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Preface

The 6th International Conference on Game Theory for Networks (Gamenets) was held
during May 11–12, 2016, on the UBC-Okanagan campus in spectacular Kelowna,
Canada. Kelowna is widely recognized as one of the world's most liveable cities. The
mission of the conference is to share novel basic research ideas as well as experimental
applications in the Gamenets area in addition to identifying new directions for future
research and development.

Gamenets 2016 had 13 peer-reviewed papers and a plenary talk on “Social Learning
and Social Sensing” by Dr. Vikram Krishnamurthy of the University of British Columbia.

We would like to thank the authors for providing the content of the program. We
would also like to express our gratitude to the Technical Program Committee (TPC)
and reviewers, who worked very hard on reviewing the papers. This year, we received
26 paper submissions from authors all over the world. After a rigorous peer review by
the TPC, 13 papers were accepted.

We would like to thank our financial sponsor EAI (European Alliance for Inno-
vation) for their support in making Gamenets 2016 a successful event.

October 2016 Julian Cheng
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Strategic Seeding of Rival Opinions

Samuel D. Johnson1(B), Jemin George2, and Raissa M. D’Souza3

1 HRL Laboratories, LLC, Malibu, CA 90265, USA
sdjohnson@hrl.com

2 United States Army Research Laboratory, Adelphi, MD 20783, USA
jemin.george.civ@mail.mil

3 University of California, Davis, CA 95616, USA
raissa@cse.ucdavis.edu

Abstract. We present a network influence game that models players
strategically seeding the opinions of nodes embedded in a social net-
work. A social learning dynamic, whereby nodes repeatedly update their
opinions to resemble those of their neighbors, spreads the seeded opinions
through the network. After a fixed period of time, the dynamic halts and
each player’s utility is determined by the relative strength of the opinions
held by each node in the network vis-à-vis the other players. We show
that the existence of a pure Nash equilibrium cannot be guaranteed in
general. However, if the dynamics are allowed to progress for a sufficient
amount of time so that a consensus among all of the nodes is obtained,
then the existence of a pure Nash equilibrium can be guaranteed. The
computational complexity of finding a pure strategy best response is
shown to be NP-complete, but can be efficiently approximated to within
a (1 − 1/e) factor of optimal by a simple greedy algorithm.

Keywords: Social networks · Opinion dynamics · Game theory · Nash
equilibrium · Computational complexity · Approximation algorithm

1 Introduction

Opinions are shaped by the information individuals obtain through their social
connections. These opinions inform our career decisions, political views, and
purchasing behaviors, which can ultimately spread to affect an entire society.
The influence maximization problem [14] asks: Given the ability to seed a small
number of individuals (nodes) in a social network to adopt a desired behavior
(e.g., to purchase a product, support a political candidate, contract an infection,
etc.), which nodes should be selected so that the behavior subsequently spreads
to a maximum fraction of the entire population?

Strategic extensions to the influence maximization problem that involve two
or more players representing competing, substitutable behaviors (products, opin-
ions, infections, etc.) where each player selects a set of seed nodes so as to max-
imize the fraction of the population that eventually adopts their represented

This research was conducted while S.D. Johnson was a graduate student at the
University of California, Davis.

c© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2017
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4 S.D. Johnson et al.

behavior, have subsequently been studied; see, for example, [1,4,5,8,11,17]. A
common feature among most of these models is that the diffusion dynamics they
use involve nodes making binary decisions to determine whether to fully adopt
one of the diffused opinions. Furthermore, these models often employ progres-
sive SI-style dynamics in which nodes that do not have an opinion must first
make an irreversible decision to fully commit themselves to a single opinion in
order to become a participant in the subsequent propagation of their adopted
opinion. Although such dynamics meet the desiderata of many applications with
practical importance, we believe them to be unnatural for the diffusion of opin-
ions through social networks because of the requirement that opinions are only
allowed to pass through nodes that have already committed irreversibly to a
particular preference.

In the current work, we present the network influence game (NIG) to model
the strategic seeding of opinions in a social network by m ≥ 2 players and
employs a dynamic that is arguably more appropriate than the SI-style dynamics
used elsewhere. In our model, each node maintains a vector of opinions toward
the m players, and in each discrete time step, a node’s opinion is updated to
reflect a weighted averaging of their previous opinion and the opinions of their
neighbors. These dynamics proceed in accordance with the consensus dynamic
[6], and terminate after a period of T time steps. The consensus dynamic has
played a prominent role in the study of opinion dynamics in social networks
– see, for example, the surveys by Jackson [12,13]. In our competitive model,
players’ utilities are defined to be a function of each node’s relative opinions
toward the players upon the conclusion of the dynamic process.

The NIG model is formally presented in Sect. 2, followed by a discussion on
the nature of influence pertaining to it in Sect. 2.1. Section 3 contains our results
on the existence of pure Nash equilibrium strategies. We show that existence
can be guaranteed if the dynamics run until a consensus opinion is reached,
but cannot be guaranteed otherwise. In Sect. 4 we show that computing a pure
strategy best response is NP-complete, yet can be efficiently approximated to
within a factor of (1 − 1/e) of optimal. Section 5 concludes the paper with a
discussion and suggested topics for future research.

2 Model

The network influence game NIG is specified by a tuple 〈M,G,ΔC , T,b, π〉 with
a player set, M = {1, . . . , m}; a network, G = (V,E), represented by a weighted
digraph with |V | = n nodes; the opinion dynamic, ΔC , that determines how influ-
ence spreads between adjacent nodes in the network; the length of time, T ∈ N,
that the diffusion dynamic is allowed to proceed; a profile, b = (b1, . . . , bm), of
integer seed budgets bi > 0 for each player i ∈ M ; and a utility function, πi(·),
that aggregates the nodes’ opinions upon the conclusion of the diffusion dynamics
at time T into a non-negative payoff for each player i ∈ M .

We assume that the graph G is strongly connected. Furthermore, we stipulate
that for all edges (u, v) ∈ E, the edge weight w(u, v) > 0 and, for all nodes v ∈ V ,
the sum of all incoming edge weights equals one.
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A (pure) strategy for player i is a subset si ⊆ V of at most bi seed nodes. A
strategy profile s = (s1, . . . , sm) specifies the seed nodes chosen by all m players,
and is used to set the initial conditions for the opinion dynamics, the result of
which determines the players’ utilities.

The NIG’s opinion dynamics, ΔC , is based on DeGroot’s consensus dynamic
[6]. For this dynamic, each node v ∈ V maintains a length-m opinion vector xv =
(xv

1, . . . , x
v
m) with the entry 0 ≤ xv

i ≤ 1 representing v’s opinion toward player
i. If xv

i > xv
j , then this is to be interpreted as v holding a more favorable opinion

toward player i than toward player j. We require that the sum of a node’s opinions
is at most one; |xv|1 =

∑
i∈M xv

i ≤ 1. Since we need to refer to the evolution of a
node’s opinion over time, we will use xv(t) to denote v’s vector of opinions at time
t, with entry xv

i (t) representing v’s opinion toward player i at time t.
The diffusion process is initialized by s at time t = 0. This involves each

player i implanting a “seed opinion” yi into each of the nodes included in si.
The seed opinions yi = (yi

1, . . . , y
i
m) are defined as yi

i = 1 and yi
j = 0 for all

j �= i, meaning that yi specifies a high (maximum) opinion toward player i and a
low (minimum) opinion toward all other players j. Let Mv(s) = {i | v ∈ si} ⊆ M
denote the subset players that include a given node v in their strategy, and define
mv(s) = |Mv(s)|. Finally, let Vs denote the subset of nodes that are designated
as seed nodes by at least one player. We initialize the opinions of the nodes v ∈ V
towards each player i ∈ M

xv
i (0) =

{
1

mv(s)

∑
j∈Mv

yj
i if v ∈ Vs

ε if v ∈ V \ Vs,
(1)

where 0 < ε 	 1/m is a small constant. Equation (1) specifies that each seed
node v ∈ Vs is initialized to the average seed opinion of the players that include v
in their strategies. Otherwise, for a node v /∈ Vs, initialization involves assigning
a ε opinion value toward every player i ∈ M .

The consensus dynamic, ΔC , proceeds in discrete time steps t = 1, 2, . . . , T
and specifies that the opinion of a node v at time t is a weighted average of its
prior opinion and the opinions of its neighbors at time t − 1. Specifically,

xv
i (t) = (1 − α) · xv

i (t − 1) + α
∑

u∈N+(v)

w(u, v) · xu
i (t − 1), ∀i ∈ M, (2)

where N+(v) = {u | (u, v) ∈ E} is the set of v’s incoming neighbors in G and
0 < α < 1 is a model parameter.

This dynamic can be expressed more succinctly in matrix form. Let A be
the weighted adjacency matrix of G with entries aij = w(i, j), and define Γ =
(1 − α)I + αAᵀ to be the n × n influence matrix1 with entries γvu conveying the
amount of direct influence that the opinions of node u shape those of node v from
one time step to the next. By construction, Γ is an aperiodic stochastic matrix.
Let xi(t) denote the length-n vector containing entries for each node’s opinion

1 Γ is sometimes referred to as a listening structure [7] or interaction matrix [10].
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toward player i at time t. Using Γ and xi(·), we can rewrite the dynamics in
Eq. (2) as xi(t) = Γxi(t − 1). In particular, the opinions toward player i after T
time steps is simply xi(T ) = ΓTxi(0).2

Upon the termination of the opinion dynamics after T steps, each node v is
left holding an opinion vector xv(T ). The utility for player i ∈ M is defined to
be the average relative opinion held by the population toward i,

πi(s) =
1
n

∑

v∈V

xv
i (T )

|xv(T )|1 . (3)

Notice that, (3) implies that for any strategy profile s, we have
∑

i∈M πi(s) = 1,
so the NIG is a constant-sum game.

2.1 Influence

A player’s best response strategy in the NIG involves selecting an “influential”
subset of seed nodes so that, upon the termination of the dynamics, the average
relative opinion held by the nodes toward the player is maximized. The precise
character of influence in this context deserves some examination.

It is well-known that the DeGroot consensus dynamic converges so that
a common opinion is shared by every node in the network is guaranteed as
T → ∞ when the matrix Γ is aperiodic and stochastic. The consensus obtained
is described by a weighted sum of the nodes’ initial opinions (at time t = 0),
with the weights given by the entries in the eigenvector of Γ corresponding to the
eigenvalue 1. Hence, for sufficiently large T , a node’s influence is directly related
to their eigenvector centrality. However, if T is not large enough to obtain consen-
sus, then a node’s eigenvector centrality no longer corresponds to the influence
they exert on the average opinions upon the termination of the dynamics.

The importance of T in characterizing the influence that a node exerts on a
diffusion process was recently identified in an empirical study by Banerjee et al.
[2] (see also [3]), which led them to define a quantity called diffusion centrality.
Although their definition corresponds to a different diffusion dynamic than the
one we consider in this paper, we can still offer a definition that is qualitatively
similar to theirs but tailored to the consensus dynamic.

Let δ[j] denote the n-dimensional column vector consisting of a one in row
j and zeros everywhere else. The diffusion centrality of a node v is defined to
be the vector cv = ΓT δ[v] whose entries cvu describe the fraction of node u’s
opinion at time T that is due to node v’s initial opinion at time t = 0. As
T → ∞, the convergence of the consensus dynamic ensures that |cvu − cvu′ | → 0
for all u, u′ ∈ V ; let cv denote this uniform amount of influence that v’s brings
to bear upon the final opinion of every node in V . The value cv is precisely the
v’th entry of the unique left eigenvector c of Γ corresponding to the eigenvalue
1, and the sum of the entries in c equal 1.

2 We use ΓT to denote the matrix Γ raised to the T th power. For matrix transposition,
we use the notation Γ ᵀ .



On the Strategic Seeding of Opinion Dynamics 7

3 On the Existence of Pure Nash Equilibrium

This section presents our results on the existence of pure Nash equilibrium strate-
gies. Recall that a pure strategy profile s = (si, s−i) is a Nash equilibrium if, for
every player i ∈ M and every possible pure strategy s′

i for that player, we have
πi(si, s−i) ≥ πi(s′

i, s−i). Throughout this paper, all of the results regarding Nash
equilibrium will be with respect to pure strategies, and all unqualified mentions
of strategy should be understood to refer to a pure strategy ; all mentions of Nash
equilibrium refer to pure Nash equilibrium.

3.1 At Consensus

In this section we establish the existence of pure strategy Nash equilibria for
NIGs in which T is sufficiently large to ensure that the opinions reach a con-
sensus. In the consensus regime, all nodes share the same final opinion vector,
x(T ) = (x1(T ), . . . , xm(T )), and the utility for each player i ∈ M is simply

πi(s) =
xi(T )

|x(T )|1 . (4)

With the profile of weights c = (cv1 , cv2 , . . . , cvn), where cv denotes the weight
of node v’s contribution to this consensus, we can express the consensus opinion
toward player i as xi(T ) =

∑
v∈V cvxv

i (0). Notice that the consensus opinion
xi(T ) for player i is a countably additive function of player i’s strategy, si. This
implies that in order for a deviation from si to s′

i to increase the consensus
opinion toward player i, then any deviation from si to s′′

i where s′′
i = (si \{v})∪

{u}, v ∈ si \ s′
i, and u ∈ s′

i \ si will also increase the consensus opinion toward
player i. In other words, if i can increase their share of the consensus opinion by
swapping k nodes in their strategy, then they can also gain from swapping only
a single node.

A key feature to the consensus case is that, since all nodes will converge
to the same opinion, there is no longer any need for players to make strategic
trade-offs involving increasing their opinion share among one particular subset
of nodes at the cost of decreasing their opinion share elswhere. This is reflected
by the fact that the utility function in Eq. (3) reduces to Eq. (4) in the consensus
regime (i.e., when T is sufficiently large).

Proposition 1. Every NIG in which T is sufficiently large so as to ensure that
a consensus opinion xv(T ) is reached among every node v ∈ V has at least one
pure Nash equilibrium.

Proof (Sketch). Assume that the m players are ordered so that b1 ≥ b2 ≥ · · · ≥
bm and the nodes V = {v1, v2, . . . , vn} are ordered so that cv1 ≥ cv2 ≥ · · · ≥ cvn .
Set player 1’s seed strategy s1 such that it maximizes x1(T ). The strategies for
players i = 2, 3, . . . ,m will be built sequentially, so that si is a best response to
the profile si−1 = (s1, . . . , si−1). We then argue that, given si = (s1, . . . , si−1, si),
for every player j < i, sj is a best response to si−j = (s1, . . . , sj−1, sj+1, . . . , si).
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Here, we will give the proof for m = 2 players; the proof for m ≥ 2 players
follows from an inductive argument that is based on similar reasoning.

Set s1 = {v1, . . . , vb1}, and let s2 be a best response to s1 that maximizes
the value of the consensus opinion toward player 2, x2(T ). We have two cases to
consider: (i) s1 ∩ s2 = ∅, and (ii) s1 ∩ s2 �= ∅.

The first case is trivial: if s2 does not contain any of the nodes in s1, then
player 1 enjoys exclusive access to b1 of the most influential seed nodes.

For the second case, let r = s1 ∩ s2 be the set of seed nodes chosen by
player 2 that are also in s1. Suppose, toward a contradiction, that player 1
can strictly benefit from changing to a strategy s′

1 = (s1 \ {u}) ∪ {v} for some
nodes u ∈ r and v ∈ V \ (s1 ∪ s2); i.e., player 1 swaps out a shared node
u for exclusive access to another node v. By swapping out u for v, player 1
may increase the consensus opinion toward them self, but they would also be
increasing the consensus opinion toward player 2 by relinquishing their share
of the influence weight cu. But, by virtue of player 2’s inclusion of u instead
of v in their own best response, it must be the case that the relative opinion
toward player 1 – and, thus, player 1’s utility – would not improve by swapping
u for v. Therefore, π1(s′

1, s2) ≤ π1(s1, s2), contradicting the claim that s′
1 can

earn player 1 a strictly higher utility than s1. ��

3.2 The General Case

In this section, we show that the existence of a pure Nash equilibrium is not
guaranteed in NIGs when the dynamic does not reach a consensus opinion. We
prove the non-existence for the symmetric setting, in which every player shares
the same seed budget; a proof for the asymmetric setting can be found in the
full version of this paper.

Proposition 2. For any m ≥ 2 and symmetric seed budget b, there exist NIGs
that do not admit a pure strategy Nash equilibrium.

Proof. A construction that does not admit a pure Nash equilibrium is as follows:
Create μ = m(b + 1)+1 nodes v0, v1, . . . , vµ−1, and add directed edges from each
vi to vi+k for k = 1, . . . , b. Next, for each vi, add two additional “petal nodes”
vi,l and vi,r, and add the following four links: (vi, vi,l), (vi, vi,r), (vi,l, vi,r), and
(vi,r, vi). Define the weight of each edge (u, v) to be w(u, v) = 1

|N+(v)| . Note that
the sum of each node’s incoming edge weights equals one, and that the resulting
graph is strongly connected. (See Fig. 1 for an example.)

Let G be a graph that implements the above construction, and set the para-
meters α = 1/2 and T = b. Because a player’s optimal strategy will never involve
seeding a petal node, we restrict our attention to strategies comprising only cen-
tral nodes. Let VC denote these μ central nodes. Since |VC | = μ = m(b + 1) + 1
and the total seed budget among all m players is bm, it will always be the case
that a player’s best response will not include nodes that are already included
in another player’s strategy, and exactly m + 1 of the central nodes will not be
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Fig. 1. Example of the graph construction in the proof of Proposition 2 with m = 3
players and budgets b = 2. The dark nodes are the “central nodes” and the white ones
are the “petal nodes”. This network does not admit a pure Nash equilibrium.

included as seed nodes in any players’ strategies. Let U ⊂ VC denote these m + 1
unseeded central nodes. By design, the graph is constructed so that players pre-
fer selecting seed nodes with successors in U . Of the |U | = m + 1 nodes, at most
m of them will have no predecessors that are also in U ; and there will always be
at least one node u∗ ∈ U that does have a predecessor in U . Let u′ denote u∗’s
predecessor in U . A player i with a seed node v ∈ si that is a successor of u′

can always improve their utility by changing to a strategy s′
i = {u′} ∪ (si \ {v}).

Since the existence of (at least one) such u∗ is guaranteed, then there will always
be a player i that can change strategies for an increase in utility. Hence, a Nash
equilibrium cannot be obtained. ��

4 Computational Properties of Best Response

This section considers the computational problem of finding, for a given player i
and strategy profile s−i, a strategy si that maximizes i’s utility, πi(si, s−i). Such
a strategy si is called a best response to the profile s−i of strategies belonging
to every other player j �= i.

Our first result in this section establishes the computational complexity of
the best response problem.

Proposition 3. Finding a best response strategy for the NIG is NP-complete.

Proof (Sketch). Hardness follows by reduction from Set Cover and complete-
ness is due to the fact that the utility function can be computed in polynomial
time. ��

Next, we turn the problem of finding an approximate best response. It will be
useful to adopt the following definition of the utility function, which is equivalent
to Eq. (3):
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πi(s) =
1
n

∑

v∈V

giv(s) (5)

where

giv(s) =
f i
v(s)

fv(s)
, (6)

f i
v(s) =

∑

u∈si

cuv
mu(s)

+
∑

u∈V \s
εcuv , (7)

and
fv(s) =

∑

j∈M

f j
v (s).

Here, we employ the notation mu(s) to denote the cardinality of the set Mu(s) =
{j | u ∈ sj} ⊆ M . The quantities cuv , which measure the amount of influence
that node u exerts on node v after T time steps, was defined in Sect. 2.1.

Our main result for this section establishes that the utility function πi(·) is
submodular,3 from which it follows from the classic result by Nemhauser, Wolsey,
and Fisher [16] that a (1 − 1/e) ≈ 0.6321 approximation can be computed using
a greedy algorithm.

Proposition 4. The utility function πi(·) is monotonic and submodular.

Proof (Sketch). The submodularity and monotonicity follow immediately from
establishing that (7) is increasing and (6) is submodular and the fact that since
πi(·) is a function that is defined by a linear combination of submodular functions
(cf., Eq. (5)), then πi(·) is itself submodular. ��

5 Discussion and Future Work

This paper presented a model for the strategic seeding of opinion dynamics using
the simple, well-studied DeGroot consensus dynamic. We established that the
existence of pure Nash equilibria cannot be guaranteed if the dynamic is not
allowed to run to consensus. The amount of time required for the dynamic to
reach to consensus is known to be slower in networks with modular (homophilic)
connectivity patterns [9]. This implies that in practice, strategic opinion seeding
on real-world social networks, which often exhibit modular structures, should
not assume that there will be enough time for the population to coalesce around
a shared, consensus opinion; and, crucially, the individuals that appear to be
attractive seeds in the steady state regime when a consensus is reached (those
with high eigenvector centrality) may not be the best choice if the dynamics halt
in the transient regime.

Our findings in Sect. 4 on the computational problem of finding best response
strategies are in alignment with similar competitive influence models that

3 A set function f : Ω → R is submodular if, for every X ⊆ Y ⊂ Ω and element
x ∈ Ω \ Y , we have f(X ∪ {x}) − f(X) ≥ f(Y ∪ {x}) − f(Y ).
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employ opinion dynamics that are more complex and less amenable to ana-
lytical tractability than the simplistic DeGroot consensus dynamic we use. For
example, in a competitive extension of the probabilistic independent cascade
model of Kempe et al. [14], Bharathi et al. [4] establish a (1 − 1/e) approx-
imation guarantee using monotone and submodularity arguments that extend
those used in [14] for the “single-player” setting (see also Mossel and Roch [15]).
However, some models have approximation guarantees that can be significantly
worse than (1 − 1/e). For example, Borodin et al. [5] show that competitive
extensions of the threshold diffusion model do not share the (1 − 1/e) approxi-
mation guarantee established in [14] for the “single player” optimization setting.
They do, however, offer a variant of the threshold model that does admit a
(1 − 1/e) approximation guarantee. Similar (1 − 1/e) approximation guarantees
are established more recently in competitive influence maximization models by
Goyal et al. [11] and Fotakis et al. [8].

Our analysis in Sect. 3 highlights the importance of the length of the diffusion
process, T , in guaranteeing the existence pure strategy Nash equilibria. The iden-
tification of conditions that are sufficient to guarantee the existence of equilibria
for small, non-consensus reaching values of T is an interesting open problem.
Related to this is an intriguing extension to the model that would allow players
to not only choose which nodes to seed, but also when to seed them. In our pre-
liminary investigations into this extension, we have observed in simulations that
some graphs contain nodes whose influence “peaks” at a greater magnitude in
the dynamic’s transient regime than in the steady state. We believe that such an
extension would also more closely model many real-world applications, such as
political contests and advertising campaigns, where timing can be an important
consideration.

Acknowledgements. The authors gratefully acknowledge support from the US Army
Research Office MURI Award No. W911NF-13-1-0340 and Cooperative Agreement No.
W911NF-09-2-0053.
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Abstract. We aim to preserve the large amount of data generated inside
base station-less sensor networks with minimum energy cost, while con-
sidering that sensor nodes are selfish. Previous research assumed that all
the sensor nodes are cooperative and designed a centralized minimum-
cost flow solution. However, in a distributed setting wherein energy- and
storage-constrained sensor nodes are under different control, they could
behave selfishly, only to maximize their own benefit. In this paper, we
take a game theoretic approach and design a computationally efficient
data preservation game. We show that in our game, individual sensor
nodes, motivated solely by self-interest, achieve good system-wide data
preservation solution.

Keywords: Sensor networks · Data preservation · Energy-efficiency ·
Game theory

1 Introduction

Sensor networks are ad hoc multi-hop wireless networks formed by a large num-
ber of low-cost sensor nodes with limited battery power, storage spaces, and
processing capacity. Wireless sensor networks have been used in a wide range of
applications such as military surveillance, environmental monitoring, and tar-
get tracking [22]. Recently, some of the emerging sensor networks are deployed
in challenging environments such as in remote or inhospitable regions, or under
extreme weather, to continuously collect large volumes of data for a long period of
time. Such emerging sensor networks include seismic sensor networks [5], under-
water or ocean sensor networks [10,17,21], wind and solar harvesting [3,11], and
volcano eruption monitoring and glacial melting monitoring [12,20].

In the above scenarios, it is not practical to deploy data-collecting base sta-
tions with power outlets in or near such inaccessible sensor fields. Due to the
absence of the base stations, these sensor networks are referred to as base station-
less sensor networks. Sensory data generated therefore have to be stored inside
the network for some unpredictable period of time and then being collected by
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periodic visits of robots or data mules [16], or by low rate satellite link [6]. In
particular, some sensor nodes are close to the events of interest and are con-
stantly generating sensory data, depleting their own storage spaces. We refer
to the sensor nodes with depleted storage spaces while still generating data as
source nodes. The newly generated data that can no longer be stored at source
nodes is called overflow data. To avoid data loss, overflow data is offloaded to
sensor nodes with available storages (referred to as storage nodes). We call this
process data preservation in base station-less sensor networks.

Since wireless communication consumes most of the battery power of sensor
node, the key challenge is how to conserve sensors’ battery power by minimizing
the total energy consumption in data preservation. Tang et al. showed that this
problem is equivalent to minimum cost flow problem [18], which can be solved
optimally and efficiently [2]. Two fundamental assumptions are needed for the
optimal data preservation algorithm in Tang et al. to work. First, the work
assumes that all the storage nodes are selfless in the sense that they are willing
to contribute their battery power and storage spaces to help offloading and
storing the overflow data from the source nodes. Second, the optimal algorithm
depends on full observability of the data preservation costs of each storage node,
including the cost of relaying and storing the overflow data.

In this work, we tackle the data preservation problem when sensor nodes are
selfish and are in lack of incentive to contribute to data preservation. Two reasons
make it important to view sensor nodes as selfish players. First, sensor nodes are
generally resource-constrained, with very limited amount of hardware resources
including battery power, storage capacity, and processing power. Such resource
constraints give sensor nodes minimum or zero motivation to be an altruistic
player in data preservation. Second, in a large scale distributed sensor networks,
sensor nodes could be under the control of different users or controllers, each
of which pursues their own self-interest in the network. Under above scenarios
sensor nodes can behave selfishly only to maximize their own benefit.

When sensor nodes are selfish, those assumptions in Tang et al. are no longer
valid. First, in order to conserve their own battery power and storage spaces,
the storage nodes will choose not to spend their energy and storage resources to
help the source nodes to preserve the overflow data, obstructing the entire data
preservation process. Second, the associated costs of data preservation of each
storage node are normally private information which are not directly observed
by outsiders. Due to selfishness, the storage nodes are in lack of incentive to
truthfully report their costs. The reason is that each storage node needs to be
paid in order to be motivated to participate in data preservation. Nonetheless
through lying about its associated cost of data preservation, the storage node
may successfully induce a data preservation path which generates itself a higher
payoff compared to the payoff when it tells the truth. Such lying behavior of the
storage nodes out of their selfishness clearly makes the data preservation path
in Tang et al. inefficient. Therefore, with selfish sensor nodes, the challenge is to
achieve good system performance, i.e., efficient data preservation with minimum
energy cost, while still accommodating selfishness of the sensor nodes.
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In this paper, we address the above challenge by utilizing the technique
of algorithmic mechanism design (AMD) [13–15], a subfield of microeco-
nomics and game theory. The goal of AMD is desirable – it designs computation-
ally efficient game (including strategies and payoffs) such that individual players,
motivated solely by self-interest, achieve good system-wide solution. We design
computationally efficient data preservation game, in which a payment model is
presented to compensate selfish nodes for participating in the data preserva-
tion. The payment to each node is designed in a way such that the following
two purposes are achieved: first, each node, understanding how the payments
are calculated, finds it optimal truthfully reporting its private cost information.
Second, based on the reported cost of each node, the payment can sufficiently
motivate each node who is involved in the optimal data preservation path calcu-
lated in Tang et al. to actually participate in data preservation. With these two
goals achieved, the payment model in our game leads to good system-wide data
preservation solution with each sensor node motivated solely by self-interest.

2 Data Preservation Problem

Network Model. The sensor network is represented as an undirected connected
graph G(V,E), where V = {1, 2, ..., n} is the set of n sensor nodes and E is the
set of m edges. The sensory data are modeled as a sequence of data packets,
each of which is a bits. Some sensor nodes are close to the event of interest and
generate large amount of data packets and deplete their storage spaces; they are
referred to as source nodes. WLOG there are k source nodes Vs = {1, 2, ..., k}.
The rest nodes in V − Vs are referred to as storage nodes. Let di denote the
number of overflow data packets source node i generates. Because of the storage
depletion of the source nodes, the overflow data packets must be offloaded from
their source nodes to some storage nodes to be preserved. Let d =

∑k
i=1 di be

the total number of overflow data packets, and let D = {D1,D2, ...,Dd} denote
the set of these d data packets. Let s(j) ∈ Vs, 1 ≤ j ≤ d, denote Dj ’s source
node. Let mi be the available free storage space (in bits) at sensor node i ∈ V .
If i ∈ Vs, then mi = 0, implying that a source node is storage-depleted and
thus has zero available storage space. If i ∈ V − Vs, then mi ≥ 0, implying that
a storage node i can store another mi bits of data packets. We assume that∑n

i=k+1 mi ≥ d · a, that is, the total size of the overflow data packets can be
accommodated by the total available storage spaces.

Energy Model. We consider three different kinds of energy consumptions
incurred in data preservation.

– Transmitting Energy Et
i (j). When node i sends a data packet of a bits to its

one-hop neighbor j over their distance li,j , the amount of transmitting energy
spent by i is Et

i (j) = a · εai · l2i,j + a · εei . Here, εai is energy consumption of
sending one bit on transmit amplifier of node i, and εei is energy consumption
of transmitting one bit on the circuit of node i.
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– Receiving Energy Er
i . When node i receives an a-bit data packet from one of

its one-hop neighbor, the amount of receiving energy it spends is Er
i = a · εei .

Here, εei is energy consumption of receiving one bit on the circuit of node i.
Note that Er

i does not depend on the distance between nodes.
– Storing Energy Es

i . When node i stores a-bit data into its local storage, the
amount of storing energy it consumes is Es

i = a · εsi . Here εsi is the energy
consumption of storing one bit at node i.

Problem Formulation. Define a preservation function as p : D → V − Vs,
indicating that a data packet Dj ∈ D is offloaded from its source node s(j) ∈ Vs

to a storage node p(j) ∈ V − Vs to be preserved. Let Pj = {s(j), ..., p(j)} be the
preservation path along which Dj is offloaded. Let ci,j denote node i’s energy
consumption in preserving Dj . ci,j can be represented as Eq. 1 below, with σ(i, j)
being the successor node of i on Pj .

ci,j =

⎧
⎪⎪⎨

⎪⎪⎩

Et
i (σ(i, j)) i = s(j)

Er
i + Es

i i = p(j)
Er

i + Et
i (σ(i, j)) i ∈ Pj − {s(j), p(j)}

0 otherwise

(1)

The objective is to find a preservation function p and Pj (1 ≤ j ≤ d) to minimize
the total preservation cost, denoted as c, i.e.,

c = minp

d∑

j=1

n∑

i=1

ci,j = minp

n∑

i=1

d∑

j=1

ci,j , (2)

under the storage constraint that the total size of data offloaded to storage node
i can not exceed i’s storage capacity: |j|1 ≤ j ≤ d, p(j) = i| ·a ≤ mi, ∀i ∈ V −Vs.

Algorithm. Tang et al. [18] has shown that this problem is equivalent to the
minimum cost flow problem in a properly transformed graph of the sensor net-
work graph. The minimum cost flow problem can be solved optimally and effi-
ciently [2]. We adopt and implement the scaling push-relabel algorithm proposed
in [1,7]. It has the time complexity of O(|V |2|E|log(|V |C)), where C is the max-
imum capacity of an edge in the transformed graph. We denote the algorithm
designed in Tang et al. [18] as the centralized algorithm to highlight that it min-
imizes data preservation energy based on the assumption that each node in the
network is selfless and therefore fully cooperative.

