
REAL,OIMENSION(max_number+l) :: density
INTEGER :: number,i
CHARACTER :: sort_type
! Read data
CALL input
! Ask what type of sort is required
DO

PRINT *,"How do you wish this data to be sorted?"
PRINT *,"Type A for alphabetic order"
PRINT *,"Type 0 for order of decreasing density"
PRINT *,"Type I for order of increasing density"
READ *,sort_type
SELECT CASE (sort_type)
CASE ("A","O","I")

! Valid reply - prepare to sort data
EXIT

CASE DEFAULT
! Invalid reply - try again
PRINT *,"You must type A, 0 or I. Please try again"

END SELECT
END DO
!Use appropriate sort procedure to sort data
SELECT CASE (sort_type)
CASE ("A")

CALL alpha_sort
CASE ("0")

CALL numeric_sort(up=.FALSE.)
CASE ("I")

CALL numeric_sort
END SELECT
! List sorted data
PRINT ' ("The materials and their densities are:" // ,

(A15,F10.4/))', (material (i) ,density(i) ,i=l,number)
CONTAINS

SUBROUTINE input
This subroutine reads the data into the arrays material
and density, and stores the number of data items in
number
Local variable

INTEGER :: count
PRINT *,"Please type up to ",max_number," sets of data"
PRINT *,"Each set must consist of the name of the material"
PRINT *,"followed by its density"
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PRINT *, "The final set must be followed by a line"
PRINT *,"consisting of the word END followed by a zero"
! Loop to read data
DO count=l,max_number+l

READ *,material(count) ,density (count)
IF (density==O.O) EXIT

END DO
IF (count>max_number) THEN

! count>max_number, print warning
PRINT *, "More than ",max_number, &

" data sets have been entered"
PRINT *, "Only the first ",max_number," will be used"
number = max_number

ELSE
! Set number to number of data sets read
number = count-l

END IF
END SUBROUTINE input
SUBROUTINE alpha_sort

! This subroutine sorts the contents of the character array
! material into alphabetic order and also sorts the array
! density into the same order
Local variables

CHARACTER (LEN=max_Iength) :: first, temp_name
INTEGER:: index,temp_num,i,j
! Loop to sort number-l material names into order
DO i=l,number-l

! Initialize earliest so far to be the first in
! this pass
first = material(i)
index = i
! Search remaining (unsorted items) for earliest one
DO j=i+l, number

IF (material(j) < first) THEN
first = material(j)
index = j

END IF
END DO
! Swap both material names and densities if necessary
IF (index /= i) THEN

temp_name = material(i)
material (i) = material(index)
material (index) = temp_name
temp_num = density(i)
density(i) = density(index)
density (index) = temp_num

END IF
END DO

END SUBROUTINE alpha_sort
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SUBROUTINE numeric_sort(up)
! This subroutine sorts the contents of the real array
! density into numeric order and also sorts the character
! array material into the same order. If the optional
! argument up has the value .FALSE. then density is sorted
! into decreasing order; otherwise it is sorted into
! increasing order.

Dummy argument
LOGICAL,OPTIONAL :: up

! Local variables
CHARACTER (LEN=max_length) :: temp_name
INTEGER :: index,first,temp_num,i,j'

! Set up to .TRUE. if not present as an actual argument
IF (.NOT.PRESENT(up)) up=.TRUE.

! Loop to sort number-l densities into order
DO i=l,number-l

! Initialize earliest so far to be the first' in
! this pass
first = density(i)
index = i"

! Search remaining (unsorted items)
DO j=i+l,number

SELECT CASE (up)
CASE DEFAULT

! Sorting in increasing order
IF (density(j) < first) THEN

first = density(j)
index = j

END IF
CASE (.FALSE. )

! Sorting in decreasing order
IF (density(j) > first) THEN

first = density(j)
index = j

END IF
END SELECT

END DO

for earliest one

'J

! Swap both densities and material names if necessary
IF (index /= i) THEN

temp_num = density(i)
density(i) = density(index)
density (index) = temp_num
temp_name = material (i)
material (i) = material(index)
material (index) = temp_name

END IF
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END DO
END SUBROUTINE numeric sort

END PROGRAM material_sort

In addition to internal procedures Fortran 90 also includes a much simpler facility called a statement
function, which was the only form of internal procedure in FORTRAN 77. This has been totally superseded
by the internal subprogram discussed in this section, but is described briefly, for reference, in Appendix E.

SELF-TEST EXERCISES 11.2

1 What is the purpose of a generic interface block? How is it distinguished from a non-
generic interface block?

2 What is the purpose of a MODULE PROCEDURE statement? Where does it appear?

3 What rules govern the specific procedures that are used in the definition of a generic
procedure?

4 How many scoping units are there in the following program extract?

'SUBROUTINE seoping_test
IMPLICIT NONE
INTERFACE

SUBROUTINE sub_l
TYPE my_type

END TYPE my_type

END SUBROUTINE sub_l
SUBROUTINE sub_2

END SUBROUTINE sub_2
END INTERFACE
TYPE my_type

END TYPE my_type
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CONTAINS
SUBROUTINE sub_3

TYPE my_type

END TYPE my_type

END SUBROUTINE sub_3
END SUBROUTINE scope_test

5 What is the difference between host association and USE association?

6 What are the differences between an internal subprogr~ and an external sub-
program?

7 When are entities in a host scoping unit not accessible within a nested scoping unit?

SUMMARY
I'

• A dummy argument may be a scalar variable, an array or a procedure.

• If a dummy argument is a scalar variable then the corresponding actual
argument must be a scalar object of the same type (such as a scalar variable,
an array element, a character substring, a constant or an expression); if it is
an array then the actual argument must be an array of the same type; if it is a .
procedure, then the actual argument must either be an external procedure or
the specific name of an intrinsic function.

• If a dummy argument is a function then its declaration must include the
EXTERNAL attribute; if it is a subroutine it must be declared in an EXTERNAL
statement.

• If an actual argument is an external function then its declaration must include
the EXTERNAL attribute; if it is the specific name of an intrinsic function then the
declaration of its specific name must include the INTRINSIC attribute; if it is a
subroutine it must be declared in an EXTERNAL statement.

• Actual arguments may be related to dummy arguments either by position or
by keyword.

• Dummy arguments declared with the OPTIONAL attribute may be omitted from
the list of actual arguments; the intrinsic function PRESENT determines whether
an optional dummy argument has a corresponding actual argument.

• Local variables of a procedure are not preserved between invocations unless
they have the save attribute or are initialized as part of their declaration;
automatic arrays and dummy arguments cannot be saved.
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• Procedures may be invoked recursively if the initial statement of the procedure
specifies RECURSIVE SUBROUTINE or RECURSIVE FUNCTION, as appropriate.

• The initial statement of a recursive function should include a RESULT
specification but no type; the type of the function is specified in a
conventional type declaration statement for the result variable.

• An interface block without a name is used to provide an explicit interface for
one or more procedures.

• An interface block with a name is used to give a generic name to two or more
specific procedures, which must either be all functions or all subroutines.

• Any two specific procedures in a generic interface block must be
distinguishable solely by reference to their non-optional dummy arguments.

• The MODULE PROCEDURE statement is used in a generic interface block to specify
procedures which are accessible through USE association.

• A main program unit or a subprogram unit may contain any number of
internal procedures, which may only be invoked from within the host program
unit; internal procedures follow all the executable statements of the host, and
are separated from them by a CONTAINS statement.

• The name of an internal procedure may not be used as an actual argument.

• An internal procedure has access to entities of its host by host association
unless an entity of the same name is declared in the internal procedure.

• Fortran 90 syntax introduced in Chapter 11:

Initial statements

Keyword procedure
invocation

Optional dummy
argument attribute

Intrinsic procedure
attribute

External procedure
statement

Save attribute

Save statement

Non-generic interface
block

RECURSIVE SUBROUTINE name ( )
RECURSIVE FUNCTION name ( ) RESULT (res_var)

CALL name (dummy_arg_name=actual_arg, ... )
function_name (dummy_arg_name=actual_arg, ... )

OPTIONAL

INTRINSIC

EXTERNAL subroutine_name

SAVE

SAVE list of entities to be saved
SAVE

INTERFACE
interface_body _1
interface_body _2

END INTERFACE



Generic interface
block
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INTERFACE generic_name
interface _ body-l
interface_body_2

MODULE PROCEDURE list of module procedure names

END INTERFACE

PROGRAMMING EXERCISES

"11.1 Write a function which returns the next character from a string which is input from
the keyboard. The function should store the string in a suitable location and save it
between calls. Each time the function is entered it should check if there are any characters
left in the string, and request a new string from the keyboard if there are not. If there are
characters left, or if a new string has just been read, the function should return the next one,
and set a pointer to indicate the next character.

Test this function by using it to recreate a string input from the keyboard and
display it.

(This type of function is often essential in programs such as compilers, and other
language processors, which must analyse the input character by character to determine its
syntax and meaning. In Chapter 15 we shall discuss input and output in more detail and
will meet the concept of non-advancing input, which provides an alternative way of
carrying out this exercise.)

11.2 Example 11.5 referred to a subroutine which will define a line which passes
through a point and is tangent to a circle, using the types defined in the module
geometric_data. Note that there are three possibilities:

• the point is inside the circle, in which case there is no solution;
• the point is on the circle, in which case there is a single solution;
• the point is outside the circle, in which case there are two solutions, and some means

must be devised of determining which one is required. The method used in many
CAD/CAM languages is to imagine that the circle is viewed from the point, and to
specify the required line as being the one on the right, or on the left.

Write a suitable subroutine and test it with some of the other procedures already
written for these modules.

11.3 Write a function to return a tax based solely on income. The tax is calculated from
two tables, one containing upper income limits for each income range and the other the
corresponding tax rate. If u is the integer table of income limits and r is the integer table of
tax rates (specifying percentages), the tax is calculated by searching u and then applying
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the corresponding tax rate from r to the whole income. If anyone reports a negative
income, do not give them a tax refund, simply charge them no tax. If anyone reports an
income greater than the greatest value in u, apply the maximum tax rate in r. Both u and r
should have stridly increasing values.

Write a program to test your fundion, where u and r are initialized (your
opportunity to experiment with social engineering!) and test it with several different
incomes.

11.4 Change the tax definition used in Exercise 11.3 so the tax rate ri is applied only to
the fradion of the income that lies in Ui-l to Uj (up to the maximum relevant rate). The total
tax is found by summing the taxes for each income segment. Test this program with
several different incomes.

11.5 Write a program which can be used to encrypt or decrypt a message in the
following manner. A keyword of up to 10 letters is read, and used to encrypt the message
by allocating each letter in the keyword its numeric position in the alphabet, and then
replacing each letter of the message by the letter n later in the alphabet, where n is the
value of the next letter of the keyword. The keyword is repeated as often as necessary, and
the alphabet is considered to be circular (that is, A follows Z). Numbers are spelled out,
digit by digit, and spaces are replaced by the next letter in the keyword. All letters are
encrypted to lower case.

The coded message is written in groups of the same length as the keyword, which
forms the first group, with extra random letters being added to the end of the last group if
necessary. Thus, if the keyword is Fortran (6, 15, 18, 20, 18, 1, 14) the message This exercise
is fun will be encrypted as follows:

T---> T + 6 z
h ---> h + 15 w

---> i + 18 a
s ---> s + 20 m

• ---> 18 r
e ---> e + 1 f
x ---> x + 14 = I
e ---> e + 6 k
r ---> r + 15 = g
etc.

leading to the encrypted message

fortran zwamrfl kguckfn ohrzmob

Note that the same letter does not normally encrypt to the same encrypted letter,
thus eliminating the well-known method of code-breaking based on frequency counts.

The decryption part of the program will, of course, use the same procedure in
reverse.

(Hint: first write and test the encryption part of the program; this can then be used
to test the decryption part.)

11.6 The fad that fadoring large integers into prime components is an extremely
expensive process forms the basis for many modem encryption algorithms. In 1986 the
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record was the factoring of an 81 digit number using eight microcomputers, each of which
ran for ISO hours. In 1988, a 100 digit number was factorized. Because of such successes,
200 digit numbers are being proposed as the basis for codes used by the United States
government. If you wish to work in this area, modem methods for factoring large numbers
(the quadratic sieve) are described by Cipra (1988), Gerver (1983) and Richards (1982);

Richards also discusses public key codes.
Surprisingly, finding the highest common factor of two integers is a computa-

tionally easy problem, solved by the ancient Greeks. The following is Euclid's algorithm
for finding the highest common factor of two positive integers a and b:

(I) Let q and T be the quotient and remainder when a is divided by b. It is easy to
prove that the highest common factor of a and b is the highest common factor of b
and T.

(2) If T is zero, then the highest common factor is b. If T is not zero, replace a and b
by b and T, respectively, and repeat step 1.

After, at most, min (a, b) + I iterations, the highest common factor will be found.
Write a program to implement Euclid's algorithm. Use the algorithm to find the

highest common factor of 26 379 714 and 876 147 and then the highest common factor of
24019 and 48611.

11.7 The potential energy of a diatomic molecule can be expressed as a function of the
distance between two atoms, T, using the expression

V = D(1 - e-a(r-r,I)2

where D, a and Te are parameters, for instance D = 10000, a = 0.1, Te = 1.0. Use an
internal function to evaluate V in a program that calculates V for T taking the values 0.5,
1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5 and 5.0. Produce the results in the form of a table
consisting of two columns.

11.8 Write a subroutine which sorts an array a with n elements using the following
algorithm for the Quicksort method.

(I) Start with i=l, j=n
(2) Decrease j until a(i»a(j), then swap ali) and a(j)
(3) Increase i until a(i»a(j), then swap ali) and a(j)
(4) Repeat the last two actions until i and j are equal, and call this value of i

(and j) pivot

a (pivot) is now in the correct place, and the array has been divided into two sections
around pivot, each of which can be sorted separately.

If both sections have more than one element then save the start and end positions
of the smaller section on a stack, and return to sort the larger section. If only one section
has more than one element then return to sort that section. If neither section has more than
one element then remove the start and end of a section off the stack and rerum to sort it. If
there is nothing left on the stack then the array is fully sorted.

A stack is a means of storing items in which items can only be removed in the
reverse order to that in which they were added to the stack ('last in, first out'), and is a very
useful concept in many algorithms. It can be implemented in Fortran as an array and an
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integer pointer to the top of the stack. In this case an array of dimension 2log2n will be
large enough.

Use your subroutine in a program which reads a list of words from a file and sorts
them into alphabetic order.

11.9 Example 7.1 introduced the straight selection sort, Exercise 7.11 introduced the
bubble sort and Exercise 11.8 explained Quicksort, but all of the subroutines written to
implement these sorts can only sort items of a specific type. Thus a procedure for sorting
integers cannot be used to sort characters. However, it can readily be seen that in all
methods there are only two situations when the array is referred to: (a) when elements i
and j of the array are to be compared, and (b) when elements i and j of the array are to be
exchanged.

Write a sorting subroutine using whichever method you prefer which uses
optional arguments to allow it to sort an array which is either integer, real or character
type. Also include an additional argument to indicate whether the sort array is to be in
ascencling or descending order. Test the subroutine in a program which calls it three times:
first to sort a set of integers into ascending order, second to sort a set of words into
alphabetic order, and third to sort a set of real values into descending order.

""11.10 qfpuzkx dutdfjx knuupcm xxqhzef rzptofx nxeoekd fxpzxpp toizzpj vbuizam
ztjuftt vfijzef rzpdndr vgruoqx lyyigkr ykpfeju fxrufzp qkdxoog empvnox uksjdtl xfuvcsx
srexkkg kfynzfq vjpjnww qlernzef vfvdrdr qhbjcvx jkcdczj ftpohpp vgvoecx knuupcc
moepska fjuyzmj fiauidx lyuyzem qkdxooc quhudpa fjuutsc qrustkm ekpntzn qjkodqh

zhjaq injzf dnrab inebp jujfp djjju gynou agwhu nlpav uqpqn jguiz igoqe wgnfz
ogdxo vyeko kaatd ftmsd ciedw cbysm cengt ufhbf vzqqt ozwii bzjru gsjwg sbcwj hopxj
qkepj gsnbs wlncg alhrt axizy zxbtn pxpdn

(Hint: See Exercise 11.5.)
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association
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module

12.4 Defining your own operators
12.5 Data abstraction and language

extension

Up to this point modules have been used to provide global access to
variables and derived types, and also to provide an explicit interface for
external procedures. Modules are, however, far more powerful than this,
and provide an extensive capability for creating an environment suited
for the particular application area for which a program is being written.

One of the most important tools in this regard is the ability to
control which of the entities in a module can be accessed by a program
unit which uses the module - a concept known as data hiding. Another is
the ability to create new operators and to extend the meaning of intrinsic
operators and assignment. Taken together, these provide powerful data
abstraction faci Iities.

As well as explaining how these individual features of Fortran 90
work, this chapter explores how the resulting data abstraction capability
can be used to extend the language to provide some of those facilities
missing from the language which would be particularly useful in a
specific application domain.

391
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12.1 The structure of a module

When we introduced modules in Chapter 4 we identified two uses for them - to
enable data entities and derived type definitions to be accessed by more than bne
procedure, and to provide an easy way of making the explicit interface of
procedures available to any program units which invoke them. In both cases the
relevant entities are made available through USE association.

The only reason that we did not suggest combining specifications and
procedures in the same module in Chapter 4 was that host association, as
discussed in the context of internal procedures in Chapter 11, applies to module
program units as well as to main program and subprogram program units, and
our experience indicates that to introduce the concept of host association at that
stage would have led to unnecessary confusion.

A procedure that is defined within a module is called a module
procedure, and Figure 12.1, therefore, shows the complete structure of a module
program unit, with the obvious proviso that if there are no module procedures
then the CONTAINS statement is omitted.

The fact that host association applies to modules means that when
developing a group of related procedures their common data entities and derived
type definitions can be placed in the same module as the procedures, and will
automatically be available to all the procedures, with any name clashes being
resolved as described in Section 11.8. Example 12.1 shows how some of the
geometric types and procedures that have been developed in earlier chapters
might be combined into a single module.

MODULE name
Specification statements etc.

CONTAINS
Module procedure 1
Module procedure 2

END MODULE name

Figure 12.1 The structure of a module program unit.
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[!] Problem
In Example 11.5 we defined a generic interface block which enabled a generic
subroutine called gen_line to be used to define a line which either (a) passes
through two specified points, (b) passes through a' point perpendicular to a
specified line, or (c) passes through a point and is tangent to a specified circle. It is
now required to write a single module to provide such a capability, as well as
providing the necessary derived types for use by any program unit which uses
the module.

~ Analysis

We have already done all the necessary work in other examples and exercises,
and we shall simply combine what was done before, with appropriate
modifications. To save unnecessary repetition of what has already been done
elsewhere we shall only give the first of the subroutines in full.

o Solution

MODULE geometry
IMPLICIT NONE

, Type definitions
TYPE circle

CHARACTER (LEN=l2) :: name
REAL :: x,y,r ! coordinates of centre, and radius

END TYPE circle

TYPE line
CHARACTER (LEN=l2) :: name
REAL :: a,b,c ! coefficients of defining equation

END TYPE line

TYPE point
CHARACTER (LEN=12) :: name
REAL :: x,y ! Cartesian coordinates of the point

END TYPE point

! Generic procedure definition
INTERFACE gen_line

MODULE PROCEDURE line_two-points
MODULE PROCEDURE line-point-perpto_line
MODULE PROCEDURE line_point_tanto_circle

END INTERFACE

CONTAINS
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SUBROUTINE line_two-points(line_I,point_I,point_2)
! Dummy arguments
TYPE (line) ,INTENT (OUT) .. line_l
TYPE (point) ,INTENT (IN) point_I,point_2

! Local variable
REAL :: small=lO.O*TINY(l.O)

! Calculate coefficients of equation of line
line_l%a = point_2%y - point_l%y
line_l%b = point_l%x - point_2%x
line_l%c = point_l%y*point_2%x - point_2%y*point_l%x

! Check for coincident points
IF (ABS(line_l%a)<small .AND. ABS(line_l%b)<small) THEN

! Points are coincident - return all coefficients zero
line_l = line(O.O,O.O,O.O)

END IF
END SUBROUTINE line_two_points

SUBROUTINE line_point-perpto_line(line_l,point_l,line_2)
! Dummy arguments
TYPE (line) ,INTENT (OUT) :: line_l
TYPE (point) ,INTENT (IN) :: point_l
TYPE(line),INTENT(IN) line_2

END SUBROUTINE line-point-perpto_line

SUBROUTINE line-point_tanto_circle(line_l,point_l, &
circle_l,modifier)

! Dummy arguments
TYPE (line) ,INTENT (OUT) :: line_l
TYPE (point) ,INTENT (IN) :: point_l
TYPE (line) ,INTENT (IN) :: circle_l
CHARACTER (LEN=6) :: modifier

END SUBROUTINE line-point_tanto_circle

END MODULE geometry

Note that the test for coincident points is, in effect, testing that both the x and y
coordinates of the two points are the same. Any program unit that uses this
module will have access through USE association to the derived types circle,
line and point, the procedures line_two-points, line-point-perpto_line and
line_point_tanto3ircle, and the generic procedure gen_line.



Gaining more control over USE association 395

All future examples involving the geometric types and procedures will
assume that only a single module is involved, and that all the derived types and
procedures developed earlier have been rewritten in a similar style to that shown
here.

12.2 Gaining more control over USE association

One of the potential problems with obtaining access to the entities in a module
by USE association is that the names of one or more of these entities might clash
with other names in the same scoping unit, such as local names or the names of
entities made accessible by USE association from another module. In order to deal
with this situation an extended form of the USE statement allows entities in the
module to be referred to by a different name in the scoping unit containing that
USE statement:

USE module_name, rename list

where each item in the rename list takes the form

Thus, for example, if it was required to use the module developed in Example
12.1 but with the generic subroutine called define_line instead of gen_line then
the USE statement would be as follows:

USE geometry, define_line => gen_line

In a similar manner, if it were felt that it would be more convenient to call the
generic defining subroutine(s) by the name of the geometric entity that was being
defined (line, point, etc.) then the names of the derived types would also have to
be changed, for example:

USE geometry, circle_def => circle, line_def => line, ,
point_def => point, line => gen_line

Figure 12.2 shows how a program which uses the module in this way
would declare various circles, lines and points and then define three lines using
each of the three methods defined in Example 12.1.

As well as wanting to rename some of the entities accessed from a
module by USE association, it may sometimes be required to restrict their number.
We shall see in the next section how the author of a module may restrict the
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PROGRAM rename_example
OSE geometry, circle_def => circle, line_def => line, &

point_def => point, line => gen_line
IMPLICIT NONE
TYPE (point_def) :: pt1,pt2
TYPE (line_def) :: ln1,ln2,ln3
TYPE (circle_def) :: cir1

CALL line(ln1,pt1,pt2)
CALL line(ln2,pt1,ln1)
CALL line(ln3,pt2,cir1,'xlarge')

END PROGRAM rename_example

Figure 12.2 An example of renaming module entities.

entities that are available for USE association, but the program unit that is using a
module may limit the entities made available from the module by another
extension of the USE statement:

USE module_name, ONLY: only list

where each item in the only list is either the name of an entity in the module, or a
renaming of such an entity, as already described.

Thus, for example, if in both the two cases shown it was required that the
names of the three subroutines line_two-points, line-point_perpto_line and
line-point_tanto_circle should not be available then the USE statements would
be as follows:

USE geometry, ONLY: circle, line, point,
define_line => gen_line

and

&

USE geometry, ONLY: circle_def => circle, &
line_def => line, point_def => point, &
line => gen_line

There is one point that should be noted about this form of the USE
statement, which concerns the situation when there are two or more USE
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statements in the same scoping unit which refer to the same module. There are
four possibilities here:

(1) None of the USE statements involves renaming or has an ONLY qualifier. In
this case the effect is the same as if there had only been a single USE

statement.
(2) One or more of the USE statements involves renaming, but none has an

ONLY qualifier. In this case the effect is the same as if there had only been a
single USE statement which contained all the rename lists concatenated into
a single list.

(3) All of the USE statements have ONLY qualifiers. In this case the effect is the
same as if there had only been a single USE statement which contained all
the ONLY qualifiers concatenated into a single list.

(4) Some, but not all, of the USE statements have ONLY qualifiers. In this case
the effect is the same as if there had only been a single USE statement
which contained all the rename lists concatenated into a single rename list,
but without any ONLY qualifier.

In practice, this will rarely be an issue since it would not be sensible to write more
than one USE statement referring to the same module. Such situations might
occur, for example, if an internal procedure accesses a module by USE association
which is already being accessed by USE. association in the host program unit, and
it is important to understand what will happen. We strongly recommend that you
should always remove any duplicate USE statements from your programs.

12.3 Restricting access to entities within a module

Although the example in the previous sections relates to geometric entities, the
grouping together of related entities into a more complex structure is common
everywhere in engineering and mathematics. For example, a complex number
consists of two real numbers grouped in such a way that they can then be
manipulated as a single entity. This encapsulation is convenient when it is not
necessary to think of the real and imaginary parts separately. Similarly, a set of m
by n numbers are often combined into a single mathematical structure, an m by n
matrix, which then can be manipulated as a single entity. Much of the power of
mathematics comes from this combination of simpler entities to form new, more
complex, mathematical entities that can then be manipulated as single units at a
higher level.

In previous chapters, it has been pointed out that it is good programming
practice to group related variables together in a derived type and to encapsulate
that derived type definition in a module in order that the type may then be easily
used throughout a program. Furthermore, as we saw in the previous section,
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procedures that provide fundamental manipulation capabilities for entities of that
type can, and should, also be put into the same module. This makes program
development easier and maintenance simpler, because all the code relating to the
creation and fundamental manipulation of a particular data type is encapsulated in
one place and not distributed throughout a program.

Thus, it was natural to create a derived type for complex numbers whose
components were two real numbers, as we did in Chapters 3 and 4, although, as
we shall see in Chapter 14, Fortran does contain an intrinsic COMPLEX type, so this
was not actually necessary. As we shall see in Example 14.1, electrical and
electronic engineers frequently use the amplitude and phase of an alternating
electrical signal in calculating the performance of circuits; for many purposes,
therefore, it might be more convenient to use a complex data type which used
polar coordinates rather than Cartesian coordinates to represent complex values.
Figure 12.3 shows the relationship between the two types, and it is clear that it
would be a trivial task to create a derived type encapsulating this structure.

However, this example illustrates a potential danger, for if a module was
written to contain the derived type definition for a polar complex_Dumber, together
with procedures to carry out addition, subtraction, multiplication and division with
entities of this type, it would still be legal to write a statement such as

z = complex_Dumber(l.O,2.0)

where the writer (presumably!) assumed that the resulting complex number would
have the value 1+ 2j. This is because both the conventional and the polar
representations of a complex number consist of two real numbers.

It is often appropriate, therefore, to go beyond using derived types and
modules in the ways already described, in order to provide even greater program
reliability.

z

Cartesian form Zc = (x, y)

x = a cos <jJ
y = a sin <jJ

Polar form Zp = (a, <jJ)

a = J(x2 + y2) [= abs(zc)]
<jJ = arctan(y/x)

Figure 12.3 Complex numbers in both polar and Cartesian form.
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The basic idea is that the component parts of a derived type should not be
freely available throughout a program, but should only be available, in a
controlled manner, through procedures provided in the module containing the
derived type definition. This provides greater program safety and control within
the program, because if an error in the construction or use of the components of a
derived type entity occurs then the problem must be located inside the module.
This concept is expressed by saying that the components of a derived type are
either private (only available without restriction in the defining module) or
public (freely available without restriction throughout a program).

The components of a derived type are made private by preceding the first
component declaration in the derived type definition by the word PRIVATE on a
line by itself:

TYPE complex_number
PRIVATE
REAL :: a,phi

END TYPE complex_number

Note that a PRIVATE statement can only appear in a type definition that is in a
module.

Note also that the privacy only applies outside the module in which the
type definition appears. Within the module, including all its module procedures,
the components are fully accessible.

Finally, note that if the components of a derived type are private then not
only is it not permitted to use the % notation with that derived type outside the
module, but it is also not permitted to write a structure constructor to define a
constant of that type outside the module; moreover, entities of that type cannot
appear in an input or output statement, since this requires a knowledge of the
components of the type. Objects of that type can, therefore, only be manipulated
as a whole outside the module, unless they use procedures which have been
written for detailed manipulation of components of entities of that type, and
which are themselves made available through USE association from the module,
thus providing the security that we require.

ill Problem
Vectors and matrices are two of the most powerful data concepts for many
engineering and mathematical applications. Write a module which provides a data
type called vector and a procedure to multiply two vectors together to obtain
their scalar product (or dot product). Note that it will also be necessary to provide
procedures to create a vector (from a rank-one array) and to provide access to the
individual elements of a vector.
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m Analysis

We shall first need to determine how we shall define a vector. We shall limit
ourselves to vectors having real values, and it is clear that the primary means of
storing the elements of the vector will therefore be a real array. However, vectors
may be of varying sizes, and so, although we shall store the elements in an array
of fixed size, we will also store the number of elements used (the length of the
vector) as another component of the type. A suitable type definition will,
therefore, be

TYPE vector
PRIVATE
INTEGER :: length
REAL, DIMENSION (max_length) .. elements

END TYPE vector

where max_length is a named constant which specifies the maximum length of
vector permitted. This constant will be declared in the module so that, if it is
required to alter the maximum size of vectors, it will only be necessary to make
one change to the module, and none to any program that uses the module.

The function to create a vector from an array is quite straightforward, but
will need to include a check to ensure that the maximum length of a vector is not
exceeded.

Data design

Purpose Type Name

A Dummy arguments
Array containing elements REAL(:) array
Number of elements INTEGER n

B Result variable vector create_vector

Structure plan

The means whereby individual elements of a vector are extracted is not specified.
We shall simply copy the vector to an array, thereby returning all the elements in
a form in which the program can use them. However, it will first be necessary to
establish the length of the array in order to ensure that the array is large enough.
The two functions to achieve this are extremely simple.
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Integer function vector_size

Data design

Purpose

A Dummy argument
Vector whose size is required

B Result variable

Structure plan

Type

vector

INTEGER

Name

v

Real array-valued function vector_array

Data desigri

Purpose Type Name

A Dummy argument
Vector to be converted vector v
to an array <'

B Result variable REAL(/) vector_array
where 1 is the
length ~f the vector v

Structure plan

We can now proceed to consideration of the scalar product function.

Data design

Purpose Type Name

A Dummy argument
Vectors to be multiplied Vector vI, v2

B Local variable
Scalar product of REAL dotJ'roduct
vectors
Loop counter INTEGER
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Structure plan

~ Solution

MODULE vectors
IMPLICIT NONE

! Maximum length for vectors
INTEGER, PARAMETER :: max_length = 10

! Derived type definition
TYPE vector

PRIVATE
INTEGER :: length
REAL, DIMENSION (max_length) .. elements

END TYPE vector

CONTAINS

TYPE (vector) FUNCTION create_vector(array,n)
! This function creates a vector from the first n
! elements of an array

! Dummy arguments
INTEGER, INTENT (IN) :: n
REAL, DIMENSION(n), INTENT (IN) .. array

, Validity check
IF (n > max_length) THEN
! Too long - print warning and set length to zero
PRINT' (" Error: Vector of length",I5," requested"/ &

" Maximum permitted is ",I3)' ,n,max_length
create_vector%length = 0

ELSE
!OK - copy first n elements of array to vector
create_vector%length = n
create_vector%elements(l:n) = array(l:n)

END IF
END FUNCTION create_vector

INTEGER FUNCTION vector_size(v)
! This function returns the size of a vector



Restricting access to entities within a module 403

! Dummy argument
TYPE (vector), INTENT (IN) .. v

vector_size = v%length
END FUNCTION vector_size

FUNCTION vector_array(v)
! This function returns the elements of a vector as an array

I

!Dummy argument and function result
TYPE(vector), INTENT (IN) :: v
REAL, DIMENSION (v%length) :: vector_array (v%length)

vector_array(l:v%length) = v%elements(l:v%length)
END FUNCTION vector~array

REAL FUNCTION scalar-product(vl,v2)
!This function returns the scalar product of two vectors

! Dummy arguments
TYPE (vector) , INTENT (IN)

!Local variables
REAL :: dot-product = 0.0
INTEGER:: i

vl,v2

! Validity check
IF (vl%length /= v2%length) THEN

! Vectors have different lengths
PRINT' (" Error: Vectors are of different lengths", ,

14," and",I4 I " Zero result returned")', ,
vl%length,v2%length

scalar-product = 0.0
ELSE

! OK - calculate dot product
DO i=l,vl%length

dot-product = dot-product + ,
vl%elements (i)*v2%elements(i)

END DO
scalar_product = dot-product

END IF
END FUNCTION scalar-product

END MODULE vectors

Notice that, because the type definition for vector is in the same module as the
procedures, it is possible to declare the type of the function create_vector in its
initial statement in a way which is not possible when the type is obtained through
USE association.

Figure 12.4 shows a program suitable for testing this module, and Figure
12.5 shows the result of executing this test program.
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PROGRAM test_vectors
USE vectors
IMPLICIT NONE
INTEGER:: dot,i
REAL, DIMENSION (3) :: a
REAL, DIMENSION (20) :: b
TYPE (vector) :: v,w

Set up to arrays and convert to vectors
a = (/1.0, 2.0, 3.0/)
b (/2.0, 3.0, 4.0, 5.0, (0.0, i=1,16)/)
v = create_vector(a,3)
w = create_vector(b,3)
! Print details of vectors
PRINT' (" Length of v is",n / ,

"Its elements are (", 3(F5.l,","), ")")', ,
vector_size (v) ,vector_array (v)

PRINT' (" Length of w is",I3 / ,
"Its elements are (", 3(F5.l,","), ")")', ,
vector_size(w) ,vector_array(w)

Calculate and print their scalar product
PRINT' (" Their scalar product is ",F6.l)', ,

scalar-product(v,w)
Test error messages

w = create_vector(b,20)
w = create_vector(b,5)
dot = scalar-product(v,w)

END PROGRAM test_vectors

Figure 12.4 A testprogram for the module vectors.

Length of v is 3
Its elements are ( 1.0, 2.0, 3.0)
Length of w is 3
Its elements are ( 2.0, 3.0, 4.0)
Their scalar product is 20.0
Error: Vector of length 20 requested
Maximum permitted is 10
Error: Vectors are of different lengths 3 and 5
Zero result returned

Figure 12.5 The resultof testingthe module vectors.
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Of course, the module vectors is far from complete. There are many more
fundamental capabilities for creating and manipulating vedors that should be
added to it, and we shall return briefly to consideration of some of these in the
next sedion. Furthermore, the definition of the type vector is wasteful of space,
since all entities of type vector are of the same size, regardless of the length of
the individual vedors; we shall introduce a technique for dealing with this
problem in Chapter 16.

This principle of data hiding or, more generally, of only allowing access
to a restrided set of the entities in a module is extremely important for secure
programming, and does not only apply to the components of a derived type. For
example, a module which is being used to provide a common database which will
be used by a number of procedures in a program might, nevertheless, not wish to
allow unlimited access to everything in that database. In a similar manner, a
module which contains a colledion of procedures to manipulate data in a
particular application area might only wish to allow access to the 'top level' of
these procedures, and not to those which are used for internal housekeeping, or
other purposes which are not the concern of the program unit which is using the
module.

As was the case with derived type components, the accessibility of any
entity in a module can be either private or public, and the writer of the module has
complete control over such accessibility for every entity. In the case of data
objeds or type definitions this is achieved by including a PRIVATE or PUBLIC
attribute in the declaration:

REAL, PRIVATE :: internal value
TYPE, PRIVATE :: internal_type

REAL:: x,y
END TYPE internal_type

Note that making a derived type definition private means that no variables of that
type can be declared outside the module. This contrasts with the earlier example
in which the components of a derived type definition were made private, but the
derived type itself was not.

Note also that a double colon must be included in the initial TYPE
definition statement when a PRIVATE or PUBLIC attribute is specified. It may be
included even if there is no accessibility attribute specified:

TYPE :: another_type

END TYPE another_type
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but we do not believe that this is necessary, as there are no other attributes that
can be applied to a type definition and, as we shall see, even this one is not often
required.

As is the case with many other attributes, the accessibility may also be
specified by a statement:

PRIVATE :: list of private entities
PUBLIC :: list of public entities

These two statements may also appear without any list, in which case they
specify the default accessibility for the module, which is otherwise public, of
course. It is therefore possible to specify that all entities in a module are private,
unless they are specifically given a public attribute. We recommend that modules
should normally be written this way, and that for the convenience of the reader of
the program those entities which are to be public should not be given that
attribute in their declarations, but rather that a single list of the public entities
should be placed near the beginning of the module:

MODULE example
IMPLICIT NONE
PRIVATE
PUBLIC :: list of public entities

Thus, for example, if the module written in Example 12.1 had the
following two statements inserted at the beginning:

PRIVATE
PUBLIC circle, line, point, qen_line

then only these four entities would be available to any program unit using
this module, and the three specific procedure names line_two-points,
line-point_perpto_line and line-point_tanto_circle would be hidden from
them.

This approach is standard pradice among programmers writing modules
for a wide audience, and we strongly recommend that all your modules should be
written this way.

SELF-TEST EXERCISES 12.1

1 How can a program unit restrict the entities in a module that it has access to through
USE association?
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What happens if a subroutine has a local variable of the same name as a public entity
in a module that it is using? How can the subroutine have access to both the local.
variable and the module entity?

What is the point of making the components of a derived type private?

Can the components of any derived type be made private?

What are the consequences of making the components of a derived type private?

Under what circumstancescan the components of an entity of a derived type with
private componentsbe accessed?

What is the differencebetween making the components of a derived type private and
making the definition of a derived type private?

What is meant by data hiding?

What is the recommended way of controlling the accessibilityof entities in a module?
Why?

12.4 Defining your own operators

We have now seen how a module can be written which will provide the
programmer who uses it with new data types and procedures that use the data
types both for detailed manipulation of the components of those types and for
commonly required operations on objects of these types. This goes a long way
towards enabling the programmer to create a special environment for use in a
particular application area, but there is still one major gap in this environment -
namely the provision of operators for use with objects of these types.

For example, in Example 12.2 we wrote a function scalar-product which
produced the scalar product of two objects of type vector. This allows the
programmer to write a statement such as

where vl and v2 are vectors and vl_dot_ v2 is an integer. However, it would be
more natural to write

or even

1 •
I
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Fortran 90 allows us to do both of these by either defining our own operators or
extending the meaning of intrinsic operators. The mechanism used is similar to
that used to define generic procedures:

INTERFACE OPERATOR (operator_symbol)
interface body

END INTERFACE

where operator _symbol may be one of the intrinsic operators or may consist of a
sequence of up to 31 letters enclosed between periods. If operator _symbol is an
intrinsic operator then the interface block extends the meaning of the intrinsic
operator; otherwise it creates a new operator.

The interface body in the defining interface block must be a function
having either one or two arguments; if it has one argument than the operator will
be a unary operator, while if it has two then the operator will be a binary
operator. In either case, the dummy arguments must be non-optional, and must be
specified as having INTENT (IN). Note, however, that since the function being
referred to will normally be defined in the same module the interface body will
normally be replaced by a MODULE PROCEDURE statement referring to the function's
name.

Such a defined operation will be treated as a reference to the function
with the operand(s) as the actual argurnent(s); in the case of a defined binary
operation the first, or left-hand, operand will be the first actual argument and the
second, or right-hand, operand will be the second actual argument. Note that the
function must have an explicit interface in any program unit that invokes it.

Returning to the example of the function for calculating the scalar product
of two vectors, the inclusion of the following interface block in the module
would, therefore, allow the operator .dot. to be used in the way shown above:

INTERFACE OPERATOR(.dot.)
MODULE PROCEDURE scalar-product

END INTERFACE

If we wish to extend the meaning of one of the intrinsic operators then
there are three additional points to bear in mind:

• It is not permitted to change the meaning of an intrinsic operator, only to
extend it. It must be possible, therefore, to distinguish the extended
meaning of the operator from its already defined intrinsic meaning(s)
solely by reference to the types of its operands, in much the same way as
the alternative procedures in a generic interface block are distinguished.

• The number of function arguments must be consistent with the intrinsic
uses of the operator.
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• Extending the meaning of any of the six relational operators «, <=, >, >=,
== and /=) makes the same extension to the alternative way of writing
these six operators (. LT ., .LE., .GT ., .GE., .EQ. and .NE .).

We can, therefore, extend the meaning of the intrinsic multiplication
operator, *, to calculate the scalar product of two vectors by means of the
following interface block:

y

INTERFACE OPERATOR(*)
MODULE PROCEDURE scalar-product

END INTERFACE

so that the user can simply write statements such as

where vl and v2 are of type vector.
Although in many cases it will only be required to define or extend an

operator to deal with one combination of operands, there will also be situations in
which it would be convenient to use the same operator in several situations, with
different combinations of operands. In this case, we may define a generic defined
operator in exactly the same way as we defined a generic procedure:

INTERFACE OPERATOR (operator_symbol)
interface body _1.
interface body _2

END INTERFACE

[] Problem

Make the necessary additions to the module written in Example 12.2 so that
statements of the form n*v or v*n, where n is either integer or real and v is a
vector, result in a new vector, each of whose elements is n times the corres-
ponding element of v.

~ Analysis

There are four combinations here, and there will need to be four functions to
implement them. They are all so simple that we shall omit the structure plan and
proceed directly to coding them.
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11] Solution
The following four module procedures must be added to the module vectors:

TYPE (vector) FUNCTION int_times_vector(n,v)
! This function multiplies every element of the vector v
! by the integer n

! Dummy arguments
INTEGER, INTENT (IN) :: n
TYPE (vector), INTENT (IN) .. v

! Local variable
INTEGER:: i

int_times_vector%length = v%length
DO i=l, v%length

int_times_vector%elements(i) = n * v%elements(i)
END DO

END FUNCTION int_times_vector

TYPE (vector) FUNCTION vector_times_int(v,n)
! This function multiplies every element of the vector v
! by the integer n

! Dummy arguments
INTEGER, INTENT (IN) :: n
TYPE (vector), INTENT (IN) .. v

! Local variable
INTEGER:: i

vector_times_int%length = v%length
DO i=l,v%length

vector_times_int%elements(i) = n * v%elements(i)
END DO

END FUNCTION vector_times_int

TYPE (vector) FUNCTION real_times_vector(p,v)
! This function multiplies every element of the vector v
! by the real number p

! Dummy arguments
REAL, INTENT (IN) :: p
TYPE (vector) , INTENT (IN) .. v

! Local variable
INTEGER:: i

real_times_vector%length = v%length
DO i=l, v%length

real_times_vector%elements(i) = p * v%elements(i)
END DO

END FUNCTION real_times_vector
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TYPE (vector) FUNCTION vector_times_real(v,p) ;
! This function multiplies every element of the vector v
! by the real number p

! Dummy arguments
REAL, INTENT (IN) :: p
TYPE (vector), INTENT (IN) .. v

!Local variable
INTEGER:: i

vector_times_real%lenqth = v%lenqth
DO i=l, v%1enqth

vector_times_real%elements(i) = p * v%elements(i)
END DO

END FUNCTION vector_times_real

In addition, the following interface block must be added to the body of
the module:

INTERFACE OPERATOR(*)
MODULE PROCEDURE int_times_vector
MODULE PROCEDURE vector_times_int
MODULE PROCEDURE real_times_vector
MODULE PROCEDURE vector_times_real

END INTERFACE

This is also an example of a situation in which it would be sensible to hide
the names of the four procedures and to allow only a program unit which uses the
module to have direct access to the extended operator, thus avoiding the
possibility of a potential name clash should the programmer wish to use these
names for some other purpose. In order to do this the operator name must appear
in a PUBLIC statement in the same form as it appears in the INTERFACE statement:

PUBLIC :: OPERATOR(*)

This almost completes the set of programming tools necessary for fully
utilizing the capabilities inherent in the combination ..of derived types and
modules, but there is one remaining requirement which the reader may not
immediately think of, namely assignment.

Although we tend to think of the assignment operator, =, as simply
copying the result of the expression on its right to the variable, or other entity,
whose name appears on its left, a moment's thought shows us that there is more
to assignment than this, for we have already met many cases in which some
change is made to the value on the right-hand side of the assignment before it is
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. stored in the location in memory identified by the name on the left-hand side. For
example, a real value may be converted to an integer, including truncation, or a
character string may be extended with spaces. Assignment is, however, fully
defined for all intrinsic data types, but what about derived types?

If an object of a derived type is assigned to an entity of the same type
then, by default, every component of the derived type value on the right is
copied to the corresponding component of the entity on the left. Since this is
normally what is required there is no problem here. But what about assignments
where the types are different? In these cases, and possibly even when they are the
same, we can define the meaning of assignment in much the same way as we have
just learned to define operators:

INTERFACE ASSIGNMENT(=)
interface body

END INTERFACE

or

INTERFACE ASSIGNMENT(=)
interface body_1
interface body _ 2

END INTERFACE

Note that the assignment symbol must be included in the INTERFACE statement,
even though it cannot be changed from =; this is because the syntax would
otherwise be the specification of a generic procedure called ASSIGNMENT!

The interface bodies in the defining interface block must all be subroutines
having exactly two non-optional dummy arguments; the first dummy argument
must be specified as having INTENT (OUT) or INTENT (INOUT), while the second
must be specified as INTENT (IN).

Such a defined assignment will be treated as a reference to the
subroutine with the left-hand side as the first actual argument and the right-hand,
enclosed in parentheses, as the second actual argument. Note that this subroutine
must have an explicit interface in any program unit that invokes it.

Thus, for example, the two functions create_vector and vector_array,
which were written in Example 12.2 to create a vector from a rank-one array and
to copy the elements of a vector to a rank-one array, respectively, could easily be
rewritten as subroutines and used to define assignment between rank-one arrays
and vectors by means of the following interface block:

INTERFACE ASSIGNMENT(=)
MODULE PROCEDURE create_vector
MODULE PROCEDURE vector_array

END INTERFACE
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Note that there will need to be one change in the specification of the
subroutine create_vector compared with the equivalent function in Example
12.2. In the original form, the number of elements of the array that was to be used
in creating the vector were also passed as an argument. Because this (third)
argument is not permitted here it will be necessary to use an assumed-shape
dummy array, with the consequence that the length of the vector will be set to
the size of the array, regardless of how many elements are really required. We
shall see how to get round this problem in Chapter 14.

With these defined assignments added to the module vectors it will be
possible to write statements such as

vi = ai

and

a2 = v2

where vi and v2 are of type vector, and ai and a2 are real arrays, instead of the
much clumsier

vi = create_vector(ai,n)

and

a2 = vector_array(v2)

As was suggested for defined operators, it is usually preferable to hide the
name of the subroutine which is used to provide the defined assignment, and in a
similar way to that used with operators, the assignment symbol must have the
PUBLIC attribute and the defining subroutine must be PRIVATE:

PRIVATE
PUBLIC:: ASSIGNMENT(=)

.t

12.5 Data abstraction and language extension

The ability to define new data types and to encapsulate them in a module,
together with any relevant operators, including defined assignment, and
procedures, coupled with the ability to make any of these operators and
procedures generic, and the use of the PRIVATE and PUBLIC attributes to hide the
internal details from the user of the module, are collectively known as data
abstraction, and is a key functionality in modem programming practice. In
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particular, it means that Fortran 90 modules can provide many of the features
required for object-oriented programming, although not all of them, and for
language extension.

Although we have demonstrated language extension in our development
of a module for handling various types of geometric objects, and also with the
module vectors earlier in this chapter, we can best illustrate how language
extension works by considering two examples taken from international standards
which use modules to extend the Fortran 90 language.

The first of these is included as an example in the Fortran 90 standard
itself (ISO/lEC 1539: 1991), and consists of a module, INTEGER_SETS, to provide
all the necessary features for programs to use sets, where the elements of each set
are integers. The module provides a new type SET, together with a number of
operators which are detailed in Figure 12.6, and three functions in addition to the
five which define the five operators. These functions perform the following
additional tasks:

• return the cardinality of a set, that is, the number of elements in the set;

• transfer the elements of a rank-one array to a set, removing any duplicate
values;

• transfer the elements of a set to a rank-one array in ascending order.

Although it was not done that way in the example referred to in the standard, it
would obviously be possible, arguably even preferable, for the latter two
functions to be written as subroutines and then used to define assignment
between an integer array and a set, and vice versa.

The second example is the subject of an auxiliary standard to the primary
Fortran 90 standard (ISO/IEC 1539-2) and defines the necessary extensions to the
Fortran 90 language to provide a varying string data type, in addition to the
fixed-length character strings available using the intrinsic CHARACTER type. This
auxiliary standard (which was still undergoing final international processing at the
time of writing this book) defines a new data type VARYING_STRING and specifies
extended meanings for all the intrinsic operators that can be used with characters,
defines assignment between objects of type VARYING_STRING, between
VARYING_STRING and CHARACTER, and between CHARACTER and VARYING_STRING,
and extends the meaning of all the intrinsic procedures which relate to characters
by adding additional cases to their generic meanings. In addition, it specifies a
number of generic procedures which must be provided for such purposes as type
conversion, input! output and substring manipulation.

Although this auxiliary standard only specifies the meaning of these
various operators and procedures, in a very similar manner to the way in which
the Fortran 90 language itself is defined in its defining standard, it also includes, in
an Annex, a complete Fortran 90 module which could be used to implement all
the capabilities specified in this auxiliary standard. This module includes no fewer
than 96 module procedures, which are used to define or extend 25 generic



Operator Example

.IN. x.IN.a
<= a<=b

+ a+b

a-b

* a*b
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Meaning

true if the integer x is a member of the set a
true if the set a is a subset of the set b; that is, every
element of a is also a member of b
the union of the sets a and b; that is, the set containing all
the elements which are a member of either a or b, or both
the difference of the sets a and b; that is, the set containing
those elements of a or b which are not also a member of
the other set
the intersection of the sets a and b; that is, the set
containing only those elements which are a member of
both a and b

Figure 12.6 The operators defined in the module INTEGER_SETS.

procedures, to extend the six intrinsic relational operators and the concatenation
operator, and to extend the assignment operator. In this module the default
accessibility is set to PRIVATE, as are the components of the derived type
VARYING_STRING, and a single PUBLIC statement lists the 34 entities (the derived
type, 25 generic procedures, 7 operators and the assignment operator) which are
accessible outside the module.

This example, in particular, illustrates the power of the features discussed
in this chapter to allow a programmer to extend the language to make it more
appropriate for a particular application area. The time spent in developing such a
language extension will be more than repaid by the easier and more reliable
programs that can then be developed in this application domain.

[!] Problem

A rational number is a number consisting of two parts, an integer numerator and
a non-zero integer denominator, whose decimal value is the result of dividing the
numerator by the denominator; in other words it is a fraction. It is required to
write a module to create a type for rational numbers and to provide the necessary
facilities for rational numbers to be used in arithmetic expressions in the same
ways as integer and real numbers. Write that part of the module that contains the
specifications for all public entities, together with the procedure, or procedures,
necessary to add an integer to a rational number and store the result in a rational
number variable.
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m Analysis

The specification of a derived type to implement rational numbers is very
straightforward:

TYPE rational
PRIVATE
INTEGER :: num,denom

END TYPE rational

We now need to think carefully about the various arithmetic operations
that we shall need to provide for, and we shall consider addition first. There are a
total of nine possibilities, as shown in Figure 12.7, and an interface block to
extend the + operator accordingly might be as follows:

INTERFACE OPERATOR(+)
MODULE PROCEDURE real_real-plus_rat
MODULE PROCEDURE real_rat-plus_real
MODULE PROCEDURE rat_real_plus_rat
MODULE PROCEDURE rat_rat-plus_real
MODULE PROCEDURE int_int-plus_rat
MODULE PROCEDURE int_rat-plus_int
MODULE PROCEDURE rat_int-plus_rat
MODULE PROCEDURE rat_rat-plus_int
MODULE PROCEDURE rat_rat-plus_rat

END INTERFACE

There are also possible extensions to the unary meaning of the + operator,
but we shall ignore these for this example.

Similar interface blocks will be required to extend the subtraction,
multiplication, division and exponentiation operators.

Type of result Type of left operand Type of right operand

REAL REAL rational
REAL rational REAL
rational REAL rational
rational rational REAL
INTEGER INTEGER rational
INTEGER rational INTEGER
rational INTEGER rational
rational rational INTEGER
rational rational rational

Figure 12.7 Extended cases for operators for rational arithmetic.
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Left-hand side

REAL
rational
INTEGER
rational
rational

Right-hand side

rational
REAL
rational
INTEGER
rational

I'
i
I

i
!

Figure 12.8 Extended assignments for rational arithmetic.

Furthermore, it will be necessary to provide extensions to the assignment
operator to cover the five cases shown in Figure 12.8; the fifth case, of rational
assigned to rational, could be left to the default assignment of component to
component, but it might be desirable to simplify the form of the number on
assignment so that, for example, the rational number (37;'74) is converted to (1,2)
as part of the assignment process.

We should also consider providing a generic conversion function to
convert a real or integer number into a rational one, and extended generic
specifications for the intrinsic REAL and INTEGER conversion functions to convert
rational numbers to real or integer values, as appropriate.

Finally, we must write the necessary procedures to add an integer to a
rational number with a rational result. In this case we know that we shall not
require any simplification of the result, assuming that the rational number
involved in the expression is already in its simplest form, and so we need only
write functions to deal with two cases (integer plus rational, and rational plus
integer), although as these will be the same for all practical purposes we shall only
develop a structure plan for the first,rat_rat-plus_int.

;1,

Data design

Purpose Type Name

A Dummy arguments ,
Integer value to be added INTEGER int_num
Rational value to be added TYPE(rational) rat_num

B Result variable
Sum of two arguments TYPE(rational) rat_intJat

Structure plan
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@] Solution
MODULE rational_numbers

IMPLICIT NONE
PRIVATE
PUBLIC:: rational, OPERATOR(+) ,OPERATOR(-) ,OPERATOR (*), &

OPERATOR(/) ,OPERATOR (**) ,ASSIGNMENT(=), &
rational_convert, REAL, INTEGER

This module implements rational numbers as an additional
numeric type

!Type definition
TYPE rational

PRIVATE
INTEGER :: num,denom

END TYPE rational

! Extended intrinsic operator specifications
INTERFACE OPERATOR(+)

MODULE PROCEDURE real_real_plus_rat
MODULE PROCEDURE real_rat-plus_real
MODULE PROCEDURE rat_real-plus_rat
MODULE PROCEDURE rat_rat-plus_real
MODULE PROCEDURE int_int-plus_rat
MODULE PROCEDURE int_rat-plus_int
MODULE PROCEDURE rat_int-plus_rat
MODULE PROCEDURE rat_rat-plus_int
MODULE PROCEDURE rat_rat-plus_rat

END INTERFACE

INTERFACE OPERATOR(-)
MODULE PROCEDURE real real_minus_rat
MODULE PROCEDURE real_rat_minus_real
MODULE PROCEDURE rat_real_minus_rat
MODULE PROCEDURE rat_rat_minus_real
MODULE PROCEDURE int_int_minus_rat
MODULE PROCEDURE int_rat_minus_int
MODULE PROCEDURE rat_int_minus_rat
MODULE PROCEDURE rat_rat_minus_int
MODULE PROCEDURE rat_rat_minus_rat

END INTERFACE

and three similar interface blocks for *, / and **

!Extended assignment
INTERFACE ASSIGNMENT(=)

MODULE PROCEDURE real_equals_rat
MODULE PROCEDURE rat_equals_real
MODULE PROCEDURE int_equals_rat
MODULE PROCEDURE rat_equals_int
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MODULE PROCEDURE rat_equals_rat
END INTERFACE

! Generic type conversion functions
INTERFACE rational_convert

MODULE PROCEDURE real_to_rat
MODULE PROCEDURE int_to_rat

END INTERFACE

INTERFACE REAL
MODULE PROCEDURE rat_to_real

END INTERFACE

INTERFACE INTEGER
MODULE PROCEDURE rat_to_int

END INTERFACE

CONTAINS

TYPE (rational) FUNCTION rat_rat-plus_int(rat_num,int_num)
!Adds an integer to a rational number to give a rational
!result

! Dummy arguments
TYPE (rational) , INTENT (IN) :: rat_num
INTEGER, INTENT (IN) .. int_num

! Calculate result
rat_ra~-plus_int%num = rat_num%num + int_num*rat_num%denom
rat_rat-plus_int%denom = rat_num%denom

END FUNCTION rat_rat-plus_int

TYPE (rational) FUNCTION rat_int-plus_rat(int_num,rat_num)
! Adds a rational number to an integer to give a rational
! result

! Dummy arguments
INTEGER, INTENT (IN) :: int_num
TYPE (rational) , INTENT (IN) .. rat_num

! Calculate result
rat_int-plus_rat%num = int_num*rat_num%denom + rat_num%num
rat:"'int-plus_rat%denom = rat_num%denom .

END FUNCTION rat_int-plus_rat

END MODULE rational_numbers

Notice, incidentally, that the second of the two functions detailed above
could have been written in a slightly shorter way by using the defined operator +,
as specified by the first procedure:
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TYPE (rational) FUNCTION rat_int-plus_rat(int_num,rat_num)
!Adds a rational number to an integer to give a rational
! result

! Dummy arguments
INTEGER, INTENT (IN) :: int_num
TYPE (rational) , INTENT (IN) :: rat_num

!Calculate result with defined operator for reverse order
rat_int-plus_rat = rat_num + int_num

END FUNCTION rat_int-plus_rat

In this instance a saving of one line of code is achieved at the cost of an extra
procedure call, and' so could hardly be justified. However, if each procedure had
been substantially longer then such a simplification might be justified. Similarly, it
might be worth using the extended meaning of one intrinsic operator in the
procedure(s) to define another extended operator.

SELF-TEST EXERCISES 11.2

1- What is meant by a defined operation? How is it defined?

2 What are the constraints on extending the meaning of an intrinsic operator?

3 How many things are wrong with the following interface block?
INTERFACE OPERATOR«)

INTEGER FUNCTION tom(dick,harry)
INTEGER :: dick,harry

END FUNCTION tom
REAL FUNCTION reduce(array)

REAL, DIMENSION(:), INTENT (IN) .. array
END FUNCTION reduce

END INTERFACE

4 What is meant by defined assignment?How is it defined?

5 What is meant by data abstraction?What are the benefits of data abstraction?

SUMMARY

• A module will normally contain both specification statements and module
procedures.
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• Module procedures have access to entities specified in the body of the
module by host association.

• A USE statement may specify local names for entities accessible from the
module by renaming the module entities.

• A USE statement may restrict the entities accessible from the module by use
of an ONLY qualifier.

• The components of a derived type that is defined in a module may be made
private by the inclusion of a PRIVATE statement before any component
declarations, in which case the components are inaccessible from outside the
module other than by use of module procedures from that module.

• All entities in a module may be either public or private; by default everything
is public.

• Derived type definitions and data objects declared within a module may be
given a public or private attribute as part of their declaration.

• A PRIVATE or PUBLIC statement in a module sets the accessibility attribute of
the entities listed to private or public, as appropriate.

• A PRIVATE or PUBLIC statement in a module without an entity list sets the
default accessibility for the module to private or public, as appropriate.

• Data hiding provides greater security for programmers.

• An interface block may be used to define a new operator, or to extend the
meaning of an intrinsic operator.

• An interface block may be used to extend the meaning of assignment for non-
intrinsic data types.

• Data hiding and the ability to define and extend operators and assignment
provide the facilities for data abstraction.

• Data abstraction is used for language extension and object-oriented
programming.

• Fortran 90 syntax introduced in Chapter 12:

Accessibility attributes PRIVATE
PUBLIC

Accessibility statements PRIVATE: : entity1 ,entity2, ...
PRIVATE
PUBLIC :: entity 1, entity2, ...
PUBLIC

Module entity renaming USE name, locaLname => moduleyublic_name, ...

Module entity restriction USE name, ONLY: list of module public names
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Defined operator
interface block

Defined assignment
interface block

INTERFACE OPERATOR (operator_symbol)
function _interface_body_1
function_interface _body _2

MODULE PROCEDURE list of module function names

END INTERFACE

INTERFACE ASSIGNMENT(=)
subroutine_interface_ body-1
subroutine_interface_body _2

MODULE PROCEDURE list of module subroutine names

END INTERFACE

PROGRAMMING EXERCISES

12.1 Create two definitions for a derived type called point which represents a point in
two-dimensional space; the first should use Cartesian coordinates (x, y) and the second
polar coordinates (r, B). Place each definition in a different module. Now write a program
which uses both modules and declares two variables of each type. The program should ask
the user for the polar coordinates of two points, and should calculate the equation of the
line joining them, in the form

ax+by+c=o

Finally, the program should print the coordinates of the two points in both polar and
Cartesian coordinates, followed by the equation of the line joining them.

12.2 Define a derived type to represent a person, which includes the name(s), sex and
date of birth of the person. Now define another derived type which represents a family of
people of the first type, including the relationship between its various members (father,
mother etc.). Allow for a minimum of three generations in a family.

Now write a program which will initialize a family consisting of four grandparents,
their children and their grandchildren and responds to questions from the user of the form
'Who is the mother of Lucy Jones?' or 'How many children does Frances Smith have?'.
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Note that the questions need not be phrased in English as shown. It is perfectly
acceptable, even desirable, to offer the user a choice of types of questions, and then an
appropriate list of names about whom the question can be asked, for example:

Who do you want to ask about from the following list?
1. Lucy Jones
2. Frances Smith

Type number of person: response from user

What do you want to know from the following list?
1. Mother
2. Father
3. Maternal grandmother

etc.

12.3 Modify the program that you wrote for Exercise 12.2 (if necessary) so that the
components of the two derived types ~re not accessible from outside the module, and add
appropriate procedures to the module to provide the names of the people in a specified
family, the relationship between two specified people, and any other information that you
feel necessary.

Test the program with the same questions as before.
Finally, modify the program so that it reads the family data from a file instead of

having this information specified in initialization statements.

"'12.4 In Example 4.4 we developed a module containing a derived type complex_number
and four procedures to implement addition, subtraction, multiplication and division with
complex numbers. Write a module based on that one which allows a program to use the
intrinsic operators +, -, * and / to carry out these operations on complex numbers instead
of using the procedures.

12.5 Exerises 11.5 and 11.10 required you to write programs which would encrypt or
decrypt a message. Using either of the techniques described in these exercises, write a
module which has only two public entities, namely operators .encrypt. and .decrypt ..
Each of these operators should have two character operands, and should deliver as their
result the encrypted or decrypted version of their second operand, using the first operand
as the key. Thus, using the technique described in Exercise 11.5,

"Fortran" . encrypt. "This exercise is fun"

will deliver the result "zwamrfl kguckfn ohrzmob", while

"Fortran" .decrypt. "zwamrfl kguckfn ohrzmob"

will deliver the result "this exercise is funp" (where the extra letter at the end is because
of the addition by the encrypting operator of an extra letter to complete the last
block).
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"'12.6 Write the necessary code to add to the module geometry so that the statement

point_1 = .centre.circle_1

in a program that uses the module will cause the variable point_1 of type point to be
defined with the coordinates of the centre of the circle circle_I, which is itself of type
circle, and the statement

will cause the variable point_2, also of type point, to be defined with the coordinates of
the point of intersection of the two lines line_1 and line_2, both of type line. Remember
to take appropriate action if the lines are parallel.

12.7 Create a derived type for rational numbers and make its components private. Place
this definition in a module, together with a procedure that will create a rational number
given two integers (which may be positive or negative). This procedure should reduce the
rational number by finding the highest common factor of the numerator and denominator
and dividing it into them (see Exercise 11.6 for one method of doing this).

Write two more procedures for the module that, given a rational number, will
return the numerator and the denominator, respectively.

Test your module by creating rational numbers 5/3, 60/84. Then print out the
numerator and denominator of each of the resulting rational numbers.

12.8 Extend the module written for Exercise 12.4 so that any combination of real,
integer and complex_number entities (variables or constants) may be the operands for the
four operators +, -, * and /. Your module should also extend the assignment operator so
that assignment of real or integer values to complex_number variables works correctly.

Test the module within a program that uses all possible combinations of operand
types.

12.9 Some programming languages contain a data type known as an enumeration type,
in which a finite set of discrete values are specified, and variables or constants of that type
may only take one of these values. For example a character enumeration type called
seasons might only allow the values "spring", "summer", "autumn" and "winter", and an
integer enumeration type called month might only allow the integers between 1 and 12,
inclusive.

Write a module which defines two enumeration types, int_enum and char_enum,
for integers and characters respectively, and appropriate operators etc., to allow variables
of these types to be used in expressions and in CASE statements. Test your module with a
suitable test program.

Note that you will need to determine what to do if the program attempts to assign
an illegal value to a variable of one of these types. One possibility might be to print an
error message and/or to terminate the program. Another possibility might be to treat such
an action in a similar way to overflow during an arithmetic operation, and to store a logical
variable as part of the type which specifies whether the last attempt to change the variables
value was successful. This could be tested by the module procedures which access an
enumerated variable, or by a special validity-check procedure, and appropriate action taken
if a variable is found to have been corrupted.
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12.10 Create a derived type, with private components, for a company's personnel
records. It should have fields for a first name, last name, department, birthday and salary.
Create a file with five to ten such records. Write a simple program to do this.

Put an initialized character field into the module containing the definition of
records. The value will be used as a secret password. Put a procedure into the module that
will search the file of records for those that match a specified name and print out the names
and departments of those that match. Put a second procedure into the module that, when
also given the correct password, will also print out birthday and salary information.

Test this module by using it in a program that allows the user to search the
personnel database and provides the names and departments of those satisfying the
matching criteria, together with the birthday and salary information if the user has
previously supplied the correct secret password.

It appears to the authors that if the user does not have access to the source code
for the module, and does not know the password, then it is impossible to access birth date
and salary information using only Fortran 90, even given the data file. Can you see a way
to get at the confidential information using only Fortran 907 (Perhaps we don't have
sufficiently criminal minds!)





Array processing and
matrix manipulation

13.1 Matrices and two-dimensional arrays
13.2 Basic array concepts for arrays

having more than one dimension
13.3 Array constructors for rank-n arrays
13.4 Input and output with arrays

13.5 The five classes of arrays
13.6 Allocatable arrays
13.7 Whole array operations
13.8 Masked array assignment
13.9 Sub-arrays and array sections

In Chapter 7 we discussed the basic principles of Fortran's array facilities
in the context of rank-one arrays. In mathematical terms, such a.rrays are
suitable for representing vectors, but in order to represent matrices, or
more complex rectangular structures, more than one subscript is
required. The same general principles apply to rank-n arrays as were
described earlier in the context of rank-one arrays, although the order of
the array elements is occasionally important.

As well as extending the basic array concepts to rank-n arrays,
however, Fortran contains several other powerful array features which
are the subject of the major part of this chapter. These include dynamic
arrays, whose shape is not determined until execution time, and sub-
arrays, which are created from either a regular or an irregular set of
elements of another array. Finally, the facilities for whole array
processing are re-examined in the light of these new, more flexible, types
of arrays, and additional concepts are introduced to add still further to the
power of Fortran's array processing capability.
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13.1 Matrices and two-dimensional arrays

Arrays were first introduced in Chapter 7, and we have already seen how useful
they can be in many situations. However, the arrays that we have been using up
to now have been restricted to a single subscript, and have been referred to as
rank-one or single-dimensional arrays. Although these arrays were perfectly
adequate for working with objects such as vectors, they are not appropriate for
matrices or objects that are naturally represented by arrays of more than one
dimension. Fortran allows us to define arrays with up to seven subscripts, but
before dealing with the full generality provided by Fortran for multi-dimensional
arrays, we will, because of their connection with matrices and also for illustrative
purposes, briefly discuss two-dimensional arrays in particular.

Mathematically, a matrix is a two-dimensional rectangular array of
elements. For example, a 3 X 4 matrix A consists of the elements

[
AI'I
AZ,I
A3,I

AI,z AI;3
Az,z AZ,3
A3,z A3,3

AI,4]
AZ,4

A3,4

Fortran extends the concept of a one-dimensional array, introduced in
Chapter 7, in a natural manner, by means of the DIMENSION attribute. Thus, to
define a two-dimensional array a that could hold the elements of the matrix A we
would write

REAL, DIMENSION(3,4) a

Note that, in the dimension attribute, the number of rows is specified first and the
number of columns second. This order is important.

As a second example, if we wanted to create three 10 x 4, two-
dimensional arrays, b, c and d, of logical elements, we would write

LOGICAL, DIMENSION(lO,4) :: b, c, d

The elements of a two-dimensional array are scalars (that is, they are
single entities of the data type involved) and are referenced by a logical extension
of the notation used for one-dimensional arrays. For example, a (2 ,3) is the
element of a in the second row and third column. Once again, we emphasize that
the row position is specified first, followed by the column position. Thus, a (3,2)
is a different element from a (2,3), just as AZ,3 is different from A3,z.

The elements of an array, being scalars, can be used anywhere it is
legitimate to use a scalar. They can occur in arithmetic expressions, be passed as
actual arguments, occur in I/O statements, etc. For example,



Name

MATMOL
DOT_PRODUCT
TRANSPOSE
MAXVAL

MINVAL

PRODUCT

SUM
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Result

Matrix produd of two matrices, or a matrix and a vedor
Scalar (dot) produd of two vedors
Transpose of a matrix

Maximum value of all the elements of an array, or of all the
elements along a specified dimension of an array
Minimum value of all the elements of an array, or of all the
elements along a specified dimension of an array
Produd of all the elements of an array, or of all the elements
along a specified dimension of an array
Sum of all the elements of an array, or of all the elements
along a specified dimension of an array

Figure 13.1 Intrinsic functions for use with vectors and matrices.

a(3,4) = 2.0*a(3,4) + 1.0 Doubles a(3,4) and ~dds 1 to it.

DO i = 1,4
a(l,i) = a(3,i)

END DO

DO I = 1,3
a(i,2) = a(i,l)

END DO

Replace row 1 of a by row 3 of a.
Row 3 is unaltered.

Replace column 2 of a by column
1 of a. Column 1 is unaltered.

Fortran provides three intrinsic fundions specifically designed for vedor
and matrix operations, where it is assumed that matrices are stored in two-
dimensional arrays and vedors are stored in one-dimensional arrays. Figure 13.1
lists these and their purpose, but it should be noted that Fortran 90 contains a
large number of other intrinsic fundions which operate on arrays of any
dimension. These are described in Sedion 13.4, but it is relevant to mention here
that MAXVAL, MINVAL, PRODUCT and SUM are also useful for work with vedors and
matrices and are, therefore, included in Figure 13.1.

The use of some of these intrinsic fundions is illustrated by the program
shown in Figure 13.2 which establishes a 2 X 3 matrix and its 3 X 2 transpose,
and then performs a matrix multiplication to create a 2 X 2 result. A similar
multiplication is carried out between the 3 X 2 matrix and a three-element vedor
to give a two-element vedor result.

Note, incidentally, that, although the vedor vector_c has been given an
initial value by means of an array construdor, the matrix matrix_a has been given
its value by means of a series of assignment statements. This is because array
construdors are always of rank-one. We shall see in Sedion 13.3 how to
overcome this problem.
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matrix_a
.. matrix_b
.. matrix_ab
vector_c = (I 1,2 I)
vector_bc

PROGRAM vectors_and_matrices
IMPLICIT NONE
INTEGER, DIMENSION(2,3)
INTEGER, DIMENSION(3,2)
INTEGER, DIMENSION(2,2)
INTEGER, DIMENSION (2)
INTEGER, DIMENSION (3) ..
! Initialize matrix_a
matrix_a (1,1) = 1
matrix_a(1,2) = 2
matrix_a (1,3) = 3
matrix_a(2,1) = 2
matrix_a (2,2) = 3
matrix_a(2,3) = 4

matrix_a is the matrix:

123
234

! Set matrix_b as the transpose of matrix_a
matrix_b = TRANSPOSE(matrix_a)
! matrix_b is now the matrix: 1 2

2 3
3 4

Calculate'matrix products
matrix_ab = MATMUL(matrix_a,matrix_b)
! matrix_ab is now the matrix: [14 20
! [20 29
vector_bc = MATMUL(matrix_b,vector_c)
! vector_bc is now the vector: [5 8 11 I

END PROGRAM vectors_and_matrices

Figure 13.2 An example of matrix and vector multiplication,

13.2 Basic array concepts for arrays having more than
one dimension

In Fortran, an array is formally defined as a compound entity that contains an
ordered set of scalar entities, each one of the same type, arranged in a rectangular
pattern. An array may have from one to seven dimensions. As we mentioned in
Chapter 7, the rank of an array is defined as the number of its dimensions.
(Incidentally, for those knowledgeable about linear algebra, the rank of a Fortran
array has no connection at all with the notion of the rank of a matrix!) Although
in the previous section we followed the widespread, informaL custom of referring
to a rank-two array as a two-dimensional array, we shall, in generaL use the more
correct terminology from now on; thus a vector is a rank-one array, and a matrix
is a rank-two array.
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The rank of an array is specified by using the dimension attribute in a type
declaration statement. Thus the three declarations

REAL, DIMENSION (8) :: a
INTEGER, DIMENSION(3,10,2) :: b
TYPE (point) , DIMENSION(4,2,100,8) :: c

specify an eight-element rank-one real array a, a 3 x 10 X 2 rank-three integer
array b, and a 4 X 2 X 100 X 8 rank-four array c of the derived type point.

Notice that this form of the dimension attribute is very similar to that
used for rank-one arrays, except that the extent of each dimension is specified,
separated by commas. The rank of the array is the number of items in this list.
Once specified, the rank of an array cannot be changed.

For arrays with fixed extents, it is generally good programming practice
not to use integers for the extents of arrays but, instead, to use named constants.
Thus, for example, we might declare the array c, above, as follows:

INTEGER, PARAMETER:: 81 = 4, 82 = 2, 83 = 100, 84 = 81*82

TYPE (point) , DIMENSION (81, 82, 83, 84) :: c

Consistently using the parameter attribute in this way permits the easy change of
array sizes in a complex program where several arrays and their extents may have
correlated sizes. This might be required if a program has to be modified to solve
larger problems.

On the other hand, if you have arrays dimensioned at three because you
are working with three-dimensional vectors, it will not be appropriate to use the
parameter attribute in the above way - you are unlikely to decide to change the
dimensionality of your space from 3 to 5!

In most of the examples in this book we shall use literal constants for the
extents of arrays, for clarity, but when writing real programs you should always
consider whether it is more sensible to use a named constant here, just as the
same consideration should be applied to any use of literal constants in a program.

When we first introduced the various terms used with arrays in Chapter 7,
we stated that the size of an array is the total number of elements it contains; it is
thus equal to the product of the extents of all its dimensions. In the second
example above, the array b has extent 3 for its first dimension, extent 10 for its
second dimension, and extent 2 for its third dimension; its size is therefore
3 X 10 X 2, or 60. Similarly, the array c has extent 4 for its first dimension, extent
2 for its second dimension, extent 100 for its third dimension, and extent 8 for its
fourth dimension; its size is therefore 4 X 2 X 100 X 8, or 6400. The size of the
first array, a is, of course, the same as its extent, since it is a rank-one array.

One point that we must mention here is that, formally, an array may have
any non-negative extent, including zero, for any of its dimensions. Although the
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idea of having an extent of zero in one, or more, dimensions may seem a little
strange it is very convenient in certain types of problem. However, it has a
further implication since the size of an array is equal to the product of the extents,
and, consequently, if an array has a zero extent for one of its dimensions, its size
will be zero, regardless of the extent of any other dimensions.

We also stated, in Chapter 7, that the shape of an array is determined by
its rank and the extent of each dimension. The shape of any array is therefore
representable as a rank-one array whose elements are the extents. For example, if
a rank-three array has extents 10, 20 and 30, respectively, for its first, second and
third dimensions, its shape is representable as the rank-one array whose elements
are, in order, 10, 20 and 30. This concept of the shape of an array will be
important when we come to some of the more advanced uses of arrays later in
this chapter.

In Chapter 7 we introduced many of the fundamental features of arrays in
the context of rank-one arrays, and all of these features can now be extended to
rank-n arrays in a natural fashion. Thus, for example, the array declarations for
rank-n arrays may specify lower and upper bounds for one or more of their
dimensions, if required:

REAL, DIMENSION(ll:lB) :: a
INTEGER, DIMENSION(5:7, -10:-1, 2) :: b
TYPE (Point) , DIMENSION(5:B, 0:1, 100, -3:4) :: c

Notice that we have not changed the extents of any of the dimensions of the
three arrays a, band c from the forms in which they were declared earlier, but
only the way that the elements of the arrays are to be referenced. This is an
important point that should be clearly understood.

Notice also that, when we specify the lower and upper index bounds for
a dimension, the extent for that dimension is one plus the difference between the
upper and lower index bounds. There is, however, one exception to this, namely
that if the lower index bound is greater than the upper index bound then the
extent of that dimension is defined to be zero.

It is important to stress that the index bounds of an array are not directly
part of its shape. Of course the index bounds determine the array extents, which
are part of its shape, but, for example, a rank-one array with index bounds 1and
10 has the same shape as another rank-one array with index bounds 20 and 29.

Before discussing the ways in which the uses of rank-n arrays relate to the
similar uses of rank-one arrays with which we are already familiar, we must briefly
discuss the order of the elements in an array.

The elements of an array form a sequence known as the array element
order. It can be visualized as all the elements of an array, of whatever rank, being
arranged in a sequence in such a way that the first index of the element
specification is varying most rapidly, the next index of the element specification is
varying the second most rapidly, and continuing in this manner until the last
index of the element specification is varying the least rapidly.
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To illustrate the concept, let us consider the array arr which is declared as
follows:

REAL, DlMENSION(4,3) :: arr

arr is, therefore, a rank-two array of shape (4,3) with default lower index bounds
of 1, and the array element order of arr is the sequence '

arr(l,l~, arr(2,l), arr(3,l), arr(4,l), arr(l,2)~ arr(2,2),
arr(3,2), arr(4,2), arr(l,3), arr(2,3), arr(3,3), arr(4,3)

Notice that this is the same as the order obtained by traversing the first column of
arr, followed by traversing the second column, and finally the third column, and
it is for this reason that it is sometimes said that Fortran stores arrays by
columns:

"'/"1) I ""t" I 0,,(,.3'
arr(4,l) arr(4,2) arr{4,3)

The same rule applies regardless of the number of dimensions, although it
becomes increasingly difficult to visualize a model, and so it is generally best not
to attempt to do so for arrays of rank greater than two!

In general, in Fortran 90, it is not necessary to be concerned with the array
element order; however in FORTRAN 77 it was extremely important, since none
of the whole array operations of Fortran 90 were available, and it is important
that the ordering rules are understood so that any FORTRAN 77 code which is
to be maintained or modified will be properly understood. Apart from two
situations which we shall discuss in the next two sections, we shall deal with
arrays in future without any concern for the order in which the elements are
arranged. ;

13.3 Array constructors for rank-n arrays

In Section 7.3 we introduced the concept of an array constructor, as a means of
specifying a literal array-valued constant. This takes the -form

where each item in value _list is either a single value or a list in parentheses
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controlled by an implied DO, for example:

(/ -1, (O,i=l,48), 1 /)

An array constructor, however, always creates a rank-one array of values, and if it
is required to use this in a context in which an array of some other rank is
required, such as assigning it to such an array, then further steps need to be taken
to transform it into an array of the correct shape. This is achieved by using the
intrinsic function RESHAPE. .

This function constructs an array of a specified shape from the elements of
a given array. For the current purpose we will use it in the simplest way, in which
there are only two arguments. The first argument is the source array (in this
application, an array constructor), and the second argument is a rank-one array
specifying the required shape. For example

RESHAPE ( (/ 1. 0, 2. 0, 3. 0, 4.0, 5.0, 6. 0 /), (/ 2, 3 /)

takes the rank-one real array whose elements are 1.0, 2.0, 3.0, 4.0, 5.0, 6.0 and
produces, as a result, the 2 X 3 real array whose elements are

[
1.0
2.0

3.0
4.0

5.0]
6.0

Notice that the elements of the source array are used in array element order; this is
one of the few places in Fortran 90 where knowing the array element order is
necessary.

The RESHAPE function may also be used in a declaration statement to
provide an initial value or to define a named constant, and Figure 13.3 shows how
the example program used in Figure 13.2 can be improved by declaring the value
of the matrix matrix_a using an array constructor and the RESHAPE function.

Finally, as might be expected, implied DO elements may be nested, so that
an integer array a could be declared and given the value

by the following declaration statement:

INTEGER :: i, j
REAL, DIMENSION(2,2) :: a = &

RESHAPE{(/ ((10*i+j, i = 1,2), j = 1,2) /), (/2,2 /))
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PROGRAM vectors_and_matrices
IMPLICIT NONE
INTEGER, DIMENSION(2,3) :: matrix_a = ,

RESHAPE ((/1,2,2,3,3,4/), (/ 2,3 I))
INTEGER, DIMENSION(3,2) :: matrix_b
INTEGER, DIMENSION (2,2) :: matrix_ab
INTEGER, DIMENSION (2) :: vector_c = (I 1,2 I)
INTEGER, DIMENSION (3) :: vector_bc
! Set matrix_b as the transpose of matrix_a
matrix_b = TRANSPOSE(matrix_a)
! matrix_b is now the matrix: 1 2

2 3
3 4

! Calculate matrix products
matrix_ab = MATMUL(matrix_a,matrix_b)
! matrix_ab is now the matrix: [14 20
! [20 29
vector_bc = MATMUL(matrix_b,vector_c)
! vector_bc is now the vector: [5 8 11 l

END PROGRAM vectors_and_matrices

Figure 13.3 An improved example of matrix and vector multiplication.

13.4 Input and output with arrays

In Section 7.4 we stated that, in the context of rank-one arrays, input and output
of arrays, or of parts of arrays, could be handled in three ways:

• as a list of individual array elements;
• as a list of array elements under the control of an implied DO;

• as the complete array, by including the unsubscripted array name in the
input or output list.

The first two of these cases need no further elaboration, but the third case needs
some care, as the array elements will be transferred in array element order. This is
the second place in Fortran 90 in which knowledge of the array element order is
required.

In general we would advise you always to use an implied DO when reading
or writing whole arrays as it makes it absolutely clear in which order the data is to
be presented or the results are to be printed. In many situations, moreover, the
obvious way of providing data is not the same as the array element order. For
example, consider the situation in which an array x is being used to store a 50 x 8
array of data values.
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Since the data may be considered as 50 rows of 8 columns, we would
normally wish to input or output the array row by row. However a statement
such as

PRINT' (BFB.2)', x

will print out the data in the following way:

x(l,l)
x(9,l)

x(2,l) x(3,l) x(4,l) x(S,l) ~(6,l) x(7,l) x(B,l)
x(lO,l) x(ll,l) x(l2,l) x(l3,l) x(l4,l) x(lS,l) x(l6,l)

x(49,l) x(SO,l) x(l,2)
x(7,2) x(B,2) x(9,2)

x(2,2) x(3,2) x(4,2) x(S,2) x(6,2)
x(lO,2) x(1l,2) x(l2,2) x(l3,2) x(l4,2)

which is not at all what was wanted!
On the other hand, the statement

PRINT' (BFB.2)', ((x(i,j) ,j=l,B) ,i=l,SO)

will cause the results to be printed in the correct arrangement:

x(l,l)
x(2,l)

x(l,2)
x(2,2)

x(l,3)
x(2,3)

x(l,4)
x(2,4)

x(l,S)
x(2,S)

x(l,6)
x(2,6)

x(l,7)
x(2,7)

x(l,B)
x(2,B)

13.5 The five classes of arrays

When discussing rank-one arrays in Chapter 7 we met four different classes of
arrays, namely explicit-shape arrays, assumed-shape arrays, automatic arrays
(which are actually a sub-class of explicit-shape arrays) and assumed-size arrays. In this
section we shall review these four classes and draw attention to the (minor)
differences in their use when their rank is greater than one. There is also a fifth
class, deferred-shape arrays, which we have not yet met; this will be discussed in
detail in Section 13.6.

Explicit-shape arrays are arrays whose index bounds for each dimension are
specified when the array is declared in a type-declaration statement. In this
context, specified does not necessarily mean fixed. It means that the index bounds
can be calculated from information available when the arrays are declared.
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The dimension attribute for an explicit-shape array takes the form

DIMENSION(list of explicit-shape specifiers)

The rank of the array is the number of explicit-shape specifiers given. Each explicit-
shape specifier specifies the lower and upper index bounds for one dimension of the
array and takes the form

or

where lower _bound and upper _bound are specification expressions. A
specification expression may be considered for all practical applications as being
a scalar integer expression; there are some restrictions on the form of this
expression but they are unimportant in practice, and will not be given here. If the
lower bound is omitted it is taken to be 1.

- An example of an explicit-shape array whose bounds are fixed is:

TYPE(person), DIMENSION(lOl:110,20) :: company

The variable company is a rank-two array of the derived type person, where, for
example, the first dimension might represent the department within the company,
and the second dimension might represent the people in the department; thus
company(i, j) would be the j th person in the ith department. The lower and
upper index bounds of the array are 101 and 110 for the first dimension, and 1
(default) and 20 for the second dimension. The extents are 10 and 20 for the first
and second dimensions, respectively, and the size of the array is 200 (10 x 20).
The shape of the array is specifiable as a rank-one array whose elements have the
values 10 and 20.

Explicit-shape arrays with constant index bounds can be specified in type
declaration statements in either main programs or procedures.

In a procedure, a dummy argument may be an explicit-shape array whose
bounds are integer expressions, the values of which can be determined at the time
of entry to the procedure. Such bounds usually involve other dummy arguments,
but the relevant information may also be provided by other means, such as host
or USE association. An example of a procedure with explicit-shape dummy
arguments is

SUBROUTINEexplicit(a,b,m,n)
IMPLICITNONE
INTEGER,INTENT(IN) :: m,n
REAL, DIMENSION(m,n*n+l) , INTENT(INOUT) :: a
REAL, DIMENSION(-n:n,m,INT(m/n)), INTENT(OUT) b



438 Array processing and matrix manipulation

END SUBROUTINE explicit

In this example a is a rank-two array and b is a rank-three array. Note that a has
default lower index bounds of 1 for each dimension, whereas b has an explicit
lower index bound of -n for the first dimension and default lower index bounds
of 1for the second and third dimensions. It is not necessary for the bounds of the
actual and dummy arguments to be the same even though the extents should
match, so that, for example a call to this subroutine of the form

REAL, DIMENSION(lS,SO) :: p
REAL, DIMENSION(lS,lS,2) :: q

CALL explicit(p,q,lS,7)

will establish the dummy argument a with subscripts from 1 to 15 in the first
dimension and 1 to 50 in the second, which exactly matches the index bounds for
the corresponding actual argument p, while the dummy argument b will have
subscripts from -7 to +7 in the first dimension, 1 to 15in the second, and 1 to 2
in the third, which match the extents of the corresponding actual argument q, but
not their index bounds in the case of the first dimension.

One of the difficulties with explicit-shape dummy arguments, unless they
have fixed shape, is the need to provide the information from which the bounds
can be calculated, usually by means of additional dummy arguments. Assumed-
shape arrays eliminate this need, as the information about extents is carried
implicitly when an actual array is associated with an assumed-shape dummy
argument. Notice that it is information about the extents of the actual argument
that is implicitly available, not information about index bounds. The index bounds
used inside a procedure are always local to that procedure, constrained only by
the need to be consistent with the corresponding extents of the actual arguments.

Assumed-shape arrays may only be dummy arguments of a procedure
that has an explicit interface; they cannot occur in a main program. They take
their shape from association with actual arguments when a procedure is
referenced, hence the name assumed-shape. The actual argument must be of the
same type and have the same rank as the dummy argument.

The dimension aHribute for an assumed-shape array takes the form

DIMENSION (list of assumed-shape specifiers)

The rank of the array is the number of assumed-shape specifiers given. Each
assumed-shape specifier specifies the lower index bound for one dimension of the
array and takes the form
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lower bound

or

If the lower bound is omitted, it is taken to be 1. For example, the following
program extract has two assumed-shape dummy array arguments, a and b:

REAL FUNCTION assumed_shape(a,b)
IMPLICIT NONE
INTEGER, DIMENSION(:,:) .. a
REAL, DIMENSION(5:,:,:) b

The first dummy array argument, a, is of rank 2, with the lower index bounds for
both subscripts being 1; the second dummy array argument, b, is of rank 3, with
the lower index bound for the first subscript being 5, and the lower index bounds
for the other subscripts being 1.

When discussing assumed-shape arrays in Chapter 7 we briefly mentioned
the three intrinsic functions SIZE, LBOUND and UBOUND in the context of rank-one
arrays, and it is now appropriate to re-examine how these functions operate with
rank-n arrays.

The function SIZE has two arguments, the second of which is optional.
The first argument is the name of the array, and the second argument, DIM, is an
integer which, if present, must lie in the range 1 ~ DIM ~ rank, where rank is the
rank of the array. If DIM is not present, SIZE returns the size of the whole array. If
DIM is present, SIZE returns the extent of the array for the specified dimension.

The function LBOUND also has two arguments, of which the second is
optional. These arguments follow the same pattern as those for SIZE, with the
first argument being the name of the array, and the second argument specifying
the dimension. If the second argument, DIM is present, then LBOUND returns the
lower index bound of the specified dimension in the form of an integer. If DIM is
not present, however, the result of the function reference is a rank-one array
containing all the lower index bounds.

This explains why, in Chapter 7, we stated that these procedures should
be used with two arguments, the second being 1, when asking for the bounds of a
rank-one array. If, for example, a reference was made to LBOUND(rank_l), where
rank_l is a rank-one array, then the result of the function reference will be a
rank-one array, consisting of a single element, and not a scalar value as might
have been expected.

The third function, UBOUND, is similar to LBOUND, but returns the upper
bound(s) of its first argument.
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A procedure that uses assumed-shape dummy arguments usually has a
small increase in internal complexity, compared with using explicit-shape arrays;
because of the added need to determine the array bounds within the procedure.
However, the decrease in complexity of the procedure interface more than
compensates for this; incorrect calling sequences are a major source of
programming errors.

[!] Problem
Write a program to determine whether a polygon is convex.

~ Analysis

This type of problem frequently occurs in writing software for computer-aided
design (usually abbreviated as CAD) and computer-aided manufacture (usually
abbreviated as CAM). Such problems also occur in writing programs for virtual
reality applications.

A polygon is an n-sided figure whose boundary consists of straight line
segments joining adjacent vertices. Triangles and quadrilaterals, for example, are
special cases of polygons (Figure 13.4).

An area is said to be convex if, for any two points in the area, the straight
line segment joining them is completely contained in the area. Thus, in Figure
13.5 area A is convex, while area B is not. It is easy to prove that a triangle is
always convex, whereas a quadrilateral may not be.

The problem of determining convexity will be solved by using a derived-
type point, consisting of two real numbers, in which to store the coordinates of
the vertices. This is similar to the derived type used on several occasions as part of

Triangle Quadrilateral

P,

P3
n-sided polygon

Figure 13.4 3-sided, 4-sided and n-sided polygons.
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Figure 13.5 Convexity of two-dimensional areas.

the module geometry, but we shall not need the rest of that module for this
example. An array of points will then be used to store the definitions of polygons.

The mathematical analysis is based on the observation that a polygon is
convex if and only if the rotation angles (restricted to be in the range
-180 < ()~ 180) between adjacent sides are either always positive (that is, each
side is always rotated in an anticlockwise (counterclockwise) direction from its
predecessor side) or always negative (that is, each side is always rotated in a
clockwise direction from its predecessor side). Thus, in the five-sided polygon
shown in Figure 13.6 it can be seen visually that the five rotation angles are
always in the clockwise direction. Therefore, the five-sided polygon PIPZP3P4PS
is convex.

By contrast, in the six-sided polygon shown in Figure 13.7 it can be seen
visually that the rotation angle between sides P3P4 and P4PS is clockwise,
whereas all the other angles are anticlockwise. Hence the six-sided polygon
PIPZP3P4PSP6 is not convex.

It is easily proved by vector analysis that, for convexity, we require,
for every three adjacent vertices Pj, Pi+1, Pi+3, with coordinates (Xi, Yi),

Figure 13.6 A five-sided polygon.
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Figure 13.7 A six-sided polygon.

(Xi+ll Yi+!) and (Xi+2, Yi+2), respectively, that (Xi+! - Xi) (Yi+2 - Yi+!) -
(Yi+l - Yi)(Xi+2 - Xi+l) always have the same sign around the polygon. This
algorithm will work whether the vertices are given in clockwise or anti clockwise
order. (For those interested in the mathematics, the proof is based on taking the
cross product of two adjacent edges. The polygon is convex if the sine of the
angle between the edges is always of the same sign - ignoring degenerate cases
when three adjacent vertices are collinear.)

An initial structure plan for the main subroutine is easily developed.

The only difficulty here is the calculation of the direction of rotation at
each vertex, and so we shall place this in a function which will return a positive
value if the direction is positive (anticlockwise) and a negative value if it is
negative (clockwise). We can then easily detect if the direction of rotation has
changed by multiplying two successive orientations together and testing to see
whether the result is negative. In practice, a few moments' thought shows that we
need only use the orientation at the first vertex and the current one.

