

Hacking

del.icio.us™

Leslie Michael Orchard

37857ffirs.qxd 6/4/06 9:23 PM Page iii

37857ffirs.qxd 6/4/06 9:23 PM Page ii

Hacking
del.icio.us™

37857ffirs.qxd 6/4/06 9:23 PM Page i

37857ffirs.qxd 6/4/06 9:23 PM Page ii

Hacking

del.icio.us™

Leslie Michael Orchard

37857ffirs.qxd 6/4/06 9:23 PM Page iii

Hacking del.icio.us™

Published by
Wiley Publishing, Inc.
10475 Crosspoint Boulevard
Indianapolis, IN 46256
www.wiley.com

Copyright © 2006 by Wiley Publishing, Inc., Indianapolis, Indiana

Published simultaneously in Canada

ISBN-13: 978-0-470-03785-0
ISBN-10: 0-470-03785-7

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic,
mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sections 107 or 108 of the 1976 United States
Copyright Act, without either the prior written permission of the Publisher, or authorization through payment of the appropriate per-copy
fee to the Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 646-8600. Requests to the
Publisher for permission should be addressed to the Legal Department, Wiley Publishing, Inc., 10475 Crosspoint Blvd., Indianapolis, IN
46256, (317) 572-3447, fax (317) 572-4355, or online at http://www.wiley.com/go/permissions.

Limit of Liability/Disclaimer of Warranty:

The publisher and the author make no representations or warranties with respect to the accuracy or completeness of the contents of this
work and specifically disclaim all warranties, including without limitation warranties of fitness for a particular purpose. No warranty may be
created or extended by sales or promotional materials. The advice and strategies contained herein may not be suitable for every situation.
This work is sold with the understanding that the publisher is not engaged in rendering legal, accounting, or other professional services. If
professional assistance is required, the services of a competent professional person should be sought. Neither the publisher nor the author
shall be liable for damages arising herefrom. The fact that an organization or Website is referred to in this work as a citation and/or a
potential source of further information does not mean that the author or the publisher endorses the information the organization or
Website may provide or recommendations it may make. Further, readers should be aware that Internet Websites listed in this work may
have changed or disappeared between when this work was written and when it is read.

For general information on our other products and services or to obtain technical support, please contact our Customer Care Department
within the U.S. at (800) 762-2974, outside the U.S. at (317) 572-3993 or fax (317) 572-4002.

Library of Congress Cataloging-in-Publication Data

Orchard, Leslie M. (Leslie Michael), 1975–
Hacking del.icio.us / Leslie Michael Orchard.

p. cm.
Includes index.
ISBN-13: 978-0-470-03785-0 (paper/website : alk. paper)
ISBN-10: 0-470-03785-7 (paper/website : alk. paper)
1. Internet programming. 2. Web sites—Management. 3. File organization (Computer science) I. Title.
QA76.625.O736 2006
006.7'6—dc22

2006014068

Trademarks: Wiley, the Wiley logo, and related trade dress are trademarks or registered trademarks of John Wiley & Sons, Inc. and/or its
affiliates, in the United States and other countries, and may not be used without written permission. ExtremeTech and the ExtremeTech
logo are trademarks of Ziff Davis Publishing Holdings, Inc. Used under license. All rights reserved. del.icio.us is a trademark of del.icio.us,
Inc. All other trademarks are the property of their respective owners. Wiley Publishing, Inc., is not associated with any product or vendor
mentioned in this book.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available in electronic books.

37857ffirs.qxd 6/4/06 9:23 PM Page iv

www.wiley.com

About the Author
Leslie Michael Orchard is a hacker, tinkerer, and creative technologist working in the Detroit
area. He lives with two spotted Ocicats, two dwarf bunnies, and a very patient and understand-
ing girl. On rare occasions when spare time comes in copious amounts, he plays around
with odd bits of code and writing, sharing them on his Web site named 0xDECAFBAD
(http://decafbad.com/).

37857ffirs.qxd 6/4/06 9:23 PM Page v

Credits
Executive Editor
Chris Webb

Development Editor
Tom Dinse

Copy Editor
Nancy Rapoport

Editorial Manager
Mary Beth Wakefield

Production Manager
Tim Tate

Vice President and Executive
Group Publisher
Richard Swadley

Vice President and Executive Publisher
Joseph B. Wikert

Compositor
Maureen Forys,
Happenstance Type-O-Rama

Proofreader
C. M. Jones

Indexer
Johnna VanHoose Dinse

Cover Design
Anthony Bunyan

37857ffirs.qxd 6/4/06 9:23 PM Page vi

Acknowledgments
Alexandra Arnold, Science Genius Girl Extraordinaire, said “Yes!” about a year ago, and we’re
likely to have just returned from our honeymoon shortly before this book hits the shelves. How
did I get so lucky?

Joshua Schachter built del.icio.us on a simple concept — and he’s somehow managed to keep it
built on a series of simple yet powerful concepts as it has bloomed, growing exponentially.
Congratulations on your amazing success in doing something you love!

Chris Webb gave me the opportunity to combine two things for which I’ve got a lot of love —
del.icio.us and writing. He and Tom Dinse kept me on track for this project, despite an unex-
pectedly turbulent span of months. Thank you

37857ffirs.qxd 6/4/06 9:23 PM Page vii

Contents at a Glance
Acknowledgments . vii
Introduction. xv

Part I: Exploring del.icio.us
Chapter 1: What Is del.icio.us? . 3
Chapter 2: Enhancing Your Browser . 23
Chapter 3: Seasoning Your Desktop . 53

Part II: Remixing del.icio.us
Chapter 4: Exploring del.icio.us APIs and Data . 67
Chapter 5: The What and How of Hacks . 97
Chapter 6: Tagging Hacks . 115
Chapter 7: Mashups and Enhancements . 153
Chapter 8: Getting Your Links Out of del.icio.us . 183
Chapter 9: Getting del.icio.us into Your Blog . 233

Part III: Beyond del.icio.us
Chapter 10: Exploring Open Source Alternatives . 275
Chapter 11: Checking Out the Competition . 305

Appendix A: Site URLs, Feeds, and API Methods Reference 327

Index . 345

37857ffirs.qxd 6/4/06 9:23 PM Page viii

Contents
Acknowledgments. vii

Introduction . xv

Part I: Exploring del.icio.us

Chapter 1: What Is del.icio.us? . 3
Signing Up and Getting Started . 4
Sharing Links . 6
Making Bookmarks Social . 9
Exploring Tags . 11
Subscribing to Bookmarks . 14

Tracking Others’ Bookmarks with Your Inbox 15
Sending and Receiving Bookmarks Using Tags. 17
Discovering del.icio.us RSS Feeds . 18

Programming with the del.icio.us API . 21
Joining the Community . 21
Summary. 22

Chapter 2: Enhancing Your Browser 23
Tinkering with Bookmarklets . 23

Opening the Hood on the Official del.icio.us Bookmarklets 24
Improving the Bookmarklet to Include Selected Page Excerpts 28
Simplifying the Bookmark Posting Form . 32
Making Bookmark Posting Super-Fast . 33
Posting Bookmarks without Ever Leaving the Page 37

Extending Firefox . 39
Installing the Official del.icio.us Firefox Extension 39
Using Live Bookmarks with del.icio.us Feeds 41
Synchronizing Your Bookmarks with Foxylicious 42
Exploring Greasemonkey and User Scripts 43

Tricking Out Safari . 46
Using Sogudi to Build a Faster Bookmarklet 46
Uploading Your Bookmark Collection with Safarilicious. 47
Using delicious2safari to Download Your Bookmarks 48

Tweaking Internet Explorer . 50
Posting Bookmarks from the Context Menu 50
Downloading Your Bookmarks into Internet Explorer 51

Summary. 52

37857ftoc.qxd 6/4/06 9:24 PM Page ix

Chapter 3: Seasoning Your Desktop 53
Mac OS X . 53

Cocoalicious . 54
Delibar . 55
dashLicious . 56
Spotlight and delimport. 56
Quicksilver . 57

Windows. 59
TagSense . 60
Google Desktop. 60

Linux. 62
Gnomolicious . 62
Konqueror Sidebar . 62

Cross-Platform . 63
DeliciousMind . 63

Summary. 64

Part II: Remixing del.icio.us

Chapter 4: Exploring del.icio.us APIs and Data 67
Making Calls to the del.icio.us API . 67

Using cURL to Make del.icio.us API Calls 68
Fetching Bookmarks . 68
Managing Bookmarks in Your Collection 74
Managing Tags and Tag Bundles . 78

Abstracting Access to the del.icio.us API . 83
Using pydelicious for a Pythonic API. 83
Working with Net::Delicious in Perl . 84
Including PhpDelicious for PHP . 85
Making the API Rubilicious . 87

Tracking Bookmarks via RSS Feeds . 88
Drinking from the Fire Hose . 88
Watching the Popularity Contest . 90
Checking Your Inbox . 90
Being Picky (and Private) About Your Friends 90
Letting Your Friends Be Picky (and Private) About You 91
Staying on Topic . 92
Mixing It Up . 92
Tracking a Single Link . 92

Accessing Bookmarks with JSON . 93
Summary. 96

x Contents

37857ftoc.qxd 6/4/06 9:24 PM Page x

Chapter 5: The What and How of Hacks 97
What Is a Hack? . 97
What Makes Hacks Possible? . 100

XML . 100
JSON, or JavaScript Object Notation . 101
XML-RPC . 103
SOAP . 105
REST and Plain Old XML . 106
Web Robots and Screen Scrapers . 107

How Are Hacks Made? . 108
Browser-Side Scripting . 108
Server-Side Scripting . 111

Summary . 114

Chapter 6: Tagging Hacks . 115
What’s the Big Deal About Tagging? . 115

Tags Are Categories That Help Plan Themselves. 115
Tags Can Be Gardened Later . 116
Tagging Is a Multiplayer Game . 117
Tags Can Be Organized by Analysis. 118
Tagging Has Room for Expansion by Convention 120
Tagging Is an Imperfect Yet Useful System 120

Making Tags Useful . 121
Flagging Interesting Pages for Later Reading 121
Marking Links for Later Consideration During Blogging 121
Integrating Routed Bookmarks into Your Browser via Feeds 122

Better Social Networking Through Tagging . 122
Giving Credit with the via: and cite: Tag Prefixes 123
Using the for: tag Prefix for Interpersonal Messaging 124

Analyzing Tag Relationships . 124
Visualize Relationships Between Tags with TouchGraph 125
Perform Power Searches on Your Tagged Bookmarks 126
Mashup Tags from Many Services. 128

Exploring Tagged Media Files in Bookmarks . 128
Build an Image Gallery from Bookmarked Images 130
Listen to Streaming Audio Bookmarks with Play Tagger 133
Podcasting Audio and Video Via Bookmarks 134

Bookmarking the Real World with Geotagging 139
Composing Geotagged Bookmarks . 140
Visualize Geotagged Bookmarks Using Google Maps 143

Summary . 152

xiContents

37857ftoc.qxd 6/4/06 9:24 PM Page xi

Chapter 7: Mashups and Enhancements. 153
Tweaking the User Interface . 153

Keep Track of Your Favorite Bookmarks with Delancey 153
Revising the User Interface with del.icio.us direc.tor 155
Previewing Bookmarks Visually with Thumblicio.us 156
Presenting Popular Links with Screenshots on Hot Links 157

Enhancing Bookmarking with Utility Services 158
Bookmarking Your Clipboard with Pasta 158
Simplifying Your Tags with Stemming . 159

Analyzing and Visualizing Bookmarks . 160
Watching Popularity Over Time with Populicio.us 161
Catching the Buzz with trendalicious . 162
Visualizing Trends with Vox Delicii . 163
Watching Bookmarks Scroll by with LiveMarks 164
Tracking the Scoop with del.icio.us Pioneers 165

Combining Other Sites and Services. 166
Combining News and Bookmarks with diggdot.us 166
Visiting a Modern News Portal at Popurls 167
Subscribing to Bookmarks as Torrents with Prodigem 168

Building Your Own Mashup . 169
Planning for a Mashup . 169
Implementing TechnoFlickrDeli . 170
Adding Some Visual Style to TechnoFlickrDeli 180

Summary . 182

Chapter 8: Getting Your Links Out of del.icio.us 183
Linkrolls via JavaScript Include from del.icio.us 183
Splicing Links, Photos, and Blogs Using FeedBurner 186
Signing Up for a Daily Blog Posting from del.icio.us 190
Feeding TypePad Sidebar Lists with del.icio.us RSS. 193
Building a Yummy Bookmark Sidebar in Movable Type 196
Creating New Posts in WordPress from Bookmarks 198
Backing Up and Mirroring Your Bookmarks with Python. 200

Running the Program . 210
Browsing Your Bookmarks with Ajax . 213

Trying Out the Bookmark Browser . 223
Building a Caching API Proxy Using PHP . 224

Trying Out the Bookmark Browser with Proxy Support 231
Summary . 232

Chapter 9: Getting del.icio.us into Your Blog 233
Adding “Bookmark This” to Movable Type Posts 233
Template Tweaks for Easy Bookmarks in WordPress 235

xii Contents

37857ftoc.qxd 6/4/06 9:24 PM Page xii

Using the Sol-Delicious Plug-in for WordPress 237
Using the Notable Plug-in for WordPress . 238
Using the Sociable Plug-in for WordPress . 240
Build Bookmarking into Your Feed with FeedBurner 241
Injecting Bookmark Links with Unobtrusive JavaScript 242
Including Related Links with Tags and JSON . 248

Tagging Posts in Movable Type . 248
Tagging Posts in WordPress . 250
Using Tags and JSON Feeds to Display Related Links 253

Turning Bookmarks into Comments with RSS and JSON 260
Thinking About the Problem . 260
Gluing the Pieces Together . 260
Implementing Bookmarks as Comments on Your Site 262
Integrating del.icio.us Bookmark Comments with Your Site 269

Summary . 272

Part III: Beyond del.icio.us

Chapter 10: Exploring Open Source Alternatives 275
Why Use an Open Source Alternative? . 275
Checking Out Scuttle for Bookmark Sharing . 276

Installing Scuttle . 276
Registering for a Scuttle Account . 278
Adding Bookmarks in Scuttle . 278
Importing Bookmarks from del.icio.us . 279
Browsing and Searching Bookmarks in Scuttle 280
About the Scuttle API . 282

Bookmarks and Browser Integration with SiteBar 283
Installing and Configuring SiteBar . 283
Managing Bookmarks and Folders in SiteBar 285
Importing and Exporting Bookmarks with SiteBar 288
Browsing Bookmarks and Feeds in SiteBar 290
Web Browser Integration with SiteBar . 291

Keeping Bookmarks and Snapshots with Insipid 292
Installing Insipid . 293
Importing Bookmarks into Insipid . 294
Managing Bookmarks and Snapshots in Insipid 295

Using Rubric for Notes and Bookmarks . 297
Installing Rubric . 297
Creating and Configuring a Rubric Instance 298
Importing del.icio.us Bookmarks into Rubric 299
Managing Bookmarks with Rubric . 300
About the Rubric API and RSS Feeds . 303

Summary . 303

xiiiContents

37857ftoc.qxd 6/4/06 9:24 PM Page xiii

Chapter 11: Checking Out the Competition 305
Advanced Search and Filtering with Simpy . 305
Bookmarking in Eclectic Style with Feed Me Links. 307
Humane Bookmarking with Ma.gnolia . 309
Casting Shadow Pages and Bookmarks on Shadows. 312
Uncovering the Latest News with digg . 313
Combining Feeds and Bookmarks with Feedmarker. 316
Managing Your Special URLs with Spurl . 318
Selective Bookmark Sharing with Jots . 321
Bookmarking for Scientists with Connotea . 323
Capturing Bibliographic Citations with CiteULike 324
Summary . 326

Appendix A: Site URLs, Feeds, and API Methods Reference. 327
Browser-Viewable Public URLs . 327
Browser-Viewable Private URLs . 329
RSS Feeds . 331
JSON Feeds . 332
File Type and Media Tags . 334
HTTP API Methods and XML Response Formats 335

Using the HTTP API Methods. 335
Managing Bookmark Posts . 336
Managing Tags and Tag Bundles . 341

Index . 345

xiv Contents

37857ftoc.qxd 6/4/06 9:24 PM Page xiv

Introduction

W hen Joshua Schachter invited me to try out del.icio.us in the latter half of 2003, I was
already playing with a set of my own blogging-by-bookmark tools. I did some con-
voluted things with browser bookmarks, processed by scripts I’d written to post quick

items to my blog. I thought these were pretty cool — so, my initial reaction to del.icio.us was
something like, “This is really nice, but I’ve already got one.”

Keep in mind that I’m a tinkerer who very much enjoys doing it myself — so when I admit
that del.icio.us made me happily ditch all my own work, it’s just about the highest praise I can
give. Very shortly after I discovered del.icio.us, Joshua’s clean and well-considered incremental
improvements got me hooked and made my scripts look like the awkward hacks they were.

Convenient bookmarklets, XML data feeds, and the del.icio.us API have made use of the service
frictionless — and yet, counter-intuitively, these things have also made the site incredibly sticky.
Personally, I progressed from having my programs carbon-copy browser bookmarks to del.icio.us,
to eventually abandoning my own code and switching to exclusively using del.icio.us for book-
marks. After a few redesigns at my site, I dropped publishing link blog posts to my site and sim-
ply pointed my links to their new de facto home at del.icio.us. All the while, I’ve known I could
leave and take my bookmarks with me at any point — but I’ve never had any reason to do so.

When Joshua introduced tagging features, the powers of social bookmarking really bloomed
and the benefits of sharing bookmarks became readily apparent. More than just simply a ser-
vice to manage a collection of bookmarks or maintain a “remaindered links” blog, del.icio.us
morphed into a powerful hub for the aggregation and annotation of resources on the Web, fil-
tered by the valuable attentions of real people.

Although the phrase “Web 2.0” has reached a cringe-worthy critical mass among veterans
weary of buzzwords in general, it’s not hard to say that del.icio.us is at the vanguard of what
prompted the term’s coining. Many of the site’s basic features and concepts have been cloned
elsewhere in part or whole — with tagging in particular causing a stir in both academic and
entrepreneurial circles.

Furthermore, through XML feeds and its Web-based API, del.icio.us has encouraged the
growth of a rich ecosystem of Web- and desktop-based tools for managing, enhancing, and
analyzing social bookmarks. This pattern has been repeated at other sites, in both independent
inventions and inspired imitations — spawning cross-fertilized hacks and a whole new
mashed-up Web of interrelated data and content.

Whom Is This Book For?
I wrote this book with tinkerers in mind — that is to say, tinkerers of various levels of familiarity
with del.icio.us in particular and Web development skill in general. Whether you’re just getting

37857flast.qxd 6/4/06 9:24 PM Page xv

on your way to being a power user at del.icio.us, or whether you’re a hardcore Web development
guru who’s running your own hand-built blogging package, I hope you’ll find something of
interest within these pages.

For some of the more in-depth programming examples provided in this book, you’ll need to
have Web hosting or a server of your own — preferably one that includes hosting basic HTML
with JavaScript and CSS includes, serving up PHP scripts, and possibly running Python pro-
grams. I’ve tried to keep the requirements light, so in general you won’t need access to a data-
base. So, for instance, if you’ve been able to run your own installation of WordPress or Movable
Type for your personal blog, you should have everything you need.

Otherwise, you should be fine with just a Web browser — my favorite is Firefox — and an
interest in exploring del.icio.us and the universe of social bookmarking.

What’s in This Book?
The chapters in this book are organized into three parts. The first is intended as a general
introduction to del.icio.us and to offer some tricks for power users; the second delves into more
in-depth programming and hacks that use the del.icio.us API and XML data feeds; and the
third part of the book examines a few of the options offered by clones and competitors.

Part I: Exploring del.icio.us
To kick off the book, Part I is devoted to introducing the basics of del.icio.us, after which the
more advanced tricks and tips for using the service are explored.

� Chapter 1: “What Is del.icio.us?” This chapter presents an overview of what del.icio.us
has to offer to a new user. Here, you’ll get an illustrated guide walking you through fea-
tures available to registered users and visitors in general, as well as a few pointers to fur-
ther discussion about the site.

� Chapter 2: “Enhancing Your Browser.” Now that you’ve gotten the hang of the basics,
this chapter guides you into some more expert tricks available to del.icio.us users. You are
shown how the official bookmarklets for easy posting to del.icio.us work, and how to
improve them. A few of the extensions available for Firefox, Safari, and Internet
Explorer are introduced as well — all with the goal of helping you become a power user.

� Chapter 3: “Seasoning Your Desktop.” As del.icio.us users have sought to further inte-
grate the service into their daily habits, desktop applications using the site’s API have
begun to spring up. This chapter offers a peek at a handful of these programs you can
install for ubiquitous access to del.icio.us bookmarks outside the browser.

Part II: Remixing del.icio.us
Once you’ve gotten the hang of being a del.icio.us power user, you might get the itch to start
digging under the surface and see just how the open APIs and XML data feeds provided

xvi Introduction

37857flast.qxd 6/4/06 9:24 PM Page xvi

by the site can help you build interesting things. This part of the book should help you out
with that.

� Chapter 4: “Exploring del.icio.us APIs and Data.” This chapter gives you a very
hands-on perspective, using HTTP requests and XML to directly explore the API and
data feeds available at del.icio.us. In the latter part of the chapter, a few packages avail-
able in various languages and environments are introduced in order to ease the process of
implementing applications on top of del.icio.us services.

� Chapter 5: “The What and How of Hacks.” Before we get into the thick of things with
the del.icio.us API and data, however, this chapter presents a quick survey of the tools
and technologies available that make remixes and mashups possible with a site like
del.icio.us.

� Chapter 6: “Tagging Hacks.” One of the most significant features of del.icio.us —
tagging — is described in this chapter. After a survey of important aspects of tagging,
the chapter presents examples of the varied ways in which bookmarks annotated by
tagging can be searched and visualized.

� Chapter 7: “Mashups and Enhancements.” Some people have their own ideas on how
to make del.icio.us a better service. Thanks to the API and data feeds, however, tinkerers
need not wait for the developers at del.icio.us to agree and implement new features. This
chapter is all about how third-party sites offer new ways to view, analyze, and extend
del.icio.us bookmarking. Toward the end of this chapter, an original mashup imple-
mented in PHP — the TechnoFlickrDeli — is offered and discussed.

� Chapter 8: “Getting Your Links Out of del.icio.us.” Not everyone is comfortable with
completely relying on del.icio.us as their exclusive provider of bookmarks and link shar-
ing. This chapter offers a variety of ways to get your bookmarks out of del.icio.us —
from simply displaying them on your own site, to getting a complete export of your
bookmarks and navigating them in an alternative interface.

� Chapter 9: “Getting del.icio.us into Your Blog.” On the other hand, some del.icio.us
users look for ways to more deeply integrate the service into their site or blogs. This
chapter covers ways in which you can better integrate the display of bookmarks on your
site, as well as providing links and buttons to encourage visitors themselves to post book-
marks to your content.

Part III: Beyond del.icio.us
As you may know, del.icio.us isn’t the only game in town. There were bookmarking sites before
it came on the scene, and others have sprung up since. This part of the book takes a look at a
few open source clones and other direct competition for del.icio.us.

� Chapter 10: “Exploring Open Source Alternatives.” Some tinkerers take do-it-yourself
so much to heart that they’d rather build their own version of del.icio.us than entirely
rely upon it. Others had their own ideas for Web-based bookmarking before del.icio.us
was born. This chapter takes a look at a handful of Web-based bookmarking projects.

xviiIntroduction

37857flast.qxd 6/4/06 9:24 PM Page xvii

� Chapter 11: “Checking Out the Competition.” In the field of social bookmarking,
del.icio.us is not alone. Whether they achieved the same level of success, other people
have had and executed very similar ideas as del.icio.us. Some of these sites have been
around longer than del.icio.us, and others have sprung up since. Some are almost identi-
cal clones, while others have tried striking off on their own with new and unique fea-
tures. This chapter offers a look at a handful or two of these sites.

This book also has a single appendix, entitled “Site URLs, Feeds, and API Methods
Reference.” As you explore building your own hacks, mashups, and remixes from the technol-
ogy offered by del.icio.us, this appendix should serve as a useful cheat sheet and reference to
the URL structures in use, API methods available, and XML data feeds provided by the site.

Source Code
As you work through the programs and hacks in this book, you may choose either to type in all
the code manually or to use the source code files that accompany the book. All of the source
code used in this book is available for download at the following site:

www.wiley.com/go/extremetech

Once you’ve downloaded the code, just decompress it with your favorite tool.

xviii Introduction

37857flast.qxd 6/4/06 9:24 PM Page xviii

Hacking
del.icio.us™

37857flast.qxd 6/4/06 9:24 PM Page xix

37857flast.qxd 6/4/06 9:24 PM Page xx

Exploring del.icio.us

Chapter 1
What Is del.icio.us?

Chapter 2
Enhancing Your Browser

Chapter 3
Seasoning Your Desktop

part

in this part

37857c01.qxd 6/4/06 9:25 PM Page 1

37857c01.qxd 6/4/06 9:25 PM Page 2

What Is del.icio.us?

On the site’s About page, you’ll find that del.icio.us is described as a
“social bookmarks manager.” But, unlike many of the early social
software offerings that have peaked in popularity over the past few

years, del.icio.us wasn’t created just to help you find a job or hook you up
with a date for Saturday night. Instead, del.icio.us is all about links: book-
marking, describing, tagging, sharing, and discovering things on the Web.

Now, at first glance, you might wonder what del.icio.us has over the
bookmarks menu in your browser. Well, just for starters, links posted to
del.icio.us are available from pretty much anywhere in the world. And,
you’ll never need to import or convert bookmarks between Web browsers
again — unless you really want to, that is.

But here’s where the social aspects start to come into play: Every time you
add a bookmark to your del.icio.us collection, the site tells you about other
people who’ve posted the same link. From here, you can dive into others’
collections. After awhile you’ll discover people who tend to link to the same
things as you — and in exploring their collections, you just might stumble
upon interesting things you wouldn’t have found otherwise.

Another socially enhanced feature that’s central to the del.icio.us experience
is tagging. A tag on del.icio.us might best be described as a freeform cross
between a keyword and a category. Like a keyword, a tag is meant to be
short and sweet — one word, maybe a tiny phrase or WikiWord. But, like
a category, a tag is used to group bookmarks together. Where the benefits
of tagging begin to emerge is when many people converge on the same tags
for similar topics. Tagging becomes very powerful when it’s turned into a
multiplayer game.

And finally, del.icio.us has its doors thrown open wide to welcome tinkering
and remixing. Bookmarks listed by user and tags are available as XML feeds
right alongside the HTML meant for human consumption. Most major
features of the site offered for use within a browser are made available to
scripts and third-party tools via a simple HTTP GET and XML-based
API. By eschewing zealous restrictions on access to achieve user lock-in,
del.icio.us has become even more popular and relied-upon than it might’ve
otherwise.

� Signing up and
getting started

� Sharing links

� Making bookmarks
social

� Exploring tags

� Subscribing to
bookmarks

� Programming
with the
del.icio.us API

� Joining the
community

chapter

in this chapter

37857c01.qxd 6/4/06 9:25 PM Page 3

4 Part I — Exploring del.icio.us

Signing Up and Getting Started
Taking advantage of what del.icio.us has to offer requires audience participation, so why not
start off by getting yourself signed up for an account? Open up a browser window and pay a
visit to the del.icio.us home page, shown in Figure 1-1. Oh, and in case it’s at all confusing:
The site’s title is also the URL (http://del.icio.us).

FIGURE 1-1: del.icio.us home page (not logged in)

This first page welcomes you with a bit of introductory text to explain the site. If you like,
click around and read more about the site. Eventually, however, you’ll want to sign up for an
account. This is easy to do — use either the form presented on the home page or click the reg-
ister link in the site’s upper navigation bar. Click here, and you’ll be presented with a form to
create a new account for yourself.

On the registration page (shown in Figure 1-2), you’ll find a form asking for a username and
password alongside optional fields for your name and email address. Even though the email
address is optional, you really should provide it if you’d ever like to recover a lost password.
A more recent addition to the form is the use of a CAPTCHA, an attempt to foil automated
account creation by robots. This is one of the few spots where automation isn’t welcome — the
creators of del.icio.us do want to know who’s to blame when a robot runs amok, after all.

37857c01.qxd 6/4/06 9:25 PM Page 4

5Chapter 1 — What Is del.icio.us?

FIGURE 1-2: Registering to create an account

CAPTCHAs — or, “completely automated public Turing test to tell computers and humans
apart” — are a growing practice on modern Web sites. But, if you’ve never seen one before or
are just curious about them, here are a few pointers to follow for more information:

The CAPTCHA Project: www.captcha.net/

Wikipedia: http://en.wikipedia.org/wiki/Captcha

Anyway, you know what to do: Fill out the form, make sure you pass the Turing test, and click
the register button. You should be given a page something like Figure 1-3 in response, unless
you happen to run into a problem — such as attempting to claim a username already regis-
tered, or if you happen to fail the CAPTCHA test.

If you supplied an email address when you registered an account, you’ll be informed about a ver-
ification email that’s on its way. This message will contain a link you’ll need to click in order to
verify that the address you’ve given is correct. This is just one more way to ensure you’re a live
human being.

Immediately after successfully creating your new account at del.icio.us, you’re greeted with an
initial page of instructions (refer to Figure 1-3). The primary way to interact with the site is
via “bookmarklets,” which are small capsules of JavaScript code executable as bookmarks. As
the instructions suggest, you should probably use your browser’s Links (on IE) or Navigation
(on Firefox) toolbar as home to these bookmarklets, where they’ll be within easy reach. What
you’re looking at are the first steps toward replacing your old browser bookmark habits.

37857c01.qxd 6/4/06 9:25 PM Page 5

6 Part I — Exploring del.icio.us

FIGURE 1-3: Post-registration help with del.icio.us bookmarklets

Once you’ve created an account successfully, you’ll find that you’re automatically logged into
the site (see Figure 1-4). The introductory material that was shown in Figure 1-1 has gotten
out of your way, and now you see the site’s front page view. This page offers a sort of two-
pronged fire hose of links, giving you the most recent links to be posted to the site alongside
the moment’s most popular links.

If you hadn’t noticed before, you can see that this site is obsessed with links: Nearly everything
on this page is a hyperlink to somewhere else — and links to within del.icio.us itself are in the
minority!

Sharing Links
Now that you’ve gotten yourself an account on del.icio.us, and you’ve successfully installed the
bookmarklets, you’re ready to start sharing links.

Browse to a site — any site besides del.icio.us itself — and click the “remember this” book-
marklet. You should shortly see a page like Figure 1-5. Thanks to the JavaScript code in the
bookmarklet, this page comes pre-populated with the URL and page title found from the pre-
vious page. From here, you can optionally supply a bit of extended description for this URL —
some people fill this in with a quote lifted from the page, while others supply their own com-
mentary or witticisms.

37857c01.qxd 6/4/06 9:25 PM Page 6

7Chapter 1 — What Is del.icio.us?

FIGURE 1-4: del.icio.us home page after login

FIGURE 1-5: Posting a link

37857c01.qxd 6/4/06 9:25 PM Page 7

8 Part I — Exploring del.icio.us

The other field available on this form allows you to associate tags with this link. You can enter
these manually, one after another, separated by spaces. You can also take advantage of whatever
tag suggestions appear associated with this link by clicking on one or more, which automati-
cally appends them to the tags field. I’ll get into this a bit more in a minute, but it’s useful to
pay attention to these recommendations. They’ll help you take advantage of consensus built
among other del.icio.us users.

Finally, once you’ve reviewed everything to your satisfaction, go ahead and click the “save” but-
ton. Alternately, most browsers allow you to simply hit Return in one of the form fields to sub-
mit the form, shaving seconds off your posting time. Shortly after submission, del.icio.us takes
you right back to the URL where you started.

Congratulations! You’ve just posted your first bookmark to del.icio.us. Now, check out your
personal collection. To get there, just add your user name after http://del.icio.us/.

For example, my own collection can be found here:

http://del.icio.us/deusx

Figure 1-6 gives you a look at what my bookmark collection looked like just after posting the
link from Figure 1-5. The newly posted link appears at the top of the list because the collection
is presented in reverse-chronological order. You should be able to see the extended description I
added, as well as the collection of tags I selected. Note, also, that there are links to edit or delete
each bookmark.

FIGURE 1-6: Visiting a del.icio.us bookmark collection

37857c01.qxd 6/4/06 9:25 PM Page 8

9Chapter 1 — What Is del.icio.us?

Making Bookmarks Social
Now that you have gotten a start on your collection of links, it’s time to take a deeper look into
just what it means to use a “social bookmarks manager.” You might want to post a few more
links of your own before reading on, especially if those links have appeared somewhere such
as a popular news site. Alternately, you can visit someone else’s bookmark collection (e.g.,
http://del.icio.us/deusx), which might have a few more posted links.

What you should be looking for is visible in Figure 1-6: Each bookmark has an indicator of
how popular the link has become, with a color-coded count of other users who’ve posted the
same link. This is more than a simple indicator, however — these are links that, when clicked,
will result in something like what’s shown in Figure 1-7.

The page in Figure 1-7 is a listing of notes posted by users who all bookmarked this URL.
Here you’ll find variations in how people have edited the title or extended descriptions for a
particular link, as well as what collection of tags others have chosen to attach.

You can also see a ranking of common tags users have attached to this particular URL, in order
of their popularity. This should give you a taste of how del.icio.us attempts to provide a rough
view of the consensus among its users.

FIGURE 1-7: Viewing common details on a bookmark

37857c01.qxd 6/4/06 9:25 PM Page 9

10 Part I — Exploring del.icio.us

Another feature on the page shown in Figure 1-7 is in the sidebar and rather understated: the
“related items - show” link: Check out what happens when you click this link (see Figure 1-8).
Because providing this display takes a relatively large chunk of processing, it’s not done by
default. But, if you click here, you’ll get a list of recommended URLs that may be similar to the
bookmarked URL you’re currently viewing. This is based on analyzing the postings of other
users and similar tags used for other bookmarks.

FIGURE 1-8: Viewing related URLs associated with a bookmark

Speaking of URLs

Although it might not mean much to you until you start getting into some deeper hacking
with del.icio.us, there’s one more not-so-obvious feature to these pages in Figures 1-7 and
1-8. If you’ve been watching so far, you may have noticed that most of the URLs used to
navigate the features of del.icio.us are very straightforward and simple — except for this
one. This URL contains a string of apparently random letters and numbers reminiscent of
opaque session tracking used in many “Web 1.0” applications.

Continued

37857c01.qxd 6/4/06 9:25 PM Page 10

11Chapter 1 — What Is del.icio.us?

Exploring Tags
You’ve already been exposed to tags so far in your exploration with del.icio.us — both in supply-
ing them when you post a bookmark and as links associated with displayed bookmarks — but
now it’s time to check them out in detail.

Since the feature was introduced on del.icio.us, many articles, papers, blog entries, and inspired
implementations have been devoted to tagging. Tags are like categories turned inside out:
Instead of meticulously placing bookmarks into a carefully arranged hierarchy of folders, you
attach the tags to bookmarks. And rather than use a taxonomy of topics well considered and
agreed upon in committee, the design of del.icio.us encourages the use of tagging in a flat
namespace somewhat akin to word association — just fire off a handful of words you might
vaguely consider in characterizing the link you’re posting and submit.

It might sound hasty and sloppy, but it works. In fact, it works because it’s hasty and sloppy:
Because you don’t have to put much effort or thought into the process, you’re more likely to
actually do it — as opposed to many well-intentioned and richly expressive approaches to
metadata and classification that never actually see use by real people on a daily basis.

For a start, you might want to check out the master list of tags in use on the site. You can see
what this page looks like in Figure 1-9, and you can visit it for yourself at the following URL:

http://del.icio.us/tag

This sort of tag presentation has often been called a “tag cloud.” The tags all appear as links in
a big visual jumble, with more heavily used tags appearing in more emphasized and larger
fonts. This particular page is arranged alphabetically by default, but you can click the “by size”
link to see the tags sorted in order of popularity. If you click any of these tags, you’ll find a page
listing links from anyone who chose to attach that particular tag to their posting.

Well, as it turns out, this string is an MD5 hash of a bookmarked URL. This technique is
used to sidestep any issues involved in referring to a URL as a query parameter in another
URL. Given any URL, run an MD5 hash on it, and you can find it on del.icio.us — provided
that someone, somewhere has posted a bookmark to it. In the coming chapters, you’ll see
a few hacks that make use of this little trick.

Not sure what an MD5 hash is? Basically, it’s a way to produce a consistent 128-bit finger-
print of any given collection of data. When expressed in hexadecimal, MD5 hashes come out
to 16 characters in length no matter what the content of the original data, thus making them
convenient and predictable digests for data. Here are a few pointers to more information:

■ Wikipedia on MD5: http://en.wikipedia.org/wiki/MD5

■ RFC 1321: www.faqs.org/rfcs/rfc1321.html

37857c01.qxd 6/4/06 9:25 PM Page 11

12 Part I — Exploring del.icio.us

FIGURE 1-9: Viewing overall tags in use

For example, if you were to click “osx” — one of my favorite tags — you’d see a page similar to
Figure 1-10. This is again just a reverse-chronological presentation of links with descriptions,
along with their attached tags and an indication of popularity. The important thing to notice,
however, is that every one of these links has had the “osx” tag attached.

It’s when you’ve got many people tagging similar links that the social aspects start to bear fruit:
People tend to attach similar tags to similar things. And, even where people tend to differ slightly
in their choice of tags (e.g., “osx” versus “mac”), del.icio.us can make attempts to present similar
tags together. It’s a fuzzy process, but it hits a sweet spot between laziness and utility.

As you can see in Figure 1-10, the “osx” tag offers you what amounts to a decently topic-
focused linkblog, thanks to the fact that most people use this tag when posting links related
to Apple’s Mac OS X operating system. On the other hand, notice the “related tags” listing in
the upper right. If you haven’t found what you’re looking for on this tag display, try one of
those — these have been assembled after an analysis of what other tags tend to appear in the
same context as the current page’s tag.

Using something akin to peer pressure, the site can gently nudge people toward more popular —
and therefore more agreed-upon — tags through examples and recommendations. Over time,
shared tagging forms a sort of ad hoc and emergent classification scheme, which, although vague
and fuzzy, is in many ways superior to more intentionally planned schemes — if only by virtue of
its actually being useful and subject to constant updates.

37857c01.qxd 6/4/06 9:25 PM Page 12

13Chapter 1 — What Is del.icio.us?

FIGURE 1-10: Checking out links under the “osx” tag

Besides viewing single tags, you can also check out tag intersections by tossing a few tags sepa-
rated by “+” into your URL. This shows you links that have all of the specified tags. For exam-
ple, the following URL displays links tagged with both “apple” and “css”:

http://del.icio.us/tag/apple+css

These links might help you sort out some details specific to developing Web pages using CSS on
Apple’s Safari Web browser.

Now, after all this talk about the social aspects of tagging, it’d be nice to see some of the per-
sonal benefits of tags. I mean, these are your bookmarks after all; what about your tags? Well,
try this URL on for size:

http://del.icio.us/deusx/osx

If you like, substitute your own user name for the deusx. Either way, you should find a page that
looks like Figure 1-11. Here you’ll see just the bookmarks you’ve posted with this tag attached.
And also notice that, because the results have been focused down to your own collection, there are
some richer options for further search: A list of your own related tags is available for tag intersec-
tion drilldown, as well as the master list of your other tags in use. Also worth noting is that there’s
a link back to the shared tag, but you’ve already seen that page in Figure 1-10.

37857c01.qxd 6/4/06 9:25 PM Page 13

14 Part I — Exploring del.icio.us

FIGURE 1-11: Viewing bookmarks under a user’s personal tag

Something else to notice on the page shown in Figure 1-11 is the option to view recommen-
dations. This is just another example of the social intelligence del.icio.us offers. Check out
Figure 1-12 for an example of what these recommendations look like. Here, you’ll find point-
ers toward other people who’ve turned up as statistically like-minded, at least with respect to
what you think this particular tag means.

Keep in mind, however, that these recommendations aren’t magic: This feature will reward you
to the degree that you’ve loaded your account up with bookmarks. The more you post, the bet-
ter your results.

Subscribing to Bookmarks
Once you’ve had a chance to wander around a bit, you might start finding people whose collec-
tions reliably turn up interesting items for you. Or, you might discover that you’ve got friends
already on del.icio.us who’d like to post links directly intended for your attention. You will
probably also discover combinations of tags that perfectly suit your interests — wouldn’t it be
nice to be kept in the loop on all the new bookmarks that show up there?

Well, although exploration and browsing are activities that the del.icio.us user interface invites,
it also offers a few options to keep you updated with less manual effort.

37857c01.qxd 6/4/06 9:25 PM Page 14

15Chapter 1 — What Is del.icio.us?

FIGURE 1-12: Viewing recommendations associated with a user’s tagged bookmarks

As a registered del.icio.us user, you have an inbox at your disposal. With this tool, you can reg-
ister interest in other users’ collections and maintain a socially focused aggregated page of their
bookmarks. Also, as you discover friends with del.icio.us user names, you can apply a special
for: tag to your bookmarks to catch their attention — and vice versa. And, finally, so many of
the lists and pages on del.icio.us offer RSS feeds you can pull into feed readers and aggregators
so that you can be truly kept up-to-date.

Tracking Others’ Bookmarks with Your Inbox
What would a socially oriented site be without a friends’ list or a buddy network? Well, that’s
not quite what the inbox on del.icio.us is for, but it does let you gather up other users’ collec-
tions into a single aggregated view where you can more easily keep updated on their new book-
marks. Figure 1-13 offers a peek at what this page looks like once you’ve started adding a few
users’ names.

You can access your own inbox from the prominently placed “inbox” link right next to “your
bookmarks” in the top-of-page site navigation. Unlike many social software services, however,
your collection of inbox subscriptions is private and not readily viewable by other users. This
isn’t so much a popularity contest as it is a tool to help you stay fed with interesting things from
like-minded people. The list management page, shown in Figure 1-14, is accessible via the
“edit inbox” link in the “subs” box on the right side of the inbox page.

37857c01.qxd 6/4/06 9:25 PM Page 15

16 Part I — Exploring del.icio.us

FIGURE 1-13: Viewing a populated del.icio.us inbox

FIGURE 1-14: Managing names collected for the inbox

37857c01.qxd 6/4/06 9:25 PM Page 16

17Chapter 1 — What Is del.icio.us?

The interface here is very simple and to the point: In Figure 1-15, you can see a form at the
bottom of the page you can use to add a user’s bookmarks to your subscriptions list. You can
also specify a tag, in case you’d like to narrow your attention down to a particular topic covered
by an individual’s bookmarks. You can also remove existing subscriptions, as well as rename
them using some label more meaningful to you than a username or tag.

FIGURE 1-15: Adding a new user to the inbox

Sending and Receiving Bookmarks Using Tags
While you can keep tabs on individual people with your inbox, your friends and colleagues can
take a more direct route to get your attention using the for: tag prefix. Any time you tag a book-
mark using a del.icio.us user name prefixed by for:, that bookmark appears in the user’s “for”
collection. This page is available as a link right next to the “inbox” link in the top site navigation.

So, for example, if someone were to tag a bookmark with for:deusx when posting, I’d see
that link appear in my personal “for” list in Figure 1-16. You can tag a bookmark using any user
name, and anyone on del.icio.us can tag a link intended for your attention. It’s worth noting
that while the bookmark itself is not private, the for: tag is hidden from public view along
with your aggregate collection of these tagged links.

Taken together, the for: tag prefix and private collection form a sort of messaging system you
and your colleagues can use to share links and bring interesting things to each others’ attentions.

37857c01.qxd 6/4/06 9:25 PM Page 17

18 Part I — Exploring del.icio.us

FIGURE 1-16: Viewing bookmarks tagged with for:deusx

Discovering del.icio.us RSS Feeds
As I mentioned before, del.icio.us provides many ways to get information into and out of the
service. Besides bookmarklets and browser-viewed pages, del.icio.us also offers RSS feeds for
many of the more interesting views on links posted to the site.

For an introduction to the various feeds offered by del.icio.us, check out the help page on the
subject (shown in Figure 1-17):

http://del.icio.us/help/rss

In a nutshell, RSS feeds at del.icio.us are machine-readable XML documents that provide
updated views of the lists of links you’ve been browsing throughout the site so far. Rather than
remembering to visit del.icio.us to look for updates, you can use a feed reader or aggregator to
keep tabs on these RSS feeds so that interesting new links will come to you.

Are you new to RSS feeds? These feeds aren’t an original del.icio.us invention — if you’re inter-
ested, you can find more reading on RSS with this Wikipedia article:

http://en.wikipedia.org/wiki/RSS_(file_format)

37857c01.qxd 6/4/06 9:25 PM Page 18

19Chapter 1 — What Is del.icio.us?

FIGURE 1-17: Documentation on finding and using del.icio.us RSS feeds

Reading the help pages at del.icio.us, you can see that several forms of RSS feeds are available,
such as:

� Links that have been recently posted

� Links that have recently become popular

� Links posted by an individual user

� Links posted with a particular tag or combination of tags

� Links posted by an individual user with a particular combination of tags

And there are quite a few more streams of links from del.icio.us that have corresponding RSS
feeds — keep an eye out for them. You should be able to see the familiar orange RSS icon
appearing in the footer of many pages, as well as when these icons are called out elsewhere in
the page.

Also, many feed aggregators and Web browsers are capable of “sniffing out” available RSS feeds
when they’ve been included in a Web page’s metadata.

For example, most of the screenshots in this chapter were taken using Mozilla Firefox
(www.mozilla.org/products/firefox/). If you look back through the figures provided
so far, you may notice a special “transmission wave” icon appearing in the location bar on

37857c01.qxd 6/4/06 9:25 PM Page 19

20 Part I — Exploring del.icio.us

many occasions. This is an indication that the pages displayed have corresponding RSS feeds.
You can see this feature yourself, if you visit del.icio.us with Firefox.

Other browsers, such as Apple’s Safari, offer similar RSS autodiscovery features. Also, some
feed aggregators use this technology to let you simply provide the human-readable URL for a
Web site, which will then be used to discover the machine-readable version. The end result of
all of this is that del.icio.us makes it easy for both human beings and machines to gain access to
bookmarks flowing into the site.

If you don’t already have a feed aggregator that you use regularly, you may want to check out
Mozilla Thunderbird (www.mozilla.org/products/thunderbird/). This is an open
source application that offers email and feed aggregation features all in one place. Plenty of
commercial and shareware options are available, but I use Thunderbird here for demonstration
purposes.

In Figure 1-18, you can see a subscription to links tagged with delicious, as well as popular
links and links that have been posted by others for my viewing with a for:deusx tag. Viewing
links in an aggregator is just the start of where RSS feeds from del.icio.us become useful, how-
ever. These feeds, as well as their uses beyond feed aggregators, will come up again and in more
detail in the coming chapters.

FIGURE 1-18: Feeds from del.icio.us in Mozilla Thunderbird

37857c01.qxd 6/4/06 9:25 PM Page 20

21Chapter 1 — What Is del.icio.us?

Programming with the del.icio.us API
Through machine-readable RSS feeds, del.icio.us provides a way to get bookmarks out of the
system and into other applications. But wait, there’s more — the site also offers a rich Web-
based application programming interface (or API) that enables you to develop your own scripts
and software wrapped around del.icio.us functionality.

This API goes beyond simple timely updates of links: You can make custom queries of your
bookmarks by time and tag — as well as request a full dump of your data in case you ever want
to back it up or switch services. Furthermore, you can post new bookmarks via the API, as well
as perform a few tag maintenance functions.

This is just a quick summary of what capabilities the API provides. You can start digging into
some details about the del.icio.us API in Appendix A. You’ll also get a chance to see the API
put through its paces in future chapters, both in your own code and in other programs that
extend and enhance the functionality offered by this social bookmarking service.

Joining the Community
In addition to fostering a community based on bookmarks shared between friends and like-
minded strangers, there’s also a meta-community surrounding del.icio.us itself. You can keep
up-to-date with updates and changes made to the service, as well as catch announcements and
discussion about new software and third-party services under development by others.

The del.icio.us team maintains a blog located at this address:

http://blog.del.icio.us/

Here, you’ll be able to catch new features and official announcements by the developers work-
ing on the site daily. Occasionally, you may find things such as tutorials on how to use the serv-
ice or details on events and conferences where del.icio.us team members appear.

If email threads are more to your liking, there’s also a long-running mailing list you can join for
discussion and details about del.icio.us and other related developments. You can find archives
and subscription details here:

http://lists.del.icio.us/pipermail/discuss/

And finally, if you’d like more immediate contact with del.icio.us fans and developers, there’s a
live Internet Relay Chat (or IRC) channel located here:

irc://irc.del.icio.us:6667/delicious

If your IRC client doesn’t support URLs such as the one provided, try connecting to the server
irc.del.icio.us on port 6667 and joining channel #delicious.

37857c01.qxd 6/4/06 9:25 PM Page 21

22 Part I — Exploring del.icio.us

Don’t have an IRC client? Here are a few free clients you may want to check out:

Windows, Linux: XChat at www.xchat.org/

Mac OS X: Colloquy at http://colloquy.info/

Summary
This chapter’s whirlwind tour of features available at del.icio.us didn’t even touch experimental
features — and I’m sure to have missed a few more updates by the time you read this. But you
should now at least have a taste for what’s possible with this social bookmarking service.

On the surface, this site offers an easy way for you to move your bookmarks out of your
browser for access from anywhere in the world, where you can share them with friends. And
once you’ve started sharing your bookmarks, a payoff comes in the form of recommendations
and the opportunity to find other like-minded link gatherers. Then, when you’re ready to dive
deeper, there are RSS feeds and an API to explore for hacks and tweaks, which you’ll see in the
coming chapters.

But, you’re not quite ready to close your browser yet: In the next chapter, you see that there’s a
lot more to it than the starter set of bookmarklets you were given when you first signed up.

37857c01.qxd 6/4/06 9:25 PM Page 22

Enhancing
Your Browser

Because del.icio.us offers a Web-based user interface meant to plug
into your daily hunting and gathering habits, the first place where you
can start hacking is in your Web browser.

And depending on your browser of choice, you’ve got a few options: First,
you can use bookmarklets added to your Navigation toolbar. These are
JavaScript-loaded bookmarks that can interact with the current page you’re
viewing. Second, some modern browsers support rich plug-in interfaces,
allowing access to the browser’s own bookmarks as well as even greater inte-
gration with del.icio.us via the API.

In this chapter, you’re going to get a chance to play with some of the more
advanced bookmarklets available, as well as see what makes them tick.
Then, I’ll take you on a tour of a few browser-based plug-ins and extensions
you’ll find for your favorite browser.

Tinkering with Bookmarklets
Bookmarklets are the easiest way to integrate del.icio.us into your daily
browsing habits. When you signed up for an account, you were sent to a
quick help page describing a few useful buttons for you to drag onto your
bookmarks toolbar (see Figure 1-3). I breezed past them pretty quickly in
the previous chapter in order to keep the tour moving along, but now we’re
going to circle back around for a closer look.

In a nutshell, bookmarklets are a bit of an unholy union between bookmarks
and JavaScript. Since the early days of Netscape Navigator, most modern
Web browsers have understood URLs starting with a javascript: prefix.
At first, these URLs were mostly used as the HREF targets of hyperlinks
within pages in order to fire off functions and events scripted with
JavaScript in response to user interaction.

But then, one day, someone figured out that javascript: URLs can be
bookmarked. What this means is that you can pack a string of JavaScript
code into a bookmark as a javascript: URL. When you click that
bookmark, the JavaScript code executes in the context of the page you’re
currently viewing. The end result is that you can compose and fire off
JavaScript code that has access to the data of the page in your browser,
without ever needing to modify the original page.

� Tinkering with
bookmarklets

� Extending Firefox

� Tricking out Safari

� Tweaking Internet
Explorer

chapter

in this chapter

37857c02.qxd 6/4/06 9:26 PM Page 23

24 Part I — Exploring del.icio.us

This discovery has led to all sorts of interesting little mini-applications: Some bookmarklets
have been helpful in Web development, tweaking the size of a browser window or changing
CSS style sheets on the fly. Other bookmarklets can customize pages more to your liking by
switching all links on the page to open in a new window, or by automatically sending the page
through a translation service. And, when these JavaScript-enriched bookmarks are added as
convenient and easy-to-reach buttons on the Navigation or Links toolbar, it’s kind of like hav-
ing the power to add new features to your browser without writing full plug-ins or extensions.

If you’ve never played with bookmarklets before now, you’re missing out on a great way to
expand your browser’s capabilities. Check out these resources for further reading:

Wikipedia article on bookmarklets: http://en.wikipedia.org/wiki/Bookmarklet

Bookmarklets home page: www.bookmarklets.com/

Tantek’s Favelets: http://tantek.com/favelets/

Web development bookmarklets: www.squarefree.com/bookmarklets/

Opening the Hood on the Official del.icio.us Bookmarklets
Now, there are plenty of pre-cooked bookmarklets available out there to keep you busy for
quite a long time. But, in this chapter, I’m going to focus on getting under the hood of
del.icio.us bookmarklets. When you’re done, you should have picked up some hints on how to
customize and tweak them to do just what you want.

So, let’s get right down to business. When you signed up, you were offered a starter set of book-
mark buttons. As I mentioned earlier, you can see these in a help page pictured back in Figure 1-3:

� My del.icio.us: This offers a quick link to your own bookmarks page.

� Post to del.icio.us: This scoops up details about the page you’re currently viewing and
prepares a form to post the page to your bookmarks.

While the first of these buttons is a simple link, the second is a full-fledged bookmarklet. If
you followed the directions after signup and added these buttons, you should try taking a
look at those bookmarks now — in Firefox, for instance, you can do this using the Manage
Bookmarks item under the Bookmarks menu. Check out Figure 2-1 to see what you should
find in your Bookmarks Toolbar folder.

FIGURE 2-1: Bookmarks Manager in Firefox opened to the Bookmarks Toolbar folder

37857c02.qxd 6/4/06 9:26 PM Page 24

25Chapter 2 — Enhancing Your Browser

Dissecting the Standard del.icio.us Bookmarklet
The bookmarks with URLs prefixed by javascript: are the interesting ones. They’re far too
long to view all at once in the single line offered in the Bookmarks Manager — but if you were
to copy and paste it into a text editor, you’d see something like this:

javascript:location.href=’http://del.icio.us/deusx?v=3&url=
’+encodeURIComponent(location.href)+’&title=’+encodeURIComponent
(document.title)

At this point, it would help if you had some familiarity with JavaScript to understand what’s
going on — although even for JavaScript gurus these things can be cryptic. By taking advantage
of the javascript: URI scheme available in modern browsers, bookmarklets sneak function-
ality into a space really intended only for URLs. So, line breaks and common formatting con-
ventions aren’t allowed. Furthermore, some older browsers may allow only around 2000 or so
characters into a bookmark. Thus, bookmarklets are an exercise in compression over clarity.

But as a starting point, this first bookmarklet is pretty simple:

1. First, it scoops up the URL (location.href) and title (document.title) of the
current page.

2. Next, it encodes these into a form safe for inclusion in a URL (with a call to
encodeURIComponent).

3. Then, the URL and title are themselves concatenated into a URL that will summon up a
bookmark posting form.

4. Finally, the browser is sent to this URL (via setting location.href), and you end up
with the form you saw back in Figure 1-5.