In this work, we instead consider selfishness of nodes in the sense that each
node is maximizing its own interest instead of the system interest. The central
problem is to design a mechanism to incentivize selfish nodes to accomplish
data preservation as in the centralized algorithm. Note that each source node is
obligated to offload its data therefore selfishness does not apply to source nodes.
On the other hand, storage nodes are selfish and need to be motivated. However,
selfishness of storage nodes can lead to two problems. First, each storage node
has no incentive to either relay or store data as either task consumes energy.
Therefore, our mechanism needs to pay those storage nodes involved in data
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preservation path solved from the centralized algorithm, in order to give them
incentive to participate in data preservation. The second problem is more subtle
but fundamental. The centralized algorithm can figure out the minimum cost
data preservation path only based on the assumption that data preservation
costs of each storage node are observed. However, some of those cost parameters
of each node (given by εei , εai and εsi ) are private information of each node and
may not be directly observed by outsiders. Thus our mechanism needs to induce
each node to truthfully report their unobserved cost parameters, so that the
centralized algorithm can calculate the minimum cost path based on the reported
cost parameters.

3 Algorithmic Mechanism Design (AMD) Approach

The goal of AMD is to design a game in which selfish players maximizing their
own utility will choose strategies resulting in the social optimum specified by
an optimal algorithm. Here the resulted state is referred to as the dominant
strategy equilibrium/solution. Dominant strategy of a player is a strategy always
maximizing his utility regardless of the other players’ strategies. In a dominant
strategy solution, each player is playing his dominant strategy. Note that a domi-
nant strategy solution is also a Nash equilibrium since no player has an incentive
to deviate from its strategy unilaterally. The challenge in the data preservation
problem is to design utility function so that truthfully reporting its cost para-
meter is a dominant strategy to each storage node. Below we first introduce the
concepts and notations of the AMD model. We then present the payment model,
and prove that under this payment model, acting truthfully (that is, telling its
true energy cost involved in data preservation) is each node’s dominant strategy.

The AMD Model. There are n nodes in the network - node i has some private
information ti, called its type. There is an output specification that maps each
type vector t = {t1, ..., tn} to some output o. Node i’s cost is given by valuation
function vi(ti, o), which depends on ti as well as o. A mechanism defines for each
node i is a set of strategies Ai. When i plays strategy ai ∈ Ai, the mechanism
computes an output o = o(a1, ..., an) and a payment vector p = (p1, ..., pn), where
pi = pi(a1, ..., an). Node i wants to maximize its utility function πi(a1, .., an) =
vi(ti, o) + pi.

There are three observations of the total preservation cost (Eq. 2). First, the
total cost is the sum of all participating nodes’ energy costs. We can therefore
adopt the Vickrey-Groves-Clark (VCG) mechanism [4,9,19]. VCG mechanism
applies to mechanism design optimization problems where the objective function
is simply the sum of all agents’ valuations, and it guarantees that each agent
plays truthfully by reporting its true valuation [13]. Second, to minimize the
total preservation cost for all the data packets, it only needs to minimize the
preservation cost for each data packet Dj , given its source node and destination
node. Therefore, our payment model focuses on only one packet, say Dj . Third,
in the context of data preservation, ci,j is essentially the private information held
by storage node i. To each storage node i, its strategy set includes to truthfully
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report its cost parameter (therefore ci,j) or to lie about its cost parameter. That
is, (ci,1, ci,2, ..., ci,d) ∈ Ai and vi(ti, o) = −ci,j for any i. Therefore i’s utility is
πi = pi − ci,j .

Payment and Utility Model. Below we present the payment and utility
model. Since we focus on any data packet Dj (and its preservation path Pj),
we use ci instead of ci,j to denote node i’s true cost. pi is the payment made to
node i in order to motivate it to participate the data preservation, πi = pi − ci.
Let c−i denote the strategies of all other nodes except node i.

Definition 1 Payment and Utility. Based on Green and Laffont [8], under
VCG mechanism, given any cost c̃i reported by node i, the amount of payment
given to node i depends on whether node i is chosen to participate in data preser-
vation according to the centralized algorithm. Its payment is 0 if it is not chosen;
and its payment when it is chosen is:

pi(c̃i, c−i) = cV−{i} − (c̃V − c̃i), (3)

where cV−{i} is the minimum total cost of the preservation path that does not go
through i; c̃V is the minimum total cost of the preservation path that goes through
i, when i reports its cost c̃i. Therefore i’s utility is 0 when it is not chosen by
the centralized algorithm; and when i is chosen, its utility is

πi(c̃i, c−i) = pi(c̃i, c−i) − ci = cV−{i} − (c̃V − c̃i) − ci, (4)

where ci is node i’s true cost. Moreover, we define cV as the minimum total cost
of the preservation path that goes through i when i truthfully reports its cost, i.e.,
when c̃i = ci.

Time complexity of the payment model. The time taken to compute the pay-
ment model is the time taken for the minimum cost flow calculation, which is
O(|V |2|E|log(|V |C)), where C is the maximum capacity of an edge in the trans-
formed graph [1,7]. Under this model, the amount of payment given to a specific
node i equals the total minimum cost of all the participating nodes when i does
not participate minus all other participating nodes’ cost when i participates. The
rationale is that a node can be motivated to participate if it is paid its share of
contribution, which in our case, is the amount of preservation energy this node
helps to reduce when it participates.

An implication here is that the payment and utility model is common knowl-
edge to each node. That is, each node understands that based on their reported
cost types and the corresponding data preservation path calculated by the cen-
tralized algorithm, their payment and utility are given by (3) and (4), respec-
tively. The timing of the game among the source nodes is given below.

Definition 2 Timing of the Game. The game unfolds as follows. In stage 1,
each storage node reports its private type ci. In stage 2, the centralized algorithm
is applied based on reported cost types to calculate the minimum cost data preser-
vation path. In stage 3, each of the storage nodes chosen in the path chooses to
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participate in data preservation or not. If they participate, they realize the data
preservation cost and also the payment given by Eq. (3), and each gets utility
given by Eq. (4).

Note that each storage node moves only in stages 1 and 3, when each chooses how
much to report for private type and whether to participate in data preservation
based on the corresponding payment. Stage 2 is non-strategic: in the absence of
base stations, the centralized algorithm is provided by an outsider of the system,
and it cannot be enforced in the system by the outsider. Since there is a time
sequence between the two decisions of each node in stage 1 and stage 3, the solu-
tion concept of the game is subgame perfect Nash equilibrium (SPNE). SPNE
is a Nash equilibrium (NE) in which players are doing NE in every subgame of
the whole game tree.

Assumptions. We assume that the source nodes are obliged to offload their
overflow data packets to other storage nodes, thus need not to be motivated.
Therefore, their types are known public knowledge, and they will be reimbursed
according to true costs they entail. For storage node i that participates in the
preservation of a specific data packet, it incurs one of the two costs below:

– Relaying Cost cri (j). When node i receives a data packet and then sends it to
one of its one-hop neighbor j over their distance li,j , its relaying cost, denoted
as cri (j), is the sum of its receiving energy and transmitting energy. That is
cri (j) = Er

i + Et
i (j) = 2 · a · εei + a · εai · l2i,j .

– Storing Cost csi . When node i receives a data packet and then stores it into
its storage, its storing cost, denoted as csi , is the sum of its receiving energy
and its storing energy. That is, csi = a · εei + a · εsi .

Note that node i has three energy parameters: εei , εai , and εsi . Among them,
εei affects both cri (j) and csi , while εai only affects cri (j) and εsi only affects csi .
Next, we will study the AMD model wherein for each node i, either εai or εsi or
εei is the private type of node i not directly observed by the public. Since εai and
εsi each only affects one cost or the other, we study ti = εai or ti = εsi first.

3.1 AMD When ti = εai or ti = εsi

We focus on ti = εai since ti = εsi can be studied similarly. Below we give
a detailed proof that under above VCG payment model, for each node i,
truth-telling (reporting its true type ti) is a dominant strategy. We define
cr−i = {cr1, ....., c

r
i−1, c

r
i+1, ..., c

r
n} as the cost vector of other nodes except i. Since

the optimal minimum cost flow algorithm determines i’s successor node j, and
for ease of notation, we use ci instead of cri (j) to represent node i’s relaying cost,
and use c̃i instead of c̃ri (j) in the following theorem and proof.

Theorem 1: For any node i, suppose ti = εai (that is, εai is i’s private type).
Reporting its true type εai is node i’s dominant strategy. That is, πi(ci, c−i) ≥
πi(c̃i, c−i), ∀ c̃i �= ci and ∀ c−i.
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Proof: We consider that node i either reports truthfully or not. Under either
case, node i could be chosen to participate in the data preservation or not accord-
ing to the centralized algorithm. Therefore there are all together four cases.
Below we show that πi(ci, c−i) is always greater or equal to πi(c̃i, c−i) in all the
four cases.

Case I: Node i is in the preservation path when reporting either ci or c̃i.
Thus the payment of i when it reports truthfully is πi(ci, c−i) = cV−{i} − (cV −
ci) − ci = cV−{i} − cV . On the other side, when it lies by reporting c̃i, its payoff
is πi(c̃i, c−i) = cV−{i} − (c̃V − c̃i) − ci = cV−{i} − (c̃V − c̃i + ci) = cV−{i} − cV .
Therefore in this case πi(ci, c−i) = πi(c̃i, c−i). Note that πi(ci, c−i) ≥ 0 because
cV−{i} − cV ≥ 0.

Case II: Node i is in the preservation path when reporting ci, which implies
that cV−{i} ≥ cV ; and it is not in the preservation path when reporting c̃i, which
gives payoff πi(c̃i, c−i) = 0. Thus its payoff under truth-telling is πi(ci, c−i) =
cV−{i} − cV ≥ 0. In this case πi(ci, c−i) ≥ πi(c̃i, c−i).

Case III: Node i is not in the preservation path when reporting ci, which
gives πi(ci, c−i) = 0 and also implies that cV−{i} ≤ cV . However, it is in the
preservation path when reporting c̃i. Its payoff when it lies is πi(c̃i, c−i) =
cV−{i} − (c̃V − c̃i) − ci = cV−{i} − (c̃V − c̃i + ci) = cV−{i} − cV ≤ 0. Therefore
in this case πi(ci, c−i) ≥ πi(c̃i, c−i).

Case IV: Node i is not in the preservation path when reporting either ci or
c̃i. In this case πi(ci, c−i) = πi(c̃i, c−i) = 0.

Since πi(ci, c−i) ≥ πi(c̃i, c−i) holds regardless of other nodes’ strategy c−i

under all the cases, we conclude that reporting its true cost ci is node i’s domi-
nating strategy.

Theorem 2. With the payment given by (3), when εai or εsi is unobserved, there
exists SPNE of the game, in which every storage node i truthfully reports its
cost type in stage 1. Moreover, in stage 3 each node i chosen by the centralized
algorithm for data preservation will participate.

Proof: In stage 3, each storage node chosen by the centralized algorithm will
participate as long as its utility (i.e., payoff) is no less than zero. When we move
back to stage 1, by Theorem 1, each storage node has a dominant strategy, which
is to truthfully report the type. Therefore, the Nash equilibrium in stage 1 is that
each node truthfully reports its type. Since each node in the data preservation
path gets a non-negative utility (see the proof of Theorem 1), each will choose
to participate in stage 3. We conclude that the strategy given in this theorem
constitutes a SPNE.

3.2 AMD When ti = εie

When εie is the unknown type of source node i, the reported value of the type
affects the two costs simultaneously: the relaying cost cri (j) and the storing cost
csi . The complication here is that by lying about its type, node i might switch
its role in data preservation from one task to a different task. For example, node
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i might be assigned to relay the data packet according to εie, its true cost type;
but by reporting ε̃ie �= εie, node i might instead be assigned to store the data. It
is not clear whether VCG can continue to apply in this case or not. To examine
the situation when εie is the unknown type of node i, we first denote cisV as
the minimum total cost of data preservation given that node i stores the data
packet; and cirV as the minimum total cost of data preservation given that node
i relays the data packet. Note that cV−{i} is the minimum total cost of data
preservation given that node i does not participate in data preservation. The
following theorem shows that the basic idea of VCG continues to hold. Since the
optimal minimum cost flow algorithm determines i’s successor node j, and for
ease of notation, we use ci to represent cri (j) or csi , and use c̃i to represent c̃ri (j)
or c̃si in the following theorem and proof.

Theorem 3. For any node i, suppose ti = εei (that is, εei is i’s private type).
Reporting its true type εei is node i’s dominant strategy. That is, πi(ci, c−i) ≥
πi(c̃i, c−i), ∀ c̃i �= ci and ∀ c−i.

Proof: Based on the reported εei of node i, node i could be chosen to participate
in the data preservation or not according to the centralized algorithm. If it is
chosen, it may be designated to either transmit or store the data packet. We
need to show that regardless of other nodes’ reported cost types, telling truth
is always the optimal strategy of node i. There are in together six cases and we
show that πi(ci, c−i) is always greater or equal to πi(c̃i, c−i) in all the six cases.

Case I. Node i is in the preservation path to relay the data packet when
reporting either ci or c̃i.

Case II. Node i is in the preservation path to store the data packet when
reporting either ci or c̃i.

Case III. Node i is in the preservation path to relay the data packet when
reporting ci and is doing nothing when reporting c̃i.

Case IV. Node i is in the preservation path to store the data packet when
reporting either ci or c̃i.

Proof for πi(ci, c−i) ≥ πi(c̃i, c−i) for the four cases are similar as in the proof
of Theorem 1 and are omitted. We focus on the following two cases.

Case V. Node i is in the preservation path to relay the data packet when
reporting ci and is in the preservation path to store the data packet when
reporting c̃i. This implies that cisV ≥ cirV . When node i reports ci, its payoff
is cV−{i} − cirV + ci − ci = cV−{i} − cirV . When node i reports c̃i, its payoff is
cV−{i} − c̃isV + c̃i − ci = cV−{i} − cisV . It follows that cV−{i} − cirV ≥ cV−{i} − cisV .

Case VI. Node i is in the preservation path to store the data packet when
reporting ci and is in the preservation path to relay the data packet when
reporting c̃i. This implies that cisV ≤ cirV . When node i reports ci, its payoff
is cV−{i} − cisV + ci − ci = cV−{i} − cisV . When node i reports c̃i, its payoff is
cV−{i} − c̃irV + c̃i − ci = cV−{i} − cirV . It follows that cV−{i} − cisV ≥ cV−{i} − cirV .

Theorem 4: With the payment given by (3), when εie is unobserved, there exists
SPNE of the game, in which every source node i truthfully reports its cost type
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in stage 1. Moreover, in stage 3 each node i chosen by the centralized algorithm
for data preservation will participate.

Proof: It follows the same argument as the proof of Theorem 2 and is omitted
here.

4 Conclusion and Future Work

In this work, we study data preservation problem in base station-less sensor net-
works wherein energy- and storage-constrained sensor nodes behave selfishly. We
take a game theoretic approach and design a payment model under which the
individual sensor nodes, motivated solely by self-interest, achieve good system-
wide data preservation solution. In particular, we break down the data preser-
vation cost of each storage node into two parts: relaying cost and storing cost,
where cost parameters are node-dependent. The payment model is designed in a
way such that no matter which cost parameter (related only to the relaying cost
or only to the storing cost or to both) is private to the node, truthfully report-
ing the cost parameter is a dominant strategy to each node. We show that as
a result, in the game it is an equilibrium that each storage node first truthfully
reports its cost parameter, then participates in data preservation if it is chosen
by the centralized data preservation algorithm.

In the next step of the work, we will validate theoretical findings using sim-
ulation results. By contrasting the payment of each storage node in the sensor
network under truth-telling strategy to what it is under lying, we will show
that truth-telling is never worse off and in certain cases is strictly better off to
each storage node regardless of the choice of the other nodes. The simulation
results thus can verify that truth-telling is a dominant strategy of each source
node. Other future work includes relaxing some assumptions in the current work.
In particular, we have assumed that data preservation is feasible in the sensor
network, i.e., all the nodes have enough energy to offload and preserve all the
overflow data packets. If instead the network is infeasible so that some data
packets will inevitably be lost, it is interesting to see how the payment model
can work to induce the efficient data preservation. Finally, we will extend our
analysis to a dynamic scenario wherein overflow data are generated from time to
time at different nodes. It is well understood in game theory that an infinitely
repeated game gives a much larger set of equilibrium and in certain scenarios full
cooperation can be achieved. In our setting of data preservation among selfish
nodes, it is interesting to see to what extent we need to provide motivation for
selfish storage node to engage in the optimal data preservation.
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Abstract. Network densification is the most important way to improve
the network capacity and hence is widely adopted to handle the ever-
increasing mobile traffic demand. However, network densification will
make the inter-cell interference severe and also significantly increase the
energy budget. Multicell cooperative transmission is an efficient way to
mitigate the inter-cell interference and plays an important role in energy
efficiency optimization. This paper investigates the energy efficient multi-
cell cooperation strategy for dense wireless networks. Joint cluster form-
ing and beamforming are considered to optimize the energy efficiency
(evaluated by bits/Hz/J). The optimization problem is then decoupled
into two subproblems, i.e., energy efficient beamforming problem and
energy efficient cluster forming problem. The fractional programming
and Lagrangian duality theory are used to obtain the optimal beam-
former. Coalition formation game theory is exploited to solve the cluster
forming problem. The proposed energy efficient clustering and beam-
forming strategy can provide flexible network service according to spa-
tially uneven traffic and greatly improve the network energy efficiency.

Keywords: Cooperative transmission · Energy efficiency · Beamform-
ing · Clustering · Coalition formation game

1 Introduction

Network densification has been historically adopted for network capacity
improvement and it will be persist in the future to handle the increasingly
growing wireless traffic [16,18]. However, the dense deployment of base station
(BS) leads to the network energy consumption increase. As the greatly increased
energy efficiency has been listed as one of the main objectives when designing
5G wireless network [1], it is necessary to design more energy efficient strategies.
Multicell cooperative transmission (MCT) is an efficient technique in interfer-
ence managements [13,17]. The researches in [12] show that when all the BSs are
coordinated, the spectral efficiency scales linearly with the signal-to-noise ratio
c© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2017
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(SNR). The basic idea of MCT is to let multiple BSs cooperate and act as a single
Multiple Input Multiple Output (MIMO) transceiver, hence some of the inter-
ference are turned into useful signals. Consequently, the network throughput is
greatly improved. The MCT also plays a vital role in energy efficiency optimiza-
tion. In [5], an energy efficiency analysis framework for MCT is proposed and
the results show that when the backhauling and cooperative processing power
are carefully controlled, MCT can be energy efficient, especially for cell-edge
communication.

The two main problems for energy efficient MCT design are how to form
clusters with desirable size, and how to efficiently obtain the multicell beam-
formers. The gains of MCT are saturated with the growing number of cooper-
ating BSs due to the excessive overheads, e.g., complexity, channel estimation
and increased power consumption [8]. Hence the cooperative clusters have to
be carefully designed to obtain the optimal trade-off between the performance
gain and associated overhead. In [3], a novel affinity propagation model is used
to semi-dynamically form the cooperative cluster. The proposed algorithm can
greatly improve network throughput with low complexity. Coalition formation
game (CFG) studies the complex interactions among players and the formation
of cooperating groups, referred to as coalitions [11]. Hence, CFG is well suited
for the BSs clustering problem and have been studied in [15], where CFG is used
to form the small cells cluster to optimize the trade-off between the benefits and
costs associated with cooperation. On the other hand, energy efficient beam-
forming is also important for MCT. In [4], the downlink-uplink duality theory
and geometric programming are used to find the beamformer that maximize the
network energy efficiency (EE, defined as the sum throughput to power con-
sumption). In [14], minimum mean square error (MMSE) based energy efficient
beamforming strategy is proposed to maximize the worst-case EE. However,
[4,14] only focus on the static cooperative cluster.

In this paper, we study the energy efficient clustering and beamforming prob-
lem for cooperative multicell networks. A energy efficiency optimization problem
that jointly considers dynamic clustering and beamforming is formulated. Due
to the combinatorial nature of the clustering and beamforming in cooperative
multicell networks, the joint optimization problem is extremely hard to solve. To
efficiently solve it, the problem is decoupled into two subproblem, i.e., the clus-
ter forming problem and the energy efficient beamforming problem. The CFG
and fractional program are used to solve them respectively. The remainder of
this article is organized as follows. We first describe the system model in Sect. 2.
Then the energy efficient clustering and beamforming problem is formulated and
efficiently solved in Sect. 3. In Sect. 4, numerical results are presented. Finally,
we conclude the article in Sect. 5.
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2 System Model

2.1 Signal Model

We consider the downlink of a cooperative multicell network where a set Q of
BSs, each equipped with M antennas, is serving a set I of user equipments
(UEs) equipped with N antennas. Assume that the BSs are partitioned into
several clusters and jointly serve UEs. Let Q = (Q1, . . . , Qk, . . . , QK) denote a
partition of Q and Qk denotes the kth cooperative cluster. The set of serving
UEs in cluster k is denoted as Ik. Let Hql

ik
∈ C

N×M denote the channel between
qth BS in cluster l and the ith user in the kth cluster. Hl

ik
∈ C

N×MQl denotes
the channel matrix between all BSs in cluster l to user ik. Assume that each BS
only transmit a single data stream to each UE and let vqk

ik
∈ C

M×1 denote the

beamformer from BSs qk to UE ik. Let vik =
[
(v1

ik
)H , . . . , (vQk

ik
)H

]H
∈ C

MQk×1

denote the beamformer collection intended for user ik. Denote the transmitted
signal for UE ik as sik , and then the received signal of user ik can be expressed as

yik = Hk
ik

viksik +
∑

jk �=ik

Hk
ik

vjksjk +
∑

l �=k

∑

jl∈Il

Hl
ik

vjlsjl + zik (1)

Let uik ∈ C
N×1 denote the receiver beamformer to decode the intended signal.

The estimated signal is ŝik = uH
ik

yik . Then the mean square error (MSE) of UE
ik can be calculated as

eik = Es,z

[
(ŝik − sik )(ŝik − sik )

]

= (1 − uH
ik
Hk

ik
vik )(1 − uH

ik
Hk

ik
vik ) +

∑
(l,j) �=(k,i)

uH
ik
Hl

ik
vjlv

H
jl
(Hl

ik
)Huik + σ2uH

ik
uik

(2)
The achievable rate of UE ik can be expressed as

Rik = log

∣
∣
∣
∣
∣
∣
∣

IN + Hk
ik

vikv
H
ik

(Hk
ik

)H

⎛

⎝
∑

(l,j) �=(k,i)

Hl
ik

vjlv
H
jl

(Hl
ik

)H + σ2IN

⎞

⎠

−1
∣
∣
∣
∣
∣
∣
∣

(3)

2.2 Power Consumption Model

The power consumption at a certain BS qk can be modeled as

Pqk = ξP tx
qk

+ P sp,ct
qk

+ P bh
qk

(4)

where P tx
qk

, P sp,ct
qk

and P bh
qk

denote the transmission power, signal processing
power consumption and backhaul power consumption respectively, ξ is the recip-
rocal of power amplifier efficiency. Define Φqk as the row selection matrix which
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has all zeros except M ones on the main diagonal corresponding to the M anten-
nas of BS qk. Then, the total transmission power can be expressed by

P tx
qk

=
∑

ik∈Ik

vH
ik

ΦH
qk

Φqkvik (5)

The capacity gain brought by MCT is accompanied with the increased power
consumption. MCT introduces additional operation on each BSs, the signal to
be transmitted should be exchanged by BSs through the backhaul and the joint
signal processing is needed to suit joint transmissions. Hence, we refer to the
power consumption model in [9] and the signal processing power is modeled to
be a quadratic function of the cooperative cluster size as follows

P sp,ct
qk

= pspqk(0.87 + 0.1 |Qk| + 0.03 |Qk|2) (6)

The backhaul power consumption is caused by data exchange in the cluster and
is modeled as

P bh
qk

=
1

Cbh
(
2pq |Qk|2

Ts
) (7)

where Cbh denotes the backhaul capacity and Ts denotes the symbol period. p
and q represent the additional pilot density and relevant signaling, respectively.

3 Energy Efficient Clustering and Beamforming

3.1 Problem Formulation

For kth cluster, the throughput can be written as

Ck({vik}) =
∑

ik∈Ik

Rik (8)

The total power consumption of k-th cluster is given by

Pk({vik}) =
∑

qk∈Qk

Pqk = ξ
∑

ik∈Ik

vH
ik

vik + Pc (9)

where Pc is the total circuit power consumption. Energy efficiency (EE) of the

whole network is defined as EE({vik}, Q) =
∑K

k=1 Ck({vik
})

∑K
k=1 Pk({vik

}) . Hence, the energy
efficient clustering and beamforming problem can be formulated as

P1 : max
{vik

},Q
EE({vik}, Q)

s.t.
∑

ik∈Ik

vH
ik

ΦH
qk

Φqkvik ≤ pqk , ∀qk ∈ Q (10)

The above problem is hard to solve, so we decouple the problem and use the hier-
archical iterative algorithm to solve it. In outer iteration, the CFG is exploited
to obtain the network partition Q. In inner iteration, the energy efficient beam-
forming problem is solved based on the given network partition Q.
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3.2 Energy Efficient Beamforming

When the clusters are given, the origin problem can be rewritten as

P2 : max
{vik

}
EE({vik}, Q)

s.t.
∑

ik∈Ik

vH
ik

ΦH
qk

Φqkvik ≤ pqk , ∀qk ∈ Q (11)

Proposition 1. P2 has optimal objective value θ∗ if and only if f(θ∗) = 0,
where univariate function f : R �−→ R is defined as

f(θ) � max
{vik}

{
K∑

k=1

Ck({vik}) − θ

K∑

k=1

Pk({vik})

}

s.t.
∑

ik∈Ik

vHikΦH
qk

Φqkvik ≤ pqk , ∀qk ∈ Q
(12)

Proof. Based on the analysis in [7], we can conclude that f(θ) is a monotonically
decreasing function of θ and the equation f(θ) = 0 has a unique solution θ∗.
Therefore if we find certain θ that makes the objective function of (12) equals
to zero, then the corresponding beamformers are also the optimal beamformers
of problem P2.

Note that the problem in (12) is hard to solve due to the non-convexity of
capacity Ck({vik}), we introduce a set of new weight variables {wik} for each
user. Then the problem can be reformulated as:

P3 : max
{vik

},{uik
},{wik

}

∑
k

∑
ik∈Ik

(
log(wik ) − wikeik

)− θ
∑

k

⎛
⎝ξ

∑
ik∈Ik

vH
ik
vik + Pc

⎞
⎠

s.t.
∑

ik∈Ik

vH
ik

ΦH
qk

Φqkvik ≤ pqk , ∀qk ∈ Q

eik is given by (2).

(13)

Similar to [6,10], we can conclude that if ({v∗
ik

}, {u∗
ik

}, {w∗
ik

}) is the optimal
solution to P2, then {v∗

ik
} must be the optimal solution to P1 and (12). Con-

versely if {v∗
ik

} is the optimal solution of P2 and (12), then ({v∗
ik

}, {u∗
ik

}, {w∗
ik

})
must be the optimal solution to P2, where

u∗
ik

= Σ−1
ik

({v∗
ik

})
Hk

ik
v∗
ik

w∗
ik

=
(
1 − (v∗

ik
)H(Hk

ik
)HΣ−1

ik

({v∗
ik

})
Hk

ik
v∗
ik

)−1 (14)

with Σik

({v∗
ik

})
=

∑
(l,j) H

l
ik

vjlv
H
jl

(Hl
ik

)H + σ2I.
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In what follows, we solve P3 for given θ, {uik} and {wik}, which is a convex
optimization problem. the Lagrangian function of P3 can be stated as

L({vik
}, {λqk

}) =
K∑

k=1

∑

ik∈Ik

wik

⎛

⎝1 +
∑

(l,j)

u
H
ik

H
l
ik

vjl
v
H
jl

(H
l
ik

)
H

uik
− u

H
ik

H
k
ik

vik
− v

H
ik

(H
k
ik

)
H

uik

⎞

⎠

+ θξ
K∑

k=1

∑

ik∈Ik

v
H
ik

vik
+
∑

qk∈Q
λqk

⎛

⎝
∑

ik∈Ik

v
H
ik

Φqk
vik

− pqk

⎞

⎠

(15)

where {λqk} denote the Lagrange multipliers associated with the power con-
straints. Applying Lagrangian dual theory and the Karush-Kuhn-Tucker (KKT)
conditions, the optimal beamformer is given by

v∗
ik

= wik

⎛

⎝
∑

(l,j)

(Hk
jl

)Hujlu
H
jl
Hk

jl
+ θξI +

∑

qk∈Qk

λqkΦH
qk

Φqk

⎞

⎠

−1

(Hk
ik

)Huik

(16)
The optimal Lagrange multipliers {λ∗

qk
} can be obtained by gradient method.

Then we develop Algorithm 1 as below to numerically search the optimal value
of θ and {vik}.

Algorithm 1. Energy efficient beamforming
1: Initialize θ0

2: Initialize {v0
ik
}

3: repeat
4: Sequentially update ut

ik
wt

ik

5: update vt+1
ik

and θt+1

6: until certain stopping criteria met.

3.3 Energy Efficient Clustering as a Coalition Formation Game

We define the energy efficient cluster forming game (EECFG) as a triplet,
GEECF = (Q, u,Q) in a characteristic form. The players, namely BSs, are affected
each other through mutual interference, and they seek to form cooperative clus-
ters to improve energy efficiency. Moreover, u is a characteristic function that
quantifies the value of a coalition. Q = (Q1, . . . , Qk, . . . , QK) which satisfies
∀k1, k2 ∈ {1, . . . , K}, Qk1 ∩Qk2 = ∅,

⋃K
k=1 Qk = Q is a partition of Q and shows

a cooperative structure of the network. Coalition value set is defined as

u(Qk) = {υ(Qk) ∈ R
|Qk||υb(Qk),∀b ∈ Qk} (17)

where υqk(Qk) is an element of υ(Qk) and represents the utility that player
qk ∈ Qk can obtain in the coalition Qk. Here, we define the BS’ utility as the
EE it achieves when serving attached users. Note that the utility obtained by
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each BS in Qk depends on the joint strategies that all BSs in Qk select and the
coalition value cannot be arbitrarily apportioned among the members. Hence,
the proposed GEECF has a nontransferable utility (NTU). Therefore, we adopt
merge and split rules to obtain the optimal solution of GEECF. The modified
merge and split rules are defined as follows

Definition 1. Merge rule: merge any two coalitions Qk1 ,Qk2 , if {Qk1 ∪Qk2} �p

{Qk1 , Qk2}
{{Qk1 ∪ Qk2} �p {Qk1 , Qk2}

{Qk1 ∪ Qk2} /∈ h(Q̄) ;

Split rule: split any coalitions {Qk1 , Qk2} into two coalitions Qk1 ,Qk2 , if {Qk1 ∪
Qk2} �p {Qk1 , Qk2}

{{Qk1 , Qk2} �p {Qk1 ∪ Qk2}
{Qk1 , Qk2} /∈ h(Q̄) , where �p denotes the pareto

order, h(Q̄) denotes the history clustering information.

The network partition is first initialized to Q0 = {{1}, . . . , {|Q|}}, i.e., each
BS separately serves its attached users. When the ICI is severe, the BSs have the
incentive to cooperate with dominating interferer to jointly serve users, thus the
EE is improved. After initialization, merge and split operations are performed to
iteratively obtain the optimal partitions. At each iteration, the proposed energy
efficient beamforming algorithm (Algorithm 1) is used to determine the cooper-
ative transmission strategy and calculate the achieved EE. In this way, we can
obtain the EE optimal clusters and relevant beamformer through hierarchical
iteration.

Since the total number of the partitions is finite, i.e., Bell number and history
clustering information is introduced into the algorithm to avoid the repetitive
deviations, the proposed cluster forming algorithm always converges with any
initial partition. In addition, according to Theorem 6.2 [2], the proposed cluster
forming algorithm is Dhp-stable.