We can now proceed with our data design and structure plan for each
procedure; however, we shall not go into the detail of the mathematics involved
in calculating the direction of rotation at a vertex.
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Subroutine convex-polygon

Data design

Purpose Type Name

A Arguments
Array of points point polygon
Convexity of the polygon LOGICAL convex

B Local variables
Orientation at first vertex REAL anti
Number of vertices INTEGER n_vertices
DO loop variable INTEGER

Structure plan

Real function orientation

Data design

Purpose Type Name

A Arguments
Array of points point p
Number of vertex . INTEGER vertex

B Local variable
Number of vertices INTEGER n

Structure plan

Note that, by using assumed-shape arrays for the two dummy argument
arrays of points which represent the polygon, our procedures will work for any'
size of polygon.
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rn Solution

MODULE convexity
IMPLICIT NONE

! Derived type definition
TYPE point

REAL:: x,y
END TYPE point

.CONTAINS

SUBROUTINE convex-polygon(polygon,convex)
IMPLICIT NONE

This subroutine determines whether a polygon is convex

Dummy arguments
TYPE(point), DIMENSION(:), INTENT (IN)
LOGICAL, INTENT (OUT) :: convex

! Local variables
REAL:: anti = 0.0
INTEGER :: i,n_vertices

polygon

! Set initial value for convex and obtain number of vertices
convex = ,TRUE.
n_vertices = SIZE (polygon, 1) n_vertices is the number

of vertices

! Get direction of rotation at first vertex
IF (orientation (polygon, 1) > 0.0) THEN

anti = 1.0
ELSE

anti = -1. 0
END IF

!Check direction of rotation at remaining vertices
DO i = 2,n_vertices

IF (anti*orientation (polygon, i) < 0.0) THEN
! Return immediately a different orientation occurs
convex = .FALSE.
EXIT

END IF
END DO

END SUBROUTINE convex-polygon

REAL FUNCTION orientation (p,vertex)
IMPLICIT NONE

This function returns the direction of angular
rotation at a specified vertex of a polygon
positive if counterclockwise, negative if clockwise
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! Dummy arguments
TYPE (point), DIMENSION (:), INTENT (IN) .. P
INTEGER, INTENT (IN) :: vertex

! Local variable
INTEGER:: n

n = SIZE(p,l) ! n is the number of vertices

! Calculate orientation at this vertex
IF (vertex == n-l) THEN

orientation = (p(n)%x-p(n-l)%x)*(p(l)%y-p(n)%y) &
- (p(n)%y-p(n-l)%y)*(p(l)%x-p(n)%x)

ELSE IF (vertex == n) THEN
orientation = (p(l)%x - p(n)%x)*(p(2)%y - p(l)%y) &

- (p(l)%y - p(n)%y)*(p(2)%x - p(l)%x)
ELSE

orientation = (p(vertex+l)%x - p(vertex)%x) &
*(p(vertex+2)%y - p(vertex+l)%y) &

- (p(vertex+l)%y - p(vertex)%y) &
*(p(vertex+2)%x - p(vertex+l)%x)

END IF
END FUNCTION orientation

END MODULE convexity

The first three points are used to determine the sign of (X2 - XI)(Y3 - Y2)
(Y2 - YI)(X3 - XI)" We then require that the sign of the corresponding

quantity for every three adjacent points have the same sign. This is done in the
subroutine convex-polygon.

There is one complication with indexing. When ';"e get to Pn-I we must
use the points Pn-I, Pn, PI (not Pn-I, Pn, Pn+I, because Pn+I does not exist, and
we want to continue with the first point PI), and when we get to Pn we must use
the points Pn, PI, P2• This is taken care of in the function orientation.

We can then easily write a program to test these procedures by asking for,
say, six points and then calling convex-polygon to determine the convexity of the
resulting polygon:

PROGRAM polygon_test
USE convexity
IMPLICIT NONE

This program uses the module convexity to establish
whether a set of points make a convex polygon

INTEGER, PARAMETER :: number_of_points = 6
TYPE (point) , DIMENSION (number_of-points) .. polygon
INTEGER .. i
LOGICAL :: convex ,.
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First program run

Give vertex number 1
0,0
Give vertex number 2
1,0
Give vertex number 3
2,1
Give vertex number 4
2,2
Give vertex number 5
1,3
Give vertex number 6
-1,1
Polygon is convex

Second program run

Give vertex number {
1,1
Give vertex number 2
3,1
Give vertex number 3
2,2
Give vertex number 4
3,3
Give vertex number 5
1,3
Give vertex number 6
0,2
Polygon is not convex

Figure 13.8 Results produced by the program polygon_test.

!Ask for six points
DO i = 1,number_of-points

PRINT' (lX,"Give vertex number ",12)', i
READ *, polygon(i)%x, polygon(i)%y

END DO

! Establish the polygon's convexity
CALL convex_polygon(polygon,convex)
IF (convex) THEN

PRINT *, "Polygon is convex"
ELSE

PRINT *, "Polygon is not convex"
END IF

END PROGRAM polygon_test

Figure 13.8 shows the result produced by running this program for two
polygons, the first with vertices (0,0), (1,0), (2,1), (2,2), (1,3), (-1,1) and the
second with vertices (1,1), (3,1), (2,2), (3,3), (1,3), (0,2).

Figure 13.9 shows the result of changing the value of number_of_points
in the main program to 5 and running the program again with a different set of
points.

The third class of arrays which were introduced for rank-one arrays in
Chapter 7 are automatic arrays. An automatic array is a special type of explicit-
shape array which can only be declared in a procedure, which is not a dummy
argument, and which has at least one index bound that is not constant. The space
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Give vertex number 1
1,1
Give vertex number 2
3,1 "I.

Give vertex number 3
3,3
Give vertex number 4
1,3
Give vertex number ~
0,2
polygon is convex

Figure 13.9 Results produced by the modified program polygon_test.

for the elements of an automatic array is created dynamically when the procedure
is entered and is removed upon exit from the procedure. In between entry and
exit, an automatic array may be used in the same manner as any other array -
including passing it or its elements as actual arguments to other procedures. This
contrasts with the space for explicit-shape or assumed-shape arrays which,
somewhere in the program, must be defined as having some fixed size, and which
are passed to procedures as actual arguments.

We can see the difference in the following example:

SUBROUTINEabc(x,y,n)
IMPLICITNONE

! Dummyarquments
INTEGER,INTENT(IN) :: n
REAL,DIMENSION(n),INTENT(INOUT) x
REAL,DIMENSION(:), INTENT(INOUT) .. Y

Explicit-shape
Assumed-shape

!Local variables
REAL,DIMENSION(SIZE(y,l))
REAL,DIMENSION(n,n) :: f
REAL,DIMENSION(10) :: q

ENDSUBROUTINEabc

e Automatic
Automatic
Explicit-shape

In subroutine abc, the arrays e and f are not dummy arguments, but their index
bounds are not constant. The upper index bound ofe, a rank-one array, is
dependent on the shape of the dummy argument y. Both the upper index bounds
of the rank-two array f depend on the extent of the dummy argument x, which is
supplied as a dummy argument. Hence, both e and f are automatic arrays. The
array q is not a dummy argument, but its index bounds are constant; it is,
therefore, not an automatic array.
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Automatic arrays are convenient when array space (of variable shape) is
needed on a temporary basis inside a procedure, and such arrays are, therefore,
often called work arrays. The use of automatic arrays for such temporary
purposes can enormously simplify calling sequences by eliminating the need for
arrays of complicated shape to be passed as arguments. Automatic arrays did not
exist in FORTRAN 77, with the result that many programs and general-purpose
mathematical, or other, subprogram libraries were frequently very much more
complex (in terms of array shape requirements for work space) than would
otherwise have been the case.

In Chapter 7 we also mentioned a fourth type of array, known as an assumed-size array. An
assumed-size array, like an assumed-shape array, may only appear as a dummy argument to a procedure. In
the declaration of an assumed-size array, all the extents except that of the last dimension must be specified
explicitly; the extent of the last dimension takes one of the forms lower_bound:. or •.

The most common usage for assumed-size arrays is to have the extents of the actual and dummy
arguments explicitly agree for all but the last dimension. The dummy argument will then get the extent for
its last dimension from the last dimension of the actual argument, and the dummy and actual arguments will
have the same shape. A more complicated case occurs when the dummy and actual arguments do not have
the same shape. In this case the extent of the last dimension of the assumed-size dummy argument is such
as to make the sizes of the actual and dummy arguments agree, and a full understanding of the array
element order is required to ensure that the elements of the dummy argument correspond to the required
elements of the actual argument.

We strongly recommend that assumed-size arrays are never used in writing new Fortran 90
programs; however more information about their use will be found, for reference, in Appendix E, together
with other obsolescent and deprecated features.

SELF-TEST EXERCISES 13.1

1 What are the index bounds, extents and size of an array?

2 What is the shape of an array? How can it be denoted?

3 What is the array element order for the array wow, which is declared as follows?

REAL, DIMENSION(2,3,4) :: wow

4 Write a READstatement to read 24 values into the real array wow declared in Exercise 3,
if the data is provided in the order wow (1,1,1), wow (1,1,2), wow (1, 1 ,3), wow (1,1,4),
wow (1,2,1), wow (1,2,2), wow (1,2,3), wow (1,2,4), etc.

5 How is the RESHAPE intrinsic function used in connection with array constructors?

6 What are explicit-shape arrays? Can they occur in main programs and procedures?

7 What are assumed-shape arrays? Can they occur in main programs and procedures?
Are there any restrictions on the use of assumed-shape arrays?

8 How may the index bounds of a dummy procedure argument be determined?

9 What are automatic arrays and when should they be used?
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13.6 Allocatable arrays

In the previous section we stressed the importance of being able to create
temporary arrays whose size could only be determined during the execution of
the program. Automatic arrays provide a partial solution to this problem, but a
more complete solution is provided by allocatable arrays. These provide more
flexibility than automatic arrays, because the allocation and deallocation of space
for their elements is completely under user control. This is not the case for
automatic arrays, since their space is always allocated on entry to a procedure and
is always deallocated on exit.

Using allocatable arrays is slightly more complicated than using any other
class of arrays, and consists, essentially, of three steps:

• Firstly, the allocatable array is specified in a type declaration statement.

• Secondly, space is dynamically allocated for its elements in a separate
allocation statement, after which the array may be used in the normal
way.

• Finally, after the array has been used and is no longer required, the space
for the elements is deallocated by a deallocation statement.

Once space has been allocated for them, allocatable arrays may be used
in the same way as any other arrays. Their elements may be defined or
referenced, and they may be passed as actual arguments to other procedures
although, as might be expected, they may not be used as dummy arguments in a
procedure.

An allocatable array is declared in a type declaration statement which
includes an ALLOCATABLE attribute. However, since its size is not known when it is
declared, it must initially have its shape specifiers set to be undefined by omitting
all index bound information for every dimension, and representing the shape of
the array in the dimension attribute by a single colon for each dimension:

REAL, ALLOCATABLE, DIMENSION(:,:,:) .. allocatable_array

The rank of the array is, of course, the same as the number of colons, so that the
above statement declares a rank-three array.

It will be noted that the type declaration statement for an allocatable array
is similar to the type declaration statement for an assumed-shape array. However,
an assumed-shape array must be a dummy argument to a procedure, and must not
have an ALLOCATABLE attribute, whereas the opposite is true for allocatable arrays.
The two types of declaration statements are, therefore, readily distinguished from
each other.
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Note that the ALLOCATABLE attribute may also be specified by means of a
separate ALLOCATABLE statement, in a similar way to that which we have already
seen with most other attributes: ,

ALLOCATABLE :: list of deferred_array_specifications

where each deferred_array_specification takes the same form as in the earlier
example:

ALLOCATABLE:: arr_l(:), arr_2(:,:), arr_3(:,:,:)

We recommend, however, that you should ~lways use an ALLOCATABLE attribute
in the type declaration statement in preference to a separate ALLOCATABLE
statement, for reasons of both clarity and security; it is always best if all the
information about a single entity is contained in a single statement, wherever
possible.

Allocatable arrays are called deferred-shape arrays because, when they
are initially declared in a type declaration statement, the extent along each
dimension is not specified, but is deferred until later. We shall meet another form
of deferred shape array in Chapter 16. Like assumed-shape arrays and automatic
arrays, deferred-shape arrays were not available in FORTRAN 77.

Unlike all other forms of array that we have met, the declaration of an
allocatable array does not, in itself, allocate any space for the array, and it is
therefore not usually possible to use the array until further action has been taken.
An allocatable array is said to have an allocation status, and until space is
allocated for its elements, this allocation status is said to be not currently allocated,
or simply unallocated.

An unallocated array has its status changed to currently allocated, or simply
allocated, by means of an ALLOCATE statement which dynamically allocates space
for an allocatable array. It takes the form

ALLOCATE (list of array_specifications, STAT=status_variable)

or

ALLOCATE (list of array_specifications)

Each array_specification must consist of the name of an allocatable array,
followed by the index bounds for each dimension, enclosed in parentheses:

ALLOCATE (arr_l(20), arr_2(lO:30,-lO:lO), arr_3(20,30:50,5))

The STAT=status variable element of the ALLOCATE statement enables the
processor to report on the success, or otherwise, of the allocation process in a
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INTEGER :: error
REAL, ALLOCATABLE, DIMENSION (:,:) :: p
INTEGER, ALLOCATABLE, DIMENSION(:, :,:) q
TYPE (vector), ALLOCATABLE, DIMENSION (:).:: r

ALLOCATE(p(S,lOOO), q(lO,m,n+7), r(-lO:lO), STAT=error)
IF (error /= 0) THEN

! Space for p, q, and r could not be allocated
PRINT .,"Proqram could not allocate space forp, q, and r"
~~ . t

END IF
! Space for p, q, and r successfully allocated

Figure 13.10 An example of allocation of allocatable arrays, with error checking.

similar way to that in which an IOSTAT specifier reports on the success of an
input! output statement. If the allocation is successful then the integer variable
status_variable will be set to zero; if there is an error during the allocation, for
example if there is insufficient memory for the array or if it is currently allocated,
then status_variable will be assigned a processor-dependent positive value.

Note that if an error condition arises during the execution of an ALLOCATE
statement and there is no STAT element in the statement then the program will
fail. We recommend, therefore, that you should always include a STAT element, as
illustrated in Figure 13.10.

A currently allocated allocatable array is deallocated by the related
DEALLOCATE statement, which has the effect of changing its status to not currently
allocated and making the memory space that it was using available for other
purposes. This statement takes the form

DEALLOCATE (list of currently_allocated _arrays, STAT=status_variable)

or

DEALLOCATE (list of currently_allocated_arrays)

where the meaning and use of the STAT element is identical to that for the
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ALLOCATE statement. Once an array has been deallocated then the values stored in
its elements are no longer available.

It may appear unnecessary to check the deallocation of an array for errors,
since it will, presumably, have already been allocated. However, suppose that the
program was subsequently modified by inserting some extra statements between
the allocation and deallocation of the array. The inserted code might, after
performing its calculations, erroneously deallocate the array. It is to guard against
such difficult-to-find programming errors that the success or failure of allocation
and deallocation statements should always be checked.

The use of ALLOCATE and DEALLOCATE statements enables an allocatable
array to have its size repeatedly changed, as is shown in the following example:

REAL, ALLOCATABLE, DIMENSION(:) :: varying_array
INTEGER .. i,n,alloc_error,dealloc_error

READ *, n Read maximum size needed
DO i=l,n

ALLOCATE (varying_array (-i:i) , STAT=alloc_error)
IF(alloc_error 1= 0) THEN

PRINT *,"Insufficient space to allocate array'
'when i = ",i

STOP
END IF
! Calculate using varying_array

DEALLOCATE (varying_array, STAT=dealloc_error)
IF(dealloc_error 1= 0) THEN

PRINT *,"Unexpected deallocation error"
STOP

END IF
END DO

This code fragment first allocates varying_array to be a rank-one array, with
index bounds of -1 and +1.It performs calculations using the array with this
size and shape, and then deallocates it. Next it allocates varying_array again, but
this time with index bounds of -2 and +2, performs calculations using the array
with this new size, and then again deallocates it. This cycle is repeated n times.

If varying_array were not deallocated at the end of every iteration, an
error would occur in the second iteration of the loop when the second attempt to
allocate a is made.

Note that execution of a DEALLOCATE statement is not the only way in
which an allocated array can lose its allocated starns. Exit from a procedure causes
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the allocation status of any currently allocated allocatable arrays without the save
attribute to become undefined. Such undefined arrays cannot subsequently be
referenced, defined, allocated or deallocated!

As well as causing potential problems, it is bad programming practice to
permit the status of an allocatable array to become undefined. An allocatable
array which is no longer required should, therefore, always be deallocated before
an exit is made from the procedure in which it was allocated. If it will be required
again, and its current values need to be preserved, then it should be declared with
the SAVE attribute:

CHARACTER (LEN=50) , ALLOCATABLE, DIMENSION(:), SAVE :: name

If this is done, then the allocatable array will remain allocated when an exit is
made from the procedure and the elements of the array will maintain their values.
If it is not currently allocated on exit from the procedure then it remains in that
state.

This ability for an allocatable array to be saved between references to a
procedure is a major advantage over automatic arrays,"which always cease to
exist on exit from the procedure in which they are declared.

The greater control provided by allocatable arrays can also be used to
write programs with more capacity than is possible with automatic arrays, as can
be seen from the following example:

SUBROUTINE space(n)
IMPLICIT NONE
INTEGER, INTENT (IN) :: n
REAL, ALLOCATABLE, DIMENSION(:,:) a,b

ALLOCATE(a(2*n,6*n))
! Calculate using a

DEALLOCATE (a)
ALLOCATE(b(3*n,4*n))
! Calculate using b

DEALLOCATE (b)
END SUBROUTINE space

Allocate space for a

Free space used by a
Allocate space for b

Free space used~y b

The subroutine space, therefore, uses 12n2 elements for a during execution of the
first part, and then releases this space, and then uses 12n2 elements for b during
execution of the second part. Thus, the maximum space required for the two
arrays is that required for 12n2 real numbers. ,I
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Now suppose the subroutine space was rewritten to use automatic arrays
instead of allocatable arrays:

SUBROUTINE space(n)
IMPLICIT NONE
INTEGER, INTENT (IN) :: n
REAL, DIMENSION(2*n,6*n) .. a
REAL, DIMENSION(3*n,4*n) b
! Calculate using a

Calculate using b

END SUBROUTINE space
In this case, when the subroutine space begins execution 12n2 elements are
allocated for a and 12n2 elements are allocated for b. A total of 24n2 elements are
therefore created, and are not released until exit from the subroutine.

Consequently, the version of space using automatic arrays requires twice
as many real numbers as does the version using allocatable arrays. If n is large,
this extra space requirement could be the difference between success and failure of
a program, since a computer only has finite resources available!

The decision as to whether to use automatic arrays or allocatable arrays
will depend upon individual circumstances. If very large arrays are required, or if
they need to be saved between procedure calls, then allocatable arrays should be
used; on the other hand, if only small arrays are involved, and there is no need to
save array values between procedure references, the greater simplicity of
automatic arrays may tip the balance in their favour.

There are three main restrictions on allocatable arrays:

• Allocatable arrays cannot be dummy arguments of a procedure.

• The result of a function cannot be an allocatable array.

• Allocatable arrays cannot be used in a derived type definition.

Because of the first of these restrictions, allocatable arrays that are defined in a
main program or procedure must be allocated and deallocated in the main
program or procedure in which they were initially defined. However, if the type
declaration for an allo'catable array is placed in a module then the array can be
allocated an& deallocated by any main program or procedures using the module.
We shall see an example of this in Example 13.2.

If it is necessary to have a derived type with a variable-size array as a
component, pointers must be used; see Chapter 16.

One other point that should be made is that, although an unallocated
allocatable array cannot be used in most of the ways in which arrays are normally
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used, it can be used as an actual argument in a reference to some of the intrinsic
inquiry functions, namely ALLOCATED (which returns the allocation status of an
allocatable array), the intrinsic inquiry functions that give information about a
type (for example, DIGITS), and the intrinsic inquiry functions that give
information about type parameters (KIND and LEN).More information about these
functions will be found in Appendix A, but it is worth pointing out that the
ALLOCATED function can be used to guard against trying to deallocate an
unallocated array, or to allocate an array which has already been allocated:

REAL, ALLOCATABLE, DIMENSION(:) .. work_array

IF ALLOCATED(work_array) DEALLOCATE (work_array) ,
ALLOCATE (work_array (n:m) ,STAT=alloc_stat)

The ALLOCATED function can, of course, only be used on arrays with the allocatable
attribute.

[!] Problem
Write a program which will determine the minimum and maximum numbers in a
file of real numbers, where they occur, and how many of the numbers are less
than the mean of all the numbers in the file.

m Analysis

This is a fairly straightforward problem, apart from the fact that there will need to
be an array in which to store the values read from the file, and yet the size of the
array clearly cannot be known until execution time. It is thus an ideal situation for
an allocatable array.

An initial structure plan might be:
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Further thought leads to a refined plan:

Steps 1 and 2 can be readily placed in one procedure, while steps 3.2 and 3.3 lend
themselves to being placed in separate procedures. If the work array is declared in
a module, work_space, then the final program structure can easily be developed.
Because the data requirements are so simple, as is most of the logic, we shall not
give a full data design, nor shall we give detailed structure plans for each
procedure, but will simply show the overall structure:

o Solution

MODULE work_space
IMPLICIT NONE
SAVE
INTEGER :: work_size
REAL, ALLOCATABLE, DIMENSION(:) work

END MODULE work_space
PROGRAM flexible

IMPLICIT NONE
! Allocate space for the array work
CALL allocate_space
!Carry out calculations using the array work
CALL calculate

END PROGRAM flexible



SUBROUTINE allocate_space
USE work_space
IMPLICIT NONE

This subroutine allocates the array work at a size
determined by the user during execution

! Local variable
INTEGER :: error

! Ask for required size for array
PRINT *,"Please give maxlmum size of file"
READ *,work_size

! Allocate array
ALLOCATE (work (work_size+l) , STAT=error)
IF (error /= 0) THEN

Error during allocation - terminate processing
PRINT *, "Space requested not possible"
STOP

END IF

! Work array successfully allocated
END SUBROUTINE allocate_space

SUBROUTINE calculate
USE work_space
IMPLICIT NONE

!Local variables
INTEGER :: i,n,min-p,max-p,open_error,io_stat
REAL :: min, max
CHARACTER (LEN=20) :: file_name

! Get name of data file
PRINT *,"Please give name of data file"
READ ' (A)' ,file_name

! Open data file
OPEN (UNIT=7, FILE=file_name, STATUS ="OLD", &

ACTION="READ", IOSTAT=open_error)
IF (open_error /= 0) THEN

PRINT *,"Error during file opening"
STOP

END IF

! Read data until end of file
DO i=l,work_size

READ (UNIT=7, FMT=*, IOSTAT=io_stat) work(i)
! Check for end of file
IF (io_stat < 0) EXIT

END DO

Allocatable arrays 457
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Save number of numbers read
n = i-I

! Find maximum and minimum values
CALL minmax(n,min,max,min-p,max-p)

! Print details of minimum and maximum numbers
PRINT' (IX, "Minimum value is",F15.4, &

" and occurs at position ",IlOI &
IX, "Maximum value is", F15 .4 , &

" and occurs at position" ,IlO)', &
min, min-p, max, max-p

Calculate number that are less than the mean
CALL num_less_than_mean(n)

!Deallocate work array
DEALLOCATE (work)

END SUBROUTINE calculate

SUBROUTINE minmax(n,minimum,maximum,min-pos,max-pos)
USE work_space
IMPLICIT NONE
! This subroutine calculates the largest and smallest
! element values in work(l) to work(n)

Dummy arguments
INTEGER, INTENT (IN) :: n
REAL, INTENT (OUT) :: mlnlmum, maximum
INTEGER, INTENT (OUT) :: min-pos, max-pos

! Local variable
INTEGER:: i

! Establish initial values
minimum = work(l)
maximum = work(l)
min-pos = 1
max-pos = 1

! Loop to find maximum and minimum values
DO i = 2,n

IF (work(i) < minimum) THEN
minimum = work(i)
min-pos = i

ELSE IF (work(i) > maximum) THEN
maximum = work(i)
max-pos = i

END IF
END DO

END SUBROUTINE minmax
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SUBROUTINE num_less_than_mean(n)
USE work_space
IMPLICIT NONE

This subroutine calculates and prints the number of
elements of work(l) to work(n) that are less than
the mean of all the numbers

! Dummy argument
INTEGER, INTENT (IN) n

! Local variables
INTEGER :: i,less=O
REAL :: sum=O. O,mean

!Calculate mean
DO i=l,n

sum = sum+work(i)
END DO
mean = sum/n

! Count number less than mean
DO i = 1,n

IF (work(i) < mean) less = less+1
END DO

! Print number below mean
PRINT ' (lX,"There are", no," numbers less than the &

&mean of all numbers in the file")', less
~i'.

Notice that the module work_space contains only type declaration
statements. One is for an allocatable array work, used to hold the array of real
numbers, and the' other is for work-size, an integer that is the size of work when it
has been allocated. Notic~, also, that the module work_space is used by all the
procedures, but that it is not used by the main program because it does not need
to reference any of the entities in the module. The inclusion of a SAVE statement in
the module is, therefore, essential in order to ensure that neither of these entities
becomes undefined on exit from one of the procedures, as discussed in Section
11.4.

As is usually the case in our example programs, we have not taken all the
error-checking steps that are desirable, in the cause of clarity and of shortening
the length of the program. Figure 13.11, however, shows an alternative version of
the subroutine allocate_space which checks that the allocation process has been
successful, and allows the user to try twice more if it is not successful.
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SUBROUTINE allocate_space
USE work_space
IMPLICIT NONE
This subroutine allocates the array work at a size
! determined by the user during execution
, Local variables
INTEGER:: i,error
! Ask for required size for array
DO i=I,3

PRINT *,"Please give maximum size of file"
READ *,work_size
! Allocate array
ALLOCA~E(work(work_size), STAT=error)
IF (error == 0) EXIT
! Error during allocation - try again (max of 2 times)
PRINT *,"Space requested not possible - try again"

END DO

! Check to see if array was (finally) allocated
IF (.NOT. ALLOCATED(work)) THEN
! No allocation - even after three tries

PRINT *,"Three attempts to allocate without success!"
STOP

END IF
! Work array successfully allocated

END SUBROUTINE allocate_space

Figure 13.11 An alternative version of the subroutine allocate_space.

Exactly how far to go in this type of checking will depend upon the
environment in which the program is to be used, and, for example, if it will be
used only by the programmer or will be part of a widely distributed piece of
general-purpose software.

13.7 Whole array operations

In Chapter 7, in the context of rank-one arrays, we introduced the Fortran 90
concept of whole array processing, whereby two conformable arrays (that is, two
arrays which have the same shape) could appear as operands in an expression or
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an assignment, and the operation or assignment would be carried out on an
element-by-element basis. Thus, if two arrays are declared as follows:

REAL, DIMENSION (10) :: p,q
REAL, DIMENSION(10:19) :: r

then the statement

p = q+r

has exactly the same effect as the DO loop

DO i=1,10
p(i) = q(i)+r(i-9)

END DO

As we might expect, the same rule applies to arrays of any rank so that if, for
example, three rank-four arrays are declared as follows:

REAL, DIMENSION(10,10,21,21) :: x
REAL, DIMENSION(0:9,0:9,-10:10,-10:10) y
REAL, DIMENSION(11:20,-9:0,0:20,-20:0) .. z

then the statement

x = y+z

has exactly the same effect as the following nest of DO loops:

DO i=1,10
DO j=1,10

DO k=1,21
DO 1=1,21

x(i,j ,k,l) = y(i-1,j-1,k-ll,1-11) + &
z(i+10,j-10,k-1,1-21)

END DO
END DO

END DO
END DO

This example makes it very clear that using whole-array expressions is simpler,
and hence less error-prone, than using DO loops! For machines with multiple
processing units, they can also make it easier for the compiler to parallelize the
code. They should be used, wherever possible, to simplify code.
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We should now remind ourselves of the rules for working with whole
arrays which were stated in Chapter 7:

• Two arrays are conformable if they have the same shape.

• A scalar, including a constant, is conformable with any array.

• All intrinsic operations are defined between conformable objects.

So far, we have discussed whole-array assignment and expressions in the context
of numeric arrays, but the capability to write whole-array expressions is also
available for character arrays and logical arrays. Thus, the following code fragment
will concatenate each element of string_1 with each corresponding element of
string_2, storing the resulting strings in the corresponding elements of
long_string:

CHARACTER(LEN=7), DIMENSION(3,4) :: string_1,string_2
CHARACTER(LEN=14), DIMENSION(3,4) :: long_string

The fact that scalars are conformable with any array means that the
following code fragment has the effect of placing quotation marks around the
strings in every element of the array unquoted and storing the resulting strings in
the array quoted:

CHARACTER(LEN=20), DlMENSION(4,SO)
CHARACTER(LEN=22), DIMENSION(4,SO)

quoted = '''' //unquoted//''''

unquoted
quoted

Logical operators also follow the same rules, with the result that the conditional
expression in the statement

IF (ALL(a > 1.0)) ...

where.a is a real array, will evaluate as true if, and only if, every element of a is
greater than 1. Note that the intrinsic function ALLhas been used to convert the
array-valued expression (a> 1.0) to a scalar value (see Appendix A.S). Similarly,
if a and b are conformable arrays, the conditional expression in the statement

IF (ANY(a == b)) ...
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FUNCTION outer(x, y)
IMPLICIT NONE
REAL, DIMENSION(:), INTENT (IN) :: x, y
REAL, DIMENSION(SIZE(x,l),SIZE(y,l)) .. outer
INTEGER:: i,j
DO i = l,SIZE(x,l)

DO j = l,SIZE(y,l)
outer(i, j) = x(i)*y(j)

END DO
END DO

END FUNCTION outer

Figure 13.12 An array-valued function to calculate the outer product of two vectors.

will evaluate as true if any element of a is equal to the corresponding element
of b.

The final aspect of whole array processing that we introduced in Chapter
7 is the concept of an array-valued function. As with all the other concepts that
we met originally in the context of rank-one arrays, there is no significant
difference in applying the concept to arrays of any rank.

There are only three rules to remember when writing and using an array-
valued function:

• An array-valued function must have an explicit interface.

• The type of the function, and an appropriate dimension attribute, must
appear within the body of the function, not as part of the FUNCTION
statement.

• The array that is the function result must be an explicit-shape array,
although it may have variable extents in any of its dimensions.

An example of an array-valued function which calculates the outer
product of two vectors is given in Figure 13.12.

The mathematical definition of the outer product of two vectors x and y is
the matrix whose (i, j)th element is Xi Yj. In this function we assume that the two
vectors are provided as rank-one arrays; the result of the function will be a rank-
two array. Note how the extents of the (vector) arrays x and yare obtained by
means of the intrinsic function SIZE, and then used to define the shape of the
function result, outer, and also to control the two DO loops.

Many of Fortran's intrinsic procedures may be used in an elemental
manner in whole-array expressions; in other words, they will accept arrays as
actual arguments, and will rerum as their result an array of the same shape as the
actual argument in which the procedure has been applied to every element of the
array. Thus if a is a rank-three real array with shape (I, m, n), SIN (a) is a rank-three
real array of shape (I, m, n) in which the (i, j, k)th element is sin (a (i, j ,k)), for



464 Array processing and matrix manipulation

Vector or matrix multiply functions
DOT_PRODUCT (VECTOR_A, VECTOR_B)
MATMUL(MATRIX_A,MATRIX_B)

Array reduction functions
ALL (MASK [,DIM] )
ANY (MASK [,DIM] )
COUNT (MASK [,DIM] )
MAXVAL (ARRAY [,DIM] [,MASK] )
MINVAL (ARRAY [,DIM] [,MASK])
PRODUCT (ARRAY [,DIM] [,MASK])
SUM(ARRAY[,DIM] [,MASK])

Array inquiry functions
ALLOCATED (ARRAY)
LBOUND(ARRAY[,DIM])
SHAPE (SOURCE)
SIZE (ARRAY [,DIM] )
UBOUND (ARRAY [,DIM] )

Array construction functions
MERGE (TSOURCE,PSOURCE,MASK)
PACK (ARRAY ,MASK [,VECTOR] )
SPREAD (SOURCE,DIM,NCOPIES)
UNPACK (VECTOR,MASK,FIELD)
Array reshape function
RESHAPE(SOURCE,SHAPE[,PAD] &

[,ORDER] )

Array manipulation functions
CSHIFT(ARRAY,SHIFT[,DIM])
EOSHIFT(ARRAY,SHIFT &

[,BOUNDARY] [,DIM] )
TRANSPOSE (MATRIX)

Array location functions
MAXLOC (ARRAY [,MASK] )
MINLOC (ARRAY [,MASK] )

Dot product of two rank-one arrays
Matrix multiplication

True if all values are true
True if any value is true
Number of true elements in an array
Maximum value in an array
Minimum value in an array
Product of array elements
Sum of array elements

Array allocation status
Lower dimension bounds of an array
Shape of an array or scalar
Total number of elements in an array
Upper dimension bounds of an array

Merge under mask
Pack an array into an array of rank one under a mask
Replicate an array by adding a dimension
Unpack an array of rank one into an array under a mask

Reshape an array

Circular shift
End-off shift

Transpose of an array of rank two

Location of a maximum value in an array
Location of a minimum value in an array

Note that in the above table [, XYZ] indicates that the argument XYZ is optional

Figure 13.13 Intrinsic procedures designed for use in array processing.

i = 1, ... , 1, j = 1, ... , m and k = 1, ... , n. The term elemental is used to
describe this behaviour because the intrinsic function is applied element-by-
element to its array arguments. If an intrinsic function is used elementally, then all
its array arguments must be of the same shape; if not, the situation would be
meaningless.
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As a slightly more complicated example, if a and b are rank-one integer
arrays of size n, then MAX(0, a, b I is a rank-one array whose ith element is
MAX(0, a (i) , b (il ), for i = 1, ... , n. Note that the scalar 0 is conformable with a
and b.

Fortran 90 also provides many intrinsic procedures specifically designed
for array operations, in addition to the intrinsic procedures that can be used
elementally; a list of these can be seen in Figure 13.13, while a more detailed
description of each of them will be found in Appendix A.

The use of these array intrinsics is strongly recommended when writing
code that manipulates arrays for three main reasons:

• The resulting code will almost always be cleaner and more compact than
code written without them.

• The intrinsic procedures are usually provided in assembly language, by
the compiler writers, and are consequently very efficient.

• It will require less effort.

In addition to the extension of scalar operations to arrays, and the
intrinsics provided to simplify the manipulation of arrays, Fortran 90 also
contains two further powerful array handling features which complete the
facilities required for powerful and flexible array processing, and these will be
described in the final two sections of this chapter.

13.8 Masked array assignment

The first of these new features allows a finer degree of control over the
assignment of one array to another, by use of a mask which determines whether
the assignment of a particular element should take place or, alternatively, which
of two alternate values should be assigned to each element. This concept is called
masked array assignment, and comes in two forms.

The first, simpler, form is known as a WHERE statement, and takes the
general form

WHERE (mask_expression) array_assignment _statement

where mask _expression is a logical expression of the same shape as the array
variable being defined in the array_assignment_statement. The effect is that the
assignment statement is only executed for those elements where the elements in
the corresponding positions of the mask_expression are true. Note, however, that
the assignment statement must not be a defined assignment, as described in
Section 12.4.
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For example, if arr is a real array, then the effect of the statement

WHERE (arr<O.O) arr = -arr

is to change the sign of all the elements of arr having negative values, and to
leave those having positive values unchanged. This is because the expression
a<O.O is an array logical expression, of the same shape as arr, in which an element
is true if the corresponding element of arr is less than 0, and is false otherwise.
Consequently, the assignment statement arr = -arr is only performed for those
elements whose value is less than zero.

The WHERE statement is sufficient for many situations, but there are often
cases in which it is desirable either to control more than one assignment
statement by the masked assignment, or in which it is required to carry out one of
two alternative assignments, depending on the value of the corresponding
element of the mask array. In these cases we can use the WHERE construct, which
takes the form

WHERE (mask_expression)
array_assignment _statements

ELSEWHERE
array_assignment _statements

END WHERE

or

WHERE (mask_expression)
array_assignment _statements

END WHERE

The effect of the WHERE construct is that the set of array assignment statements
immediately following the WHERE are only executed for those elements where the
elements in the corresponding positions in the mask expression are true.
Conversely, the set of array assignment statements immediately following the
ELSEWHERE are only executed for those elements where the elements in the
corresponding positions in the mask expression are false. Note that all the arrays
being assigned values must be conformable with each other, and with the mask
array.

The following example illustrates how a WHERE construct can be used to
replace every non-zero element of the array array by its reciprocal, and every
zero element by 1.0:

WHERE (array /= 0.0)
array = 1.0/array

ELSEWHERE
array = 1.0

END WHERE
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One very important point to emphasize is that, despite its syntactic
similarity with the block IF construct, the WHERE construct is not a sequential
construct. The mask is always an array which is conformable with the array, or
arrays, which appear on the left-hand side of the assignment statement, or
statements, in the construct, and the effect is as if all the array elements were
assigned simultaneously, with the mask either preventing some of the
assignments taking place, or causing different ones to take place.

13.9 Sub-arrays and array sections

Although we have seen how to use whole arrays in expressions, and we can use
individual array elements in the same way that any other scalar can be used, it is
frequently useful, especially in scientific programming, to be able to define a sub-
array, consisting of a selection of elements of an array, and to then manipulate
this sub-array in the same way that a whole array can be manipulated.

In Fortran 90, array sections can be extracted from a parent array in a
rectangular grid (that is, with regular spacing) using subscript triplet notation, or
in a completely general manner using vector subscript notation. In either case
the resulting array section is itself an array, and can be used in the same way as an
array - for example, in whole array expressions or passed as an argument to a
procedure.

We have already defined an array element as

where array_name is the name of a variable with the dimension attribute (that is,
an array), k is the rank of array_name, and the ij are subscripts.

If any or all of the ij are replaced by what are called subscript triplets or
vector subscripts, then, instead of defining an array element, we have defined an
array section. The rank of the array section so defined is the number of subscript
triplets and vector subscripts it contains. This definition fits well with the
convention that an array element has rank zero, since its definition contains no
subscript triplets or vector subscripts.

We will describe subscript triplets first, because they are conceptually
simpler than vector subscripts.

A subscript triplet takes the following form:

subscript_1 : subscript_2 : stride

or one of the simpler forms

subscript _1 subscript _ 2
subscript _1
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subscript_I :
subscript _ 2
subscript_2
: stride

stride

stride

where subscript_I, subscript_2 and stride are all scalar integer expressions. A
subscript triplet is interpreted as defining an ordered set of subscripts that start at
subscript_I, that end on or before subscrip;_2, and have a separation of stride
between consecutive subscripts. The value of stride must not be zero.

If subscript_I is omitted, it defaults to the lower index bound for the
dimension; if subscript _2 is omitted, it defaults to the upper index bound for the
dimension; and if stride is omitted, it defaults to the value 1. Note that the first
colon must always be included, even if the first subscript is not specified.

Thus if the array arr is declared as

REAL,DlMENSION(lO):: arr

then 2:8:3 is a subscript triplet that defines a set of integers that ~tarts at 2 and
proceeds in increments of 3 until 8 is reached. So the set of subscripts is 2, 5, 8,
and arr (2: 8: 3) is an array whose elements are arr (2), arr (5) and arr (8), in that
order.

If the stride is negative, then the subscript order is reversed with the result
that arr(8:2:-3) is an array whose elements are arr(8), arr(5) and arr(2), in
that order.

Some other sub-arrays of arr are as follows:

arr (1 :10) is a rank-one real array containing all the elements of arr; it
is, in fad, identical to arr.

arr(3:5) is a rank-one real array containing the elements arr(3),
arr(4) and arr(5).

arr(:9) is a rank-one real array containing the elements arr(l),
arr(2), ... , arr(9).

arr ( : : 4) is a rank-one real array containing the elements arr (1) ,

arr(5) and arr(9).

arr ( : ) is a rank-one real array containing all the elements of arr; it
is the same as arr.

A simple example of how array sedions can simplify code can be seen if
we refer to the subroutine num_less_than_mean that was developed as part of
Example 13.2. This subroutine had to calculate the sum of the first n elements of
the array work in order to calculate the mean of those values, and did so by means
of a DO loop:
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DO i=l,n
sum = sum+work(i)

END DO
mean = sum/n

The use of an array section and the intrinsic procedure SUMwould enable us to
write simply

mean = SUM(work(l:n))/n

This defines an array section consisting of the first n elements of work, which is
therefore an array, and then uses SUMto calculate the sum of all the elements of
that array, before dividing by n. This version is both easier to read and, since it
uses the intrinsic function instead of a DO loop, almost certainly more efficient -
which might be important if n is very large.

Of course, arrays of rank greater than 1can have sections defined, so that
if the array array _2 is declared as

INTEGER, DIMENSION(2:9,-2,1) :: arr_2

then arr_2 (4: 5, -1 : 0) is a rank-two integer array containing the elements

[
arr2(4,-1) arr2(4,0)]
arr2 (5,-1) arr2 (5,0)

So far, the ranks of the array sections have been the same as those of their
parent arrays; however this is not necessary. For example, if arr_3 is declared as

REAL, DIMENSION(3,4) :: arr_3

then

arr_3 (2, : ) is a rank-one real array (because there is only one
subscript triplet) whose elements are arr_3 (2,1),
arr_3 (2 ,2), arr_3 (2,3) and arr_3 (2 ,4) . In other words,
it is the second row of arr_3.

arr_3 ( : ,3) is a rank-one real array whose elements are arr_3 (1,3) ,
arr_3 (2,3) and arr_3 (3,3). It is, therefore, the third
column of arr_3.

arr-3(2,3:4) is a rank-one array whose elements are arr_3(2,3) and
arr_3 (2 ,4).

A good example of the use of array sections defined by subscript triplets
will be found in Chapter 18, in the procedure for solving a system of linear
equations by Gaussian elimination (Section 18.5).
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We shall now tum from subscript triplets to vector subscripts. These are
used when a non-regular pattern of indices is needed and, hence, a subscript
triplet would not work.

A vector subscript is an integer array expression of rank I, each of whose
elements has the value of a subscript in the array section being defined. Thus, if
the rank-one array v has a size of 4, and its elements have the values 3, 7, 4 and 5,
then the array section arr (v) is a rank-one array of size 4, whose elements are, in
order, arr (3), arr (7), arr (4) and arr (5). The array v is the vector subscript.

Note that, in the preceding example, the size of arr (v) was equal to the
size of v, and the size of arr was irrelevant in determining the size of the array
section arr (v) . Hence, a vector subscript can be used to construct a vector from
an array that is longer than that array; for example, if the arrays p and u are
declared as follows:

LOGICAL,DIMENSION(3) ..
INTEGER,DIMENSION(5)

p
u = (/3,2,2,3,1/)

then p (u) is a rank-one logical array of size 5, whose elements are, in order, p (3),
p(2), p(2), p(3) and p(l). Notice that some of the elements ofp are repeated.

This is an example of a many-one array section. That is, it is an array
section with a vector subscript having at least two elements with the same value.
A many-one array section must not appear on the left-hand side of an assignment
statement, nor may it be an input item in a READstatement. In both cases, such
uses would be ambiguous and are, therefore, forbidden.

Finally, we note that subscripts, subscript triplets and vector subscripts
can be used together to define an array section. Thus, if the arrays string and vee
are declared as follows:

CHARACTER(LEN=lO), DIMENSION(3,4,9) :: string
INTEGER,DIMENSION(5) :: vee = (/7,1,3,1,4/)

then string(vee,3,5:9:4) is a rank-two character array whose elements are

string(7,3,5) string(7,3,9)
string(1,3,5) string(1,3,9)
string(3,3,5) string(3,3,9)
string(1,3,5) string(1,3,9)
string(4,3,5) string(4,3,9)

SELF-TEST EXERCISES 13.2

1 How would you specify two rank-two allocatable arrays called A and B7

2 How would you allocate space so that the array A of the previous exercise has
dimension 3 x 4 and B has shape (m, n), where m and n are integer variables?
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3 Under what circumstances can an allocatable array, or oneof its elements, be passed
as an argument to a procedure or be used in an arithmetic expression?

I.

4 What is the allocation status of an array? What are the possible states? How do they
occur?

5 How can the allocation status of an allocatable array be prevented from becoming
undefined? <:

6 How can the allocation status of an array be determined while a program is executing?

7 What are the differences between automatic arrays and all~catable arrays? What are
the criteria for choosing which to use?

8 How are operators applied in a whole-array expression?

9 How can some intrinsic Fortran functions be used in a whole-array expression?

10 What are the advantages of using whole-array expressions?

11 What is the purpose of a masked array assignment?

12 What is an array section? How is it used?

13 What is the difference between a subscript triplet and a vector subscript? When
should each be used?

SUMMARY

• An array may have up to seven dimensions; its rank is the number of
dimensions it has.

• The extent of a dimension is the number of permissible index values for that
dimension.

• The size of an array is the number of elements it contains and is equal to the
product of its extents.

• The shape of an array is determined by the number of its dimensions and the
extent along each dimension. It is representable as a rank-one array.

• The elements of an array are stored in a sequence known as the array
element order, in which the first subscript varies most rapidly, then the
second, and so on.
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• Array constructors define array-valued constants in the form of rank-one
arrays. The RESHAPE intrinsic function can be used to change this into any
specified shape for assignment to an array whose rank is greater than one.

• An allocatable array is an array whose rank is declared initially, but none of
its extents, and which is subsequently allocated with bounds specified
dynamically during execution.

• The space required for an allocatable array may be released at any time
during execution by deallocating the array.

• Allocatable arrays cannot be dummy arguments, function results or
components of a derived type.

• The whole array processing capability is complemented by a number of
intrinsic functions designed for manipulating arrays.

• Masked array assignment is a generalization of whole array assignment. It is
used to control the assignment at the individual element level by employing a
conformable logical array expression.

• An array section is a sub-array defined by specifying a subset of the
elements of another array.

• Array sections are defined by the use of subscript triplets and vector
subscripts.

• Fortran 90 syntax introduced in Chapter 13:

Array declaration

Allocatable attribute

Allocate and deallocate
statements

Masked array
assignment

type, DlMENSION(dim_spec, ..• ) :: list of names
where each dim_spec (up to a maximum of 7) takes one of
the forms:

extent
lower_bound: upper_bound
lower_bound:
:upper_bound

ALLOCATABLE

ALLOCATE (list of array _specifications I STAT=stat _ var)
ALLOCATE (list of array_specifications)
DEALLOCATE (list of allocated arrays I STAT=stat _ var)
DEALLOCATE (list of allocated arrays)
WHERE (conformable_log_expr) array_name = expression
WHERE (conformable _loLexpr)

array assignment statements
END WHERE

WHERE (conformable _log_expr)
array assignment statements

ELSEWHERE
array assignment statements

END WHERE
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array_name (subscript_triplet)
array_name (vector_subscript)
where subscript_triplet is one of

subscript] :subscript 2 : stride
subscript] :subscript2
subscript] :
subscript]: :stride
:subscript2
:subscript2 :stride
: :stride

and vector_subscript is an integer array expression of
rank-one

PROGRAMMING EXERCISES

"13.1 Write a program that has an explicit-shape rank-two integer array of shape (4,5)
with default index bounds. Fill the array so that the (i, j)th element has the value
10 x i + j. Print out all the array element values in a rectangular pattern that reflects the
array structure.

Now modify your program so that the printed pattern is rotated through 90°; that
is, if the original version treated the first subscript as the row number and the second
subscript as the column, then this version should treat the first subscript as the column
number and the second as the row number.

13.2 A bus leaves the terminus on the hour and every half-hour between 7.30 a.rn. and
midnight on Saturdays and Sundays. On all other days it runs on the hour and every 20
minutes between 7.00 a.m. and 6.00 p.m., and on the hour and half-hour between 6.00 p.rn.
and 11.00 p.m.

Write a program that generates the timetable for the whole week, using a 24-hour
clock, and stores it in a rank-two array in which each column contains the times of buses on
one day of the week. The program should then print the complete timetable using a single
WRITE or PRINT statement.

When you have tested your program, modify it so that for each day of the week it
reads up to three triplets which specify the start time of a particular frequency, the end time
and the frequency; in the above example the data for Tuesday would therefore be 0700,
1800,20, 1800,2300,30. Test your program with several different patterns. Remember to
ensure that buses at the change between frequency pattens (for instance at 6.00 p.rn. in the
above example) are not scheduled twice!

13.3 The infinity-norm of a vector is defined as the largest of the absolute values of the
elements of the vector. Write a function that returns the infinity norm of a vector whose
elements are stored in a rank-one assumed-shape real array which is the only argument to
the function. The function should use elemental references to the intrinsic functions to do
as much of the work as possible. Test your function on several vectors that have mixtures
of positive and negative elements.
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The two-norm of a matrix whose elements are aii' i = I, ... ,m, j = I, ... , n is
defined to be

Modify the function just written so that it calculates the two-norm of a matrix, and test it
with several matrices of different sizes.

13.4 The intersection of two sets is the set of all elements that occur in both sets. Write
a subroutine that has two rank-one integer assumed-shape dummy arguments as input and
one rank-one integer explicit-shape dummy argument as output. The output array should
contain the intersection of the two input arrays. The fourth argument should be the size of
the explicit-shape array. The fifth argument of the subroutine should be the number of
elements in the intersection.

Test your subroutine with different size sets. For each array, the elements inside
the array should be distinct from each other. Be careful that the array used for output is of
sufficient size to hold the answer. The subprogram should perform a validity check to test
for too small an output array.

Now modify your subroutine so that the output array is also an assumed-shape
array, and test it. Which approach is preferable, and why?

13.5 Write a function that has two assumed-shape rank-one real dummy arguments.
Internally, form a rank-two real array whose (i, j)th element is the product of the ith
element of the first array and the jth element of the second array. The function should scan
the product array systematically, to find a 2 X 2 sub-array that has the largest value for the
sum of its elements. Return this sum. Test your function with several sets of inputs.

13.6 The ancient Greeks developed a method of finding all prime numbers up to a
specified maximum which is called the Sieve of Eratosthenes. The method is, given the
maximum integer n:

(1) Create an integer array a of size n.
(2) Fill a with integers such that a (i) =i, i=l, ... , n.
(3) Set p=2.
(4) Go through the array a, setting all integers exactly divisible by p to O.
(5) Advance p, until either a non-zero a (p) is found, in which case go to step 4,

or p = n, in which case go to step 6.
(6) All the numbers in the array that are non-zero must be prime (nothing
divided them exactly). Print them out.

Implement this algorithm using an allocatable array for a. The integer n is to be
read as input. Try your program for different sizes of n starting at 100. Be careful that you
do not set n too large and thereby use an inordinate amount of computer time!

"'13.7 Write a function that takes a rank-one integer array as input and whose result is
the input array with its elements reversed. Use a vector subscript to accomplish this.

Use this function to reverse the elements of the ith row of a rank-two integer
array.
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13.8 Write a function that takes a rank-one real array as input, and an integer that lies
between 1and the size of the input array, and whose result is the input array with elements
shifted to the left the number of places specified by the integer input. Those element values
from the beginning of the array that are replaced by new values should be appended at the
other end of the array. This is commonly called a left circular shift. There is an intrinsic
function to do this, but the point of this exercise is to write your own.

13.9 Write a subroutine that has a rank-two square integer array as input and as output.
The array will contain positive integer values between 0 and 10. The subroutine should
modify the input array so that, when an element has a value 10 it is set to 0, when it has a
value between 6 and 8 it is increased by 1, when it has a value between 1 and 5 it is
decreased by 1, and when it has a value of 0 it is left unchanged.

Test the subroutine by running an array through it repetitively.

13.10 A conservation group is investigating the relative populations of various
woodland animals, such as badgers, foxes and squirrels, in a wooded area on the basis
of identifying their 'homes'.

The area under observation has been divided into small 'regions', each 100 m2
,

forming an n km x m km rectangular area. These regions are identified by a coordinate
system in which they are numbered from 0 to IOn - 1 west-east, and from 0 to 10m - 1
south-north; thus region (12,7) is the region whose south-west comer is 1200 m east of
the 'origin' and 700 m north of it (where the 'origin' of the coordinate system is the south-
west comer of the larger area being surveyed).

Within each region the number of fox holes, badger setts, squirrel dreys etc., has
been recorded in the form of the coordinates of the region, followed by several counts of
the form

nn animals
where animals is Badgers, Foxes or whatever animal's home has been identified.

Thus a particular record, for region (12,17) might read

12 17 2 Foxes 1 Badger 5 Squirrels
Write a program to read this data (from a file) and to produce the following initial

analyses:

(a) The total population of each type of animal, assuming one animal per hole,
sett, drey or other type of home;
(b) The region or regions with the highest population of each type of animal;
(c) The region or regions with the lowest population of each type of animal.

The program should read the dimensions of the area being surveyed (n and m) at
the beginning, but it will not be possible to determine the number of different types of
animals until all the data has been input.

Test your program with several different sets of data.
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14.1 Non-default data types
14.2 Specifying kinds of variables
14.3 Specifying kinds of constants
14.4 Using non-default kinds to improve

portability

14.5 Using non-default kinds to improve
flexibility

14.6 Mixed kind expressions
14.7 COMPLEX variables

Almost all computers have more than one physical representation for
real numbers, providing different degrees of precision and exponent
range, and many also provide more than one representation of integers,
providing different ranges of integer values. This chapter shows how
Fortran 90 allows the programmer to specify, in a portable fashion, the
degree of precision and/or the range of values required, so that the
compiler can ensure that the most suitable of the hardware
representations is used.

In a similar fashion, many computers support more than one
character set, in order that the computer can operate with the characters
used in the language of the user. This chapter also describes how
Fortran 90 uses the same concept as is used for numbers to allow the
programmer to specify which character set is to be used for a particular
character entity.

As well as the INTEGER, REAL, CHARACTER and LOGICAL data types
discussed in earlier chapters, Fortran includes an intrinsic COMPLEX
type, whose use is also described in this chapter.

477
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14.1 Non-default data types

We first introduced the intrinsic INTEGER, REAL and CHARACTER data types in
Chapter 3, LOGICAL in Chapter 6, and DOUBLE PRECISION in Chapter 10. However,
apart from the discussion of parameterized real data in Chapter 10, we have not
yet presented the full potential of any of these data types. For example, the range
of values that may be stored in an integer will vary according to how many bits
are used to represent it in a computer's memory, while both the range and the
precision of real values can vary enormously depending on how they are actually
represented by the computer being used. This presents considerable numerical
difficulties when attempting to write portable programs.

In order to overcome these problems, Fortran 90 allows all the intrinsic
types other than DOUBLE PRECISION to have more than one form, known as different
kinds, and provides the means for a program to define which kinds of variables
and constants it wishes to use. Each implementation of Fortran 90 will provide at
least one kind of each intrinsic data type, known as the default kind, and may
provide as many other kinds as it wishes. The non-default kinds are identified by
means of kind type parameters.

For the numeric data types, the kind type parameters allow the
specification of the numeric ranges and, for REAL and COMPLEX (see Section
14.7), the precisions available. By selecting a kind with a defined range and
precision the precision problems resulting from moving programs from one
computer to another are greatly reduced.

The kind type parameter for the character data type is rather different as it
identifies which character set is being used - for example, a natural language
character set such as Cyrillic or Kanji, or a character set containing special
graphics symbols such as those required for printing music.

The kind type parameter for the logical data type, however, is something
of an anomaly - possibly because it was included in the language as much for
consistency with the other intrinsic data types as for any good technical reason.
Even though a logical entity may have a kind type parameter, the Fortran
standard attaches no specific meaning to it! A processor is free to use it in
whatever way it wishes for processor-dependent purposes.

Before discussing how kind type parameters are specified we should
briefly examine under what circumstances kind type parameters should be
explicitly specified.

Essentially, the numeric data types should have their kind type parameters
explicitly specified when the program is expected to be run on more than one
type of machine (which is the usual situation) and the degree of precision used in
calculations is important, or when the default precision or range provided by the
machine being used is inadequate for the type of calculations being undertaken.

For character entities, the default character set will be adequate for most
purposes. However, if programs are being written for other than an English-
speaking environment, or if special symbols which are not part of the default
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charader set are required, then it will be necessary to specify explicitly the kind
type parameter of charader entities.

On the other hand, since non-default logicals are inherently non-portable
we recommend that only default logicals should normally be used.

The next sedion will explain how to specify kind type parameters for
variables and constants of different types, without going into details of what
the values mean. The subsequent sedions will then show how to obtain specific
effects by varying the values of the kind type parameters for each of the main
intrinsic Fortran data types.

14.2 Specifying kinds of variables

The kind type parameter associated with a variable is specified by the kind
selector in the declaration of the variable. If no kind seledor is specified then the
type is said to be of default type. Up to this point (other than during a similar
discussion in Chapter 10), all the variables and constants that we have used have
been of default type. Thus, in Figure 14.1, the variables x and yare of type default
reaL z is a rank-one default real array of size n, i is a default integer named
constant whose value is 25, a is a rank-two default character array of size
10 x 20, each of whose elements is five charaders long, and danger is of type
default logical.

Each data type has its explicit parametrization specified in an identical
manner in a modified version of the type declaration statement that we have been
using up to now:

TYPE (KIND=kind_num) , ... :: var_I, ...

where TYPE is one of INTEGER, REAL, COMPLEX, CHARACTER or LOGICAL. It cannol be
DOUBLE PRECISION. If the parenthesized KIND= phrase is omitted then the type is a
default type.

kind_num is either a positive integer constant or a constant integer
expression which will evaluate to a positive value. In fad, it is a special type of
constant expression, known as an initialization expression, which must be

REAL :: x, y
REAL, DIMENSION(n) :: z
INTEGER, PARAMETER :: i = 25
CHARACTER(LEN = 5), DIMENSION(lO, 20) .. a
LOGICAL :: danger

Figure 14.1 Default kind type declarations.
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capable of being evaluated when the program is compiled - it cannot be varied
during execution.

We may omit the KIND= part of the specification:

TYPE (kind_num), ... ::

but we recommend that the first form should always be used to avoid any
confusion, especially when dealing with character declarations.

In the case of character declarations, there is a complication because the
length of the character variable also has to be specified. The type declaration
statement, when kind type parameter values are given explicitly, can take any of
the following forms:

CHARACTER (LEN=len, KIND=kind num), ... ::
CHARACTER (len, KIND=kind numj, :: ...
CHARACTER (len, kind num), ... :: .
CHARACTER (KIND=kind num, LEN=len), .
CHARACTER(KIND=kind::::num), ... :: .

Both keywords are optional, aY{dif the first item does not have a keyword it is
taken to refer to the length, as in the second and third examples shown above. In
the last example the length specification defaults to 1, but note that while

REAL (number) , ... :: ...

declares a real variable of kind number, the similar statement

CHARACTER (number), ... :: ...

declares a character variable of default kind and of length number, as we saw in
Chapter 3. We strongly recommend, therefore, that both keywords should
always be used to avoid confusion and potential errors.

Figure 14.2 shows how the same variables and arrays as in Figure 14.1
would be declared with each data type having an explicit value for its kind selector.

It must be emphasized that only intrinsic data types have kind selectors,
and that it is impossible, therefore, to associate a kind selector with a derived

REAL(KIND = 2) :: X, y
REAL(KIND = 1) I DIMENSION(n) :: z
INTEGER(KIND = 10), PARAMETER :: i = 25
CHARACTER(KIND = 0, LEN = 5) I DIMENSION (10 I 20) .. a
LOGICAL(KIND = 3) :: danger

Figure 14.2 Explicit kind type declarations.
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type, although kind selectors can, of course, be used with the components of a
derived type. Thus

TYPE my-point
REAL (KIND = 3)

END TYPE my-point
x, y, z

defines a derived type each of whose components is real of kind type 3.

14.3 Specifying kinds of constants

Since variables can be of different kinds, it follows that the same must also apply
to constants. Unfortunately, however, the situation here is not quite as
straightforward as is the case with variable declarations. In order to specify the
kind of a constant, the kind type parameter follows the constant, separated from it
by an underscore, except in the case of characters, where the kind type parameter
precedes the constant, separated from it by an underscore. The kind type
parameter is either a literal integer constant or a named constant, and takes the
value of the required kind type. If the kind type parameter is omitted then the
constant is, of course, of the appropriate default type.

The following are examples of integer literal constants:

-124
628_3
-628_small
628_1arge

Default integer

Integer of kind 3
Integer of kind small
Integer of kind large

where small and large are scalar integer named constants whose values are non-
negative. They could, for example, have been defined by a statement of the form

INTEGER, PARAMETER :: small = 5, large = 1

Real literal constants take a similar form:

-1. 0

12.34
401. 2E-5
155.0_1
-704.2E-3_3
-704.2E-3_low
-704.2E-3_high

Default real

Default real

Default real

Real of kind 1
Real of kind 3

Real of kind low
Real of kind high
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where low and hiqh are scalar integer named constants whose values are non-
negative.

For characters, the kind type parameter precedes the character literal,
separated by an underscore. (The reason for this is so that the processor can know
what kind of characters it is dealing with before it gets to them.) The following
are examples of character literal constants:

"ABC_XYZ" is a default character literal, using the default character
set which must include the Fortran Character Set

12_")1(3 H II is a kind 12 character literal, where kind type 12
identifies a character set on the processor which
includes Cyrillic characters

cyrillic_")1(3 H II is a kind cyrillic character literal, where cyrillic is a
named constant whose value has been set to the kind
type of a character set on the processor which includes
Cyrillic characters

qreek_"a~y" is a kind qreek character literal, where qreek is a
named constant whose value has been set to the kind
type of a character set on the processor which includes
Greek characters

Note that the kind type identifies a processor-defined character set, or
repertoire. There is no standard interpretation of the kind values and, for
example, if a processor supports the 'universal' coded character set defined in
ISO/lEC 10646 it would probably result in qreek and cyrillic having the same
values on that processor, whereas on most processors, which do not support the
universal coded character set, they will each have different values.

For logical constants, the kind parameter follows the literal:

.TRUE.

.FALSE._5
Default logical

Logical of kind 5

14.4 Using non-default kinds to improve portability

Before discussing how non-default kinds can be used to provide greater control
and portability of programs than is possible with default data types there is an
important point that must be dealt with. The Fortran standard does not require
that the values of the kind type parameters have the same meaning on all
processors.

At first sight, this would seem to eliminate the possibility of writing
portable programs, even though this has been stated to be one of the advantages
of using non-default data types. Fortran 90, however, provides a number of
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intrinsic functions that completely eliminate this difficulty for numeric data types.
For CHARACTER data types, as we shall see, modules can be used to largely
eliminate portability difficulties.

For integers, the value of the kind type parameter specifies what range of
integers is required. To provide a convenient way of portably specifying the range
requirements, the intrinsic function SELECTED_INT_KIND can be used to specify the
range required, and cause the Fortran processor to provide a suitable kind type.
Thus a reference to

returns a value of the kind type parameter for an integer data type that can
represent, at least, all integer values n in the range -lOr < n < lOr. If it is not
possible to represent all the integer values in this range then the function will
return a result of - 1.

In some cases there may be more than one available kind type which will
satisfy the requirement, in which case the one with the smallest exponent range
will be returned. If there are several of these then the smallest of these kind type
values is returned.

The following example uses this function to define a constant which is, in
tum, used in the declaration of a number of variables.

PROGRAM degree
IMPLICIT NONE
INTEGER, PARAMETER .. range = SELECTED_INT_KIND(20)
INTEGER(KIND = range) :: x, y, z
x = 360_ranqe
y = lSO_range
z = gO_range

END PROGRAM degree

This extract defines three integer variables x, y and z that can contain values in
the range _1020 < n < 1020. They are initially set to the values 360, 180 and 90,
respectively.

Notice that the named constant range is used to set the precision
requirements for all integer constants and variables in the program. If the program
is moved to a different computer system it will still use variables and constants of
a kind which will allow at least the specified range because, even though the
relevant kind types returned by the function SELECTED_INT_KIND are processor-
dependent, it is known that they will be such as to meet the specified range
requirement.

Note, however, that the program is not totally portable, because it is
possible that the processor cannot support the requested integer range. In this
case, the value -1 will be returned by SELECTED_INT_KIND, and the subsequent
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attempt to declare a variable or constant of this kind will lead to an error. For
most programs, though, this should be an extremely rare occurrence.

In the above program fragment we have specified the kind of the
'constants by writing them in the form 360_range. This is not normally necessary,
however, when dealing with integers, since the default integer will almost
certainly have a sufficiently large range for any literal constants. We can therefore
write statements such as

x = 360

which are easier to read, and let the compiler take care of the necessary
conversions. When we come to consider the situation with non-default reals,
however, we shall have to be more careful.

It is important to note that the kind type parameter value returned by the
intrinsic function SELECTED_INT_KIND may be for an integer data type that exceeds
the requirements specified. Therefore, in subsequent calculations, it would not
necessarily be an error to set x, y or z to 1025• Whether or not this produced an
error, or any type of warning at all, would be completely dependent on the
processor on which the program is run - it is not required by the Fortran standard.

There is one final point to be made before we leave our discussion of non-
default integers. In general, we shall require all the integers in the program, or
certainly a substantial proportion of them, to be of the same kind. It will therefore
be more satisfactory to place the definition of the kind type in a module so that it
can easily be made available to all procedures that require it and, moreover, so
that a global change to the range required in the program can be made by simply
changing the kind type number in just one statement. Figure 14.3 shows how this
program extract would look if written in this way.

MODULE constants
IMPLICIT NONE
INTEGER, PARAMETER .. range = SELECTED_INT_KIND(20)

END MODULE constants
PROGRAM degree

USE constants
IMPLICIT NONE
INTEGER(KIND = range) .. x/ y/ Z

X = 360_range
y = lBO_range
z = 90_range

END PROGRAM degree

Figure 14.3 Using a module to specify the kind types of variables and constants.
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In all future examples we will normally adopt this approach of using
modules for entities that permeate entire programs.

For real numbers, the value of the kind type parameter specifies the
precision as well as the exponent range that is required. Furthermore, in a similar
manner to the case with- integers, we can use the intrinsic function
SELECTED_REAL_KIND to assist with portability. Thus the statement

INTEGER, PARAMETER:: real_kind = SELECTED_REAL_KIND(p,r)

sets the constant real_kind to a kind type parameter for a real data type that has
at least p decimal digits of accuracy and a decimal exponent range of at least r. If
no such kind type parameter is available on a particular processor for the range
requested, the function will return a value of -1. If the precision requested is
unsupported, the function will return a value of -2. If neither the precision nor
range requested are available, the function will return a value of -3. If any of
these values are used as the kind type in a declaration statement they will, of
course, cause a compilation error. If more than one kind type parameter value
meets the criteria, the one with the smallest decimal precision is returned. If there
are several such kind values, then the smallest of the values is returned.

The exponent range argument r is optional. This reflects the fact that, for
most calculations and processors, selection of the precision is usually (but not
always) a more critical issue than selection of the exponent range. If the range
argument is omitted, the processor will choose the value of r.

Figure 14.4 shows a program fragment which uses real numbers having
six decimal digits of accuracy and an exponent range of 30.

MODULE constants
IMPLICIT NONE
INTEGER, PARAMETER

END MODULE constants
PROGRAM satellite

USE constants
IMPLICIT NONE
REAL (KIND = real_kind) :: r, theta, phi
r = 321.172_real_kind
theta = 1.47239_real_kind
phi = O.172341E-l_real_kind

END PROGRAM satellite

Figure 14.4 Specifying the precision and range of real variables and constants.
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Just as was the case with integers, it is important to note that the kind
type parameter value returned by the intrinsic function SELECTED_REAL_KIND may
specify a kind type that exceeds the specified precision and exponent range
requirements. For example, on a computer which had two real kind types 1 and 2,
which had precisions and ranges of (5,30) and (10,60), respectively, kind type 2
would be selected for the program shown in Figure 14.4, with the result that all
calculations would use variables and constants which held values to 10 digits of
precision. If the program was subsequently run on a computer which also had two
kind types 1 and 2, but with precisions and ranges of (6,40) and (12, 70),
respectively, then kind type 1would be selected, and all calculations would use
only six digits of precision. The result might be different from that obtained on
the first computer, therefore, but it would not be different to six digits of precision,
since both computer systems were working to at least that level of precision.

Parameterization of real numbers involves more subtle issues (of a
numerical nature) than for any other Fortran data type, and has already been
discussed in some detail in Section 10.2, for those interested in such matters.

14.5 Using non-default kinds to improve flexibility

Unlike the numeric types, where it is possible to use the intrinsic functions
SELECTED_INT_KIND and SELECTED_REAL_KIND to guarantee portability of range
and precision, non-default character and logical types are inherently non-portable,
since different processors will, almost certainly, not provide equivalent types or
kind numbers. The primary use for non-default character and logical types is,
therefore, to provide greater flexibility in certain important aspects.

For characters, the value of the kind type parameter specifies what
character repertoire is required, or what set of characters is to be available. The
whole question of coded character sets (the actual binary codes used to
represent characters) and character repertoires (the set of available characters
regardless of their internal coding) is quite complicated and beyond the scope of
this book. It is the goal of the International Organization for Standardization, and
of most major computer manufacturers, that in the not-too-distant future a single
coding system will be used on all computers which will deal with all possible
characters, even those contained in very large character repertoires such as are
required for Chinese, Japanese and certain other East Asian languages. Despite the
work being done in this area, however, it seems probable that most computer
systems will not accept more than a relatively small subset of the known
characters for many years to come, and that some means will be required to
specify those that are required in a particular application. In Fortran 90, as we
have already seen, that specification is provided as the kind type parameter.

The kind type parameter for characters is, however, just as processor-
dependent as are those for the numeric types. Moreover, no intrinsic functions are
provided to assist in developing portable code. We therefore recommend that all
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character repertoire specifications be put into a module where they may be
readily adjusted, in one place only, if the program is moved to a different
processor.

Let us suppose, for example, that a program is being written which
requires access to both Cyrillic and Kanji characters. If the processor that we are
using provides both the Cyrillic and Kanji character repertoires with kind
parameter values 3 and 5, respectively, then a suitable module would be as
follows:

MODOLE constants
IMPLICIT NONE
INTEGER, PARAMETER
INTEGER, PARAMETER ..

END MODOLE constants

cyrillic = 3
kanji = 5

We could then use both character repertoires, as well as the default repertoire, in a
program which would, in itself, be portable as long as the necessary changes were
made to the module if it were to be moved to another processor:

PROGRAM translate
OSE constants
IMPLICIT NONE

CHARACTER(LEN = 80, KIND = cyrillic) :: russian text
CHARACTER(LEN = 240, KIND = kanji) :: japanese_text
CHARACTER(LEN = 80) :: english_text

russian_text = cyrillic_"lSe3 Hee HHlJTO HeBo3Mo)J(HO"
japanese_text = kanji_"1Bl:RfJ: L "'C'tj:fRJ '4:> "'C'! fJ:\r>"
english_text = "Without her, nothing is possible"

END PROGRAM translate

Of course, if this program is moved to a computer system which does not
support either of these two character repertoires then there will be problems!
However, as long as the characters are supported, the program will run correctly,
even though the relevant kind parameters may have quite different values.

For logical data, the Fortran standard assigns no specific meaning to the
kind type parameter. The reason for this is that non-default logical data types
were included in Fortran 90 mainly because the other intrinsic data types could be
parameterized, and so why not logicals?

Because there is no requirement for a Fortran 90 processor to provide any
logical data types other than the default kind, and because there is no guarantee,
even if they do, that the non-default logical types have any particular relationship
to each other, the concept is inherently non-portable and not to be recommended.
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14.6 Mixed kind expressions

In Chapter 3 we explained how (default) real and (default) integer values could be
used in the same expression, and elaborated the rules relating to the evaluation of
such expressions. We also presented the rules governing the assignment of values
of one type to a variable of another type.

Clearly, we must now extend these rules to cover the case of expressions
involving explicitly parameterized variables and constants. Of course, if all the
operands in an expression are of the same type and have the same value for their
kind type parameter values, then matters are quite straightforward and, as we
would expect, the expression will have a value for its kind type parameter that is
the same as that of its operands. It is only when expressions involve operands of
different types or different kind type parameter values that the situation may
become slightly more complicated.

A number of intrinsic functions are provided to give precise control of
kind type parameter values in expressions. The first of these, the intrinsic inquiry
function KIND, will return the kind type parameter value of any integer, real,
complex, character or logical entity. Thus the statement

k1 = KIND ( 0 . 0 )

sets kl to the value of the kind type parameter for default reals, the statement

k2 = KIND("ABC")

sets k2 to the value of the kind type parameter for default characters, while the
statements

INTEGER(KIND=3), DIMENSION (3) .. a
k3 = KIND(a)

set k3 to 3.
At first sight this function does not appear to be particularly useful other

than for establishing the kind type parameter values of the default intrinsic data
types, since it is necessary to know the kind type of a variable before it can be
declared, and of a constant before it can be written. However, as we shall see, it
does have a role to play in writing portable programs.

A rather more useful feature in this regard, however, is the inclusion of an
extra, optional, argument in the type conversion functions INT, REAL and CMPLX.
We have already met the first two of these functions in their simple form, but we
shall now briefly re-examine them in their new, more powerful, role.

The intrinsic function INT (A, KIND) converts the argument A to an integer.
A can be integer, real or complex and can be scalar or array-valued. The value of
the result is the integer part of A if it is of type integer or real. If A is complex, the
value is the integer part of the real component of A. If the argument KIND is
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present then the result of the conversion will be an integer of kind KIND; if it is not
present, as has been the case when we have used it before, then the result will be
of type default integer. In all cases, if the value of the number being converted lies
outside the range of integers which can be represented in the specified kind of
integer then the result is undefined - although it will usually result in an error.

Thus the expression

= j + INT(x,KIND(j))

will convert the value of the variable x to an integer of the same kind as the
(integer) variable j, before adding it to j and storing the result in j.

In a similar way, the intrinsic function REAL (A,KIND) converts the argument
A to real. A can be integer, real or complex and be scalar or array-valued. The
value of the result is a floating point approximation to A if it is of type integer or
real. As was the case with INT, the result will be real of kind KIND if the argument
KIND is present, and will be default real otherwise.

Note, however, that the statement

j = INT(REAL(i,KIND(x)) ,KIND(i))

does not necessarily result in j taking the same value as i, even if they are both of
the same integer kind. For example, if the three variables in the above statement
were declared by means of the following statements:

INTEGER, PARAMETER
INTEGER, PARAMETER

INTEGER (KIND=k) ..
REAL (KIND=p) :: x

k = SELECTED_INT_KIND(lO)
P = SELECTED_REAL_KIND(6)

i,j

then the integer variable i potentially has 10 decimal digits of accuracy. When it
is converted to a real with a requirement for six decimal digits of accuracy,
therefore, it must be assumed that some loss of precision may result. When it is
subsequently converted back to an integer of the same kind as the original value
it is too late to retrieve the lost precision!

For logical entities, there is an intrinsic function LOGICAL(L,KIND) that
converts between different kinds of logicals. The argument L must be of type
logical. The result has the same value as L and will be of logical kind KIND if the
argument KIND is present, and will be default logical otherwise.

Characters are, of course, different from other data types in that different
kinds are quite distinct and conversion from one character set to another would
be quite meaningless. There is, therefore, no intrinsic function to convert between
character entities having differing kind type parameter values.
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Function name and arguments

AINT(A,KIND)
ANI NT (A,KIND)
CHAR (I ,KIND)
CMPLX(X,Y,KIND)
INT(A,KIND)
LOGICAL (L,KIND)
NINT(A,KIND)
REAL (A,KIND)

Purpose

Truncation
Nearest whole number
Character in given position in collating sequence
Convert to complex
Convert to integer
Convert between kinds of logical
Nearest integer
Convert to real

Figure 14.5 Intrinsic functions which have an optional KIND argument.

There are a number of other intrinsic functions which have an optional
argument which defines the kind of the result in the same way as in those
described above; a full list can be seen in Figure 14.5. A specification of these, and
of all Fortran's intrinsic procedures, can be found in Appendix A.

We now come to the kind type parameter values of expressions, and here
we would strongly recommend that the intrinsic functions discussed above are
always used to ensure that all the elements of an expression are converted to the
same kind before any other operations are carried out.

For characters there is only one operator, namely the concatenation
operator (/ I), and both operands must be of the same kind. As we would expect,
assignment is only allowed when the kind of the expression is the same as the
kind of the variable to which the value of the expression is being assigned.

For logical entities the various logical operators are only fully defined for
operands of the same kind; if they are of different kinds then the kind of the result
is processor-dependent. It is unlikely that this will cause any difficulties, since
interpretation of one kind of true as another kind is unlikely to be beyond the
capability of any Fortran processor! Whatever the kind of the value of a logical
expression, if it is assigned to a logical variable then it will be converted to the
kind of that variable.

The rules for determining the kind type parameter value of a numeric
expression, however, appear to be quite complicated, although they are quite
logical once you sit down and think about them! Figure 14.6 shows how the kind
of a simple binary operation is determined, and the kind type parameter value of a
more complex expression can then be determined by systematic application of
these rules.

It is clear, therefore, that if the kind type parameter values of the operands
in an expression are not identical, then the rules for their evaluation are quite
complicated, and code written in this way will be difficult to understand, maintain
and convert to a new computer. Whenever possible, therefore, expressions
involving operands with differing kind type parameter values should be
avoided.
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Operand X2

INTEGER REAL COMPLEX

INTEGER Kind type parameter value Kind type parameter Kind type parameter
of Xl if the kind type value of the real value of the complex
parameter values of the operand. operand.
two operands are equal.
Otherwise it is the kind
type parameter value of
whichever operand has the

Operand Xl greatest" decimal exponent
range.

REAL Kind type parameter value Kind type parameter value of Xl if the kind
of the real operand. type parameter values of both operands are

equal. Otherwise, it is the kind type parameter
COMPLEX Kind type parameter value value of whichever operand has the greatest"

of the complex operand. decimal precision.

" If they are equal, the kind type parameter value is processor-dependent.

Figure 14.6 Kind type parameter value of X1 op X2'

SELF-TEST EXERCISES 14.1

1 What is a kind type parameter? Why are kind type parameters important?

2 How are explicit kind type parameters specified for variables?

3 How are explicit kind type parameters specified for constants?

4 What are the default REALand default CHARACTERdata types?

5 What implicit functions are used to specify values for the kind type parameters of
INTEGERand REALentities? How are they used?

6 What happens if an impossible INTEGERrange or REALprecision is requested?

7 Why is it undesirable to write an expression like

x + 1234567_2
where x is a default REAL?

8 Why should logical entities always be default logicals?
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14.7 COMPLEX variables

There is one more type of numeric variable which, although it is not used as much
as real or integer variables, does occur from time to time in general applications,
and is very important in certain application areas, such as electrical engineering.
This type is called complex and consists of two parts - a real part and an
imaginary part. In Chapter 4 we defined a derived type for this purpose which
enabled us to illustrate several aspects of derived types. In a similar way, the
intrinsic COMPLEX type stores a complex number in two consecutive numeric
storage units as two separate real numbers - the first representing the real part
and the second representing the imaginary part.

A complex variable is declared in a type specification statement of the
form

COMPLEX :: name1 , name2, ...

As with all other intrinsic types, other than DOUBLE PRECISION, a complex variable may
have a kind type parameter:

COMPLEX (KIND=3) , DIMENSION(4) :: v,w

Note, however, that since complex numbers are compound entities,
consisting of an ordered pair of REAL numbers, the value of the kind selector,
whether explicitly or implicitly specified, applies to both of the two real
components. Thus, in the above example, the two rank-one complex arrays, v and
w, each consist of eight real components of kind type 3 - a real and an imaginary
component of each element of each array.

Because its components are real values, the value of the kind type
parameter for a complex entity specifies the decimal precision and exponent
range required for the two component real numbers. Thus, we can use the
intrinsic function SELECTED_REAL_KIND to specify precision and exponent range
requirements for complex numbers in a portable manner. Figure 14.7 illustrates
the use of non-default complex numbers in a program fragment which declares an
array of complex numbers, each of whose elements has real and imaginary parts
having at least 12 digits of precision and an exponent range of at least 70.

A complex constant is written as a pair of numeric constants, either real or
integer, separated by a comma and enclosed in parentheses:

(1.5,7.3)
(1. 59E4, -12E-l)
(2.5,6)
(19,2.5E-2)

The situation regarding kind type parameters with complex literal
constants is, however, slightly more complicated than for other data types
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MODOLE constants
IMPLICIT NONE
INTEGER, PARAMETER .. complex_kind = &

SELECTED_REAL_KIND (12, 70)
END MODOLE constants
PROGRAM accurate

OSE constants
IMPLICIT NONE
COMPLEX(KIND = complex_kind), DIMENSION (4) .. z
z(1) = (3.72471778E-45_complex_kind, &

723. 115798E-56_complex_kind)

END PROGRAM accurate

Figure 14.7 Specifying the precision and range of complex variables and constants.

because of the fact that a complex constant is specified as an ordered pair of
numbers that may be real or integer constants, and every possible combination of
component data types must be considered. If integers are used, they are
converted to their real equivalents.

If both component constants are of the default real type, then the complex
constant has the same kind as default real. Thus (1. 23,4 .28) is a default complex
constant whose kind type is the same as default real.

If both component constants are integer, with any kind type parameter,
they are converted to default reals and the complex constant is of type default
complex. Thus

(1_2,3)
(1,3)
(1_2,3_4)

are all default complex constants.
If only one of the component constants is an integer constant, it is

converted to a real with the kind type of the real component, and the complex
constant also has that kind type. Thus

/

(1,2.0)

(1,2.0_3)
is a default complex constant
has a kind type parameter of 3

If both component numbers are real, the kind type parameter of the
complex constant is the value of the kind type parameter of the component that
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has the greater decimal precision. If both precisions are the same, the processor
can select the kind type parameter of either component as the kind type
parameter of the complex constant. Thus

(1. 2_3,3.4_3)

(1. 2_3, 1E6_4)

has a kind type parameter of 3.

has a kind type parameter of 3 if the processor
provides more decimal precision for real constants of
kind 3 than for real constants of kind 4;

has a kind type parameter of 4 if the processor
provides more decimal precision for real constants of
kind 4 than for real constants of kind 3;

and has a kind type parameter either 3 or 4 (the
processor's choice) if the processor provides the same
decimal precision for real constants with kind
parameter 3 and 4.

To avoid these complications we recommend always using a pair of real constants
of the same kind type to form a complex constant.

Finally, in a similar manner to the intrinsic functions REAL and INTEGER, the
intrinsic type conversion function CMPLX (X, Y , KIND) combines the arguments X
and Y (if present) to be the real and imaginary parts of a complex type. The
arguments X and Y can be integer, real or complex, and may be scalar or array-
valued. The argument Y is optional; if it is omitted it is taken to have the value 0
unless X is complex, in which case only X is used to form the result value and Y

must be omitted. If X is not complex, then the real and imaginary parts of the
result are X and Y, respectively. The value of the kind type parameter of the result
is KIND, if it is present; otherwise it will be that of default real.

We can now move to examining how complex numbers are used, and first
we note that, in mathematical terms, the complex number (x, y) is written x + iy,
where i2 = - 1. Electrical engineers usually use the letter j rather than i, and we
shall use j in the following discussion. This definition of a complex number leads
to the rules for complex arithmetic which we met in Chapter 4 when defining our
own complex derived type; for convenience they are shown again in Figure 14.8.

Both real and integer numbers may be combined with complex numbers
in a mixed-mode expression, and the evaluation of such a mixed-mode expression
is achieved by first converting the real or integer number to a complex number
with a zero imaginary part. Thus, if zl is the complex number (xl, y1), and r is a
real number then

rtz1

is converted to

(r,O)t(x1,y1)
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If

2r = (Xr, Yr)

2Z = (XZ, YZ)

then

2r + 2Z = (Xr + XZ, Yr + YZ)

2r - 2Z = (Xr - XZ, Yr - )/Z)

2r2z = (XrXz - YIYZ, XrYz + XZYl)

/
_ (xrxz + YIYZ XZYI - XIYZ)

21 22 - ----, ----
XZZ + yzZ xl + yzZ

Figure 14.8 Complex arithmetic.

which will be evaluated as

Similarly, if n is an integer, then

n+zl

is evaluated as

(REAL(n)+xl,yl)

Several intrinsic functions are available for use with complex numbers. For
example

and

AIMAG(z)

CONJG (z)

obtains the imaginary part of z

obtains the complex conjugate (x, -y)

All of the generic intrinsic functions, such as SIN, LOG, etc. can also be used
with complex arguments. Full details of all intrinsic functions which can be used
with complex numbers can be found in Appendix A.
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PROGRAM complex_arithmetic
IMPLICIT NONE
COMPLEX:: a,b,c
! Read two complex numbers
READ '(2F10.3)' ,a,b
c = a*b
! Print data items and their product
PRINT 200,a,b,c
200 FORMAT(" a = (",F10.3,",",F10.3,")"/ &

" b = (",F10.3,",",F10.3,")"/ &
"a*b = (",F10.3,",",F10.3,")")

END PROGRAM complex_arithmetic

Output:

a =
b =

a*b =
12.500,
6.500,
0.610,

8.400)
9.600)

174.600)

Figure 14.9 An example of complex arithmetic.

Finally, we should mention that the input and output of complex numbers
is achieved by reading or writing two real numbers, corresponding to the real and
imaginary parts, using any appropriate edit descriptor. Figure 14.9 shows an
example of both complex input and complex output.

IT] Problem

When an alternating voltage is applied to an electrical circuit both its phase and
its amplitude will be affected by the characteristics of the circuit. In order to
simplify calculations relating to such situations, electrical engineers calculate a
transfer function for the circuit. If the value of the transfer function at a frequency
w is H(w), then the amplitude of the output voltage is simply the amplitude of the
input voltage multiplied by the magnitude of H(w), while the phase of the output
voltage is the phase of the transfer function added to the phase of the input
voltage. (The magnitude of the transfer function is its absolute value, while its
phase is the arctangent of the imaginary part divided by the real part.)

A very common type of circuit in electronic equipment is a filter circuit,
such as that shown in Figure 14.10, which consists of a capacitor and an inductor
in series, with a resistor in parallel. By varying the sizes of the three components
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Output

Figure 14.10 A simple electronic filter.

it is possible to produce a high-pass filter that passes high frequencies with little
attenuation but substantially reduces the amplitude of low-frequency signals, a
low-pass filter that does the reverse, or a band-pass filter that reduces both high-
and low-frequency signals, allowing only frequencies within an intermediate band
to pass without attenuation.

Write a program to produce a table showing the phase and amplitude of
the output signal from the circuit shown in Figure 14.10 at different input
frequencies, and for different values of the components.

~ Analysis

We can use Kirchhoff's laws to derive the transfer function for this system, which
is

R
HU) = 1/27rjfC+27rjfL+R

or

27rjf RC
HU) = 1 - (27rf)2LC + 27rjf RC

where f is the frequency of the signal in hertz (cycles s- I ).
The data design and structure plan for the program is then

straightforward.

Data design

Purpose Type Name

A Module constants
1r REAL pi
21r REAL two....ri



498 Parameterized and other data types

B Local variables
Initial and final frequencies
Frequency interval
Loop variable (frequency)
Capacitance
Inductance
Resistance
Transfer function
Output phase
Output amplitude
Yes/no reply

Structure plan

INTEGER
INTEGER
INTEGER
REAL
REAL
REAL
COMPLEX
REAL
REAL
CHARACTER"l

f1, f2
Cinc
f
c

h
phase
amplitude
answer

Since the input procedure simpiy asks for the relevant information it hardly needs
a structure plan.

~ Solution

MODULE constants
IMPLICIT NONE
REAL,PARAMETER (pi = 3.1415926536, twopi = 2.0*pi)

END MODULE constants
PROGRAM filter

USE constants
IMPLICIT NONE

This program calculates the transfer function for a simple
electronic filter, consisting of a capacitor and an
inductor in series, with a resistor in parallel, and then
prints the voltage amplification and phase shift that it
produces on input signals in a specified range of
frequencies.
! Declarations
INTEGER :: f1,f2,f_inc,f
REAL :: r,c,l,amplitude,phase
COMPLEX:: h
CHARACTER :: answer
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DO
! Get data for next case
CALL input

! Print title for this circuit, and column headers
PRINT ' ("1","Frequency response between ",IS," Hz. ,

'and ",IS," Hz." I ,
" ","for a filter with a series capacitance'

'of ",F7.3, "microfarads", I'
" ","and a series inductance of ",F7.3, ,

" millihenries"l ,
" ","in parallel with a resistance of ", ,

F7 .3," kilo-ohms is:", II ,
" ","Frequency",Tl5," Voltage",T30, ,

"Phase"l ,
" "," (Hz.) ",Tl5,"amplification",T30, ,

"shift"II)', fl,f2,c,l,r

! Convert capacitance to farads, inductance to henries,
!and resistance to ohms
c=c*1.OE-6
l=ltl.OE-3
r=r*1.OE3

! Loop for required frequencies
DO f=fl,f2,f_inc

! Calculate transfer function
h=CMPLX(r,O.O)/CMPLX(r,twopi*f*l-l.O/(twopi*f*c))
! Amplification factor is absolute value of H
amplitude=ABS(h)

! Phase shift is arctangent of
! divided by real part
phase=ATAN2(AlMAG(h) ,REAL(h))
! Convert to degrees
phase=180.0*phase/pi

I

imaginary part

! Print results for this frequency
PRINT' (" ",I6,T15,F9.3,T30,F5.1)',f,amplitude,phase

END DO

!Ask if another case required
PRINT *,"Another case? (yIN)"
READ *,answer
IF (answer 1= "Y" .AND. answer 1= "y") EXIT

END DO

CONTAINS

SUBROUTINE input

! This is the input routine for the main program
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PRINT *, "What is the value of the capacitance &
& (microfarads) ?"

READ *,c
PRINT *,"What is the value of the inductance &

& (millihenries) ?"
READ *,1
PRINT *,"What is the value of the resistance &

&(kilo-ohms)?"
READ *,r
! Read frequency data
DO

PRINT *,"Give initial and final frequencies, and &
&increment (Hz)"

READ *,f1,f2,f_inc
! Check for validity
IF (f1<=f2 .AND. f_inc>O.O) THEN

EXIT
ELSE

PRINT *,"Data is inconsistent. Please try again"
END IF

END DO
END SUBROUTINE input

END PROGRAM filter

Note that when calculating the transfer function h we used the first form
shown in the earlier discussion, namely

, R
H(f) = 1/27fjjC + 27fjjL + R

which was coded in Fortran as

h=CMPLX(r,O.O)!CMPLX(r,twopi*f*1-1.0!(twopi*f*c))

where the expression 1/27fjjC was converted to -j/27fjC by multiplying top
and bottom by j, remembering that j2 = -1. We could, alternatively, have used
the second form of the relationship

27fjjRC

H(f) = 1- (27fj)2L + 27fjjRC

which was derived as a result of multiplying both top and bottom of the first
form by 27f j j C. In that case the Fortran expression would have been

h=CMPLX(O.O,twopi*f*r*c)! &
CMPLX(1.0-twopi*twopi*f*f*1*c,twopi*f*r*c)
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Frequency response between 1000 Hz. and 20000 Hz.
for a filter with a series capacitance of 0.022 microfarads
and a series inductance of 72.000 millihenries
in parallel with a resistance of 4.700 kilo-ohms is:
Frequency Voltage Phase
(Hz. ) amplification shift
1000 0.570 55.3
2000 0.866 30.0
3000 0.976 12.6
4000 1.000 0.0
5000 0.985 -9.8
6000 0.952 -17.8
7000 0.911 -24.4
8000 0.866 -30.0
9000 0.821 -34.8

10000 0.778 -39.0
11000 0.736 -42.6
12000 0.698 -45.8
13000 0.662 -48.6
14000 0.628 -51.1
15000 0.598 -53.3
16000 0.569 -55.3
17000 0.543 -57.1
18000 0.519 -58.7
19000 0.497 -60.2
20000 0.476 -61. 6

Figure 14.11 An extract from the results obtained from FILTER.

Note also that the input subroutine has been written as an internal
procedure, thus avoiding the need to pass all the input variables as arguments.
Since input routines are, by definition, normally only called from one place, they
are usually better written as internal procedures in this way.

Figure 14.11 shows the result of running this program for a particular
circuit. It can clearly be seen that at 4000 Hz there is no attenuation at all, and
that there is only a relatively slight attenuation between 2 kHz and 8 kHz. This
circuit is therefore a band-pass filter which substantially attenuates frequencies
below 1 kHz and above 15 kHz; it is thus suitable for use in audio equipment,
since this is the frequency band which is of most relevance in this type of
application. (In practice, since the circuit only contains passive elements, it is
unlikely that such a primitive filter would actually be used in high fidelity
equipment, but we are not concerned here with the finer points of electronic
circuit design!)
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SELF TEST EXERCISES 14.2

1 If a REAL constant or variable is defined by explicitly stating range or precision
requirements, why does it not always meet these requirements exactly?

2 How is a complex number represented by the COMPLEX type?

3 What is the relationship between the kind type of a complex variable and the kind
. types of its components?

4 What will be printed by the following program?

PROGRAM test14_2_4
IMPLICIT NONE
COMPLEX :: p=(1,2) ,q=(3,4)
REAL :: x=5. 0
PRINT *,p,q,x
PRINT *,p+q,p-q,p+x
PRINT *,p*q,x*q,p/q
PRINT *,p/x,x/p,CONJG(x/p)

END PROGRAM test14_2_4

5 Why is it undesirable to write a complex number in the following form?

(1.O,x_4)

SUMMARY

• All intrinsic data types have aparameter called the kind type parameter.

• If the kind type parameter is omitted, the type is said to be of default kind.

• The values of the kind type parameter are system-dependent.

• For the numeric data types, the kind type parameter specifies range and
precision requirements.

• For the CHARACTER data type, the kind type parameter specifies the character
set required. The default character set will always include the Fortran
character set.

• The intrinsic functions SELECTED_INT_KIND and SELECTED_REAL_KIND enable
precision and range requirements to be specified in a portable fashion.

• If all the components of an expression have the same kind type parameter
values, the result of the expression also has this kind type parameter value.