Now, take a close look at the URL this bookmarklet works to build. For example, if I were to
try bookmarking my own home page (http://decafbad.com), my browser would take me to
this address:

http://del.icio.us/deusx?v=3&url=http%3A%2F%2Fdecafbad
.com%2F&title=0xDECAFBAD

Notice that the URL to my home page has itself been URL-encoded via encodeURIComponent,
thus explaining the %3A’s and the %2F’s. With respect to the query parameters used, this posting
form URL is a bit of a mini-API all on its own. It’s not quite documented, but as you’ll see shortly,
there are a few more parameters you can use with this URL.

Dissecting the del.icio.us Popup Window Bookmarklet
Deeper down the bookmarklet rabbit hole, you can find a popup-based bookmarklet available
over at this page:

http://del.icio.us/help/morebuttons

37857c02.qxd 6/4/06 9:26 PM Page 25

26 Part I — Exploring del.icio.us

Whereas the previous bookmarklet will cause you to leave the current page to arrive at a new
posting form, this one simply produces a new little popup window with a minimal del.icio.us
posting form presented (see Figure 2-2).

FIGURE 2-2: Posting a link using the popup window bookmarklet

It’s a little more complex, but here’s the source for the popup bookmarklet:

javascript:q=location.href;p=document.title;void(open(‘http://
del.icio.us/deusx?v=4&noui&jump=close&url=’+encodeURIComponent(q)+
’&title=’+encodeURIComponent(p),’delicious’,’toolbar=no,width=700,
height=400’))

Again, having a text editor on hand as a scratchpad can be very beneficial for developing and
reverse engineering bookmarklets. If you enter the preceding URL into it, you can insert your
own line breaks and formatting to make sense of it. With a little work, you can get it looking
something like Listing 2-1.

Listing 2-1: Reformatted JavaScript source for the del.icio.us popup
posting bookmarklet

q=location.href;
p=document.title;
void(open(‘http://del.icio.us/deusx?v=4&noui&jump=close’+
‘&url=’+encodeURIComponent(q)+
‘&title=’+encodeURIComponent(p),
‘delicious’,’toolbar=no,width=700,height=400’))

37857c02.qxd 6/4/06 9:26 PM Page 26

27Chapter 2 — Enhancing Your Browser

So, most of the complexity in this new bookmarklet comes from the presentation of the popup
window. Here’s a breakdown, line by line:

� The page URL is captured in the variable q.

� The page title is capture in the variable p.

� The function call open() is short for window.open(), which is what will open a popup
window. The void() function wrapper makes sure that the browser ignores the return
value of window.open(), which would otherwise be displayed in the parent window in
response to the bookmarklet click. The rest of this line is spent constructing the posting
form URL prefix.

� The page URL in q is encoded for inclusion in the URL and appended as a query
parameter url.

� The page title in p is encoded for inclusion in the URL and appended as a query param-
eter title.

� The call to window.open() is finished up with the name of the window, as well as a
few options with which to build the window.

So now, that’s two bookmarklets you’ve seen reverse engineered. That should give you a bit
of a taste for it. One more thing to notice is that there’s a new posting form URL used in
the popup:

http://del.icio.us/deusx?v=4&noui&jump=close&url=
http%3A%2F%2Fdecafbad.com%2F&title=0xDECAFBAD

In the interest of tinkering, let’s dissect this, too:

� http://del.icio.us/deusx: This is a URL to your page of links. I’ll be using my
user name (deusx) in examples, but you should remember to replace this with your own
username that you used during the sign up process.

� v=4: This appears to be an indicator of the current user interface version.

� noui: This parameter indicates that a minimal user interface should be used, which is
perfect for a popup window. If you compare the non-popup posting form with this one,
you’ll notice that a lot of the tag recommendation machinery is missing, as well as the
general site navigation.

� jump=close: Once you’ve completed posting the link by submitting the form, the
popup window will be closed.

� url=http%3A%2F%2Fdecafbad.com%2F: This is the URL-encoded link that you’re
about to post.

� title=0xDECAFBAD: This is the title of the page you were viewing when you clicked
the bookmarklet button.

37857c02.qxd 6/4/06 9:26 PM Page 27

28 Part I — Exploring del.icio.us

Improving the Bookmarklet to Include Selected Page Excerpts
What does all this dissection get you? It offers a peek into ways to customize the bookmarklet
and the link posting form. Consider this, for a moment: There are URL and description fields
in the posting form that are pre-populated with the url and title query parameters, respec-
tively. I wonder if there might not be parameters to fill in the notes and tags fields, too?

Well, it turns out that there are additional query parameters you can use in pre-populating the
bookmark posting form. For example, try typing in the following URL — remembering to
replace deusx with your own del.icio.us user name:

http://del.icio.us/deusx?url=http%3A%2F%2Fdecafbad.com%2F
&title=0xDECAFBAD¬es=This+decafbad+guy+is+pretty+cool

You can also accomplish the same thing by using the basic non-popup bookmarklet to start
posting a bookmark. You can then simply tack on a new notes parameter at the end of your
location bar. Take a look at Figure 2-3 for an example of what you should see.

So, there’s one new puzzle piece: Along with the URL and the title, you can also pre-populate
the descriptive notes for a bookmark. And what can you do with this new discovery?

FIGURE 2-3: Posting a link with the notes field pre-populated

37857c02.qxd 6/4/06 9:26 PM Page 28

29Chapter 2 — Enhancing Your Browser

However, it turns out that JavaScript can access text you’ve highlighted on the page. With this
piece of functionality, you can streamline the bookmarking process: Rather than copying and
pasting by hand, you can simply highlight a bit of relevant text and then let an improved book-
marklet harvest the selection and pre-populate the posting form.

Excerpting Selected Text with JavaScript
Unfortunately, the code to grab the current selection from a browser window is not uniform
between browsers. But despair not because Peter-Paul Koch of QuirksMode.org has pieced
together a method that works in most browsers:

www.quirksmode.org/js/selected.html

At QuirksMode.org, you’ll see a nicely formatted and cleanly formulated listing showing how
to dig up the current text selection based on the existence of various browser environment fea-
tures. Study this to see how it works and make sure you understand it — because in order to
make it work for a cross-browser bookmarklet, you’re going to have to mangle and compress it
until it looks something like this:

‘’+(window.getSelection?window.getSelection():document.
getSelection?document.getSelection():document.selection.
createRange().text)

On the other hand, if you never plan to share this bookmarklet and you only ever spend your
time in a single browser, check out the compatibility matrix at QuirksMode.org. You might
need to use only one of the three techniques in your personal browser-specific bookmarklet:

� In Internet Explorer, try this: document.selection.createRange().text

� In Firefox and Safari, use this: window.getSelection()

� In Firefox (again) and a few other browsers, try this: document.getSelection()

Splicing Selected Text Excerpts into the Bookmarklet
Now, you’re going to turn a single-line text field into a development environment, which can be
trying on the patience. Be sure to mind your parentheses and other syntactic punctuation
marks. Oh, and try to have some aspirin on hand because this will give you a headache to
debug. But, it’ll be worth it, and sometimes a little headache is the price of hacking.

One of the browsers I’ve found to be best at it is Firefox, with its helpful JavaScript Console
that can feed you messages about syntax errors when you leave out a semicolon or parenthesis.
You should also have a text editor scratchpad open as a “staging area,” where you can piece
together the code in a more readable form before removing all the formatting and line breaks.
This is basically inverting the process you followed while reverse engineering a bookmarklet.

In that spirit, take a look at Listing 2-2 for a more readable presentation of JavaScript code
intended for Firefox that will construct a posting form URL with the notes field harvested
from the current highlighted text selection.

37857c02.qxd 6/4/06 9:26 PM Page 29

30 Part I — Exploring del.icio.us

Listing 2-2: Prototype JavaScript code to pre-populate from text selections

username = ‘deusx’;
url = location.href;
title = document.title;
notes = window.getSelection();

post = ‘http://del.icio.us/’;
post += username;
post += ‘?v=3’;
post += ‘&url=’ + encodeURIComponent(url);
post += ‘&title=’ + encodeURIComponent(title);
post += ‘¬es=’ + encodeURIComponent(notes);

location.href = post;

While the code in Listing 2-2 can’t be used in a bookmarklet directly, composing it this way at
first can help you get your ideas in place. Then, you’ll need to compress and mangle until the
code looks like this:

javascript:un=’deusx’;u=location.href;t=document.title;n=window.
getSelection();p=’http://del.icio.us/’+un+’?v=3&url=
’+encodeURIComponent(u)+’&title=’+encodeURIComponent(t)+’¬es=
’+encodeURIComponent(n);location.href=p

Notice that I’ve gotten rid of all spaces and all line breaks, and that I’ve reduced all variable
names to one- or two-character abbreviations. Also, I’ve turned the posting form URL con-
struction into one long concatenation. I did all of this in my text editor right alongside a copy
of the original code for comparison.

And, one last time: Be sure to replace deusx with your own del.icio.us user name. There’s a
reason I broke it out into its own variable — it ends up being a common pitfall for del.icio.us
bookmarklet authors.

Trying Out the Improved Page Excerpt Bookmarklet
At this point, you’re all ready to use this new bookmarklet. First, create a new bookmark in your
toolbar using the Bookmark Manager (or your browser’s equivalent), as shown in Figure 2-4.
This time, you don’t have a Web page from which to drag a link onto your toolbar, so you’ll need
to paste in the tweaked javascript: URL by hand from your scratchpad.

Next, find your way to an interesting Web page somewhere. In Figure 2-5, I’ve humbly chosen
my own blog for this task (http://decafbad.com). Drag and highlight some text on the
page that you’d like to appear in your bookmark. Then, click the toolbar bookmarklet — I’ve
named mine “post excerpt.”

37857c02.qxd 6/4/06 9:26 PM Page 30

31Chapter 2 — Enhancing Your Browser

FIGURE 2-4: Adding the improved excerpting bookmarklet to the toolbar

FIGURE 2-5: Selecting some text on a Web page in preparation for using the bookmarklet

At last, Figure 2-6 shows you what the end result should be: a del.icio.us bookmark posting
form with the URL and title filled in just like before. But this time, the notes field has also
been pre-populated with the text you’d selected on the page before firing up the bookmarklet.

It’s all about efficiency: With one small tweak to a bookmarklet you can now capture a link, a
title, and an excerpt from the page you’re viewing simply by highlighting and clicking a button.
It took a little explaining to get here, but you should have a better feel for what a bookmarklet
is and how one can interact with the del.icio.us bookmark posting form.

37857c02.qxd 6/4/06 9:26 PM Page 31

32 Part I — Exploring del.icio.us

FIGURE 2-6: Posting a link with the notes field pre-populated with a page excerpt

Simplifying the Bookmark Posting Form
Pre-populating the notes field of the bookmark posting form added a bit of efficiency to the
process. Is there more you can do?

Well, if you use del.icio.us for any length of time, you might start to have a pretty good idea of
what tags you’d like to use whenever you post a link. So, the tag selection and recommendation
interface that appears on the posting form (see Figure 2-6) may start to lose its usefulness.
Many people love it, and it’s a pretty slick addition — but it can slow things down and make
your bookmark posting feel less efficient.

You’ve already seen the noui parameter used by the popup form to strip the site navigation (see
Figure 2-2), but this still leaves some of the tag assistance machinery in place. Is there a way to
get just a plain and simple posting form?

As it turns out, that undocumented UI version parameter found in the posting form URL
comes in handy here. Try this URL to the posting form:

http://del.icio.us/deusx?v=3&noui&url=http%3A%2F%2Fdecafbad
.com%2F&title=0xDECAFBAD

Notice that this URL contains v=3, rather than v=4 as used so far in this chapter. Take a look
at Figure 2-7 to see what effect this has on the posting form.

37857c02.qxd 6/4/06 9:26 PM Page 32

33Chapter 2 — Enhancing Your Browser

FIGURE 2-7: Posting a bookmark using version 3 of the form

As you can see in Figure 2-7, the link posting form has been stripped down to basics: just the
URL, description, notes, and tags field along with the submit button. Because it’s just a change
to the posting URL, this is a quick tweak to make if you’d like to make your customized book-
marklet leaner. Simply swap v=3 for v=4, and you should see the simpler form in your popups
and in-browser bookmarklets.

The effect generated by using v=3 appears to depend on pairing v=3 with the noui parameter.
This is probably fine because if you’re looking to have a simpler posting form, you won’t miss all
of the site navigation. But it’s good to keep this in mind, just in case you were to try using the
v=3 parameter without noui and got stumped as to why you weren’t getting a simplified form.

Making Bookmark Posting Super-Fast
The main goals in the bookmarklet enhancements presented so far in this chapter are to
streamline the process and make it faster and less obtrusive to post your bookmarks. The less
these things get in your way, the more likely you’ll use them and really see the benefits of social
bookmarking at del.icio.us.

So, as I continue with that theme, are you finding that all this button clicking and form filling
is trying your patience as you quickly try to fling bookmark after bookmark into your collec-
tion? Maybe not, but just in case: The Super-Fast Delicious Bookmarklet by John Resig could
be just the thing for you.

37857c02.qxd 6/4/06 9:26 PM Page 33

34 Part I — Exploring del.icio.us

The Super-Fast Delicious Bookmarklet is a Firefox-only bookmarklet that takes advantage of a
feature called Smart Keywords to reduce your bookmarking process down to a couple of quick
steps that never even touch the standard del.icio.us posting form.

You can find the original blog post about this bookmark variant here:

http://ejohn.org/blog/super-fast-delicious-bookmarklet/

Read this post to learn how to properly set up this bookmarklet.

Explaining Smart Keywords
With Smart Keywords, you have the ability to assign a short keyword to any bookmark. This,
then, allows you to navigate to this bookmark simply by typing that keyword into the location
bar and hitting Return. Where the “smart” part comes in, however, is that you’re able to type
other things after the keyword and have them inserted into the bookmark URL before making
the request.

So, as shown in Figure 2-8, suppose you bookmarked the following URL with an assigned
keyword of g:

http://google.com/search?q=%s

Now, if you type g super fast bookmarklet into the location bar, you’ll navigate immedi-
ately to a Google search results page for the phrase “super fast bookmarklet” (see Figure 2-9).

It’s the %s in the bookmark URL that makes the magic happen. Anything after the bookmark
keyword and a space is scooped up and inserted in place of the %s in your bookmark’s URL.
You can now load up your bookmarks folder with all sorts of interesting canned searches and
fire them off without ever needing to submit a form. Just figure out where the desired parame-
ter is in the search URL, and turn it into a Smart Keywords bookmark template with a %s.

You can read more about Firefox Smart Keywords here:

http://kb.mozillazine.org/Using_keyword_searches

FIGURE 2-8: Creating a bookmark
using the Smart Keywords feature
in Firefox

37857c02.qxd 6/4/06 9:26 PM Page 34

35Chapter 2 — Enhancing Your Browser

FIGURE 2-9: Smart Keywords used to facilitate a Google search

Using Smart Keywords to Make a Super-Fast Bookmarklet
Here’s the payoff: Combining this feature with a bookmarklet’s javascript: URL offers a
powerful way to get user input into the JavaScript code. You can stick a %s anywhere in the
javascript: URL and it will be replaced by the post-keyword text supplied when you trigger
the Smart Keyword, thus allowing you to parameterize the bookmarklet in a pretty flexible way.

John Resig’s bookmarklet takes advantage of this to allow you to specify tags you’d like attached
to your bookmark posting. This is combined with using the current highlighted text in the
notes field, a hack you saw explained just a few pages ago.

Taken all together, your bookmark posting process is reduced to just two steps with this
bookmarklet:

1. Highlight some text on the page that you’d like used for the bookmark notes.

2. Type d in your location bar, along whatever tags you’d like used for the bookmark, and
hit Return.

You can see this in action in Figure 2-10. After you highlight the text and then enter the key-
word and tags into the location bar, the bookmark is posted to del.icio.us and the window
closes — all without your ever seeing the posting form or needing to click “submit.”

37857c02.qxd 6/4/06 9:26 PM Page 35

36 Part I — Exploring del.icio.us

The idea is that, after you’ve had time to read through the page and you’re ready to bookmark
it, you’re probably ready to close the window or tab anyway. So, if you use this bookmarklet, you
can excerpt, tag, bookmark, and dispose of the page all in one quick shot.

FIGURE 2-10: Using the Super-Fast Delicious Bookmarklet

Slowing Down the Super-Fast Bookmarklet
For some people, this super-fast bookmarklet is too super-fast. That is, the tagging and excerpt-
ing features of the bookmarklet are great — but it’d be nice to have a chance to edit the book-
mark, rather than just have it automatically post and close the browser window or tab.

At this point, it’s useful to note that this bookmark takes advantage of a subtle feature of the
del.icio.us posting form machinery: If all of the fields are populated and a jump=doclose
parameter is included in the posting URL, the posting form never makes an appearance. That
is, all of the supplied information is used to automatically submit the bookmark, and the win-
dow is closed without ever displaying the form.

Well, after some experimentation with this feature, it appears that auto-posting requires
this exact set of parameters: tags, url, description, extended. However, some of the
parameters in the posting form URL can be supplied using two different names. For example,
description and title both work to supply a title for a bookmark. Similarly, extended
and notes both work to fill in the fuller notes or excerpt field.

37857c02.qxd 6/4/06 9:26 PM Page 36

37Chapter 2 — Enhancing Your Browser

So, if you substitute a synonym for one of the parameters, it turns out that the auto-posting
feature no longer works. Thus, you are presented with the form and given an opportunity to
edit the bookmark before it’s submitted.

To implement this tweak, take a look at the Super-Fast Bookmarklet’s source code:

javascript:u=”deusx”;q=location.href;e = “” + (window.getSelection
? window.getSelection() : document.getSelection ?
document.getSelection() :
document.selection.createRange().text);p=document.title;window.
location.href=”http://del.icio.us/”+u+”?jump=doclose&tags=
”+escape(“%s”)+”&url=”+escape(q)+”&description=”+escape(p)+
“&extended=” + escape(e).replace(/ /g, “+”);

This bookmarklet, in particular, is fairly complex because it’s rolling the cross-browser code for
capturing the current text highlight in the browser. Here’s a modified version of the book-
marklet that’s not so super-fast:

javascript:u=”deusx”;q=location.href;e = “” +
(window.getSelection ? window.getSelection() :
document.getSelection ? document.getSelection() :
document.selection.createRange().text);p=document.title;window.
location.href=”http://del.icio.us/”+u+”?v=3&noui=1&tags=”+escape
(“%s”)+”&url=”+escape(q)+”&title=”+escape(p)+ “&extended=” +
escape(e).replace(/ /g, “+”);

The following two changes were made:

� The jump=doclose parameter is replaced by v=3 and noui=1, which will give you a
simple posting form and return you to the original page after posting the bookmark. If
you’d like the page to still close after submitting the bookmark, just leave the
jump=doclose intact.

� The description parameter has been replaced with the title synonym, which seems
to be enough to short circuit the auto-posting feature yet still pre-populate the form with
the page title.

You may want to have both the original bookmarklet around, along with this tweaked version,
so you can have a choice of what happens when you’re done with a page.

Finally, this particular method of short-circuiting the auto-posting feature — as well as the fea-
ture itself — is left undocumented, in order to steer people wishing to automate things toward
the documented and scriptable API. This means that, someday, this whole thing might start
behaving differently after an update or two to the del.icio.us service. But, until then, enjoy!

Posting Bookmarks without Ever Leaving the Page
The final bookmarklet I’ll introduce is from Andrew Sutherland. You can find the original
page explaining it here:

http://code.jalenack.com/archives/new-delicious-bookmarklet/

37857c02.qxd 6/4/06 9:26 PM Page 37

38 Part I — Exploring del.icio.us

You’ll see that this bookmarklet is delivered to you via a quick “wizard” that customizes it to
your del.icio.us user name, which saves you from needing to edit it after you’ve dragged it to
your toolbar. But what really makes this bookmarklet special is that it employs a few tricks to
present you with a fully styled custom posting form overlaid atop the page you’re currently
viewing. Check out Figure 2-11 to see it in action.

FIGURE 2-11: Using the in-page posting form bookmarklet

This functionality is a bit beyond the scope of your typical bookmarklet, however. Take a look
at the source code:

javascript: z = document.createElement(‘script’); z.src =
‘http://code.jalenack.com/delicious/delicious.php?username=deusx’;
z.type = ‘text/javascript’; void(document.body.appendChild(z));

As you can see, the bookmarklet itself is pretty simple. It’s a bootstrap that uses the browser
DOM to create a new <script> tag in order to inject some additional JavaScript into the
page. This allows the actual implementation of the bookmarklet to live at the author’s
site — where it can be maintained in a form that’s much friendlier to develop.

Fully explaining how this bookmarklet works is beyond the scope of this chapter. But, it’s a
useful bookmarklet to know about, and I thought the script injection trick might be an inter-
esting addition to your own bag of tricks.

37857c02.qxd 6/4/06 9:26 PM Page 38

39Chapter 2 — Enhancing Your Browser

Extending Firefox
Now that you’ve had a chance to really get up to your elbows hacking bookmarklets and
JavaScript, I’m going to change gears a bit so you can check out what options are available for
extending your browser via more direct channels such as extensions and plug-ins. However,
because these options tend to be a bit more complex to develop, this will be less of a hands-on
section and you won’t spend as much time digging under the hood.

So, first on display is Firefox, possibly the world’s most expandable and extensible browser ever
made. Based on Mozilla platform technology, Firefox offers a great deal of flexibility thanks to
its use of XUL, CSS, and JavaScript. The browser itself is constructed using these technologies,
and modular extensions can be installed that can alter practically any aspect of the browser.

Want to learn more about XUL and the technologies used in Firefox and its extensions? Pay a
visit to this URL to start your reading:

http://kb.mozillazine.org/Dev_:_Extensions

Installing the Official del.icio.us Firefox Extension
The crew at del.icio.us has released an official Firefox extension that provides extensive addi-
tions throughout the Firefox user interface. You can install a copy for yourself from this URL:

http://del.icio.us/help/firefox/extension

Upon installation, one of the first things to notice is that the extension has added a couple of
new buttons to your toolbar. You can see these toward the top of Figure 2-12. The first button,
an icon of the del.icio.us logo, will take you straight to your collection of bookmarks. The sec-
ond toolbar addition is a stylized tag that will give you a popup form to bookmark and tag the
current page — not unlike an enhanced version of the popup bookmarklet introduced earlier.

You can also right-click or control-click any link on a page to get a context menu, where you’ll
find that the extension has added a new Tag This Link item. This will allow you to instantly
bookmark links you see on a page, without first needing to navigate to them. This can come in
handy in many cases, such as when you’d like to bookmark downloadable files or media files
such as videos or MP3 audio. This feature is also shown in Figure 2-12.

You should also notice a new application menu added to Firefox, as shown in Figure 2-13. This
menu gives you quick access to a few different facets of del.icio.us: You can bookmark and tag
the page you’re currently viewing, or jump directly to view the descriptions and tags used by
others in capturing the current page.

In addition, there are menu items offering shortcuts to your collection, links from people in
whose collections you’ve registered interest, links intended for your attention, and your
account settings. And finally, there are a few items leading to overall popular links and infor-
mational pages.

37857c02.qxd 6/4/06 9:26 PM Page 39

40 Part I — Exploring del.icio.us

FIGURE 2-12: A demonstration of the del.icio.us extension’s new link context menu item

FIGURE 2-13: The del.icio.us extension adds a new application menu in Firefox.

37857c02.qxd 6/4/06 9:26 PM Page 40

41Chapter 2 — Enhancing Your Browser

Bookmarklets can offer you a lot of unexpected functionality, but there’s nothing like a real
extension to the browser to really integrate a service like del.icio.us into your browsing habits.

Using Live Bookmarks with del.icio.us Feeds
As part of the quick tour in the previous chapter, you were introduced to the RSS feeds
del.icio.us has to offer. In particular, if you’ve been using Firefox as you explore the site, you
have seen the orange “transmission waves” icon appear from time to time in the location bar.
This icon is an indication that the page you’re viewing is associated with an RSS feed —
clicking it allows you to create a Live Bookmark, as shown in Figure 2-14.

FIGURE 2-14: Adding a del.icio.us RSS feed in a Live Bookmark

You can read more about the Live Bookmarks feature in Firefox here:

www.mozilla.com/firefox/livebookmarks.html

In a nutshell, Live Bookmarks are a cool way to integrate updates from RSS feeds into your
browser bookmarks. You can add a Live Bookmark by clicking the orange icon in the location
bar. Live Bookmarks act a bit like bookmark folders, except that Firefox itself maintains them
automatically. Periodically, the browser will check for updates in the feed: Whenever updates
are found, the new links are added to the top of the folder. Figure 2-15 shows links contained
in a Live Bookmark based on a del.icio.us RSS feed for the tag javascript.

37857c02.qxd 6/4/06 9:26 PM Page 41

42 Part I — Exploring del.icio.us

FIGURE 2-15: Viewing an RSS feed of del.icio.us links as a Live Bookmark

This feature gives you a direct way to integrate bookmarks from del.icio.us into your browser.
You can put them into the bookmark toolbar, or just in the general collection in your bookmark
menu. They’ll always be up-to-date, loaded up with fresh links from your favorite users and
tags. In addition to individual users and tags, you can subscribe to your del.icio.us inbox as a
feed or the for: tag prefix associated with your user name.

Although you should find lots of pages on del.icio.us for which RSS feeds are available and the
orange icon appears, you can also read more about specific feeds available here:

http://del.icio.us/help/rss

Synchronizing Your Bookmarks with Foxylicious
Although del.icio.us allows you to all but leave your bookmarks menu behind, some would pre-
fer to have a little synchronization. While it’s nice to have the remote and shared link collec-
tion that del.icio.us offers, it’s still nice to have a local copy to manage and keep. If this is
something you’re interested in, then Dietrich Ayala’s extension named Foxylicious is just the
thing for you. Take a look at it over at this URL:

http://dietrich.ganx4.com/foxylicious/

37857c02.qxd 6/4/06 9:26 PM Page 42

43Chapter 2 — Enhancing Your Browser

After you’ve had a chance to install it, you can configure the extension (see Figure 2-16).
Supply it with your account user name and password, as well as with a chosen bookmarks
folder to be managed by Foxylicious. Along with these options, you can also opt for daily
scheduled updates. Once configured, you can now go on using either your del.icio.us or local
Firefox bookmarks, and the two will remain in synch.

FIGURE 2-16: Configuring Foxylicious to
synchronize bookmarks with del.icio.us

Exploring Greasemonkey and User Scripts
If you thought bookmarklets were powerful, just wait until you’ve had a chance to check out
the Greasemonkey extension for Firefox.

Greasemonkey allows the execution of “user scripts” written in JavaScript that can do all the
things bookmarklets can, and more. This extension makes functionality available to user scripts
not ordinarily available to bookmarklets — such as cross-domain HTTP requests and local data
storage. Also, user scripts execute automatically when pre-determined URL patterns are
matched, rather than requiring you to click a button to run the code. This allows you to build up
a set of regular customizations to sites you visit, without needing to remember to activate them.

You can install Greasemonkey from its home page here:

http://greasemonkey.mozdev.org/

37857c02.qxd 6/4/06 9:26 PM Page 43

44 Part I — Exploring del.icio.us

And, once you’ve got the extension installed, you can start exploring available user scripts here:

http://userscripts.org/

This is a relatively new extension for Firefox, but tinkerers are already coming up with lots of
user scripts to remix del.icio.us itself and together with other sites. In fact, you can check out
the growing collection of scripts at userscripts.org here:

http://userscripts.org/tag/delicious

I’ll highlight a few of these scripts here, just to give you a taste.

Newsmashing with the Monkey
One of the features introduced in Chapter 1 was depicted in Figure 1-7: Bookmarks posted to
del.icio.us can be viewed by URL, showing you the collected notes and tags accumulated over
time by the people who’ve posted the link. You can have these details just one click away on
every page, using the Newsmashing user script demonstrated and available here:

http://blog.yanime.org/GreaseMonkey.htm

Once you’ve installed this user script, every page gains a link in the upper-left corner that you
can use to summon up an overlay containing details of everyone’s bookmarks related to the cur-
rent page. In effect, this allows you to view many others’ commentary on what you’re reading.
You can see a demo of this user script in Figure 2-17.

FIGURE 2-17: Viewing bookmark history on the current page

37857c02.qxd 6/4/06 9:26 PM Page 44

45Chapter 2 — Enhancing Your Browser

Experiencing Déjà Vu in Your Bookmarks?
Ever feel like you’ve bookmarked something before? If you try to post a link to del.icio.us that
you’ve already posted before, you’ll get a message telling you as much. You can edit the tags and
notes if you like, but sometimes it’s just the case that you forgot about your previous posting
and didn’t really intend to post it again.

So, for those cases, there’s Familiar Taste. Check out the following user script:

www.blackperl.com/javascript/greasemonkey/ft/

Once Familiar Taste is installed, you should see something like Figure 2-18 whenever you visit
a page for which you’ve already posted a bookmark in the past. This should help keep you from
making duplicate bookmarks and remind you of what tags you used for the page.

FIGURE 2-18: Viewing your bookmarks for the current page

Completely Revamping the UI with del.icio.us direc.tor
The previous two user scripts were pretty minor tweaks to pages you visit outside of del.icio.us,
but this last user script implements a radical transformation on the del.icio.us user interface
itself. Check out the del.icio.us direc.tor user script here:

www.joegrossberg.com/archives/002307.html

37857c02.qxd 6/4/06 9:26 PM Page 45

46 Part I — Exploring del.icio.us

This script is based on code previously used as a bookmarklet, but combined with Greasemonkey,
this version can “permanently” alter your view of del.icio.us — at least until you disable the user
script. Check out Figure 2-19 to see what this user script does for you.

FIGURE 2-19: del.icio.us direc.tor transforms del.icio.us into a new interface

Tricking Out Safari
Safari is Apple’s official Web browser for OS X. And while it isn’t based in XUL and JavaScript
technologies like Firefox, it does offer some opportunities for hacking thanks to the bundle and
plug-in aspects of Cocoa applications in general.

Using Sogudi to Build a Faster Bookmarklet
Using Smart Keywords in Firefox to speed up bookmarking and tagging is a neat trick. If you’re
a regular Safari user, you might wish that your browser came with this feature. Well, actually, a
Safari user first introduced that Smart Keywords bookmarklet trick. What you may be missing,
however, is a freeware enhancement named Sogudi. You can find out more about it here:

www.kitzkikz.com/Sogudi

37857c02.qxd 6/4/06 9:26 PM Page 46

47Chapter 2 — Enhancing Your Browser

Sogudi is an InputManager bundle that imbues Safari with the same sorts of templated book-
mark URLs as Firefox has with Smart Keywords. The only real difference is that instead of
%s, Sogudi uses @@@ as the placeholder in the URL. That, and Sogudi’s shortcuts are managed
separately from Safari’s normal bookmarks (see Figure 2-20).

You can read about the original Sogudi bookmarklet as well as improvements incorporated
from the Firefox Smart Keywords version at this URL:

www.zzamboni.org/brt/2005/08/07/52/

FIGURE 2-20: Managing templated URL shortcuts in
Safari Sogudi

Uploading Your Bookmark Collection with Safarilicious
Have you already built up a large collection of bookmarks with Safari? Looking for a way to
migrate them out to del.icio.us? You may want to check out Safarilicious, available here:

www.stylemac.com/safarilicious

Safarilicious is a standalone application that can read from Safari’s bookmarks and post them to
your del.icio.us account. When you first launch the program (see Figure 2-21), you’ll need to
supply it with your user account details.

You can also supply a list of bookmark folders that should be ignored, in case you want to hide or
hold back some bookmarks — such as your del.icio.us bookmarklets or other things not appropri-
ate for del.icio.us. And there’s one last option available on this first screen: You can compose a
default set of tags to be assigned to each of these bookmarks as they’re posted to your account.

Once you’re ready, you can switch over to the Preview tab (see Figure 2-22). When you first
click the tab, or when you hit the Refresh button, you’ll get a list of what bookmark data will be
posted to del.icio.us once you hit the Export! button. Use this to make sure everything’s in
order before you fire up the process.

37857c02.qxd 6/4/06 9:26 PM Page 47

48 Part I — Exploring del.icio.us

FIGURE 2-21: Configuring Safarilicious with account and tagging
details for export

FIGURE 2-22: Previewing bookmarks that will be exported by Safarilicious

Using delicious2safari to Download Your Bookmarks
On the flipside, have you amassed a bit of a collection at del.icio.us that you’d like to pull back
into your Safari browser locally? You’ll want to check out this open source application called
delicious2safari, found at the following address:

http://tuxtina.de/software/

37857c02.qxd 6/4/06 9:26 PM Page 48

49Chapter 2 — Enhancing Your Browser

This program has a very simple interface (see Figure 2-23): You enter your del.icio.us user
name and password, select a destination for your bookmarks from one of three places, and then
decide if you’d like the bookmarks placed into folders based on tags. Then, click the Get my
bookmarks! button, and off you go. The application window will update a few times with mes-
sages telling you what’s going on with the import process.

When the import has wrapped up, you should then be able to see a new folder named
“del.icio.us” in your chosen destination. Figure 2-24 shows you how the downloaded book-
marks are arranged, with subfolders named by tag.

FIGURE 2-24: Viewing the end result of downloading del.icio.us bookmarks into Safari

FIGURE 2-23: Getting
ready to download
bookmarks from del.icio.us
with delicious2safari

37857c02.qxd 6/4/06 9:26 PM Page 49

50 Part I — Exploring del.icio.us

Tweaking Internet Explorer
While not as open and flexible to hacking as Firefox, Microsoft’s Internet Explorer still has a
number of tricks up its software sleeves.

Posting Bookmarks from the Context Menu
One of the features that the official del.icio.us extension for Firefox adds is a context menu
item on links that allows you to post directly from a right-click menu. Well, if you’re a die-hard
Internet Explorer fan, you, too, can have this feature. In fact, for what it’s worth, this hack pre-
dates the official del.icio.us extension by a few years.

Steve Hatch put together a hack using JavaScript and the Windows Registry to create a pair of
new right-click menu items in Internet Explorer for links. At first, this was a bit of a manual
process to get working, but Dan Grigsby built a quick installer package that can give you this
functionality with double-click ease. You can find details about this installer here:

www.unpossible.com/blog/archives/000086.html

Basically, once installed, you can right-click any link within a page and select “del.icio.us: post” to
arrive at a pre-populated del.icio.us bookmark form with the URL and link title waiting for you. In
addition, if you happened to have selected some text before triggering this menu item, it will be
pulled into the notes field on the form as well. Check out Figure 2-25 to see this hack in action.

FIGURE 2-25: Posting a bookmark for the current page from the context menu in Internet Explorer

37857c02.qxd 6/4/06 9:26 PM Page 50

51Chapter 2 — Enhancing Your Browser

Downloading Your Bookmarks into Internet Explorer
Now that you’re an avid del.icio.us fan, you should be celebrating your newfound freedom
from your Favorites menu. But it’s understandable that you may still have some attachment to
it, and maybe you’ve got a smidgen of apprehension about your bookmarks living off in some
stranger’s hard drive. But fret no longer because there’s the Bunnyhug Updater for del.icio.us,
available here:

www.bunnyhug.net/blog/projects/deliciousupdater/

This small .NET application accepts your user name and password, and then runs off to down-
load all of your del.icio.us bookmarks (see Figure 2-26). You can also specify a Favorites sub-
folder into which your bookmarks should be saved. When the process is complete, you’ll have a
newly updated local backup of your removed bookmarks under your Internet Explorer
Favorites menu (see Figure 2-27).

FIGURE 2-26: Downloading del.icio.us bookmarks into Internet Explorer’s Favorites menu

37857c02.qxd 6/4/06 9:26 PM Page 51

52 Part I — Exploring del.icio.us

FIGURE 2-27: Bookmarks from del.icio.us are organized into Favorites folders by tag

Summary
The first part of this chapter was devoted to the del.icio.us bookmarklets and hacking some
more enhanced functionality into them. Lots of hands-on attention was given here because
bookmarklets are one of the easiest ways to get some new functionality out of a wide range of
browsers.

The second part of this chapter briefly showcased a number of browser-specific extensions and
add-on applications. The development of these tools can get quite a bit more involved, but you
should have some pointers to chase now, if you’d like to learn more.

Next up in Chapter 3, we step out of the browser and onto your desktop. Here, you’ll see what
sorts of rich applications are available using the del.icio.us API, as well as a few other interest-
ing integrations with other tools on your machine.

37857c02.qxd 6/4/06 9:26 PM Page 52

Seasoning Your
Desktop

Because del.icio.us is all about bookmarks and links, it follows that
most of the tools and interesting hacks you’ll find tend to live on the
Web or in your browser. In the previous chapter, you got a peek at

what bookmarklets and browser-based tools have popped up to use and
abuse what del.icio.us has to offer. In upcoming chapters, you’ll see hacks
and tweaks to take advantage of del.icio.us on the server side for your blog
and Web site.

But in the middle, your desktop is probably feeling somewhat neglected in
this brave new Web where you barely need to launch anything other than
your favorite browser. There are advantages to leaving the browser and tak-
ing advantage of local resources, however.

The Web-based user interface at del.icio.us is a great study in minimal
design and gets straight to the point, allowing you to manage your book-
mark collection with ease. But for all the convenience of a Web site accessi-
ble from any browser in the world, it’s nice to have a local desktop power
tool to use in sorting through your links. Desktop applications can use the
del.icio.us API to make local backups of your bookmarks, perform instant
searches on your collection, and better integrate links into your desktop
environment.

So, while the desktop itself is somewhat under-utilized with respect to
del.icio.us, this chapter attempts to showcase a few of the tools that are
available to help you squeeze a little more power out of your links.

Mac OS X
It seems like Mac OS X users and developers have really embraced del.icio.us
and its API. You can find applications and enhancements that integrate your
bookmarks into just about every major aspect of OS X — including the major
new features introduced by OS X Tiger, such as the Dashboard and Spotlight
searches.

� Mac OS X

� Windows

� Linux

� Cross-platform

chapter

in this chapter

37857c03.qxd 6/4/06 9:28 PM Page 53

54 Part I — Exploring del.icio.us

Cocoalicious
First up is Cocoalicious, an open source del.icio.us desktop client for Mac OS X, written by
Buzz Andersen and made available here:

www.scifihifi.com/cocoalicious/

The main window in Figure 3-1 shows off many of the key features of this application: There’s
a side pane listing all tags used in your collection, another pane listing bookmarks available in
the collection or in any combination of tags selected, and a pane with an embedded Web
browser in which any of the bookmarks can be viewed.

FIGURE 3-1: The Cocoalicious main window

You can also post and edit bookmarks using the dialog sheet shown in Figure 3-2. Here, you
can fill out all of the standard bookmark fields. One neat feature in this dialog box, however, is
that the tags field offers tag-completion when you hit F5, drawing from possible matches used
in your collection.

There are also a few other nice features offered by this desktop client: Cocoalicious creates a
local full-text index of all of your links, which gives you the ability to search your collection
very quickly without needing to hit the del.icio.us servers. Also, you can drag and drop links
from the list pane into other tags, thus attaching additional tags onto that bookmark.

37857c03.qxd 6/4/06 9:28 PM Page 54

55Chapter 3 — Seasoning Your Desktop

FIGURE 3-2: Editing/posting a link in Cocoalicious

Delibar
If a full-blown desktop application is a bit too obtrusive for you, Delibar might be a little more
your speed. Delibar is a small application that runs in the background as a menu bar icon,
offering a hierarchical menu structure of your bookmarks and tags. You can download a copy of
this desktop del.icio.us client here:

www.rknet.it/program/delibar/

Figure 3-3 offers a look at the features of Delibar: After starting it up and allowing it to grab a
copy of your bookmarks, you can click the menu bar icon and start browsing. In addition to
this new system-wide bookmarks menu, you can also call up a quick form to post a new book-
mark to your collection. This form is available via an item under the Actions menu, as well as
by hitting Control-F-D as a hotkey shortcut. This is a pretty nice feature because the hotkey
works pretty much everywhere.

FIGURE 3-3: Browsing and posting bookmarks from the Delibar menu item

37857c03.qxd 6/4/06 9:28 PM Page 55

56 Part I — Exploring del.icio.us

dashLicious
One of the most highly anticipated features of Mac OS X Tiger was the Dashboard. This is an
overlay screen of widgets that remains hidden until the touch of a hot key or mouse gesture.
These widgets are implemented using HTML and JavaScript and include things such as calcu-
lators, calendars, weather reports, and an array of toys and fortune cookies.

Now, alongside all these other marvels comes dashLicious, a Dashboard widget for Mac OS X
Tiger that allows you to quickly post bookmarks to your collection. You can download it here:

http://protagonist.co.uk/dashLicious/

Once dashLicious is installed and you supply your user details via the form on the back of the
widget (see Figure 3-4), this Dashboard widget will give you fast access to a link posting form
(see Figure 3-5). This alone would be enough to recommend installing dashLicious, but there’s
more: If you use Safari as your regular browser, or the built-in browser in NetNewsWire, the
widget will attempt to grab the URL and title of your currently viewed page when you activate
the Dashboard.

Depending on your personal preferences, dashLicious can be a nice change from standard
browser bookmarklets.

Spotlight and delimport
Another heavily hyped feature introduced by Mac OS X Tiger is Spotlight, the new system-
wide search tool. Spotlight offers the ability to index files and documents found on your com-
puter, using plug-ins developed by Apple and third-party developers. These plug-ins harvest
descriptive metadata from the custom document types produced by the software you use, put-
ting it all into a common format understood by Spotlight for indexing and search.

Written by Ian Henderson, delimport is a software package that does two things: First, it
makes a regularly maintained local backup of all of your del.icio.us bookmarks as individual
files in a folder located in your home directory. Second, it provides Spotlight with a plug-in
that understands these bookmark files, thus allowing you to perform Spotlight searches on your
bookmark collection from your personal machine.

FIGURE 3-5: Using
dashLicious to post
a link

FIGURE 3-4: Setting up
user account details in
dashLicious

37857c03.qxd 6/4/06 9:28 PM Page 56

57Chapter 3 — Seasoning Your Desktop

You can download delimport from this URL:

http://ianhenderson.org/delimport.html

This package comes as an installer that will drop both the bookmark download tool and the
Spotlight importer plug-in into their respective appropriate locations. You’ll be asked initially
for your username and password, and whether you want the bookmark downloader to start up
every time you log in.

An initial flurry of bookmark importing and indexing activity will start, followed by updates
every 30 minutes to grab new links from your collection. After the first download, however,
you’ll be able to fire up a Spotlight search and start seeing your bookmarks appear in the
results. See Figure 3-6 for an example of what this will look like. After this first indexing run,
the importer will start up every 30 minutes to grab updates from your bookmark collection.

FIGURE 3-6: Bookmarks downloaded by delimport appear in Spotlight searches

As you can see, these search results offer notes and tags in the expanded detail view of any par-
ticular item. If you double-click on any of the results in the Spotlight search, the link will be
launched in your browser of choice.

Quicksilver
While Spotlight offers system-wide searches at the touch of a hotkey, Quicksilver offers
searches and practically everything else within a few keystrokes. It’s a very rich, modular desk-
top enhancement that gives quick keyboard access to open files and documents, fires off scripts,

37857c03.qxd 6/4/06 9:28 PM Page 57

58 Part I — Exploring del.icio.us

controls applications, and performs many other actions. And as it turns out, with a little help
from a plug-in, Quicksilver can perform local searches of your del.icio.us bookmarks.

If you haven’t ever run into Quicksilver before, why not grab a copy? It’s easier to experience
this tool than to explain it, so check it out here:

http://quicksilver.blacktree.com/

Download Quicksilver, install it, and spend some time playing around. It doesn’t take long to
get the hang of launching apps and opening documents with next to no effort. If you really
start to explore this tool, you might find further useful capabilities — such as appending short
notes to text files and moving files around with just a few keystrokes.

Eventually, you’ll want to check out the plug-ins available in the Quicksilver preferences (see
Figure 3-7). There’s a ton of additional modules to add new abilities and search catalogs. And
among these, you’ll find the “del.icio.us Bookmarks” plug-in. When you click the checkbox,
Quicksilver automatically downloads and installs it. After installation, check out the Catalog
tab under preferences.

FIGURE 3-7: Selecting and installing plug-ins in QuickSilver

You can now add a “Del.icio.us bookmarks” catalog item (see Figure 3-8). After it’s had a
chance to run, all of your bookmarks will become available to Quicksilver searches. Just fire up
Quicksilver via hotkey and start typing part of a tag or part of the title of one of your book-
marks. You should see results like Figure 3-9, with bookmarks mixed in with other files and
documents.

37857c03.qxd 6/4/06 9:28 PM Page 58

59Chapter 3 — Seasoning Your Desktop

FIGURE 3-8: Adding the del.icio.us bookmarks catalog
item in QuickSilver

FIGURE 3-9: Bookmarks from del.icio.us appear in QuickSilver searches

Windows
In the Windows desktop world, it seems that there are far fewer del.icio.us desktop applica-
tions — at least in contrast to what’s available on Mac OS X. Access to del.icio.us via book-
marklets in a browser is very powerful, so it may just be that tinkerers have yet to exhaust the

37857c03.qxd 6/4/06 9:28 PM Page 59

60 Part I — Exploring del.icio.us

possibilities enough to venture out onto the Windows desktop. That said, however, there are a
few worthy applications to check out.

TagSense
If you’re looking for a desktop client on Windows, tagSense.net seems like a good start (see
Figure 3-10). Take a look at the application’s home page, where you can grab the installer and
get started:

http://tagsense.net/

FIGURE 3-10: tagSense.net displaying bookmarks under the tag “windows”

You can use this application to download a local copy of your bookmark collection and perform
lightning fast searches as you type. Also, this tool will allow you to explore your tags and navi-
gate between related tags. Finally, when you’ve spent enough time with your bookmarks, you
can minimize tagSense.net to your Windows notification center (or system tray), ready to be
summoned up again at the touch of a hotkey.

At the time of this writing, this application doesn’t yet offer the ability to post new bookmarks
to del.icio.us — but it’s possible this feature may be available by the time you read this.

Google Desktop
Google Desktop is another useful and free tool from the labs at Google — although unlike
most of the Web-based services available via browser, Google Desktop is, oddly enough, a
desktop enhancement application you can install under Windows.

37857c03.qxd 6/4/06 9:28 PM Page 60

61Chapter 3 — Seasoning Your Desktop

The main idea behind Google Desktop is that it’s an always-on, yet mostly unobtrusive infor-
mation display. It can be used in a minimal configuration as a simple taskbar search form, or as
a modular sidebar on your desktop. In the sidebar configuration, Google Desktop provides
views on your email inbox, news and local weather, as well as a handful of tools such as a
notepad and a to-do list.

You can grab a copy of Google Desktop for yourself at this URL:

http://desktop.google.com/

One of the more interesting features of Google Desktop is that it offers an SDK for developers
to use in creating new plug-ins for search and modules in the sidebar. So, this is where Google
Desktop connects to your bookmarks on del.icio.us: With the Google Desktop del.icio.us plug-
in, you can add a sidebar module that will pull your top bookmarks into the Google Desktop
sidebar. Check it out here:

www.manastungare.com/projects/google-desktop-delicious/

Figure 3-11 offers a peek at this plug-in’s features. After installation, you can set your user
name in the sidebar module’s options, which will load it up with your top bookmarks. This
module is adaptive: As you click these bookmarks, your most frequently used links will float to
the top. Another feature showcased is the expanded view of bookmarks you can get by clicking
the sidebar module’s title bar.

And finally, although this plug-in provides convenient access to your bookmarks collection, it
unfortunately doesn’t offer the ability to add bookmarks to your collection.

FIGURE 3-11: Bookmarks from del.icio.us in Google Desktop

37857c03.qxd 6/4/06 9:28 PM Page 61

62 Part I — Exploring del.icio.us

Linux
Using del.icio.us under Linux also appears to be a mostly browser-driven affair. Because Firefox
is available for Linux users, all of the hacks from the previous chapter will work under Linux.
However, if you’re a Gnome or KDE user, there are still a couple of applications for you to
check out.

Gnomolicious
If you’re a Gnome user, check out Gnomolicious. This is a panel applet that gives you fast
access to posting links to del.icio.us, complete with tab completion drawn from regular updates
it downloads from your collection. Check out Figure 3-12 to see this applet in action. You can
download a copy from here:

www.nongnu.org/gnomolicious/

FIGURE 3-12: Using the Gnomolicious panel applet

Konqueror Sidebar
For users of KDE 3.5 and Konqueror, there’s to be a relatively new del.icio.us sidebar plug-in
available (see Figure 3-13). I wasn’t personally able to get this up and running on my own
machine, but you might have better luck. So, I’ll pass on the link here:

www.kde-apps.org/content/show.php?content=26325

37857c03.qxd 6/4/06 9:28 PM Page 62

63Chapter 3 — Seasoning Your Desktop

Cross-Platform
For the most part, del.icio.us itself is about as cross-platform as you can get. But, I’ve got one
last trick left to show you using a powerful idea-organizing tool written in Java.

DeliciousMind
Mind maps are graphical representations of concepts and connections between ideas, often
used as a tool during brainstorming and in organizing thoughts. For some people, mind maps
are the best things since sliced bread. So, reflecting this, there are quite a number of books and
tools available to help manage ideas in this form.

If mind maps are your cup of tea, then you may be interested in FreeMind. This is an open
source application written in Java for composing and sharing mind maps. Pay a visit to the
FreeMind project page on SourceForge, where you can read up on all the details and download
a copy for free:

http://freemind.sourceforge.net/

Take FreeMind for a spin — you can very quickly build detailed maps of thoughts. Now, imag-
ine mapping out your bookmarks in this way. You can accomplish this using DeliciousMind, a
Java-based command line tool for converting del.icio.us bookmark exports in XML into
FreeMind documents. This tool is available at the following address.

www.blainekendall.com/deliciousmind/

FIGURE 3-13: The Konqueror
del.icio.us sidebar

37857c03.qxd 6/4/06 9:28 PM Page 63

64 Part I — Exploring del.icio.us

Just follow the directions at this page after downloading deliciousmind.zip, and you
should end up with a fresh new FreeMind document of your most recent bookmarks. Check
out Figure 3-14 for a peek at how this looks.

FIGURE 3-14: Bookmarks diagrammed in FreeMind, courtesy of DeliciousMind

Summary
The world of desktop applications using the del.icio.us API to manage your bookmarks is a
pretty lean one at present. You’ll have the most luck on Mac OS X with integrating your col-
lection into your daily habits outside the browser. There are a few apps to be found for
Windows and Linux, but the most powerful application on these platforms is the Web browser.

In the next chapter, you’ll return to your browser — only this time, the remixes and mashups
live out on the Web. You’ll see alternative user interfaces for del.icio.us, add-on services that
cooperate with del.icio.us, and new ways to tag and analyze your links.

37857c03.qxd 6/4/06 9:28 PM Page 64

Remixing del.icio.us

Chapter 4
Exploring del.icio.us APIs
and Data

Chapter 5
The What and How of Hacks

Chapter 6
Tagging Hacks

Chapter 7
Mashups and Enhancements

Chapter 8
Getting Your Links Out of
del.icio.us

Chapter 9
Getting del.icio.us into
Your Blog

part

in this part

37857c04.qxd 6/4/06 9:30 PM Page 65

37857c04.qxd 6/4/06 9:30 PM Page 66

Exploring del.icio.us
APIs and Data

Now that you’ve gotten an introduction to some of the technologies
used in mashups, as well as a quick spin around del.icio.us itself, it’s
time to dig a bit deeper and get your hands dirty with some code

and data.

In this chapter, you get to see del.icio.us from a programming perspective.
Here, you explore many of the ways in which the service exposes your book-
marks and others’ through Web service calls, XML data feeds, and JSON-
encoded structures. You are also introduced to a few modules and packages
available for various programming environments that can make working
with del.icio.us APIs more convenient.

Making Calls to the del.icio.us API
Although there are some notable exceptions, most of the things you can do
manually on del.icio.us via a Web browser can be done programmatically via
third-party applications or scripts. This is thanks to the HTTP and XML
Web API offered by del.icio.us, through which you can post and delete
bookmarks, as well as query and filter existing bookmarks by dates and tags.
In addition, you can perform tag management functions, renaming tags and
bundling them together in groups.

Keep in mind, however, that this API is under development and prone to
change. This machine interface to the service tends to lag slightly behind the
feature set exposed to human users. At this writing, it leaves out a few things
such as recommendations, account management, and inbox manipulations.
Whether these features are planned for inclusion in the future, who knows?
But in any case, the features that are exposed by the API are all quite handy.

If you’d like to follow along in the official API documentation
you can find it here:

http://del.icio.us/help/api/

You may find additional updates to available functionality, or at
least see the original description of these services and compare
them to the examples in this chapter.

� Making calls to the
del.icio.us API

� Abstracting access
to the del.icio.us API

� Tracking bookmarks
via RSS feeds

� Accessing
bookmarks with
JSON

chapter

in this chapter

37857c04.qxd 6/4/06 9:30 PM Page 67

68 Part II — Remixing del.icio.us

Using cURL to Make del.icio.us API Calls
Before we get into any specific implementation languages, we’re going to take a look at the
“raw” API calls. One of the easiest ways to do this is from a shell using the command line
tool cURL.

If you’d like to try these calls yourself and you’re using Linux or OS X, you’ve likely already got
this tool at your disposal. If you’re using Windows, or would just like to read a bit more about
this tool, pay a visit to the following URL to download cURL and check out its documentation:

http://curl.haxx.se/

In short, cURL is a kind of Web multi-tool. Using the del.icio.us API means making a lot of
HTTP GET requests using Basic Authentication, something that cURL makes relatively pain-
less. And, although later you’ll likely pick a favorite language and library with which to access
the API in your own tinkering, this is a good way to get acquainted with what’s going on
behind the scenes. The abstractions introduced by a language-specific wrapper can make things
easier, but it’s always good to keep in mind just what’s been abstracted away.

If you plan to follow along in a command line terminal, there’s one bit of setup you may want
to get out of the way first, however. The shell-based examples in this chapter assume you’ve
assigned a few shell variables to your del.icio.us user name and password, like this pair of com-
mands in a BASH shell:

$ export DEL_USER=yourusername
$ export DEL_PASSWD=yourpassword

Substitute the appropriate values for your own user name and password when you set these
variables for yourself. These, in turn, will be used with cURL’s -u option to enable HTTP
Basic Authentication, like so:

$ curl -u $DEL_USER:$DEL_PASSWD
http://del.icio.us/api/posts/update
<?xml version=’1.0’ standalone=’yes’?>
<update time=”2006-01-31T00:31:42Z” />

If you don’t want to use variables like this, you’re free to manually insert your user name and
password whenever you like — but at least from here you’ll know what $DEL_USER and
$DEL_PASSWD stand for.

So, with that bit of toolkit preparation out of the way, it’s time to take a look at the API itself.

Fetching Bookmarks
At present, the del.icio.us API can be divided into two feature sets: bookmark management
and tag management. And, because you can’t really have tags without bookmarks, let’s check
out that part of the API first.

When you get down to it, there’s not much to managing bookmarks. Like any typical database,
CRUD pretty much covers the range — that is, Create, Read, Update, and Delete. For

37857c04.qxd 6/4/06 9:30 PM Page 68

69Chapter 4 — Exploring del.icio.us APIs and Data

del.icio.us, however, the Create and Update functions are the same thing: When posting details
using the URL of an existing bookmark, you can choose to replace that bookmark. Because
everything centers around URLs in del.icio.us, that helps simplify things a bit.

Fetching Your Recent Bookmarks
So to get down to business, assuming you’ve already gathered a few bookmarks, you can try out
a few queries to fetch bookmarks and get some interesting results right away.