4 Numerical Results

In this section, performance of the proposed energy efficient clustering and beam-
forming algorithm for cooperative multicell networks are numerically evaluated.
As shown in Fig. 1(a), we consider a multicell systems with 7 uniformly dis-
tributed BSs each equipped with 2 antennas. Users are attached to BSs whose
pilot signal is strongest. At each time slot, we assume that each BS only serves
one single-antenna user. The channel from BS ql to user ik is assumed to be
Hql

ik
=

√
fql
ik,ls

Hql
ik,ss

, where Hql
ik,ss

is small scale fading coefficient and is modeled

as the Gaussian distribution with zero mean and unit covariance. fql
ik,ls

represents
the large scale fading coefficient and is modeled as fql

ik,s
− 15.3 − 37.6 log10(d

ql
ik

),
where fql

ik,s
denotes the shadow fading in decibels. For comparison, some base-

line strategies are also simulated: (1) the proposed energy efficient beamforming
algorithm with no cooperation. (2) the proposed energy efficient beamforming
algorithm with full cooperation. (3) the maximum ratio transmission (MRT)
with no cooperation. (4) MRT with proposed clustering algorithm.
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Fig. 1. (a) Simulated cooperative multicell network model (a) Energy efficiency vs
transmit power constraint: when flexible cooperation is considered (b) Energy efficiency
vs transmit power constraint: comparison with full cooperation case.

Figure 1(b) shows the EE with different transmit power constraint. It can be
seen that when applying the proposed energy efficient beamforming algorithm,
the EE can be greatly improved compared with MRT case and the gain can
be up to 104%. Moreover, when the CFG based clustering algorithm is also
exploited, the EE can be further improved by 20.5%. In addition, we can see that
with the increase of the transmit power constraint, the EE first increases and
then decreases. This is due to the increased ICI and transmit power. Figure 1(c)
shows the EE performance with different degree of cooperation. Full cooperation
of multicells will improve the network capacity, however, it leads to increased
energy consumption, and hence results in EE degradation. Comparing with full
cooperation, the proposed CFG based clustering algorithm enables more flexible
cooperation. When the ICI is severe, BSs will cooperate with aggressor BSs
to improve the EE. Hence the proposed algorithm shows superior performance
against the full cooperation.

5 Conclusion

In this paper, we considered joint clustering and beamforming for energy effi-
ciency optimization in cooperative multicell networks. In the dense network sce-
nario, each BSs separately serve their attached UEs may not be energy effi-
cient due to the severe intercell interference. So some BSs may be prompted to
cooperative with interfering neighbor BSs in order to improve the energy effi-
ciency. Hence in this paper, the hierarchical iterative strategy is proposed to
fulfill the goal of flexible cooperation. The EE optimization problem is divided
into two coupled subproblem. CFG is used to obtain the EE-optimal network
partition. For beamforming problem, based on the fractional program and the
MMSE model, the EE optimization problem is transformed to a convex optimiza-
tion problem and is efficiently solved. For the future work, we will consider the
user scheduling and extend the algorithm into heterogeneous cloud radio access
networks.
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Abstract. Deploying service instances in a network requires multiple
considerations. Firstly, an instance should be placed near clients that
need the service. Secondly, it should be in the centre of those clients.
Thirdly, the service provider himself should benefit from placing addi-
tional service instances.

We approximate problem one and two by a distributed auction. The
winners of the auction are agents that bid to join in a cost-sharing
scheme with cross-monotonic cost shares to solve problem three. Ser-
vice instances that have an appropriate number of clients that consume
may serve a context. Those with clients that are passive or mainly pro-
duce information may not serve the context because they can not pay
their cost shares and thus would not be beneficial to the service provider.
Clients of those instances (producers) are directly connected to the ser-
vice providers central server. Our algorithm fits well to services with a
regular consumer/producer ratio of 0.75/0.25.

Keywords: Service placement · Self-organization · Sparse knowledge ·
Multicast game · Facility location problem · K-mean/median-problem

1 Introduction

Resources in mobile networks are limited and the concurrent transfer of duplicate
data is a waste of resources. If the flood of information is big enough, every
network will suffer from the concurrent transfer of duplicate data. Therefore, it
is of use to replicate or cache data at distinct points in the network. However,
replicas introduce additional synchronization traffic to keep the different copies
consistent. As long as the content is not changed, no synchronization mechanism
is triggered. We call nodes that read data consumers. On the other hand, there
are nodes that alter/write data. Those are producers. Updated information is
assumed to be propagated through the entire network until all active instances
that store the information received it.

Nowadays algorithms replace static mechanisms and human intervention in
networks. A cloud infrastructure is usually controlled by central administrative
c© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2017
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entities that orchestrate an entire network. However, clouds as well as service-
and content delivery are also of relevance in wireless networks and in those net-
works, entities have sparse knowledge on the topology. That was our motivation
do develop a self-organized algorithm that deals with the challenges that were
stated in the abstract.

The paper is organized as follows. In Sect. 2, we study previous approaches
that influenced our mechanism. In the following part, our model and assump-
tions as as well as definitions on cost sharing games and requirements are given.
Section 3 deals with our cross-monotonic algorithm, which is evaluated in Sect. 5.
We conclude the results, shortcomings and advantages in Sect. 6.

2 Related Work

Our approach addresses two challenges in future networks. Service instances need
to be placed near clients that request the service. Usually, a service provider
analyzes the clients behavior and the decision where to place service instances is
based upon an offline optimization. There were several approaches that addressed
an online optimization of wireless (sensor) networks, like [11].

Games for Service Placement. In wireless networks, environmental factors need
to be monitored. For that purpose, Wu et al. [11] created a submodular game
that improves Quality of Monitoring. Once a wireless sensor node notices a lack
of monitoring, it solves a knapsack problem to find out, whether it has enough
resources to run an additional monitoring application. An appropriate per-node
utility function considers a neighbors allocation and maximizes the social welfare
that is measured by the quality of monitoring. Whenever a node changes its
strategy, it has to send its modified strategy to its neighbors.

Different kinds of facility location and k-Median problems were addressed
by Pál et al. in [8]. In their Single-Source Rent-or-Buy game, a strategy-proof
cost-sharing scheme was proposed. The edges of a Steiner tree are bought while
edges on the shortest path from a receiver to the Steiner tree are rented. Every
individual packet transfer along a rented edge has to be paid separately. The
costs that arise if an edge is bought, are shared among the receivers in the
Steiner component. Furthermore, their ghost-mechanism requires the receivers
to continuously fund a fraction of their cost shares to establish the Steiner tree.

The second challenge is to describe and identify the context of nodes.

Context-Awareness. Self-Optimization and Self-Configuration is an essential
functionality in the Internet of Things. Several things can share a context. In
[9] is described how the correlation among contexts can be measured. Jaffal
et al. [3] analyzed, in which way a context can be abstractly described to aid
in the design of pervasive systems. Najar et al. [5] elaborated on how a service,
that satisfies a clients intention in a given context, can be chosen. Especially
[1,6] analyze an architecture that includes contextual awareness as a factor in
deploying and designing services.
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3 System Model and Requirements

Data for consumers can be retrieved from the node that stores all data or at
lower cost (and lower delay) from a nearby service instance. If the data item
was previously retrieved, consumers get their information from a nearby service
instance and the retrieval from the central node can be omitted. A high cache hit
rate results in a decreased use of the connection to the central node. It increases
if it is likely that clients request same data and that is the case if those are
correlated. We see two ways to find out whether data is correlated.

Firstly, data can be partitioned. Hence, requests are correlated if clients
request data from the same partition. Secondly, for unpartitioned/unstructured
data, we use methods of big data and data analysis. The information, a client
is interested in can be put into a selector vector. It has to be staged by the
service/content provider (e.g. by formal concept analysis [3]) and is used by
the facilities to discriminate clients within the same context from those who
are not. The comparison of a selector vector with a client vector can be done
with the symmetric Kullback-Leibler- or symmetric Jensen-Shannon divergence
[1–3,5,6,9]. Matching a clients behavior to the selector vector may require deep
packet inspection on samples of the traffic. Furthermore, a candidate needs to be
aware of the clients profile in the service. These can be information consumers
or information providers. The occurring system costs are shown in Eq. 1

Ω(S ⊆ F, t) =
∑

v∈S

∑

c∈Cv

(rc(t) · (cost(Pc,s) − cost(Pc,v)) + wc(t)CSteiner) (1)

In Fig. 1, all clients have to retrieve their data from the central instance s. If
node u in Fig. 1 reads data, it incurs cost of

∑
e∈Pus

cost(e) = 18. If he acts as
an producer and writes to s, costs will be 18, equally. If the same scenario occurs
in Fig. 2, node u updates data that is distributed among the nodes that are col-
ored green, it incurs cost of 43. If another user requests the updated content,
the data is retrieved from the local instance. If �(40 − 15)/20� = 2 users in the

Fig. 1. Only one service instance
is active (=green): Configuration if
majority of operations is Write (Color
figure online)

Fig. 2. Several service instances are
activated (=green) and connected by
Multicast Tree: configuration if major-
ity of operations is Read (Color figure
online)
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lower right corner of the picture read the new content, costs are compensated.
Our approach suits networks in which nodes have sparse knowledge. Therefore,
centralized algorithms are inappropriate. To find nodes that are appropriate to
serve clients, the k-Median problem is approximated with best response dynam-
ics. If consumers and producers change their behavior, service instances adapt
accordingly. Consumers at a service instance compensate the costs that arise on
the reception of the updates. If the amount of consumers is too low, those costs
are not compensated and the instance stops serving that context. We optimize
both with a cost sharing scheme.

Definition 1 (Cost-Sharing Scheme [7]). A cost-sharing scheme is a function
ξ : A × 2A → R

+ ∪ {0} such that, for every S ⊂ A and every i �∈ S, ξ(i, S) = 0.

The value ξ(i, S) determines the cost shares of the agent i within the set S.
Usually an agent has an incentive to cover the costs it invests in cost shares. An
agents revenue/gain has to be greater than its investment in the cost shares. An
agent that can not cover its cost shares is pruned from the scheme, which is one
important mechanism to achieve the following property of our game.

Definition 2 (Cross-Monotonicity [7]). A cost-sharing scheme ξ is cross-
monotonic if for all S, T ⊆ A and i ∈ S, ξ(i, S) ≥ ξ(i, S ∪ T ).

Cross-monotonicity is also known under the term population monotonic [10].
The set of participating agents increases while the cost shares decrease. An
agents cost share may not rise even if additional agents join in. An equivalent
argument for cross-monotonicity is ξ(i, S) ≥ ξ(i, S′) for all S ⊆ S′. Therefore
cross-monotonicity stimulates other agents to join. Cost sharing schemes should
provide further import characteristics like competitiveness and cost recovery.

Definition 3 (Competitiveness [8]).
∑

i∈S

ξ(S, i) ≤ c∗(S) and assures that the

participating agents are not charged more than the true cost c∗(S).

If competitiveness is not assured, there would be the possibility, that some
other agent could offer the service at lower cost. The following term is also known
as weak budget-balance.

Definition 4 (Cost Recovery [8]).
∑

i∈S

ξ(i, S) ≥ c∗(S) and assures that the

costs are recovered.

Our game is cross-monotonic and recovers the cost of the update distribution.

4 Cross-Monotonic Semi-cost Recovering Game

A game is a triple of (A,S, uv) with agents A, a strategyspace S and a revenue
function uv for node v. As mentioned in the previous section, the agents are
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the available facilities that can host an instance of the service. The strategy, an
agent may choose from, is defined as follows:

S =
{
2C × R × B

}

An agent vs strategy for k correlated sets is s = (C ′ ⊆ Cv, b, a)k ∈ Sk. In s, C ′

represents the correlated clients of a context that are near node v, b is the nodes
bid to serve the client set C ′ and a is true if the clients read/write ratio fulfills
Eq. 2 and therefore, the instance is efficient in decreasing the value of Eq. 1. In
Eq. 2, value αv(S, i, t) denotes the agents cost-shares that have to be paid at every
reception of an update in context i and is depicted in Eq. 4. Agent vs strategy for
k correlated sets is s =

(
(C ′

0 ⊆ Cv, b0, a0), . . . , (C ′
k−1 ⊆ Cv, bk−1, ak−1)

) ∈ Sk.
The available contexts inside the network are denoted by K.

∑

c∈C′

t+τ∫

t

rc(t) · (cost(Pc,s) − cost(Pc,v)dt >
∑

c∈C′\Cv

t+τ∫

t

wc(t) · αv(S)dt (2)

Algorithm 1 runs on every agent v ∈ A. Per correlated set of clients (line 2),
a node determines its median distance to the clients (line 3). The nodes bid
value b to serve the clients is computed with a Gaussian. We choose μ = 0 and
σ = |Cv| (line 3). The argument of the Gaussian is calculated as depicted in
line 4. Several approaches to the Facility Location Problem (e.g. [8]) construct
a ball around the facilities or clients. At the intersection point of several balls, a
facility is opened. In this approach, the facilities are agents.

A node estimates its maximum cost shares within a context with Eq. 3.
C : K → C represents the clients within the context.

Bv(i, t) =
∑

c∈(C(i)∩Cv)

rc(t) · cost(Pc,s − Pc,v) (3)

Node v sends its bid Bv(i, t) to serve context i to the central instance. At this
point, we use scheme [7, Sect. 14.2.2, p. 367]. The central service instance decides
whether the offered bid covers the cost to integrate node v into the Multicast
tree. It is handled that way because we expect the central instance to know
about the current read/write ratio in context i. Node vs cost shares that were
determined by the referenced scheme are depicted in Eq. 4. Here, ST(i), i ∈ K is
the current multicast tree of the service instances that serve context i.

αv(S, i, t) = min
w∈ST (i)

{
cost(Pv,s), cost(Pv,w) + costST (i)

(
PST (i)

w,s

)}
(4)

Every service instance is charged the cost shares αv(S, i, t) (Eq. 4) per received
update. The path of node w to s in the Multicast tree is denoted as PST

w,s and
the proportionate cost of node w as costST . The cost shares αv(S, i, t) are cross-
monotonic (Definition 2) if the triangle inequality holds. Furthermore, the mech-
anism in line 10 ascertains that the recovery of the cost of propagating the
updates (Definition 4) can not be violated longer than for time τ .
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1 if Received strategy s′ or topology change or consumer/producer change then
2 for C′ ∈ correlated sets(v) do
3 m ← median

c∈C′ d(c, v); σ ← |C′|;
4 δ ← ∑

c∈C′
(m − d(c, v));

5 b ←√|C′| · e
−δ2

2σ2 − ρ + r;
6 s ← (C′, b, False);
7 if b > 0 or b > bs′ then
8 if strategy s changes then
9 Send s to neighbors; sleep(θ);

10 if Eq. 2 holds then
11 Connect all c ∈ C′ to v
12 else
13 ∅-Strategy
14 end

15 end

16 else
17 ∅-Strategy
18 end

19 end

20 end

Algorithm 1. Best response mechanism for node v

5 Evaluation

For evaluation, we investigated different consumer/producer profiles.

Simulation Setup. The simulations were implemented in Python with SciPy,
NumPy and SimPy. For the computation of the Steiner tree among the active
facilities, we used the submodular function optimizer library [4]. User operations
follow a Poisson process. Each of the 80 clients executes a read or write operation
with distinct probabilities. Exact pairs of read/write ratios are shown on the x-
axis in Fig. 3. All users are homogeneous, meaning all users have a common
read/write-ratio and Poisson arrival rate of 2. A node may change an item if
it has previously read it. The performance is stable regarding the number of
requested items or number of operations per time slot.

Results. Figure 3 shows that in the range of read/write ratios between 0.05/0.95
and 0.35/0.65, the cost of the single-server (=blue) and multi-server configura-
tion (=red) rise fast. An item has to be read before it can be changed. Therefore,
write cost follow read and are upper bounded by the read cost in the single-server
case. That is not the case in the multi-server solution. If an item is already avail-
able at the service instance a client is connected to, the item is retrieved from
the local instance. An item is not available at a local service instance if no client
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Fig. 3. Cost for different read/write profiles (Color figure online)

previously read it or no other client in the same context inside the entire net-
work changed it. If another client would have changed it, the update was propa-
gated. In our simulation, the multi-server cost are clearly above the single-server
approach in the range of read/write ratios between 0.35/0.65 to 0.5/0.5. From
0.5/0.5, the multi-server system cost decrease. At the ratio 0.75/0.25, our self-
organized system has its optimal working point. Prior to the working point, line
10 in Algorithm 1 assures cost slightly above the single-server approach. Until
ratio 0.6/0.4, Algorithm1 enforces the single-server solution. Winners of the dis-
tributed auction to serve the context can not afford the cost shares. Therefore,
clients request and write data directly to the single server. After that break-even
point, service instances start from being able to pay their cost shares to receive
updates and our mechanism causes the convergence to the multi-server config-
uration. At the working point, the service can be delivered at the same cost
a single-server approach would have. However, the users have a lower latency.
After the break-even point, multi-server configuration outruns the single-server
approach.

Though, at the ratio 0.6/0.4, our algorithm violates the cost-recovery prop-
erty for time τ . That is a disadvantage for service instances with a low number
of clients. Those easily run in the situation where they can not cover their cost
shares anymore. The mechanism in Algorithm 1, line 10 shuts down those service
instances. Their revenue function stabilized at read/write ratios of 0.75/0.25.
Therefore, our self-organized algorithm fits well to services, that regularly have
75% consumers and 25% producers.
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6 Conclusion

This paper presents a cross-monotonic cost sharing scheme that solves the Ser-
vice Placement Problem with information producers and information consumers.
It is applicable for wireless as well as for IoT infrastructures. Our approach trans-
forms a global cost function (Eq. 1) into a local optimization problem (Eq. 2)
that is optimized by a self-organized algorithm. Thus, our algorithm runs and
decides in each node solely based on local knowledge. Our approach shows a
favorable working point at a read/write ratio of 0.75/0.25. The service can be
delivered at the same cost a single-server approach achieves while the transfer
of the up-to-date data is achieved at a considerably lower delay.

Self-organized systems benefit from cross-monotonic cost-sharing schemes.
Cross-monotonicity assures that newly entering agents can not increase the cost
shares of other nodes. That makes it ideal for service providers because a joining
agent can not increase the cost shares of other agents. Our mechanism auto-
matically shuts down entities that suffer from a lack of consumers and therefore
provides an efficient mechanism in dealing with an unbalance between informa-
tion consumers and information providers. It is a derivate of the cross-monotonic
Multicast Game. However, an agents revenue changes over time and if the rev-
enue becomes negative, our mechanism shuts down the agent. The mechanism
allows agents to violate the cost-recovery property for a time τ .

In our future work, we will give proof on the competitiveness and α-cost-
recovery in dependence of τ and real-world client-profiles. Furthermore, we will
compare our scheme to connected facility location algorithms that perform an
offline optimization. Additionally, the bidding mechanism for the approximation
of the K-Median problem has to be compared to Pál et al. [8] Primal/Dual
mechanism.
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Abstract. Increasing demands of data transmissions are promoting the
acceleration of peaking rate per terminal especially in hot-spots. Numer-
ous irregular deployments of small cells require efficient TA planning
method in heterogeneous cellular networks. Macrocells preferred access
is not a fundamental solution for TA planning, result from reducing the
offloading ability of small cells. In this paper, a novel TA planning algo-
rithm based on cooperative games is proposed by detecting similar com-
munities. Simulation results show that it can reduce the signalling over-
head while maintaining the utilization proportion of femtocells.

Keywords: Heterogeneous and small cell networks · Location manage-
ment · Tracking areas planning · Cooperative game

1 Introduction

In recent years, various mobile terminals with high performance have captured
the market rapidly all over the world. This leads a new era that varieties of
services such as cloud computing, multimedia broadcasting, social networks and
online game inspire the ubiquitous demands [1,2]. According to the statistics,
numerous data transmissions are proceeding in residents or hot-spot areas [3].
Consequently, the desired quality of service (QoS) is accelerating the progress
of hyper dense networks (HDN) in beyond 4G and 5G [4–6]. Heterogeneous and
small cell networks (HetSNets), as one of the options for HDN, can support
higher system throughput by introducing small cells (such as femtocells and
picocells) [7,8]. The HetSNets infrastructure has been illustrated in Fig. 1, and
different small cells have corresponding backhaul ways and scope of services [9].
However, massive deployments of small cells increase the signaling overhead and
complexity of mobility management in HetSNets [10], and tracking area (TA)
planning is part of the issue in hybrid mobility managements [11].

The dense deployments of small cells have been found to cause the heavy sig-
naling overhead for location tracking with conventional principles of TA planning
[12,13]. Several novel algorithms are therefore proposed to replan TA efficiently.
In [14], an automatic replanning of TA for long term evolution (LTE) networks
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Femtocells for Residents

Internet

Core Network

Picocells for Enterprise

Microcells for Hotspots

Backhaul via Radio

Backhaul via Fiber

Macrocells for Urban Areas

Fig. 1. Diagram of HetSNets infrastructure.

is presented via formulating the problem as a classical graph partitioning, which
is solved by a multi-level graph partitioning algorithm. [15] presents an alter-
native method via modifying the handover decision and cell reselection, while
considering the femtocells as groups for location tracking. Nevertheless, massive
base stations consisting of the graph vertexes may bring the challenge of the
algorithm proposed in [14], and forcing the users to stay in the macrocells as
long as possible is not always efficient due to various user traffic and motion
features [15].

Game theory has been widely used as a central tool for the design of future
wireless and communication networks in recent years [16]. Game theory formu-
lated interaction main incentive structures. It is a mathematical study of the
theory and methods of the competitive nature of the phenomenon. Game the-
ory considers the game to predict individual behavior and actual behavior, and
to study their optimization strategy. Biologists use game theory to understand
and predict the evolution of some of the results. Cooperative games encompass
coalitional games that describe the formation of cooperating groups of players,
referred to as coalitions. In [17], it utilizes coalitional games to detect commu-
nities in social networks. Inspired by [17], this paper considers TA planning as
a detection of similar communities based on cooperative games.

2 System Model

Small cells are low-power access nodes, working on both the authorization and
non-licensed spectrum. The coverage is from 10 m to 200 m, compared to the
coverage of the macrocell, which can reach several kilometers. Mobile operators
are worried about the growth of data traffic, and many operators believe that
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Fig. 2. Diagram of tracking area configuration.

mobile data is a good way to bypass the efficient use of radio spectrum resources.
Data distribution is an important component that many operators take seriously.
Small cells are an effective way to manage LTE -A spectrum instead of just
using the macrocell. Small cells can be used both indoors and outdoors. Mobile
operators is eager to extend the use of small cell cover range and improve the
network capacity. In hot-spot areas, mobile operators can offload 80 % of the
traffic. The report predicts that by 2015, 48% of mobile data traffic is streaming
out from the macrocell. No single technology can rule the data distribution. It
also believes that operators can discover new profit by small cell growth. When
the registered user enters a femtocell zone, the network can learn the location
information. With the obtaining permission, the location information can be
updated immediately to social networks.

4G LTE networks defines the traditional method of location management
as TA, which has its own identity called tracking area identity (TAI). One TA
without overlapping is comprised of a group of continuous base stations. In each
TA, the core network of LTE sends the paging request (PR) to idle users while
the calling arrives, and the mobility management entity (MME) is responsible
for location updating (LU) while the users move out of the TA. Consequently,
the upper bound of TA is limited by the maximum paging load that the MME
supports, and the lower bound is determined by signaling overheads that the
users go across the TAs. The basic principles of TA planning are to balance PR
load and LU signaling overhead, which are namely unique frequencies, MME,
continuous areas, and topography oriented. The principle can avoid the channel
congestion of PR, while reducing the LU signaling overhead. As shown in Fig. 2,
the Femtocells in the same area may belong to different MME. If the Femtocell
and eNB are considered as single TA, the backhaul bandwidth is a limitation
of the fast transmission of paging signalling. Moreover, if the coexisted Fem-
tocells are considered as single TA, the limited coverage of this TA may cause
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Fig. 3. TA planning as a graph modeling.

massive location updating signalling due to the frequent moving out of the TA.
Therefore, the conventional TA replanning is not quite appropriate for HetSNets.
The application of the corresponding location area concept, this area is called
tracking area location. EPC for the UE is an idle state and connection status,
and have their registered TA management, exchanging the registration informa-
tion of the UE. EPC also deals with TA changed. Tracking area update (TAU)
can tell EPC that UE is available, or handover between cellulars. Tracking area
identity (TAI) is not in the list of UE. When TA is engaged in registration, it is
necessary to perform TAU process.

Figure 3 shows a graph model G(V,E) of TA planning, whose vertices V and
edges E represent the base stations and adjacency of networks, respectively. The
weight of vertex PRi is the number of paging request in cell i, and the weight of
edge LUij is the number of idle users, who move from cell i to cell j. We define n
partitions of G(V,E) as G1, G2, · · · Gn, therefore, the optimal TA planning can
be modeled as

Min
∑

(i,j)∈(V1,··· ,Vn)

LUij (1)

s.t.
∑

i∈Vk

PRi ≤ Cmax ∀k = 1 : n (2)

where Cmax is the capacity of the paging channel. In the following section, the
solution of this problem is discussed.

3 Proposed TA Planning Algorithm Based on
Cooperative Game

Before the cooperative game is introduced to solve the classical graph model
presented in the previous section, we need to transform the expression of G(V,E).
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For all LUij ≥ 1 and LUij ∈ Z, expand G(V,E) to G′(V,E) via generating
LUij vertices of vi and vj themselves, and making the new v′

i and v′
j connected.

Namely, the original graph is extended by self-replicating based on value of LUij .
Therefore, the new graph can be obtained by G(V,E) = G′(V,E).

For the new G(V,E), if vi and vj (i, j ∈ N) have connections, we define
eij = 1, or eij = 0. Therefore, the community detection model based on cooper-
ative game can be expressed by CG = (N,Eigen), shown as

Eigen (S) =

{
0 S ⊆ N, |S| = 1, or, S = Φ∑

i∈S

∑

j∈S,j �=1

eij
d(i) S ⊆ N, |S| ≥ 2, d (i) �= 0 (3)

where d (i) =
∑

j∈N

eij is the degree of vi and Eigen(S) represents the benefit

corresponding to the sum value of all edges [17]. So the Shapley value SHEigen

can be calculated as

SHEigen (S, i) = SHEigen (S1, i) +
1
2

∑

j∈S2

(
eij
d (i)

+
eji

d (j)

)

, i ∈ S1 (4)

SHEigen (S, j) = SHEigen (S2, j) +
1
2

∑

i∈S1

(
eij
d (i)

+
eji

d (j)

)

, j ∈ S2 (5)

where ∀S1, S2 ⊆ N , S = S1 + S2. The detailed solution algorithm is shown as
below:

Algorithm 1. CG procedure
get the network vertices N = 1, 2, · · · , n
get the network edges E = (eij)n×n, i, j ∈ N
suppose the level number l = 1
suppose the set of coalitions Sl = {Φ}
for i = 1 to n do

get the ith coalition from Sl Sl
i = {i}, Sl = Sl ∪ {Sl

i

}

end for
while

∣
∣Sl
∣
∣ > 1 do

l = l + 1
for all x ∈ Sl−1

i such that Sl−1
j , Sl−1

k ∈ Sl−1, j �= k, or Sl−1
k = Φ do

if SHe

(
Sl−1
i ∪ Sl−1

j , x
) ≥ SHe

(
Sl−1
i ∪ Sl−1

k , x
)
then

Sr = Sl−1
i ∪ Sl−1

j

Sl = Sl−1 − {Sl−1
i

}− {Sl−1
j

}

Sl = Sl + {Sr}
end if

end for
end while
get communities from Sl′
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4 Performance Evaluation

For definiteness and without loss of generality, this paper considers a two-tier
HetSNet, which is comprised of macrocell and femtocell operated with open
access [18]. Additionally, macrocell is modeled as a hexagonal with three sectors
depending on the carrier’s deployment. Femtocell is assumed for a random distri-
bution that follows a Poisson Point Process (PPP) based on stochastic geometry
theory [19]. The SINR layout in the integration of macro cells and small cells is
shown in Fig. 4.
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Fig. 4. SINR layout in the integration of macro cells and small cells.

According to 3GPP, the particular simulation parameters are summarised in
Table 1. For the traffic type, the calling arrival rate λ is subject to a homogeneous
Poisson process, and the mean holding time is 90 ms. For the mobility model, this
paper introduces a opportunistic one that represents the human motion features
in hot-spot area [20]. To illustrate the advantage of the proposed algorithm, two
representative methods [14,15] are introduced as comparisons, which are short
for TORIL 2013 and YU 2013 respectively.

The performance metric of TA planning is the total signalling overhead Ctotal,
which is calculated by the sum of TA updating and PR, shown as

Ctotal = p {paging} · N̄cells · cp + p {TAU} · ctau (6)

where p {paging} is the arriving rate of paging in one time slot, N̄cells is the
average number of cells in the TA list, cp is the signalling overhead of every
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Table 1. Simulation parameters

Parameter Value

Carrier frequency/system bandwidth 2.0 (GHz)/10 (MHz)

UE distribution/speed Uniform/30 (km/h)

Channel model Typical urban (6 rays)

Transmit power of macro/femto 46 (dBm)/20 (dBm)

Path loss model (Macro) 128.1 + 37.6log10(R) (dB)

Path loss model (Femto) 127 + 30log10(R) (dB)

Shadowing standard deviation Macro 8 (dB), Femto 4 (dB)

Macro/femto antenna gain 14 (dBi)/5 (dBi)

Macro/femto noise figure 5 (dB)/8 (dB)

A3 offset/TTT 3 (dB)/160 (ms)

Handover decision delay 50 (ms)

Handover execution time 40 (ms)

paging operation, and p {TAU} is the probability of TA updating with the cost
of ctau. Generally, we make λ = p {paging} = 0.05, ctau = 10 · cp.

Figure 5 shows the normalized signaling cost with various rate of femtocelll
residence. Due to hyper dense deployments of femtocells in the given circum-
stance, the probability grows slowly as the increasing rate of femtocelll resi-
dence. It is clear that the method (YU 2013) via forcing the user to attach the
macrocell as much as possible demonstrates the best signaling cost performance,
and the proposed algorithm with cooperative game shows a better performance
compared to TORIL 2013.
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Fig. 5. The normalized signalling overhead with various rate of femtocelll residence.
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The deployment of small cells is to improve the transmissions rate and offload
the traffic from macrocells in hot-spots, so it is beneficial for users to attach small
cells as much as possible. p(k) is defined as the access probability to femtocells,
where k is the sample time. The utilization of femtocells can be expressed as

Usmall-cell =
n∑

k=1

P [k]

⎛

⎝
k∑

j=1

p [j]/k

⎞

⎠ (7)

where n is the sample time when the user is out of service by femtocells.
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Figure 6 describes probability of femtocells attached with various speed of
user motions. Obviously, as the increasing of average speed, the utilization rate
of femtocells is reducing, since the handover decision shall guarantee a specific
successful access to networks for limited coverage of femtocells. Due to forcing the
user to stay in macrocells as long as possible, YU 2013 has a lowest probability
of femtocells attachment. In contrast to YU 2013, the proposed algorithm and
TORIL 2013 have a better utilizing performance of femtocells. Meanwhile, the
two methods perform quite close, which results from the optimal springboard of
TA planning.

5 Conclusion

In this paper, a TA planning method based on cooperative game was proposed
to reduce the signalling overhead of location management in HetSNets. After
self replication of vertices and edges based on the paging requests and location
updates, the modeled graph will be classified into new communities, which rep-
resent a planning of TA. Simulation results showed that the proposed algorithm
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reduces the signalling overhead while maintaining the utilization proportion of
femtocells. In the future, the proposed method will be performed a detailed
analysis on human mobility features that affect TA planning in various deploy-
ment scenarios.
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Abstract. With the proliferation of online social networks (OSNs), the
characterization of diffusion processes and influence maximization over
such processes is a problem of relevance and importance. Although sev-
eral algorithmic frameworks for identifying influential nodes exist in lit-
erature, there is a paucity of literature in the setting of competitive
influence. In this paper, we present a novel mechanism design approach
to study the initial seeding problem where the agents, represented by
vertices in the social network, are economically rational. The principals
compete for influence in the network by setting price and incentives to
illicit high degree initial subscribers, which in turn profit by infecting
their neighbors. We restrict attention to equilibrium strategies and com-
parative statics for the agents.