• The rules for determining the kind type parameter of an expression in which
the components have different kind type parameter values are complicated,
and such expressions should be avoided.
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• COMPLEX entities use two consecutive numeric storage units to represent the
real and imaginary parts by two real numbers.

• The kind type parameter of a COMPLEX variable is the same as the kind type
parameter of the two real numbers which represent its two component parts.

• To avoid complications, a COMPLEX literal constant should always have two
components with the same kind types.

• Fortran 90 syntax introduced in Chapter 14:

Variable declarations

Literal constant
definitions

COMPLEX . .. :: list of variable names
REAL (KIND=kind _type) ... :: list of variable names
INTEGER (KIND=kind_type) :: list of variable names
COMPLEX (KIND=kind _type) :: list of variable names
LOGICAL (KIND=kind _type) :: list of variable names
CHARACTER (LEN=length,KIND=kind_type) .. ,
list of variable names
CHARACTER (KIND=kind_type, LEN=length) .. ,
list of variable names

(realyart , imaginary yart)
numeric _literal_kind _type
logicaUiteral_ kind_type
kind_type _charader _literal

PROGRAMMING EXERCISES

14.1 Find out how many kinds of integers your Fortran 90 processor supports. Then
write a program which calculates factorials of integers from I upwards until the program
fails due to integer overflow when the calculation of the next factorial would result in a
larger value than the maximum integer value of the kind being used. Repeat this program
using each of the available kinds of integers. (Note that Section II.S contains two recursive
procedures for calculating factorials, one a subroutine and one a function.)

Now modify your program so that it first requests a maximum range for integers
and then uses integers of a kind which will allow integers to represent numbers of this size.
The program should then request a maximum value of n for which it will calculate n! before
starting to produce a list as before.

Use the results of the first program to select several pairs of ranges and maximum
factorials, and check that the,program now runs without failing.

14.2 Repeat Exercise 14.1 using real variables instead of integers. What does this tell
you?

"'14.3 Write a program whkh calculates lin! for real values of n increasing in steps of 1.0,
starting from 1.0 and continuing until the calculated result is not distinguishable from zero.
Run this program using default real kind, and then run it again using each available real
kind in tum.

What does this exercise tell you?
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14.4 If your processor supports more than one kind of character variable write a
program which prints out a table of decimal values and their character representations for
each kind of character. For example, if one kind is ASCII (or ISO 646) then part of the table
for that kind might read as follows (see Appendix D):

012 3 4 5 6 7 8 9

60
70
80
90

<
F
P
Z

=
G
Q
[

>
H
R
\

?
I
S
I

@
J
T

A
K
U

B
L
V

C
M
W
a

D
N
X
b

E
o
y

c

14.5 If your processor supports more than one different kind of character, experiment
by writing a program that can read a file of data consisting of a sequence of words. Sort
this data into increasing order and print the sorted data. Your program should be designed
so that it can be readily changed to use different kinds of characters. Modify your program
for a different kind of character and execute it again. You will have to create one data file
for each kind of character.

14.6 In Section 14.4 we discussed the importance of the mapping between kind type
parameters for real variables and the precision used in the hardware of the computer you
are using; understanding this relationship will prevent inappropriate precision requests.
Write a program to print out a table of the number of decimal digits specified and the
actual decimal precision given by your machine. The decimal precision should range from 1
to 30.

"'14.7 Write a program which reads the values of two complex numbers w and z from the
keyboard as two pairs of real numbers, and calculates the following values:

w+z

where z is the complex conjugate of z. (If z = x + jy, then Z'= x - jy)
Test your program with several sets of data, including the following:

(a) w = 2 + Ij, z = 4 + 3j
(b) w = 8 + 3j, z = 5 + 2j

14.8 The polar form of the complex number z (= x + jy) is written as (r, 8), where
r =Izi (the absolute value of z, which is equal to VX2 + y2 and 8 = tan-1(y/x).

Write a subroutine to convert a complex number to its polar form.
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If z = 1 + j and w = 1 + 3j, write a program which uses your subroutine to print
the values of the following expressions in polar form, with (J given in degrees:

z
w
z X w

z/w
z+w
z-w
2xz
Zl

VZ

14.9 The roots of the quadratic equation

azl + hz + c = 0

are given by the formula

-h ::l: Vhl - 4ac
z=-'------

2a

Allowing for the fact that the expression hl - 4ac may be negative (by using COMPLEX

variables), write a program that calculates the roots of such an equation, and use it to find
the rcots of the following equations:

zl-l=O
zl+l=O
zl - 3z + 4 = 0
Zl - 3z - 4 = 0

14.10 Write a program that calculates the roots of ax!' + hx + c = 0, where a, h, c are
complex numbers. Try your program in the case where a = 1, h = -6.00001
- 7.99999j, c = -6.99993 + 24.000 01j. Run it with the precision first set to 6 and
then to 14 decimal digits. The exact answers are 3 + 4j and 3.00001 + 3.999 99j.

Unless you have used a sophisticated algorithm, or have a 64-bit machine, you will
probably not get very accurate answers when the precision is 6.
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15.1 More control over external files
15.2 Additional edit descriptors for

formatted input and output
15.3 Non-advancing input and output

15.4 Direct access files
15.5 Internal files
15.6 The INQUIRE statement
15.7 NAMELIST input and output

Input and output of information is both the most important part of any
computing process, because it is the computer's only means of
communicating with the outside world, and one of the most awkward,
because the mechanical aspects of the interaction involve many
compromises and inelegant activities.

In earlier chapters we have met the most useful features of
Fortran's input and output facilities, but there is a great deal more which,
although less widely used, is of very great importance in particular
classes of work. This chapter first discusses the many remaining edit
descriptors and input/output specifiers which complete the forms of input
and output that have already been introduced, before moving on to
introduce four additional categories of input and output - two of which
(non-advancing and NAMELIST input/output) did not exist in FORTRAN 77.
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15.1 More control over external files

In Chapter 9 we introduced the concept of external files, and described how the
OPEN statement was used to connect a file with a unit number, which could then be
used in READ and WRITE statements to cause input or output to take place using
that file. Although the specifiers described in Chapter 9 for use with the OPEN
statement are sufficient for most purposes, there are several additional specifiers,
as shown in Figure 15.1, which can be used to exercise a finer degree of control
when required. The first three of these are only applicable to files opened for
formatted input or output and affect the way that certain aspects of the
formatting are processed.

The first specifier is only applicable to formatted input, and allows blank
characters in a numeric field to be treated as zeros instead of as blanks. It takes the
form

BLANK = blank mode

where blank_mode is a character expression which, after the removal of any
trailing blanks, is either NULL or ZERO. If it is NULL,.or if there is no BLANK specifier
present in the OPEN statement" then any blank characters in a numeric field are
ignored; if it is ZERO then any blank characters in a numeric field are treated as
zeros.

Thus, if a program contains the following statements

OPEN (UNIT=9,FILE=input_file,BLANK="ZERO",IOSTAT=open_stat)
READ (UNIT=9,FMT=' (2I6)' ,IOSTAT=read_stat) int1,int2

and the record that is read is as follows, where • represents a blank character

•• 12 •••• 34 ••

then, after the record has been read, intl will have the value 1200 and int2 will
have the value 3400, since the trailing blanks in each field would have been
treated as zeros. (Whether the leading blanks are treated as zeros or blanks does
not, of course, make any difference.)

On the other hand, if the OPEN statement had taken the form

OPEN (UNIT=9,FILE=input_file,BLANK="NULL",IOSTAT=open_stat)

or

OPEN (UNIT=9,FILE=input_file,IOSTAT=open_stat)

then int1 would have taken the value 12 and int2 would have taken the value
24.
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BLANK = blank mode
PAD = padding=mode
DELIM = delimitor_charader
RECL = recordJength
ACCESS = access_type

Figure 15.1 Some more specifiers for use with OPEN.

Note, incidentally, that a numeric field that is all blanks will always be
interpreted as zero, regardless of the setting of the BLANK specifier.

The BLANK specifier establishes the interpretation of blanks in numeric
fields for all input statements on that file; as we shall see in the next section, it is also possible
to specify the interpretation of blanks on a record-by-record basis by use of a BM or BZ edit descriptor.

The PAD specifier is also concerned with formatted input only and specifies
whether the processor is to supply any necessary trailing blanks for a record that
does not contain as many characters as specified by the format. It takes the form

PAD = padding_mode

where padding_mode is a character expression which, after the removal of any
trailing blanks, is either YES or NO. If it is YES, or if the PAD specifier is omitted, then
the processor will supply as many additional blank characters as are required to
match the length of the record specified in the format. If it is NO then the length of
the record must be at least as long as that specified by the format.

Thus, if a program contains the following statements:

OPEN (UNIT=9,FILE=input_file,PAD="YES",IOSTAT=open_stat)
READ (UNIT=9,FMT=' (2I6)' ,IOSTAT=read_stat) int1,int2

and the record that is read is as follows

12•••• 34

then, after the record has been read, int1 will have the value 12 and int2 will
have the value 34, since the record will first have been padded with four
additional trailing blanks, and then the blanks in each field will have been ignored.

If the OPEN statement omitted any PAD specifier, then the effect would have
been the same. However, if the OPEN statement were changed to read

OPEN (UNIT=9,FILE=input_file,PAD="NO",IOSTAT=open_stat)

then the READ statement would have given rise to an error, because the length of
the input record was only eight characters, but the format specified twelve.
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When reading from the keyboard, or from a file which had been created
from the keyboard, the PAD specifier would not normally ever be used, therefore,
as records created in this way will not normally contain additional blanks after the
last meaningful character. On the other hand, if the file has been written by
another program, and the exact length of the records is known, the use of
PAD="NO" provides an additional check that data has been read correctly.

Note that the character used for a padding character is not defined for
non-default character sets.

The third specifier is only for use with formatted output, and takes the
form

DELIM = delimiter_character

where delimiter _character is a character expression which, after the removal of any
trailing blanks, is one of APOSTROPHE, QUOTE or NONE, and is used to specify what
character, if any, should be used to delimit character values which are output
using list-directed formatting or namelist formatting (see Section 15.7).

If it is NONE, or if the DELIM specifier is omitted, then the character value is
output without any delimiting characters. If it is APOSTROPHE then the character
value is delimited by apostrophes, and any apostrophes contained within the
string are doubled. If it is QUOTE then the character value is delimited by quotation
marks, and any quotation marks contained within the string are doubled. Thus, if
a program contains the following lines:

OPEN (UNIT=8,FILE=output_file,DELIM="NONE",IOSTAT=open_stat)
WRITE (UNIT=8,FMT=*,IOSTAT=write_stat) "David's Score"

the following will be printed

David's Score

which is the same as would be printed if no DELIM specifier were included in the
OPEN statement. If the DELIM specifier is changed to DELIM="QUOTE" then the
output will be

"David's Score"

while if it is changed to DELIM="APOSTROPHE" then the output will be

'David"s Score'

If the output is destined for the printer then no DELIM specifier will
normally be required. However, if the output is being sent to a file which will
subsequently be read by another program, or even by the same one, using list-
directed or namelist formatting, then it may be essential to delimit any character
strings in this way.
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The next specifier, RECL, behaves slightly differently depending upon
whether the file is connected for sequential or direct access. We shall discuss
direct access files in Section 15.4 and, therefore, will only consider its use in a
sequential statement for the present. It takes the form

RECL = record_length

where record_length is an integer expression which defines the maximum length
that the records in the file may have. If the file is a formatted file the length is
expressed in characters; if it is an unformatted file then the length is expressed in
processor-defined units. In general, this specifier is not required for sequential
files, and its main use in this regard is to limit the size of records in a file which
will be transferred to another processor which restricts the size of records in files.

The remaining specifier that may be used with the OPEN statement is the
ACCESS specifier; this will be discussed in Section 15.4.

Up to this point we have assumed that once a file has been opened it will remain
open for the remainder of the execution of the program. This is frequently what is
required, but there are occasions when it is required to disconnect a file from the
program before the end of execution, or when it is required to specify that some
specific action is to take place when such disconnection does take place. A file
which has been connected to a program by means of an OPEN statement can,
therefore, be disconnected by means of a CLOSE statement, which takes the form

where the possible specifiers are as shown in Figure 15.2.
The UNIT and IOSTAT specifiers take the usual form, while the STATUS

specifier may be used to determine what is to happen to the file when it has been
disconnected from the program. It takes the form

STATUS = file_status

where file_status is a character expression which, after the removal of any trailing
blanks, is either KEEP or DELETE. If it is KEEP then the file will continue to exist
after it has been disconnected from the program; if it is DELETE then the file will
cease to exist after it has been disconnected. Note that, as was emphasized in

UNIT = unit number
STATUS = fik_sfafus
IOSTAT = ios

Figure 15.2 Specifiers for use with CLOSE.
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Section 9.3, this does not necessarily mean that it is physically deleted, merely that
it is no longer accessible to the program; for example, if the file is a magnetic tape
it may simply be removed from the index of tapes available.

If a file has been opened with status SCRATCH then it will automatically be
deleted when it is disconnected from the program, and it is not allowed to specify
a close status of KEEP!

Finally, we mention two further specifiers which can be used with the various input and output statements
that use a list of specifiers. The first of these can be used with the OPEN, READ, IIRITE, ENDFILE, BACKSPACE,
REWIND, CLOSE and INQUIRE (see Section 15.6) statements, and takes the form

ERR = label

It causes a transfer of control to the statement labelled label if an error occurs. Its use is not recommended
because the use of the IOSTAT specifier gives greater control. since it can provide a processor-specified
integer to indicate the cause of the error, and, more importantly, enables the program to be written in a
better style than is possible with the uncontrolled transfers of control to labelled statements elsewhere in
the program.

The second specifier is similar, but can be used only with a READ statement. It takes the form

END = label

and causes a transfer of control to the statement labelled label if an endfile record is encountered during the
reading of the file. Its use is not recommended for the same reasons as given for not using the ERR specifier.

The ERR and END specifiers will frequently be encountered in older
programs, but we do not recommend their use in any new programs.

15.2 Additional edit descriptors for formatted input and
output

In Chapter 8 we introduced the principles of formats and edit descriptors, and
described those edit descriptors which are most generally used for formatted
input and output. However, there are a number of further edit descriptors (Figure
15.3) which can be extremely useful in certain situations, and we shall briefly
describe these before moving on to some new features of Fortran's input and
output capabilities.

The first group of these are extensions to the edit descriptors that we
have already met for numeric editing, together with one new numeric edit
descriptor.

Iw. m is an extended form of the I edit descriptor which only affects the
output of integers; if used for input it is treated as though it were Iw. On output
it specifies the minimum number of digits which are to be printed including, if
necessary, one or more leading zeros. The value of m must not be greater than w,
while if it is zero and the value of the integer is also zero only blanks are output.
Figure 15.4 gives an example of its use.

As well as the F and E edit descriptors there are a number of other ways of
inputting and outputting real numbers which provide slight variations on those
methods.



Descriptor

IW.m

Ew.dEe

)
ENw.d
ENw.dEe
ESw.d
ESw.dEe
Dw.d
Bw

BW.m

Ow

OW.m

Zw

ZW.m

Gw.d }Gw.dEe

SP
SS
S
BN

BZ

Additional edit descriptors for formatted input and output

Meaning

Output integer with at least m digits

Input or output real or double-precision values
(see text for details)

Input or output a binary number

Output a binary number with at least m binary digits

Input or output an odal number

Output an odal number with at least modal digits

Input or output a hexadecimal numb~r

Output a hexadecimal number with at least m hexadecimal digits

Generalized editing
(see text for details)

Terminate format if there are no more list items

Print + signs before positive numbers

Do not print + signs before positive numbers

Processor decides whether to print + signs before positive numbers

Ignore blanks in numeric input fields

Treat blanks in numeric input fields as zeros

Figure 15.3 More edit descriptors for input and output.

PROGRAM extended_integer_editing
IMPLICIT NONE
INTEGER i
DO i=-10,10,5

PRINT' (15,15.2,15.0)' ,i,i,i
END DO

END PROGRAM extended_integer_editing
Output

-10 -10 -10
-5 -05 -5
o 00
5 05 5
10 10 10

Figure 15.4 An example of Iw. m editing.
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For input, all of the following edit descriptors have the identical effect:

FW.d
EW.d
ENw.d
ESw.d
Dw.d

EW.dEe
ENw.dEe
ESw.dEe

where e may have any value (and is ignored).
For output, however, there are significant differences. As we have already

seen, Fw. d will output a real number rounded to d decimal places with an external
field of width w; Ew. d, on the other hand, will output such a number in an
external field of width w using an exponential format consisting of a decimal
fraction of d digits in the range 0.1 to 0.9999 ... , followed by a four-character
exponent.

The EN and ES edit descriptors are variants of the E edit descriptors which
conform with normal practice in the engineering and scientific fields, respectively.

ENw. d produces an output field of a similar form to that produced by
Ew. d, but with the constraint that the exponent is divisible by three and that the
absolute value of the mantissa lies in the range 1 to 999, except when the value
being output is zero.

ESw.d also produces an output field of a similar form to that produced by
Ew. d, but in this case with the constraint that the absolute value of the mantissa
lies in the range 1 to 9, except when the value being output is zero.

Figure 15.5 shows the effect of these three variants of the E edit
descriptor.

O.988E+OS
98.76SE+03
9.877E+04

O.678E-02
6.780E-03
6.780E-03

-O.SOOE+OO
-SOO.OOOE-03

-S.OOOE-Ol

PROGRAM e_en_and_es_editing
IMPLICIT NONE
REAL, DIMENSION (4) :: x=(/1.234,-O.S,O.00678,9876S.4/)
PRINT ' (El4. 3/ENl4. 3/ESl4. 3)' ,X,X,x

END PROGRAM e_en_and_es_editing
Output

O.123E+Ol
1.234E+OO
1.234E+OO

Figure 15.5 The differences between E, EN and ES edit descriptors for output.
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If Ew.d, ENw.d or ESw.d is followed by Ee then the exponent will consist
of e digits. Thus, the number 0.000 023 1436 will be output as shown below with
various edit descriptors:

E12.5
E12.5E3
E12.5El

O.23144E-04
O.23144E-004

O.23144E-4

The D edit descriptor (Dw.d) is identical to the Ew.d descriptor for input, and for output is M
identical except that the letter E in the formatted output may be replaced by a letter D, but does not have to \&
be. It exists mainly for compatibility with earlier versions of Fortran, and cannot be used with an Ee suffix.
Its use is not recommended in new programs.

The next group of edit descriptors are used for the input or output of
integers in the form of binary, odal or hexadecimal numbers. They operate in
exadly the same way as the corresponding Iw and IW.m edit descriptors, except
that

• For Bw and Bw. m a number being input must only use the digits a and 1
and will be interpreted as a binary number, while on output the integer
value being output will be output in its binary representation.

• For Ow and OW.m a number being input must only use the digits 0-7 and
will be interpreted as an odal number (a number to base 8), while on
output the integer value being output will be output in its odal
representation.

• For Zw and Zw. m a number being input may use the digits 0-9, together
with the letters A-F, to represent a hexadecimal number (a number to
base 16), while on output the integer value being output will be output in
its hexadecimal representation.

Fortran also provides a generalized edit descriptor which can be used to
input or output values of any intrinsic type.

When used with an integer, logical or charader input! output list item
both Gw. d and Gw. d Ee behave as though the corresponding edit descriptor
was Iw, Lw or Aw, respedively, with the values of d and e, if present, being
ignored.

When used with real or complex input! output items, however, the
situation is slightly more complicated. On input it is the same as Fw. d, but on
output it uses either the Fw. d, Ew. d or Ew. d Ee formats depending upon the
magnitude of the number being output.

If the magnitude (absolute value) of the number to be output lies between
0.1 and lOd (that is, the exponent in E format would lie between 0 and d inclusive)
then F formatting is used; otherwise E formatting takes place. If F formatting is
used the field width is reduced by four for Gw. d and by e + 2 for Gw. dEe, and the
number is followed by four spaces or e + 2 spaces, respedively; the number of
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0.12346E+06
-0.12346E+06
1234.56

-1234.56
12.3456

-12.3456
0.12345
-0.12346
0.12346E-02
-0.12346E-02
0.12346E-04
-0.12346E-04
0.12346E-06
-0.12346E-06

0.12346E+06
-0.12346E+06
0.12346E+04
-0.12346E+04
0.12346E+02
-0.12346E+02
0.12346E+00
-0.12346E+00
0.12346E-02
-0.12346E-02
0.12346E-04
-0.12346E-04
0.12346E-06
-0.12346E-06

1234.56000
-1234.56000

12.34560
-12.34560
0.12346
-0.12346
0.00123
-0.00123
0.00001
-0.00001
0.00000
-0.00000

************

PROGRAM e_f_and_9_editin9
IMPLICIT NONE
REAL:: x=123456.0
INTEGER:: i
DO i=1,7

PRINT' (F12.5,3X,E12.5,3X,G12.5)' ,x,x,x,-x,-x,-x
x = x/100.0

END DO
END PROGRAM e_f_and_9_editin9
Output

123456.00000

Figure 15.6 A comparison of F, E and Gediting.

decimal digits in the mantissa (d) is then modified according to a formula which
ensures that the maximum degree of accuracy, consistent with the revised field
width, is maintained. In all cases the number is printed with d significant digits.
Figure 15.6 shows a comparison of F, E and G editing, and the advantage of the G
format when a wide range of numbers is possible is readily apparent. Notice in
particular that -123456.0 has proved to be too large for the F format (and is
therefore output as an equivalent number of asterisks), while 0.000 012 345 6 has
lost most semblance of accuracy in the F format and 0.000 000 123 456 has been
printed as zero.

The effect of the numeric edit descriptors on the input and output of real
values can be altered by use of a scale factor. This is applied by means of a P edit descriptor

(kp),which causes a scale fador of k to be applied to all numeric edit descriptors following it in a formaL Us

effed can be somewhat confusing and its use is not therefore, recommended. U is briefly discussed in

Appendix E, together with other obsolete or liHle-used fearures of Fortran 90.

The remaining additional edit descriptors are of three types. The first of
these is the : edit descriptor, which is used to terminate a format if there are no
more list items. This is not usually necessary, as the format will terminate in any
case at the next edit descriptor which requires a list item. In an output format,
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PROGRAM colon_editing
IMPLICIT NONE
REAL :: a=3.5,b=7.2
PRINT 201,a,b,a+b
PRINT 202,a,b,a+b
201 FORMAT ("1", "With no colon: ,,/ ,

"The sum of ",F5.2," and ",F5.2," is ", ,
F6.2/" Their product is ",F8.2)

202 FORMAT ("O","With a colon:"/ ,
"The sum of ",F5.2," and ",F5.2," is &
F6.2:/" Their product is ",F8.2)

END PROGRAM colon_editing

Output

With no colon:
The sum of 3.50 and 7.20 is 10.70
Their product is
With a colon:
The sum of 3.50 and 7.20 is 10.70

Figure 15.7 An example of the effect of using a : edit descriptor for output.

however, this could cause some unnecessary printing to occur. Figure 15.7 shows
the effect of the : edit descriptor on output.

The second type controls the display of plus signs during the output of
numbers by any of the numeric edit descriptors. The SP edit descriptor affects any
numbers output by any following edit descriptors in this format, and causes a +
sign to be placed before positive numbers (just as a - sign is placed before
negative ones). An SS edit descriptor has the opposite effect, and prevents a +
sign being placed before positive numbers. Finally, an S edit descriptor restores
the normal (default) situation which, for most systems, will be to omit + signs.

The final two edit descriptors, BN and BZ are used to control the interpretation of blanks in @
numeric input fields. This is normally best achieved by use of the BLAIlIt specifier in an OPEN statement, but
these two edit descriptors are described, for reference, in Appendix E, together with other obsolete and
little-used features of Fortran 90.

15.3 Non-advancing input and output

One of the fundamental principles of input and output in FORTRAN 77 was that
every READ, WRITE or PRINT statement begins a new record. This is the default
behaviour in Fortran 90 as well, but there are situations when it would be
convenient to be able to read part of a record, and read the rest later, or to write
part of a record, and write some more later.
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Fortran 90 provides for this requirement by means of non-advancing
input and output.

Non-advancing input/output can only take place on a formatted file that
is connected to an input or output unit for sequential access, and which is using an
explicit format (that is, it is not using list-directed or namelist formatting). With
non-advancing input/output it is possible to:

• read or write a record by a sequence of statements, each statement
accessing a portion of the record instead of one statement processing the
complete record;

• be informed of the length (number of characters read) of a formatted
sequential input record; and

• be notified when an end-of-record has been encountered during the
processing of a READ statement.

Non-advancing input or output is specified by the inclusion of an ADVANCE
specifier in a READ or WRITE statement. This takes the form

ADVANCE = advance_mode

where advance_mode is a character expression which, after the removal of any
trailing blanks, is either YES or NO.

If it is YES, or if the ADVANCE specifier is omitted, then input or output, as
appropriate, is carried out in the normal, advancing, mode, in which the file is
positioned after the end of the last record read or written at the completion of the
statement.

However, if it is NO then the input or output is carried out in non-
advancing mode.

In the case of a non-advancing READ statement there are three possibilities:

• If the READ statement did not attempt to read beyond the end of the
record, and there were no errors and no end-of-file condition set, then the
file position is unchanged, and the next READ statement will start to read
the same record, starting immediately after the last character read.

• If the READ statement did attempt to read beyond the end of the record
then an end-of record condition will be set, and can be tested for by use of
the IOSTAT specifier. The file will be positioned immediately after the end
of the record just read.

Note that an end-of-record condition is not an error, and so if it is
not detected by means of an IOSTAT or EOR specifier then the program will
continue without any indication that some of the data items read may have
been null. However, it is worth noting that if the PAD specifier has been set
to NO then an error will occur in this situation, since the number of
characters read must exactly match or exceed that required by the format.
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• If there was an error, or if an end-of-file condition was set, then the file
will be positioned immediately after the end of the record just read.

It is frequently useful, when carrying out non-advancing input, to be able
to determine how many characters have been read. This is achieved by use of the
SIZE specifier, which takes the form

SIZE = character_count

where character_count is an integer variable. At the conclusion of the non-
advancing READ statement the variable character_count becomes defined with the
number of characters read, excluding any inserted as padding characters.

Thus, the statement

READ (UNIT=input,FMT=123,ADVANCE="NO" ,SIzE=count', &
IOSTAT=read_status) varl,var2,var3

will carry out non-advancing input from the file connected to unit input using the
format defined by the statement labelled 123, and will store the number of
characters read in the integer variable count. The integer variable read_status
will be set to an appropriate value to indicate the success, or otherwise, of the
reading operation ..
Note that there is also another specifier for taking adion when an end-of-record condition is set, which
takes the form

EOR = label

and causes a transfer of control to the statement labelled label if an end-of-record is set up during the
reading of the file. Us use is not recommended for the same reasons as given for not using the END and ERR

specifiers in Sedion 15.1.

Non-advancing output is more straightforward than non-advancing input,
and there are only two possibilities:

• If there were no errors then the file position is unchanged, and the next
WRITE statement will write to the same record, starting immediately after
the last character written. ~

• If there was an error then the file will be positioned immediately after the
end of the record just written.

ill Problem

In Example 9.2 a set of data was read from a file, in which each record had the
following format:
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Columns 1-20
Column 23

Column 25

(

Name
Sex = F if female

M if male
Job status = 1if in full-time education

= 2 if in full-time employment
= 3 if in part-time employment
4 if temporarily unemployed

= 5 if not working or seeking a job

This was followed by one or more items depending upon the job status of
the respondent:

Job status = 1

2

3

4

5

columns 28, 29
columns 28-31

columns 28-31
columns 34-37

columns 28, 29
columns 32-34

columns 28, 29
column 31

Age
Monthly salary

Monthly salary
Other monthly income

Age
No. of months unemployed

Age
Code

1if looking after children
= 2 if looking after other relatives
= 3 for any other reason

In Example 9.2 an input subprogram was written which would read up to
a specified number of records and store the relevant details in suitable arrays for
subsequent use by other subprograms. The problem of not knowing the format of
the whole record until the first part had been read was dealt with by the crude
method of only reading the first part of each record, and then backspacing the file
and re-reading the rest in the correct format.

Rewrite the input procedure written in Example 9.2 to use non-advancing
input, so that each record is only read once.

~ Analysis

The only change that needs to be made to the previous version is in the actual
reading of the records. In this case the first three items will first be read using non-
advancing input, and then the remaining one or two items, depending upon the
code read as the third item. The data design will therefore be exactly as in the
previous example, except that we shall place the processor-dependent codes for
end-of-file and end-of-record in a module; the structure plan will, however, be
altered slightly:
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Structure plan

1
.2

3

4

[II Solution
MODULE error_codes

IMPLICIT NONE

! This module contains processor-dependent error codes

INTEGER, PARAMETER :: end_of_record = -2, end_file = -1

END MODULE error_codes

MODULE survey_details
IMPLICIT NONE

This module contains a type definition and constants
for use with the input and processing of survey data
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! Type definition for survey response
TYPE survey_info

CHARACTER (LEN=20) :: name
CHARACTER :: sex
INTEGER:: job_status,age,months_jobless,at_home_code
REAL :: salary, other_income

END TYPE survey_info
! Various codes
CHARACTER, PARAMETER :: female="F", male="M"
INTEGER, PARAMETER ::

ft_ed=1,ft_job=2,pt_job=3,
no_job=4,at_home=5,
ch_minder=1,rel_minder=2,other=3,
unused=-1

END MODULE survey_details
SUBROUTINE input(unit,max_datasets,survey_data,num_datasets, &

error_code)
USE error_codes
USE survey_details
IMPLICIT NONE

This subroutine reads up to max_datasets records prepared
as follows, returning the number r~adoin num_datasets
Columns 1-20 Name

23 Sex (M or F)
25 Job status (1-5)

28,29 Age - for status 1, 4 or 5
28-31 Monthly salary - for status 2 and 3
32-34 Other monthly income - for status 3
32-34 Months unemployed - for status 4

31 Special code (1-3) - for status 5
! Arguments
INTEGER, INTENT (IN) :: unit,max_datasets
INTEGER, INTENT (OUT) :: num_datasets,error_code
TYPE (survey_info) , DIMENSION(:), INTENT (OUT) :: survey_data
! Local variables
CHARACTER (LEN=30)
CHARACTER (LEN=20)
CHARACTER :: sex
INTEGER:: i,ios,status,age,months,code
REAL :: salary,income
! Ask for name of data file
! A maximum of three attempts will be allowed to open the file
DO i=1,3

PRINT *,"Type name of data file"
READ ' (A)' ,data_file
! Open file at beginning
OPEN (UNIT=unit,FILE=data_file,POSITION="REWIND", &

IOSTAT=ios)
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IF (ios==O) EXIT
! Error when opening file - try again
PRINT *, "Unable to open file - please try again"

END DO
! If open was unsuccessful after 3 attempts return error=-l
IF (ios/=O) THEN

error_code = -1
RETURN

END IF

! Successful file opening
error_code = 0

! Loop to read data
DO i=l,max_datasets

! Read first part of the next set of data
READ (UNIT=unit,FMT=' (A20,2X,A1,lX,Il)' ,ADVANCE="NO", &

IOSTAT=ios) name, sex, status!Check for errors and end of file
SELECT CASE (ios)
CASE (end_file) ! End of file - no more data

EXIT

CASE (1:)
error_code = -2
EXIT

END SELECT

Error during re~ding

!Read more data according to status code
SELECT CASE (status)

CASE (ft_ed)
! Read age and set other items to unused code
READ (UNIT=unit,FMT=' (2X,I2)')age
months = unused
salary = unused
income = unused
code = unused

CASE (ft_job)
! Read salary details and set other items to unused
READ (UNIT=unit,FMT=' (2X,F4.0)')salary
age = unused
income = unused
months = unused
code = unused

CASE (pt_job)
!Read income details and set other items to unused
READ (UNIT=unit,FMT=' (2X,F4.0,2X,F4.0)')salary,income
age = unused
months = unused
code = unused
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CASE (no_job)
! Read age and months unemployed
! and set other items to unused
READ (UNIT=unit,FMT=' (2X,I2,2X,I3)')age,months
salary = unused
income = unused I

code = unused
CASE (at_home)

! Read age and code, and set other items to unused
READ (UNIT=unit,FMT=' (2X,I2,lX,Il)')age,code
salary = unused
income = unused
months = unused

END SELECT
! Record is now fully input, so copy to main data array
survey_data (i) = survey_info (name,sex,status,age, &

months,code,salary,income)
END DO
! All data input - check if end of file was read
IF (i > max_datasets) error_code = -3
! Save number of records read and return
num_datasets = i-l

END SUBROUTINE input

Note that non-advancing input is not specified when reading the record
for the second time, as this will always be the last time that a record is read, and it
is important that the file is positioned after the end of the record so that the next
record will be read properly.

Notice also that, as in the previous version, the checks made that the
reading of data from the data file has been error-free have only been carried out
the first time that a record is read. This will deal with the problem of detecting the
end-of-file which indicates that there is no more data, but there is always a
theoretical possibility of some hardware problem causing an error during reading,
and this should be checked for in all cases in a 'production' program.

SELF-TEST EXERCISES 15.1

1 When should you use a BLANK specifier,and when should you use a BN or BZ edit
descriptor?



Direct access files 525

2 How can a filewhich has been connected to a peripheral unit by an OPEN statement be
disconnected before the end of the program?Give two reasons why this action might
be required.

3 What will be printed by the following program?

PROGRAM test_1S_l_3
IMPLICIT NONE
INTEGER, DIMENSION(O:6) :: powers_of_two
INTEGER:: i, j
powers_of_two = (I 2**i,i=O,6 I)
DO i=O,6

PRINT' (IlO,IlO.6,B10.6,010.6,ZlO.6,G10.6)', &
(powers_of_two(i), j=l,6)

END DO
END PROGRAM test_1S_l_3

4 What will be printed by the following program?
PROGRAM test_1S_l_4

IMPLICIT NONE
REAL :: x=8E7
INTEGER:: i
DO i=l,S

PRINT' (F12.3,E12.3,EN12.3,ES12.3,G12.3)', x,x,x,x,x
x = x/SOOO.O

END DO
END PROGRAM test_1S_l_4

5 What is the difference between advancing and non-advancing input? When should
you use each type?

6 What is the differencebetween advancing and non-advancing output? When should
you use each type?

15.4 Direct access files

In Chapter 9 we defined an external file as a sequence of records, either formatted
or unformatted, which exists outside the program on some external medium. We
also indicated that such a file could be stored either in a sequential manner, in
which records are written and read in sequence, or in a random manner, in which
records are written and read in any specified order.

We learned, in Chapter 9, how to read and write sequential files and, in
most cases, this is perfectly satisfactory. However, there are a considerable
number of situations in which it is more convenient to write and/or read records
in a non-sequential fashion, for example when interrogating a database. Fortran,
therefore, allows a file to be written and read in a direct access manner as well as
in a sequential manner.

To do this, however, the file must first be connected to the program for
direct access, rather than the (default) sequential access mode that we have used
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up to now. This is achieved by use of the ACCESS specifier in the OPEN statement
for the file; this takes the form

ACCESS = access_type

where access_type is a character expression which, after the removal of any trailing
blanks, is either SEQUENTIAL or DIRECT. If it is SEQUENTIAL, or if the ACCESS
specifier is omitted, then the file is connected for sequential access. If it is DIRECT
then' the file is connected for direct access.

If an OPEN statement contains an ACCESS="DIRECT" specifier then there
must also be a RECL specifier, which, as we saw in Section 15.1, takes the form

RECL = record_length

When used with a direct access file this specifies that all the records in the file will
have the same length, record_length, which is measured in characters if the file is
formatted and in processor-defined units if it is an unformatted file. Since direct
access .files cannot normally be transferred to another type of computer there is
normally no reason for converting the values being written to the file into their
character representation, with the result that direct access files are, almost
invariably, also unformatted files.

In order to write to, or read from, a direct access file it is necessary to
define which record is to be written or read by use of a REC specifier in the READ or
WRITE statement. This takes the form

REC = record number

where record_number is an integer expression with a positive value, which specifies
the record number of the record to be read or written. Thus the statement

WRITE (UNIT=7,REC=20) a,b,c,d

will write the values of a, b, c and d as an unformatted record to record 20 of the
direct-access file connected to unit 7, and

READ (UNIT=7,REC=next_rec) w,x,y,z

will read the record from the same file whose record number is the value of the
integer variable next_rec.

Note also that if a format used to write (or read) a formatted direct access
file specifies more than one record, then each successive record will be given a
number one greater than the previous one. Thus the statement

WRITE (UNIT=8,FMT=' (lOF12.2)' ,REC=75) (array(i) ,i=l,lOO)
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(a) Direct-access file with no records written:

I I I I I I I I I
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

(b) Direct-access file after record 7 has been written:

I I I I I I I I I I I I
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

(c) Direct-access file after record 4 has been written:

I I I I I I I I I I I I I
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

(d) Direct-access file after record 12 hasbeenwritten:

I I I I I I I I I I I I I I
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

'Uncovered' records exist; only bold records may be read

Figure 15.8 A representation of a direct access file.

will cause ten records to be written, since the format specifies that each record
contains ten real numbers; these records will be numbered from 75 to 84,
inclusive.

If an input or output statement includes a REC specifier then it is a direct-
access input or output statement; if it does not include a REC specifier then it is a
sequential input or output statement. Note, however, that direct-access input or output
may not use list-directed formatting or namelist formatting (see Section 15.7), nor may it
use non-advancing input or output.

It is important to understand that, although the records in a file are
numbered consecutively, starting at record 1, they may be written in any order.
Once a record has been written it may never be deleted, but it may be
overwritten. The effect of this can be visualized by imagining a file to consist of a
very large number of potentia!, fixed-size, records available in the file, all of which
are 'hidden' by a movable cover in a newly created file, as shown in Figure 15.8.
Once record n has been written then it becomes available by sliding the cover,
thus also making visible all those records that 'precede it' (that is, records 1 to
n - 1) - although such a record cannot be read until some value has been written
to it.

It may appear, at first sight, that the rule that requires every record in a
direct access file to have the same length, namely that defined by the RECL
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specifier in the OPEN statement, may be somewhat restrictive. This is not the case,
however, since the record will always be extended to the specified length if it
would otherwise be too short; the specified record length can, therefore be
considered as a maximum record length, and as long as there is no attempt to
exceed this maximum there will be no problem.

Note that if an unformatted record would be too short then it will be
extended with undefined values in order to make it the correct length. If a
formatted record would be too short then it will be extended with trailing blanks.

ill Problem
The superintendent of a college chemistry department wishes to keep a record of
all the chemicals in the department's store on a computer, so that each day the
record of all material moved from the store to the laboratories can be used to
update the quantities held in the store, and identify which items need to be re-
ordered from the suppliers. In other words, the department wishes to develop a
simple stock control system.

Define the structure of the master file used to store details of stocks held,
and write a program which can be used to update this file with the daily stock
movements. Ignore the problems associated with adding new chemicals to the
master file and of deleting unused chemicals and assume that only the quantities
will change.

~ Analysis

The major difficulty with any problem of this nature is that the updating
information (the store's documents recording the issue of chemicals, in this case)
will be in an arbitrary order, whereas the information in the master file which is to
be updated will be stored in a predefined order - which will, by definition, be
different from the 'random' order of the data. There are three, well-established,
approaches to overcoming this incompatibility:

(1) (a) The master data is stored in a sequential file and read into memory at
the start of processing.

(b) All updating of the master file is then carried out in memory.
(c) At the completion of processing, the updated information is written

to a new sequential file, ready for next time.
(2) (a) The master data is stored in a sequential file.

(b) Before starting to update the master file, all the updating details are
sorted into the same order as the records in the master file.

(c) The master file is then updated sequentially.
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(3) (a) The data is stored in a direct access file.
(b) The master file is updated in the order of the input data.

Each of these approaches has its advantages and disadvantages. For
example, if the master file is small then the much faster updating possible through
carrying out the whole process in memory is the dominant factor; however, this
approach will not work for large master files because of its memory requirements.

The second approach was the only approach in the days before the
widespread availability of disk-drives, with their inherent random-access
capability. For many years, almost all business and commercial data-processing
programs spent a significant amount of their time sorting files into the correct
order for the next operation, with the result that significant efforts were devoted
to developing faster and more effective sorting algorithms for different types of
sorting needs.

However, with the advent of large and economical random-access
storage, in the form of magnetic and magneto-optical disks, the third approach is
the preferred one, other than for small master files, when the first method may
still be preferred. We shall, therefore, use a direct-access file to store the details of
the stocks held of the various chemicals.

Each record in the file will contain the following fields:

Name of chemical (in its symbolic form, for example, H2S04 for sulphuric
acid, H2S04)

Current stock level
Units (grams, litres, etc.)
Reorder level
Unit order quantity
Maximum stock

The program will update the current stock levels and then, when all input
data has been processed, will compare the current stocks of every chemical with
the reorder level and issue a request to order additional supplies of those below
that level. These orders will be for multiples of the unit order quantity to bring
the total stock to a level as close as possible below the maximum stock. A
refinement would be to include the name and address of the supplier in the file
and to print the orders, but that is not necessary for this example.

The only remaining problem is identifying which record in the master file
contains the information relating to a particular chemical. Since records in a direct-
access file are identified by their record number, running upwards from 1, it is
clearly necessary to relate the name of the chemical to a record number. We shall
adopt a simple, albeit inefficient, method of storing all the chemical symbols in an
array and using the index of the name in the array as the record number. We shall,
however, return to this in a subsequent refinement to the program. In order to
simplify such a subsequent refinement, and in order to allow any extension to the
program to identify easily which record relates to a particular chemicaL we shall
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package this look-up table and a function which will use it to rerum the record
number for a specified chemical in a module. We shall also keep the name of the
master file and the unit to which it will be connected in this module, together
with the length of each record in the file.

We can now proceed to the final design of the program.

Module file_control
Data design

Purpose

A Module entities
Size of look-up table
Length of names
Look-up table of names
Name of master file
Master file unit
Record length

B Procedure variables
Dummy argument
Procedure name
Loop variable

Structure plan

Type

INTEGER,PARAMETER
INTEGER, PARAMETER
C~CTER'max_len
C~CTER'20
INTEGER, PARAMETER
INTEGER, PARAMETER

C~CTER'max_len
INTEGER
INTEGER

Name

max_names
max_len
chemical
master _ file_name
master_file
rec_len

item
record_number

Program stock_control
Data design

Purpose

Name of chemical
Current stock level
Units
Reorder level
Unit order quantity
Maximum stock
Amount issued
Loop'variable
lOST AT variable
Record number

Type

C~CTER'max_Ien
REAL
C~CTER'8
REAL
REAL
REAL
REAL
INTEGER
INTEGER
INTEGER

Name

name
current_stock
units
re_order
unit_order
max_stock
amount

ios
record
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Structure plan

~ Solution
I:'

&
,:

max_names,max_len,record_number,rec_len,
master_file_name,master_file

MODULE file_control
IMPLICIT NONE
PRIVATE
PUBLIC: :

This module contains the data and procedure required to
find the record_number for a specified chemical

INTEGER, PARAMETER :: max_names=200,max_len=20
CBARACTER(LEN=max_len), DIMENSION (max_names) .:: chemical=

(/"HCl","H2S04","CuS03", &, Full list of&, chemicals in the&, same order as in
"FeS03","NaCl"/) &, the'master file

CBARACTER(LEN=20) :: master_file_name="Chemical_supplies"
INTEGER, PARAMETER :: master_file=7

Note that the calculation of the record length is processor
dependent; the following assumes one unit per character

, and four units per real value
INTEGER, PARAMETER .. char_store=1,real_store=4
INTEGER, PARAMETER :: rec_len = char_store*lmax_len+8l + &

real_store*4

CONTAINS
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INTEGER FUNCTION record_number(item)
!This function returns the index of item in the look-up
! table chemical (in the module)

Dummy argument
CHARACTER (LEN=max_len) , INTENT (IN) .. item

!Local variable
INTEGER:: i

! Search for item name in look-up table
DO i=l,max_names

IF' (item==chemical (i)) EXIT
END DO

! Check to see if a match was found
IF (i>max_names) THEN

! No match made - return zero
record_number = 0

ELSE
record_number = i

END IF
END FUNCTION record_number

END MODULE file_control

PROGRAM stock_control
USE file_control
IMPLICIT NONE

This program updates a stock control file of chemicals
and produces a list of order requests

Fields in the master file records
CHARACTER (LEN=max_len) :: name
REAL:: current_stock,re_order,unit_order,max_stock
CHARACTER (LEN=8) :: units

! Other variables
REAL :: amount,quantity
INTEGER:: i,ios,record,num_units

! Open master file
OPEN (UNIT=master_file, FILE=master_file_name, &

ACCESS="DIRECT, RECL=rec_len, IOSTAT=ios)
IF (ios/=O) THEN

! Error during opening master file
PRINT *,"Error during opening of master file"
PRINT *,"Please check file and try again"
STOP

END IF
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! Update master file
PRINT *,"Type stock issues as chemical followed by quantity"
PRINT *,"issued (negative) or received (positive)"
PRINT *,"To end data type the word UPDATE"
DO

READ *,name,amount
! Get record number for this chemical
record = record_number(name)

!Check if this was a valid name
IF (record>O) THEN

1 Update master file
READ (UNIT=master_file,REC=record,IOSTAT=ios) name, ,

current_stock,units,re_order,unit_stock,max_stock
IF (ios/=O) THEN

! Error during reading - ignore this data
PRINT *,"Error during reading this chemical's'

'record in the master file."
PRINT *,"The record is unchanged"

ELSE
! Update current stock and rewrite record
current_stock = current_stock+amount
WRITE (UNIT=master_file,REC=record,IOSTAT=ios) ,

name,current_stock,units,re_order, ,
unit_stock,max_stock

IF (ios/=O) THEN
!Error during writing
PRINT *,"Error during updating this chemical's'

'record in the master file."
PRINT *,"The record may now be incorrect!"

END IF
END IF

ELSE
! Invalid chemical name - check if end of data
IF (name=="UPDATE") THEN

EXIT
ELSE

! Unknown chemical - print error message
PRINT *,name," is not in the master file."
PRINT *, "This line of data has been ignored!"

END IF
END IF

END DO

! All updating now carried out - search for chemicals
! in need of reordering
PRINT' (" ","The following items need reordering:"/ ,

"0" ,"Chemical" ,T30, "Quanti ty" //) ,
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DO i=l,max_names
READ (UNIT=master~fi1e,REC=record,IOSTAT=ios) name, &

current_stock,units,re_order,unit_stock,max_stock
IF (ios/=O) THEN

! Error during reading - ignore this data
PRINT *,"Error during checking this chemical's &

&record in the master file."
PRINT *, "No check for reordering made! II

ELSE
! Check if stocks are below reorder level
IF (current_stock<re_order) THEN

! More stock required - calculate order quantity
quantity = max_stock-current_stock
num_units = INT(quantity/unit_order)
quantity = num_units*unit_order
PRINT' (" ",A,",T30,F8.0,lX,A," (in units of ", &

I8,lX,A, ")")' ,name,quantity,units, &
unit_order,units

END IF
END IF

END DO

END PROGRAM stock_control

Note that the program has checked, at each stage, that the master file has
been read or written without error. This is extremely important when updating a
master file in this way. However, there is always a danger that an execution error
might leave the file in a damaged state, and so it is normally not recommended to
update such a file directly in the way that we have done here. One approach is to
make a back-up copy before updating commences, so that if an error should
occur the original version of the file can still be used. An alternative is to have a
cycle of, typically, three files and to update from one to the next in the cycle; this
approach, which is conventionally referred to as the grandfather-father-son
method, ensures that the previous two versions of the file are always available in
case an error is detected during, or after, processing. We shall return to this topic
in Section 15.6.

The other point that should be mentioned concerns the method of
identifying the record number of the master file record associated with a specified
chemical. Obviously a sequential search is not very efficient, particularly if there
are a large number of records, and so we shall briefly examine an alternative
approach.

This establishes the record number corresponding to a particular chemical
by using a different form of table, which must be kept in a file because of the
method used for inserting new names. It uses what is known as a hashing
technique to create a special form of table, known as a hash table, in which the
names are not stored sequentially but, instead, are used to derive an integer in a
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given range (the same as the extent of the table) which identifies the place in
the table at which the name will be stored. If that place is already in use then a
new index is calculated, possibly by as simple an algorithm as adding one, and
tried.

The advantage of this approach is that it is only necessary to search a
small number of elements of the table to find a name instead of carrying out a
sequential search through the whole table until a match is found. A further
advantage is that the identical method can be used for inserting new entries, since
if an empty cell in the table is encountered before a match is made then that is the
correct place to insert the new name; deletion is more difficult as it requires a
reorganization of the whole table, but deletion of items from the simpler look-up
tables will also require the restructuring of the master file if the' empty' spaces are
to be used for other purposes.

We shall not provide a complete solution to the problem using a hash
table, but will merely present an alternative version of the function
record_number which assumes that some other procedure has read the hash
table from a file into the array chemical, which is now organized as a hash table
and not as a simple look-up table:

INTEGER FUNCTION record_number(item)
!This function returns the index of item in the hash
! table chemical (in the module)

Dummy argument
CHARACTER(LEN=max_len), INTENT (IN) .. item

!Local variables
INTEGER :: i,start

! Calculate start point for table search
start = MOD(ICHAR(item(l:l))*ICHAR(item(2:2)) ,max_names)+l

!Search from here to end of table
DO i=start,max_names

IF (chemical (i)==item) THEN
! Match made - return index
record_number = i
RETURN

ELSE IF (chemical (i)==O) THEN
! Empty cell means item is not in table - return 0
record_number = 0
RETURN

END IF
END DO
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! No match yet made, and all cells full
! Search remainder of table
DO i=l,start-l

IF (chemical (i)==item) THEN
! Match made - return index
record_number = i
RETURN

ELSE IF (chemical (i)==O) THEN
! Empty cell means item is not in table - return 0
record_number = 0
RETURN

END IF
END DO

! Complete table has been searched without either finding
! a match or finding an empty cell
! Return -1 to indicate that table is full
record_number = -1

END FUNCTION record_number

Note that the initial point to start searching the table has been determined
by multiplying the numeric value of the first two characters in the chemical's
name together and then taking the remainder after dividing by the size of the
hash table; finally, one is added to obtain a value which lies between 1 and
max_names. The method used to calculate the initial value, start, is not
particularly important as long as it gives a fairly wide spread of values for any
group of names, and it can b~ determined quickly.

The final point to make about this version is that if the table is full then a
negative value has been returned. This can be treated in the same way as zero in
this program, but would be of importance in a further procedure which used this
function to establish where to insert a new name. If the function returned the
value zero, then the name could be inserted at that point, but if it returned a
negative value then it would indicate that it was not possible to add any more
entries to the table.

15.5 Internal files

An internal file is not really a file at all but behaves like one, and can be used to
great advantage in particular situations. It is actually a means whereby the power
and flexibility of Fortran's formatting process can be used to convert information
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from one format to another without the use of any external media. Such a file
may be a CHARACTER scalar variable, a CHARACTER array element, a CHARACTER
substring, or a CHARACTER array.

In the first three cases the internal file consists of a single record, while if it
is an array it consists of a sequence of records, each of which corresponds to one
element of the array. In the latter case the whole file must be input or output by
means of a single statement, since a READ or WRITE statement on an internal file
always starts at the beginning of the file.

An internal file can only be read by a sequential formatted READ statement
that does not use namelist formatting. It can only be written by a sequential
formatted WRITE statement that does not use namelist formatting, or it can be
created by any other appropriate means - for example by an assignment
statement or by input from some other source.

An internal file is identified by using the name of the character entity in an
input or output statement in place of the unit identifier. Thus we may write

CHARACTER (LEN=30) :: line
WRITE (UNIT=line,FMT=' (3FIO.4)') x,y,z
READ (UNIT=line,FMT=' (3(F6.0,4X)') x,y,z

which would first create a character string in the variable line consisting of the
representations of the values of x, y and z with four decimal places, and would
then read these back into the same variables in such a way as to ignore the digits
following the decimal point. The effect would, therefore, be to truncate the values
of the three variables by eliminating any fractional parts. (Note that the same
effect could be achieved by use of the intrinsic function INT.)

The following example illustrates another use of an internal file, namely to
allow a record of an external file to be read more than once without the need to
backspace the external file.

[!] Problem

Example 15.1 used non-advancing input to read data in which the format of the
second part of each record varied, depending upon the value of a code in the
earlier part of the record. An alternative approach would be to use an internal file.

[!] Analysis

The program will be very similar to that written for Example 15.1 except that
after the first three items in each record have been read, the rest of the record will
be read into a CHARACTER variable, and then the relevant parts read from that
variable, acting as an internal file.
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Data design

This will be as before, except for the addition of a CHARACTER variable,
input_record, of length 10 (which is sufficient for the longest case).

Structure plan

1 Request name of data file and open it on unit
2 Repeat up to max_datasets times

2,1 Read first three items of next record. and the rest oUhe record
intO inputJecord

2.2 If end of file then exit from loop
2.3 If error then set error_code to - 2 an<:l..exitfrondoop
2.4 Select case on job status

status is 1
2.4.1 Read age from inputJecord
2.4.2 Set salary, other income, months unemployed and code

to unused
status is 2
2.4.3 Read salary from inputJecord
2.4.4 Set age, other income. months unemployed and code to

unused
status is 3
2.4.5 Read salary and other income from inputJecord
2.4.6. Set. age. months unemploy~dand co<:l.~jt()unu$.~d
status is 4
2.4.7 Read age and months unemployed fr5)!:ninputJecord
2.4.8 Set salary, other income andcgde to.Qtlused
status is 5
2.4.9 Read age and code from inputJecord
2.4.10 Set salary. other income and months unemployed to

unused
2.5 Copy local record to array

3 If no end of file read set error_code to -3

4 Return number of data sets read

rn Solution

The two modules are as in Example 15.1.

SUBROUTINE input (unit,max_datasets, survey_data,num_datasets, &
error30de)

USE error_codes
USE survey_details
IMPLICIT NONE
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This subroutine reads up to max_datasets records prepared
as follows, returning the number read in num_datasets

Columns 1-20 Name
23 Sex (M or F)
25 Job status (1-5)

28,29 Age - for status 1, 4 or 5
28-31 Monthly salary - for status 2 and 3
32-34 Other monthly income - for status 3
32-34 Months unemployed - for status 4

31 Special code (1-3) - for status 5

! Arguments
INTEGER, INTENT (IN) :: unit,max_datasets
INTEGER, INTENT (OUT) :: num_datasets,error_code
TYPE(survey_info), DIMENSION(:), INTENT (OUT) :: survey_data

! Local variables
CHARACTER (LEN=30) .. data_file
CHARACTER (LEN=10) .. input_record
CHARACTER (LEN=20) .. name
CHARACTER :: sex
INTEGER :: i,ios,status,age,months,code
REAL :: salary,income

! Ask for name of data file
! A maximum of three attempts will be allowed to open the file
DO i=1,3

PRINT *,"Type name of data file"
READ ' (A)' ,data_file
! Open file at beginning
OPEN (UNIT=unit,FILE=data_file,POSITION="REWIND", ,

IOSTAT=ios)
IF (ios==O) EXIT
! Error when opening file - try again
PRINT *,"Unable to open file - please try again"

END DO

! If open was unsuccessful after 3 attempts return error=-1
IF (ios/=O) THEN

error_code = -1
RETURN

END IF

!Loop to read data
DO i=1,max_datasets

!Read next,data record
READ (UNIT=unit,FMT=' (A20,2X,A1,1X,I1,2X,A10)', ,

IOSTAT=ios), name,sex,status,input_record
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! Check for errors and end of file
SELECT CASE (ios)
CASE (end_file) !End of file - no more data

EXIT

CASE (1:) Error during reading
error_code = -2
EXIT

END SELECT

! Read remaining data from internal file according to
! status code
SELECT CASE (status)
CASE (ft_ed)

! Read age and set other items to unused code
READ (UNIT=input_record,FMT=' (I2)'), age
months = unused
salary = unused
income = unused
code = unused

CASE (ft_job)
! Read salary details and set other items to unused
READ (UNIT=input_record,FMT=' (F4.0)'), salary
age = unused
income = unused
months = unused
code = unused

CASE (pt_job)
! Read income details and set other items to unused
READ (UNIT=input_record,FMT=' (F4.0,2X,F4.0)'), &

salary, income
age = unused
months = unused
code = unused

CASE (no_job)
! Read age and months unemployed
! and set other items to unused
READ (UNIT=input_record,FMT=' (I2,2X,I3)'), age,months
salary = unused
income = unused
code = unused

CASE (at_home)
!Read age and code, and set other items to unused
READ (UNIT=input_record,FMT=' (I2,lX,Il)'), age,code
salary = unused
income = unused
months = unused

END SELECT
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! Record is now fully input, so copy to main data array
survey_data (i) = survey_info (name,sex,status,age, ,

months,code, salary, income)
END DO

!All data input - check if end of file was read
IF (i > max_datasets) error_code = -3

! Save number of records read and return
num_datasets = i-1

END SUBROUTINE input

Note that it would also have been possible for the READ statement which
actually reads the data from the input file to have read the whole record into
input_record, and then read everything, including the three common items, from
the internal file. This would have had the advantage that the whole input record
was always available, at the cost of slightly more complicated formats.

15.6 The INQUIRE statement

For most purposes the statements already described will enable a program to
carry out any file operations it requires. There are, however, occasions, especially
when writing a general purpose subroutine, when it would be useful to find out,
or check up on, the various details which are applicable to files (for example,
whether they are formatted, connected for direct access etc.). This can be achieved
by using the INQUIRE statement, which takes the form

INQUIRE (list of specifiers)

where the specifiers which may appear in the list are shown in Figures 15.9-
15.12.

With one exception, which we shall meet later, an INQUIRE statement is
either an inquire-by-unit or an inquire-by-file. An inquire-by-unit statement must
include a UNIT specifier in the same form as in an OPEN statement, but must not
include a FILE specifier; an inquire-by-file statement must include a FILE specifier
in the same form as in an OPEN statement, but must not include a UNIT specifier. In
both cases, the statement may include an IOSTAT or ERR specifier, in the usual way.

The specifiers, and their purpose, fall into five groups.
The first group, shown in Figure 15.9, is used in an inquire-by-unit and

enables the program to establish whether a specified unit exists, whether a file is
connected to a specified unit, and if so, what its name is.
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Specifier

EXIST=file _existence

OPENED=open_status

Target values and meaning

,TRUE, or ,FALSE.
Existence of the named unit

,TRUE. or •FALSE,
Whether a file is connected to this unit

.TRUE. or •FALSE,
Whether the file connected to this unit has a name

The name of the file connected to this unit, or undefined

Figure 15.e Unit status specifiers for use with the INQUIRE statement.

Thus, the statement

INQUIRE (UNIT=unit_number, OPENED=connected, ,
NAMED=named_file, NAME=file_name)

will set the logical variable connected true if there is a file connected to unit
number unit_number and will set the logical variable named_file true if the file
connected to unit unit_number has a name (that is, it is not a scratch file), If the file
has a name then the character variable file_name will be assigned the name of the
file; otherwise it will become undefined.

The second group, shown in Figure 15,10, is used in an inquire-by-file to
provide similar information.

The third group of specifiers is shown in Figure 15,11, and may be used in
either an inquire-by-unit or an inquire-by-file to determine the record length of a
file, or the next record in a direct-access file, respectively. In the latter case, the

Specifier

EXI ST=file _existence

OPENED=open_status

NOMBER=unit_number

NAKE=file_name

Target values and meaning

,TRUE, or •FALSE,
Existence of the named file

,TRUE. or ,FALSE,
Whether this file is connected to an input! output unit

The unit number of the unit connected to this file, or undefined

The name of this file in a processor-defined form

Figure 15.10 File status specifiers for use with the INQUIRE statement.
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RECL=recordJength

NEXTREC=record_number
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Target values and meaning

The record length of a file connected for direct access,
or the maximum record length for a file connected for
sequential access, or undefined
The number of the next record of a file connected for
direct access, or undefined

Figure 15.11 Record-related specifiers for use with the INQUIREstatement.

value returned is n + 1if the last record read or written was record number n, and
1if the file is conneded but no records have yet been read or written.

The fourth and largest group of specifiers is shown in Figure 15.12, and
enables the program to determine the values of the various attributes which could
have been set in an OPEN statement for a file.

These specifiers all require a charader target and most of them assign it
the value that was used for the corresponding specifier in the OPEN statement, or
the default value if appropriate, or undefined if the file is not yet conneded or it is
not possible to determine the corred value. Some of these specifiers, however, ask
whether a particular adion is allowable and set the target to the charaders YES or
NO (or UNKNOWN),as appropriate. Thus, if the file Toms_file has been opened for
dired access, the statement

INQUIRE (UNIT="Toms_file",ACCESS=access_type)

will set the charader variable access_type to the value DIRECT. The statement

INQUIRE (UNIT="Toms3ile",SEQUENTIAL=seq,DIRECT=dir)

will set the charader variable dir to the value YES. It is not possible, however, to
state what value will be assigned to the charader variable seq, since if sequential
access is also allowed on the file it may be YES, if sequential access is never
allowed on the file it may be NO, but if the processor cannot determine which of
these possibilities is true then the value UNKNOWNwill be assigned to seq.

Note that any charader values which are assigned as a result of executing
an INQUIRE statement will always be in upper case, except in the case of the NAME
specifier, which will be in whatever form the actual filename is specified.

Note also that if an error condition occurs during execution of an INQUIRE
statement then all inquiry specifier variables become undefined, other than the
IOSTAT variable, if one is specified.

Finally, it should be noted that the value assigned to the target variable of
the POSITION specifier assumes that the file has not been repositioned since it was
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Specifier

ACCESS=access_type
SEQUENTIAL=yes_or_no
DlRECT=yes_or_no

FORH=format _type
FORHATTED=yes_or_no
UNFORHATTED=yes_or_no

ACTION=io_type
READ=yes_or_no
WRITE=yes_or_no
READWRITE=yes_or_no

POSITION=file "'position

DELIM=delimiter

PAD=padding_type

Target values and meaning

SEQUENTIAL, DIRECT or UNDEFINED
YES, NO or UNKNOWN
YES, NO or UNKNOWN
The type of access for which the file is connected

FORHATTED, UNFORHATTED or UNDEFINED
YES, NO or UNKNOWN
YES, NO or UNKNOWN
The type of formatting for which the file is connected

READ, WRITE, READWRITE or UNDEFINED
YES, NO or UNKNOWN
YES, NO or UNKNOWN
YES, NO or UNKNOWN
The type of input! ouput for which the file is connected

NULL, ZERO or UNDEFINED
The type of blank interpretation in effect for the file

REWIND, APPEND, ASIS or UNDEFINED
The initial file position specifed when the file was connected

APOSTROPHE, QUOTE, NONE or UNDEFINED
The character delimiter specified for list-directed and namelist
character output when the file was connected

NO or YES
Whether padding of input fields is specified for the file

Figure 15.12 Attribute specifiers for use with the INQUIRE statement.

opened. If it has been repositioned then the target will be assigned a processor-
dependent value.

The final group, which consists of the single specifier, IOLENGTH, is used in
the third type of INQUIRE statement, known as an inquire-by-output-list. This
takes a different form from the other types of INQUIRE statement:

INQUIRE (IOLENGTH=length) output_list

where length is an integer variable and output_list is a list of entities in the same
form as an output list for a WRITE statement. The effect of this statement is to
assign the target variable length with the length of the record that would result
from using the specified output list in an unformatted WRITE statement.

It will be remembered that this is measured in processor-defined units, and
that, moreover, it is required when opening a file for direct access. Thus, for
example, in Example 15.2,the module file_control included the following lines:



INTEGER, PARAMETER
INTEGER, PARAMETER

NAMELIST input and output

.. char_store=1,real_store=4
rec_len = char_store*(max_len+B) + &

real_store*4

!
545
i
I
!

A better approach, using the INQUIRE statement, would be to replace these
lines in the module by the following declaration:

INTEGER :: rec_len

and to add the following statement before the OPEN statement in the main
program:

INQUIRE (IOLENGTH=rec_len) name,current_stock,units, &
re_order,unit_stock,max_stock

which will set rec_len to the correct value for the records which constitute the
master file.

Another way in which the INQUIRE statement can be useful is in
connection with establishing, and maintaining a Grandfather-Father-Son cycle of
tapes in a program which updates a master file. Example 15.2, for example, could
be modified so that a cycle of three tapes was used, say Master_l, Master_2 and
Master_3 in the following manner:

nth run Update from Master~l to Master_2; delete Master_3 at
end of run;

(n + lth run) Update from Master_2 to Master_3; delete Master_l at
end of run;

(n + 2th run) Update from Master_3 to Master_l; delete Master_2 at
end of run;

etc. It is a relatively trivial task to write a procedure which will use INQUIRE to
determine which two of the three possible files exist, and then to open the one
that does not exist as the new master tape (for writing), the one that was created
on the last run for reading only, and the third tape so that it can be closed and
deleted at the successful conclusion of the program's execution. The program will
then automatically look after this aspect of its data security.

15.7 NAMELIST input and output

In all of the output operations that we have met so far the values that are to be
output are determined by the list of variables and other objects in the WRITE or
PRINT statement, while in all of the input operations the variables to which values
are to be input are determined by the list of variables in the READ statement.
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Sometimes, however, it. is convenient to specify a group of variables
which will always be output together, or to which new values will always be
input together. In this case we may use a new feature within Fortran's
comprehensive input/output facilities, namely NAMELIST input/output, which
uses list-directed formatting to output a set of values determined by a predefined
list of variables or to input values to some or all of the variables in such a list.

Before any NAMELIST input or output can take place a NAMELIST group
name must be defined by means of a statement of the form

NAMELIST /namelisf..$Youp_namel1isf of names

where namelisf ..$Youp_name is the name that will be used to identify the set of
variables whose names constitute the following list. Note that a name in a
NAMELIST group must not be an array dummy argument with a non-constant
bound, a variable with non-constant character length, an automatic object, a
pointer (see Chapter 16), a variable that has an ultimate component that is a
pointer, or an allocatable array.

A name in a NAMELIST group may have an optional qualification, such as a
derived-type component name or an integer constant for subscript(s), stride, and
substring expression. If the name of an array or a derived-type variable appears in
a namelisf..$Youp_name, then all the elements or components of the array or
derived-type variable name are eligible for input, and all the elements or
components are output.

Two NAMELIST statements may be combined in either of the following
ways

NAMELIST /nl..$Youp_name1l1isf of names,/nl..$Youp_name2I1isf of names ...

or

NAMELIST /nl..$Youp_namel/lisf of names/nl..$Youp_name2/1isf of names ...

although we recommend that you do not use these forms of the statement..
If two NAMELIST statements have the same NAMELIST group name then

they are considered as though the second list was a continuation of the first. Thus,
the statements

NAMELIST /qroup_l/x,y,z(3:5)
NAMELIST /qroup_l/a,b,c

have exactly the same effect as the single statement

NAMELIST /qroup_l/x,y,z(3:5) ,a,b,c
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Note that the NAMELIST statement is a specification statement and must,
therefore, appear before any executable statements in the program unit in which
it is defined.

A NAMELIST input or output statement takes the form of a formatted input
or output statement except that

• the format specifier is replaced by a NAMELIST specifier, which takes the
form NML=namelist-ffi'Oup_name;

• there must be no input or output list.

Thus, the statement

WRITE (UNIT=*,NML=group_i,IOSTAT=ios)

will output the values of all the variables specified as being part of the NAMELIST
group group_i, in the order in which they were specified. Note that NAMELIST
output cannot be used with a PRINT statement.

The output produced will take the following form:

(1) An ampersand character (&), optionally preceded by any number of blanks,
and immediately followed by the NAMELIST group name which appears in
the WRITE statement. The name will always be in upper case.

(2) A name-value subsequence for each variable in. the NAMELIST group.
Each name-value subsequence consists of the name of the variable being
output, an equals sign, and the value of the variable in the format that
would be used for list-directed output; in the case of an array, the equals
sign will be followed by a list of values, corresponding to all the elements
of the array. If two or more consecutive values are the same the processor
is allowed to output them in the form r*c, where c is the value and r is the
number of repetitions. Additional blank characters may be inserted before
or after the name-value subsequence, and on either side of the equals sign,
and each name-value subsequence may optionally be followed by a
comma, surrounded by any number of blank characters.

(3) A terminating slash (/) character.

The processor will begin new output records as necessary, but only character and
complex values may be split between two records.

Figure 15.13 shows an example of how the output from a NAMELIST
output statement might appear.

Note, however, that character values are output, as with list-directed
output, without any delimiting characters. This is normally what is required for
other forms of output, but since NAMELIST output is frequently intended for
subsequent input by means of a NAMELIST input statement (see below) it may not
be what is required in this case. If it is required to output character values
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PROGRAM namelist_output
IMPLICIT NONE
INTEGER:: a=987, b=-123
INTEGER, DIMENSION(3:5) :: c=(/3,4,5/)
REAL:: x=6.54, y=0.00009876
COMPLEX :: q=(4.5,6.7)
CHARACTER (LEN=22) :: s="The cat sat on the mat"
NAMELIST /xyz/a,b,c,x,y,q,s
WRITE (UNIT=*,NML=xyz)

END PROGRAM namelist_output
Output
&XYZ
A= 987, B= -123, C= 3
X= 6.543, Y= 0.9876E-04, Q=(
S= The cat sat on the matt

4
4.500,

5,
6.700),

Figure 15.13 An example of NAMELIST output.

enclosed in delimiters then the output file must be opened with the DEL 1M specifier
set to either APOSTROPHE or QUOTE. (Note that it is permissible to open a pre-
connected file, such as the default output unit, in order to change some of the
default attributes.)

If a NAMEL1ST specifier appears in a READ statement, the format for the data
is exactly the same as the format in which NAMEL1ST output is produced. It is not
necessary, however, to supply values for all the variables in the NAMEL1ST group,
and users need only input values for those variables that they wish to change.
Note, however, that if a name is assigned values more than once within the input
record, the last occurrence of the name specifies the value or values that will be
used.

In the case of an array or derived-type variable name, the number of
values following the equals sign must not exceed the number of items
represented by the name (for instance the number of elements in the array), but
may be less. If it is less, then the remaining list items are not changed.

Thus, if the program contained the following READ statement, for the
NAMEL1ST group defined earlier,

READ (UN1T=* ,NML=group_1, 10STAT=ios)

and the data took the form

&group_l
a=3.2 b=6.1
z=9.6,3.1/
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then the variables a and b would have their values changed to 3.2 and 6.1,
respectively, while elements three and four of the array z would be set to 9.6 and
6.1. The values of x, y and c, and of z (5) would remain unchanged.

Note that the same rules apply to the representation of numeric, logical
and character values, and for the separation of such values, as apply to list-
directed input.

It will be noted that the format used for input is identical to that used by
the processor for output, apart, possibly, from character values that have been
output without delimiters, although the namelisf..."group_name and the names of
the variables may be in either upper or lower case on input, but will always be in
upper case on output. Results produced by a NAMELIST output statement to a file
can, therefore, be input directly by a NAMELIST input statement as long as they do
not contain non-delimited character values with embedded blanks.

The statement is particularly usefuL therefore, if it is required to write a
set of variable data to a file for subsequent input by the same or another program.

SELF-TEST EXERCISES 15.2

1 What is the difference in the meaning of the RECL specifier in an OPEN statement for a
sequential file and its meaning in an OPEN statement for a direct-access file?

2 Can a file which has been written with direct-access WRITE statements subsequently be
read as a sequential file?

3 Can a file which has been written with sequential WRITE statements subsequently be
read as a direct -access file?

4 What restrictions are there on the form of input and output on direct-access files?

5 What is a hash table? How is it used, and what are its advantages over a conventional
look-up table? What is its major disadvantage?

6 What will be printed by the following program?

PROGRAM test_15_2_6
IMPLICIT NONE
CBARACTER(LEN=5), DIMENSION (10) :: linel,line2
INTEGER:: i
linel = (/"One", "Two","Three" ,IlFour" I "Five", "Six" , ,

"Seven","Eight","Nine","Ten"/)
DO i=1,10

READ (UNIT=linel ,FMT=' (A5)') line2(i)
END DO
WRITE (UNIT=*,FMT=' (10A6)') line2
READ (UNIT=linel,FMT=' (A5)') line2
WRITE (UNIT=*,FMT=' (10A6)') line2

END PROGRAM test_15_2_6
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7 How would you find out the length of the record produced on your computer by the
WRITE statement in the following program extract? What is it?

INTEGER :: next
REAL :: p,q
REAL, DIMENSION (7) :: x
REAL(KIND=SELECTED_REAL~KIND(12,30)) .. y,z

WRITE(UNIT=8,REC=next)p,q,x,y,z

SUMMARY

• Default treatment of blanks in numeric fields may be overridden by a specifier
in the OPEN statement, or by edit descriptors on a record-by-record basis.

• Other input/output defaults, such as padding character strings on input, may
be overridden by use of specifiers when the file is opened.

• Various other edit descriptors may be used to provide additional control over
input and output editing.

• Non-advancing input and output does not start a new record each time an
input/output statement is executed.

• Non-advancing input and output may only occur on a sequential file that uses
explicit formatting.

• Files may be sequential, direct-access or internal.

• The records in a direct-access file can be written or read in any order.

• An internal file is a character variable or array, and enables the edit
descriptors used in formatting to be used to convert an item in memory into
another format.

• A hash table is a convenient method of storing a random set of identifying
names for subsequent retrieval.

• The INQUIRE statement enables a program to establish details about files at
execution time; it can also be used to establish the length of an input/output
list.

• Fortran 90 syntax introduced in Chapter 15:

File disconnection
statement

NAMELIST statement NAMELIST /namelist...xroup_name/lisf of names
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Edit descriptors

Input! output specifiers

INQUIRE specifiers
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INQUIRE (inquire_specifier_list)
INQUIRE (IOLENGTB=integer_variable) output_list
IW.m, Ew.dEe, ENw.d, ENw.dEe, ESw.d, ESw.dEe, Dw.d,
Bw, BW.m, Ow, OW.m, Zw, ZW.m, Gw.d, Gw.dEe,
:, SP, SS, S, DN, DZ

BLANK = blank_mode
PAD = padding_mode
DELIM = delimiter_character
RECL = recordJength
STATUS = filejtatus
ADVANCE = advance_mode
SIZE = character_count
END = label
EOR = label
ERR = label
ACCESS = access_type
REC = record_number
NML = namelist ....group_name
See Figures 15.9, 15.10, 15.11 and 15.12

PROGRAMMING EXERCISES

15.1 Write a program to calculate the values of y, where y = eX sin x, for x varying
from a to 20 in steps of 0.5. The sets of values for x and y should be wriHen to an
unformaHed file, and should also be printed using list-direded formatting.

Now write a second program which reads the results produced by the first program
and prints them in the form of a table containing the values of x and y. The program should
print this table several times using different formats for both x and y as follows:

(a) Both in F format
(b) x in F format and y in E format
(e) Both in E format
(d) x in F format and y in ES format
(e) x in F format and y in EN format
(f) Both in G format
(g) x in F format and y in G format

15.2 Write a program which carries out the following input and output adions:

(a) Prints an opening (welcome) message
(b) Prints a request for two integers to be typed
(c) Reads one integer from the keyboard
(d) Reads the second integer from the keyboard
(e) Prints the two numbers
(f) Prints the sum of the two numbers
(g) Prints a farewell message

The program should use list-direded input and output statements.
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Note that each printed message will begin on a new line and that the two integers
must also be typed on separate lines; if two numbers are typed on the same line in response
to the request for two integers then the second will not be read, but the computer will wait
for the second number to be typed on a new line.

Now modify the program so that it uses formatted READ and WRITE statements,
specifying the default input and output units. Other than a probably slightly different field
width when printing the numbers and their sum, the format of the input and output should
be identical.

Now modify the program again by changing the first READ statement (step c,
above) to use non-advancing input and run the program again. Was the result what you
expected?

Now change each of the READ and WRITE statements in tum to use non-advancing
input or output until all statements are non-advancing. Were the effects what you had
expected?

Finally, without changing anything apart from the specificationof advancing or non-
advancing input/output, modify the program so that the initial welcome is on the first line,
followed by the request for two integers and the input of both integers on the next line,
followed by the listing of the two numbers, their sum, and the farewell message on a third
line.

You should now understand how advancing and non-advancing input and output
work!

15.3 A simple integer calculator can be simulated by reading a numerical expression
from the keyboard involving the operators +, -, * and / and ending with =, and then
displaying the result. There are three obvious ways of dealing with the problem of reading
the line of data and analysing it:

(a) Read an integer using non-advancing input. Then read characters until a non-
space character is read - this must be an operator or an equals sign. If it is an
operator then read the next integer and calculate a partial result before looking for
the next operator as before; if it is an equals sign then the result can be printed.
(b) Read the complete line into a character variable or array and then use this as
an internal file in a similar manner to that described above.
(c) Read the complete line into a character variable or array and then examine
each character in tum in order to either create an integer value or identify it as an
operator; this is, essentially, what a compiler does when reading a source program,
although the number of possibilities in a Fortran 90 program are considerably
greater than is the case for the very simple syntax of this exercise.

Write a program to simulate a calculator using each of these three methods.
Which did you find the best method? Why?

"'15.4 Write a program that asks the user for the name of a file and then writes the
alphabet, as 26 elements of a character array, to the file. The program should check to see if
the file already exists, and if it does it should inform the user and request a new name
(which should also be checked in the same way).

Test the program by running it twice with exactly the same filename supplied as
input.
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"'15.5 The following data was stored in a file for Exercise 9.9. If this file is no longer
available then type it in again.

12.36
13.24
15.01
11.83
14.00

0.004
0.008
0.103
0.051
0.001

1.3536E12
2.4293E15
9.9879E11
6.3195E13
8.0369E14

2320.326
5111.116
3062.329
8375.145
1283.782

Write a program that reads each record of the file as one long character string. The
program should then use an internal file to extract the four numbers from each line and
store them in one row of a matrix as real numbers. Finally, the program should calculate the
mean of each column of the matrix.

15.6 A census has been carried out on the population of Smalltown, during which the
following data was collected:

Name Age Address Economic status

Sandy T Shaw 26 10, High Street A
Alan M Jones 56 2, Largeville Road B
Chris D Jones 54 2, Largeville Road B
Simon B Taylor 32 7, High Street D
Paul K Smith 72 5, Largeville Road C
Tristan T Bloggs 44 8, High Street E

Enter this information into a file. Write and test a program that reads the file and
provides the user of the program with the following options:

(a) Obtain the address of a named person;
(b) Obtain the age of a named person;
(c) Obtain the names of people with a given economic status.

Now modify the program to allow you to add new census data to the file.

15.7 Use the file described in Exercise 15.6 as a direct-access file. Write a program that
reorders the records in the data file according to age, with the youngest first, and write the
reordered data back to the same file.

15.8 When a large database is being processed it is often neither possible nor
appropriate to read all the data from a file into the computer's memory. In these cases
the data should be stored in a direct-access file in such a way that the required record can
easily be identified and read whenever it is required. The solution for Example 15.2
illustrated how a hash table could be used to quickly identify the correct record.

However, that example did not provide the means for inserting and/or deleting
entries in the hash table.

Either modify the program written in Example 15.2 or write a separate program
which will do this. The program should

(a) for insertion read the name of the chemical, and then find the first vacant
position in the hash table (using the hashing method used in the example program).
If there is a vacant position, and the chemical name is not already in the table
(human errors can occur!), then the appropriate entry should be made in the table,
and the relevant stock control details should be read and written to the master file;
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(b) for deletion read the name of the chemical and find its entry in the hash table.
The corresponding record in the master file can easily be deleted, but deleting the
entry from the hash table is not necessarily .straightforward. Remember that
simply deleting it might mean that another entry which originally selected this
position, and then used another because it was already in use, would then fail to be
found by the hashing routine. There are several possibilities - see if you can find a
satisfactory one.

15.9 Data obtained from separate runs of the same experiment are usually stored in
different files. The data shown below represent the results of four experiments that each
measure the length (x) of a support girder five times: ..

Experiment 1 Experiment 2 Experiment 3 Experiment 4
15.523 15.518 15.538 15.529
15.534 15.536 15.526 15.541
15.519 15.544 15.545 15.530
15.525 15.527 15.550 15.539
15.532 15.549 15.519 15.532

Type each column of data into a separate file.
Now write a program that uses a subroutine to open all four files on different unit

numbers. When the user supplies a name of a file to be opened, the subroutine should check
that the file is not already open. All the data should then be read by the main program, and
the mean length (x) calculated, together with the standard deviation from the mean length
(a) for each experiment using the formulae

N 1
i= L~Xi

i=I N
ij.J

1 N
a = - L (XI - i)2

N i=I

15.10 A hospital's intensive care unit records various measurements from patient
monitoring equipment every five rhinutes. It is required to write a program to analyse
the changes in these measurements over a period of 24 hours. As the first step, you should
write a program to read this data and produce some simple statistics, and then test it with
data for a period of 'one hour (12 sets of d~ta).

The first set of data will contain the time as a six digit number (hhmmss), the
patient's temperature, pulse rate, respiration rate, blood pressure (two numbers) and blood
sugar level. Thereafter, only those. figures that are different from the last time will be
included. The program should read all the data using name list input, and for each type of
reading print the mean value, and the maximum and minimum values during the observed
period.
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(A typical set of test data might, therefore, begin as follows:

&itu_data
time=090000 temp=99.7 pulse=85 resp=65
bpl=138 bp2=75 sugar=5.1/
&itu_data
time=090459 temp=99.8 resp=67/
&itu_data
time=091002 pulse=81 resp=64 bpl=136/

You should create a suitable set of test data to cover all possibilities with regard to
frequency of data changes.)
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It is often convenient to have a pointer to a variable, which can be used to
access the variable indirectly. Fortran 90 provides this capability by
giving a pointer attribute to a variable, which allows it to point at
variables of a specified type.

The use of pointers provides several benefits, of which the two
most important are the ability to provide a more flexible alternative to
allocatable arrays, and the tools with which to create and manipulate
linked lists. This latter form of dynamic data structure opens the door to
powerful recursive algorithms as well as providing the means to tailor
the storage requirements exactly to the needs of the problem and the
data.

This chapter shows how to use Fortran pointers, and illustrates
their potential by several examples which are both powerful and yet
elegant.

[557
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16.1 Fundamental pointer concepts

All of the variables that we have met so far in Fortran, whether scalar or array,
have shared one common feature, namely that they contain some form of data.
However, there is one further class of variable which does not contain any data;
instead it points to a scalar or array variable where the data is actually stored (see
Figure 16.1). Because their function is to point at where data is stored, rather than
to contain data themselves, variables in this class are called pointers.

Pointers are commonly used in situations where data entities are being
created and destroyed dynamically (that is, while a program is executing) and it is
not known beforehand how many such events are going to occur, or in what
order. Simulating the flight control system at an airport is such a case, or handling
a list of requests for cash withdrawals on a national network of cash machines. It
is not feasible to use dynamically allocated arrays efficiently in such situations,
because, when such an array became full, it would be necessary to allocate
another, larger, array and then to copy all the data from the first array to the
second. This would involve significant computer time and enough memory to
contain both arrays simultaneously.

Pointers are also used to manipulate connections between data objects
efficiently. Consider, for example, the situation in which it is required to sort a
large set of data into order, where each item is of a derived type containing many
fields. As we have already seen, sorting an array can involve a considerable
number of data movements, and if this is done by moving the objects themselves
into the required order there will be a considerable overhead. If, however, there is
an array of pointers to the data objects then, instead of interchanging large-sized
data objects, it is only necessary to interchange the pointers that are pointing to
them. Since pointers are generally small objects, occupying typically only one
memory location this is much more efficient.

Finally, it should be noted that arrays force a rectangular structure on
data. This is acceptable if the data is of that nature. However, much data does not
fit well into a rectangular pattern, such as sparse matrices, the structure of neural
nets, a road or railroad system, and almost all biological systems. Pointers provide
a natural way to emulate the structure of such entities.

A variable in Fortran is declared to be a pointer by specifying that it has
the POINTER attribute in a type declaration statement. For example, the statement

REAL, POINTER •. p

specifies that the variable p is a pointer that can point to objects of type real. It
does not specify a real entity that p is pointing to, only that it can point to one.
An extremely important feature of this statement is that p can only be set to point
to entities of type real. Any attempt to make it point to data of some other type
(intrinsic or derived) will cause a compilation error.
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Figure 16.1 Pointers!

Pointers can, of course, be defined that can point to derived-type objects
as well as to intrinsic-type objects. For example

TYPE(employee), POINTER :: q

defines q to be a pointer variable that can point to objects of the derived type
employee.

The general pattern for a pointer type declaration statement is

type specifier, attribute list, POINTER :: list of pointer variables

The type specifier specifies what type of object can be pointed to, the
attribute list gives the other attributes (if any) of the data type, and the list of
pointer variables is a list of all the pointers being defined.

An important aspect of pointers is that every pointer has an association
status which indicates whether or not it is currently pointing at anything. A
pointer's association status, when it is initially specified in a type declaration
statement, is said to be undefined.

Before discussing pointer type declaration statements in more detail, it is
appropriate to examine how to make a pointer variable point to an object and, in
particular, to introduce a concept that makes Fortran's pointers different from
those of most other languages.

One potential problem with pointers is that, for reasons that we do not
need to elaborate here, they can very easily have a severely detrimental effect
upon the execution efficiency of programs. Since execution efficiency has always
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been of great importance for the class of problems that Fortran is primarily used
for, certain steps have been taken to ensure that Fortran compilers can produce as
efficient code as possible even though a program uses pointers. This is achieved
by restricting the variables to which a pointer may point by requiring that all
objects to which a pointer may point have an additional attribute, called the
TARGET attribute, which, as its name implies, specifies that the object may be
pointed to - in other words, that it may be the target of a pointer. Thus, in the
following statements

REAL:: a
REAL, TARGET :: b
REAL, POINTER :: p
INTEGER, POINTER :: q

the variable p can point to the variable b because the types match and b has the
target attribute; it cannot point to a (even though a is a real variable), because a
does not have the target attribute. The variable q cannot point to b because,
although b possesses the target attribute, it is of the wrong type, since q can only
point to an integer entity.

Note that, as with other attributes, the POINTER and TARGET attributes can
also be specified by means of statements:

POINTER :: list of names of pointer objects
TARGET :: list of names of target objects

As has been emphasized before, in other contexts, we strongly
recommend that the attribute forms are always used, rather than the statement
forms, in order that all the attributes of an entity are present in one statement,
with consequent improvements in clarity.

A pointer can be associated with a target by a pointer assignment
statement. This is an executable statement which takes the form

pointer => target

where pointer is a variable with the pointer attribute and target is a variable which
has either the target attribute or the pointer attribute, and which has the same
type, type parameters, and rank as the pointer variable. Note that the pointer
assignment operator is a composite symbol consisting of an equals sign followed
by a greater than sign, without any intervening spaces.

When a pointer points to a target, its association status is said to be
associated.

Figure 16.2 illustrates some pointer assignment statements and their effect.
In this example, the pointer association status of p, q and r is initially undefined.
The status of p changes to associated after the third statement is executed, that of q
after the fourth statement, and that of r after the fifth. Notice that it is legitimate
for two or more pointers to be associated with the same target.



INTEGER, POINTER :: p, q, r
INTEGER, TARGET :: a, b
p => a
q => a
r => b
p => b
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p points to a
q also points to a
r points to b
Now q points to a
and p and r point to b

Figure 16.2 Examples of pointer assignment.

In Figure 16.2 the targets all had the target attribute. However, it is also
permitted for pointer assignment to take place between two pointers, as
illustrated in Figure 16.3. In this example, the pointer association status of u, v and
w is initially undefined. The pointer u then becomes associated with x and its
association status becomes defined. The next statement

v => u

does not, however, set v to point to the pointer u. Instead, the effect is to make v
point to the same target that u is pointing to. Thus v now points to x, since the
pointer u points to x, and the association status of v becomes associated. In
Fortran you cannot point to a pointer; however, if you do need pointers to
pointers, they can be created indirectly through the use of derived types.

If the target is a pointer whose association status is undefined, then the
status of pointer becomes undefined, as can be seen in the final statement in Figure
16.3, which sets the association status of u to that of w; that is, undefined.

REAL, POINTER:: u, v, w
REAL, TARGET :: x
u => x
v => u
u => w

u points to x
v points to x
u now has an undefined
association status

Figure 16.3 Examples of pointer assignment where the target is a pointer.
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Sometimes it is required to break a pointer's association with a target
without setting it to point to another target with a pointer assignment statement,
and the NULLIFY statement exists for this purpose. This takes the form

NULLIFY (list of pointers)

and breaks the association between the specified pointers and their targets,
setting the pointer association status of each pointer to disassociated:

REAL, TARGET :: a, b
REAL, POINTER :: p, q
p => a
q => a
NULLIFY(p)

p => b

NULLIFY (p, q)

p points to a
q also points to a
p is disassociated
q still points to a

p now points to b

p and q are disassociated

There are several things to observe in this example. In the fifth line, the disassocia-
tion of p did not affect q even though they were both pointing at the same object.
After being disassociated, p can be associated again later in the program, either
with the same or with a different object. Finally, the last line illustrates that a
NULLIFY statement can disassociate several pointers simultaneously.

Because of the importance, in many applications using pointers, of
knowing the current pointer association status of pointers, Fortran 90 includes an
intrinsic function, ASSOCIATED, that will return the association status of a pointer.
This can be used in two ways - with one argument or with two.

In the first case, the function reference ASSOCIATED (p), where p is a
variable with the pointer attribute, has the logical value true if the pointer is
currently associated with a target and false if it is not.

If a reference to this function contains a second argument, then that
argument must have the target attribute, and the result of the function reference
will be true if and only if the pointer is associated with the specified target.

There is one important restriction concerning the use of this function,
namely that the (first) argument must not have an undefined pointer association
status. A pointer only has this status from the time that it is declared until it is
first associated with some target (other than another pointer which has an
undefined association status). Thereafter it will always be either associated or
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disassociated. It is strongly recommended, therefore, that pointers should always
be either associated with a target variable immediately after their declaration, or
nullified, thereby ensuring that their status is disassociated:

REAL, POINTER :: a,b,c
INTEGER, POINTER :: p,q,r
NULLIFY(a,b,c,p,q,r)

There are two restrictions on the use of the pointer and target attributes,
both of which are to be expected. The first of these is that a variable with the
parameter attribute cannot have either the pointer or the target attribute, while
the second is that a variable must not be given both the target attribute and the
pointer attribute.

16.2 Using pointers in expressions

We can now begin to investigate how pointers are used in programs to provide
additional capabilities that would not, otherwise be available. When using
pointers, the first, and the most important, rule is that when a pointer appears in a
situation where a value is expected (for example, as one of the operands of an
operator) it is treated as if it were the associated target, i.e., the object being
pointed to. This is sometimes called dereferencing. Consider, for example, the
program fragment shown in Figure 16.4, overleaf. In this example, the two
pointer assignment statements

p => i
q => j

first associate p with i and q with j. The next statement

p = q + 1

is a conventional assignment statement, and expects a variable name on the left of
the assignment operator, and an expression on the right. The expression is
analysed first ,and, since in the arithmetic expression q+l the plus operator expects
q to have a value, the pointer q is dereferenced and the expression becomes
equivalent to j+l; it will therefore have the value 3. The pointer p on the left-
hand side of the assignment operator is also dereferenced, in this case to the
variable i. Thus, the effect of the statement

p = q + 1
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INTEGER, POINTER :: p, q
INTEGER, TARGET :: i=l, j=2
P => i

q => j

p = q + 1
IF (p-l==q) p => j

p = q + 1

Pointer assignment;
p points to i
Pointer assignment;
q points to j
Assignment (to i)
Equality test and pointer
assignment
Assignment (to j)

Figure 16.4 An example of an arithmetic expression involving a pointer.

is to set the value of i to 3; P is unchanged, and continues to point to i.
In the following statement, the expression (p-1==q) results in both p and

q being dereferenced to the integers i and j, respectively. The statement is,
therefore, testing to see if i-1 is equal to j. Since this is true, the pointer
assignment statement p => j is executed, with the result that both p and q point to
the same integer variable, j.

In the final line of Figure 16.4 first q, and then p, are dereferenced to j,
with the result that the statement is equivalent to j = j + 1, and j is consequently
set to the value 4. The pointer p is unchanged.

Thus the fifth and seventh lines of the example, although they look
identical, have different effects - the first modifying the value of i and the second
modifying the value of j.

The value of an expression containing pointers, or the effect of an
assignment to a pointer, can therefore be seen to depend on the current targets
the pointers are associated with. The pointers themselves are unchanged, and
continue pointing to their initial targets.

The point which these examples is making, and which must be clearly
understood, is that there is a significant difference between the behaviour of
pointers on the left-hand side of a pointer assignment statement and the
behaviour of pointers in a value-demanding situation. To illustrate this difference
in a slightly different way from the previous example, consider the statements

y=3.0
REAL, POINTER :: p, q
REAL, TARGET :: x=2.0,
p => x
q => y
p = q
p => q

p points to x
q points to y
Same as x = y; P is unchanged
p points to y
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In this example, the assignment statement p = q sets x to have the value 3.0 and
leaves the value of p unaltered. On the other hand, the pointer assignment
statement p => q sets p to point to y and leaves the value of x unaltered.