One of the first, most basic queries you can try is the following:

$ curl -u $DEL_USER:$DEL_PASSWD
http://del.icio.us/api/posts/recent?count=3

This command should get you something similar to Listing 4-1.

Listing 4-1: Bookmarks returned as XML from the API

<?xml version=’1.0’ standalone=’yes’?>
<posts tag=”” user=”deusx”>

<post
href=”http://developers.sun.com/techtopics/mobility/midp/
articles/osx/”

description=”Do-It-Yourself MIDP on Mac OS X”
extended=”"Mac OS X ships with a wide assortment

of free developer tools, but these don’t include everything you
need for J2ME development. "”

hash=”1fef8ca178d01f8ec3c3f1f70b55fd48”
tag=”osx mobile wireless midp mac”
time=”2006-01-31T00:31:41Z” />

<post href=”http://mpowers.net/midp-osx/”
description=”MIDP for OS X”
extended=”"This package is a Darwin/OSX port of

the Mobile Information Device Profile (MIDP) Reference
Implementation v1.0.3."”

hash=”067ad6afd926aa9da7d534fd2b7ff2de”
tag=”mobile osx mac wireless”
time=”2006-01-31T00:30:54Z” />

<post href=”http://www.dyadin.com/dyadin.php”
description=”Dyadin the Game”
extended=”I haven’t played this yet, but the concept

reminds me just a tad of Zelda: Four Swords with the GameCube /
GBA integration and multiple planes of cooperative play”

hash=”dc6e1b23e8d2a8396b8cb738ac747398”
tag=”gaming nifty indiegames dyadin”
time=”2006-01-30T15:51:04Z” />

</posts>

37857c04.qxd 6/4/06 9:30 PM Page 69

70 Part II — Remixing del.icio.us

The usage of cURL should be pretty self-explanatory: The command’s -u option enables
HTTP Basic Authentication, using the user name and password defined just a bit ago in shell
variables. And the sole argument to the command is a URL for the del.icio.us API. This URL
requests your latest bookmarks, with a query parameter specifying that only the latest three be
returned. Note that I’ve reformatted the XML in Listing 4-1 a bit for clarity — what you see
straight from the API will be just a bit less friendly to view directly.

The data format itself is pretty simple. An overall parent tag <posts> contains many <post>
elements, each of which represents a bookmark posted to del.icio.us. Each <post> element
offers the following attributes:

� href: The URL described by this bookmark.

� description: A brief title describing the bookmark link.

� extended: An optional, more lengthy set of notes about the bookmark.

� hash: An MD5 hash of the bookmark’s URL, available as a unique identifier.

� tag: A space-separated list of the tags attached to the bookmark.

� time: The time at which the bookmark was posted.

This first query also accepts a tag parameter:

$ curl -u $DEL_USER:$DEL_PASSWD \
‘http://del.icio.us/api/posts/recent?count=3&tag=hacks’

This command should be all on one line, but a backslash comes in handy to escape a carriage
return when working on the shell (or formatting shell commands for a book). Also, notice that
there are single quotes around the URL now: In my shell, and likely also in yours, the amper-
sand in the URL can be accidentally interpreted as an attempt to launch the cURL command
as a background process on a UNIX system. This is a common mistake and can cause some
strange behavior if you’re not expecting it — the single quotes prevent the ampersand from
being interpreted by the shell in this way.

At any rate, this new query should return some XML not unlike Listing 4-2.

Listing 4-2: Recent bookmarks tagged with “hacks”

<?xml version=’1.0’ standalone=’yes’?>
<posts tag=”hacks” user=”deusx”>
<post

href=”http://www.instructables.com/ex/i/6227EC9EE1DB1028ABAA001
143E 7E506/?ALLSTEPS” description=”Burning visible images onto
CD-Rs with data (beta)” extended=”"By carefully choosing
the right 1s and 0s to burn to a CD, it is possible to burn
visible images on normal CD-Rs." I always figured this
was possible, but never bothered to explore it.”
hash=”c60b031641cd27959643fd0bf1b5a9c2” tag=”nifty hacks
hardware” time=”2006-01-29T22:17:40Z” />

37857c04.qxd 6/4/06 9:30 PM Page 70

71Chapter 4 — Exploring del.icio.us APIs and Data

Listing 4-2 continued

<post href=”http://www.neatorama.com/2005/12/27/poor-mans-
air-conditioning/” description=”Neatorama » Blog Archive »
Poor Man’s Air Conditioning.” extended=”Window air conditioner
+ generator + beater car = hott”
hash=”a1ebea6d28d47177e9c991fba4ee95bb” tag=”hacks hardware
notwishlist” time=”2006-01-27T20:53:43Z” />
<post href=”http://www.flickr.com/photos/andy_m/sets/

1791706/” description=”radio babylon - a photoset on Flickr”
extended=”""” hash=”b2290294b2456a171c0f8a5f034d4d6d”
tag=”nifty hardware hacks audio wireless” time=”2006-01-
22T06:00:10Z” />
</posts>

There’s no reformatting this time for Listing 4-2. This is closer to what you’ll really see result-
ing from a query to the del.icio.us API, depending on what line wrapping is introduced by this
book or your terminal window. Beyond that, the main difference between Listing 4-1 and
Listing 4-2 is that all the links in Listing 4-2 are tagged with hacks. Also, note that the tag
with which this list was filtered has appeared in the tag attribute of the root <posts> tag
along with your user name.

So, with the posts/recent query, you can use any combination of the count or tag parameters
to access your most recent queries. If you omit the count parameter, it will default to 15 — and if
you supply a count, it cannot exceed 100.

Also, you should get used to seeing this XML because this is the format in which you’ll see
all lists of bookmarks returned from the API. There’s not much to it, and although API wrap-
pers will make things easier for you, the raw data isn’t that complex to handle if you find a need
to do so.

Filtering Bookmarks by Date, Tag, and URL
Now that you’ve whetted your appetite on these first couple of API calls, you can delve a bit
deeper into more advanced bookmark queries.

The posts/get query will allow you to request bookmark data by tag, date, or individual book-
mark URL. These filters are applied, respectively, by using the tag, dt, and url parameters.

By default, today’s date is used as the value for the dt parameter if it’s left out of the query. So,
for example, this query fetches all of your bookmarks for today:

$ curl -u $DEL_USER:$DEL_PASSWD ‘http://del.icio.us/api/posts/get’

If you try this command, you will see XML returned that looks just like Listing 4-1 and
Listing 4-2. The difference is that posts/get gives you no control over the count as
posts/recent does, so this query just returns all posts for the current date — whereas
posts/recent will span dates if the count exceeds today’s postings.

37857c04.qxd 6/4/06 9:30 PM Page 71

72 Part II — Remixing del.icio.us

If you want to supply a date, it needs to be in an ISO 8601 format like this:

$ curl -u $DEL_USER:$DEL_PASSWD \
‘http://del.icio.us/api/posts/get?dt=2005-01-30’

This query will, of course, request all bookmarks from January 30, 2005. You can introduce a
tag filter into the mix with a query like this:

$ curl -u $DEL_USER:$DEL_PASSWD \
‘http://del.icio.us/api/posts/get?dt=2005-01-30&tag=apple’

With the additional parameter added, the day’s bookmarks will be limited to those tagged with
apple. Now, consider the following query:

$ curl -u $DEL_USER:$DEL_PASSWD \
‘http://del.icio.us/api/posts/get?tag=apple’

Just in case you expected that this would return your entire collection of bookmarks tagged
with apple, remember that the default for the dt parameter is today’s date. So, this query will
be limited to just today’s bookmarks.

Finally, the url parameter allows you to look up a single bookmark:

$ curl -u $DEL_USER:$DEL_PASSWD \
‘http://del.icio.us/api/posts/get?url=http%3A//www.geekculture.com
/joyoftech/joyarchives/781.html’

<?xml version=’1.0’ standalone=’yes’?>
<posts dt=”2006-01-30” tag=”” user=”deusx”>
<post href=”http://www.geekculture.com/joyoftech/joyarchives/

781.html” description=”The Joy of Tech #781” extended=”"Hey
Bob, did you realize you’re sharing your iPhoto library?"”
hash=”a931ebcaece99efdfe3be3c1b7e9fb65” others=”3” tag=”apple
iphoto mac photos” time=”2006-01-30T12:27:21Z” />
</posts>

Why might this be useful? Well, with this parameter you can query all of the extended infor-
mation for a bookmark — for example, title, notes, tags, and so on. So, if you’re implementing
an application wherein you can edit existing bookmarks, this is how you can fetch the book-
mark’s details before editing.

Navigating Bookmarks by Date
Using filters to fetch bookmarks is a useful way to navigate your collection, but the API offers a
few more methods to help out. For example, say you wanted to build an interface for stepping
back through the daily history of postings — this is where the posts/dates API request
comes in handy:

$ curl -u $DEL_USER:$DEL_PASSWD \
‘http://del.icio.us/api/posts/dates’

The result of this query is a new XML format, shown in Listing 4-3.

37857c04.qxd 6/4/06 9:30 PM Page 72

73Chapter 4 — Exploring del.icio.us APIs and Data

Listing 4-3: Posting dates returned from the posts/dates request

<?xml version=’1.0’ standalone=’yes’?>
<dates tag=”” user=”deusx”>
<date count=”9” date=”2006-01-31” />
<date count=”26” date=”2006-01-30” />
<date count=”15” date=”2006-01-29” />
<date count=”36” date=”2006-01-28” />
<date count=”48” date=”2006-01-27” />
<date count=”26” date=”2006-01-26” />
<date count=”28” date=”2006-01-25” />
<date count=”22” date=”2006-01-24” />
<date count=”30” date=”2006-01-23” />
<date count=”31” date=”2006-01-22” />
<date count=”16” date=”2006-01-21” />
<date count=”40” date=”2006-01-20” />
<date count=”50” date=”2006-01-19” />
<date count=”25” date=”2006-01-18” />
<date count=”21” date=”2006-01-17” />
<date count=”47” date=”2006-01-16” />
<date count=”18” date=”2006-01-15” />
<date count=”9” date=”2006-01-14” />
<date count=”21” date=”2006-01-13” />
<date count=”13” date=”2006-01-12” />
<date count=”41” date=”2006-01-11” />
<date count=”37” date=”2006-01-10” />
...

</dates>

Note that Listing 4-3 is actually a truncated view of the results of this command, indicated by
the ellipsis. As of this writing, my own collection contains posts for almost 800 dates, and
they’re all listed by this query. In your own application or script, you can use this query first
before making any others in order to get an idea of posts available over time. You could use this
information to populate a selection menu, or to power previous/next buttons. Using these dates
in combination with the posts/get query and its dt parameter, you can step back and forth
through the timeline of bookmark posts.

This query also accepts a tag parameter for use in filtering the dates and counts:

$ curl -u $DEL_USER:$DEL_PASSWD \
‘http://del.icio.us/api/posts/dates?tag=apple’

<dates tag=”apple” user=”deusx”>
<date count=”1” date=”2006-01-30” />
<date count=”1” date=”2006-01-23” />
<date count=”1” date=”2006-01-10” />
<date count=”1” date=”2006-01-07” />
<date count=”2” date=”2005-11-17” />
...

</dates>

37857c04.qxd 6/4/06 9:30 PM Page 73

74 Part II — Remixing del.icio.us

Again, these results are truncated, but this resulting data will be limited to dates and counts
where the tag apple was used.

So You Want to Grab All Your Bookmarks?
This final bookmark query, posts/all, should be considered a secret weapon and last resort.
If you absolutely, positively must fetch all of your bookmarks, this how you do it:

$ curl -u $DEL_USER:$DEL_PASSWD ‘http://del.icio.us/api/posts/all’

You can also supply a tag parameter to filter bookmarks fetched by this query:

$ curl -u $DEL_USER:$DEL_PASSWD \
‘http://del.icio.us/api/posts/all?tag=apple’

Performing a posts/all query is a major event, and should be done very sparingly. It will
return massive amounts of data if you’ve been posting bookmarks for a while, and will put a bit
of a strain on the del.icio.us servers. You could use posts/all when first starting an applica-
tion, to import and back up bookmarks. Otherwise, you should use posts/get and
posts/recent for more “surgical” fetches. In fact, the API offers another query, posts/
update, which will return the time of your account’s last update:

$ curl -u $DEL_USER:$DEL_PASSWD \
‘http://del.icio.us/api/posts/update’

<?xml version=’1.0’ standalone=’yes’?>
<update time=”2006-01-31T00:31:42Z” />

This query, along with posts/dates, should help you work incrementally and avoid using
posts/all — but the posts/all option is there, should you really need it.

Managing Bookmarks in Your Collection
Now you’ve seen the methods available for fetching and filtering bookmarks from your collec-
tion on del.icio.us. That covers the “R” in CRUD, but what about the rest? Well, as I men-
tioned earlier, del.icio.us uses URLs as primary keys in this database. So, adding a bookmark is
the same as updating a bookmark when using the same URL. That leaves us with two more
bookmark management methods: posts/add and posts/delete.

Adding New Bookmarks and Updating Existing Bookmarks
First up, then, is the posts/add method of the del.icio.us API. With this method, you can
create new bookmarks from your own code, supplying all of the same information as you can
when using a bookmarklet or a posting form on del.icio.us itself.

Like all the other methods shown so far, posts/add is accessed via HTTP GET with Basic
Authentication. This is where the del.icio.us API departs from being a pure REST Web serv-
ices API: One of the main characteristics of a REST API is that HTTP GET is used for idem-
potent (i.e., read-only) operations — whereas HTTP POST is reserved for operations intended
to cause a change to data stored somewhere.

37857c04.qxd 6/4/06 9:30 PM Page 74

75Chapter 4 — Exploring del.icio.us APIs and Data

But, with del.icio.us, all it takes is a carefully constructed set of query string parameters:

$ curl -u $DEL_USER:$DEL_PASSWD \
‘http://del.icio.us/api/posts/add?url=http%3A//decafbad.com&
description=0xDECAFBAD&extended=Friends%20don%27t%20let%20friends%
20drink%20decaf%21&tags=coffee%20blogs%20programming&dt=2005-01-
31T08%3A43%3A12Z&replace=yes’

Now, up until this point, I’ve been fairly careful in the example queries in this chapter not to
use many characters in need of URL escaping. But, with this example, the gloves are off. So,
let’s take a few minutes to dissect this example. First, there’s the base URL for the query,
namely:

http://del.icio.us/api/posts/add

Next come all the query parameters — name/value pairs joined by ampersands and appended
to the base URL after a question mark. The names of these query parameters and their pur-
poses are:

� url: The URL of the bookmark.

� description: Short descriptive title for the bookmark.

� extended: Longer extended notes posted with the bookmark.

� tags: A space-separated list of tags for the bookmark.

� dt: A datestamp for the item in ISO 8601 format.

� replace: Whether to replace an existing bookmark’s information with these details.

Other than a few differences in terminology, these parameter names all match up with the
XML bookmark representation, as well as the form fields used for posting a new bookmark.
And for this particular query, the parameters are given with the following raw values:

� url: http://decafbad.com

� description: 0xDECAFBAD

� extended: Friends don’t let friends drink decaf.

� tags: coffee blogs programming

� dt: 2005-01-31T08:43:12Z

� replace: yes

Of course, here’s where an API wrapper can start to come in handy: In order to supply all of
these as query parameters, you’re going to need to apply URL escaping to all of them. Passing a
URL as a parameter to a URL can get a bit hairy, as can using the various forms of punctuation
you’re likely to run across in composing titles and notes for describing bookmarks. But doing
this encoding by hand is a gigantic pain.

37857c04.qxd 6/4/06 9:30 PM Page 75

76 Part II — Remixing del.icio.us

So, to make things a little easier, Listing 4-4 offers a quick one-off Perl script to help build the
posts/add URL before performing the query with cURL. This script should be
useful — because if you’ve got cURL, you’ve probably got Perl.

Listing 4-4: ch04_add_bookmark.pl

#!/usr/bin/perl
###
ch04_add_bookmark.pl - Add a bookmark to your account
###
use strict;

Establish the user name, password, and API base URL
my $DEL_USER = ‘yourusername’;
my $DEL_PASSWD = ‘yourpassword’;
my $DEL_API = ‘http://del.icio.us/api/posts/add’;

Collect the details to be posted as a bookmark.
my %params = (

url => “http://decafbad.com”,
description => “0xDECAFBAD”,
extended => “Friends don’t let friends drink decaf.”,
tags => “coffee blogs programming”,
replace => “yes”

);

Build the final API query by encoding all the details.
my $api_url = “$DEL_API?”.

join ‘&’,
map { $_.’=’.enc($params{$_}) }
keys %params;

Perform the API query via system()
system(“curl -u $DEL_USER:$DEL_PASSWD ‘$api_url’”);

Subroutine to apply URL encoding to a given string.
sub enc {

my $str = shift;
$str =~ s/([^A-Za-z0-9])/sprintf(“%%%02X”, ord($1))/seg;
return $str;

}

The Perl script in Listing 4-4 is a simple, no-frills way to get this bookmark posted. As you can
likely guess, your account user name and password belong in the variables $DEL_USER and
$DEL_PASSWORD. The hash %params is built with all the fields to be used in posting this
bookmark.

37857c04.qxd 6/4/06 9:30 PM Page 76

77Chapter 4 — Exploring del.icio.us APIs and Data

A transform involving join, map, and enc builds the URL-encoded query string for
posts/add, which is then supplied with your user name and password to an invocation of
cURL via system().

The only complex part of this script is in the definition of the subroutine enc(): There’s a
regex search-and-replace statement here, which translates any non-alphanumeric character into
a hex code version of its character code. And this, in a nutshell, is URL encoding.

As you’ll see shortly, more proper del.icio.us API wrappers do quite a bit more than simply
provide URL encoding — but this is a good start for now.

A sample successful run of this program should appear like so:

$ perl ch04_add_bookmark.pl
<?xml version=’1.0’ standalone=’yes’?>
<result code=”done” />

And, if all goes well, you should see this bookmark added to your account — as shown in
Figure 4-1. Note that, with the replace parameter value passed in as yes, this API call works
as both a Create and Update operation. If you pass no as the value, the API will refrain from
replacing, thus limiting this query to just Create operations on your bookmarks.

FIGURE 4-1: Bookmark successfully posted using ch04_add_bookmark.pl

37857c04.qxd 6/4/06 9:30 PM Page 77

78 Part II — Remixing del.icio.us

Deleting a Bookmark
As opposed to the encoding gymnastics required to add a new bookmark, deleting a bookmark
via posts/delete is simple. This method takes just one parameter, url. Thus, to delete the
bookmark you just posted, try this command:

$ curl -u $DEL_USER:$DEL_PASSWD \
‘http://del.icio.us/api/posts/delete?url=http%3A%2F%2Fdecafbad%2Ecom’

<?xml version=’1.0’ standalone=’yes’?>
<result code=”done” />

Note that the parameter here — it being a URL passed into a URL — also needs to be
escaped. You might want to try tweaking the program in Listing 4-4 just a bit to take care of
the escaping for you in deleting this bookmark.

One interesting thing about this query is that you’ll get this resulting XML whether or not the
bookmark had already been posted before. The only time you’ll get a different answer is when
something’s not gone quite right with the server.

Managing Tags and Tag Bundles
With bookmark management covered, its time to take a look at the other half of the API:
tag management. This part of things is pretty basic, but it’s an important aspect of del.icio.us to
manage from the API.

Listing Your Tags
While it’s important to get a list of all dates on which bookmarks were posted to your account,
getting a list of all of your tags is just as important for use in filtering bookmark queries. This is
where the tags/get API method comes in. With this, you can make a query for your tag col-
lection. You can use this information to populate selection menus, or just perform a little analy-
sis on your tagging habits.

This method is very simple to use, like so:

$ curl -u $DEL_USER:$DEL_PASSWD ‘http://del.icio.us/api/tags/get’

When you run this query, you’ll get XML data, as shown in Listing 4-5.

Listing 4-5: Tag list XML returned by a tags/get query

<?xml version=’1.0’ standalone=’yes’?>
<tags>
<tag count=”1” tag=”!mobiledesktop” />
<tag count=”1” tag=”31337” />
<tag count=”4” tag=”80s” />
<tag count=”7” tag=”8bit” />
<tag count=”7” tag=”MSFT” />
<tag count=”4” tag=”achewood” />
<tag count=”2” tag=”actionscript” />
<tag count=”1” tag=”adbusters” />

37857c04.qxd 6/4/06 9:30 PM Page 78

79Chapter 4 — Exploring del.icio.us APIs and Data

Listing 4-5 continued

<tag count=”21” tag=”advertising” />
<tag count=”13” tag=”aggregators” />
<tag count=”68” tag=”ajax” />
...

</tags>

The results of a tags/get query in Listing 4-5 look quite a lot like the data from Listing 4-3.
Just swap date and dates for tag and tags — both of these data sets include a count of
bookmarks under each grouping.

Renaming and Cleaning Up Your Tags
Because of the nature of tagging and tags themselves, there’s really no such thing as and no
need for methods to create or delete tags. You attach tags to bookmarks as you post them. If a
particular tag didn’t exist before you attached it to a bookmark, it’s created at that point. If at
some point a particular tag no longer appears on any of your bookmarks, it’s effectively deleted.
Or, rather, the tag just vanishes from existence — there’s not really any independent existence
for tags outside of the bookmarks to which they’re attached.

That said, however, one of the most useful aspects to tags is that they can be treated as common
intersections between the things they describe. As you go along posting bookmarks and attaching
tags at a furious pace, you may find that your collection of tags begins to accumulate misspellings,
synonyms, and just plain weird divergences. Eventually, you may want to prune your tags a bit,
converge the synonyms on common terms (e.g., from javascript to js), and switch over to
using a tag that’s seeing more popular use at the moment (e.g., from WebDevelopment2005 to
webdev). All of these things help increase the value of your tags — both to you and others.

This is where the tags/rename API method comes in handy: Rather than needing to repost
all of the affected bookmarks by hand or by machine with revised sets of tags, you can use
tags/rename to selectively alter tags across your entire collection of bookmarks at once.

To make this long story short, here’s an example usage of the tags/rename query:

$ curl -u $DEL_USER:$DEL_PASSWD \
‘http://del.icio.us/api/tags/rename?old=cellphone&new=mobile’

<?xml version=’1.0’ standalone=’yes’?>
<result>done</result>

In this invocation, the tag cellphone is replaced with mobile wherever it appears in the col-
lection of bookmarks. The parameters used in this query are:

� old: The existing tag subject to change.

� new: A new tag with which to replace the existing tag.

So, this API method is pretty self-explanatory once you understand what its uses are. Of
course, all the usual requirements for URI-escaping the parameters apply — but for the most

37857c04.qxd 6/4/06 9:30 PM Page 79

80 Part II — Remixing del.icio.us

part, you should try to stick to simple words and alphabetic characters in tags anyway, so they’ll
tend to be safe as query string values.

What Are Tag Bundles?
With just a few special exceptions — e.g., for:deusx and system:media:audio — tags all
live in a flat namespace with respect to how del.icio.us treats them. Some people attempt to
denote hierarchy by using slashes or other delimiters, but these are really just personal conven-
tions without any special meaning for del.icio.us or its API calls.

For example, you could get in the habit of using tags such as webdev/flash, webdev/js, and
webdev/css. But, you’d never be able to directly do a filter on webdev/* to grab bookmarks
with these tags. In your own code, you could simulate this functionality by calling tags/get,
performing a wildcard match on the results, and making filtered queries with the matches.
Although this might be a useful hack, it isn’t officially supported.

What have gained official support recently, however, are tag bundles. These are lightweight
clusters of tags you can manage from your account settings — at this writing, they’re under the
experimental features at this URL:

http://del.icio.us/settings/deusx/bundle

Remember to replace deusx with your own user name to access this page. Figure 4-2 shows
you what creating a tag bundle looks like from a browser, and Figure 4-3 shows the end result.

FIGURE 4-2: Creating a tag bundle through the browser

37857c04.qxd 6/4/06 9:30 PM Page 80

81Chapter 4 — Exploring del.icio.us APIs and Data

FIGURE 4-3: Tags organized into bundles

At present, tag bundles are in a very early stage of development. Mostly, they just serve to help
visually group tags on your account’s bookmark listings. Tag bundles can’t be used directly to
filter bookmark searches, nor can they be shared among users. As this feature is further devel-
oped, however, the benefits of using tag bundles are likely to build upon these beginnings.

For your own applications, however, the del.icio.us API offers methods to create, delete, and
list your tag bundles. While the service itself may not yet make much use of tag bundles, these
methods enable you to build upon them. Rather than relying on personal tagging convention
and funky delimited hierarchies with wildcards, tag bundles offer a directly supported way to
manage at least one level of grouping in your tags.

One caveat in all of this, however: Tag bundles are among the experimental features on
del.icio.us, so your mileage may vary when you try using this part of the API.

Listing Tag Bundles
After you’ve had a chance to manually create a few tag bundles via your browser, you’ll have
some material with which to try this first API method, tags/bundles/all:

$ curl -u $DEL_USER:$DEL_PASSWD \
‘http://del.icio.us/api/tags/bundles/all’

<?xml version=’1.0’ standalone=’yes’?>
<bundles>
<bundle name=”hackingfeeds” tags=”aggregation aggregator

aggregators atom feeddemon feedparser feeds newsriver rss
syndication” />
</bundles>

37857c04.qxd 6/4/06 9:30 PM Page 81

82 Part II — Remixing del.icio.us

As with the other XML formats produced by the API, the result of this query is pretty simple:
a root <bundles> tag containing many <bundle> elements, with each <bundle> element’s
attributes providing details defining a tag bundle.

At present, I have only a single hackingfeeds bundle defined, so you can see the single
<bundle> element with the name of the bundle in the name attribute along with a space-
delimited list of tags in the tags attribute.

Creating a Tag Bundle
Now, to create a tag bundle, you use the tags/bundles/set method of the API. This query
expects two parameters:

� bundle: This is the name of the bundle to be created.

� tags: This parameter is the space-separated list of tags from which the bundle will be
created.

And, here’s an example usage of this method in creating a new bundle named politics:

$ curl -u $DEL_USER:$DEL_PASSWD \
‘http://del.icio.us/api/tags/bundles/set?bundle=politics&tags=bush
+politics+war+iraq’
<?xml version=’1.0’ standalone=’yes’?>
<result>ok</result>

The return data from this call is, as usual, pretty uninformative. If you’d like to verify the exis-
tence of the new bundle after making this query, try tags/bundles/all again:

$ curl -u $DEL_USER:$DEL_PASSWD \
‘http://del.icio.us/api/tags/bundles/all’

<?xml version=’1.0’ standalone=’yes’?>
<bundles>
<bundle name=”politics” tags=”bush iraq politics war” />
<bundle name=”hackingfeeds” tags=”aggregation aggregator

aggregators atom feeddemon feedparser feeds newsriver rss
syndication” />
</bundles>

You should see the additional tag appearing in your list now.

Deleting a Tag Bundle
Finally, when you want to get rid of a tag bundle, the method tags/bundles/delete is
made available via the API. It expects a single parameter, bundle, which should be the name
of the bundle to delete. Here’s an attempt to delete the bundle created in the previous part:

$ curl -u $DEL_USER:$DEL_PASSWD \
‘http://del.icio.us/api/tags/bundles/delete?bundle=politics’

<?xml version=’1.0’ standalone=’yes’?>
<result>ok</result>

37857c04.qxd 6/4/06 9:30 PM Page 82

83Chapter 4 — Exploring del.icio.us APIs and Data

And, once more, you may want to try tags/bundles/all to verify the result of this call:

$ curl -u $DEL_USER:$DEL_PASSWD \
‘http://del.icio.us/api/tags/bundles/all’

<?xml version=’1.0’ standalone=’yes’?>
<bundles>
<bundle name=”hackingfeeds” tags=”aggregation aggregator

aggregators atom feeddemon feedparser feeds newsriver rss
syndication” />
</bundles>

Back down to one tag bundle again, now. So, the deletion was a success!

Abstracting Access to the del.icio.us API
As mentioned earlier, it’s good to have a grasp on what’s going on with the API itself before
introducing abstractions to make things easier. Well, now that you’ve just finished a grand tour
of the del.icio.us API, close to bare HTTP and XML metal, you can probably see where a few
higher-level conveniences would start to come in handy. Take, for instance, dealing with things
like URI-encoding for query string parameters — or how about a little XML parsing to actu-
ally do something with the data returned from the API calls?

Using pydelicious for a Pythonic API
One way you can make using the del.icio.us API more Pythonic is with pydelicious by Frank
Timmermann, which you can download from the following site:

http://deliciouspython.python-hosting.com/

Once you’ve got it installed, pydelicious will provide fairly easy-to-use methods for calling on
the del.icio.us API using standard Python syntax. These wrapper methods automatically parse
the XML returned from the API into native Python data structures.

Listing 4-6 demonstrates a few of the features of pydelicious, just to give you a flavor.

Listing 4-6: ch04_pydelicious_example.py

#!/usr/bin/env python
“””
ch04_pydelicious_example.py - An example using pydelicious
“””
DEL_USER = ‘yourusername’
DEL_PASSWD = ‘yourpassword’

import pydelicious

api = pydelicious.apiNew(DEL_USER, DEL_PASSWD)

continued

37857c04.qxd 6/4/06 9:30 PM Page 83

84 Part II — Remixing del.icio.us

Listing 4-6 continued

print “Posting bookmark.”
api.posts_add(

url = ‘http://decafbad.com’,
description = ‘0xDECAFBAD’,
extended = “Friends don’t let friends drink decaf.”,
tags = ‘programming coffee caffeine’

)

print “Deleting bookmark.”
api.posts_delete(‘http://decafbad.com’)

print “Recent posts:”
for post in api.posts_recent():

print “\t%(description)s” % post

print “Top 10 tags:”

def tag_order(a, b):
return cmp(int(b[‘count’]), int(a[‘count’]))

tags = api.tags_get()
tags.sort(tag_order)

for tag in tags[:10]:
print “\t%(tag)s - %(count)s” % tag

Working with Net::Delicious in Perl
For Perl, you can take advantage of Aaron Straup Cope’s module Net::Delicious. This module
is installable via CPAN, and you can visit this address for more details:

http://search.cpan.org/dist/Net-Delicious/

This module serves the same purpose for Perl as pydelicious does for Python — that is, to
provide a convenient, idiomatic wrapper around all of the operations of the del.icio.us API.
Listing 4-7 provides an example very similar to that shown in Listing 4-6, as it takes
Net::Delicious through a few of its paces.

Listing 4-7: ch04_net_delicious_example.pl

#!/usr/bin/perl
##
ch04_net_delicious_example.pl
##

37857c04.qxd 6/4/06 9:30 PM Page 84

85Chapter 4 — Exploring del.icio.us APIs and Data

Listing 4-7 continued

our $DEL_USER = ‘yourusername’;
our $DEL_PASSWD = ‘yourpassword’;

use Net::Delicious;
use Log::Dispatch::Screen;

my $api = Net::Delicious->new({user=>$DEL_USER,
pswd=>$DEL_PASSWD});

print “Posting bookmark.\n”;
$api->add_post({

url => ‘http://decafbad.com’,
description => ‘0xDECAFBAD’,
extended => “Friends don’t let friends drink decaf.”,
tags => ‘programming coffee caffeine’

});

print “Deleting bookmark.\n”;
$api->delete_post({

url => ‘http://decafbad.com’
});

print “Recent posts:\n”;
for my $post ($api->recent_posts()) {

print “\t”.$post->description().”\n”;
}

print “Top 10 tags:\n”;
my @tags = sort { $b->count <=> $a->count } $api->tags();
for my $tag (@tags[1..10]) {

print “\t”.$tag->tag.” - “.$tag->count.”\n”;
}

Including PhpDelicious for PHP
There are a handful of del.icio.us API wrappers available for PHP. However, as of this writing,
the most complete encapsulation I’ve found is PhpDelicious by Edward Eliot. You can find a
description of this library and download it here:

www.ejeliot.com/pages/5

Again, because this is the same API for the same site, this wrapper looks much the same as
wrappers for Python and Perl. Listing 4-8 offers one more transliteration of the demonstration
you’ve already seen written in the other two languages.

37857c04.qxd 6/4/06 9:30 PM Page 85

86 Part II — Remixing del.icio.us

Listing 4-8: ch04_php_delicious_example.php

<html><body><pre>
<?php

/**
ch04_php_delicious_example.php

*/

define(‘DEL_USER’, ‘yourusername’);
define(‘DEL_PASSWD’, ‘yourpassword’);

// http://www.ejeliot.com/pages/5
require_once ‘includes/php-delicious.inc.php’;

$api = new PhpDelicious(DEL_USER, DEL_PASSWD);

echo “Posting bookmark.\n”;
$api->AddPost(

‘http://decafbad.com’,
‘0xDECAFBAD’,
“Friends don’t let friends drink decaf.”,
array(‘programming’, ‘coffee’, ‘caffeine’)

);

echo “Deleting bookmark.\n”;
$api->DeletePost(‘http://decafbad.com’);

echo “Recent posts:\n”;
foreach ($api->GetRecentPosts() as $post) {

echo “\t”.$post[‘desc’].”\n”;
}

echo “Top 10 tags:\n”;

function tag_order($a, $b) {
$a_cnt = $a[‘count’];
$b_cnt = $b[‘count’];
if ($b_cnt == $a_cnt) { return 0; }
return ($b_cnt < $a_cnt) ? -1 : 1;

}

$tags = $api->GetAllTags();
usort($tags, “tag_order”);

foreach (array_slice($tags, 0, 10) as $tag) {
echo “\t”.$tag[‘tag’].” - “.$tag[‘count’].”\n”;

}

?>
</pre></body></html>

37857c04.qxd 6/4/06 9:30 PM Page 86

87Chapter 4 — Exploring del.icio.us APIs and Data

Making the API Rubilicious
And finally, for the Ruby fans out there, here’s one more variation on the theme. You can find
the del.icio.us API wrapped up in a nice module available as a Gem here:

www.pablotron.org/software/rubilicious/

Rubilicious covers the full range of operations made available by the API, as well as offering a
few more features not directly offered — such as conversion to the XBEL bookmark format.
You can check out Listing 4-9 for the final translation of the demonstration program.

Listing 4-9: ch04_rubilicious_example.rb

#!/usr/bin/env ruby
##
ch04_rubilicious_example.rb
##
DEL_USER = ‘deusx’
DEL_PASSWD = ‘cascade’

require ‘rubilicious’

api = Rubilicious.new(DEL_USER, DEL_PASSWD)

puts “Posting bookmark.”
api.add(

‘http://decafbad.com’,
‘0xDECAFBAD’,
“Friends don’t let friends drink decaf.”,
‘programming coffee caffeine’

)

puts “Deleting bookmark.”
api.delete(‘http://decafbad.com’)

puts “Recent posts:”
api.recent().each { |post|

puts “\t#{post[‘description’]}”
}

puts “Top 10 tags:”
api.tags().sort{ |a,b| b[1]<=>a[1] }.slice(0..10).each{ |tag|

puts “\t#{tag[0]} - #{tag[1]}”
}

37857c04.qxd 6/4/06 9:30 PM Page 87

88 Part II — Remixing del.icio.us

Tracking Bookmarks via RSS Feeds
As you’ve seen in this chapter, the del.icio.us API offers quite a lot of potential for use in man-
aging your bookmarks and tags. However, it’s worth noting that the API is focused on your
bookmarks. That is, you can’t access anyone else’s bookmarks unless you also know their user
name and password. Of course, that’s a good thing when you’re talking about posting and delet-
ing bookmarks — but del.icio.us is all about sharing bookmarks, so where’s the shared data?

Well, the best place to find this is in the set of RSS feeds del.icio.us offers. These were men-
tioned in Chapter 1, but it’s worth taking a slightly more in-depth look at them. Whereas the
API is limited to your own bookmarks for the operations it offers, the RSS feeds provide
machine-readable access to a wide variety of timely del.icio.us data.

It’s a bit out of the scope of this chapter to give a complete rundown on the RSS format and
associated technologies, so you may want to do a little research into the topic in case you aren’t
already up-to-speed. Chapter 1 offered a Wikipedia article to get you started, but here’s a tuto-
rial with a bit more meat to it:

www.mnot.net/rss/tutorial/

And again, you can find some details on the RSS feeds at del.icio.us in the help section:

http://del.icio.us/help/rss

If you’re using an RSS-capable browser such as Firefox, you’ll probably notice the orange
“transmission waves” icon appearing for just about every page you visit on del.icio.us. This is
because del.icio.us is just loaded with RSS feeds. What’s really interesting is that unlike some
sites, these aren’t all the same feed. Just about every view of del.icio.us you can call up via
browser has an associated machine-readable feed.

Drinking from the Fire Hose
One of the first feeds to start with is the main site feed, located here:

http://del.icio.us/rss/

This feed is a bit like drinking from a fire hose because it spews a constant stream of the latest
bookmarks. So, as opposed to using the single-user–focused API, this RSS feed gives you
everything from everybody.

As with all the API calls, you can fetch this feed using cURL if you like — although you’ll
probably have better luck using a parser for your favorite language. Still, it might be instructive
to take a peek directly at what del.icio.us includes in feeds. Check out Listing 4-10 for a
slightly truncated sample.

37857c04.qxd 6/4/06 9:30 PM Page 88

89Chapter 4 — Exploring del.icio.us APIs and Data

Listing 4-10: Truncated sample del.icio.us RSS 1.0 feed

<?xml version=”1.0” encoding=”UTF-8”?>

<rdf:RDF
xmlns:rdf=”http://www.w3.org/1999/02/22-rdf-syntax-ns#”
xmlns=”http://purl.org/rss/1.0/”
xmlns:cc=”http://web.resource.org/cc/”
xmlns:taxo=”http://purl.org/rss/1.0/modules/taxonomy/”
xmlns:dc=”http://purl.org/dc/elements/1.1/”
xmlns:syn=”http://purl.org/rss/1.0/modules/syndication/”
xmlns:admin=”http://webns.net/mvcb/”
>

<channel rdf:about=”http://del.icio.us/”>
<title>del.icio.us</title>
<link>http://del.icio.us/</link>
<description></description>
<items>
<rdf:Seq>
<rdf:li rdf:resource=”http://www.blogher.org/” />
...
</rdf:Seq>
</items>
</channel>

<item rdf:about=”http://www.blogher.org/”>
<title>BlogHer [beta] | Where the women bloggers are</title>
<link>http://www.blogher.org/</link>
<description>A network dedicated to the creation of the
ultimate guide to blogs written by and/or about
women.</description>
<dc:creator>fleuree</dc:creator>
<dc:date>2006-02-02T02:23:45Z</dc:date>
<dc:subject>blogs conferences feminism guide women</dc:subject>
<taxo:topics>
<rdf:Bag>
<rdf:li resource=”http://del.icio.us/tag/women” />
<rdf:li resource=”http://del.icio.us/tag/blogs” />
<rdf:li resource=”http://del.icio.us/tag/feminism” />
<rdf:li resource=”http://del.icio.us/tag/conferences” />
<rdf:li resource=”http://del.icio.us/tag/guide” />

</rdf:Bag>
</taxo:topics>
</item>
...
</rdf:RDF>

37857c04.qxd 6/4/06 9:30 PM Page 89

90 Part II — Remixing del.icio.us

The first noteworthy thing about Listing 4-10 is that del.icio.us serves up RSS 1.0 feeds, using
RDF/XML to encode details about the latest bookmarks. Most of the elements used in this
feed are fairly standard fare for RSS 1.0 feeds. This format maps well onto the fields of a book-
mark posting. One interesting feature, however, is that tags attached to a bookmark are given
both as a space-separated list in a <dc:subject> element, as well as a list of tag page URLs
under a <taxo:topics> element.

Watching the Popularity Contest
Having peeked at the raw data, what might be a bit more interesting — or at least less bewil-
dering — than the site’s main feed is the popular links feed at this URL:

http://del.icio.us/rss/popular

This feed is more focused, containing only those links that have been posted by the greatest
number of users. You can get a pretty good feel for the general state of the bookmarking world
from items appearing here, although it’s still a mixed bag by definition.

Checking Your Inbox
If you’d like to narrow things down even further still, check out your inbox feed:

http://del.icio.us/rss/inbox/deusx

As usual, replace the deusx with your own user name. If you’ve gathered a collection of users
in your inbox, either before you picked up this book or since Chapter 1, this feed will present
you with the combined bookmarks of everyone in that collection. This feed can have a lot of
value, helping you keep up with your friends and acquaintances, who probably have a good
chance of sending interesting things your way as a group.

Something interesting to point out here is that your inbox feed is neither private nor password
protected like the API. Drop anyone’s user name into this URL, and you’ll see that person’s
aggregated bookmark inbox.

Being Picky (and Private) About Your Friends
Do you want to individually monitor a few users’ collections? You can build a feed URL that
singles out just one person:

http://del.icio.us/rss/deusx

With the preceding feed, you’ll see everything posted to my own collection. Swap the deusx
out for another user’s name, and the focus will switch to that person’s bookmarks. You can use
these feeds to build up your own private inbox in a news aggregator, organizing the subscrip-
tions into folders or however your software allows.

37857c04.qxd 6/4/06 9:30 PM Page 90

91Chapter 4 — Exploring del.icio.us APIs and Data

Letting Your Friends Be Picky (and Private) About You
As mentioned in Chapter 1, you can target links to individual users by using the for: tag pre-
fix. Bookmarks targeted in this manner are somewhat private because only you can view the
page aggregating such posts aimed at you. You can check this page out at:

http://del.icio.us/for/deusx

Something to notice on the page of bookmarks intended for you is that there’s a link to a feed
at the bottom, as shown in Figure 4-4.

What’s special about this feed URL is that it’s got a special private key attached in a query
parameter, like so:

http://del.icio.us/rss/for/deusx?private=XXXXXXXXXX

You can see this page only when logged in, but this private key in the feed URL allows you to
subscribe to the feed without a login from your aggregator. Although this private key won’t
really allow anyone access to your account in general, you should still keep this URL secret.

Note that these bookmarks tagged for your attention are just partially private — the bookmarks
themselves are public, but the for: tag is hidden. This obscures the clue that a particular
bookmark was meant for your eyes, but does not obscure the bookmark entirely.

FIGURE 4-4: Link to private for: tag feed at the bottom of the page

37857c04.qxd 6/4/06 9:30 PM Page 91

92 Part II — Remixing del.icio.us

Staying on Topic
Yet another way you can slice up the bookmarks on del.icio.us is by tags. Using this URL, you
can get a decently topical feed on just about any subject in which you’re interested:

http://del.icio.us/rss/tag/ajax

This URL will fetch you all the latest bookmarks tagged with ajax. For the most part, this will
come up with all sorts of Web development resources with the occasional essay on cleaning
tips. To change the topic, swap ajax for whatever other tag you’d like.

Mixing It Up
You can request a feed by using a combination of tags and a user name. For example, if you want
to get a really focused feed on Ajax and buzzword-compliant Web technologies, try this URL:

http://del.icio.us/rss/tag/web20+ajax

Combining tags in this way will get you the intersection between them, feeding you bookmarks
that have all of the specified tags.

These tag intersections can also be applied to individual users. So, say for instance you want to
see links from me only when they’ve got something to do with Mac OS X. You can use this
feed URL:

http://del.icio.us/rss/deusx/osx

Or, if you think I’m a real Ajax and Web 2.0 guru, you can narrow right down to my book-
marks on the subject:

http://del.icio.us/rss/deusx/web20+ajax

Tracking a Single Link
One more way you can slice things with feeds is down to the level of an individual URL. For
example, here’s a feed for a page popular as of this writing:

http://del.icio.us/rss/url?url=http://en.wikipedia.org/wiki/
List_of_algorithms

If you’ve got an MD5 encoder handy, you can swap out a query string parameter for a hash of
the URL in question to get this feed:

http://del.icio.us/rss/url/0a5015b77a92c268938bb1e02222949b

Both of these feeds give you the same thing: a running list of everyone who’s bookmarked the
given URL. The usefulness of this may seem a bit dubious, but where it can really come in

37857c04.qxd 6/4/06 9:30 PM Page 92

93Chapter 4 — Exploring del.icio.us APIs and Data

handy is if you’d like to gather details for your own Web pages. You could subscribe to feeds
related to your own blog entries, for instance, and watch to see if they become overnight
Internet meme successes.

You’ll see this feed used later on, in Chapter 9.

Accessing Bookmarks with JSON
Just about every method for accessing data and performing queries presented in this chapter
has been meant for use on the server side of things. The reason for this is that it’s a bit difficult
to access the API and RSS feeds offered by del.icio.us because of cross-domain security restric-
tions. Because you’re probably not one of the few people in the world who can post content
directly at del.icio.us, browsers visiting your page won’t allow access to that domain.

To partially address this problem, del.icio.us has recently started offering bookmark feeds in
JSON: that is, bookmark data encoded directly as a subset of JavaScript syntax. You can read all
about it in the help section at this address:

http://del.icio.us/help/json

But, to jump right in and get a quick screenful of JSON, try fetching this URL:

http://del.icio.us/feeds/json/deusx

You can also supply an optional limit on the number of bookmarks returned by a JSON feed
request with a count parameter:

http://del.icio.us/feeds/json/deusx?count=15

And you can supply combinations of tags to filter the results:

http://del.icio.us/feeds/json/deusx/json+web20

As you can see in Listing 4-11, this is a very compact stream of data, and not really meant for
visual inspection. However, it’s perfect for interpretation by JavaScript. You can directly include
this feed on a Web page with a tag in the header like this:

<script type=”text/javascript”
src=”http://del.icio.us/feeds/json/deusx”></script>

When your page loads, this dynamically generated JavaScript code will get requested and inter-
preted just like any other library you’d include on the page. When that happens, a new object is
made available to other scripts on the page under the variable Delicious.posts.

There’s a JavaScript code sample on the help page showing how to build a list of links, but
Listing 4-12 offers another demonstration in a slightly different style. The help page uses strict
DOM scripting, while ch04_json_display.html here uses a slightly simpler yet quick-and-
dirty approach. You can see the results of this code in a browser in Figure 4-5.

37857c04.qxd 6/4/06 9:30 PM Page 93

94 Part II — Remixing del.icio.us

Listing 4-11: Sample raw JSON feed from del.icio.us

if(typeof(Delicious) == ‘undefined’) Delicious = {};
Delicious.posts =
[{“u”:”http://support.opml.org/2006/02/01#a671”,”n”:”\”How to
install your own server\””,”d”:”OPML Editor support: OPML
Community Server Howto”,”t”:[“frontier”,”opml”,”webdev”]},
{“u”:”http://www.kempa.com/blog/archives/001047.html”,”n”:”\”Be
fore demolishing the building, the city couldn\’t be bothered
to remove these artifacts. All sorts of historically important
ephemera, knowingly demolished.\” As if I didn\’t have enough
reasons to despise the Super Bowl and the Mayor”,”d”:
”Kempa.com: Destroying History - Motown Building Razed for
Super Bowl Parking”,”t”:[“detroit”,”morons”,”motown”]},
{“u”:”http://rentzsch.com/suck/stopStopStopHurtingTheInternet”,
”n”:”\”My God, they’ve made metal look good.\” ...and with a
bonus quote and link to my link to the IE7 demo.”,”d”:
”rentzsch.com: Stop Stop Stop Hurting the Internet”,”t”:
[“msft”,”msie”,”vista”,”gui”,”safari”,”apple”,”webdev”]}]

Listing 4-12: ch04_json_display.html

<html>
<head>

<title>del.icio.us via JSON</title>

<script type=”text/javascript”
src=”http://del.icio.us/feeds/json/deusx”></script>

<script type=”text/javascript”>
function init() {

var out = ‘’;

out += ‘’;
for (var i=0; i<Delicious.posts.length; i++) {

var post = Delicious.posts[i];
out += ‘’;
out += ‘

’+post.d+’’;
if (post.n) out += ‘<p>’+post.n+’</p>’;
out += ‘’;

}
out += ‘’;

37857c04.qxd 6/4/06 9:30 PM Page 94

95Chapter 4 — Exploring del.icio.us APIs and Data

Listing 4-12 continued

document.getElementById(‘links’).innerHTML =
out;

}
window.onload = init;

</script>

</head>

<body>
<h1>del.icio.us links</h1>
<div id=”links”>

Loading links...
</div>

</body>

</html>

FIGURE 4-5: del.icio.us links displayed by way of JSON

37857c04.qxd 6/4/06 9:30 PM Page 95

96 Part II — Remixing del.icio.us

Summary
This chapter provided a deeper look at the various Web API operations del.icio.us makes avail-
able to users, as well as a few of the data query services you can use to get at your own book-
marks and links posted by others. These are all just starting points, really, because you can take
any one of these avenues for access and expand it into a rich mashup in your own code. You’ll
see these services come up in use repeatedly throughout the rest of the book.

In the next chapter, you take a bit of a step back from the server side of things and check out
what opportunities for tinkering exist in the Web browser side of the mashup equation.

37857c04.qxd 6/4/06 9:30 PM Page 96

The What and
How of Hacks

Because the rest of this book will present more elaborate hacks, it
might be a good idea to spend some time exploring just what it
means to make one. While this chapter won’t give you a complete

education, it will provide you with a brief taste of the various formats and
technologies employed by hacks and mashups today. You’ll see these appear
throughout the rest of the book, so the pointers presented here should pre-
pare you with a few leads to chase in digging deeper to understand what
you see later on.

What Is a Hack?
So, what exactly is a hack — and what, in particular, makes a del.icio.us hack?

As you are probably already well aware, hacking del.icio.us — at least in the
sense used in this book — does not entail cracking servers or login pass-
words. The hacks presented in this book are more in the spirit of tinkering
and making mashups with data and APIs already made available by
del.icio.us and other services.

Consider the term “mashup,” originally used to describe a style of music in
which parts of multiple, often disparate songs are tangled together into
something new.

This musical remixing tends to happen regardless of the intentions of
the original artists — and almost exclusively without their cooperation.
Similarly, technological mashups on the Web began as unauthorized inter-
twinings of sites into new creations. But increasingly, the creators and own-
ers of Web-based services are getting wise to the benefits of making their
data and functionality easy to integrate into third-party constructions.

Remotely scriptable application interfaces and easy-to-parse data formats
grease the skids for tinkerers. If you have a sufficiently compelling offering,
this sort of openness can potentially increase usage and exposure for every-
one involved. Where other sites and services attempt to build user lock-in
and “stickiness” to retain people and attention, letting go and making room
for experimentation is the way of the mashup.

� What is a hack?

� What makes hacks
possible?

� How are hacks
made?

chapter

in this chapter

37857c05.qxd 6/4/06 9:30 PM Page 97

98 Part II — Remixing del.icio.us

Want to read more about musical and Web-based mashups? Wikipedia has an article on each
available for your perusal here:

http://en.wikipedia.org/wiki/Mashup_(music)
http://en.wikipedia.org/wiki/Mashup_(web_application_hybrid)

Each of these should give you some good general starting points for further exploration in either
of these topics.

For just a taste of more advanced del.icio.us hacks and mashups, take a look at the figures that
follow.

Figure 5-1 shows a TouchGraph-powered graphical analysis of relationships between del.icio.us
tags by Alf Eaton. You read more about this in Chapter 6, but for now, consider this a sneak
peak at what can be done with alternate presentations of data available from del.icio.us.

In Figure 5-2, you can see Apple’s iTunes downloading audio files as a podcast. The podcast
itself is actually an RSS feed of MP3s with the system:media:audio tag applied. This trick
will get more attention in Chapter 6 as well, as an example of how services provided by
del.icio.us can be used as a connector or router between technologies.

Finally, Figure 5-3 presents a snapshot from diggdot.us, an aggregator of content from
del.icio.us, digg.com, and slashdot.org. This is the most obvious of the three mashups pictured
here because it literally smashes together the feeds of information from three sites. Chapter 7
provides a bit more information about this mashup.

FIGURE 5-1: Using TouchGraph to chart relationships between del.icio.us tags

37857c05.qxd 6/4/06 9:30 PM Page 98

99Chapter 5 — The What and How of Hacks

FIGURE 5-2: Downloading audio in iTunes as a podcast from a del.icio.us tag feed

FIGURE 5-3: Content from del.icio.us, digg.com, and slashdot.org all mashed together

37857c05.qxd 6/4/06 9:30 PM Page 99

100 Part II — Remixing del.icio.us

What Makes Hacks Possible?
So, before you can really get into making hacks and mashups, you’ll need to know a bit about
what makes them possible. Mainly, this means remixable APIs and data formats. These come
in many forms, so it’ll help to see the variety of ways in which these resources are made avail-
able — both officially and unofficially.

In terms of formats, those based on XML are some of the friendliest for the purposes of
mashups. On the other hand, JSON is a relative newcomer on the scene that offers a bit less
markup and a lot more simplicity. In terms of APIs, you’ll find plenty of examples offered as
XML-RPC, SOAP, and REST services. Each of these has its own style of doing things and
tools for using it in your programs.

XML
While not itself a format, XML is a modern construction set for data formats. Short for
Extensible Markup Language, XML lays down basic rules for establishing structure and
encoding information. This makes it possible to build a lot of base machinery in a generic and
reusable way, rather than starting from scratch every time. XML allows developers to provide
rich data in a way that’s relatively easy to parse and process in programs, yet still somewhat
accessible to human eyes during hands-on tinkering.

Although you’re very likely to have learned about or encountered XML on the Web already, it’s
useful to mention it here. By and large, XML is the most popular kind of data you’ll encounter in
exploring hacks. In particular, most of the API services offered by del.icio.us return data in XML.
Check out Listing 5-1 for an example of what a query for recently posted bookmarks looks like.

Listing 5-1: Bookmark postings as XML from the del.icio.us API

<?xml version=’1.0’ standalone=’yes’?>
<posts tag=”” user=”deusx”>

<post href=”http://www.andymatuschak.org/pages/sparkle”
description=”Sparkle”
extended=”"Sparkle is a module that developers

can stick in their Cocoa applications (five-step install!) to
get instant self-update functionality."”

hash=”482dfbc8f679933ce2e1abd57ac478f1”
tag=”osx mac dev programming rss syndication”
time=”2006-01-13T03:24:29Z” />

<post
href=”http://www.earthcode.com/ajax/2005/12/jslog.html”

description=”Earthcode.com: JSLog - Ajax logger”
extended=”"This is a lightweight, self-contained

logging panel which takes the place of alert() boxes for your
AJAX and DHTML applications. It is unobtrusive, easy to use,
and can stay in your code through deployment. "”

37857c05.qxd 6/4/06 9:30 PM Page 100

101Chapter 5 — The What and How of Hacks

Listing 5-1 continued

hash=”d1f1d040db1989c47e35e195172ee104”
tag=”js javascript webdev”
time=”2006-01-12T11:58:57Z” />

<post href=”http://www.physorg.com/news9794.html”
description=”’Doomsday vault’ to house world’s seeds”
extended=”"Norway is to build a "doomsday

vault" in a mountain close to the North Pole that will
house a vast seed bank to ensure food supplies in the event of
catastrophic climate change, nuclear war or rising sea levels,
New Scientist says."”

hash=”14f23cac723ab2c725abbb2b9cfdb8fc”
tag=”norway globalwarming environment farming”
time=”2006-01-12T11:55:59Z” />

</posts>

The data in Listing 5-1 describes three bookmarks posted to del.icio.us, including details on
the bookmark URLs, titles, descriptions, tags, and posting time, and provides a unique hash ID
for each. This format gives you an easy way to grab and process bookmarks with just about any
language or platform where XML itself is supported.