Keywords: Social networks · Mechanism design · Influence maximiza-
tion · Agents · Game theory

1 Introduction

The widespread adoption of online social media and networks, blogs, and inter-
net shopping has transformed the web into a rich complex network structure.
The web has therefore become a medium for diffusion of influence and infor-
mation propagation. These spread processes have several applications including
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adoption of innovations [9], viral marketing [1], spread of rumors [3], and online
recruitment. Information cascades resulting from such spreading processes have
been widely observed in online social networks such as Facebook and Twitter.
The algorithmic characterization of such processes is presented in two widely
accepted models - the Linear Threshold and Independent Cascade [5,7]. The
influence maximization process over these two models was first presented in [8],
where a principal seeks to find the optimal set of nodes to seed. Recent litera-
ture has also focused on a Competitive Contagion model in which two or more
principals compete for influence in the network [2,6] by seeding nodes in the net-
work. An uninfected node changes state based on a stochastic process [6], rather
than economic motivators, which is a major limitation in most algorithms that
identify nodes of influence and agents of rapid propagation. We aim to bridge
that gap in this contribution. In our work, we cast the problem as one of a
referral game (described later) over a social network. The primary contribution
of this work is the construction equilibrium strategies for the agents. Based on
the importance of high-degree nodes in propagating influence [10], our second
contribution provides conditions under which an agent will prefer seeding from
one principal over another based on principal incentives and the agent’s neigh-
borhood size. Additionally, this model does not suffer from issues of complexity
that plague the algorithmic approach [8,10].

2 Model

We examine a dynamic game of imperfect information, which we call the referral
game, over a social network. The players of this game are partitioned into two
disjoint, finite sets. The first set P consists of the principals, and the second set
A consists of the agents. The set of players in this game is N := P∪̇A. The social
network is represented by an undirected graph G(V,E) where V (G) := A. Two
agents i, j ∈ A are related if ij ∈ E(G). We postulate that each agent is only
aware of its neighborhood set. That is, each agent v believes that with probability
1 the social network is K1,|N(v)|, where N(v) denotes the open neighborhood of
v. Furthermore, we postulate that each principal is only aware that G exists,
but not of any properties of G.

Each principal p ∈ P provides a membership option for each agent at price
cp ∈ R+. This membership provides a valuation vp ∈ R+ to the member, which
is exogenously given for principal p. For every principal p, both the price cp
and valuation vp are public information. Initially, each agent does not hold a
membership, and an agent can hold at most one membership which cannot be
revoked or changed later.

Definition 1 (Infection). An agent v is said to be infected if v holds a mem-
bership from some principal i. The agent v is said to be uninfected otherwise.

The principals each seek to maximize influence over a graph. Define the
membership function mem : A → P ∪ {U} which takes an agent and returns
the principal from whom the agent is infected, or U if the agent is uninfected.



A Mechanism Design Approach for Influence Maximization 57

Each principal i has utility function: ui(A) = |mem−1(i)|. In order to maximize
influence, each principal sets its price and incentives. Each principal’s strategy
set is S := R+×[0, 1]×R+. Principal i’s strategy (ci, αi, βi) ∈ Si is interpreted as
follows: ci is the principal’s price for infection, αi is the price discount for agents
who subscribe at T = 0 (that is, each agent pays αici), and βi is the amount an
agent receives for each additional agent it refers. Furthermore, agents who are
referred to principal i at some time T > 0 also receive βi (but must still pay the
undiscounted price ci). Each principal’s strategy constitutes a mechanism with
which to infect willing agents. The collection of these mechanisms induces the
referral game. For the purpose of this paper, principals’ strategies are taken as
fixed. We restrict attention to the comparative statics with respect to the agents
rather than the principals’ strategies.

The game operates in discrete time steps starting at time T = 0. Prior to
the start of the game, each principal fixes its strategy. At T = 0, any agent may
become infected by at most one principal. After this initial joining period, unin-
fected agents can only become infected by principal i through referral from an
agent already infected by i. An uninfected agent can only receive such a referral
from one of its neighbors. At each discrete time T > 0, each infected agent may
submit proposals simultaneously to any subset of its uninfected neighbors. The
uninfected nodes that received proposals may accept at most one of the referrals
or remain uninfected.

We now define each agent’s utility function. Denote U as the option of remain-
ing uninfected. Each agent v has the partial utility function of the form:

uv : (P ∪ {U}) × (N(v) ∪ P ∪ {∅}) × 2N(v) → R+ (1)

The component (P∪{U}) denotes the principal by whom v is infected, or whether
v is uninfected. The component N(v) ∪ P ∪ {∅} describes the player referring v.
If the player is a principal, this indicates that v subscribed to the principal at
time T = 0. The ∅ option denotes that no such referral has been made, and v is
uninfected. Finally, the element from 2N(v) denotes the set of neighbors which v
successfully referred. We define the following cases:

1. uv(U , ∅, ∅) = 0. That is, an agent experiences no utility for remaining unin-
fected.

2. uv(i, i, s) = vi − αici + |s|βi for any i ∈ P and any s ∈ 2N(v). This case
indicates that agent v subscribed at time T = 0 to principal i.

3. uv(i, j, s) = vi − ci + (|s| + 1)βi for any i ∈ P, any j ∈ N(v), and any
s ∈ 2N(v)\{j}. This case indicates that agent v was referred by its neighbor
j to principal i at time T > 0, and then v referred an additional |s| of its
uninfected neighbors.

3 Analysis

The referral game is a dynamic game of imperfect information. The solution
concept we use is the Perfect Bayesian Equilibrium. We construct a Perfect
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Bayesian Equilibrium for this game using backward induction. At every time
T > 0, each infected agent can only attempt to infect uninfected neighbors.
Uninfected neighbors can only accept or reject referrals when received. We first
show that an agent infected at time T need only attempt to infect its neighbors
at time T + 1. This determines the Nash equilibria for terminal subgames.

Proposition 1. Let x be an agent infected by principal i. Let Nu(x) denote the
set of uninfected neighbors of x. Then x will propose to each neighbor y ∈ Nu(x)
exactly once.

Proof. Fix y ∈ Nu(x). It is a weakly dominant strategy for x to propose to y. If y
accepts a proposal from one of its infected neighbors, then we are done. Suppose
instead at time Tk > 0, y rejects each of its infected neighbors’ proposals. Recall
that under y’s belief system, the social network is K1,|N(y)|, with y at the center.
We thus have E[uy(i, x,Nu(y))] = vi − ci + (|Nu(y)| + 1)βi < 0. As no infected
agent can become uninfected, |Nu(y)| is non-increasing as the game progresses.
So E[uy(i, x,Nu(y))] < 0 for every time T > Tk. ��

We now use Proposition 2 to show that the game is finite, which implies the
existence of an equilibrium [4].

Proposition 2. Denote the set of agent states K = P ∪{U}, where u denotes a
vertex remaining uninfected and each element i ∈ P denotes infection by princi-
pal i. The vertex states converge to a steady state equilibrium in K |V |. Further-
more, this equilibrium is reached in O(|V |) time steps.

Proof. Once an agent becomes infected, its state is fixed. From Proposition 2, an
agent v that remains uninfected at time T = 0 receives at most |N(v)| referrals,
of which v can select at most one. It follows that the vertex states converge to a
steady state equilibrium in K |V |. The bound is tight, as in the case of the graph
G is a path on |V | vertices where one endpoint agent becomes infected at T = 0.
Then at most one additional agent is infected by referral at each subsequent time
step, implying that the vertex states will converge to equilibrium in at most |V |
time steps. ��
Corollary 1. There exists a Perfect Bayesian Equilibrium [4].

The following proposition will construct an explicit Perfect Bayesian Equi-
librium in mixed strategies for the case when G ∼= K2. This result will be used
to construct the Perfect Bayesian Equilibrium for the general case.

Proposition 3. Suppose the social network G ∼= K2. Let j = arg maxi∈P vi −
αici. Define: Q1 = {i ∈ P : vi − ci + βi < vj − αjcj} and let Q2 = P\Q1. Then
there exists a symmetric Perfect Bayesian Equilibrium in mixed strategies, where
each agent considers at most three principals.
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Proof. As this game is symmetric, there exists a Perfect Bayesian Equilibrium
in mixed strategies where each agent employs the same strategy. [4] Consider
the following cases:

Case 1: Suppose Q1 = P and Q2 = ∅. Then no player benefits from infection by
referral. Therefore, each agent will always choose infection from j at time T = 0
if and only if u(j, j, ∅) ≥ 0. Otherwise, each agent will remain uninfected. By
construction, this strategy maximizes each player’s payoff.

For the rest of the proof, assume there exists at least one principal x such
that vx − cx + βx ≥ 0. For if no such principal x exists, then each agent will
remain uninfected as the equilibrium strategy.

Case 2: Suppose Q1 = ∅ and Q2 = P. Define:

k = arg max
i∈P

vi − αici + βi (2)

s.t. vi − ci + βi ≥ 0 (3)

By construction of Q2, such a k always exists. The game has exactly one stage if
and only if both agents play the same strategy of either subscribing to principal
k or remaining uninfected at time step T = 0. Otherwise, the uninfected agent
at T = 0 will accept the referral at time T = 1. We now solve for the symmetric
mixed strategies equilibrium. Suppose player 2 chooses infection at time T = 0
with probability p and chooses to remain uninfected at T = 0 with probability
1 − p. Then player 1’s expected payoffs from becoming infected and remaining
uninfected at T = 0 respectively are:

E[u1(k, k,N(v1))] = p · (vk − αkck) + (1 − p) · (vk − αkck + βk) (4)
E[u1(k, v2, ∅)] = p · (vk − ck + βk) (5)

Setting E[u1(k, k,N(v1))] = E[u1(k, v2, ∅)] and solving for p yields:

p =
vk − αkck + βk

vk − ck + 2βk
(6)

Case 3: Suppose Q1 
= ∅ and Q2 
= ∅. Define k as in case 2. If k ∈ Q2, then we
reduce to case 2. Otherwise, suppose k ∈ Q1. Define: m = arg maxi∈Q2 vi−αici+
βi. That is, m is an agent’s preferred principal for infection at time T = 0 such
that its neighbor will accept the proposal if uninfected. From the definition of j
and the fact that k ∈ Q1, we have vi−ci+βi ≥ 0 for all i ∈ Q2. By construction,
vk − αkck + βk > vm − αmcm + βm. Observe the strategy of choosing infection
from principal k at time T = 0 weakly dominates infection from any of the other
principals of Q1\{j} at T = 0. Similarly, the strategy of choosing infection from
principal m at time T = 0 weakly dominates infection to any other principal in
Q2\{j} at time T = 0. We are thus left with four viable strategies for each agent:
choose infection from principal p ∈ {m, j, k} at T = 0 and then propose to its
uninfected neighbor; and remain uninfected at T = 0, accepting any proposal
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where the expected payoff is non-negative. We now solve for a symmetric mixed
strategies equilibrium.

Agent i mixes his strategies such that agent −i is indifferent between the
four viable strategies. Let pj , pk, and pm denote the frequencies in which each
player at time T = 0 chooses infection from princiapls j, k and m respectively;
and let pu denote the frequency in which each player chooses to initiallly remain
uninfected. For initially subscribing to a principal y ∈ {i, j, k}, each agent has
the expected payoff:

E[ui(y, y)] = (1 − pu) · u(y, y, ∅) + pu · u(y, y,N(i)) = vy − αycy + puβy (7)

And for opting to remain uninfected at time T = 0, each agent has the expected
payoff:

E[ui(U)] =
∑

x∈{j,k,m}
px · ui(x,−i, ∅) =

∑

x∈{j,k,m}
px · (vx − cx + βx) (8)

We solve for the mixed strategies equilibrium by setting (7) equal to (8),
where we consider (8) for each y ∈ {i, j, k}. The following linear program yields
such a mixed strategy equilibrium, with constraitnt (10) denoting the condition
that (7) and (8) are equal in equilibrium.

max
p∈Δ

∑

x∈{j,k,m}
px · (vx − cx + βx) s.t. (9)

∑

x∈{j,k,m}
px · (vx − cx + βx) = vi − αici + puβi; ∀i ∈ {j, k,m} (10)

��
Under an agent v’s belief system, each of its neighbors believe G ∼= K2. As v
believes G ∼= K1,|N(v)|, v believes each of its neighbors behaves independently
and symmetrically in equilibrium. We use the mixed strategies equilibrium from
Proposition 3 to construct v’s equilibrium strategy at T = 0 based on E[|Nu(v)|].
Proposition 4. Let n ∈ Z++ and suppose the social network G ∼= K1,n. Define
j,Q1, Q2, and p∗ as in Proposition 3. Denote p∗

u to be the component of p∗

corresponding to remaining uninfected at time T = 0. Let v be the center vertex
of G. Define: m1 = vj − αjcj and m2 = maxi∈P vi − αici + |N(v)| · p∗

uβi. In
equilibrium, agent v’s expected utility is: max{m1,m2, 0}.

Proof. Recall that each node is only aware of its neighbors. We assume that
each vertex in N(v) plays the equilibrium strategy described in Proposition 3.
Let X be the binomial random variable associated with the number of vertices
in N(v) which remain uninfected at time T = 0. Agent v seeks to maximize
his expected utility. Suppose p∗

u > 0 and suppose there exists such a principal i
such that vi − ci + βi ≥ 0. Now suppose v plays the strategy of subscribing to
some principal i at time T = 0, then proposing to each uninfected neighbor at
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time T = 1. Then: maxi∈P E[uv(i, i,N(v))] = m2. If agent v instead opts not
to propose to each of its neighbors at time T = 1, then his maximum utility
is m1 = vj − αjcj , which is obtained by subscribing to agent j at time T = 0.
Agent v’s third option is to remain uninfected at time T = 0. Agent v chooses
the best of these three strategies in equilibrium. ��
The following theorem specifies and verifies a Perfect Bayesian Equilibrium.

Theorem 1. Let G be a simple, undirected graph. Suppose each agent v plays
the strategy specified by Proposition 4. This constitutes a Perfect Bayesian Equi-
librium.

Proof. Let v be an agent. For each time T > 0, v’s strategy consists of propos-
ing to each uninfected neighbor if v is infected; or if v is uninfected, it accepts
a referall from its neighbor infected by principal j, which we denote xj , if
xj ∈ arg maxi∈N(v) uv(i, xi, Nu(v)). By Proposition 1, this strategy induces a
Nash equilibrium at each subgame for every T > 0. Recall that agent v believes
with probability 1 that G ∼= K1,|N(v)|. It follows that the strategy at time
T = 0 specified by Proposition 4 constitutes a Nash equilibrium. From this and
Proposition 1, this strategy is sequentially rational. Consistency follows imme-
diately from the fact that v believes G ∼= K1,|N(v)| with probability 1. ��

Finally, we examine the comparative statics, deriving sensitivity results for
an agent’s preferences for infection from a specific principal. We relate the size
of an agent’s neighborhood in the network to perturbations of the α and β
parameter’s in a principal’s incentives package.

Theorem 2. Let G be a graph, and let x be an agent. Suppose P = {i, j},
vi = vj, and ci = cj, which we denote as v and c respectively. Then x strictly
prefers infection from principal i rather than principal j at time T = 0 if one of
the following conditions hold:

1. αi ≤ αj, βi ≥ βj and at least one of the inequalities is strict.

2. αi > αj, βi > βj and either: βi − (1 − αj)c > 0; or |N(x)| >
(αi − αj)c

βi − βj
.

Proof. If αi ≤ αj and βi ≥ βj , then ux(i, i, S) ≥ ux(j, j, S) for every S ⊂ N(x).
So in this case, x prefers holding infection from principal i over principal j. Now
suppose instead that αi > αj and βi > βj . As x prefers infection from i over j
at T = 0, it is necessary that under x’s belief system, the following conditions
must hold:

1. Under x’s belief system, each y ∈ N(x) prefers referral to i rather than joining
j at T = 0.

2. Under x’s belief system, each y ∈ Nu(x) would accept referral to j. However,
ux(i, i,N(x)) > ux(j, j,N(x)).

Condition one is equivalent to βi−c > −αjc, which implies that βi−(1−αj)c > 0.
Condition two is equivalent to −αjc+|N(x)|βj < −αic+|N(x)|βi, which implies

that |N(x)| >
(αi − αj) · c

βi − βj
. ��
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4 Conclusion and Future Work

In this paper, we constructed equilibrium strategies for agents in the referral
game under the assumption that the principals had no knowledge of the social
network’s structure. The natural extension of this work is to utilize these results
to construct principals’ equilibrium strategies. We propose designing a beliefs
system regarding network connectivity for each principal, allowing for the contin-
uation of the backward induction argument. Additionally, this model prohibits
awareness of any mutual relations; while in most social situations, imperfect
knowledge of mutual relations. We propose the problem of determining agent
equilibrium strategies when every adjacent pair of agents i and j in the social
network are aware of some S ⊂ (N(i) ∩ N(j)) a priori. We are interested in the
symmetric case, where related i and j are aware of the same S ⊂ (N(i) ∩ N(j)),
as well as the asymmetric case where i is aware of some S1 ⊂ (N(i) ∩ N(j)) and
j is aware of some potentially different S2 ⊂ (N(i) ∩ N(j)).

Acknowledgments. We wish to thank Brendan Avent, Éva Czabarka, Stephen
Fenner, and Alexander Matros for their helpful discussions and suggestions.
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Abstract. In device-to-device (D2D) networks, the system performance
can be significantly improved with a well resource allocation scheme. In
this paper, the issue of channel sharing and power allocation for device-
to-device (D2D) communications underlaying cellular networks is con-
sidered. The users with the same service content are categorized into
clusters, with clusters sharing the frequency of the uplink users. With
this non-orthogonal frequency sharing, the energy efficiency of different
type of users, i.e., the uplink users or the D2D users, is analysed. The
energy-efficient resource sharing problem is further formulated into a
non-transferable coalition formation game, and several related factors of
the game is described. A distributed coalition formation game algorithm
based on the merge and split rule is proposed. With numerical results,
the effectiveness of the game model and the algorithm is demonstrated.

Keywords: Energy efficiency (EE) · Device-to-device (D2D) communi-
cation · Coalition formation game · Resource sharing

1 Introduction

The substantial increase of network elements and users explosive data traffic
requirements is the inevitable trend of todays wireless network, which brings
a serious challenge for network management and business delivery. In order to
improve the service efficiency and satisfy the users’ service quality, resource allo-
cation in heterogeneous network has been fully studied. [1] describes a network
architecture which combines cloud radio access network with small cells, while [2]
maximize the total capacity of all femtocell users without ignoring the fairness
and the spectrum sensing errors. [3] proposes a novel semidynamic clustering
scheme based on affinity propagation for picocell to maximize users spectrum
efficiency and throughput, and [4] introduces a network architecture where small
cells use the same unlicensed spectrum that Wi-Fi systems operate in without
affecting the performance of Wi-Fi systems. However, the energy efficiency of
the network is ignored in most of the existing studies. The energy consumption
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is tightly coupled with the scale of users, and the diversity of user distribution
not only leads to the heterogeneity of radio channel and the poor communica-
tion conditions for some users, but also seriously affects the energy efficiency
on the network side and the battery life. Note that the convergence of service
and content is one of the salient features of wireless networks. [5,6] have shown
that users in the same access point often have the similar service content request,
and geographically adjacent users may have a similar content request. With such
similarity in service content, user collaboration based on D2D transmission can
take the advantage of the heterogeneity of multi-user channels and improve the
energy efficiency.

In such D2D transmission underlaying cellular networks, interference need to
be carefully considered. Frequency allocation between the potential D2D clusters
and uplink users is an crucial issue. Distributed resource allocation algorithms
which are based on the reverse iterative combinatorial auction (ICA) game and
the bisection method were proposed in [7,8]. However, the quality of service
(QoS) provisioning issue is not considered and no close-form solution has been
derived. Centralized resource allocation algorithms for optimizing the energy
efficiency in the device-to-multidevice (D2MD) and D2D-cluster scenarios were
explored in [9,10]. However the computational complexity is high and the sig-
nalling is increasing significantly with the number of user equipments (UEs), it’s
hardly for the base station to deliver the information to the user equipments
within the channel coherent time in practical. In [11] an auction-based resource
allocation algorithm was proposed to maximize the battery lifetime, but the
energy efficiency of cellular UEs were neglected.

In this paper, a coalition formation game model is proposed for resource shar-
ing in mobile D2D communications underlaying cellular networks. As a useful
tool to model the complex interactions among users while accounting for the
inherent benefit-cost trade-off in [12], coalition formation game theory can be
well qualified to design the resource sharing scheme for D2D communications
[13]. In particular, the proposed resource sharing scheme is more practical than
the previous works.

The main contributions of this paper are as follows: (1) Different from pre-
vious works aim at one potential D2D pair or cluster [14,15], the proposed
scheme is suitable for multiple potential D2D clusters and multiple uplink users,
which is more general. (2) An novel energy efficiency equation for nonorthogo-
nal D2D communications is proposed, both the spectrum utilization and QoS
constraints are considered. (3) The resource sharing problem is modeled as a
non-transferable coalition formation game. With the process of coalition forma-
tion and the resulting partition, the joint optimization of channel sharing and
power optimization is addressed. Compared with [16,17], our coalition formation
algorithm is distributed, which allows the users to adapt to the environmental
changes. And the proposed scheme is more flexible for the data-requesting users
than other schemes such as in [18].

The rest of this paper is organized as follows: Sect. 2 introduces the system
model of the D2D communication underlaying cellular networks. In Sect. 3, the
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resource sharing problem is formulated as a non-transferable coalition formation
game, and an algorithm is proposed for the game to obtain the stable coali-
tion structure. In Sect. 4, the algorithm is validated with numerous simulations.
Section 5 gives the conclusion.

2 Network Model

We consider a single-cell network, the radius of which is R and a base station (BS)
is located at the center. There are N users distributed randomly in the network,
communicating with the BS through the uplink channel, they called uplink users.
Moreover, there are M users requesting the same business content, the popular
content could be a live show or a hot video. The M users called data-requesting
users. Since they all need the same data, the data could be relayed from one user
to another. These users could be composed into several collaboration clusters,
and every cluster has one cluster head which receives traffic data from the BS
through long-range communication, and then distributes the data to the other
users within the cluster by short-range communications. Note that the short-
range communications are operated in the form of broadcast. Especially, the
relay in the cluster will reuse the uplink of some uplink users. Several clusters
may be built, and there will always be some data-requesting users not in any
cluster. The BS will regard the independent data-requesting users as normal
downlink users.

The clusters are constructed basing on the distance relationship, and not
every data-requesting users can be in a cluster. Let d be the maximum distance
of D2D link, if the distance between two data-requesting users is less than d, then
each of them has one neighbor. The user with the most neighbors is selected
as the cluster head, and it will form a cluster with its neighbors being the
corresponding cluster tails. The next cluster will be formed from the rest data-
requesting users, and the cluster formation process will continue until the leaving
data-requesting users have no neighbor.

As illustrated in Fig. 1, uplink users U1, U2, U3, U4 are communicating with
the BS using different frequency band with a bandwidth normalized to one.
There are seven data-requesting users requesting the same service content, and
they are divided into three parts CL1, CL2, S1. Note that CL1, CL2 are clusters.
The cluster head in CL1 transmits the data to its tails using the uplink of U1

and U3, while the cluster head in CL2 reuses the uplink of U2 for the short-
range communications. There is only one user in S1, which means the user has
no neighbor within d, so it communicate with the BS directly.

From the aspect of green communication, we take the EE of each transmission
link as the performance metric for the users. For every user in the network,
including the uplink users and the data-requesting users, the EE of them is
defined as the ratio of the throughput and the total power of the user’s link.
More precisely, the EE of the uplink user is the energy efficiency of data sending,
while the EE of the data-requesting user is the energy efficiency of data receiving.
And the total power of one link is consisted of two parts: the power of the power
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Fig. 1. A single-cell D2D underlaid cellular system

amplifier (PA) and the power consumed by circuit blocks of both the transmitter
and the receiver. The corresponding functions are as follows:

EE = T/Plink (1)

Plink = Ppa + Pct + Pcr (2)

Ppa = KPt (3)

T is the throughput of one user, while Plink is the total power of the link. Ppa is
the power of the PA, and Pt is the transmit power. The ratio of them is K, which
is a value related to the modulation scheme. Pct, Pcr respectively represents the
power of the circuit blocks of the transmitter and the receiver, which remains
the most basic function.

In order to obtain the EE of one user, two parameters must be ensured,
the throughput of the user and the total power of the link. Generally, the first
parameter can be set as the minimum required throughput, which also repre-
sents the QoS of the user. So the requirement of the user is satisfied. Once the
throughput is setted, using Shannon’s theorem the value of the received signal-
to-interference-plus-noise ratio (SINR) can be calculated. After that, using the
information of the interference and the noise, the transmit power of the link
could be computed. Since the power of the circuit blocks of the transmitter and
the receiver are known, the second parameter can be acquired.

The parameters of the uplink users, the cluster head users, and the data-
requesting users with no neighbor are obtained using the following equations:

T = Blog2(1 + SINR) (4)
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SINR = PtH/N (5)

B is the bandwidth of the link, Pt is the transmit power of the link. H is the
channel gain from the transmitter to the receiver, and N is the noise. Since no
user occupy the other users’ resource, no interference considered.

For the tail users in the clusters and the uplink users who share their resource
with the clusters, the calculation is complicated because of the mutual interfer-
ence. The analysis is as follows.

First of all, the most remote tail user is studied. Assuming there is only one
tail user in each cluster, and the user is the most remote one for the cluster
head. Establish the equations of SINR and throughput of the single tail user
and the resource-sharing uplink users, the corresponding transmit power can be
calculated.

Ttail = Btlog2(1 + SINRtail) (6)

SINRtail = Pt,chHch,tail/(
M∑

i=1

Pt,uHu,tail + N) (7)

Tuplink = Bulog2(1 + SINRuplink) (8)

SINRuplink = Pt,uHu,B/(Pt,chHch,B + N) (9)

For the sake of simplicity, the most remote tail user is called single tail. Ttail is
the throughput of the single tail, while the SINR of the single tail is SINRtail.
Bt is the bandwidth of the link of the single tail. Pt,ch is the transmit power of
the cluster head, and Hch,tail is the channel gain from the cluster head to the
single tail. Similarly, the transmit power of the resource-sharing uplink user is
Pt,u, and the channel gain from the uplink user to the single tail is Hu,tail, the
product of the two value is the interference for the single user. There may be
several uplink users sharing the resource with one cluster, so the interference
is additive. For each resource-sharing uplink user, the throughput, bandwidth,
and SINR are respectively denoted by Tuplink, Bu, and SINRuplink. Hu,B is the
channel gain from the uplink user to the BS, and Hch,B is the channel gain from
the cluster head to the BS. Using the equations, the value of Pt,ch and Pt,u can
be ensured with the value of Ttail and Tuplink.

Secondly, the remaining cluster tails are discussed. As for the data-requesting
user who is a tail user of one cluster but not the most remote one, both the two
parameters depend on the most remote tail user. The transmit power of the link
of the data-requesting user equals the transmit power from the cluster head to
the most remote tail user. And then the throughput is obtained according to
this power and the corresponding interference and noise. While the most remote
tail user just meet the minimal throughput requirement, the throughput of the
other tail users are higher.

SINRrt = Pt,chHch,rt/(
M∑

i=1

Pt,uHu,rt + N) (10)

Trt = Brtlog2(1 + SINRrt) (11)
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Pt,ch and Pt,u have been calculated above. These data-requesting users are called
the rest tails. And for each rest tail, the SINR and the channel gain from the
cluster head to it are respectively denoted by SINRrt and Hch,rt. Hu,rt is the
channel gain from the resource-sharing uplink user to the rest tail. The inter-
ference come from the same uplink users who share the resource with the most
remote tail user, and the interference is additive. When SINRrt is obtained, we
can use the bandwidth Brt to get the throughput of this tail user Trt.

The value of EE depends on the resource sharing result, so the problem of
D2D resource allocation can be described as a process of the match between the
uplink users and the D2D clusters.

3 Coalition Formation Game and the Solution

In order to solve the joint problem of uplink resource allocation and power
management, the energy-efficient uplink resource sharing problem is modelled
as a non-transferable coalition formation game. After weighing the benefits of
the improvement of EE and the loss caused by mutual interference, the final
match relationship will be obtained.

In the coalition formation game, several related factors are defined as:
Player: The set of game players is defined as X, which includes all of the

uplink users and the data-requesting users. And they all attempt to merge with
others to get the collection of coalitions more stable, and get all the EE improved.

Strategy: The collection of coalitions is defined as L, which describes the
match relationship of the uplink users and the data-requesting users.

Utility: The characteristic function of a coalition is defined as CF , the value
of which is based on the EE of the users in this coalition. Take coalition Li as
an example:

CF (Li) = {u1(Li), u2(Li), ..., ur(Li), ..., u|Li|(Li)} (12)

CF (Li) is a vector, and ur(Li) is the utility of player r ∈ Li.
Since coalition Li is obtained from the resource reused relationship between

clusters and uplink users, the users in Li have the following cases. In the first
case, coalition Li has only one user, which could either be an uplink user or a
data-requesting user. None uplink resource will be reused and ur(Li) = EEr. In
the second case, coalition Li contains one D2D cluster, which means no uplink
users will share resource with this cluster. In this paper, D2D cluster is treated
as an inseparable entity. The users in the D2D cluster will directly receive data
from the BS and ur(Li) = EEr. In the third case, coalition Li consists of one
D2D cluster and several uplink users who share their resource with the cluster.
For an arbitrary user in the cluster, the utility is expressed as ur(Li) = EEr.
However, the utility expression of the uplink users can not be as simple as that.
On the one hand they suffer from the interference from the D2D cluster, the
energy efficiency would surely be reduced. On the other hand, they are inspired
to share their resource. Therefore the utility must be adjusted. So the utility of
the uplink users are defined as ur(Li) = EEr + µ(uCLi

(Li) − uCLi
), where µ is
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a positive constant and CLi is the cluster in coalition Li. The second part of
the utility is a compensate function, which indicates that the improvement of
the utility of CLi will be rewarded to the uplink users. Here the utility of CLi

is defined as the utility of the most remote tail user.
The case one uplink user share the resource with more than one cluster is

not concerned, because the interference is too much. And the probability of a
coalitions formation decrease with the increase in the number of uplink users in
the coalition, for the costs limit the advantage. By well performing the uplink
users’ resource sharing, the utility of all users can be improved at the same time,
and the new coalition structure are more beneficial.

The utility obtained by every user is related to the rest users in its coalition,
and the coalition value cannot be arbitrarily apportioned among them, so the
coalition formation game has non-transferable utility (NTU). Because of that,
the Pareto Optimality can be used to judge the merits of collections of coalitions,
which will be mentioned later. The increase in the cost depends on many factors,
so the proposed coalition formation game is non-superadditive. Given one grand
coalition which consists all users, there would be only one cluster reusing all
the uplink resource. Not to mention the difficulty that all data-requesting users
are distributed closely, the case all uplink users involve in the resource sharing is
rarely seen. When the number of uplink users and data-requesting users are very
small, the grand coalition could probably be formed, but in this case it makes
no sense to improve the spectrum efficiency. So the grand coalition would never
form.

Generally, the solving process of coalition formation game is too complicated,
and not applicable in practice. Confronted with this problem, we propose a
distributed algorithm making the process took place in a low-complexity manner.
In the algorithm, merge and split rule is used for forming or breaking coalitions,
while Pareto Optimality is used to compare the collections of coalitions.