We are now able to illustrate how pointers can be used to improve the
efficiency of work involving large objects. Suppose, for example, that we have a
derived type huge that has many different fields, some of which are large arrays.
Furthermore, let us suppose that we wish to interchange two objects large_l and
large_2 of type huge. This would conventionally be accomplished by statements
such as

TYPE (huge)

pl points to large_2
p2 points to large_l

temp = large_l
large_l = large_2
large_2 = temp

However, this involves three copies of large amounts of data, and also involves
the extra storage space for the variable temp. Using pointers will enable the same
goal to be achieved considerably more efficiently:

TYPE (huge) , TARGET :: large_l, large_2
TYPE (huge) , POINTER :: pl, p2
pl => large_l ! pl points to large_l
p2 => large_2 ! p2 points to large_2
!Now work with pl and p2 instead of large_l and large_2

Interchange pointers so that pl points to large_2
and p2 points to large_l

pl => large_2
p2 => large_l

In this version, no large objects are copied; instead only two pointers are reset.
However, life is never perfect, and there is a small cost to be paid. In this case,
every time that large_l is required we must write pl, before the exchange has
taken place, or p2, after the exchange. This means that, when the program is being
executed, an extra step is needed to go from pl to the object to which it is
pointing. Generally, however, this cost is small compared to the saving made
through not moving large objects.
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Once a pointer has been associated with an object of intrinsic type, the
pointer may be used in place of the target object in any context where an object
of the type of the target is expected. In particular, the dereferencing of pointers to
objects of derived type works in an identical manner to the dereferencing of
pointers to intrinsic types, as can be seen from the following example:

TYPE point
REAL::x,y

END TYPE point

TYPE(point), TARGET :: ptl
TYPE(point) , POINTER :: pt
pt => ptl
pt%x = 1. 0
pt%y = 2.0

Equivalent to ptl%x = 1.0
Equivalent to ptl%y = 2.0

The other situation in which a pointer may occur, and in which it will be
dereferenced before being used, is in an input or output statement. Pointers which
are associated with a target may occur in the list of items specified in a read or
write statement. The pointer is dereferenced, and it is the associated target that
data is written from or read into. Thus, if the program extract shown above has a
subsequent statement of the form

READ * ,pt

the pointer variable pt will be dereferenced to the variable ptl of type point, as
long as pt still points to ptl, and the READstatement will expect to read two real
numbers, which will be read into the two components ptl%x and ptl%y.

;1.

16.3 Pointers and arrays

So far, we have only shown pointers that point to scalars. However, as we would
expect, the target of a pointer can also be an array. As with scalars, the type
declaration statement for an array pointer does not associate the variable with an
array; its purpose is to define what sort of arrays the pointer can point to.

The type declaration statement for an array pointer specifies the type of
arrays that it can point to, and also the rank of the arrays that it can point to.
Note that only the rank is required, not the extents or array bounds.
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The dimension attribute of a pointer array cannot specify an explicit-
shape or an assumed-shape array, but must take the form of a deferred-shape
array, in a similar manner to that used for an allocatable array (see Sedion 13.6).
This does not mean that an array pointer cannot point to an explicit-shape or an
assumed-shape array; it is merely a question of how the dimension attribute of an
array pointer must be specified.

Although array pointers are similar to allocatable arrays, we shall see that
they have more capabilities. The deferred-shape dimension attribute for an array
pointer is, however, specified in the same way as that for allocatable arrays. The
extent of each attribute must, therefore, be specified by a colon, and the total
number of colons is the rank of the array.

Thus, the statement

REAL, DIMENSION(:), POINTER :: p_array

declares a pointer, p_array, which can point only to rank-one real arrays.
Similarly, the statement

CHARACTER(LEN=5), DIMENSION(:,:,:), POINTER :: p_array2

declares a pointer, p_array2, which can only point to rank-three, charader arrays
whose length attribute is 5.

The array pointers p_array and p3rray2 may be associated with any
arrays having matching type, type parameters and rank, and which have the
target attribute. The extents and index bounds of the' arrays can be of any
magnitude.

The following example shows the use of pointer arrays, and there are
several important points to observe. "

INTEGER :: n, u, v, w
REAL, DIMENSION(10), TARGET :: a
REAL, DIMENSION(n), TARGET :: b
CHARACTER(LEN=5), DIMENSION(u, v, w), TARGET :: d
CHARACTER (LEN=5) , DIMENSION (v, 10, 20), TARGET .. e
CHARACTER (LEN=4) , DIMENSION (v, 10, 20), TARGET .. f
REAL, DIMENSION(:), POINTER :: p
CHARACTER(LEN=5), DIMENSION(: ,:,:), POINTER:: q
p => a ! Associate p with array a
p => b ! Associate p with array b
q => d ! Associate q with array d
q => e ! Associate q with array e
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REAL, POINTER:: p1, p2, p3
REAL, TARGET, DIMENSION (10) :: a
INTEGER, DIMENSION (3) :: u = (/14, 7, 1/)
p1 => a ! Valid
p2 => a(1:10:2) ! Valid
p3 => a(u) INVALID!!

Figure 16.5 Valid and invalid pointer assignments to array sections.

Note that p is associated at different times with arrays having different extents, as
was q. This is allowed because it is only the rank that matters; the pointer p can
point to any rank-one, default-real array; the extent of the array does not matter.
Similarly, q is made to point to two differently shaped arrays, but their ranks are
the same. Finally, note that q would not be allowed to point at the array f
because, even though their type and rank are the same, the type parameters,
specifically the length attribute, do not match.

Note, however, that whereas it is legitimate to associate an array pointer
with an array section defined by a subscript triplet, it is not permitted to associate
one with an array section defined by a vector subscript (see Section 13.9). Thus, in
the program fragment shown in Figure 16.5 the first pointer assignment
statement associates p1 with a, and p1 (i) is interpreted as a (i). The second
pointer assignment statement associates p2 with the odd-numbered elements of a.
Thus, p2 (1) is a (1), p2 (2) isa (3), and so on. The third pointer assignment
statement is invalid because it attempts to associate p3 with an array section
having a vector subscript.

Whatever form of array is being used, once a pointer association has been
made the pointer can be used,in place of the target array in an expression in
exactly the same way as for scalars.

The arrays being pointed to in the previous examples have already been
declared in another declaration statement; however, one of the most powerful
aspects of pointer arrays is their use as a means of dynamically creating space for
an array when required, and releasing it when it is no longer required. This is
carried out by use of the ALLOCATE statement in a similar fashion to the use of the
ALLOCATE statement to create space for an allocatable array, as discussed in
Section 13.6.

The statement takes the form

ALLOCATE (pointer (dimension specification))
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or

ALLOCATE (pointer (dimension specification), STAT=status).

where pointer is a pointer array (that is, it has both the dimension and pointer
attributes), dimension specification is the specification of'the extents for each
dimension, and status is an integer variable which will be'assigned the value zero
if the allocation is successful, and a processor-dependent positive value if there is
an error, for example if there is not enough memory available. The statement will
create an un-named array of the specified size, having the correct type, type
parameters and rank, and with an implied target attribute. Because this array does
not have a name it can only be referred to by means ofa pointer.

After successful execution of the ALLOCATE statement, the allocation status
of pointer will become allocated, and its association status~will become associated.
Note that, although the STAT= portion of the ALLOCATE statement can be omitted,
an undetected allocation error will cause the program to terminate execution.
Testing status produces more portable and informative code.

Note also that, unlike the situation with allocatable arrays, it is not an
error to allocate an array pointer that is currently associated with a target. The
effect is to set the pointer to point to the new object just allocated, and to break
the connection with the previous target. However, care must be exercised if the
first target was created by an allocate statement. This is because, unless another
pointer has been set to point to the first target array, the space for the first array
will become inaccessible to the program. Not only is this bad programming
practice, but it results in the memory becoming cluttered Jp with unusable space:

INTEGER :: error, m, n
REAL, DIMENSION(:,:), POINTER ..
!Calculate values ofm and n.

ALLOCATE (p(m+n,m*n) , STAT=error)
IF (error /= 0) THEN

PRINT *, "Allocation Error"
STOP

END IF
q => p

ALLOCATE(p(lO,n), STAT=error)
IF (error /= 0) THEN

PRINT *, "Allocation Error"
STOP

END IF

p, q

Allocate p

'I,.
q points to the
elements of p

Allocate p again
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In this code fragment the pointer p is first set to point to a dynamically created
real array of size m+n by m*n. The pointer q is then set to point to the same array.
Finally p is allocated again to dynamically create a new array of size 10 by n, and
p now points to this new array, and the association of p with the first array is
broken. The pointer q, however, is unaffected by the second allocation of p and
continues to point at the first m+n by m*n array.

If the pointer assignment statement (q => p) were removed, however, the
space for the first array would become completely inaccessible to the program. A
second execution of the original ALLOCATE statement would not associate p with
the first array, but would, instead, create another array of the same shape.

There is one other point to notice in this example. When p was allocated,
the size expressions were not constants, as in the examples previously given for
array pointer allocation, but were integer expressions using the variables mand n,
which might, for example, have been procedure dummy arguments. The size
expressions in an array pointer allocation statement can, in fact, be any scalar,
integer expressions.

Note that, if the space for an array pointer is created by an ALLOCATE
statement, and the pointer association status is subsequently set to disassociated
by a NULLIFY statement, then the space for the elements of the array pointer is not

deallocated. The space will, however, be inaccessible unless a second pointer has
been set to point to it before the NULLIFY statement is executed.

To avoid the problems caused through such inaccessible space, the space
for an array which was created by a pointer allocate statement can be released by
means of a DEALLOCATE statement, which takes a similar form to that used to
deallocate an allocatable array:

DEALLOCATE (pointer)

or

DEALLOCATE (pointer, STAT=status)

The following program uses both allocatable and pointer arrays to illustrate
the similarities and the differences between these two forms of dynamic arrays:

PROGRAM space-pointer
IMPLICIT NONE

INTEGER, DIMENSION (:) ALLOCATABLE :: a
REAL, DIMENSION(:,:), POINTER :: p
INTEGER .. alloc_error, dealloc_error
INTEGER .. i !Loop control variable
INTEGER .. n !Size of diagonal

! Read input data
OPEN (UNIT=l,FILE="diagonal",STATUS="OLD",ACTION="READ")
READ (UNIT=l,FMT=' (*)') n !Size of diagonal
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ALLOCATE(a(n) ,STAT=alloc_error)
IF (alloc_error 1= 0) THEN

PRINT *, "Couldn't allocate space for a"
STOP

END IF
READ (UNIT=l,FMT=' (*)') a

! Allocate space for p.
ALLOCATE(p(SIZE(a,l) ,SIZE(a,l),STAT=alloc_error))
IF (alloc_error 1= 0) THEN

PRINT *, "Couldn't allocate space for p"
STOP

END IF

! Space for p allocated
p = 0.0
DO i=l, SIZE(a,l)

p(i,i) = a(i)
END DO

Calculate using p

Set elements of p to zero
Set diagonal of p to the
elements of a

!Deallocate a and p.
DEALLOCATE (a,p,STAT=dealloc_error)
IF (dealloc_error 1= 0 ) THEN

PRINT *, "Couldn't deallocate space
STOP

END IF
! Other calculations

END PROGRAM space-pointer

,
for a and p"

The program uses an allocatable array a to hold the elements of a rank-one real
array. A real, square, rank-two array p is then created whose diagonal elements
are the elements of a and whose other elements are zero; the array p is defined by
a pointer variable whose element space is created by execution of an ALLOCATE
statement. Once p is allocated, all of its elements are set to zero by a whole-array
expression, and its diagonal elements are then set to the elements of a in a DO

loop.
When the calculations are completed, the space for a and p is deallocated.

Notice that it is permitted to deallocate allocatable arrays and pointers in the
same statement; it is also permitted to allocate arrays of both types in the same
statement where this is appropriate. When the space for p is deallocated, the
pointer association status of p becomes disassociated.
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Care must be taken when deallocating pointer arrays to ensure that they
are not associated with an object that was not created by a pointer allocation
statement. Thus, for example, if a program contains the following statements

REAL, ALLOCATABLE, DIMENSION(:,:), TARGET:: A
REAL, POINTER, DIMENSION(:,:) :: p
ALLOCATE (a(lO,20))
p => a

and then subsequently attempts tq obey the statement

DEALLOCATE(p)

an error will occur because the pointer deallocation statement will attempt to
deallocate the space allocated to the allocatable array a. This can be corrected by
first nullifying the pointer p

NULLIFY(p)

which breaks the association between p and a.
The general rule is that a pointer deallocate statement must not be used to

deallocate any object, scalar or array, that was not allocated by a pointer allocate
statement. Only objects dynamically created by a pointer allocate statement can
be destroyed by a pointer deallocate statement.

Although we have shown how the space for the elements of an array
pointer can be dynamically created and destroyed by use of the ALLOCATE and
DEALLOCATE statements, they can, in fact, also be used to dynamically create and
destroy scalar objects of any intrinsic or derived type. For example, in the
following code fragment any could be of any derived type that is available to the
program at this point, and the ALLOCATE statement dynamically creates an object
of this type with p pointing to it. The pointer p will be dereferenced in any
context expecting an object of type any, so that, for example, p%c will be
interpreted as the c component of the object that p is pointing to.

INTEGER :: error
TYPE(any), POINTER .. p,q
ALLOCATE (p,STAT=error)
IF (error/=O) THEN

PRINT *,"Allocation Error"
STOP

END IF
q => p
! Use p and q
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NULLIFY(q)
DEALLOCATE(p,STAT=error)
IF (error/=O) THEN

PRINT*,"Deallocation Error"
STOP

ENDIF

"

The NULLIFYstatement breaks the association between qand p and changes the
pointer association status of q to disassociated. The status of p is unchanged.
Note that if the pointer association status of q had not been set to disassociated
before p was deallocated, q would have been left pointing to space which was no
longer accessible to the program - a situation which, as we have already pointed
out, is likely to lead to subsequent program errors.

The deallocate statement releases the space created for holding the object
of type any and sets the pointer association status of p to disassociated .

.'.:,
16.4 Pointers as components of derived types

Before we start to use pointers in real programs, there is one other very important
concept to be introduced. We have seen that pointersc1m point at objects of
derived type in just the same way as they can point at objects of intrinsic type.
However, a pointer can also be a component of a derived type. Such a pointer
component of a derived type can point to an object of any intrinsic type or to any
accessible derived type, including the type being defined.' This has several very
important implications.

We shall first, however, consider a derived type which contains a pointer
component that does not refer to any objects of the same type, for example:

TYPEmine
INTEGER.. i
REAL, DIMENSION(:), POINTER:: p

ENDTYPEmine

This is quite straightforward, although it should be noted that objects of this type
will need to have space allocated for their pointer component before they can be
used in a useful fashion:

TYPE(mine) :: a,b
ALLOCATE(a%p(lO) ,b%p(20))
a%i = 1
a%p = 0.0 Fill all elements of a%p with 0
b%i = 2
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b%p(1:19:2) = 0.0

b%p(2:20:2) = 1.0

Fill odd-numbered elements of
b%p with 0
Fill even-numbered elements of
b%p with 1

The ability to have array pointers as components permits us to improve
the definition of the vector type that was defined in Example 12.2. In that
example the derived type was defined as follows:

TYPE vector
PRIVATE
INTEGER :: length
REAL, DIMENSION (max_length) .. elements

END TYPE vector

where max_length was a named constant which specified the maximum length of
vector permitt-ed. This meant that there was considerable wasted space due to the
need for every vector to have an array component big enough to cater for the
largest vector anticipated.

We can now define the derived type vector as:

TYPE vector
PRIVATE
INTEGER :: length
REAL, DIMENSION(:), POINTER .. elements

END TYPE vector

Using this new type we could define vectors of length 1, 10 and 20 by code such
as the following:

INTEGER :: error
TYPE (vector) :: u, v, w
ALLOCATE (u%elements(l) ,v%elements(10), &

w%elements(20), STAT = error)
IF (error == 0) THEN

u%length = 1
v%length = 10
w%length = 20

ELSE
PRINT *, "Vector allocation error"
STOP

END IF
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Now, unlike the situation when using the earlier vector definition, there is no
space wastage when creating space for the elements of a vector. Moreover, we
can create vectors of any size we wish, subject only to the size of the computer's
memory.

Finally, we shall consider the situation in which a derived type contains a
pointer component which points to an object of the same type. Consider, for
example, the following type definition: :

~75

I

TYPE node
INTEGER .. i
CHARACTER (LEN=3) :: id
TYPE(node), POINTER :: p

END TYPE node

p points tolobjects
of type node

:jo.

With this style of derived type definition, objects can be'made to point at each
other, as can be seen in the following example:

TYPE (node) , TARGET:: nl, n2, n3

! Make nl point atn2
nl%i = 1
nl%id = 'E31'
nl%p => n2

!Make n2 point at nl
n2%i = 2
n2%id = 'AX4'
n2%p => nl

!Make n3 point at n2
n3%i = 3
n3%id = 'CCS'
n3%p => n2

,tot

Notice that in order to permit the pointers to be set correctly nl, n2 and n3 had to
be given the target attribute. ".

This ability to have pointer components that can point to variables of the
same type allows the creation of structures in which the relationships between the
data elements (usually called nodes) can be arbitrarily complex, as opposed to the
entities in an array which always have a rectangular structure. One of the simplest
examples of such a relationship structure is a linked list. These are lists in which
each node points to a successor (or predecessor) node.:Linked lists occur very
commonly in applications such as artificial intelligence, compiler writing,
simulation, modelling and neural networks. We shall examine this important
area in more detail in Section 16.7.
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[] Problem

In order to build up a database of professional contacts, a derived type is defined
to contain the name, sex, telephone number and address of each contact. It is
required to design and maintain this database in such a way that the contact
details are always stored in alphabetic order of last names.

~ Analysis

This is, in principle, a simple sorting problem, but with records that may each
involve a large number of fields. Sorting the file by any method which involves
exchanging data items will, therefore, be inefficient and we should look to using a
method that sorts pointers to the data, and not the data itself.

This implies a requirement for an array of pointers. Although this is a
relati~ely common requirement, we have already stated that, because a pointer is
an attribute and not a dafa type, it is impossible to create such an array. We must,
therefore, proceed indirectly.

Objects that simulate arrays of pointers can easily be created by using a
derived type containing a pointer of the desired type, and then creating an array
of that deriveq type. For example, suppose an array of pointers to integers is
required. The following statements will define a derived type int-pointer whose
only component is a pointer to integers:

TYPE int-pointer
INTEGER, POINTER .. P

END TYPE int-pointer

We can then define an array of variables of this type:

TYPE (int-pointer) , DIMENSION (10) :: a

It is now possible to refer to the ith pointer by writing a (i) %p.
We can now return to our problem and define a suitable derived type for

the contact data, for example:

TYPE contact
CHARACTER (LEN=15) .. first_name, 1asLname
CHARACTER (LEN=20) .. title
CHARACTER (LEN=l) sex
CHARACTER (LEN=20) .. telephone
CHARACTER (LEN=40) street
CHARACTER (LEN=20) .. city
CHARACTER (LEN=20) .. state
CHARACTER (LEN=lO) .. zip

END TYPE contact
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We shall use a naive sort algorithm called an injection sort. It is not one of
the best sort algorithms known, but is an appropriate one for this problem, and
also has the advantage that it does not obscure, by its complexity, the way in
which we shall use pointers.

An injection sort starts with an empty list and adds items sequentially.
When an item is added to the list, it is added so that it is in the correct position as
defined by the ordering criteria. This is done by scanning sequentially down the
list and, when the correct position is found, moving all the items already in the
list, starting at that position, down one position. The new item is then inserted in
the position just vacated. In an injection sort, therefore, the list of items processed
so far is always in the correct order, which will avoid the need for any subsequent
sorting; this is a major advantage, for this problem, over many other methods
which are more efficient at sorting an existing list.

For reasons of clarity (and brevity!) we shall assume that there is already a
set of contact data stored in a file, and will develop a program to sort this into
order and then print the ordered list. The provision of an input procedure to, for
example, create the initial file from data typed at the keyboard, and further
development of the program to preserve the sorted list and to allow it to be
subsequently updated are left as exercises for the reader.

The data design for this problem is quite straightforward, but lengthy, and
will be omitted in this example; it can easily be deduced by studying the solution
given below. We shall give a structure plan for the sort procedure, but will omit
those for the main program and display procedure, as these are relatively trivial.

Subroutine sort

Structure plan

@] Solution
MODULE storage

IMPLICIT NONE
! Field lengths for contact data
INTEGER, PARAMETER name_len = 15
INTEGER, PARAMETER .. title_len = 20
INTEGER, PARAMETER sex_len = 1
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INTEGER, PARAMETER phone_len = 20
INTEGER, PARAMETER street_len = 40
INTEGER, PARAMETER .. city_len = 20
INTEGER, PARAMETER state_len = 20
INTEGER, PARAMETER .. zip_len = 10

! Derived type for contact data
TYPE contact

CHARACTER (LEN=name_len) :: first_name, last_name
CHARACTER (LEN=title_len) :: title
CHARACTER (LEN=sex_len) :: sex
CHARACTER (LEN=phone_len) :: telephone
CHARACTER (LEN=street_len) :: street
CHARACTER (LEN=city_len) :: city
CHARACTER (LEN=state_len) :: state
CHARACTER (LEN=zip_len) :: zip

END TYPE contact

! Derived type to create an array of pointers to objects
! of type contact
TYPE contact-pointer

TYPE (contact) , POINTER:: pointer_to_contact
END TYPE contact-pointer

! Global data
INTEGER:: n Number of data records

! Array of contacts
TYPE(contact), ALLOCATABLE, DIMENSION(:), &

TARGET, SAVE:: contacts

! Array of pointers to array of contacts
TYPE (contact-pointer) , ALLOCATABLE, DIMENSION(:), &

SAVE :: p_contacts
END MODULE storage

PROGRAM sort_contacts
USE storage
IMPLICIT NONE
!This program sorts a list of contacts into alphabetic
! order and then prints the contacts in that order

Declaration
INTEGER :: error

! Open data file
OPEN(UNIT=l,FILE="contact data",STATUS="OLD",ACTION="READ")

! Read number of data records
READ (UNIT=l,FMT=' (*)') n

!Allocate space for all records
ALLOCATE (contacts(n) ,p_contacts(n) ,STAT=error)
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IF (error/=O) THEN
PRINT *, "Allocation error"
STOP

END IF

! Read all contact data
READ (UNIT=l,FMT=*) contacts
CLOSE (UNIT=l)

! Sort data into order
CALL sort

! Print sorted list
CALL display

! Deallocate arrays. before ending
DEALLOCATE (contacts,p_contacts,STAT=error)
IF (error/=O) THEN

PRINT *,"Error 'deallocating contacts and p_contacts"
END IF

END .PROGRAM sort_contacts

SUBROUTINE sort
USE storage
IMPLICIT NONE
! This subroutine sorts the array p_contacts~based on
! the alphabetic order of the last_name field of the array
! contacts using an injection sort

! Local variables
INTEGER :: i ,j Loop control variables

~i'.,
! Initialize pointer list I"

p_contacts(l)%pointer_to_contact => contacts(l)

! Main sorting loop
main: DO i=2,n

! Check current contact against contacts in list so far
DO j=l,i-l

IF (contacts(i)%last_name < &
p_contacts(j)%pointer_to_contact%last_name) THEN

! Shift last part of p_contacts arr~y down
p_contacts(j+l:i) = p_contacts(j:i-l)
!. Insert current contact in list
p_contacts(j)%poi~ter~to_contact =~ contacts (i)

;1
!Return to find position for next ~ontact.
CYCLE main

END IF
END DO tr
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! Current contact comes after all items already in list
! Insert it at the end

p_contacts (i)%pointer_to_contact => contacts(i)
END DO main

END SUBROUTINE sort

SUBROUTINE display
USE storage
IMPLICIT NONE
! This subroutine prints the names of people in the contact
! list sorted by their last names

Local variable
INTEGER:: i ! Loop control variable

! Print alphabetical list of last names
DO i=l,n

PRINT' (SX,A,IX,A)' , &
p_contacts(i)%pointer_to_contact%first_name, &
p_contacts (i)%pointer_to_contact%last_name

END DO

END SUBROUTINE display

'.Note that at the end of the main program the allocatable array contacts
and the array of pointers p_contacts were deallocated. It may be felt that this was
unnecessary, since the program is going to end immediately after this anyway.
The main reason is that it is good programming style to acquire a habit of always
explicitly deallocating allocated arrays and pointers for the reasons discussed
earlier; a secondary reason is that it will often detect programming errors such as
might occur if a procedure had inadvertently deallocated an array prematurely.

There is one final point that should be made regarding the use of pointers
as components in derived types, which relates to their occurrence in an input or
output statement.

If a derived type ultimately contains a pointer, then an object of the type
must not appear in the list of items specified in a read or write statement, since it
is not possible to read or write the value of a pointer. Thus if, during the course of
a program's execution, you have built up an elaborate structure of relationships
by using derived types containing poillters (a linked list would be a simple
example) and you wish to save the structure in a file before the program
terminates, you must create a secondary storage scheme for the output that does
not involve pointers, and copy the information to that sewndary storage before
executing the WRITE statement.
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SELF-TEST EXERCISES 16.1

1 What is a pointer? What is a target?

2 What can a pointer point to?

3 What are the possible association states of a pointer?

4 What is a pointer assignment statement and what forms can it take?

5 How can the pointer association starns of a pointer variable be set to disassociated?

6 How can the pointer association status of a pointer variable be determined?

7 What is dereferencing?Give several examples.

8 How do pointers and the input/output features of Fortran interact?

9 How can pointer variables be defined that can point to arrays?

10 How can the space for the elements of an array pointer be created dynamically?
How can it be deallocated dynamically?

16.5 Pointers as arguments to procedures

It will be remembered that allocatable arrays cannot be used as dummy
arguments of procedures (see Section 13.6). Pointers (and targets), on the other
hand, are allowed to be procedure arguments, but only as long as the following
conditions are adhered to:'

• If a procedure has pointer or target dummy arguments, then the
procedure must have an explicit interface.

• If a dummy argument is a pointer, then the actual argument must be a
pointer with the same type, type parameters and ,rank.

• A pointer dummy argument cannot have the intent attribute.

A particularly important aspect of pointer arguments concerns their
allocation and deallocation. In the examples of pointer allocation and deallocation
shown so far, the allocation and deallocation has always occurred in the same
program unit; however, this is not a necessity, as can be Seen from the following
program extract:

Ir
I
I
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POINTER:: p
! Error checking omitted
! for clarity
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SUBROUTINE create
IMPLICIT NONE
INTERFACE

SUBROUTINE destroy(x)
IMPLICIT NONE
REAL, POINTER, DIMENSION(:) .. x

END INTERFACE
REAL, DIMENSION(:),
ALLOCATE (p(lOO))

CALL destroy(p)
END SUBROUTINE create

SUBROUTINE destroy(x)
IMPLICIT NONE
REAL, POINTER, DIMENSION(:) .. x
! Calculate using x

DEALLOCATE (x)

END SUBROUTINE destroy

Error checking omitted
for clarity

Note the use of an interface block in the subroutine create to provide an
explicit interface for destroy. An alternative approach would, of course, be to
place both procedures in a module. .

The space for the elements of p is allocated in the subroutine create,
which then calls the subroutine destroy. This associates the dummy pointer
argument x with the adual pointer argument p. After using the array x, the
subroutine destroy deallocates'it. This also deallocates the adual argument p in
subroutine create and sets the pointer association status of p to disassociated.

This flexibility is in strong contrast to the situation with allocatable arrays
which cannot be used in derived-type definitions, as fundion results, or as
dummy arguments, and must, therefore, be allocated and deallocated in the same
program unit. However, this flexibility can bring its own problems if care is not
taken. We strongly recommend, therefore, that the error checking provided by
the STAT specifier should always be used, and that in complex programs full use
be made of the ASSOCIATED and ALLOCATED intrinsic procedures to establish what
is the status of pointers which are used in other procedures.
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16.6 Pointer-valued functions

To complement the possibility of using a pointer as an argument to a procedure,
it is also permitted for a function result to be a pointer. In this case, the keyword
RESULT must be used in the definition of the function (see Chapter 10), and the
result variable must be specified to be a pointer. For example

MODULE small
IMPLICIT NONE.

CONTAINS ~
FUNCTION even-pointer(a) RESULT(p)

REAL, DIMENSION(:), POINTER :: a
REAL, DIMENSION (:), POINTER :: p
! The result of even-pointer is an array
! pointer to the even-numbered elements
! of the input array a.
p => a (2 :: 2) ! P points to an array section

END FUNCTION even-pointer
END MODULE small

The function has been put in a module, because the interface to a pointer-valued
function must be explicit when it is used. Putting the function in a module is
frequently a more convenient way of achieving this than using an interface block.

In Section 16.1, where we first discussed pointer assignment statements,
we stated that the form of a pointer assignment statement was

pointer => target

We can now generalize this to

pointer => expr

where expr is an expression delivering a pointer result. Figure 16.6 shows an
example of this extended form of pointer assignment, using the pointer-valued
function even-pointer shown above. The program first uses the function to set p
to point to the even-numbered elements of the array a by use of the intermediate
pointer array pa. Then q is set to point to the even-numbered elements of the
array pointed to by p because, in this statement, p will be dereferenced as the
array it is pointing to. As a result, q therefore points to the array consisting of
a (4),a (8) and a (12).Finally, r is set to point to the even-numbered elements of
q, and therefore points to the array consisting of the single element a (8) .
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PROGRAM pointer_function
USE small
IMPLICIT NONE
REAL, DIMENSION(lS), TARGET:: a
REAL, DIMENSION(:), POINTER :: pa, p, q, r

pa => a
p => even-pointer(pa)
q => even-pointer(p)
r => even-pointer(q)

p points to even elements of a
q points to even elements of p
r points to even elements of q

END PROGRAM pointer_function

Figure 16.6 Pointer assignment of the result of a pointer-valued function.

16.7 linked lists and other dynamic data structures

One of the most common uses of pointers is to create what are called linked lists.
These are lists of objects in which every object has a pointer to the next object in
the list. In an array, by contrast, the items are stored sequentially, and the array, at
some point in a program, must have a specific size defined for it. In a linked list,
items that are connected are not necessarily stored contiguously. Moreover, items
for the list can be created dynamically (that is, at execution time) and may be
inserted at any position in the list. Likewise, they may be removed dynamically.
Thus, the size of a list may grow to an arbitrary size as a program is executing,
constrained only by the memory resources of the computer being used.

When analysing a problem which is to use linked lists it is frequently
convenient to represent the list in diagrammatic form, as shown in Figure 16.7.
Conventionally, the first item in the list is referred to as the head of the list, while
the last item is called the tail.

Head

Data fields

POINTER

Data fields

POINTER

Tail

Figure 16.7 A linked list.
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A linked list in Fortran typically consists of a derived type containing
fields for the data plus a field that is a pointer to the next item in the list. The head
and the tail will usually be represented by pointers to the appropriate list items.
Example 16.2 illustrates how such a linked list can be used in the simulation of a
real-time system, in which the underlying database is constantly changing.

[] Problem

We wish to model a national network of cash machines. In this example, however,
we shall examine only that part of the program that handles the set of pending
requests. We shall assume that requests are processed in the order in which they
are received and that, therefore, the set of pending requests will be kept in order
in such a way that a new request coming in is added at the end of the set and the
next item to be processed comes from the front of the set.

~ Analysis

It would be inconvenient to keep such an ordered set, where elements are being
added and deleted in an unpredictable order, in an array, and we shall therefore
use a linked list. This will consist of a set of objects of a derived type that contains
the request information. For this example we shall assume that these are the cash
machine number, the customer's account number, the date and time of the
request, and the amount of cash requested.

The derived type will also have one more field which will contain a
pointer that can point to entities of the same derived type. During execution, this
pointer will be set to point to the next request, in order of arrival. A new request
arriving will be linked onto the end of the list; an order for the top-priority
request will be satisfied by delivering the request at the front of the list and
removing it from the list.

We can, therefore, represent the list of unsatisfied requests as shown in
Figure 16.8.

Head pointer

Request data

POINTER

Request data

POINTER

Tail pointer

POINTER

Figure 16.8 The list representing unsatisfied transaction requests.
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Head pointer Tail pointer

New request

POINTER

Figure 16.9 The list with only one entry.

The space for each request will be allocated dynamically when the request
arrives. Initially, the list will be empty, and the head and tail pointers will be set to
be disassociated.

There are two cases to consider when a new request is being added to the
list. The first possibility is that the list is empty. In this case, the head and tail
pointers will both be set to point to a new item when it arrives (see Figure 16.9).

If the list is not empty, then the new request can be added at the end of
the list by adjusting two pointers. Before the new request is added, the end of the
list will be as shown in Figure 16.10, while Figure 16.11 shows the situation after
the new request has been added at the end.

When asked to provide the front item in the list, there are three
possibilities. The first possibility is that the list is empty, in which case an
indication that the list is empty must be returned. The second possibility is that
there is only one item in the list, in which case that item should be delivered and
the head and tail pointers set to disassociated. The third possibility is that the list
contains at least two items, in which case that item should be delivered and the
head pointer adjusted so that the second item is now the head of the list. Figure
16.12 shows the start of the list before the first item is delivered in this case, while
Figure 16.13 shows how it has changed after the item has been delivered and the
head pointer reset.

In this example, and in the next, we shall diverge from our normal practice
and proceed directly to a sample solution without showing the data design and
structure plan. This is because the code required to implement this model is
essentially very straightforward, apart from the statements involved in
manipulating the list. In this case, it will be more useful for the reader to
examine the code carefully, with the aid of the comments provided, in order to
see exactly how the various pointer statements work, than it would be to proceed
with the more abstract analysis involved in a structure plan. Such an initial
planning stage is, however, vital in writing such a program, as it is with all
programming.

[I] Solution
MODULE data_types

IMPLICIT NONE
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Tail pointer

Figure 16.10 The end of the list before adding a new item.

Tail pointer

Last request

POINTER

Figure 16.11 The end of the list after adding a new item.

Head pointer

First request

POINTER

Next request

POINTER

Figure 16.12 The start of the list before removing an item.

Head pointer

Next request

POINTER

Figure 16.13 The start of the list after removing an item.
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! Derived type to record transaction data
TYPE request

INTEGER :: machine
INTEGER :: customer
CHARACTER (LEN=B) date
CHARACTER (LEN=4) :: time
REAL :: amount
TYPE (request) , POINTER .. next

END TYPE request
END MODULE data_types

MODULE linked_list
USE data_types
IMPLICIT NONE
! This module contains the procedures to manipulate the linked
! list representing the outstanding transaction requests

CONTAINS
SUBROUTINE init(head,tail)
! Initialize the empty list

Dummy arguments
TYPE (request) , POINTER:: head, tail

NULLIFY (head, tail)
END SUBROUTINE init

! No successor

No successor

Start up list with new

Attach new request
at end of list
Reset tail pointer

SUBROUTINE add (new, head, tail)
Add a new item to the end of the list

Dummy arguments
TYPE (request) , POINTER:: new, head, tail

! Check to see if list is empty
IF (ASSOCIATED(head)) THEN

! List is not empty
tail%next => new
NULLIFY (new%next)
tail => new

ELSE
! List is empty
head => new
tail => new
NULLIFY (tail%next)

END IF
END SUBROUTINE add

SUBROUTINE delete(head, tail, first)
! Return a pointer to the first item in the linked
! list, and remove it from the list

Dummy arguments
TYPE (request) , POINTER .. head, tail, first
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! Check to see if list is empty
IF (ASSOCIATED(head)) THEN

! List is not empty
! Check if more than one item in the list
IF (ASSOCIATED(head%next)) THEN

! More than 1 item in the iist
first => head ! Return pointer'to first item
head => head%next -! Remove item from list

ELSE
! Only 1 item in the list
first => head ! Return pointerf to first item
NULLIFY (head, tail) ! List is now empty

END IF

L

ELSE
! List is empty
NULLIFY (first\

END IF
END SUBROUTINE delete

Return no element

SUBROUTINE list(head)
!List the contents of the list

!Dummy argument
TYPE(request), POINTER .. head

! Local variable
TYPE(request), POINTER :: ptr

PRINT *," "
PRINT *,"Pending Request List"

! Check whether list is empty
IF (.NOT. ASSOCIATED(head)) THEN

! List is empty - print message
PRINT *,"List is Empty"

ELSE
! List contains at least one item
! Set local pointer to head of list
ptr => head '

! Loop to print all items in the list
DO
! Print details of this request item
PRINT *,ptr%machine,ptr%customer,ptr%date,

ptr%time,ptr%amount

.t:

&

Set pointer to next item
ptr => ptr%next
! Exit loop if there are no more items in the list
IF (.NOT.ASSOCIATED(ptr)) EXIT

END DO
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END IF
END SUBROUTINE list

END MODULE linked_list

PROGRAM bank
USE linked_list
IMPLICIT NONE
! This program simulates the operation of the cash machines

Declarations
INTEGER:: i=I, j=I, m
REAL :: x=100. 0
TYPE (request) , POINTER ..
TYPE (request) , POINTER

! Initialize empty list
CALL init(head,tail)

head, tail
item, first

! Loop to add four items to the list
DO m = 1,4

! Create a transaction request
CALL make(i,j,x,item)

! Add it to the list
CALL add (item, head, tail)

! Print the current state of the list
CALL list (head)

END DO

!Loop to remove six items from the list
DO m = I, 6

!Remove item from head of list
CALL delete(head,tail,first)

!Check to see if any item was removed
IF (ASSOCIATED(first)) THEN

! An item was removed - print it
PRINT *," "
PRINT *,"Request to be processed is:"
PRINT *,first%machine,first%customer,first%date, &

first%time,first%amount
END IF

! Print items rema1n1ng in list
CALL list (head) -

END DO

CONTAINS

SUBROUTINE make(i,j,x,item)
! Subroutine for simulating input requests
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! Dummy variables
INTEGER, INTENT (INOUT) .. i,j
REAL, INTENT (INOUT) :: x
TYPE(request), POINTER .. item

!Local variable
INTEGER :: err

!Create a new transaction record
ALLOCATE (item, STAT=err)
! Check that it was created successfully
IF (err /= 0) THEN ~

! Print error message and terminate processing
PRINT *, "Machine out of memory"
STOP

END IF

! Assign a value to each field of the newtrecord
item%machine = i -~
item%customer = j
item%date = "06091993"
item%time = "1215"
item%amount = x
i = H1
j = j+2
x = x+lO

END SUBROUTINE make
END PROGRAM bank

Note that modules have been used to encapsulate the request data type
and the linked list procedures. A procedure to print the contents of the list of
pending requests has also been added to the module so that the process can be
checked. The main program uses an internal procedure t~-create a set of requests,
and then removes these from the list to simulate the action of the cash machine
network.

Figure 16.14 shows the results produced by executing this program.

Pending Request List
1 1 060919931215 1.0000000E+02
Pending Request List
1 1 060919931215 1.0000000E+02
2 3 060919931215 1.1000000E+02,.

L

Pending Request List Co.'

1 1 060919931215 1.0000000E+02
2 3 060919931215 1.1000000E+02
3 5 060919931215 1.2000000E+02.,

Figure 16.14
I

(continues)
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(continued)
Pending Request List
1 1 060919931215 1.0000000E+02
2 3 060919931215 1.1000000E+02
3 5 060919931215 1.2000000E+02
4 7 060919931215 1.3000000E+02
Request to be processed is:
1 1 060919931215 1.0000000E+02

Pending Request List
2 3 060919931215 1.1000000E+02
3 5 060919931215 1.2000000E+02
4 7 060919931215 1.3000000E+02
Request to be processed is:
2 3 060919931215 1.1000000E+02

Pending Request List
3 5 060919931215 ~.2000000E+02
4 7 060919931215 1.3000000E+02
Request to be processed is:
3 5 060919931215 1.2000000E+02,

Pending Request List
4 7 060919931215 1.3000000E+02
Request to be processed is:
4 7 060919931215 1.3000000E+02

Pending Request List
List is Empty
Pending Request List
List is EmptYr
Pending Request List
List is Empty

Figure 16.14 The result of testing the banking simulation program.

Another dynamic data structure that can be created by using pointers is a
tree. This is similar in concept to a linked list, except that each node of the tree
has two or more pointer components. Figure 16.15 shows, diagrammatically, how
a tree with two such components can be represented, and it can be seen that the
tree is always represented as being upside-down! The single node from which the
tree 'grows' is, nevertheless, conventionally referred to as the root of the tree,
while each of the linked lists which make up the complete tree is referred to as a
branch. A tree which splits into two branches at each node is called a binary
tree, one which splits into three at each node is called a ternary tree, and so on.
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Root

Datafields

POINTER

POINTER

~93

Datafields

POINTER

POINTER

Figure 16.15 A binary tree/

Datafields

POINTER

POINTER

~ Analysis

Trees are very useful ways of representing many natural and artificial
strudures, and lend themselves, in particular, to recursive methods of traversing
the branches of the tree in order to carry out various tas~s upon the elements at
its nodes. Example 16.3 shows how a binary tree can be used in this way to
provide a much more efficient form of insertion" sort than that presented in
Example 16.1.

[I] Problem
Example 16.1 used an injedion sort to order and list a file of contad names and
addresses. A much improved version can be developed;lby storing the contad
data in a binary tree instead of in an array.

,

We shall use the same derived type for the details of each contad as before, but
will define a second derived type from which to create a binary tree, as shown in
Figure 16.16. .

We can see how the sorting algorithm will work most easily, as is usually
the case when working with lists and trees, by expressing the sequence of
operations diagrammatically. We shall illustrate how a sequence of names (and
associated other data) would be placed in the tree so that a subsequent process
can 'walk through' the tree in the corred order. Initially ,the tree will be empty,
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and so the first contact, Miles Ellis, will be placed at the root, as shown in Figure
16.17, where we have used a form of representation which, in order to simplify
the diagram, only shows the name of the contact.

When the next contact is to be added the last name is compared with the
last name of the contact at the root, and the contact placed on the right or left, as
appropriate, as shown in Figure 16.18.

Each time a new contact is to be added in the tree a decision is first made
whether to go to the left or right of the root, and then to the left or right of the
next node on that branch, and so on until the end of a branch is reached. Figures
16.19-16.22 show how the authors of this book and their wives would be
inserted using this approach.

Contact data

POINTER

POINTER

Figure 16.16 A node of a binary tree for a contact database.

Root

~----S~-l
Figure 16.17 The tree after Miles Ellis has been added.

Root

Ivor Philips

Figure 16.18 The tree after Ivor Philips has been added.
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Root

Ivor Philips

Figure 16.19 The tree after Tom Lahey has been added.

Root

Ivor Philips

Figure 16.20 The tree after Marilyn Philips has been added.

Root

Figure 16.21 The tree after Kathy Lahey has been added.
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Root

Figure 16.22 The tree after Maggie Ellis has been added.

When the data is drawn in this fashion it is clear that, since at each node
the item on the left precedes the node alphabetically, and the one on the right
succeeds it, the process of printing the names in alphabetic order is simply a
question of traversing the tree in a logical fashion. The process is to first move
down the leftmost branches of the tree until there are no more nodes; this will be
the first item. After printing this name the printing procedure must move up one
level and print that name. This is followed by moving to the right node and
down any left branches from there, before repeating the same process.

Root

Figure 16.23 The tree if the names are entered in the reverse order.
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Notice, incidentally, that the order in which the contacts are entered will
significantly affect the structure of the tree. Figure 16.23 shows how the tree
would look if the same six names were entered as before, but in the reverse order.
However, despite the fact that it looks quite different it retains the same
properties, and the process described above for 'walking through' the tree will
result in exactly the same order.

It is clear from the above discussion, moreover, that both insertion and
printing are recursive processes, as, indeed, are most processes carried out on
tree-structured data. We shall place two recursive subroutines to carry out these
actions in a module, together with the two derived type definitions. As in the
previous example we shall omit the data design and structure plan, since the
algorithm is almost trivially simple and it is the implementation of it using
pointers that is of interest.

ill Solution
MODULE contact_database

IMPLICIT NONE

! Field lengths for contact data
INTEGER, PARAMETER .. name_len = 15
INTEGER, PARAMETER title_len = 20
INTEGER, PARAMETER sex_len = 1
INTEGER, PARAMETER .. phone_len = 20
INTEGER, PARAMETER street_len = 40
INTEGER, PARAMETER .. city_len = 20
INTEGER, PARAMETER .. state_len = 20
INTEGER, PARAMETER .. zip_len = 10

! Derived type for contact data
TYPE contact_data

CHARACTER (LEN=name_1en) :: first_name, last_name
CHARACTER (LEN=title_len) :: title
CHARACTER (LEN=sex_len) :: sex
CHARACTER (LEN=phone_len) :: telephone
CHARACTER (LEN=street_len) :: street
CHARACTER (LEN=city_1en) :: city
CHARACTER (LEN=state_len) :: state
CHARACTER (LEN=zip_len) :: zip

END TYPE contact_data

! Derived type for binary tree containing contacts
TYPE contact_tree

TYPE (contact_data) :: data
TYPE (contact_tree), POINTER .. left, right

END TYPE contact_tree

CONTAINS
RECURSIVE SUBROUTINE insert_contact(contact,database)
!This subroutine inserts a contact in the binary tree
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! Dummy arguments I

TYPE (contact_data) :: contact
TYPE (contact_tree), POINTER:: database

! Check if (sub)tree is empty
IF (.NOT. ASSOCIATED(database)) THEN

! (sub)tree is empty, so insert contact at root
ALLOCATE (database)
database%data = contact
NULLIFY (database%left)
NULLIFY (database%right)

Compare contact and the root of the (sub)tree
ELSE IF ((contact%last_name<database%data%last_name) &

.OR. ((contact%last_name==database%data%last_name) &

.AND. (contact%first_name<database%data%first_name))) &
THEN

!Contact comes first, so insert it in the left branch
CALL insert_contact(contact,database%left)

ELSE
! Insert contact in the right branch
CALL insert_contact(contact,database%right)

END IF
END SUBROUTINE insert_contact

RECURSIVE SUBROUTINE print_names(database)
!This subroutine prints the (sub)tree elements in order

Dummy argument
TYPE (contact_tree), POINTER :: database

IF (ASSOCIATED(database)) THEN
CALL print_names(database%left)
PRINT' (SX,A,lX,A)', database%data%first_name &

database%data%last_name
CALL print_names(database%right)

END IF
END SUBROUTINE Print_names

END MODULE contact_database

PROGRAM sort_contacts
USE contact_database
IMPLICIT NONE
! This program sorts a list of contacts into alphabetic
!order and then prints the contacts in that order

Declarations
TYPE (contact_data) :: contact_details
TYPE (contact_tree), POINTER :: contacts
INTEGER :: ios

Database
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! Ensure that contact database tree is empty
NULLIFY (contacts)

!Open data file
OPEN(UNIT=l,FILE="contact data",STATUS="OLD",ACTION="READ")

! Loop to read ~ontact details and insert them in the tree
DO

READ (UNIT=l,FMT=*,IOSTAT=ios) contact_details
! Test for end of file
IF (ios<O) THEN

! All data read and inserted
CLOSE (UNIT=l)
EXIT

ELSE
! Insert this contact in the tree
CALL insert_contact(contact_details,contacts)

END IF
END DO

!All contacts now in database, so print names in order
CALL print_names(contacts)

END PROGRAM sort_contacts

As can be seen, the use of recursive data structures and recursive
procedures provides an extremely elegant method of processing data. It is also
worth pointing out that the sorting of contacts into alphabetical order, first by
last name and then by first name, is almost trivially easy.

It must also be emphasized that this method is totally dynamic, and,
subject to the size of memory available, will cater equally easily with any number
of contacts.

I

I
I599
I

In the last two examples we have demonstrated the use of two of the
most common forms of dynamic data structures based on pointers. These are also
two of the simplest forms of linked data structures, and J;I1oregeneral structures
than lists and trees are feasible, in which the connectivity between nodes can be
arbitrarily complex. There is a considerable amount of literature in this area; for
those wishing to pursue the topic further, Knuth (1969) provides a comprehensive
summary of the topic.

SELF-TEST EXERCISES 16.2

1 What are the restrictions on pointers and targets being procedure dummy arguments?
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2 How is the result of a function declared to be a pointer, and what is the restriction on
the use of such a function?

3 How can pointers be made components of a derived type? What is such a capability
useful for? .

4 What is a linked list?

5 Give three advantages of linked lists over arrays.

6 What is a tree structure? What is a binary tree?

7 Give one situation when a list is preferable to a tree, and one where a tree is preferable
to a list.

8 Why is recursion useful when working with lists and trees?

SUMMARY

• Being a pointer is an attribute of a variable.

• A pointer type declaration statement specifies what type of entity, scalar or
array, implicit or derived type, a pointer can point to.

• A variable can only be pointed to if it has the target attribute.

• A pointer has an association status that can be either undefined, associated,
or disassociated.

• A pointer can be associated with a target by a pointer assignment statement.
The type, type parameters and rank of the pointer and target must agree.

• Once associated with a target, in any situation where the pointer occurs in
which an entity of the type of the target is expected, the pointer is
dereferenced to obtain the current value of the target.

• The association status of a pointer can be set to disassociated by the NULLIFY
statement.

• The association status of a pointer can be determined by use of the intrinsic
function ASSOCIATED.

• The space for the elements of an array pointer can be dynamically created
and released by use of ALLOCATE and DEALLOCATE statements, respectively.

• Pointers and targets can be procedure dummy arguments.

• The result of a function can be a pointer.
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• Pointers can be components of derived types.

• An array of pointers cannot be declared directly, but can be simulated by
means of a derived type having a pointer component.

• A pointer component of a derived type can point at an object of the same
type; this enables linked lists to be created.

• Linked lists and binary trees provide powerful data structuring capabilities,
especially when used in recursive algorithms.

• Fortran 90 syntax introduced in Chapter 16:

Pointer assignment

Pointer aHribute

Target aHribute

Allocate and dealocate
statements

Nullify statement

pointer_variable => pointer_target

POINTER

TARGET

ALLOCATE (pointer (dimension_specification) list, STAT=status)
ALLOCATE (pointer (dimension _specification) list)
ALLOCATE (pointer list, STAT=status)
ALLOCATE (pointer list)
DEALLOCATE (pointer list, STAT=status)
DEALLOCATE (pointer list)

NULLIFY (pointer)

PROGRAMMING EXERCISES

16.1 Exercise 13.6 explained how. to find prime numbers by using the Sieve of
Eratosthenes. In that exercise you used an allocatable array in which to store the integers to
be tested. Modify that program (or write a new one) to use a pointer instead of an
allocatable array.

Which approach do you prefer?

"16.2 Write a program which asks the user for an integer between 5 and 20. The
program should then read that number ofreal numbers and store them in real variables that
have been created with pointers for this purpose. The program should then print the
numbers with the largest and smallest absolute values, and the mean of all the numbers.

When you have thoroughly tested this program, modify it so that the data is
stored in a pointer array.

16.3 Write a program which builds up a sentence from characters read from the
keyboard in the following manner. Characters are read one at a time (use non-advancing
input) and stored in a linked list. When a space or punctuation character is read then the
characters read since the previous space or punctuation character are combined into a word
and inserted in the .list in place of the first character of the word, and the remaining
characters removed from the list. When the terminating character of the sentence is read,
the complete sentence should be printed. Thus the processing of the first word of the first
sentence of this exercise would be as follows: i
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Current state of list

~B~~~0~[!]
~G~0~0~[!]~~

Next character

e

•
a

where, as usual, • represents a space.
Note, incidentally, that this is a simplification of the way that many compilers, and

similar programs, often build up a list of the symbols that make up a statement in a source
language.

16.4 Write a function that has a rank-one, assumed-shape, real dummy argument. The
function should, internally, create a rank-two, real pointer whose (i,j)th element is the ith
element of the input array divided by the jth element of the input array. Your procedure
should calculate the maximum value in the rank-two array, return it as the function result,
and deallocate the space for the pointer array.

16.5 Put the definition for a vector given in Section 16.4 into a module and add
procedures for allocating and deallocating space for the elements of a vector, associating
the element space of a vector with a user-specified real array, returning a pointer to the
element space of a vector (use a pointer-valued function), overloading the - and +
operators to create vector subtraction and addition, overloading the * operator to multiply
a vector by a scalar, and overloading the assignment operator appropriately. Write a
suitable program to test your module.

16.6 Devise a derived type to store sparse matrices. These are matrices in which the
great majority of elements are zero. The structure need only contain the non-zero elements.
Write procedures to create and print sparse matrices, by printing only the non-zero elements
and their locations. Write a procedure to overload the + operator for sparse matrices.

16.7 A doubly linked list is one in which every data item has pointers to the
predecessor element (if any) and the successor element (if any). Define a derived type
whose single data field is an integer and whose other fields are for the forward and
backward pointers.

Maintain the doubly linked list so that the nodes (the derived type objects) are
kept in increasing numerical order. Keep a pointer to the head of the list (initially
disassociated). Keep the predecessor pointer of the first node in the list and the successor
pointer of the last node in the list disassociated.

Write procedures to add and delete nodes from the list and to print, in order, all
elements of the list.

For efficiency, keep a pointer that points to the last node added to the list. Use this
pointer to add and delete nodes efficiently from the list. If items tend to come in grouped
clumps, then it will be more efficient to start a search from the last position a node was
added, rather than always start from the head of the list.
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16.8 Example 16.3 showed how a binary tree could be used to store data in a pre-sorted
order. Using a similar technique, write a program that reads a list of words (from a file) and
stores them in a data structure in such a way that they can easily be listed in (a) the order in
which they were read, (b) the reverSe of the order in which they were read, or (c) alphabetic
order. (Hint: you will need several pointers for each element.)

16.9 A botanist investigating the habitat of various wild flowers divides the area to be
surveyed into squares of approximately 3 ft X 3 ft. The botanist then starts at the south-
east comer of the survey area and identifies each square by the number of rows west and
the number of rows north of the base comer. For each square the'number of flowers of each
type is recorded by writing down the number of rows west and north, followed by the
number and name of each flower in that square, for example:

6W 19N 37 bluebells 16 snowdrops 1 foxglove
7W 19N 13 bluebells 7 daffodils 19 snowdrops 4 dandelions
etc.

Some areas were inaccessible, and for these the words 'not surveyed' were recorded after
the two row numbers.

Write a program to read the data and produce a list of the locations of the five
most populous flowers in the survey in the form:

The five most populous flowers were as follows:
1 Bluebells (735 found)

Locations were: 6M 19N (37), 7M 19N (13),
2 Forget-me-not (692 found)

Locations were: 12M 4N (81), 13M 3N (65),
Note that neither the range of west and north coordinates nor the number of different
flowers can be known to the program until all the data has been read.

16.10 Modify the program you wrote for Exercise 16.9 so that the data structure created
can be preserved in a file. A subsequent execution of the program can then read this file and
use new data to extend the coverage of the survey. (Note that Section 16.4 pointed out
that it is not possible to read or write pointer information, and that if a pointer-based data
structure is to be written to a £Ie it must first, therefore, be copied into another data
structure which does not contain pointers.)
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17.1 The FORTRAN 77 storage
association concept versus Fortran 90
modules

17.2 Global storage using COMMON blocks
17.3 Named COMMON blocks
17.4 Initializing named COMMON blocks

17.5 Blank COMMON

17.6 Preserving values in COMMON blocks
17.7 Sharing storage locations
17.8 An example from real life
17.9 Ensuring consistent COMMON block

specifications

Large programs frequently require many of their procedures to have
access to the same data. This is best achieved through the use of
modules, but an alternative approach is through the use of COMMON blocks,
which were the only means of providing global data access in earlier
versions of Fortran.

COMMON blocks, and the related EQUIVALENCE facility, operate by
specifying exactly how variables and arrays are to be stored in the
memory of the computer - a concept known as storage association.
Although this concept worked well on older computers it is less
appropriate for modern computers, especially those utilizing various
forms of parallel memory access, where the computer system will
often wish to distribute variables and arrays between different
processors in order to gain optimum speed and efficiency.

The description of these features is therefore provided in this
chapter only because they will frequently be met in older Fortran
programs. The use of these features is not recommended in new
programs.

605
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17.1 The FORTRAN 77 storage association concept
versus Fortran 90 modules

Scalar and array variables which are declared in a program unit are local to that
program unit, and are not accessible by another program unit unless they appear
as arguments. This has important implications because it enables a subroutine or
function subprogram to be written without any knowledge of the program unit
from which it will be called, or indeed of any subprograms which it may use itself.
All that is required is that the interface is known.

One effect of developing programs in a modular fashion is often that
several subprograms are required to have a very large number of arguments in
order to access a large number of common scalar and/or array variables. In these
situations the fact that storage is local to a program unit can be a great hindrance,
and gives rise to a requirement for a controlled form of global storage which can
be accessed directly by more than one program unit.

In Fortran 90 this is best achieved by placing all the variables which are to
be shared in a module which can then be accessed by a USE statement in each
procedure that requires access to this common data area.

However, FORTRAN 77 did not have a module facility and so a quite
different approach had to be used. This is known as storage association and
relies upon the programmer instructing the compiler to store certain items of data
in a defined relationship to each other. This was a practice which worked well on
earlier computers, but modem computers frequently use multiple processors and
multiple memory banks and the old FORTRAN 77 storage association methods
can be inefficient in these situations. Moreover, the whole concept is intrinsically
undesirable as it quite deliberately destroys much of the data security and
integrity upon which modem programming languages place great emphasis.

We strongly recommend that storage association methods should not be used
when writing new programs.

Nevertheless, most Fortran programmers will be involved at some time
with programs which were written in the days before Fortran 90 was available,
and such programs will almost certainly utilize storage association methods. This
chapter, therefore, discusses these concepts and how they work so that the
programmer will understand them and, hopefully, will be able to rewrite such
programs to utilize the far more powerful, safer and useful Fortran 90 modules.

Note that, contrary to the practice elsewhere in this book, in the following
examples only upper case is used, and only the old, obsolete, form of variable declarations.
This is to emphasize that these methods should only be used when modifying existing,
FORTRAN 77, code which was written in this way.
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17.2 Global storage using COMMON blocks

In FORTRAN 77 the memory of a computer was thought of as consisting,
conceptually, of a (large) number of storage units of two varieties. The first
variety was a numeric storage unit, and was used to store integers, real
numbers, logical values, double precision numbers and complex numbers - the
last two each requiring two consecutive storage units. The other variety was a
character storage unit which was used to store a single character; a character
string of length len required len consecutive character storage units ..There were
no parameterized or derived data types in FORTRAN 77.

In the FORTRAN 77 model of a program unit, a name is used to identify a
storage unit or, in the case of an array name or a character name, a block of
consecutive storage units. These names, as we have seen, are local to the program
unit and are for the programmer's convenience only. The compiler will refer to
storage units by their addresses within the memory and will keep a list of names
and their corresponding addresses only while it is compiling the program unit.
(This is a slight over-simplification, but is sufficient for our present purpose.)

However, some names are preserved and have a global significance; for
example, the names of any subprograms that are defined in the program, and the
names of any subprograms that are invoked in one of the program units that
constitute the program.

To provide a global storage facility, FORTRAN 77 allowed blocks of the
memory (consisting of one or more consecutive storage units of the same variety)
to be identified by a global name, and for the storage units contained within that
block to be made available to any program unit that refers to the block by its
global name. Such a block of consecutive storage units is called a COMMONblock.

It is important to realize that the names of the individual scalar and array
variables are not global names - the whole block is made available, not individual

Common
block A

Common
blockS

Figure 17.1 Local and COMMONstorage.
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storage units. This means that a program unit may call the items in a COMMON block
by any name that it wishes Gust as it can use any name for its dummy arguments);
the type and order of the items within the block are fixed, not their names.

Figure 17.1 illustrates this structure in graphic form, and also shows how
the various COMMON blocks may be accessed by different program units.

17.3 Named COMMON blocks

A named block of storage is defined by a statement of the form

COMMON/name/nl ,n2, ...

where name is the global name of the COMMON block and nl ,n2, ... is a list of local
scalar variable names, array names or array declarators. Thus the statements

INTEGER NUM,AGE(50)
REAL MARK(50,6) ,AV(50) ,AVAGE
COMMON/EXAM/NUM,MARK,AV,AGE,AVAGE

define a COMMON block EXAM. which consists of 402 numeric storage units. In this
particular program unit the first of these is an integer NUM, the next 300 a rank-two
real array MARK, the next 50 a real array AV, the next 50 an integer array AGE, and
the last a real number AVAGE.

In the type of program which contains COMMON blocks a number of 'short-
cuts' will often be found, such as implicitly declaring the types of variables, and
combining the array declaration with the COMMON block declaration:

INTEGER AGE (50)
REAL MARK(50,6)
COMMON/EXAM/NUM,MARK,AV(50) ,AGE,AVAGE

This is legal Fortran, but is.bad practice, and if it is essential to use COMMON blocks
all the items in the block should be declared properly in type statements.

The COMMON statement is a specification statement and must, therefore,
appear with other specification statements preceding any DATA or executable
statements. Although not essential, it is good practice to immediately precede it
by any type or array declaration statements which refer to items within the
COMMON block, as has been done above.

Notice that, because the name of a COMMON block is a global name, it must
be different from the names of any other COMMON blocks or program units. It is
permitted for the name of a COMMON block to be the same as that of a local entity
other than a named constant, an intrinsic procedure or the name of an external
function, but it is strongly recommended that the names of COMMON blocks should
not be used for anything else i~ the procedures in which they are referred to.



Named COMMON blocks 609

One consequence of the fact that only the COMMON block name is global is
that different program units may refer to the individual storage units within a
COMMON block in different ways. For example, the COMMON block EXAM referred to
above could be defined in another program unit as

COMMON/EXAM/N,TOTAL(SO,6) ,AV(SO) ,NYRS (SO) ,AVYRS

where different names have been used for two of the arrays and for both
variables, or even as

COMMON/EXAM/N, SCORE (SO,7) ,NAGE(SO) ,AVAGE

where the two real arrays have been declared as a single array. The order of
storage of array elements (see Section 13.2) means that those elements of SCORE
whose second subscript is 7 occupy the last 50 storage units and thus correspond
exactly to the array AV in the earlier COMMON block specifications. If the contents of
a COMMON block are specified differently in different subprograms, however, it is
essential that they should have the same length.

In FORTRAN 77 there was one important restriction concerning COMMON
blocks. As mentioned in Section 17.2, there were two types of storage unit in
FORTRAN 77, one for characters and one for everything else. The effect of this
was that if a COMMON block contained any character variables or character arrays
then it could not contain any variables or arrays of any other type. This
restriction has been lifted in Fortran 90.

As we would expect, we can declare several COMMON blocks in a single
statement; however, because of the format of the statement there are two ways of
doing this

COMMON/nameI / list1, /name2/ list2, ...
COMMON/nameIl1istI/name2/1ist2/name3/ ...

The second version (without any separating commas) is possible because of the
'slashes' which surround the names of the COMMON blocks. Thus we may write
either

COMMON/EXAM/N,MARK,AV,AGE,AVAGE,/PUPILS/NAME

or

COMMON/EXAM/N,MARK,AV,AGE,AVAGE/PUPILS/NAME

although the first form is to be preferred, as its structure is clearer than the second
form. Better still is to only declare one COMMON block in one statement and to write

COMMON/EXAM/N,MARK,AV,AGE,AVAGE
COMMON/PUPILS/NAME
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A COMMON block will usually be specified in a single statement. This is not
obligatory, however, and if the same COMMON block name appears in two (or more)
COMMON statements in the same program unit then they are treated as though the
two (or more) lists were combined into a single list. Thus the statements

COMMON/EXAM/NOM
COMMON/PUPILS/NAME,/EXAM/SCORE(SO,6) ,AV(SO)
COMMON/EXAM/NAGE(SO) ,AVAGE

will have the same effect for the COMMON block EXAM as the statement

COMMON/EXAM/NOM, SCORE (SO, 6) ,AV(SO) ,NAGE(SO),AVAGE

The major use of COMMON storage is in large programs, where several
subprograms need access to all, or part, of a database which consists of a number
of arrays and variables. In such situations it would be both inelegant to write
subprograms with large numbers of arguments, and also inefficient, since there is
always an overhead involved during execution in the processing of the list of
arguments on each call to a subroutine or function.

However, the situations in which COMMON blocks were valuable in
FORTRAN 77 programs are not those which lend themselves to use as examples
in a book such as this. The penultimate section of this chapter (Section 17.8),
therefore, consists of a discussion of an extract from a very large computer-aided
manufacturing program written in the 1960s, which makes very extensive use of
COMMON blocks to organize its database. In a new version of this program it would
be preferable to use modules for this purpose.

17.4 Initializing named COMMON blocks

We have seen in earlier chapters how initial values may be given to various types
of data entities. These are, of course, local entities and the initializing statements,
therefore, provide initial values for storage locations which can only be accessed
by name from the program units in which the initializing statements occur.

The situation is potentially rather different with COMMON blocks, since the
same storage locations are accessible from several different program units; that,
after all, is the purpose of COMMON. This means that if an entity was given an initial
value in one program unit then it could also be given a different initial value
(presumably by accident) in another - which would lead to confusion and error. It
would also cause extra problems for the compiler, which does not really know
where the entities in a COMMON block are situated in the memory, but merely where
they are relative to the start of the block; this is satisfactory for most purposes,
but not for setting initial values.
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BLOCK DATA name

Specification statements etc.

END

Figure 17.2 A block data program unit.

To get round these problems, the initializing of entities in COMMON blocks is
forbidden, except in a special type of subprogram which is called a block data
program unit. We mentioned this very briefly in Chapter 4 when discussing the
structure of program units, and Figure 17.2 shows its overall structure (as already
shown in Figure 4.7). Note that it contains no executable statements.

A block data program unit exists for the sole purpose of giving initial
values to items contained in named COMMON blocks. It cannot. be executed by
means of a CALL or other reference, and any attempt to do so will cause an error.
Similarly the presence of any type of statement other than a specification
statement, a DATA statement, or a comment, between the initial BLOCK DATA and the M
final END statements will lead to an error. 'v!!Y

The name of a block data program unit is a global name, like that of all
other program units, and, although it cannot appear in a CALL statement, it is
allowed to appear in an EXTERNAL statement; in some systems, for example, this
might be required in order to ensure that it is loaded from a library. There may be
one unnamed block data program unit in a program, and, since in many programs
there is no need for more than one block data program unit, the need for a name
is frequently absent.

17.5 Blank COMMON

The COMMON statement, as we have seen, allows us to. define a block of storage of a
fixed size and to identify it by means of a global name. Fortran also allows us to
have one further block of storage that is available to any program unit that
requires it and that has neither a name nor a fixed size. This is known as blank
COMMON and is declared in a similar way to that used for named COMMON blocks, but
without any reference to a COMMON block name:

COMMON X,Y,Z(-lO:lO)
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Alternatively, or if the COMMON statement is also declaring a named COMMON block,
we can represent the name of blank COMMON by two consecutive slashes:

COMMON/PLAYE~/NAME,//X,Y,Z(-10:10)

There are three main differences between named COMMON blocks and blank
COMMON (apart from the absence of a name for blank COMMON). The first is that,
unlike a named COMMON block, the size of blank COMMON need not be the same in
different program units. Thus, for example, the statement

COMMON N,INDEX(500)

could appear in a subprogram while the main program unit and the other
subroutines could contain

INTEGER SCORE (500) ,INDEX (500)
COMMON N,INDEX,SCORE

The second difference between blank COMMON and named COMMON blocks is
that blank COMMON cannot be initialized and thus cannot appear in a block data
program unit. Any COMMON entities which require initial values must therefore be
placed in named COMMON blocks.

We shall meet the other difference in the next section of this chapter.
Blank COMMON is usually appropriate where a number of variables and/or

arrays are to be made available to all (or nearly all) of the program units in a

Common
block A

Common
blockB

Common
blockC

Figure 17.3 Blank and named COMMON.

Blank
common
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program. Named blocks are more appropriate where such COMMON storage is only
required by a few of the subprograms, or where it is more convenient to split the
COMMON storage into several smaller units. Figure 17.3 illustrates this in graphic
form.

17.6 Preserving values in COMMON blocks

We have already seen in earlier chapters that the values of any local variables
become undefined when a return is made from a subprogram, unless they either
have the SAVE attribute or appear in an initialization statement.

A similar situation exits with COMMON blocks. A COMMON block enables two
or more program units to share a block of memory. It would clearly be nonsense
if an exit from a subroutine always caused any COMMON blocks to which it referred
to become undefined. However there is one situation, which is somewhat
analogous to the case of local variables in a single subprogram, in which there
would be no such conflict. Figure 17.4 illustrates this situation diagrammatically.

The program consists of five program units and three COMMON blocks;
furthermore, the subroutines are called in a hierarchical way (for ease of
explanation) such that the main program calls SOBA, which calls SOBB, which calls
SOBC, which calls SOBD. The diagram also indicates which COMMON blocks each
program unit refers to. '

If we examine this diagram carefully we see that as control returns from
SOBD back up to the main program, at certain stages there will no longer be any

Common
block A

Common
blockS

Common
blockC

Figure 17.4 Defined and undefined COMMONblocks.
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reference to some of the COMMON blocks. Thus when a return is made to SUBB we
find that COMMON block C is no longer accessible, as it is only referred to by SUBC

and SUBD. Similarly, COMMON block B is no longer referred to once a return has been
made to SUBA. The third COMMON plock (A) is referred to in the main program and
will, therefore, always be accessible.

At those stages where an exit from a procedure means that a COMMON block
is no longer referred to either by the program unit currently being executed or by
any higher level program units, the contents of the COMMON block may become
undefined in exactly the same way as do local variables on exit from a
subprogram. If we do not wish this to happen, for example if we want to keep
some or all of the COMMON values for use on the next entry to a subprogram (or
group of subprograms), then we have two options.

The first is to use the SAVE statement. In Section 11.4 we stated that this
took the form

SAVE name 1 ,name2, ...

where name1 etc. were the names of local scalars or arrays. We can now extend
this to include the global names of COMMON blocks (which are declared in the same
program unit) enclosed in 'slashes'. Thus the statement

SAVE NAME,POS,/CB1/,SCORE

will save the three local variables NAME, POS and SCORE and all the contents of the
COMMON block CB1.

If a COMMON block name appears in a SAVE statement in one subprogram,
then it must appear in a SAVE statement in every subprogram that refers to that
COMMON block.

The other way of preserving the values in a COMMON block (and probably
the best way in many cases) is to declare the COMMON block in the main program. It
is not necessary to use it there, but simply to include its name in a COMMON

statement. As we saw in Figure 17.4, this will mean that there is always a
program unit which refers to the COMMON block and it will never become
undefined.

In a large program with several named COMMON blocks it is, in any event,
good practice to declare all the COMMON blocks in the main program unit so that it
is possible to see the whole global storage at one time. This will also have the
effect of preserving the values of all items in these block for the duration of the
program.

This leads to the third difference between blank COMMON and named COMMON

blocks. Blank COMMON never becomes undefined; it is truly global and is always
preserved throughout the entire execution of the program.

It should be mentioned at this point that, in practice, most Fortran systems
always preserve all COMMON blocks for the duration of the program's execution.
You should be aware, though, that a Fortran processor does not have to preserve
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a COMMON block on exit from a subprogram unless its name appears in a SAVE
statement in that subprogram or it is referred to by a subprogram at a higher
level, and you should never rely on them being preserved unless the actions
described above have been taken.

17.7 Sharing storage locations

FORTRAN 77 also provided a concept which allowed the programmer to
instruct the compiler to store two or more data entities in the same location. This
was achieved by use of the EQUIVALENCE statement, which takes the form

EQUIVALENCE (nlist1), (nlist2) , ...

where each nlist is a list of scalar variable names, array element names, array
names and character substring names. If one of the names in a list is of type
CHARACTER then all the names in that list must be of type CHARACTER.

It is permitted to include entities of parameterized or derived types in an
EQUIVALENCE statement, but it is very strongly recommended that this statement
should only be used with data of default integer, real, complex, logical or
character types, or with double precision types (the FORTRAN 77 data types),
and then only in existing programs which already make use of COMMON and
EQUIVALENCE.

The EQUIVALENCE statement specifies that storage of all the items whose
names appear in a list must start at the same storage unit. In this statement,
unusually, an array name is taken to refer to the first element of that array. Apart
from the restriction regarding CHARACTER items, there are no restrictions on the
type of the names in a list as long as only the six (FORTRAN 77) types referred
to above are used and, for example, the statements

REAL R(2) ,RL,IM
COMPLEX C
EQUIVALENCE (R,RL,C), (R(2),IM)

will cause the real array R, the real variable RL and the complex variable C all to
start at the same place, and will cause the real variable IN to start at the same
place as R(2). Figure 17.5 shows that this has the effect of making RL occupy the
same storage unit as the real part of C, and IN the same storage unit as the
imaginary part of c.

It is not necessary for arrays or character strings to match and it is
possible to arrange for them to overlap, as is shown in Figures 17.6 and 17.7. In
the first of these, the array elements X (50) and Y (100) are equivalenced, leading
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Complex C: :~~~)- i~~~)lL-_____ _ ....J

Real array R:

Real variable

Real variable

R(l)

RL
R(2)

1M

Figure 17.5 The effect of equivalencing REAL and COMPLEX.

to the relationship shown in Figure 17.6. This could equally well have been
achieved by writing

EQUIVALENCE (X,Y(51))

or a number of other variations.
Figure 17.7 shows a similar situation with characters, where we can refer

to substrings as well as variable names, array names and array elements. Once
again there are a number of ways of expressing the relationship and, for example,
the shorter statement

EQUIVALENCE (A(6:) ,B,C(l) (2:))

would have done equally well, although reference to a substring of an array
element should be avoided where possible, as it is slightly confusing at first sight.

EQUIVALENCE is usually used in large programs in association with COMMON
blocks since it provides an easy way of identifying only those parts of the block
which are relevant to a particular subprogram. For example, if a COMMONblock
contains 10 variables AO to A9 and ten arrays BO to B9, each of a different size, such
that the total size of the block is 210 storage units, it might be defined as follows:

COMMON/BLK/AO,A1,A2,A3,A4,A5,A6,A7,A8,A9,
1 BO(5) ,B1(10) ,B2(3:9) ,B3(4,5) ,B4(8) ,B5(20),
2 B6(4,6) ,B7(-12:12) ,B8(7,9) ,B9(6,3)

X(l) X(2)
Y(49) Y(SO) yeS!) Y(S2)

X(49) X(SO)
Y(99) Y(lOO)

REAL X(SO).Y(lOO)
EQUIVALENCE (X(SO),Y(lOO»

Figure 17.6 Equivalencing arrays.
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A
I II
I B

C(~)CP) ~

CHARACTER*7 A,B,C(2)*4
EQUIVALENCE (A(6:),B),(B(4:),C(2»

Figure 17.7 Equivalencing character strings.

However, if a particular subprogram needed to access only AO, A7 and B4
we could write

COMMON/BLK/BLK(210)
REAL B4(8)
EQUIVALENCE (AO,BLK) ,(A7,BLK(8)) ,(B4,BLK(53))

thereby avoiding the declaration of unnecessary variables and arrays. The next
section shows the use of this technique in an extract from a very large (and very
old!) real-life program.

17.8 An example from real life

The real benefits of COMMON and EQUIVALENCE (especially the latter) in programs
written before Fortran 90 introduced modules cannot easily be demonstrated in a
book such as this, because they do not become apparent in programs of the size
that we can include as examples. This section, therefore, shows a (very) short
extract from a real-life program as an illustration of how they can be used in
practice.

The program concerned is called APT IV, where APT stands for
Automatically Programmed Tools, and was developed under sponsorship from
over 100 organizations (including IBM, Boeing, General Motors, Rolls-Royce,
English Electric Computers, the US Air Force, etc.) at the Illinois Institute of
Technology Research Institute in Chicago. The program, in fact, had its origins at
MIT in the late 1950s and was under continuous development for over 20 years,
first at MIT, then at IITRI, and finally at CAM-I (Computer Aided Manufacturing
- International) at Arlington, Texas. The extract shown below dates from the
central period of that development and was written in 1968. It predates Fortran 90
by over 20 years and yet is perfectly valid Fortran 25 years later - an eloquent
tribute to the longevity of Fortran programs.

APT is a program which processes a high-level language so as to produce
control information to drive a numerically controlled machine tool, and has been
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used in the manufacture of almost all modern airliners, motor cars, spacecraft and
innumerable artefacts which require high-precision machining of some or all of
their parts. One part of the program is a library of subroutines which are used in
the analysis of the geometric surfaces defined by the user and in the calculation of
the required motion on the machine tool. In 1968, at the time of the first release
of APT IV, this library contained 78 geometric definition routines, 92 tool motion
routines, and 75 other routines - a total of 245 subroutines! (This was by no
means the whole program - merely a part of one of four major phases.)

Due to the nature of the problem, a considerable number of these
subroutines need access to global information and the layout of the storage is of
vital importance. There are, in fact, twelve named COMMON blocks, of which one is
conceptually divided into 18 different areas, several of which overlap.

Figure 17.8 shows the first 70 or so lines of one subroutine from the
library, APT030. Notice that most of the lines are comments. In a large program
it is essential to document every aspect of the program fully, and the inclusion of
detailed comments and a specification of each subprogram within that
subprogram is a sure way of doing this. This subroutine is used to define a
circle, given two tangent lines and its radius.

The subroutine starts with a definition of the COMMON block TOTAL, which is
'included in every program in the subroutine library'. This block consists of eight
arrays, each of which will be equivalenced to other variables and/or arrays as
appropriate for the particular subroutine.

Block 2 then contains a definition of arrays which are equivalenced to the
array DEF.

Block 3 is a shared block, and in other routines blocks 4, 5 and 6 are also
equivalenced to the array DSHARE in completely different ways. Thus different
groups of subroutines will use this part of the COMMON block TOTAL for their own
purposes in a well-planned and consistent way.

This subroutine does not use those parts of the COMMON block which
correspond to the arrays FXCOR, HOLRTH or SV, and the next set of statements
defines block 10, which consists of a set of real variables equivalenced to the array
ZNUMBER.

Subsequent blocks in this subroutine also define parts of the array ISV,

which is actually defined in no fewer than eight ways, not all of which define the
whole array.

Thus, each of the 245 subroutines in the library defines only those parts of
the total data base which are relevant to its particular needs.
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C .....FORTRAN SUBROUTINE APT030... 3/1/68 GK
C
C FORTRAN SUBROUTINE APT030
C
C PURPOSE TO GENERATE THE CANONICAL FORM.OF A CIRCLE DEFINED
C AS TANGENT TO EACH OF TWO GIVEN LINES AND HAVING
C A GIVEN RADIUS BY THE FOLLOWING APT STATEMENT
C RESULT = CIRCLE/****, L1, ****, L2, RADIUS, RAD
C **** = XLARGE, YLARGE, XSMALL, YSMALL
C
C LINKAGE CALL APT030 (RESULT, M1, L1, M2, L2, RAD)
C ARGUMENTS RESULT ARRAY TO CONTAIN THE CANONICAL FORM OF
C THE RESULTING CIRCLE
C M1 INTEGER EQUIVALENT OF THE FIRST MODIFIER
C 1 = XLARGE 2 = YLARGE
C 4 = XSMALL 5 = YSMALL
C L1 ARRAY CONTAINING THE CANONICAL FORM OF
C THE FIRST INPUT LINE
C M2 INTEGER EQUIVALENT OF THE SECOND MODIFIER
C 1 = XLARGE 2 = YLARGE
C 4 = XSMALL 5 = YSMALL
C L2 ARRAY CONTAINING THE CANONICAL FORM OF
C THE SECOND INPUT LINE
C RAD REAL VARIABLE CONTAINING THE VALUE OF THE
C DESIRED RADIUS
C
C SUBSIDIARIES TYPE ENTRY
C SUBROUTINE APT003
C SUBROUTINE APT020
C SUBROUTINE APT078

SUBROUTINE APT030 (RESULT,M1,L1,M2,L2,RAD)
REAL L1,L2
DIMENSION RESULT (7),L1(4),L2(4)

C
C
C
C... 1.MAIN CDE PACKAGE. INCLUDED IN EVERY PROGRAM IN THE SUBROUTINE
C. .. LIBRARY.
C

LOGICAL LDEF
DIMENSION DEF(75),DSHARE(100) ,FXCOR(170) ,HOLRTH (20),SV(442),
1 ZNUMBR(30) ,LDEF(15) ,ISV(379)
DIMENSION IBRKPT(51) ,IDEF(20) ,IFXCOR(60) ,ISHARE (31),KNUMBR (51)
COMMON/TOTAL/DEF,DSHARE,FXCOR,HOLRTH,SV,ZNUMBR,LDEF,ISV
EQUIVALENCE (ISV(30) ,IBRKPT(l)), (ISV(110) ,KNUMBR(l)),
1 (ISV(190) ,IDEF(l)) ,(ISV(210),ISHARE (1)),
2 (ISV(279) ,IFXCOR(l))

C
C
C

Figure 17.8 (continues)

I
I
I

I
I
I
I
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(continued)

C ... 2.DEF BLOCK. REAL VARIABLES USED BY DEF. RED. ROUTINES WHICH MUST
C... REMAIN INVIOLATE.
C

C

REAL LNl
DIMENSION
1

A(12,2), AHOLD(2,4),
LNl ( 5), R(10) ,

Cl ( 8),
REF(2,4) ,

EQUIVALENCE (DEF(l) ,A(l, 1)) , (DEF (25) ,AHOLD (1,1)) , (DEF(33) ,C (1)) ,
+ (DEF(41) ,LNl (1)), (DEF (46) ,R(l)), (DEF (56) ,REF(l, 1))

C
C
C. .. 3. DSHARE DEF. RED. BLOCK. USED FOR REAL VARIABLES AND SHARED WITH
C. . . ARELEM
C

C

REAL L
DIMENSION

+
C(100), G(93), L(83),

P(79), SC(63), T(47), Tl(35), V(23)

EQUIVALENCE (DSHARE(100) , C(100), G(93), L(83),
+ P(79) , SC(63), T(47), Tl(35), V(23))

C
C. .. 10. ZNUMBR BLOCK. REAL LITERALS.
C

EQUIVALENCE (ZNUMBR(l) ,ZO), (ZNUMBR(2) ,Zl) , (ZNUMBR( 3) ,Z2)
1 (ZNUMBR( 4) ,Z3) ,(ZNUMBR( 5) ,Z5) ,(ZNUMBR( 6) ,ZlO)
2 (ZNUMBR( 7) ,Z90) ,(ZNUMBR( 8) ,ZlE6) ,(ZNUMBR( 9) ,ZlE38) ,
3 (ZNUMBR(10) ,Z5EM1) , (ZNUMBR(ll) ,Z6EM1) , (ZNUMBR(12) ,Z9EM1) ,
4 (ZNUMBR(13) ,ZllEM1), (ZNUMBR(14) ,Z12EM1), (ZNUMBR(15) ,ZlEM2) ,
5 (ZNUMBR(16) ,ZlEM3) , (ZNUMBR(17) ,ZlEM5) , (ZNUMBR(18) ,Z5EM6) ,
6 (ZNUMBR(19) ,ZlEM6) , (ZNUMBR(20) ,ZlEM7) , (ZNUMBR(21) ,ZlEM9) ,
7 (ZNUMBR(22) ,ZlEM1) ,(ZNUMBR(23),ZM1) ,(ZNUMBR(24) ,DEGRAD),
8 (ZNUMBR(25) ,PI)

C

Figure 17.8 An example of the use of COMMONand EQUIVALENCE in APT IV.

APT is a particularly good example of the use of COMMON and EQUIVALENCE
due to the combination of its size and complexity with the overall modular
structure of the program. As an example of how things can be improved by the
use of modules, Figure.I7.9 shows how the same subroutine might start if it were
rewritten using the full capability of Fortran 90, although it must be emphasized
that the way in which the COMMON blocks are used in the original version is being
preserved only as an example; if it were really being rewritten there would be
other, more significant, changes to be made to the global data structure as well.
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SUBROUTINE APT030(result,modl,linel,mod2,line2,radius)

~21

Fortran subroutine APT030 28/3/93 TMRE
! Purpose
! "
!

Linkage

To generate the canonical form of a circle defined
as tangent to each of two given lines and having a
given radius by the following APT statement:

RESULT = CIRCLE/****, LI, ****, L2, RADIUS, RAD

where **** = XLARGE, YLARGE, XSMALL or YSMALL
~ALL APT030(result,modl,linel,mod2,line2,radius)

Arguments result array to contain the canonical form of the
resulting circle

modi integer equivalent of the first modifier
I = XLARGE 2: YLARGE " •
4 = XSMALL 5 ~ YSMALL

linel array containing the canonical form of the
first input line

mod2 integer equivalent of the second modifier
I = XLARGE 2 = YLARGE"
4 = XSMALL 5 = YSMALL

line2 array containing the canonical form of the
second input line

radius real variable containing the value of the
desired radius

Modules Used
Def

Dshare
Znumber

REALa(12,2) ,ahold(2,4) ,cl(8) ,lnl(S),
r(IO) ,ref(2,4)

REAL c,g,l,p,sc,t,tl,v
REAL zO,zl,z2,z3,zS,zIO,z90,zle6,zle38,

"zSeml,z6eml, zgeml, zllemi, zl2eml,
zlem2,zlem3, zlemS,zSem6,zlem6,
zlem7,zlem9,zleml,zml,degrad,pi

Subsidiaries Type
Subroutine
Subroutine
Subroutine

Name.ll
APT003
APT020
APT078,

USE Def
USE Dshare
USE Znumber
IMPLICIT NONE
INTEGER, INTENT (IN) :: modl,mod2
REAL, INTENT (IN) :: radius
REAL, DIMENSION (4), INTENT (IN) :: linel, line2
REAL, DIMENSION (7), INTENT (OUT) .. result

Figure 17.9 A hypothetical APT IV example using modules.



622 Global data through storage association

17.9 Ensuring consistent COMMON block specifications

COMMON blocks are normally used in large programs and their specification will
appear in a number of different program units. Although some programs
deliberately declare the same COMMON block in different, but compatible, ways in
different program units, as was done in the extract shown in Figure 17.8, it is
usually preferable to use identical declarations in every program unit that requires
access to the COMMON block in order to ensure that there are no mistakes as a result
of incompatible COMMON block specifications.

Fortran 90 provides two methods for ensuring that COMMON blocks are
specified and used in a consistent fashion. The first of these is to plac~ the
complete COMMON block specification in a module and then to USE that module in
all the program units that require access to the COMMON block. Figure 17.10.-shows
how such a module might be written and used.

Although it. is quite acceptable to specify several COMMON blocks in the
same module, it is important to realize that it is not possible to use a statement of
the form

USE Common_blocks, ONLY: BLOCKl

to make only the contents of a single COMMON block available to a particular
program unit, since this form of statement will only make the name of the COMMON

MODULE Common_blocks
IMPLICIT NONE
SAVE
This module contains the definition of COMMON blocks used
in the program
REAL, DIMENSION (IOO) .. A,B,C
REAL:: X,Y,Z
INTEGER :: N,M
COMMON /BLOCKI/ A,B,C,X,Y,Z,N,M

END MODULE Common_blocks
SUBROUTINE sub

USE Common_blocks

END SUBROUTINE sub

Figure 17.10 Using a module to ensure consistent COMMON block specifications.
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block available but not the names of the variables that make up the block. It would, of
course, be possible to list the names of all the entities in the block, but that would
eliminate the advantage of placing the COMMONblock in a module! If a program has
several COMMONblocks, therefore, not all of which are required in all program units,
it is preferable to place them in several modules so that only those which are
required need be specified in individual program units:

SUBROUTINE sub
USE Common_block_l
USE Common_block_2
USE Common_block_4

END SUBROUTINE sub

An alternative approach is to use the Fortran 90 INCLUDE facility. This
enables Fortran source text to be inserted into the program at a specified point
during the compilation of the program. The INCLUDE line, which is not a Fortran
statement, takes the form

INCLUDE char-literal-constant

where char-literal-constant is a character constant which, in a processor-dependent
manner, indicates what the text to be inserted is, or where it is to be obtained
from. Typically it will be the name of a file containing the source text to be
inserted.

An INCLUDE line must be the only non-blank text on the line on which it
appears, other than an optional trailing comment. Its effect is as though the text
reference by the INCLUDE line physically replaces the INCLUDE line immediately
before the line is processed by the Fortran processor. The included text may itself
contain additional INCLUDE lines up to a limit defined by the processor.

The Fortran 90 INCLUDE facility is similar to INCLUDE facilities which were
extensions to the language in almost all FORTRAN 77 processors, and was
added in response to an overwhelming demand from certain sections of the
Fortran community. However, it is defined in an intrinsically non-portable fashion
and we do not recommend its use other than in certain very specific situations.
The main reason for this type of facility in the past was to simplify the inclusion
of COMMON blocks, and this is better done in Fortran 90 by use of modules. If the
same sequence of statements is required in several different program units it is
usually prefe~able to use the facilities of the source editor in the first instance or, if
there is a long sequence of statements, to place them in a procedure.
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SELF-TEST EXERCISES 17.1

1 What is the purpose of a COMMONblock?

2 What are the three differences between blank COMMONand named COMMON?

"3 Why should COMMONblocks not be used in new Fortran programs?

4 A FORTRAN 77 program contains a subroutine TE8T4A which begins with the
following statements:

8UBROUTINE TE8T4A
INTEGER K1(20),K2(20),K3(20)
DOUBLEPRECI8ION D(15)
COMPLEXQ(5) .
COMMON/TE8T4/ K1,D,Q,K2,K3
K1(1) = 1
K1 (11) = 11
K2(1) = 2
K2(11) = 21
K3(1) = 3
K3(11) = 31
D(l) = 12.0
Q(l) =. (-3.0,-4.0)

Another subroutine, TE8T4B; begins as follows:

8UBROUTINE TE8T4B
REAL X(20) ,Y(2,15) ,Z(2,10)
INTEGER M1(15),M2(15)
COMMON/TE8T4/ X,Y,Z,M1,M2
CALL TE8T4A

After executing the call to TE8T4A what are the values of the array elements X(1),
Y(1,1), Z (1,1), M1(1), M1(15), M2(1), M2(15)?

5 What will be printed by the following (FORTRAN 77) program?

PROGRAMTE8T5
CHARACTER*20 8
CHARACTER81(5) ,82(5) ,83(5) ,84(5) ,85(5)
EQUIVALENCE (82(2),81(5)), (82(3),83(1),8(6:))
EQUIVALENCE (84(1),83(5)), (84(5),85(2))
8 = 'My name is David'
PRINT *,81(1)//82(2)//85(4)//81(4)//82(4)//84(1)//83(5)
END



Programming exercises

SUMMARY

• A COMMON block is a contiguous block of memory in which the individual items
are identified by their position within the block and only locally by their name.

• A COMMON block. may have a global name.

• There may be at most one (unnamed) blank COMMON block in a program.

• Initial values can only be given to items in a named COMMON block, and then
only in a special, non-executable, BLOCK DATA program unit.

• Named COMMON blocks may become undefined when no currently active
program units refer to them, unless referred to in a SAVE statement.

• The EQUIVALENCE statement instructs the compiler to arrange the program's
storage so that two or more items share the same location(s).

• Fortran 90 syntax introduced in Chapter 17:

COMMON block declaration COMMON /name/ list of local names
COMMON / / list of local names
COMMON list of local names

Initial statements BLOCK DATA name
BLOCK DATA

L
I

I

Saving COMMON blocks

Sharing storage

Inclusion of source text
from another source

SAVE /common_block_name/

EQUIVALENCE (namel,name2, .-.. )

INCLUDE name

Columns 1-30
Column 32
Columns 34-36
Column 38

PROGRAMMING EXERCISES

We strongly recommend that you do not use any of the features described in this chapter in any
new programs. Nevertheless, because you are bound to meet them in older FORTRAN 77
programs, we include a small number of ex~rcises to help familiarize you with their use. To
emphasize that these features should not be used in new Fortran 90 programs, all examples use the
old FORTRAN 77 style.

17.1 Write an input subroutine, having no arguments, which reads up to 20 sets of data,
where each set of data consists of the following information:

First name and last name, separated by one or more spaces
Sex (M or F)
Age
Marital status (S= single, M =married, W =widowed,
D =divorced, C = co-habiting) ,

The subroutine should store the data in a COMMON block.
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A second subroutine, having a single integer argument n, should print the details
of the nth person in' the set of dahl.

Write a main program which uses these two subroutines to read a set of data and
print the name, sex, marital status and age of the oldest person in the data set. If there are
two or more 'oldest people' then print the details of all of them.

17.2 Modify the program written for Exercise 17.1 by adding a third subroutine,
having no arguments, which will sort the data into alphabetical order of last names (and
first names if the last names are the same).

Your program should now read the data, print it out in alphabetic order, and print
the name and age of the oldest person(s).

When you have tested this program, modify it so that it does not use any COMMON
blocks but uses a module instead.

17.3 (a) Write a program to generate all the permutations of the numbers 1 to n,
where n is read by the program. (Hint: as well as an array P to store the current
permutation, it may be useful to generate related arrays, such as W, where
W(P(I))=I for 1=1 to n and to store them in COMMONstorage if they are used in
more than one program unit.)
(h) The distances by road between five towns A, B, C, D and E are as follows: A-
B, 7 miles; A-C, 7 miles; A-D, 6 miles; A-E, 10 miles; B-C, 11 miles; B-D, 3 miles;
B-E, 4 miles; C-D, 12 miles; C-E, 9 miles; D-E, 6 miles. A salesman has to visit
each town once, starting and finishing at A. Write a program to calculate the
distances for each possible route, and so to find the shortest possible distance.

17.4 Three one-dimensional arrays are declared with the following statements:

REALA(3) ,B(3) ,C(3)
EQUIVALENCE(A,B)

Write a program containing these declarations which reads three values into each
of the arrays Aand B, and then stores the sums of corresponding elements of Aand B in C.
Finally the program should print the three arrays as three columns (A,B and C).

Were the results what you expected? If not, add extra PRINTstatements at various
points in your program to obtain intermediate values.