XML is a technology built by the World Wide Web Consortium (or W3C). You can find some
pretty high-level starting points at the XML home page:

www.w3.org/XML/

But again, this page offers very high-level information. You can also get a lot of historical infor-
mation and more avenues for information at this Wikipedia article:

http://en.wikipedia.org/wiki/XML

JSON, or JavaScript Object Notation
JSON is a bit of an up-and-coming competitor for XML, at least with regards to Web services
and especially when used with browser-based scripting. The name is an abbreviation of
JavaScript Object Notation. And, as the name suggests, JSON is the representation of data
using a subset of JavaScript syntax. So, while this format is by definition directly executable as
JavaScript code, the limited syntax enables it to be parsed by other languages without com-
pletely reinventing the JavaScript wheel — all while remaining a very rich and expressive
encoding scheme.

37857c05.qxd 6/4/06 9:30 PM Page 101

102 Part II — Remixing del.icio.us

A few new feeds offered by del.icio.us come in JSON flavors, an example of which you can see
in Listing 5-2. Compare this style of encoding things with the XML from Listing 5-1.

Listing 5-2: Bookmark postings as a JSON feed from del.icio.us

[
{

“u”:”http://www.andymatuschak.org/pages/sparkle”,
“n”:”\”Sparkle is a module that developers can stick in

their Cocoa applications (five-step install!) to get instant
self-update functionality.\””,

“d”:”Sparkle”,

“t”:[“osx”,”mac”,”dev”,”programming”,”rss”,”syndication”]
},
{

“u”:”http://www.earthcode.com/ajax/2005/12/jslog.html”,
“n”:”\”This is a lightweight, self-contained logging

panel which takes the place of alert() boxes for your AJAX and
DHTML applications. It is unobtrusive, easy to use, and can
stay in your code through deployment. \””,

“d”:”Earthcode.com: JSLog - a Lightweight Ajax logger”,
“t”:[“js”,”javascript”,”webdev”]

},
{

“u”:”http://www.physorg.com/news9794.html”,
“n”:”\”Norway is to build a \”doomsday vault\” in a

mountain close to the North Pole that will house a vast seed
bank to ensure food supplies in the event of catastrophic
climate change, nuclear war or rising sea levels, New Scientist
says.\””,

“d”:”\’Doomsday vault\’ to house world\’s seeds”,
“t”:[“norway”,”globalwarming”,”environment”,”farming”]

}
]

Now, this JSON flavor of del.icio.us data is relatively new, and there are a few things included
in the XML not present in Listing 5-2 — such as posting date and unique hash ID. But, this
encoding style is much more concise than that of XML. And, for data whose structure is as
simple as this, JSON parsers are much more lightweight and easy to use. In fact, in most cases,
this data gets transliterated directly into the native array and hash structures of the language
you’re using to process it.

In many ways, JSON provides much less of an impedance mismatch with modern scripting
languages than XML — at the expense of losing the toolset available for processing XML.
However, some would say that this is a feature, not a bug.

37857c05.qxd 6/4/06 9:30 PM Page 102

103Chapter 5 — The What and How of Hacks

JSON is a data format first proposed and codified by Douglas Crockford. You can read his speci-
fication for JSON here:

www.crockford.com/JSON/

Along with the specification, you can find links to JSON parser and encoders implemented in
many popular programming languages, as well as other articles and tutorials.

There’s also a Wikipedia article with some useful pointers, located at this URL:

http://en.wikipedia.org/wiki/JSON

XML-RPC
XML-RPC uses HTTP and XML to perform procedure calls on code living at remote Web
servers. Basically, this is the granddaddy of all Web services technologies. XML-RPC provides
a specification for building distributed applications in a way that’s simple and programming
language–neutral. Just about any Web server capable of running CGI programs written in a
decently capable scripting language will do. There are libraries and modules for just about every
programming environment under the sun, but the technology itself is easy to implement from
scratch, should the need arise.

Although you won’t find any XML-RPC in the APIs from del.icio.us, one of the most popular
uses of XML-RPC is in the Blogger and MetaWeblog APIs offered by most blogging packages.

For example, Listing 5-3 shows some simple Python code that can be used to post a new entry to
a blog using the MetaWeblog API. Listing 5-4 shows the XML data generated by xmlrpclib
in making the request to a WordPress blog installation to perform the procedure call. Listing 5-5
shows the XML sent back in response when a new blog post is successfully created.

Listing 5-3: Python code for posting an entry to a Weblog

#!/usr/bin/env python
import xmlrpclib

URI = “http://www.example.com/blog/xmlrpc.php”
USER = “admin”
PASSWD = “your_passwd”
BLOGID = 1

srv = xmlrpclib.ServerProxy(URI, verbose=1)

post = {
‘title’ : ‘Hello world!’,
‘dateCreated’ : ‘2005-01-12T08:15:12Z’,
‘description’ : ‘This is the text of a post’,
‘mt_convert_breaks’ : False

}

srv.metaWeblog.newPost(BLOGID, USER, PASSWD, post, True)

37857c05.qxd 6/4/06 9:30 PM Page 103

104 Part II — Remixing del.icio.us

Listing 5-4: XML-RPC request data for a new blog post

<?xml version=’1.0’?>
<methodCall>
<methodName>metaWeblog.newPost</methodName>
<params>
<param><value><int>1</int></value></param>
<param><value><string>admin</string></value></param>
<param><value><string>your_password</string></value></param>
<param>
<value>
<struct>
<member>
<name>mt_convert_breaks</name>
<value><boolean>0</boolean></value>

</member>
<member>
<name>dateCreated</name>
<value><string>2005-01-12T08:15:12Z</string></value>

</member>
<member>
<name>description</name>
<value><string>This is the text of a

post</string></value>
</member>
<member>
<name>title</name>
<value><string>Hello world!</string></value>

</member>
</struct>

</value>
</param>
<param>
<value><boolean>1</boolean></value>

</param>
</params>

</methodCall>

Listing 5-5: XML-RPC response data for a new blog post

<?xml version=”1.0” encoding=”UTF-8”?>
<methodResponse>
<params>
<param>
<value>
<boolean>1</boolean>

</value>
</param>

</params>
</methodResponse>

37857c05.qxd 6/4/06 9:30 PM Page 104

105Chapter 5 — The What and How of Hacks

The XML from Listing 5-4 is sent to an XML-RPC endpoint via HTTP POST, and the data
in Listing 5-5 is sent back as the response body.

Although this XML is pretty verbose, it actually has a lot in common with JSON: It’s an
attempt to work with structures that closely match common programming environments.
XML-RPC provides for data structures such as ordered arrays and hashtable-like structs with
named members. You can see a bit of this concept demonstrated in the example code from
Listing 5-3.

For the most part, you should never have to process or parse this XML yourself. Instead, the
idea is to rely on a module or library to do all the work of encoding and decoding to and from
structures in the local language idiom. It’s helpful to know what’s going on in the raw data for
purposes of debugging, but the heavy lifting is usually taken care of for you.

The nice part of XML-RPC is that these remote Web services can be made to look just like
local calls to procedures or subroutines in your favorite language — even if the remote service is
built using an entirely different set of technologies.

XML-RPC is a technology first proposed back in the mid-nineties by Dave Winer while at
UserLand Software. You can visit the official XML-RPC homepage here:

www.xmlrpc.com/

You can also find a lot of useful overview and pointers in this Wikipedia article:

http://en.wikipedia.org/wiki/XML-RPC

SOAP
SOAP stands for Simple Object Access Protocol. Like XML-RPC, it uses XML and HTTP
to facilitate remote procedure calls. SOAP is generally the backbone of modern Web services
specifications. As such, it packs a lot of documentation and support within development tools
and IDEs — but at the cost of additional complexity and necessary infrastructure when com-
pared with its predecessor, XML-RPC.

SOAP provides a highly abstracted and cross-platform approach for connecting distributed
pieces of applications together across the Web. Where XML-RPC seeks to provide a rough
correspondence between the data structures of various programming languages, SOAP strives
for a much greater degree of definition. In XML-RPC, the request and response structures are
rather ad hoc and application-dependent. However, in SOAP, facilities exist to nail down the
exact data types and structures to be expected in all requests and responses.

This allows SOAP services and clients to be not only platform-independent, but even imple-
mentation-independent as well. Because SOAP service definitions can describe every available
procedure call in great detail along with all the parameters going in and return structures com-
ing out, these are basically specifications that leave little room for guessing.

Where XML-RPC plays things loose and flexible, SOAP seeks to nail things down and
specify everything. Unfortunately, this translates into fairly verbose and human-hostile XML

37857c05.qxd 6/4/06 9:30 PM Page 105

106 Part II — Remixing del.icio.us

encodings and tool complexity for hands-on tinkering. (So, alas, no code samples here.) But,
on the other hand, all this machine-readable description can provide a lot of automated assis-
tance in using SOAP services in development and when using an IDE with auto-completion
and drag-and-drop features.

SOAP grew out of the original XML-RPC specification to become a complete technology on its
own. You can check out the W3C’s SOAP home page here:

www.w3.org/TR/soap/

Another Wikipedia article comes in handy here — check it out at this location:

http://en.wikipedia.org/wiki/SOAP

REST and Plain Old XML
REST is an acronym for Representational State Transfer. This is a fancy term to describe the
construction of distributed Web-based services, in a way intended to build upon the native
strengths of HTTP and the Web. This is in contrast to XML-RPC and SOAP, both of which
basically treat the Web as a mere transport for remote procedure calls.

In a sense, REST flips remote procedure call–based Web services on their head by focusing on
resources and data formats manipulated by a limited set of verbs — such as GET, PUT, POST,
and DELETE. This is not entirely unlike the operations available when using SQL queries with
relational database tables.

The big idea with REST, however, is that relationships between resources can span the entire
Web. Furthermore, the constrained and well-defined set of verbs available allow for the con-
struction of a lot of abstract and reusable architectural building blocks such as Web caches and
content filters.

A related approach to REST is called “Plain Old XML,” which uses HTTP to shuttle XML
documents around in response to GET and POST requests. POX is simpler than XML-RPC
and SOAP, and close in spirit to REST. However, this approach doesn’t strictly follow the
architectural principles of REST. For example, HTTP GET requests may be used to cause mod-
ifications or used as remote procedural calls — while in REST, GET requests should simply
retrieve data and never directly modify anything.

The API exposed by del.icio.us is more properly identified as a POX-style API. Bookmark
deletions and additions are done via HTTP GET requests using URLs with parameters in the
query string. Also, most of the operations on the del.icio.us API more closely resemble proce-
dure calls, rather than the REST vision of Web resources.

In any case, both REST- and POX-based Web services generally seek to offer a more tinkerer-
friendly approach that uses the natural semantics of HTTP and XML rather than convoluted
encodings of native programming language structures tunneled over the Web. On the other

37857c05.qxd 6/4/06 9:30 PM Page 106

107Chapter 5 — The What and How of Hacks

hand, REST- and POX-based services demand much more hands-on work and lack greatly in
the area of powering the assisted-programming features of Integrated Development
Environments.

The term REST originates in a doctoral dissertation by Roy Fielding, available here:

www.ics.uci.edu/~fielding/pubs/dissertation/top.htm

This is pretty heady reading, so you might also appreciate this more practical overview of the
concepts behind REST:

www.xfront.com/REST-Web-Services.html

You can also find a lot of discussion surrounding the origins of the term “Plain Old XML” with
this Technorati search:

http://technorati.com/search/%22plain+old+xml%22

Again, here are a couple of Wikipedia articles from which you may get some useful pointers:

http://en.wikipedia.org/wiki/Representational_State_Transfer
http://en.wikipedia.org/wiki/Plain_Old_XML

Web Robots and Screen Scrapers
If all else fails, there’s always screen scraping. Basically, if you can do it yourself in a browser,
there’s usually a way to automate it by building a Web robot. You can script the same sorts of
Web-based interactions performed in a Web browser and scrape useful data out of formats
generally intended for human consumption. This is the down-and-dirty approach, dragging the
functionality of a site kicking and screaming into the form of a scriptable API.

Keep in mind, however, that when a Web site fails to offer an API, there’s often a good reason.
If you’re lucky, it might simply be that the site owners haven’t yet had the chance to implement
a scriptable interface. But, it might also be that they purposefully don’t want to allow auto-
mated access: Where an API is offered, it’s likely that allowances have been made to provide
for the capacity necessary for automated access. Machines can be quite a bit more demanding
than humans. So, more advanced functionality might be offered only to human visitors because
it’s just too resource-exhaustive to offer otherwise.

Thus, on some sites, you can get away with scraping first and asking forgiveness later. But, be
aware that some sites are monitored for undesired spiders and scrapers. While routing around
these perceived stumbling blocks is fully within the spirit of mashups and tinkering, this
approach can quite often result in fragile code and accusations of abuse.

37857c05.qxd 6/4/06 9:30 PM Page 107

108 Part II — Remixing del.icio.us

How Are Hacks Made?
On their own, these data formats and APIs don’t remix themselves. What you need are some
programming languages and environments to act as the glue that pulls everything together.
Because we’re talking about hacks involving services and sites on the Web, the places where
hacks happen generally fall into two categories: client-side scripting in the browser and server-
side programming on a Web server.

Hacks and mashups will often involve things that dance across this client/server boundary. But
still, this distinction is where you’ll need to make mental shifts between technologies and envi-
ronment characteristics. There are things that are easy to do in one place, and hard or impossi-
ble to do in another. And sometimes, there are things that can’t be done without the two sides
working in tandem.

Browser-Side Scripting
For most makers of mashups, the Web browser is the closest tool at hand. And these days, it
just so happens that the modern browser plays host to a surprisingly capable and rich program-
ming environment.

This is in large part thanks to a confluence of browser features that have all started, surpris-
ingly, to actually work together. You’ll still find many of the cross-browser issues that have
been the traditional bane of Web developers — but some of the technologies and techniques
that have been percolating for years have finally reached a sufficient state of maturity and
stability where they can be used for interesting things by a large enough segment of the
Web browsing populace.

Screen Scrapers and del.icio.us

In fact, apropos of the subject of this book, the owners of del.icio.us have explicitly stated
that screen scrapers are not welcome. For example, while the API offered by del.icio.us pro-
vides a wide range of functionality for querying and manipulating bookmarks, as of this
writing much of the recommended functionality remains accessible only via the user inter-
face intended for human consumption. While it’s tempting to remedy this lack through
scraping and spidering, you could soon be locked out of del.icio.us altogether and find your
application broken or banned.

So, to heed the policy at del.icio.us, this book won’t spend much time (if any) beyond just
acknowledging the possibility and existence of robots and scrapers.

37857c05.qxd 6/4/06 9:30 PM Page 108

109Chapter 5 — The What and How of Hacks

JavaScript
Since its inception in the early 1990s, JavaScript has gained a bad reputation thanks to its use
in powering such annoyances as popup ads and status bar message crawls, and generally mak-
ing your browser twitch. There was also the awkward birth of DHTML, which seemed to hold
so much promise yet was so often stymied by its mutually incompatible implementations
spawned during the browser wars.

In the intervening years, however, and as the browser wars died down, things have gotten bet-
ter. DHTML and browser DOM scripting capabilities have improved; cross-browser quirks
have been catalogued and workarounds have been built. Furthermore, many more “serious”
developers have turned their eyes upon JavaScript itself — having found that despite being
called a “toy language,” JavaScript offers quite a few of the attractive benefits that have brought
popularity to other so-called agile languages.

If you haven’t looked into JavaScript lately, here are a few starting points for catching up with
the state of the art in browser scripting:

A (Re-)Introduction: http://simon.incutio.com/archive/2006/03/07/etech

Douglas Crockford’s JS resources: www.crockford.com/javascript/

Planet JavaScript: http://planet.openjsan.org/

DOM Scripting: The Blog: http://domscripting.com/blog/

DOM Scripting Task Force: http://domscripting.webstandards.org/

QuirksMode: www.quirksmode.org/

Bookmarklets
Bookmarklets are a way to embed active JavaScript code into bookmarks, enabling you to fire off
scripts in the context of a page you’re currently viewing without needing access to modify the origi-
nal page source. These can be launched from the bookmarks menu, or a toolbar made available by
most browsers — thus offering a way to sort of expand the abilities of your browser on the fly.

These bits of JavaScript code have become valuable in situations such as Web development,
enabling you to tweak pieces of the page on the fly before altering the underlying HTML. And
as you saw back in Chapter 2, bookmarklets play a key role in making del.icio.us easier to use as
part of your daily habits.

You may have caught these the first time, back in Chapter 2. But for your reference in this chap-
ter, check out the following sources on bookmarklets:

Wikipedia article on bookmarklets: http://en.wikipedia.org/wiki/Bookmarklet

Bookmarklets home page: www.bookmarklets.com/

Tantek’s favelets: http://tantek.com/favelets/

Web development bookmarklets: www.squarefree.com/bookmarklets/

37857c05.qxd 6/4/06 9:30 PM Page 109

110 Part II — Remixing del.icio.us

Greasemonkey
The Greasemonkey extension for Mozilla Firefox takes the power of a bookmarklet to a whole
new level. Greasemonkey allows the execution of “user scripts” written in JavaScript that can do
all the things bookmarklets can, and more.

This extension makes functionality available to user scripts not ordinarily available to book-
marklets — such as cross-domain HTTP requests and local data storage. Also, user scripts exe-
cute automatically when pre-determined URL patterns are matched, rather than requiring you
to click a button to run the code. This allows you to build up a set of regular customizations to
sites you visit, without requiring that you remember to activate them.

Want to start playing with Greasemonkey and user scripts? You can install the extension from its
home page:

http://greasemonkey.mozdev.org/

And, once you’ve got the extension installed, you can start exploring available user scripts here:

http://userscripts.org/

Ajax and XMLHttpRequest
Ajax stands for Asynchronous JavaScript And XML and is a buzzword that’s gained some
prominence in the past few years. The primary hype-worthy advance to Web development
gained from Ajax is the ability to fetch new data from a Web server via JavaScript.

Before Ajax, once a blob of HTML was delivered to the browser, it was all the developer had
to work with from the outside world until a new page could be fetched and entirely reloaded
from the Web server. But with Ajax, the transfer of information becomes much more atomic
and lightweight, allowing the framework of code and page structure to remain in place while
discrete updates are requested and delivered from the Web server.

Combine this with fresh JavaScript and DHTML techniques that have reached a certain tip-
ping point of maturity, and you’ve got the ability to build responsive Web applications wherein
the browser and server connect in a more cooperative relationship than ever before.

The heart of Ajax is the XMLHttpRequest object, first implemented by Microsoft in Internet
Explorer 5 for Windows and first used to support the WebDAV-based Outlook Web Access.
Later on, the developers of browsers such as Mozilla Firefox and Apple’s Safari followed suit by
implementing this proprietary object interface themselves. You’re not likely to find RFCs or
W3C specifications about XMLHttpRequest anytime soon, but this cloning of Microsoft’s
interface has created an ad hoc cross-browser standard for firing HTTP requests from JavaScript.

Taken individually, the components of Ajax are nothing new and have been around in various
forms since the early days of Web browsers. However, what’s caused the rise of Ajax as a buzz-
word is the fact that these technologies appear to have all reached a tipping point in compati-
bility, usage, and availability that has sparked renewed attention.

37857c05.qxd 6/4/06 9:30 PM Page 110

111Chapter 5 — The What and How of Hacks

Jesse James Garrett coined Ajax in early 2005. You can catch his essay posted here:

www.adaptivepath.com/publications/essays/archives/000385.php

You might also like to visit these Ajax-centric blogs for the latest developments in the world of
highly dynamic Web applications:

Ajaxian: www.ajaxian.com/

Ajax Blog: http://ajaxblog.com/

Transforming XML with XSLT
Along with REST and Ajax, XML and XSLT as a pair have seen improvements in terms of
browser-side support. As mentioned earlier, XML is the basis of many of the data formats ripe
for remixing in hacks and mashups. And when you’re dealing with XML, XSLT is one of the
most powerful technologies available for processing it.

XSLT stands for Extensible Stylesheet Language Transformations. Expressed as XML itself,
XSLT is somewhat like a scripting language that gives you a wide range of tools to navigate the
structure of XML documents, extract data, and declare rules to transform from one XML for-
mat to another — even converting to text-based formats outside of XML.

Support for XSLT directly in browsers offers a lot of power: Syndication feeds can benefit
from XSLT processing instructions obeyed by browsers, allowing the conversion of raw RSS
and Atom feeds into human-friendly XHTML on the fly. You could use in-browser XSLT to
transform raw Web services output into complete Ajax and XHTML alternative user interfaces
based on that data.

Like XML, XSLT is a technology created by the W3C. You can visit the XSLT home page here:

www.w3.org/TR/xslt

And as a bonus, take a look here for a quick rundown on styling RSS with XSLT, as mentioned
previously:

http://interglacial.com/~sburke/stuff/pretty_rss.html

Server-Side Scripting
Thanks to maturing JavaScript and HTTP capabilities in browsers, there’s a lot of hacking to
be done on the client side. But, the Web browser is a sandbox, and eventually you’ll run into its
boundaries. This is thanks in part to cross-domain access restrictions — an annoyance for the
sake of greater PC security — as well as the difficulty or impossibility in using local storage or
databases. This is where you’ll need to leave the confines of the Web browser and start working
on the server side of the equation.

37857c05.qxd 6/4/06 9:30 PM Page 111

112 Part II — Remixing del.icio.us

On a Web server, you’ve got much less restricted access to the full power of the machine.
Granted, if you’re working on a shared server, you may still have some limits placed upon you.
But nonetheless, a server can be a much larger playground than a browser. In addition, desktop
PCs are nowadays powerful enough to be used as servers. Or, where fully dedicated network
access is unavailable — such as behind a firewall or home router — your desktop PC can at
least play host to automated and scheduled tasks involved in your mashups.

One of the easiest ways to get down to work making hacks is with one of the flexible scripting
languages available — such as Perl, Python, PHP, and Ruby. Each of these languages is per-
fectly capable of doing whatever you’d like with all of the API and data formats mentioned ear-
lier in this chapter.

Perl
Perl could be considered the granddaddy of all mashups because it was created as a way to
combine the features of venerable UNIX shell tools such as awk, sed, and grep. From the first
days when CGI scripts were possible on the Web, Perl was used to write them. So, in the years
since, it’s only natural that Perl would have amassed quite a bit of support for the sorts of
things you’ll need to do in building del.icio.us hacks.

In the Comprehensive Perl Archive Network (or CPAN) you’ll find plenty of reusable modules
available for fetching resources from the Web; parsing HTML and XML; and supporting serv-
ices made available with XML-RPC, SOAP, and REST interfaces. And once you’ve gotten
your hands on some data within a Perl script, you’ll have plenty of power available for trans-
forming that data into something interesting.

You can find a pretty extensive collection of resources for Perl available here:

www.perl.com/

In addition, the CPAN is an invaluable resource to Perl programmers. You’ll want to check it out
at this address:

www.cpan.org/

PHP
PHP itself actually began as a set of Perl scripts. A few years later, however, it had graduated
into a full-blown system of its own, implemented in C. Since then, it has grown, acting as
the glue between one library API after another — gaining functions to access databases, net-
working libraries, XML parsers, and a slew of other modules. For many developers today,
PHP has quite handily taken over from Perl as the king of open source Web development.
Although Perl is available as a module for installation on Web servers, PHP in this role
offers a bit more simplicity in its care and feeding and so has reached a much greater degree
of ubiquity.

37857c05.qxd 6/4/06 9:30 PM Page 112

113Chapter 5 — The What and How of Hacks

At the PHP home page, you can find downloads to install the language on your own server, as
well as documentation on the language itself. Check it out at this URL:

www.php.net/

And, like Perl, PHP has a community-maintained code archive available as well. It’s called the
PHP Extension and Application Repository — or PEAR. You can find lots of useful and reusable
code in this archive:

http://pear.php.net/

Python
Whereas Perl and PHP each bear the marks of incremental improvements from somewhat
messy beginnings, Python was intended from the beginning as a language emphasizing clarity
and clean extensibility. A bit of a departure from the C-like syntax of other languages, Python
code often very closely resembles the pseudo-code provided in textbook examples with its
enforced indentation-as-syntax and minimal use of strange punctuation characters. Python also
presents a well-developed object-oriented system, with lots of support for dynamic dispatch
and reflection.

In terms of Web development, however, Python does not enjoy the same widespread availabil-
ity and use as PHP and Perl. Instead, with more complex application frameworks like Zope,
the Python community seems to have historically aimed for higher architectural goals. This
seems to be changing a bit lately, but Python certainly has a long way to go before it catches up
with the rest of the Web development pack.

Nonetheless, Python has an extremely rich library of modules available for making mashups.
And unlike the installations via CPAN often required with Perl or the rebuilds sometimes
demanded by PHP, a surprising number of these modules accompany Python right out of the
box. In this regard, Python enthusiasts often say that their favorite language comes with “bat-
teries included.”

Python also has a home page, where you can locate installation packages and language
documentation:

www.python.org/

Also, check out the latest developments on Zope, the open source application server and content
management server written in Python:

www.zope.org/

You may also be interested in these up-and-coming Python Web technologies aimed at more
lightweight development:

http://pythonpaste.org/
http://turbogears.org/

37857c05.qxd 6/4/06 9:30 PM Page 113

114 Part II — Remixing del.icio.us

Ruby
Ruby was created with succession in mind because the ruby is the birthstone of the month fol-
lowing that of the pearl. Accordingly, Ruby starts by using much of Perl’s syntax as a base. But,
where Perl’s motto is “There’s More Than One Way to Do It,” the goal of Ruby is to follow the
Principle of Least Surprise where a simpler and consistent environment is preferred.

Like Python, Ruby also seeks to provide a much cleaner syntax than other languages. In addi-
tion, Ruby is a devotedly object-oriented language, taking after many of the traits of Smalltalk.
And finally, Ruby offers a lot of easy facilities for functional programming — such as closures,
continuations, and anonymous functions.

Where Ruby has really caught fire, however, is with the meteoric rise in popularity of the Ruby
on Rails Web development framework.

One of the main features of Ruby on Rails is the ability to run just a few commands to get up
and running with a full-fledged Web application in seconds, complete with database integra-
tion and page templates. From there, it’s extremely easy for developers to gradually tweak and
add code to tailor a generated scaffold into the shape and functionality desired. This sort of
“immediate gratification” in Web development, combined with the elegant syntax and agile
capabilities of Ruby, has served to greatly extend its presence in Web hosting packages.

Ruby was created in Japan, but you can find a home page for English readers here:

www.ruby-lang.org/en/

Because Ruby on Rails is pretty much the main reason for Ruby’s recent explosive growth, here’s
the location of that project’s home:

www.rubyonrails.org/

Summary
Hacks and mashups on the Web, and involving del.icio.us in particular, all depend on the exis-
tence of open data formats and APIs as well as agile and flexible programming languages.
Services that offer data exchange in formats based on XML and JSON via XML-RPC, SOAP,
REST, and Plain Old XML interfaces can be remixed and turned into new and interesting
applications. Rich scripting environments exist both on the client and server sides of the Web,
offering lots of possibilities through the use of “glue” languages such as JavaScript, XSLT, Perl,
PHP, Python, and Ruby.

This chapter breezed quickly through all the above, which you’ll see represented in future
chapters and in various combinations. In the next chapter, however, you get to see how
del.icio.us itself works, in preparation for exploring hacks.

37857c05.qxd 6/4/06 9:30 PM Page 114

Tagging Hacks

Tagging is one of the things for which del.icio.us has gained quite a bit
of fame. On the surface, it seems like such a simple feature. But,
there’s enough subtlety in the idea that it has succeeded in coaxing

metadata out of people where other approaches in the past have generally
failed or yielded lackluster results at best.

For such an unassuming concept, you can find a surprising number of arti-
cles and academic papers exploring the benefits of tagging versus other clas-
sification methods, as well as proposing conventions by which tagging can
be made more descriptive for powerful hacks. This chapter offers a few ways
in which you can make tagging more useful, as well as how your tags can be
used in hacks with other services and software.

What’s the Big Deal About Tagging?
You’ve already seen references to tagging and tags at various points through-
out this book. And, if you’ve used del.icio.us for any length of time, you’ve
already been exposed to tags and examples of their use. But, up to this point
in the book, this feature has largely been treated without much fanfare. On
the surface it seems like such a trivial thing: Tagging is free-form classifica-
tion in a flat namespace using simple word-based descriptors. But this is a
subtle idea, and there’s so much more to it.

Tags Are Categories That Help Plan Themselves
Tags are kind of like categories in that they’re used to group things. But
categories tend to be a premeditated sort of thing — that is, one tends to
come up with categories ahead of time before amassing a collection. Or,
sometimes, a set of categories is invented after the fact, with a careful study
and rearrangement of an existing collection into folders or buckets. In either
case, there’s some intentional planning given to categories.

With tags, however, planning is actually a bit of a hindrance. One of the
best ways to tag items is almost akin to word association: Come up with
descriptive terms at the time the item is discovered, and throw as many of
them at the item as you can think of. After a collection of tagged items
accumulates, patterns should emerge from the tags you’ve used. Certain tags
will appear attached to similar items because you likely tend to associate
similar words with them, thus forming an ad hoc grouping.

� What’s the big deal
about tagging?

� Making tags useful

� Better social
networking through
tagging

� Analyzing tag
relationships

� Exploring tagged
media files in
bookmarks

� Bookmarking the
real world with
geotagging

chapter

in this chapter

37857c06.qxd 6/4/06 9:31 PM Page 115

116 Part II — Remixing del.icio.us

So, instead of carefully constructing the buckets into which items go ahead of time, you attach
descriptors to items from which groupings can be inferred in the future. In other words, with
tags, the categories help plan themselves. For an example of a developed tag collection, take a
look at Figure 6-1.

FIGURE 6-1: Building a personal tagroll on del.icio.us

Tags Can Be Gardened Later
Now, of course, in coming up with the set of tags to attach to any newly discovered item, you
probably have a bit of a classification scheme in mind already. Web development bookmarks
get WebDevelopment, recipes may get cooking, and things you want for Christmas may get
alliwantforchristmas. After awhile, you’ll probably remember to reuse these tags for
similar items.

Then again, you may later decide wishlist is better than alliwantforchristmas. The
point is that your set of tags is meant to be a fluid, ad hoc, and constantly evolving classifica-
tion scheme. The set of tools provided by del.icio.us facilitates this fluidity, even giving the
ability to rename tags you’ve used in the past to bring things into line with your changing ideas
about how to describe things (as shown in Figure 6-2).

In this way, your tags can be groomed and trimmed like a garden. You should think of your tags
as a living and evolving set of descriptors. When deciding on tags to use, you don’t need to
steadfastly commit to anything up front because you can always tweak things later.

37857c06.qxd 6/4/06 9:31 PM Page 116

117Chapter 6 — Tagging Hacks

FIGURE 6-2: Renaming and deleting tags on del.icio.us

Tagging Is a Multiplayer Game
Where things get interesting for tagging, however, is when it becomes a multiplayer game. This
is, in a nutshell, what the term folksonomy is all about.

You can read more about the coined term “folksonomy” here on the Wikipedia:

http://en.wikipedia.org/wiki/Folksonomy

In order to share bookmarks, it’s very useful to come to agreement on what tags to use for a
particular sort of item. Among other motivations, people like to see their bookmarks show up
in popular places and queries — so there’s a little bit of incentive for using the same tags as
everyone else. There’s personal value in it, too, because when you start catching on to the popu-
lar tagging conventions, you’ll also know where to find further interesting things.

Thus, while you may have started using WebDevelopment as a tag, you may later see that the
more popular tag is webdev for the sorts of things you’re finding. And so you may shift your
habits accordingly in the future, and maybe even go so far as to fix your tags from the past. This
sort of natural convergence of tags driven by social sharing is what can help imbue tagging with
even more value: Rather than relying solely on your own word association in a vacuum, social
tagging can help nudge you and everyone toward common terms (as shown in Figure 6-3).

37857c06.qxd 6/4/06 9:31 PM Page 117

118 Part II — Remixing del.icio.us

FIGURE 6-3: A cloud of all popular tags used on del.icio.us

Tags Can Be Organized by Analysis
When used as raw data, tags and the items to which they’ve been attached can be analyzed to
discover relationships and patterns inherent in their usage. By working out which tags tend to
appear alongside which others, and what tags were used with items posted by many people, you
can come up with graphs and maps of the tagging universe.

While not the same thing as parent/child relationships between nested category folders or
buckets, analysis can offer some structure to tagging. And, when you’re in the act of applying
tags to an item, tag analysis can offer suggestions as to which tags may be appropriate to use
(see Figure 6-4). Furthermore, while you’re browsing around the collection of items, tags found
on the items you’re currently viewing can be used to suggest further avenues for search (see
Figure 6-5).

Although machine intelligence can’t completely replace well-trained human librarians, tag
analysis can go a long way toward relieving human beings of some of the burden of careful
organization and wrangling over taxonomy.

37857c06.qxd 6/4/06 9:31 PM Page 118

119Chapter 6 — Tagging Hacks

FIGURE 6-4: Tag suggestions offered while posting a bookmark

FIGURE 6-5: Further tags offered while browsing bookmarks by tag

37857c06.qxd 6/4/06 9:31 PM Page 119

120 Part II — Remixing del.icio.us

Tagging Has Room for Expansion by Convention
As metadata, tags can convey more information than simple grouping. On del.icio.us, tags can’t
contain spaces or question marks, but otherwise you can use just about any other combination
of letters and numbers and other symbols. Traditionally, sticking with words is your best bet,
although some people like to try to form hierarchies by using slashes and other delimiters. This
is kind of going against the nature of tagging, but it’s allowed nonetheless.

There are also ways of overloading tags with meaning beyond grouping. For instance, there are
a few overloaded tag conventions that are officially supported by del.icio.us, such as the
for:deusx pattern and system:media:audio. The first, using a for: prefix, allows you to
target bookmarks for individual users. The second, automatically applied by the system on
bookmarks with URLs ending in .mp3, causes RSS feeds filtered on this tag to include
<enclosure> elements to facilitate podcasting.

Outside of those officially overloaded tags, users have started establishing their own conven-
tions, such as:

� toread or toblog for facilitating reading or blogging workflow

� The via:deusx pattern to indicate from whom a bookmark was first discovered

� geo:lat and geo:long for use in indicating an associated geographic location

There are limits to what can be done through overloading the grouping semantics of tags, but
this can be a very useful way to expand the descriptive capabilities of tagging.

Tagging Is an Imperfect Yet Useful System
Of course, tagging is not a perfect system, and the universe of tags on a system like del.icio.us
will always be fuzzy and somewhat weird. Thoughtful taxonomists could, in time, construct a
much better and more precise arrangement of things. One person’s tags may not directly map
onto another’s, and depending on the community makeup one conception of a tag may collide
with another — take, for example, the rock band named Europe versus the geographical region
of Europe. And, of course, the whole multiplayer aspect of the system depends entirely on how
willing everyone is to participate, providing good tags for their items and watching what’s
emergent in the popular tag cloud.

But the point is that even with the imperfection, there’s value to tagging. That is, tags actually
get used, and they actually help in finding things. If there’s some risk of introducing noise with
the signal, the benefit is that at least there’s some signal. Classification systems in the past have
suffered from starvation because of the up-front effort required to use them when balanced
with the end-result reward or sense of immediate gratification. They may have produced clean
data in the end, but there might be little of it. Social tagging, on the other hand, combines just
the right elements of ease-of-use and natural tendencies toward consensus to both be used and
provide useful and fresh metadata.

So, with no further ado, let’s dig into some of the above-mentioned facets of tagging.

37857c06.qxd 6/4/06 9:31 PM Page 120

121Chapter 6 — Tagging Hacks

Making Tags Useful
Tags are already useful for the purposes of organizing material from the Web, but their organi-
zational function can be augmented by convention and personal practice. Because you can use
tags to filter bookmark queries, you can consider tags as a sort of routing system.

Flagging Interesting Pages for Later Reading
If you’re an avid infovore, you’re likely to accumulate a lot of backlogged reading. This can
especially be true if you use a feed reader or news aggregator and if you keep track of some
active tag feeds on del.icio.us. One method that del.icio.us users have begun using to cope
with this backlog is to build a sort of reading queue by posting bookmarks tagged with
toread or read_later.

When you use the read_later tag, you can later visit your collection at this URL:

http://del.icio.us/deusx/read_later

Remember to swap your user name for deusx, and you’ve got an instant buffer for catching up
when you have time. And, if your time is really short, you could use a special-purpose book-
marklet to quickly and automatically post the current page with a read_later tag.

Check out this blog post by Cédric Beust discussing just such a bookmarklet.

http://beust.com/weblog/archives/000254.html

So, with this bookmarklet, you can click on links and stories, maybe skim just enough to
know you’re interested, and then post it to your reading queue and close the page until later.
Once you’ve had a chance to read pages you’ve flagged for later, you can then use the normal
bookmarklet to post and edit to remove the read_later tag — and maybe replace it with
some more appropriate tags you can think up after having actually had a chance to read
the page.

Marking Links for Later Consideration During Blogging
Another variation to complement the toread or read_later notion is the toblog tag.

You could think of this as a sort of workflow: First, news articles and such go into your read-
ing queue via the read_later tag. When later finally arrives, you’ll have time to read the
bookmarks and revise your tags by reposting. You might decide a few things are worth writ-
ing about on your blog, but maybe you haven’t got the time or inspiration to do it yet — so
just attach a toblog tag and continue catching up with the rest of your reading. Then, once
you’re ready to write some stellar entries for your blog, the toblog queue will be waiting
for you.

37857c06.qxd 6/4/06 9:31 PM Page 121

122 Part II — Remixing del.icio.us

Integrating Routed Bookmarks into Your Browser via Feeds
If you use a browser that has feed-powered bookmark folders as Firefox has with its Live
Bookmarks feature, you can pull feeds of your bookmarks tagged as read_later, toread,
or toblog right into your bookmark toolbar alongside the other bookmark buttons you proba-
bly already use to post bookmarks to del.icio.us. Check out Figure 6-6 for an example of this
in action.

FIGURE 6-6: A tag-filtered feed powering a Live Bookmarks folder in Firefox

In Firefox, you can activate this feature by simply clicking the orange “transmission waves”
icon, which appears whenever you’re on a page that has an associated feed — and that includes
just about every page available on del.icio.us.

Better Social Networking Through Tagging
Tagging is, implicitly, a socially driven system. When it works well, the influence of people
upon each other’s tagging practices helps form consensual groupings and conventions.
However, the operation of these forces is really quite impersonal, forming more of an emer-
gent and non-intentional form of social networking wherein the participants never quite need
to communicate directly for the system to work. And, in fact, in many ways this system works
well because its users don’t need to interact personally.

37857c06.qxd 6/4/06 9:31 PM Page 122

123Chapter 6 — Tagging Hacks

However, as opposed to abstract agents in a system, people are explicitly social creatures in the
end. They enjoy direct communication and information exchange, among other pleasantries.
So, toward this end, a few conventions have developed to facilitate more intentional social con-
nections. While these tagging conventions don’t really serve to turn del.icio.us into a social ren-
dezvous as such, they do allow for a measure of hat tipping and messaging between people.

Giving Credit with the via: and cite: Tag Prefixes
People often tag their links with a user name prefixed by via: (e.g., via:deusx) to credit
from whose collection the bookmark was originally found. Similarly, some prefer to use the
cite: tag prefix in providing credit to people and sites.

These tags are more of a courtesy or a tip of the hat because there are no official del.icio.us
features (as of this writing) that do anything extraordinary with them. As usual, you can filter
bookmarks on a via: tag, as shown in Figure 6-7, with a URL like the following:

http://del.icio.us/tag/via:deusx

And, you can get an RSS feed of these bookmarks filtered like so:

http://del.icio.us/rss/tag/via:deusx

FIGURE 6-7: Bookmarks credited with a via:deusx tag

37857c06.qxd 6/4/06 9:31 PM Page 123

124 Part II — Remixing del.icio.us

But, beyond these queries, no support is available to, for example, search for all of the via:-
prefixed tags in existence in order to do some social network analysis. And because there’s no
immediate intention to turn del.icio.us into a dating site, such features aren’t likely to appear
any time soon.

You see, on one hand, if some particular user emerges as a frequent source of the sorts of links
you find interesting, it would be interesting to know how to find more. And it can be a nice
gesture to give a nod toward the person from whom you first found something new. On the
other hand, some might say that introducing an ego-enabling system of credit-gifting is neither
helpful nor desirable for the workings of del.icio.us and tagging in general.

In any case, as an unofficial convention, the via: tag prefix can prove useful to the extent that
everyone’s friendly, personal politics are left out of the system, and everyone gets pointed down
the scent trails toward more interesting things.

Using the for: tag Prefix for Interpersonal Messaging
You’ve seen the for: tag prefix mentioned before in Chapters 1 and 4, but it’s worth checking
out one more time in the context of this chapter. In short, when you tag any bookmark with a
user name prefixed by for: (e.g., for:deusx), that bookmark will be targeted for the user’s
attention. This is a tagging convention whose overloaded meaning has special support from
del.icio.us. The tags themselves are hidden from public view, made available by way of a private
page and RSS feed that list bookmarks tagged in this way.

The link for this private tag query is available in the page header navigation when you’re logged
into your account on del.icio.us. You can also find it at a URL like this:

http://del.icio.us/for/deusx

Just replace deusx with your own user name, and you’re there. Check out Figure 6-8 for an
example of this page.

As you can see, this page doesn’t depart much from most other bookmark listings, but each of
the links in Figure 6-8 has a hidden for:deusx tag attached. The page also has an associated
RSS feed — but unlike the feeds made available on many other pages, this one has an authen-
tication key included. This is meant to make it easier to subscribe to your private feed in an
aggregator without needing a login. Although it doesn’t automatically allow someone access to
your del.icio.us account in general, you should keep this URL and its key under wraps.

Analyzing Tag Relationships
One of the benefits of the relative simplicity of tags as data is that they’re fairly easy to analyze.
Tags can be observed, measured, charted out over time, and indexed in ways that can provide a
lot of useful or interesting intelligence. While del.icio.us itself is developing further tagging
capabilities, third-party sites can offer additional functionality by way of using the API and
data feeds.

37857c06.qxd 6/4/06 9:31 PM Page 124

125Chapter 6 — Tagging Hacks

FIGURE 6-8: Personally tagged bookmarks on display

Visualize Relationships Between Tags with TouchGraph
When posting a new bookmark or when browsing around through bookmark listings,
del.icio.us offers constant suggestions as to what tags are possibly related to what you’re posting
or viewing. These tags are presented in simple flat lists, however, so you may not be able to get
a sense of the structure of tag relationships.

Using the open source graphing package TouchGraph, Alf Eaton offers a Java applet that can
graphically map the relationships between tags on del.icio.us. Take a look at it here:

http://hublog.hubmed.org/archives/001049.html

To use this applet, first supply a tag in the form and submit (e.g., coffee). Very shortly, the
applet should load up and initialize, providing you with a spidery spread of tag connections.
This applet is dynamic and interactive, so you can click and drag tag nodes around. You can
also double-click them to further chase relationships into that tag. As shown in Figure 6-9, you
can expand this view into one or more tag clusters to trace deeper connections.

37857c06.qxd 6/4/06 9:31 PM Page 125

126 Part II — Remixing del.icio.us

FIGURE 6-9: Graphing the tag relationships that branch out from “coffee” with TouchGraph

Perform Power Searches on Your Tagged Bookmarks
While del.icio.us does allow some facilities for searching and filtering through your bookmarks,
there’s a lot to be desired from what works at present. There are no easy ways to perform more
advanced searches using Boolean logic, or perform union filters with multiple tags, among
other things offered by other search engines and databases.

Well, the “del.icio.us illogical interface” offered by Victor Engmark can help fill in some of
these gaps. Check it out here:

www.l0b0.net/delicious/

This site asks for your del.icio.us user name and password, which it uses to access the API in
order to download and cache a copy of all of your bookmarks in XML. Then, you can perform
lots of complex queries on your bookmark collection, as described here:

www.l0b0.net/delicious/doc.php

Figure 6-10 presents the search interface offered by this site, with the results of a search shown
in Figure 6-11. If you don’t trust your user name and password to this site, however, it looks
like all the PHP and XSL source code to run your own copy of this search tool is made avail-
able for download. Either way, this interface can provide a lot of power for digging through
your collection of bookmarks.

37857c06.qxd 6/4/06 9:31 PM Page 126

127Chapter 6 — Tagging Hacks

FIGURE 6-10: Preparing to search on a set of programming languages as tags

FIGURE 6-11: Results of a combined search for programming tags

37857c06.qxd 6/4/06 9:31 PM Page 127

128 Part II — Remixing del.icio.us

Mashup Tags from Many Services
If it’s tag-based mashups you’re after, here’s one involving tags from a few different services
arranged right alongside filtered results from del.icio.us:

http://tagbert.com/

After submitting a tag search on Tagbert, you’ll be able to see an aggregated page of results
centered on this tag from del.icio.us and a handful of other tag-enabled sites (see Figure 6-12).
This sort of service can be useful as more and more services enable tagging services and users
share tag meanings across sites.

FIGURE 6-12: Searching for “coffee” with Tagbert

Exploring Tagged Media Files in Bookmarks
These are early days in del.icio.us history with respect to officially enhanced tags. But you’ve
already seen one example with the support of tags using the for: prefix. As it turns out, there
are a few more such tag patterns — namely the system:media and system:filetype tag
prefixes. To get the straight scoop on this support, check out the help page here:

http://del.icio.us/help/mediafiletypes

37857c06.qxd 6/4/06 9:31 PM Page 128

129Chapter 6 — Tagging Hacks

The notion behind media and file type tags is this: When a new bookmark is posted to
del.icio.us, the URL is checked against a set of known file extensions. If one of these is found
at the end of the URL, the corresponding file type tag is automatically applied. Then, the
media tag associated with that file type tag is also applied. Check out Table 6-1 for a quick ref-
erence to these mappings.

Table 6-1 File Extensions Mapped to File Type and Media Tags

File Extension File Type Tag Media Tag

.mp3 system:filetype:mp3 system:media:audio

.wav system:filetype:wav system:media:audio

.mpg system:filetype:mpg system:media:video

.mpeg system:filetype:mpeg system:media:video

.avi system:filetype:avi system:media:video

.wmv system:filetype:wmv system:media:video

.mov system:filetype:mov system:media:video

.tiff system:filetype:jpg system:media:image

.jpeg system:filetype:jpeg system:media:image

.gif system:filetype:gif system:media:image

.tiff system:filetype:png system:media:image

.doc system:filetype:doc system:media:document

.pdf system:filetype:pdf system:media:document

So, for example, consider this URL posted as a bookmark:

http://example.com/music/jingle.mp3

The system would automatically attach the tags system:filetype:mp3 and system:
media:audio to this bookmark for you. As another example, think about the following link
as a bookmark:

http://example.com/writing/mybook.doc

This bookmark would appear posted with both the tags system:filetype:doc and
system:filetype:document attached.

Now, as with any other tags, you can use these as filters in queries to del.icio.us. So, say for
example you wanted to find all of the documents posted recently. Try this URL on for size:

http://del.icio.us/tag/system:media:document

37857c06.qxd 6/4/06 9:31 PM Page 129

130 Part II — Remixing del.icio.us

You could also subscribe to this filter as an RSS feed like so:

http://del.icio.us/rss/tag/system:media:document

Build an Image Gallery from Bookmarked Images
One of the main benefits gained from the automatic application of media and file type tags is
the ability to filter for bookmarks of a certain file format. Because there’s no way to perform a
wildcard search on URLs for file extensions, these tags give you a supported way to do it. So, if
you filter on system:media:image, you can fairly reasonably assume that the results will all
be images of one sort or another — PNGs, GIFs, and JPEGs to be precise.

If you combine a JSON feed filtered on system:media:image with a little in-browser
JavaScript, you can construct a photo gallery managed through bookmarks on del.icio.us.
Check out Listing 6-1 for some basic HTML to kick off building just such a gallery. (You can
download all the source code for this chapter from the book’s Web site at www.wiley.com/
go/extremetech.)

Listing 6-1: ch06_bookmark_lightbox.html

<html>
<head>

<title>Bookmark Lightbox</title>
<link href=”ch06_bookmark_lightbox.css”

type=”text/css” rel=”stylesheet” />

<script src=”http://del.icio.us/feeds/json/deusx/system:media:image”
type=”text/javascript”></script>

<script src=”ch06_bookmark_lightbox.js”
type=”text/javascript”></script>

</head>
<body>

<h1>Bookmark Lightbox</h1>
<ul id=”thumbs”>

</body>
</html>

Listing 6-1 offers ch06_bookmark_lightbox.html, a shell of an HTML page meant to
host the CSS and JavaScript that will build the photo gallery.

A JSON feed from del.icio.us, filtered on system:media:image, is included in the page head
along with this project’s CSS and JS code. As usual, replace deusx with your own user name in
the JSON URL to access your own bookmarks. In the page body, you’ll find an empty

37857c06.qxd 6/4/06 9:31 PM Page 130

131Chapter 6 — Tagging Hacks

element with an ID of thumbs. This empty list will be dynamically populated with images
once the page is loaded.

Next, in Listing 6-2, CSS styles are defined in ch06_bookmark_lightbox.css.

Listing 6-2: ch06_bookmark_lightbox.css

body, div, td, li {
font: 12px arial;

}
#thumbs {

list-style: none;
margin: 0;
padding: 0;

}
#thumbs li {

float: left;
width: 23%;
height: auto;
padding: 0;
margin: 0.5ex;

}
img.thumb {

width: 100%;
height: auto;

}

The styles defined in Listing 6-2 for ch06_bookmark_lightbox.css are entirely up to you
for customization, but the intent here is to style the list of thumbnails as a rough grid of float-
ing images. This is quick and dirty, however, because it scales the images down in width and
allows the height to vary in order to retain the image’s shape and aspect ratio. You may want to
improve upon this in your own tinkering, perhaps performing server-side image scaling and
working on a better layout.

Finally, in Listing 6-3 you can find the source code for ch06_bookmark_lightbox.js, the
main JavaScript code that turns del.icio.us bookmarks into thumbnails on the page.

Listing 6-3: ch06_bookmark_lightbox.js

/**
ch06_bookmark_lightbox.js

Display bookmarked images in a “lightbox” of thumbnails.
*/
function init() {

continued

37857c06.qxd 6/4/06 9:31 PM Page 131

132 Part II — Remixing del.icio.us

Listing 6-3 continued

// Grab a reference to the container for image thumbnails
var lbox = document.getElementById(‘thumbs’);

// Iterate through the list of bookmarks loaded via JSON.
for (var i=0, post; post=Delicious.posts[i]; i++) {

// Create a new list element for the thumbnail
var li = document.createElement(‘li’);

// Build a link to wrap around the image
var a = document.createElement(‘a’);
a.setAttribute(‘href’, post.u);
a.setAttribute(‘title’, post.n);

// Build the actual image from bookmark data
var img = document.createElement(‘img’);
img.setAttribute(‘class’, ‘thumb’);
img.setAttribute(‘src’, post.u);
img.setAttribute(‘title’, post.d);
img.setAttribute(‘alt’, post.n);

// Nest the image in the link.
a.appendChild(img)

// Nest the link in the list item.
li.appendChild(a);

// Add the list item to the list of thumb.
lbox.appendChild(li);

}
}

// Set the main function to run at page load.
window.onload = init;

There’s not much to the code in Listing 6-3 for ch06_bookmark_lightbox.js. It iterates
through the bookmarks loaded up via JSON and, for each bookmark found, builds a list item
containing an image wrapped in a link. These list items are each added to the initially empty
list in the HTML page hosting this JavaScript. The source for the image in each item is taken
from the bookmark’s URL, as is the target for the link.

When you load this page up in your browser, you’ll see a rough grid of scaled down images, as
shown in Figure 6-13. Clicking on any of the images will lead to the original full-sized version.
Try adding more images as bookmarks, and watch them appear here when you reload the page.

37857c06.qxd 6/4/06 9:31 PM Page 132

133Chapter 6 — Tagging Hacks

While this isn’t a very richly featured photo gallery, it should give you a small taste of how you
can use del.icio.us and tagging to facilitate the collection and management of resources beyond
plain links to Web pages.

FIGURE 6-13: Viewing bookmarked images as thumbnails

Listen to Streaming Audio Bookmarks with Play Tagger
There’s a bit more to the story with these file types beyond simple filtering, and this is particu-
larly true when it comes to system:filetype:mp3. Try visiting this tag filter page, also
shown in Figure 6-14:

http://del.icio.us/tag/system:filetype:mp3

Notice that on this page each of these links has a small, square “play” button next to it. If you
click one of these buttons and all is well, the audio link itself will start to stream from the server
and play in your browser. This feature is called Play Tagger, and you can read more about it here:

http://del.icio.us/help/playtagger

What this feature does, in short, is dynamically insert embedded streaming player buttons in
front of all links on a page whose URLs end with .mp3. You’ll find these players appearing on
all del.icio.us pages where MP3s are bookmarked.

37857c06.qxd 6/4/06 9:31 PM Page 133

134 Part II — Remixing del.icio.us

As a very cool bonus feature, the JavaScript code that powers Play Tagger is not restricted for
use on just the pages at del.icio.us. If you’d like to enable these MP3 buttons on your own site,
just drop the following JavaScript include into your HTML:

<script type=”text/javascript” src=”http://del.icio.us/js/
playtagger”></script>

This included JavaScript code will unobtrusively register itself to be run at page load, wiring up
every MP3 link on the page with play buttons. In addition, if you check out the help page, you can
get a browser bookmarklet that will inject Play Tagger audio players into any page on the Web.

FIGURE 6-14: Bookmarks tagged with system:filetype:mp3 featuring Play Tagger buttons

Podcasting Audio and Video Via Bookmarks
But wait, there’s still more to this media thing on del.icio.us — check out the following
tag-filtered RSS feed:

http://del.icio.us/rss/tag/system:media:audio

If you check out the raw data of this feed, you’ll see an RSS 2.0 feed something like what’s shown in
Listing 6-4. But wait a minute — didn’t Chapter 4 show that del.icio.us served up RSS 1.0 feeds?

Well, that’s true in the general case, but look more closely at this feed: Not only has it
changed feed formats when serving up the system:media:audio tag filter, it’s also gained
<enclosure> elements pointing at the audio file URLs. You’ll find that this same feature

37857c06.qxd 6/4/06 9:31 PM Page 134

135Chapter 6 — Tagging Hacks

applies to the system:media:video tag as well. This means that media bookmarks filtered
on system:media:audio and system:media:video are available as podcast feeds.

In a nutshell, podcasting is a way to use RSS feeds to subscribe to scheduled downloads of
audio and video media, which revolves around the <enclosure> tag. You might view textual
stories in a news aggregator fed by RSS feeds, but podcasting uses new items found in RSS
feeds to trigger the acquisition of media files. Special-purpose feed aggregators that do this
tend to be referred to as “podcatchers” or “podcast tuners.”