A collection of coalitions is defined as a set of mutually disjoint coalitions
which is denoted as L = {L1, L2, ..., Li}. The collection in this paper also the
partition of X. Given another collection L = {L1, L2, ..., Li}, the utility of
player r in coalition Li ∈ L, 1 ≤ i ≤ I and coalition Li ∈ L, 1 ≤ i ≤ I are
ur(L) = ur(Li) and ur(L) = ur(Li), respectively. For all of the user, when
ur(L) ≥ ur(L) happens with at least one strict inequality, then we define L
is preferred over L by the Pareto Optimality. And the relationship is denoted
as L � L. In order to find the stable collection, merge and split rule will
be used [19]. When disjoint coalitions {L1, L2, ..., LG} in one collection have
⋃G

g=1 Lg � {L1, L2, ..., LG}, while the utilities of the rest coalitions remain the
same, these coalitions merge into one coalition {⋃G

g=1 Lg}. Otherwise when one
coalition {⋃G

g=1 Lg} has {L1, L2, ..., LG} �
⋃G

g=1 Lg, the coalition is split into
several coalitions {L1, L2, ..., LG}. When merge or split operation happens, new
collection is formed.

Use these rules, the energy-efficient uplink resource sharing algorithm can be
described as follows:
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1: The set of players is denoted as X, which includes all the users. Some data-
requesting users can form clusters. Each cluster and single data-requesting
users is a coalition.

2: The uplink user coalitions form a small collection L0,U , while the cluster
coalitions form a small collection L0,CL. And the rest coalitions form a small
collection LR. So the initial collection of coalitions is L0 = L0,U ∪L0,CL ∪LR.
According to (12), using the formulas mentioned above to get the coalition
value set of each coalition. Note that the users in L0,CL and LR is treated as
normal downlink users.

3: Repeat the merge operation until all the coalitions have made their local
merge decisions, then the resulting collection L̃ is obtained.

4: The collection L̃ accepts some split operations until it converge to a final
collection L.

Starting from the collection L0, we can always obtain the final collection using
the algorithm. Every time one uplink user attempts to merge with a coalition
which contains a cluster, the value set of the merged coalition will be calculated.
Compare the utilities before and after the merge using Pareto Optimality, we
can determine whether the merge is successful or not. According to the result of
the merge operation, the collection of coalitions is obtained, remain the same or
be different. Based on the fact that the number of coalitions in L0,U and L0,CL

is finite, the process of the algorithm will end after several operations, and the
final collection is obtained.

4 Numerical Results

In this section, the proposed algorithm is verified through computer simula-
tions. Inspired by [20,21], the values of simulation parameters are summarized
in Table 1. For each simulation, the location of the uplink users are generated
randomly within the cell. The data-requesting users are distributed in a small
area of the cell, which is easy to form D2D clusters. The data-requesting users
distributed somewhere else work the same with these users. The channel gains
Hi,j between the transmitter i and the receiver j is calculated as:

Hi,j = 10lg(−hi,j/10)
hi,j = 32.4 + 20log10(d) + 20log10(f)

(13)

where hi,j follows the free space transmission loss formula, d is the distance
between the two nodes, and f denotes the transmission frequency. For simplicity,
the power consumption of circuit blocks for the transmitters and the receivers
are set the same value. For comparison, two cases are considered: the first case
is that all the users are in cellular mode, with no uplink resource reused; in the
second case, every D2D cluster reuse one cellular user’s uplink resource at most,
and the relationship is one-to-one optimal according to exhaustive searches.

Figure 2 shows the uplink resource reusing relationships. The small hollow
circle represents the data-requesting users, and the cross represents the uplink
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Table 1. Simulation parameters

Cell radius 500m

Maximum distance within D2D cluster 50 m

Maximum transmit power of the uplink users 10 mw

Maximum transmit power of the data-requesting users 0.1 mw

Constant circuit power 10−4 mw

Noise variance (σ2) for 1MHz bandwidth −144 dbm

Minimum throughput of the uplink users 3.46 bits/s/Hz

Minimum throughput of the data-requesting users 4.39 bits/s/Hz

The ratio of the power of PA to the transmit power 1.5

The compensate function parameter μ 0.5

Fig. 2. D2D clusters reuse the cellular users uplink resource

user. The line between two data-requesting users means that they are in the same
cluster, and the cluster head user is the one with the most lines. The cellular user
besets with a big circle shares its uplink resource with a cluster, and the number
near the big circle denotes the cluster head of the cluster. The data-requesting
users 1 and 3 form a cluster called clu1, while data-requesting users 6, 7 and 8
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Fig. 3. The utility of the users

form cluster clu2. Uplink users 2 and 6 constitute a coalition with clu1, which
means their uplink resource is reused by clu1. And uplink users 5,8,9 constitute
a coalition with clu2, which means their uplink resource is reused by clu2. The
rest users each constitutes a coalition.

Figure 3 shows the utilities of all users using different strategies. The users
with numbers from 1 to 10 are the data-requesting users, while the users with
numbers from 11 to 20 are the uplink users. For each user, the circle means the
utility is calculated using the proposed strategy, and the pentagon means the
utility is calculated using the one-to-one best strategy. The rice word means that
the utility is 0 when no strategy is used. For the cases that strategy is used but
the utility doesn’t change, the utility is still 0. So only the utilities of the cluster
tail users and the uplink users who share their resource are changed. Apparently,
the utilities obtained from the proposed strategy is best. So the energy efficiency
can be improved while the QoS of the users are satisfied.

Figure 4 shows the throughput of the data-requesting users. There is only
one tail user in cluster clu1, and the transmit power of the cluster head and
the uplink-sharing uplink users are designed basing on it, so the throughput
of the tail user just meet the minimum requirement. However, there are two
tail users in cluster clu2, when the most remote tail user 7 meet the minimum
requirement, the throughput of the other tail user 8 would definitely be improved
because of the short distance. The throughput marked with circle, pentagon, and
rice word are respectively corresponded to the proposed strategy, the one-to-one
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Fig. 4. The throughput of the users

best strategy and the situation with no cooperative strategy. As we can see, the
proposed strategy shows the best performance of throughput.

From the simulations, the effectiveness of the game model and the algorithm
is demonstrated.

5 Conclusion

In this paper, we proposed a new energy-efficient uplink resource sharing scheme.
After establish and analyse the network model, we formulate the resource sharing
problem as an NTU coalition formation game, and the algorithm with the merge
and split rule is presented. The joint issue of uplink resource allocation and
power management is solved. The simulation shows the scheme indeed improve
the performance comparing with other methods.
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Abstract. Towards better QoSs and larger market share in highly
competitive cellular network market, many mobile network operators
(MNOs) aggressively invest in their base station (BS) deployment. As a
result, BSs are densely deployed and incur a lot of energy consumptions,
resulting in a large portion of operation cost. To save energy consump-
tion, sharing BSs among different MNOs is a promising approach, where
each user can be served from any BSs regardless of his or her original
subscription, i.e., roaming. In this paper, we address the question of how
many users should be roamed in a distributed manner with the goal
of some sense of optimality. To answer this question, we take a pop-
ulation game approach, where we model flow-level dynamics of traffic
and define an user association game among different MNOs. We prove
that the game is an exact potential game with ‘zero’-price-of-anarchy.
We develop a distributed algorithm that converges the NE (which is a
socially optimal point) that can be used as a light-weight, dynamic user
association algorithm.

Keywords: Greening · Base station sharing · Population game theory

1 Introduction

With increasing demands of mobile data traffic and large market competition
among MNOs, most MNOs aggressively enhance their spectral efficiency by
densely deploying BSs. As a result, the current BSs are densely deployed in
many places, which incurs a lot of BS energy consumptions with large oper-
ating expenditures (OPEX). To save energy waste, BS sharing is a promising
solution, where depending on the traffic conditions and the user locations, more
energy-wise efficient association can be applied. However, without a suitable
user association rule, the effects of BS sharing would not be impressive, which
we address in this paper.

Main contribution. In this paper, we study user association policies under a
certain roaming agreement among existing MNOs, where each MNO strategi-
cally tries to minimize their OPEX by regulating how users should behave for
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energy efficiency. The user association determines “how many users to roam?”
and depends on some key factors such as roaming price and BS deployment of
each MNO. The main contribution of this paper is summarized as follows:

• Determining user association in BS sharing is a very challenging problem
and often losing tractability, when we consider user-level QoS. Thus, we take
a population game approach, in which all users are categorized by different
groups according to their adaptive modulation and coding (AMC) level and
original subscription. This gives us a mathematically tractable framework
with implications for a distributed user association algorithm. In our model,
we take a flow-level performance (such as file-transfer delay) into account for
measuring user-level QoS as done in [1].

• The challenges lying in analyzing the game are (a) the complex couplings
among QoS, BS energy consumption and roaming fee, each of them depends
on the other MNO’s roaming price, heterogeneous BS deployment, and user
distribution as well as (b) finding a distributed user association algorithm
which has implementable complexity. We first show that user association
population game is an exact potential game which has an NE with ‘zero-
price-of-anarchy’. Next, we also study the three evolutionary dynamics of
game that provably converge to the NE, and propose a distributed user asso-
ciation algorithm inspired by the best response dynamic, which is one of the
evolutionary dynamics considered. Finally, we verify the user-level QoS and
greening effects in BS sharing through numerical simulations.

Related work. User association in BS sharing is proposed in [2–7]. Most work
largely relies on packet-level throughput maximization [2,5,6] with an ideal
assumption, in which all MNO have identically the same BS deployment for
mathematical tractability. The authors in [3] only consider power consumption
and roaming fee in BS sharing regardless of user-level QoS. The scope of the
study in [4] is uplink BS sharing. Our work is mainly motivated by [7], the
authors first consider a flow-level performance in BS sharing under some assump-
tions such as Shanon capacity based channel rate and existence of synchronous
clock in user association. The main difference between [7] and our works is that
we consider practical channel rate according to AMC-level with asynchronous
user association clock. For the single MNO, the flow-level performance is con-
sidered in [1,8,9] and our work is motivated by [8–11] in the context of multiple
MNOs. The authors in [9] take a population game for user association, in which
all users behave to maximize one objective of the single MNOs, while our work
considers competition among multiple MNOs with roaming fee in population
game.

2 Model

2.1 System Model

Network and BS sharing service. We consider a set M of multiple MNOs,
and each of them has operating BSs denoted by a set Bm, respectively. For simple
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notations, we define a set of other MNOs −m
.= M \ {m}, and a set of entire

BSs B .=
⋃

m∈M Bm, and we abuse the notation of m, where we use m(b) to
indicate the MNO who owned the BS b. For the service model, we consider that
each user can subscribe only one MNO, but the user can be served from any
BSs irrespective of her original subscription, if her MNO pays a certain roaming
fee as done in [2–7]. Also, we assume that all MNOs do not differentiate in the
service priority between roaming and unroaming users.

Users. We assume that there exist sufficiently many users in the cellular net-
works to consider the society of continuous mass of user groups called classes.
The set of classes is denoted by Q, and each class q has a mass denoted by dq.
We consider that each user in a class q commonly shares (i) original subscription,
(ii) the set of supporting BSs, (iii) AMC-level from the supporting BSs, and (iv)
traffic characteristics. Due to the need of denoting the set of classes that share
original subscription, we occasionally use Qm, in which the original subscription
of the classes (q ∈ Qm) is the MNO m. Note that the subscription of user is
mutually exclusive (i.e., Qm

⋂ Qn = φ, for all m �= n).

Traffic, capacity and loads. We assume that users in a class q have identically
independent Poisson arrival traffic with rate λq, and its file size is independently
distributed with mean 1/μq. Therefore, the unit mass in class q generates γq =
λq/μq traffic intensity, and the class q totally generates γqdq traffic intensity.
The users in q experience same data rate cb

q when associating with BS b. Note
that data rate only depends on AMC-level between the user and BS b, thus,
user group would not be located on a point but on a region. For a pair of
class q and BS b, we define system-load intensity as �b

q
.= γq

cb
q
, which represents

the service-time-portion of traffic intensity γq in BS b. For a given BS b, we
introduce an association vector yb .= (yb

q : q ∈ Q), in which yb
q ∈ [0, dq] denotes

the fraction of class q’s mass that are associated with BS b, where
∑

b∈B yb
q = dq.

For notational convenience later, we also use y
.= (yb : b ∈ B) to denote the entire

association vector. For a given association vector y, we define system-load in BS
b as ρb(yb) .=

∑
q∈Q �b

qy
b
q.

3 Problem Formulation: Game

We consider a population game played by all users called user association popu-
lation game (UAPG), in which each user has an individual payoff function regu-
lated by the MNO that he or she subscribes, and selfishly determines associating
BS. Note that user association game implicitly reflects the selfish behavior of each
MNO to minimize their cost (or equivalently maximize their revenue) by regulat-
ing the subscriber’s payoff function under given roaming price k

.= (km : m ∈ M)
by a roaming agreement among MNOs a priori. In order to show the regulation
rationale, we first describe a population game and we will compare the NE of
the population game to that of conventional BS sharing game played by MNO
(as done in [7]) in Sect. 4.
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3.1 Social Objective

In order to include the selfish behavior of MNOs, we consider a social objective
of UAPG as the potential function of BS sharing game as follows.

V(y) = −
∑

b∈B

{
φα(yb)
︸ ︷︷ ︸

(a)

+ ηEb(yb)
︸ ︷︷ ︸

(b)

+ km(b)

∑

q/∈Qm(b)

gb(yb
q)

︸ ︷︷ ︸
(c)

}
, (1)

where (a) is flow-level performance, (b) is BS power consumption, and (c) is
roaming fee. In detail, (a) flow-level performance (such as file-transfer delay) is
modeled by:

φα(yb) =

{
(1−ρb(yb))1−α

α−1 , if α �= 1,

log( 1
1−ρb(yb)

), if α = 1,
(2)

where the parameter α ≥ 0 characterized cost for flow-level performance. It
is well known that the function represents the summation of user rate when
α = 0, and the summation of average delay when α = 2 by [1]. For BS power
consumption (b), we consider BS load proportional BS power consumption for
each BS b, modeled by:

Eb(yb) = βbEbρb(yb) + (1 − βb)Eb, (3)

where βb ∈ [0, 1] is a parameter quantifying the portion of load proportional
power and Eb is maximum BS power consumption when fully utilized (i.e.,
ρb(yb) = 1). Note that BS b is ideally energy-proportional when βb = 1, but,
βb ranges from 0.5 to 0.8 in practical BSs [12]. In (c), for a given BS b, the func-
tion gb(yb

q) represents the summation of load and BS power consumption where
the original subscription of class q is not the MNO who owns BS b (i.e., roaming
traffic in class q) as follows.

gb(yb
q) = �b

q · yb
q + ηβbEb�b

q · yb
q. (4)

Note that �b
q · yb

q represents incurred load on BS b by the amount of yb
q mass

of class q. In (1), the parameter η ≥ 0 trade off flow-level performance and BS
power consumption. The large η implies MNOs give higher priority to BS power
consumption than flow-level performance when operating cellular networks. The
value km, which is given by some constant K, and is unit roaming price deter-
mined by each MNO when they make an agreement on roaming. Thus, social
objective (1) represents negative total costs for entire traffic service (including
roaming and unroaming) in whole cellular networks.
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3.2 Payoff Function

We now introduce the payoff function for a class q in our population game as
follows.

F b
q (y) .=

−�b
q

(1 − ρb(y))α

︸ ︷︷ ︸
(i)

− ηβbEb�b
q

︸ ︷︷ ︸
(ii)

− k(b, q)�b
q(1 + ηβbEb)

︸ ︷︷ ︸
(iii)

, (5)

where k(b, q) represents the unit roaming price of BS b’s owner, when q is not the
subscribers of the owner and 0 otherwise (i.e., if q /∈ Qm(b) then k(b, q) = km(b),
and k(b, q) = 0 for otherwise). The payoff function is composed of three part: (i)
selfish QoS cost, (ii) BS power pricing, and (iii) roaming pricing.

(i) Selfish QoS cost: The first term describes selfish QoS cost motivated by
flow-level performance cost as described in (2). Note that for α = 1, this term
represents to conditional delay, where the conditional delay is the expected file-
transfer time that a user in class q experiences when she is associated with BS
b as described in [9,13].

(ii) BS power pricing: The second term denotes the increments in BS power
consumption when the unit mass of class q is associated with BS b. Note that
for a user in class q, this term considered as a proportional factor of power
increment when the user is associated with BS b, thus actual power increment
is multiplication of user’s mass x and this term (i.e., ηβbEb�b

q · x).

(iii) Roaming pricing: The third term corresponds to the incurred roaming fee
by unit mass of class q. Similar to BS power pricing, a user in class q generates
roaming fee according to her mass x with proportional to this term, if the user
is associated with BS b (i.e., k(b, q)�b

q(1 + ηβbEb) · x).

4 Equilibrium Analysis

In this section, we analyze UAPG for which we exploit the potential function of
the game. Primary issues that we are interested in include the existence of NE,
price-of-anarchy, and the existence of a distributed user association algorithm
which converges to the NE.

4.1 Price-of-Anarchy and Existence of Equilibrium

Prior to describe price-of-anarchy and equilibrium, we first show that our game
is an exact potential game with a certain potential function that gives us the
insight of price-of-anarchy and the existence of equilibrium.

Theorem 1. The user association game is an exact potential game with the
following potential function V (y):

V (y) = −
∑

b∈B

{
φα(yb) + ηEb(yb) + km(b)

∑

q/∈Qm

gb(yb
q)

}
. (6)
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Proof. For a continuous player set (e.g., large population of player), it is suffice
to show that there is a continuously differentiable function whose gradient for
population is same as the payoff function of each class by [14]. The gradient of
the potential function (6) for all population is given by:

∇yV (y) =
(∂V (y)

∂yb
q

: q ∈ Q, b ∈ B
)

For all q ∈ Q and b ∈ B, in the case α �= 1,

∂V (y)
∂yb

q

= − ∂

∂yb
q

[ ∑

b∈B

{ (1 − ρb(yb))1−α

α − 1
+ η(βbEbρb(yb) + (1 − βb)Eb)

+km(b)

∑

q/∈Qm(b)

�b
qy

b
q + ηβbEb�b

qy
b
q

}]

= − ∂

∂yb
q

[ ∑

b∈B

{ (1 − ∑
q∈Q �b

qy
b
q)

1−α

α − 1
+ η(βbEb

∑

q∈Q
�b

qy
b
q + (1 − βb)Eb)

+km(b)

∑

q/∈Qm(b)

�b
qy

b
q + ηβbEb�b

qy
b
q

}]

= −
[

− �b
q

(1 − α

α − 1

)
(1 −

∑

q∈Q
�b

qy
b
q)

−α + ηβbEb�b
q + k(b, q)(�b

q + ηβbEb�b
q)

]

= −�b
q

[ 1
(1 − ρb(y))α

+ ηβbEb + k(b, q)(1 + ηβbEb)
]

= F b
q (y).

For the case α = 1,

∂V (y)
∂yb

q

= − ∂

∂yb
q

[ ∑

b∈B

{
log

( 1
1 − ρb(yb)

)
+ η(βbEbρb(yb) + (1 − βb)Eb)

+km(b)

∑

q/∈Qm(b)

�b
qy

b
q + ηβbEb�b

qy
b
q

}]

= − ∂

∂yb
q

[ ∑

b∈B

{
log

( 1
1 − ∑

q∈Q �b
qy

b
q

)
+ η(βbEb

∑

q∈Q
�b

qy
b
q + (1 − βb)Eb)

+km(b)

∑

q/∈Qm(b)

�b
qy

b
q + ηβbEb�b

qy
b
q

}]

= −
[

− �b
q

( −1
(1 − ∑

q∈Q �b
qy

b
q)2

)
(1 −

∑

q∈Q
�b

qy
b
q) + ηβbEb�b

q

+k(b, q)(�b
q + ηβbEb�b

q)
]

= −�b
q

[ 1
(1 − ρb(y))

+ ηβbEb + k(b, q)(1 + ηβbEb)
]

= F b
q (y),

which completes the proof.
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Lemma 1. The potential V (y) is a concave function in y.

Proof. The functions, V (y), φα(yb), and Eb(yb) are convex functions in ρb(yb),
respectively, and ρb(yb) is a weighted (�b

q) linear combination of yb. Thus, V (y)
and φα(y) become convex functions in y by convex-preserving operation. The
function gb(yb

q) is definitely a convex function in yb
q as described in (4). Thus,

V (y) is a concave function in y (by inversed sign) due to the property of convex
preserving on summation.

Theorem 2. User association game has an NE which has zero price-of-anarchy.

Proof. The association vector y is bounded by the mass of each class q (i.e., dq ∈
[0, dq]). Thus, there is a global maximal point on the range of association vector,
and the point is an NE by well know property of potential game [14], in which
the NE should satisfy KKT conditions for a maximizer of the potential function
V (y). Zero price-of-anarchy is also easily verified by the potential function. Since
the potential function (6) is exactly equal to the social objective as described
in (1) and KKT conditions are necessary and sufficient condition for a global
maximizer in concave function, the NE satisfying KKT conditions should be a
global maximizer of the social objective.

Note that there could be multiple NEs in UAPG, because the NE only implies
an assigned amount of population for all pairs of user groups and BSs, and the
assigned population would be achieved by various user associations when we
consider identical users who share the traffic characteristics and AMC-level in
each class.

Rationality for MNOs. As we mentioned earlier, for all classes in MNO m
(i.e., q ∈ Qm), m regulates the class q’s payoff function to maximize their eco-
nomical revenue (or minimize cost) in our game, while the MNO m hopefully
behaves like the game, directly played by MNOs as done in [7]. Note that our
game and the game played by MNOs have the exactly same potential function
(i.e., equivalent game) for an arbitrary unit roaming price. Thus, the payoff func-
tion (5) is rational to each MNO, and implicitly considers the selfish behaviors
of all MNOs for maximizing their revenue.

4.2 Evolutionary Dynamics and Distributed Association Algorithm

Developing a distributed algorithm for user association is important in prac-
tice, because, if it exists, high energy-efficiency can be achieved with low-cost
operations of the networks. In this subsection, we propose a distributed user asso-
ciation algorithm, motivated by an evolutionary dynamic that converges to the
NE in population game. For convenience in understanding, we first introduce
three well-known evolutionary dynamics [15], Replicator dynamic, Brown-von
Neumann-Nash (BNN) dynamic, and best response dynamic with the definitions
and the convergence properties, and then, propose a distributed user algorithm
that can work practical cellular networks.
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Replicator dynamic. One of the best known dynamic in evolutionary game is
the replicator dynamic, and its definition is as follows.

yb,t+1
q = T b

q (yt) .= yb,t
q

(
F b

q (yt) − 1
dq

∑

b∈B
yb,t

q F b
q (yt)

)
, (7)

where yt is the social-state y at time step t, and the term (F b
q (yt) −

1
dq

∑
b∈B yb,t

q F b
q (yt)) is the excess payoff of strategy b in class q. Under replicator

dynamic, a user randomly selects an opponent in the same class and changes
her strategy to the strategy of opponent, if the payoff of the opponent strategy
is higher than her own with a probability proportional to the payoff difference.

BNN dynamic. The definition of BNN dynamic is as follows.

yb,t+1
q = T b

q (yt) .= dqk
b
q(y

t) − yb
q

∑

b∈B
kb

q(y
t), (8)

where kb
q(y

t) = max{F b
q (yt) − 1

dq

∑
b∈B yb,t

q F b
q (yt), 0}. In BNN dynamic, each

user randomly chooses a strategy i and changes her strategy to i with a prob-
ability proportional to strategy i’s excess payoff, if the payoff of i exceeds the
payoff of her own at every updating strategy epoch.

Best response dynamic. In best response dynamic, each user selects her strat-
egy that maximizes her payoff function for a given social-state y as follows.

yb,t+1
q = T b

q (yt) .= arg max
b∈B

F b
q (yt) (9)

Note that a user selects exact one pure strategy in best response dynamic, how-
ever, when we consider a class, in which infinitesimal users individually select
their strategies, best response (9) behaves like a mixed strategy in population
game.

Convergence. It is well-known by [14], a dynamic, satisfying positive cor-
relation (PC) and noncomplacency (NC) conditions, converges to the NE in
potential game which has a smooth potential function. The first condition, PC,
states that payoff and drift rate of strategy in dynamic are positively corre-
lated (i.e., weak-monotonicity in dynamic). The details of PC is T (y) · F (y) .=∑

q∈Q
∑

b∈B T b
q (y)F b

q (y) > 0, whenever V (y) �= 0. For every trajectory of
dynamic, the condition PC implies that (i) the potential function is weakly-
increasing (i.e., d

dtV (yt) = ∇ytV (yt) · yt = T (yt) · F (yt) ≥ 0), (ii) there is
zero-drift for a stationary point (i.e. T (yt) = 0 whenever d

dtV (yt) = 0). Thus,
all trajectories satisfying PC provably converge to a stationary point. However,
all stationary points would not be NEs, where the points are either local maxi-
mizer or boundary of potential function. The condition, NC, guarantees that a
stationary point should be a NE of potential game. By the studies in [14,15], it
is verified that BNN and best response dynamic satisfy both PC and NC, but
replicator dynamic only satisfies PC in the potential game. For more detail, we
refer the readers to [14,15].
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Distributed user association algorithm. Low signaling overheads is impor-
tant in practice. In UAPG, the best response dynamic seems to require less
information than the others. In detail, best response dynamic only requires social
state y, but the others require additional information such as average payoff and
opponent’s payoff. Thus, we propose a distributed algorithm motivated by best
response dynamic.

Distributed user association algorithm

BS algorithm. For every changes in user association, each BS b updates ρb,t as
follows.

ρb,t =
∑

q∈Q
�b

q · yb
q, (10)

and exchange (ρb,t, km(b)) to all BS in the neighboring BS set, denoted by N (b).
After exchanging the information, each BS broadcasts ρN (b),t, ρb,t and k to all
(associated) users.
User algorithm. For a user in some class q, at every association clocka ticking,
the user associates with a BS that satisfies following:

arg max
b∈{i}∪N (i)

−�i
q

{ 1
(1 − ρi,t)α

+ ηβiEi + k(i, q)(1 + ηβiEi)
}

, (11)

aWe consider each user has an individual clock for determining user association.
In detail, this clock would be implemented by many ways such as Poisson clock,
and flow arrival and departure time.

Theorem 3. The distributed user association algorithm converges to the NE.

Proof. Our algorithm is a practical version of best response dynamic which sat-
isfies both (i) PC and (ii) NC.

5 Numerical Analysis

In this section, we verify the greening effects of our algorithm inspired by the
analysis in the population game framework. In all simulations, we consider a
duopoly market (i.e., 2 MNOs denoted by m and n) in 0.5 Km by 0.5 km square
area, in which MNO m and n have 1 BS denoted by BS1 and BS2, respectively,
where BS1 and BS2 are located at (0,0) and (0.5,0.5)1, respectively. We con-
sider that users are uniformly distributed in the square area while generating
homogeneous traffic requests. For data rate cb

q, we refer to the pairs of data rate

1 The unit of axis is km.
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Fig. 1. Various results of BS sharing

and AMC-level in Mobile WiMAX [16]. We consider the case when all MNOs
adopt a same unit roaming price (i.e., km = kn) for roamed traffic due to the
symmetry property in unit roaming price under symmetric BS deployment and
identical user characteristics.

We first verify the convergence of our algorithm (see Fig. 1(a)). In the figure,
the initial points are the BS loads of conventional non-BS sharing and each BS
load rapidly decays from the initial point until it converges with iterations. In
Figs. 1(b), (c) and (d), we show the impact of our algorithm in terms of poten-
tial function, flow-level performance, and BS power consumptions according to
given unit roaming price k. The result in Fig. 1(b) shows that social objective
is maximized when each MNO assigns zero-unit roaming price and it decreases
as k increases due to the raised roaming price. As shown in Figs. 1(c) and (d),
flow-level performance (i.e., delay when α = 2) and total BS power consump-
tions are increased by expensive roaming price, and finally converge to that in
conventional non-BS sharing, since no one is interested in roaming when highly
expensive roaming price (e.g., km = kn ≥ 150) is applied.

6 Conclusions

In this paper, we studied BS sharing under a fixed roaming price using a popula-
tion game-theoretic approach, and we proposed a practical user association algo-
rithm motivated by an evolutionary dynamic, which is best response dynamic.
We further demonstrated that a significant amount of delay and of energy con-
sumption would be reduced by the proposed algorithm.
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Abstract. In traditional Vehicular Ad Hoc Networks (VANETs)
deployments, permanent and robust connection establishment to road
side units (RSU) has arisen as a crucial problem. Here it is a known fact
that, this challenge has been triggered by high mobility pattern of vehi-
cles. To handle this problem, optimal relay vehicle selection can be seen
as an efficient solution. To this end, in this paper, we propose a novel
optimal and fair relay vehicle selection algorithm based on weighted vot-
ing game. In our game theoretic approach, relay vehicle selections have
been performed by various cooperative coalitions. Note that game the-
ory is a perfect tool while designing such an algorithm as it is a formal
applied mathematical tool to analyze and model complicated situations
of interactive decision making. Our proposed weighted voting game algo-
rithm can achieve fair and optimal results as well as increasing through-
put and decreasing message transmission delay during packet dissemina-
tion as a result of using Banzhaf power measure. Performance evaluation
results depicted that compared to non-cooperative methods, throughput
increases by 24.4% and message dissemination delay decreases by 18%.

Keywords: Game Theory · Pay-off function · VANETs · Weighted Vot-
ing Game · Banzhaf power measure · Fair relay

1 Introduction

With the recent advances in Information and Communications Technology
(ICT), VANET has become an important concept in order to provide efficient
and convenient road trips for drivers by obtaining required information along
the road. This information can vary from infotainment to traffic efficiency, on
demand application management and updating information [1,2]. For obtaining
all the mentioned infromation, packet dissemination all along the road is impor-
tant. Due to the mobile nature of vehicles that results in dynamic topological
changes, establishing permanent and robust connection with road side units for
maintaining connectivity has arisen as a challenging issue. Furthermore, trans-
mission failure of actual amount of packets during data transfer can happen
because of Doppler effect, loss of signal, dissimilar speed of send and receive,
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and bandwidth limitation of RSU [3]. To overcome these problems and for effi-
cient management of optimal connectivity, it is essential to use some of vehicles
as a relay for compensation and reinforcement of connection. While selecting the
optimal relay vehicle, we need to take into account several factors such as quality
of service (QoS) [4,5], system performance, cost-efficiency role of chosen node
and fairnes [6,7]. Providing a satisfying method for this selection is required and
it is a challenging issue due to dynamic environment of roads.

There are works which have dealt with relay node selection. In [8] source
nodes try to find the most appropriate relay node based on self optimizing
algorithm called SLA. In [9] distributed relay node selection provides respon-
sibility of rebroadcasting of alert messages to further distances. They have used
bidirectional stable communication algorithm for selecting set of qualified relay
nodes. The author has focused on quality of relay nodes and has not consid-
ered other metrics and optimization methods while selecting the optimal relay
among multiple options. Besides, none of them did a work using Game Theory.
In [3] coalitional game theory approach for solving cost-efficient content down-
loading has been proposed. In [10] relay vehicle selection based on game theory
is proposed, pay-off functions are designed with respect to some metrics, and
an optimal matching problem has been solved using Kuhn-Munkres algorithm.
Although game theory has been used to optimal relay vehicle selection, defining
Nash equilibrium point for cooperation is missing. Moreover, fairness has not
been considered. In this paper, an algorithm based on Weighted Voting Game
will be introduced that we believe is more efficient for optimization and fairness.
All aforementioned works, have mainly focused on quality of chosen relay node,
but few works are focused on choosing a relay among multiple number of eligi-
ble relays. Moreover, in these proposed methods fair relay node selection haven’t
been considered. One of the notable issues in network management is fairness [6].
In this paper, fairness is defined as an impartial relay assignment in a way that it
also optimizes pay-off functions for various individual anchor users. In addition,
we believe that Game Theory should be used in relay vehicle selection because it
is a formal applied mathematical tool to analyze and model complicated situa-
tions of interactive decision making [11]. There are several decision makers with
various intentions, which decision of each one effects the overall result of decision
making process [11]. In this paper Weighted Voting Game is proposed, which
is a popular model of interactive decision making in cooperative games. This
model has recently been used in a wide range of research areas such as economy,
science, and management [12,13]. Besides, Banzhaf power measure to designate
both fairness and optimization parameters for relay vehicle selection has been
introduced. Moreover, in each game with bounded number of players there exist
at least one Nash equilibrium point [14,15], so that existence of Nash equilibrium
point is demonstrated through using this algorithm. The main Contributions of
this paper, are as follows:

– We propose an algorithm based on Weighted Voting Game to choose fair and
optimal relay vehicle for anchor vehicles.
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– We show that after using Weighted Voting Game (WVG) algorithm, obtained
solution is a Nash Equilibrium (NE) point.