17.5 Use a BLOCKDATAsubprogram to initialize two arrays NUMB1and NUMB2to the
following values:

NUMB1 (1) = 0
NUMB1(2) 0
NUMB1 (3) = 0
NUMB1 (4) 1
NUMB1 (5) = '1
NUMB1 (6) 0
NUMB1(7) 0
NUMB1(8) 0

NUMB2(1)
NUMB2(2)
NUMB2(3)
NUMB2(4)
NUMB2(5)
NUMB2(6)
NUMB2(7)
NUMB2(8)

o
o
o
o
1
1
1
o

The arrays contain the binary numbers 11000 and 1110. Use a COMMONblock to make these
arrays available to two subroutines. The first subroutine should perform binary addition
between the two numbers, and place the result in NUMB1,while the second should convert
the binary number stored in NUMB1.toa decimal value. The result should then be displayed
on the screen in the main program.



More about numerical
methods

18.1 Numerical methods and their
limitations

18.2 Solving quadratic equations
18.3 Newton's method for solving non-

linear equations
18.4 The secant method of solving non-

linear equations

18.5 Solution of simultaneous linear
equations by Gaussian elimination

18.6 Solving a tridiagonal system of
equations

18.7 Fitting a curve through a set of data
points using a cubic spline

18.8 Integration and numerical quadrature

The preceding chapters have covered all of Fortran 90, apart from certain
features which we do not recommend using that are described briefly in
Appendix E. In this final chapter we return to the subject of numerical
methods, which was first discussed in Chapter 10.

After a brief review of some of the limitations of numerical
methods, the bulk of the chapter is taken up with a discussion of some of
the most widely used numerical techniques relating to the solution of
various types of equation, the fitting of curves through sets of data points,
and the integration of functions by numerical quadrature. The exercises
at the end of this chapter also briefly describe certain other techniques.

Although the descriptions given in this chapter give a sound basis
for the understanding of these and other numerical methods, we cannot
emphasize too strongly that this is a highly specialized area. If your
programs are likely to involve much numerical work then you should
either use one of the excellent libraries of numerical software that are
widely available, or you should refer to one of the many books devoted to
numerical methods, several of which are cited in this chapter.

627
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18.1 Numerical methods and their limitations

In Chapter 10 we introduced some of the basic concepts involved in numerical
computation and emphasized that, because of such effects as round-off,
conditioning and stability, the choice of the numerical method to be used could
substantially affect the result obtained in a particular case. It is not our intention
to discuss these concepts any further in this book, but it is important that the
programmer should be aware of the strengths and weaknesses of different
methods before deciding which one to use in a particular situation. This is
particularly relevant when using a sophisticated mathematical library such as the
NAG library (NAG, 1988) or the IMSL library (Visual Numerics, 1992), where
there are often a large number of subroutines which, to the uninitiated, will all
carry out the same type of calculation. A well-documented mathematical
subprogram library will explain which one of a choice of subprograms should be
used in a particular circumstance.

When writing a program, we are generally trying to solve a problem to
which there is an exact mathematical answer. Mathematics abounds with
existence theorems which typically state that, given certain conditions, a solution
to a specified problem exists. However, the proofs are often non-constructive - in
the sense that they can imply an infinity of operations to obtain the desired
solution or, even worse, do not even specify what set of operations is required to
construct the solution. A second type of difficulty arises from the fact that many
existence proofs show that some set of real (or complex) numbers is a solution to
a specified problem. The set of real (or complex) numbers forms a continuum.
However, on a computer, real or complex numbers can only be specified with a
finite precision. For example, neither 7r nor -./2 can be exactly represented
numerically on a digital computer.

The field of numerical analysis is the design of algorithms that will
approximate, to a specified precision, the mathematical solutions of problems.
Moreover, it is a requirement that these algorithms execute efficiently; in other
words, that they use as few operations as possible. Finally, it is required that they
be robust; that is, that they perform reliably for a large range of inputs and detect
and report when they are unable to solve a problem. This is the ideal. In practice,
there are still many problems for which we have to settle for less.

In Chapter 10 we also discussed the use of parameterized real variables as
a means of writing procedures whose precision was both portable and readily
changeable. However, we pointed out that relying on increasing the precision of
calculations would not always eliminate numerical difficulties. Understanding the
underlying reasons for the numerical difficulties is important for their correct
resolution.

Chapter 10 also introduced two simple, but widely used, techniques in
numerical programming, namely the method of least squares for fitting a straight
line as an approximation to a set of data points and the bisection method for the
solution of a non-linear equation.
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In this chapter we shall examine other, superior, methods of solution of
non-linear equations, and will also consider the solution of a system of
simultaneous linear equations. We shall also look at more sophisticated methods
of interpolation and curve-fitting in which the data does not necessarily lie near a
straight line. Finally, we shall briefly discuss methods of integration in order, for
example, to find the area under a curve.

It is important to emphasize, however, that most of the subprograms
developed in this chapter are only examples to illustrate the basic techniques.
Some introductory textbooks on numerical analysis are by Dahlquist and Bjorck
(1974), Scheid (1968), and Forsythe et al. (1977). A great deal of effort has been
expended by many people over many years in refining algorithms for numerical
computation, especially to deal with the difficult cases, and anyone who has a
serious need in this area should normally consider using procedures from one of
the established libraries (such as those produced by NAG and IMSL) and not
write their own.

18.2 Solving quadratic equations

We start with what, on the surface, appears to be a simple problem, namely
finding the roots of a quadratic equation. We shall, however, see that even such a
simple problem involves subtle numerical issues if we are trying to produce
robust software. This should instill a healthy caution in the reader when more
complicated problems are being solved.

Everyone who studied algebra in high school learned that the quadratic
equation

ax? + bx + c = 0

where a i- 0, has two roots, given by the formula

-b :f: Vb2 - 4ac

2a

We shall now examine some of the difficulties which can occur when
using this formula on a computer with six decimal digits of precision and an
exponent range of 1040 (many workstations and pes have single-precision
hardware close to this situation).

Let us consider the equation

x? - 6x+ 5 = 0

If we solve this on a computer by using the above formula we will obtain answers
very close to 1 and 5 (which are the exact roots).
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If we multiply the above equation by 1030, we obtain the new equation

The roots of this equation are, of course, still 1 and 5.
Now, using the standard formula, we would calculate

6 X 103o::!:: )(6 X 1030)2 - 4 X 1030 X 5 X 1030

2 X 1030

However, on our hypothetical computer, 1060 is not a representable number.
Consequently, the program would abort with an overflow. Similarly, if the
original equation was multiplied by 10-30, we would either abort with a numeric
underflow or, if the computer being used simply represents underflow as 0, would
obtain the roots

6 X 10-30 ::!:: )(6 X 10-30)2 - 4 X 10-30 X 5 X 10-30

2 X 10-30

6 X 1O-30::!:: va
2 X 10-30

= 3 and 3

which are two very poor answers!
This type of difficulty can sometimes be reduced by scaling the equations

before attempting to solve them. For example, we could divide the equation by
max(lal, Ihl, leI), so that all the coefficients lie in the range [-1,1]. This,
unfortunately, is not a complete solution to the scaling problem. Consider, for
example, the equation

This has one root near -1 and one root near -1040• If we simply scale the
equation by dividing by 1020

, we will either get an underflow error, or the
coefficient of x2 will become o. In the latter case the equation becomes the linear
equation

x+1=0

This has only one root, x = -1, and we have lost the second, large negative, root
of the original quadratic.
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In situations like this, where one root is in the range of the floating-point
numbers, we would like to obtain the representable root and indicate that the
other root is too large in absolute value to be represented. In this case, we might
resort to transforming the equation by scaling the roots or to using one of the
methods for finding roots that are described in Sections 10.5 (bisection method),
18.3 (Newton's method) and 18.4 (secant method).

Next, let us consider the case where one root is much bigger, in absolute
value, than the other. For example, the equation

has, to six significant places, the roots 1O~6 and 106. The application of the
standard formula gives

106:1: .)(106)2 - 4

2

Because. of the round-off errors, since 4 will not significantly add to 1012, this
becomes

So the standard formula gives the roots 106 (which is good) and 0 (which is bad).
The usual way employed to solve this case is first to calculate the root in

which the sign of V1J2 - 4ac is the same as that of -b. This eliminates any round-
off problems caused by subtracting two nearly equal numbers. In the above
example, since - (_106) is positive, we take the positive value of the square root.
This will give one root as (106+ 106)/2, or 106, which is a good answer. To
obtain the other root, we note that the product of the roots of the general
quadratic equation is c/ a. Therefore, once one root has been found accurately, we
can obtain the other root by dividing cia by the first root: In the above example,
this would give a second root of (1/1)/106, or 10-6, another good answer. Note
that this technique eliminates the possibility of catastrophic cancellation when
two nearly equal numbers are subtracted.

In order to reduce overflow problems during computation, we rewrite the
standard formula in a different, but mathematically equivalent, way. Thus, the
roots of the equation

I
631

I

ax? + bx + c = 0,

are the same as the roots of

rx?- + sx + t = 0,

afo

rfo ..•..
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where

a
r=------

max(\al, Ihl, leI)

h
s=

max(laJ, Ihl, jel)

e
t=-----

max(I~I, Ihl, leI)

The roots of this equation are

-s::l: vs2 - 4rt

2r

What we have accomplished by these manipulations is that the
coefficients we are now working with (r, s, and t) are all in the interval
[-1, 1].Thus overflow problems are diminished ..

We shall then use the preceding formula to obtain one root only by, as
already discussed, taking the sign of the square root so as to match that of the
first part of the numerator (that is, match the sign of -s). This is to minimize
cancellation effects.

Finally, the second root is obtained by dividing e/ a by the first root.
A subroutine to implement this algorithm is spawn in Figure 18.1. Note

that the module librarY30nstants is assumed, amongst other things, to define
the constant lib---precas the kind type parameter for real values, for example

MODULE library_constants
IMPLICIT NONE

! Define precision
INTEGER, PARAMETER lib---prec= &SELECTED_REAL_KIND(P=6)

END MODULE library_constants

Using this subroutine to find the roots of the equation

we obtain the roots 106 and 10-6.

-~----~.~--------
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SUBROUTINE quad_roots(a,b,c,rootl,root2,error)
USE library_constants
IMPLICIT NONE
! Dummy arguments
REAL (KIND=lib-prec) , INTENT(IN):: a,b,c
REAL(KIND=lib-prec), INTENT (OUT) :: rootl,root2
LOGICAL :: error
! Local variables
REAL (KIND=lib-prec) :: f,r,s,t,d
! Check for a=O
error = a==O.O_lib-prec
IF (error) RETURN
! Calculate scaled coefficients
f = MAX(ABS(a) ,ABS(b),ABS(c))
r = a/f
s = b/f
t = c/f
! Solve modified equation for first root
d = SQRT(s*s-4.0_lib-prec*r*t)
IF (s>O.O_lib-prec) THEN

rootl = (-s-d)/(r+r)
ELSE

rootl = (-s+d)/(r+r)
END IF
! Calculate other root
root2 = (t/r)/rootl

END SUBROUTINE quad_roots

Figure 18.1 An improved procedure for finding the roots of a quadratic equation.

18.3 Newton's method for solving non-linear equations

The bisection method introduced in Section 10.5 has one major strength and one
major weakness. The strength is that, because the interval is halved at each
iteration, it is guaranteed to converge to a root after a finite, and predictable,
number of iterations. The weakness of the method, however, is that it is slow to
converge. One of the reasons for this is that the method does not use all the
available information, since it uses the sign of f(x) at the end-points of the
interval, but not the value of f(x) at those points. Another weakness is that, for
the method to work at all, the initial two points must. bracket a root. In this
section and the next, we will show some other commonly used techniques that

I
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y

Figure 18.2 Newton's method of approximation.

usually converge considerably faster but have the defect that they sometimes fail
to converge at all. Fast convergence is important, because each function
evaluation can be expensive.

It is possible to combine interval-bisection with such faster methods and
retain much of the best of both worlds, namely fast convergence and guaranteed
convergence. This combination, however, would go beyond the scope of this
book. It is described in Forsythe et al. (1977).

First we shall discuss Newton's method, sometimes known as the
Newton-Raphson method. This method uses not only function values but also
uses the first derivative, or gradient, of the curve to help find the next
approximation. Figure 18.2 shows how, given the gradient at a point Xj, it is easy
to obtain a new estimate for the root. In this method, we do not bracket a root by
an interval but, instead, generate a sequence of approximations that (if successful)
tend to the root.

From Figure 18.2 we can readily see that

Xj+! = OB

= OA-AB
=Xj -AB

AC
=Xj---

tan a

where f'(Xj) is the gradient of the curve at the point C, (Xj, f(xj)), which is equal
to tana.
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This formula

[(X;)
X;+l = x; - ['(x;)

is known as Newton's iteration, and is the basis for Newton's method of
approximation to a root.

There will be situations in which the first derivative is not available, or
would be very time-consuming to calculate, and in these situations Newton's
method is not an appropriate one to choose (but see the description of the secant
method in the next section). However, in many cases the derivative is readily
available, and in these situations Newton's method will usually converge very
rapidly.

It should be noted that Newton's method will converge slowly,
sometimes more slowly than interval bisection, if the slope of the function is
zero (or almost zero) in a region containing the zero of the function we are trying
to find.

The only remaining problem is the determination of the form of
convergence criterion to be used. In the bisection method, we used the size of the
interval, which we showed to be related to the difference between the
approximation to the root and the true value of that root. However, the Newton
method does not bracket the root by an interval whose size tends to zero. The
appropriate criterion for the Newton method is, therefore, to stop the iteration
when a point x is found such that

I [(x) I ~E

where E is a user-specified tolerance. We are, by using this convergence criteria,
not insisting that the Newton method find a root exactly. This is because the
exact root may not be (indeed, for most functions, is not) a rational number and,
therefore, cannot be expressed exactly as a floating-point number. Moreover,
when a function is evaluated using floating-point arithmetic, it will not be
evaluated exactly. Thus, even if there is a rational number X such that [(X) = 0,
on a computer it is unlikely that [(X) = a exactly.

In choosing E, the user must exercise some discretion. If [ has a large
derivative near a root, we should tolerate a relatively large value of I [(x) I for x
being accepted as a good approximation to a zero of f. On the other hand, if [has
a small slope near the root, we should adopt a small value for E. Otherwise,
I [(x) I may be small, but x could be a long way from the true zero. When
working with a new function, some experimentation with the value of E may be
necessary.
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[!] Problem
Write a program to find a root of the equationf(x) = 0 using Newton's method.
The program should use external functions to define the equation and its first
derivative, and the user should input the accuracy required together with the x-
coordinate of a point which can'be used as the starting point for the interpolation.

~ Analysis

We have already discussed the mathematics involved in this method and so can
proceed to the design of the program. We must, however, note that, generally,
the closer the starting value is to the root, the better the convergence will be.
Because the Newton method does not guarantee convergence, we shall specify an
upper limit for the number of iterations permitted before terminating the process.
The data design and structure plan are then quite straightforward:

Data design

Purpose Type Name

A Dummy arguments
Function whose root is required REAL FUNCTION f
First derivative of f REAL FUNCTION f-prime
Start point for interpolation REAL start
Accuracy of result REAL epsilon
Upper limit for iteration INTEGER max_iter
Value of root REAL root
Error/success condition INTEGER error

B Local variables
Current value of f(x) REAL Cval
Current value of f' (x) REAL Cder
DO-loop control INTEGER

Structure plan
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~ Solution

The main program is sufficiently similar to that given in Example 10.2 that we
have not included it here. The subroutine which calculates the root is as follows:

SUBROUTINE newton_raphson(f,f-prime,start,epsilon, ,
max_iter, root, error)

IMPLICIT NONE

This subroutine finds a root of the equation f(x)=O
using Newton-Raphson iteration.
The function f-prime returns the value of the derivative of
the function f (x) .

Dummy arguments
REAL, EXTERNAL :: f,f-prime
REAL, INTENT (IN) :: start, epsilon
INTEGER, INTENT (IN) :: max_iter
REAL, INTENT (OUT) :: root
INTEGER, INTENT (OUT) :: error
! error indicates the result of the processing as follows:
! = 0 a root was found
! = -1 no root found after max_iter iterations
! = -2 the first derivative became zero, and so no further
! iterations were possible
! = -3 the value of epsilon supplied was negative or zero

Local variables
INTEGER:: i
REAL :: f_val, f_der

! Check validity of epsilon
IF (epsilon <= 0.0) THEN

error = -3
root = HUGE(root)
RETURN

END IF

! Begin the iteration at the specified value of x
root = start

! Repeat the iteration up to the maximum number specified
DO i=l, max_iter

f_val = f(root)
! Output latest estimate while testing
PRINT' (2(A,E15.6))', "root = ",root," f(root) = ",f_val
IF (ABS(f_val) <= epsilon) THEN

! A root has been found
error = 0
RETURN

END IF
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f_der = f-prime(root)
IF (f_der == 0.0) THEN

! f' (x)=O, so no more iterations are possible
error = -2
RETURN

END IF

! Use Newton's iteration to obtain next approximation
root = root - f_val/f_der

END DO

! Process has not converged after max_iter iterations
error = -1

END SUBROUTINE newton_raphson

Notice that if E~O, we have set error to -3 and returned an answer of
HUGE (root). This is an example of double safety when an error in usage is
detected. If a user is so foolish as not to check error returns for problems, the
answer returned will be so absurd that a problem should be detected anyway. We
have also included a PRINT statement to show the progress of the iteration; this
would normally be removed when the subroutine has been verified to be working
correctly.

Figure 18.3 shows the result of running the program with three different
starting points using the same function f as was used in Example 10.2, namely
f(x) = x + eX. A value of 10-6 was used for E in each program execution. The
functions f and f-prime are extremely simple to write in this case:

REAL FUNCTION f ( x )
IMPLICIT NONE
REAL, INTENT (IN) .. x
f = x + EXP(x)

END FUNCTION f

REAL FUNCTION f-prime( x
IMPLICIT NONE
REAL, INTENT (IN) :: x
f-prime = 1.0 + EXP(x)

END FUNCTION f-prime

It will be noticed that although using a value of -10.0 or 0.0 as the initial
value produced extremely fast convergence (4 and 3 iterations, respectively),
using +10.0 produced a relatively slow convergence, which required 13
iterations. A moment's thought about the shape of the function will make the
reason for this difference quite clear - namely that for values of x greater than 2
or 3 the curve is almost parallel to the y-axis, with the result that Newton's
iteration does not work very well. Once again, this emphasizes the importance of
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Starting at - 10

root = -0.100000E+02 f(root)
root = -0.499725E-03 f(root)
root = -0.500125E+00 f(root)
root = -0.566314E+00 f(root) =
root = -0.567143E+00 f(root) =
A root was found at x = -0.567143
Starting at 0

root = O.OOOOOOE+OO f(root) =
root = -0.500000E+00 f(root)
root = -0.566311E+00 f(root) =
root = -0.567143E+00 f(root) =
A root was found at x = -0.567143
Starting at 10

root = 0.100000E+02 f(root) =
root = 0.899959E+01 f(root)
root = 0.799860E+01 f(root) =
root = 0.699625E+01 f(root) =
root = 0.599077E+01 f(root)
root = 0.497832E+01 f(root)
root = 0.395111E+01 f(root) =
root = 0.289542E+01 f(root)
root = 0.179614E+01 f(root) =
root = 0.682831E+00 f(root) =
root = -0.210718E+00 f(root)
root = -0.541814E+00 f(root)
root = -0.567026E+00 f(root)
root = -0.567143E+00 f(root) =
A root was found at x = -0.567143

-0.999995E+01
0.999001E+00
0.106330E+00
0.129968E-02
o . 119209E-06

fIx) = 0.119209E-06

0.100000E+01
0.106531E+00
0.130451E-02
0.238419E-06

fIx) = 0.238419E-06

0.220365E+05
0.810878E+04
0.298480E+04
0.109953E+04
0.405713E+03
0.150208E+03
0.559442E+02
0.209865E+02
0.782247E+01
0.266230E+01
0.599285E+00
0.398782E-01
0.183344E-03

-0.596046E-07
fIx) = -0.596046E-07

Figure 18.3 Three solutions for x + eX= 0 using the subroutine newton_raphson.

thinking about the method to be used and the range of values in which it should
be used. In the next section we shall meet a third approach to solving this type of
problem, and a comparison of the three methods will be shown in Figure 18.7.

Newton-Raphson iteration can be shown, under certain circumstances, to
have superior convergence properties to interval bisection. Whereas the error in
the bisection method is only halved at each iteration, the error in Newton's
method is approximately proportional to the square of the error of the previous
iterate. The mathematical analysis required to show this is beyond the scope of
this book, but is discussed by Dahlquist and Bjorck (1974). However, the faster
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convergence comes at a cost, for Newton-Raphson iteration, unlike interval
bisection, does not always converge to zero. Consider, for example, the case in
which f(x) = X1/3• The Newto~-Raphson iteration in this case is

Xn1/3

Xn+l = Xn - X
n
-2/3 /3

= Xn - 3xn

= -2xn

So, if we start at the point XC, we generate a sequence of iterates XC, - 2xO, 4xO,
-8xO' 16xo, .... Thus, if Xo =f 0, the sequence will oscillate with ever-increasing
amplitude and will definitely not converge to 0 (the answer we are hoping to get)
no matter how close to 0 we start the iteration. It will only converge to 0 if we
start the iteration at 0 - which is not a very practical algorithm!

18.4 The secant methbd of solving non-linear equations

As we have seen, Newton's method for the solution of non-linear equations
requires the values of the first derivative of the function as well as the values of
the function itself. For many functions, calculating the derivative is expensive or
impossible, and in these situations the secant method can be used. This method
can be regarded as being derived from Newton's method by replacing the
derivative by an estimate of the derivative obtained from the slope of the line
joining the last two iterates, as shown in Figure 18.4.

The point where this line (called a secant - hence the name of the method)
cuts the x-axis is taken to be the next iterate. Notice that, unlike Newton's

y

o x

Figure 18.4 The secant method of approximation.
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method, we now require two values of x to start the iteration. However, unlike
the interval bisection method, the two values do not have to have opposite signs
for the corresponding function values. It is thus easier to find two values to start
the secant method than the interval bisection method.

The equation of the straight line joining the two end-points of the interval
can easily be derived by noting that

L
f
I

i
i
I
I

where II is the value of [(Xl) and fz is the value of [(X2), and that the equation of
the line is therefore

This line cuts the x-axis where y = o. Thus X3, the x-coordinate of the
intersection, satisfies the equation

',.

and, therefore,

The next iterate X3 is thus calculated as a correction to the end-point Xl. This is a
good form from a computational viewpoint as it tends to minimize round-off
errors. For the next iteration we therefore discard Xl and replace it by X3.

One potential problem is immediately apparent, namely the situation
where [1 and fz are the same, or very close to each other. This corresponds to the
position shown in Figure 18.5, and clearly will cause the method to fail since the
line joining the two end-points is either parallel to the x-axis, or almost parallel to
it.

Although less intuitively obvious than the situation shown in Figure 18.5,
there are other situations in which the secant method may not converge, and for
which another method may be better. It is thus imperative that the DO loop used
to control the iteration should have a sensible maximum iteration count, so that
another method can be tried in the event that the secant method does not
converge to a solution.
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y

o x

Figure 18.5 A failure position for the secant method.

As with Newton's method, the appropriate conve"rgence criterion is that
the iteration be stopped when a point x is found such that

1 f(x) 1 ~f

where f is a user-specified tolerance. The considerations that go into choosing f
are the same as those already discussed for Newton's method.

[!] Problem
Write a program to find a root of the equationf(x) = 0 using the secant method.
The program should use an external function to define the equation, and the user
should input the accuracy required and the x-coordinates of two points to be used
as starting points for the iteration.

~ Analysis

As with Newton's method, the closer the two starting values are to the root, the
better the convergence will generally be. We shall ensure that X2 is the most
recent approximation, and will rearrange the initial values, if necessary, so as to
ensure that X2 is the one apparently closest to a root, that is, 1fz I ~ I II I.
Furthermore, as already discussed, because the secant method does not guarantee
convergence, we shall specify an upper limit for the number of iterations
permitted before terminating the process.

, As with the very similar Example 18.1, the data design and structure plan
are quite straightforward:
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i
Data design

Purpose Type Name

A Durruny arguments
Function whose root is required REAL FUNCTION f
Start points for interpolation REAL start!; startl
Accuracy of result REAL epsilon
Upper limit for iteration INTEGER max_iter
Value of root REAL root
Error/success condition INTEGER error

B Local variables
Current values of end points REAL xl, xl

New end point REAL x3
Values of fix) at xl, xl and x3 REAL fl, fl, f3
Temporay variables for use REAL tempx, tempf
during swapping
DO loop control INTEGER

Structure plan

rn Solution

Once again, we shall not include the main program, since it is very similar to the
one used in Example 10.2 (and to the one used in Example 18.1). The subroutine
which calculates the root is as follows:

SUBROUTINE secant(f,startl,start2,epsilon,max_iter, &
root, error)

IMPLICIT NONE
!This subroutine calculates a root of the equation fIx) = 0
!by use of the secant method
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! Dummy arguments
REAL, EXTERNAL :: f
REAL, INTENT (IN) :: start1,start2,epsi1on
INTEGER, INTENT (IN) :: max_iter
REAL, INTENT (OUT) :: root
INTEGER, INTENT (OUT) :: error
! Local variables
REAL :: x1,x2,x3,f1,f2,f3,tempx,tempf
INTEGER:: i
! Check validity of initial points
IF (start1 == start2) THEN

error = -1
root = HUGE(root) Largest number
RETURN

END IF
! Check validity of epsilon
IF (epsilon <= 0.0) THEN

error = -2
root = HUGE(root) Largest number
RETURN

END IF
!Set up initial pair of points
xl = start1
x2 = start2
fl = f(x1)
f2 = f(x2)
! Choose the x with the best function value to be
! the most recent estimate
IF (ABS(f1) < ABS(f2)) THEN

tempx = xl
tempf = fl
'xl = x2
fl = f2
x2 = tempx
f2 = tempf

END IF
! Repeat the iteration up to the maximum number specified
DO i = 1,max_iter

IF (f1 == f2) THEN
! No further iterations possible
error = -4
root = x2
RETURN

END IF
!Calculate next approximation
x3 = xl - f1*(x2 - x1)/(f2 - f1)
f3 = f(x3)
! Output latest approximation while testing
PRINT' (2(A,E15.6))', "x3 = ",x3," f(x3) = ",f3
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IF (ABS(f3) <= epsilon) THEN
!A root has been found
error = 0
root = x3
RETURN

END IF

! Update points for next iteration
xl = x2
f1 = f2
x2 = x3
f2 = f3

END DO
!Process has not converged after max_iter steps
error = -3
root = x2

END SUBROUTINE secant

Initial bounds of - 10 and 0

x3 = -0.909095E+00 f (x3) -0.506206E+00
x3 = -0.603566E+00 f(x3) = -0.567080E-01
x3 = -0.565021E+00 f(x3) 0.332731E-02
x3 = -0.567157E+00 f(x3) -0.218153E-04
x3 = -0.567143E+00 f(x3) -0.596046E-07
A root was found at x = -0.567143 fIx) = -0.596046E-07
Initial bounds of 10 and 11

x3 = 0.941777E+01 f(x3) 0.123146E+05
x3 = 0.868028E+01 f(x3) 0.589436E+04
x3 = 0.800319E+01 f(x3) 0.299847E+04
x3 = 0.730211E+01 f(x3) 0.149073E+04
x3 = 0.660895E+01 f(x3) = 0.748309E+03
x3 = 0.591028E+01 f(x3) 0.374720E+03
x3 = 0.520950E+01 f(x3) 0.188212E+03
x3 = 0.450232E+01 f(x3) = 0.947283E+02
x3 = 0.378572E+01 f(x3) 0.478531E+02
x3 = 0.305417E+01 f(x3) 0.242578E+02
x3 = 0.230209E+01 f(x3) = 0.122971E+02
x3 = 0.152885E+01 f(x3) 0.614171E+01
x3 = 0.757328E+00 f(x3) = 0.288990E+01
x3 = 0.716745E-01 f(x3) = 0.114598E+01
x3 = -0.378889E+00 f(x3) 0.305733E+00
x3 = -0.542831E+00 f(x3) 0.382697E-01
x3 = -0.566289E+00 f(x3) 0.133967E-02
x3 = -0.567140E+00 f(x3) 0.590086E-05
x3 = -0.567143E+00 f(x3) 0.596046E-07
A root was found at x = -0.567143 fIx) = 0.596046E-07

Figure 18.6 Two solutionsforx + eX = 0 using the subroutinesecant.
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Bisect

-10.000000
-5.000000
-2.500000
-1. 250000
-0.625000
-0.312500
-0.468750
-0.546875
-0.585938
-0.566406
-0.576172
-0.571289
-0.568848
-0.567627
-0.567017
-0.567322
-0.567169
-0.567093
-0.567131
-0.567150
-0.567141

Secant

-10.000000
-0.909095
-0.603566
-0.565021
-0.567157
-0.567143

Newton-Raphson

-10.000000
-0.000500
-0.500125
-0.566314
-0.567143

Figure 18.7 A comparison of the bisection, secant and
Newton-Raphson methods.

Note that once the function has been evaluated at a point, that value is saved
so it never needs to be recalculated. Also note that we have included a PRINT
statement so that We can see each new estimate of the value of the root. This
print statement will normally be removed when we are sure that subroutine
secant is working correctly. Figure 18.6 shows the result of running this
program twice, using different initial intervals, with the same function
subprogram to define the equation to be solved as was used in Example
18.1 (and in Example 10.2). In both cases a value of 10-6 was specified for E,

and a maximum iteration count of 20. The first example used the initial interval
of -10 to 0, while the second used an initial interval of 10 to 11, which is
similar to the case which caused some difficulty for Newton's method in Example
18.1. It is interesting to examine the actual iterations carried out in these two
cases.

Figure 18.7 shows the successive iterates produced by the subroutines
bisect (Example 10.2), secant (Example 18.2) and newton_raphson (Example
18.1) using similar starting situations, and it can be seen very clearly how the
Newton-Raphson and secant methods are much more efficient in this case than
the bisection method, which frequently moves away from the root in the latter
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stages because of its inability to recognize that one of its end-points is very close
to the root.

As with Newton's method, it can be shown that, under certain
circumstances, the secant method has superior convergence properties than the
interval bisection method. The error in the secant method is approximately
proportional to the 1.6th power of the error of the preceding iterate; see
Dahlquist and Bj6rck (1974) for the mathematical analysis. However, as with
Newton's method, the cost of the improved performance is that the secant
method does not always converge to a root. Note that the rate of convergence is
not as good as the Newton method, but we have avoided the cost of the
derivative evaluation required by the Newton method. The choice between using
the secant method or Newton's method, therefore, depends on the cost of
evaluating the derivative.

18.5 Solution of simultaneous linear equations by
Gaussian elimination

The solution of a system of linear equations is perhaps the most common need in
engineering and scientific problems, not only because, often, the solution of a
physical problem directly results in the need to solve a system of linear equations,
but also because many numerical techniques for solving problems that apparently
have nothing to do with systems of linear equations work by making appropriate
linear approximations internally that result in the need to solve such systems of
linear equations.

The method that we shall demonstrate is appropriate for general dense
systems of linear equations, where by general we mean that the matrix of
coefficients of the system of equations has no particular structure. Many physical
problems, however, result in matrices of coefficients that do have a special
structure, and special numerical techniques have been devised for their solution;
see, for example, Dahlquist and Bj6rck (1974) and Golub and Van Loan (1991). By
dense we mean that most of the elements of the matrix of coefficients of the system
of equations are non-zero. In this context, we note that many times a system of
equations is sparse (non-dense), and special techniques have been devised for their
solution; see, for example, George and Liu (1981) and Duff et al. (1986). The
numerical solution of sparse systems of linear equations, or those with a special
structure, is completely beyond the scope of this book, except for the very special
case of tridiagonal systems, which we shall discuss in Section 18.6.
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The method that we shall use is known as Gaussian elimination, and we
shall first illustrate the process by reference to a small 3 x 3 system of
simultaneous linear equations:

Xl + 2X2 + X3 = 9

2XI + 3X2 - 2X3 = 7

4x1 + 4x2 + X3 = 18

(1)
(2)
(3)

Subtracting 2 times equation (1) from equation (2), and then 4 times equation (1)
from equation (3), we obtain the equivalent set of equations:

Xl + 2X2 + X3 = 9
-x2-4x3=-11

- 4X2 - 3X3 = -18

(4)
(5)
(6)

Subtracting 4 times equation (5) from equation (6), we obtain a further equivalent
set of equations:

Xl + 2X2 + X3 = 9
- X2 - 4X3 = -11

13x3= 26

(7)
(8)
(9)

This completes the Gaussian elimination step. We now perform the backward
substitution step.

Using equation (9), we obtain

X3 = 26/13 = 2

Substituting this value for X3 in equation (8), we obtain

-X2 - 4 x 2 = -11

and hence

X2 = 11 - 8 = 3

Substituting these values for X2 and X3 in equation (7), we obtain

Xl + 2 x 3 + 2 = 9
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Therefore

Xl = 9 - 6 - 2 = 1

The solution of the original system of equations is therefore Xl = 1, X2 = 3,
X3 = 2.

Having seen how Gaussian elimination operates in the context of a simple
example, we shall now discuss the general case. Suppose we have a system of n
linear equations in n unknowns:

aI,IXI + aI,2x2 + '+aI,nXn = hI

a2,IxI + a2,2x2 + + a2,nXn = h2

Gaussian elimination will rum this system of equations into an equivalent system
of equations of the form

CI,IXI + CI,2X2 + + CI,nXn = dl

C2,2X2 + + C2,nXn = d2

In this form, all the coefficients below the diagonal are zero, and the matrix of
coefficients, for obvious reasons, is said to be upper triangular. As we shall see,
in this form, the system of equations can be solved with no further manipulation.

Gaussian elimination works by subtracting multiples of the first equations
from all the other equations below it in such a way that the resulting equations
each have a coefficient of 0 for Xl. Thus, the initial systeqt of equations becomes

aI,IXI + aI,2x2 + ... + aI,nXn = hI

(1) (1) (1)
a2,2x2 + ... + a2,nXn = h2
(2) (2) _ (2)

a2,2x2 + ... + a2,nXn - h2 ,.

Specifically, for j ~ 2, the jth equation is obtained by subtracting the first
equation, multiplied by aj,d aI,I, from the original jth equation. The superscripts
on the coefficients are used to denote that this is step i of the process. The
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solution of the second set of equations is the same as that of the original system
of equations.

We now repeat the process again on the (n - 1) X (n - 1) system of
equations consisting of the second to the nth equations. Subtracting appropriate
multiples of the second equation from the equations below it, we obtain a system
of equations in which all the equations after the second have zero for the
coefficient of X2.

Proceeding iteratively, after n - 1steps, we obtain a system of equations
of the form

al,IXl + al,2X2 + al,3X3 + al,4X4 + ... + al,n-lXn-l + al,nXn = b1

(1) (1) (1) (1) (1) b(1)
a2 2X2 + a2 3X3 + a2 4X4 + ... + a2 n-lXn-l + a2 nXn = 2

, ') 1 ,

(2) (2) (2) (2) (2)
a3,3x3 + a3,4x4 + "..+ a3,n-lXn-1 + a3,nXn = b3

(3) (3) (3) _ (3)
a4,4x4 + ... + a4,n-lXn-1 + a4,nXn - b4

(n-2) (n-2) _ b(n-2)
an-l,n-lXn-l + an-1,nXn - n-l

a(n-l) = b(n-l)
",n Xn n

This process, as we have already seen, is called Gaussian elimination, and the
a}'i-1) (the elements along the diagonal) are called pivots.
, Now the nth equation is solved for Xn by dividing by a~n;I). This value is

then substituted into the (n - l)th equation, which can then b~ solved for Xn-l'

The values for Xn and Xn-l are substituted in the (n - 2)th equation, which is then
solved for Xn-2' We proceed backwards through the set of equations in this way
until we finally put the values determined for Xn,Xn-l,'""' X3,X2 into the first
equation and solve it for Xl' This process, for obvious reasons, is called back
substitution.

We can see that the Gaussian elimination process will fail if, at the ith step,
the coefficient a}'i-1) is O. We would in this case be unable to make all the
coefficients of Xi in the equations below it 0, since subtracting any multiple of 0
leaves a number unchanged. If this situation occurs, however, we could
interchange the ith equation with one below it that does not have a 0 for the
coefficient of Xi, and then proceed. If there is no such equation, then it can be
proved that the original system either has no solution or an infinite set of
solutions. Observe that changing the order of occurrence of the equations does
not change their solution.

In fact, we can go somewhat beyond this interchange procedure. If a pivot
element is small, then large multiples of the equation containing it must be used
during the elimination process. This will multiply any errors (due to round-off
effects) in the other coefficients of this equation. Intuitively, we can see that this is
undesirable. So, for reasons of numerical stability, at the beginning of the ith step,
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we will reorder the equations from the ith one down, so that the one that has the
largest absolute value for the coefficient of Xj becomes the ith equation. In books
on numerical analysis, you will see this equation reordering process referred to as
partial pivoting. Proving mathematically that this is a good choice for a stable
algorithm would, however, go beyond the scope of this book.

ITl Problem
Write a program to read the coefficients of a set of simultaneous linear equations,
and to solve the equations using Gaussian elimination.

rn Analysis

We have already discussed the Gaussian elimination method in some detail, and
so we can proceed to the design of the program. We shall write one procedure to
carry out the Gaussian elimination, and a second to perform the back substitution.
Both of these procedures will be used by a third procedure to actually solve a set
of equations. Because we shall not want the two subsidiary procedures to be
available on their own, we shall encapsulate all three procedures in a module,
which will make only the solving procedure public.

An initial structure plan for the Gaussian elimination algorithm is as
follows:

Now we can amplify the steps of this loop. The coefficient of Xi in equation i is
ai,i, and the coefficient of Xi in equation j is aj,i. To make the coefficient of Xi in the
jth equation zero, we must therefore subtract aj,;/ ai,i times the ith equation from
the jth equation.

We shall store the coefficients of the system of equations (the aij) in a real
rank-two array a and the right-hand sides of the equations (the hi) in a real
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rank-one array b. The revised structure plan for the Gaussian elimination
algorithm then becomes:

We can now tum to implementing the algorithm for back substitution.
When the Gaussian elimination step has been completed, the ith equation is of the
form

nL aijXj = hi,
j=i

i = 1,2, ... ,n

That is, the coefficients of Xl, X2,"', xi-l are zero in the ith equation.
Consequently, we can easily solve the ith equation for Xi, expressing it in terms of
Xi+l, Xi+2, ••. , xn. Specifically,

n

ai,iXi +L aijXj = hi,
j=i+I

i = I,2, ... ,n

i = 1,2, ... ,n

This formula is used first with i = n, then with i = n - 1, ... , then with i = 2,
and finally with i = 1. Note that, because of the row interchanges in the Gaussian
elimination step, ai,i i 0, i = 1,2, ... ,n. Thus, it will always be possible to
divide by ai,i'

We also note that after hi has been used to calculate Xi it does not appear
in any subsequent formulae; the solution Xi can therefore be stored in hi, once hi

has been used to calculate Xi.

An outline structure plan for the back substitution procedure is now very
straightforward:
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We shall not proceed further with the design phase, which is quite
straightforward, in order to save space, but will simply present the final solution.

@] Solution
We have already indicated that the two subroutines gaussian_elimination and
back_substitution will be called by a third subroutine, which we shall call
gaussian_solve. Because this subroutine will use assumed-shape dummy
arguments, it must have an explicit interface in the main program.
Furthermore, we do not want a user to be able to call gaussian_elimination
or back_substitution directly. To accomplish both of these aims, all three
subroutines will be put in a module called linear_equations, with only
gaussian_solve being public.

MODULE linear_equations
IMPLICIT NONE
PRIVATE
PUBLIC :: gaussian_solve

CONTAINS

SUBROUTINE gaussian_solve(a,b,error)
This subroutine solves the linear system Ax = b
where the coefficients of A are stored in the array a
The solution is put in the array b
error indicates if errors are found

!Dummy arguments
REAL, DIMENSION(:,:), INTENT (INOUT) :: a
REAL, DIMENSION(:), INTENT (INOUT) :: b
INTEGER, INTENT (OUT) :: error

!Reduce the equations by Gaussian elimination
CALL gaussian_elimination(a,b,error)

! If reduction was successful, calculate solution by
! back substitution
IF (error == 0) CALL back_substitution(a,b,error)

END SUBROUTINE gaussian_solve

SUBROUTINE gaussian_elimination(a,b,error)
!This subroutine performs Gaussian elimination on a
! system of linear equations
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Dummy arguments
a contains the coefficients
b contains the right-hand side

REAL, DIMENSION(:,:), INTENT (INOUT) " a
REAL, DIMENSION(:) :: b
INTEGER, INTENT (OUT) :: error

! Local variables
REAL, DIMENSION(SIZE(a,l)) :: temp_array
INTEGER, DIMENSION (1) :: ksave
INTEGER :: i,j,k,n
REAL:: temp,m

Automatic array

! Validity checks
n = SIZE(a,l)
IF (n == 0) THEN

error = -1
RETURN

END IF
IF (n 1= SIZE(a,2)) THEN

error = -2
RETURN

END IF
IF (n 1= SIZE(b)) THEN

error = -3
RETURN

END IF

There is no problem to solve

a is not square

Size of b does not match a

!Dimensions of arrays are OK, so go ahead with Gaussian
!elimination
error = 0
DO i=l, n-1

! Find row with largest value of la(j,i) I, j=i, "" n
ksave = MAXLOC(ABS(a(i:n, i)))

! Check whether largest la(j,i) I is zero
k = ksave(l) + i - 1
IF (ABS(a(k,i)) <= 1E-S) THEN

error = -4 '" ! No solution possible
RETURN

END IF

! Interchange row i and row k, if necessary
IF (k 1= i) THEN

temp_array = ali,:)
ali,:) = a(k,:)
a(k,:) = temp~array
!Interchange corresponding elements of b
temp = b(i)
b(i) = b(k)
b(k) = temp

END IF
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! zero all subsequent coefficients
DO j = i+l,n

m = a(j,i)/a(i,i)
a(j,:) =a(j,:) -m*a(i,:)
b(j) = b(j) - m*b(i)

END DO
END DO

END SUBROUTINE gaussian_elimination

of x sub i
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SUBROUTINE back_substitution(a,b,error)
! This subroutine performs back substitution once a system
!of equations has been reduced by Gaussian elimination
Dummy arguments
The array a contains the coefficients
The array b contains the right-hand side coefficients.
and will contain the solution on exit
error will be set non-zero if an error occurs

REAL, DIMENSION(:,:), INTENT (IN) :: a
REAL, DIMENSION(:), INTENT (INOUT) :: b
INTEGER, INTENT (OUT) :: error
!Local variables
REAL :: sum
INTEGER :: i,j ,n
error = 0
n = SIZE(b)
! Solve for each variable in turn
DO i = n,l,-l

! Check for zero coefficient
IF (ABS(a(i,i)) <= lE-5) THEN

error = -4
RETURN

END IF
sum = b(i)
DO j = i+l,n

sum = sum - a(i,j)*b(j)
END DO
b(i) = sum/a(i,i)

END DO
END SUBROUTINE back_substitution

END MODULE linear_equations

A suitable main program which will use the subroutine gaussian_solve to
solve a system of linear equations is as follows:

PROGRAM test_gauss
USE linear_equations
IMPLICIT NONE
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This program defines the coefficients of a set of
simultaneous linear equations, and solves them using the
module procedure gaussian_solve

! Allocatable arrays for coefficients
REAL, ALLOCATABLE, DIMENSION(:,:) :: a
REAL, ALLOCATABLE, DIMENSION(:) :: b

! Size of arrays
INTEGER:: n

! Loop variables and error flag
INTEGER :: i,j,error

! Get size of problem
PRINT *,"How many equations are there?"
READ *,n

! Allocate arrays
ALLOCATE (a(n,n), bIn))

! Get coefficients
PRINT *,"Type coefficients for each equation in turn"
DO i=l,n
. READ *, (a(i,j) ,j=l,n) ,b(i)
END DO

! Attempt to solve system of equations
CALL gaussian_solve(a,b,error)

",F6.2)', (i,b(i) ,i=l,n)

*," II

*,"Solution is"
, (lX,"x(",I2,") =

! Check to see if there were any errors
IF (error <= -1 .AND. error >= -3 ) THEN

PRINT *,"Error in call to gaussian_solve"
ELSE IF (error == -4) THEN

PRINT *,"System is degenerate"
ELSE

PRINT
PRINT
PRINT

END IF

END PROGRAM test_gauss

Note that for large problems, this code can be made more efficient by use
of pointers, in order to avoid exchanging of large numbers of arrays and array
sections; Exercise 18.8 at the end of this chapter gives you the chance to make
such an improvement.
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How many equations are there?
4
Type coefficients for each equation in turn
2 3 -1 1 11
1 -1 2 -1 -4
-1 -1 5 2 -2
3 1 -3 3 19
Solution is
x( 1) = 2.00
x( 2) 1.00
x( 3) = -1.00
x( 4) 3.00

Figure 18.8 Solving a set of simultaneous linear equations using test_gauss.

Figure 18.8 shows the results produced when this program was used to
solve the following set of equations:

2Xl + 3X2 - X3 + X4 = 11

Xl - X2 + 2X3 - X4 = -4
-Xl - X2 + 5x3 + 2X4 = -2
3Xl + X2 - 3X3 + 3X4 = 19

18.6 Solving a tridiagonal system of equations

One form of sparse system which is particularly important is known as a
tridiagonal system, for reasons which become obvious when we examine such a
system:

al,IXl + al,2x2

a2,lxl + a2,2x2 + a2,3X3

a3,2x2 + a3,3x3 + a3,4x4

an-l,n-2Xn-2 + an-l,n-lXn-l + an-l,nXn = bn-1
an,n-lXn-l + an,nxn = bn

Systems of equations of this type occur frequently in the solution of partial
differential equations, and are also found in cubic and bicubic curve fitting, as we
shall see in Section 18.7. In order to emphasize the form of such a system it is
common practice to use a different terminology for the coefficients, namely
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dIxI + CIXZ

aZxI + dzxz + CZX3

a3xZ + d3X3 + C3X4

an-IXn-Z + dn-Ixn-I + Cn-IXn = bn-I
anXn- I + dnxn = bn

Clearly, the computation involved in solving a system of this nature should be
much simpler than in the general case, since in each column there is only one
element to be eliminated. Furthermore, and this is another reason why we have
used a different terminology, considerable savings can be made in storage
requirements by storing only these tridiagonal coefficients (as three one-
dimensional arrays) and ignoring the zero elements which occupy the remainder
of the matrix of coefficients.

We shall not give an exhaustive account of the mathematics involved in
deriving a solution method, as it is similar to that used in the previous section
when discussing Gaussian elimination, except that we only need to subtract the
pivotal equation from the equation immediately below it in order to transform the
original set of equations into a new, upper triangular set:

DIxI + CIXZ

Dzxz + CZX3

D3X3 + C3X4

Dn-Ixn-l + Cn-IXn = Bn-I
Dnxn = Bn

We can readily see that the Cj coefficients are unaltered by the transformation, and
that

and
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Furthermore, when processing the (i + l)th equation in order to eliminate Xi we
shall use a multiplier mi which is equal toai+l/Di to give a new equation:

where

and

It can be shown that in some situations pivoting can be eliminated. One
example of such a situation is where the system of equations is diagonally
dominant, i.e. for each row the absolute value of the diagonal term is greater than
or equal to the sum of the absolute values of the other terms. Using our original
notation, this requires that Iai,i I ~ Iai,i-l I + Iai,i+l I, i = 1,2, ... ,n. Here, we
interpret al,O and an,n+l as being zero. The proof that diagonal dominance
eliminates the need for pivoting goes beyond the scope of this book.

A Fortran implementation of this method, in, which no pivoting is
performed, is shown in Figure 18.9, while Figure 18.10 shows a suitable back
substitution procedure.

SUBROUTINE tri_gauss(a,d,c,b,error)
IMPLICIT NONE
This subroutine performs Gaussian elimination with no
pivoting on a tridiagonal, diagonally domin~nt, system
of linear equations
Dummy arguments
Array a holds the subdiagonal coefficients
Array d holds the diagonal coefficients
Array c holds the above-diagonal coefficients
Array b holds the right-hand-side coefficients
error is a variable that indicates success or failure

REAL, DIMENSION(:), INTENT (IN) :: a,c
REAL, DIMENSION(:), INTENT (INOUT) :: d,b
INTEGER, INTENT (OUT) :: error
! Local variables
REAL::m
INTEGER:: n,i

I
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Figure 18.9 (continues)
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(continued) ! Validity checks
n = SIZE(a)
IF (n <= 0) THEN
! There is no problem to solve
error = -1
RETURN

END IF
IF (n /= SIZE (d) ,OR. &

n /= SIZE(c) ,OR. &
n /= SIZE(b) ) THEN
! The arrays of coefficients do not have the same size
error = -2
RETURN

END IF
! Calculate new coefficients of upper diagonal system
DO i = l,n-l

m = a(Hl)/d(i)
d(i+l) = d(i+l) - m*c(i)
b(i+l) = b(i+l) - m*b(i)

END DO
error = 0

END SUBROUTINE tri_gauss

Figure 18.9 A subroutine for Gaussian elimination on a tridiagonal system,

SUBROUTINE back_tri_substitution(d,c,b)
IMPLICIT NONE
This subroutine performs back substitution to a
tridiagonal system of linear equations that has been
reduced to upper triangular form
Dummy arguments
d is the array of diagonal coefficients
c is the array of above-diagonal coefficients
b is the array of right-hand-side coefficients
and will contain the solution on exit

REAL, DIMENSION(:), INTENT (IN) :: d,c
REAL, DIMENSION(:), INTENT (OUT) :: b
! Local variables
INTEGER:: i,n
n = SIZE (d)
bIn) = bInI/dIn)
DO i = n-l,l,-l

b(i) = (b(i) - c(i)*b(Hl))/d(i)
END DO

END SUBROUTINE back_tri_substitution

Figure 18.10 A subroutine for back substitution on an upper triangular system,
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We shall use these subroutines as part of a method for curve fitting in the
next section. The development of a procedure for solving tridiagonal systems
with pivoting is given as an exercise at the end of this chapter.

Since both the subroutines tri_gauss and back_tri_substitution use
assumed-shape arrays, their interfaces must be explicit before they can be
referenced. Accordingly, as in the similar case in Example 18.3, we shall put them
in a module called tridiagonal_systems. We shall also, for the same reason, put
tri_solve, the subroutine that solves a tridiagonal system by calling tri_gauss
and then back_tri_solve, in the same module. Since only tri_solve is supposed
to be directly called by a user, all entities in the module will be private except
tri_solve. This module could be written as follows:

MODULE tridiagonal_systems
IMPLICIT NONE
PRIVATE
PUBLIC :: tri_solve

CONTAINS

SUBROUTINE tri_solve(a,d,c,b,error)
! This subroutine solves a diagonally dominant tridiagonal
! system by Gaussian elimination and back substitution

! Dummy arguments
!Array a holds the subdiagonal coefficients
! Array b holds the diagonal coefficients
! Array c holds the above-diagonal coefficients
!Array d holds the right-hand-side coefficients
! Array b will contain the solution on exit
REAL, DIMENSION(:), INTENT (IN) :: a,c
REAL, DIMENSION(:), INTENT (OUT) :: d,b
INTEGER, INTENT (OUT) :: error
CALL tri_gauss(a,d,c,b,error)
IF (error == 0) CALL back_tri_substitution(d,c,b)

END SUBROUTINE tri_solve

SUBROUTINE tri_gauss ( . . . )

SUBROUTINE back tri_substitution ( . . . )

END MODULE tridiagonal_systems
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18.7 Fitting a curve through a set of data points using a
cubic spline

We have considered the solution of equations of various types at some length,
because this is a very common requirement in scientific programming. However,
another important application is the fitting of an equation to a set of (usually)
experimental data with a view to using this equation to predict further results. In
Chapter 10 we considered the simple case in which it was believed that the data
satisfied a linear relationship. We shall now briefly examine a more general case.

As usual in numerical analysis, there are a number of different methods for
fitting a curve to a set of discrete data points; however, by far the best known,
and the most widely used, are those methods which are based on splines. A
spline was an instrument once used by draughtsmen to enable them to draw a
smooth curve through a set of points. It consisted of a flexible wooden (or
sometimes metal) strip which was constrained (by pins) to pass through the data
points. Because the spline would take up the shape which minimized its potential
energy, the resulting curve was a smooth one.

Mathematically, splines are curves consisting of n polynomial pieces, each
one of the same degree k, joined together such that the curve has k - 1
continuous derivatives at the join points, as shown in Figure 18.11.

Let us suppose we are given some finite interval [a, b] and a set of points
XO,XI,'" ,Xn in [a, b] such that a = XO::::; Xl::::; X2 ::::; ••• ::::;Xn = b. The points
Xo, Xl, ••• , Xn are called knots.

Now, let k ~ 0 be a fixed integer, and Pj be a polynomial of degree k,
i = 1,2, ... , n. Then a spline 5 of degree k on [a, b] is defined as

on
on

on

[XO, xrJ }
[Xl, X2]

[Xn-l' Xn]

The polynomials must be such that at XI,X2, ••• ,Xn-I, s(x) has k - 1continuous
derivatives.

Such a spline is said to be ck-l, referring to the k - 1 continuous
derivatives.

It might be asked why objects as complicated as splines are used when we
could simply, given n points, fit a polynomial of degree n - 1through them. The
reason is that polynomials of degree more than 3 tend to oscillate considerably
between the given data points, with the amount of oscillation tending to increase
as the degree of the polynomial increases. Thus the intrinsic shape represented by
a set of data points is usually badly represented by higher-degree polynomials.
Splines, on the other hand, conform much better to the shape implied by the data,
even though, in practice, they are rarely of degree higher than three.
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a Xo Xl x,,-l Xn X

Figure 18.11 A spline curve.
I.'

In this section we shall concentrate on cubic splines. The Cubic spline is
the mathematical equivalent of the draughtsman's physical instrument and
enables the construction of a smooth curve which passes through all the data
points. Furthermore, as a measure of its smoothness; its first and second
derivatives are continuous everywhere within the range of the data points. Thus,
we shall analyse a C2 cubic spline, and will show the simplest method for
constructing such a spline. There are many other, more sophisticated methods
based on what are known as basis functions. Dierckx (1993) gives an introduction
to such methods for those who are interested in this subject.

A cubic spline actually consists of a set of cubic polynomials, one for each
pair of data points. These polynomials are chosen so that they obey the following
criteria:

(1) In each interval [Xi, Xi+1], i = 0, ... , n - 1, the spline consists of a cubic
polynomials;(x).

(2) The spline passes through each data point~ and so,

5i(X;) = Yi and for i = 0, ... , n - 1

(3) At each of the points where two sub-intervals join, the first and second
derivatives must be continuous; so, for i = 1.... ,n - 1

5i-1 (x;) = 5i(X;)
5;_1(Xi) = 5;(Xi)
5;~1(Xi) = 5;'(X;)

For fairly obvious reasons, round-off errors will be less if we express the
cubic p~lynomials as functions of (x - Xi) rather than as functions of x, with the
result that we shall require to find the coefficients of the equations
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Si(X) = ai(X - Xi)3 + hi(x - Xi)2 + Cj(X - Xj) + di, (1)

for i= 0, ... ,n - 1
We now consider, for i= 0, 1, ... , n - 1, how to find ai, hj, Cjand di. For

a particular i, we have two conditions

Si(Xi) = Yi
Sj(Xj+l) = Yj+l

We need two more conditions to fix ai, hi, Cj and di.
For the moment, suppose that we know the second derivatives at

xo, Xl" .. , Xn. We shall call these derivatives ao, aI, a2, ... , an' Now, for
i= 0, 1, ... , n - 1, we have the two extra conditions needed to determine ai, hj,
Cj and di. At this stage, of course, we do not know what values to assign to the ai.

We shall see later than the continuity conditions on the first and second
derivatives we require at Xo, Xl, •.. , Xn-l will (with two extra conditions)
determine the values of aj, and hence the values of ai, hj, Ci and dj.

We now proceed with the analysis to determine aj, hj, Ciand dj in terms of
Yj, Yi+l, ai and aj+l' First, we let

!,

hi = Xj+l - Xj for i= 0,1, ... , n - 1

The hi are, therefore, the distances between successive pairs of data points.
For i = 0,1, ... ,n - 1, substituting Xi for x, and Yi for Sj(Xj) in equation

(1) and rearranging, we obtain

dj =Yj

Substituting X = xi+l in equation (1), we obtain

Yj+l = aih/ + hjh; + cihi + di

Using equation (2) and rearranging, we now obtain

Yi+l - Yi 2c- = --- - a.h. -h.h-r h
j

I ! J I

Now, differentiating equation (1) twice, we have'

S;'(Xi) = 6ai(X - Xi) + 2hi

(2)

(3)
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Substituting x = Xi and x = Xi+! in this equation leads to

O"i = 2bi
O"i+1 = 6aihi + 2bi

Thus, fro~ these two equations, we have

b. _ O"i,-
2
O"i+1 - O"i

ai=----
6hi

Substituting equations (4) and (5) in equation (3), we obtain

(4)

(5)

Yi+! - Yj
Ci = hi

Yi+1 - Yi

hi

O"i+! - O"i h2 _ O"j h-
6hj "2 J

O"i+I + 20"j h-
6 J

(6)

Equations (2), (4), (5) and (6) thus determine aj, bi, Cj and dj, for i = 0,
1, ... , n - 1, once we know the values of the O"jS. Our next step, therefore, will
be to determine the values of the O"iS.

Recall that we required the spline to have a continuous first derivative at
each Xi, for i = 1,2, ... ,n - 1. This requirement, which we have not yet used,
will determine O"i-

Differentiating equation (1), we obtain

s;(X) = 3ai(X - Xi)2 + 2bi(x - Xi) + Ci

Substituting X = Xj and X = Xi+! in this equation, we obtain

(7)

and

(8)

For continuity of the first derivative at Xi, i = 1,2, ... ,n - 1, we require
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Substituting equations (7) and (8) into this equation, we obtain

Substituting equations (4), (5) and (6) into this equation, we have

3(O"i - O"i-l)hf_l h Yi - Yi-l (O"i+ 20"i-l)hi-1
h + O"i-l i-I + h -
6 ~1 ~1 6

Yi+l - Yj

hi
(O"i+l + 20"j)hi

6

Grouping terms together, we have

Yi+l - Yj
hj

Yi - Yi-l
hj-1

Thus, multiplying by 6, for i = 1, ... , n - 1,

(
yj+l - Yj Yi - yj-l)

hj-10"j-l + 2(hi-1 + hi)O"i + hjO"i+l = 6 hi - h
j
-
1

(9)

Equation (9) gives us n - 1 linear equations in the n + 1 unknowns 0"0,

0"1, ... ,O"n.

We therefore need two more equations to be able to calculate a unique
solution, and, hence, a unique cubic interpolating function. This is achieved by
applying some form of constraint to the spline at the end-points Xo and Xn. This is
desirable in any case, since extra constraints on a curve fit are frequently required
at the end-points of an interval. In design work, for example, the curve may be
required to blend into some existing curve. There are a number of possibilities, of
which some common ones are:

• Force the second derivative of the spline to be zero at the end-points:

• Force the third derivative of the spline to be continuous at the points
adjacent to the end-points. This means that

and
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which leads to the two further equations

aOhl - al (ho + hI) + azho =0

an-Zhn-I - an-I (hn-z + .hn-I) + anhn-z ~ 0

• Force the first derivative (the gradient) at the end,points to be the same as
that of the true curve y = f(x); this assumes that further information is
available about the gradient of this curve at these points. Thus

s~(xo) =f~ and <_I(Xn) =f~
which leads to two further linear equations in aoand aI, and in an-I and
an, respectively.

Different treatment of the end-points will be appropriate for different situations,
but it will be noticed by the observant reader that, in the first and third cases, we
have tridiagonal systems of n equations in n unknowns. The second case also has
n equations in n unknowns, but is not strictly tridiagonal; however, it is a trivial
task to convert it to tridiagonal form.

We discussed the solution of a tridiagonal system in Section 18.6, and
since the system of equations (9) is diagonally dominant (do you see why?), we
can use the subroutines developed in that section in' the calculation of the
coefficients of a cubic spline. A subroutine which will calculate the values of the
coefficients for a tridiagonal system of equations using the first of the above
criteria for treatment of end-points (ao = an = 0) is shown below; it has
been encapsulated in a module, which in tum uS,es the earlier module
tridiagonal_systems, in order to ensure that its interface is always explicit.

MODULE spline
USE tridiagonal_systems
IMPLICIT NONE

CONTAINS

SUBROUTINE cubic_spline(x,y,a,b,c,d,error)
This subroutine calculates the coefficients of a
cubic spline through the set of data points with
x-coordinates in the array x and corresponding
y-coordinates in the array y.
The coefficients of the cubic polynomials will be
put in arrays a, b, c, d
error will indicate the success or failure of the fit

! Dummy arguments
REAL, DIMENSION(O:), INTENT (IN) :: x,y
REAL, DIMENSION(O:), INTENT (OUT) :: a,b,c,d
INTEGER, INTENT (OUT) :: error
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! Local variables
INTEGER :: n,i
REAL, DIMENSION(O:SIZE(x,1)-2) :: h ! Automatic array
! Automatic arrays for tridiagonal equations
REAL, DIMENSION(O:SIZE(x,l) -1) :: t,u,v,w

!Validity checks
n = SIZE(x) - 1
IF (n < 1) THEN

! There is no problem to solve
error = -1
RETURN

END IF
IF (n+1 /= SIZE(y) .OR. ,

n /= SIZE(a) .OR. ,
n /= SIZE(b) .OR. ,
n /= SIZE(c) .OR. ,
n /= SIZE(d)) THEN

The array sizes don't correspond.
error = -2
RETURN

END IF

! Test that the x-coordinates are either strictly
! increasing or strictly decreasing
IF (x(O) < x(l)) THEN

! Test that x-coordinates are ordered increasingly
DO i = 1,n-2

IF (x(i) < x(i+1)) CYCLE
!x-coordinates aren't monotonically increasing
error = -3
RETURN

END DO
ELSE IF (x(O) == x(l)) THEN

!x-coordinates aren't distinct.
error = -3
RETURN

ELSE
!Test that x-coordinates are ordered decreasingly
DO i = 1,n-2

IF (x(i) > x(i+1)) CYCLE
! x-coordinates aren't monotonically decreasing
error = -3
RETURN

END DO
END IF

! Data is OK
error = 0
!Set h array to interval lengths
DO i = O,n-1

h(i) = x(i+1) - xli)
END DO
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! Fill up coefficient arrays for the tridiagonal system
DO i = l,n-I

t(i) = h(i-I)
u(i) = 2.0*(h(i-l) + h(i))
v(i) = h(i)
w (i) = 6.0* ((y (i+I) -y (i))Ih (i) - (y(i)-y (i-I)) Ih (i-I))

END DO

error has occurred - call ,

! Set end-point conditions.
u(O) = 1.0
v(O) = 0.0
w(O) = 0.0
t(n) = 0.0
u(n) = 1. 0
w(n) = 0.0

! Calculate the sigma values
CALL tri_solve(t,u,v,w,error)
IF (error 1= 0) THEN

PRINT *, "An 'IMPOSSIBLE'
'consultant."

STOP
END IF

:r"

! Calculate the spline coefficients from the sigmas
DO i = O,n-I

ali) = (w(i+I)-w(i))/(6.0*h(i));
b(i) = w(i)/2.0 1
c(i) = (y(i+I)-y(i))/h(i) - (w(i+I)+2.0*w(i))*h(i)/6.0
d(i) = y(i)

END DO'
END SUBROUTINE cubic_spline

END MODULE spline ;r

The subroutine cubic_spline can be used by any program which wishes to
obtain a set of spline coefficients to fit a particular set of data, and which can then
use these coefficients to create a mathematical model ~f the curve to use in
whatever way is appropriate.

Figure 18.12 shows a program which uses. this subroutine to fit a spline
through 18 unevenly spaced points in the range -3 ~ :x ~ 3, which lie on a
curve defined by an external function f, and then to print out the values of the
interpolated and actual functions at a series of intermediate values. The result of
running this program using the function given below iSjshown in Figure 18.13.

REAL FUNCTION f(x)
IMPLICIT NONE
REAL, INTENT (IN) .. x
f = EXP(-0.5*x*x)

END FUNCTION f ", ',~. ,
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PROGRAM spline_test
OSE spline
IMPLICIT NONE
! This program tests the subroutine cubic_spline
! Maximum coefficient for data points
INTEGER, PARAMETER:: n = 17
! Defining external function
REAL, EXTERNAL :: f
! Local variables
INTEGER :: error,i,j
REAL, DIMENSION (O:n) :: x = &

(I -2.95, -2.6, -2.1, -1.8, -1.4, -1.0, -0.75, &
-0.3, -0.05, 0.2, 0.55, 0.9, 1.25, 1.6, 1.7, &
2.1, 2.4, 3.0 I)

REAL, DlMENSION(O:n) :: y
REAL, DlMENSION(O:n-l) :: a,b,c,d
REAL:: z,zj,yz
! Calculate y-coordinates corresponding to data
! values of x
DO i = 0, n

y(i) = f(x(i))
END DO
! Call cubic_spline to fit a set of n polynomials.
CALL cubic_spline(x,y,a,b,c,d,error)
IF (error 1= 0) THEN

PRINT *, 'Error' ,error
STOP

END IF
! Now compare interpolated values with true ones, using
! an evenly spaced set of values between -2.8 and +2.8
PRINT' (9X,"x exp(-0.5x**2) Spline value"!)'
DOi=O,14
! Calculate z (the value to be used)
z = '-2.8 + O.hi :
! Find in which interval z lies
DO j = O,n-l

IF (x(j) <= z ,AND. z <= x(j+l)) EXIT
END DO
! Calculate s(z) for x(j) <= z <= x(j+1)
zj =z-x(j)
yz = ((a(j)*zj + b(j))~zj + c(j))*zj + d(j)
! Print comparative results
PRINT ' (6X,F6. 2 ,2E15. 6)' ,z,f (z) ,yz

END DO
END PROGRAM spline_test

Figure 18.12 A test program for the cubic spline subroutine cubic_spline.'
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x exp(-0.5x**2) Spline value
-2.80 o .198411E-01 0.204182E-01
-2.40 0.561348E-01 0.558913E-01
-2.00 0.135335E+00 0.135367E+00
-1. 60 0.278037E+00 0.278160E+00
-1. 20 0.486752E+00 0.486894E+00
-0.80 0.726149E+00 0.726171E+00
-0.40 0.923116E+00 0.922998E+00
0.00 0.100000E+01 0.999988E+00
0.40 0.923116E+00 0.922994E+00
0.80 0.726149E+00 0.726146E+00
1.20 0.486752E+00 0.486761E+00
1.60 0.278037E+00 0.278037E+00
2.00 0.135335E+00 0.135443E+00
2.40 0.561347E-01 0.561347E-01
2.80 0.198411E-01 0.209970E-01

Figure 18.13 Results produced by the test program spline_test.

In the above discussion, we have presented the spline method of fitting
curves through a set of data points as a two-dimensional problem; however, the
method can easily be extended to three or more dimensions, for example to
calculate the equation of a surface, Z = [(x, y), through a set of points whose
heights above some base plane have been measured on a redangular grid.
Bicubic patches, in three dimensions, exhibit the same continuity with adjacent
patches at their common boundaries as do the two-dimensional cubic spline
polynomials at their common points. Such bicubic spline interpolation is
therefore often used to create mathematical models of surfaces using, for example,
data obtained by remote sensing devices such as satellites or oceanic depth
sounders; these mathematical models of the surface can then be used by a
drawing program which will plot a graphical representation of the surface as
viewed from any particular angle, or which will produce a contour map of the
surface.

One final point to emphasize is that we have assumed throughout the
foregoing ~iscussion that the spline polynomials must pass through all the data
points. However, just as in the case where a linear fit is expeded (see Chapter 10),
when the data is the result of experimentation it is likely that there may be small
errors in that data. In these situations, therefore, we may require the spline to be a
good fit to the data, but not necessarily to pass through all the data points. This
involves a somewhat more complex mathematical treatment, and it is not
intended to go into the maHer here. It is sufficient to emphasize that some form of
least squares approximation is normally used so that data points which will
produce significant perturbations if an exad fit is used will have less effed when a
least squares fit is used.
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18.8 Integration and numerical quadrature

A common problem in science and engineering is the need to evaluate the definite
integral of a function. That is, if the function is f, we want

1= Ib

f(x)dx

We shall, for simplicity, assume that a < b. There is no loss of generality, because

Ib

f(x)dx = -la

f(x)dx

In many practical problems the function f cannot be integrated analytically, and
we cannot, therefore, find a known function F such that

F'(x) = f(x) on [a, b]

If we could, then 1= F(b) - F(a).
If we cannot find such an F then we must tum to numerical techniques.

The process of numerically calculating the value of a definite integral is known as
numerical quadrature (the term integrate is used for the numerical solution of
differential equations). We shall present here a simple version of a method that
demonstrates the algorithmic basis for more sophisticated methods.

We recall that a definite integral over a finite interval (we shall not deal
with infinite intervals here) can be interpreted as the area lying between the curve
y = f(x) and the x-axis on the interval [a, b]. This is shown in Figure 18.14.

The integral I is equal to the area shaded in the figure. Consequently, it is
clear that the area, and hence I, can be calculated by subdividing the interval [a, b]

y

o a b x

Figure 18.14 J: f(x)dx interpreted as an area.
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y

o Xn-2 b = Xn X

Xn-1

Figure 18.15 Calculating an area by subdividing it into smaller sub-areas.

into n sub-intervals and summing the areas of these sub-intervals, as shown in
Figure 18.15. In this we have subdivided the interval [a, b] by an increasing
sequence of Xi, such that a = Xo < Xl < X2 < ... < Xn-I < Xn = b.

Now let the length of the ith interval be hi, so that hi = xi - Xi-I,
i = 1,2, ... ,n. Note that we are not assuming that the Xi are uniformly spaced,
so that hiS may be unequal.

We are going to estimate j,x; [(x)dx by the area of the trapezium formed
X,-l

by joining the point (Xi-I' [(xi-d) to the point (Xi, [(Xi)) by a straight line. This
is shown shaded in Figure 18.16. Since the area of the trapezium Ti is given by
the formula

hi ([(Xi-I) + [(Xi))
Ti=-------

2

y

Figure 18.16 Estimating an area by use of a trapezium.
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we can deduce that

and

i = 1,2, ... ,n

It therefore follows that

Before we examine the use of this formula to obtain an approximation to I,
however, there are two questions that should be answered. The first concerns the
accuracy of the approximation; ideally we would like to be able to specify an
error tolerance and not have it exceeded. The second question concerns how
many points are required to meet a specified error tolerance, and how they should
be positioned. These two questions, as we shall see, are intimately related.

Before we begin the analysis, we note that, intuitively, the best way to
position the Xi is to group them the most closely in regions where f is changing
the most rapidly and to have them relatively sparse in regions where f is not
changing very fast. Thus, as shown in Figure 18.17, we would group Xi and Xi+l

close together in regions where the first derivative of f is high. We do not,
however, wish to group the Xj closer than necessary, because this would result in
the need for extra function evaluations, and it is the number of a function
evaluations required that is the efficiency measure of a numerical quadrature
algorithm.

y

x

Figure 18.17 Uneven spacing of intervals to improve accuracy.
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We now start to analyse how many Xi are needed and how to position
them, by first estimating the error created by using the approximating trapeziums.
U~ing Taylor's theorem, expanded about Xi-I, with three terms, we see that

L.

, ,

Since we are going to be dealing with his that are relatively small, and if
the higher derivative of [ are well-behaved, we can ignore the terms involving
ht, hf, ... and commit no significant error. Thus, we have, effectively,

"f'!{

Now, examining T;, we have, using Taylor's theorem expanded about Xi-I:

1
Ti = 2: hi [[(Xi-~) +[(Xi)]

1 '
= - hi [[(Xi-I) +[(Xi-I) + (Xi - xi-df'(Xi-I)
2

1( )2"()' ] "+- Xi - Xi-I [ Xi-I + ...
2

() 1 2 , ( ) 1 3 "( ')= hi! Xi + - hi [ Xi-I + - hi [ xi-I + ...
2 4 ,
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Again, we commit no significant error by ignoring the terms h;, hf, ... and have,
effectively,

() 1 2'( ) 1 3"( )Ti = hJ Xi +- hi f Xj-I +- hi f Xi-I
2 4

Therefore,

(1 1) 3"() 1 3"( )
Ii - Tj = 6 -:4 h;f Xi-I = - 12 h;f Xi-I

This, then, is the estimate we shall use for calculating the error caused by
approximating the ith integral by the trapezoidal rule.' We shall call the error Ei•

Thus, Ei = --lz ht f" (Xi-I). The total error E committed will thus be given by
the equation

n 1 n, 3 "
E,= LEi = -- L hi f (Xi-I)

i=I 12 i=I

It appears from this that we need to be able to evaluate the second derivative of f
in order to calculate the erroL' Furthermore, we have, as yet, no method for
determining how to choose the XiS. We shall now proceed to eliminate the need
for explicit values of f" and at the same time create an algorithm for choosing
the XiS.

Consider the ith sub-interval [Xi-I, Xi]. Suppose we split it at the mid-
point mi into two sub-intervals II and 12 and apply the trapezoidal rule to each
sub-interval. Let us assume that the trapezoidal rules give areas of I; and I;' with
errors E; and E;'. We shall denote Ix:, f(x)dx by I; and J;; f(x)dx by I;'. This
leads to '

1 3"( )I - T = E = - - h, f X'-I
I I I 12 I I

, , , 1 (hi) 3 "( )
Ii - Ii = Ei = - 12 "2 f Xi-I

1, 3"( )= -,- hi f Xi-I96

(1)



I" - J" = E" = - ~
1 I 1 12 (

hj)3 "( )"2 [ Xi-I

[
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1 3 "( )= - 96 hi [ Xj-I

Note that we are assuming the interval is so small that, effectively,
f"(mj) = f"(Xi-I). Now, adding the last two equations we get

l' +1" - (J' +J") = -~ h3["(x._ ) = E' + E"
1 I 1 1 48 1 1 1 1 I

Ii - (1' +J") = E' + E" = - ~ h3 ["(Xi-I) = ~ Ei
1 1 I 1 48. 1 4

What this equation tells us is that, if we split the ith interval up into two equal
sub-intervals and use the trapezoidal rule on each piece, the error is reduced by a
factor of 4. '

For convenience, let Cj = J; +J;'. Then,

1
]'-C=-E
1 1 4 I

Subtracting equation (2) from equation (1), we obtain

3
C-T=-E
. 1 I. 4 I

and, therefore

4
E =- (C - T)

I 3 1 1

(2)

This equation tells us that we can obtain the value of the error committed by use
of the trapezoidal rule on the ith interval by applying it three times, once to the
whole interval and once to each half interval. By making the reasonable
assumption that we are dealing with intervals so small that [" can be regarded as
effectively constant on the interval, we have eliminated the need to know values
of f" in calculating the error Ei•
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Let us suppose that the integral is wanted with an error no greater than E

(specified by the user). We know that the total error E is given by

n

E=LE;
;=1

Therefore, if IE; I :::; Ehd(b - a) for each i, then

;=1

~ _Eh; __ E_ ~ h. _ E(b-a)_
:::; L...t - L...t I - --- - E
i=1 b - a b - a i=1 b - a

and the requirement is met.
A suitable algorithm will, therefore, start with the whole interval and test

to see if the error is less than Eh;f (b - a).
If not, then the interval is split into two equal sub-intervals and the

process is repeated on each sub-interval until the criterion is met. To guard
against the process failing to converge, the user should specify a limit on how
small a sub-interval may become before the process is terminated as not
converging.

We shall define the algorithm in the form of a structure plan, but before
doing so we must note an important fact. Quadrature algorithms are judged by
how many function evaluations are required to determine the integral. In the
method outlined above, when an interval is split into two the values at the two
end-points can be re-used as end-points of the two sub-intervals. The only
additional function value required is at the mid-point of the original interval. We
therefore have an economical algorithm in which no function evaluations are
wasted.

We also note that the process we have described is naturally recursive.
We shall therefore develop a subprogram adaptive_quadrature that will be
called by the user. This subprogram will perform some validity checks and then
calculate the initial function values to be used by a recursive subprogram
adap_quad. This recursive subprogram will perform the numerical quadrature by
calling itself as many times as are appropriate.

Let the left and right end-points be xl and xu, respectively, and let
fl = [(xl), where [is the function to be integrated, and let [u = [(xu). A suitable
structure plan is then as follows:
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A module containing both subroutines is as follows:

MODULE numerical_quadrature
IMPLICIT NONE
PRIVATE
PUBLIC :: adaptive_quadrature

CONTAINS
"

SUBROUTINE adaptive_quadrature (f,a,b,epsilon, ,
subdivide_limit, answer, error)

This subroutine integrates the function f from a to b
using an adaptive method based on the trapezoidal rule.
epsilon is the user-specified error tol.rance.
subdivide_limit is a user-specified smallest interval
size to use.
answer is the calculated answer success.

Dummy arguments
REAL, EXTERNAL :: f
REAL, INTENT (IN) :: a,b,epsilon,subdivide~limit
REAL, INTENT (OUT) :: answer .,
INTEGER, INTENT (OUT) :: error

!Validity check
IF (epsilon <= 0.0) THEN

error = -1
RETURN

END IF
IF (a < b) THEN

call adap_quad(f,a,b,f(a) ,£(b) ,subdivide_limit, &
epsilon/(b-a) ,answer,error)
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ELSE IF (a > b) THEN
call adap_quad(f,b,a,f(b) ,f(a) ,subdivide_limit, &

epsilon/la-b) ,answer,error)
IF (error == 0) answer = -answer

ELSE
error = 0
answer = 0.0

END IF
END SUBROUTINE adaptive_quadrature

RECURSIVE SUBROUTINE adap_quad(f,xl,xu,fl,fu, &
lower,delta,answer,error)

This subroutine performs an adaptive numerical
quadrature using the trapezoidal rule

! Dummy arguments
REAL, EXTERNAL :: f
REAL, INTENT (IN) :: xl,xu,fl,fu,lower,delta
REAL, INTENT (OUT) :: answer
INTEGER, INTENT (OUT) :: error

! Local variables
REAL .. h,t,c,xm,fm,e,ansl,ans2

h = xu - xl
IF (ABS(h) < lower) THEN
! Interval has become too small
error = -2
answer = HUGE(answer)
RETURN

END IF
t = h*(fl + fu)/2.0
xm = xl + h/2.0
fm = f(xm)
c = h*(fl + 2.0*fm + fu)/4.0
e = 4.0*(c - t)/3.0
IF (ABS(e) <= delta*h) THEN
!Trapezoidal rule has achieved required accuracy
! The PRINT statement is only for during development
! It will be removed when code is certified as
! functional
PRINT' (lX,"Interval Used (" ,E12.4,"," ,E12.4,")", &

3X,"h =" ,E12.4)', xl, xu, xu - xl
error = 0
answer = t

ELSE
! Subdivide the interval
call adap_quad(f,xl,xm,fl,fm,lower,delta, &

ansl,error)
IF (error /= 0) RETURN
call adap_quad(f,xm,xu,fm,fu,lower,delta, &

ans2,error)
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IF (error /= 0) RETURN
answer = ansl + ans2

END IF
END SUBROUTINE adap_quad

END MODULE numerical_quadrature

We have put the two subprograms adaptive_qua.drature and adap_quad
into the module numerical_quadrature for several reasons. The first is because we
believe in using modules as a packaging mechanism for related procedures. The
second is to prevent the subprogram adap_quad being inadvertently called by the
user; the use of the PUBLIC and PRIVATE statements in the module achieves this.

Finally, since the subroutine adap_quad is recursive, its interface must be
explicit for the calling subroutine adaptive_quadrature. As in many other
examples in this book, putting a procedure into a module is usually the best way
of making its interface explicit. .

We shall test this module by evaluating I:'l (l/x)dx with an accuracy of
0.01 and by evaluating I;;/2 cosxdx, also with an accuracy of 0.01, using the
following functions:

REAL FUNCTION fIx)
IMPLICIT NONE
REAL, INTENT (IN) x
f = 1. O/x
RETURN

END FUNCTION f

REAL FUNCTION q(x)
IMPLICIT NONE
REAL, INTENT (IN) .. x
q = cos (x)
RETURN

END FUNCTION q

Note, incidentally, that

r (l/x)dx = [1oge(X)]~.l = loge(l) -loge(O.l)io.1
= 0 + 2.302585 = 2.302585

and

1~/2 cosxdx = [sinx]:/2 = sin(71-j2) - sin(O) ;= 1.0 - 0.0 = 1.0

A suitable test program is shown below:
PROGRAM test_quadrature

USE numerical_quadrature
IMPLICIT NONE
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! Declarations
REAL, PARAMETER :: pi=3.141S926
REAL, EXTERNAL :: f, 9
REAL :: a,b,accuracy_tolerance,value
REAL:: smallest_subdivision = 1.E-S
INTEGER :: error

,

Calculate integrai of f on [0.1,1.0]
a = 1.0E-1
b = 1.0
accuracy~tolerance = 1.0E-2
call adaptive_quadrature (f,a,b,accuracy_tolerance,

smallest_~ubdivision,value,error)
!Print result or error message, as appropriate
SELECT CASE (error)
CASE (0)

PRINT , (//lX,"Value of integral of x**(-l) from ",E9.1, ,
"to,''',E9.1/ ,

1X,"with accuracy tolerance ",F14.6/ ,
1X," is ",F14. 6/ ,
1X,"Correct answer is ",F14.6//)', ,

a,b,accuracy_tolerance,value,-log(a)
CASE (-2)

PRINT *,"Failed to converge to a solution for first'
'problem' ,

CASE (-1)
PRINT *,"Epsilon was less than or equal to ,

'zero - should be impossible"
END SELECT
Calculate integral of 9 on [0,pi/2]

a = 0.0
b = pi/2.0
accuracy_tolerance = 1.0E-2
call adaptive_quadrature(g,a,b,accuracy_tolerance, ,

smallest_subdivision,value,error)
! Print result or error message, as appropriate
SELECT CASE (error)
CASE (0)

PRINT ' (//lX,"val~e of integral cos(x) from ",FS.1, ,
"to ",F10.6/ ,

1X,"with accuracy tolerance ",F14.6/ ,
lX, "is ", F14. 6/ ,
1X,"Correct answer is ",F14.6//)', ,

a,b,accuracy_tolerance,value,1.0
CASE (-2)

PRINT *,"Failed to converge to a solution for second'
'problem' ,

CASE (-1)
PRINT *,"Epsilon was less than or equal to ,

'zero - should be impossible"
END SELECT

END PROGRAM test_quadrature
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Interval Used
Interval Used
Interval Used
Interval Used
Interval Used
Interval Used
Interval Used
Interval Used
Interval Used
Interval Used
Interval Used
Interval Used
Interval Used
Interval Used
Interval Used
Interval Used
Interval Used
Interval Used
Interval Used
Interval Used
Interval Used
Interval Used
Interval Used
Interval Used
Interval Used

O.lOOOE+OO,
0.1070E+00,
0.1141E+00,
o . 1211E+00 ,
0.1281E+00,
0.1352E+00,
0.1422E+00,
0.1562E+00,
0.1703E+00,
0.1844E+00,
0.1984E+00,
0.2125E+00,
0.2266E+00,
0.2406E+00,
0.2688E+00,
0.2969E+00,
0.3250E+00,
0.3531E+00,
0.3813E+00,
0.4375E+00,
0.4938E+00,
0.5500E+00,
0.6625E+00,
0.7750E+00,
0.8875E+00,

0.1070E+00)
o .1141E+00)
o . 1211E+00)
0.1281E+00)
o .1352E+00)
o . 1422E+00)
0.1562E+00)
0.1703E+00)
0.1844E+00)
0.1984E+00)
0.2125E+00)
0.2266E+00)
0.2406E+00)
0.2688E+00)
0.2969E+00)
0.3250E+00)
0.3531E+00)
0.3813E+00)
0.4375E+00)
0.4938E+00)
0.5500E+00)
0.6625E+00)
0.7750E+00)
0.8875E+00)
0.1000E+01)

h = 0.7031E-02
h = 0.7031E-02
h = 0.7031E-02
h = 0.7031E-02
h = 0.7031E-02
h = 0.7031E-02
h = 0.1406E-01
h = 0.1406E-01
h = 0.1406E-01
h = 0.1406E-01
h = 0.1406E-01
h = 0.1406E-01
h = 0.1406E-01
h = 0.2813E-01
h = 0.2812E-01
h = 0.2813E-01
h = 0.2813E-01
h = 0.2812E-01
h = 0.5625E-01
h = 0.5625E-01
h = 0.5625E-01
h = 0.1125E+00
h = 0.1125E+00
h = 0.1125E+00
h = 0.1125E+00

Value of integral of x**(-l) from O.lE+OO to 0.lE+01
with accuracy tolerance 0.010000
is 2.307365
Correct answer is 2.302585
Interval Used
Interval Used
Interval Used
Interval Used
Interval Used
Interval Used
Interval Used

O.OOOOE+OO,
0.1963E+00,
0.3927E+00,
0.5890E+00,
0.7854E+00,
0.9817E+00,
0.1178E+01,

0.1963E+00)
0.3927E+00)
0.5890E+00)
0.7854E+00)
0.9817E+00)
o . 1178E+01)
o . 1571E+01)

h = 0.1963E+00
h = 0.1963E+00
h = 0.1963E+00
h = 0.1963E+00
h = 0.1963E+00
h = 0.1963E+00
h = 0.3927E+00

1.000000

Value of integral cos (x)
with accuracy tolerance
is 0.996049
Correct answer is

from 0.0 to
0.010000

1.570796

Figure 18.18 Results produced by the adaptive quadrature test program.

The results of running this program are shown in Figure 18.18. In the first case,
we would expect the subdivision points to be clustered more closely as we move
towards the origin, since the function X-I becomes increasingly steep as we
approach the origin. The printed output verifies this is happening. Also, cos(x)
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Value of integral of x**(-l) from O.lE+OO to O.lE+Ol
with accuracy tolerance 0.000100
is 2.302638
Correct answer is 2.302585

1.000000

Value of integral cos (x)
with accuracy tolerance
is 0.999938
Correct answer is

from 0.0 to
0.000100

1.570796

Value of integral of x**(-1) from 0.1E+00 to 0.1E+01
with accuracy tolerance 0.000010
is 2.302591
Correct answer is 2.302585

1.000000

Value of integral cos (x)
with accuracy tolerance
is 0.999995
Correct answer is

from 0.0 to
0.000010

1.570796

Failed to converge to a solution for first problem

1.000000

Value of integral cos (x)
with accuracy tolerance
is 0.999999
Correct answer is

from 0.0 to
0.000001

1.570796

Figure 18.19 More accurate results produced by test_quadrature.

becomes flatter near 1r/2, so we would exped longer steps to be taken in that
vicinity. The printed output verifies this expedation also.

In the above example a relatively low accuracy tolerance of 10-2 was
used. To illustrate that life is not always straightforward, however, Figure 18.19
shows the result of repeating the same calculations with tolerances set to 10-4,
10-5 and 10-6. The PRINT statement has been removed from the subroutine
adap_quad in order not to produce too much output.

Note that the required accuracies were obtained except when we
requested an accuracy of 10-6 for J:.l (l/x)dx. What do you think went wrong,
and how would you fix it?

We must caution the user that, while the principle of adaptively changing
the step size and using the subdivision results to estimate errors is frequently
employed, more sophisticated approximations than the trapezoidal rule are often
used. We have used the trapezoidal rule to keep the mathematics as simple as
possible so that we could concentrate on principles.

We finish our discussion of numerical quadrature on a faint note of gloom.
Any numerical quadrature process will require the evaluation of the given
fundion f at a finite number of points Xl, X2, ••• 'XP'
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Consider, for example, the function

For i= 1,2, ... ,p, c/J(xp) = [(xp)' because the term we have subtracted from [
will be 0 at each Xi' So, to the numerical quadrature procedure

Ib
c/J(X)dx = Ib

[(X)dX

while, mathematically

Ib Ib l'lba c/J(x)dx+k a (X-Xl)2 ... (X-Xp)2dx= Ii [(x)dx

Clearly, by making k large enough, the difference between t [(x)dx andt c/J(x)dx can be made as large as we please! This fact puts a note of uncertainty
into all numerical quadrature algorithms. However, for most practical problems, it
is not significant. . ,

SELF-TEST EXERCISES 18.1

1 What are the advantages and disadvantages of each of the three methods introduced
for solving non-linear equations (bisection method, Newton's method and secant
method)?

2 What is partial pivoting? Why is it important in Gaussian elimination?

3 What i~ the major differencebetween a cubic spline curve-fitting algorithm and orie
using a polynomial?What are the advantages of each method?

4 What is adaptive quadrature?Why is caution necessary in accepting the result of any
numerical quadrature?

t.

PROGRAMMING EXERCISES

This chapter has presented sample programs for a number of the most common types oj numerical
problems. However, the choice of the best method for the numerical solution of mathematical
problems is far from easy in many cases, and you are advised to use one of the major numerical
libraries, such as the NAG Library (NAG, 1988) or the IMSL Library (Visual Numerics, 1992),
wherever possible.

Most of the following examples use the procedures developed in this chapter as a means of
experimentation with their accuracy and usefulness. However, the opportunity is also taken to
introduce several further techniques in the form of programming exercises, For more details

L
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concerning these, and other, numerical methods you should consult an appropriate numerical
analysis text.

18.1 In Exercise 10.4 you wrote a program to solve a polynomial equation using the
bisection method, and then used it again in Exercise 10.S to find those roots of the
following polynomials which lie in the range -10 ~ x ~ 10. Modify your program, if
necessary, to print the number of iterations taken and use it to find the roots again, saving
the roots and the number of iterations in a file.

(a) 10z3 - xZ - 69x + 72
(b) 20z3 - 52xZ + 17x + 24
(c) sz3 - xZ - 80x + 16
(d) 10x4 + 13z3 - 163xZ - 208x + 48
(e) x4 + 2z3 - 23xZ - 24x + 144
(f) 9x4 - 42z3 - 1040xZ + S082x - S929

Now replace the subroutine that uses the bisection method by one that uses
Newton's method and run the program again, taking care that you do not overwrite the
results saved in a file by the previous program.

Finally, repeat the process using the secant method.
Now write another program to list the three sets of results in a form suitable for

comparing the effectiveness of the three methods.

18.2 Use the programs you wrote for Exercise 18.1 to produce a similar comparison for
the following functions:

(a) sin(3x+ 1l'/4)
(b) sin3x cosx
(c) sin Sx + S cos x
(d) 2 - e,inx

(e) tan(x + 1l'/6)
(f) sin(ex/3)

18.3 Use Newton's method to calculate the following values:

(a) the square root of S;
(b) the cube root of 7;
(c) the seventh root of 2000

"18.4 Use the Gaussian elimination method, described in Section 18.S, to solve the
following systems of simultaneous linear equations:

(a) 2x + 3y + z = 4

x- 2y - z = 3

- 2x + y + 3z' = 4
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(b) 2x + y - z = 1

4r - Y - 3z=-3

x+ 3y + z = 4

(c) -2x- y+4z=4

x+ 2y - 2z = 1

3x + 4y - 6z = - 1

(d) x - 2y - z + w = 3

3x + y + z - 2w = 3

-2x-3y+2z- w=4

x+ y- z+ w=O
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(e) x

2x

2y-z

-w

+ f = 1

=5

=1

2z+w =-3

Y - 2f = 3

How did your program deal with systems (c) and (e)?

18.5 Use the Gaussian elimination method, described in Section 18.5, to solve the
following system of simultaneous linear equations:

lOx + 7y + 8z + 7w = 32

7x + 5y + 6z + 5w = 23

8x + 6y + 10z + 9w = 33

7x + 5y + 9z + lOw = 31

If the coefficients had been obtained by experimental means, or as the result of some earlier
calculation, there could be some slight errors in them. In order to test the effect of this,
change the coefficients on the right-hand side of the equations by one in the fourth
significant figure (about 0.03%) to 32.01, 22.99, 32.99, and 31.01, and run the program
again to find a new solution. Did the result surprise you?

Now change the same coefficients by one in the third significant figure to 32.1,
22.9, 32.9 and 31.1, and run it again.

This example (which is due to T.S. Wilson) illustrates the problem of ill-
conditioned systems, which was first mentioned in Chapter 10;

18.6 Modify the module tridiagonal_systems that was developed in Section 18.6 so
that partial pivoting is performed when solving tridiagonal systems, and test it with a
suitable tridiagonal system.
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18.7 The subroutine gaussian_elimination, in Example 18.3, subtracts a multiple of
the whole of row i from row j. This is unnecessary, because elements 1 to i-I of row i are
zero, and element i of row j will become zero after the subtraction. Modify the subroutine
to be more efficient.

Test both your modified subroutine and the original one in a program that uses
the computer's clock (or some other means) to measure the time taken for solution by each
version of a 10 x 10 system of equations.

18.8 Modify the subroutine gaussian_elimination written in Example 18.3, or the
modified one produced for Exercise 18.7, to use pointers to eliminate the actual
interchange of rows of the coefficient matrix. Modify the subroutine back_substitution
accordingly. Test this new version on a 10 x 10 system of equations. What were the run
times compared with the original version?

18.9 In order to simplify usage and, generally, make programming simpler and safer for
those solving linear systems of equations, create a derived type square_matrix and a
derived type vector. Rewrite the module that was developed in Example 18.3 to use these
derived types. Test your module using the various sets of equations that were solved in
Exercise 18.4.

18.10 In Section 18.5 it was mentioned that iterative methods were sometimes more
suitable than Gaussian elimination for the solution of simultaneous equations, especially
when many of the coefficients are zero. One of the best-known iterative methods is the
Gauss-Seidel method, which can be summarized as follows.