Want to learn more about podcasting and podcast feeds in general? Consult the Wikipedia:

http://en.wikipedia.org/wiki/Podcasting

Listing 6-4: Example RSS 2.0 feed with enclosures from del.icio.us

<?xml version=”1.0” encoding=”UTF-8”?>

<rss version=”2.0”
xmlns:blogChannel=”http://backend.userland.com/blogChannelModule”>

<channel>
<title>del.icio.us/tag/system:media:audio</title>
<link>http://del.icio.us/tag/system:media:audio</link>
<description></description>

<item>
<title>MacTips #5 - SMS Messaging</title>
<link>http://www.think-mac.net/blog/tips/MacTips%20%235%20-
%20SMS%20Messaging.mp3</link>
<enclosure url=”http://www.think-mac.net/blog/tips/MacTips%20%235%20-
%20SMS%20Messaging.mp3” type=”audio/mpeg” />
</item>

<item>
<title>War of the Worlds - Orson Welles Radio Broadcast (1938)</title>
<link>http://radio.indymedia.org/uploads/waroftheworlds_1938-10-
30.mp3</link>
<enclosure
url=”http://radio.indymedia.org/uploads/waroftheworlds_1938-10-30.mp3”
type=”audio/mpeg” />
</item>

<item>
<title>EP037_Craphound.mp3 (audio/mpeg Object)</title>
<link>http://escapepod.podlot.net/EP037_Craphound.mp3</link>
<enclosure url=”http://escapepod.podlot.net/EP037_Craphound.mp3”
type=”audio/mpeg” />
</item>

</channel>
</rss>

37857c06.qxd 6/4/06 9:31 PM Page 135

136 Part II — Remixing del.icio.us

Subscribe to del.icio.us Podcast Feeds with the Juice Receiver
One of the earliest cross-platform podcast receivers is nowadays called Juice. This is an open
source project, available for download here:

http://juicereceiver.sourceforge.net/index.php

You can use Juice to subscribe to the podcast feeds available through del.icio.us; it allows you to
automatically receive new media files posted as bookmarks. Grab a copy of this program and
install it — although you’ll probably want to read up on the details at the project site, there’s
not much to it. Once the program’s installed, try adding a podcast subscription by clicking the
big green “+” button. You should see a popup dialog box like the one shown in Figure 6-15.
The subscription will appear in the main window (see Figure 6-16) and podcast attachments
should shortly begin downloading (see Figure 6-17).

FIGURE 6-15: Adding a new podcast feed subscription in Juice

FIGURE 6-16: Main window listing subscriptions in Juice

37857c06.qxd 6/4/06 9:31 PM Page 136

137Chapter 6 — Tagging Hacks

FIGURE 6-17: Downloading new podcast enclosures in Juice

For subscriptions, here are a few useful feed suggestions:

� For a firehose of all the latest audio, try this feed:

http://del.icio.us/rss/tag/system:media:audio

� Want to hear musical mashups? Try this feed:

http://del.icio.us/rss/tag/system:media:audio+mashup

� Check out some of the latest popular video bookmarks with this feed:

http://del.icio.us/rss/popular/system:media:video

� Here’s a feed that often delivers a lot of movie trailers:

http://del.icio.us/tag/system:media:video+trailer

Try checking out different combinations of media tags and more mundane tags to refine your
feed selection. The results here can be pretty random and sometimes even obscene — so be
forewarned. But, with the right application of tag filters, or restricting your media subscription
to certain users, you can keep yourself supplied with some pretty entertaining material.

Subscribe to del.icio.us Podcast Feeds in iTunes
If you’re a fan of Apple’s iTunes and maybe even own an iPod, you’ve got another option
for podcatching at your fingertips. And the nice thing about using iTunes and an iPod for

37857c06.qxd 6/4/06 9:31 PM Page 137

138 Part II — Remixing del.icio.us

subscribing to podcasts is that it’s an integrated solution — media downloaded from podcast feeds
in iTunes can be automatically synched up to your iPod without much effort. This can be done
with Juice and a different portable media device, but the process may not be quite as smooth.

You can find out more about the podcasting features built into iTunes here:

www.apple.com/itunes/podcasts/

To subscribe to a podcast with iTunes, you’ll first need version 4.9 or later — as of this writing,
the latest version is 6.0.1, so this shouldn’t be a problem. Once you’re sure you have the right
version, look for “Subscribe to Podcast” under the Advanced menu. Once you select this menu
item, you’ll see a dialog box like the one shown in Figure 6-18. Enter the URL to a del.icio.us
media feed here, and you should shortly see the subscription and download progress appear, as
in Figure 6-19.

FIGURE 6-19: Main window listing subscriptions and downloading podcasts in iTunes

FIGURE 6-18: Adding a new
podcast feed subscription
in iTunes

37857c06.qxd 6/4/06 9:31 PM Page 138

139Chapter 6 — Tagging Hacks

If you have an iPod attached, you can open up your preferences and, as shown in Figure 6-20,
you should find a podcasts tab in the iPod settings. Here you can control the synching of pod-
casts downloaded by iTunes, whether you’d like everything to make it to the iPod or whether
you’d like to be more selective. You can also control preferences here as to how long downloaded
podcasts should stick around — these tend to be large files, so you may want to allow iTunes to
toss them out after a while if you haven’t had a chance to listen to or view them.

FIGURE 6-20: iPod preferences for podcast management in iTunes

Bookmarking the Real World with Geotagging
Geotagging is an example of the use of tags imbued with additional meaning, although these
are not formally supported by del.icio.us itself. Instead, where del.icio.us users follow geotag-
ging conventions, third-party programs and scripts have the opportunity to harvest useful geo-
graphical information from tags.

To read more about geotagging and further geographical metadata adventures, check out the
geobloggers here:

http://geobloggers.blogspot.com/

37857c06.qxd 6/4/06 9:31 PM Page 139

140 Part II — Remixing del.icio.us

So in short, applying the geotagging convention involves three tags:

� geotagged — This tag indicates that this item has had geotagging applied.

� geo:lat=### — This tag specifies a latitude of a geographical location, where ### is
replaced by the actual value.

� geo:long=### — This tag specifies a longitude of a geographical location, where ###
is replaced by the actual value.

The first tag of the set, geotagged, allows for easy filtering on all items on which geotagging
has been applied because there’s no way to perform partial-tag searches at present to dig items
associated with the other two tag prefixes, geo:lat and geo:long.

Composing Geotagged Bookmarks
Say, for example, that you wanted to collect some bookmarks of good places to eat. One of our
favorite places for quick and tasty take-out is Zumba Mexican Grille in Royal Oak, Michigan.
It so happens that they have a Web page, including a street address, which you can check out
here and in Figure 6-21:

www.zumbagrille.com/contact.html

FIGURE 6-21: Contact page for Zumba Mexican Grille

37857c06.qxd 6/4/06 9:31 PM Page 140

141Chapter 6 — Tagging Hacks

So now you have both a Web and a real-world location for Zumba Mexican Grille. However,
you need to convert this address into latitude and longitude coordinates. For this, you’ll need a
service that can do geocoding for you. Check out this free service available for use with
addresses in the United States:

http://geocoder.us/

Using geocoder.us, you can enter just about any address information to get geographical
coordinates in return (see Figure 6-22). Now, with both a Web address and proper geographi-
cal coordinates, you’re ready to post a geotagged bookmark. In this example, the tags to be used
are the following:

� geotagged

� geo:lat=42.490049

� geo:long=-83.144301

You can attach these three tags along any other combination of tags you like — with the excep-
tion of repeated geotags because that’s likely not to make much sense. Check out Figure 6-23
for a geotagged bookmark posting in action.

Try this a few times, digging up the addresses and home pages for more businesses in your
area. Find your house too, if you like — although that might be a geotagged bookmark you
want to keep to yourself. In the end, you should have a number of locations in your collection,
available for filtering on geotagged (see Figure 6-24).

FIGURE 6-22: Converting an address to latitude and longitude

37857c06.qxd 6/4/06 9:31 PM Page 141

142 Part II — Remixing del.icio.us

FIGURE 6-23: Editing a geotagged bookmark

FIGURE 6-24: Viewing a collection of geotagged bookmarks

37857c06.qxd 6/4/06 9:31 PM Page 142

143Chapter 6 — Tagging Hacks

Visualize Geotagged Bookmarks Using Google Maps
Having geographical information attached to your bookmarks may seem interesting from an
abstract perspective, but there might not seem to be much use to this data unless you can see it
visualized on a map. Well, one way to do this is via the JavaScript API offered by Google
Maps. Using this API in conjunction with a del.icio.us JSON feed, you can cobble together
glue code capable of bringing visual life to your geotagged bookmarks as icon markers placed
on a real-world map.

JSON feeds offered by del.icio.us were explained back in Chapter 4. However, unless you’re
already well acquainted with the Google Maps API, you might want to check out the docu-
mentation here:

www.google.com/apis/maps/

As you’ll soon discover from the documentation, you’re required to sign up for a Google Maps
API key here:

www.google.com/apis/maps/signup.html

This key is assigned by account and URL, so you’ll need both to have signed up for a Google
Account and know the address where you can host an HTML page. The key is good for all
pages below a certain directory, so you can include your whole site under the key if you like.

Once acquired, this key will be included in a URL similar to this:

http://maps.google.com/maps?file=api&v=1&key=ABGJDISAAAj8s98...

This URL is intended as a JavaScript include for use on an HTML page. With that in mind,
check out Listing 6-5 for the source of ch06_gmaps_geotags.html.

Listing 6-5: ch06_gmaps_geotags.html

<html>
<head>

<title>Bookmarks of Good Eats!</title>

<script src=”http://maps.google.com/maps?file=api&v=1&key=XXXXX”
type=”text/javascript”></script>

<script src=”http://del.icio.us/feeds/json/deusx/geotagged”
type=”text/javascript”></script>

<link href=”ch06_gmaps_geotags.css”
type=”text/css” rel=”stylesheet” />

continued

37857c06.qxd 6/4/06 9:31 PM Page 143

144 Part II — Remixing del.icio.us

Listing 6-5 continued

<script src=”ch06_gmaps_geotags.js”
type=”text/javascript”></script>

</head>
<body>

<h1>Bookmarks of Good Eats!</h1>
<div id=”map”></div>
<ul id=”legend”>

</body>
</html>

In Listing 6-5 is a barebones HTML page that will serve as the launch pad for mapping geo-
tagged del.icio.us bookmarks. Notice that one of the first things appearing in the <head> of
this page is a JavaScript include using the Google Maps API key address. You’ll want to supply
your own here, or else you’ll receive a few JavaScript alerts when you try to load up this page.

Next in the page is a reference to a JSON feed of my bookmarks filtered by geotagged. This
will pull in all of the bookmarks I’ve posted that include geographical metadata. Swap deusx
for your own user name to base this on your own collection. The next two elements in the page
header make reference to CSS and JS code, which you’ll see defined very shortly.

Finally, the <body> of this page simply includes a title, a <div> with an ID of map, and an
unordered list with an ID of “legend.” The latter two elements are empty for now, but they will
soon be filled with content on-the-fly via JavaScript.

Listing 6-6 offers the CSS included for this page as a reference to ch06_gmaps_geotags.css.

Listing 6-6: ch06_gmaps_geotags.css

body, div, td, li {
font: 12px arial;

}
#map {

width: 500px;
height: 200px;
border: 2px solid #000;

}
.note {

width: 25ex;
}
ul#legend {

list-style: none;
}

37857c06.qxd 6/4/06 9:31 PM Page 144

145Chapter 6 — Tagging Hacks

Listing 6-6 continued

ul#legend li {
clear: both;

}
ul#legend li img {

float: left;
padding-right: 2ex;

}

Listing 6-6 provides a simple set of styles in CSS for use in customizing this page — feel free
to tweak them if you like. The onscreen size of the Google Map is determined by the #map
rule, and the .note rule will influence the size of info bubbles displayed within the map. The
rest of the styles help in formatting a legend of locations that will be built along with the map.

Now, let’s get into the meat of this project with the start of ch06_gmaps_geotags.js in
Listing 6-7.

Listing 6-7: ch06_gmaps_geotags.js (Part 1 of 8)

/**
ch06_gmaps_geotags.js

Build map markers from geotagged bookmarks.
*/

// http://geocoder.us/
var HOME = {

title: “Home Sweet Home!”,
url: “http://decafbad.com”,
lat: 42.528458,
long: -83.152184,
zoom: 6

};

var BASE_ICON, ICON_CNT;

The JavaScript in Listing 6-7 begins with a descriptive comment and constructs a constant with
some geographic data. This record will be used to center the map, so this may be a good spot to
supply details about your home address. Or, you might want to pick a spot somewhere near the
center of other bookmarked locations you’ve collected. The properties of this object will be used
as a pattern throughout the rest of this code to define markers, and they are as follows:

� title: The title of the marker

37857c06.qxd 6/4/06 9:31 PM Page 145

146 Part II — Remixing del.icio.us

� url: A browsable URL associated with the location

� lat: Latitude of the location

� long: Longitude of the location

� zoom: A zoom level preferred for viewing this location, really used only with the home
location.

The other two constants defined are BASE_ICON and ICON_CNT, both of which will come in
handy when building markers and legend entries shortly. Next, let’s get into the initialization
section in Listing 6-8.

Listing 6-8: ch06_gmaps_geotags.js (Part 2 of 8)

/**
Initialize the map, icon assets, and add the markers.

*/
function init() {

var map = initMap();
BASE_ICON = initBaseIcon();
ICON_CNT = 0;
addMarker(map, HOME);
addPostPoints(map, Delicious.posts);

}
window.onload = init;

The init() function is defined in Listing 6-8, along with its registration as the page’s onload
event handler. This function will thus be called once the page has finished loading. The actions
performed here are pretty straightforward:

� The Google Map is initialized on the page using initMap().

� A template marker icon is initialized via initBaseIcon().

� The count of marker icons used so far is set to zero.

� A marker for the home location is added to the map with addMarker().

� Markers for bookmarks in the JSON feed are added with addPostPoints().

Moving forward to Listing 6-9, you can find the implementation of initMap().

Listing 6-9: ch06_gmaps_geotags.js (Part 3 of 8)

/**
Initialize the Google Map instance, add appropriate
controls.

*/

37857c06.qxd 6/4/06 9:31 PM Page 146

147Chapter 6 — Tagging Hacks

Listing 6-9 continued

function initMap() {
var map = new GMap(document.getElementById(“map”));

map.addControl(new GSmallZoomControl());
map.addControl(new GMapTypeControl());

var point = new GPoint(HOME.long, HOME.lat);
map.centerAndZoom(point, HOME.zoom);
return map;

}

The function initMap() is defined in Listing 6-9. It first creates a new GMap object instance
anchored on the <div> element identified as map, after which map user interface controls are
added. Finally, the map is zoomed and centered on the location defined as HOME and the map
object is returned.

Listing 6-10 presents the implementation of the initBaseIcon() function.

Listing 6-10: ch06_gmaps_geotags.js (Part 4 of 8)

/**
Prepare a base icon on which all other markers’ icons
will be based.

*/
function initBaseIcon() {

icon = new GIcon();
icon.shadow = “http://www.google.com/mapfiles/shadow50.tiff”;
icon.iconSize = new GSize(20, 34);
icon.shadowSize = new GSize(37, 34);
icon.iconAnchor = new GPoint(9, 34);
icon.infoWindowAnchor = new GPoint(9, 2);
icon.infoShadowAnchor = new GPoint(18, 25);
return icon;

}

In Listing 6-10, the initBaseIcon() function is pretty basic and mostly lifted straight from
the Google Maps API documentation: It defines a set of basic properties for a map marker
icon useful for customization later on.

Now, next up in Listing 6-11, we get to the geotagging meat of this project with the imple-
mentation of addPostPoints().

37857c06.qxd 6/4/06 9:31 PM Page 147

148 Part II — Remixing del.icio.us

Listing 6-11: ch06_gmaps_geotags.js (Part 5 of 8)

/**
Walk through del.icio.us bookmark posts made available
via JSON. Find geotagged bookmarks and attempt to
extract the details to build a map marker from the tags.

*/
function addPostPoints(map, posts) {

// Iterate through all the available bookmark posts.
for (var i=0, post; post=posts[i]; i++) {

// Prepare an empty data record.
var data = {};

// Extract the bookmark title and URL.
data.title = post.d;
data.url = post.u;

// Start off with the assumption that this is not
// a geotagged bookmark.
var is_geotagged = false;

// Iterate through all the tags attached to this post.
for (var j=0, tag; tag=post.t[j]; j++) {

// If this bookmark is geotagged, flip the flag.
if (tag == ‘geotagged’) is_geotagged = true;

// Look for property value delimiter, otherwise
// skip property tag handling.
var eq_pos = tag.indexOf(‘=’);
if (eq_pos == -1) continue;

// Look for geo:lat=XXX property
if (tag.indexOf(‘geo:lat’) == 0)

data.lat = tag.substring(eq_pos+1);

// Look for geo:long=XXX property
if (tag.indexOf(‘geo:long’) == 0)

data.long = tag.substring(eq_pos+1);
}

// If this bookmark was geotagged, add a new marker.
if (is_geotagged) addMarker(map, data);

}
}

37857c06.qxd 6/4/06 9:31 PM Page 148

149Chapter 6 — Tagging Hacks

The code for addPostPoints() in Listing 6-11 iterates through all of the given bookmark
posts supplied via JSON. For each of these, the title and URL are extracted into a data struc-
ture similar to the one seen in Listing 6-7 in the definition of HOME.

Next, it’s time to process the bookmark’s tags. Only those posts with geotagged attached are
interesting to this program, so that’s the first thing to be checked. If this tag is found, a flag is
set. After that, an attempt is made to locate both the geo:lat and geo:long tags and to
extract their values into the location data structure under construction for this bookmark.

If, after processing all the tags, it turns out that this was indeed a geotagged bookmark, the
location data collected is used to add a new marker to the map using addMarker().

Speaking of addMarker(), Listing 6-12 offers its implementation.

Listing 6-12: ch06_gmaps_geotags.js (Part 6 of 8)

/**
Given a map and a data record, construct a new marker
for placement on the map. In addition, add it to the
map’s legend.

*/
function addMarker(map, data) {

// Create a new icon using the next lettered image.
var idx = (ICON_CNT++);
var letter = String.fromCharCode(“A”.charCodeAt(0) + idx);
var icon = new GIcon(BASE_ICON);
icon.image = “http://www.google.com/mapfiles/marker” +

letter + “.tiff”;

// Add this icon and bookmark to the legend.
addToLegend(data, icon);

// Construct the location point and marker object.
var point = new GPoint(data.long, data.lat);
var marker = new GMarker(point, icon);

// If there is a title for this marker, hook up an
// on-click info bubble for it.
if (data.title) {

var ele = createBubbleContents(data);
GEvent.addListener(marker, ‘click’, function () {

marker.openInfoWindow(ele);
});

}

// Add the marker to the map and return.
map.addOverlay(marker);
return marker;

}

37857c06.qxd 6/4/06 9:31 PM Page 149

150 Part II — Remixing del.icio.us

The first thing done in Listing 6-12’s definition of addMarker() is to come up with a unique
icon to use for this new marker. A counter in the global variable ICON_CNT is used to derive an
image URL from a set of icons lettered A to Z, provided by Google. Because ICON_CNT is
incremented with each call to this function, every marker added to the map will receive a new
letter icon in sequence. Notice that the new icon is built using the BASE_ICON initialized ear-
lier via initBaseIcon().

With an icon built, a new entry is added to the map legend with addToLegend(). After this,
a GPoint object is constructed using the location data, which in turn is used to build a new
GMarker object. Then, if the location data includes a title, a special on-click event handler is
wired up to the marker that will cause an info bubble containing the marker’s title to appear.
The HTML for this info bubble is built using createBubbleContents(). Then, once
everything is in place, this marker is added to the map using the addOverlay() method.

The next missing blank to be filled is the definition of addToLegend() in Listing 6-13.

Listing 6-13: ch06_gmaps_geotags.js (Part 7 of 8)

/**
Construct and insert the elements necessary to add a marker
to the map legend.

*/
function addToLegend(data, icon) {

var img = document.createElement(‘img’);
img.setAttribute(‘src’, icon.image);

var text = document.createTextNode(‘ ‘+data.title);

var link = document.createElement(‘a’);
link.setAttribute(‘href’, data.url);
link.appendChild(text);

var item = document.createElement(‘li’);
item.appendChild(img);
item.appendChild(link);

var legend = document.getElementById(‘legend’);
legend.appendChild(item);

}

In Listing 6-13, the addToLegend() function serves to build the nested DOM elements
required for an icon image and bookmark link contained within a list item element. This list
item is added to the unordered list on the page with an ID of legend. This will help maintain
a straightforward legend of markers as they’re added to the map.

37857c06.qxd 6/4/06 9:31 PM Page 150

151Chapter 6 — Tagging Hacks

Finally, there’s one last function to be defined — namely, createBubbleContents() in
Listing 6-14.

Listing 6-14: ch06_gmaps_geotags.js (Part 8 of 8)

/**
Construct and return the DOM elements necessary to
populate a marker’s pop-up info bubble.

*/
function createBubbleContents(data) {

var div = document.createElement(‘div’);
div.setAttribute(‘class’, ‘note’);

var link = document.createElement(‘a’);
link.setAttribute(‘href’, data.url);

var text = document.createTextNode(data.title);
link.appendChild(text);

div.appendChild(link);
return div;

}

Similar to addToLegend(), the definition of createBubbleContents() in Listing 6-14
uses DOM methods to construct the elements needed to present a bookmark link within a
Google Maps popup info bubble.

With this last piece in place, it’s time to fire up your browser and try things out. Again, make
sure you’ve got your Google Maps API key pasted into the HTML and that the HTML itself
is in the appropriate location as used when you acquired the key.

If everything goes well, you should see a map similar to Figure 6-25. Here, you can see a few of
our favorite area restaurants and recommendations for tasty take-out food. Below the map, you
should see a legend of icons mirroring the map. And, if you click on any of the markers within
the map, you should see an info window pop up.

Once you’ve got this working, try adding more geotagged bookmarks to your account. Upon
reloading the map, you should see them appear with new markers as long as your zoom level
and map size include them in the viewing area. Also, try tweaking the JSON include URL
with further tags on which to filter — you can subdivide your bookmarked locations into even
more focused groups.

37857c06.qxd 6/4/06 9:31 PM Page 151

152 Part II — Remixing del.icio.us

FIGURE 6-25: Bookmarks of good places to eat presented with a Google Map

Summary
In this chapter, you’ve been given a look at the ways in which tags can be used to organize,
annotate, enrich, and filter bookmarks on del.icio.us. The tips and examples here have really
just scratched the surface of all that’s possible from tagging, so I hope this has given you some
food for thought in future tinkering and play.

Coming up in the next chapter, you’re going to take a look at how del.icio.us can be mashed up
with other sites to intermingle data and augment the services of those sites.

37857c06.qxd 6/4/06 9:31 PM Page 152

Mashups and
Enhancements

Although del.icio.us has a lot to offer, there’s still room for improve-
ment. However, thanks to the API methods and XML feeds pro-
vided by del.icio.us, you need not wait for the team managing the

service to get around to implementing your favorite feature. And, as you’ll
find in this chapter, a lot of tinkerers are taking advantage of this openness
to develop their own extensions to the service — including new ways to
visualize bookmarks and tag data, and new ways to use or integrate
del.icio.us into other sites or services.

This chapter presents a few of the mashups and enhancements that have
been built around del.icio.us and social bookmarking. And, in the latter half
of the chapter, you’ll see how to build your own.

Tweaking the User Interface
The user interface provided by del.icio.us is very clean and simple, but some
tinkerers have their own ideas for how this could be improved. This section
of the chapter presents a few of the ways in which others have recast
del.icio.us in terms of presentation and general functionality.

Keep Track of Your Favorite Bookmarks
with Delancey
Rather than providing a complete replacement for del.icio.us, Delancey
offers an alternative user interface for viewing and searching your collected
bookmarks. This interface offers a highly responsive tag search field, as well
as a few enhancements to make actually using your bookmarks more con-
venient. Check out Delancey at this address:

http://delancey.unto.net

You can see a few of the features of Delancey in Figure 7-1. This includes a
tag search field with auto-completion drawn from your own collection of
tags, as well as the multi-column layout of bookmark links. The idea here
is to help make your del.icio.us bookmarks more personally useful and
accessible on a daily basis.

� Tweaking the user
interface

� Enhancing
bookmarking with
utility services

� Analyzing and
visualizing
bookmarks

� Combining other
sites and services

� Building your own
mashup

chapter

in this chapter

37857c07.qxd 6/4/06 9:31 PM Page 153

154 Part II — Remixing del.icio.us

FIGURE 7-1: Viewing bookmarks in Delancey

Through a “claim” feature, you can tie Delancey to your own del.icio.us account. This is done in an
interesting way that doesn’t require you to share your del.icio.us password: By allowing Delancey to
walk you through posting a special bookmark — which can be later deleted — the service can
verify that you are indeed the owner of a given account. Delancey will notice that you’ve posted
the bookmark and then allow you to assign a password for this user name — ideally one that’s
different than what you use on del.icio.us.

For a claimed collection, Delancey tracks your bookmark usage history. You’ll be able to see how
long it has been since last you visited a bookmark, as well as how many times you’ve clicked it.
The collection is sorted in order of most used, thus naturally arranging itself according to your
habits. The interesting thing to note is that Delancey keeps a regularly updated cache of your
del.icio.us bookmarks, on top of which it overlays the usage history from its own database.
Claiming your collection allows this database overlay to occur, but be aware that this data is
stored in Delancey, not at del.icio.us.

In addition to the usage history tracking, you can preload Delancey with a particular tag and
bookmark that view — and there’s a Permalink navigation item in the page footer with a URL
that changes appropriately every time you choose a new tag. This can come in handy when you
attach a common tag to all of the bookmarks you want within quick reach — say, startpage
or delancey. This, along with a Google search box at the top of the page, can make Delancey
a very useful browser start page — you could use the permalink feature to grab the view of that
tag and use that in your browser preferences.

37857c07.qxd 6/4/06 9:31 PM Page 154

155Chapter 7 — Mashups and Enhancements

Revising the User Interface with del.icio.us direc.tor
Like Delancey, del.icio.us direc.tor is another alternative user interface for your bookmark col-
lection on del.icio.us. However, where Delancey focuses on usage tracking, del.icio.us direc.tor
focuses on using a highly dynamic and responsive tag browser. You can try this tool out at the
following URL:

http://johnvey.com/features/deliciousdirector/

As shown in Figure 7-2, del.icio.us direc.tor consists of a user interface sliced into two main
areas — a series of tag-browsing columns at the top, and bookmark search results at the bot-
tom. Using the columns of tags populated from your collection, you can narrow down the list
of results by tags. Each column specifies an additional tag keyword in the field at the top of the
page, in which you can also supply a keyword prefixed with d: to perform search filtering on
the description field in bookmarks.

FIGURE 7-2: Viewing bookmarks in del.icio.us direc.tor

Using the Ajax-based interface offered by del.icio.us direc.tor, you can very quickly drill down
through chains of tags and search terms to find bookmarks in your collection. Because this in-
browser application makes smart usage of del.icio.us API calls and caches data in-memory with
data structures tailored for the column-based searching, it can be very responsive to clicks and
perusing.

37857c07.qxd 6/4/06 9:31 PM Page 155

156 Part II — Remixing del.icio.us

One of the most interesting things about del.icio.us direc.tor is the way in which it was imple-
mented. As you can read on the project’s page, the user interface is launched by way of a book-
mark activated while visiting any page at del.icio.us. This injects a <script> tag into the page,
which in turn bootstraps the whole thing — that is, all of the JavaScript and XSLT code neces-
sary to run del.icio.us direc.tor is loaded up into your browser upon activation of the bookmarklet.
From that point on, it’s self-contained and operates within the security domain of del.icio.us
itself — thus allowing Ajax calls to any of the methods available from the del.icio.us API.

This makes del.icio.us direc.tor a technology demo as well as a useful bookmark browsing tool,
but either way it’s a very interesting del.icio.us add-on.

Previewing Bookmarks Visually with Thumblicio.us
Sometimes, it’s nice to see what you’re getting into before you click a link at del.icio.us. If this
sounds like a familiar situation, then you may want to pay a visit to Thumblicio.us at this address:

http://thumblicio.us/

Thumblicio.us presents thumbnail screenshots of the latest popular bookmarks found at
del.icio.us, as a mashup with a service called Thumbshots (http://thumbshots.com) that
offers visual previews of Web sites as a paid commercial service. Beyond just visually browsing
the popular links, however, you can also perform tag searches and peruse your own bookmarks
in thumbnail form. There’s also a pretty nice DHTML effect when rolling over thumbnails,
which displays the title of the page under the mouse in an overlay frame. You can see a sample
screenshot of Thumblicio.us in Figure 7-3.

FIGURE 7-3: Viewing preview thumbnails of popular del.icio.us bookmarks

37857c07.qxd 6/4/06 9:31 PM Page 156

157Chapter 7 — Mashups and Enhancements

Presenting Popular Links with Screenshots on Hot Links
Where Thumblicio.us offers quick visual peeks at popular bookmarks, Hot Links offers
thumbnails, tags, descriptions, and more. Take a look here:

http://dev.upian.com/hotlinks/

Hot Links offers a handful of improvements on just plain thumbnails of sites. Page titles are
visible, as are the ages of the links, and the full descriptions supplied by the people who book-
marked the sites — these are all clustered together along with the thumbnail images. You can
filter the page by keyword and tag searches, as well as limiting the view to a single user posting
bookmarks.

Another interesting filter option is the ability to specify a threshold for the number of users
posting a bookmark, so you can call up only those links that have reached a certain level of
popularity — the screenshot in Figure 7-4 depicts this filter set at a popularity of 3 and above.
RSS feeds of each level are also made available by Hot Links.

This site is not a generalized service, however — the list of users whose bookmarks appear on
the site is fixed and managed by the site owner. So, although del.icio.us is indeed used as a
source for bookmarks featured on the site, the bookmarks are drawn from a preselected pool of
users. You can grab a copy of this list in OPML format, but you cannot add your own favorites
to the site.

FIGURE 7-4: Viewing bookmarked sites with thumbnails and descriptions at Hot Links

37857c07.qxd 6/4/06 9:31 PM Page 157

158 Part II — Remixing del.icio.us

Enhancing Bookmarking with Utility Services
The functionality offered by del.icio.us gets right to the point and lets you manage and search
bookmarks with ease. However, this section offers a few ways to improve and enhance your use
of del.icio.us.

Bookmarking Your Clipboard with Pasta
Pasta is a simple service, but it’s a useful one — it gives you the ability to offload chunks of text
from your clipboard and share it on the Web. Take a look at Pasta here:

http://pasta.cantbedone.org/

There’s not much to see in the screenshot offered in Figure 7-5: You’ll find a title field and
a big text area awaiting your input. You can preview your text before submitting the final prod-
uct — which is where things get interesting. After submission, your text is saved and you’re for-
warded to a del.icio.us bookmark posting form (see Figure 7-6). This form is pre-populated
with your chosen title and a randomly generated unique URL at which Pasta has stored your
submitted content (see Figure 7-7). From here, you can supply an extended description and
tags if you like, and add the bookmark to your collection.

FIGURE 7-5: Composing some text on Pasta

37857c07.qxd 6/4/06 9:31 PM Page 158

159Chapter 7 — Mashups and Enhancements

FIGURE 7-6: Automatically redirected to bookmark the text snippet from Pasta

FIGURE 7-7: Text posted on Pasta

Pasta doesn’t need anything else to be useful — there’s no Ajax and there are no colorful icons.
Sometimes you just need to share some text, and the workflow enabled by automatically rout-
ing you to del.icio.us is just enough to make it worth checking out. You’ll even find a handy
bookmarklet to help keep Pasta always close at hand. Keep in mind, however, that even though
Pasta doesn’t offer any public listings of text postings, nothing is private — if someone can find
your unique URL, he or she can find your content.

Simplifying Your Tags with Stemming
As you accumulate a collection of bookmarks, it’s pretty likely that you’ll build up a wide
vocabulary of tags. And, more often than not, you’ll have scatterings of tags that you’d find all
mean basically the same thing, if you had time to spend studying them. Good del.icio.us citi-
zens may spend a chunk of time pruning their tag garden — but of course, the very nature of

37857c07.qxd 6/4/06 9:31 PM Page 159

160 Part II — Remixing del.icio.us

off-the-cuff tagging discourages this sort of study. So, inevitably you end up with lots of redun-
dancies and synonyms lurking in your tag set. What might ease tag gardening — thereby mak-
ing its occurrence more likely — is a tool to help sniff out similarities between tags.

One such tool, the Amazing del.icio.us Stemmer, can be found at this URL:

http://activecellmedia.com/stemmer/

The implementation of this utility has passed through a few sets of authors, as you’ll read at the
above page, but the idea is this: Through the use of a stemming algorithm, words can be dis-
tilled down to a base root by discarding plurals and other modifiers. Once so distilled, these
bases can be compared in order to group together words that are very likely all forms of the
same word. Treating tags as words, the stemming algorithm can highlight which of your tags
are candidates for gardening, trimming, and merging.

Want to read more about stemming algorithms in general? Visit the Wikipedia here:

http://en.wikipedia.org/wiki/Stemming

You can look into the specific algorithm used by this service at the “official” Porter Stemming
Algorithm home page:

www.tartarus.org/~martin/PorterStemmer/

Figure 7-8 provides an example of the del.icio.us stemmer in action. For instance, you could
have attached the tags aggregation, aggregator, and aggregators to bookmarks at various points.
These are all very similar words, and the stemming algorithm has caught that. You may wish to
merge all of these tags together into one, in order to better consolidate and organize your col-
lection. As mentioned before, del.icio.us offers a tool for tag gardening, available at this URL
(after swapping deusx for your own user name):

http://del.icio.us/settings/deusx/tags

At this page you can choose to delete and rename individual tags, thereby revising tags
attached to many bookmarks all in one action.

Analyzing and Visualizing Bookmarks
You can search for bookmarks on del.icio.us and browse recommendations, but there isn’t a lot
of support for statistics junkies. This section of the chapter presents a few of the services tin-
kerers have built to analyze and visualize trends and other data available for processing from
del.icio.us.

37857c07.qxd 6/4/06 9:31 PM Page 160

161Chapter 7 — Mashups and Enhancements

FIGURE 7-8: Stemming applied to a collection of tags

Watching Popularity Over Time with Populicio.us
One of the views you can access from the del.icio.us home page is a list of the latest popular
bookmarks posted to the site. However, this page tracks popularity only over the past day or so.
This is where Populicio.us comes in: Tracking popular bookmarks over greater time periods is
the specialty of this service — check it out here:

http://populicio.us/

As you can see in Figure 7-9, Populicio.us offers popularity tracking windows for spans ranging
from two days up to a full month. These links are displayed in ranking-ordered lists, along with
totals of the bookmarks posted for each. You can also find RSS feeds associated with each of
these views, keeping you updated on the most popular links.

These popularity scoreboards, built over larger windows of time, can help you find which sites
and articles have higher staying power and potentially greater interest. Of course, as with any
rankings list, Populicio.us has the potential to sponsor a popularity contest that can be gamed.
This is not very likely, but this is a likely reason you won’t see this feature integrated into
del.icio.us anytime soon. Nonetheless, this service can be a very useful enhancement to del.icio.us
to help you graze for interesting items.

37857c07.qxd 6/4/06 9:31 PM Page 161

162 Part II — Remixing del.icio.us

FIGURE 7-9: Popular sites for the past week on Populicio.us

Catching the Buzz with trendalicious
While Populicio.us is about tracking popularity over wider windows of time, trendalicious is
about catching hot trends in the short term as they happen. Take a look at the service over at
this URL:

http://glozer.net/trendalicious.html

The screenshot of trendalicious in Figure 7-10 depicts the simple link ranking offered by the
service. It’s straight and to the point, listing the total number of people who’ve posted a link, as
well as how many have posted it within the last hour. The key metric is the recent postings,
indicating spikes in activity in the short term.

The idea is that, by measuring these spikes in posting frequency and ranking them, you can
catch a glimpse of popular memes as they’re discovered and rise through the collective con-
sciousness of del.icio.us users. Granted, this data can reflect the whims of attention-deficit
disorder sufferers — but it can turn up some pretty interesting results for info junkies in very
short order.

37857c07.qxd 6/4/06 9:31 PM Page 162

163Chapter 7 — Mashups and Enhancements

FIGURE 7-10: Viewing ranked bookmarking trends with trendalicious

Visualizing Trends with Vox Delicii
If the simple rankings of trendalicious are a bit too simple for you, you might better appreciate
the trend data visualization available at Vox Delicii:

http://news.stamen.com/vox/

Vox Delicii is a Flash-based data visualization application aimed at presenting a multi-
dimensional analysis of link popularity at del.icio.us through indicators of shape, position,
color, and size. Interaction with rollovers and mouse clicks allows you to further explore trend
data and compare time periods.

Popular bookmarks are arranged as chips in horizontal strips according to the day, in order of
first appearance on del.icio.us. The size of each individual chip represents the relative number
of bookmarks posted for the link on that day, and the color indicates the link’s relative growth
in bookmark adoption in comparison to the previous day.

Rolling over the chips will reveal the title of the links, as well as highlight the previous day’s
chip position if available. Clicking a chip will bring up detail on the bookmark, as well as align
it with the previous day for comparison.

37857c07.qxd 6/4/06 9:31 PM Page 163

164 Part II — Remixing del.icio.us

This is all very much better seen than explained, and the screenshot in Figure 7-11 depicts only
a static portion of what is a very dynamic interface.

FIGURE 7-11: Exploring bookmarking trends graphically over time with Vox Delicii

Watching Bookmarks Scroll by with LiveMarks
Is the one-hour window offered by trendalicious too slow for you? Then, you might want to try
watching bookmarks stream by in real time with LiveMarks, located here:

http://sandbox.sourcelabs.com/livemarks/

As soon as you land on the page at LiveLinks, bookmarks begin fading in and scrolling down
the page, updated live from an Ajax-enabled data source. You can see a screenshot of this site in
Figure 7-12, but that static capture doesn’t depict the steady drip of links injected into the page
over time. It’s like a conveyor belt of tasty sushi made from fresh bookmarks floating on by.

There’s a trick to LiveMarks, however: It’s not actually live. This Ajax application is more
properly described as a what-if technology demo, driven by data fetched and cached from
del.icio.us on a scheduled basis. You can read all about it at this wiki page:

http://swik.net/LiveMarks/How+LiveMarks+Works

37857c07.qxd 6/4/06 9:31 PM Page 164

165Chapter 7 — Mashups and Enhancements

FIGURE 7-12: Watching bookmarks scroll by on LiveMarks

Smoke and mirrors aside, this is a pretty interesting demonstration of live updating and
dynamic data display in a browser application — and the only thing keeping it from being truly
live is a suitable data feed.

Tracking the Scoop with del.icio.us Pioneers
For every link that rises in bookmarking popularity, there’s always someone who bookmarked it
first. And, for whatever reasons, there’s often a group of the same people in various fields of
interest who find the good stuff first. The del.icio.us pioneers experiment is an attempt to iden-
tify these people, located here:

www.del.mailliw.com/

Because this site calls people out by name, this really and truly is an automated popularity contest.
As shown in Figure 7-13, the del.icio.us pioneers experiment ranks users in order of how many
popular bookmarks he or she was the first to post. You can click a disclosure triangle next to each
name to reveal the list of popular links he or she was responsible for introducing.

This information can be useful if you’d like to track the bookmark collections of people who
tend to dig up a lot of interesting stuff. Being the first to find what eventually becomes a hot
topic can be an indicator that that person has good sources, and so is worth watching.

37857c07.qxd 6/4/06 9:31 PM Page 165

166 Part II — Remixing del.icio.us

FIGURE 7-13: Tracking the popular link-finders with del.icio.us pioneers

Combining Other Sites and Services
One of the things that open APIs and data feeds from del.icio.us encourage is combination
with the APIs and data offered by other sites and services. This part of the chapter presents a
few of the mashups and remixes made available by third-party sites for del.icio.us users.

Combining News and Bookmarks with diggdot.us
Are you a fan of Slashdot, digg, and del.icio.us? Tired of bouncing back and forth between
these sites throughout the day to keep up with the latest? Then, this mashup might be for you:

http://diggdot.us/

The special-purpose news aggregation service offered by diggdot.us is very simple and straight-
forward: The latest items from Slashdot and digg, and popular links on del.icio.us, are fetched
on a regular basis. These are then remixed and presented in a single stream for your viewing
pleasure. There’s also an RSS feed of the sites’ combined output available for subscription, or
even further remix if you should desire to do so. Figure 7-14 offers a peek at the features avail-
able at diggdot.us.

37857c07.qxd 6/4/06 9:32 PM Page 166

167Chapter 7 — Mashups and Enhancements

FIGURE 7-14: Bookmarks and news stories mashed up at diggdot.us

Although this site is quite useful in and of itself, it’s also a bit of a showcase for the TurboGears
Web application framework for Python. You can find links to this and the team responsible for
the service — named FrozenBear — in an About box, further down the page.

Visiting a Modern News Portal at Popurls
If you’re interested in, well, just about any of the many popular news sites on the Web —
including the latest links from del.icio.us — then you should check out this one-stop portal
site for almost a dozen news sources:

http://popurls.com/

Popurls.com, as shown in Figure 7-15, offers a nicely uncluttered presentation of links and
headlines from del.icio.us and a slew of other news sources online, alongside photos from
Flickr and videos from YouTube — all with a light sprinkling of advanced JavaScript and
DHTML to help control the amount of information shown. Popurls.com is far from the only
modernized portal site to be found on the Web — but it’s one of the most recent, simply
designed, and least encumbered with extraneous advertising.

37857c07.qxd 6/4/06 9:32 PM Page 167

168 Part II — Remixing del.icio.us

FIGURE 7-15: News headlines at Popurls.com

Subscribing to Bookmarks as Torrents with Prodigem
As you may have read in the previous chapter, del.icio.us automatically tags bookmarks linked to
many types of multimedia resources. And, if you subscribe to the RSS feeds of file and media
type tags on del.icio.us, the resulting feed will contain <enclosure> elements compatible with
podcast and video cast tuner software. However, many of these media files are quite large and
sometimes requests overwhelm the hosting sites. Wouldn’t it be nice if there was a way to get
these media resources by way of BitTorrent to share the load of transferring the files?

Well, it just so happens that Prodigem, a BitTorrent-based content hosting service, offers an
automated service that acts as a gateway for direct downloads from del.icio.us bookmarks.
Check it out here:

www.prodigem.com/torrents/user_pep_delicious.html

This service monitors the popular media RSS feeds from del.icio.us and automatically seeds tor-
rents of the enclosed media files found as bookmarks. You can take a peek at a screenshot of a
recent list of available torrents in Figure 7-16. Although potentially very handy, this is actually
just a technology demo of the more broadly capable hosting API made available to users of the
Prodigem hosting solution. This REST-based API exposes a full set of methods for uploading
content for release, starting and stopping torrent seeding, and managing content licenses.

37857c07.qxd 6/4/06 9:32 PM Page 168

169Chapter 7 — Mashups and Enhancements

FIGURE 7-16: Prodigem Torrents made recently available from downloads bookmarked
at del.icio.us

Building Your Own Mashup
Have these del.icio.us-related mashups gotten you in a mood to build one of your own? Thanks
to the Web APIs exposed by services such as Technorati, Flickr, and del.icio.us, building your
own TechnoFlickrDeli isn’t far from reach. In fact, that’s what we’re going to do in the final
part of this chapter.

Planning for a Mashup
As you already know, del.icio.us offers API methods and XML data feeds to access the book-
marks and tags in your collection, as well as from the collections of others. Similarly, Flickr
offers a set of API methods that give access to the photos in users’ collections, as well as per-
forming searches on keywords and tags. You can read all about the Flickr API here:

www.flickr.com/services/

Technorati, in turn, offers HTTP- and XML-based methods to perform a number of searches
on the blogs crawled by the service — including general keyword searches for blogs and

37857c07.qxd 6/4/06 9:32 PM Page 169

170 Part II — Remixing del.icio.us

entries, analyses of links into and out of blogs, and queries for blog entries by tag. You can
catch up on what Technorati has to offer at their Developer Center located at this address:

www.technorati.com/developers/

If you consider these three Web services — del.icio.us, Flickr, and Technorati — how might
they be tied together in a single mashup? What’s a common denominator among the three that
might be used as a point where they can be joined together? For the purposes of this project,
the answer is found in tagging. All three of these support tagging, whether by allowing users to
tag their own content or offering the ability to search for items indexed by tags.

Bookmarks, photos, and blog entries — all three of these forms of content can be annotated
with tags. So, by using tag-based API search methods, you can pull together an all-in-one
aggregate view of content centered around a particular tag. And, to keep things interesting, you
can use your personal tag collection from del.icio.us as the source from which to draw these
tags on which to make search queries. Odds are if you’ve used a tag, you’ll be interested in
things for which others have used that tag.

Implementing TechnoFlickrDeli
This, then, is the idea behind TechnoFlickrDeli: This mashup will pull the set of tags you’ve
used in your del.icio.us collection to help find things that you might like to see. This content
will consist of blog entries, photos, and bookmarks related to your tags. The search methods
offered by the APIs of Technorati, Flickr, and del.icio.us will be used to find this content and
assemble it all into a single page for your viewing pleasure.

One of the most convenient environments for implementing this mashup is in PHP. You can
find pre-built libraries to ease the use of all three services’ APIs, and building the HTML for a
mashup like this is pretty straightforward. So, to get started, take a look at the opening lines of
ch07_technoflickrdeli.php in Listing 7-1. (You can download all the source code for
this chapter from the book’s Web site at www.wiley.com/go/extremetech.)

Listing 7-1: ch07_technoflickrdeli.php (Part 1 of 10)

<?php
/**

ch07_technoflickrdeli.php

Build a tag-based mashup of Technorati, Flickr,
and del.icio.us

*/

// Add the local PHP includes dir to path.
ini_set(“include_path”,

ini_get(“include_path”).”:includes”);

// See: http://www.phpflickr.com

37857c07.qxd 6/4/06 9:32 PM Page 170

171Chapter 7 — Mashups and Enhancements

Listing 7-1 continued

require_once “phpFlickr.php”;

// See: http://www.kailashnadh.name/ducksoup/
require_once “duckSoup.php”;

// See: http://www.ejeliot.com/pages/5
require_once ‘php-delicious.inc.php’;

// See: http://magpierss.sourceforge.net/
require_once “magpierss/rss_fetch.inc”;

The first lines of Listing 7-1 consist of a comment describing the program and its purpose.
After this comes a call to the PHP function ini_set() to tweak the module include path. A
local includes directory is added to the path — this allows you to create an includes sub-
directory into which you can drop files from downloaded modules.

And, speaking of downloaded modules, the rest of Listing 7-1 contains require_once state-
ments, each a reference to a module you’ll need to fetch and install.

The first of these modules is named phpFlickr.php. And, as the comment suggests, you can
find it available for download at this address:

www.phpflickr.com

Installation of phpFlickr is simple: Just download the archive package, unpack it, and copy the
contents into the includes directory. This will consist of a handful of PHP files, including
phpFlickr.php, and a subdirectory named PEAR. You can leave out files like README.txt
and such, but make sure all of the PHP code ends up in your includes directory.

The next statement requires a module named duckSoup.php, a simple PHP wrapper around
the Technorati API. You can download this module at the URL indicated in the code comment:

www.kailashnadh.name/ducksoup/

This module may also be installed into the includes subdirectory, by downloading the pack-
age archive and copying the file duckSoup.php into the subdirectory.

The next module required is PhpDelicious, first mentioned back in Chapter 3. If you haven’t
already installed it, pay a visit to the home page for a download:

www.ejeliot.com/pages/5

Again, this module is a fairly comprehensive wrapper around the authenticated API provided
by del.icio.us for personal bookmarks. This module will be used to fetch a list of tags from your
account.

37857c07.qxd 6/4/06 9:32 PM Page 171

172 Part II — Remixing del.icio.us

At the end of Listing 7-1, the final module required is MagpieRSS, a flexible RSS parsing
module for PHP. You can find a download for this module at this page:

http://magpierss.sourceforge.net/

While PhpDelicious will allow you to get a list of tags from your account, MagpieRSS will
serve to extract bookmarks from the RSS feed for an individual tag on del.icio.us.

Download each of these modules, and ensure they’re all installed in the PHP module search
path — either in an includes subdirectory alongside ch07_technoflickrdeli.php or in
some other location more suitable to your Web server environment.

Coming up next, in Listing 7-2, is a set of configuration constants you’ll need to tweak.

Listing 7-2: ch07_technoflickrdeli.php (Part 2 of 10)

// del.icio.us API configuration
define(“DEL_USER”, “deusx”);
define(“DEL_PASSWD”, “lodefizzle”);
define(“DEL_TAG_MAX”, 20);
define(“DEL_TAG_FEED”, “http://del.icio.us/rss/tag/”);

// API keys for Technorati
define(“TECHNORATI_API_KEY”,

“46333ab61e7345c2573024a47e67e8aa”);

// API key for Flickr
define(“FLICKR_API_KEY”,

“0ed040a7c16b0b24b5ae2288c4c4306c”);

// Settings for data caching.
define(“CACHE_DIR”, “./data/tfd-cache”);
define(“CACHE_AGE”, 5 * 60 * 60);
define(“MAGPIE_CACHE_DIR”, CACHE_DIR);
define(“MAGPIE_CACHE_AGE”, CACHE_AGE);

// Figure out what tag to display from params
$the_tag = isset($_GET[‘tag’]) ? $_GET[‘tag’] : ‘funny’;

Listing 7-2 is pretty much all configuration constant definitions. The first block of these,
all prefixed with DEL_, are del.icio.us-related settings. For the most part, you can leave these
alone — but you will need to fill in your own user name and password at del.icio.us. These
will be used to authenticate to the API in order to fetch the list of tags used in your collection.
Also, as I explain in a little bit, the DEL_TAG_MAX constant will determine how many of your
tags to display as choices on the page when it gets built.

37857c07.qxd 6/4/06 9:32 PM Page 172

173Chapter 7 — Mashups and Enhancements

The next two constants — TECHNORATI_API_KEY and FLICKR_API_KEY — are API keys
supplied by and required for use of the Technorati and Flickr Web services, respectively. If
you’ve used a Web API like one of these before, this should be a familiar concept: In order to
use one of these Web services, you need to register yourself or your application with the service
in order to get an API key. API keys allow the services to track usage of their API methods for
measurement and optimization purposes.

If you haven’t already, you can find out how to acquire a Technorati API key at the following URL:

www.technorati.com/developers/apikey.html

And, as for Flickr, you can apply for an API key over on this page:

www.flickr.com/services/api/key.gne

The API keys shown in Listing 7-2 aren’t real, usable keys, so you will need to acquire your
own. However, as you can see, both of these are simple and short strings that you’ll be able to
paste into their respective configuration definitions once you’ve gotten hold of them. Again,
you will need these for this mashup to function.

Following the API key definitions are a few settings to define the location of a cache directory
where this script will store data fetched from the Web services for a period of time. Caching
will prevent this script from continually hitting API methods, which will both speed up the
script and spare the servers from overuse. This is especially important with del.icio.us, where
servers have measures in place to automatically throttle or block heavy usage that looks like
abuse. So, caching is just a good idea overall.

The CACHE_DIR value should be given a path that points to a directory on your Web server to
which PHP scripts like this one may read and write files — preferably a subdirectory to which
only this script will be expected to write. The data won’t be very sensitive in security terms, per
se, but this script won’t be very organized in its file structure beyond the directory given. In
other words, it’ll make a bit of a mess, but only in a single folder.

The CACHE_AGE setting expects a value in seconds that will determine for how long cache
entries should be considered fresh. You can tailor this however you like, although the value in
Listing 7-2 is set to 5 hours. For personal use, you may want to tweak this to a lower time
span — but if you offer up this script or some derivative of it as a public page, you should defi-
nitely consider raising this value.

The MAGPIE_CACHE_DIR and MAGPIE_CACHE_AGE constants serve the same purpose as the
CACHE_DIR and CACHE_AGE constants — just specifically for use by the Magpie RSS library,
which you’ll see in use a bit further on in the code.

The last line of this listing attempts to determine which tag has been chosen for use in aggre-
gating content for the mashup display. This is drawn from a tag query parameter supplied to
the PHP script. This will come into play further on, in links constructed to display different tag
searches.

Continue on to Listing 7-3, where you’ll see the first Web service come into play.

37857c07.qxd 6/4/06 9:32 PM Page 173

174 Part II — Remixing del.icio.us

Listing 7-3: ch07_technoflickrdeli.php (Part 3 of 10)

/**
Fetch photo data from Flickr for a given tag.

*/
function fetchFlickrTag($tag) {

$fapi = new phpFlickr(FLICKR_API_KEY);
$fapi->enableCache(“fs”, CACHE_DIR);
$results = $fapi->photos_search(

array(“tags”=>$tag)
);

$photos = array();
foreach ($results[‘photo’] as $result) {

$photo = $result;
$photo[‘sizes’] =

$fapi->photos_getSizes($result[‘id’]);
array_push($photos, $photo);

}
return $photos;

}

The function defined in Listing 7-3, fetchFlickrTag(), uses phpFlickr to make a call to
the Flickr API to search for photos by the given tag. Notice that the first thing it does is create
an instance of the phpFlickr class, using FLICKR_API_KEY as a parameter to the construc-
tor. Once constructed, the enableCache() method on the instance is called, using the
CACHE_DIR constant earlier defined — this will cause phpFlickr to cache data from all calls to
the API and thus minimize the number of times it actually needs to make a call to the Web
service.

Next, the photos_search() method of the phpFlickr instance is called with an associative
array as a parameter. This array forms the set of search terms, specifically the tag supplied to
the function as a string. This method returns a data structure containing the results of the API
call.

This data structure is an associative array, where one of its keys is photo. Via this key, a list
may be found that contains photo search results — these are processed in a loop intended to fill
a second array with photo records. For each photo, a subsequent call to the phpFlickr
method photos_getSizes() is made, using the photo’s ID as a parameter. The data returned
by this method contains the image URLs of the photo in question, at various sizes — you’ll be
able to use these to construct image tags to display in the page. So, this data structure is added
to the photo record for use later.

The augmented list of photos is returned at the end of the function. You’ll see this function in
action when it comes time to build the HTML page.

Next up, in Listing 7-4, the Technorati API makes its debut in the script.

37857c07.qxd 6/4/06 9:32 PM Page 174

175Chapter 7 — Mashups and Enhancements

Listing 7-4: ch07_technoflickrdeli.php (Part 4 of 10)

/**
Fetch blog entry data from Technorati for
a given tag.

*/
function fetchTechnoratiTag($tag) {

$tapi = new duckSoup;
$tapi->api_key = TECHNORATI_API_KEY;
$tapi->type = ‘taginfo’;
$tapi->params = array(‘tag’ => $tag);
$results = $tapi->get_content();
return $results[‘item’];

}

In Listing 7-4, the function fetchTechnoratiTag() is defined. It accepts a tag and returns a
list of blog entry records found matching that tag as a result. To do so, it first creates an
instance of the duckSoup class, and then sets the api_key property to the value defined as
TECHNORATI_API_KEY earlier in the script. The Technorati method to be called (taginfo) is
set as the type property in the API instance, and an associative array containing the tag is sup-
plied as the params property. Finally, the Technorati API call is performed by calling the
get_content() method on the duckSoup instance, and the list of blog entries found for the
tag is returned.

Now, it’s time to define methods to handle accessing data at del.icio.us. Take a look at Listing
7-5 for the definition of the function fetchDeliciousTag().

Listing 7-5: ch07_technoflickrdeli.php (Part 5 of 10)

/**
Fetch bookmark feed data from del.icio.us
for a given tag.

*/
function fetchDeliciousTag($tag) {

$url = DEL_TAG_FEED . $tag;
$data = fetch_rss($url);
return $data->items;

}

Thanks to MagpieRSS, the implementation of fetchDeliciousTag() in Listing 7-5
is very simple. The URL to a tag’s RSS feed is constructed by concatenating the value of
DEL_TAG_FEED — defined at the top of the script — with the desired tag. This is fetched via
the fetch_rss() function supplied by MagpieRSS. The structure returned by this function

37857c07.qxd 6/4/06 9:32 PM Page 175

176 Part II — Remixing del.icio.us

contains data parsed from the RSS feed, among which is a list of items. These items each
describe a bookmark from del.icio.us, so this list is returned from this function.