– We calculate pay off functions for both anchor and relay vehicles.
– We introduce a method to choose a fair relay node to acquire fairness.

2 Network Architecture

The abstract network is shown in Fig. 1 that consists of RSU, N anchor vehicle
and M relay vehicle. These steps will occur respectively:

1. We have a message to give from RSU to vehicles.
2. If the vehicle is in the coverage area, it will try to get that message directly

from RSU. In the case of failure for direct connection, it will try to use relay
nodes.

3. For the vehicles which are not in the coverage area of RSU, it is not possible
to get this message unless they enter that area.

4. With the proposed algorithm vehicles disseminate the RSU message among
all other vehicles, even if they are not in the coverage area. After all we
propose an algorithm to select the best relay node to get the message and it
will be based on weighted voting game algorithm.

3 System Model

As shown in Fig. 2, we have 2 number of anchor vehicles (D,E) and 3 number
of relay vehicles (A,B,C). Anchor vehicles are the vehicles that fail to establish
connection directly to road side units so they try to find optimal relay node for
packet dissemination. In our scenario relay nodes are the nodes that help anchors
to preserve connectivity. While (D,E) enter coverage area of RSU, they try to
connect to RSU in the case of connection setup failure, as shown in Fig. 2(b)
they use one of (A,B,C) nodes as a relay to establish connection. One of these
optimal nodes will be chosen by our proposed algorithm. Another scenario is
depicted in Fig. 3 where vehicles (F,G) from other lane join to the main lane
and want to access to RSU’s information. In this phase (F,G) can form coalition
with (A,B,C) which have RSU header as their origin [16]. By our proposed
algorithm one of (A,B,C) nodes can be choosen as an optimal relay for the
anchors.

Each game is consist of players, action profiles, preferences and pay-off func-
tions. In this paper multiple anchor vehicles and multiple relay vehicles are the
players of the weighted voting game and will be denoted by M and N respec-
tively. Overall we need to consider two kind of relays:

1. Local relay node: In the presence of RSU, a relay can be selected, when
vehicles fail to connect directly to RSU.

2. Mobile relay nodes: After exiting from RSU coverage area, relay node can
be selected for connection maintenance. Furthermore, relays with appended
RSU header [16] can act as a small RSU for other vehicles.
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Fig. 1. Network topology

Fig. 2. Network topology example

Fig. 3. Network topology example
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Definition 1: In the normal-form game that has n-player G = {S1, ..., Sn}, if
player Si changes its strategy and other players remain constant, player Si can’t
acquire more benefits from that change in its strategy, this is called Nash equi-
librium point. NE point will tell us how many of players are cooperating in the
coalition [17].

ui(s∗
1, ..., s

∗
i−1, s

∗
i , s

∗
i+1, s

∗
n) ≥ ui(s∗

1, . . . , s
∗
i−1, si, s

∗
i+1, s

∗
n) (1)

Two steps are required to find Nash equilibrium point in each game. First, deal-
ing with each players optimal strategy consecutively, while encountering other
player’s action. Second, a Nash equilibrium point is defined when whole players
concurrently are doing their optimal approach [15]. In our algorithm Players,
Actions and preferences are defined as follows:

1. Players: Number of vehicles in coalition
2. Actions: A = { Cooperate, Defect }
3. Preferences: at least k node should participate in a way that maximize the

total utility, so in this case we will have NE point.

There are number of vehicles that their cooperation in a game cause to acquire
benefits. We are looking for an action profile that each player does one of two
actions, whether to cooperate or defect in a coalition. Each player has two phases
and in total we have S = M + N players. Therefore, number of action profiles
are 2S . As shown in Fig. 4, this algorithm is proposed to investigate optimality of
each player in every coalition. Detecting data origin by appending small header
for received packet will help to identify whether the data origin is RSU or relay
node. The nodes with RSU header appendix have priority in voting game [16].

Fig. 4. The proposed system model
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3.1 Scanning

In order to find neighbors for packet dissemination, utility functions for each
present node must be calculated to decide whether to setup direct connection
with RSU or looking for relay node. Defection in coalition for direct connection
with RSU must be evaluated at first. Regarding to the amount of pay-off func-
tion, as represented as U in Eq. (2) defection may cause connection establishment
or failure with RSU [17].

U = R − C (2)

where R represents revenue of relay or anchor vehicle through using RSU or
relays and C shows data forwarding expenses. In this step, the amount of Rr for
relay vehicle can be expressed as:

Rr = PjRSUBjFij (3)

where P is successful transmission probability of links between jth relay vehicle
and RSU, B is bandwidth availability of RSU and F is bandwidth characteristic
of relay vehicle [10].

After connection establishment with roadside unit these connected nodes can
act as relay nodes. Afterward setting data origin to RSU should happen [16]. In
the case of connection establishment failure with the RSU, Packet dissemination
through RSU will fail.

3.2 Connection Attempt

In this step, as depicted in Fig. 4, some of vehicles start packet dissemination
successfully. Otherwise, other steps are taking place.

3.3 Forming Coalition

Definition 2: Coalition is the subset of players that all vote in the same way. The
number of all possible coalitions are; 2N − 1 [18].

By neighbor detection, anchor nodes can form coalition with relay node can-
didates, which are calculated and identified in previous steps.

3.4 Voting

Definition 3: Weighted voting game voters are unequal in the number of votes
they control, it is depicted as:

[q : w1, w2, . . . , wn]

where q is quota and w is weight [18].

Definition 4: Winning coalitions are the coalitions that have enough number of
votes to win. Voters are unequal in the number of votes they control [18].



96 E.D. Biyar and B. Canberk

In voting step, pay-off function computation for every neighbor that holds
RSU header, is required. For this aim amount of Ra can be expressed as:

Ra =
PijBiAD

T
(4)

where P is Successful transmission probability of links between ith Relay Vehicle
and jth anchor node, B is bandwidth availability of ith relay, T is data trans-
mission time, D is distance between relay and anchor node, A is attainable rate
of the link between ith relay and jth anchor [10]. The cost of service by each
relay and RSU or anchor, can be modeled as a function of unit price denoted by
α and spended bandwith resource [10]:

C = αiFij (5)

After calculating pay-off functions, one of anchor nodes and whole relays will be
chosen to decide upon the optimal relay for specific anchor. In addition, utility
functions have been assigned as weights of relays. In each winning coalition the
range of the quota is defined as [18]:

w1 + w2 + . . . + wn

2
≤ q ≤ w1 + w2 + . . . + wn (6)

3.5 Optimal Relay Selection

In this step after calculating pay-off functions for anchor vehicles:

Ua = Ra − C (7)

And assigning this pay-off function as a weight of our voting game

w = Ua (8)

quota will be set to

q =
w1 + w2 + . . . + wn

2
(9)

In our algorithm the amount of q is:

q =
ua
1 + ua

2 + . . . + ua
n

2
(10)

Furthermore to acquire fairness while applying weights, Banzhaf power measure
has been introduced.

Definition 5: Critical player is the player that eliminating it’s weight from the
whole votes cause the coalition turns into loosing one and the number of remain-
ing votes fail to pass the quota. Some voters are more powerful [18].

Required steps for Banzhaf power measure calculation are listed as follows
[18,19]:
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1. Listing all achievable wining coalitions.
2. Determining critical players.
3. In succession check the number of times players are critical, this amount is

shown with Bi notation
4. Calculate total number of times that players are critical

∑N
i=1 Bi.

5. The proportion of β = Bi∑N
i=1 Bi

gives Banzhaf power index.

The most powerful node with higher β is set to be the relay of coalition. These
steps will be repeated for all other anchors. For choosing relay node in the
absence of RSUs or direct connection failure with RSU, last two steps which are
voting and optimal relay selection will be repeated. After these procedures each
node is doing its own best strategy. After all, it is proved that the outcome of
the offered algorithm is a Nash equilibrium point.

3.6 Packet Dissemination

In packet dissemination, after passing all previous steps and choosing fair and
optimal relay, packet dissemination among all vehicles will start. Choosing opti-
mal relay vehicle is important, consequently anchor vehicle’s pay-off function is
related to throughput function. Considering revenue function of anchor vehicle
which is calculated in Eq. (4). Throughput is the rate of received packets at
the destination over communication channel [20]. Our objective is to maximize
throughput and minimizing message transmission delay respectively. As shown
below, throughput is a function of:

T (ua) =
PijBiAD

T
− αiFij (11)

where T is throughput.

4 Performance Evaluation

The performance of our proposed cooperative weighted voting game algorithm
will be evaluated and compared with non-cooperative approach by using Matlab.
In our simulation a road of 5 Km that has allocated road side units and num-
ber of vehicles that varies from 20 to 90 with randomly distributed velocities has
been considered. The simulation parameters are all shown in Table 1. The aim of
this algorithm is choosing a fair and efficient relay for anchor vehicles. The sim-
ulation results have validated our analysis and demonstrate better throughput
and transmission delay outcomes. Our proposed algorithm can achieve 24.4% of
increment in throughput as well as 18% reduction in transmission delay com-
pared to non-cooperative approach.

Figure 5, demonstrates total throughput of all vehicles versus number of vehi-
cles. It can be observed that during relay vehicle selection, by using Banzhaf
power measure, pay-off function increases. Fair relay will be chosen considering
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Table 1. Parameters for simulation

Number of vehicles [20, 90]

Road length 5 km

Number of lanes 2

RSU coverage area diameter 60 ∼ 350 m

Max speed 25 m/s

Min speed 45 m/s

Pricing factor α 100

SNR of transmitter 10 db

Number of simulation iteration 100

Eq. 11. Pay-off function increment results in better throughput. To be more spe-
cific using weighted voting game algorithm causes optimal relay vehicle selection,
which also has maximum available bandwidth B and successful transmission
probability P .

Figure 6, displays average transmission delay versus number of vehicles. It is
noted that by increasing number of vehicles, more coalition will occur, besides
probability of successful reception is the other parameters that has been consid-
ered within our proposed algorithm which causes to consume more time in our
voting game algorithm to find optimal relay. However, as depicted, this incre-
mental results are less than non-cooperative approach.

Fig. 5. Total throughput
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Fig. 6. Average transmission delay

5 Conclusion

A game theory based relay vehicle selection algorithm, based on weighted vot-
ing game, by applying Banzhaf power measure has been introduced. The pro-
posed algorithm selects optimal and fair relay vehicle for packet dissemination
by using pay-off functions that are derived for both anchor and relay vehicles.
Our proposed algorithm, as shown in Fig. 4, is consists of scanning, connection
attempt, forming coalition, voting, optimal relay selection and packet dissem-
ination modules. Moreover, our proposed weighted voting game algorithm can
achieve fair and optimal results, as well as, increasing throughput and decreas-
ing message transmission delay during packet dissemination as a result of using
Banzhaf power measure. Performance evaluation results illustrated that com-
pared to non-cooperative methods, throughput increases by 24.4% and message
dissemination delay decreases by 18%.
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Abstract. With the development of mobile internet service, Long Term Evo-
lution (LTE) system provides higher data rate and better user experience. One
way to provide higher bitrates is to exploit or mitigate the interference by
cooperation between sectors or different sites. Coordinated Multi-Point (CoMP)
is one of the promising concepts to improve cell edge user data rate and spectral
efficiency firstly introduced in LTE Release 11. In this paper, the principle and
challenges of CoMP are introduced, and also the performance and results of
CoMP based on field trial are given, especially the gain of cell edge user in
heterogeneous network are analyzed. Finally, several proposals and suggestions
of CoMP application are given in the end of this paper.

Keywords: Coordinated Multi-point � Joint reception � Coordinated
scheduling

1 Introduction

LTE use MIMO-OFDM to achieve improved spectral efficiency within one cell [1–3].
With the evolution of LTE, new features are introduced in latest releases of the 3GPP
specifications. One method coordination of eNBs to avoid interference and constructive
exploitation of interference through coherent eNB cooperation is done. The cooperation
techniques aim to avoid or exploit interference in order to improve the cell edge and
average data rates. CoMP can be applied both in the uplink and downlink [4].

One of the fundamental differences between CoMP Multi-User (MU) MIMO
systems and single-cell MU MIMO systems lies in the per base station power constraint
[5]. By using CoMP, coherent transmission with coordinated base stations can sig-
nificantly improve both the cell average throughput and the cell edge throughput. In
CoMP a number of TX (transmit) points provide coordinated transmission in the DL,
and a number of RX (receive) points provide coordinated reception in the UL. The set
of TX/RX-points can either be at different locations, or co-sited but providing coverage
in different sectors, they can also belong to the same or different eNBs [6].

CoMP is firstly introduced in 3GPP technical report 36.814 in February 2009, and
officially compiled in Release 11 [7]. Rel.11 standardized uplink CoMP. The feature is
transparent to UE, so it can also work in Rel.8 network. Rel.11 enhanced inter-cell
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DMRS on PUSCH, PUCCH and SRS. For downlink CoMP, Rel.11 introduced the VCI
(virtual cell identity), different VCIs can be configured in one cell, and the resource are
pseudo-orthogonal between different virtual cells. VCI reduces RS interference
between different transmitting points to ensure the reliable demodulation of reference
signal. The CoMP cooperating sets (macro cell, micro cell) can be configured
according to the location of the UE. With UE feedback, Rel.11 introduced the concept
of the channel state information of the process. UE periodic and non-periodic feedback
are both based on the channel state information process. Interference measurement and
channel quality indicator are newly defined to support the accurate measurement of the
channel state information.

Rel.12 introduced inter-cell CoMP, namely the distributed CoMP with non-ideal
backhaul. New signaling interaction between X2 are introduced, such as RSRP mea-
surement reports, etc. Cooperative or mute transmission scheme is supported. The
non-ideal backhaul scenes in R12 can be applied to the macro-micro scenario.

In this paper, the principle of different strategies of CoMP are presented, the
challenge for backhaul transmission and delay is analyzed. The UL JR and DL CS
algorithm and flow are discussed in Sect. 3. Followed by simulations and field trial in
heterogeneous network. Finally, a conclusion is given in the end.

2 Principle and Challenge of COMP

CoMP involves several possible coordinating schemes among the access points. Firstly,
CoMP can be applied both in downlink and uplink. Secondly, there are inter-site and
intra-site CoMP according to the cooperating objects. Multiple sectors of one base
station (eNB in 3GPP LTE terminology) can cooperate in intra-site COMP, whereas
inter-site COMP involves multiple eNBs. Furthermore, downlink CoMP can be clas-
sified as Joint Processing, including Joint Transmitting (JT), Dynamic Point Selection
or Blanking (DPS/DPB), and also Coordinated Scheduling or Beamforming (CS/CB).
With JT, multiple cells transmit identical data by using the same Resource Block (RB),
which improves the performance of reception, working as diversity gain from MIMO.
With DPS, multiple points share the same data like JT, but the data is sent by one cell
with best channel quality while other cells are muted. CS CoMP allocates different RB
to cell-edge UEs to avoid interference, and CB CoMP utilized beamforming technol-
ogy to transmit orthogonal resources. Similarly, Uplink CoMP has Joint Reception
(JR) in the uplink scheduling and coordination beamforming. The following Fig. 1
details the principles of these CoMP techniques [8].

Unlike ICIC or eICIC, CoMP uses not only the frequency and time domain
resources, but also the spatial domain, known as a fast interference coordination.
Therefore, the fast-changing UE channel information must be reported during each
scheduling took place. UEs measure their Channel State Information (CSI) and report
to eNB, which includes Channel Quality Indicator (CQI), Rank indicator (RI) and
Precoding Matrix Indicator (PMI). For this purpose, eNB gives UEs instruction on
which cell’s CSI are be measured by using particular RB, CSI-Reference Signal.

The delay requirements for transmitting CSI and data are strict, especially for JT
and JR, the CQI and users’ data must be shared between the transmission and

102 Y. Wei et al.



coordinating cells in TTI level, which brings the transmission network a challenge not
only on delay but also in bandwidth. The requirement of different strategy are shown in
Table 1. In this situation, the use of fiber link for Common Public Radio Interface
(CPRI) is necessary in commercial cases.

JR

JT

DPS

CS/CB

Blank

orthogonal

Identical

Serving Cell Cooperating Cell

Fig. 1. The framework of PCI Self-Configuration

Table 1. Information and delay Requirement for CoMP

Type Information requires Magnitude of
delay

Resource domain

JR User data, JR scheduling, Reference
signal configuration information, CSI

100 ls, Ideal
backhaul

Frequency, Spatial

JT User data, JT scheduling, Precoding
information, CSI

100 ls, Ideal
backhaul

Frequency, Spatial

DPS Scheduling, Reference signal
configuration information, Precoding
information, CSI

Ms, Ideal
backhaul

Frequency, Time,
Spatial

CS/CB Scheduling, CSI Ms, Ideal
backhaul

Frequency/Spatial
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3 Uplink JR and Downlink CS

In this section, the downlink CS and uplink JR are discussed since the JT and DPS have
demanding requirement for backhaul and commercial prospects are uncertain.

Centralized and distributed algorithm both works for downlink CS according to the
location where algorithm executes. For centralized CS, scheduling and channel state
information of each cell are transmitted to a centralized control network element, from
where the user downlink resource are uniformly managed. However, the scheduling
decision are made by the serving cell in a distributed algorithm, the serving cell
manages the downlink CS resource based on the scheduling and CSI information
transmitted from cooperative cells. As shown in Fig. 2:

(1) UE measures RSRP according to A3 message, and then report the neighbor cell
list and neighbor relations to the serving cell.

(2) UE serving cell determined whether trigger CoMP or not, and identify the
coordinated neighbor cells.

(3) Serving cell schedule UE and sent the scheduling information to the coordinated
cells.

(4) Coordination cells avoid scheduling the identical CoMP-used RB resource while
scheduling their own UE.

(5) Serving cell transmits the scheduling information and data to the CoMP UE.
(6) UE perform demodulation.

Serving Cell Serving Cell Cooperating Cell

Event A3

RSRP & Nbr. list

Decide the UE a CoMP UE 

and choose cooperating cell

Schedule the CoMP UE

UE Schedule Infos

Nib the RB location of CoMP 

UE

UE demoduation

DCI and PDSCH

Fig. 2. The flow of downlink CS
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One key parameter to trigger the algorithm is SINR of UE, particularly the UE at
the cell edge receive strong interference. The situation can be formulized as:

SINR ¼ Ps

IMAX þ Iothers þN
; ð1Þ

Where Ps is signal power of serving cell, IMAX is the strongest signal power from
neighbor cell, Iothers is the interference power from other cells combine, and N is noise
power. After CS executing, the SINR is improved:

SINR0 ¼ Ps

Iothers þN
; ð2Þ

For cell edge UE, usually the rate is limited by the interference, and the IMAX always
much stronger than the other interference and noise, IMAX � Iothers þN. Therefore,
after applying CS, SINR0 is improved significantly, SINR0 � SINR.

On the other hand, uplink JR chooses two (or more) qualified joint cells to coop-
erate. For uplink UE, twice the antennas participate in joint receiving. The performance
gain obtain from two aspects.

• Joint gain: the signal sent by the UE at the cell edge (overlapping the two cells) can
be simultaneously received by different cell antennas. Enhance joint reception
received higher signal quality.

• Interference restrain gain: UE in cooperative cell is selected for joint process who
receives the interference from the UE at cell edge. The UL CoMP joint progress
restrain the interference to obtain the interference restrain gain.

In a cellular network, the JR gains distributes in different regions. As shown in
Fig. 3, different colors indicates different types of gain:

• Light blue: Joint gain obtain from intra-BBU
• Yellow and orange: Joint gain obtain from inter-BBU
• Dark blue: Interference restrain gain from intra-BBU

Data combining takes place after receiving from separate antennas. The position of
combining affects the process complexity, inter-cell transmission, and the performance
gain. Extra physical processes are needed to support uplink JR. The procedure is
showed in Fig. 4.

Additional physical layer operation under CoMP:

(1) Channel estimation is not only required by source UE, but also by neighbor UE.
(2) Soft information of CoMP UE is obtain after two user equalization.
(3) CoMP UE performance gain by combining the soft information.

In general, transmitting the original time domain or frequency domain I/Q signal
obtains higher performance gain at the expense of higher complexity and transmit
bandwidth. On the other hand, transmitting the soft bit data after demodulation require
lower resource but acquire lower gain.
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4 Field Trial and Measurement Results

In this section, field trials are performed to further investigate the performance of
typical strategies of CoMP. Some large-scale field trial has been carried out in urban
area in Shang Hai. Table 2 shows the basic field trial parameters setting. There are 19
cells on 7 sites involved in CoMP JR. The average distant of every two sites are 350 M,
and the antenna height are 20 m. The system bandwidth is 20 MHz and the UE is
carried on a measurement vehicle with speed of 10 km/h and the data traffic transmitted
from the beginning till the end [8].

When the signal quality is poor, the uplink transmission between different shared
TPs is launched. TPs measured the UE’s channel quality conditions; According to the
measurement results, the network selects strong signal node joint data reception, in this

Fig. 3. The gain area of uplink JR (Color figure online)

Cell 1

Cell 2

Soft combing

CP Removal FFT Channel

Estimation

Soft

Combing
IDFT Demodulation Decoding

UE1

CP Removal FFT
Channel

Estimation

Soft

Combing
IDFT Demodulation Decoding

UE2

Two User

Equalization

Two User

Equalization

Fig. 4. The physical procedure of uplink JR
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case, the threshold is set to 6 dB. As shown in Fig. 5, non-cooperative area is com-
pared to the cooperative area. Because of cooperation, the average through put gains
about 20%–30%. In certain areas, even higher gains over 50% were observed.

Under HetNet scene, the main difference between HetNet CoMP and homogeneous
Network is the power difference [9, 10]. The strategy can be the same in HetNet except
the RSRP or other parameters should meet the threshold to activate CoMP.

In addition, the downlink CS feature is tested in a heterogeneous network scene. In
this scenario, the UE moves from the center to the edge of the interfered cell (micro
cell), which is under the signal coverage of the macro cell completely. The results in
Fig. 6 shows that RSRP and the through puts are reducing gradually since the UE
moves outward. The throughput decreases and finally approaches zero (shown as blue
part); However, when the DL CS is on, the UE throughput raised in different degree
(shown as red part), because of the coordination between the macro and micro cells.
The user information is transmitted to the macro cell, macro cell schedule different RBs
to avoid the interference. When the user moves to the cell edge, the avoidance of
interference has become more evident, the cell spectral efficiency is further improved,
and gain significantly compared to the downlink CS off.

Table 2. Parameters setting

PARAMETERS ASSUMPTION

Cellular layout 19 cells of 7 eNBs
User layout Circling, 1 users
Cell radius 350 m
BS Transmit Power 46 dBm
Carrier frequency 2 GHz
Band Width 20 MHz

Fig. 5. The uplink JR gains in Shang Hai
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5 Conclusions

In this article, the overview of CoMP technology is given, the difference of five types of
CoMP, both in uplink and downlink, are analyzed. Challenges and requirement for
backhaul and delay are presented. As JT and DPS are regarded as the uneconomic
methods for network operator, the UL JR and DL CS are more likely be applied in the
future network. Therefore, flow and strategies of UL JR and DL CS are discussed in
detail. Field trial has been taken both in homogeneous and heterogeneous network to
support the conclusion. The trial results shows that under a certain condition, CoMP
can provide higher bitrates and improve cell edge user rate significantly, and system
spectral efficiency is improved as well.

Acknowledgements. This work was supported in part by the National High Technology
Research and Development Program (“863” Program) of China (Grant No. 2015AA01A704), the
State Major Science and Technology Special Projects (Grant No. 2016ZX03001-009-006).

References

1. Peng, M., Wang, W.: Technologies and Standards for TD-SCDMA Evolutions to
IMT-Advanced. IEEE Commun. Mag. 47(12), 50–58 (2009)

2. Zhang, H., Jiang, C., Cheng, J., Leung, V.C.M.: Cooperative interference mitigation and
handover management for heterogeneous cloud small cell networks. IEEE Wirel. Commun.
22(3), 92–99 (2015). (SCI, IF: 6.524)

3. Akhavan, H., et al.: Next Generation Mobile Networks – Beyond HSPA EVDO -
Whitepaper Technical report, NGMN Ltd. (2006). www.ngmn.org

Fig. 6. The throughput of downlink CS on vs. off (Color figure online)

108 Y. Wei et al.

http://www.ngmn.org


4. Zhang, H., Jiang, C., Beaulieu, N.C., Chu, X., Wen, X., Tao, M.: Resource allocation in
spectrum -sharing OFDMA femtocells with heterogeneous services. IEEE Trans. Commun.
62(7), 2366–2377 (2014). (SCI, IF: 1.979)

5. Zhang, H., Jiang, C., Beaulieu, N., Chu, X., Wang, X., Quek, T.: Resource allocation for
cognitive small cell networks: a cooperative bargaining game theoretic approach. IEEE
Trans. Wirel. Commun. 14(6), 3481–3493 (2015). (SCI, IF: 2.762)

6. Aziz, D., Sigle, R.: Improvement of LTE handover performance through interference
coordination. In: IEEE 69th Vehicular Technology Conference, 2009. VTC Spring 2009
(2009)

7. Zhu, H., Wang, J.: Chunk-based resource allocation in OFDMA systems - Part I: chunk
allocation. IEEE Trans. Commun. 57(9), 2734–2744 (2009)

8. European Cooperative in the Field of Science and Technical Research EURO-COST231,
Urban transmission loss models for mobile radio in the 900 and 1800 MHz bands, rev. 2,
The Hague, September 1991

9. Zhang, H., Liu, H., Jiang, C., Chu, X., Nallanathan, A., Wen, X.: A practical semi-dynamic
clustering scheme using affinity propagation in cooperative picocells. IEEE Trans. Veh.
Technol. 64(9), 4372–4377 (2015). (SCI, IF: 2.642)

10. Zhang, H., Jiang, C., Mao, X., Chen, H.-H.: Interference -limit resource optimization in
cognitive femtocells with fairness and imperfect spectrum sensing. IEEE Trans. Veh.
Technol. 65(3), 1761–1771 (2016). (SCI, IF: 2.642)

The Study and Field Trial of Coordinated Multi-Point Techniques 109



Design and Analysis of Economic Games



Revenue Sharing of ISP and CP
in a Competitive Environment

Nari Im, Jeonghoon Mo(B), and Jungju Park

Yonsei University, Seoul, Korea
{nariim,j.mo,jungju.park}@yonsei.ac.kr

Abstract. We considered a revenue sharing problem between a con-
tent provider (CP) and a Internet service provider (ISP) when two ISPs
competes with each other. ISPs can provide a piracy monitoring service,
which may increase the profit of CP, to incentivize CP to collaborate
with one of them. We modeled the problem as a multi-stage game and
characterized an equilbrium content price, piracy monitoring level, and
revenue sharing ratio. We found a condition in which ISP and CP may
collaborate even under competition. We also provide numerical results.

Keywords: Revenue sharing · Content piracy · ISP competition

1 Introduction

The importance of Internet for contents delivery is getting more and more impor-
tant as more people consume them with Internet. The number of subscribers of
Netflix, the largest online streaming service provider, has reached 69 Million
(Q3, 2015) according to statista.com [1]. The number of youtube user is more
than 1 Billion and 4 Billion video views are consumed every day [2]. According
to Cisco, global IP traffic has increased more than five-fold in the past five years,
and the wireless traffic growth rate is expected to be 61% per year from 2013 to
2018 [3].

Such a high traffic growth put a burden on Internet infrastructure, network
upgrades in both backbone and access are needed. Internet service providers
all over the world have invested in 3G and LTE wireless access network for
last several years. For example, three Korean service providers (SKT, KT, and
LGU+) spent between $6B and $8B per year during 2011–2013 [4]. To reflect
such a burden on investment, the major US ISPs including AT&T, Comcast,
TWC, and Verizon claimed that extra regulation would threaten new investment
and innovation on network upgrades [5].

The debate between ISPs and CPs have been on-going under the name of
network neutrality. One of the main issues is about how to share the investment
costs for network upgrade in a reasonable manner. CP side argues that it is
necessary for the new innovation and fair competition. The other side argues that
network neutrality can hinder the proper development of network infrastructure
and deployment of high-quality services.
c© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2017
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Fig. 1. Internet ecosystem

Researchers have considered possibility of content charge by ISPs for recover-
ing investment cost [6–9]. Kamiyama (2014a, 2014b) considered a content charge
system that ISPs charge a fee for each content delivery using a 3 stage Stack-
elberg model. In [8,9], authors explored a possibility of revenue sharing with a
means of piracy monitoring. The ISPs provide a piracy monitoring service to CPs
to increase the demand for legitimate contents. According to [10], the traffic of
illegal contents represents about 23.8 % of total Internet traffic. For example, the
popular Netflix show “House of Cards” season three was downloaded illegally
approximately 682,000 times within the first 24h of being available [11]. If such
service of ISP can help increasing the profit of CPs, CPs can be more willing to
collaborate with ISPs in revenue sharing.

In this work, we extend the results of [8,9] to a competitive situation in
which there are two ISPs. When one ISP asks for profit sharing, CPs can switch
to another ISP who does not require the sharing. Therefore, introduction of
profit sharing may not always be a good solution to the ISP. In our model,
we assume that only one of the ISPs provides the piracy monitoring service,
while the other does not, to understand the impacts of competition on the profit
sharing behavior.

The rest of the paper is organized as follows: In Sect. 2, we explain the details
of our game models including players, payoff functions, and sequence of games.
Section 3 derives the best responses of users, CP, and ISP-1, and finds each
player’s strategy. In Sect. 4, we show the simulation results of model. Finally, we
conclude the paper in Sect. 5.

2 System Model

We consider an Internet ecosystem that consists of a CP, two ISPs, and a set of
N users as shown in Fig. 1. CP provides its contents to the users using networks
of the ISPs. It contracts with one of ISPs, say ISP-i, for the network access and
pays ai per unit traffic for delivery of contents for i = 1, 2. We assume that two
ISPs are in a peering relationship and do not need to settle for the exchange.

The two ISPs are different in that ISP 1 requests revenue sharing to CP
while ISP 2 does not. If CP contracts with ISP 1, it shares γ fraction of its
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revenue with the ISP on top of the access fee. In return for the revenue sharing,
ISP 1 provides a strengthened piracy monitoring service to protect copyrighted
contents to be spread over the Internet. For example, a technique such as DPI
(deep packet inspection) can be used to implement such a protection service. As
the ISP deliberately involves in contents protection, it is more difficult for users
to infringe copyrighted content over ISP-1’s network.

Users pay a content price p to CP for getting the contents. The price could
be different depending on which ISP is chosen by CP. On the other hand, they
can get the contents in an illegal way without paying the price1.

User Utility: A user of type v has the following utility function:

uv =

⎧
⎨

⎩

v − p, if a type v user buys a legal content;
(1 − α)v − β, if a type v user acquires an illegal content;
0, otherwise,

(1)

where v is the willingness to pay for the contents, p is the content price, α
is quality degradation factor between 0 and 1, and β is the cost for copyright
infringement. If a type v user purchases a contents, its net-utility is v − p. If he
acquires it in an illegal way, the value of illegal copy is smaller than a legitimate
one by αv. The second term β models efforts or costs for acquiring an illegal
copy. When ISP 1 provides strengthen piracy protection, the value of β increases.