In the discussion in Section 18.5we considered the set of simultaneous equations

anXI + a12xZ + + aInXn = bI

aZIXI + azzxz + + aZnXn = bz

We shall obtain a sequence of vectors which converge to the correct solution vector to the
system of equations. We will call these successive. approximations x(O), X(I), x(Z) , ... , and
will let

where the superscripts denote which approximate solution is being referred to. The Gauss-
Seidel method gives an iteration to obtain x(i+I) from x(i).

We proceed by first rearranging the system of equations, by row interchanges, so
that the diagonal elements are all non-zero. If we cannot achieve this, the system of
equations is degenerate. After this rearrangement, for i = 1,2, ... ,n, we divide the ith
equation by ajj. This means each diagonal coefficient of the system of equations is 1.We
shall use primes to denote the coefficients of the resulting system.
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In this system, we can rearrange the equations as

hI ( I I I )
Xl = 1 - a 12X2 + a 13X3 + ... + a InXn

hI ( I I I )
X2 = 2 - a 2IXI + a 23X3 + ...+ a 2nXn

hI ( I I ')Xn = n - a nIXI + a n2X2 + ... + a n,n-IXn-I

We can now use X2 (i), X3 (i), ... , Xn (i) on the right-hand side of the first equation, to obtain
Xl (i+1). We then use Xl (i+1),X3 (i), X4 (i), ... , Xn (i), the right-hand side of the second
equation, to obtain X2(i+1). Note that we immediately use XI(i+1) in obtaining x/i+1}.
We then use Xl (HI) , X2 (i+1), X4 (i), Xs (i), ... , Xn (i), on the right-hand side of the third
equation, to obtain X3 (i+1). Again, notice that we immediately use Xl (i+1) and X2 (i+1) in
obtaining x/i+1). Formally:

i
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for j = 1, ... ,n

The conditions under which this process is guaranteed to converge to the solution vector
go beyond the scope of this book.

A suitable convergence criterion will be the third type described in Section 10.5,
namely that the difference between successive approximations should be less than a small
value. This can be expressed in this context as

IxP+I) - xJi) 1< e, for all j

Write a subroutine to implement the Gauss-Seidel method, and modify your
existing program for the solution of simultaneous equations (or the one in Section 18.5) to
use this subroutine. Use this new program to solve the five systems of simultaneous
equations given in Exercise 18.4.

Which method proved to be most suitable for each system?

18.11 A solid shape is formed by rotating the curve y = f(x) about the x-axis. The
volume of such a shape is

where a and h are the start and end of the curve. Write a subroutine that has a function
name f and the limits a and b as arguments, and returns the volume of the corresponding
solid shape by evaluating the above integral. Use the adaptive quadrature method
described in Section 18.8.

Confirm that for f(x) = XI/2, a = 1and h = 3, the volume contained is 41l' units .

..18.12 Investigate how the number of function evaluations required by the subroutine
adaptive_quadrature to calculate J:.I ~ varies as the precision requirements are
increased.

I
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18.13 Using the subroutine adaptive_quadrature, calculate 7r to 4, 5 and 6 decimal
places by integrating the equation for a circle of radius 1 with its centre at the origin over
the range a to 1. How many function evaluations were required?

18.14 Using the subroutine adaptive_quadrature, calculate 7r to 4, 5 and 6 decimal
places by evaluating J; 1/(1 + ~)dx. How many function evaluations were required?

.,
18.15 Modify the subroutine adaptive-,quadrature so that it additionally returns its
estimate of the error. Repeat Exer~ises 18.13 and 18.14 using your modified algorithm.

18.16 Modify the subroutine adaptive_quadrature to use parameterized real numbers
so that you can repeat Exercises 18.13 and 18.14 to obtain 7r to 12 decimal places. How
many function evaluations were required? .

18.17 Write a program, or programs, to perform the following actions:

(1) Calculate a set of values of f(x), for x within a specified range (for instance,
x = -10 to x = +10 in steps of 0.5), and tabulate these.
(2) Use these tabulated values to interpolate a set of splines, or other
approximating curves, through these points.
(3) Use the subroutine adaptive_quadrature'to find the definite integral of the
original function between two specified values of x, and also of the interpolated
curves between the same values.
(4) Display the difference between the two integrals as one measure of the
goodness of fit.

Test your program(s) on the following functions:

(a) ~
(b) ~ + 3x - 5
(c) xl
(d) 2xl - 3~ - 6x + 4
(e) x4

(f) 3x4 + 5xl - 2~ + 7x - 9
(g) sin2x
(h) sin(x/2 + 7r/3) cosx
(i) ex' /2

18.18 Exercises 10.8 and 10.9 showed how the Newton quotient could be used to
calculate the first derivative of a function, but also showed how the choice of h in the
formula for the quotient

!'(x)=f(x+h)-f(x)
h

where h is small, was critical to the accuracy of the calculation. Euler's method for the
solution of first-order differential equations of the form
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dy
dx = g(x, y)

where y = Yo when x = xo, uses the Newton quotient to replace the derivative on the left-
hand side of the equation:

f(x + h~ - f(x) = g(x, y)

or

f(x + h) = f(x) + hg(x, y)

If we know the value of f(x) for some initial value of x (for instance x = 0), then we can
calculate the value at x + h, then at x + 2h, and so on. However, our experience in
Exercises 10.8 and 10.9 might lead us to suppose that the choice of h will be critical, and
this supposition is normally correct.

Euler's method usually requires h to be so small that it is frequently impractical and
other methods have to be employed. However, it can be modified, by techniques similar to
that used for creating the adaptive quadrature subroutine of Section 18.8, to make it more
practical. Such modifications are beyond the scope of this book. Consult Dahlquist and
Bjorck (1974) for an introduction to such techniques.

Use Euler's method in a program to solve the following problem. It is well-known
that in a vacuum a steel ball and a feather will fall at the same speed under the influence of
gravity. However, in practice there is always some air resistance, which will lead to the
steel ball hitting the ground first. This retarding force is normally assumed to be
proportional to the square of the velocity, leading to the following equation (from
Newton's second law):

ma=mg-ev2

where m is the mass of the ball, a is its downward acceleration, g is the acceleration due to
gravity, v is the velocity of the ball, and e is some constant. This, in tum, leads us to the
first-order differential equation

dv 2
-=a=g-kv
dt

where k = elm.
Assuming that for a steel ball of mass 1 kg the value of k is 0.001, write a program

to tabulate the downward velocity of a 1kg steel ball dropped from a stationary hot-air
balloon at a great height, and hence calculate the terminal velocity of the ball (the
maximum speed that can be attained, which will be achieved when the retarding force due
to air resistance equals the accelerating force due to gravity).

Run your program for a range of values for h in order to determine what is the
best value (the time interval between 'samplings' in this case).

18.19 Use the program you wrote for Exercise 18.18 to find the terminal velocity of a
person jumping from the balloon. Assume the person's mass to be 100 kg and k to be
0.004.
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When the person has reached terminal velocity, a parachute opens, with the result
that k becomes 0.3. Modify your program to find how this affects the parachutist's speed.
(Hint: you may need to alter h again.)

18.20 Radioactive elements decay into other elements at a rate given by the equation

dm
-= -nn
dt

where m is the mass of the original material still present at time t and r is a constant
property of the element known as the decay rate.

Analytical solution of this equation leads, among other things, to the conclusion
that the mass of the original material is reduced by one half in a time T, known as the half-
life of the substance, where T = (IogeO.5)fr (~ 0.693fr).

Use Euler's method to calculate the mass remaining, over a period of 500 years, of
an initial 10 kg radioactive substance whose half-life is 200 years. Experiment with
different values of h, starting with h = 20 years.

18.21 In your program for Exercise 18.20 you calculated the change in mass of an
element due to radioactive decay. In general. the amount of this mass lost in energy is
infinitesimal compared with that converted into another element, and can be ignored. It is
simple, therefore, to calculate the mass of the new element. given the initial mass present.
after a given time. .

However, in many cases, this new element itself decays into a third element. In this
situation, clearly, a pair of simultaneous differential equations are required to describe the
process.

An example of this process is the decay of strontium 92 (with a half-life of about
162 minutes) into yHrium 92 (with a half-life of about 327 minutes), which in rum decays
into zirconium.

Write a program which will use Euler's method to calculate how many atoms there
will be of each element at 15 minute intervals over a 10 hour period, assuming that there
were 1020 atoms of pure strontium 92 at the start of the experiment.

Run your program again using time intervals of 5, 10 and 20 minutes.



AFTERWORD -
Seven golden rules

This book is called Fortran 90 Programming, and we hope that we have made it
clear that there is much more to programming than simply writing the code.
Indeed, we have emphasized that coding will often represent little more than 20-
25% of the total effort involved, with some 30-35% being spent on the design,
and the remainder being spent in testing and debugging. We shall sum up our
philosophy, therefore, in what we call the Seven Golden Rules of Programming.

(1) Always plan ahead It is invariably a mistake to start to write a program
without having first drawn up a program design plan which shows the
structure of the program and the various levels of detail.

(2) Develop in stages In a program of any size it is essential to tackle each
part of the program separately, so that the scale and scope of each new
part of the program is of manageable proportions.

(3) Modularize The use of procedures and modules, which can be written
and tested independently, is a major factor in the successful development
of large programs, and is closely related to the staged development of the
programs.

(4) Keep it simple A complicated program is usually both inefficient and
error-prone. Fortran 90 contains many features which can greatly simplify
the design of code and data structures.

(5) Test thoroughly Always test your programs thoroughly at every stage,
and cater for as many situations (both valid and invalid) as possible. Keep
your test data for reuse if (when) your program is modified in the future.

(6) Document all programs There is nothing worse than returning to an
undocumented program after an absence of any significant time. Most
programs can be adequately documented by the use of meaningful names,
and by the inclusion of plenty of comments, but additional documentation
should be produced if necessary to explain things that cannot be covered
in the code itself. A program has to be written only once - but it will be
read many times, so effort expended on self-documenting comments will
be more than repaid later.
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(7) Enjoy your programming Writing computer programs, and getting them
to work correctly, is a challenging and intellectually stimulating activity. It
should also be enjoyable. There is an enormous satisfaction to be obtained
from getting a well-designed program to perform the activities that it is
supposed to perform. It is not always easy, but it should be fun!

Happy programming!



APPENDIX A
Intrinsic procedures

Fortran 90 includes a rich set of intrinsic procedures, both subroutines and functions,
which are intended to facilitate the solution of scientific, statistical, mathematical and other
problems. These intrinsic procedures are part of the Fortran language because it is only
with a complete set of tools that a solution to a problem is 'easy' and elegant.
This appendix describes all the intrinsic procedures contained within the Fortran 90
language.

Section Al consists mainly of a complete table of all specific and generic names
of intrinsic procedures, in alphabetical order, showing their class, whether a function may
be referenced by a generic name, the function type, whether the name may be used as an
argument, and the name of the function with its calling sequence.

Section A2 explains how the detailed descriptions of the intrinsic procedures are
arranged, following which, the remaining sections group the procedures according to their
function, and within each section briefly describe the purpose of the procedures, together
with their argument and result types. (Note that Fortran 90 processors may, and usually
will, provide additional intrinsic procedures; for details of these, for more details about the
standard intrinsic procedures, and any other processor-dependent details, you should refer
to the language manual of the Fortran 90 system you are using.)

A.I Alphabetical list of the intrinsic procedures

Table Al lists every intrinsic procedure defined in Fortran 90. It is a merger of three
alphabetically ordered lists, namely the specific names of those intrinsic functions that
have specific names, the generic names of all the intrinsic functions and the names of all
the intrinsic subroutines.

The table is arranged as follows:

• The first column, Specific name, identifies those specific names (carried forward
from FORTRAN 77) which may appear in an INTRINSIC statement (see Section
11.3) and may be used as actual arguments in calls to other procedures. The
corresponding dummy argument may only reference the specific name with scalar
arguments of default type. Those specific names prefixed with • must not be used
as actual arguments. The column 4 section reference is for the corresponding
generic function; there are no descriptions of the specific name functions per se.
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Argument names for the specific fundions are shown in lower case letters to
differentiate them from argument keywords and to indicate their default type:

d
i, j
s
x, y
z

Double precision real
Integer
Charader
Single precision real
Complex (single precision)

• The second column, Generic name and calling sequence, gives the generic name and
the argument keywords in,upper case. A generic fundion is one whose resultant
type depends on the type of the argument. Usually, the type and kind of the
generic fundion result is the same as the type and kind of the argument(s). The
argument keywords are indicative of their usage; keywords printed in a lighter
font (for instance, OPTIONAL), indicate that the argument is optional. A keyword is
required if a preceding optional argument is omitted, or if the arguments are
supplied in a different order from that specified (see Sedion 11.3). For example, a
reference to INDEX may be written in either of the following forms:

INDEX(' find. me' ,'d m')
INDEX(SOBSTRING~'d m' ,STRING='find me')

The type (any kind is possible) of the argument keywords is as follows:

A

BACK
DIM
I
KIND
MASK
STRING
X, Y
Z

Any
Logical
Integer
Integer
Integer
Logical
Charader
Numeric
Complex

Note that the numeric types are integer, real and complex. For details of the type
corresponding to other argument keywords, reference should be made to the
description of the procedure later in this appendix.

• The third column, Function type, specifies the type of the generic fundi on, in the
case of a fundion, or the word 'subroutine' otherwise. Entries in this column and
their meanings are:

Argument type

Charader

Complex

The type and kind of the generic fundion agree with
the type and kind ~f the principal argument.
If "I is not specified, the length is either the length of
the principal argument (for example, ADJUSTL), or is
based on how the fundion modifies the principal
argument (for example, REPEAT).
The type and kind of the principal argument are
preserved, or the result has the kind of the real
argument(s).



Logical

Real
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Except for the fundion LOGICAL, the result has default
kind.
Except for the fundion REAL, the kind of the result is
the kind of the argument(s).

L
• The final column, Section, identifies where in the appendix the named procedure

(generic fundion or subroutine) is described in detail.

For example, the second and third items in Table Al are as follows:

ACOS(xl
ACBAR(II
ACOS(XI

Charader"1 A7
Argument type A6

The first of these two entries indicates that ACBAR(II does not have a specific name and,
therefore, may not be used as an adual argument; that it takes a single integer argument
(of any kind) and returns a charader"1 result; and that it is described in more detail in
Sedion A7.

The next entry indicates that ACOS (XI may be used as an adual argument; that the
result of the generic fundion agrees with the type of its argument, and that, as a
consequence, the specific name, ACOS (xl, returns a real result; and that the generic
procedure is described in more detail in Section A6.

Table A.I Specificand generic names of all Fortran 90's intrinsic procedures.

Specific name Generic name and calling sequence Function type Section

ABS(xl ABS (AI - If A is Complex, ABS is Real Argument type A.6
ACBAR(II Charader"l A.7

ACOS(xl ACOS(XI Argument type A.6
ADJUSTL(STRINGI Charader A.7
ADJUSTR (STRING I Charader A.7

AIMAG(zl AIMAG(ZI Real A.6
AINT(xl AINT(A,KINDI Real A.6

ALL (MASK, DIMI Logical A.8
ALLOCATED (ARRAY I Logical A.9

ALOG(xl LOG (XI Argument type A.6
ALOGIO(xl LOGIO (XI Argument type A.6
*AMAXO(i,j, ... 1 REAL(MAX(AI,A2,A3, ... 11 Real A.6
*AMAXI (x,y, ... I MAX(AI,A2,A3, ... 1 Real A.6
*AMINO (i, j, ... I REAL(MIN(AI,A2,A3, ... 11 Real A.6
*AMINI (x,y, ... I MIN (AI, A2 ,A3, ... I Real A.6
AMOD(x,yl MOD(A,PI Real A.6
ANINT(xl ANINT (A, KINDI Real A.6

ANY (MASK, DIMI Logical A.8
ASIN(xl ASIN(XI Real A.6

ASSOCIATED (POINTER,TARGETI Logical A.9
ATAN(xl ATAN(XI Real A.6
ATAN2(y,xl ATAN2 (Y ,XI Real A.6

BIT_SIZE(II Integer A.4
BTEST(I,POS) Logical A.S

CABS(zl ABS(AI Argument type A.6
CCOS(zl COS (XI Argument type A.6

CEILING (AI Integer A.6
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Table A.I (coni.) Specific and generic names of all Fortran 90's intrinsic procedures.

Specific name Generic name and calling sequence Function type Section

CEXP(z) EXP(X) Argument type A.6
CHAR(I,KIND) Character'l A.7

CLOG(z) LOG (X) Argument type A.6
CMPLX(X,Y,KIND) Complex A.4

CONJG(z) CONJG(X) Complex A.6

COS (x) COS (X) Argument type . A.6

COSH (x) COSH (X) Argument type A.6
COONT (MASK, DIM) Integer A.8
CSHIFT(ARRAY,SHIFT,DIM) ARRAY type A.8

CSIN(z) SIN (X) Argument type A.6

CSQRT(z) SQRT(X) Argument type A.6

DABS (d) ABS(A) Argument type A.6

DACOS(d) ACOS(X) DP Real A.6

DASIN(d) ASIN(X) DP Real A.6

DATAN(d) ATAN(X) DP Real A.6

DATAN2 (d2, dl) ATAN2(Y,X) DP Real A.6
DATE_AND_TIME(DATE,TIME,ZONE, Subroutine A.3

VALUES)
DBLE(A) DP Real A.4

DCOS(d) COS (X) DP Real A.6

DCOSH(d) COSH (X) DP Real A.6

DDIM(dl,d2) DIM(X,Y) DP Real A.6

DEXP(d) EXP(X) DP Real A.6

DIGITS (X) Integer A.4

DIM(x,y) DIM(X,Y) Argument type A.6

DINT (d) AINT(A) Argument type A.6

DLOG(d) LOG (X) Argument type A.6

DLOG10 (d) LOG10 (X) DP Real A.6

*DMAX1(dl,d2, ... ) MAX(Al,A2,A3, ... ) DP Real A.6

*DMIN1(dl,d2, ... ) MIN(Al,A2,A3, ... ) DP Real A.6

DMOD(dl,d2) MOD (A,P) DP Real A.6

DNINT(d) ANINT(A) DP Real A.6
DOT_PRODUCT (VECTOR_A, VECTOR_B) Argument type A.6

DPROD(x,y) DPROD(X,Y) DP Real A.6

DSIGN (dl ,d2) SIGN (X,Y) DP Real A.6

DSIN(d) SIN(X) DP Real A.6

DSINH(d) SINH(X) DP Real A.6

DSQRT(d) SQRT(X) DP Real A.6

DTAN(d) TAN (X) DP Real A.6

DTANH(d) TANH (X) DP Real A.6
EOSHIFT (ARRAY, SHIFT, BOUNDARY, DIM) ARRAY type A.8
EPSILON (X) Real A.4

EXP(x) EXP(X) Argument type A.6
EXPONENT (X) Integer A.4

*FLOAT (i) REAL (A) Real A.4
FLOOR (A) Integer A.6
FRACTION (X) Real A.6
HUGE (X) Argument type A.4

lABS (i) ABS(A) Integer A.6
IACHAR(C) Integer A.7
lAND (I,J) Integer A.S
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Table A.I (cant.) Specific and generic names of all Fortran 90's intrinsic procedures.

Specific name Generic name and calling sequence Function type Section

IBCLR(I,POS) Argument type As
IBITS(I,POS,LEN) Argument type AS
IBSET(I,POS) Argument type AS
ICHAR (C) Integer A7

IDIM(i,j) DIM(X,Y) Integer A6
*IDINT(i) INT(A) Integer A4
IDNINT(i) NINT(A) Integer A6

IEOR(I,J) Argument type As
*IFIX(x) INT(A) Integer A4
INDEX(sl,s2) INDEX (STRING, SOBSTRING,BACK) Integer A7

INT (A,KIND) Integer A4
IOR(I,J) Argument type As
ISHFT(I,SHIFT) Argument type AS
ISHFTC(I,SHIFT,SIZE) Argument type AS

ISIGN(i,j) SIGN(A,B) Integer A6
KIND (X) Integer A4
LBOOND(ARRAY,DIM) Integer A8

LEN(s) LEN (STRING) Integer A7
LEN_TRIM (STRING) Integer A7
LGE(STRING_A,STRING_B) Logical A7
LGT(STRING_A,STRING_B) Logical A7
LLE(STRING_A,STRING_B) Logical A7
LLT(STRING_A,STRING_B) Logical A7
LOG (X) Argument type A6
LOGIO(X) Argument type A6
LOGICAL(L,KIND) Logical A4
MATMOL(MATRIX_A,MATRIX_B) Argument type A6

*MAXO (i, j ,... ) MAX(Al,A2,A3, ... ) Argument type A6
*MAX1(x,y, ... ) INT(MAX(Al,A2,A3, ... )) Integer A6

MAXEXPONENT(X) Integer A4
MAXLOC(ARRAY,MASK) Integer A8
MAXVAL(ARRAY,DIM,MASK) Argument type A8
MERGE (TSOORCE,FSOORCE,MASK) Argument type A8

*MINO (i,j ,... ) MIN(Al,A2,A3, ... ) Argument type A6
*MIN1(x,y, ... ) INT(MIN(Al,A2,A3, ... )) Integer A6

MINEXPONENT(X) Integer A4
MINLOC(ARRAY,MASK) Integer A8
MINVAL (ARRAY, DIM,MASK) Argument type A8

MOD(i,j) MOD (A,P) Integer A6
MODOLO (A,P) Argument type A6
MVBITS(FROM,FROMPOS,LEN,TO,TOPOS) Subroutine As
NEAREST (X,S) Real A6

NINT(x) NINT(A,KIND) Integer A6
NOT(I) Argument type As
PACK (ARRAY,MASK,VECTOR) Argument type A8
PRECISION (X) Integer A4
PRESENT (A) Logical A9
PRODOCT (ARRAY, DIM,MASK) Argument type A8
RADIX (X) Integer A4
RANDOM_NOMBER(HARVEST) Subroutine A6
RANDOM_SEED(SIZE,PUT,GET) Subroutine A6
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Table A.I (cant.) Specificand generic names of all Fortran 90's intrinsic procedures.

Specific name Generic name and calling sequence Function type Section

RANGE (X) Integer A.4
REAL(A,KIND) Real A.4
REPEAT (STRING,NCOPIES) Character A.7
RESHAPE (SOURCE, SHAPE, PAD,ORDER) Argument type A.8
RRS PAC ING (X) Argument type A.4
SCALE (X,I) Argument type A.4
SCAN (STRING,SET,BACK) Integer A.7
SELECTED_INT_KIND(R) Integer A.4
SELECTED_REAL_KIND(P,R) - at least one Integer A.4
of P and R is required
SET_EXPONENT (X, I) Argument type A.4
SHAPE (SOURCE) Integer A.8

SIGN(x,y) SIGN(A,B) Argument type A.6
SIN(x) SIN (X) Argument type A.6
SINH(x) SINH(X) Argument type A.6

SIZE (ARRAY, DIM) Integer A.8
*SNGL(d) REAL (A) Real A.4

SPACING (X) Argument type A.4
SPREAD (SOURCE,DIM,NCOPIES) Argument type A.8

SQRT(x) SQRT(X) Argument type A.6
SUM (ARRAY, DIM, MASK) Argument type A.8
SYSTEM_CLOCK (COUNT, COUNT_RATE, Subroutine A.3
COUNT_MAX)

TAN (x) TAN (X) Argument type A.6
TANH (x) TANH (X) Argument type A.6

TINY (X) Real A.4
TRANSFER(SOURCE,MOLD,SIZE) Argument type A.8
TRANSPOSE (MATRIX) Argument type A.8
TRIM (STRING) Character A.7
UBOUND (ARRAY, DIM) Integer A.8
UNPACK (VECTOR, MASK, FIELD) Argument type A.8
VERIFY (STRING,SET,BACK) Integer A.7

A.2 Intrinsic procedure classes and their descriptions in this
appendix

In addition to the intrinsic subroutines, one of which is elemental, there are three classes of
intrinsic functions: elemental, inquiry and transformational.

An elemental procedure is one that is specified for scalar arguments, but may also
be applied to array arguments.

In a reference to an elemental intrinsic function:

• If the arguments are all scalar, the result is scalar. If an argument is an array, the
shape of the result is the shape of the array; if there is more than one argument,
they must be conformable.
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• The elements of the result have the same values as would have been obtained if
the scalar-valued function had been applied separately, in any order, to
corresponding elements of each argument.

• When the KIND argument is present, it must be a scalar integer initialization
expression (only integer is noted in the descriptions) and must specify a
representation method for the function result that exists on the processor.

An inquiry function (Sections A4 and A 9) is one whose value depends on the
properties of its principal argument; in most cases the argument value need not be defined.

The third and last group of intrinsic functions are transformational functions
(Sections A6 and A8) which all have one or more array-valued arguments or an array-
valued result.

In the remaining sections of this appendix each procedure is described in a
consistent format in which the name of the procedure and its calling sequence appear on
the first line. This is followed by three or four bulleted items.

The first of these is the classification of the procedure and, in the case of a
function, the type of the result. The second is the purpose of the procedure, and the third
is a list of the arguments and their type (and their INTENT in the case of a subroutine),
together with any explanatory comments that may be necessary. Finally, in the case of
some of the more complicated procedures, a fourth section explains more details about the
procedure's operation.

A consistent set of rules is used to describe the intrinsic procedures in a concise
manner. These rules are:

• All intrinsic functions arguments are INTENT (IN); the INTENT of the intrinsic
subroutine arguments is indicated in the description.

• In calling sequences, optional arguments are printed in a lighter font, for instance
OPTIONAL.

• When a function has a KIND dummy argument, then the result is of the kind
specified by that argument if KIND is present, or of the appropriate default type
otherwise.

• When kind appears in textual context (as opposed to the name of an argument), it
is to be read as kind type parameter.

• When describing the type of arguments and function results, type, length and
dimension data are all given in a shorthand, as shown in the following
examples:

Integer(8) means the corresponding item must be declared as

INTEGER, DIMENSION (8) :: ...

Character"8(n) means that the corresponding item must be declared as:

CHARACTER (LEN=8) , DIMENSION(n) :: ...

Furthermore, Integer(k, ... ) means that the corresponding item is an integer array
with rank one or more.

Unless otherwise specified, a reference to one entity as being of the same type as
another implies that both entities have the same kind of parameter.
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Set to the form CCYYMMDD, where CC
represents the century, YY the year, MM the
month and. DD the day.
Set to the form hhmmss.sss, where hh
represents the hour, mm the minute and
ss.sss the second and. millisecond.
Set to + or - hhmm, where hh (hour) and
mm (minutes) are the time difference with
respect to Coordinated Universal Time
(UTe, also known as Greenwich Mean
Time).
See the table below for element definitions.

Character'S OUT

Character'IO OUT

Integer(B) OUT

ZONE

TIME

VALUES

A.3 Date and time intrinsic subroutines

DATE_AND_TIME(DATE,TIME;ZONE,VALUES)

• Subroutine.
• Returns current date and time.
• DATE Character'B OUT

If a value is not available for DATE, TIME or ZONE it is set to blanks.
The following integers are returned in VALUES when the information is available:

VALUES (1): Year
VALUES (2): Mo~th
VALUES (3): Day
VALUES (4): Minutes difference from Coordinated Universal Time (UTC)
VALUES (5): Hour, in the range 0 to 23
VALUES (6): Minutes, in the range 0 to 59

VALUES (7) : Seconds, in the range 0 to 60 (to allow astronomers to adjust
the length of the earth's year)

VALUES (8): Milliseconds, in the range 0 to 999

An array element is set to -HUGE (0) if the corresponding value is not available on
the system. .

SYSTEM_CLOCK(COUNT,COUNT_RATE,COUNT_MAX)

• Subroutine.
• Returns integer data from a real-time clock; the integer is incremented by one for

each clock count until COUNT_MAX is reached, then it is reset to 0 at the next count;
that is, the integer lies in the range 0 to COUNT_MAX.

• COUNT Integer OUT COUNT is set to a value based on the current
value of the system clock.

• COUNT]ATE Integer OUT COUNT_RATE is set to the number of processor
clock counts per second, or to 0 if there is no
clock.

• COUNT_MAX Integer OUT COUNT_MAX is set to the maximum value that
COUNT can have.

If there is no clock, COUNT and COUNT_RATE are set to -HUGE (0) and COUNT_MAX is
set to O.
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A.4 Kind, numeric processor and conversion intrinsic functions

BIT_SIZE (I)
• Integer inquiry function.
• Returns the number of bits in the integer I.
• I Integer

CMPLX(X,Y,KIND)
• Complex elemental function.
• Returns a complex value. If X is non-complex the result has a real part of X and an

imaginary part of Y if Y is present, or an imaginary part of 0.0 if Y is not present; if
X is complex then Y must not be present.

• X Numeric
Y Integer or real
KIND Integer

DBLE(A)
• Double precision real elemental function.
• Returns A converted, if necessary, to double precision real.

DBLE (A) becomes REAL (A,KIND (0 .D)).
• A Numeric

DIGITS (X)
• Integer inquiry .function.
• Returns the number of significant digits.in X.
• X Integer or real

If A is complex,

EPSILON (X)
• Inquiry function of same type as X.
• Returns a positive number that is almost negligible compared to 1.0 of the same

type and kind as X.
• X Real

EXPONENT (X)
• Integer elemental function.
• Returns the exponent part of X. EXPONENT (0.0) has the value 0; for X non-zero,

the result is one plus the integer part of the log to the base 2 of X.
• X Real

BUGE(X)
• Inquiry function of the same type as X.
• Returns the largest number of the same type and kind as X.
• X Integer or real

INT (A, KIND)
• Integer elemental function.
• Returns non-integer A truncated and converted to integer type of KIND; if A is

integer, INT converts it to a different kind. ','
• A Numeric

KIND Integer
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KIND (X)
• Integer inquiry function.
• Returns the kind value of an intrinsic type item X.
• X Any intrinsic type

LOGICAL (L, KIND)
• Logical elemental function.
• Returns a logical value converted from the kind of L to KIND. If KIND is not

present, the result has default logical kind.
• L Logical

KIND Integer

MAXEXPONENT(X)
• Integer inquiry function.
• Returns the maximum exponent of the same type and kind as X.
• X Real

MINEXPONENT(X)
• Integer inquiry function.
• Returns the minimum exponent of the same type and kind as X.
• X Real

PRECISION (X)
• Integer inquiry function.
• Returns the decimal precision of real values with the same kind as X.
• X Real or complex

RADIX (X)
• Integer inquiry function.
• Returns the base of the mathematical model for values of the same type and kind

as x.
• X Integer or real

Numeric
Integer

RANGE (X)
• Integer inquiry function.
• Returns the decimal exponent range for integer or real numbers with the same

kind as X.
• X Numeric

REAL (A,KIND)
• Real elemental function.
• Returns integer A converted to real; converts non-integer A to the different real

kind.
• A

KIND

RRS PAC ING (X)
• Elemental function of the same type as X.
• Returns the reciprocal of the relative spacing of numbers near X.
• X Real
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SCALE(X,I)
• Elemental function of the same type as X.
• Returns X* (bUI) where b is the base in the representation of X.
• X Real
I Integer

SELECTED_INT_KIND(R)
• Integer transformation function.
• Returns a processor-dependent kind value that represertts all integers n such that

ABS (n) < lOuR.
• R Integer
• Note that if there is more than one such kind, the value returned is the one with

the smallest decimal exponent range. If there are several such kinds, the smallest is
returned. If no such kind is available the result is -1. ..

SELECTED_REAL_KIND(P,R)
• Integer transformational function.
• Returns a processor-dependent kind value for a real with decimal precision of at

least P digits (see PRECISION) and a decimal exponent range of at least R (see
RANGE). i:

• P Integer
• R Integer

At least one of P and R must be present.
• If more than one kind meets the criteria, the value returned is the one with the

smallest decimal precision, unless there are several such values, in which case the
smallest kind is returned. If no such kind is available, the result is -1 if the
precision requested is not available, -2 if the exponent range is not available, and
-3 if neither is available. .

SET_EXPONENT (X,I)
• Elemental function of the same type as X.
• Returns the number whose fractional part is the fractional part of the representa-

tion of X and whose exponent part is I; if X =0 then the result has the value O.
X Real .
I Integer

SPACING (X)
• Elemental function of the same type as X.
• Returns the absolute spacing of numbers near X in the mathematical model used

for real numbers if this is within range, otherwise the result is the same as
TINY(X) .

• X Real

TINY(X)
• Inquiry function of the same type as X. l

• Returns the smallest positive number of the same type, and kind as X.
• X Real

L
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A.S Bit intrinsic procedures

For the purposes of the bit procedures, the model used effectively defines an object to
consist of s consecutive bits numbered from 0 to s - 1; on a PC, s is 32.

BTEST(I, POS)
• Logical elemental function.
• Returns true if bit P~S of I is 1; otherwise false.
• I Integer

P~S Integer, non-negative, <: BIT_SIZE (I)

IAND(I,J)
• Elemental function of the same type as I.
• Returns the logical AND of the integers I and J.
• I Integer
• J Same as I

IBCLR(I,POS)
• Elemental function of the same type as I.
• Returns I with bit P~S set to zero.
• I Integer

P~S Integer, non-negative, < BIT_SIZE (I)

IBITS(I,POS,LEN)
• Elemental function of the same type as I.
• Returns a right-adjusted sequence of bits extracted from I of length LEN

beginning at bit POS; all other bits are O.
• I Integer

P~S Integer, non-negative, POS+LEN<= BIT_SIZE (I)
LEN Integer, non-negative

IBSET(I,POS)
• Elemental function of the same type as I.
• Returns I with the P~S bit set to one.
• I Integer

P~S Integer, non-negative, < BIT_SIZE (.1)

IEOR(I,J)
• Elemental function of the same type as I.
• Returns the exclusive OR, bit-by-bit, of I and J.
• I Integer

J Same as I

IOR(I,J)
• Elemental function of the same type as I.
• Returns the inclusive OR, bit-by-bit, of I and J.
• I Integer

J Same as I
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ISHFT(I,SHIFT)

• Elemental function of the same type as I. "
• Returns I logically shifted right (SHIFT negative) or left (SHIFT positive); zeros are

used to fill the vacated positions.
• I Integer

SHIFT Integer, ABS (SHIFT) <= BIT_SIZE (I)

ISHFTC(I,SHIFT,SIZE)
• Elemental function of the same type as I.
• Returns the value of I with its SIZE rightmost bits circularly shifted SHIFT right

(SHIFT negative) or left (SHIFT positive); if SIZE is absent, the effect is as though it
were present with the value BIT_SIZE (I) .

• I Integer
SHIFT Integer, ABS (SHIFT) <= SIZE
SIZE Integer, positive, ::::;BIT_SIZE (I)

INOUT

IN

IN
IN

Integer

Integer

Integer
Integer

FROMPOS
LEN

TOPOS

Subroutine .
Copies a sequence of bits from FROM to TO.
FROM Integer IN The object from which the bits are to be

moved
Non-negative
Non-negative;
FROMPOS+LEN <= BIT_SIZE (FROM) .
Same kind as FROM, may be the same variable
as FROM. TO is set by copying the sequence of
bits of length LEN, starting at position
FROMPOS of FROM to position TOPOS of TO;
the other bits of TO are unaltered.
Non-negative;
TOPOS+LEN <= BIT_SIZE (TO)

TO

•
•

MVBITS(FROM,FROMPOS,LEN,TO,TOPOS)

•

NOT (I)

•••
Elemental function of the same type as I.
Returns the logical complement of the bits of I.
I Integer

A.6 Numeric and mathematical intrinsic procedures

ABS(A)

••
•

p'

Elemental function of the same type as A, or real if A is complex .
Returns the absolute value of A. For A complex, ABS (A) returns the real square
root of the sum of the squares of the real and imaginary parts.
A Numeric

ACOS(X)
• Real elemental function.
• Returns the arccosine of X in the range 0 ::::; ACOS (X)
• X Real

::::;Jr, where I X I ::::; 1.0.
t
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AIMAG(Z)
• Real elemental function .
• Returns the imaginary part of complex Z, that is, AIMAG(CMPLX(X,Y)) has the

value Y.
• Z Complex

AINT (A, KIND)
• Real elemental function.
• Returns A truncated to a whole number. AINT (A) has the value of the largest

integer that does not exceed the magnitude of A and whose sign is the same as the
sign of A. ..

• A Real
KIND Integer

ANINT (A, KIND)
• Real elemental function.
• Returns the nearest whole number to A. If A is positive, ANINT (A) has the value

AI NT (A+O. 5); otherwise ANINT (A) has the value AINT (A-O. 5).
• A Real

KIND Integer

ASIN(X)
• Real elemental function.
• Returns the arcsine of X in the range-11" / 2 ~ ASIN (X) ~ 11"/2,where IX I ~ 1.0 .
• X Real'

ATAN(X)
• Real elemental function.
• Returns the arctangent of X in the range -11"/2 ~ ATAN (X) ~ 11"/2.
• X Real

ATAN2(Y,X)
• Real elemental function.
• Returns the arctangent of YIx in the range -11" < ATAN (X) ~ 11".
• Y Real

X Same as Y
• Both X and Y cannot be 0, and the following rules also apply:

if Y=a the result is 0.0 if X>o
if Y=a the result is 11"if X<o
if Y>O the result is positive
if Y<O the result is negative
if X =a the absolute value of the result is 11"/2

CEILING (A)
• Integer elemental function.
• Returns the least integer greater than or equal to A.
• A Real
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CONJG(Z)
• Complex elemental function.
• Returns the conjugate of z.
• Z Complex

COS (X)
• Elemental function of the same type as X.
• Returns the cosine of X.
• X Real or complex

COSB(X)
• Real elemental function.
• Returns the hyperbolic cosine of X.
• X Real

DIM(X,Y)
• Elemental function of the same type as X.
• Returns the difference X-Y if the difference is positive; otherwise O.
• X Integer or real

Y Same as X

DOT_PRODUCT (VECTOR_A,VECTOR_B)
• Transformational function.
• Returns the dot product of numeric or logical vectors. If the arguments are

numeric then the result type is the same as the' type of the expression
VECTOR_A*VECTOR_B; if they are logical the result type is logicaL

• VECTOR_A Numeric(n) or logical(n)
VECTOR_B Numeric(n) if VECTOR_A is numeric, logical(n) if VECTOR_A is logical

• If the vectors have zero size then the result is 0 or false, as appropriate.

DPROD(X,Y)
• Double precision real elemental function.
• Returns the double precision real product of X and Y.
• X Default real

Y Same as X

EXP(X) .,,'.

• Elemental function of the same type as X.
• Returns e raised to the power X.
• X Real or complex

FLOOR (A)
• Integer elemental function.
• Returns the greatest default integer less than or equal to A.
• A Real

FRACTION (X)
• Real elemental function.
• Returns the fractional part of x.
• X Real
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LOG(X)
• Elemental function of the same type as X.
• Returns the natural logarithm of X.
• X Real, positive or complex, non-zero

LOG10(X)
• Real elemental function.
• Returns the logarithm of X to base 10.
• X Real, positive

MATMOL(MATRIX_A,MATRIX_B)
• Transformational function.
• Returns the matrix product of numeric or logical matrices. If the arguments are

numeric then the result type is the same as the type of the expression
MATRIX_AtMATRIX_B; if they are logical the result type is logical.

• MATRIX_A Numeric or logical of rank one or two.
MATRIX_B Numeric if MATRIX_A is numeric, logical if MATRIX_A is logical. It

must be of rank two if MATRIX_A is of rank one, and of rank one if
MATRIX_A is of rank two; its first (or only) dimension must equal the
size of the last (or only) dimension of MATRIX_A.

MAX(Al,A2,A3, .•. )
• Elemental function of the same type as its arguments.
• Returns the maximum value of Al, A2, A3, ....
• Al Integer or real

A2 Same as Al
A3 Same as Al

• For example, MAX((/-9.0,7.0/), (/2.0,0.3/)) has the value (/2.0,7.0/).

MIN(Al,A2,A3, ... )
• Elemental function of the same type as its arguments.
• Returns the minimum value of Al, A2, A3, ....
• Al Integer or real

A2 Same as Al
A3 Same as Al

MOD(A,P)
• Elemental function of the same type as A.
• Returns A - ptINT (A/P); if P = 0, the result is processor-dependent.
• A Integer or real

P Same as A
• For example, MOD(3.0,2.0) has the value 1.0, MOD(S,S) has the value 3,

MOD(-S,S) has the value -3, MOD(S,-S) has the value 3 and MOD(-S,-S) has the
value -3.

MODULO(A,P)
• Elemental function of the same type as A.
• Returns the modulo of A with respect to P; if P = 0, the result is processor-

dependent.
• A Integer or real

P Same as A
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• For A integer, the result R is such that A = Q*P + R, where Q is an integer and the
signs of P and R agree, and the inequalities a ~ ABS (R) <ABS (P) hold. For A real,
the result R is such that R = A - FLOOR (A/P) *P.

• For example, MODULO(8,5) has the value 3, MODULO(-8,5) has the value 2,
MODULO(8,-5) has the value -2 and MODULO(-3.0,-2.0) has the value -1.0.

!
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I
I
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NEAREST (X,S)
• Real elemental function.
• Returns the nearest machine representable number different from X in the

direction of S.
• X Real

S Real, non-zero

NINT(A,KIND)
• Integer elemental function.
• Returns integer nearest to A; if A>O, NINT (A) has the value INT (A+O . 5); otherwise

NINT (A) has the value INT (A-O . 5) .
• A Real

KIND Integer

RANDOM_NUMBER (HARVEST)
• Subroutine.
• Returns pseudo-random number(s) from the uniform distribution over the range

o ~ HARVEST<I.O.
• HARVEST Real OUT HARVEST may be either a scalar or in array.

Integer(m)
Integer(m)

PUT
GET

SIZE is set to the number of integers the
processor uses to hold the value of the seed
(n).

IN m ~ n; the seed is set to the value of PUT.
OUT m ~ n; GET is set to the current value of the

seed.
There must either be no arguments, in which case the subroutine sets the seed to a
processor-dependent value, or there must be exactly one argument - which is
used as described above.

•

RANDOM_SEED (SIZE,PUT,GET)
• Subroutine.
• Either restarts the pseudo-random number generator used by RANDOM_NUMBER or

returns generator parameters.
• SIZE Integer OUT

SIGN(A,B)
• Elemental function of the same type as A.
• Returns the absolute value of A set to the same sign as B.

• A Integer or real
B Same as A

SIN (X)
••
•

Elemental function of the same type as X .
Returns the sine of X .
X Real or complex
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SINH(X)
• Real elemental function.
• Returns the hyperbolic sine of x.
• x Real

SQRT(X)
• Elemental function of the same type as X.
• Returns the square root of X. For X real, X must be non-negative. For X complex,

SQRT (X) has the real part non-negative; if the real part of SQRT (X) is 0, the
imaginary part is non-negative.

• X Real or complex

TAN (X)
• Real elemental function.
• Returns the tangent of x.
• X Real

TANH (X)
• Real elemental function.
• Returns the hyperbolic tangent of x.
• X Real

A.7 Character intrinsic functions

ACHAR(I)
• Character"! elemental function.
• Returns the character in a specified position in the ASCII collating sequence.
• I Integer
• For I positive, < 128, the result is the nh character of the ASCII collating

sequence; otherwise, the result is processor-dependent. ACHAR(IACHAR(C)) has the
value C for any character C capable of representation in the processor; that is,
ACHAR and IACHAR are inverse functions.

ADJUSTL(STRING)
• Character elemental function.
• Returns a character value with the leading blanks of STRING removed and the

same number of trailing blanks added at the end.
• STRING Character

ADJUSTR(STRING)
• Character elemental function.
• Returns a character value with the trailing blanks of STRING removed and the

same number of leading blanks added at the beginning.
• STRING Character

CHAR(I,KIND)
• Character"! elemental function.
• Returns the character in a specified position in the processor collating sequence

associated with the specified kind.
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• I Integer
KIND Integer

• I must have a non-negative value less than the number of characters in the
collating sequence associated with the specified kind. CHARis the inverse of the
intrinsic function I CHAR.

IACHAR(C)
• Integer elemental function.
• Returns the position of a character in the ASCII collating sequence; a processor-

dependent value is returned if C is not in the ASCII collating sequence.
• C Character' 1
• Note that if LLE(C,P) is true then IACHAR(C)<=IACHAR(D) is true, where C and D

are any two characters, and similarly for LGE, LGT and LLT.

ICHAR(C)
• Integer elemental function.
• Returns the position of a character in the processor collating sequence associated

with the kind of the character.
• C Character'l
• The result is non-negative and less than the number of characters in the processor

collation sequence. ICHAR is the inverse of the intrinsic function CHAR.

INDEX(STRING,SUBSTRING,BACK)
• Integer elemental function.
• Returns the starting position of a substring within a string.
• STRING Character

SUBSTRING Character of the same kind as STRING
BACK Logical

• IELEN(STRING) <LEN(SUBSTRING) the result is 0; if LEN(SUBSTRING) =0 the result is l.
If BACKis absent, or present with the value false, the result is the lowest value of I
such that STRING (I: I+LEN (SUBSTRING) -1) =:= SUBSTRING, or 0 if there is no such
value.
If BACKis true, the result is the maximum I less than or equal to LEN(STRING)-
LEN(SUBSTRING) such that STRING(I: I+LEN (SUBSTRING) -1) = SUBSTRING, or 0 if
no such I exists. A result of 0 is also returned if LEN(STRING)<LEN(SUBSTRING).
LEN(STRING) +1 is returned if LEN(SUBSTRING) = O.

LEN(STRING)
• Integer inquiry function.
• Returns the length of STRING.
• STRING Character

LEN_TRIM(STRING)
• Integer elemental function.
• Returns the length of STRING without counting any trailing blank characters; if

STRING is all blanks, the result is O.
• STRING Character



Character
Integer, non-negative
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LGE(STRING_A,STRING_B)
• Logical elemental function.
• Returns true if STRING_A ;" STRING_B in the ASCII collating sequence; otherwise

. false. If both STRING_A and STRING_B have zero length then the result is true.
• STRING_A Default character

STRING_B Default character
• If necessary, the shorter string is first extended on the right with blanks in order

to make the strings equal length. If either string contains a character not in the
ASCII character set, the result is processor-dependent. The result is true if the
strings satisfy the ,comparison; otherwise false.

LGT (STRING_A, STRING_B)
• Logical elemental function,
• Returns true if STRING_A> STRING_B in the ASCII collating sequence; otherwise false.
• STRING_A Default character

STRING_B Default character
• If necessary, the shorter string is first extended on the right with blanks in order

to make the strings equal 'length. If either string contains a character not in the
ASCII character set, the result is processor-dependent. The result is true if the
strings satisfy the comparison; otherwise false.

LLE(STRING_A,STRING_B)
• Logical elemental function.
• Returns true if STRING_A ::; STRING_B in the ASCII collating sequence; otherwise

false. The result is true if the strings satisfy the comparison; otherwise false.
• STRING_A Default character

STRING_B Default character
• If necessary, the shorter string is first extended on the right with blanks in order

to make the strings equal length. If either string contains a character not in the
ASCII character set, the result is processor-dependent. The result is true if the
strings satisfy the comparison; otherwise false.

LLT(STRING_A,STRING_B)
• Logical elemental function.
• Returns true if STRING_A <" STRING_B in the ASCII collating sequence; otherwise

false.
• STRING_A Default character

STRING_B Default character
• If necessary, the shorter string is first extended on the right with blanks in order

to make the strings equal length. If either string contains a character not in the
ASCII character set, the result is processor-dependent. The result is true if the
strings satisfy the comparison; otherwise false.

REPEAT (STRING,NCOPIES)
• Character transformational function.
• Returns a character value which is produced by concatenating NCOPIES copies of

STRING. If either STRING is zero length or NCOPIES is 0, the result is a zero length
string.

• STRING
NCOPIES
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SCAN (STRING, SET,BACK)
• Integer elemental function.
• Scans a string for anyone of the characters in a specified set of characters.
• STRING Character

SET Character of the same kind as STRING

BACK Logical
• The function returns an integer which is the first instance of a member of the

characters in SET that appears in STRING, counting from the left. If BACK is true, the
search is from the right, but the count is still from the left. If no character of
STRING is in SET, or if the length of STRING or SET is 0, the result is O.

TRIM (STRING)
• Character transformational function.
• Returns STRING with any trailing blanks removed. If STRING contains no non-blank

characters, the result has zero length.
• STRING Character

VERIFY (STRING,SET,BACK)
• Integer elemental function.
• Returns 0 if every character in STRING is also in SET or if STRING has zero length. If

a character in STRING is not in set, the result is its position in STRING. If BACK is
true, then the search is from the right.

• STRING Character
SET Character
BACK Logical

A.8 Array and pointer intrinsic functions

The availability of a considerable number of the intrinsic procedures for use in array
processing was discussed in Chapters 7 and 13, especially the latter, and the most
important of them were described in detail there. This section contains a complete
summary of all 23 array intrinsics.

In the following descriptions many of the procedures follow similar conventions:

• The optional logical argument MASK is used by some of the functions to select the
elements of one or more of the arguments to be operated on by the function.

• When referring to the rank of the (primary) array argument, an italicized r is used.
• A scalar is defined as an array of rank o.
• The term positive always means strictly positive, that is, greater than o.

Furthermore, in the functions ALL, ANY, LBOUND, MAXVAL, MINVAL, PRODUCT, SUM and
UBOUND, but not CSHIFT, EOSHIFT, SIZE and SPREAD, the optional argument DIM, when
present, requires that the corresponding actual argument is not an optional dummy
argument of the calling program unit. This is because the functions in the first list all return
either a scalar or an array based on the presence or absence of DIM, and the function must,
therefore, be able to determine the presence or absence of DIM from the list of actual
arguments.
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ALL (MASK, DIM)

• Logical transformational function.
• Returns true if all MASK values are true along dimension DIM or if MASKhas zero size;

otherwise false.
• MASK Logical(n, ... )

DIM Integer, positive, less than r + 1. The corresponding actual
argument must not be an optional dummy argument.

• Note that the result is scalar if DIM is absent; otherwise it has rank r - I and shape
(d(l) ,d(2), ... ,d(DIM-1) ,d(DIM+l), ... ,d(r)), where (d(l) ,d(2), .•• ,d(r)) is
the shape of MASK. The value of element (s (1) ,s (2) , ... ,s (DIM-1), s (DIM+1) ,
..• ,sIr)) of ALL (MASK,DIM) is ALL (MASK(s (1) ,s(2), .•• ,s(DIM-1),:,
s(DIM+l), .•• ,sIr) I).

ANY(MASK, DIM)

• Logical transformational function.
• Returns true if any MASK .value is true along dimension DIM; otherwise false

(including the case in which MASK has zero size).
• MASK Logical(n, ... ).

DIM Integer, positive, less than r + I. The corresponding actual
argument must not be an optional dummy argument.

• Note that the result is scalar if DIM is absent; otherwise it has rank r - I and shape
(d(l) ,d (2) , ... ,d(DIM-1),d(DIM+l) , ... ,d(r) L where (d(l) ,d (2) , ... ,d (r)) is
the shape of MASK. The value of element (s (1) ,s (2) , ... , s (DIM-1) ,
s(DIM+l) , ... ,s(r)) of ANY(MASK, DIM) is ANY(MASK(s (1) , s(2), ... ,
s(DIM-1),:, s(DIM+1), ... ,s(r))).

COUNT(MASK,DIM)
• Integer transformational function.
• Returns the number of true elements of MASK along dimension DIM; returns 0 if

MASK has zero size.
• MASK Logical(n, ... ).

DIM Integer, positive, less than r + 1. The corresponding actual
argument must not be an optional dummy argument.

• Note that the result is scalar if DIM is absent; otherwise it has rank r - I and shape
(d(l) ,d(2), ... ,d(DIM-1) ,d(DIM+l), •.. ,d(r)), where (d(l) ,d(2), ... ,d(r)) is
the shape of MASK. The value of element (s (1) , s (2) , •.. , s (DIM-1) ,
s (DIM+1) , ... ,s (r)) of., COUNT(MASK, DIM) ,is COUNT(MASK(s (1) ,s (2) , ... ,
s(DIM-1),: ,s(DIM+l), ... ,sIr) I).

CSHIFT(ARRAY,SHIFT,DIM)
• Transformational function of the same type as ARRAY.
• Performs a circular shift on an array expression of rank one or circular shifts on all

the complete rank one sections along a given dimension of an array expression of
rank two or greater. Elements shifted out at one end of a section are shifted in at
the other end. Different sections may be shifted by different amounts and in
different directions.



• ARRAY
SHIFT

DIM
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Any(n).
Integer. It must be a scalar if ARRAY has rank one, otherwise it must
have rank r - 1 and shape (d(l) ,d(2), ... , d(DIM-l) , d(DIM+l) ,
•.. , d(r)), where (d(l), d(2) , ... ,d(r)) is the shape of ARRAY.
Integer, positive, less than r + 1. If DIM is omitted, a value of 1 is
assumed.

EOSHIFT(ARRAY,SHIFT,BOUNDARY,DIM)
• Transformational function of the same type as ARRAY.
• Performs an end-off shift on an array expression of rank one or end-off shifts on

all the complete rank-one sections along a given dimension of an array expression
of rank two or greater. Elements are shifted off at one end of a section and copies
of a boundary value are shifted in at the other end. Different sections may have
different boundary values and may be shifted by different amounts and in
different directions.

• ARRAY Any(n)
SHIFT Integer, rank r - 1 and shape (d(l) ,d(2), ••• ,d(DIM-l) ,

d(DIM+l), .•• ,d(r)), where (d(l) ,d(2), ... ,d(r)) is the shape of
ARRAY.

BOUNDARY Same as ARRAY, rank r - 1 and of shape (d(l) ,d(2) , .•. ,d(DIM-l),
d (D IM+l) , ... , d (r) ) . If BOUNDARY is omitted, it is treated as if it were
present with the scalar value shown:

Type of ARRAY Value of BOUNDARY
Numeric 0 of the appropriate type and kind
Logical false
Character(/en) len blanks

DIM Integer, positive, less than r + 1; if omitted, it is as if it were present
with the value 1.

LBOOND (ARRAY, DIM)
• Integer inquiry function.
• Returns all the lower bounds or a specified lower bound of ARRAY.
• ARRAY Any(n, ... ); it must not be a pointer that is not associated or an

allocatable array that is not allocated.
DIM Integer, positive, less than r + 1. The corresponding actual

argument must not be an optional dummy argument.
• Note that if DIM is present then the result is scalar and takes the value 1 for an

array section or for an array expression, other than a whole array or array
structure component; otherwise it is the lower bound for subscript DIM of ARRAY if
dimension DIM of ARRAY does not have zero size, and has the value 1 if dimension
DIM has zero size. If DIM is not present then the result is an array whose ith
element is LBOOND (ARRAY, i), for i = 1,2, ... , r.

MAXLOC(ARRAY,MASK)
• Integer transformational function, returning a rank-one array of size r.
• Returns the location of the first element of ARRAY having the maximum value of

the elements identified by MASK.
• ARRAY Integer(n, ) or real(n, ... )

MASK Logical(n, ), conformable with ARRAY
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• If MASK is not present, each element of the result is the subscript corresponding to
the element of ARRAY having the maximum value in that dimension; if there is
more than one such element then the value returned is the first such subscript in
array element order. The ith subscript of the rank-one array returned is positive
and less than or equal to the extent of the ith dimension of ARRAY. If MASK is
present then the result is based only upon those elements of ARRAY which
correspond to true elements of MASK. If ARRAY has zero size, or every element of
MASK is false, the result is processor-dependent.

MAXVAL(ARRAY,DIM,MASK)
• Transformational function of the same type as ARRAY.
• Returns the maximum value of the elements '~f ARRAY along dimension DIM (if

present) corresponding to the true elements of MASK (if present). If ARRAY has zero
size, or if every element .of MASK is false, the result is the negative number of
largest magnitude of the type and kind of ARRAY.

• ARRAY Integer(n, ... ) or real(n, ... )
DIM Integer, positive, less than r + 1. The corresponding actual

argument must not be an optional dummy argument.
MASK Logical(n, ... ), conformable with ARRAY.

• Note that if DIM is absent then the result is scalar; otherwise the result has rank
r - I and shape (d(l) ,d(2), .•• ,d(DIM-l) ,d(DIM+1), .•• ,d(r)), where (d(l),
d(2), ••• ,d(r)) is the shape of ARRAY.

MERGE (TSOORCE,FSOORCE,MASK)
• Elemental function of the same type as TSOORCE.
• Selects one of two alternative values according to MASK. If MASK (or an element of

MASK) is true then the result is TSOORCE (or an element of TSOORCE), otherwise it is
FSOORCE (or an element of FSOORCE).

• TSOORCE J\ny
FSOORCE Same as TSOORCE
MASK Logical, .•

• For example, MERGE ( (/1.0,1.0/), (/0.0,0.0/), (/ .TROE., .FALSE./)) has the
value ((/1. 0, o. 0/)).

MINLOC(ARRAY,MASK)
• Integer transformational function, returning a rank-one array of size r.
• Returns the location of the first element of ARRAY having the minimum value of

the elements identified by MASK.
• ARRAY Integer(n, ) or real(n, ... ).

MASK Logical(n, ), conformable with ARRAY.
• If MASK is not present, each element of the result is the subscript corresponding to

the element of ARRAY having the minimum value in that dimension; if there is
more than one such element then the value returned is the first such subscript in
array element order. The ith subscript of the rank-one array returned is positive
and less than or equal to the extent of the ith dimension of ARRAY. If MASK is
present then the result is based only upon those elements of ARRAY which
correspond to true elements of MASK. If ARRAY has zero size, or every element of
MASK is false, the result is processor-dependent.
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MINVAL (ARRAY, DIM,MASK)
• Transformational function of the same type as ARRAY.
• Returns the minimum value of the elements of ARRAY along dimension DIM (if

present) corresponding to the true elements of MASK (if present). If ARRAY has zero
size, or if every element of MASK is false, the result is the positive number of largest
magnitude of the type and kind of ARRAY.

• ARRAY Integer(n, ... ) or real(n, ... )
DIM Integer, positive, less than r + 1. The corresponding actual

argument must not be an optional dummy argument.
MASK Logical(n, ... ), conformable with ARRAY.

• Note that if DIM is absent then the result is scalar; otherwise the result has rank
r - 1 and shape (d(l) ,d(2), ... ,d(DIM-l) ,d(DIM+l), ..• ,d(r)), where (d(l),
d(2), ... ,d(r)) is the shape of ARRAY.

PACK (ARRAY, MASK, VECTOR)
• Transformational function of the same type as ARRAY.
• Packs an array into an array of rank one under the control of a mask.
• ARRAY Any(n, ... ).

MASK Logical(n, ... ), conformable with ARRAY.
VECTOR Same as ARRAY, rank-one, must have at least as many elements as

there are true elements in MASK; if MASK is a scalar with the value true,
VECTOR must have at least as many elements as ARRAY.

• If VECTOR is present, the size of the result is the same as the size of VECTOR;
otherwise the result size is the number of true elements in MASK unless MASK is
scalar with the value true, in which case the result size is the size of ARRAY. Element
i of the result is the element of ARRAY that corresponds to the ith true element of
MASK, taking elements in array-element order, for i = 1, ... , t. If VECTOR is present
and has size n > t, element i of the result has the value VECTOR (i), for
i = t + 1, ... , n. The result can be unpacked by the intrinsic function UNPACK.

PRODUCT (ARRAY, DIM,MASK)
• Transformational function of the same type as ARRAY.
• Returns the product of the elements of ARRAY along dimension DIM (if present)

corresponding to the true elements of MASK (if present); if ARRAY has zero size or if
MASK has no true elements the result has the value one.

• ARRAY Numeric(n, ... ).
DIM Integer, positive, less than r + 1. The corresponding actual

argument must not be an optional dummy argument.
MASK Logical(n, ... ), conformable with ARRAY.

• The result is scalar if DIM is absent or if ARRAY has rank one; otherwise it has rank
r - 1 and shape (d(l) ,d(2), ... ,d(DIM-l) ,d(DIM+l), ... ,d(r)), where (d(l),

d(2), ... ,d(r)) is the shape of ARRAY.

RESHAPE (SOURCE,SHAPE, PAD,ORDER)
• Transformational function of the same type as SOURCE.
• Constructs an array of a specified shape from the elements of another array.
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• SOURCE Any(k, ... ).
SHAPE Integer(m), where m is a positive constant less than 8.
PAD Same as SOURCE, must be an array.
ORDER Integer(m), same shape as SHAPE; its value must be a permutation of

(1,2, ... , n), where n is the size of SHAPE.
• The result is an array of shape SHAPE constructed from the elements of SOURCE.

The elements of the result, taken in permuted subscript order ORDER(l),
.•• , ORDER (n) if ORDER is present or in order I, ... , n if it is absent, are those of
SOURCE in array-element order followed, if necessary, by the elements of PAD in
array-element order, followed, if necessary, by additional copies of PAD in array-
element order.

SHAPE (SOURCE)
• Integer inquiry function.
• Returns the shape of SOURCE as a rank-one array whose size is r and whose

elements are the extents df the corresponding dimensions of SOURCE.
• SOURCE Any, array or scalar; must not bea pointer that is disassociated, an

allocatable array that is not allocated, or an assumed-size array.

SIZE (ARRAY, DIM)
• Integer inquiry function.
• Returns either the extent of ARRAY along a specified dimension (if DIM is present)

or the total number of elements in the array.
• ARRAY Any(n, ... ); must not be a pointer that is disassociated or an

allocatable array that is not allocated.
DIM Integer, positive, less than r + I; if ARRAY is an assumed-size array,

then DIM must be present with a value less than r.

SPREAD (SOURCE,DIM,NCOPIES)
• Transformational function of the same type as SOURCE.
• Returns an array of rank r + I by copying SOURCE along a specified dimension (as

in making a book from copies of a single page).
• SOURCE Any, 0 :::;:;r < 7

DIM Integer, positive, less than r + 2
NCOPIES Integer

• If SOURCE is scalar, the shape of the result is (MAX (NCOPIES, 0) ), and each element
of the result has a value equal to SOURCE.
If SOURCE is an array with shape (d(l) ,d(2), ..• ,d(r)) the shape of the result is
(d(l) ,d(2), •.. , d(DIM-l) ,MAX (NCOPIES, 0) ,d(DIM), .•• ,d(r)), and the element
of the result with .subscripts (81,52' ••• ,5,+11 has the value
SOURCE (81, S2, .•• , 5DIM-1, SDIM+1, .•• , Sr+1I.

SUM (ARRAY, DIM, MASK)
• Transformational function of the same type as ARRAY.
• Returns the sum of the elements of ARRAY along dimension DIM (if present)

corresponding to the true elements of MASK (if present); if ARRAY has zero size or if
MASK has no true elements the result has the value one.
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• ARRAY Numeric(n, ... )
DIM Integer, positive, less than r + I. The corresponding actual

argument must not be an optional dummy argument.
MASK Logical(n, ... ), conformable with ARRAY. "

• The result is scalar if DIM is absent or if ARRAY has rank one; otherwise it has rank
r - I and shape (d(l) ,d(2), ... ,d(DIM-l) ,d(DIM+l), ... ,d(r)), where (d(l),
d(2), ... ,d(r)) is the shape of ARRAY.

TRANSFER(SOURCE,MOLD,SIZE)
• Transformational function of the same type as MOLD.
• Returns either a scalar or a rank-one array with a physical representation identical

to that of SOURCE but interpreted with the type and kind of MOLD.
• SOURCE Any; scalar or array.

MOLD Any; scalar or array.
SIZE Integer. The corresponding actual argument must not be an optional

dummy argument.
• If MOLD is a scalar and SIZE is absent, the result is a scalar; if MOLD is an array and

SIZE is absent, the result has a size as small as possible such that its physical
representation is not shorter than that of SOURCE; if SI ZE is present, the result is a
rank-one array of size SIZE.
If the lengths of the physical representations of the result and SOURCE are not the
same then the effect is as though the physical representation of SOURCE had either
been truncated or extended in an undefined manner, as appropriate.

TRANSPOSE (MATRIX)
• Transformational function of the same type as MATRIX.
• Transposes an array of rank two; element (i, j) of the result has the value

MATRIX (j, i) .

• MATRIX Any(m, n)

UBOUND(ARRAY,DIM)
• Integer inquiry function.
• Returns all the upper bounds or a specified upper bound of ARRAY.
• ARRAY Any(n, ... ); it must not be a pointer that is not associated or an

allocatable array that is not allocated.
DIM Integer, positive, less than r + I. The corresponding actual

argument must not be an optional dummy argument.
• Note that if DIM is present then the result is scalar and takes a value equal to the

number of elements in the given dimension for an array Section or for an array
expression, other than a whole array or array structure component; otherwise it is
the upper bound for subscript DIM of ARRAY if dimension DIM of ARRAY does not
have zero size, and has the value 0 if dimension DIM has zero size. If DIM is not
present then the result is an array whose ith element is UBOUND (ARRAY, i), for
i = 1,2, ... ,r.

UNPACK (VECTOR,MASK,FIELD)
• Transformational function of the same type as VECTOR.
• Unpacks a rank-one array into an array under the control of a mask.

I
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• VECTOR Any(n).
MASK Logical(m, ... ).
FIELD Same as VECTOR, conformable with MASK.

• The element of the result that corresponds to the ith true element of MASK, in
array-element order, has the value VECTOR (i) for i = 1,2, ... , t, where t is the
number of true values in MASK. The other result elements have either the
corresponding array element of FIELD, if FIELD is array-valued, or the scalar value
of FIELD if it is a scalar. The inverse operation of packing an array into a rank-one
array is performed by the intrinsic function PACK.

A9 Miscellaneous inquiry functions

ALLOCATED (ARRAY)
• Logical inquiry function.
• Returns true if ARRAY is currently allocated; otherwise false. The result is undefined

if the allocation status of ARRAY is undefined.
• ARRAY Any type, but must have the allocatable attribute.

ASSOCIATED (POINTER, TARGET)
• Logical inquiry function.
• Returns true if POINTER is associated with a target and TARGET is not present, or if

TARGET is the target that POINTER is associated with; otherwise false. The result is
also false if either POINTER or TARGET is disassociated.

• POINTER Any type, but must have the pointer attribute. Its pointer
association status must not be undefined.

TARGET Pointer or target; if it is a pointer, its pointer association status must
be defined.

PRESENT (A)
• Logical inquiry function.
• Returns true if A is present, where A is an optional argument of the procedure in

which the reference to PRESENT occurs; otherwise false .
• A Any



APPENDIX B
The rules for host and USE
association

B.1 USEassociation

Any scoping unit may gain access to named data objects, derived types, interface blocks,
procedures, generic identifiers and namelist groups in a module by means of a USE
statement, as a result of which the entities in the scoping unit are said to be USE associated
with the entities in the module, and have the attributes specified in the module. A USE
statement may restrict the public entities in the module which are available in the scoping
unit by USE association by means of an ONLY qualifier, and may rename any of the USE
associated entities.

More than one USE statement for a given module may appear in a scoping unit. If
all such statements contain ONLY qualifiers then only those public entities of the module
which appear in one or more ONLY lists are accessible; the effect is as though a single USE
statement were present with an ONLY qualifier containing a concatenation of all the ONLY
lists. If at least one of the USE statements does not have an ONLY qualifier then all public
entities in the module are accessible, and the effect is as if all the ONLY lists and all the
rename lists were concatenated into a single rename list.

If two or more generic interfaces that are accessible in the scoping unit have the
same name, the same operator, or are both assignments, they are interpreted as a single
generic interface. Other than this case, two or more accessible entities may not have the
same name unless no entity is referenced by this name in the scoping unit. Thus, it is not
necessary to rename a public entity of the module to avoid a name clash if that name is not
used within the scoping unit to reference either the module entity or some other entity.

The local name of an entity made accessible by USE association cannot appear in
any other specification statement that would respecify any of the attributes of that entity
in the scoping unit, except that its accessibility may be altered by means of a PUBLIC or
PRIVATE statement.

B.2 Host association

An internal subprogram, a module subprogram or a derived type definition has access to
the named entities from its host via host association. These entities may be variables,
constants, procedures, interfaces, derived types, type parameters, derived type components
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• A type name in a derived type definition
• A function name in a FUNCTION statement, in a type declaration statement

or in a statement function statement":

• A subroutine name in a SUBROUTINE statement
• An entry name in an ENTRYstatement

• An object name in a type declaration statement, in a POINTER statement, in
a SAVE statement or in a TARGET statement

• A named constant in its defining PARAMETER statement
• An array name in an ALLOCATABLE statement or in a DIMENSION slalemenl
• A variable name in a common block in a COMMON statement
• The name of a variablelhal is wholly or parliallyinilializedin a DATA slalemenl
• The name of an object lhal appears in an EQUIVALENCE slalemenl
• A dummy argument name in a FUNCTION statement, in a SUBROUTINE

statement, in an ENTRY statement or in a statement function statement

• A result name in a FUNCTION' statement or in an ENTRY slalemenl
• An intrinsic procedure name in an INTRINSIC statement
• A namelist group name in a NAMELIST statement
• A generic name in a generic INTERFACE statement

Figure B.1 Local entities which hide entities of the same name in the host.

or namelist groups, and are known by the same name, and have the same attributes as in the
host.

There are, however, a number of situations in which entities in the host are not
available for access by host association because they are hidden by the availability of
another entity of the same non-generic name within the same scoping unit. These fall into
three groups, as follows:

• An entity accessed by USE association makes a host entity of the same non-
generic name inaccessible.'

• A name that appears in an EXTERNAL statement, or which is declared with the
EXTERNAL attribute is a global name and makes a host entity of the same non-
generic name inaccessible.

• A name that appears in the scoping unit in one of the categories shown in Figure
B.1 is a local name and makes a host entity of the same non-generic name
inaccessible.

Note that an interface body does not access any entities in its host by host
association, but it may access entities by USE association.



APPENDIX C
Statement order in Fortran 90

Fortran 90 programs consist of one or more program units, each of which contains two or
more statements from the complete set of legal Fortran statements. These statements can
be grouped into 17 different categories: ..

(1) Initial statements (PROGRAM, FUNCTION, SUBROUTINE, MODULE and BLOCK DATA)

(Z) Comments
(3) USE statements
(4) IMPLICIT NONE statement
(5) Other IMPLICIT statements
(6) PARAMETER statements
(7) DATA statements
(8) Derived type definitions
(9) Type declaration statements

(10) Interface blocks
(11) Statement functionstatements
(12) Other specification statements
(13) FORMAT statements
(14) ENTRY statements
(15) Executable constructs
(16) CONTAINS statement
(17) END statements

Strictly speaking, a comment is not a statement, but we can consider it to be such
from an informal and practical viewpoint.

Every program unit must start with an initial statement and end with an END
statement. Within the body of each program unit, however, there are several constraints
on the ordering. Figure C.l illustrates these in a diagrammatic form in which the
horizontal lines separate groups of statement categories which cannot be interspersed, and
which must appear in the order shown, while vertical lines are for convenience only, and
have no significance as regards the allowable ordering. Comm~nts have been omitted, but
can appear anywhere.

In addition to the constraints on the order of statements within a program unit,
there are also constraints on which categories of statements are allowed within different
kinds of scoping units. Figure C.Z, therefore, shows which categories of statements can
appear in each of the various different kinds of scoping unit. The categories are listed in
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PROGRAM, FUNCTION, SUBROUTINE,
MODULE or BLOCK DATA statement

USE statements

"- IMPLICIT NONE statement

PARAMETER IMPLICIT statements
statements

FORMAT and PARAMETER Derived type definitions,

ENTRY and DATA Interface blocks,

statements statements Type declaration statements,
Statement function statements,
and Specification statements

DATA statements Executable constructs

CONTAINS statement

Internal subprograms or module subprograms

END statement

Figure C.1 Requirements on statement ordering in Fortran 90 program units.

the same order as above, except that the heading Other specifications has been used to
group together IMPLICIT statements, PARAMETER statements, type declarations and other
specification statements not explicitly mentioned.

Note, incidentally, that the scoping unit of a module does not include any module
subprograms that the module may contain.

Kind of scoping unit MP M BD ES MS IS IB

USE statement Y Y Y Y Y Y y
DATA statement Y Y Y Y Y Y N
Derived type definition y y y y y y y
Interface block y y N Y Y Y Y
Statement function Y N N Y Y Y N
Other specifications Y y y y y y y
FORMAT statement Y N N Y y y N
ENTRY statement N N N Y Y N y
Executable statement Y N N Y Y y N
CONTAINS Y Y N Y Y N N
Key: MP Main program unit M Module

BD Block data program unit ES External subprogram
MS Module subprogram IS Internal subprogram
IB Interface body

Figure C.2 Categories of statements allowed in seoping units.



APPENDIX D
The ASCII character 'set

"

Character information which is to be stored in the memory of a computer must first be
converted into a coded form. In the past, this coded form almost always consisted of 7 or
8 bits, giving a total of 128 or 256 possible characters; however, recent developments
mean that in the future most computers are likely to adopt a 16'bit coded form, providing
a total of 65536 characters, or even a 24 or 32 bit coding, giving almost unimaginable
numbers of possible characters. .

o 1 2 3 4 5 6 7

o
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

sp 0 @ p ,
P

! 1 A Q a q
" 2 B R b r
# 3 C S c s
$ 4 D T d t
% 5 E U e u
& 6 F V f v, 7 G W 9 w
( 8 H X h x
) 9 I y i Y
* : J Z j z
+ ; K [ k {
, < L \ 1 I
- = M I m )

> N A n ~
/ ? 0 - 0

Notes: (1) sp indicates the space, or blank, character
(2) character position 2/3 (#) may sometimes be represented as £
(3) character position 2/4 ($) may sometimes be represented as II

(4) character positions 4/0, 5/11, 5/12, 5/13, 5114, 6/0,7/11,7/12,
7/13 and 7/14 are reserved for national use and may appear
quite differently in different countries

Figure D.1 The ASCII (or ISO 646) coded character set. I127
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The actual coding system does not matter for most purposes, although it may
affect the range of characters available. However, a program which contains extensive
character manipulation may run into difficulties when transferred to another computer
which uses a different character code. Most of the problems concerned with the ordering
of characters can be avoided by the use of the LGT, LGE, LLE and LLT intrinsic functions for
character comparisons (see Section 5.5), since these will always compare characters
according to their order in the ASCII code.

This code was originally an American standard code, but also forms the basis for
the widely used international standard coding system known as ISO 646. Unfortunately,
this code allows certain character codes to be used for specific national characters (for
instance A or 6) which can cause problems when programs are moved from one country
to another. Figure D.l shows the ASCII code which is used to define the ASCII collating
sequence used by the four intrinsic functions referred to above; those characters which
may differ in certain national versions are, however, indicated in the table.

The table is laid out in a hexadecimal fashion, as is conventional for such tables,
corresponding to the actual pattern of bits in the coded character representation. The
order of characters in this table thus runs from the top to the bottom of the first column,
and then from the top to the bottom of the next column to the right, and so on. To find
the decimal value corresponding to a particular character you should multiply the column
number by 16 and then add the tow number; thus A corresponds to 65 (4 X 16+ 1),
while I corresponds to 125 (7 x 16+ 13) - although it should be noted that this
character occupies one of the code positions reserved for national use and so may have a
different graphic representation in different co!1ntries.



APPENDIX E
Older and obsolescent
features of Fortran 90

Fortran 90 is a large language which has evolved to its present state over a period of
almost 40 years. During that time there have been a great many changes in the way in
which programmers write programs and, even more importantly, in the way in which
software designers plan and design their programs. These changes have been reflected in
the many new features which each version of Fortran has added to the language, and in
the consequent changes in relative importance of older features.

In this book we have concentrated on a core language, and have identified other,
less desirable, features of the language by printing them in a smaller typeface. This
appendix briefly summarizes all of these older, redundant, features of the language, as well
as mentioning a number of even older features which are totally obsolete in modem
programming.

The appendix is divided into six sections each covering one area of the language.
Within each section the redundant features are very briefly described and a reference
provided to a more detailed description, either in this book or in its predecessor textbook
on FORTRAN 77 programming (Ellis, 1990). A reference to a description in this book is in
the form (cc.ss), while a reference to a description in Ellis (1990) is in the form [77/cc.ss],
where, in both cases, cc.ss is the section number within chapter cc of the appropriate book.
At the end of each section is a list of those features which are believed to be totally
obsolete and, in most cases, a reference to where a further description can be found in Ellis
(1990) - although that description is usually in a chapter on obsolescent features of
FORTRAN 77!

None of the features mentioned in the appendix should be used in new programs; they are
mentioned here solely for reference, and for completeness.

E.1 Redundant source form

All versions of Fortran prior to Fortran 90 used a fixed-form source, based on the layout of
a punched card, in which statement labels used the first five columns of a line and the
statement itself occupied columns 7-72; column 6 was reserved for a continuation marker,
and columns 73 onwards were not used (although 73-80 could be used for sequence
numbers on cards in the days when programs were input to the computer on punched
cards). Fortran 90 introduced a new, free-form, way of writing programs, and this has been
used throughout this book. Although the new source form should be used for all new
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programs, the older form will be met for some time to corne in older programs. It is
described in (2.6) and [77/2.1].

E.2 Redundant data type
Fortran has always been used primarily for scientific and technological programming, and
numerical calculations have always been of great importance. In FORTRAN 77, and
earlier versions of the language, there were two forms of real variables and constants,
known as REAL and DOUBLE PRECISION, with the latter providing greater precision than the
former - although not necessarily exactly double. This concept was inherently non-
portable, since different computers have always had different hardware precisions for
floating-point arithmetic, and has been replaced by the far superior concept of
parameterized data types in Fortran 90. DOUBLE PRECISION should, therefore, never be
used in new programs; it will, however, be frequently met in older programs. It is
described in (10.6) and, in rather more detail, in [F77/11.2].

E.3 Redundant and obsolete specification statements

• When FORTRAN was first invented there were only two data types, namely
REAL and INTEGER, and the creators of the language decided that the need to
declare variables could be minimized by determining the type of a variable from
the first letter of its name - if it was in the range I-N it represented an integer,
otherwise it was real. This concept of implicit typing is still in Fortran (see (3.2) and
[77/2.1,2.2]), but is extremely dangerous and all variables should be properly
declared. The use of the IMPLICIT NONE statement at the beginning of every
program unit will ensure that any variables which are not declared will cause a
compilation error, rather than being implicitly declared as real or integer variables.

• Earlier versions of Fortran did not allow the declaration of attributes for variables,
and the type declaration took one of the following forms (3.8):

REAL list of real variables
INTEGER list of integer variables
DOUBLE PRECISION list of double preCISIOn real variables
COMPLEX list of complex variables
LOGICAL list of logical variables
CHARACTER list of character variables
CHARACTER* len list of character variables

It is recommended that the new form with a double colon between the type (and
any attributes) and the list of variables is always used in new programs, even
when no attributes are being specified.

• FORTRAN 77 introduced the concept of a named constant to Fortran for the first
time. Such a constant was declared by means of a PARAMETER statement, which
took the form

PARAMETER (namel=valuel ,name2=value2, ... )

This statement has been superseded in Fortran 90 by the PARAMETER attribute in a
type declaration statement and should not be used in new programs. It is
described in [77/3.2].
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• Fortran 90 also introduced the concept of an initialization expression in a type
declaration statement. Prior to Fortran 90 such initialization was carried out by
means of DATA statements, which took the form

DATA list of names/ list of values/, list of names/ list of values/, ...

The number of values in each list must match the number of names in the
immediately preceding list; if the same value was to be repeated several times
then it could be preceded by a repeat count (for example, 5*1. 0 has the same
effect as 1. 0,1. 0,1. 0,1. 0,1. 0). In the case of arrays, the unsubscripted array
name represents all the elements of the array in array element order. An implied
DO, similar to that used in array constructors in Fortran 90, can also be used to
select specific elements of an array. DATA statements are no longer required in
Fortran 90, but will usually be met in older Fortran programs; they are described
in [77/3.6, 6.5, 15.5].

• One of the major developments in Fortran 90 is its handling of arrays. In
FORTRAN 77 the only form of adjustable size array was the assumed-size array,
whereby the extent of the last dimension of a dummy array was represented by
an asterisk. This has been superseded by the assumed-shape array in Fortran 90,
which should always be used in new programs. Assumed-size arrays are briefly
described in (7.7, 13.5), and in more detail in [77/6.4, 14.2].

• The following specification statements are obsolete and should never be used:
The IMPLICIT statement allows implicit type declaration (see above) to use a
user-defined rule instead of the default rule (I-N are integers, others are real).
It therefore makes a dangerous and undesirable feature of the language even
more dangerous and undesirable! [77/19.5].

Note that IMPLICIT should not be confused with its close relative
IMPLICIT NONE, which it is strongly recommended should appear at the start
of every program unit.
The DIMENSION statement specifies the dimensions of an array, whose type is
declared elsewhere. The inclusion of this information, together with any other
attributes, in the type declaration statement is much to be preferred. It is
discussed in [77/6.2].
The SEQUENCE attribute was only introduced in Fortran 90, after considerable
controversy; we recommend that it should never be used. It is a means of
permitting components of objects of derived type to be used in COMMON and
EQUIVALENCE statements, thus resulting in programs with complicated, and
usually dangerous, storage association aspects. It will not be described here.

E.4 Redundant and obsolete control statements

• Earlier versions of Fortran did not contain an END DO statement, and used a
statement label in the DO statement to identify the last statement in the loop. This
type of DO loop took the form

DO label, loop-var=start, end [, inc]

label terminating statement
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where the terminating statement was a normal Fortran statement, although some
types of statement are not allowed. The block DO construct of Fortran 90 is far
superior, and should always be used in new programs. The older, non-block,
structure will always be met in older programs, however; it is described in detail
in [77/5.2-5.5].

• In order to avoid problems with the restrictions on the terminating statement of a
non-block DO loop, most FORTRAN 77 programmers always ended their loops
with a dummy statement that does nothing, but can be labelled. This statement is

CONTINUE

Its use is not restricted to DO loops, and some programmers adopted a convention
that the only statements which would have a statement label, to which a GOTO, or
other, statement might jump, would be CONTINUE statements, thus reducing the
possibility of inadvertently introducing errors when modifying programs at a
later date. It will be met in older programs, but is no longer required in Fortran 90.

• Fortran 90 also introduced another form of DO loop control, in which the initial
statement of the loop takes the form

DO WHILE (logical expression)

This provides no increased functionality, and similar constructs in other languages
have sometimes caused confusion as to exactly when the check on the value of
the logical expression takes place. It is briefly described in (6.6), but we do not
recommend its use.

• The powerful CASE construct was only introduced in Fortran 90. In earlier
versions of Fortran it was necessary to use either the block IF construct for all
forms of selection or the computed GOTO statement. The computed GOTO was the
only possibility prior to FORTRAN 77, and uses the value of an integer
expression to perform an unconditional GOTO to one of a list of statement labels.
Although it was a useful feature in its day, it can very easily lead to very
complicated and potentially error-prone code, and its use has not been
recommended since the advent of FORTRAN 77. It is briefly described in [77/
19.1].

• The following control statements and concepts are obsolete and should never be
used:

FORTRAN 77 allowed a real variable to be used as a DO variable. This was a
disastrous extension because round-off errors mean that it is impossible to be
certain how many times the loop will be executed without taking special
precautions! It has been flagged for removal from the Fortran Standard in the
not-too-distant future, but, meanwhile, should never be used in any new
programs [77/19.3].
Early versions of Fortran contained a form of IF statement, known as an
arithmetic IF, which caused a jump to one of three labelled statements,
depending upon whether the value of an integer expression was negative,
zero or positive. The introduction of the logical IF statement over 25 years
ago largely eliminated the need for this statement, and the block IF and CASE
constructs have now totally superseded it [77/19.1].
The ASSIGN statement, and the related assigned GOTO, provided a means of
storing the value of a statement label in an integer variable, and then using
this to jump to a different part of the program dependent upon the value of
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that variable. This concept is so inherently dangerous that its use has long
been deplored by most Fortran programmers and educators. It is likely to be
removed from the Fortran Standard in the not-too-distant future, and is not
described in this book or in Ellis (1990).
The PAUSE statement is a relic from the past, when a programmer might wish

I to temporarily suspend execution of a program in order that the computer's
operator might take some action before resuming the program. Operators of
large, multi-user, computer systems have not been able to provide this type
of interaction for many years, and a far preferable method where such
interaction is possible is to print a message on the console with a PRINT
statement, followed by a READ which will wait until the user (or operator)
types an appropriate reply. It is not described in this book or in Ellis (1990).

E.5 Redundant and obsolete features of input and output

• There are two ways of dealing with exceptional conditions in input and output.
The recommended way is to use an IOSTAT specifier. An alternative approach is to
use END, EOR or ERR, as appropriate, to cause a branch to a specified labelled
statement if an end-of-file, end-of-record or error condition occurs during the
input/output statement. This approach, however, suffers from two major
disadvantages. The first is that the use of this style of branching to statements
always leads to badly structured programs, and all of the statements that use this
approach have been replaced by more appropriate statements in Fortran 90. The
second is that the IOSTAT specifier can, potentially, provide more information than
simply that the operation has failed, which is not available if the ERR specifier is
used. These three specifiers are briefly described in (15.1, 15.3).

• Fortran 90 contains a large number of edit descriptors for use in formatted input
and output. Most of these have been described in Chapters 8 and 15, but there are
five whose use is no longer recommended in Fortran programs.

The BN and BZ edit descriptors allow control over the interpretation of blanks
in numeric fields on input. BN specifies that any blank characters in subsequent
numeric fields input under the control of this format will be treated as null
characters. BZ, on the other hand, specifies that any such blank characters will
be treated as zeros. This was an important issue in the days of punched cards,
but is less relevant nowadays; in any event, the BLANK specifier provides a
better way of dealing with the problem. A more detailed description will be
found in [77/17.3].
The D edit descriptor remains in Fortran for purely historical reasons and has
been totally superseded by the E edit descriptor (15.2).
The H edit descriptor was the only way of specifying character strings in an
output format prior to FORTRAN 77. It takes the form

nHexadly _ n_charaders

and has been totally superseded by the character constant edit descriptor,
which is both more natural and less prone to error; there can be few, if any,
older Fortran programmers whose programs have not failed because they
miscounted the number of characters in an H edit descriptor. It is briefly
described in [77/9.5].



734 Appendix E: Older and obsolescent features of Fortran 90

The P edit descriptor allows numeric data to be scaled on either input or
output. It was a convenient feature when data was normally punched on
cards, and re-punching was time-consuming, but is not very useful in the days
of files and editors with global edit commands. It is quite a complicated
process, moreover and, especially on output, can lead to confusion for many
users. Its use is not recommended, but a description can be found in [77119.4].

• The following input! output concept is obsolete and should never be used:
As well as its use in connection with an assigned GOTO, the ASSIGN statement
allows the label of a FORMAT statement to be assigned to a variable, which is
then used in a formatted input or output statement. There are better ways of
achieving this effect, for example by storing the format expressions in
character variables, and this concept, like all others relating to the ASSIGN
statement, should never be used. It is not described in this book or in Ellis
(1990).

E.6 Redundant and obsolete procedure statements and concepts

• Prior to Fortran 90 the only form of internal procedure was a one line function
known as a statement function. This has been totally superseded by the concept
of an internal procedure. It is, however, described in detail in [77/16.3].

• The concept of a generic function was first introduced in FORTRAN 77, and prior
to that all intrinsic functions were known by their specific names. With the
introduction of generic functions in FORTRAN 77 the need for multiple names
for the same function (such as lABS, CABS, DABS, ABS) largely disappeared, and the
use of generic names is strongly recommended in all cases. The only place where
specific names are required in Fortran 90 is when the name of an intrinsic function
is being used as an actual argument - which is a somewhat artificial situation, in
general. Specific names of all generic intrinsic functions will be found in (A.1).

• The following statements for use with procedures are obsolete and should never
be used:

The ENTRY statement allows a procedure to have more than one entry point.
There are a number of difficulties with this concept, and its use is not
recommended. It is described in [77/19.6].
The alternate RETURN allows a procedure to return to one of several labelled
statements in the calling program unit, dependent upon the value of an
integer variable. This has all the disadvantages of other, similar, branching
instructions, such as the computed GOTO and arithmetic IF, with the added
complication that the branching takes place in a different program unit from
the one in which the decision about which path to follow is taken. Its use is
not recommended, but it is briefly described in [77/19.2].



Glossary

Note that the number in parentheses following most items in this glossary refers to the
section of the book where more detailed information may be found. Further details of
italicized words can be found elsewhere in this glossary.

actual argument A variable or an expression used in a procedure invocation to pass
information to the procedure, the name of a procedure which appears in a procedure
reference, or the name of a variable used in a subroutine call to receive results from the
subroutine. (4.5, 11.3)

allocatable array An array which is declared with the ALLOCATABLE attribute, but whose
shape and size are not determined until space is created for the array by means of an
allocation statement. (13.6)

allocation statement (a) A statement which allocates space to an allocatable array (13.6);
(b) a statement which allocates space to a pointer array. (16.3)

allocation status A logical indication of whether an allocatable array is currently
allocated, which can be examined using the ALLOCATED intrinsic function. (13.6)

argument An actual argument or a dummy argument.
arithmetic unit That part of the CPU which carries out arithmetic and other types of
operation on items of data. (1.2)

array A set of items of the same type which are referred to by the same collective name.
(7.1)

array constructor An array-valued constant. (7.3)
array element A single item from the set of items which make up an array, and which is
identified by means of integer subscripts which follow the array name in parentheses.
(7.1)

array element order The order in which the elements of an array are conceptually
stored. Note that the physical arrangement within the computer's memory may not
follow this order, but any attempt to access array elements in sequence will do so. (13.2)

array processing The feature of Fortran 90 that allows arrays to appear in expressions
and assignments as single objects. (7.5, 13.7)

array section Part of an array which can be used as an array in its own right. (13.9)
array specification A means of defining the shape and size of an array by following its
name in a type declaration statement by the relevant information; see also dimension
attribute. (7.2)

array variable An array-valued variable.
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array-valued Having the property of being an array.
array-valued function A function whose result is an array. (7.8)
ASCII The American Standard Code for Information Interchange (ANSI X3.4 1977) - a

widely used internal character coding set; also known as ISO 646 (International
Reference Version).

ASCII collating sequence The collating sequence which results from the use of the
ASCII character code; used by the LLT, LLE, LGE and LGT intrinsic functions. (5.5)

assembly language A form of programming a computer which is specific to a particular
computer and which (usually) utilizes a symbolic form of the electronic instructions
which are contained within the computer's circuitry. (1.3)

assignment The action of storing the value of an expression in a variable. (3.3, 7.5)
assignment statement A Fortran statement which causes the value of an expression to

be assigned to a variable. (3.3, 7.5)
association status A logical indication of whether a pointer is currently associated with a

target, which can be examined using the ASSOCIATED intrinsic function. (16.1)
assumed length character declaration The declaration of a character dummy argument

with an asterisk for its length, the actual length being obtained from the corresponding
actual argument when the procedure is invoked. (4.5)

assumed-shape array An array-valued dummy argument whose upper bounds in each
dimension are represented by colons, the actual bounds being obtained from the
corresponding actual argument when the procedure is invoked. (7.7)

assumed-size array A FORTRAN 77 concept, whereby the upper bound of the last
dimension of an array-valued dummy argument is represented by an asterisk; it has been
superseded by the assumed-shape array. (7.7)

attribute A property of a variable or a constant that may be specified in a type declaration
statement.

automatic array An explicit-shape array in a procedure, which is not a dummy argument,
some or all of whose bounds are provided when the procedure is invoked, thus allowing
the array to have a different size and shape every time the procedure is invoked. (7.7)

back substitution The procedure in which, during a Gaussian elimination, the solution
for one variable is substituted into another equation in order to obtain a solution for
another variable. (18.5)

back-up The process of making an additional copy of a file for security against errors.
(15.4)

batch working A mode of using a computer in which programs are run under the
control of the operating system without any intervention by the user. (2.3)

bicubic patch A three-dimensional equivalent of a section of a cubic spline which is used
for surface interpolation. (18.7)

bicubic spline interpolation The process of calculating a bicubic patch. (18.7)
binary digit A a or a 1, as used in the binary arithmetic notation. (1.3)
binary operator An arithmetic, or other, operator which is written between two

operands. (3.3)
binary tree A tree structure which splits into two branches at each node. (16.7)
bisection method An iterative method for finding the roots of a polynomial equation; cE.

secant method and Newton's method. (l0.5)
bit A binary digit. (1.3)
blank COMMON A COMMON block which has no name; there may only be one blank COMMON

block in a program. (17.5)
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block data program unit A program unit which contains no executable statements and
is used to give initial values to variables in COMMONblocks. (17.4)

block IF construct A program structure in which the execution of one or more blocks
of statements are controlled by a block IF statement, or by a block IF statement and one
or more ELSE IF statements. (5.3)

block IF statement A form of IF statement in which a logical expression is used to
determine whether or not a block of statements is obeyed. (5.3)

bottom-up development The process of developing a program by writing and testing
individual procedures or modules, and then bringing them together to form the complete
program (d. top-down design). (2.1) •

bound A lower bound or an upper bound.
branch (a) A transfer of control within a single program unit; (b) a linked list which forms
part of a tree. (16.7)

central processing unit The part of a computer which carries out the main processing
of data. (1.2)

character A letter, a digit or some other representable symbol. (3.5)
character constant edit descriptor An edit descriptor which takes the form of a character

constant in an output format, and causes the value of the character constant to be output
starting at the next character position. (8.5)

character context Characters that form part of a character literal constant or a character
constant edit descriptor. (3.5, 8.5)

character repertoire A collection of characters that form a usable subset of the set of all
known characters, for instance those used in a particular language or culture; not
necessarily related to a particular coded character set. (14.5)

character storage unit The type of memory location used for the storage of a single
character value. (3.5)

character string A sequence of one or more characters.
character variable A variable which consists of a sequence of one or more character

storage units and which may be assigned one or more characters. (3.5)
dose The process of terminating the link between a file and an input/output unit.