One more function left — fetchAllDeliciousTags() — defined next in Listing 7-6.

Listing 7-6: ch07_technoflickrdeli.php (Part 6 of 10)

/**
Fetch all del.icio.us tags, with caching.

*/
function fetchAllDeliciousTags() {

$dapi = new PhpDelicious(DEL_USER, DEL_PASSWD);
$tags = $dapi->GetAllTags();
usort($tags, “cmpTags”);
return array_slice($tags, 0, DEL_TAG_MAX);

}

/**
Compare tags for sorting in order of most used.

*/
function cmpTags($a, $b) {

$a_cnt = $a[‘count’];
$b_cnt = $b[‘count’];
if ($b_cnt == $a_cnt) { return 0; }
return ($b_cnt < $a_cnt) ? -1 : 1;

}

?>

Actually, there are two functions defined in Listing 7-6: fetchAllDeliciousTags() and
cmpTags(). The first function uses PhpDelicious to grab all of your tags — and it, in turn,
uses cmpTags() in the course of sorting the list of tags. This code should look very similar to
what was presented back in Chapter 3, where PhpDelicious was first introduced.

To fetch your tags, fetchAllDeliciousTags() creates an instance of PhpDelicious, using
your settings for DEL_USER and DEL_PASSWD. The GetAllTags() method is then used to
grab the list from an API call to del.icio.us. The PHP function usort() is used along with
cmpTags() to sort your tags, in order of most used. Finally, the top DEL_TAG_MAX tags are
sliced off the top and returned.

This is the end of all the convenience functions that help you use the three Web APIs; now it’s
time to tackle producing the HTML output. This begins with Listing 7-7.

Listing 7-7 offers the start of the HTML page proper. In the head of the page, a CSS
stylesheet named ch07_technoflickrdeli.css is linked, which provides the style and for-
matting for this page.

37857c07.qxd 6/4/06 9:32 PM Page 176

177Chapter 7 — Mashups and Enhancements

Listing 7-7: ch07_technoflickrdeli.php (Part 7 of 10)

<html>
<head>

<title>TechnoFlickrDeli</title>

<meta http-equiv=”content-type”
content=”text/html;charset=utf8” />

<link href=”ch07_technoflickrdeli.css”
type=”text/css” rel=”stylesheet” />

</head>
<body>

<h1>TechnoFlickrDeli: <?php echo $the_tag ?></h1>

<div id=”tags”>

<?php
foreach (fetchAllDeliciousTags() as $tag) {

if ($tag[‘tag’] == ‘system:unfiled’) continue;
?>

<a href=”?tag=<?php echo $tag[‘tag’] ?>”>
<?php echo $tag[‘tag’] ?>

(<?php echo $tag[‘count’] ?>)

<?php

}
?>

</div>

Next, first thing in the body of the page, comes a header that presents the title of the applica-
tion along with the tag chosen for the mashup. After this is a <div> with an ID of tags.
Inside this <div> is an HTML list populated by a loop processing the results of a call to
fetchAllDeliciousTags().

Each of the records in the list returned by fetchAllDeliciousTags() is an associative
array, containing the keys tag and count. These are used to create HTML list elements, each
with a hyperlink back to this script given the tag as a parameter. The text of these links offers
the name of the tag and a usage count for each.

This HTML code provides a set of navigational links at the top of the page, enabling you to
browse mashed up search results from each of your del.icio.us tags.

37857c07.qxd 6/4/06 9:32 PM Page 177

178 Part II — Remixing del.icio.us

The next part, offered in Listing 7-8, presents a listing of blog entries found via a tag search at
Technorati.

Listing 7-8: ch07_technoflickrdeli.php (Part 8 of 10)

<div id=”blogs”>
<h2>Blogs</h2>

<?php
foreach (fetchTechnoratiTag($the_tag) as $blog) {

$blog_url = $blog[‘weblog’][‘url’];
$blog_name = $blog[‘weblog’][‘name’];
$permalink = $blog[‘permalink’];
$title = $blog[‘title’];
$excerpt = $blog[‘excerpt’];
?>

<a href=”<?php echo $blog_url ?>”>
<?php echo $blog_name ?>

::
<a href=”<?php echo $permalink ?>”>

<?php echo $title ?>

<blockquote>

<?php echo $excerpt ?>
</blockquote>

<?php

}
?>

</div>

In Listing 7-8, an HTML <div> with an ID of blogs is built. This <div> is populated via a
loop processing the results of a call to fetchTechnoratiTag() with $the_tag as a parame-
ter. Again, this variable contains the tag selected for the mashup, as found back in Listing 7-2.
Each of the API calls on this page will be called with the value of this variable.

So, within this loop, a series of HTML blog entry summaries are constructed from the data
structures returned from Technorati. These summaries consist of a link to the blog, a link to the
entry, and a <blockquote> containing an excerpt of the blog entry.

Following this part of the template comes HTML to build a list of photos from Flickr, in
Listing 7-9.

37857c07.qxd 6/4/06 9:32 PM Page 178

179Chapter 7 — Mashups and Enhancements

Listing 7-9: ch07_technoflickrdeli.php (Part 9 of 10)

<div id=”photos”>
<h2>Photos</h2>

<?php
foreach (fetchFlickrTag($the_tag) as $photo) {

$title = $photo[‘title’];
$link = $photo[‘sizes’][‘Square’][‘url’];
$img = $photo[‘sizes’][‘Square’][‘source’];
?>

<a href=”<?php echo $link ?>”
title=”<?php echo $title ?>”>
<img src=”<?php echo $img ?>” />

<?php

}
?>

</div>

The HTML provided in Listing 7-9 starts with a <div> with an ID of photos. It contains an
HTML list, composed of photo records returned from a call to fetchFlickrTag(). Each of
these items contains quite a number of details about the Flickr photos, but the only ones you’re
going to use here are a link to the photo image, a link to the photo detail page, and the photo
title. Note that using the “Square” version of photos will allow this list of photos to be turned
into a set of regular-sized thumbnails when it comes time to bring the CSS into the picture.

Finally, it’s time to wrap up this page template with a list of bookmarks from del.icio.us.
Listing 7-10 provides the finale.

Listing 7-10: ch07_technoflickrdeli.php (Part 10 of 10)

<div id=”bookmarks”>
<h2>Bookmarks</h2>

<?php
foreach (fetchDeliciousTag($the_tag) as $bookmark) {

$link = $bookmark[‘link’];
$title = $bookmark[‘title’];
$desc = $bookmark[‘description’];
?>

continued

37857c07.qxd 6/4/06 9:32 PM Page 179

180 Part II — Remixing del.icio.us

Listing 7-10 continued

<a href=”<?php echo $link ?>”>
<?php echo $title ?>

<blockquote>

<?php echo $desc ?>
</blockquote>

<?php

}
?>

</div>

</body>
</html>

In Listing 7-10, a call to fetchDeliciousTag() supplies a loop with bookmarks as RSS
items. These are transformed into links with <blockquote>s containing the extended book-
mark notes. All of these are contained within an HTML list in a <div> with an ID of book-
marks. This forms a plain list of links to bookmarks, not unlike the blog entry listing.

Adding Some Visual Style to TechnoFlickrDeli
As you may have noticed, all of the HTML from the listings so far is very simple. Well, that’s
because all of the visual style comes in from CSS, offered next in Listing 7-11 as the file
ch07_technoflickrdeli.css.

Listing 7-11: ch07_technoflickrdeli.css

/**
ch07_technoflickrdeli.css

CSS styles for ch07_technoflickrdeli.php
*/
body, li, p, td {

font: 12px arial;
}
#tags ul {

list-style: none;
margin: 0;
padding: 0;

}
#tags ul li {

37857c07.qxd 6/4/06 9:32 PM Page 180

181Chapter 7 — Mashups and Enhancements

Listing 7-11 continued

display: inline;
padding: 0.25em;
margin: 0;

}
#photos, #blogs, #bookmarks {

float: left;
overflow: hidden;

}
#photos ul {

list-style: none;
margin: 0;
padding: 0;
width: 250px;

}
#photos ul li {

display: inline;
margin: 0;
padding: 0;
width: 75px;

}
#blogs {

width: 250px;
}
#bookmarks {

width: 250px;
}
blockquote {

margin-left: 0.5em;
font-size: 0.9em;

}

Listing 7-11 offers some CSS as ch07_technoflickrdeli.css to provide some visual
styles to the HTML produced by this mashup. Although each of the major areas of the
page — tags, blog entries, photos, and bookmarks — are all constructed as HTML lists, the
CSS will cause each of these to be presented differently.

First, the list of tag links under the <div> with ID tags gets formatted as a rough “cloud” of
links. The list elements are pulled out of their usual bulleted context and simply formatted as
an inline series of links in a strip across the top of the page.

Next, the blog entries are left in a bulleted list form, but constrained to a narrow column
floating toward the left of the page. As for the photos, these are constrained to a narrow
column — but rather than a bulleted list, these are styled to appear as a regular grid, three
thumbnails wide. Finally, bookmarks are displayed in much the same way as blog entries, in a
column on the right side of the page.

37857c07.qxd 6/4/06 9:32 PM Page 181

182 Part II — Remixing del.icio.us

You can see how all of this looks in Figure 7-17. You should see the tag links across the top of
the page — these are drawn from your most commonly used tags and, when clicked, will take
you to a mashup based on that tag. Try exploring these tags to see what interesting photos and
items from around the Web strike your fancy.

FIGURE 7-17: Viewing content related to “javascript” in the TechnoFlickrDeli

Summary
In this chapter, you were given a sampling of the third-party tweaks, enhancements, and
mashups involving del.icio.us and made available on the Web. With the construction of the
TechnoFlickrDeli, you may have gotten some ideas for mashups of your own. These are the
sorts of sites and services that are encouraged by providing open APIs and data feeds; each
builds upon the success of del.icio.us and helps del.icio.us itself succeed.

In the next chapter, you see demonstrations of another aspect of del.icio.us APIs and data in
ways to own your own bookmarks data, grab backups, and reuse your links however you like.

37857c07.qxd 6/4/06 9:32 PM Page 182

Getting Your Links
Out of del.icio.us

One of the main goals of del.icio.us is sharing bookmarks: Every user
account comes with a publicly accessible URL providing access to
that user’s posted links. You could use this as your bookmarking

home page if you like, sending friends and acquaintances to this address to
stay in the loop on all the interesting things you find around the Web.

And, in fact, that’s just what a lot of people do. But, this isn’t for everyone:
Some people would rather send visitors to their own blog, or to a page
hosted on their own servers. Whether it’s because they feel a bit proprietary
toward their own content and links — or feel a general distrust of leaving
things completely in the hands of a third party — some del.icio.us users
seek to replicate their bookmarks within environments under their own
control.

If this sounds like you, then this might be the chapter you’ve been waiting
for. Here, you’ll see various solutions for integrating your del.icio.us book-
marks into your own Web pages and blogs. There are approaches that con-
nect up with most popular blogging packages, as well as some techniques
that work on just about any Web page. You can opt to simply display a copy
of your freshest links cached from del.icio.us, or even go so far as to down-
load and mirror your bookmarks completely apart from the bookmarking
service.

Linkrolls via JavaScript Include
from del.icio.us
One of the easiest ways to include del.icio.us bookmarks on a Web page
is to use a linkroll powered by a del.icio.us JavaScript include feed. While
this doesn’t take you completely “off the grid” with respect to relying on
del.icio.us services, it does accomplish the goal of presenting your book-
marks within your own site framework. To get started, pay a visit to
this page:

http://del.icio.us/help/linkrolls

� Linkrolls via JavaScript
include from del.icio.us

� Splicing links, photos,
and blogs using
FeedBurner

� Signing up for a daily
blog posting from
del.icio.us

� Feeding TypePad
sidebar lists with
del.icio.us RSS

� Building a yummy
bookmark sidebar in
Movable Type

� Creating new posts in
WordPress from
bookmarks

� Backing up and
mirroring your
bookmarks with Python

� Browsing your book-
marks with Ajax

� Building a caching API
proxy using PHP

chapter

in this chapter

37857c08.qxd 6/4/06 9:32 PM Page 183

184 Part II — Remixing del.icio.us

As presented in Figure 8-1, you’ll see that this page is more than just a simple static help page.
In fact, it’s practically an application itself. Toward the top of the page, you’re given a JavaScript
include as a short snippet of HTML code. You can copy and paste directly into one of your
Web pages to quickly display a sampler of your latest bookmarks that will get updated every
time you refresh the page.

FIGURE 8-1: del.icio.us linkrolls help page

Scroll down a bit more, and you’ll find a set of display options. You can use these to tweak what
will be displayed in this JavaScript include, with live updates to the preview on the page as you
play. In Figure 8-2, you can see a more customized version of my own links: I’ve changed the
title, added in tags, and extended descriptions. The list of links has also been narrowed down by
tag to just display those links tagged with caffeine. Notice that as you change options, the
code snippet at the top of the page is also updated. So, once you’ve settled on the right arrange-
ment of settings, the include code is all ready to go.

If you happen to manage the pages and content on your site by hand, then you’re already well
acquainted with pasting these sorts of snippets into your code. On the other hand, you may use
some sort of content management system to build new pages. In Figure 8-3, you can see me
creating a new page on decafbad.com, which includes the customized code snippet.

37857c08.qxd 6/4/06 9:32 PM Page 184

185Chapter 8 — Getting Your Links Out of del.icio.us

FIGURE 8-2: A fully customized del.icio.us linkroll

FIGURE 8-3: Creating a new page on decafbad.com for the linkroll

37857c08.qxd 6/4/06 9:32 PM Page 185

186 Part II — Remixing del.icio.us

Once saved and published, Figure 8-4 demonstrates what this looks like once the page is fin-
ished. It’s useful to note that these links follow your own site’s style — they’re not limited to
the standard look and feel of del.icio.us. So, while you’re still depending on the servers at
del.icio.us, you’re free to present your bookmarks with a treatment not dictated by their default
link colors and fonts.

FIGURE 8-4: Linkroll code pasted into a page on decafbad.com

Splicing Links, Photos, and Blogs Using FeedBurner
Using a del.icio.us linkroll is a quick way to get your bookmarks into something like a sidebar
on a Web page without much fuss. But, if you’d like to include a bit more in your linkroll, you
might want to check out FeedBurner.

With FeedBurner, you can produce an enhanced version of any RSS or Atom feed, such as the
main feed published from your blog. Feed enhancements include things such as an improved
stylesheet for direct viewing in a modern browser, an easy-to-use “Universal Subscription
Mechanism,” and automatic format tweaking depending on the user agent of an aggregator or
reader attempting to fetch your feed.

37857c08.qxd 6/4/06 9:32 PM Page 186

187Chapter 8 — Getting Your Links Out of del.icio.us

However, where FeedBurner gets interesting — for the purposes of this chapter, anyway — is
in the feed splicing features. Although, at present, you can’t really just splice in any old feed,
you can mix in photos from a Flickr account and links posted to a del.icio.us account. So, you
can use FeedBurner to try to round up your blog posts, photos, and bookmarks all into one
master feed.

But wait, there’s more: If having a merged feed of all your stuff posted online wasn’t enough,
you also request a JavaScript include of this feed’s content rendered as HTML — not unlike a
del.icio.us linkroll.

To get started, pay a visit to FeedBurner at this URL:

www.feedburner.com/

You’ll need to sign up for an account there, which is a fairly straightforward procedure. After
getting yourself logged in, Figure 8-5 shows you what “burning” a new feed looks like. You can
supply a direct feed URL or a blog address from which FeedBurner will attempt to autodetect
your feed location. This creates a new proxy feed at FeedBurner through which your original
content will be filtered.

FIGURE 8-5: Burning a new feed at FeedBurner

37857c08.qxd 6/4/06 9:32 PM Page 187

188 Part II — Remixing del.icio.us

After you create a version of your feed at FeedBurner, a new set of feed management options
opens up. The first one to check out is shown in Figure 8-6 — under the Optimize tab, called
Link Splicer. Here, you can choose del.icio.us from a list of other bookmarking services, as well
as supply your account user name and a preference of link splicing granularity: You can opt to
have every link you post included as a separate entry, or periodically batch the entire day’s
worth of bookmarks as one entry. For a sidebar-style linkroll, you probably want each book-
mark as a separate entry, however.

FIGURE 8-6: Splicing del.icio.us links into your FeedBurner feed

As shown in Figure 8-7, check out the Publicize tab in the feed options and click the
BuzzBoost service. This is where you can configure options for a JavaScript include, a bit like
you did for the del.icio.us linkroll. You can choose the number of items to display at once,
whether links should open in the current or a new window, how much content to show for each
item, as well as a few other tweaks.

Once you’ve gotten the BuzzBoost options arranged to your liking, it’s time to paste the
HTML snippet into a page of your own. In Figure 8-8, you can see me creating a new page
through my WordPress management screen. And again, as with the del.icio.us linkroll, a feed
rendered by a BuzzBoost is also subject to your site’s CSS styles. In fact, if you look closely at
Figure 8-8, you might see some extra CSS styles I’ve thrown in to further customize this
FeedBurner display.

37857c08.qxd 6/4/06 9:32 PM Page 188

189Chapter 8 — Getting Your Links Out of del.icio.us

FIGURE 8-7: Producing an HTML version with BuzzBoost

FIGURE 8-8: Creating a new Web page with the BuzzBoost HTML snippet

37857c08.qxd 6/4/06 9:32 PM Page 189

190 Part II — Remixing del.icio.us

Finally, in Figure 8-9, you can see the end product: Recent blog posts and del.icio.us links all
mashed together on one page. Notice that they follow all of the styles already present on my
site, with the addition of the styles included when making the new page.

FIGURE 8-9: Completed Web page with working BuzzBoost include

Of course, although you get some more flexibility from using FeedBurner in conjunction with
del.icio.us, some would say that now you’ve got two problems: Rather than just depending on
the servers at del.icio.us, you’re now also depending on FeedBurner to stay running in order to
keep your site supplied with links. Of course, it’s in the best interests of both del.icio.us and
FeedBurner to continue operating — and the people at FeedBurner have some caching tricks
up their sleeves to help soften the blow if the origin feed becomes unavailable.

Signing Up for a Daily Blog Posting from del.icio.us
If you’re using a blogging package with an XML-RPC interface for posting entries via the
Blogger API or MetaWeblog API — and most of them do, nowadays — del.icio.us offers a
relatively new feature to publish a daily summary of your links to your blog. So, rather than
leaning on del.icio.us to serve up a linkroll include for every hit to your site, you can have the
links delivered to your blog and take it from there. This also has the nice side effect of getting

37857c08.qxd 6/4/06 9:32 PM Page 190

191Chapter 8 — Getting Your Links Out of del.icio.us

scheduled backups of your bookmarks sent to your site — so if del.icio.us ever went away, you’d
still have all of those daily summaries archived in your blog database.

At this writing, however, this feature is still experimental. The downsides to this feature are
that you need to slog through a somewhat cryptic interface and trust del.icio.us with the pass-
word to your blog. Also, being meant for early adopters, it’s likely to change, fail, or disappear
at any moment. But, it could be useful to you if and while it works.

Discouraged yet? No? Good. You can get started by logging into del.icio.us and visiting this
URL — replacing YOUR_USERNAME with, of course, your user name:

http://del.icio.us/settings/YOUR_USERNAME/daily

This page should appear as an empty list, if this is your first time seeing it. To schedule a daily
posting to your blog, click on “add a new thingy.” This should result in the form in Figure 8-10.

FIGURE 8-10: Configuring a new “thingy” to schedule daily delicious link postings

Now, be warned: You should have some decent knowledge of your blog’s configuration to com-
plete this form. It helps if you already use an XML-RPC–enabled blog editor because you’ll
have already encountered some of these settings there.

The job_name field can be given any arbitrary name you like, for example “daily_links_for_me.”

37857c08.qxd 6/4/06 9:32 PM Page 191

192 Part II — Remixing del.icio.us

The fields out_name and out_pass are intended for your login details for posting to your blog.

The out_url field expects the URL for your blog’s XML-RPC endpoint. For example, it
could look like one of these URLs:

http://example.com/wordpress/xmlrpc.php
http://example.com/movabletype/mt-xmlrpc.cgi

Next, there’s a field for out_time. This is the hour, in Greenwich Mean Time, at which
del.icio.us should attempt to post to your blog. So, for instance, I’m in the EST time zone right
now, or GMT-5. So, when it’s midnight here, it’ll be 5:00 A.M. GMT. Thus, if I enter 5 for
out_time, the schedule will fire at midnight, EST.

Finally, there are two fields left: out_blog_id and out_cat_id. The proper settings for these
depend entirely upon your blogging software.

Movable Type supports multiple blogs and authors, and so out_blog_id will need to be sup-
plied with the appropriate database ID for your chosen blog.

On the other hand, WordPress ignores this value because it’s a single-blog application at
present.

As for out_cat_id, you’ll need to figure out an appropriate category into which these posts
should go, and the database ID corresponding to that category. If you’re lucky, you can find
both of these settings in the preferences of a desktop blog editing application you’ve already
configured. If not, you might have a little digging to do. For my blog at decafbad.com, it turns
out that my links category has an ID of 15, a fact I discovered while poking around in the
admin interface after creating the category.

Once submitted, you should see the new job listed, as in Figure 8-11. If all goes well, new
entries summarizing your bookmarks should start appearing on a regular basis on your blog,
as in Figure 8-12. You can also visit the job management page at del.icio.us to see the status
of the last attempt to post to your blog, as well as cancel the scheduled job.

FIGURE 8-11: List of items representing your posting schedule

37857c08.qxd 6/4/06 9:32 PM Page 192

193Chapter 8 — Getting Your Links Out of del.icio.us

FIGURE 8-12: Example daily delicious link post on decafbad.com

Feeding TypePad Sidebar Lists with del.icio.us RSS
Do you host your blog with TypePad? If so, then you’re probably familiar with many of the set-
tings and options this service offers for publishing content, managing photos and lists, and
tweaking your blog’s layout and design. However, there’s a lot of depth to this service, so you
may not have explored everything squirreled away amongst the many tabs and panels and
selections.

For instance, if you wanted to add a list of your recent bookmarks from del.icio.us to your blog
sidebar on TypePad, you might expect to do so through the TypeLists management tab. However,
as of this writing, you won’t find it there — but a useful related feature does indeed exist.

To find it, log into your TypePad blog’s administration pages and click the Design tab. You
should be presented with the page shown in Figure 8-13. Here, you want to click Change
Content Selections, found in the lower-right corner of Figure 8-13 under Your Content.

On this page, scroll down a little bit, and you should find what’s shown in Figure 8-14: a Feeds
subheading that, in your case, is probably empty at the moment. If you click Add a new feed,
you’ll now be presented with a popup dialog box as offered in Figure 8-15.

37857c08.qxd 6/4/06 9:32 PM Page 193

194 Part II — Remixing del.icio.us

FIGURE 8-13: Finding the Content Selections panel in TypePad Weblog settings

FIGURE 8-14: Finding the list of feeds under TypePad content selections

37857c08.qxd 6/4/06 9:32 PM Page 194

195Chapter 8 — Getting Your Links Out of del.icio.us

FIGURE 8-15: Adding a new sidebar feed in TypePad

Here, you’ll want to enter your del.icio.us bookmarks feed into the form field, e.g.
http://del.icio.us/rss/USERNAME. If you’ve got a FeedBurner feed to play with, you
might also try dropping that URL here for an even richer set of links. Then, once the URL has
been submitted, you’ll be given the opportunity to set a title for this feed, as well as select a
number of items to display.

Once you’re done configuring this feed selection to your liking, check out your blog. You
should now have a new sidebar section not unlike the one featured in Figure 8-16.

FIGURE 8-16: Finished product of a feed-powered sidebar in TypePad

37857c08.qxd 6/4/06 9:32 PM Page 195

196 Part II — Remixing del.icio.us

This is a pretty recent addition to services offered by TypePad so you may experience some
occasional hiccups. But, for the most part, this is a quick and easy way to pull RSS feed content
from del.icio.us and other sites into your own blog to build a sort of personal portal.

Building a Yummy Bookmark Sidebar in Movable Type
If you’re a fan of using Movable Type to maintain and publish your content, you’ve got a few
options with regard to plug-ins and customizations you can use to share your bookmarks. All of
the general-purpose techniques in this chapter will work in your templates, but you can also try
installing a Movable Type plug-in named Yummy. You can find this plug-in for download here:

www.quotesque.net/archives/2005/06/mt-yummy_a_deli.html

This plug-in provides a set of new template tags you can easily use to build lists of bookmarks
fetched as RSS from del.icio.us using a user name and tags as filters. So, you could publish a
sidebar list of all of your bookmarks, all of someone else’s bookmarks, all of your bookmarks
under a certain tag, or any combination thereof.

Download the plug-in and install it according to the README found along with the plug-in.
Once successfully in place, it should appear listed in your blog’s control panel, as shown in
Figure 8-17.

FIGURE 8-17: MT-Yummy is successfully installed as a Movable Type plug-in.

37857c08.qxd 6/4/06 9:32 PM Page 196

197Chapter 8 — Getting Your Links Out of del.icio.us

Your next step is to edit one or more of your templates — Figure 8-18 offers a peek at what the
HTML might look like for a sidebar list being added to the Main Index template.

FIGURE 8-18: Editing the Main Index page template to include a sidebar section for bookmarks

The template tags are explained in the plug-in’s README file, and your mileage may vary
with your site design, but here’s a closer look at that HTML:

<div class=”module”>
<h2 class=”module-header”>Recent Bookmarks</h2>
<div class=”module-content”>

<ul class=”module-list”>
<MTDeliciousLinks username=”deusx”>

<li class=”module-list-item”>
<a href=”<$MTDeliciousLinkURL$>”>
<$MTDeliciousLinkTitle$>

on <$MTDeliciousLinkDate$>

</MTDeliciousLinks>

</div>
</div>

37857c08.qxd 6/4/06 9:32 PM Page 197

198 Part II — Remixing del.icio.us

In this snippet, you can see the new tags provided by the plug-in, all prefaced by MTDelicious.
Using these, you can build any sort of content based on bookmark feeds that you like. And,
finally, you can see an example of what this HTML looks like in a sidebar in Figure 8-19.

FIGURE 8-19: Recent Bookmarks now appears in the sidebar of this blog.

Creating New Posts in WordPress from Bookmarks
Just about all of the techniques offered in this chapter so far treat your bookmarks as a separate
sort of content with respect to blog entries and the like. The bookmarks are included in a side-
bar, or bundled up as a summary blog entry. But, what if you’d like to include bookmarks as
first-class individual items right alongside your other content?

If this is what you’re after, and you’re using WordPress to manage your blog content, check out
WordPre.cio.us by Chris Heisel. You can find it located here:

http://heisel.org/blog/projects/

WordPre.cio.us is a smallish PHP script that integrates with your WordPress installation and,
once configured with the URL to an RSS feed at del.icio.us, it can create new blog entries from

37857c08.qxd 6/4/06 9:32 PM Page 198

199Chapter 8 — Getting Your Links Out of del.icio.us

new bookmarks posted to whatever category you’d like. This script needs to be run on a regular
basis in order keep your blog up-to-date with bookmarks, so you should probably schedule a
job to hit this PHP page from time to time. For example, here’s a suitable crontab entry that
does that very thing:

0 */2 * * * curl -s http://example.com/blog/del2wp/del2wp.php

This cron entry will fire up the curl command line tool to fetch the preceding URL once every
2 hours, which keeps the blog in relative sync with bookmarks posts.

For an example of this script in use, visit this site:

http://hackingfeeds.com/

Pictured in Figure 8-20, this is a site that goes mostly neglected, with the exception of book-
marks mirrored from my hackingfeeds tag feed. Notice that each of these bookmarks is a
separate blog entry, complete with comments and an individual page for the entry. This makes
your bookmarks more official citizens of your site, rather than herded up in sidebars or sum-
mary posts.

FIGURE 8-20: Bookmarks as blog posts at hackingfeeds.com

37857c08.qxd 6/4/06 9:32 PM Page 199

200 Part II — Remixing del.icio.us

Backing Up and Mirroring Your Bookmarks with Python
Many of the approaches shown in this chapter have, in one way or another, depended upon
some other Web service besides del.icio.us. But, when it comes to getting your hands on your
personal bookmarks — essentially content and data generated by you — sometimes it’s best to
take matters into your own hands and do it yourself. So, the rest of this chapter deals with
using the del.icio.us API directly to download, backup, and present your bookmarks.

The first of these tools, a Python program named ch08_mirror_posts.py, will use the
del.icio.us API to incrementally back up and mirror your bookmarks. As a bonus feature, this
program will also parse the XML bookmark data returned by the API and build HTML pages
you can use to republish these bookmarks on your own site. In anticipation of that, the HTML
will be built using customizable templates that you can tweak and salt to taste.

As always, it’s best to download the code for these listings from the book’s Web site
(www.wiley.com/go/extremetech) — but you’re welcome to pop open a text editor and
start typing in the program’s source code, beginning with Listing 8-1.

Listing 8-1: ch08_mirror_posts.py (Part 1 of 9)

#!/usr/bin/env python
“””
ch08_mirror_posts.py

Download bookmarks from del.icio.us and mirror
them locally as XML and HTML.
“””

Import some core modules, add the ‘lib’ directory to
module search path.
import sys, os, os.path, urllib2, time
from xml.sax import SAXParseException
sys.path.append(‘lib’)

http://www.aaronsw.com/2002/xmltramp/
import xmltramp

Details needed to use the del.icio.us API
API_URL = ‘http://del.icio.us/api’
API_USER = ‘your_username_here’
API_PASSWD = ‘your_password_here’

Root path under which all backups will be stored.
POSTS_PATH = ‘del-posts’

Unicode encoding to use while producing HTML.
UNICODE_ENC = ‘UTF-8’

37857c08.qxd 6/4/06 9:32 PM Page 200

201Chapter 8 — Getting Your Links Out of del.icio.us

Listing 8-1 is the preamble to the script, establishing the module imports and configuration
constants used later on in the program.

Note that, of the modules used in this program, there’s one that you’re likely to need to
download — unless you already grabbed a copy back in Chapter 3. Namely, that module is
xmltramp from Aaron Swartz, available at this URL:

www.aaronsw.com/2002/xmltramp/

As usual, in Python, you can download this module and leave it in your working directory
along with the program. Or, if you notice near the top of this listing, the statement sys.path
.append(‘lib’) adds the directory lib to the module search path. So, you could also drop
this module into a lib subdirectory after grabbing it, just to keep your working directory clean.

The constants defined in the latter half of Listing 8-1 respectively establish the URL and
authentication details for the API; provide a base path under which bookmark data will be
stored; and select a Unicode encoding to be used when generating the HTML pages.

Next, in Listing 8-2, you’ll see the first of several template strings defined as constants for use
in HTML production.

Listing 8-2: ch08_mirror_posts.py (Part 2 of 9)

Overall HTML page template.
HTML_PAGE_TMPL = u”””
<html>

<head>
<title>Links for %(date)s</title>
<meta http-equiv=”Content-Type”

content=”text/html; charset=%(unicode_enc)s” />
<link href=”../../../ch08_post_styles.css”

type=”text/css” rel=”stylesheet” media=”screen” />
</head>

<body>
<h1>Links for %(date)s</h1>
<ul class=”delPosts” id=”delPosts-%(date)s”>

%(posts)s

</body>
</html>
“””

37857c08.qxd 6/4/06 9:32 PM Page 201

202 Part II — Remixing del.icio.us

What you see in Listing 8-2 is a Python string template containing the shell for an HTML
page. If you’re not already familiar with string formatting in Python, you might want to consult
the docs, here:

http://docs.python.org/lib/typesseq-strings.html

Basically, this template is a string with named slots, with content eventually provided by a map
object. Note that this approach to templating is fairly primitive: It doesn’t allow for any logic in
the template — just slots for content.

So, the logic to generate something like repeating chunks of HTML — say, for instance, book-
mark items — will reside in the program itself. But, that code will use further string templates,
as provided in Listing 8-3.

Listing 8-3: ch08_mirror_posts.py (Part 3 of 9)

HTML template for an individual link.
HTML_LINK_TMPL = u”””

<li class=”delPost” id=”del-%(hash)s”>
%(time)s
%(description)s
%(extended)s
<ul class=”delTags”>

%(tags)s

“””

HTML template for a tag attached to a link
HTML_TAG_TMPL = u”””

<li class=”delTag”>
%(tag)s

“””

The next two string templates in Listing 8-3 define formatting for bookmarks and tags listed,
respectively. Along with the first string template, these templates will be populated, repeated,
and nested to build the overall page. You’ll be able to customize the HTML in these templates
to match whatever site design you like, without necessarily needing to modify the rest of the
program.

And, speaking of the program, its main() function begins in Listing 8-4.

37857c08.qxd 6/4/06 9:32 PM Page 202

203Chapter 8 — Getting Your Links Out of del.icio.us

Listing 8-4: ch08_mirror_posts.py (Part 4 of 9)

def main():
“””
Backup all of a user’s bookmarks by date, attempting to render
an HTML page of each date along the way.
“””

Get ready for calls to the del.icio.us API.
initApi()

Create the backups path, if needed.
if not os.path.isdir(POSTS_PATH): os.makedirs(POSTS_PATH)

Look up all the dates for which this user has bookmarks.
print “Querying API for posting dates...”
dates_data = xmlapi(‘posts/dates’)
open(‘%s/dates.xml’ % POSTS_PATH, ‘w’).write(dates_data)

First up in the main() function begun in Listing 8-4 is a Python docstring, describing the
function’s purpose. And, being the main driver function of this program, its purpose is synony-
mous with the purpose of the program itself: to back up your bookmarks and build HTML
pages from them.

In preparation for this goal, which will make extensive use of the del.icio.us API, a function
initApi() is called. This function’s implementation will be revealed shortly — but for now,
rest assured that it does things necessary for the use of the API.

Following this, a check is made to see if the bookmarks data directory exists, creating it if it
does not. Then, the first call to the API is made, to retrieve a list of dates for which del.icio.us
has bookmarks stored for you. The data from this call is stored in the file dates.xml in the
root of the backup directory.

The next part of the program, presented in Listing 8-5, begins the logic that actually down-
loads your bookmarks using the dates data is retrieved.

Listing 8-5: ch08_mirror_posts.py (Part 5 of 9)

Visit the user’s posts for each of the dates.
for date in xmltramp.parse(dates_data):

Grab the date and derive the backup file path.
dt = date(‘date’)
path = date2path(dt)

continued

37857c08.qxd 6/4/06 9:32 PM Page 203

204 Part II — Remixing del.icio.us

Listing 8-5 continued

Skip this date if an XML backup already exists.
if os.path.isfile(‘%s.xml’ % path): continue

Create the parent directories for backup if necessary.
dir = os.path.dirname(path)
if not os.path.isdir(dir): os.makedirs(dir)

Catch any errors that happen from here on.
try:

Make a query to the API for this date’s bookmarks
print “Backing up %s...” % dt
posts_data = xmlapi(‘posts/get?dt=%s’ % dt)
open(‘%s.xml’ % path, ‘w’).write(posts_data)

At the start of Listing 8-5, you can see the first usage of the xmltramp module in extracting
the posting dates from the XML data retrieved from the API. If you recall from Chapter 3, the
structure of the XML from the posts/dates API call is fairly simple: There’s a <dates> tag
containing multiple <date> children, each of which provides in attributes a count of posts
along with the date itself.

So, xmltramp provides a way to access XML data in a way that behaves a lot like native
Python data structures. The object returned by xmltramp.parse(dates_data) represents
the root <dates> element, and each object found by iterating over that object as a list repre-
sents a <date> child element. Then, for each <date> child, its attributes are available by call-
ing the object as a function. Thus, date(‘date’) retrieves the date attribute of the element
(i.e., 2005-01-25).

The retrieved date string is converted to a backup file path prefix via date2path(), which
will be defined later. A check is made to see whether the XML data for this date’s posts has
already been created, causing the loop to skip ahead if so. This presumes that the loop’s current
date has already been backed up and doing it over again is unnecessary. Because of this check,
you’ll be able to run this program again and again — say, from a crontab entry — and the back-
ups it makes will be incremental.

If you run this program early in the day and post further bookmarks later, this loop will miss your
new posts because the backed up file will already exist. You may want to delete the current day’s
backup when running this program, or find another way to handle this situation. As a scheduled
job, you might just want to run this program at 11:59 P.M. or so just before the date changes, and
things should go pretty smoothly.

As you move through Listing 8-5, if the current date’s backup indeed does not yet exist, an
effort is first made to ensure the existence of the backup’s parent directories. This is where the

37857c08.qxd 6/4/06 9:32 PM Page 204

205Chapter 8 — Getting Your Links Out of del.icio.us

implementation of date2path() comes in: Dates are hyphen-separated from del.icio.us, but
the backup directory structure will be arranged by year, month, and day (e.g., 2005/01/25.xml).
The date2path() performs this transformation.

At the tail end of Listing 8-5 is the beginning of a try/except block, meant to catch any
HTTP or XML parsing errors that might occur during the course of the backup and otherwise
wreck the whole process. First within this block is a call to the posts/get method of the API,
using the current date as a parameter. The data retrieved from this call is, at last, written out to
disk into the backup path along with a .xml file extension.

Now, with the bookmark data for the date safely backed up, the code in Listing 8-6 will start to
work on producing the HTML rendering of the posts.

Listing 8-6: ch08_mirror_posts.py (Part 6 of 9)

Parse and process each of the link posts retrieved.
posts_out = []
for post in xmltramp.parse(posts_data):

Render all of the post’s tags using the tag
template.
tags_out = [

HTML_TAG_TMPL % TemplateSafeDict(
user = API_USER,
tag = tag

)
for tag in post(‘tag’).split(‘ ‘)

]

Start building a dict for the link template
link_ns = TemplateSafeDict(

tags = ‘’.join(tags_out)
)

Merge in all the parsed attributes for
this post.
link_ns.update(post._attrs)

Render the link post using the template.
posts_out.append(HTML_LINK_TMPL % link_ns)

Print this link’s title as progress indicator.
print “\t%s” % \

post(‘description’).encode(UNICODE_ENC)

37857c08.qxd 6/4/06 9:32 PM Page 205

206 Part II — Remixing del.icio.us

A list named posts_out is initialized as empty at the beginning of Listing 8-6. This list will
contain the rendered HTML fragments for each bookmark post found in the data downloaded
from the API. So, the next step is to start processing those posts, via iterating over the parsed
XML object produced by a call to xmltramp.parse(posts_data).

Here’s where the templating logic starts to appear: Things are taken from the inside out and
built in fragments. First, all the tags for the post need to be rendered. Then, the bookmark post
itself is rendered, using the product of the tag rendering.

The HTML fragments for tags are generated in a rather compact way — through the use of
a Python list comprehension. In a nutshell, a Python list comprehension allows you to iterate
through a list and produce a new list, after it performs whatever filtering and transformation
you desire.

This is where the for tag in post(‘tag’).split(‘ ‘) statement comes in: The tags for
the bookmark are available as a space-separated string. This is split along the spaces into a list.
For each individual tag in this list, an instance of the class TemplateSafeDict is created
using the tag string itself along with the API_USER value.

This TemplateSafeDict object, whose class will be defined shortly, is basically a Python
dictionary but with code added to allow accesses without error to keys that do not exist
in the structure. This instance is used with the % operator to populate the named content
slots in HTML_TAG_TMPL corresponding with keys in each instance of TemplateSafeDict
derived from the list of tags. (If you go back and look at the definition of HTML_TAG_TMPL
in Listing 8-3, you’ll see the slots for user and tag.)

The end result of this list comprehension, then, is to convert the list of tags into a list of fully
populated HTML fragments based on HTML_TAG_TMPL.

The next step in the process is to start creating a TemplateSafeDict instance named
link_ns for use in building the next layer of HTML representing the bookmark’s contents.
This dictionary starts with a tags entry, whose value is the set of HTML fragments for tags
concatenated into one big string.

Following this is a bit of a hack: The undocumented, ostensibly private member variable
_attrs of the xmltramp object post contains all the attributes for this bookmark element in
a dictionary. Rather than meticulously extract each interesting attribute and add it to link_ns,
the update() method is used to simply merge them in wholesale.

With this done, an HTML fragment for the bookmark is produced via the % operator, popu-
lating HTML_LINK_TMPL with the contents of link_ns. Again, review Listing 8-3 to see what
content slots are expected as shared between HTML_LINK_TMPL and link_ns. Also, you
should be somewhat familiar with the structure of a bookmark XML entry from Chapter 3.
This stuff all dovetails together fairly nicely.

Once generated, the HTML fragment for the bookmark is appended to the posts_out list, a
progress message is displayed, and the loop continues. It continues, that is, until all the book-
marks have been processed. Then, you wrap things up in Listing 8-7.

37857c08.qxd 6/4/06 9:32 PM Page 206

207Chapter 8 — Getting Your Links Out of del.icio.us

Listing 8-7: ch08_mirror_posts.py (Part 7 of 9)

Finally, build the overall page and write it out
to disk
page = HTML_PAGE_TMPL % TemplateSafeDict(

posts = ‘’.join(posts_out),
date = dt,
unicode_enc = UNICODE_ENC

)
page = page.encode(UNICODE_ENC)
open(‘%s.html’ % path, ‘w’).write(page)

except SAXParseException, e:
Rendering fails on XML errors, but at least
there’s a backup.
print “\tProblem parsing XML: %s” % e

except urllib2.HTTPError, e:
The API call for posts failed altogether.
print “\tProblem calling API: %s” %e

For those of you typing code in by hand, notice that Listing 8-7 occurs after the close of the sec-
ond loop you’ve been following so far to produce bookmark HTML fragments. It does, how-
ever, remain within the scope of the first loop that’s running through dates. Because Python
eschews braces for syntactic whitespace, this calls for a single outdent. Thus, this code starts at
the same indentation level as the statement posts_out = [], back in Listing 8-6.

Indentation matters out of the way, let’s see what this code does. This is the grand finale
for HTML production: An instance of TemplateSafeDict is created through the use
of a concatenation of all bookmark HTML fragments generated, along with the date and
desired Unicode encoding. This dictionary is used to build the final HTML page by way
of the HTML_PAGE_TMPL string template. It’s then encoded to the proper Unicode form
and then written out to the backup path in a file with a .html extension (e.g., 2005/
01/25.html).

Then, with the work for this loop finally done, the last thing to do in main() is to follow up
the try from Listing 8-5 with some exception handling. Here, XML parsing errors are
trapped and noted, along with HTTP problems in using the API. It’s assumed that these prob-
lems are transitory, and so the program reports the issues but continues on with the next date
for backup.

All that’s left now for this program is to finish up by filling in all of the “to be implemented”
functions mentioned so far. For these, continue on to Listing 8-8.

37857c08.qxd 6/4/06 9:32 PM Page 207

208 Part II — Remixing del.icio.us

Listing 8-8: ch08_mirror_posts.py (Part 8 of 9)

def initApi():
“””Prepare for calls to the del.icio.us API”””
Setup urllib2 for del’s Basic Authentication
auth = urllib2.HTTPBasicAuthHandler()
auth.add_password(‘del.icio.us API’, ‘del.icio.us’,

API_USER, API_PASSWD)
urllib2.install_opener(urllib2.build_opener(auth))

def xmlapi(method):
“””Perform a call to the del.icio.us API, returning XML”””
time.sleep(1) # Enforce the 1 second delay between API calls.
url = ‘%s/%s’ % (API_URL, method)
return urllib2.urlopen(url).read()

def date2path(dt):
“””Convert a del.icio.us date into a backup file path.”””
y, m, d = dt.split(‘-’)
return ‘%s/%s/%s/%s’ % (POSTS_PATH, y, m, d)

The first function defined in Listing 8-8 is initApi(). Basically, what it does is prepare
Python’s urllib2 module with the facility to respond to authentication requests from the
del.icio.us API using the user name and password defined at the beginning of the program.
This entails installing an HTTPBasicAuthHandler() instance, which is best explained in the
documentation for urllib2 located here:

http://docs.python.org/lib/urllib2-examples.html

Next is the definition of a method called xmlapi(). This is a convenience function that simply
serves to tidy up code calling the del.icio.us API, wrapping the HTTP request and fetch, along
with a delay mandated by the API documentation. It returns the XML data produced by the
API call.

And last, but not least, date2path() is defined. As you’ve probably already guessed, this func-
tion converts a hyphen-separated date string into a file path.

There’s one final thing to define, however, and that’s the TemplateSafeDict class used
throughout the HTML generation in this program. Look for it next, in Listing 8-9.

Listing 8-9: ch08_mirror_posts.py (Part 9 of 9)

class TemplateSafeDict:
“””A dict-alike that’s safe for dumb templates.”””

37857c08.qxd 6/4/06 9:32 PM Page 208

209Chapter 8 — Getting Your Links Out of del.icio.us

Listing 8-9 continued

def __init__(self, **kwargs):
“””Initialize the new dict.”””
self.data = dict(**kwargs)

def update(self, data):
“””Update the dict with new data.”””
self.data.update(data)

def __repr__(self):
“””Return the dict’s representation.”””
return repr(self.data)

def __setitem__(self, key, val):
“””Set a value in the dict.”””
self.data[key] = val

def __getitem__(self, key):
“””
Get a value from the dict by key. If no such key exists,
just return a blank string. Useful for dumb templates.
“””
if key in self.data:

return self.data[key]
else:

return u’’

If being run as a script, fire up the main function.
if __name__ == ‘__main__’: main()

Essentially, what TemplateSafeDict in Listing 8-9 implements is a read-only proxy object
for a Python dictionary. You can read up on what all the magic double-underscore methods do
in Python here:

http://docs.python.org/ref/sequence-types.html

The one real special feature of this object is in the __getitem__() method. Normally, when
an attempt is made to access a dictionary key that does not exist, an exception is thrown. But,
when rendering a template, it is more desirable to simply return an empty string and continue
on. That’s what this method enables.

So, our dumb templates defined at the start of the program can include content slots for keys
that need not necessarily exist in the dictionary used to populate them. This, then, has practical
value in cases where a bookmark may have a title or description defined, but no extended notes

37857c08.qxd 6/4/06 9:32 PM Page 209

210 Part II — Remixing del.icio.us

field supplied. Instead of needing any elaborate logic to test for the existence of an extended
notes field, our template can remain simple and just include an empty element where no
extended notes are available.

Running the Program
That’s the end of the program, so it’s time to try it out. You should be able to run it with a sim-
ple command line invocation of python ch08_mirror_posts.py, or even execute it directly
from a UNIX shell if you’ve set the proper permissions. If all goes well, you should see some-
thing like Figure 8-21 take shape in your terminal window.

FIGURE 8-21: Watching a run of ch08_mirror_posts.py in progress

When the program has completed, you should have a directory structure organized by date of
XML and HTML files representing all of your bookmarks. For example, if you have the tree
command in your shell, if you run it you should get a result something like this:

[17:44:33] deusx@caffeina2:code$ tree del-posts/
del-posts/
|-- 2005
| |-- 10
| | |-- 19.html
| | |-- 19.xml
| | |-- 20.html
| | |-- 20.xml
| | |-- 21.html
| | |-- 21.xml
...

37857c08.qxd 6/4/06 9:32 PM Page 210

211Chapter 8 — Getting Your Links Out of del.icio.us

Now, try viewing one of those HTML files in your browser. It’ll look something like Figure 8-22.
Looks pretty ugly, doesn’t it? That’s because we’ve missed a piece of the puzzle: CSS.

FIGURE 8-22: Unstyled HTML produced by ch08_mirror_posts.py

You might have noticed the reference to ch08_post_styles.css back in Listing 8-2. Every
HTML file produced by the program links to this stylesheet in its header. Check out Listing
8-10 for a complete set of CSS styles applicable to this HTML. In fact, if you put this file one
directory above the posts backup directory, all of the HTML files should include it.

Listing 8-10: ch08_post_styles.css

body, div, span, p, li { font: 12px arial; }
ul.delPosts { margin: 2ex; }

li.delPost {
list-style: none;
clear: both;
margin: 2em;
margin-bottom: 2em;
padding-bottom: 2em;

}

continued

37857c08.qxd 6/4/06 9:32 PM Page 211

212 Part II — Remixing del.icio.us

Listing 8-10 continued

span.delTime {
float: right;
font-weight: italic;
font-size: x-small;

}

a.delLink {
display: block;
font-weight: bold;
margin-left: -2em;
padding-bottom: 0.5em;

}

ul.delTags {
list-style: none;
clear: both;
margin: 0;
padding: 0;
padding-top: 0.5em;

}

li.delTag {
font-size: x-small;
float: left;
width: 15ex;
margin: 0.25em;
padding: 0.25em;
border: 1px solid #ccc;
background-color: #f0f0f0;

}

li.delTag a {
display: block;
width: 100%;

}

There’s nothing that says you have to use these CSS styles for your bookmarks because you
should be able to tailor the HTML and CSS produced by this program to blend in with your
existing site and content. The styles in Listing 8-10 at least illustrate what can be applied to the
HTML as provided in this program’s out-of-box templates. Check out Figure 8-23 to see how
things change once this CSS is brought into the picture.

37857c08.qxd 6/4/06 9:32 PM Page 212

213Chapter 8 — Getting Your Links Out of del.icio.us

FIGURE 8-23: Freshly styled HTML, courtesy of ch08_post_styles.css

Browsing Your Bookmarks with Ajax
So, now that you’ve got all your bookmarks backed up as XML and HTML. With a little CSS,
you can polish up the HTML for nicer viewing in a browser — but what can you do with all
that XML?

Well, although having all those static HTML renderings of your links is nice, how about build-
ing something a little more dynamic? With a little help from Ajax, you can turn that pile of
XML data into an interactive database. This next mashup will allow you to build a JavaScript-
powered mini-browser for all of your downloaded bookmarks. Check out Listing 8-11 for the
beginnings of this new project, ch08_post_browser.html.

Listing 8-11: ch08_post_browser.html

<html>
<!--

ch08_post_browser.html

Bare-bones HTML to play host to the browser JavaScript.
-->
<head>

continued

37857c08.qxd 6/4/06 9:32 PM Page 213

214 Part II — Remixing del.icio.us

Listing 8-11 continued

<title>del.icio.us mini-browser</title>

<!-- http://www.mochikit.com/ -->
<script src=”MochiKit/MochiKit.js”

type=”text/javascript”></script>

<script src=”ch08_post_browser.js”
type=”text/javascript”></script>

<link href=”ch08_post_styles.css”
type=”text/css” rel=”stylesheet” />

</head>
<body>

<form id=”main”>
<select id=”date_selector”>

<option value=””>No dates loaded</option>
</select>
<select id=”tag_selector”>

<option value=””>No tags loaded</option>
</select>

</form>

<div id=”links”>No links loaded.</div>

</body>
</html>

In Listing 8-11, you’re given some very simple HTML to start things off. There’s not much
here because just about everything will be built on-the-fly in JavaScript code. The tags that do
appear here are mostly just to give the JavaScript some user interface controls and areas into
which new content will be injected.

This HTML also pulls in the JavaScript and CSS meant to help power this browsing interface.
Of particular interface is the include for MochiKit, a set of JavaScript modules that you’ll need
to download before you go on. Check out the MochiKit project page here:

www.mochikit.com/

When you download and unpack the archive from the site, you’ll find a version of the libraries
in separate and modular form, as well as a single packed JavaScript library. It’s this packed ver-
sion that gets included in Figure 8-11.

MochiKit is a very useful set of extensions for JavaScript that makes it easier to deal with lists,
loops, Ajax, and page content creation. You’ll see all of these things employed in this browser,
so you may want to dig a little deeper into this package and see all that it has to offer.

37857c08.qxd 6/4/06 9:32 PM Page 214

215Chapter 8 — Getting Your Links Out of del.icio.us

Forging ahead, take a look at Listing 8-12 for the beginning of ch08_post_browser.js,
where the functionality of the bookmark browser is implemented.

Listing 8-12: ch08_post_browser.js (Part 1 of 8)

/**
ch08_post_browser.js

Implementation of an AJAX-powered date and tag browser for
del.icio.us posts, with optional support for a PHP proxy or
static captures of API data.

*/
var USE_PROXY = false;
var STATIC_URI = “del-posts”;

/**
Initialize the browser, load up the list of dates.

*/
function init() {

// Insert loading messages into the selectors.
setOptions(‘date_selector’, [[‘Loading dates...’, ‘’]]);
setOptions(‘tag_selector’, [[‘Loading tags...’, ‘’]]);

// Switch between proxy and static API URLs for dates
var dates_url = (USE_PROXY) ? PROXY_URI+’/posts/dates’ :

STATIC_URI+’/dates.xml’;

// Fire up the request for dates...
var d = doSimpleXMLHttpRequest(dates_url);
d.addCallback(datesFetched);
d.addErrback(function() {

setOptions(‘date_selector’, [[‘Dates not loaded.’, ‘’]]);
});

// Switch between proxy and static API URLs for tags
var tags_url = (USE_PROXY) ? PROXY_URI+’/tags/get’ :

STATIC_URI+’/tags.xml’;

// Fire up the request for tags...
var d = doSimpleXMLHttpRequest(tags_url);
d.addCallback(tagsFetched);
d.addErrback(function() {

setOptions(‘tag_selector’, [[‘Tags not loaded.’, ‘’]]);
});

}
addLoadEvent(init);

37857c08.qxd 6/4/06 9:32 PM Page 215

216 Part II — Remixing del.icio.us

First up in Listing 8-12 is the assignment of two constants: USE_PROXY and STATIC_URI. There
will be mentions of proxy support throughout this code, but you won’t see it come into play until
the final mashup of this chapter. So don’t worry about it too much yet. Initially, this code is meant
to access the static tree of XML bookmark data fetched by ch08_mirror_posts.py.

The init() function is defined in Listing 8-12, which begins the process of building the
browser application. The first thing it does is swap loading messages into the options for date
and tag selection menus provided in the HTML. Next, the doSimpleXMLHttpRequest()
function provided by MochiKit is used to initiate HTTP GET requests to fetch both dates
and tags.

Because this process of fetching new content via XMLHttpRequest is asynchronous, call-
back functions are needed in order to process the fetched data when it arrives, or handle any
error conditions that occur along the way. In the case of errors, the respective loading mes-
sages in the select menus are simply replaced with failure messages. On the other hand, the
functions datesFetched() and tagsFetched() are called for the arrival of date and tag
data, respectively.

You can find both of these functions defined next in Listing 8-13.

Listing 8-13: ch08_post_browser.js (Part 2 of 8)

/**
Process the list of dates when it arrives, populate the
drop-down menu and wire it up to react to selections.

*/
function datesFetched(req) {

var xml = req.responseXML;
var dates = xml.getElementsByTagName(‘date’);
var date_cnt = 0;

// Add the dates fetched as select options.
setOptions(‘date_selector’,

map(function(date) {
var date_txt = date.getAttribute(‘date’);
var count_txt = date.getAttribute(‘count’);
return [date_txt+’ (‘+count_txt+’)’, date_txt];

}, dates)
);

// Register the selector change handler.
$(‘date_selector’).onchange = dateSelected;

// Start things off by loading up the first set of links.
return $(‘date_selector’).onchange();

}

37857c08.qxd 6/4/06 9:32 PM Page 216

217Chapter 8 — Getting Your Links Out of del.icio.us

Listing 8-13 continued

/**
Process the list of tags when it arrives, populate the
drop-down menu and wire it up to react to selections.