CP Profit: The profit of CP depends on contents price p, profit sharing ratio γ,
access fee a per unit content, and protection level β. Let φi be the profit function
of CP when it contracts with ISP i, for i = 1, 2. Then, it is given by:

φi(p; γ, β, a) = D(p, β)((1 − γ)p − a), i = 1, 2, (2)

where D(p, β) is a demand function for legitimate contents.

Profit of the ISPs: Let πi be the profit function of ISP i, then it is given by:

πi(β; p, γ, a) = (a + γp)D(p, β) − c(β), i = 1, 2, (3)

where β is the piracy protection level, p is the content price, γ is the revenue
sharing ratio, and a is the access fee. Here, aD(pβ) is the revenue from the access
charge, γpD(p, β) is the revenue from the profit sharing and c(β) is the cost for
maintaining piracy protection level β. We assume that c(β) is nondecreasing
function of β. As ISP 2 does not request profit sharing, γ of ISP-2 is 0, and we
assume that β of ISP-2 is constant to be β. Hence,

π2(β; p, 0, a) = aD(p, β) − c(β).

We further assume that the access fee a is the same for two ISPs as the access
network market is competitive.

1 For example, P2P service such as bitTorrent provides a way to getting a contents
without proper payment.
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Sequence of Game: We consider a game between ISP-1 and CP. Even though
ISP-2 is in the model, ISP-2 does not have any strategies to control unlike ISP-1.
ISP-1’s controls profit sharing ratio γ, piracy protection level β. CP’s needs to
determine which ISP to choose and the price p for the content. We model the
game as multi-stage sequential game as follows:

1. ISP-1 and CP negotiate profit sharing ratio γ1.
2. Given profit sharing ratio γ1, ISP-1 determines the monitoring level β1.
3. Given (γi, βi) of ISP-i, i = 1, 2, CP selects one of the ISPs to maximize its

profit and determines its content price p.
4. Let β = β1 if ISP-1 is chosen; or β = β2, otherwise. Given (p, β), users deter-

mines its behavior among three possibilities: buying level content, acquiring
illegal content, or doing nothing.

3 Analysis of Best Responses and Equilibrium

3.1 User Behaviors

To maximize their utilities of (1), users select one of three options: (a) buying a
legitimate contents, (b) downloading an illegal content, and (c) doing nothing.
A user of type v makes a legal purchase if v − p ≥ (1 − α)v − β and v − p ≥
0 or if v ≥ v0 := max(p−β

α , p). Similarly, he downloads an illegal content if
(1 − α)v − β ≥ v − p and (1 − α)v − β ≥ 0 or β

1−α ≤ v ≤ p−β
α .

If the distribution function of user type is F (·), then the demand D(p, β) for
legal contents can be expressed as

D(p, β) = 1 − F (v0) = 1 − F

(

max(
p − β

α
, p)

)

. (4)

Here, we normalized the maximum demand to be 1 without loss of generality.
If p−β

α ≤ p, only legal purchase can happen; otherwise, legal or illegal contents
downloads coexist. To see this, note that the first condition implies β ≥ (1−α)p.
The cost β of piracy is so high it is better off for users to buy legal contents. On
the other hand, if p−β

α ≥ p or max(p−β
α , p) = p−β

α , both legal and illegal contents
coexist.

We can limit our attention to β ≤ p(1 − α) or max(p−β
α , p) = p−β

α because
an equilibrium always exists in the low β regime. When there is no piracy users,
increasing β no longer helps the ISP but costs more. Hence, the ISP does not
increase β more than p(1−α). Hence, the above demand function can be rewrit-
ten into:

D(p, β) = 1 − F

(
p − β

α

)

.

If the consumer type v is uniformly distributed on the continuum of [0, v̄], where
v̄ is the maximum willingness to pay, the demand becomes a linear function:

D(p, β) = 1 −
(

p − β

v̄α

)

. (5)
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3.2 Strategy of CP

CP determines the optimal content price p∗ and chooses one of the ISPs to
contract with. Let p∗

i be the optimal price on the condition that CP contracts
with ISP-i. Then, we have the following proposition on optimal p∗

i .

Proposition 1. Assume that CP contracts with ISP-i. Given monitoring level
βi and profit sharing rate γi, the optimal content price p∗

i of CP is:

p∗
i =

{
p1∗

i := αv̄+βi

2 + a
2(1−γi)

, if β ≤ βc;
pM∗

i := βi

1−α , oherwise.
(6)

where βc = 1−α
1+α (αv̄ + a

1−γ1
).

Sketch of proof: As the profit function (2) of CP is concave in pi, applying the
first order condition gives the desired results. �
With the optimal content price p∗

i , CP determines which ISP network to use for
a larger profit. Note that for any monitoring level βi and profit sharing rate γi,
φi(p∗

i ; γi, βi, a) ≥ 0. Then, we compare the profit from contracting each ISP. In
case of contracting with ISP-1, the profit function of CP is given as:

φ(p∗
1; γ1, β1, a) =

{ −(1−γi)
v̄(1−α)2 (βi − v̄(1 − α))(βi − a(1−α)

1−γi
), if β ≤ βc;

(1−γi)
2

4αv̄(1−γi)
(βi − ( a

1−γi
− αv̄))2, otherwise,

(7)

where βc = 1−α
1+α (αv̄ + a

1−γ1
). We can also derive the profit function of CP con-

tracting with ISP-2 by plugging γ2 = 0 and β2 = βL
2 as:

φ(p∗
2; γ2, β2, a) =

(αv̄ − a)2

4αv̄
, (8)

where p∗
2 = αv̄+a

2 .

Shape of φ(p∗
1; γ1, β1, a): First, we characterize the shape of φ(p∗

1; γ1, β1, a).
There are three different increasing/decreasing patterns of φ(p∗

1)
3 as a function

of β in terms of γ1 as shown in Fig. 2. The three plots correspond to the three
cases, (A) γ ≤ 1 − a

αv̄ ; (B) 1 − a
αv̄ < γ ≤ 1 − a

v̄ ; and (C) γ > 1 − a
v̄ , respectively.

Due to space limitaition, we omit the detailed derivations.

ISP Selection: CP selects ISP-1 if φ(p∗
1) ≥ φ(p∗

2). Otherwise, it chooses ISP-2.
After thorough analysis, we have following proposition and observations. It turns
out that the access fee plays an important role in ISP selection. We skip the
analysis due to space limitation.

Proposition 2. If a < α2v̄ and 1 − α ≤ γ1 ≤ 1 − a2

α2v̄2 , contracting with ISP-2
always provides a higher profit to CP than doing with ISP-1.
2 For the simplicity of analysis, we assume that βL = 0.
3 We will use φ(p∗

1) and φ(p∗
1; γ1, β1, a), interchangeably, for the sake of readability.
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Fig. 2. Three different shapes of φ(p∗
1)

Proposition 2 says that selecting ISP-2 is always better off than selecting
ISP-1 with a small access fee a and a large profit sharing rate γ1, regardless of
monitoring level β1. Otherwise, we can always find some monitoring level with
which contracting with ISP-1 is more beneficial.

Let B := {β1|φ(p∗
1) ≥ φ(p∗

2), φ(p∗
1) ≥ 0}.

Observation

1. CP tends to be better off with ISP-1 as an access fee a increases.
2. When γ1 is small, there exists β̃ such that B = {0 ≤ β1 ≤ β̃}.
3. When γ1 is large, there exist β̌ and β̂ such that B = {β|0 < β̌ ≤ β1 ≤ β̂}

Observation 1 describes the influences of the access fee changes. With a small
access fee, contracting with ISP-1 is less likely to be more beneficial to CP. In
other words, given a profit sharing level γ1, the higher access fee, the larger
domain of β1 that provides a higher profit. In addition, we observe some counter-
intuitive findings.

In general, it is easy to think that a monitoring level and a profit sharing
rate increases or decreases together. However, the above two observations shows
a different views. To the former, though the profit sharing rate is small, the
monitoring level is bounded below by β̌ in order for ISP-1 to be chosen. Similarly,
to the latter, the monitoring level is supposed to be bounded above by β̂. These
mean that there can be a minimum and a maximum levels of a monitoring level
for ISP-1 to be chosen by CP. For more details, refer the technical report.

3.3 Strategy of ISP

In this section, we find the optimal monitoring level β∗
1 of ISP-1 that maximizes

its profit π1(β1; p∗
1, γ1). We assumed that c(β) := κβ2 where κ is a positive

constant. Plugging (5) and (6) into the profit function (3) of ISP-1, we have

π1(β1; p
∗
1, γ1) =

⎧
⎨
⎩

− γ1+κv̄(1−α)2

v̄(1−α)2
β2
1 +

(v̄γ1−α)
v̄(1−α)

β1 + a, if β1 ≤ βc;
γ1−4καv̄

4αv̄
β2
1 + αv̄γ1+a

2αv̄
β1 +

(a(2−γ1)+αv̄γ1(1−γ1))(αv̄(1−γ1)−a)

4αv̄(1−γ1)2
, otherwise.



Revenue Sharing of ISP and CP 119

Table 1. Increase/decrease of ISP profit function and the potential optimal monitoring
levels without competition*

Cases
Range of β1

0 βc ∞
[1] a ≥ 4αv̄2k
[1-1] γ1 < 4αv̄k, β1∗ < 0 (0) ↘ ↘ ↘ ↘
[1-2] γ1 < 4αv̄k, 0 ≤ β1∗ < βc ↗ (β1∗) ↘ ↘ ↘
[1-3] γ1 < 4αv̄k, βc ≤ β1∗ ↗ ↗ (βc) ↘ ↘
[1-4] 4αv̄k ≤ γ1 < a

v̄
, ↗ ↗ (βc) ↘ ↘

[1-5] a
v̄

≤ γ1, βM∗ < βc ↗ ↗ (βc) ↘ ↘
[1-6] a

v̄
≤ γ1, βc ≤ βM∗ ↗ ↗ ↗ (βM∗) ↘

[2] a < 4αv̄2k
[2-1] γ1 < a/v̄, β1∗ < 0 (0) ↘ ↘ ↘ ↘
[2-2] γ1 < a/v̄, 0 ≤ β1∗ < βc ↗ (β1∗) ↘ ↘ ↘
[2-3] γ1 < a/v̄, βc ≤ β1∗ ↗ ↗ (βc) ↘ ↘
[2-4] a/v̄ ≤ γ1 < 4αv̄k, βc ≤ β1∗, βc ≤ βM∗ ↗ ↗ ↗ (βM∗) ↘
[2-5] a/v̄ ≤ γ1 < 4αv̄k, β1∗ < 0, βc ≤ βM∗ (0) ↘ ↘ ↗ (βM∗) ↘
[2-6] a/v̄ ≤ γ1 < 4αv̄k, 0 ≤ β1∗ < βc, βc ≤ βM∗ ↗ (β1∗) ↘ ↗ (βM∗) ↘
[2-7] a/v̄ ≤ γ1 < 4αv̄k, β1∗ ≥ βc, βM∗ < βc ↗ ↗ (βc) ↘ ↘
[2-8] a/v̄ ≤ γ1 < 4αv̄k, β1∗ < βc, βM∗ < βc ↗ (β1∗) ↘ ↘ ↘
[2-9] 4αv̄k ≤ γ1, βM∗ < βc ↗ ↗ (βc) ↘ ↘
[2-10] 4αv̄k ≤ γ1, βc ≤ βM∗ ↗ ↗ ↗ (βM∗) ↘

*Each figure within a bracket is a critical point, except (0) which is the lower bound.

The problem of ISP-1 can be formulated as the following constrained opti-
mization problem:

max
βi

π1(β1; p∗
1, γ1) (9)

sub. to β1 ∈ B, (10)

where B = {β1|φ(p∗
1) ≥ φ(p∗

2), φ(p∗
1) ≥ 0}. The constraint is needed due to

competition with ISP-2. If ISP-1 determines β1 such that β1 /∈ B, as CP selects
ISP-2, its profit becomes zero.

It turns out that profit function π1(β1; p∗
1, γ1) is either decreasing or unimodal

in most cases except [2–4] and [2–5] of Table 14. We found the optimal β∗
1 for

16 cases of Table 1. However, the solution does not incorporate the competition
constraint. As it becomes too complicated to find the analytic result of the
optimization problem (9)–(10) of ISP-1, we rely on numerical studies for the
ISP-1’s optimal strategy.

3.4 Negotiation of Profit Sharing Rate

The negotiation of revenue sharing ratio γ is a difficult issue in reality and is
beyond the scope of this paper. What we would like to see is whether there exists
γ > 0 such that both ISP and CP can be happier than when γ = 0.

4 We omit details due to lack of space.
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One possible theoretical approach is to use the concept of Nash bargaining
solution [12], which can be expressed as

γ∗ = arg max
γ

φ(p∗
1) × π(β∗

1 ; p∗
1, γ1)

4 Numerical Study

In this section, we made a numerical study to present the possibility of a ISP-CP
collaboration. We assumed that the access fee a is 0.3; the maximum willingness
to pay v̄ is 10; the quality degradation α is 0.1; and the constant of the monitoring
cost κ is 0.2. It is supposed to reflect a market situation with an access fee of
middle level (α2v̄ ≤ a < αv̄) and a low quality degradation level in which we
can avoid extreme cases for the levels of access fee and reflect the ease of piracy
in real world.

We analyzed the cases; the Internet access fee a is .1, .3, and .5 where α2v̄ = .1
and αv̄ = 1. Figure 3 shows the changes of ISP and CP profits in terms of the
profit sharing rates γ from 0 to .5. For all cases, the trends of their profit functions
were the same that the profit of CP is unimodal and the profit of ISP increases.
The existence a positive profit sharing rate until which the profit functions of
ISP and CP commonly increase implies shows a great possibility that the profit
sharing of CP can be beneficial to not only ISP, but itself.
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Fig. 3. Profit of ISP-1 and CP for different values of α

5 Conclusions

In this paper, we studied a possible collaboration between ISP and CP when
two ISPs compete with each other. We formulated the problem as a multi-stage
game model of which players are two ISPs and one CP. While ISP-1 provides
a piracy monitoring service, ISP-2 does not. In return, ISP-1 requests revenue
sharing to CP. CP determines its content price and selects one of the them to
maximize its profit.
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We characterized equilibrium strategies of ISP and CP. We also found a
condition in which ISP and CP may collaborate with each other. When an access
fee is small and a revenue sharing ratio is high enough, CP has no incentive to
participate in the revenue sharing. Otherwise, (either an access fee is high or a
revenue sharing ratio is low enough) there exists a monitoring level that ISP and
CP can collaborate.

Further characterization of piracy monitoring level remains as future work as
well as that of revenue sharing ratio. In addition, extension of the game model
to multiple CPs will be pursued.
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Abstract. Cooperation between participators has played a very impor-
tant role in P2P Network. Whereas, in contradiction to the original design
philosophy of P2P file sharing system, it is difficult to guarantee the coop-
eration of these participators and hard to maintain a high stability of the
network due to the selfishness of people without behavior constraints. In
this paper, we propose a novel incentive mechanism using Accumulated-
Payoff Based Snowdrift Game (APBSG) model to improve frequency of
cooperation for P2P network. The performance analysis of this model and
simulation results show that APBSG can reduce the sensitivity of cooper-
ation to the selfishness of nodes, which promotes the cooperative behav-
ior in P2P network to a large extent. Meanwhile, we reveal the relation-
ship between the degree distribution and the frequency of cooperation by
analyzing APBSG features under small-world and scale-free network. The
result suggests that we can adopt different strategies according to degrees
of nodes to achieve better stability for P2P network.

Keywords: P2P · Snowdrift game · Incentive mechanism · Scale-free
network

1 Introduction

P2P file sharing system has occupied an increasingly important position in Inter-
net applications [1]. However, unlike the traditional HTTP service, each partic-
ipator is not only a downloader, but also an uploader in P2P network, which
requires more cooperation between participators. Nevertheless, each participa-
tor is selfish since everyone wants to download more files from others with few
contributions. The file sharing system will eventually tend to crash if a high
frequency of cooperation can not be well maintained in P2P network. In fact,
these selfish “free riders” [2,3] will result in at least two problems:
c© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2017

J. Cheng et al. (Eds.): GameNets 2016, LNICST 174, pp. 122–132, 2017.

DOI: 10.1007/978-3-319-47509-7 12



An Incentive Mechanism 123

– The participators refuse to share their files, and the network resource will be
seriously under-utilized.

– The participators download with an unlimited rate, which will lead to the
waste of bandwidth and the instability of system.

Hughes et al. [3] found in 2005 that 85 % of Gnutella users are free riders.
There are many studies [4] suggest that traditional P2P file sharing systems
suffer from free riding due to lacking of an effective incentive mechanism.

Therefore, in order to solve these two problems, an effective mechanism,
which can guarantee both the downloading efficiency of participators and the
proportion of cooperation behavior should be designed [4]. If each participant
not only complies with the rules and restraints downloading rate, but also is
willing to share files with others, the P2P system will reach an evolutionary
balance. On the contrary, those free riders who do not abide by the rules may
get more payoffs in the short term, but then they will be revenged by the system
and their payoff would be sharply reduced.

The cooperation mechanism is very complex in such a dynamic system. Since
cooperation is ubiquitous all around the real world ranging from biological sys-
tems to economic and social systems. Game theory is considered to be an impor-
tant approach and a powerful framework to solve these problems. In this paper,
to emphasize the core issue of cooperation, we consider this mechanism as a
snowdrift game [5]. Our goal is to design a simple but effective incentive mech-
anism to guarantee the cooperation of the participators in the entire network
which runs in an efficient and continuous way. An incentive mechanism using
Accumulated-Payoff Based Snowdrift Game (APBSG) model is presented, which
makes the whole network achieve a high frequency of cooperation and thereby
increase the network stability in different conditions. We also analyze the rela-
tionship between the frequency of cooperation and degree of nodes, which offers
another way to improve the stability of the network.

Similar with other complex networks, P2P network has small-world and scale-
free properties. Thus, we conduct our simulation and analysis separately on
small-world and scale-free networks instead of on random networks or lattices.
Simulation results show that APBSG can reduce the sensitivity of cooperation
to the selfishness of nodes, which greatly promotes the cooperative behavior in
P2P network.

The rest of the paper is organized as follows. In Sect. 2, we briefly explain the
snowdrift game and topological characteristics of P2P network. A cooperation
incentive mechanism for P2P network is given in Sect. 3 and simulation results
will be presented in Sect. 4. Finally, Sect. 5 gives conclusions and future work.

2 Related Work

2.1 Snowdrift Game

Snowdrift Game describes the situation that involves two drivers both want
to go home, but they are trapped on opposite sides of a snowdrift. Each of
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them can make the choice of staying in the car (defect-D) or shoveling the snow
(cooperation-C) to clear a path. If they both shovel the snow from the opposite
sides which means they both choose cooperation strategy, both of them can
obtain the payoff R by driving home and sharing the labor cost of shoveling
snow. If one of them choose to stay in the car and the other shovels snow, the
cooperator gets a payoff S and the defector yields the highest payoff T . However
if both stay in the car, they cannot go home and obtain the minimum payoff P .
Thus, we have T > R > S > P , and the payoff of the defect and cooperation
behaviors can be formulated in a payoff matrix as following:

C D

C
D

(
R S
T P

)

(1)

[6,7] shows that snowdrift game is an evolutionary game and both sides will
eventually converge to the evolutionary strategy. Meanwhile, game theory has
been widely utilized in modeling various networks in [8,16].

2.2 Topological Characteristic of P2P Network

Many recent works have shown that a lot of complex networks have the same
or similar features in the real world. Actually, the P2P network is one type of
complex networks and has the same features [17–20]. The most typical features
are that they all have a small average path length, a large clustering coefficient
and a long tail on degree distribution. This makes the P2P network differ a lot
from the lattice or random graph. Two of the most famous models for simulation
are the Small-World network proposed by Watts and Strogatz [19] in 1998 and
Scale-free network which is proposed in 1999 by Barabási and Albert [20].

Figure 1 shows a small-world network and a scale-free network, which both
have 50 nodes. Figure 1(a) shows a small-world network with an average degree
of 10 which derives from the nearest-neighbor-coupled network. In this network,
every edge is cut the connection in a probability of p with its neighbors and
reconnected up to another node. When p = 0, the network is a regular nearest-
neighbor-coupled network, and the increase of p makes the existence of “short-
cut” in the network, which brings a sharp reduce of average path length. But the
clustering coefficient remains very large due to the fact that most edges are still
connected to the neighbor nodes. When p = 1, the network becomes a random
network.

A different strategy is taken for scale-free network with an average degree
of 13 which is shown in Fig. 1(b). It derives from a full-connected network with
m0 nodes, then adds one node at each step, from which m edges (m ≤ m0)
are added to the existent nodes in a probability of pi = ki

N∑

j=1
kj

. [20] shows that

degrees of nodes in network generated in such a mechanism meets the power-law
distribution.
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Fig. 1. Small-world network and Scale-free network.

3 Cooperation Incentive Mechanism

3.1 Assumption

Assume that the topology of realistic P2P network is in accordance with the
small-world and scale-free networks mentioned above. In this paper, we conduct
our simulation based on this assumption. Before modeling, we need to make
some assumptions relating to P2P network:

– In this model, each node represents a participant in P2P network, and the edge
between two nodes means there is a relationship of uploading and downloading
between them. To simplify the model, we consider the topology of network is
static, which means that all the nodes will not withdraw from the network
and no new node will be added in, and also the connection between nodes will
not be changed.

– Each node needs to choose the cooperation or defect strategy to game with its
neighbor nodes for every round and gets a certain payoff which is the summary
of payoffs when gaming with every neighbor nodes.

– Each node will choose the strategy to get a maximum payoff for next round.

This game strategy is configurable, i.e., the system can be pre-configured
to control the downloading and uploading for each node. In fact, specific client
software is necessary when downloading, and the strategy will be setup inside
the software.

3.2 Accumulated-Payoff Based Snowdrift Game

Consider a P2P network of N nodes, for each pair of nodes with connection,
normal utilization by downloading brings users a payoff b, meanwhile they must
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pay an extra cost c by sharing files and observing the bandwidth limitations.
Whereas, the two sides in the game share the cost c if they both comply with
this agreement by cooperation. Thus, each user needs to pay c/2 and get a total
payoff b − c/2. If one of them chooses not to share its files while the other do,
the cooperator takes the total cost c, and the defector yields the highest payoff
b. Whereas if both are not willing to share their files they cannot get anything
from the other side and obtain the minimum payoff 0. So we can obtain the
following payoff matrix:

C D

C
D

(
b − c/2 b − c

b 0

)

(2)

It is obvious that the user’s payoff is a non-negative number in any case.
Thus the payoff matrix meets the snowdrift game model mentioned previously
since b > b− c/2 > b− c > 0. Without loss of generality, we normalize the payoff
matrix by defining b − c/2 = 1 and r = c/2, where r for the payoff ratio. The
normalized payoff matrix is as follows:

C D

C
D

(
1 1 − r

1 + r 0

)

(3)

The effects of each node’s accumulated payoff have not received enough attention
in the study of snowdrift game on complex networks in previous works. Since
individuals always make decisions based on the payoffs they got in the past time,
we decide to construct a model based on accumulated payoff.

Here defines two variables πC(i) and πD(i) to indicate the accumulated payoff
from the initial state to current round of node i for cooperation and defect
strategy respectively. Strategy in kth round is determined by πC(i) and πD(i).
Also, PC(i) and PD(i) is defined as follows:

PC(i) =
πC(i)

πC(i) + πD(i)
(4)

PD(i) =
πD(i)

πC(i) + πD(i)
(5)

Obviously, PC(i)+PD(i) = 1, so we define PC(i) as the probability of choos-
ing the strategy of cooperation in the kth round, also PD(i) for defect. Without
loss of generality, we initialize both πC(i) and πD(i) to 1 before the start of the
game.

In our model, the strategy of choosing cooperation or defect for the next
round is not determined by the strategy or payoff in a specific round, but by
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Algorithm 1. Accumulated-Payoff Based Snowdrift Game

1: Input r, N
2: Initialize the initial strategies of all nodes s[1...N ]
3: Initialize πC(i) = πD(i) = 1
4: for k = 1 to the number of round do
5: for node i = 1 to N do
6: Update πC(i) and πD(i)
7: Calculate PC(i) and PD(i) using Eqs. (4) and (5)
8: Generate a random number R ranging from 0 to 1
9: if R > PC(i) then

10: s(i) = Defect
11: else
12: s(i) = Cooperation
13: end if
14: end for
15: end for

the proportion of the accumulated payoff of all previous game rounds. Hence,
we call this model as Accumulated-Payoff Based Snowdrift Game (APBSG).

The algorithm is summarized by the following pseudo code:
For example, before the kth round begins, if a node i has πC(i) = 60 and

πD(i) = 40, it will choose cooperation strategy in a probability of 0.6 and defect
strategy of 0.4. To achieve this effect, we generate a random number R ranging
from 0 to 1. The node will choose defect strategy if R is greater than 0.6, other-
wise choose cooperation. Another benefit for this algorithm is that it is easy to
promote the generation of cooperation behavior, i.e., cooperation is probably to
emerge in a network where all the participators take defect as their initial strat-
egy because of the principle that strategy for each round is not absolute, but in
a certain probability. With the game advancing, more and more nodes will tend
to an evolutionary equilibrium to choose the strategy in a certain probability to
maximize their payoffs.

4 Simulation

As mentioned above, our goal is to guarantee the downloading efficiency and the
stability of the P2P network. This mainly relies on the frequency of cooperation,
which is the proportion of nodes taking cooperation strategy while the system
gets an evolutionary balance in the network. We define fc as the frequency of
cooperation. It can be easily seen that fc ranges from 0 to 1. When fc = 0,
there’s no nodes choosing cooperation strategy, while fc = 1 means that all the
nodes have chosen cooperation strategy in the network.

In our simulation, the performance metric is fc, and we observe how fc

changes as a function of different parameters both in the small-world network
and scale-free network.



128 R. Sun et al.

4.1 APBSG on Small World Network

Firstly, we investigate APBSG on small-world network. Simulation is carried out
for a population of N = 2500 nodes. Figure 2 shows the results where fc as a
function of parameter r.
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Fig. 2. fc as a function of r in small-world network with average degree of 200. The
network size is 2500. fc for each simulation is obtained by averaging from time step
t = 1000 to 5000 where the system has reached a steady state.

As a comparison, the result of Memory-Based Snowdrift Game (MBSG) [21]
is also shown. It can be seen from Fig. 2 that fc linearly decreases while the
payoff ratio r increases both in APBSG and MBSG, i.e., the greater the r is, the
more payoff a user will obtain from others while taking defect strategy, which
inhibits the cooperation in the network. In particular, when r = 1, for a node
i, no matter which strategy it takes, it gains nothing as long as it’s neighbors
take defect strategy. In this case, the frequency of cooperation drops to below 0.2
under MBSG. It is a very bad situation where more than 80% of the participators
do not offer uploading service or over-occupied downloading bandwidth in a P2P
network, the network has in fact degenerated to the traditional HTTP service.
Those nodes taking cooperation strategy can be considered as the servers and
the other users download files from these servers.

Although fc also declines in APBSG, the decrease speed is very slow. fc still
remains at up to 0.7 when r = 1.

The increase of r leads to a high payoff when choosing the defect strategy,
thus the value of r represents the degree of a rational selfish individual. A rational
individual’s selfishness is to maximize its payoff as far as possible, and a unilateral
defect always brings a greater payoff. Therefore, we defined θ(r) as the sensitivity
of the frequency of cooperation fC(r) to nodes’ selfishness when payoff ratio is r:
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θ(r) =
∣
∣
∣
∣ lim
Δx→0

fC(r + Δr) − fC(r)
Δr

∣
∣
∣
∣ (6)

The simulation result is an approximately straight line for both APBSG
and MBSG in Fig. 2, thus θ(r) equals the absolute value of the slope of fitting
curve when r ranges from 0 to 1. We can calculate that slope of fitting line in
APBSG is −0.23, and −0.7 for MBSG, so we can see that θAPBSG(r) = 0.23 and
θMBSG(r) = 0.7 in these simulation conditions. Thus it can be concluded that
the sensitivity for frequency of cooperation to individuals’ selfishness in APBSG
is only about 1/3 of that in MBSG and P2P network using APBSG is better
in stability than in MBSG when the condition changes. Due to the fact that
a strong punishment will be taken when the one node chooses defect behavior,
although one can get a temporarily high payoff in one round, it will immediately
change its strategy from defect to cooperation to gain a maximum payoff.

Figure 3 shows how frequency fc of cooperation changes with different degrees
in small-world network which has an average degree of 200 when r = 0.2. When
the degree ranges from 180 to 200, i.e., those nodes having middle degrees are
typical “strategy swingers” who will choose a cooperation strategy in one round
and maybe defect for next round. Although they have a high average percentage
of cooperation, they almost never choose one strategy continuously to the end.
In contrast, those nodes that have smaller or larger degrees tend to be “pure
cooperators”. They will always adhere to the cooperative behavior no matter
what strategy their neighbors take.

According to this, if the node distribution of P2P network is similar to small-
world network, we can appropriately reduce the degree of nodes that have inter-
mediate degree by controlling its connection to others using client software to
promote a more emergence of cooperative strategies, which will go a long way
towards improving the stability of P2P network.

4.2 APBSG on Scale-Free Network

Going beyond small-world, we also investigate the APBSG on scale-free network.
Figure 4 shows the simulation results on the Barabási-Albert network.

Result in Fig. 4 shows that similar to the results in the small-world network,
the frequency of cooperation linearly decreases when payoff ratio r increases in
scale-free network. However, there’re still about 80% nodes choose cooperation
strategy while in small-world it’s about 70% when r = 1, and the sensitivity
θ(r) of the frequency of cooperation is 0.15, which is lower than that in small-
world network. This indicates that scale-free network is more likely to promote
emergence of cooperation than small-world network because of the wider range
of degree distribution in scale-free network.

Figure 5 shows how the frequency of cooperation changes with the different
degrees in scale-free network when r = 0.2. It can be easily seen that only
the nodes with larger degrees tend to be “pure cooperators”, while most of the
other nodes tend to be “strategy swingers”, which is very different from that in
small-world. Thus we can increase the heterogeneity of nodes for P2P network to
improve the frequency of cooperation and guarantee the stability of the network.
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Fig. 3. Distributions of strategies in small-world network. Cooperators and defectors
are denoted by gray bars and black bars respectively. Each bar adds up to a total
fraction of 1 per degree, the gray and black fractions being directly proportional to
relative percentage of respective strategy for each degree. Those nodes which have
middle degrees will choose the cooperation strategy in one round and maybe defect for
next round. In contrast, those having smaller or larger degrees tend to adhere to the
cooperative behavior no matter what strategy their neighbors take.
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Fig. 4. fC as a function of r in scale-free network whose size is 2500. fC for each
simulation is obtained by averaging from time step t = 1000 to 5000 where the system
has reached a steady state.
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Fig. 5. Distributions of strategies in scale-free network. Cooperators and defectors
are denoted by gray bars and black bars respectively. Each bar adds up to a total
fraction of 1 per degree, the gray and black fractions being directly proportional to
relative percentage of respective strategy for each degree. Those nodes which have
smaller degrees will choose the cooperation strategy in one round and maybe defect for
next round. In contrast, those having larger degrees tend to adhere to the cooperative
behavior no matter what strategy their neighbors take.

5 Conclusion

In this paper, we have investigated the cooperative behavior in the P2P file
sharing system and found that it’s essentially a snowdrift game. A novel incen-
tive mechanism called Accumulated-Payoff Based Snowdrift Game is adapted to
guarantee a high proportion of cooperation and maintain a continuing stability
of the P2P network. The results show that APBSG can reduce the sensitivity
of cooperation to the selfishness of nodes, which greatly promotes the coopera-
tive behavior in P2P network. Meanwhile, the results also give a relationship of
frequency of cooperation and the degrees of nodes. Nodes with larger or smaller
degrees promote the emergence of cooperative behavior in small-world network,
while in scale-free networks, the larger degree nodes tend to be pure cooperators.