(15.1)
coded character set A defined set of characters for which a specific set of codes have
been defined to represent them, for example, the ASCII coded character set. (14.5)

collating sequence The order in which a set of characters is sorted by default. (5.5)
comment Explanatory text in a program unit which is ignored by a compiler, other than
for listing purposes. (2.2)

COMMONblock An area of the memory which is accessible to more than one program unit
for the storage of variables, and in which the variables are identified by their position
and not by their name. (17.2)

compilation error An error in a program which is detected by the compiler. (2.4)
compiler A computer program which translates a program written in a high-level

programming language, such as Fortran, into the machine code of the computer. (1.3)
compiling The process by which a compiler converts a program written in a high-level

programming language into machine code. (1.3)
complex An intrinsic data type used to represent complex numbers. (14.7)
complex arithmetic A form of arithmetic using complex numbers.
complex number A number, consisting of a real part and an imaginary part, which obeys
the rules of complex arithmetic; it is represented by a pair of real numbers, corresponding
to the real and imaginary parts. (3.7, 14.7)
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component (a) One of the elements that constitute a derived type (3.7); (b) a part of a
programming problem which can be analysed and coded independently of the rest of
the program; a key element in modular program development. (4.6)

concatenation The process of joining two character strings by use of the concatenation
operator. (3.5)

concatenation operator An operator which combines two character strings to form a
single character string. (3.5)

conditioning A measure of the sensitivity of a numerical problem to changes in the
values of its parameters. (10.3)

confor~able Two arrays are conformable if they have the same shape; a scalar is
conformable with any array. All intrinsic operations are defined between conformable
objects. (7.5)

connecting The process of associating a specified input or output unit to a file, prior to
carrying out input or output on the file. (9.3)

constant A data object whose value is unchanged throughout the execution of a
program. (1.2, 3.6)

constant expression An expression containing no variables, and whose value, therefore,
can be determined prior to execution. (3.6)

continuation line A line which forms part of a Fortran statement. but which is not the
first line of that statement. (2.2)

control information list The list of specifiers used in a READ or WRITE statement. (8.6)
control unit That part of the CPU which fetches instructions, decodes them and

initiates appropriate action. (1.2)
convergence criteria The criteria for determining when to terminate an iterative process.
(10.5)

count-controlled DO loop A loop whose repetition is controlled by counting how many
times it has been obeyed, normally in a DO loop. (6.2)

CPU The central processing unit of a computer. (1.2)
creation See file creation.
cubic spline A set of cubic polynomials which together constitute a function which

passes through a set of data points, and has continuous first and second derivatives at
each of these points. (18.7)

data Information to be processed by a computer program. (1.2)
data abstraction The ability to create new data types, together with associated

operators, and to hide the internal structure and operations from the user, thus allowing
the new data type to be used in an analogous fashion to intrinsic data types. (12.5)

data hiding The concept that some items in a module may not be accessible to a user of
that module; a key element of data abstraction. (12.3)

data object A variable or a constant.
data structure (a) An arrangement of variables and/or arrays to suit the requirements of

a specific problem; (b) the totality of the data objects used by a program. (4.10)
data type A named category of data which is characterized by a set of values and a set

of operations that can be used to manipulate those values. (3.2)
database A collection of variables and constants containing information which is used

by a number of different subprograms. (4.7, 17.3)
deallocation statement A statement which releases space that has been previously

allocated to an allocatable array or a pointer array. (13.6, 16.3)
declaration statement A statement which specifies the type and, optionally, attributes of

one or more variables or constants. (3.2, 3.5, 3.6, 3.7)
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default character set The set of characters available for use by programs, on the
particular processor being used, without any specific action being taken; the default
character set always includes the Fortran Character Set. (3.5)

default input unit The input unit which is identified by an asterisk in a READ statement.
(8.6)

default kind The kind type parameter which is used for a particular intrinsic data type if it
is not explicitly specified. (14.1)

default output unit The output unit which is identified by an asterisk in a WRITE
statement, and which is used by a PRINT statement. (8.6)

default real The real data type having default kind. (10.2)
default type A data type having default kind. (14.2)
deferred-shape array An allocatable array or a pointer array.
defined assignment A user-defined assignment in which either the left-hand side or the
right-hand side, or both, is of a derived type. (12.4)

defined operation A user-defined operation which either extends an intrinsic operation
for data types for which it is not defined or defines a user-specified name for an
operation between two data objects. (12.4)

dereferencing The interpretation of a pointer as the target to which it is pointing, when
the context requires it. (16.2)

derived type A user-defined data type, which supplements the intrinsic data types.
(3.7)

diagnostic Information provided by a compiler, or during the execution of a program,
to inform the programmer of errors. (1.3)

dimension The means of specifying one of the subscripts of an array, and the various
attributes of that subscript such as its bounds and its extent. (7.2)

dimension attribute A means of defining the shape and size of the arrays in a type
declaration statement; see also array specification. (7.2)

direct access A form of file in which each record has the same length and is written to a
specified part of the file, so that the records may be written and read in any order. (15.4)

disconnection The process of cancelling the connection between an input or output unit
and a file; carried out by the CLOSE statement. (15.1)

diskette An exchangeable magnetic disk, usually either 5r or 31" in diameter; see also
floppy disk.

DO construct A loop which is initiated by a DO statement and terminated by an END DO

statement. (6.1)
DO loop A loop which is controlled by a DO statement. (6.1)
DO statement A statement which initiates a DO loop. (6.1)
DO variable The variable which is used to control the number of iterations in a count-

controlled DO loop. (6.2)
double-precision (a) One of the two hardware representations of floating-point numbers
on most computers, providing more accuracy than the default single-precision
representation; (h) an obsolete method of storing real values which uses two numeric
storage units for each value, instead of one, in order to provide approximately twice as
many significant digits of accuracy; it has been superseded in Fortran 90 by
parameterized real variables. (10.7)

dummy argument The argument used in a procedure definition which will be
associated with the actual argument when the procedure is invoked. (4.5, 11.3)

edit descriptor An item in a format which specifies the conversion between internal
(computer) and external (human-readable) forms. (8.2)
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editing (a) The use of an editor to create or modify text files (2.4); (b) the process of
converting values between internal and external forms during input or output. (8.2)

editor A program which is used to create or modify text files, including program files. (2.4)
element See array element.
elemental An operation, assignment or procedure invocation that is applied independently

to elements of an array, or of a set of conformable arrays and scalars.
elemental intrinsic procedure An intrinsic procedure which can accept an array-valued

argument or arguments and will deliver an array-valued result obtained by applying the
procedure to corresponding elements of the argument array(s) in tum. (7.6)

ELSE IF statement A statement that introduces an alternative block of statements in a
block IF construct. (5.3)

embedded format A format which is expressed as a character expression, and is
incorporated within an input/output statement. (8.2)

END DO statement The statement which marks the end of a DO loop. (6.1)
end-of-file condition A condition set when an end/ile record is read, and which can be

detected by an IOSTAT specifier (or an Eor specifier) in a READ statement. (9.2)
endfile record A special type of record which can only occur as the last record of a

sequential file and is written by an ENDFILE statement. (9.2)
executable statement A statement which causes the computer to carry out a specified

action during the execution of the program. (4.2)
execution error An error which occurs during the execution of a program. (2.4)
exist A file exists if it is connected to a program. (9.3)
explicit interface A procedure interface which is known to a program unit which may

invoke the procedure. (11.2)
explicit-shape array An array which is declared with explicit bounds in every dimension.

(7.2)

exponent (a) The power of ten by which the mantissa of a real number expressed in
exponent form must be multiplied to give the required value (3.3); (b) the power of two
by which the mantissa of a floating-point number must be multiplied to give the required
value. (3.1, 10.2)

exponent form A way of writing a literal constant as a mantissa and an exponent. (3.3)
expression A sequence of operands and operators and, optionally, parentheses, where the

operands may be variables, constants or function references.
extent The number of elements in a particular dimension of an array. (7.2)
external file A file which is stored on some external medium. (9.1)
external function A function which is not an intrinsic function. (4.3)
external subprogram A function subprogram or a subroutine subprogram.
fail-safe mechanism A program structure in which an error will not lead to a

catastrophic failure, but will result in appropriate remedial action being taken. (6.3)
field width The number of character positions occupied by an item of input data or

required for the representation of an output item. (8.3, 8.5)
file (a) A sequence of records (9.1); (b) a single unit of program or data which is held on

some external medium outside the memory of the computer. (1.2)
file creation The act of connecting a file to an input! output unit. (9.3)
file store The set of all files which are available for use by a computer. (1.2, 9.1)
file store device A piece of equipment by means of which a computer writes

information to a magnetic disk, or to such other forms of permanent storage as are used
for the file store, and by means of which it also reads information from the disk or other
storage medium; a file store device is both an input device and an output device.
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fixed disk A magnetic disk which is a permanent part of a computer and cannot be
removed; it is usually of much greater capacity and speed than an exchangeable diskette.

fixed form An obsolete method of writing Fortran programs in which certain columns
were reserved for specific purposes; see also free form. (2.6)

floating-point A method of storing numbers as a mantissa and an exponent. (3.1)
floppy disk A magnetic disk made of a flexible material enclosed in a rigid case; a diskette.
format A sequence of edit descriptors which determine the interpretation of a line, or
record, of input data, or the form of representation of an output record. (8.2)

format specifier A specifier which specifies the format to be used. (8.2)
FORMAT statement A labelled statement which defines a format. (8.4)
formatted input statement A formatted READ statement or a PRINT statement.
formatted input/output statement A formatted input statement or a formatted output
statement.

formatted output statement A formatted WRITE statement.
formatted READ statement A READ statement which includes a format specifier.
formatted record A record consisting of a sequence of characters selected from those

which can be represented by the processor being used, and which has been written by a
formatted output statement, by a list-directed output statement, or by some means other
than a Fortran program (for example, by being typed at a keyboard). (9.2)

formatted WRITE statement A WRITE statement which includes a format specifier.
Fortran Character Set The 58 characters which may be used to write a Fortran

program. (3.5)
free form The recommended method of writing Fortran programs in which all character

positions in a line may be used for any purpose; see also fixed form. (2.6)
function A subprogram which returns a single result which can be used in an expression in

which a reference to the function occurs. (4.3)
function reference The use of a function name in an expression to generate a transfer of
control to the function to carry out some action and return a value which is used in the
evaluation of the expression. (4.3)

function subprogram A self-contained part of a Fortran program which implements an
external function. (4.3)

function value The value which is returned by the execution of a function. (4.3)
Gaussian elimination A method for the solution of a set of simultaneous linear

equations. (18.5)
general-purpose language A programming language which is intended for use in a wide

variety of different problem areas. (1.3)
generalized edit descriptor An edit descriptor which can be used with any of the
intrinsic data types, the exact form of editing used being dependent upon the value being
input or output. (15.2)

generic function A function which can be called with different types of arguments,
generally, but not always, returning corresponding types of results. (4.1)

generic interface block A form of interface block which is used to define a generic name
for a set of procedures. (11.6)

generic name A name which is used to identify two or more procedures, the required
procedure being determined by the types of the non-optional arguments in the
procedure invocation. (4.1, 11.6)

global accessibility The possibility of directly accessing data and derived type
definitions from any program unit; provided in Fortran 90 by means of modules. (4.7)

global entity An entity whose scope is that of the whole program. (11.7)
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global storage A block of memory which is accessible from any program unit; largely
made redundant in Fortran 90 by global accessibility through modules. (17.1)

goodness of fit A measure of how closely an interpolating function passes through the
original data points. (10.4)

gradient The first derivative of the equation of a curve.
grandfather-father-son A safety system used when updating files in which the oldest

of a three-file cycle is used for the latest update. (15.4)
hard disk A magnetic disk made from a rigid material; normally a fixed disk. (9.1)
hardware The mechanical, electrical and optical devices which constitute a computer;
d. the software which causes the computer to perform particular actions. (1.1)

hash table An array into which data is entered in a semi-random order by use of a
hashing technique in order to speed up insertion and retrieval of such data. (15.4)

hashing technique A technique used to create a hash table, in which the array element
in which an item is to be stored is determined by converting some feature of the item,
such as a related name, into an integer in a given range (that is, the size of the hash
table). (15.4)

head The first item in a linked list. (16.7)
high-level programming language A form of programming a computer which uses

English-like words to express the operations required of the computer. (1.3)
host See host scoping unit.
host association The means by which entities in a host are made available to an inner

scoping unit. (11.8)
host scoping unit A scoping unit which surrounds another scoping unit. (11.7)
IF statement A block IF statement or a logical IF statement.
ill-conditioned problem A problem whose answer is highly sensitive to changes in the

values of its parameters. (10.3)
imaginary part The second of the two numbers which make up a complex number. (14.7)
implicit declaration The determination of the type of a variable by the initial letter of its

name. (3.2, E.3)
implicit interface A procedure interface which is not fully known to a program unit which

invokes the procedure. (11.2)
implied DO A shorthand notation for a list of array elements in an input/output list, in an

array constructor, or in a DATA statement, in which an implied DO variable is used to specify
elements of an array (or arrays) whose subscript(s) depend on the implied DO variable.
(7.3)

implied DO variable The variable which is used to control the iterations in an implied DO.
index array An array containing the indexes, or subscripts, to other arrays; often used in

sorting in order to avoid extensive data swapping. (7.7)
infinite loop A loop whose terminating condition never occurs, and which therefore

never terminates. (6.3)
information engineering The discipline of using computers to solve problems and to

process information. (Preface)
initial statement The first statement of a program unit; a PROGRAM, SUBROUTINE,

FUNCTION, MODULE or BLOCK DATA statement. (4.2)
initialization expression A restricted form of constant expression which can appear as an

initial value in a declaration statement. (14.2)
input device A piece of equipment by means of which a computer receives information

from the outside world, such as a keyboard, a disk drive or an optical character reader.
(1.2)
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input format A format used in a formatted input statement. (8.3)
input list The list of variable, array and/or array element names in a READ statement into
which data is to be read. (3.4, 7.4)

input statement A READ or PRINT statement.
input unit An input device.
input/output list An input list or an output list.
input/ output statement An input statement or an output statement.
input/output unit An input unit or an output unit.
instance A single invocation of a procedure. (11.4)
integer (a) A whole number (3.1); (b) an intrinsic data type used to represent whole
numbers. (3.2)

integer division Division of one integer value by another, in which any fractional part
of the result is lost. (3.3)

integrate The numerical solution of a differential equation. (18.8)
interactive working A mode of using a computer in which the user controls the
execution of a program from a terminal, with input coming from the keyboard and
output going to the screen. (2.3)

interactive system A computer system whose users control the execution of their
programs directly from a terminal, with input coming from the keyboard and output
going to the screen.

interface The name of a procedure, whether it is a subroutine or a junction, the names and
characteristics of its dummy arguments and, in the case of a function, the characteristics
of the result variable. (11.2)

interface block (a) A means of making the interface of a procedure explicit (11.2); (b) a
means of defining a generic procedure or operator name. (11.6, 12.4)

internal file A character variable which can be processed as though it were an external file
by the normal Fortran formatted READ and WRITE statements. (15.5)

internal procedure A procedure which is contained within another program unit, and
which can only be invoked from within that program unit. (11.8)

internal variable A local variable.
intrinsic data type One of the six data types defined in the Fortran language - integer,

real, double precision, complex, logical and character.
intrinsic function An intrinsic procedure which is a function.
intrinsic procedure A procedure whose definition is part of the Fortran language, and
which must be provided by a standard-conforming Fortran processor (4.1, Appendix A).

intrinsic subroutine An intrinsic procedure which is a subroutine.
invoke To CALL a subroutine or reference a function.
iteration count The number of times that a count-controlled DO loop is to be obeyed. (6.2)
iterative method A method of calculating a solution to a problem by calculating
successive approximations until the approximations have converged to the solution.
(10.5)

iterative process A numerical solution to a problem which uses an iterative method.
job control language A form of programming language which is used to instruct the
computer's operating system how to execute a particular program, or sequence of
programs. (2.3)

keyword A word, or name, which has a defined meaning in the Fortran language. (2.2)
keyword argument A method of specifying an actual argument in which the value is
preceded by the name of the corresponding dummy argument; particularly important in
connection with optional arguments. (11.3)
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kind All intrinsic data types, other than DOUBLE PRECISION, may have more than one,
processor-dependent, representation; each representation is known as a different kind of
that type. (14.1)

kind selector The means of specifying the kind type parameter of a variable. (14.2)
kind type parameter An integer value used to identify the kind of an intrinsic data type.

(14.1)
language extension The ability to use features of a language itself to extend that

language; see also data abstraction. (12.5)
least squares A method of data fitting in which the sum of the squares of the residuals is

minimized. (10.4)
length (a) The number of characters that can be stored in a character variable (3.5); (b) the

number of characters in a formatted input or output record (15.2, 15.4); (c) the number of
processor-defined units, normally bytes or words, in an unformatted input or output record.
(15.4, 15.6)

library A collection of procedures, often for use in a particular application area, which are
made available for use by a program in that application area; in Fortran 90 a procedure
library is usually provided as a module.

link The process of combining compiled program units to form an executable program.
linked list A data structure in which each element identifies its predecessor or successor

by some form of pointer. (16.7)
list-directed formatting The format used during list-directed input or list-directed output,

and which is determined by the processor by reference to the input or output list; it is
represented in an input/output statement by an asterisk. (3.4, 3.5)

list-directed input A special type of formatted input in which the format used for the
interpretation of the data is selected by the processor according to the type of each of
the items in the input list. (3.4, 3.5)

list-directed input/output statement An input or output statement which uses list-
directed formatting.

list-directed output A special type of formatted output in which the format used for the
display of the results is selected by the processor according to the type of each of the
items in the output list, and its value. (3.4, 3.5)

literal constant The representation of a constant by writing its value directly (or
literally) in the program. (3.3)

local entity An entity whose scope is that of a scoping unit. (11.7)
local variable A variable declared in a program unit, and which is not in a COMMON block;

see also local entity. (4.5)

locality of variables The concept that the variables declared in a program unit are only
known to that program unit. (4.5)

logical An entity which can only represent a logical value.
logical constant A constant whose value is a logical value.
logical expression An expression containing only logical variables, logical constants, logical

operators and relational operators, and whose value is one of the two logical values true or
false. (5.2)

logical IF statement A statement in which the value of a logical expression determines
whether the rest of the statement is obeyed. (5.4)

logical operator An operator whose operands are logical expressions. (5.2)
logical value One of the two values true or false. (5.2)

LOGICAL variable A variable of the intrinsic logical type. (5.2)
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look-up table A rank-one array which can be used to determine an index to other
arrays. (15.4)

loop A sequence of statements which is repeated a number of times; in Fortran a loop is
usually controlled by a DO statement. (6.1)

lower bound The minimum value permitted for a subscript of an array. (7.2, 13.2)
machine code The sequence of bits which causes the electronic circuitry of a computer

to perform a specified operation. (1.3)
magnetic disk A rapidly rotating disk covered with a magnetic coating on which

information may be stored by altering the magnetization of very small parts of its
surface; the almost universal form of permanent storage of information in computer
systems; see also floppy disk, hard disk.

main program The main program unit.
main program unit A program unit which starts with a PROGRAM statement, and which is

where the program will start executing; a program must have exactly one main
program unit. (4.2)

maintainability The ease, or otherwise, with which a program can be maintained
subsequent to its having been written and thoroughly tested; the need for such
maintenance may arise from both undetected errors and changes to the original
specification. (2.5)

mantissa (a) The significant digits of a number in exponent form which when multiplied
by ten a given number of times will result in the required value (3.3); (b) the significant
bits of a number in floating-point form which when multiplied by two a given number of
times will result in the required value. (3.1, 10.2)

many-one array section An array section defined by a vector subscript which has at least
two elements with the same value; a many-one array section may not appear on the
left-hand side of an assignment or in an input list. (13.9)

mask (a) A logical expression which is used to control assignment in a masked array
assignment (13.8); (b) a logical argument in several of the array intrinsic functions which
determines to which array elements the function is to be applied. (A.8)

masked array assignment A form of array assignment in which a logical mask
determines which elements are to be assigned; implemented by a WHERE statement or a
WHERE construct. (13.8)

massively parallel computers A form of computer in which thousands of processors
are arranged in such a way that they can operate on certain types of data in parallel,
thus providing a massive speed increase for parts of a program.

memory The electronic circuits which enable a computer to store information for
subsequent use during the execution of a program; such storage is transient, and for
permanent storage the information must be saved in a file.

memory location A part of the memory of a computer in which a single value may be
stored.

microcomputer A small, yet powerful, computer whose processor and memory is
contained within a small box capable of being placed on an office desk.

mixed-mode expression An arithmetic expression in which all the operands are not of
the same type. (3.3)

modular program development A method of programming in which different parts of
the program are developed and tested independently, before being brought together to
form the complete program; see also top-down design, bottom-up development. (4.6)

module A program unit which allows other program units to access variables, derived type
definitions and procedures declared within it by USE association. (4.7, Chapter 12)



746 Glossary

module procedure A procedure which is contained within a module. (12.1)
multiprogramming A method of utilizing the speed of a computer's central processor
so that it can appear to be executing several programs at once, when it is actually
giving each program a small slice of processor time in tum. (2.3)

name-value subsequence The means by which data is represented for NAMELIST input
or output. (15.7)

named constant A constant which has been given a name by means of a parameter
attribute in a declaration statement, or in a PARAMETER statement. (3.6)

NAMELIST input/output A form of input or output in which the values in the data or
results are accompanied by the names of the corresponding variables, thus eliminating
the need for an input/ output list. (15.7)

nested The inclusion of a program construct as part of another program construct of the
same type; especially applied to DO loops. (6.2)

Newton's iteration The iterative approximation which forms the basis for Newton's
method for solving non-linear equations. (18.3)

Newton's method An iterative method for finding the roots of a non-linear equation,
cf. bisection method and secant method. (18.3)

Newton-Raphson method Another name for Newton's method. (18.3)
node An element in a linked list. (16.7)
non-advancing input/output A method of formatted input/output in which each READ,
WRITE or PRINT statement does not necessarily begin a new record. (15.3)

normalized binary floating-point form The form of [loating-point representation of
numbers used by most computers, in which the most significant bit of the mantissa is 1;
cf. normalized decimal [loating-point form. (10.1)

normalized decimal floating-point form A representation of decimal numbers in
[loating-point form in which the most significant digit of the mantissa is non-zero;
cf. normalized binary [loating-point form. (10.1)

notebook computer A microcomputer in which processor, memory, disk drive(s), screen
and keyboard are all integrated in a box whose dimensions are of the same order as an
A4 pad of paper around 1- 1f' thick; notebook computers contain their own,
rechargeable, batteries, or may run from a mains power supply.

null value The 'value' input by a list-directed input statement when it encounters two
consecutive value separators; its effect is to leave the value of the corresponding input
list item unchanged. (3.4, 8.1)

numeric storage unit The type of memory location used for storage of integer, real,
double precision, complex and logical values of default kind. (3.5, 17.2)

numerical quadrature The process of calculating the value of a definite integral by
numerical means. (18.8)

object-oriented programming A style of programming in which objects are defined,
together with various actions and attributes appropriate to the use of those objects;
widely used, in particular, for graphical programming.

octal The system of counting to base 8 which is particularly convenient on a binary
computer, since each octal number consists of three bits.

operand An expression that precedes or succeeds an operator.
operating system A program which controls the operation of a computer system,
including the loading and execution of programs and the storage and retrieval of
information in files. (2.3)

operation A computation involving one or two operands.
operator A character, or sequence of characters, that defines an operation.
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optional argument A dummy argument which need not have a corresponding actual
argument when the procedure in which it appears is invoked. (11.3)

output device A piece of equipment by means of which a computer communicates with
the outside world, such as a display, a printer or a disk drive. (1.2)

output format A format used in a formatted output statement. (8.5, 8.7)
output list The list of expressions in a WRITE or PRINT statement whose values are to be
output. (3.4)

output statement A WRITE statement or a PRINT statement.
output unit An output device.
overflow An error condition arising from an attempt to store a value which is too large
for the storage location specified; typically caused by an attempt to divide by zero, or
by an extremely small number. (10.1)

parameter attribute A means of specifying that the entities declared in a type declaration
statement are to represent constants, not variables. (3.6)

parameterize Explicitly specify the kind of a variable or constant. (10.2, Chapter 14)
parameterized variable A variable whose kind is explicitly specified. (10.2, Chapter 14)
partial pivoting An essential technique in a Gaussian elimination to ensure that the
multipliers at each stage are as small as possible; it improves the stability of the solution
process. (18.5)

peripheral device An input device, an output device or a file store device.
pivot The first coefficient of each equation after reduction by Gaussian elimination. (18.5)
pointer A variable which has the pointer attribute. (16.1)
pointer array An array which is declared with the pointer attribute, but whose shape and

size are not determined until space is created for the array by means of an allocation
statement. (16.3)

pointer assignment statement A statement which associates a pointer with a target. (16.1)
pointer attribute A means of specifying that the entities declared in a type declaration

statement will contain pointers to other variables rather than data values. (16.1)
portability The ability of a program written on one computer system to be compiled and
executed on another type of computer system with little or no alteration. (2.5)

portable programs Programs which can be moved from one computer system to
another with little or no alteration. (2.5)

pre connected An input or output unit which is automatically connected to the program
and does not require an OPEN statement; typically the default input and output units. (9.3)

printer control character The first character of each line, or record, sent to a printer
which is not printed but is used to determine the vertical movement of the paper before
the printing of the rest of the line takes place. (8.6)

private An entity in a module, or a component of a derived type definition in a module,
which has been made private is not accessible through USE association. (12.3)

procedure A subroutine or a function.
program A sequence of instructions to a computer which causes the computer to carry
out the actions required for the solution of a specified problem. (1.2, 2.1)

program unit A sequence of statements and comment lines, starting with a PROGRAM,
SUBROUTINE, FUNCTION, MODULE or BLOCK DATA statement and ending with an END, END
PROGRAM, END SUBROUTINE, END FUNCTION or END MODULE statement, which is the
fundamental component part of an executable Fortran program. (4.2)

programming language A means of representing the instructions that make up a
program in human-readable form. (1.3)

public An entity in a module which is not private.
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punched card An obsolete form of input to a computer in which characters were
represented by holes punched in a rectangular card. (2.6)

quadrature See numerical quadrature.
random access Another name for direct access.
range The statements between a DO statement and the corresponding END DO statement,

inclusive, are known as the range of the DO loop.
rank The number of permissible subscripts for an array. (7.2, 13.2)
rank-n array An array with n dimensions.
real An intrinsic data type used to represent numbers using a floating-point representation.
(3.2)

real number A number of the real intrinsic data type.
real part The first of the two numbers which make up a complex number. (14.7)
record A defined sequence of characters, or of values. (9.1)
record number The index number of a record in a direct access file. (15.4)
recursion The invocation of a procedure, either directly or indirectly, by itself; not

allowed in Fortran unless the procedure is declared to be RECURSIVE. (11.5)
reference See function reference.
register A special part of the memory, usually capable of higher speeds of storage and

retrieval than the rest of the memory, which is used for arithmetic and other key
operations. (I0.1)

relational expression A logical expression in which two operands are compared by a
relational operator to give a logical value for the expression. (5.2)

relational operator An operator which compares two values, and returns either the
value true or the value false. (5.2)

repeat count A number placed before an edit descriptor, or a group of edit descriptors
enclosed in parentheses, which defines how many times the descriptor, or group of
descriptors, is to be repeated. (8.5)

repertoire See character repertoire.
residual The difference between the calculated value y and the original data value y

when attempting to fit a function through a set of data points. (10.4)
residual sum The sum of the squares of the residuals. (10.4)
result variable A variable in a function subprogram whose value on exit from the

function will be the result of the function reference. (4.3, 11.5)

root (a) A value of x for which a function f(x) has the value zero; see also zero; (b) the
node of a tree from which the tree 'grows'. (16.7)

round-off error The cumulative error that occurs during floating-point arithmetic
operations. (10.1)

save attribute The value of a local entity in a procedure will only be preserved on exit
from the procedure if it has the save attribute. (11.4)

scalar variable A variable which is not an array variable.
scope The part of a program in which a name or entity has a specified interpretation; see

also scoping unit. (11.7)
scoping unit A derived type definition; an interface body, excluding any derived type

definitions or interface bodies contained within it; a program unit or subprogram,
excluding any derived-type definitions, interface bodies or subprograms contained
within it. (11.7)

secant method An iterative method for finding the roots of a polynomial equation;
d. bisection method and Newton's method. (18.4)
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sequential A form of file in which each record is written after the previously written
record, so that the normal way of reading the records is in the same order as they were
written. (9.1, 9.3)

shape The rank and extent of an array in each of its dimensions; can be stored in a rank-
one array. (7.2, 13.2)

single-precision One of the two hardware representations of floating-point numbers on
most computers, providing less accuracy than double-precision. (10.2)

size The total number of elements in an array. (7.2, 13.2)
slice The unit of time allocated to a program in a time-sharing system. (2.3)
software Programs that can be executed on a computer, d. hardware. (1.1)
source form The way in which a Fortran program is written - either free form or fixed

form. (2.6)
specification expression A restricted form of scalar integer constant expression which can

appear as a bound in an array declaration or as the length in a character declaration. (3.5,

13.5)
specification statement A non-executable statement which precedes the executable

statements in a program unit and provides information for use by the compiler. (4.2)
specifier An item in a control information list which provides additional information for

the input/output statement in which it appears. (8.6)
spline A set of polynomials, each of the same degree k, which are joined together to

form a single curve which has k - 1 continuous derivatives at each join point; see also
cubic spline. (18.7)

stability A measure of the sensitivity of a numerical process to small changes in its data,
including round-off errors and truncation errors; see also stable and unstable processes. (10.3)

stable process A numerical process whose result is the mathematically exact answer to
a problem that is only slightly different from the one given. (10.3)

statement entity An entity whose scope is that of a single statement, or part of a
statement, for example an implied DO variable. (11.7)

statement label A number preceding a statement, by means of which the statement can
be referred to in another statement. (6.5, 8.4)

storage association A method of associating two or more variables or arrays by
aligning their physical storage in the computer's memory; used by COMMON and
EQUIVALENCE,but not recommended in new programs. (17.1)

stored-program computer The formal name for a computer which is capable of
executing different programs (which it stores in its memory during their execution). (1.2)

straight selection A simple, and moderately efficient, method of sorting the elements
of an array into either increasing or decreasing order. (7.7)

stride The increment used in a subscript triplet. (13.9)
structure constructor A derived type literal constant. (3.7)
structure plan An English-language aid to good program design; used throughout this

book. (2.1)
subprogram A function subprogram or a subroutine subprogram. (4.2)
subroutine A subprogram which may only return any results through its arguments and

is invoked by a CALL statement. (4.4)
subroutine subprogram A self-contained part of a Fortran program which implements

a subroutine. (4.4)
subscript The value of the subscript expression which follows an array name in

parentheses in order to identify a particular element of the array. (7.1, 13.1)
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subscript expression An integer expression whose value is used as a subscript to an array.
(7.1, 13.1)

subscript triplet A method of specifying an array section by means of the initial and
final subscript values and a stride (or increment). (13.9)

substring A contiguous part of a character string. (3.5)
tail The last item in a linked list. (16.7)
target A variable that has the TARGET attribute.
TARGET attribute A means of specifying that the entities declared in a type declaration

statement may be pointed to by a pointer. (16.1)
ternary tree A tree structure which splits into three branches at each node. (16.7)
time-sharing A method of utilizing the speed of a computer's central processor in an

interactive system in which each user is given a small slice of the processor's time in tum.
(2.3)

top-down design The process of analysing a problem by starting with the major steps,
and successively refining each step until the individual steps are all readily soluble,
d. bottom-up development. (2.1)

track A circular band on the surface of a magnetic disk on which information is recorded;
a single surface will contain many tracks. (9.1)

transfer of control The interruption of the normal sequential execution of Fortran
statements as a result of executing a CALL to a subroutine, a reference to a [unction, or a
GOTO statement.

translation The process of converting a program into machine code; see also compiling.
(1.3)

tree A form of linked list in which each node points to at least two other nodes, thus
creating a flexible and dynamic structure. (19.7)

tridiagonal system A sparse system of simultaneous linear equations in which only
those elements in the matrix of coefficients which are on the diagonal or immediately
above or below it are non-zero. (18.6)

truncate (a) The process in which the fractional part of a number is discarded before the
number is assigned to an integer variable (3.3); (b) the process in which excess characters
are removed from the right-hand end of a character string before it is assigned to a
character variable of a shorter length. (3.5)

truncation error The error caused by terminating an iterative calculation before it is
mathematically correct. (10.3)

type An intrinsic data type or a derived type.
type declaration statement See declaration statement.
unary operator An operator which has only one operand. (3.3)
undefined A data object which does not have a defined value.
underflow An error condition in which a number is too close to zero to be
distinguished from zero in the [loating-point representation being used; many computers
will not report this form of error, and will store the number as zero. (10.1)

unformatted input statement An unformatted READ statement.
unformatted output statement An unformatted WRITE statement.
unformatted READ statement A READ statement which does not include a format

specifier.
unformatted record A record consisting of a sequence of values (in a processor-
dependent form) which is, essentially, a copy of some part, or parts, of the memory; it
can only be produced by an unformatted output statement. (9.2)
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unformatted WRITE statement A WRITE statement which does not include a format
specifier.

unit An input unit or an output unit.
unit specifier A specifier which specifies the unit on which input or output is to occur.

(8.6)
unstable process A numerical process whose result is the mathematically exact answer

to a problem substantially different from the one given. (10.3)
upper bound The maximum value permitted for a subscript of an array. (7.2, 13.2)
upper triangular matrix A square matrix in which all the elements below the diagonal

are zero.
OSE association The means by which entities in a module are made available to a

program unit. (4.7)
OSE statement A statement which references a module, some of whose entities are to be

made available by OSE association. (4.7)
value separator A comma, a space, a slash or an end of record which separates two data

values in listed-directed input. (3.4, 8.1)
variable A data object whose value may be changed during the execution of a program.

(1.2)
variable declaration The declaration of the type of a variable together with, optionally,

one or more attributes of that variable. (3.2, 3.7, 3.9, 14.2)
varying string A form of character data type whose length is not fixed at the time of the

declaration of a variable of that type, but may vary during the execution of the program;
not available in Fortran 90, but the subject of an auxiliary Fortran standard. (12.5)

vector subscript A method of specifying an array section by means of a rank-one array
containing the subscripts of the elements of the parent array that are to constitute the
array section; see also many-one array section. (13.9)

well-conditioned problem A numerical process which is relatively insensitive to
changes in the values of its parameters. (10.3) ~

WHERE construct The construct used in a masked array assignment where one of two
alternative assignments takes place on an elemental basis. (13.8)

WHERE statement The statement used in a masked array assignment where a single
assignment either takes place, or does not, on an elemental basis. (13.8)

word-processing A computer application for typing, manipulating and printing text;
possibly the most widely used of all computer applications.

work array A temporary array used for the storage of intermediate results during
processing; frequently implemented as an automatic array in Fortran 90.

zero A value of x for which the function f(x) has the value zero; see also root. (16.7)



Bibliography.

ANSI (1966). American National Standard Programming Language FORTRAN. (ANSI
X3.9-1966). New York: American National Standards Institute

ANSI (1978). American National Standard Programming Language FORTRAN. (ANSI
X3.9-1978). New York: American National Standards Institute

Atkinson L.V., Harley P.J. and Hudson J.D. (1988). Numerical Methods with FORTRAN 77:
A Practical Introduction. Wokingham: Addison-Wesley

Cipra B.A. (1988). PCs factor a 'most wanted' number. Science, 242, 1634-5
DahlquistG. and Bjorck A. (1974). Numerical Methods. Englewood Cliffs, NJ: Prentice-Hall
Dierckx P. (1993). Curve and Surface Fitting With Splines. Oxford: Clarendon Press
Duff I.S., Erisman A.M. and Reid J.K. (1986). Direct Methods for Sparse Matrices. Oxford:
Clarendon Press

Ellis TM.R. (1990). FORTRAN 77 Programming, 2nd edn. Wokingham: Addison-Wesley
Forsythe G.£., Malcolm M.A. and Moler CB. (1977). Computer Methods for Mathematical

Computations. Englewood Cliffs, NJ: Prentice-Hall
George A. and UU J.W. (1981). Computer Solution of Large Sparse Positive Definite Systems.
Englewood Cliffs, NJ: Prentice-Hall

Gerver J.L. (1983). Factoring large numbers with a quadratic sieve. Mathematics of
Computation, 421163, 287-94 .

Golub G.H. and Van Loan CF. (1991). Matrix Computations, 2nd edn. Baltimore, MD:
Johns Hopkins University Press

Gries D. (1991). The Science of Computer Programming. Berlin: Springer
Hopkins T and Phillips C (1988). Numerical Methods in Practice: Using the NAG Library.
Wokingham: Addison-Wesley

ISO/IEC (1991). Information Technology - Programming Languages - Fortran. (ISO/IEC
1539 : 1991 (E). Geneva: ISO/IEC Copyright Office

Knuth D.E. (1969). The Art of Computer Programming, Volume 1 - Fundamental Algorithms.
Reading, MA: Addison-Wesley

NAG Ltd (1988). The NAG Fortran Library Manual- Mark 13. Oxford: NAG Ltd
Richards I. (1982). The invisible prime number. American Scientist, 70, 176-9
Scheid F. (1968). Theory and Problems of Numerical Analysis. New York: McGraw-Hill
SPSS Inc. (1988). SPSS-X Users Guide, 3rd edn. Chicago: SPSS Inc.
Visual Numerics Inc. (1992). IMSL Fortran Numerical Libraries, Version 2.0. Houston, TX:
Visual Numerics Inc.

Wilkinson J.H. (1963). Rounding Errors in Algebraic Processes. Englewood Cliffs, NJ:
Prentice-Hall

752



Answers to self-test
•exercIses

Self-test exercises 2.1 (page 24)

1 • Specifying the problem.
• Analysing the problem, and breaking it down into its main components.
• Writing the code to solve the problem.

2 The most difficult part of the whole process is usually the testing, and the
elimination of errors (usually referred to as debugging). The next most difficult is the
analysis of the problem and the design of the program (step 2, above).

3 • They must begin with a letter.
• They must contain only letters, digits and the underscore character, _'
• They must contain between I and 3 I characters.
• Upper case and lower case letters are treated as being equivalent. so that the

following all represent the same name: NAME, Name, name, NaMe, etc.

4 The first statement must be a PROGRAM statement, and the last must be an END
statement. (This is an oversimplification, as we shall see in Chapter 4, but is accurate for the
types of programs that we can write until then.)

5 If the last non-blank character of a line is an ampersand (&), then the statement is
continued on the next line.

If the ampersand appears in a character context (that is, in the middle of a character
string enclosed in quotation marks or apostrophes) then the first non-blank character of the
next line must also be an ampersand, and the character string continues from immediately
after that ampersand.

If the ampersand at the end of the first line is not in a character context then the
statement is continued either from the first character after an ampersand, if that is the first
non-blank character on the line, or from the start of the next line, if the first non-blank
character is not an ampersand.

6 Programs are usually read many times, often by several different people, over their
lifetime. Comments provide explanations of what is happening, and why, where this is not
immediately obvious from the code itself, and thus make the program easier to understand
by anyone who is reading it.

! A comment may be a line whose first non-blank character
! is an exclamation mark
a = 1 ! or it may be a trailing comment following
b = 2 ! any program statement, in which case the
c = 3 ! first non-blank character after the end of
d = 4 ! the statement must be an exclamation mark

753
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Self-test exercises 2.2 (page 34)

1 A syntactic error is an error in the syntax, or grammar, of a statement. A semantic
error is an error in the logic of the program; that is, it does not do what it was intended to do.

Compilation errors (errors detected during the compilation process) are usually the
result of syntactic errors, although some semantic errors may also be detected. Execution
errors (errors that occur during the execution of the compiled program) are always the
result of semantic errors in the program.

2 • A well-designed program is easier to test.
• A well-designed program is easier to maintain.
• A well-designed program is easier to port to other computer systems.

3 • Ensure that the purpose of the program is fully understood.
• Ensure that the data requirements (the inputs) and the reporting requirements (the

outputs) are fully understood and specified.
• Divide the overall problem into smaller, more manageable, sub-problems.
• Check to see if some, or all, of the functionality required in your program already

exists in procedure libraries.

4 • Ensure that your program carries out as many checks on the validity of the data it
reads as is possible (and realistic). A program that attempts to process invalid data
will never produce a meaningful answer!

• Carry out internal validity checks at critical points in the calculations.
• Check that a reasonable number of iterations are being made while trying to

converge to a solution.
• Test each part of your program thoroughly before testing the complete program.

S A line may contain up to 132 characters. (The older, fixed form, layout only allows
72 characters, of which the first six are reserved for special purposes.)

6 A statement may consist of up to 40 lines (20 in fixed form).

7 There is no limit to the number of statements that may appear on a single line,
other than that imposed by the limit on the number of characters per line, and the number
of continuation lines. Statements on a single line are separated by semi-colons.

Self-test exercises 3.1 (page 57)

1 An integer is a whole number, and has no fractional part. A real number does have
a fractional (or decimal) part.

2 Integers are stored exactly in the memory of a computer, and all operations using
only integers result in exact answers. Real numbers are stored as (very accurate)
approximations to their 'true' values, and operations involving real numbers result in
approximations to the mathematically correct answer.

3 • Real numbers encompass a very much wider range than integers - typically
between _1038 and + 1038 on a 32-bit computer, as compared with befween
-2 x 109 and +2 x 109 on the same computer for integers.

• Most arithmetic calculations involve numbers with fractional parts, and only real
numbers can represent such values.
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4 A declaration statement is a statement that identifies a name that will be used to
represent a variable, and which also specifies the type of information (such as real or integer
numbers) that will be stored in that variable.

5 (a) INTEGER:: men,women,children
REAL :: adults_to_children

(b) INTEGER .. l_ft,l_ins, &
h_ft,h_ins, &
d_ft,d_ins

Length in ft and ins
Height in ft and ins
Depth in ft and ins

Note that the above declaration assumes that measurements are to the nearest
inch. If fractions of an inch are required then the three variables l_ins, h_ins and
d_ins should be real.

(c) REAL:: length,height,depth

The same approach could be used as for (b), but since the metric system is a
decimal one, it is more natural to use real numbers and extract the centimetres
when required.

(d) REAL :: time
INTEGER :: photons

It is reasonable to assume that the time will be measured to a greater accuracy than
the nearest second. The number of photons must be a whole number, however.

6 An implicit declaration is one in which a variable does not appear in a type
declaration statement, but takes its type from the first letter of its name.

An IMPLICIT NONE statement at the beginning of the program, immediately after
the PROGRAM statement, prevents implicit declaration and results in an error if a variable is
used without first being declared. Implicit declaration is very dangerous, and can lead to
many types of program errors, for example as a result of a mistyped name not being
detected or a variable accidentally being of the wrong type.

7 An assignment statement causes the result of an expression to be assigned to a
variable; that is, to be stored in the memory location identified by the variable name.

8 In order of decreasing precedence (priority) the operators are:
** (exponentiation)
* (multiplication) and / (division)
+ (addition) and - (subtraction)

9 REAL :: a,b,av
av = (a+b}/2.0

10 6.5000
6 10

10.0000
o

0.6500

The exact spacing of the numbers, and the number of decimal places for the real values may
vary from computer to computer, but will follow essentially the same layout as shown
above. Note that it is possible that the second number on the second line will be printed as
9 if the result of multiplying 2.5 by 4.0 resulted in a value of, for example, 9.9999999 as a
result of round-off errors during the calculation.
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11. 1.23.4567.8942.0
• 1.2,3.456,7.89,42.0
• 1.2

3.456
7.89
42.0

• 1.2/3.456/7.89/42

Self-test exercises 3.2 (page 65)

1 The Fortran character set consists of the 26 alphabetic characters of the Latin
alphabet (with no distinction being made between upper and lower case letters), the 10
decimal digits, the underscore character, and 21 other specified characters. Only these
characters may appear in Fortran statements, other than comments or character constants.

The default character set is that set of characters which a particular processor
supports.

2 The declaration of a character variable includes a length specification.

3 CHARACTER (LEN=20) :: a,b,c,d
CHARACTER :: x
CHARACTER (LEN=9) :: month ! September is the longest

4 CHARACTER (LEN=20) :: a,b,c,d,x*1,month*9
5 A small step for a man

A giant leap for mankind

Self-test exercises 3.3 (page 74)

1 An entity which is given an initial value in its declaration statement can have that
value changed later in the program. An entity with the PARAMETER attribute is a constant,
and its value cannot subsequently be changed.

2 A derived type is a user-defined data type. It consists of one or more components
each of which is either of an intrinsic type or of another derived type. A derived type is,
therefore, ultimately derived from entities of intrinsic types.

3 Derived types allow data types to be created which reflect the nature of the
problem being solved and the data that it uses.

4 (a) TYPE uk_address
CHARACTER (LEN=50) .. house_name
INTEGER :: number
CHARACTER (LEN=30) .. street,village,town,county
CHARACTER (10) :: post_code

END TYPE uk_address
(b) TYPE us_address

INTEGER :: number
CHARACTER (LEN=30) :: street,city
CHARACTER (LEN=2) :: state
INTEGER :: zip_code

END TYPE us_address



5 (a) TYPE (uk_address) :: my_uk_home
my_uk_home =

uk_address("The Old Manor Bouse",
3/"Bigh Street",
"Little Uffington",
"Wokingham" ,
"Berks." /"RG26 9QZ")
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,,,,,
(h) TYPE (us_address) :: my_us_home

my_us_home = ,
us_address(19725/"Main Street" ,

"Chicago" ,
"IL",60689)

6 TYPE person
CBARACTER(LEN=20) .. first_name,last_name
TYPE (us_address) :: address

END TYPE PERSON
TYPE (person) :: individual
PRINT *,"Please type name and address in the order"
PRINT *,"first name, last name, number and street,"
PRINT *,"city, state (2 letters), zip code"
READ *,individual

Note that it would also be possible to read the data by specifying each component, as
shown below, but this is not necessary:

READ *,individual%first_name,individual%last_name, ,
individual%address%number, ,
individual%address%street, ,
individual%address%city, ,
individual%address%state, ,
individual%address%zip_code

Self-test exercises 4.1 (page 108)

1 Breaking a program up into a main program and a set of procedures enables the
top-down design approach to be carried through into the structure of the code, so that
each procedure carries out a single, well-defined task. This also means that each procedure
can be tested independently of the rest of the program.

2 A function returns a single result through the result variable, which has the same
name and type as the function itself. A function's arguments are only used to provide
information to the function; that is, they are INTENT (IN). A function is referenced by its
name appearing as part of an expression.

A subroutine uses its arguments both to provide information to the subroutine
and to return results to the calling program unit. A subroutine is called by means of a CALL
statement.

3 An intrinsic procedure is one which is defined as a part of the Fortran language,
and which is provided by the Fortran processor.

4 A generic function is a function which exists in several versions to carry out the
same function on arguments of different types. For example, if int_var and real_var are
integer and real variables, respectively, ABS (int_var) will calculate the absolute value of
int_var and return the result as an integer value, while ABS (real_var) will calculate the
absolute value of real_var and return the result as a real value.
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5 A dummy argument declared as INTENT (INOUT) may be used both to provide
information to the procedure and to return results from the procedure; it may be used
freely throughout the procedure. A dummy argument declared as INTENT (OUT), on the
other hand, is used only to return results from the procedure, and is undefined on entry to
the procedure; it must therefore be given a value in an assignment statement, or by some
other means, before being used in an expression.

6 (a) INTEGER FUNCTION count (char, string)
IMPLICIT NONE
CHARACTER, INTENT (IN) :: char
CHARACTER (LEN=*) , INTENT (IN) :: string

(b) SUBROUTINE quadratic(a,b,c,rootl,root2)
IMPLICIT NONE
REAL, INTENT (IN) :: a,b,c
REAL, INTENT (OUT) :: rootl,root2

(c) INTEGER FUNCTION prime(n)
IMPLICIT NONE
INTEGER, INTENT (IN) :: n
! The function will return a factor, or zero if
! the number n is a prime

(d) CHARACTER (LEN=*) FUNCTION reverse(string)
IMPLICIT NONE
CHARACTER(LEN=*), INTENT (IN) :: string

or, alternatively
SUBROUTINE reverse(string)

IMPLICIT NONE
CHARACTER(LEN=*), INTENT (INOUT) string

(e) SUBROUTINE error(error_num)
IMPLICIT NONE
INTEGER, INTENT (IN) :: error_num

(~ INTEGER FUNCTION get_number()
IMPLICIT NONE

or, alternatively
SUBROUTINE get_number(n)

IMPLICIT NONE
INTEGER, INTENT (OUT) :: n

Self-test exerCises 4.2 (page 122)

1 A module is a means of packaging various entities in such a way that they can have
global accessibility; that is, they can be accessed by any procedure that wishes to do so.

2 USE association associates a name in a procedure with an entity in a module having
the same name, thereby making the entity in the module available in the procedure.

3 A derived type cannot be passed to a procedure as an argument and, as a result, an
object of that derived type cannot be passed as an argument because the procedure cannot
know about that type. (Simply repeating the derived type definition in the procedure
creates a different, albeit identical, derived type.) Placing the derived type definition in a
module, and making it available to all program units by USE association means that they all
have access to the same derived type definition and eliminates the problem.
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4 If a procedure has an explicit interface at the point where it is referenced then the
number and type of its arguments are known, and the actual arguments (and result, in the
case of a function) can be checked against the interface details. If a procedure has an implicit
interface, then nothing is known about the procedure apart from its name, and the calling
program unit can only assume that the actual argument matches the requirements of the
procedure.

5 • To provide global availability of certain variables, thus avoiding the need for long
argument lists.

• When using derived types, in order that they can be used as arguments to
procedures.

• To provide explicit interfaces for procedures.

Self-test exercises 5.1 (page 150)

1 A logical operator has one or two logical operands; a relational operator has two
numeric, or two character, operands. Both give a logical result.

2 (a) false
(b) true
(e) true
(d) Because of possible round-off errors in the evaluation of the expression
(0 . 1+0 . 3) it is not possible to predict with absolute certainty what the result
will be.
(e) true
(f) false
(g) true
(h) true

3 A block IF construct is used either to choose one of several alternative blocks of
statements or to determine whether a single block of statements is executed.

4 A logical IF statement only controls whether a single statement is executed; a
block IF controls the execution of as many statements as required.

5 • The 26 upper case letters are collated in alphabetic order.
• The 26 lower case letters are collated in alphabetic order.
• The 10 digits are collated in increasing numerical order.
• Digits are either all collated before A, or all after Z.
• Digits are either all collated before a, or all after z.
• Space (blank) is collated before both letters and digits.

6 (a) true
(b) Not defined
(e) true
(d) Not defined
(e) true (blank comes before 7 in the ASCII code; see Appendix D)
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Self-test exercises 5.2 (page 162)

1 The order of the blocks, and their preceding IF, ELSE IF or ELSE statements
matters with a block IF construct, because each test is carried out in sequence. The order
does not matter in a CASE construct, because the case selectors cannot overlap.

2 The case expression must be integer, character or logical. It cannot be a real
expression.

3 The case selector may take any of the following forms, unless it is a logical value,
in which case only the first form is permitted:

value
low_value:high_value
low_value:
:high_value

4 Overflow occurs when a calculation gives rise to a value which is too large to be
represented by the type being used.

5 A CASE construct is the more appropriate when there is no overlap between the
criteria for making the choice, and the' basis for making the choice is, or can easily be, one
of the three discrete intrinsic data types (integer, character and logical). A block IF
construct is the more appropriate if there is an overlap between the criteria (and hence the
order in which the tests are made may matter), or if the decision must be made using real
values.

Self-test exercises 6.1 (page 186)

1 A DO loop is a means of specifying that a sequence of statements (between the DO
statement and the corresponding END DO statement) is to be repeated a number of times.

2 There are no restrictions on the statements that may appear within a DO loop.

3 A count-controlled DO loop contains the information necessary to determine how
many times the loop is to be repeated as part of the DO statement: other forms of DO loop
decide when to stop repeating the loop on the basis of a condition that occurs during the
execution of the loop.

A count-controlled loop is most appropriate if the nature of the problem requires
that the loop be repeated a pre-defined number of times, regardless of the results of the
loop repetition. A count-controlled loop is also appropriate in situations where some other
means is expected to determine the exit condition, in order to provide a fail-safe mechanism
in case the exit condition never occurs.

4 The DO variable is the integer variable specified in a count-controlled DO statement
which is incremented at the end of each pass through the loop. It is not permitted to alter
the value of the DO variable during the execution of the loop.

5 The iteration count is the count of the number of times a count-controlled DO loop
is to be obeyed. It is calculated before the start of execution of the loop as the maximum of
(final - initial + inc) / inc and zero.
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6 (a) 11 times
(b) 6 times
(c) 3 times
(d) 0 times (the loop will not be obeyed at all)
(e) 17 times
(f) once

7 What it would have been on the next pass through the loop, if there had been one.

8 (a) 10 8 2 8 o o
Since 1 is greater than m, and k is positive, the second loop is never obeyed;
however, the DO variable j, is given its initial value before this decision is made.
The two innermost loops are never obeyed either, therefore. The outermost loop
has an iteration count of one, but its DO variable, i, is set to the value it would have
had on the second pass, had there been one.

(b) 10 -2 9 9 64 0

The only difference between this program and the previous one is that k is set to -
i at the start of the outermost loop, thus causing the second loop to count down
from 8 to 0 in steps of -2. On the first pass through this loop the third loop is
obeyed once, but on subsequent passes it is not obeyed at all as n is less than 1.

9 An infinite loop is one which never reaches an exit condition. It can be avoided by
always using a count-controlled loop to place an upper limit on the number of times a loop
is executed.

10 An EXIT statement is used to provide a means of terminating the execution of a
loop when some condition occurs; it causes an immediate branch to the statement
immediately after the END DO statement of the innermost loop currently being executed.

11 A CYCLE statement is used to end the processing of the statements in a loop for this
iteration; it causes an immediate branch to the start of the loop in an identical fashion to that
which occurs when the END DO statement is executed.

Self-test exercises 6.2 (page 193)

1 A block DO construct is named so that an EXIT or CYCLE statement in a nested block
DO can exit from more than the innermost loop, or cycle to the start of other than the
innermost loop. The name, which follows the normal rules for Fortran names, must precede
the DO statement, separated from the DO by a colon, and follow the corresponding END DO

statement.

2 The names on a block IF or CASE construct are only for the benefit of the human
reader in the case of complicated or nested structures. They are not used during the
execution of the program, but will be checked by the compiler to ensure that they match
correctly.

3 A RETURN statement provides a means of returning from a procedure to the calling
program unit in the same way as occurs when execution of the procedure reaches the END
statement. It is useful in an exceptional situation where there is no requirement to execute
the remainder of the procedure, for example if an error has occurred.
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4 A,STOPstatement terminates processing of the program in the same way as occurs
when execution reaches the ENDstatement of the main program unit It is normally only
used after a catastrophic error has ,meant that no further processing is meaningful. -

5 A GOTOstatement causes an immediate transfer of control to the statement whose
label is given in the GOTOstatement It should never be used except in certain exceptional
situations, for example after some types of errors, when it is the only way to get to the part
of the procedure which will restore normal processing. Always ask yourself 'is this really
necessary?' before using a GOTO.

6 A statement label is a whole number, in the range I to 99999, which may be used
to identify a statement, for example so that a GOTOstatement may branch to it Statement
labels are not usually required in Fortran 90 programs.

Self-test exercises 7.1 (page 212)

1 An array is an ordered set of variables having the same name and type. An array
element is one of the individual variables that forms part of the array.

2 An array variable occupies several memory locations, each of which can be
independently acces'sed and may contain a separate value. A scalar variable occupies a
single memory location and contains a single value.

3 An array specification consists of the name of the array, followed by the lower and
upper bounds for its subscript(s), separated by a colon, enclosed in parentheses, or simply
by the upper bound, in which case the lower bound is one. It appears in the variable list of a
declaration statement:

REAL :: arrl(lO:50), arr2(25)

A dimension attribute consists of the word DIMENSIONfollowed by the lower and upper
bounds for the array subscript(s), separated by a colon, enclosed in parentheses, or simply
by the upper bound, in which case the lower bound is one. It appears as an aHribufe in a
declaration statement:

REAL, DIMENSION(10:50) :: arrl,arr3
REAL, DIMENSION(25) :: arr2

4 A subscript expression must be an integer expression.

5 • The rank of an array is the number of permissible subscripts for the array; each
subscript refers to one of the dimensions of the array.

• The extent of a dimension of an array is the number of elements in that dimension.
• The size of an array is the total number of elements in the array.
• The shape of an array consists of the rank of the array and its extent in each

dimension; it can be represented by a rank-one array in which the value of each
element is the extent of the array in the corresponding dimension.

6 (a) INTEGER,PARAMETER:: max_gamblers=lOO
REAL, DIMENSION(max_gamblers) :: ,

wages,av_loss,max_win,max_loss
INTEGER,DIMENSION(max_gamblers) :: ,

gambles-per_week,num_weeks_addict
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An alternative approach would be to define a suitable derived type:

TYPE gambler
REAL :: wages
INTEGER :: gambles-per_week
REAL :: av_Ioss,max_win,max_loss
INTEGER :: num_weeks_addict

END TYPE gambler
INTEGER, PARAMETER :: max_gamblers=IOO
TYPE (gambler) , DIMENSION (max_gamblers) :: gambler_anon

(h) INTEGER, PARAMETER :: max_tests=20
REAL, DIMENSION (max_tests) :: mass,height
INTEGER, DIMENSION (max_tests) num_blows

or, using a derived type:

TYPE exp_data
REAL :: mass,height
INTEGER :: num_blows

END TYPE exp_data
INTEGER, PARAMETER :: max_tests=20
TYPE (exp_data) , DIMENSION (max_tests) .. experiment

(c) INTEGER, PARAMETER :: max-points=50
REAL, DIMENSION (max-points) :: x,y,z

(d) REAL, DIMENSION (366) :: temp_6am,temp_noon, &
temp_6pm,temp_midnight

INTEGER, DIMENSION (-11: 31) :: noon_temp
The first four arrays have subscripts from 1to 366, to allow for an entry for every
day of the year, including a leap year. The last array uses subscripts from -10 to
30 to accumulate the count of days on which the noon temperature is equal to the
subscript value, with noon_temp (-11) being used for temperatures less than
-10°C and noon_temp (31) being used for temperatures over 30°C.

7 An array constructor is an array-valued constant.

8 An implied DO is a means of using the count control part of the DO loop syntax to
control stepping through a list of values or a list of array elements. It is used in an array
constructor to avoid the need for repeated values or repeated sequences of values.

9 The occurrence of a scalar variable in an input or output list causes the input or
output of a single value. The occurrence of an array variable in an input or output list, on
the other hand, causes the input or output of the same number of values as the size of the
array. An implied DO may also be used with an array in order to read or write a subset only
of the array elements in the array.

10 The controlling values of the implied DO in an array constructor must be constants,
whereas they may be variables in an input/output statement.

11 Two arrays are conformable if they have the same shape.

12 Whole array operations are possible between two conformable objects; that is, all
intrinsic operations are defined between conformable objects. Note that a scalar is
conformable with any array, and is treated as an array of the same shape, every element of
which has the value of the scalar.
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13 Arrays can be used in expressions in the same way as scalars, as long as all the
objects in the expression are conformable.

14 An elemental procedure is a procedure whose arguments may be scalar or array-
valued, and will return a scalar result if the actual arguments are scalar and an array-valued
result if they are arrays. In the latter case each element of the result is obtained by applying
the procedure to the corresponding element(s) of the input argument(s).

Self-test exercises 7.2 (page 229)

1 An assumed-shape array is a dummy argument whose rank is specified but whose
shape is not known, but is assumed from the corresponding actual argument. An assumed-
shape array is used in a procedure which is designed to accept actual array arguments of
different sizes.

2 An assumed-shape array will be as large or as small as required each time the
procedure is executed. An explicit-shape dummy array with bounds passed as arguments,
or by some other means such as in a module, will also be as large or as small as required.
The advantage of the assumed-shape array is primarily that it avoids the need to make this
information explicitly available, and thus makes the program less cluttered.

The disadvantage of an assumed-shape array is that the procedure that it is
declared in must have an explicit interface in any program unit that references it - although
this is no problem if procedures are packaged in modules.

3 An automatic array is an explicit-shape array, which is not a dummy argument,
whose bounds are variables which are either dummy arguments, or whose values are
available on entry to the procedure by some other means, such as from a module.

4 An explicit-shape array may have non-constant bounds if
• the array is a dummy argument
• the array is an automatic array
• the array is a function result

5 The type of an array-valued function is declared in a type declaration statement in
the body of the function. The result of an array-valued function cannot be an assumed-size
array.

6 An array-valued component of a derived type must be an explicit-shape array with
constant bounds. (It may also be a deferred-shape a.rray, as we shall see in Chapter 13.)

Self-test exercises 8.1 (page 257)

1 A value separator is a character which is used to determine the end of one input
item (and the start of the next).

2 Value separators during list-directed input are a comma, a slash, a blank or the end
of record, ignoring any blanks before or after the value separator.

3 A character string which is contained within a single line, does not contain any
value separators, in which the first character is not a quotation mark or an apostrophe, and
which does not begin with a number followed by an asterisk, may be input without
delimiting quotation marks or apostrophes.
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4 An embedded format is a list of edit descriptors, enclosed in parentheses, and
further enclosed in apostrophes or quotation marks, which is included as part of an input or
output statement. "

A FORMAT statement consists of the word FORMAT followed by a list of edit
descriptors, enclosed in parentheses. A FORMAT statement is always labelled.

5 If the same format is to be used by several input or output statements it is
preferable to use a FORMAT statement to avoid repetition, and to ensure that a change to the
format for one input/output statement is made to all the others using the same format. An
embedded format is preferable in all other cases. .

6 An edit descriptor is a specification of how a sequ~nce of characters on the
external medium is to be converted to a value in the computer system, or vice versa.

7 •••••6789 minus 4567 is 2222 •••• 234.50 minus 12.34 is 222.160
where. represents a space.

8 •••••••345678 ••••• 1234 ••••• 123456
••••• 345678 ••••• 1234 ••••••• 123456

Self-test exercises 8.2 (page 271)

2 A PRINT statement always sends its output to the default output unit (normally the
computer's printer). A WRITE statement sends its output to the unit specified in the
statement.

3 To obtain information about the success, or otherwise, of the input! output
operation.

4 A printer control character is the first character of an output record being sent to
an output unit designated as a printer. It .controls vertical movement of the paper before
the rest of the record is printed. The printer control character is not, itself, printed.

space print on the next line
o print on the next line but one; that is, leave a blank line
+ print on the same line; that is, do not move the paper
1 print at the top of the next page

5 A format is repeated when all the edit descriptors have been used and there are
still items in the input or output list which have not been processed.

6 The formats will be repeated from the place identified. by an arrow below: .
(a) (3I8,2F8.2)
i

(b) (3I8,2(3X,F5.2))
i

(e) (3(3X,I5),2F8.2)
i

(d) (3(3X,I5) ,2(3X,F5.2))
i

Ie) (3I8/2F8.2)
i«) (3I8/2(3X,F5.2))
i



766 Answers to self-test exercises

7 (a) READ' (3(F4.2,4X))', height,width,depth
The three input list items height, width and depth are assumed to be real
variables.

(b) PRINT' (2(F4.2," * "),F4.2," (= ",F7.2," cubic metres)")', &
height,width,depth

(e) READ' (3(I2,lX,I2,5X))', height_ft,height_ins, &
width_ft,width_ins,depth_ft,depth_ins

The six input list items are assumed to be integer variables.

(d) PRINT '(2(12,11"",12,"111111," * "),12,""",12,"11" (= 11, ,

F9.2," cubic feet)")', height_ft,height_ins, &
width_ft,width_ins,depth_ft,depth_ins

Note the double apostrophes and double quotation marks in the format, because
of the requirement to include both characters in the output text.

Self-test exercises 9.1 (page 299)

1 A formatted record is produced by a formatted output statement, or by some
external means, and consists of a sequence of characters. An unformatted. record is
produced by an unformatted output statement, i.e. one with no format specifier, and
consists of a sequence of values.

Formatted records should be used if the file is to be transferred to another type of
computer, or if it is required to subsequently list the file. Unf~rmatted records should be
used if the information written to the file is to be subsequently read by the same program,
or by another program on the same type of computer.

2 A formatted READ or WRITE statement must include a format specifier, and each
statement may process several records, as defined by the format. An unformatted READ or
WRITE statement must not include a format specifier, and always processes exactly one
record.

3 An endfile is a special record, of no defined length, which is written by an END FILE
statement. If a READ statement reads an endfile record it will result in an execution error
unless it is detected by means of an IOSTAT specifier (or an END specifier), and appropriate
action taken.

4 A file must be connected to a program so that the program knows on which
logical unit the input or output is to' take place. The connection is carried out by an OPEN
statement.

5 (a) OPEN (UNIT=7,FILE="Payroll_Data",STATOS="OLD", &
ACTION="READ",IOSTAT=open_status)

Note that the file will be formatted by default, so it is not necessary to specify this.

(b) OPEN (UNIT=l1,FILE="Intemediate_results_l", &
STATOS="OLD",FORM="UNFORMATTED", &
ACTION="READ",IOSTAT=open_status)

(c) OPEN (UNIT=8,FILE="Intermediate_results_2", &
FORM="UNFORMATTED",ACTION="READWRITE", &
IOSTAT=open_status)

No status is specified, as it is not clear whether the file already exists.
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(d) OPEN (UNIT=lO,FILE="Results" ,STATUS="OLD", ,
ACTION="READWRITE",POSITION="APPEND", ,
IOSTAT=open_status)

-(e) OPEN (UNIT=9,STATUS="SCRATCH",FORM="UNFORMATTED", ,
IOSTAT=open_status)

Scratch files are always opened for both reading and writing, as they would not be
much use otherwise!

(f) OPEN (UNIT=lO, FILE=file_name ,ACTION="WRITE" , ,
IOSTAT=open_status)

As the name of the file is not specified it has been included as a variable, which can
either be given a value in the program or from the keyboard.

Self-test exercises 10.1 (page 326)

1 For floating-point numbers, overflow occurs when an attempt is made to create a
number whose value is larger than possible for the computer being used. This is always
fatal. Similarly, underflow occurs when an attempt is made to create a number with a value
that is too small. On some computers, the result will be zero. On others, it will be fatal.

For integers, overflow occurs if an attempt is made to calculate a number that is
larger than possible for the computer being used. Similarly, underflow occurs when an
attempt is made to calculate a number that is too small. In either case, the attempt is fatal.

2 (a) (a + b)" (a - b) is preferable because a2 and b2 are more likely to overflow
or underflow than a - b or a + b.
(b) (a - b)/c is preferable because it involves one less division and hence is
likely to be more accurate in the case when a and b are almost equal.
(e) This is really the same as (b), since either a or b could be positive or negative.
Therefore the form (a + b)/c is preferable.
(d) a + b + c+ d + e is preferable because adding numbers in increasing order
of magnitude minimizes round-off errors.
(e) a/b - c/d is preferable because it involves no multiplications and is
consequently less prone to round-off errors. There is also the possibility that
a"d, b"c or bod might overflow or underflow.

3 Real variables are parameterized by specifying a kind type parameter in their
declaration:

REAL (KIND=n), ... :: list of variable names

4 Default real is the kind of real used if no kind type is specified in a real declaration
statement.

5 The intrinsic procedure SELECTED_REAL_KIND may be used to determine the
correct kind type parameter for a particular precision and/or exponent range, to improve
portability. Thus the statement

REAL(KIND=SELECTED_REAL_KIND(P=6,R=30)):: x
defines x to be a floating point variable with at least 6 decimal digits of precision and a
decimal exponent range of at least 30.
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If a program is to be executed on a variety of machines it is generally preferable to
explicitly specify a kind having the precision and/or exponent range required to avoid
numeric portability problems; this is particularly true when more than normal precision is
required.

6 Program test_lOb will usually give more accurate results. Program test_lOa is
requesting that the variables x, y and z have at least 3 decimal digits of precision. The
compiler will therefore select single-precision computer memory locations to store them
and will correspondingly use single-precision registers to perform arithmetic operations on
them. Program test_lOb is requesting at least 12 decimal digits of accuracy. Most
computers will use more than one word in memory to store the variables x, y and z and
will use double-precision hardware registers to perform arithmetic operations.

Note that the compiler is permitted to use double-precision storage and registers
for both programs (in which case, there would be no accuracy differences in the answers
obtained) since minimum precision requirements are being specified. However, a reason-
able compiler is most unlikely to do this.

7 The accuracy of a calculation is determined by the conditioning of the problem
(how sensitive the answer is to small changes in the input), and by the stability of the
algorithm employed (whether it gives a mathematically correct answer to a problem that
differs only slightly from that specified). If either condition is not satisfied the answer must
be regarded with suspicion.

8 The stability of an algorithm is affected by round-off effects (caused by the use of
finite-precision floating-point arithmetic) and by truncation errors (the terminating of a
process before it is mathematically correct). Since many mathematical processes imply an
infinite number of operations, some level of truncation error is often unavoidable.

9 A well-conditioned problem is one in which the answer only changes slightly
when the problem changes slightly. An ill-conditioned problem is one in which a small
change in the problem causes a large change in the answer. If you have an ill-conditioned
problem it is worthwhile seeing if it can be reformulated to be well-conditioned.

10 A well-conditioned (or stable) numerical process is one that gives the
mathematically correct answer to a problem that is only slightly different from the one
specified. An ill-conditioned (or unstable) process is one in which the answer given is the
mathematically correct answer to one that is substantially different from the one specified.
If you have created such a process it is worthwhile reprogramming it to be stable. Round-
off error, which introduces errors at each stage of a numerical calculation, is the prime cause
of unstable algorithms. Stable algorithms are designed so that these errors do not grow
substantially as a calculation proceeds.

Self-test exercises 10.2 (page 341)

1 • The magnitude of some quantity related to the process becomes less than some
specified value. For example, the value of a function whose root you are trying to
find becomes, in absolute value, acceptably small.

• The magnitude of the difference between two successive approximations becomes
less than some specified tolerance. When this occurs we conclude that, since the
process is not changing much between iterations, we have probably converged to
an answer. Sometimes this is not true.



Answers to self-test exercises 769

• The magnitude of the difference between the calculated answer and the
mathematically correct answer is acceptably small. It is rare to be able to use
this criterion since we usually cannot mathematically bound the answer.

2 The residual, at a point, is the difference between the calculated value (determined
from the least squares fit) and the specified value at that point. The residual sum is the
square root of the sum of the squares of all the residuals.

3 The residual sum provides a measure of how good the fit is to the whole data set.
The smaller the residual sum the better the overall fit. Since it involves the squares of the
residuals, it is unaffected by whether the fit passes above or below the data points.

4 The bisection method requires that it is provided initially with two points at which
the function takes opposite signs. If this cannot be done then the process cannot start.
Notice that this is a stronger requirement than just knowing an interval that contains a root.

A second, possibly harmless, problem is that an interval containing the function
sign change may have more than one function root. The interval bisection method will
only find one of the roots. It will not even indicate that other roots are present.

Self-test exercises 11.1 (page 370)

1 Invoking a procedure means calling a subroutine or referencing a function, as
appropriate.

2 A procedure's interface consists of the name of the procedure, whether it is a
subroutine or a function, the names and characteristics of its dummy arguments, and the
name and characteristics of the result variable if it is a function.

The interface of a procedure is explicit if all the above information is available at
the point at which it is invoked; it is implicit if some of this information is not available at
that point. An explicit interface is required when using certain features of Fortran 90 such
as assumed-shape array dummy arguments, and optional or keyword arguments.

3 An interface block is a means of providing an explicit interface for a procedure.

4 (a) INTERFACE
SUBROUTINE demo(a,b,c,d,x)

IMPLICIT NONE
REAL, INTENT (INOUT) :: a,b,c,d
INTEGER, OPTIONAL, INTENT (IN) :: x

END SUBROUTINE demo
END INTERFACE

(b) INTERFACE
REAL FUNCTION mean(a)

IMPLICIT NONE
INTEGER, DIMENSION(:) .. a

END FUNCTION mean
END INTERFACE

(c) INTERFACE
SUBROUTINE input(num-pts,points)

USE geometric_data
IMPLICIT NONE
INTEGER, INTENT (OUT) :: num-pts
TYPE (point) , DIMENSION(:), INTENT (OUT) .. points

END SUBROUTINE input
END INTERFACE
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5 A function must be declared with the EXTERNAL attribute if its name is used as
either a dummy argument or an actual argument. If a subroutine name is to be used in
either of these situations then it must appear in an EXTERNAL statement.

6 The specific name of an intrinsic function must be declared with the INTRINSIC
attribute if its name is used as an actual argument. Note, however, that the specific names
of some intrinsic procedures are not allowed to appear as an argument - see Appendix A.

7 A positional actual argument corresponds with a dummy argument through its
position in the list of arguments. A keyword actual argument includes the name of the
corresponding dummy argument and may appear anywhere in the list of actual arguments;
note, however, that once a keyword argument has appeared, then all subsequent actual
arguments must be keyword arguments.

8 When using positional actual arguments, each actual argument corresponds to the
dummy argument in the same position in the list of arguments. If any optional arguments
are omitted from the list of actual arguments then all subsequent arguments must also be
omitted.

When using keyword arguments, each actual argument corresponds to the
dummy argument whose name precedes the actual argument, separated from it by an
equals sign. Such actual arguments may be in any order.

If both positional and keyword arguments appear in a procedure invocation, then
all actual arguments after the first keyword argument must be keyword arguments.

9 An optional dummy argument is declared with the OPTIONAL attribute.
The intrinsic procedure PRESENT can be used to determine whether an actual

argument was supplied to correspond with any specified optional dummy argument.

10 Any local variables which are given an initial value are saved between invocations
of the procedure, as are any variables which are explicitly given the SAVE attribute.

11 Any local variable in a procedure that has the SAVE attribute retains its value on
exit from the procedure, and has the same value when the procedure is next entered. It can
be given explicitly, or implicitly by the variable being initialized in its declaration.

12 A recursive procedure may invoke itself, both directly and indirectly. A non-
recursive procedure may not invoke itself, either directly or indirectly.

A recursive procedure's initial statement has the keyword RECURSIVE before
FUNCTION or SUBROUTINE, as appropriate. The absence of the RECURSIVE qualifier means that
the procedure is non-recursive.

Self-test exercises 11.2 (page 384)

1 A generic interface block specifies that all the procedures whose interfaces form
part of the block may be invoked by means of the same generic name. It is distinguished
from a non-generic interface block by the appearance of the generic name after the word
INTERFACE at the start of the interface block.

2 A MODULE PROCEDURE statement is used to include the names of module procedures
as specific names in a generic interface block. It is required because the interfaces of module
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procedures are not permitted in an interface block as they already have an explicit interface
anywhere that they are accessible by USE association, and a duplicate interface is not
permitted.

3 • All the procedures specified in a generic interface block must be functions, or they
must all be subroutines.

• Any two procedures in a generic interface block must be distinguishable by
reference to their non-optional dummy arguments, at least one of which must be
different, whether considered as positional arguments or as keyword arguments.

4 There are seven scoping units, as shown below:
SUBROUTINE scoping_test 1 - program unit

IMP.LICIT NONE 1
INTERFACE 1

SUBROUTINE sub_l 2 - interface body
TYPE my_type 3 - derived type defn.

3
3
3

END TYPE my_type 3
2
2
2

END SUBROUTINE sub_l 2
SUBROUTINE sub_2 4 - interface body

4
4
4

END SUBROUTINE sub_2 4
END INTERFACE 1
TYPE my_type 5 - derived type defn.

5
5
5

END TYPE my_type 5
1
1
1

CONTAINS 1
SUBROUTINE sub_3 6 - internal subprogram

TYPE my_type 7 - derived type defn.
7
7
7

END TYPE my_type 7
6
6
6

END SUBROUTINE sub_3 6
END SUBROUTINE scope_test 1

5 Host association is the result of a scoping unit having access to entities from an
enclosing scoping unit. USE association is the result of a scoping unit having access to
entities in a module by means of a USE statement.

6 An internal subprogram is either an internal function procedure or an internal
subroutine procedure; it is not permitted to have any other form of internal subprogram.
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An internal procedure is the same as an external procedure except that:
• the name of an internal procedure is not global, and the procedure may, therefore,

only be invoked by the host program unit;
• the name of an internal procedure may not be used as an adual argument;
• an internal procedure has access to entities of its host by host association.

7 An entity in a host scoping unit is not accessible by host association in a nested
scoping unit if it has the same name as a local name in the nested scoping unit.

Self-test exercises 12.1 (page 406)

1 The ONLY qualifier in a USE statement causes only those entities listed after the ONLY

qualifier to be accessible by USE association.

2 If a local name is the same as a name made available through USE association an
error will result (unlike the situation with host association). The module entity can be
renamed in the USE statement to avoid this problem.

3 Making the components of a derived type private means that only the type, and
not its internal structure, is accessible elsewhere in the program.

4 A derived type definition must be in a module for its components to be made
private. There are no other restridions.

5 If the components of a derived type in a module are made private, then only the
type itself is available outside the module; inside the module, however, the components are
available in the normal way. This means that the author of the module can ensure that the
components of the derived type can only be accessed in an approved fashion, for example
through procedures which are also defined in the module, thus avoiding the danger of a
program inadvertently corrupting the inner form of variables of that type.

6 The private components of a derived type entity can be accessed from within the
module in the normal way, as if the components were not specified as being private. In
other words, the privacy only applies outside the module in which the derived type
definition appears.

7 Making the components of a derived type private means that a program unit
which has access to the module in which the derived type definition appears has access to
the type, and can declare and use variables of that type, but cannot access the components
diredly. Making the definition of the derived type private means that it is not accessible at
all outside the module, and is only, therefore, for use by procedures which are part of that
module.

8 Data hiding is the principle of only allowing access to a restrided set of entities
within a module, namely those which the using program units need to know about. It
allows the writer of a module to improve the security of programs by controlling the way
in which programs, for example, access the data, or parts of the data, on which their
program is operating.

9 It is strongly recommended that the default accessibility of all modules be changed
to PRIVATE, and that only those entities that are required by the user of the module be
given explicit PUBLIC accessibility.
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Self-test exercises 12.2 (page 420)

1 A defined operation is a unary or binary operator which either extends the
meaning of an intrinsic operator, for use with operands of types for which the intrinsic
operator is not defined, or defines a new operator for use with any specified types of
operands.

A defined operation is defined by means of a variation of a generic interface block,
and a function which defines the actions to be taken.

2 • It is not permitted to change the meaning of an intrinsic operator, but only to
extend it. It must, therefore, be possible to distinguish any new meanings from the
intrinsic meanings solely by reference to the types of its operands.

• The number of arguments in the defining function must be consistent with the
intrinsic uses of the operator.

• Extending the meaning of the relational operators «, <=, etc.) also extends the
meaning of the alternative way of writing the same operators (. LT ., .LE., etc.).

3 • The function TOM has two integer arguments, which means that it cannot be
distinguished by reference to its arguments from one of the intrinsic meanings of
the < operator.

• The function reduce only has one argument, which is inconsistent with the
intrinsic use of the < operator, which always has two operands.

Neither of the two extensions to the meaning of the < operator is, therefore, valid.

4 Defined assignment is an extension of the meaning of the assignment operator
when used with derived types. It is defined by means of another variation on the generic
interface block, together with a subroutine having exactly two non-optional arguments,
the first, INTENT (OUT), corresponding to the object on the left of the assignment operator
and the second, INTENT (IN), corresponding to the expression on the right of the
assignment operator.

5 Data abstraction encompasses the ability to define new types, procedures and
operators, including generic ones, and to encapsulate them in a module in such a manner
that only the highest level of detail is available to the user of the module. This allows the
user to concentrate on the problem without having to worry about the underlying detail of
these application-oriented extensions to the Fortran language.

Self-test exercises 13.1 (page 448)

1 The index bounds of an array are, for each dimension, the lower and upper bounds
the index for that dimension is permitted to take in specifying an array element. They are
integers and may be positive, negative or zero. The extents are, for each dimension, the
number of index values permitted. The size is the total number of elements in the array.

2 The shape of an array is the rank (the number of dimensions) and the extents along
each dimension. Since, for an n-dimensional array, the shape is specified by n positive (or
possibly zero) numbers, the shape may be represent by a rank-one array of size n whose
elements are the extents for each dimension.
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3 The array element order is:

wow(l,l,l) ,
wow(l,3,l) ,
wow(l,2,2) ,
wow(l,l,3) ,
wow(l,3,3) ,
wow(l,2,4) ,

wow(2,l,l) ,
wow(2,3,l) ,
wow(2,2,2) ,
wow(2,l,3) ,
wow(2,3,3) ,
wow(2,2,4) ,

wow(l,2,l) ,
wow(l,l,2) ,
wow(l,3,2) ,
wow(l,2,3) ,
wow(l,l,4) ,
wow(l,3,4) ,

wow(2,2,l) ,
wow(2,l,2) ,
wow(2,3,2) ,
wow(2,2,3) ,
wow(2,l,4) ,
wow(2,3,4)

4 Notice that the elements of wow are in reversed array element order. The read
statement is:

READ *, (((wow(i,j,k), k=l,4), j=l,3), i=l,2)

5 The RESHAPE function takes a rank-one array as input and constructs from it an
array of any shape, taking the elements of the rank-one array in array-element order.

6 An explicit-shape array is one in which the bounds for each dimension of the array
are explicitly given. The bounds may be expressions as well as constants. In a main
program the bounds of an explicit-shape array must be constant.

7 An assumed-shape array is a dummy argument array that takes its shape from the
actual argument array. Its extents are specified using colons.

Assumed-shape arrays cannot be specified in the main program since they must be
dummy argument arrays. There are no other restrictions on the use of assumed-shape
arrays.

8 The intrinsic functions LBOUNDand UBOUNDreturn the lower index bounds of an
array and the upper index bounds of an array, respectively.

9 Automatic arrays can only occur in procedures. They are arrays that are not
dummy arguments but whose index bounds are non-constant and depend on the
procedure's dummy arguments. Automatic arrays are useful when a procedure needs
some temporary work space whose size depends on the input arguments.

Self-test exercises 13.2 (page 470)

1 INTEGER, ALLOCATABLE(:,:) :: A, B

2 INTEGER :: error
ALLOCATE(A(3,4) , B(m,n), STAT=error)
IF (error /= 0) THEN

! Error processing,

END IF
! Arrays were successfully allocated

3 After the array has been successfully allocated it, or its elements, may be used in
the normal manner. Before it is allocated, however, the array may still be used as an
argument to the intrinsic function ALLOCATED(which returns the allocation status of an
allocatable array).
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4 The allocation status of an array defines whether or not it has been allocated.
There are three possible states:

(a) Not currently allocated. All allocatable arrays have this status at the
beginning of an executable program. An allocatable array also has this status
after the successful execution of a DEALLOCATE statement.
(b) Currently allocated. This is the status of an allocatable array after the
successful execution of an ALLOCATE statement.
(c) Undefined. An allocatable array (without the save attribute) has this status if
it is not deallocated prior to exit from a procedure. This is bad programming
practice because such an array cannot be subsequently employed in any useful
way.

5 By executing a DEALLOCATE statement before executing a RETURN or END statement
in the procedure in which the allocatable array was defined.

6 The allocation status of an allocatable array (that does not have undefined status)
is determined by use of the intrinsic function ALLOCATED. This function returns true if its
argument is allocated and false if it is not.

7 An automatic array has index bounds that are functions of the dummy arguments.
This is not necessary for an allocatable array. The space for an automatic array is created
when a procedure is entered and removed upon exit from the procedure. By contrast, the
space for an automatic array is allocatable and deallocatable anywhere in a procedure. An
allocatable array may have the save attribute, while an automatic array may not.

8 Operators in a whole array expression are applied element-wise to each element
position in the arrays comprising the expression.

9 All intrinsic functions that are elemental may be used in a whole-array expression.
They are applied element-wise to each element position of their array arguments.

10 Whole-array expressions greatly simplify code and therefore make it considerably
more readable and maintainable.

11 A masked array assignment permits detailed control over the assignment of one
array to another by using a logical mask to control how the assignment is to proceed, on
an element-wise basis. For example:

REAL, DIMENSION (m,n) :: x

WHERE (x < 0.0) x = 2.0*x
has the effect of replacing every negative element in x by twice its value and leaving the
positive elements unaltered.

12 An array section is extracted from an array by a specified pattern. An array section
is itself an array. Array sections may be used in a similar manner to any other array.

13. A subscript triplet specifies an array section according to a rectangular pattern. For
example, in the following extract the last line specifies an array section that is a
rank-one array consisting of the elements x (3,2,1), x (5,2,1) and x (7,2,1):

INTEGER, DIMENSION(9,4,10) :: x

x(3:7:2,2,1) = ...
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• A vector subscript, on the other hand, can be used to define an array section
extracted in an irregular manner from its parent array. For example, in the
following extract the array hold will contain the values of x (3,4,1), x (2,4,1),
x(3,4,1) andx(1,4,1):

INTEGER,DIMENSION(S,4,10) :: x
INTEGER,DIMENSION(4) .. extract = (/3,2,3,1/)
INTEGER,DIMENSION(4) :: hold

hold = x(extract,4,1)

From the above discussion it is clear that a subscript triplet should be used
whenever the extraction pattern can be expressed in a rectangular pattern,
whereas a vector subscript should be used when the extraction pattern is irregular.

Self-test exercises 14.1 (page 491)

1 All of the intrinsic data types of Fortran are parameterized. In other words, they
have associated with them subsidiary information that further specifies the data type.
These parameters are called kind type parameters. In the case of integers, for example, the
kind type parameter specifies the range of integers that a variable of that type of integer
can store.

Kind type parameters are important because, in the case of numeric variables, they
permit the portable specification of precision and range requirements. In the case of
character variables they specify what character repertoires are to be used.

2 Explicit kind type parameters for variables are specified by adding kind type
specifiers to the type declaration statements. For example:

REAL(KIND=SELECTED_REAL_KIND(P=6)):: x
CHARACTER(KIND=3), DIMENSION(9) :: arr

3 Explicit kind type parameters for numeric and logical constants are specified by
appending an underscore and the value of the kind type parameter to the constant; for
character constants the value of the kind type parameter and an underscore precede the
constant:

13.2E2_high
greek_napyn

where high and greek are integer constants.

4 If no kind type parameter is explicitly specified for a REALvariable or constant a
machine-dependent default value is assigned, and the type is said to be default REAL.

If no kind type parameter is explicitly specified for a CHARACTERvariable or
constant then a default value is assigned which is that for the ASCII character set on that
particular computer, and the type is said to be default CHARACTER.

S For INTEGERvariables the intrinsic function SELECTED_INT_KIND(R) returns the
kind type value, for the current computer, of a kind type that can represent all integers in
the range [_lOR,IOR].

For REALvariables the intrinsic function SELECTED_REAL_KIND(P, R) returns the
kind type value, for the current computer, of a real data type that can represent all numbers
in the range [_lOR, lOR], with at least P decimal digits of accuracy. The second argument, R,
is optional.
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Kind type values are machine-dependent. Therefore, the above functions should
be used to specify minimal accuracy and range requirements in a portable manner. For
example, the declaration

REAL(KIND=SELECTED_REAL_KIND(P=12)) :: x

declares x to be a real variable with at least 12 decimal digits of precision.

6 If an impossible INTEGER range or REAL precision is requested the functions
SELECTED_INT_KIND and SELECTED_REAL_KIND will return negative integer results. This will
cause a compilation error if they are used to set the KIND value for an INTEGER or REAL

variable or constant.

7 The kind type parameter of the expression is that of the REAL variable x. This is
processor-dependent. since x is a default real. The constant 1234567_2 is, therefore,
converted to a REAL value with a processor-dependent kind type before the addition is
performed. This may, on some processors, result in a loss of precision.

Specifying that the integer is of kind type 2 may, therefore, in some circumstances,
be irrelevant. Writing such expressions is poor programming practice.

S Fortran specifies no meaning for the kind type parameter values for LOGICAL
variables or constants. Therefore, each compiler is free to attach any meaning to them it
wishes. Consequently, using other than default logical entities can only result in non-
portable code, and their use should be avoided.

Self-test exercises 14.2 (page 502)

1 The Fortran standard states that a compiler must at least meet the specifications (if
it can). A compiler is free, therefore, to satisfy precision and range requirements by
exceeding them.

The underlying reality of the hardware for most computers is that only two
precisions and exponent ranges are provided, and all precision and range requests are
mapped onto those two choices in the best manner possible.

2 A COMPLEX variable or constant is stored as two consecutive REAL numbers, with
the real part coming first.

3 In a similar manner to REAL variables, a COMPLEX variable may have its kind type
explicitly declared, or may be allowed to default. The kind type parameter for the two REAL
components of a COMPLEX variable is the same as the kind type parameter of the COMPLEX
variable.

4 1.000, 2.000) 3.000, 4.000) 5.000
4.000, 6.000) -2.000, -2.000) ( 6.000, 2.000)
-5.000, 10.000) 15.000, 20.000) ( 0.440, 0.080)
0.200, 0.400) 1.000, -2.000) ( 1.000, 2.000)

The exact layout and number of decimal places printed will be processor-dependent.

S The kind type of (1. 0 , 7 . 0_4) is the kind type of the component with the greatest
precision; if both components have the same precision the processor is free to choose the
kind type of either component. Now the real part is a default REAL and, therefore, its kind
type is processor-dependent. However, 7.0_4 is of kind type 4. The kind type parameter of
the complex number is, therefore, processor-dependent, which could result in unpredict-
ability in expressions involving this complex number.
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Self-test exercises 15.1 (page 524)

1 You should normally always use the BLANK specifier when opening a file where
blank characters in numeric fields need special attention. Only if the treatment of different
records in the same file is to be different in this regard (an unlikely situation!) should you
use the BN or BZ edit descriptors.

2 A CLOSE statement will disconnect a file which has been connected by means of an
OPEN statement.

Although files are automatically closed when a program's execution ends, a CLOSE
statement is required if it is required to use the same unit for a different file later in the
program or if it is required to specify that the closing status of the file be changed from the
default.

3

4

1 000001 000001 000001 000001 1
2 000002 000010 000002 000002 2
4 000004 000100 000004 000004 4
8 000008 001000 000010 000008 8

16 000016 010000 000020 000010 16
32 000032 100000 000040 000020 32
64 000064 1000000 000100 000040 64
80000000.000 0.800E+08 80.000E+06 8.000E+07 0.800E+08

16000.000 0.160E+05 16.000E+03 1.600E+04 0.160E+05
3.200 0.320E+01 3.200E+00 3.200E+00 3.200
0.001 0.640E-03 640.000E-06 6.400E-04 0.640E-03
0.000 0.128E-06 128.000E-09 1.280E-07 0.128E-06

5 An advancing input statement (the default) always starts reading from the
beginning of a new record. A non-advancing input statement will start reading the same
record as was read by the last read statement, beginning immediately after the last
character read, unless the previous read statement attempted to read beyond the end of the
record, or the previous read statement gave rise to an error or end-of-file condition, or the
file position has been changed, in which case it will start at the beginning of the next record.

Non-advancing input should be used if it is necessary to read part of an input record
before reading the rest of it - for example, if its content cannot be determined until the first
item, or items, have been read. Otherwise, advancing input should normally be used.

6 An advancing output statement (the default) will always start writing a new
record. A non-advancing output statement will write to the same record as the last output
statement, beginning immediately after the last character written, unless the previous write
gave rise to an error, in which case the writing will start at the beginning of a new record.

Non-advancing output should be used if it is required to output a record in two, or
more, stages. Otherwise, advancing output should normally be used.

Self-test exercises 15.2 (page 549)

1 A RECL specifier for a sequential file specifies the maximum length of a record in
the file. A RECL specifier for a direct-access file specifies that all the records in the file will
have the specified length. In both cases the length is measured in characters if the file is
formatted, and in processor-defined units if it is unformatted.

2 Yes. As long as it is first closed and then re-opened for sequential access.
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3 No. One of the reasons is that every record in a dired-access file must have the
same length, whereas there is no guarantee that this is the case for a sequential file.

4 Dired-access input and output may not use list-direded formatting or namelist
formatting, nor may it use non-advancing input or output.

S A hash table is a table in which data is entered in a random order in such a way
that it can be quickly found again. In its simplest form, an appropriate algorithm is used to
convert the value to be stored into an integer key which lies in exadly the same range as
the permissible subscripts of the table. This key is then used to identify the first place to
look, and if this place is full (on entry) or contains the wrong value (on retrieval) then a
further algorithm defines where to look next - for example in the next element of the array.

A hash table normally consists of several tables, implemented as a single rank-two
array or as several related rank-one arrays, with one containing the identifying data (such
as a name), and the others containing additional data that can be extraded from the table
once the corred subscript has been found.

The major disadvantage of a hash table is that removing an item requires re-
organization of the entire table.

6 One One One One One One One One One One
One Two Three Four Five Six Seven Eight Nine Ten

The rather surprising result of the first PRINT statement is because each time the READ
statement in the loop is obeyed it starts at the beginning of the internal file linel, even
though that file contains 10 records. When the internal file is read by a single READ
statement each element of line2 requires a new record from the internal file, and so all ten
words are corredly read.

7 The following program will provide the length of the record:
PROGRAM record_length_inquiry

IMPLICIT NONE
REAL :: p,q
REAL, DIMENSION (7) :: x
REAL(KIND=SELECTED_REAL_KIND(12,30)) :: y,z
INTEGER :: record_length
INQUIRE (IOLENGTH=record_length) p,q,x,y,z
PRINT *,"The record length is ",record_length

END PROGRAM record_length_inquiry

Self-test exercises 16.1 (page 581)
1 A pointer is a variable that, instead of containing data itself, points to another
variable where the data is stored.