*/
function tagsFetched(req) {

var xml = req.responseXML;
var tags = xml.getElementsByTagName(‘tag’);
var tag_cnt = 0;

// Add the tags fetched as select options.
setOptions(‘tag_selector’,

map(function(tag) {
var tag_txt = tag.getAttribute(‘tag’);
var count_txt = tag.getAttribute(‘count’);
return [tag_txt+’ (‘+count_txt+’)’, tag_txt];

}, tags)
);

// Register the selector change handler.
$(‘tag_selector’).onchange = tagSelected;

}

Note that both datesFetched() and tagsFetched() are nearly identical in Listing 8-13.
They’re just different enough that, for the sake of clarity, they’re separate functions here. But,
their purposes are also nearly identical:

These functions process the respective XML structures fetched from the del.icio.us API for
date and tag listings, in order to populate the date and tag drop-down menus with selections.
Then, they set each menu’s onchange handler to fire off the appropriate callback script to
handle loading in a set of bookmarks appropriate to the date or tag selected. One of the
biggest differences between the two is that datesFetched() is built to load up the first
day worth of bookmarks once it’s finished processing as a way of kicking off the browser
display.

In each of these functions, the setOptions() function is used, which will be implemented in
this script later on. However, the map() function comes courtesy of MochiKit. It works some-
what like list comprehensions in Python: Feed a list in, transform each of its elements with an
anonymous function, return a list of transformed elements.

In this case, each of the dates or tags and their respective bookmark counts are turned into
label/value pairs in a list to be used by setOptions() in building the selection menu.

Next, in Listing 8-14, the dateSelected() and tagSelected() functions are examined.

37857c08.qxd 6/4/06 9:32 PM Page 217

218 Part II — Remixing del.icio.us

Listing 8-14: ch08_post_browser.js (Part 3 of 8)

/**
React to a new selection by loading up posts for the date.

*/
function dateSelected() {

// Get the selected date from the drop down.
var date = this.options[this.selectedIndex].value;
var url;
if (USE_PROXY) {

// Use a proxy-based URL.
url = PROXY_URI+’/posts/get?dt=’+date

} else {
// Use a static file path URL.
var path = date.split(‘-’).join(‘/’);
url = STATIC_URI + ‘/’ + path + ‘.xml’;

}
loadPosts(url);

}

/**
React to a new selection by loading up posts for the tag.

*/
function tagSelected() {

// Get the selected tag from the drop down.
var tag = this.options[this.selectedIndex].value;
var url;
if (USE_PROXY) {

// Use a proxy-based URL.
url = PROXY_URI+’/posts/all?tag=’+tag

} else {
// Use a static file path URL.
var path = tag.split(‘-’).join(‘/’);
url = STATIC_URI + ‘/’ + path + ‘.xml’;

}
loadPosts(url);

}

Once more, note the similarity of the two functions in Listing 8-14. This is because the API
and data for both date and tag listings are very similar. Because both of these functions are
called in response to a change in selection on the date or tag menu, the first thing done is to
extract the current value of the respective selection field. This value is then used in building a
URL with which to fetch fresh bookmarks.

Here you see evidence of proxy support in URL construction — but again, don’t worry about it
too much yet. You may be interested to note that the proxy support looks more like direct usage

37857c08.qxd 6/4/06 9:32 PM Page 218

219Chapter 8 — Getting Your Links Out of del.icio.us

of the del.icio.us API, while non-proxy implementation is meant to work against the static
backup data fetched by ch08_mirror_posts.py.

In Listing 8-15, you take a look at the loadPosts() function.

Listing 8-15: ch08_post_browser.js (Part 4 of 8)

/**
Given a URL, initiate the process of loading a new set of
bookmark posts into the browser.

*/
function loadPosts(url) {

// Initiate a GET request for the posts.
setContent($(‘links’), ‘Loading posts...’);
var d = doSimpleXMLHttpRequest(url);
d.addCallback(postsFetched);
d.addErrback(function(rv) {

setContent($(‘links’), ‘Problem loading ‘+url+’!’);
});

}

/**
Process the arriving posts data, rebuild the list of links
shown on the page.

*/
function postsFetched(req) {

// Get the incoming XML, extract user name and list of posts.
var xml = req.responseXML;
var user = getNodeAttribute(xml.firstChild, ‘user’);
var posts = xml.getElementsByTagName(‘post’);

// Build the HTML list of posts using buildPostItem
var posts_list =

UL({‘class’:’delPosts’},
map(function(post) {

return buildPostItem(user, post);
}, posts)

);

// Replace the existing list of links on page.
setContent($(‘links’), posts_list);

}

A pair of functions is defined in Listing 8-15: loadPosts() and postsFetched(). Again,
this is because of the asynchronous nature of Ajax communications and the need for callbacks.

37857c08.qxd 6/4/06 9:32 PM Page 219

220 Part II — Remixing del.icio.us

The loadPosts() function first inserts a loading message into the content area where book-
marks will be loaded. Then, it starts a request via doSimpleXMLHttpRequest with
postsFetched() registered as the callback method when content is ready. Alternatively, on
errors, a failure message is inserted into the link container.

The postsFetched() function begins the process of building new HTML content from the
del.icio.us API bookmark data. It starts by building a element with a CSS class name of
delPosts, using another MochiKit convenience, the UL() function. MochiKit is full of these
tools and shortcuts to make this method of dynamic content construction easier.

Inside the UL() function call, the work of creating the individual child elements is
farmed out to a function called buildPostItem(). This is done by using map() to apply
buildPostItem() on each of the <post> elements found in the bookmarks data. This func-
tion is defined next, in Listing 8-16.

Listing 8-16: ch08_post_browser.js (Part 5 of 8)

/**
Given a user name and a post node, build the HTML
for a single bookmark post.

*/
function buildPostItem(user, post) {

// Extract the attributes from the post.
var data = extractFromPost(post);

// Build the link post list item.
var item =

LI({‘class’:’delPost’},

SPAN({‘class’:’delTime’}, data[‘time’]),

A({‘class’:’delLink’, href:data[‘href’]},
data[‘description’]),

SPAN({‘class’:’delExtended’}, data[‘extended’])
);

// Add tag links, if any tags attached.
var tags = data[‘tag’].split(‘ ‘);
if (tags) {

var tags_list = buildTagList(user, tags);
appendChildNodes(item, tags_list);

}

return item;
}

37857c08.qxd 6/4/06 9:32 PM Page 220

221Chapter 8 — Getting Your Links Out of del.icio.us

In Listing 8-16, the function buildPostItem() is defined. This function is at the core of
building the HTML content for each bookmark displayed on the page. It attempts to closely
mimic the same HTML built by ch08_mirror_posts.py, but this time everything’s done
on-the-fly in the browser.

First, the extractFromPost() function is called, which extracts the attributes from the
bookmark <post> passed in as a parameter. Then, an element is constructed, with child
elements constructed to contain the date, link, title, and extended notes. Each of these child
elements is assigned a CSS class and filled with content from the extracted post data.

Next, the bookmark data is checked for tags. If tags are present, the buildTagList() func-
tion is called to construct another HTML list of tag links. Then, at the end, the finished book-
mark item element is returned.

Continue on to Listing 8-17, where the extractFromPost() function is presented.

Listing 8-17: ch08_post_browser.js (Part 6 of 8)

/**
Given an XML node representing a bookmark post, extract all
the attributes containing the bookmark’s details.

*/
function extractFromPost(post) {

var data = {};
forEach(

[‘time’,’href’,’description’,’extended’,’tag’],
function(k) { data[k] = getNodeAttribute(post, k) }

);
return data;

}

The extractFromPost() function in Listing 8-17 is pretty simple: Using the MochiKit
forEach() function, a list of post attribute names is traversed to copy each corresponding
node attribute into a JavaScript object. This is basically a convenience function to ease the use
of post attributes in building content.

Next, in Listing 8-18, you’ll see what makes the buildTagList() function tick.

Listing 8-18: ch08_post_browser.js (Part 7 of 8)

/**
Given a user name and a list of tags, build an HTML list of
tag links.

*/
function buildTagList(user, tags) {

return UL({ ‘class’:’delTags’ },

continued

37857c08.qxd 6/4/06 9:32 PM Page 221

222 Part II — Remixing del.icio.us

Listing 8-18 continued

map(function(tag) {
var href = ‘http://del.icio.us/’+user+’/’+tag;
return LI({‘class’:’delTag’}, A({href:href}, tag));

}, tags)
);

}

Found in Listing 8-18, buildTagList() is another pretty straightforward convenience func-
tion used to build an HTML list of tag links. It uses the map() function and DOM helper
functions to transform tag names into elements, each containing a tag link element. This
list of elements is used as the children of a parent element, which is returned as the final
product of this function.

Finally, this JavaScript is wrapped up in Listing 8-19 with two more function definitions.

Listing 8-19: ch08_post_browser.js (Part 8 of 8)

/**
Set the options for a given select identified by ID.

*/
function setOptions(sid, data) {

var opts = $(sid).options;
opts.length = 0;
forEach(data, function(d) {

opts[opts.length] = new Option(d[0], d[1]);
});

}

/**
Completely replace the content of a given parent with the
children supplied.

*/
function setContent(node, children) {

while (node.firstChild)
node.removeChild(node.firstChild);

appendChildNodes(node, children);
}

The two functions defined in Listing 8-19 are very close cousins in terms of functionality: The
setOptions() function was used very early on in the script. Basically, it clears out all of the
options from an HTML <select> element and, using a two-dimensional array passed in as a
parameter, inserts a brand new set of options.

37857c08.qxd 6/4/06 9:32 PM Page 222

223Chapter 8 — Getting Your Links Out of del.icio.us

After this, the setContent() function is defined. This function serves to clear out all of the
content found in a given page element, replacing it with the content passed in as a parameter.

Trying Out the Bookmark Browser
With the completion of the browser’s implementation, it’s time to try it out. It’s best for
this JavaScript, the associated HTML, and the CSS to all live in the parent directory
under which your bookmark backup folder lives. The STATIC_URI constant at the start
of ch08_post_browser.js can be tweaked to reflect a different location of this directory,
but the examples here assume everything’s all in the same place.

So, once everything’s in the right place, load up ch08_post_browser.html in your Web
browser. It’s hard to depict the dynamic nature of this thing as an application through screen-
shots — but, if everything is in working order, you should first see a screen like Figure 8-24 as
the JavaScript starts up and initiates fetches to pull in your bookmark dates and tags. Once
everything has loaded, the page should appear loaded with bookmarks, as in Figure 8-25.

You may notice that in this initial stage, tags are not loaded. This is because tags were not
included in the backup process implemented in ch08_mirror_posts.py. I’ll leave it as a
project for you to improve the backup program to download tags and possibly fetch each of
your tags’ set of bookmarks separately. However, the tag selection function will become useful
with the introduction of this chapter’s final program.

FIGURE 8-24: Bookmark browser loading in progress

37857c08.qxd 6/4/06 9:32 PM Page 223

224 Part II — Remixing del.icio.us

FIGURE 8-25: Bookmark browser loading has completed and fresh links are displayed.

But for now, try playing with the date selector. Each time you choose a new item from the
menu, that date’s bookmarks are dynamically fetched and built into links on the page. With a
little more work and CSS tweaking, you could use this code along with your bookmark backups
to build the ultimate blog links sidebar.

Building a Caching API Proxy Using PHP
Presenting dynamically fetched bookmarks from your static backups is a pretty neat trick, but
it’s limited to the data set grabbed during the backup process. Although the JavaScript code
can support it, you’ve already seen that it can’t use tags yet because the backup program didn’t
fetch them. While it’s great to have a tool to back up your bookmarks, it quickly gets limiting
when unanticipated use cases arise as you try to use it as a database or a replacement for the
del.icio.us API. You’ll constantly need to update the tool to fetch different combinations of
API calls and queries.

So, why not just use the del.icio.us API in the Ajax-powered bookmark browser? Well, the
answer is two-fold: First, there are cross-domain security limitations that prevent the use of
XMLHttpRequest to make requests to other servers — and that includes calls to the del.icio.us
API from a page hosted on your own servers. And second, one of the goals of the latter part of
this chapter is to reduce reliance on the del.icio.us servers by using data on servers you control.

37857c08.qxd 6/4/06 9:32 PM Page 224

225Chapter 8 — Getting Your Links Out of del.icio.us

Another approach to these concerns is to build a caching proxy in front of the del.icio.us API.
Instead of grabbing all of the data you could possibly need up front in a backup script, emulate
the del.icio.us API to allow all of the same calls and cache the results of all calls locally. With
this approach, you’ll gradually build a cache of all of your del.icio.us bookmarks that naturally
reflects usage patterns, while at the same time being able to more easily support unanticipated
API call combinations.

For this proxy, we’re going to need PHP. Whereas the backup program in Python could run on
the command line, this proxy needs to run on the Web. So, check out Listing 8-20 for the start
of this proxy script in PHP.

Listing 8-20: ch08_api_cache.php (Part 1 of 6)

<?php
/**

ch08_api_cache.php

Provide a caching proxy in front of the del.icio.us API
for use by the AJAX browser.

*/

define(‘DEL_API’, ‘del.icio.us/api’);
define(‘DEL_USER’, ‘your_username_here’);
define(‘DEL_PASSWD’, ‘your_password_here’);
define(‘DEL_POSTS_PATH’, ‘del-posts’);
define(‘DEL_CACHE_AGE’, ‘3600’);

// http://sourceforge.net/projects/snoopy/
require_once ‘includes/Snoopy.class.php’;

In Listing 8-20, the PHP script starts with a descriptive comment and a set of configuration
defines. These include the original del.icio.us API URL, your user name and password, the
path where the cache should be built, and a maximum age (in seconds) before considering a file
in the cache as stale and in need of a fresh fetch.

Note that the cache path is the same as that used by ch08_mirror_posts.py — these two
programs are not mutually exclusive: You can use the backup script to seed and regularly refresh
data in the backup/cache, while the proxy will follow the same directory structures. Just make
sure all your file permissions are set so that both the Python program and PHP page can read
and write in this directory.

At the end of Listing 8-20, code for the Snoopy Web client is required for the page. You’ll
need to download this package from the following Web page:

http://sourceforge.net/projects/snoopy/

37857c08.qxd 6/4/06 9:32 PM Page 225

226 Part II — Remixing del.icio.us

Snoopy is a pretty reliable HTTP client class that works where many other means for fetching
URLs fail. If you know a bit of PHP, you can skip this download and swap out the Snoopy
usage later in the listings to simplify dependencies. But, it’s safe to just grab Snoopy and let it
do what it does best.

In Listing 8-21, the code starts to get down to the business of being a proxy.

Listing 8-21: ch08_api_cache.php (Part 2 of 6)

if (isset($_SERVER[‘PATH_INFO’])) {

// Assume all requests with a path result in XML.
header(‘Content-Type: text/xml’);

$path = $_SERVER[‘PATH_INFO’];
switch($path) {

// Proxy through requests for dates
case ‘/posts/dates’:

echo delAPI($path, DEL_POSTS_PATH.’/dates.xml’);
exit;

// Proxy through requests for tags
case ‘/tags/get’:

echo delAPI($path, DEL_POSTS_PATH.’/tags.xml’);
exit;

First thing in Listing 8-21, a check is made for the server variable PATH_INFO. All del.icio.us
API calls take the form of some combination of paths leading from the URL prefix
http://del.icio.us/api, so this is an attempt to handle extra paths from this script’s
URL in the same way as del.icio.us API calls. So, for example, while the del.icio.us API call for
dates looks like this:

http://del.icio.us/api/posts/dates

the same call through this proxy might look like this:

http://example.com/ch08_api_cache.php/posts/dates

So, ideally, you’ll just need to swap out the API URL prefix for the URL where you install this
PHP script.

The rest of the code in Listing 8-21 performs a switch on the PATH_INFO value, providing
proxy points for retrieving dates and tags. The function delAPI(), which will be defined
toward the end of the script, performs the call to the del.icio.us API and manages the cache,
deciding whether a fresh request needs to be made or whether cached data will suffice. The

37857c08.qxd 6/4/06 9:32 PM Page 226

227Chapter 8 — Getting Your Links Out of del.icio.us

first parameter to this function is the path of the call, while the second establishes a filename in
the cache for the call’s data.

In Listing 8-22, proxying calls get a little more complex.

Listing 8-22: ch08_api_cache.php (Part 3 of 6)

// Proxy through requests for post gets
case ‘/posts/get’:

// Pass the query string on through to API
$path .= ‘?’.$_SERVER[‘QUERY_STRING’];

// Cache filename starts at root
$get_fn = DEL_POSTS_PATH;

// Build the date into the cache path.
if (isset($_GET[‘dt’])) {

$pat = ‘/(\d{4})-(\d{2})-(\d{2})/’;
if (preg_match($pat, $_GET[‘dt’], $parts)) {

$parts = array_slice($parts, 1);
$get_fn .= ‘/’.join(‘/’, $parts);

}
}

// Build tag filters into the cache path.
if (isset($_GET[‘tag’])) {

$bad = array(‘ ‘,’/’);
$tag = str_replace($bad, ‘-’, $_GET[‘tag’]);
$get_fn .= ‘/’.$tag;

}

// If neither date nor tags found, assume index
if ($get_fn == DEL_POSTS_PATH) {

$get_fn .= ‘index’;
}

// Tack a .xml extension onto the end of the path
$get_fn .= ‘.xml’;

// Dispatch off to the API.
echo delAPI($path, $get_fn);
exit;

Here in Listing 8-22, the posts/get call is handled. Two things here make this a little more
complicated than dealing with the list of dates or tags.

First, the query parameters making up the bookmark fetch call need to be passed along to the
del.icio.us API. This isn’t too difficult, but it needs doing.

37857c08.qxd 6/4/06 9:32 PM Page 227

228 Part II — Remixing del.icio.us

And second, this code does the work of translating from query parameters to a cache filename
path. It handles turning dates into paths, as well as adding the ability to cache tag collections
and tags filtered by date. However, because this code is using input supplied from the Web —
which is potentially untrustworthy — a little bit of effort needs to be put into making sure a
date is a date and not simply slicing on hyphens and building a file path. So, a regular expres-
sion is used to extract the expected date segments and a few safeguards are applied to tags in
building paths.

Listing 8-23 provides the last proxied API call in this script.

Listing 8-23: ch08_api_cache.php (Part 4 of 6)

// Proxy through requests for all posts
case ‘/posts/all’:

// Pass the query string on through to API
$path .= ‘?’.$_SERVER[‘QUERY_STRING’];

// Cache filename starts at root
$get_fn = DEL_POSTS_PATH.’/all’;

// Build tag filters into the cache path.
if (isset($_GET[‘tag’])) {

$bad = array(‘ ‘,’/’);
$tag = str_replace($bad, ‘-’, $_GET[‘tag’]);
$get_fn .= ‘tags/’.$tag;

} else {
// We’re going to fetch everything...
$get_fn .= ‘/00index’;

}

// Tack a .xml extension onto the end of the path
$get_fn .= ‘.xml’;

// Dispatch off to the API.
echo delAPI($path, $get_fn);
exit;

}

}

Listing 8-23 shows code to handle the posts/all call to the API. This is a call that wasn’t
used in the backup script, but can be employed to fetch all bookmarks at once, or selectively fil-
ter on tags. Of all calls, this one benefits from caching because it can return a large amount of
data from del.icio.us. However, it can be very useful in dealing with queries involving tags.

For the most part, however, this part of the script works in much the same way as the code
handling posts/get does.

37857c08.qxd 6/4/06 9:32 PM Page 228

229Chapter 8 — Getting Your Links Out of del.icio.us

And that’s it for API methods handled by the proxy. The list implemented here is far from
complete, but the pattern for adding more calls should be fairly clear. For the purposes of this
chapter, however, this should be enough of a proxy to turn on the rest of the features of the
Ajax bookmark browser.

And finally, you get into the meat of the cache handling with the definition of delAPI() in
Listing 8-24.

Listing 8-24: ch08_api_cache.php (Part 5 of 6)

/**
Perform a request on the del.icio.us API, with an
attempt to use cached data first.

*/
function delAPI($path, $fn) {

// Attempt to serve up non-stale data from cache.
$now = time();
if (is_file($fn)) {

$age = $now - filemtime($fn);
if ($age < DEL_CACHE_AGE) {

return file_get_contents($fn);
}

}

// Create the cache path, if necessary.
$dir = dirname($fn);
if (!is_dir($dir)) {

$curr = DEL_POSTS_PATH;
$local = str_replace($curr.’/’, ‘’, $dir);
$parts = explode(‘/’, $local);
while (count($parts) > 0) {

$curr .= ‘/’ . array_shift($parts);
if (!is_dir($curr)) mkdir($curr);

}
}

// Cache is stale, so fetch fresh from the API
$base = ‘http://’.DEL_USER.’:’.DEL_PASSWD.’@’.DEL_API;
$client = new Snoopy();
$client->fetch($base.$path);

// Grab the data from the fetch, cache it, return it.
$data = $client->results;
file_put_contents($fn, $data);
return $data;

}
?>

37857c08.qxd 6/4/06 9:32 PM Page 229

230 Part II — Remixing del.icio.us

The implementation for delAPI() is provided in Listing 8-24. The first thing this function
does is attempt to locate a file for the API request. Then, if it has found one, it checks the age
of this file. If the file is not old enough to be stale, the data is loaded up and returned.

However, if the file is missing or old enough to need a refresh, the next thing that happens is a
search for the parent directory for the potential cache file. If the parent path doesn’t exist, it’s
created, including all folders along the way. This ensures that all the path components of a new
day’s cache file will be created.

Then, the del.icio.us API URL is constructed and a Snoopy instance is created and used to
fetch the URL. The data from this HTTP GET is loaded up and stored away in the cache file
for use next time. Finally, the fetched data is returned.

Now, there’s one last bit to this script in Listing 8-25, and you’ll be ready to take it for a spin.

Listing 8-25: ch08_api_cache.php (Part 6 of 6)

<html>
<head>

<title>del.icio.us mini-browser</title>

<!-- http://www.mochikit.com/ -->
<script src=”MochiKit/MochiKit.js”

type=”text/javascript”></script>

<script src=”ch08_post_browser.js”
type=”text/javascript”></script>

<link href=”ch08_post_styles.css”
type=”text/css” rel=”stylesheet” />

<script>
var USE_PROXY = true;
var PROXY_URI = location.href;

</script>

</head>
<body>

<form id=”main”>
<select id=”date_selector”>

<option value=””>No dates loaded</option>
</select>
<select id=”tag_selector”>

<option value=””>No tags loaded</option>
</select>

</form>

<div id=”links”>No links loaded.</div>

</body>
</html>

37857c08.qxd 6/4/06 9:32 PM Page 230

231Chapter 8 — Getting Your Links Out of del.icio.us

If you’ll notice, the final part of ch08_api_cache.php in Listing 8-25 is nearly identical to
ch08_post_browser.html. This is intentional, so that when the PHP script is loaded up
without any additional path information, the bookmark browser code is loaded up by default.
This, then, makes the page self-referential in that viewing the proxy page pulls up code that
makes calls back to itself.

The one difference in this HTML from ch08_post_browser.html is in the final bit of
JavaScript at the end of the page header. Here, the Ajax browser’s USE_PROXY constant is
flipped to true, and the PROXY_URI is set to the location of the current page. This, then, calls
into action all the proxy support bits that you’ve been heretofore instructed to ignore.

Trying Out the Bookmark Browser with Proxy Support
Now, everything comes full circle, and you can use all of the features of the Ajax bookmark
browser in conjunction with this new PHP caching proxy. If you place this PHP script into the
same directory along with the HTML, CSS, JS, and bookmark backups you’ve been working
with so far in this chapter, you should see a view like Figure 8-26 when you load up the page.

Your tags should load up into the second selection field, and when you choose one from the
list, you should see the appropriate bookmarks.

FIGURE 8-26: Bookmark browser with proxy-powered tag filtering support enabled

37857c08.qxd 6/4/06 9:32 PM Page 231

232 Part II — Remixing del.icio.us

Summary
So, now you should have a pile of tools available to get your bookmarks out of del.icio.us and
into just about whatever form you’d like. This chapter showed you several different ways to
include links from del.icio.us into HTML sidebars and RSS feeds, as well as providing you
with some code to back up and mirror your links. This chapter also gave you a small Ajax-
powered bookmark browser on which you can build an interactive view on your links. And
finally, to help enhance your backups and to better power the Ajax browser, you saw code for a
PHP cache in front of the del.icio.us API.

The techniques described in this chapter are far from comprehensive with respect to what you
can do and find on the Web, but they should give you an idea of what you can do and where
you can go from here.

In the next chapter, we move from getting your links out of del.icio.us and toward getting
del.icio.us more involved with your Web site and blog.

37857c08.qxd 6/4/06 9:32 PM Page 232

Getting del.icio.us
into Your Blog

T he goal of the previous chapter was to provide you with tools to help
you get your bookmarks out of del.icio.us and explore ways to main-
tain some independence from the service. This chapter, on the other

hand, shows you ways to make links to your own content easier to bookmark,
as well as how to get del.icio.us further integrated into your sites and pages.

Beyond simple sidebars that can pull your personal bookmarks into tem-
plates and pages you control, you can use the same data access and API
methods to call up lists of others’ bookmarks found to be related to your
content. And, thanks to the predictable construction of URLs used by
del.icio.us for posting new bookmarks and requesting filtered views of
bookmarks, you can easily template the generation of these links within
the context of blog posts and other managed content on your site.

Going beyond this even, you can also take advantage of some of the data
feeds offered by del.icio.us to include even more bookmarking context in
your site.

Adding “Bookmark This” to
Movable Type Posts
One of the first ways you can further integrate del.icio.us into your site is by
making your content more easily bookmarked. If you can provide perma-
nent URLs — or permalinks — for each individual item of content you’re
halfway there. Most blogging packages offer this feature, and it’s just a good
common practice for publishing on the Web because it provides a way to
unambiguously refer to and identify pieces of your content. This, of course,
is the entire point of del.icio.us.

So, given permalinks to your content, visitors can use the standard book-
marklets provided by del.icio.us without much fuss. You can take it a step fur-
ther by providing ready-to-click buttons or links to the del.icio.us bookmark
posting form with your content’s permalink URL and title pre-populated in
the item fields. By placing this link right next to your content, you can make
it even easier — and more likely — for your readers to add your URLs to
their collections.

� Adding “Bookmark
This” to Movable Type
posts

� Template tweaks for
easy bookmarks in
WordPress

� Using the Sol-Delicious
plug-in for WordPress

� Using the Notable
plug-in for WordPress

� Using the Sociable
plug-in for WordPress

� Building bookmarking
into your feed with
FeedBurner

� Injecting bookmark
links with unobtrusive
JavaScript

� Including related links
with tags and JSON

� Turning bookmarks
into comments with RSS
and JSON

chapter

in this chapter

37857c09.qxd 6/4/06 9:33 PM Page 233

234 Part II — Remixing del.icio.us

And, getting added to bookmark collections can help attract more people to check out your
site. As you’ve already likely experienced from using del.icio.us, seeing a bookmark in a friend’s
collection is a better recommendation than any banner ad can supply. One of the earliest tips
for blog entry bookmarking came from the del.icio.us blog itself, in the form of a small addi-
tion for Movable Type blogs. You can read all about it here:

http://blog.del.icio.us/blog/2005/05/bookmark_this.html

It helps if you know a bit about customizing templates for your Movable Type blog, but there’s
not much to this change. Just log in to your blog’s management pages, navigate to the settings
for the blog you want to customize, and click the Templates item in the Configure section of
the left navigation bar. From here, you can edit both the Main Index and Individual Entry
Archive templates to add the following bit of HTML template code:

<a href=”http://del.icio.us/post?url=<$MTEntryPermalink encode_url=
”1”$>&title=<$MTEntryTitle encode_url=”1”$>”>Bookmark This

This template code builds a link to the del.icio.us bookmark posting form for the currently logged
in user, pre-populated with the blog entry’s title and permalink URL. By using the encode_url
option in both of the Movable Type template tags, any sensitive characters are escaped in the
constructed URL intended to pass the two values. You may want to review Chapter 2 for a
refresher on just which form fields are available for pre-population in this fashion.

If you’re still using the default templates, one of the best spots to insert this code is in a para-
graph toward the end of the entry text with a CSS class of entry-footer (see Figure 9-1).

FIGURE 9-1: Adding a Bookmark This link to the Main Index template in Movable Type

37857c09.qxd 6/4/06 9:33 PM Page 234

235Chapter 9 — Getting del.icio.us into Your Blog

This is where the entry permalink is located, as well as a count of comments and trackback
pings. Once you’ve added this code to your templates and saved them, use the Rebuild Site
button in the management interface to generate new HTML pages for your entries. Once this
process has finished, you should start seeing Bookmark This links added to all of your entries
(see Figure 9-2).

FIGURE 9-2: Main blog index in Movable Type with newly added Bookmark This links

Template Tweaks for Easy Bookmarks in WordPress
As with Movable Type, one of the quickest ways to enrich blog posts in WordPress with
bookmarking links is with a template modification. And again, it helps if you have some
familiarity with the template code behind the theme you’re using for your WordPress blog.
For now, I’ll assume that you’re using the default Kubrick theme that comes out-of-the-box
with WordPress 2.0.

There are basically two ways to edit themes in WordPress: If the Web server on which your
instance of WordPress is running can write to the files under your installation directory —
specifically under the wp-content/themes directory — you can use the built-in Theme
Editor under the Presentation tab in the admin interface to make these changes (see
Figure 9-3).

37857c09.qxd 6/4/06 9:33 PM Page 235

236 Part II — Remixing del.icio.us

FIGURE 9-3: Adding a Bookmark This link to the Main Index template in WordPress

On the other hand, if WordPress cannot write to its own files, you’ll need to edit the template
files in your favorite text editor and upload the changes into your WordPress installation via
FTP or some other means provided by your hosting service. You can find template files located
at the sub-directory path wp-content/themes. From here, you should find one more child
directory named default — there may be more folders here, depending on other themes you
may have installed or which may have come bundled with your WordPress installation.

Once you’re able to edit themes, one of the standard template files you can find in the default
theme is index.php. Here, you’ll find the template code used to render the front page of your
blog, among a few others. Open this file in your editor and, around line 17, you’ll find a para-
graph with a CSS class of postmetadata. It should look something like this:

<p class=”postmetadata”>Posted in <?php the_category(‘, ‘) ?> |
<?php edit_post_link(‘Edit’, ‘’, ‘ | ‘); ?> <?php comments_
popup_link(‘No Comments »’, ‘1 Comment »’, ‘% Comments
»’); ?></p>

This line constructs links to the post’s categories and comments, and constructs an editing link
for logged-in users. I hope you can decipher the purpose of each bit of this line’s template code
without much problem. Here, you can insert a bit of HTML that will get appended to each
blog entry as it’s rendered out to the page. So, to add a handy Bookmark This link after each
entry, you’ll need this bit of template code:

<a href=”http://del.icio.us/post?url=<?php echo urlencode(get_
permalink()) ?>&title=<?php echo urlencode(the_title(‘’,’’,
false)) ?>”>Bookmark This

37857c09.qxd 6/4/06 9:33 PM Page 236

237Chapter 9 — Getting del.icio.us into Your Blog

Insert this link template anywhere in the postmetadata paragraph — personally, I prefer to
paste it in just before the comments_popup_link tag. Basically, just like the Movable Type
template code, this constructs a URL to the del.icio.us bookmark post form with URL and title
pre-populated from URL-encoded versions of the current post’s permalink and title. Finally,
you can see the results of this addition in Figure 9-4.

Note that this link doesn’t spawn a popup window or anything fancy — it simply takes users
straight to a pre-populated bookmark form, where they can add tags or edit the notes and title
before submitting the new link to their collection.

FIGURE 9-4: WordPress blog entries with added Bookmark This template links

Using the Sol-Delicious Plug-in for WordPress
Another way to add Bookmark This links to WordPress blog posts is by using the Sol-
Delicious plug-in by Bas Wenneker, found here:

http://solutoire.com/?page_id=13

You can find the zip file archive containing the plug-in, as well as short instructions on how to
install it. There’s not much to it, however: Grab the zip archive, unpack it, and copy the plug-in

37857c09.qxd 6/4/06 9:33 PM Page 237

238 Part II — Remixing del.icio.us

file named sol-delicious.php into your wp-content/plugins directory. Then, you’ll
need to visit your blog’s administration interface and activate the new plug-in (see Figure 9-5).

FIGURE 9-5: Activating the Sol-Delicious plug-in in WordPress

Once the plug-in has been installed and activated, you’ll have a new template tag available to use
as a replacement for the hand-built HTML template code provided just a few paragraphs ago:

<?php sol_del(‘ ‘,’Add to del.icio.us’,’ | ‘) ?>

This template tag takes three arguments: text meant to appear before the link, text for within
the link, and some text to be appended after the link. Through this new template tag, the Sol-
Delicious plug-in will do basically everything that the hand-built HTML above does — it just
does it with less template code, which is a bit simpler to manage for you.

Using the Notable Plug-in for WordPress
As you’ll read in the final chapters of this book, del.icio.us is not without competitors in the
social bookmarking space. If you’d like to hedge your bets and include bookmark buttons to
many of these services all at once, check out Cal Evans’s WordPress plug-in called Notable:

www.calevans.com/view.php/page/notable

37857c09.qxd 6/4/06 9:33 PM Page 238

239Chapter 9 — Getting del.icio.us into Your Blog

From this page, you can download a zip archive in which you’ll find a folder intended to be
copied into your wp-content/plugins directory. Once in place, you can activate Notable in
your blog’s administrative interface just like any other WordPress plug-in.

However, there’s an additional step with this plug-in: Navigate over to the Options section in
your admin pages, and then to the Notable tab, where you’ll be greeted with the configuration
options shown in Figure 9-6. Here, you can choose which icons from a list of bookmarking
sites you’d like to include in your entries, along with a path to icon images included with the
plug-in.

FIGURE 9-6: Configuring the Notable plug-in in WordPress

After activation and configuration, you’ll get this new template tag available for use:

<?php wp_notable(); ?>

You can stick this tag into the postmetadata section of your index.php, just like the previ-
ous plug-in. This time, however, instead of a text link you should see a series of icons (see
Figure 9-7) — each of these leads to a posting form at a different bookmarking site, with title
and URL pre-populated from the current post’s data.

37857c09.qxd 6/4/06 9:33 PM Page 239

240 Part II — Remixing del.icio.us

FIGURE 9-7: Bookmarking icons added with the Notable plug-in in WordPress

Using the Sociable Plug-in for WordPress
Just as del.icio.us is not alone in its field, the Notable plug-in itself is not free from competi-
tion. Another WordPress plug-in with very similar functionality is Sociable, available for
download here:

www.maxpower.ca/sociable/2006/01/26/

Again, this plug-in can be acquired as a zip archive that contains a folder to be placed in your
wp-content/plugins directory and activated in your blog’s admin pages. However, unlike
Notable, Sociable does not offer an options screen as of this writing. Instead, you can choose
which bookmarking services to show by way of the template tag it makes available for use,
like so:

<?php wp_sociable(‘delicious,simpy,digg,spurl’); ?>

Once the plug-in is activated and the new tag has been added to your blog template, you’ll see
results very similar to Figure 9-7 appearing in your pages.

37857c09.qxd 6/4/06 9:33 PM Page 240

241Chapter 9 — Getting del.icio.us into Your Blog

Build Bookmarking into Your Feed with FeedBurner
You were introduced to a few of the features of FeedBurner in the previous chapter — with an
eye toward splicing your bookmark posting stream into your feeds, as well as for building side-
bar lists from your links. Another relatively new feature from FeedBurner — called
FeedFlare — takes things in the opposite direction.

With FeedFlare activated for one of your feeds, FeedBurner can inject “Add to del.icio.us” links
into items. These links are visible in the feed readers of your subscribers, available for quick
access from most aggregators. If you haven’t already, pay a visit to FeedBurner and set up one of
your feeds for burning here:

www.feedburner.com/

Once you’ve got a feed configured at FeedBurner, you can find the FeedFlare feature in the
Services section under the Optimize tab (see Figure 9-8). Here, you can select Add to
del.icio.us along with an array of other link injection options. Simply check the boxes for the
links you want added, drag the links into your desired order, and activate the feature.

FIGURE 9-8: Activating FeedFlare on a feed in FeedBurner

37857c09.qxd 6/4/06 9:33 PM Page 241

242 Part II — Remixing del.icio.us

With FeedFlare activated, you can take a look at the injected links in the feed by subscribing to
it in an aggregator. Or, even better: if you activate the BrowserFriendly feature, FeedBurner
applies a browser-friendly stylesheet to the feed — allowing you to view the feed directly in
your browser, as in Figure 9-9. Along with making the feed more convenient to view and sub-
scribe for your site visitors, this feature will help you preview changes you make to the feed and
FeedBurner settings.

FIGURE 9-9: Viewing a styled FeedBurner feed with “Add to del.icio.us” links injected

Injecting Bookmark Links with Unobtrusive JavaScript
If your blog or content management system doesn’t allow for easy customization of individual
content items or posts on the server side, you can try a few customization tricks on the client
side. As long as you can find a way to get a <script> tag inserted somewhere into the page,
you can leverage unobtrusive JavaScript techniques to restyle and modify the page after it has
been loaded and rendered. Of course, this approach counts on the availability of enabled
JavaScript on your visitors’ browsers — but there should be enough of a majority of your audi-
ence who meet this requirement to make this a useful trick.

One example of a blog publishing system that allows general template customization, but not
necessarily per-item formatting changes, is the OPML Community Server used in tandem

37857c09.qxd 6/4/06 9:33 PM Page 242

243Chapter 9 — Getting del.icio.us into Your Blog

with the OPML Editor. You can read more about the OPML Editor and the Community
Server here:

http://support.opml.org/

As of this writing, the OPML Community Server allows users with hosted blogs to edit an
overall HTML template (see Figure 9-10), but the rendering of individual entries posted to
the server is under the control of the community server code and not currently open to alter-
ation by community members.

FIGURE 9-10: Editing the page template for an OPML Community Server blog

Fortunately, the page template allows for the inclusion of any arbitrary CSS styles and
JavaScript code. And, as for the rendering of individual entries, the HTML produced by the
server follows a regular and predictable structure. This means that JavaScript code included on
the page can search for this pattern in the loaded page DOM and perform manipulations just
after the page has loaded, which includes the injection of Bookmark This links.

So, to get started, you can begin creating a JavaScript include named ch09_bookmark_this.js
with the code in Listing 9-1. (You can download all the source code for this chapter from the
book’s Web site at www.wiley.com/go/extremetech.) When finished, you’ll be able to use
this code to customize per-item display of OPML Community Server blogs, including an icon
that links to a pre-populated del.icio.us bookmark posting form.

37857c09.qxd 6/4/06 9:33 PM Page 243

244 Part II — Remixing del.icio.us

Listing 9-1: ch09_bookmark_this.js (Part 1 of 5)

/**
ch09_bookmark_this.js

Inject del.icio.us bookmark links into an OPML blog page.
*/

var DEL_LINK_TITLE = “Bookmark this at del.icio.us!”;
var DEL_ICON_WIDTH = 10;
var DEL_ICON_HEIGHT = 10;
var DEL_ICON_SRC =

‘http://decafbad.com/2006/02/delicious.tiff’;

The JavaScript include in Listing 9-1 starts off with a comment identifying the file and its pur-
pose, as well as a few constants defining a title and image parameters for use a little later in
constructing the bookmark links to be injected into the page for each blog post. The actual
page manipulation starts next in Listing 9-2.

Listing 9-2: ch09_bookmark_this.js (Part 2 of 5)

function bookmarkThisInit() {

// Iterate through all the images found on the page.
var imgs = document.getElementsByTagName(‘img’);
for (var i=0, img; img=imgs[i]; i++) {

// Does the alt text contain “Permanent link”?
if (/Permanent link/.test(img.alt)) {

// Grab the actual permalink, along with its URL.
var perma = img.parentNode;
var perma_url = perma.href;

In Listing 9-2, a function named bookmarkThisInit() is defined. The first thing that
happens in this function is a call to document.getElementsByTagName(), searching the
browser DOM for all the image tags on the page. The images returned by this method are each
then processed, searching for those with an alt text attribute containing the phrase “Permanent
link.” For each of these matching images, it’s assumed that the immediate parent node is a
hyperlink — that’s the permalink itself. This hyperlinks node is found, and the URL to which
it links is extracted.

37857c09.qxd 6/4/06 9:33 PM Page 244

245Chapter 9 — Getting del.icio.us into Your Blog

For OPML Community Server blogs, the permalink for every item includes an image whose
alt text contains the phrase “Permanent link.” If you view source on one of these blogs, you can
find images with this text repeated throughout the page. Keep an eye out for this sort of regular
pattern, if you want to customize this script for a different content management system. Using
a search strategy like this, you can dig up just about any reoccurring configuration of markup
on a page and perform modifications from there.

This script will get around to making just that sort of change — but there’s a little more prepa-
ration in order first, offered in Listing 9-3.

Listing 9-3: ch09_bookmark_this.js (Part 3 of 5)

// Find a title for this permalink, based on the
// post title or anchor name.
var bs = perma.parentNode.getElementsByTagName(“b”);
var title = (bs.length) ?

bs[0].firstChild.nodeValue :
perma.parentNode.firstChild.name;

// Include the document title, for good measure.
title += “ - “ + document.title;

// Construct a del.icio.us posting form URL.
var del_url = “http://del.icio.us/post”;
del_url += “?url=” + encodeURIComponent(perma_url);
del_url += “&title=” + encodeURIComponent(title);

The code in Listing 9-3 serves to construct a del.icio.us bookmark posting form URL. The
permalink URL to the blog entry was easy to find — it was the target of the permalink parent
node for each of the matching images found in the page. The title, however, is a bit more chal-
lenging to find.

On OPML Community Server blogs, there are basically two types of entries: full essay-style
entries with titles, and smaller standalone entries consisting of just a paragraph or so. For the
entitled essays, the title itself is contained within a bold tag found as a sibling to the permalink.
For the smaller entries, there’s an anchor tag present at the start of the text whose timestamp-
based name you can use as a stand-in for the title. So, the first few lines of Listing 9-3 attempt
to dig up a suitable title for both of these entry varieties.

Having found a primary title, the code next appends the document title to the string in order
to identify the blog itself. This is concatenated with the entry permalink URL — both escaped
for sensitive characters with calls to encodeURIComponent() — and a del.icio.us posting
form URL is constructed. This URL is put to good use in Listing 9-4.

37857c09.qxd 6/4/06 9:33 PM Page 245

246 Part II — Remixing del.icio.us

Listing 9-4: ch09_bookmark_this.js (Part 4 of 5)

// Build the link icon.
var del_img = document.createElement(“img”);
del_img.setAttribute(“width”, DEL_ICON_WIDTH);
del_img.setAttribute(“height”, DEL_ICON_HEIGHT);
del_img.setAttribute(“src”, DEL_ICON_SRC);
del_img.style.border = “none”;

// Build the link element for injection.
var del_link = document.createElement(“a”);
del_link.setAttribute(“href”, del_url);
del_link.setAttribute(“title”, DEL_LINK_TITLE);
del_link.style.marginLeft = DEL_ICON_WIDTH+”px”;
del_link.style.marginRight = DEL_ICON_WIDTH+”px”;

// Add the link icon into the link, then add the link.
del_link.appendChild(del_img);
perma.parentNode.appendChild(del_link);

}
}

}

Now that the script has a handle on the permalink, and a del.icio.us posting form URL con-
structed, it’s time to build and insert the Bookmark This button. In Listing 9-4, a new image
element is created with a call to document.createElement(). This element is then assigned
a width, height, and source URL from the constants defined at the start of the script back in
Listing 9-1.

After building the image, a hyperlink element is created and given a title and the posting
form URL. There’s a little style fudging going on here, with a margin added to the link so
that the icon has a bit of space around it — but you may want to change or remove this bit
of code.

With icon and link elements in hand, the icon is placed inside the link, and the link is
appended as a new child to the permalink’s parent element. This will place the del.icio.us
bookmarking icon either at the end of the blog post title, or the end of the entry itself.

Finally, in Listing 9-5, you see how this whole process is made unobtrusively active.

37857c09.qxd 6/4/06 9:33 PM Page 246

247Chapter 9 — Getting del.icio.us into Your Blog

Listing 9-5: ch09_bookmark_this.js (Part 5 of 5)

// See: http://simon.incutio.com/archive/2004/05/26/addLoadEvent
function addLoadEvent(func) {

var oldonload = window.onload;
if (typeof window.onload != ‘function’) {

window.onload = func;
} else {

window.onload = function() {
oldonload();
func();

}
}

}

addLoadEvent(bookmarkThisInit);

The function defined in Listing 9-5, addLoadEvent(), comes courtesy of Simon Incutio. You
can read all about it in this blog entry:

http://simon.incutio.com/archive/2004/05/26/addLoadEvent

Basically, this function allows the registration of a call to a function after the page has loaded,
without clobbering any other preexisting calls registered. If you’re using a JavaScript library
that already offers this method — such as MochiKit — you may want to omit the function
definition itself. However, the call to addLoadEvent() at the very end of this script sets
things up so that bookmarkThisInit() gets called as soon as everything in the page fin-
ishes loading.

This is where the technique gets its “unobtrusive” moniker: In order to use this script on a
page, all you need to do is include it on the page. Because it does its work without any further
code on the page, and without clobbering other running scripts, there’s nothing else you need
to worry about besides the include itself.

If all has gone well, you should be able to see new little del.icio.us icon links appearing next to
blog entries, as shown in Figure 9-11. As of this writing, you can see this script actively
demonstrated on this blog:

http://blogs.opml.org/decafbad/

I hope this code can offer a few ideas for use on whatever site you find a need to customize —
the technique is handy for, but not limited to, OPML Community Server blogs.

37857c09.qxd 6/4/06 9:33 PM Page 247

248 Part II — Remixing del.icio.us

FIGURE 9-11: Bookmark This links with del.icio.us icons added to an OPML blog

Including Related Links with Tags and JSON
Although the previous chapter offered some help to get your links out of del.icio.us and dis-
played on your blog, you can use tagging to integrate bookmarks even further into your blog.
By attaching tags to your own blog posts or content items on your site, you can relate these to
bookmarks posted to your del.icio.us collection. Simply use the same tagging vocabulary on
both your own site and on your del.icio.us bookmarks, and the shared tags can be used as con-
venient intersection points for presenting related materials.

In this section, I show you first how to get tagging integrated into a Movable Type or
WordPress blog. Then, I show you how to use those tags to dynamically pull tag-related links
into your pages.

Tagging Posts in Movable Type
Tagging your entries is another small way you can build more ties between a Movable Type
blog and del.icio.us. In the normal use case, tags on blog entries can serve as an alternative to
categories local to the blog itself — but you can also use these tags to relate your entries to tags

37857c09.qxd 6/4/06 9:33 PM Page 248

249Chapter 9 — Getting del.icio.us into Your Blog

in your collection on del.icio.us. To start using tags on a Movable Type blog, check out Brad
Choate’s Tags Power Tool, described and available for download here:

www.sixapart.com/pronet/plugins/plugin/tags.html

This is a pretty easy plug-in to install, and it comes with full instructions on where to place the
handful of relevant files. Once you’ve gotten it installed, you’ll find that the Keywords field on
your entry editing page has been replaced by a Tags field (see Figure 9-12). You can use this
field in much the same way as you do on del.icio.us: freeform, space-separated tags entered here
will be attached to each of your entries in place of categories and keywords. In fact, the plug-in
will automatically create new categories for tags when necessary, and assign the entry’s category
to the first tag used in the list.

FIGURE 9-12: Tags field available in the Movable Type post editing form

After getting the plug-in installed and attaching tags to a few of your entries, the next step is to
include display of the tags in your blog templates. The Tags Power Tool plug-in provides a set
of new template tags for your use in accomplishing this.

Listing 9-6 offers some sample code you could insert into your Main Index template within
the entry-footer section, just like the Bookmark This link offered earlier in this chapter.
This code will result in a simple, horizontal list of tags attached to the entry, each linked to the
appropriate tag in your del.icio.us bookmark collection.

37857c09.qxd 6/4/06 9:33 PM Page 249

250 Part II — Remixing del.icio.us

Listing 9-6: Template code to list tags in Movable Type

<style type=”text/css”>
.tag {
padding: 0 0.5em 0 14px;
margin: 0;
background-image: url(http://decafbad.com/2006/03/del-small.tiff);
background-position: top left;
background-repeat: no-repeat;

}
</style>

<MTEntryTags>

<a rel=”tag”

href=”http://del.icio.us/deusx/<$MTTagName$>”><$MTTagName$>

</MTEntryTags>

You can see a preview of how this will appear, in Figure 9-13. Once added, these links can pro-
vide a quick path to further links of interest from your blog entries, as well as help you catego-
rize your own entries along similar lines as your tag vocabulary in use on del.icio.us.

Tagging Posts in WordPress
With WordPress 2.0, entering categories is a lot more like entering tags than in previous versions.
In the past, categories needed to be painstakingly created one at a time and selected with a list of
check boxes. With the newest versions, however, categories can be supplied as a comma-separated
list (see Figure 9-14), which makes things almost as easy as del.icio.us tags. Entering the name of a
new category here will cause it to be automatically created in the database, once the entry has been
posted. So, while there has been a handful of tagging plug-ins made available for WordPress, this
revised implementation of the built-in categories is worth sticking with for use here.

On the other hand, if you haven’t upgraded to WordPress 2.0, you might just want to take a
look at a few of the tagging plug-ins available for WordPress 1.5 and later.

Bunny’s Technorati Tags is a good option that’s simple to install and doesn’t require any database
options. You can find it available here:

http://dev.wp-plugins.org/wiki/BunnysTechnoratiTags

On the other hand, Ultimate Tag Warrior does require the addition of a new table to your
WordPress database, but it offers a few more user interface bells and whistles. Check it out here:

www.neato.co.nz/ultimate-tag-warrior/

37857c09.qxd 6/4/06 9:33 PM Page 250

251Chapter 9 — Getting del.icio.us into Your Blog

FIGURE 9-13: Entries with tags displayed in Movable Type

FIGURE 9-14: Assigning categories to a post in WordPress

37857c09.qxd 6/4/06 9:33 PM Page 251

252 Part II — Remixing del.icio.us

Now, if you look through some of your WordPress templates — index.php in particular —
you’ll see the template tag the_category() used to list links to post categories. The format-
ting options offered by this tag are a bit limited, so Listing 9-7 offers a much more verbose yet
flexible replacement for this tag. With this code, you get both del.icio.us tag links and blog cat-
egory links. Check out Figure 9-15 for an example peek at how this code looks in a template.

Listing 9-7: Listing categories in WordPress with del.icio.us tags

<?php
foreach ((get_the_category()) as $cat) {

$cat_name = $cat->cat_name;
$del_url = “http://del.icio.us/deusx/$cat_name”;
$cat_url = get_settings(‘home’).”/category/$cat_name/”;
?>

<a rel=”tag” href=”<?php echo $del_url ?>”>

<a href=”<?php echo $cat_url ?>”><?php echo $cat_name ?>

<?php

}
?>

FIGURE 9-15: Entries with tags displayed in WordPress

37857c09.qxd 6/4/06 9:33 PM Page 252

253Chapter 9 — Getting del.icio.us into Your Blog

Using Tags and JSON Feeds to Display Related Links
Now that you’ve got the means to attach tags to your posts in a Movable Type or WordPress
blog, you can use these to display del.icio.us bookmarks related to posts by tags. To keep things
fairly agnostic with respect to either of these blog packages — or whatever other content man-
agement system you may be using — you’ll implement this using JSON feeds and DOM con-
tent injection, with a minimum of system-specific template code.

Because of the potential for complexity in this little project, we’ll make use of the MochiKit
JavaScript library again. MochiKit offers a very nice set of HTML DOM construction tools,
which makes the dynamic generation of content in JavaScript a breeze. This kit was introduced
in the previous chapter, but if you need a refresher you can visit the home page here:

www.mochikit.com/

Now, check out Listing 9-8 for the first part of the JavaScript include that will power these
tag-related links, named ch09_delicious_related.js.

Listing 9-8: ch09_delicious_related.js (Part 1 of 4)

/**
ch09_delicious_related.js

Facilitates the injection of related links by tag from
del.icio.us JSON feeds.

*/
DeliciousRelated = {

JSON_BASE_URL: ‘http://del.icio.us/feeds/json/deusx’,
MAX_LINKS: 5,

Listing 9-8 starts off with a descriptive comment and the opening lines of a JavaScript object
literal constructing the DeliciousRelated package. Here, two package constants are
defined:

� JSON_BASE_URL: This is a base URL prefix used in finding JSON feeds, in which you
should replace deusx with your own del.icio.us user name.

� MAX_LINKS: This is a limit to the maximum number of related links to display per tag
on the page.

Continuing on to Listing 9-9, you can find the code used in initializing this package on page
load, as well as how related links are scheduled for loading.

37857c09.qxd 6/4/06 9:33 PM Page 253

254 Part II — Remixing del.icio.us

Listing 9-9: ch09_delicious_related.js (Part 2 of 4)

// Array of jobs scheduled to run at page load
_jobs: {},

/**
On window load, fire off all the scheduled jobs.

*/
init: function() {

for(jid in this._jobs)
this._jobs[jid].load();

},

/**
Given a job / element ID and a del.icio.us tag,
schedule a job to load up links for the tag.

*/
register: function(jid, tag) {

var _dr = this;
this._jobs[jid] = {

jid: jid,
tag: tag,

load: function()
{ _dr.loadTag(this) },

loaded: function(posts)
{ _dr.tagLoaded(this, posts) }

}
},

In Listing 9-9, two package functions are defined: init() and register().

The init() function will be called upon the completion of page load, and it serves to iterate
through a set of scheduled job objects, calling a load() method on each.

The register() function is responsible for creating and scheduling the jobs fired off by
init(). In a nutshell, it will be used in HTML template code like so:

<ul class=”relLinks” id=”delRel-<$MTTagName$>”>
<script type=”text/javascript”>
DeliciousRelated.register(
“delRel-<$MTTagName$>”, “<$MTTagName$>”

)
</script>

When used in the page code, register() expects two parameters: the ID of an HTML
DOM element into which content should be injected, and the name of a del.icio.us tag from
which to load bookmarks and generate the content for injection.

37857c09.qxd 6/4/06 9:33 PM Page 254

255Chapter 9 — Getting del.icio.us into Your Blog

This pair of functions, init() and register(), allows for the simple usage of this package
in template code while it’s building the page — yet defers the actual execution of JSON data
fetches until the page has finished loading and the HTML DOM has been completely built.
Shortly, you’ll see expanded examples of this function used in HTML template code.

Next, in Listing 9-10, you see the definition of loadTag(), the package function called by the
load() method of scheduled job objects.

Listing 9-10: ch09_delicious_related.js (Part 3 of 4)

/**
Initiate the loading of JSON link data for a
scheduled job.

*/
loadTag: function(job) {

var cb_ref = “DeliciousRelated._jobs[‘“+job.jid+”’].loaded”;

var json_url = this.JSON_BASE_URL;
json_url += ‘/’+job.tag;
json_url += ‘?callback=’+encodeURIComponent(cb_ref);

var script_ele =
createDOM(‘script’,

{ ‘type’: ‘text/javascript’, ‘src’:json_url });

document.getElementsByTagName(“head”)[0].appendChild(script_ele);
},

The loadTag() function defined in Listing 9-10 performs the task of building the URL to a
JSON feed at del.icio.us, and injecting the <script> element necessary to cause the browser
to dynamically load this JSON feed. As arguments, it takes a reference to the scheduled job for
which the content should be loaded. This job object contains the name of the tag and the job
ID as properties.