In current work, the topology of network is static, and this assumption is
true for some cases. In future work, we will investigate the incentive mechanism
in the situation when nodes can withdraw from or add dynamically in to the
P2P network.
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Abstract. A coalition based joint subchannel and power allocation app-
roach is studied to improve the performance of device-to-device (D2D)
communication underlaying cellular networks with uplink spectrum shar-
ing. To exploit the spectrum reuse gain, we formulate the problem as a
coalition formation game. Furthermore, a distributed coalition forma-
tion algorithm is devised to assist D2D pairs in joining or leaving a
coalition. During the coalition formation process, we introduce an itera-
tive power control method. By using this method, D2D pairs can evaluate
their current coalition with D2D sum rate maximization and cellular user
equipment protection. Numerical results are provided to corroborate the
proposed studies.

Keywords: Coalitional game theory · Power control · Device-to-device
communication

1 Introduction

Nowadays, the demand for wireless internet access witnesses a huge increment.
Cisco Systems, Inc. estimates that the wireless data traffic will continue to grow
exponentially and reach over 24 exabytes per month in 2019. Device-to-device
(D2D), a type of proximity communication, has been proposed to work underlay-
ing existing cellular network for spectrum efficiency improvement. In a D2D pair,
under the control of evolved NodeB (eNB), user equipments (UEs) communi-
cate with each other through direct link instead of resorting to eNB’s assistance.
Under this network architecture, the spectrum band can be utilized simultane-
ously by both D2D pairs and traditional cellular pairs, and the D2D links can
exploit the spectrum reuse gain without any hardware investment. As a result,
D2D communication is involved as a key component in LTE-Advanced systems
(Doppler et al. 2009, Lei et al. 2012) and in the fifth generation communication
systems (Boccardi et al. 2014, Tehrani et al. 2014).
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Despite the benefits, D2D communication may also cause two types of inter-
ference: interference to primary cellular user equipments (CUEs) and interfer-
ence to other D2D pairs that use the same frequency band. Current literature
mainly focus on the problems of power control (Yu et al. 2009a,b 2009, Xing and
Hakola 2010, Dong et al. 2016), subchannel allocation (Yu et al. 2011, Xu et al.
2013, Xu et al. 2014) and interference management (Janis et al. 2009, Xu et al.
2010) by considering both types of interference. For example, the authors in (Yu
et al. 2009) showed that proper power control can coordinate the interference
to maximize the sum rate. In (Xu et al. 2013), a reverse iterative combinatorial
auction based method was proposed to efficiently allocate subchannel resource
to the D2D pairs, which operates in the downlink period of CUEs. These meth-
ods manage the interference from D2D to CUEs when D2D pairs operate in the
downlink period.

On the other hand, fewer works have considered the interference management
that occurs in the uplink transmission. Indeed, the uplink interference manage-
ment is a more challenging issue because the interference control process is left
to multiple UEs instead of the single eNB. Moreover, existing works (Yu et al.
2009a,b Xing and Hakola 2010, Yu et al. 2011, Janis et al. 2009, Xu et al. 2010)
only considered the resource allocation and interference management under a
restricted scenario where only one D2D pair coexists with one CUE.

Some recent literature (Min et al. 2011, Wang et al. 2013, Feng et al. 2013,
Li et al. 2014) considered a more practical scenario with multiple D2D pairs or
multiple CUEs. The authors in (Min et al. 2011) studied a case in which multiple
CUEs coexist with a D2D pair and proposed a location based interference man-
agement approach. The proposed approach defined an interference limited area
for D2D pair where CUEs cannot share the spectrum with the D2D pair. The
authors in (Wang et al. 2013) assumed that a D2D pair can reuse the channels
of multiple CUEs. They developed a suboptimal algorithm to jointly allocate
the transmission power of CUEs and the D2D pair such that the throughput of
the D2D pair is maximized, and the QoS of CUEs are guaranteed. The authors
in (Feng et al. 2013) formulated the resource allocation problem as a system
throughput maximization problem with the assumption that the resource of a
CUE can be shared at most by one D2D pair. The authors in (Li et al. 2014)
introduced coalitional game theory to model the subchannel allocation in D2D
communication underlaying uplink cellular network. However, they did not study
the topic of power control for D2D pairs which may help D2D pairs further
exploit the spectrum reuse gain.

In this paper, we formulate the problem of joint subchannel and power allo-
cation for D2D enabling system as a coalition formation game. For the devised
game model, a distributed coalition formation algorithm is proposed, where each
D2D pair can make decision to leave or join a coalition. Within a specific coali-
tion, each D2D pair tries to optimize the its utility via power control. Here, the
utility of each D2D pair is formulated as difference between achieved spectrum
efficiency with the priced power cost. Each D2D pair evaluates its satisfaction
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level on the current coalition based on its achieved utility. Our contributions are
summarized as follows.

– We propose a coalition formation algorithm for D2D pairs to select the sub-
channel. We prove the coalition formation algorithm converges to a Nash stable
partition.

– For a specific coalition, we derive a distributed iterative power control algo-
rithm to mitigate the interference on CUEs and interference among D2D pairs.
We also discuss the convergence issue for the power control algorithm.

Simulation results illustrate that the proposed scheme can increase the sum rate
of both CUE and D2D pairs. Meanwhile, the proposed algorithm can also reduce
the unnecessary coalition switch operations.

The rest of this paper is organized as follows. In Sect. 2, the system model
is described. In Sect. 3, we model the D2D pair coalition formation game to
allocate the subchannels, and a distributed algorithm is proposed. Moreover,
we discuss the power control in each coalition. Simulation results are given in
Sect. 4. Section 5 concludes our works.

2 System Model

We consider the uplink of orthogonal frequency division multiple access
(OFDMA) based wireless network, where an eNB is located at the center of
the cell and multiple UEs are distributed uniformly within the cell. This net-
work contains two types of UEs, i.e., M CUEs and N D2D pairs where N > M .
Let M = {1, 2, . . . ,M} and N = {1, 2, . . . , N} denote the CUE set and the
D2D pairs set, respectively. Moreover, the distance between two UEs in a D2D
pair satisfies the constraint of D2D communication. We assume all CUEs uti-
lize orthogonal subchannels and D2D pairs share the subchannels with CUEs.
The subchannel assignment for CUEs is fixed, and multiple D2D pairs can share
one subchannel with the CUE simultaneously to improve the system spectrum
efficiency.

Figure 1 illustrates the existing interference under the above network setting
in uplink period. We can see that there are two types of interference, e.g., inter-
ference among D2D pairs and interference between CUE and D2D pairs. For
example, let us consider a case where the 1st and the 2nd D2D pairs share the
same subchannel with CUE c1. Thus, the corresponding D2D receivers dr

1 and
dr
2 are exposed to the interference from CUE c1. While the eNB receives inter-

ference from dt
1 and dt

2 which are the transmitters of the 1st and the 2nd D2D
pairs respectively. Meanwhile, there exists interference between the 1st and the
2nd D2D pairs. CUE c2 and the 3rd D2D pair use orthogonal subchannels, and
as a result, they do not interfere with each other.

As the number of D2D pairs increases, both types of interference will become
more severe. Therefore, if interference is not managed properly, the potential gain
in spectral efficiency obtained by spectrum sharing will be wiped out. Motivated
by this fact, we focus on power control and subchannel assignment for D2D pairs.
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Fig. 1. Multiple D2D pairs coexist with multiple cellular users.

We denote X =
[
xk

i

]
N×M

as the subchannel assignment matrix where xk
i

takes either 1 or 0 to indicate whether the subchannel of kth CUE is assigned
to ith D2D pair or not, i ∈ N and k ∈ M. We allow a D2D pair to use only one
subchannel, that is,

∑
k∈M xk

i ≤ 1. Based on these assumptions, the received
signal at the eNB of CUE k ∈ M and the signals at receiver of ith D2D pair
underlying CUE k can be, respectively, written as

yk =
√

pkHksk +
∑

i∈Dk

xk
i

√
piGk

i si + nk (1)

and
zk
i =

√
pihk

i,isi +
√

pkgk
i sk +

∑

j∈Dk\{i}
xk

j

√
pjhk

j,isj + nk
i (2)

where si and pi are the signal and the transmit power of the ith transmitter,
i ∈ M ∪ N ; the terms Hk and Gk

i denote the channel gain of CUE k and
the interference gain between D2D pair i to CUE k, respectively; hk

i,j is the
channel gain between the transmitter of D2D pair i to the receiver of D2D pair
j underlying CUE k; the set Dk represents the D2D pairs share the subchannel
of CUE k, Dk ⊂ N , and Dk can be empty; nk and nk

i are the additive white
Gaussian noise of CUE k and D2D pair i underlying CUE k with power N0.

3 Interference Mitigation as a Coalition Formation Game

In this section, we first present the coalition formation game formulation. Then,
we analyze the power control issue in a specific coalition. At last, we propose a
distributed coalition formation algorithm.

3.1 Coalitional Game in Partition Form

In the studied network, there are M CUEs and N D2D pairs, where D2D pairs
choose to share the subchannels with CUEs to enhance the network sum rate
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throughput. We allow multiple D2D pairs operating on the same subchannel
of a CUE to form cooperative group, i.e., coalition. As a result, we denote the
coalition partition as π = {D1,D2, . . . DM}, where

⋃M
k=1 Dk = N , Dk ∩Dm = φ,

∀k,m = 1, 2, . . . ,M and k �= m. Note that Dk = φ means no D2D pair reuses
the subchannel of CUE k.

Based on above analysis, we can denote the received SINR for CUE k and
D2D pair i as

Γk =
pkHk∑

i∈Dk
xk

i piGk
i + N0

(3)

and

γk
i =

pih
k
i,i

pkgk
i +

∑
j∈Dk\{i} xk

j pjhk
j,i + N0

. (4)

Furthermore, we can calculate the throughput of UEs by the Shannon formula
r = log2 (1 + SINR).

Note that with the increase of D2D pairs in the coalition Dk, the interference
among the CUE and D2D pairs will increase. Thus, D2D pairs will deviate from
their current coalition to join another coalition for their throughput improve-
ment. This motivates us to employ the coalitional game theory (Saad et al.
2009) to formulate the coalition switch mathematically. In this paper, we formu-
late the joint power and subchannel allocation as a coalition formation game in
partition form with nontransferable utility.

Definition 1. A coalition formation game with non-transferable utility (NTU)
for joint power and subchannel allocation in D2D communication network is
defined by a pair (N , V ) where N is the set of players1 and V is a mapping such
that for every coalition Dk ⊂ N , k = 1, 2, . . . ,M , V (Dk) is a closed convex
subset of RDk that contains the payoff vectors that players in Dn can achieve.

Denoting by vi (Dn) the payoff of D2D pair i in coalition Dn ∈ π, thus the
coalition value set is defined as

V (Dk) =
{
v (Dk) ∈ R

Dk
∣
∣ vi (Dk) , i ∈ Dk

}
(5)

and the payoff of each D2D pair is

vi (Dk) = ri

(
p∗

i , p
∗
−i

)
,∀i ∈ Dk (6)

where p∗
i is the transmit power of D2D pair i, p∗

−i is the transmit power of other
D2D pairs belonging to the same coalition as i, i.e. −i ∈ Dn \ {i}. Both of them
will be determined by the power control scheme afterwards. The NTU property
indicates the payoff for each D2D pair depends on the joint actions of all the
D2D pairs in the coalition (Saad et al. 2009).

1 We use the same set of D2D pairs as all the D2D pairs join the formulated game.
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3.2 Power Control Within a Specific Coalition

After forming a coalition, all D2D pairs in this coalition, say Dk ∈ π, work coop-
eratively to maximize their sum rate. Meanwhile, all the D2D pairs are punished
as they cause excessive interference on the CUE. That means, D2D pairs can
evaluate a coalition with both sum rate maximization and CUE protection from
interference. In the proposed game model, the punishment is linear to the total
transmission power of D2D pairs on subchannel k. Thus, we can derive the opti-
mal power p∗ (Dk) =

(
p∗
1, p

∗
2, . . . , p

∗
|Dk|

)
2 of D2D pairs by solving the following

optimization problem

max
p(Dk)

∑

i∈Dk

log2
(
1 + γk

i (p (Dk))
) − λ

∑

i∈Dk

pi (7a)

s.t. 0 ≤ pi ≤ pmax,∀i ∈ Dk (7b)

where λ is a fixed linear price factor; constraint (7b) gives the power range.
From (3)–(4), we notice that the optimization problem (7a)–(7b) is non-

convex, which can be complex to solve. As a result, we consider a low-complexity
distributed iterative method to find a local optimum point. Then, optimization
programming (7a)–(7b) is replaced by

max
pi∈p(Dk)

log2
(
1 + γk

i (p (Dk))
) − λpi

s.t. 0 ≤ pi ≤ pmax,∀i ∈ Dk.
(8)

Generally, the optimization problem (8) is convex and can be solved using
a standard method (Boyd and Vandenberghe 2004). As a result, we develop
Algorithm 1 to generate a sequence of transmit power for D2D pairs in Dk.

Algorithm 1. Iterative Power Control Algorithm (IPC)
1: All D2D initialize their power pi(t) = 0, ∀i ∈ Dk, iteration count t, power price λ

and maximum iteration number MAX.
2: repeat
3: t := t + 1
4: Transmitter of D2D pair i estimates the interference-plus-noise level, i.e., the

denominator of (4), ∀i ∈ Dk

5: Transmitter of D2D pair i estimates the channel gain hk
i,i using the received

signal power of control packet, ∀i ∈ Dk

6: Transmitter of D2D pair i get the transmit power of tth iteration pt
i by solving

(8), ∀i ∈ Dk

7: until t > MAX or
∥
∥pt

i − pt−1
i

∥
∥ ≤ ε, ∀i ∈ Dk

Following proposition provides a sufficient condition of the convergence prop-
erties of (7a)–(7b).
2 The operator |·| denotes the cardinality of a set.
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Proposition 1. A D2D pair which joins a coalition with the following constraint
satisfied will receive a unique payoff in the coalition

∑

j∈Dk,j �=i

hk
j,i

hk
i,i ln 2

< 1,∀i ∈ Dk. (9)

For detailed proof, see Appendix.

Remark 1. Proposition 1 only shows a sufficient condition of convergence. How-
ever, we also note in the simulation that the convergence has a looser constraint
than (9). To make the devised algorithm robust, we introduce the maximum
iteration number. When the maximum iteration number is reached, the players
in the same coalition use their throughput as the payoff. The iterative process
in Algorithm 1 can assist D2D pairs to evaluate a coalition.

3.3 Coalition Formation Algorithm for Joint Power and Subchannel
Allocation

In the formulated game model, a D2D pair can leave its current coalition and join
a new coalition. However, which coalition to choose for the D2D pair remains a
challenging problem for the coalition formation game (N , V ). Hence, we define
the preference order for the D2D pair to overcome this obstacle.

Definition 2 (Preference Order). The preference order for a D2D pair i is
expressed as 	i, which is a transitive binary relation over the set of all coalitions
a D2D pair i can join.

The preference order provides a metric to compare which coalition a D2D
pair prefers. Consequently, given a D2D pair i ∈ N and two coalitions Dk,Dm

where i ∈ Dk and i ∈ Dm, Dk 	i Dm means D2D pair i prefers Dk to Dm. Since
our aim is to improve the total payoff of D2D pairs, we utilize the utilitarian
order (Saad et al. 2009) in this paper.

Definition 3 (Switch Rule). Given a partition π = {D1,D2, . . . DM} of D2D
pair set D, a D2D pair i decides to leave its current coalition Dk, k = 1, 2, . . . , M
and join another coalition Dm ∈ π, Dm �= Dk, hence forming a new partition
π′, if only if, Dm ∪ {i} 	iDk, here

Dm ∪ {i} 	iDk ⇔
{ ∑

j∈Dk,∀Dk∈π′
vj ≥ ∑

j∈Dk,∀Dk∈π

vj

vi (Dm ∪ {i} , π′) > vi (Dk, π)
(10)

where π′ = π\ {Dk,Dm} ∪ {Dk\ {i} ,Dm ∪ {i}}; the operator ⇔ represents left-
hand-side and right-hand-side of (10) is equivalent.

The switch rule utilizes utilitarian order. On the right side of (10), the first
line implies that payoff of the newly formed partition does not decrease by switch-
ing. Meanwhile, the second line indicates the switch operation increases the total
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payoff of D2D pairs. Since the switch operation of each iteration is only related
to coalition Dk and Dm, the following inequations are equivalent

∑

j∈Dk,∀Dk∈π′
vj ≥

∑

j∈Dk,∀Dk∈π

vj

⇔
∑

j∈Dk∪Dm,Dk,Dm∈π′
vj ≥

∑

j∈Dk,Dm,Dk,Dm∈π

vj .
(11)

Furthermore, by applying the switch rule, we present the coalition formation
algorithm in Algorithm 2.

Algorithm 2. Coalition Formation With Power Control Algorithm (CFPC)
Initialization
Each D2D pair selects a subchannel randomly and creates the history set historyi,
∀i ∈ N .
Environment discovery
Each D2D pair i ∈ N discovers potential coalitions it can join.
Coalition formation process
repeat

for i = 1 : N do
D2D pair i lists potential coalitions it is permitted to join, and the current

partition is π = {D1, D2, . . . , DM}.
D2D pair i negotiates with its potential coalitions, and vi (Dk) is given in (6),

a result of IPC.
D2D pair i decides to join coalition Dk ∈ π based on switch rule in (10) and

Dk /∈ historyi.
end for

until No D2D pair has incentive to switch
Link level schedule
All D2D pairs in N start transmit information signal afterwards.

Definition 4. A partition π = {D1,D2, . . . , DM} is called Nash stable, if and
only if, ∀i ∈ N , i ∈ Dm ∈ π such that Dm	iDk ∪ {i} for all Dk ∈ π.

Proposition 2. Starting from any initial network partition π0, the coalition
formation stage of the proposed algorithm always converges to a final Nash Stable
parition π∗.

Proof. Starting from any initial networks partition π0, there are two possible
results after each round of iteration: (1) the network partition is Nash stable;
(2) the network partition is not Nash stable. For the first case, the iteration will
terminate. For the second case, however, ∃i ∈ N with i ∈ Dk and Dk,Dm ∈
π, such that Dm ∪ {i} 	i Dk. Therefore, the D2D pair i will conduct switch
operation in the next iteration. Since the total number of partition is limited
(MN in our setting) and the proposed algorithm forbids D2D pair revisiting
past coalitions, thus all D2D pairs will finally converge to a Nash stable network
partition.
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4 Simulation Results

In this section, we provide simulation results to illustrate the performances of
the proposed CFPC algorithm.

We consider N D2D pairs coexist with M CUEs. Each CUE is assigned an
orthogonal subchannel. The transceiver is close enough to satisfy the maximum
distance of D2D communication. The channel gain equals to d−α |h|2, where d is
the distance between the transceivers, α represents the pathloss factor. The term
h denotes the complex Gaussian channel coefficient that satisfies h ∼ CN (0, 1).
We repeat the simulation 200 times and each time with the newly random-
selected locations. We summarize simulation parameters in Table 1.

Table 1. Simulation parameters setting

Parameters Values

Cell layout Isolated cell, 1-sector

Cell radius 300 m

Subchannel bandwidth 180 KHz

Noise power -174 dBm/Hz

Noise Figure 9 dB

TX power D2D: 23 dBm in maximum, MUE: 23 dBm

Antenna gain Device: 0 dBi, BS: 14 dBi

The maximum distance of D2D pairs 50 m

Pathloss factor, α 2

Figure 2a shows the sum rate of CUEs and Fig. 2b is the sum rate of D2D
pairs. We can see that, as the number of D2D pairs increases, the sum rate of
CUEs deceases and the sum rate of D2D pairs increases. When the number of
CUE is fixed, more D2D pairs lead to more interference to CUEs, contributing
to higher spectrum efficiency for D2D communication. Moreover, Fig. 2a and b
illustrate the performance comparison of the proposed algorithm (CFPC) with
the one in (Li et al. 2014) with a modification3 (Classical CF). We can see that
the proposed CFPC algorithm outperforms the Classical CF in sum rate of both
CUEs and D2D pairs. This is because the proposed scheme enables D2D pairs
to further exploit the spectrum reuse gain by power control.

Figure 3 illustrates the fairness performance of the proposed CFPC algorithm
and the Classical CF algorithm. We introduce the Jains Fairness index, which
is denoted by

3 We allow the D2D pairs to switch their coalition as long as the sum rate of D2D pairs
increases in exchange for sum rate of both CUE and D2D pairs rising in (Li et al.
2014).
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Fig. 2. Sum rate of CUEs and D2D pairs separately against varying number of D2D
pairs.

J =

(
∑

i∈M∪N
ri

)2

(M + N)
∑

i∈M∪N
r2i

(12)
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Fig. 4. Average number switch operation of each D2D pair as the number of D2D pairs
increases.

as the metric to quantize the fairness. We observe that the Classical CF algorithm
offers improved system fairness compared with the proposed scheme when the
number of D2D pairs is small. The reason is that power control can lower the
transmit power of D2D transmitters, thus can benefit the CUEs significantly
compared with that of Classical CF. However, the proposed scheme offers better
system fairness compared with the Classical CF algorithm when the number of
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D2D pairs is large. That is because the proposed CFPC algorithm can reduce
the interference to CUEs as the number of D2D becomes large.

Figure 4 shows that the iteration number grows as the number of D2D pairs
increases. However the rate of increasing for the CFPC algorithm is smaller than
the Classical CF algorithm. Notice that the iteration number of the Classical CF
is significantly larger than that of the CFPC algorithm, because the Classical CF
algorithm sacrifices switch operation for fairness. However, the proposed CFPC
algorithm had the potential to mitigate the interference in the studied system.
This phenomenon becomes more and more obvious as the number of D2D pairs
increases; therefore, the proposed CFPC algorithm can obtain a better fairness
when the number of D2D pairs is large.

5 Conclusion

We investigated the joint subchannel and power allocation problem for D2D
communication underlaying cellular networks. We formulated the problem as a
coalition formation game. For the devised game model, a distributed coalition
formation algorithm was proposed, where each D2D pair can make decision to
leave or join a coalition. We also allowed D2D pairs within the same coalition to
optimize their transmit power. Simulation results illustrated that the proposed
scheme can increase the sum rate of both CUE and D2D pairs. Meanwhile, the
proposed algorithm can also reduce the unnecessary switch operations.

A The Proof of Proposition 1

Proof. Let p (1) and p (2) be two different power allocation vectors. The solution
to (8) can be shown as

pi (m) =

[
1
λ

−
∑

j∈Dk\{i} pj (m) hk
j,i + N0 + pkgk

i

hk
i,i

]pmax

0

(13)

where the operator [x]pmax
0 denotes the value of x is within [0, pmax], and the

m = 1, 2.
For a fixed price factor λ, the difference for (13) with different power vector

p(1) and p(2) is derived as

|pi (1) − pi (2)| ≤
∣
∣
∣
∣
∣
∣

∑

j∈Dk,j �=i

hk
j,i

hk
i,i ln 2

(pj(1) − pj(2))

∣
∣
∣
∣
∣
∣

≤
⎛

⎝
∑

j∈Dk,j �=i

hk
j,i

hk
i,i ln 2

⎞

⎠

∣
∣
∣
∣
∣
∣

∑

j∈Dk,j �=i

(pj(1) − pj(2))

∣
∣
∣
∣
∣
∣

<

∣
∣
∣
∣
∣
∣

∑

j∈Dk,j �=i

(pj(1) − pj(2))

∣
∣
∣
∣
∣
∣
.

(14)
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From (14), we prove that (13) is a non-expansive operator; therefore, we conclude
that the iterative procedure will converge to the unique fixed point (Miao et al.

2011, Theorem 3) when
∑

j∈Dk,j �=i

hk
j,i

hk
i,i ln 2

< 1,∀i ∈ Dk.
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for communication networks: A tutorial. IEEE Signal Process. Mag. 26(5), 77–97
(2009)

Tehrani, M.N., Uysal, M., Yanikomeroglu, H.: Device-to-device communication in 5g
cellular networks: challenges, solutions, and future directions. IEEE Commun. Mag.
52(5), 86–92 (2014)

Wang, J., Zhu, D., Zhao, C., Li, J.C.F., Lei, M.: Resource sharing of underlaying
device-to-device and uplink cellular communications. IEEE Commun. Lett. 17(6),
1148–1151 (2013)

Xing, H., Hakola, S.: The investigation of power control schemes for a device-to-
device communication integrated into ofdma cellular system. In: Proceedings of IEEE
PIMRC, pp. 1775–1780, Instanbul, Sept. 2010

Xu, C., Song, L., Han, Z., Zhao, Q., Wang, X., Cheng, X., Jiao, B.: Efficiency resource
allocation for device-to-device underlay communication systems: A reverse iterative
combinatorial auction based approach. IEEE J. Sel. Areas Commun. 31(9), 348–358
(2013)



146 Y. Dong et al.

Xu, C., Song, L., Zhu, D., Lei, M.: Subcarrier and power optimization for device-to-
device underlay communication using auction games. In: Proceedings of IEEE ICC,
pp. 5526–5531. NSW, Sydney (2014)

Xu, S., Wang, H., Chen, T., Huang, Q., Peng, T.: Effective interference cancellation
scheme for device-to-device communication underlaying cellular networks. In: Pro-
ceedings of IEEE VTC-Fall, pp. 1–5, Ottawa, ON, Sept. 2010

Yu, C.-H., Doppler, K., Ribeiro, C.B., Tirkkonen, O.: Resource sharing optimization for
device-to-device communication underlaying cellular networks. IEEE Trans. Wireless
Commun. 10(8), 2752–2763 (2011)

Yu, C.-H., Tirkkonen, O., Doppler, K., Ribeiro, C.B.: On the performance of device-to-
device underlay communication with simple power control. In: Proceedings of IEEE
VTC-Spring, pp. 1–5, Barcelona, Apr. 2009a

Yu, C.-H., Tirkkonen, O., Doppler, K., Ribeiro, C.B.: Power optimization of device-to-
device communication underlaying cellular communication. In: Proceedings of IEEE
ICC, pp. 1–5, Dresden, Jun. 2009b



Author Index

Canberk, Berk 90
Chen, Yawen 24
Chen, Yutian 13
Cheng, Julian 133

D’Souza, Raissa M. 3
Dehghan Biyar, Elham 90
Dong, Yanjie 133

George, Jemin 3
Guo, Qing 45

Hossain, Md. Jahangir 133
Hu, Zhiqun 63

Im, Nari 113

Jing, WenPeng 24
Johnson, Samuel D. 3

Krishnan, Siddharth 55

Lee, Soohwan 79
Lei, Tao 63
Levet, Michael 55
Li, Wei 122
Lu, Jingyu 24
Lu, Zhaoming 24, 63

Mitschele-Thiel, Andreas 34
Mo, Jeonghoon 113

Ning, Lei 45

Osdoba, Manuel 34

Park, Jungju 113

Ren, Yong 122

Shao, Hua 24
Sun, Ruoxi 122

Tang, Bin 13

Wang, Qingyang 101
Wang, Zhenyong 45
Wei, Yao 101
Wen, Xiangming 24, 63

Xi, Zeguo 63
Xiong, Shangkun 101

Yi, Yung 79
Yin, Ke 101

Zeng, Yan 63
Zhang, Haijun 122


	Preface
	Organization
	Contents
	Algorithmic Game Theory
	Strategic Seeding of Rival Opinions
	1 Introduction
	2 Model
	2.1 Influence

	3 On the Existence of Pure Nash Equilibrium
	3.1 At Consensus
	3.2 The General Case

	4 Computational Properties of Best Response
	5 Discussion and Future Work
	References

	Data Preservation in Base Station-Less Sensor Networks: A Game Theoretic Approach
	1 Introduction
	2 Data Preservation Problem
	3 Algorithmic Mechanism Design (AMD) Approach
	3.1 AMD When ti = ia or ti = is
	3.2 AMD When ti = ei

	4 Conclusion and Future Work
	References

	Energy Efficient Clustering and Beamforming for Cooperative Multicell Networks
	1 Introduction
	2 System Model
	2.1 Signal Model
	2.2 Power Consumption Model

	3 Energy Efficient Clustering and Beamforming
	3.1 Problem Formulation
	3.2 Energy Efficient Beamforming
	3.3 Energy Efficient Clustering as a Coalition Formation Game

	4 Numerical Results
	5 Conclusion
	References

	Cross-Monotonic Game for Self-organized Context-Aware Placement of Services with Information Producers and Consumers
	1 Introduction
	2 Related Work
	3 System Model and Requirements
	4 Cross-Monotonic Semi-cost Recovering Game
	5 Evaluation
	6 Conclusion
	References

	Game Models and Theories
	Tracking Areas Planning with Cooperative Game in Heterogeneous and Small Cell Networks
	1 Introduction
	2 System Model
	3 Proposed TA Planning Algorithm Based on Cooperative Game
	4 Performance Evaluation
	5 Conclusion
	References

	A Mechanism Design Approach for Influence Maximization
	1 Introduction
	2 Model
	3 Analysis
	4 Conclusion and Future Work
	References

	Energy Efficient Channel Sharing and Power Optimization for Device-to-Device Networks
	1 Introduction
	2 Network Model
	3 Coalition Formation Game and the Solution
	4 Numerical Results
	5 Conclusion
	References

	Game Theory in Wireless Networks
	Distributed Sharing of Base Stations for Greening: A Population Game Approach
	1 Introduction
	2 Model
	2.1 System Model

	3 Problem Formulation: Game
	3.1 Social Objective
	3.2 Payoff Function

	4 Equilibrium Analysis
	4.1 Price-of-Anarchy and Existence of Equilibrium
	4.2 Evolutionary Dynamics and Distributed Association Algorithm

	5 Numerical Analysis
	6 Conclusions
	References

	Weighted Voting Game Based Relay Node Managemnet in VANETs
	1 Introduction
	2 Network Architecture
	3 System Model
	3.1 Scanning
	3.2 Connection Attempt
	3.3 Forming Coalition
	3.4 Voting
	3.5 Optimal Relay Selection
	3.6 Packet Dissemination

	4 Performance Evaluation
	5 Conclusion
	References

	The Study and Field Trial of Coordinated Multi-point Techniques in Heterogeneous Network
	Abstract
	1 Introduction
	2 Principle and Challenge of COMP
	3 Uplink JR and Downlink CS
	4 Field Trial and Measurement Results
	5 Conclusions
	Acknowledgements
	References

	Design and Analysis of Economic Games
	Revenue Sharing of ISP and CP in a Competitive Environment
	1 Introduction
	2 System Model 
	3 Analysis of Best Responses and Equilibrium
	3.1 User Behaviors
	3.2 Strategy of CP
	3.3 Strategy of ISP
	3.4 Negotiation of Profit Sharing Rate

	4 Numerical Study
	5 Conclusions 
	References

	An Incentive Mechanism for P2P Network Using Accumulated-Payoff Based Snowdrift Game Model
	1 Introduction
	2 Related Work
	2.1 Snowdrift Game
	2.2 Topological Characteristic of P2P Network

	3 Cooperation Incentive Mechanism
	3.1 Assumption
	3.2 Accumulated-Payoff Based Snowdrift Game

	4 Simulation
	4.1 APBSG on Small World Network
	4.2 APBSG on Scale-Free Network

	5 Conclusion
	References

	Joint Power Control and Subchannel Allocation for D2D Communications Underlaying Cellular Networks: A Coalitional Game Perspective
	1 Introduction
	2 System Model
	3 Interference Mitigation as a Coalition Formation Game
	3.1 Coalitional Game in Partition Form
	3.2 Power Control Within a Specific Coalition
	3.3 Coalition Formation Algorithm for Joint Power and Subchannel Allocation

	4 Simulation Results
	5 Conclusion
	A  The Proof of Proposition 1
	References

	Author Index