A variable can only be pointed at if it has the TARGET aHribute. This is to permit
the compiler to generate efficient code.

2 A pointer can only be made to point to objeds of the type specified in its type
declaration statement that have the TARGET aHribute.

3 • Undefined: this is the status when it is initially specified in a type declaration
statement.

• Associated: this is the status when a pointer is associated with a specific target.
• Disassociated: this is the starns when a pointer has been associated with a target

and the association has subsequently been broken (by a NULLIFY statement).
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4 A pointer assignment statement associates a pointer with a target. There are two
forms:

(a) Where the object on the right-hand side of the assignment statement is a
variable with the TARGET attribute:

REAL, POINTER :: p
REAL, TARGET :: a
p => a

This associates the pointer p with the target a.
(h) Where the object on the right-hand side of the assignment statement is a
pointer, pointing to variables of the same type and attributes:

REAL, POINTER :: p,q
REAL, TARGET :: a,b
p => a
q => p

The second pointer assignment statement makes q point to a (not to p, because
pointers cannot be pointed at).

5 The pointer association status of a pointer variable can be set to disassociated by
use of the NULLIFY statement. For example, using the pointers of the preceding question,
the statement

NULLIFY (p,q)
breaks the association of p with a and q with a.

6 The pointer association status of a pointer variable is determined by use of the
intrinsic function ASSOCIATED, which returns true if the pointer supplied as its actual
argument is associated with a target, and false if it is not. Note that the actual argument
pointer association status must not be undefined.

7 When a pointer occurs in an expression where a value is expected, the value of the
target the pointer is associated with is used. This is called dereferencing. For example, if the
variables p and a are defined as

INTEGER, POINTER :: p
INTEGER, TARGET :: a = 1
P => a

then the following assignment statements all have the same effect:
a = a + 1
a = p + 1
p = a + 1
p = P + 1

Note that in the last two examples p is unaltered.

8 It is not possible to read or write a pointer. Consequently, a variable of a derived
type that contains a pointer cannot occur in an input or output statement. Otherwise, a
pointer in an input or output statement is dereferencedJo its associated target.

9 The pointer p in the following example can point to any rank-three array of
integers:

INTEGER, DIMENSION(:,:,:), POINTER:: p
INTEGER, DIMENSION(4,3,2), TARGET :: a
p => a

The pointer assignment statement associates p with the rank-three integer array a.
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10 The space for the elements of an array pointer can be allocated and deallocated
dynamically by means of the ALLOCATE and DEALLOCATE statements.

Self-test exercises 16.2 (page 599)

1 If a procedure has a pointer or target dummy arguments, then:
• The procedure must have an explicit interface in any program unit that references it.
• An actual argument corresponding to a pointer dummy argument must be a

pointer with the same type, type parameters and rank.
• A pointer dummy argument cannot have the INTENT attribute.

2 To permit a function to return a pointer as its result the keyword RESULT must be
used in defining the function and the result variable must be defined to be a pointer:

FUNCTION ours(a) RESULT(p)
IMPLICIT NONE
INTEGER, INTENT (IN) :: a
REAL, DIMENSION(:), POINTER .. P
p => ...

END FUNCTION ours
The interface to a pOinter-valued function must be explicit in any program unit that
references it.

3 A pointer can be a component of a derived type in the same way as any other type
of entity:

TYPE other
INTEGER .. i
INTEGER, DIMENSION(:), POINTER .. point
TYPE (other) , POINTER :: node

END TYPE other
This derived type contains two pointers - one to a rank-one array of integers and the other
to an object of the same derived type.

Derived types with pointer components are very useful for creating linked lists.

4 A linked list, in its simplest form, is a data structure in which each element of the
structure consists of data and a pointer to the next element of the list.

S The advantages of linked lists over arrays are:
• A linked list is superior for data structures in which the elements are added to the

list in random order. It is easy to add an element to its position in the list by
adjusting pointers - the element itself does not have to be moved (a considerable
time saving if the element is large). It is also possible for elements to be shared
between different linked lists without duplicating the element.

• The size of a linked list does not have to be predefined - elements can be added
freely at any time during execution. Thus, space can be used efficiently.

• The elements of a linked list can be freely deleted during execution of a program,
thus easily releasing space during program execution for use by other parts of the
program.

6 A tree structure is a set of connected data elements (called nodes) in which each
node of the list has at most one parent (node pointing to it) and only one node (the root)
has no parent.
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A more formal definition is that a tree is a finite set of nodes with a distinguished
node, called the root, and where the non-root nodes are themselves disjoint (that is, having
no elements in common) trees. The non-root nodes are called subtrees.

A binary tree is one in which each node has a maximum of two subtrees (or
branches).

7 A list is preferable to a tree when each node has only one predecessor and one
successor. For example, the children of one set of parents may be kept as a list in order of
their ages.

A tree is preferable to a list when each node can have more than one successor
node associated with it. For example, a family tree (note the common usage) showing the
parental structure is best kept as a tree structure.

S Recursion is useful in dealing with lists and trees because formal definitions of lists
and trees are best done recursively. Using recursion to write programs involving lists and
trees usually results in simpler programs because the structure of the algorithms now
matches naturally the structure of the data.

Self-test exercises 17.1 (page 624)

1 A COMMON block is a means of enabling several program units to have access to the
same area of memory, and hence to the variables stored in that area of memory. Note that
it is only the memory area, or block, which is globally accessible - not the names of the
individual variables stored there.

2 • A named COMMON block must be declared with the same length in every program
unit that uses it (although most compilers do not enforce this restriction); blank
COMMON may be declared with different lengths in different program units.

• Named COMMON blocks may be initialized in a block data subprogram; blank COMMON

may not be initialized.
• Blank COMMON remains in existence throughout the execution of the program;

named COMMON blocks may cease to exist unless they are explicitly given the save
attribute (although most compilers preserve named COMMON blocks throughout
execution).

3 COMMON blocks rely on a particular arrangement of variables within the memory,
defined by the programmer, which may be sub-optimal on many modem computer
architectures, especially those with multiple processors. Moreover, the fact that only the
name of the COMMON block is global means that there is very great scope for errors as a
result of different program units specifying the same block in different ways.

Modules provide a far more flexible, powerful, safer and usable alternative for
global data access, and provide many additional features as well.

4 X(1) will cause an error if it is accessed because it corresponds to It (1) in the
subroutine TEST4A, where it was assigned the integer value 1, and since this will not be a
valid floating-point number any attempt to use the value of X (1) will cause an error.

Y (1 , 1) will also cause an error if accessed. In this case the array Y corresponds to
the double precision array D, and so Y (1,1) corresponds to the first half of D(1), which will
not take the correct form of a floating-point number, with the result that any attempt to use
the value of Y(1,1) will cause an error.
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Z (1,1) has the value -3.0, since the first half of the array Z occupies the same
space as the complex array Q, and Z(1,1) therefore occupies the same space as the real part
of Q(l).

Ml (1) has the value 21, since the array Ml occupies the same space as the second
half of 12 and the first five elements of 13. Ml (1), therefore, occupies the same memory
location as 12 (11), which is also an integer. 'J,

Ml (15) is undefined from the information given, since it corresponds to 13 (5)

which has not been given a value, and nor has Ml (15) itself. •
M2(1) and M2(15) are both undefined from the information given, for the same

reason as Ml (15).

5 The EQUIVALENCE statements result in the following mappings of the six character
variables:

81234 5

81 1 2 3 4 5

82 1 2 3 4 5

83 1 2 3 4 5

84 1
85

If the assignment statement

8 = "My name is David"

is applied to this diagram it will readily be seen that the result of the PRINT statement will
be the message

Madness

Self-test exercises 18.1 (page 685)

1 The bisection method has the advantage that it is guaranteed to converge to a
root to within a specified tolerance. It has the disadvantages that it can only be started
when an interval with a function sign change is known, and it converges relatively slowly
because it only uses information about the sign of the function - not its magnitude.

Newton's method has the advantage that, when it converges, it converges rapidly.
It has the disadvantages that it must be started close to a root to guarantee convergence
(sometimes even this is insufficient) and that the derivative of the function must be
calculated.

The secant method also has the advantages that, when it converges, it converges
rapidly (but not as fast as Newton's method) and does not require derivatives to be
evaluated. It has the same disadvantage as Newton's method, namely that convergence is
not always guaranteed.

Consequently, the best root-finding algorithms use a blend of methods to achieve
a guaranteed convergence that is faster than interval bisection.

L
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2 Partial pivoting is the name giving to the process in Gaussian elimination in which
the current pivot row is exchanged with the row having the largest element in absolute
value in the column below the current pivot.

It is important to perform partial pivoting in order to have a stable algorithm.

3 The major difference between a cubic spline curve fit and one using a polynomial
is that the cubic spline uses a set of cubic polynomial pieces (one for each data sub-interval),
whereas a polynomial fit will involve one high-degree polynomial over the entire range of
the data set.

The cubic spline will almost always produce a superior fit because high-degree
(and we mean degree greater than 5) polynomials tend to oscillate badly between the
points at which they interpolate the given data. A polynomial fit will be slightly faster to
evaluate than a cubic spline fit. However, this is almost never a good reason to choose a
polynomial fit over a spline fit.

4 Adaptive quadrature is a method of calculating the values of definite integrals. It
does it by splitting the entire interval of integration up into sub-intervals using more (and
smaller) sub-intervals where the function being integrated is varying most rapidly.

Caution is necessary in accepting the result of any numerical quadrature process
because two different functions may have the same values at the points employed by the
numerical quadrature process to estimate the numerical value of the definite integral.
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Note that the programs shown in this section are only sample solutions. There are a large number of
possible programs that could be written to solve almost any programming problem, and those that
are shown here are our solutions. There is no such thing as a single 'best' solution, since different
situations may attach different priorities to such factors as speed of execution, memory
requirements, volume of comments in the code etc. However, if your solution should differ in
any significant fashion from the sample solution shown here, you should very carefully examine the
differences in order to establish why there is a difference and why, in all probability, our solution is,
in some way, better than yours!

line 3

line 4

line 8

line 7

line 10
line 11

line 5
line 6

2.2 There are a total of 14 errors which will be detected by a compiler, and one
probable error which will not be detected in this program, as follows:
line 1 A space, or blank, character is not allowed in a name in free source form -

although one is allowed in the obsolete fixed source form.
A period is not allowed in a name.
There should be two colons in the declaration statement.
Although not an error, the indentation of this line, and the following two, is
confusing.
The use of the ampersand to mean 'and' is treated as a continuation marker
because it is the last non-blank character in the line; however, a comment line
cannot be continued.
This line is a comment, but without an initial exclamation mark.
It is not permitted to have a trailing comment when a character context is
being continued.
This line is a character context continuation and should therefore either end
with a closing quotation mark or with another continuation marker - which is
obviously what is missing here. In this case, the trailing comment is not
allowed since a character context is being continued.
This line is intended to be a character context continuation and should
therefore either end with a closing quotation mark or with another
continuation marker; in this case a closing quotation mark is obviously what
is missing.
The variable name, number, should not be enclosed in quotation marks.
The asterisk, and following comma, have been omitted from the PRINT
statement.

785
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line 12

line 13

This line is a character context continuation, and will therefore include a
number of redundant blanks unless an ampersand is inserted just before the
start of the text. Note that this is not a syntax error, but just bad programming
- or an error of omission by the programmer which does not result in any
formal error.
It would also be desirable to include a space after the character string to ensure
that it is separated from the number following, regardless of the size of that
number.
A comma has been omitted between the end of the character string and the
variable name.
If a name is included on an END statement it must match the name on the
PROGRAM statement. Furthermore, the word PROGRAM must follow END if a name
is included.

The corrected program is as follows:

PROGRAM exercise_2_2
IMPLICIT NONE
REAL :: number
! This program used to contain a number of errors and
! is not a good example of Fortran 90 at all!
PRINT *,"This ,

'is a silly ,
'program"

PRINT *,"Type a number"
READ *,number
PRINT *,"Thank you. ,

&Your number was ",number
END PROGRAM exercise_2_2

2.3 The four errors are as follows:
lines 2, 3 A comment line cannot be continued.
line 4 The character string should be enclosed between quotation marks or

apostrophes.
line 5 There should be a comma after the asterisk.
lines 5, 6 One of the variables numbr and number has been mistyped. This error will not

be detected by a compiler, as both variables will be implicitly declared to be
integer variables.

The three other mistakes are as follows:
• All programs should include an IMPLICIT NONE statement immediately after the

PROGRAM statement, in order to prevent any implicit declarations being allowed.
• All variables should be declared in a type declaration statement.
• Every END statement should include the name of the program.

If only those errors detected by the compiler are corrected the mistyping of one of
the variable names will not be detected, and so the variable number will not have had any
value assigned to it when its value is printed in line 6; this will probably result in an error,
but may result in either zero, or some special value being printed - or possibly even a
random value. The inclusion of an IMPLICIT NONE will prevent this type of error, since it
will mean that the use of any variable names which have not been declared will be flagged
as an error.

The corrected program is .as follows:

PROGRAM test
IMPLICIT NONE
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! This program used to contain four major errors
! and three examples of bad programming styl~
REAL :: number
PRINT *,"Please type a number"
READ *,number
PRINT *,"The number you typed was ",number

END PROGRAM test

3.1 PROGRAM exercise_3_1
IMPLICIT NONE
! Variable declarations
REAL :: xl,x2,x3,x4,x5,x6,x7,xB,x9,xl0,sum
PRINT *,"Please type ten numbers"
READ *,xl,x2,x3,x4,x5,x6,x7,xB,x9,xl0
sum = xl+x2+x3+x4+x5+x6+x7+xB+x9+xl0
PRINT *,"The sum of these numbers is ",sum

END PROGRAM exercise_3_1
If you tried running your program with the set of numbers suggested you will almost
certainly not get the correct answer of -1.00001, because the ninth data item
(3951.44899) cannot be stored to the necessary accuracy of nine significant figures -
even though the result only requires six significant figures, which your computer should be
capable of dealing with.

3.5 PROGRAM exercise_3_5
IMPLICIT NONE
! This program prints the internal representations of
! the characters which make up the Fortran Character Set
Use the intrinsic function ICHAR to find the internal
representation of each character

PRINT *,"A ",ICHAR("A")
PRINT *,"B ",ICHAR("B")

letters C-y

PRINT *, "Z ",ICHAR("Z")
PRINT *, "0 ",ICHAR("O")

digits 1-9
special characters sp-?

PRINT *. "$ ",ICHAR("$")
END PROGRAM exercise_3_5

4.1 SUBROUTINE- distances (xl,y1,x2,y2,dist_orig-p1, ,
dist_orig-p2,dist-p1-p2)

IMPLICIT NONE
! This subroutine calculates the distances of two points
! from the origin and from each other
! Dummy arguments
REAL, INTENT (IN) :: x1,y1,x2,y2
REAL, INTENT (OUT) :: dist_orig-p1,dist_orig-p2, ,

dist-p1-p2
! Calculate distances
dist_orig-p1 = SQRT(x1**2 + y1**2)
dist_orig-p2 = SQRT(x2**2 + y2**2)
dist-p1-p2 = SQRT((x2-x1)**2 + (y2-yl) **2)

END SUBROUTINE distances
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A suitable program to test this subroutine is:
PROGRAM exercise_4_l

IMPLICIT NONE
! This program tests the subroutine distances
! Variable declarations
REAL :: xl,yl,x2,y2,dl,d2,dl_2
! Get coordinates of points
PRINT *,"Please type the coordinates of the first point"
READ *,xl,yl
PRINT *,"Now type the coordinates of the second point"
READ *,x2,y2
! Calculate the required distances
CALL distances (xl,yl,x2,y2,dl,d2,dl_2)
! Print calculated results for checking.
PRINT *."The distance of the point (",xl,",",yl, &

") from the origin is ",dl
PRINT *,"The distance of the point (",x2,",",y2, &

") from the origin is ",d2
PRINT *,"The distance between the points is ",dl_2

END PROGRAM exercise_4_l
4.4 MODULE global_data

IMPLICIT NONE
INTEGER:: first,second,third,sum

END MODULE global_data
PROGRAM exercise_4_4

USE global_data
IMPLICIT NONE
CALL input
CALL calculate
CALL output

END PROGRAM exercise_4_4
SUBROUTINE input

USE global_data
IMPLICIT NONE
! Read data into global variables
PRINT *,"Please type three integers"
READ *,first,second,third

END SUBROUTINE input
SUBROUTINE calculate

USE global_data
IMPLICIT NONE
! Calculate sum
sum = first + second + third

END SUBROUTINE calculate
SUBROUTINE output

USE global_data
IMPLICIT NONE
! Print sum of input values
PRINT *,"The sum of these three numbers is ", sum

END SUBROUTINE output
5.1 (a) Using a block IF construct:

PROGRAM exercise_S_l_a
IMPLICIT NONE
INTEGER :: number
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PRINT *,"Please type a negative, zero or positive'
'integer"

READ *,number
IF (number<O) THEN

PRINT *,"The number you typed is negative"
ELSE IF (number>O) THEN

PRINT *,"The number you typed is positive"
ELSE

PRINT *,"The number you typed is zero"
END IF

END PROGRAM exercise_5_1_a

(b) Using a CASE construct:

PROGRAM exercise_5_1_b
IMPLICIT NONE
INTEGER :: number
PRINT *,"Please type a negative, zero or positive'

'integer"
READ * ,number
SELECT CASE (number)
CASE (:-1)

PRINT *,"The number you typed is negative"
CASE (1:)

PRINT *,"The number you typed is positive"
CASE DEFAULT

PRINT *,"The number you typed is zero"
END SELECT

END PROGRAM exercise_5_1_b

5.10 PROGRAM exercise_5_10
IMPLICIT NONE
! This program calculates the nett cost for watch orders
! after applying a.variable quantity discount
! Variable declarations
INTEGER :: num_watches
REAL :: gross_cost,discount_rate,discount,net_cost
! Input number of watches required
PRINT *,"How many watches are required?"
READ *,num_watches
! Calculate. discount rate
SELECT CASE (num_watches)
CASE (300:)

discount_rate = 0.3
CASE (100: 299)

discount_rate = 0.25
CASE (30:99)

discount_rate = 0.2
CASE (10:29)

discount_rate = 0.15
CASE (5:9)

discount_rate = 0.1
CASE (2:4)

discount_rate 0.05
CASE DEFAULT

discount_rate = 0.0
END SELECT

I
789
I



790 Answers to selected programming exercises

! Calculate and print gross cost, discount and net cost
gross_cost = 15*num_watches
discount = discount_rate*gross_cost
net_cost = gross_cost - discount
PRINT *,"The gross cost of ",num_watches, ,

" watches is $",gross_cost
PRINT *,"A discount of $",discount," applies"
PRINT *,"The net cost is $",net_cost

END PROGRAM exercise_5_10
6.4 PROGRAM exercise_6_4

IMPLICIT NONE
! This program prints a table showing all the characters
! in the default character set
Parameter to specify the number of characters in the

! default character set for the processor being used
INTEGER, PARAMETER :: num_chars=128
! Variable declaration
INTEGER:: i
! Print heading
PRINT *,"The following table shows the'character ,

'representation of values from 0 to" ,
num_chars-1

! Loop to print table
DO i=O,num_chars-1

PRINT *,i,CHAR(i)
END DO

END PROGRAM exercise_6_4
6.14 PROGRAM exercise_6_14

IMPLICIT NONE
! This program calculates at what temperature a can of
! carbonated drink will explode
! Constant declaration
REAL, PARAMETER :: explode-pressure=3. 2
! Variable declarations
INTEGER :: temp=15
REAL :: pressure
! Loop to calculate pressure as temperature increases
DO

pressure = O,00105*temp**2 + O,0042*temp + 1,352
PRINT *,"At ",temp," degrees C the pressure is ", ,

pressure," atm"
temp = temp + 1
IF (pressure >= explode-pressure) EXIT

END DO
! Pressure has exceeded that required to explode the can
PRINT *, "The can has exploded!!"

END PROGRAM exercise_6_14
7.4 SUBROUTINE array_of_sines(angle,low,high)

IMPLICIT NONE
! This subroutine calculates and prints the sines of
! the angles supplied as its argument
! Dummy arguments
INTEGER, INTENT (IN) :':low,high
REAL, DIMENSION (low:high) , INTENT (IN) angle
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! Local variables
REAL, DIMENSION (low:high) .. sine
INTEGER:: i
! Calculate sines
sine = SIN (angle)
! Print table of sines
DO i=low,high

PRINT *," sin (",angle (i) ,") = ",sine (i)
END DO

END SUBROUTINE array_of_sines
Note that using an implied DO for the printing, such as

PRINT *, (angle (i) ,sine(i) ,i=low,high)
would not be appropriate here, as it would not start a new line for each angle. We shall see
how to deal with this in the next chapter.

A suitable test program might be as follows:
PROGRAM exercise_7_4

IMPLICIT NONE
! This program tests the subroutine "array_oLsines"
! Declaration of array of angles
REAL, PARAMETER:: pi=3.l4l5927
INTEGER, PARAMETER :: low_bound=l, high_bound=12
REAL, DIMENSION (low_bound, high_bound) :: angles = ,

(/ -pi/2.0, -pi/3.0, -pi/4.0, -pi/6.0, 0.0, pi/6.0, ,
pi/4.0, pi/3.0, pi/2.0, 2.0*pi/3.0, 5.0*pi/6.0, pi /1

! Calculate and print sines of angles
CALL array_of_sines(angles,low_bound,high_bound)

END PROGRAM exercise_7_4
To use an assumed-shape array in the subroutine, the initial statement should be changed to

SUBROUTINE array_of_sines(angle)
and the declarations of the two arrays to

REAL, DIMENSION(:), INTENT (IN) :: angle
and

REAL, DIMENSION (LBOOND (angle, 1) :UBOOND(angle,l)) .. sine
In addition, the DO statement will need to be changed to

DO i=LBOOND(angle,l) ,UBOOND(angle,l)
If preferred, the values of the lower and upper bounds of the dummy argument

array angle could be preserved in variables, such as low and high, and these can be used in
the DO statement, as before.

The CALL statement in the main program will also need an appropriate alteration,
of course.

7.12 ~INTEGER FUNCTION bin_to_dec(binary)
IMPLICIT NONE
! This function converts a binary number to decimal
! The binary number is stored in an integer array
! Dummy argument
INTEGER, DIMENSION (8) , INTENT (IN) :: binary
! Local variables
INTEGER :: i,temp

I
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! Use a loop to accumulate the number in temp
temp = 0
DO i=1,8

temp = 2*temp + binary(i)
END DO
bin_to_dec = temp

END FUNCTION bin_to_dec
FUNCTION dec_to_bin(number)

IMPLICIT NONE
! This function converts a decimal number to binary,
! returning the result in an integer array
! Dummy argument and result variable
INTEGER, INTENT (IN) :: number
INTEGER, DIMENSION (8) .. dec_to_bin
! Local variables
INTEGER:: i,temp
! Determine each bit by successively dividing the
! number by two and taking the remainder
temp = number
DO i=8,1,-1

dec_to_bin(i) = MOD (temp,2)
temp = temp/2

END DO
END FUNCTION dec_to_bin

Note that the function dec_to_bin does not check to see if the number is too big to be
stored in 8 bits. This can easily be done by checking that the value of temp is zero on exit
from the loop. Some means of indicating that an error has occurred must then be
established.

Note also that, since the function dec_to_bin is array-valued, its interface must be
explicit. Placing both functions in a module will ensure that this requirement is satisfied.

A suitable test program is as follows:
PROGRAM exercise_7_12

USE binary-procedures
IMPLICIT NONE
! This program tests the two functions. "bin_to_dec"
! and "dec_to_bin" stored in the module binary-procedures
! Variable declarations
CHARACTER (LEN=8) :: bin_num_1,bin_num_2,bin_num_3
INTEGER, DIMENSION (8) :: bin1,bin2,bin3
INTEGER :: sum,i
! Read two binary numbers
PRINT *,"Please type two binary numbers in the range &

&00000000 to 11111111"
PRINT *,"separated by a space or a comma"
READ *,bin_num_1,bin_num_2
! Convert them to integer arrays
DO i=1,8

IF (bin_num_l(i:i)=="l") THEN
bin1(i) 1

ELSE
bin1(i) = 0

END IF
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IF (bin_num_2(i:i)=="1") THEN
bin2(i) = 1

ELSE
bin2(i) = 0

END IF
END DO
! Add them together
sum = bin_to_dec(bin1) + bin_to_dec(bin2)
! Convert result back to binary
bin3 = dec_to_bin(sum)
! Convert binary sum to characters and print<it
DO i=1,8

IF (bin3(i)==1) THEN
bin_num_3(i:i) "1"

ELSE
bin_num_3(i:i) = "0"

END IF
END DO
PRINT *, "The sum of ",bin_num_1," and ",bin_num_2, ,

" is ",bin_num_3
END PROGRAM exercise_7_12

8.6 PROGRAM exercise_8_6
IMPLICIT NONE
! This program is an exercise in output formatting
! Variable declaration
INTEGER, DIMENSION (12) :: number = ,

(I 12345,23456,34567,45678,56789,67890, ,
78901,89012,90123,10123,10234,10345 I)

Print the array in three ways
PRINT' (16)' ,number
PRINT' (316)' ,number
PRINT' (1216)' ,number

END PROGRAM exercise_8_6
The second part of this question requires some lateral thinking! In Section 8.2 we stated
that one of the forms of the READ statement was

READ ch_vaT, input_list

where ch_vaT is a character constant, character variable, character array, character array
element or other character expression. In all the examples we have shown it has been a
character expression, but this is a situation where a character variable is appropriate, as
shown in the following modified version of the above progr~:

PROGRAM exercise_8_6a
IMPLICIT NONE
! This program is an exercise in output formatting
! Variable declarations
INTEGER, DIMENSION (12) :: number = ,

(I 12345,23456,34567,45678,56789,67890, ,
78901,89012,90123,10123,10234,10345 If

CRARACTER(LEN=6) :: output_format
INTEGER :: numbers-per_line ;1'
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! Ask how many numbers per line
PRINT *,"How many numbers do you require to be ,

'printed per line?"
Use a DO loop and a CASE structure to select the
appropriate format and to keep repeating the query
until a valid response is typed

DO
PRINT *,"Type 1, 3 or 12"
READ *,numbers-per_line
SELECT CASE (numbers-per_line)
CASE (1)

output_format = "(I6)"
EXIT

CASE (3)
output_format = "(316)"
EXIT

CASE (12)
output_format = "(1216)"
EXIT

END SELECT
END DO
! Print the array in the requested way
PRINT output_format, number

END PROGRAM exercise_8_6a

8.13 MODULE geology
IMPLICIT NONE
TYPE seismic_data

INTEGER:: degrees_long, minutes_long
CHARACTER :: ew_long
INTEGER :: degrees_lat,minutes_lat
CHARACTER :: ew_lat
REAL :: richter_strength

END TYPE seismic_data
END MODULE geology
PROGRAM exercise_8_13

USE geology
IMPLICIT NONE
! This program records and lists seismic measurements
! Variable and constant declarations
INTEGER, PARAMETER :: max_centres = 100
TYPE (seismic_data) , DIMENSION (max_centres) ,

earthquake_data
TYPE (seismic_data) :: centre
CHARACTER (LEN=30) :: epicentre
INTEGER:: i,count
! Read data
PRINT *,"Where was the earthquake?"
READ *,epicentre
PRINT *,"Please type longtitude, latitude and Richter'

'scale reading for each seismic centre"
PRINT *,"Data should be terminated by a line of five zeros"
DO count=l,max_centres

READ *,centre%degrees_long,centre%minutes_long, ,
centre%degrees_lat,centre%minutes_lat, ,
centre%richter_strength
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! Check for end of data
IF (centre%degrees_long==O .AND. ,

centre%minutes_long==O .AND. ,
centre%degrees_lat==O .AND. ,
centre%minutes_lat==O .AND. ,
centre%richter_strength==O.O) EXIT

! Set E/w as appropriate for longtitude and latitude
IF (centre%degrees_long<O) THEN
centre%degrees_long = -centre%degrees_long
centre%el,-long = "w"

ELSE
centre%ew_long = "E"

END IF
IF (centre%degrees_lat>O) THEN .
centre%degrees_lat = -centre%degrees_lat
centre%ew_lat = "w"

ELSE
centre%ew_lat = "E"

END IF
earthquake_data (count) = centre

END DO
! Adjust count for terminating record
count = count-l
! Print table of measurements
PRINT' ("Seismic measurements recorded after,",A,

" earthquake"ll
T6, "Recording Station", T33, "Richter" I
T6, "Longtitude" ,T20, "Latitude",
T33,"Strength"II)' ,TRIM (epicentre)

DO i=l,count
PRINT' (T6,I2,"o",I2,""",A2,T20,I3,,,o",I2,'''''',

A2,T33,F6.2)', earthquake_data(i).
END DO

END PROGRAM exercise_8_l3
Note that the above program does not check that the number of sets of data is less than or
equal to the maximum number of centres specified by the constant max3entres. This is
easily done by checking the value of the DO variable on exit from the input loop.

Also note that the statement that prints the seismic measurements contains the
character 0 to signify degrees, which is not in the Fortran character set but is available on
most computers as part of the default character set, and is thus acceptable in a character
string. Furthermore, the character ' to signify minutes has been doubled because of the
apostrophe delimiters surrounding the embedded format.

9.2 PROGRAM exercise_9_2
IMPLICIT NONE.
! This program copies data in a file in reverse order
! Variable declarations
CHARACTER (LEN=20) :: infile,outfile
INTEGER, DIMENSION (lO) :: number
INTEGER:: ios,i
! Get names of files
PRINT *,"What is the name of the input file?"
READ *, infile
PRINT *,"What is the name of the output file?"
READ *,ou tf ile
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! Open files
OPEN (UNIT=7,FILE=infile,STATUS="OLD",IOSTAT=ios)
IF (ios/=O) THEN

PRINT ' ("Error number ",13," during opening of" ,
A)' ,ios,infile

STOP
END IF
OPEN (UNIT=8,FILE=outfile,STATUS="NEW",IOSTAT=ios)
IF (ios/=O) THEN

PRINT ' ("Error number ",13," during opening of ", ,
A)' ,ios,outfile

STOP
END IF
! Read numbers from input file
DO i=I,IO

READ (UNIT=7,FMT=*,IOSTAT=ios) number (i)
IF (ios/=O) THEN

PRINT ' ("Error number ",13," while reading ,
'record ",12," of ",A)' ,ios, i, infile

STOP
END IF

END DO
! Write numbers to output file in reverse order
DO i=I,IO

WRITE (UNIT=8,FMT=*,IOSTAT=ios) number (II-i)
IF (ios/=O) THEN

PRINT ' ("Error number ",13," while writing ,
'record ",12," of ",A)' ,ios,i,outfile

STOP
END IF

END DO
! Write end-of-file record after last record
ENDFILE (UNIT=8,IOSTAT=ios)
IF (ios/=O) THEN

PRINT' ("Error number ",13," while writing'
'end-of-file record to ",A)' ,ios,outfile

END IF
END PROGRAM exercise_9_2

9.10 PROGRAM exercise_9_10
IMPLICIT NONE
! This program searches a file for a specified name
! Variable declarations
CBARACTER(LEN=20) :: data_file,first_name,last_name, ,

area_code, phone_number, first, last
CBARACTER(LEN=5) :: search_type
INTEGER :: ios
LOGICAL :: found
! Get file name
PRINT *,"Please type the name of the data file"
READ *,data_file
! Open data file'
OPEN (UNIT=7,FILE=data_file,STATUS="OLD",IOSTAT=ios)
IF (ios/=O) THEN

PRINT ' ("Error number ",13," during opening of ", ,
A)' ,ios,data_file

STOP
END IF
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PRINT *,"Type first and last names of each person &
&whose telephone number is required"

PRINT *,"If all people with a given last name are &
&required, type * for first name"

PRINT *,"If all people with a given first name are &
&required, type * for last name"

PRINT *,"If no more numbers are required, type two &
&asterisks separated by a space"

! Loop to get names
DO

READ *,first,last
IF (first=="*" .AND. last=="*") EXIT
IF (first=="*") THEN

search_type = "LAST"
ELSE IF (last=="*") THEN

search_type "FIRST"
ELSE

search_type "BOTH"
END IF
! Search for name in file
REWIND (UNIT=7,IOSTAT=ios)
IF (ios/=O) THEN

PRINT '("Error number ",I3," during rewinding &
&of ",A)' ,ios,data_file

STOP
END IF
! Set flag for recording if a match was found
found = .FALSE.
DO

READ (UNIT=7,FMT=*,IOSTAT=ios) &
first_name,last_name,area_code,phone_number

IF (ios<O) THEN
! End-of-file
EXIT

ELSE IF (ios>O)
PRINT '("Error number ",I3," during reading &

&from ",A)' ,ios,data_file
STOP

END IF
! Check if this is the required record
SELECT CASE (search_type)
CASE ("LAST")

IF (last_name==last) THEN
PRINT' (A,lX,A,3X,A,lX,A)' ,first_name, &

last_name, area_code, phone_number
found = .TRUE.

END IF
CASE ("FIRST")

IF (first_name==first) THEN
PRINT' (A,lX,A,3X,A,lX,A)' ,first~name, &

last_name, area_code, phone_number
found = .TRUE.

END IF
CASE DEFAULT

IF (first_name==first .AND. &
last_name==last) THEN
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PRINT' (A,lX,A,3X,A,lX,A)' ,first_name, ,
last_name, area_code, phone_number

found = .TRUE.
END IF

END SELECT
END DO
, All records searched - check if a match was found
IF (.NOT. found) PRINT *, "No match found'"

END DO
END PROGRAM exercise_9_10

10.3 The major difficulty in this problem is that the answer will be very large - too
large even for many computers to represent as a floating-point number in any of the
hardware representations available (it is adually around 8 x 10374). However, by using
logs we need never use the number itself, although we shall retain more precision than is
provided by default REAL numbers by specifying a precision of at least 12 digits.

PROGRAM exercise 10 3
IMPLICIT NONE
, This program calculates factorial 200
, Variable and constant declarations
INTEGER, PARAMETER :: kind12 = SELECTED_REAL_KIND(P=12)
REAL (KIND=kind12) :: log_factorial,mantissa,stirling, ,

log_stirling
INTEGER :: exponent,i
, Loop to calculate 200' by adding logarithms
log_factorial = 0.0
DO i=1,200

log_factorial = log_factorial + LOG10(REAL(i,kind12))
END DO
, Obtain exponent and mantissa from logarithm and print
exponent = INT(log_factorial)
mantissa = FRACTION(log_factorial)
PRINT *,"200' is ",mantissa," times 10 to the power'

'of ",exponent
! Now calculate it using Stirling's approximation
twopi=2.0_kind12*ATAN(1.0_kind12)
stirling = 200.5_kind12*LOG(200.0_kind12) - ,

200.0_kind12 + 0.5_kind12*LOG(twopi)
! Convert from log to base e to log to base 10
log_stirling = stirling/LOG(10.0_kind12)
, Obtain exponent and mantissa from logarithm and print
exponent = INT(log_stirling)
mantissa = FRACTION(log_stirling)
PRINT *,"Stirling's formula for 200' gives ",mantissa, ,

" times 10 ta the power of ",exponent
END PROGRAM exercise_10_3

10.5 (a) All three roots lie in the specified range, at x = -3.0, x = 1.5 and x = 1.6.If
your initial tabulation did not give changes of sign between, for example, x = I
and x = 2 then you should have noticed that the values of x were falling as x
increased from ° to I, but increasing as it increased from 2 to 3, indicating a
minimum somewhere in this area.
(b) The three roots are at x = -0.5, x = 1.5 and x = 1.6.
(c) The three roots are at x = -4.0, x = 0.2 and x = 4.0.
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(d) The four roots are at x = -4.0, x = -1.5, x = 0.2 and x = 4.0.
(e) The four roots are at x = -4.0 (twice) and x = 3.0 (twice). Your program
probably did not find these, because the value of the polynomial never falls below
zero. However, examination of the tabulation should have indicated what was
happening (that there were two minimums) and more detailed tabulation should
have solved the equation.
(f) There are only two roots in the specified range, both at x = 2.33333. If your
program did not find them, see the comments in (e) above.

Note that, in Example 10.2, we stated that if f(x_mil!) = 0 then we should not immediately
accept this as a root because we should not mix convergence criteria. This was to keep the
algorithm as simple, mathematically, as possible, and because, for almost all real problems,
such a situation will not occur. However, for artificial cases, suCh as finding a root of the
equation x-I = 0 in the interval [0, 2], this situation can occur, and the algorithm will not
fundion correctly. Can you see what the problem is, and how to fix it?

11.1 CHARACTER FUNCTION next_charI)
IMPLICIT NONE

This function returns the next character from a
buffer, refilling the buffer from the keyboard
when necessary
Local variables

CHARACTER (LEN=80) , SAVE :: buffer=" "
INTEGER, SAVE :: len, chars_left = 0
INTEGER :: char-pos
! Test to see if any characters left
IF (chars_left==O) THEN

! No characters left - refill buffer
PRINT *,"? " -
READ (UNIT=*,FMT=' (A)') buffer
! Set len to length without any trailing ,blanks
len = LEN_TRIM(buffer)
chars_left = len

END IF
! Return next character in buffer
char-pos = len-chars_left+l
next_char = buffer(char-pos:char-pos)
chars_left = chars_left-l

END FUNCTION next_char
Note that, because both buffer and chars_left are initialized as part of their declaration,
they have the save aHribute; nevertheless, the situation is clearer to the reader if this is also
explicitly stated in the relevant declaration statements.

A suitable test program is as follows:
PROGRAM exercise_ll_l

IMPLICIT NONE
! This program uses the function next_char to read
! a character string from the keyboard
! Function declaration
CHARACTER, EXTERNAL :: next_char
! Variable declarations
CHARACTER (LEN=500) :: message
INTEGER :: i,pos=l
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PRINT *,"Please type a sentence of no more than 500 &
&characters terminated by a period."

PRINT *,"Type one line at a time when prompted by a ?"
! Loop to read the sentence
DO

message (pos:pos) = next_charI)
! Check if this was the terminating character
IF (message(pos:pos)==".") EXIT
pos = pos + 1

END DO
! Print message
PRINT' ("The sentence you typed was:"/(A60))', &

(message(i:MIN(i+60,pos)),i=l,pos,60)
END PROGRAM exercise_ll_l

Note the use of an implied DO in the PRINT statement to print the message in lines of 60
characters, and the use of the MIN intrinsic function in the subscript expression to prevent
any elements of the buffer which have not had data read into them being printed.

11.10 The first encoded message can be decoded by the program written for Exercise
11.5, and reads as follows, after removing the trailing filler characters at the very end:

modify the program that you wrote for exercise eleven point five so that instead
of using the keyword for encoding and decoding each block it is used only for the
first block semicolon thereafter the previous coded block is used to encode or
decode the next one stop

The second encoded message can only be decoded with this modified program!

12.4 MODULE complex_arithmetic
IMPLICIT NONE
PRIVATE
PUBLIC complex_number,OPERATOR(+) ,OPERATOR(-), &

OPERATOR(*) ,OPERATOR (I)
This module defines a complex number derived type and
extends the four intrinsic operators +, -, * and I to
have complex operands

TYPE complex_number
REAL :: real-part,imag-part

END TYPE complex_number
INTERFACE OPERATOR(+)

MODULE PROCEDURE c_add
END INTERFACE
INTERFACE OPERATOR(-)

MODULE PROCEDURE c_sub
END INTERFACE
INTERFACE OPERATOR(*)

MODULE PROCEDURE c_mult
END INTERFACE
INTERFACE OPERATOR(/)

MODULE PROCEDURE c_div
END INTERFACE

CONTAINS
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FUNCTION c_add(zl,z2)
! Function result and dummy arguments,

.TYPE (complex_number) :: c_add
TYPE (complex_number), INTENT (IN) :: zl, z2'
! Calculate function result
c_add%real-part = zl%real-part + z2%real-part
c_add%imag-part = zl%imag-part + z2%imag-part

END FUNCTION c_add
FUNCTION c_sub(zl,z2)

! Function result and dummy arguments
TYPE (complex_number) :: c_sub
TYPE (complex_number) , INTENT (IN) :: zl,z2
! Calculate function result
c_sub%real-part = zl%real-part - z2%real-part
c_sub%imag-part = zl%imag-part - z2%imag-part

END FUNCTION c_sub
FUNCTION c_mult(zl,z2)

! Function result and dummy arguments
TYPE (complex_number) :: c_mult
TYPE (complex_number) , INTENT (IN) :: zl,z2
! Calculate function result

.c_mult%real-part = zl%real-part*z2%real-part - ,
zl%imag-part*z2%imag-part

c_mult%imag-part = zl%real-part*z2%imag-part + ,
zl%imag-part*z2%real-part

END FUNCTION c_mult
FUNCTION c_div(zl,z2)

! Function result and dummy arguments
TYPE (complex_number) :: c_div
TYPE (complex_number) , INTENT (IN) :: zl,z2
! Local variable to save calculating denominator twice
REAL :: denom
! Calculate function result
denom = z2%real-part**2 + z2%imag-part**2
c_div%real-part = (zl%real-part*z2%real-part + ,

zl%imag-part*z2%imag-part)/denom
c_div%imag-part = (z2%real-part*zl%imag-part - ,

zl%real-part*z2%imag-part)/denom
END FUNCTION c_div

END MODULE complex_arithmetic
Note that the components of the derived type complex_number have not been made
private, Ideally, they should be private, but that would require additional procedures to
create a complex number from the values of the real and imaginary parts, and to extract
these two values from a complex number. Give yourself a bonus mark if you did this!
(Deduct several marks, however, if you made the components private without providing
the means to access the components, for example, for input and output!)

12.6 If it is not already there, add the following type definition to the module:

TYPE circle
TYPE (point) :: centre
REAL :: radius

END TYPE circle

L
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Add the following interface blocks to the specification part of the module:
INTERFACE OPERATOR(.centre.)

MODULE PROCEDURE centre_of_circle
END INTERFACE
INTERFACE OPERATOR(.intersects.)

MODULE PROCEDURE point_two_lines
END INTERFACE

and add the corresponding procedures to the procedures part of the module:
FUNCTION centre_of_circle(cir)

This function returns the point at the centre of
! the circle supplied as an argument
! Function result and dummy argument
TYPE (point) :: centre_of_circle
TYPE (circle) , INTENT (IN) :: cir
centre_of_circle = cir%centre

END FUNCTION centre_of_circle
FUNCTION point_two_lines(linel,line2)

This function returns the point of intersection of
two lines supplied as arguments. If the lines are
parallel the x and y coordinates of the result are
set to HUGE(O.O) and -HUGE(O.O), respectively

! Function result and dummy arguments
TYPE (point) :: point_two_lines

.TYPE (line) , INTENT (IN) :: linel,line2
! Local constant and variable
REAL, PARAMETER :: epsilon=lE-6
REAL :: denom
denom = linel%atline2%b - line2%atlinel%b
! If denom is zero lines are parallel
IF (ABS(denom)<epsilon) THEN

! Lines are parallel - return special values
point_two_lines%x = HUGE(O.O)
point_two_lines%y = -HUGE(O.O)

ELSE
! Lines intersect - return point of intersection
point_two_lines%x = &

(linel%btline2%c - line2%btlinel%c)/denom
point_two_lines%y = &

(linel%ctline2%a - line2%ctlinel%a)/denom
END IF

END FUNCTION point_two_lines

13.1 PROGRAM exercise_13_1
IMPLICIT NONE
! This program is an exercise in array manipulation
! Declarations and initialization of array
INTEGER:: i,j
INTEGER, DIMENSION(4,5) :: array = &

RESHAPE ((/ ((10ti+j, i=1,4),'j=1,5) /),(/ 4,5 Il)
! Print the array in a rectangular pattern
PRINT' (416)' ,array

END PROGRAM exercise_13_1
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In the above program the values are placed in the array by means of an array constructor
and the RESHAPE function, and the rectangular nature of the data represented in the output
by using a format which prints four numbers per line. In order to print the array rotated
through 90° it is necessary to replace the PRINT statement by the following statement, in
which the implied DO alters the order in which the array elements are printed:

PRINT '(SI6)',((array(i,j), j=1,S),i=1,4)

13.7 FUNCTION reverse(array)
IMPLICIT NONE
! This function reverses the order of the elements of
! the array supplied as the argument
! Function type and dummy argument
INTEGER, DIMENSION(SIZE(array)) :: reverse
INTEGER, DIMENSION(:), INTENT (IN) :: array
! Automatic (vector subscript) array
INTEGER:: i
INTEGER, DIMENSION(SIZE(array)) .. v_sub
! Create the vector subscript
DO i=l,SIZE(array)

v_sub (i) = SIZE(array)-i+1
END DO
! Copy array elements in reverse order by using v_sub
! as a vector subscript
reverse = array(v_sub)

END FUNCTION reverse
The following program uses the above function to reverse th~ elements of one row of a
rank-two array:

PROGRAM exercise_13_7
USE reverse_fun ! Needs explicit interface
IMPLICIT NONE
! This program tests the function reverse
! Declarations
INTEGER:: i,j,row
INTEGER, DIMENSION(6,7) :: array = &

RESHAPE ((/ ((10*i+j, i=l,6), j=l, 7) I), (/ 6,7 I))

, Ask which row to reverse
PRINT *,"Which row is to be reversed (in range 1-7)?"
READ * ,row
! Deal with invalid replies
SELECT CASE (row)
CASE (:0)

row = 1
PRINT *,"Out of range - row 1 will be reversed"

CASE (8:)
row = 7
PRINT *,"Out of range - row 7 will be reversed"

END SELECT
! Use function to reverse the appropriate array section
array(row,:) = reverse(array(row,:))
, Print the array in a rectangular pattern
PRINT' (716)', ((array(i,j) ,j=1,7) ,i=1,6)

END PROGRAM exercise_13_7
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Note that the function reverse must have an explicit interface because it is array-valued.
The above program assumes that it has been placed in a module, reverse_fun, in order to
make its interface explicit.

14.3 PROGRAM exercise_14_3
IMPLICIT NONE
! This program calculates lin!
! Declarations
REAL, PARAMETER :: one=l.O
REAL :: n=one, reciprocal_factorial=one
! Loop until lin! is indistinguishable from zero
DO

n = n+one
reciprocal_factorial = reciprocal_factorial In
PRINT *,n,reciprocal_factorial
IF (reciprocal_factorial==O) EXIT

END DO
PRINT *,"The value of lin! was indistinguishable from &

&zero when n = ",n
END PROGRAM exercise 14 3

Note that this program deliberately does something that has always been warned against,
namely comparing two real values. In this case, however, that is the whole point of the
program!

The program should now be altered so that the two declaration statements include
a KIND parameter, for example:

REAL (KIND=4) , PARAMETER :: one=1.O_4
REAL (KIND=4j :: n=one, reciprocal_factorial=one

The program should be run with each value for real kinds that is supported by your
processor.

This will show you which kind value corresponds to default real and that different
kind values will give a result indistinguishable from zero at different values of n, because of
the different degrees of precision being used.

14.7 Fortran 90 contains all the facilities to carry out the specified calculations, either as
operators or as intrinsic functions. It is not necessary to write any of these yourself:

PROGRAM exercise_14_7
IMPLICIT NONE
! This program is an exercise in complex arithmetic
! Declarations
COMPLEX:: w,z,q
! Get numbers
PRINT *,"Please type two complex numbers as pairs of &

&real numbers,"
PRINT *,"representing the real and imaginary parts"
READ *,w,z
! Calculate and print the required functions
q = w+z
PRINT *,"w+z = (",REAL(q),",",AIMAG(q),")"
q = CONJG(z)
PRINT *, "z (bar) (",REAL (q) ,"," ,AIMAG (q) ,")"
q = CONJG(w)
PRINT *,"w(bar)
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q = z**2
PRINT *,"z**2 = (",REAL(q),",",AIMAG(q),")"
q = z*CONJG(z)
PRINT *,"ztz(bar) = (",REAL(q),",",AIMAG(q),")"

END PROGRAM exercise_14_7

15.4 PROGRAM exercise_15_4
IMPLICIT NONE
! This program is an exercise in using INQUIRE
! Declarations
CHARACTER, DIMENSION (26) :: alphabet = &

(/ "A","B","C","D","E","F","G","H","I","J","K", ,
"L","M","N","O","P","Q","R","S","T","U","V", ,
"W'I,"X","Y","Z" /)

CHARACTER (LEN=20) :: filename
INTEGER:: ios,i
LOGICAL :: file_exists
! Ask for name of file
PRINT *,"What is the name for the output file?"
DO

READ ' (A)' ,filename
! Check to see if file already exists
INQUIRE (FILE=filename,EXIST=file_exists)
IF (.NOT.file_exists) EXIT
! File exists already - ask for another
PRINT ' ("The file ",A," already exists. Please &

&give another name for the output file")', &
filename

END DO
!Open the file
OPEN (UNIT=7,FILE=filename,STATUS="NEW",IOSTAT=ios)
IF (ios/=O) THEN '

PRINT ' ("Error ",-IS," while opening ",A)', filename
STOP

END IF
! Write alphabet array to file
WRITE (UNIT=7,FMT=' (A)' ,IOSTAT=ios) (alphabet (i),i=1,26)
IF (ios/=O) THEN

PRINT ' ("Error ";IS," while writing to ",A)', filename
END IF

END PROGRAM exercise_15_4

15.5 PROGRAM exercise_15_5
IMPLICIT NONE
! This program is an exercise in using an internal file
! Declarations
REAL, DIMENSION(5,4) :: matrix
REAL, DIMENSION (4) :: mean
CHARACTER (LEN=50) :: record
CHARACTER (LEN=20) :: filename
INTEGER:: ios,i,j
! Get name of file
PRINT *,"What is the name of the file?"
READ ' (A)' ,filename

[
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! Open file
OPEN (UNIT=7,FILE=fiiename,STATUS="OLD",ioSTAT=ios)
IF (ios/=O) THEN

PRINT '("Error ",IS," while opening ",A)', filename
STOP

END IF

! Read each record in turn from the file
DO i=1,5

READ (UNIT=7,FMT=' (A50)' ,IOSTAT=ios) record
IF (ios/=O) THEN

PRINT '( "Error ",IS," while reading ",A)', filename
STOP

END IF
! Now read the record as an internal file
READ (uNIT=record,FMT=*) (matrix(i,j) ,j=1,4)

END DO

! Calculate and print the mean of each column
mean = SUM(matrix,1)/5.0
PRINT *,"The means of the four columns are: ",mean

END PROGRAM exercise_15_5

Note the use of the intrinsic function SUM to create an array containing the sums of the four
columns of the matrix. Since a scalar is conformable with any array, the result of the
reference to SUM can be divided by 5.0, with the resulting array of means being stored in
mean. Alternatively, the expression SUM (matrix, 1)15.0 could have appeared in the output
list of the following PRINT statement, thus avoiding the need to save the means.

16.2 PROGRAM exercise_16_2
IMPLICIT NONE

This program is an exercise in using an array of
pointers

! Declarations
REAL :: max_Bbs=O,min_abs=HUGE(O.O),total=O.O,mean
INTEGER :: n,i,alloc_err
TYPE real-ptr

REAL, POINTER :: ptr
END TYPE real-ptr
TYPE(real-ptr), DlMENSION(:),

! Get number of numbers
PRINT *,"How many numbers are there? (between 5 and 20)"
DO

READ *,n
IF (5<=n .AND. n<=20) EXIT
PRINT *,"Between 5 and 20 please.

END DO

i
ITry again!"

! Create an array of pointers
ALLOCATE(x(n),STAT=alloc_err)
IF (alloc_err/=O) THEN

PRINT *,"Allocation error ",alloc_err," when trying &
&to allocate space for array of pointers"

STOP
END IF
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! Create n real variables and read numbers into them
DO i=l,n j

ALLOCATE(x(i)%ptr,STAT=alloc_err)
IF (alloc_err/=O) THEN

PRINT *,"Allocation error ",alloc_err,", when &
&trying to allocate space for variable ",i

STOP
END IF
PRINT *, "Next number: "
READ *,x(i)%ptr
! Update total, max_abs and min_abs
total = total + x(i)%ptr
IF (ABS(x(i)%ptr) > max_abs) max_abs = ABS(x(i)%ptr)
IF (ABS(x(i)%ptr) < min_abs) min_abs = ABS(x(i)%ptr)

END DO

! Calculate mean
mean = total/n
! Print results
PRINT t;, "Largest absolute value is ",max_abs c

PRINT ~,"Smallest absolute value is ",min_abs
PRINT *, "Mean of all the numbers is ",mean "~

END PROGRAM exercise_l6_2
Note that it is not permissible to allocate all the real variables in a single statement, such as

ALLOCATE (x%ptr, STAT=alloc_err) I,

since ptr is a component of each element of the array x, not of the array itself. The
following program shows how the program can be modified to use a pointer array instead
of an array of pointers: "

PROGRAM exercise_l6_2a
IMPLICIT NONE
! This program is an exercise in using a pointer array
! Declarations
REAL :: max_abs,min_abs,mean
INTEGER:: n,i,alloc_err
REAL, DIMENSION(:), POINTER:: x
! Get number of numbers
PRINT *,"How many numbers are there? (between 5 and 20)"
DO

READ *,n
IF (5<=n .AND. n<=20) EXIT
PRINT *,"Between 5 and 20 please. Try again!"

END DO
! Create pointer array
ALLOCATE(x(n),STAT=alloc_err)
IF (alloc_err/=O) THEN

PRINT *, "Allocation error" ,alloc_err," when &
&trying to allocate space for pointer array"

STOP
END IF
! Read data
PRINT *,"Type ",n," numbers"
READ *, (x(i) ,i=l,n)

(
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! Calculate required values
max_abs = MAXVAL(ABS(x))
min_abs = MINVAL(ABS(x))
mean = SUM(x)/n
! Print results
PRINT *,"Largest absolute value is ",max_abs
PRINT *,"Smallest absolute value is ",min_abs
PRINT *, "Mean of all the numbers is ",mean

END PROGRAM exercise_l6_2a

18.4 The solutions to the sets of equations are as shown below:

(a) x = 3.0 Y = -2.0 z = 4.0
(b) x = - 1.0 Y = 2.0 z = - 1.0
(e) y = -2.0 and x = 2z - 3.

The problem here is that the equations are not independent. This can easily be
seen by adding twice the second equation to the first equation, which leads to the
conclusion that y = 2, and then substituting this value for y into all three
equations, resulting in the following equations:

-2x+4z = 6

x - 2z=-3

3x - 6z=-9

These are clearly all the same equation, thus showing that the system of equations
has no unique solution.

In this situation the back-substitution step will fail. Ideally, you should
check for this possibility, but the method for doing this is beyond the scope of this
book - though not particularly difficult.
(d) x = 2.0 Y = -1.0 z = 4.0 w = 3.0
(e) x=2.0 y=1.0 z=-3.0 w=3.0 t=-1.0

This is a rather sparse system, but it should not cause any problems.
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Stock item hash table look-up 535
Stock item look-up 532

Cash machine simulation procedures 588
Cash machine simulation type definition 587
Chemical stock control data and procedures 53:1
'complex_number arithmetic (12.4) 800
Contad database 577, 597
Cubic spline interpolation procedures 667

Definition of complex_number derived type 113
Definition of geometric derived types 118

Gaussian elimination procedures 653
Geometric definition procedures 118, 144 I
'Geometric type definitions and procedures (12.~)

801
Geometric types and procedures 393
'Global data (4.4) 788

Numerical quadrature procedures 679

Polygon convexivity type definition and
procedures 444

Rational number type definition and procedures
418

'Seismology type definition (8.13) 794
Survey data type definition and codes 521
Survey data types and codes 296

Tridiagonal Gaussian elimination procedures 661

Vedor type and procedures 402
Vedor type definition and procedures 410





Index

In the worked examples throughout this book, those features of the Fortran 90 language which have been
introduced in the same chapter as the example program are printed in blue. In this index references to these
instancesare enclosed in brackets to distinguish them from referencesto the text of the book. Where both would
refer to the same page only the reference to the text is shown. It should also be noted that only those intrinsic
procedures that are important to the use of a language feature are shown in the main index, although all those
referred to in the body of the book are listed under the intrinsic procedures heading; full details of all intrinsic
procedures will be found in Appendix A, pages 695-722. Finally,the Glossary on pages 735-51 contains brief
explanations of 412 Fortran terms and expressions;these are not included in this index.

A edit descriptor 242,245-6,252,254-5,515
ACCESS specifier 509,511,526, [532],544
accuracyof real arithmetic 140
ACTION specifier 287, 544
actual argument 89-90,96,98-101,110,115,117,

214,350,352,357,371,377,408,438,447,
582

actual array argument 213,219, [227]
actual pointer argument 581-2
ADVANCE specifier 518, [523]
Airbus A-300 106
allocatablearray 449-55, [456-8], 546, 567, 569-

71,580-2
ALLOCATABLE attribute 449-50,455, [456]
ALLOCATE statement 450-2, [457],568-73, [578,

591,598]
ALLOCATED intrinsicfunction 455,464,582
allocation statement 449
allocation status 450, 453, 569
alphabeticsorting 379
alternate RETURNstatement 734
AmericanNational Standards Institute 9
AmericanStandard Code for Information

Interchange see ASCII
AmericanStandard FORTRAN 9
American Standards Association 9
ampersand 22,32,547
analysis 16

Anfie1d 152
ANSI 9
application-orienteddata structure x
APT IV 617-21
argument 21-2, 83, 94, 96, 105, 350, 581, 583,

606,610
arithmeticexpression 45-7, 50, 133
arithmetic IF statement 162, 732, 734
arithmeticoperator 47, 133, 136
arithmeticunit 4
array 202-9,428-30,432,436,438-9,467,529,

558,566,570,656
assumed-shape 214-15, [217],218-19, 221,

[223,227],357, 413, 436, 438-40, 443, 447,
449, 567, 653, 661

assumed-size 220, 436, 448
automatic 219-21,226, [227],229, 362, 436,

446-9,453-4,546
constant 205-6,210
constructor 205-7, [227],429, 433-4
deferred-shape 224,450,567
dummy argument 546
element 202-3,205,207,209, [217-18, 227-8],

428,432,434-5,439,447,449,466-7,470,
537

explicit-shape 204-5,219-21,224, [227-8],
229,436-8,440,446-7,463,567

input 207, 435

813
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array (cont.)
name in an input/output list 207
output 207, 435
pointer 566-7,570,574

array element order 432-6, 609
array of pointers 576-7, [578], 580
array processing vi, 210-11, 433, 460-4, 467, 571
array processing intrinsic procedures 464
array section 218, 229, 467-70, 568, 656
array specification 203, 214
array variable 203, 209-10, 606
array-valued derived-type component 224
array-valued function 220,222, [223, 227]. 463
array-valued literal constant 433
ASCII

code 148-9, 727-8
collating sequence 148-9

assembly language 7
ASSIGN statement 732, 734
assigned GOTO 162, 732
assignment operator 411
assignment statement 45, [55]. 60, 62, [64, 71, 73],

94,100,412,465,470,490,563-4
ASSOCIATED intrinsic function 562, 582, [588-90,

598]
assumed-length dummy argument 101, [102-4],

218
assumed-shape array 214-15, [217], 218-19, 221,

[223,227],357,413,436,438-40,443,447,
449,567,653,661

assumed-size array 220, 436, 448
asterisk
format specifier 241
to indicate default input unit 258
to indicate default output unit 261

Atlas computer 25
attribute

ALLOCATABLE 449-50, 455, [456]
DIMENSION 203,205,220,428,431,437-8,449,

463, 467, 567
EXTERNAL 92, 340, 353, [355], 724
INTENT 90,95,98-100, [102-4,113-14],116,

[118], 218, 353, 408, 412, 581
INTRINSIC 353, [355], 356
OPTIONAL 358, [360, 383]
PARAMETER 66,90,431,563
POINTER 558-9, 563, [578, 588-91, 597]
PRIVATE 405,413
PUBLIC 405,413
SAVE 362-3, 453, 613
SEQUENCE 731
TARGET 560-1, 563

automatic array 219-21,226, [227J, 229, 362, 436,
446-9,453-4,546

B edit descriptor 513, 515
back substitution 650, 652, 659-60
back-up 282, 534
BACKSPACE statement 284,287-8,291-2, [298]
Backus, John v, 7
backward substitution 648
Basic FORTRAN 9
batch working 25
bicubic patches 671
bicubic spline interpolation 657,671
binary digit see bit
binary number 515
binary operator 50, 136, 408
binary tree 592-4, 596-9
bisection method 334-41,366-8,628,633,635,

639-41,646-7
bit 7,41,314
blank character 20, 32-3
blank COMMON611-12,614
BLANK specifier 508-9,517,544
block data program unit 87,89,611-12
BLOCK DATA statement 611
block IF construct 131, 137-8, 142, 145-6, 152-3,

159-61, 185, 467
block IF statement 131, 137, [139, 143], 145, [150,

161]
BN edit descriptor 509,513,517, 733
bottom-up design 17
bounds see index bounds
branch 592, 594, 596
bridge
Fatih Sultan Mehmet xii
Forth xii
Iron xi

bubble sort 233
BZ edit descriptor 509,513,517, 733

CAD 440
CALL statement 21,94,97-8, [119], 352, 357, 611
CAM 440
CASE construct 151-4, 157-61, 185, 192,260
CASE DEFAULT statement 153-4, [156]
case expression 153, 157
case selector 153-4, 156
CASE statement 153-4, [155-6], 157, [160],

189-90
central processing unit 4
character 58-60, 62, 133, 240, 414, 478, 489
argument 101
array 240
assignment 60-2
constant 54, 58-9, 62, 240, 482
context 22
data input/output 61-2



expression 133, 153, 156, 240
length 59, 203, 218, 245
repertoire 482, 486-7
storage unit 58, 607
substring 62

charader constant edit descriptor 252, 256
charader set
default 59, 478, 482
Fortran 58-9, 146, 282, 482

CHARACTER statement 59-60, [64],103
charader variables in a COMMON block 609
charaderistics
• dummy argument 351
result variable '351

Chicago Cubs 151
CLOSE statement 511
closing a file 285
CMPLX intrinsic fundion 488, 490, 494, [499]
coded charader set 486
collating sequence 146
ASCII 148-9

comment 20,32-3,59,99--100,142
liberal use of 20, 30
trailing 20-1, 32

COMMONblock viii, 219, 376, 607-17, 619--20, 622
COMMONblock name 608-11, 622
COMMON statement 608,610-12
comparing charader strings 146-8
comparison of integer and real values 140
comparison of two real numbers 141
compilation error 27-8,100-1,484-5,558
compiler 8-9, 16,24,27, 84,90,92,203,205,262,

352,371,461,484,606-7,610,615
complex arithmetic 72-4,112-14,494-6, [499]
COMPLEX statement 492, [498]
COMPLEX type 398, 478, 492-4
input!output 496

component 106
derived type 67-8,481,574

computational programming 2
computed GOTO 161-2, 732, 734
computer 2-3
massively parallel 12
stored-program 3

computer-aided design 440
computer-aided manufacture 440,610
Computing Teaching Centre viii
concatenation 62
operator 62, [64],490

conditioning 318,628
conformable arrays 210,221-2,460,462
constant 7, 50, 98, 110, 479, 481, 483, 723
charader 54,58-9
derived type 67-8
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integer 50, 54
literal 50, 66
named 66
real 51,54

constant expression 66
CONTAINS statement 116, [118],377, [381]
continuation line 22, 32, 34
CONTINUE statement 732
control information list 258
control unit 4
convergence criteria 334-5,337,635,642
convexity, determination of 440-6
count-controlled DO loop 172
CPU 4-5
CTC viii-ix
cubic spline interpolation 657,662-71
curve-fiHing 629, 657, 662-71
CYCLE statement 185, 187-8, 191

D edit descriptor 513-15,733
Darius,King of Persia xii
Dartmouth College 25
data abstradion x,413
data design 119--22,142, 149, 154-5, 158-9, 174,

176, 178, 181,217,223,226,248,267,295-6,
354,359,364,380,400,401,417,443,497-8,
530,538,636,643

data hiding 405
DATA statement 74,608, 731
data structure 119, 575
application-oriented x

database 525
DEALLOCATE statement 449,451-2, [458],570, 572,

[579]
debugging 29, 308
decimalexponent range 315
decimalprecision 315
declaration statement 21,43,59-60, 74,98-9,

102,203,485
decryption algorithm 387,389
default
accessibility 406
charader set 59, 478, 482
exponent range 478
input device 21
input unit 52,237-8,240,257-9,280,284
kind 478
output device 21
output unit 52, 238, 240, 258, 261, 263, 280,

284,291
precision 478
private accessibility 406,415
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deferred-shape array 224, 450, 567
defined assignment 412-13,465
for rational arithmetic 417

defined operation 407-8, 413
definite integral 672
DELIM specifier 5q9-10, 544
delimiter 206
dereferencing 563-4,566,572
derived type x, 67-8, [71, 73], 104, 110, 112, 224,

374,376,398-9,406,416,454,480-1,492,
548,558-9,561,566,573,576,585,593,615,
723

argument 101, 112
component 67-8, [71, 73], 546, 723
constant 67-8
definition in a module 112-14

design 30, 308
bottom-up 17
modular 30
poor 29
principles 17
top-down 17

diagnostic 8
dimension 204,214,430-2,437,439,450
attribute 203,205,220,428,431,437-8,449,

463,467,567
DIMENSION statement 731
direct access 282,292,511,525-9, [532]

READ statement 526--7, [533-4]
WRITE statement 526--7, [533]

DIRECT specifier 544
DO construct 171-2, 187
DO loop 172--6, 178-80, 184-5,191,248,461,

469,641, 731 \
DO statement 145, 171-3, [175, 177-8], 179-80,

[182], 188, 191, 731
DO variable 172-4, 179-81, 184
DOWHILE statement 193, 732
DOUBLE PRECISION 342, 730
double-precision hardware 315,317
doubly linked list 602
dummy argument 89-90,95--6,98-101,104-5,

106,110,115,117,214,220-1,229,351-3,
357,362,371,377-8,412,437-8,443,446--7,
449,454,582,608

dummy array argument 213-15,219
dummy pointer argument 582
dynamic data structure 592,599
dynamically allocated array 558

E edit descriptor 242,245,252-4,269-70,513-16
edit descriptor 240-1, 512
A 242,245--6,252,254-5,515
B 513,515

BN 509,513,517, 733
BZ 509,513,517, 733
character constant 252,256
D 513-15,733
E 242,245,252-4,269-70,513-16
EN 513-15
ES 513-15
F 242,244-5,248,252-4,269-70,514-16
G 513,515--6
H 733
I 241-2,250,252,512,513,515
L 242,246,252,255,515
o 513,515
P 516, 734
S 513,517
SP 513,517
SS 513,517
T 242-3, 252, 256
TL 242-4, 252, 256
TR 242-3,252,256
X 242-3, 252, 256, 268
/ 265--6
: 513,516--17

editor 27, 623
electronic filter circuit 496--501
element-by-element processing 210, 461, 464
elemental intrinsic procedure 211-12,223,463-4
ELSE IF statement 130, 132, 137-8, [143, 150,

161], 190
ELSE statement 130-2, 137-8, [143, 145, 150, 161],

190
embedded format 240-1, [249]
EN edit descriptor 513-15
encryption algorithm 387, 389
END DO statement 171-3, [175, 177-8], 179, [183],

185, 187-8, 191
END FUNCTION statement 91
END IF statement 131-2, 137, [139, 143, 145, 150,

161], 189, 191
END INTERFACE statement 351
END MODULE statement 109
END PROGRAMstatement 87
END SELECT statement 191, [156, 160]
END specifier 512, 733
END statement 23, 91, 250, 351
END SUBROUTINE statement 95
end-of-file condition 260-1,284,288,518-19,524
end-of-record condition 260-1,518
endfile record 281, 283-4, 288, 292, 512
ENDFILE statement 283-5,287,289,291-2
ENTRY statement 734
EOR specifier 518-19, 733
EOSHIFT intrinsic function 464
equality of two real numbers 141, 145, 157

---------------------- . --- -------- -- ----, .. - --- ------



EQUIVALENCE statement 615-17, 619-20
ERR specifier 512,541, 733
errors 26,99-100,260,284,288-9,518-19

checking for 31,459-60,524
compilation 27-8,100-1,484-5,558
execution 28, 100-1, 534
grammatical 26-7
logical 27, 26
semantic 26-8
syntactic 26-7

ES edit descriptor 513-15
Euclid's algorithm for highest common factor 388
EuIer's method 690-1
executable statement 21,87,205,547,608
execution efficiency 559-60
execution error 28, 100-1, 534
EXIST specifier 542
EXIT statement 179-80, 185, 187-8, 191, 193
explicit interface 115, 117,215,350-2,356-8,

370-1,376,378,408,438,463,581-3,653,
661,667,681

explicit-shape array 204-5,219-21,224, [227-8],
229, 436-8, 440, 446-7, 463, 567

exponent 41-2,51,253-4,312,314,514-15
range 314,318,478,485-6,492-3

exponential format 514
expression 45,94,98

arithmetic 45, 47, 46, 50
constant 66
evaluation 47-8
in an output list 56
mixed-mode 46, 48

extended operators for rational arithmetic 416
extending an intrinsic operator 408-9
extent 204,210,214,219,229,431-2,438,450,

566-9
EXTERNAL attribute 92, 340, 353, [355], 724
external file 281, 525
external procedure 87,89,94, 109,350,376-8,

608
EXTERNAL statement 353-4, 611, 724

F edit descriptor 242, 244-5, 248, 252-4, 269-70,
514-16

fail-safe mechanism 180, 185
Fatih Sultan Mehmet Bridge xii
field width 239, 268
file 4, 237, 280, 282, 285, 508, 510, 549

catalogue 282
connection 284-7, 289, 508
creation 285
disconnection 289,511
existence 285
position 284,518

Index 817

FILE specifier 285-6, [290, 297], 541
file store 4,237,280-1,285
fixed source form 33-4, 729
floating-point numbers 42-3,310,314-15,317,

631,635
FMT specifier 240, 259, [269], 547
FORM specifier 287, 544
format 240,242-3,263,512

embedded 240-1, [249]
list-directed 51,53

FORMAT statement 241,250-1, [269]
formatted file 511,518,526-7
formatted input/output statement 282,508-10,

512,547
formatted record 281-3, 525
FORMATTED specifier 544
Forth Bridges xii
FORTRAN 66 v, 9
FORTRAN 77 v, 9, 115, 145,210,293,351,357,

606,609-10,615
first compiler 9
function reference 115
processor 623
subroutine call 115

Fortran 90
compiler ix, 284
core language vi
names 44
processor 483,623
standard viii, 10, 193,378,414,482,484,487
superset of FORTRAN 77 vi, vii, 10

Fortran Character Set 58-9, 146, 282, 482
FORTRAN II v, 8-9
FORTRAN IV v, 9

compiler 9
free source form 32-3
FTP xi
function 82-3, 87-90, 101-2, 109, 350, 408, 606

length 102-4
name 92
reference 83-4, 89, 93-4, 96, 103, 115, 352
result 94, 454, 463, 583
type 92, 103, 353, 369, 463
with no arguments 92

function actual argument 353, [355-6]
function dummy argument 353, [355]
FUNCTION statement 89,91, [102-4], 220-1,351-2,

463

G edit descriptor 513, 515-16
Gauss-Seidel method 688
Gaussian elimination 469, 647-56, 658-61
general-purpose language 9
generalized edit descriptor 515
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generic
defined operator 409
function 84
identifier 723
interface 723
interface block 371-2, [373-4]
name 371
operator 413
procedure 370-1,408,413-14

geometric sub-system 69-71,117-19,126,144-5,
165, 372-4, 393-4

geometry module x, 117-19, 126, 144-5, 165,
372-4, 393-4, 441

global accessibility 110
global data structure 620
global entity 376
global name 607, 611, 724
global storage 606-7
good programming design 307
goodness of fit 327
GOTO statement 192, 732
grandfather-father-son file cycle 534, 545

Hedit descriptor 733
hash table 534-5
head 584-{)
hexadecimal number 515
high-level language 8,24,617
high-level program 8
host 375,377, 723
host association 219,376-8,380,392,437, 723-4
host program unit 377-8,397
host scoping unit 375

I edit descriptor 241-2,250,252,512,513,515
IBM 7,9,258

7030 computer 9
704 computer 7-8
7090 computer 9
7094 computer 9
FORTRAN 8

IF construct 192,260
IF statement 130-2, 189, 191, 193
ill-conditioned problem 18,318-20
imaginary part (of a complex number) 492
implicit declaration 44, 730
implicit interface 115,350-1
IMPLICIT NONE statement 20, 44, [55, 64, 71, 73],

110,356
IMPLICIT statement 731
implied DO 206-8, 376, 434-5
IMSL library 11, 628-9
INCLUDE line 623
index array 216, 226

index bounds 432, 436-8, 450, 566-7
infinite loop 180
initial point in a file 288
initial statement 87, 109
initial value 65-{), 429, 610-12
initialization expression 479-80
injection sort 577-9,593-9
input device 4
input editing 239,241
input list 51, 207, 241, 283, 435, 547
input record 243
input statement 30, 239
list-directed 21,51-2,61

input unit 258
input! output statement 566
INQUIRE statement 541-5
inquire-by-file 541-2
inquire-by-output-list 544
inquire-by-unit 541-2
Instructor's Guide vii-viii, x
INT intrinsic function 141,488-9
integer 40-2
argument 101
constant 50, 54
division 49,56, 176
expression 153, 202-3
literal constant 481
numbers 310

INTEGER_SETS module 414
integration 629, 672-85
INTENT attribute 90,95,98-100, [102-4, 113-14],

116, [118], 218, 353, 408, 412, 581
INTENT statement 361
interface 87, 106, 108, 606, 723
INTERFACE ASSIGNMENT statement 412, [418]
interface block 351-2,357,370-1,408,412,582-

3,723
interface body 351,374-5,408,412, 724
INTERFACE OPERATOR statement 408, [411, 418]
INTERFACE statement 351,371, [373]
internal file 258, 281, 536-7, [540]
internal procedure 376-8, [381], 392, 397, 591, 723
internal variable 90
International Business Machines see IBM
International Organization for Standardization see

ISO
International Standards Organization see ISO
Internet xi
interpolation 629
INTRINSIC attribute 353, [355], 356
intrinsic data type 67, 478, 480
intrinsic functions with an optional KIND argument

490
intrinsic operations 408, 462
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job control language 25

keyword 20, 44, 258
argument 357-9

KIND intrinsic function 314,455,488
kind selector 479-81,492
kind type 478, 481-3, 485-6, 493 I
kind type parameter 314-15,317, [331-2, 338-9J,

478-88, 492-4 j'

of an expression 490

1

!
1

TRANSPOSE 429, 464
TRIM 63, [64], 102-3
UBOUND 215,439,464
UNPACK 464

INTRINSIC statement 361
IOLENGTB specifier 544
IOSTAT specifier 260, 284, 289, [290], 291, [297],1

451,511-12,518,541,543 .
Iron Bridge xi
ISO 10, 646, 728
ISOIIEC 10646 482
iteration count 173, 185
iterative methods 334
iterative solution of non-linear equations 333-4

L edit descriptor 242, 246, 252, 255, 515
label see statement label
Lahey Fortran 90 compiler ix
language extension 413-14
layout of data 236
iayout of results 236, 239
LBOUND intrinsic function 215, 439, 464
leading blanks 103
least squares approximation 325-7, 332, 628, 671
LEN intrinsic function 103, [217], 218, 455 i
length i

of a character argument 101-2 .
of a character variable 480 i
of an endfile record 284 I

specification 59-60, 101 148-9, 353, II
lexical comparison intrinsic functions

728
LGE intrinsic function 148, 728
LGT intrinsic function 148, 728
library 11, 89, 105-6, 611, 618

IMSL 11
NAG 11

line
continuation 32, 34
maximum length of 32
multiple statements on a 32, 34

linked list 575, 580, 584-93

intrinsic procedures 63, 82-4, 86, 94, 350, 465,
608

ACHAR 149, [150]
ADJUSTL 102-3
AIMAG 495, [499]
AINT 490
ALL 464
ALLOCATED 455,464,582
ANINT 490
ANY 464
ASSOCIATED 562, 582, [588-90, 598]
CHAR 490
CMPLX 488,490, 494, [499]
CONJG 495
COUNT 464
CSBIFT 464
DIGITS 455
DOT_PRODUCT 429, 464
EOSBIFT 464
EXP 323
BUGE 175
IACHAR 149, [150]
INT 141, 488-9
KIND 314,455,488
LBOUND 215,439,464
LEN 103, [217], 218, 455
LGE 148,728
LGT 148,728
LLE 148,728
LLT 148,728
LOG .83
LOGICAL 489
MATMOL 429, 464
MAXLOC 429, 464
MAXVAL 464
MERGE 464
MINLOC 464
MINVAL 429,464
MVBITS 212
NINT 490
PRESENT 358, [360, 383]
PRODUCT 429,464
RANDOM_NUMBER 212
REAL 176, 184,488-9
RESHAPE 434, 464
SELECTED_INT_KIND 483-4, 486
SELECTED_REAL_KIND 315-18, [331, 338], 485-6,

492
SHAPE 464
SIN 83
SIZE 215, [217], 218, [223], 439, 463-4
SPREAD 464
SQRT 83, [86]
SUM 429, 464, 469
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list-directed
data value termination on input 52
format specifier 241
formatting 51,53,182,510,518,527,547
input 21,51-2,61,238-9
output 21,51-3,61,255-6,261
PRINT statement 237, 239-40
READ statement 237-40

literal constant 50,54,62,66,431,481,484
array-valued 433

Liverpool F.e. 152
LLE intrinsic function 148, 728
LLT intrinsic function 148, 728
local entities which hide entities in the host 724
local entity 376
local variable 90, 105-6,361-3,378
locality of variables 104-5
logical

expression 132, 134, 136-7, 146, 153
function 134
literal constant 134
value 132-3
variable 134, 136

logical IF statement. 145-6
LOGICAL intrinsic function 489
logical operator 135-6, 462, 490

priority 137
LOGICAL statement 134
look-up table 530, 535
loop 171, 209-10
loss of precision 141
lower bound 204, 208, 432, 437-9, 468
lower case letters 20, 146-7, 149

machine code 7-8
magnetic disk 4,24,281
magnetic media 4
magnetic tape 4,24,281-2,292,512
magneto-optical media 4
main program 19,21, 130,614

name 56
main program unit 19,87, 108,363,392
maintainability 29
Manchester University 25
mantissa 41-2,51,253,314,514,516
many-one array section 470
masked array assignment 465-6
Massachusetts Institute of Technology 25
massively parallel computer 12
matrix 397, 399, 428, 430

multiplication 430, 435
operations 429

maximum iteration count 641

memory 3-6,40-1,58,240,283,558,584,607,
610,613

location 202, 209
sharing 615

microcomputer 5,25
MIL STD 1753 10
mixed kind expressions 488
mixed-mode expression 46, 48, 184, 342, 494
modular design 30
modular program development 106
module vi, ix, 87-8, 109-12, 116, 119, 121,219-

20,350-1,356-7,372,376,392,395-7,405-
6,408,414,456,459,483-4,487,582-3,591,
606,610,617,620-3,653,661,667,681,723

module procedure 115-16,215,371-2,376,392
MODULE PROCEDURE statement 372, [373], 408
MODULE statement 109, [113, 118]
module variable 363
multi-record format 263, 265-6
multiprogramming 25

NAG library 11, 628-9
NAME specifier 542
name-value subsequence 547
named block DO construct 188
named block IF construct 189-90
named CASE construct 189-90
named COMMONblock 608-13,614,618
named constant 66,376,431,481,608
NAMED specifier 542
namelist

formatting 510,518,527,537
group 546, 548, 723-4
input/output 545-7,549
specifier 547-8

NAMELIST statement 546-7
negative iteration count 173
negative subscript value 204
nested DO loops 176, 187
nested implied DO element 207
nested scoping unit 375
Newton's iteration 635
Newton's method 633-40,642,646-7
Newton-Raphson method see Newton's method
NEXTREC specifier 543
NML specifier 547-8
node 575,592,594,596
non-advancing input/output 517-19,524,527
non-advancing READ statement 518-19, [523]
non-counting DO loop 180
non-default

character 486-7
character set 510
complex number 492



integer 483-4
kind 482
logical 486-7
real 316-20,484-6

non-linear equation
solution by bisection method 334-41, 366-8,

628,633,635,639-41,646-7
solution by Newton's method 633-40,642,

646-7
solution by secant method 640-7

normalized. decimal floating-point form 310-13
null value 52, 238
NULLIFY statement 562,570,572-3, [588-9, 598]
NUMBER specifier 542
numeric storage unit 58, 607-8
numerical algorithms 313
numerical analysis 11
numerical computation 628
numerical libraries 629
numerical methods 11,310
numerical programming 628
numerical quadrature 672-85
numerical sorting 379
numerically-controlled machine-tool 617-18

o edit descriptor 513, 515
object-oriented programming 414
obsolescent features of Fortran 90 vii-viii, 30,

729-34
octal 7
octal number 515
ONLY qualifier 396-7, 723
OPEN statement 258,285-8, [290, 297], 508-9, 511,

517,526,528,541,543,545
OPENED specifier 542
operating system 16, 24-5, 282, 284
operator priorities 47, 133, 135-6
operators 407

arithmetic 47
binary 50
concatenation 62
unary 50

optical disk 281
optical media 4
optional argument 358-9, [360, 383]
OPTIONAL attribute 358, [360, 383]
OPTIONAL statement 361
order of evaluation 47-9

effect of parentheses 49
output 30
output device 4
output editing 239
output format 53, 241
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output list 51, 94, 207, 241, 283, 435, 547
expression in 56

output statement 239
list-directed 21,51-3,61

overflow 158,311,341,630-2
overwriting memory locations 208
Oxford University viii

P edit descriptor 516, 734
PACK intrinsic procedure 464
PAD specifier 509-10,518,544
padding character 510,519
PARAMETER attribute 66,90,431,563
PARAMETER statement 74, 730
parameterized constants 319, [331]. 488
parameterized data types 487,615
parameterized real variables 314, [331-2, 338--9],

342,478,486,628
parameterized variables 488
parentheses to alter order of evaluation 135-6
partial differential equations 657
partial pivoting 651
PAUSE statement 733
peripheral device 5
pivot 650
pointer 454,546,558-66,568-79,581-94,596-9,

656
allocation 580-1
array 568-72
assignment 560-1,563-5,568, [579-80], 583,

[588-9]
association status 559-62,569,571,573
component of a derived type object 573,575,

580
deallocation 580-2
dummy argument 581
input and output 580
target 560
variable 571

POINTER attribute 558-9,563, [578, 588-91, 597]
POINTER statement 559-60
pointer-valued function 583
portability 8, 29-30, 342, 478, 482-3, 485-6, 488,

628
position of a FORMAT statement 250
POSITION specifier 288, 293, [297], 543-4
positional argument 358
precision 140,310,313-14,316-18,342,478,

483,485-6,492-3,628
preconnected input/output units 258,284
PRESENT intrinsic function 358, [360, 383]
preserving values in COMMONblocks 613-14
prime numbers 474,601
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PRINT statement 21-2,51-3, [55], 58, 61, [64], 68,
[71, 73],238,240,257,261,263,547

printer 237-8,252,261-2,510
printer control character 261-3
PRIVATE attribute 405, 413
private components of a derived type 399, 415
PRIVATE qualifier 399, [402, 418]
PRIVATE statement 406, [418], 681
procedure 18, 21, 82, 86, 90, 101, 350, 723

argument 353
interface 106, 111, 115, 213, 351
intrinsic 63, 86
libraries 30
size 107-8, 308

PRODUCT intrinsic function 429, 464
program 3-4

design ix
errors 26
name 20,23
structure 28
testing 31
worked examples ix

program development 398
program loop 171
program maintenance 398
program modification 308
program name 23
program repetition 170
PROGRAMstatement 19-20,23,87
program unit 87,374,376,606-8,622

block data 87,89
external subprogram 87
function subprogram 87-8
main 19,87
module 87-8
subroutine subprogram 87-8

programming
as an art 16
basic steps 16
computational 2
as an engineering discipline 16
as a science 16
scientific 2
technological 2

programming error 452
programming languages 2, 7-8
programs in electronic form vii, x-xi
PUBLIC attribute 405, 413
public components of a derived type 399
public entity 89, 723
public entity list 406
PUBLIC statement 406, [411], 415, [418], 981
punched card 33

quadratic equation 319,629-33
quadratic function 333-4
Quicksort 389

random access 281,525
range 314,342,483,486
range of a DO loop 176
rank 204,210,214,428,430,432,434,437-9,

449,467,470,566-8
rational number arithmetic 415-19
rational number derived type 416-19
READ specifier 544
READ statement 21,45,51-2, [55], 61, [64J, 68, [71,

73],237,240-3,246,250,257-8,260,264,
280,283-5,287-9,470,508-9,512,518,526,
548

read-only file 287
READIiRITE specifier 544
real

argument 101
arithmetic operation 140
constant 51,54,317
DO variable 732
exponential literal constant 51
expression .153
literal constant 481
number 21,41-3,310
part (of a complex number) 492
variable 314

REAL intrinsic function 176, 184,488-9
REAL statement 43, [55]
REC specifier 526-7, [533-4]
RECL specifier 509,511,526-8, [532], 543
record 265,280-1,517-18,525
record length 511,518,526-8,542
record number 526, 529, 534
recursion 93, 96
recursive

algorithms 366
bisection method 366-8
data structure 599
function 369
procedure 363,599
process 597
reference 112
subroutine 364, [365, 367-8]

RECURSIVE qualifier 364, [365, 367, 369]
register 48, 311, 315
relational expression 132-3, 140, 147
relational operator 132-3, 135-6,409
rename list 723
renaming of module entities 395-7
repeat count 255-6
repeatable edit descriptor 268



repeated format 263-4, 266
RESHAPE intrinsic function 434, 464
reshaping an array 434
residual 326-7
residual sum 327
restricting access to module entities 397-8
restrictions on a logical IF statement 145
restrictions on statements in a DO loop 176
result length 103-4
RESULT specification 369, 583
result variable 90-1,110,221,350-1,369,583
return from a procedure 191
RETURN statement 191-2,299
REWIND statement 284, 287-8, 292
root 592, 594
roots of a quadratic equation 133, 156-61, 334,

629-33
round-off error 283,312-13,319,321-2,628,631,

663
rounding error 140-1
rounding errors in hand calculation 140
rules

for associating actual and dummy arguments
356-7

for Fortran names 44
for input of character strings 245
for output of character strings 255

S edit descriptor 513,517
Salford Software Fortran 90 compiler ix
sample solutions vii-viii, x

in electronic form vii, x
SAVE attribute 362-3, 453, 613
SAVE statement 110-11, [113, 118],363,459,614-

15
in a module 363

scalar 428, 439, 558
conformable with an array 210-11,462

scalar product of two vectors 400-4
scalar variable 203, 207, 209, 606
scale factor 516, 734
scientific programming 2
scope 374,376
scoping unit 374-6,378,395,397, 723-4
scratch file 286-7
secant method 640-7
SELECT CASE statement 145, 153, [155, 160], 189,

191
SELECTED_INT_KIND intrinsic function 483-4, 486
SELECTED_REAL_KIND intrinsic function 315-18,

[331,338],485-6,492
self-consistent data 31
semantic error 26-8
SEQUENCE attribute 731
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sequential access 282,511,518,525
sequential file 284, 288
sequential input/output statement 527
sequential processing 130
SEQUENTIAL specifier 544
sequential storage medium 281
shape 204,210,219,221,432,438,449,460,462,

464
SHAPE intrinsic procedure 464
Sieve of Eratosthenes 474,601
simultaneous linear equations 647-56
single-precision hardware 315, 317-18
size 203-4,431-2,439,452
SIZE intrinsic function 215, [217], 218, [223), 439,

463-4
SIZE specifier 519
software 2
software engineering 106
solution of first-order differential equation 690-1
solution of simultaneous linear equations 688
sorting

bubble 233
injection 577-9, 593-9
Quicksort 388
straight selection 216

source editor 27, 623
source form 32-3

fixed form 34, 33
free form 32-3

SP edit descriptor 513,517
space character 20, 238
spaghetti programs 192
sparse matrix 558
sparse systems of linear equations 647
specific name of an intrinsic function 353
specification 16
specification expression 437
specification statement 21,87,351,547,608
specifier 258, 508

ACCESS 509, 511, 526, [532], 544
ACTION 287,544
ADVANCE 518, [523)
BLANK 508-9,517,544
DELIM 509-10, 544
END 512,733
EOR 518-19,733
ERR 512, 541, 733
EXIST 542
FILE 285-6, [290, 297], 541
FMT 240, 259, [269], 547
FORM 287, 544
FORMATTED 544
IOLENGTB 544
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specifier (cont.)

IOSTAT 260, 284, 289, [290], 291, [297], 451,
511-12,518,541,543

NAME 542
NAMED 542
NEXTREC 543
NML 547'-8
NUMBER 542
OPENED 542
PAD 509-10,518,544
POSITION 288, 293, [297], 543-4
READ 544
READWRITE 544
REC 526--7, [533-4]
RECL 509,511,526--8, [532], 543
SEQUENTIAL 544
SIZE 519
STATUS 286--7, [290], 511
UNFORMATTED 544
WRITE 544

spline 662
SPSS 11
SS edit descriptor 513,517
stability 318,628
stable algorithm 321-4
stable numerical process 321
statement entity 376
statement fundion 384, 734
statement label 32,34,192-3,240--1,250
statement order 725--6
STATUS specifier 286--7, [290], 511
STOP statement 191-2
storage association viii, 606, 731
storage location 6--7
storage media

magnetic 4
magneto-optical 4
optical 4

storage unit 203, 615
charader 58
numeric 58

stored-program computer 3
straight seledion sorting 216
strudure construdor 67-8,399
strudure plan ix, 17-19,21-2,28,55,64,71,85-

6,106--8,117-19,122,138-9,142-4,150,
154-5, 158-9, 170--1, 174, 176, 178, 181-2,
217,223,226,248,267,296,336--7,355,
359--60,365,379-80,400--2,417,442-3,
455--6,498,521,530--1,538,577,636,643,
651-3,678-9

subprogram 18,86, 106,374,377,392
fundion 89--90

subprogram interface 92

subroutine 21,82,93-4, 101-2, 109,606
adual argument 353-4
arguments 99
call 115
dummy argument 353
interface 96
library 89, 284
name 96
reference 93, 96
result 94
subprogram program unit 87-8, 350

SUBROUTINE statement 94, 107, 110, [118], 351-2
subscript 202,204,208-10,428,468,470,546
subscript expression 203, 224
subscript triplet 467-70, 568
substring 62,616
syntadic error 26--7

T edit descriptor 242-3,252,256
tail 584--6
target 560--4, 566, 581
TARGET attribute 560--1, 563
TARGET statement 560
technological programming 2
termination of execution 191
ternary tree 592
test suite 308
testing 16, 31, 107, 208, 308
time-sharing 25
TL edit descriptor 242-4,252,256
top-down design 17
TR edit descriptor 242-3, 252, 256
track 281
trailing blanks 103, 509, 528
trailing comment 20--1, 32, 623
transfer of control 94, 179, 191-2
tree 592-3
tree-strudured data 597
tridiagonal system of linear equations 647,657-

61,667
truncation error 321-2
type conversion intrinsic fundion 353
type declaration statement 91,431,436--7,449-

50,480,492,558,566,608
type definition 104
TYPE defininition statement 405
type parameter 723
TYPE statement 67, [71, 73], 104, [113-14]

UBOUND intrinsic fundion 215,439,464
unary operator 50, 136, 408
unconditional GOTO statement 732
undefined array 453
undefined pointer association status 559
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underflow 311,341,630
unformatted

file 511,526
input! output statements 283
record 281, 283, 525-6, 528

UNFORMATTED specifier 544
unit number 258, 285, 508
unit specifier 258-9, [269], 283, 285, [290], 291,

[297],511,541
universal coded character set 482
University of Manchester 25
University of Oxford viii
unstable algorithm 318,321-3
unstable numerical process 321
upperbound 204,208,432,437,439,447,468
upper case letters 20, 146--7, 149
upper triangular system of linear equations 649,

658
US Military Standard MIL STD 1753 10
USE association 110, 115, 117, 121-2, 220, 350,

352,357,363,371-2,374,376,392,394-5,
399,437, 723-4

USE statement 110-11, [113-14], 116, [118], 250,
395-6,606,622,723

value of DO variable on completion of the loop
173,180-1,184

value separator 52, 238-9
variable 6, 43, 98, 110, 479, 483, 723

character 58-60,62
declaration 43, 74
initial value 65-6
internal 90
local 90

VARYING_STRING type 414
vector 399-404,410-13,430

vector arithmetic 400-4, 409-13, 429
vector subscript 467, 470, 568
virtual reality 440

well-conditioned problem 318-20
WG5 v, xii, 10
WHERE construct 466--7
WHERE statement 465-6
whole array processing 210-11,433,460-4,467,

571
word processing 16
work array 448
workstation 25
Wrigley Field 151
WRITE specifier 544
WRITE statement 257, 261, 280, 283-5, 287-9, 508,

526, 544, 547
with no output list 267

x edit descriptor 242-3, 252, 256, 268
X3J3 v, xii, 10

z edit descriptor 513, 515
zero iteration count 173
zero subscript value 204
zero-sized array 432

: edit descriptor 513,516--17,
continuation marker 22
narnelist data initiator 547

edit descriptor 265-6
list-directed data terminator 52
narnelist data terminator 547
value separator 238