The tag name is used to build the JSON URL path. The job ID is used to build a string refer-
ence to the job’s loaded() method, which is supplied as the callback query parameter
attached to the JSON URL. This results in the returned data from del.icio.us being wrapped in
a call to this method. Thus, this is a way to asynchronously signal when the JSON request has
completed, and trigger processing of the fetched bookmark data.

The technique employed here to communicate between the browser and the RSS-to-JSON script
on the server is known as JSONP — or, JSON with Padding. You can read what MochiKit’s Bob
Ippolito has to say about this technique in his proposition here:

http://bob.pythonmac.org/archives/2005/12/05/
remote-json-jsonp/

The loaded() method of scheduled job objects calls the package function tagLoaded().
Listing 9-11 offers the definition of this function.

37857c09.qxd 6/4/06 9:33 PM Page 255

256 Part II — Remixing del.icio.us

Listing 9-11: ch09_delicious_related.js (Part 4 of 4)

/**
Handle the completion of loading JSON link data,
inject list links for each post found.

*/
tagLoaded: function(job, posts) {

var list = $(job.jid);
for (var i=0, post; i<this.MAX_LINKS && (post=posts[i]); i++) {

list.appendChild(
LI({}, A({‘href’:post.u}, post.d))

);
}

}

};

// Schedule the package init to fire at window load.
addLoadEvent(function() { DeliciousRelated.init() });

As you can see in Listing 9-11, there’s not much to the implementation of tagLoaded().

First, the $() convenience function from MochiKit is used to look up the HTML DOM ele-
ment specified by a scheduled job object. This scheduled job is supplied as the function’s first
parameter.

A list of del.icio.us posts is supplied as the second parameter for this function, having been
fetched via JSON and passed from the scheduled job’s loaded() method. A loop iterates
through this list of posts, up to the end of the list or until the maximum number of links has
been reached. Each of these posts is wrapped up in an HTML list element and hyperlink,
using the URL and description in each post, and injected into the page as children of the
schedule job’s specified list element.

All of this results in the first few bookmarks in the tag being displayed on the page in the
appropriate spot.

Using the Related Links Script with Movable Type
Now, it’s time to put this script to real use in your blog. First, let’s take a look at how to use it
with Movable Type. As before, it’s best if you know your way around editing templates in
Movable Type, and this code is best used on an individual archive page for a post. You can stick
these links wherever you like, although they may work best in a spot below the post — or even
in a sidebar area.

37857c09.qxd 6/4/06 9:33 PM Page 256

257Chapter 9 — Getting del.icio.us into Your Blog

The first thing you need to do, however, is include the script itself in the header of your tem-
plate with a tag like the following:

<script type=”text/javascript” src=”/js/ch09_delicious_related.js” />

Next, you need to include calls to DeliciousRelated.register() in your page where tag
links should appear. Check out Listing 9-12 for some sample template code integrating this
JavaScript include with the Tags Power Tool template tags.

Listing 9-12: Using DeliciousRelated in a Movable Type template

<ul class=”relatedTags”>
<MTEntryTags>
<li id=”tag-<$MTTagName$>”>
<a rel=”tag” href=”http://del.icio.us/deusx/<$MTTagName$>”>
<$MTTagName$>

<ul class=”relLinks” id=”delRel-<$MTTagName$>”>
<script type=”text/javascript”>
DeliciousRelated.register(
“delRel-<$MTTagName$>”, “<$MTTagName$>”

)
</script>

</MTEntryTags>

The template snippet in Listing 9-12 illustrates how you can use the additional template tags
supplied by the installation of the Tags Power Tool to construct some HTML into which the
JavaScript can inject links related by tag to the current blog post. This results in a list of tags;
under each is a list of bookmarks, as shown in Figure 9-16.

Again, although this screenshot depicts the list of related links in the middle of the page, you
may want to consider constructing a sidebar section for these links if you’d like them to be a lit-
tle less obtrusive in your page layout.

Using the Related Links Script with WordPress
Using the related links JavaScript with WordPress works in much the same way as the Movable
Type templates, as well as the template code for including del.icio.us tag links presented earlier
in this section.

37857c09.qxd 6/4/06 9:33 PM Page 257

258 Part II — Remixing del.icio.us

FIGURE 9-16: Related links listed by tag in a Movable Type entry

First, remember to include a reference to the JavaScript in your theme’s header.php template
like so:

<script type=”text/javascript” src=”/js/ch09_delicious_related.js” />

Next, take a look at Listing 9-13 for some example template code to work these related links
into your blog theme templates.

Listing 9-13: Using DeliciousRelated in a WordPress template

<ul class=”relatedTags”>
<?php
foreach ((get_the_category()) as $cat) {
$cat_name = $cat->cat_name;
$del_url = “http://del.icio.us/deusx/$cat_name”;
$cat_url = get_settings(‘home’).”/category/$cat_name/”;
?>
<li class=”relTag”>
<a rel=”tag” href=”<?php echo $del_url ?>”>
<?php echo $cat_name ?>

<ul class=”relLinks”

37857c09.qxd 6/4/06 9:33 PM Page 258

259Chapter 9 — Getting del.icio.us into Your Blog

Listing 9-13 continued

id=”delRel-<?php echo $cat_name ?>”>

<script type=”text/javascript”>
DeliciousRelated.register(
“delRel-<?php echo $cat_name ?>”,
“<?php echo $cat_name ?>”

)
</script>

<?php

}
?>

In Listing 9-13, you can find some WordPress template code that constructs a list of tags with
associated related links for the current blog post. This code probably goes best in either the
single.php or comment.php templates from the default theme, although you could likely fit
it into the sidebar.php template. Figure 9-17 offers an example of what this template code
produces in the page.

FIGURE 9-17: Related links listed by tag in a WordPress entry

37857c09.qxd 6/4/06 9:33 PM Page 259

260 Part II — Remixing del.icio.us

You should play with the placement and styling of these links with CSS until you find a way to
present them that works with your blog’s design. This script can offer a good way to help build
more connections between your content and your bookmarks on del.icio.us.

Turning Bookmarks into Comments with RSS and JSON
One feature on most blogs is the integration of comments along with entries. There’s usually a
template tag for including the count of comments for a particular entry, as well as a link to the
list of comments and a comment form for the entry. Usually, this comment facility is built right
into the software package itself — although occasionally it’s provided by a third-party service.
In a sense, bookmarks posted to del.icio.us from your content are like comments — wouldn’t it
be nice if you could pull them easily into that context? This sounds like the start of a project
that could use some thinking through.

Thinking About the Problem
As you may remember from Chapter 4, one of the varieties of RSS feeds offered by del.icio.us
lists bookmarks posted for a given URL. Using these feeds, you can request lists of bookmarks
for the URLs of your site. In a sense, these are like comments made on content at your site.

So, through these per-URL RSS feeds, you’ve got access to the relevant bookmark data. Now,
how can these bookmarks be brought into the context of your content? One way to do it would
be on the server side: Fetch the appropriate RSS feed for the page being served up, and present
the bookmarks found for that URL. Depending on your blogging package, however, this can
offer a varying degree of difficulty.

If you’ve got a WordPress blog, every page is dynamically built at the time of serving it — so you
can read in the RSS feed for that page fresh with every visit. Once the feed has been fetched,
you can parse the feed data and display a list of the bookmarks found, thus presenting del.icio.us
bookmarks from others in a way not unlike contents posted to your blog.

On the other hand, for a Movable Type blog, pages are built only at the time content changes.
So, the bookmarks display could go quickly stale between visits. On the bright side, however, at
least your Movable Type server won’t get banned from accessing del.icio.us data: Making a
request for RSS feeds with every page hit on a WordPress blog will quickly see your site run-
ning afoul of the usage limits at del.icio.us.

Gluing the Pieces Together
Thus far, you’ve learned several key points concerning using del.icio.us bookmarks as com-
ments in your blog entries:

� Use del.icio.us RSS feeds to request up-to-date lists of others’ bookmarks relevant to
your page URLs.

37857c09.qxd 6/4/06 9:33 PM Page 260

261Chapter 9 — Getting del.icio.us into Your Blog

� Mind usage constraints imposed by del.icio.us in accessing these bookmarks’ RSS feeds

� You’ll need to have easy integration with whatever content management or blogging sys-
tem is in use at your site.

For some sites and blogs, comments are provided by a separate package or service. For example,
check out the HaloScan weblog commenting and trackback service located here:

http://haloscan.com/

HaloScan is an easy-to-integrate solution for comments and trackbacks with free and for-pay
options. On most sites, all it takes is a simple JavaScript include and some template tweaks to
enrich a site with commenting features. So, HaloScan helps integrate feedback into sites where
the content management software does not provide this service.

Taking a hint from HaloScan, what if you did some of work of displaying del.icio.us book-
marks on the client side in the browser through Ajax or some other JavaScript techniques?
You’ve already seen the use of unobtrusive JavaScript in this chapter to insert simple Bookmark
This buttons in your content — why not take this technique further and inject even more
information into your pages? There’s just one snag, however: RSS feeds from del.icio.us come
from a different domain than where your site is hosted — unless you happen to run the
del.icio.us blog itself. And, because Ajax technology is restricted for security reasons to making
requests only to the domain from which the page was loaded, JavaScript on your site’s pages
cannot access RSS feeds from del.icio.us.

So, don’t make your requests to del.icio.us directly — access that data through a proxy resident
on your server. In the previous chapter, you saw how this could be done with a caching proxy
written in PHP and sitting in front of the del.icio.us API to enable a dynamic Ajax-powered
bookmark browser. What if you could take a similar approach here? And, while you’re at it,
why not make things easier by swapping out XML for JSON?

Take a look at the FeedMagick project, located here:

http://decafbad.com/trac/wiki/FeedMagick

FeedMagick is a Web-based package written in PHP that’s useful for filtering and manipulat-
ing RSS/Atom syndication feeds. And, one of the scripts included with this package turns RSS
feeds into JSON — simply provide the URL to an RSS feed, and it uses MagpieRSS to parse
the feed, and subsequently serves up a JSON data structure based on the content from the feed.
And the best part for this project? JSON can be served up from any domain you like — your
own or from a third-party service — because JSON isn’t bound by the same security restric-
tions as the XmlHTTPRequest object.

And, here’s one more very important benefit to using a package like FeedMagick: Most of the
scripts in FeedMagick operate from a cache — that is, when you use FeedMagick to get JSON
from RSS feeds, the RSS feeds are cached just like the caching proxy did in the previous chap-
ter. This will greatly reduce the number of times the del.icio.us servers will be accessed and thus
greatly reduce the chances that your server will be throttled or banned for overzealous usage.

37857c09.qxd 6/4/06 9:33 PM Page 261

262 Part II — Remixing del.icio.us

The RSS-to-JSON facilities of FeedMagick will be used in this chapter, but be aware that it’s not
the only show in town when it comes to getting JSON out of RSS. If for some reason
FeedMagick doesn’t work for you, or isn’t a good fit for your server, check out John Resig’s Perl
CGI-based RSS to JSON Convertor located here:

http://ejohn.org/projects/rss2json/

Altering the code from this chapter to use this alternative shouldn’t be too onerous a task, if need
be. So, keep this service in mind.

Implementing Bookmarks as Comments on Your Site
So, here’s the plan for implementation:

� Given a permalink URL to a blog entry or other content item, you can build the URL
for a del.icio.us RSS feed containing bookmarks relevant to your content.

� Using an RSS-to-JSON conversion service, you can grab this RSS data and access it
from JavaScript — thereby both dodging cross-domain security issues and XML parsing
complexity.

� Following the lead of third-party comment services such as HaloScan, you can call upon
client-side tricks in JavaScript to integrate and present these bookmarks from others in
context alongside your content.

So, with no further ado, Listing 9-14 offers the start of ch09_delicious_comments.js, a
JavaScript include that should come in handy to integrate del.icio.us bookmarks into your site
alongside the usual comment and trackback fare.

Listing 9-14: ch09_delicious_comments.js (Part 1 of 7)

/**
ch09_delicious_comments.js

Insert del.icio.us bookmark counts and links for blog
post permalinks and individual archives.

*/
DeliciousComments = {

// See: http://decafbad.com/trac/wiki/FeedMagick
RSS_TO_JSON_URL:

‘http://decafbad.com/2005/12/FeedMagick/www-bin/as-json.php’,

DEL_URL_BASE: ‘http://del.icio.us/’,
DEL_ICON_SRC: ‘http://decafbad.com/2006/03/delicious.png’,
DEL_ICON_WIDTH: 10,
DEL_ICON_HEIGHT: 10,

37857c09.qxd 6/4/06 9:33 PM Page 262

263Chapter 9 — Getting del.icio.us into Your Blog

Listing 9-14 begins the JavaScript include off with a descriptive comment and the opening
lines of a JavaScript object literal assigned to DeliciousComments. In case you’re not already
familiar with this technique, it’s similar to defining a class in Java or a package in Perl: It forms
a sort of namespace, within which all the constants and functions defined belong to
DeliciousComments and so should not collide with other such things defined elsewhere.

The first constant defined here is RSS_TO_JSON_URL, intended for the location of the as-
json.php script from FeedMagick. Although the location provided here points to an installa-
tion of the service at decafbad.com, which is operational as of this writing, you should really
grab a copy of FeedMagick to install on your own server. That way, if this particular installation
goes away, you won’t be left out in the cold.

Next, there’s DEL_URL_BASE, which provides a configurable URL prefix for all access to
del.icio.us. As you’ll find in later chapters, this may be useful in case you ever want to switch to
using another bookmarking service that offers the same API and data access features as
del.icio.us. After this constant comes DEL_ICON_SRC, DEL_ICON_WIDTH, and
DEL_ICON_HEIGHT — all of which provide the details for building an icon image later on.

Listing 9-15 provides the details to start initializing this script.

Listing 9-15: ch09_delicious_comments.js (Part 2 of 7)

// Initially empty map of ids to posts
_schedule: {},

/**
On window load, fire off all the scheduled load events.

*/
init: function() {

for(node_id in this._schedule)
this._schedule[node_id].load();

},

/**
Given a destination container node ID, blog post
permalink, and preference for mini or full display,
register a comment display for loading.

*/
register: function(node_id, permalink, full_display) {

var _dc = this;
this._schedule[node_id] = {

node_id: node_id,
permalink: permalink,
full_display: full_display,

load: function() { _dc.loadFeed(this); },
loaded: function(feed) { _dc.feedLoaded(this, feed); }

};
},

37857c09.qxd 6/4/06 9:33 PM Page 263

264 Part II — Remixing del.icio.us

One of the things that a good third-party comments system offers is integration with an exist-
ing site through simple tweaks to the site’s templates. The code in Listing 9-15 provides the
starting point for this sort of integration, with the definitions of the init() and register()
functions in the DeliciousComments package.

The register() function will be the main integration point for blog and site templates. This
will be explained further after the end of this script, but here’s an example WordPress template
snippet illustrating the use of this function:

<div id=”delComments-<?php the_id() ?>”>
<script type=”text/javascript”>
DeliciousComments.register

(“delComments-<?php the_ID() ?>”, “<?php the_permalink() ?>”, true)
</script>

</div>

The parameters needed for the call to register() are the following:

� The unique ID for an HTML element into which the script will inject content

� A permalink to a content item or blog post

� A flag selecting which of two display styles will be used

The register() function creates a lightweight object to keep track of these three parameters
and adds it to _schedule, using the HTML element ID as a key.

The init() function is called upon the completion of page load as a window.onload han-
dler. The goal of init() is to iterate through all of the items in _schedule, calling the
load() function on each object found there.

So, the register() function allows the page to queue up requests for fetching JSON content
while the HTML is still loading into the browser. Once the page has finished loading, init()
follows through with initiating the requests.

Next, in Listing 9-16, you see the definition of the loadFeed() function.

Listing 9-16: ch09_delicious_comments.js (Part 3 of 7)

/**
For a given scheduled post, initiate loading of the per-URL
del.icio.us feed.

*/
loadFeed: function(post) {

var cb_ref =
“DeliciousComments._schedule[‘“+post.node_id+”’].loaded”;

// See: http://pajhome.org.uk/crypt/md5/md5src.html

37857c09.qxd 6/4/06 9:33 PM Page 264

265Chapter 9 — Getting del.icio.us into Your Blog

Listing 9-16 continued

var feed_url = this.DEL_URL_BASE+’rss/url/’;
feed_url += hex_md5(post.permalink);

var script_url = this.RSS_TO_JSON_URL;
script_url += “?in=” + encodeURIComponent(feed_url);
script_url += “&callback=” + encodeURIComponent(cb_ref);

var script_ele =
createDOM(‘script’,

{ ‘type’: ‘text/javascript’, ‘src’:script_url });

document.getElementsByTagName(“head”)[0].appendChild(script_ele);
},

Each of the objects created in register() has a load() method. This load() method in
turn calls the loadFeed() function defined in Listing 9-16 with the object itself as the sole
parameter. This may sound confusingly circular, but it helps ensure that all the right data gets
shuffled to the proper places throughout the asynchronous JSON fetching process.

The first thing loadFeed() does is to construct a string reference to the callback function to
be called when the JSON feed content has been successfully fetched. Notice that this is the
loaded() method of the object, referenced by ID in the _schedule array. This string is the
“padding” in the JSONP call, a string literal that will be treated as a function call wrapped
around the data returned from the server.

Next, a feed URL is built, based on the path to the per-URL RSS feeds on del.icio.us and an
MD5 hash of the permalink URL for which a fetch of bookmarks is desired. The call to
hex_md5() isn’t built into JavaScript, however — you’ll need to grab a copy of Paul Johnston’s
implementation of MD5 in JavaScript from this page:

http://pajhome.org.uk/crypt/md5/md5src.html

Simply drop a copy of his md5.js into your JavaScript includes directory alongside MochiKit
and this script.

Once a reference to the callback function and the feed URL is obtained, it’s time to build the
URL to the RSS-to-JSON script on the server. This script from the FeedMagick package takes
two query parameters:

� in: URL to an input RSS feed

� callback: String reference to a callback function to call with the returning JSON data

Finally, the createDOM() function from MochiKit is used to construct a new <script> ele-
ment based on this script URL. Once this element has been appended to the page’s <head>

37857c09.qxd 6/4/06 9:33 PM Page 265

266 Part II — Remixing del.icio.us

element, the browser runs out and fetches the URL and executes the script — which in turn
contains a call to the callback function.

This callback function is the loaded() method of an object built in the register() func-
tion. In another twist of circular references, this object method calls the feedLoaded()
function defined in Listing 9-17 with a reference to itself and the feed data just successfully
fetched.

Listing 9-17: ch09_delicious_comments.js (Part 4 of 7)

/**
Once a feed has loaded, process the feed for the post.

*/
feedLoaded: function(post, feed) {

// Switch between full or mini display, based on
// preference at time of scheduling.
var display_node = (post.full_display) ?

this.renderFullDisplay(post, feed) :
this.renderMiniDisplay(post, feed);

// Insert the display into the parent node.
appendChildNodes(post.node_id, display_node);

},

Again, the feedLoaded() function defined in Listing 9-17 is what gets called when a JSON
feed request returns successfully with data. As parameters, it accepts a reference to one of the
scheduled objects created in register(), along with the returned JSON feed data. This
method, then, calls either renderFullDisplay() or renderMiniDisplay() based on the
full_display property of the object. Both of these functions return an HTML DOM frag-
ment, which is then injected as new content into the appropriate HTML element registered by
ID in the register() function.

The twists and turns in the journeys made by the little structures created in register()
should make more sense at this point because they preserve all the context necessary to take
this process from beginning to end while everything happens in the disconnected form of asyn-
chronous JSON requests.

Next, in Listing 9-18, comes the definition for the renderMiniDisplay() function, the first
of a set of functions that renders the JSON data dynamically into HTML content for display
in the browser.

37857c09.qxd 6/4/06 9:33 PM Page 266

267Chapter 9 — Getting del.icio.us into Your Blog

Listing 9-18: ch09_delicious_comments.js (Part 5 of 7)

/**
Build a simple bookmark count with icon image and a link
to all bookmarks for the post.

*/
renderMiniDisplay: function(post, feed) {

var _dc = this;

// Compose the URL to bookmarks list for the permalink
// given for this post.
var link_url = this.DEL_URL_BASE + “url”;
link_url += “?url=”+encodeURIComponent(post.permalink);

return SPAN({ ‘class’:’delCommentCount’ },
A({ ‘href’: link_url },

IMG({
‘src’: this.DEL_ICON_SRC,
‘width’: this.DEL_ICON_WIDTH,
‘height’: this.DEL_ICON_HEIGHT

}),
‘ (‘ + feed.items.length + ‘)’

),
‘ | ‘

);
},

The renderMiniDisplay() function defined in Listing 9-18 accepts a registered content
item’s details and feed data, which it uses to build a minimal presentation. This takes the form of
a simple icon link that includes a count of bookmarks for the given permalink URL. The DOM
construction utility functions from MochiKit are used here to build and return the HTML.

A much more complex example of content creation is offered in the definition of
renderFullDisplay() in Listing 9-19.

Listing 9-19: ch09_delicious_comments.js (Part 6 of 7)

/**
Build a full list of bookmarks for a given permalinked
blog post and loaded feed.

*/
renderFullDisplay: function(post, feed) {

var _dc = this;

// Compose the URL to bookmarks list for the permalink

continued

37857c09.qxd 6/4/06 9:33 PM Page 267

268 Part II — Remixing del.icio.us

Listing 9-19 continued

// given for this post.
var link_url = this.DEL_URL_BASE + “url”;
link_url += “?url=”+encodeURIComponent(post.permalink);

return [
H3({},

IMG({ ‘src’: this.DEL_ICON_SRC }),
‘ ‘,
A({‘href’: link_url},

feed.items.length,
‘ del.icio.us bookmarks for this post’

)
),
UL({ ‘class’: ‘delComments’ },

map(function(item) {
return _dc.renderOneBookmark(item)

}, feed.items)
)

];
},

In Listing 9-19 is the definition of the renderFullDisplay() function, which also accepts
the details of a registered content item and bookmark feed data returned from the JSON
request. Here, the MochiKit DOM construction utilities are used to build a richer display of
the bookmarks found for the permalink URL. An <h3> title contains a count and a link to
del.icio.us, under which an HTML list of the bookmarks themselves is constructed.

And, by way of MochiKit’s map() function, the construction of each bookmark HTML item
is farmed out to the renderOneBookmark() function, presented in Listing 9-20.

Listing 9-20: ch09_delicious_comments.js (Part 7 of 7)

/**
Given a bookmark feed item, return rendered HTML.

*/
renderOneBookmark: function(item) {

var name = item.dc.creator;
var tags = item.dc.subject;
var date = item.dc.date;
var url = this.DEL_URL_BASE + name;

var link = A({ ‘href’: url }, name, ‘ @ ‘, date);

37857c09.qxd 6/4/06 9:33 PM Page 268

269Chapter 9 — Getting del.icio.us into Your Blog

Listing 9-20 continued

var description = (!item.description) ? ‘’ :
‘“‘+item.description+’” ‘;

var tag_links = (!tags) ? ‘’ :
map(function(tag) {

return [A({‘href’:url+’/’+tag}, tag), ‘ ‘];
}, tags.split(‘ ‘));

return LI({ ‘class’: ‘delComment’ },
link, ‘: ‘, description, tag_links

);
}

}

// Schedule DeliciousComments initialization on window load.
addLoadEvent(function() { DeliciousComments.init() });

Each listed bookmark item constructed in Listing 9-20’s definition of renderOneBookmark()
contains a link to the account of the person who has bookmarked the current page, along with
the descriptive notes submitted and links to tags used. This provides a pretty compact yet com-
prehensive display of all the information available for each bookmark found.

Integrating del.icio.us Bookmark Comments with Your Site
To use this finished code on your site, you’ll need to do several things:

� Make sure you’ve acquired and uploaded MochiKit, md5.js, and this script into a direc-
tory on your Web server for inclusion in your pages.

� Add <script> tags into your page headers to include these JavaScript files.

� Alter your blog or page templates to insert calls to DeliciousComments.register()
in order to load the bookmark data in context.

Once again, you can find MochiKit at its project site located here:

www.mochikit.com

And, you can find a JavaScript implementation of MD5 here:

http://pajhome.org.uk/crypt/md5/md5src.html

37857c09.qxd 6/4/06 9:33 PM Page 269

270 Part II — Remixing del.icio.us

As for the code from this chapter, as usual you can either type it in yourself or download it
from this book’s Web site. Once you’ve gotten these JavaScript files into place on your server,
you’ll need to tie them into your page template with a set of <script> tags like these:

<script src=”/js/MochiKit/MochiKit.js” type=”text/javascript”></script>
<script src=”/js/md5.js” type=”text/javascript”></script>
<script src=”/js/ch09_delicious_comments.js” type=”text/javascript”></script>

The next step requires you to make alterations to your site’s templates. You’ve already seen this
done in this chapter, for adding Bookmark This links to entries in WordPress and Movable
Type blogs. The process here is much the same.

So, for example, to include a small icon indicating the number of bookmarks found for a blog
post, you’ll need to insert code like the following into the postmetadata paragraph in
index.php:

<p class=”postmetadata”>Posted in <?php the_category(‘, ‘) ?> | <?php
edit_post_link(‘Edit’, ‘’, ‘ | ‘); ?> <span id=”delComments-<?php the_id()
?>”> <?php comments_popup_link(‘No Comments »’, ‘1 Comment
»’, ‘% Comments »’); ?></p>

<script type=”text/javascript”>
DeliciousComments.register

(“delComments-<?php the_ID() ?>”, “<?php the_permalink() ?>”, false)
</script>

The important part here is to include both the new with an ID of delComments-
<?php the_id() ?> and the <script> tag below it. Notice that the false flag in the
register() JS function call indicates that the mini display style should be used — this will
cause the bookmark count icon for the blog post to appear inline with the rest of the post
metadata elements.

Moving along, you can use the full display style to integrate a list of bookmarks on your com-
ments page. In the default WordPress theme, you can find this in the comments.php template.
Look for the line that reads “You can start editing here,” and paste in the following HTML:

<div id=”delFullComments-<?php the_id() ?>”>
<script type=”text/javascript”>
DeliciousComments.register
(“delFullComments-<?php the_ID() ?>”, “<?php the_permalink() ?>”, true)

</script>
</div>

Notice that this code looks a lot like the template change made for including the bookmark
count icon — only this time, the content will be injected into a standalone <div> tag and the
display style parameter is set to true. This will cause the fully rendered bookmark list to be
inserted here.

37857c09.qxd 6/4/06 9:33 PM Page 270

271Chapter 9 — Getting del.icio.us into Your Blog

For Movable Type, the preceding code snippets can be used with little alteration. In WordPress,
<?php the_ID() ?> is used to insert a unique ID for the blog post — but, in Movable Type,
you’ll use <$MTEntryID$>. And, where WordPress uses <?php the_permalink()?> to sup-
ply the blog post’s permalink URL, you’ll use <$MTEntryPermalink$> for Movable Type. So,
for example, to insert a list of bookmarks for a post in a comments page in Movable Type, try
the following template code:

<div id=”delFullComments-<$MTEntryID$>”>
<script type=”text/javascript”>

DeliciousComments.register
(“delFullComments-<$MTEntryID$>”, “<$MTEntryPermalink$>”, true)

</script>
</div>

Once you’ve got everything correctly configured, you should be able to see bookmark count
icons appearing next to your blog entries, as shown in Figure 9-18. And then, when you pay a
visit to one of your entries, you should see a detailed list of bookmarks found for the post in
Figure 9-19.

FIGURE 9-18: Bookmark count icons included in post metadata in WordPress

37857c09.qxd 6/4/06 9:33 PM Page 271

272 Part II — Remixing del.icio.us

FIGURE 9-19: Bookmarks listed as comments on a WordPress blog entry

The nice part about the way this script works is that you should be able to use it with just a few
small tweaks for whatever blogging package or content management system you’re using on
your site. Also, because the HTML produced by this code comes with CSS class names and
IDs attached, you should be able to style these bookmark displays in whatever way you see fit.
And finally, because all the HTML rendering parts are broken out into separate functions, you
can even further customize this script by redefining these in a separate JS include overriding
the default rendering.

Summary
This chapter has offered a collection of ways to use del.icio.us bookmarks with your blog and
content, to varying degrees of integration and contextual ties between content and bookmarks.
From simple Bookmark This buttons up to treating bookmarks from others as a sort of com-
ment system, these techniques can further tie your content and bookmarks together.

In the next part of the book, however, things take a different turn as you explore bookmarking
solutions beyond del.icio.us — starting with a look at a few of the open source Web bookmark-
ing packages.

37857c09.qxd 6/4/06 9:33 PM Page 272

Beyond del.icio.us

Chapter 10
Exploring Open Source
Alternatives

Chapter 11
Checking Out the
Competition

part

in this part

37857c10.qxd 6/4/06 9:35 PM Page 273

37857c10.qxd 6/4/06 9:36 PM Page 274

Exploring Open
Source Alternatives

As a service, del.icio.us is a great way to share and tag bookmarks.
And, through the data feeds and API operations made available, it’s
hard to think of how del.icio.us could be more open or give you bet-

ter access to your account’s data. But sometimes, the use of a third-party
service can be a stumbling block. In this chapter, you are introduced to a
few of the open source projects under development that offer similar fea-
tures as del.icio.us or attempt to clone the service outright.

Why Use an Open Source Alternative?
With all of the avenues for access made available by del.icio.us, it might
seem silly to want to run your own clone of the service. As you’ve seen
throughout this book, there’s really no effort made by the operators of
del.icio.us to lock you into the service or otherwise restrict your use beyond
concerns of resource limitations. On the contrary, you can make a complete
backup of your data at any point, and the del.icio.us API provides many
options for managing bookmark collections with third-party tools.

However, the fact remains that del.icio.us is a service whose operation is out
of your control. Although it may be highly unlikely, del.icio.us could disap-
pear one day, or change directions in development in a way that introduces
restrictions that you don’t want to deal with. Also, for some situations, the
openness of del.icio.us can be a drawback — such as for use as a private
research tool on a company’s intranet.

And then, even with how remote the preceding situations may be, there’s
the plain desire for tinkerers to get under the hood and play with things
themselves. Because the source code of del.icio.us itself is not available, this
means that the wheel needs to be reinvented and so enquiring tinkerers start
from scratch. And, it’s important to note that some del.icio.us-like projects
have begun as independent inventions, some long before del.icio.us itself
came upon the scene. So, because everyone has his or her own ideas on how
things should be done, many efforts are in progress — some sticking close
to the design notions of del.icio.us and others diverging to pursue the devel-
opers’ own ideas for improvement.

� Why use an open
source alternative?

� Checking out
Scuttle for book-
mark management

� Bookmarks and
browser integration
with SiteBar

� Keeping bookmarks
and snapshots with
Insipid

� Using Rubric
for notes and
bookmarks

chapter

in this chapter

37857c10.qxd 6/4/06 9:36 PM Page 275

276 Part III — Beyond del.icio.us

Checking Out Scuttle for Bookmark Sharing
Scuttle is a Web-based social bookmarks manager written in PHP. As a clone, it offers quite a
few of the features of del.icio.us — including user accounts, bookmark posting and tagging,
search, RSS feeds, and a pretty full-featured work-alike API. You can see a public installation
of this project here:

http://scuttle.org

And, if you’d like to download and install a copy of Scuttle for yourself, you can find it available
as a GNU-licensed open source project on SourceForge:

http://sourceforge.net/projects/scuttle/

As of this writing, there’s quite a bit of difference between the latest release version of this
project (v0.5.1) and the code available from the project’s CVS repository. The public installa-
tion of Scuttle is likely to resemble the CVS code, and it looks like there’s a lot of develop-
ment going on with this project. So, the version presented in this chapter was installed fresh
from CVS, in the hopes that what you see here will be closer to the release version available
when this book hits the shelves. You can find details on how to acquire this code from the
project pages here:

http://sourceforge.net/cvs/?group_id=134378

Installing Scuttle
The installation process for Scuttle is fairly painless. It’s not quite as easy to get running as
some PHP apps that come equipped with guided installation wizards — but it does come with
all the dependencies it requires. Of course, you will still need a PHP-enabled Web server and a
MySQL database. There’s code in place to support other databases’ packages, but you’ll need to
set those up by hand — and it sounds like this support is early in its development.

At any rate, for MySQL, Scuttle comes with a tables.sql file containing a schema you can
use to prepare the database. For example, here are commands you might use for setting things
up from a UNIX shell:

$ mysqladmin -uroot -p create scuttle
$ mysql -uroot -p scuttle < tables.sql
$ mysql -uroot -p -e ‘grant all privileges on scuttle.* to \

scuttleuser@localhost identified by “scuttlepass”’

Your mileage may vary, however, if your access to MySQL on your Web server is managed
through a Web-based console. The tool provided by your Web host may have a way to
import SQL dumps and configure accounts like this. On the other hand, you may not need

37857c10.qxd 6/4/06 9:36 PM Page 276

277Chapter 10 — Exploring Open Source Alternatives

or be able to configure a new account on new databases, and may simply use the single login
used by your hosting account and import the new tables. For what it’s worth, the names of all
tables used by Scuttle are prefixed by sc, so this may help in cohabitating with other shared
database tables.

Configuration also requires that you edit a single PHP include file to supply your MySQL
authentication details, but that’s the bulk of what’s needed to install Scuttle. Here’s what the
modified database configuration variables might look like, with regard to the preceding
MySQL setup:

$dbhost = ‘127.0.0.1’;
$dbport = ‘3306’;
$dbuname = ‘scuttleuser’;
$dbpass = ‘scuttlepass’;
$dbname = ‘scuttle’;
$dbtype = ‘mysql’;

Once you’ve uploaded the Scuttle PHP code to your Web server, prepared the MySQL data-
base, and modified the configuration details accordingly, you can visit the index page and fire
things up (see Figure 10-1).

FIGURE 10-1: Scuttle recent bookmarks page

37857c10.qxd 6/4/06 9:36 PM Page 277

278 Part III — Beyond del.icio.us

Registering for a Scuttle Account
Upon initial installation, your copy of Scuttle won’t yet contain any bookmarks. You’re likely to
first see a message telling you as much, rather than precisely what’s shown in Figure 10-1. So,
to start adding bookmarks to your Scuttle installation, you’ll first need to sign up for an
account. This process is much the same as with del.icio.us. First, you need to click the Register
link in the top page header. This will take you to the page shown in Figure 10-2. Fill out your
details and create an account, after which you can click the Log In button in the page header
and supply your authentication details on the page presented in Figure 10-3.

FIGURE 10-2: Registering for a Scuttle account

FIGURE 10-3: Logging in to Scuttle

Adding Bookmarks in Scuttle
Once logged in after registering, you are taken to your currently empty bookmark collection.
From here, click the Add a Bookmark header button that has appeared in response to your
logged-in state. Here, you can enter a URL, title, description, and tags to compose this
bookmark (see Figure 10-4).

37857c10.qxd 6/4/06 9:36 PM Page 278

279Chapter 10 — Exploring Open Source Alternatives

One neat feature that Scuttle’s bookmark posting page has over del.icio.us is that, once you’ve
entered a URL, the system uses Ajax to execute a PHP script on the server that automatically
finds the title of an HTML page at that address. If you don’t type anything in the title field, a
“barber pole” animation fills the field as the system attempts to find the title for you. This page
diverges from del.icio.us, however, in that (as of this writing) tags are comma-separated rather
than space-separated — this can put a bit of a crimp in your style if you’re not expecting it.

FIGURE 10-4: Adding a new bookmark to Scuttle

Importing Bookmarks from del.icio.us
Also available from this page is a pair of bookmarklets to help you in posting to your collection,
as well as some import options. If you ran the programs from Chapter 8 to back up your
del.icio.us bookmarks, then you’ve got some XML available that Scuttle can use to import
bookmarks into your account. If you click the “Import bookmarks from del.icio.us” link, you’ll
see the page in Figure 10-5.

You can use this form to bulk upload your backed up bookmarks — provided that your export
is under 1MB. You may want to try importing just a day’s worth of bookmarks or so — which
the backup script from Chapter 8 can also provide — to see how things work. Just so you’re
forewarned: As to be expected, my own collection of almost 7,000 bookmarks didn’t go down
easily as a single import.

37857c10.qxd 6/4/06 9:36 PM Page 279

280 Part III — Beyond del.icio.us

FIGURE 10-5: Importing del.icio.us bookmarks into Scuttle

Browsing and Searching Bookmarks in Scuttle
After you’ve gotten some bookmarks into your account, you can visit your collection (as shown
in Figure 10-6) at any time by clicking the My Bookmarks button in the page header. There’s
another touch of Ajax magic here, too, when you delete bookmarks: After being asked to con-
firm the deletion, the bookmark turns gray and then shortly vanishes from the page after the
server has deleted it in response to an in-page request.

You can also manage a set of watched bookmark subscriptions, not unlike the inbox feature
del.icio.us offers. If you’re just playing with Scuttle on a machine of your own and have only a
single account, this won’t do much for you — but when you view the bookmarks belonging to
an individual user, an Add to Watchlist link appears that allows you to add their bookmarks to
your subscriptions.

Another interesting addition beyond del.icio.us features is that Scuttle bookmarks allow for
three levels of privacy: public, visible to watchlist members, and private. So, the watchlist isn’t
just a simple inbox, it’s more like a two-way buddy list.

As you browse around bookmark listings, you’ll find that much of the slicing by tags and users
is carried over from del.icio.us, as are some of the related tags (see Figure 10-7). A cloud of
popular tags is also available for your perusal, as shown in Figure 10-8. There are RSS feeds
associated with just about every bookmark listing, and you can perform full text searches on all
bookmarks, your bookmarks, or those of users on your watchlist.

37857c10.qxd 6/4/06 9:36 PM Page 280

281Chapter 10 — Exploring Open Source Alternatives

FIGURE 10-6: Viewing a single user’s Scuttle bookmarks

FIGURE 10-7: Viewing Scuttle bookmarks by tag

37857c10.qxd 6/4/06 9:36 PM Page 281

282 Part III — Beyond del.icio.us

FIGURE 10-8: Popular tags in a cloud in Scuttle

About the Scuttle API
Like del.icio.us, Scuttle also offers a plain old XML–style API. Indeed, Scuttle attempts to
closely follow the del.icio.us API with methods including the following as of this writing:

� posts/get

� posts/all

� posts/delete

� posts/recent

� posts/all

� posts/update

� posts/dates

� tags/get

� tags/rename

37857c10.qxd 6/4/06 9:36 PM Page 282

283Chapter 10 — Exploring Open Source Alternatives

These methods are accessible via HTTP GET with Basic Authentication and all follow the
same data formats and parameter conventions as you saw in Chapter 4. There is one caveat to
this compatibility, however: To match the same URLs that del.icio.us uses, with the exception
of an API URL prefix, your Apache Web server will need to have mod_rewrite enabled.

If you don’t have this feature of Apache available, or aren’t using Apache as your Web server,
you’ll need to fall back to using the PHP scripts implementing the API directly. Thus,
api/posts/get becomes api/posts_get.php and you’ll need to adjust your programs
accordingly. If you’ve got mod_rewrite, you’ll find that any of your scripts limited to the above
list of API methods should work fine with Scuttle without modification.

If you’d like to read more about the Scuttle API, check out the Scuttle Wiki page on the sub-
ject located here:

http://scuttle.org/wiki/doku.php?id=scuttle_api

Bookmarks and Browser Integration with SiteBar
SiteBar is a PHP Web application that’s available as open source, but also offered as a hosted
service with various free and for-pay options. You can find all the details on SiteBar and sign
up to give it a try at this URL:

http://sitebar.org/

While SiteBar is a bookmarks manager, it’s not a del.icio.us clone as such. Instead, it appears
more suited as a repository for personal bookmarks — or perhaps for use as an intranet research
tool in small groups. SiteBar is less about sharing bookmarks socially, and more focused on
organizing bookmarks with a Web-based service.

There aren’t really del.icio.us-style tagging or socially driven features offered by SiteBar, nor is
a Web API exposed. However, you’ll find that SiteBar supports quite a list of formats for
importing and exporting bookmark from browsers, RSS and Atom feeds, and OPML outlines
to name a few.

In addition, SiteBar offers many avenues for browser integration via plug-ins and sidebars, as
well as options for embedding it in Web sites and applications. Although the user interface for
SiteBar is Web-based, it closely resembles desktop applications through the use of Dynamic
HTML elements and contextual menus. You can manage user accounts and security access
controls, restricting folders where users can view and submit bookmarks.

Installing and Configuring SiteBar
To install SiteBar, you’ll need access to a Web server with a MySQL database and PHP
installed. You’ll also need to download the source to SiteBar, found here:

http://sitebar.org/downloads.php

37857c10.qxd 6/4/06 9:36 PM Page 283

284 Part III — Beyond del.icio.us

You can find an installation guide linked from the same page, but the process is fairly straight-
forward. After downloading a tarball or zip archive of the SiteBar source, expand it and upload
the contents to your Web server. Once the upload is complete, you can visit the index.php
page found in the package directory, which will present you with an initial database setup wiz-
ard page (see Figure 10-9).

You’ll need to know the authentication details for your MySQL database, such as user name
and password, as well as a database name. If you’re on a shared account with just a single login
and database, you can just use these details — the names of all tables used by SiteBar are pre-
fixed with sitebar, so this installation shouldn’t clobber any other apps you’ve got sharing the
database.

Once you’ve filled out the database details, you can click the Check Settings button to ensure
that SiteBar can connect to the database. Once that’s working properly, a click of the Create
Database button will ensure that the SiteBar database and tables are all created if necessary.

Finally, your configuration settings need to be saved to the Web server. You have two options
for this: Clicking Write to File will attempt to write the configuration settings to the file sys-
tem directly. To do this, your Web server will need to have write permission to the inc folder
in the SiteBar directory. If this is undesirable or not possible, you can opt to click Download
Settings, which will allow you to grab a copy of the configuration settings file and upload it
into the inc directory by hand.

FIGURE 10-9: SiteBar
database configuration
wizard

37857c10.qxd 6/4/06 9:36 PM Page 284

285Chapter 10 — Exploring Open Source Alternatives

After you’ve got the configuration file updated and in place, you’ll be able to visit the index
page again. You’re almost but not quite done with the installation process. The final step is to
click the Setup link from index.php. This presents you with the page in Figure 10-10 — here
you can create an administrator account and password for yourself, as well as fill out a few
details on the Web server where this instance of SiteBar will run.

Then, finally, with the database configuration and initial setup completed, you can visit the
index page again and be rewarded with the blank bookmarking slate shown in Figure 10-11.

Managing Bookmarks and Folders in SiteBar
One thing to notice from all of the screenshots of SiteBar presented so far in this chapter is
that this is really meant to be a browsing companion. All but a few pages in this application are
presented in a very narrow template — a site bar, if you will. This is so that SiteBar can be
included in a frameset on a Web site, or even in a browser sidebar. SiteBar is meant to be an
accessory tool, not the main attraction.

As a tool, SiteBar’s Dynamic HTML features attempt to mimic some conventions of desktop
applications. For example, try right-clicking (on Windows) or Control-clicking (on Mac) on
one of the main initial groups in the page — such as Admin’s Bookmarks. This will call up a
contextual menu, as shown in Figure 10-12. From here, you can begin the process of managing
folders and bookmarks.

FIGURE 10-11: Initial
view of configured
and installed SiteBar
instance

FIGURE 10-10: Post-
installation setup in
SiteBar

37857c10.qxd 6/4/06 9:36 PM Page 285

286 Part III — Beyond del.icio.us

Click Add Folder, and you’ll be given a form like the one in Figure 10-13. Here, you can supply
the details to create a new subfolder in which to group and organize bookmarks. Figure 10-14
shows you how things look with a freshly created folder.

FIGURE 10-14: New folder
added in SiteBar

FIGURE 10-13: Adding a
new folder in SiteBar

FIGURE 10-12: Contextual
menu on a folder in SiteBar

37857c10.qxd 6/4/06 9:36 PM Page 286

287Chapter 10 — Exploring Open Source Alternatives

Next, try adding a bookmark to a folder via the Add Link item in the contextual menu. This
will take you to the form in Figure 10-15, in which you can supply your own details for the
bookmark — or, if you click Retrieve Link Information, SiteBar will run out and try grabbing
details from a supplied URL automatically.

After you’ve added a bookmark, try checking out properties on the folder you just added.
This will give you the options displayed in Figure 10-16, including actions such as importing
and exporting bookmarks and managing security for the folder. If you click the Security but-
ton, this will in turn take you to the form shown in Figure 10-17, where you can set fairly fine-
grained access controls on groups of users and their ability to manage and see links contained
in this folder.

With these controls, you can set up lots of rich combinations of users and groups with just
about any level of access to bookmarks stored in SiteBar.

FIGURE 10-15: Adding a
bookmark to a folder in
SiteBar

37857c10.qxd 6/4/06 9:36 PM Page 287

288 Part III — Beyond del.icio.us

Importing and Exporting Bookmarks with SiteBar
Along with managing folders and bookmarks on an individual level in SiteBar, you can also
reach for a wide array of import and export options. Although at present, SiteBar doesn’t sup-
port the XML format offered by del.icio.us, you can use the bookmark export formats available
from most Web browsers, as well as from RSS feeds and OPML (Outline Processor Markup
Language) outlines.

For example, if you want to get your Firefox bookmarks into SiteBar, you can select the
Manage Bookmarks option from the Bookmarks menu and use the File/Export option from
there. Firefox produces an HTML-based format, which SiteBar readily accepts. From either a
contextual menu on the main SiteBar view, or using the Import Bookmarks button, as shown
previously in Figure 10-16, you can pull up the form in Figure 10-18. Here, you can select a
bookmark export file from your local filesystem and upload it for SiteBar to parse and import.

Again, SiteBar will accept input from a number of formats, and offers the ability to automati-
cally detect the format of the data you’re uploading. Still, if things aren’t quite working, you can
select an import format directly from the pull-down option menu in the form. Upon submit-
ting a set of bookmarks for import, you should see them appear in the collection if all goes well
(see Figure 10-19).

To take things full circle, SiteBar supports a long list of export formats to get your bookmarks
back out of the system once you’ve amassed a collection. The export feature can be invoked
from the contextual menu of any folder, as well as the Export Bookmarks button in the folder
properties form. This form is depicted in Figure 10-20. As you can see, there’s a drop-down

FIGURE 10-17:
Managing security
settings on a folder
in SiteBar

FIGURE 10-16: Editing
folder properties in
SiteBar

37857c10.qxd 6/4/06 9:36 PM Page 288

289Chapter 10 — Exploring Open Source Alternatives

menu you can use to select a desired output format, as well as to specify sort order and a hand-
ful of other options.

FIGURE 10-20: Exporting
bookmarks from SiteBar

FIGURE 10-19:
Bookmarks imported
in SiteBar

FIGURE 10-18:
Importing bookmarks
in SiteBar

37857c10.qxd 6/4/06 9:36 PM Page 289

290 Part III — Beyond del.icio.us

Browsing Bookmarks and Feeds in SiteBar
Although most of your interaction with SiteBar takes place within a narrow, tool-oriented user
interface, there are a few full-page summary views you can access.

One of the options in the contextual menus on folders is Browse Folder — upon clicking this,
you break out of the tool interface and see a directory listing like the one shown in Figure 10-21.
Here, you can get a more perusal-friendly Web directory of your bookmarks. It’s a read-only
view, but you can more easily see details such as the time when a link was added and any notes
that have been added in the link properties.

FIGURE 10-21: Viewing a directory listing in SiteBar

Another feature that SiteBar offers is a sort of link news portal that’s made available via the
Show Link News option found in contextual menus, as well as in a link toward the bottom
of the main tool view. If you click this, you’ll be presented with the full-page view shown in
Figure 10-22. Here, you can find various reports of link visit popularity, as well as recent book-
mark addition and modification behavior. Also notice that each one of these categories includes
a link to an RSS feed — you can subscribe to any of these to keep up-to-date on SiteBar
activity.

37857c10.qxd 6/4/06 9:36 PM Page 290

291Chapter 10 — Exploring Open Source Alternatives

FIGURE 10-22: Viewing link news from SiteBar

Web Browser Integration with SiteBar
Here’s where the thin user interface of SiteBar comes in handy: If you click the Open
Integrator link in the main tool view, you will see a menu of options (see Figure 10-23) for
integrating SiteBar into your daily browsing habits. You’ll find links to instructions to embed
SiteBar as a persistent utility sidebar in your favorite browser, as well as a set of bookmarklets
to quickly add links to your SiteBar instance while you’re out and about on the Web. You’ll
also be able to find a few tools for integrating SiteBar into other Web pages, including some
instructions on embedding hierarchical menus in PHP pages.

Although SiteBar doesn’t offer quite the same feature set for bookmark management as
del.icio.us, it does offer a wide array of import and export features, user and group management
options, and browser integration opportunities that can make it a decent alternative for per-
sonal link capturing or group research facilitation.

37857c10.qxd 6/4/06 9:36 PM Page 291

292 Part III — Beyond del.icio.us

FIGURE 10-23: The SiteBar integrator page

Keeping Bookmarks and Snapshots with Insipid
Insipid is an open source del.icio.us clone written in Perl by Luke Reeves. As a clone, Insipid is
a pretty lightweight single-user bookmark manager: It doesn’t offer an API or replicate many
of the features of del.icio.us beyond the basics — but in return, Insipid can be installed with
few prerequisites beyond a MySQL or PostgreSQL database and a Web server on which you
can run Perl CGI scripts.

You can find the Insipid project page here:

www.neuro-tech.net/insipid/

If you’d like to see an instance of Insipid in action, check out the author’s bookmark collec-
tion here:

www.neuro-tech.net/Luke/bookmarks

37857c10.qxd 6/4/06 9:36 PM Page 292

293Chapter 10 — Exploring Open Source Alternatives

Installing Insipid
As of this writing, the latest version of Insipid is available here:

www.neuro-tech.net/insipid/insipid-0.9.17.tar.gz

Download this archive and unpack it — you’ll find everything you need to install this applica-
tion under the insipid directory extracted from the package. Move or copy this directory over
to your Web server in a location where CGI scripts can be run. There’s a README file in this
directory that you should check out for the latest instructions, but there’s not much to the
process.

You will need to have access to either a MySQL or PostgreSQL database server, and ensure
that the appropriate Perl DBI modules are installed. Your server may already have these in
place, but you may need to call upon CPAN (see Chapter 5) to install them yourself like so:

$ cpan DBI DBD::mysql

In addition, this software requires the XML::Writer module, available here:

http://search.cpan.org/~josephw/XML-Writer-0.600/

You can download the module and install it by hand, or use CPAN to install it automatically:

$ cpan XML::Writer

Insipid is configured by modifying the insipid-config.cgi, wherein you’ll need to specify
the database type, database authentication details, the Web path to the installed files, as well as
a user name and password to use in securing your bookmarks. For example, here’s what my
insipid-config.cgi looks like:

dbname = insipid
dbuser = insipidusr
dbpass = insipidpass
dbtype = mysql
pagepath = /~deusx/insipid
username = deusx
userpass = mypasswd

And, that’s about it — make sure you can access insipid.cgi as a CGI script and navigate to
it from your browser. Upon first execution, Insipid will attempt to connect to the database and
set up all of its own tables and initial set of data. You should be rewarded with a page some-
what like Figure 10-24, albeit devoid of bookmarks at first.

37857c10.qxd 6/4/06 9:36 PM Page 293

294 Part III — Beyond del.icio.us

FIGURE 10-24: Insipid recent bookmarks page

Importing Bookmarks into Insipid
Once you’ve got Insipid up and running, you can import bookmarks from your del.icio.us
account into the database. You’ll first need to log in to Insipid via the link in the top naviga-
tion. Use the name and password you provided in insipid-config.cgi. After login, you
should see a new set of links in the top navigation, including “import”. Click this, and you
should see a form like the one in Figure 10-25.

FIGURE 10-25: Uploading bookmarks exported from del.icio.us into Insipid

37857c10.qxd 6/4/06 9:36 PM Page 294

295Chapter 10 — Exploring Open Source Alternatives

From here, you can supply an export from del.icio.us to dump into the database. Again, you can
use the programs from Chapter 8 to acquire an XML export of your del.icio.us bookmarks.
The import process will take a few minutes, but shouldn’t require any further manual interven-
tion. As opposed to the import process with Scuttle, this one appeared to handle very large
bookmark imports without much incident.

Managing Bookmarks and Snapshots in Insipid
Using Insipid to manage bookmarks is simple and straightforward, once you’ve logged in. To
manage existing bookmarks, you should find “delete” and “edit” links beside each (see
Figure 10-26). To post new bookmarks, you can click the “add” link or use bookmarklets —
both of which are made available in the top navigation links. Check out Figure 10-27 for an
example of Insipid’s bookmark posting form.

FIGURE 10-26: Recent bookmarks after logging in to Insipid

An interesting feature offered by Insipid that’s somewhat unique among del.icio.us clones is
the ability to take snapshots of the pages you’ve bookmarked. When you click a “snapshot” link
next to one of your bookmarks, Insipid downloads a local copy of the page and associated
assets. This will subsequently reveal a “view snapshot” link next to bookmarks with available
snapshots, and you can manage the set of local snapshots with the “snapshots” link in the top
navigation (see Figure 10-28).

37857c10.qxd 6/4/06 9:36 PM Page 295

296 Part III — Beyond del.icio.us

FIGURE 10-27: Posting a bookmark with Insipid

FIGURE 10-28: Managing Insipid’s bookmark page snapshots

37857c10.qxd 6/4/06 9:36 PM Page 296

297Chapter 10 — Exploring Open Source Alternatives

And, to wrap up, although Insipid doesn’t offer an API like that of del.icio.us, it does offer
XML export and RSS feeds. You can find the export facility in the top navigation, along with a
link to the current view’s RSS feed. The RSS feeds offered by Insipid can also be filtered by
tag, and you can find tag-specific feeds linked into the current page header, available for
autodiscovery in browsers such as Firefox.

Using Rubric for Notes and Bookmarks
Rubric, written by Ricardo Signes, is described on its project page as “a notes and bookmarks
manager with tagging.” This Web application is written in Perl and is available as open source
from the CPAN here:

http://search.cpan.org/~rjbs/Rubric/

In contrast to Scuttle, Rubric is not a comprehensive clone of the services and API methods
offered by del.icio.us. On the contrary, although it draws much inspiration from del.icio.us
in terms of tagging and bookmarking features, Rubric strikes off on its own a bit by adding
some simple note-taking or blogging features and its own API implementation. You can find
Rubric’s author using the software to power his own blog and bookmarks here:

http://rjbs.manxome.org/rubric/

It’s also interesting to note that Rubric has been used as the foundation for a del.icio.us com-
petitor named de.lirio.us, located here:

http://de.lirio.us/

You can check these two sites out to get a bit of a feel for how this tool looks and feels before
you try installing it. Rubric is in a usable but rough state, but it’s still worth taking a look.

Installing Rubric
If you’ve decided you’d like to take Rubric a spin, be forewarned that the in-development state
of this project means that it assumes a modicum of familiarity with Perl and some hands-on
installation work, preferably from a UNIX command-line shell. And, like many projects imple-
mented in Perl, Rubric comes with a list of module prerequisites that need installation before
you’re up and running. You can get a sense of this list of requirements at the following URL:

http://search.cpan.org/src/RJBS/Rubric-0.13_02/Makefile.PL

This isn’t really a problem, however, if you’re familiar with Perl and how to install modules via
the Comprehensive Perl Archive Network (or CPAN). The CPAN tools can easily chase down
and install all of the needed dependencies without much handholding. And, if you’ve already
been in the thick of Web development with Perl, it’s quite likely that you’ve also already
installed the bulk of the modules demanded by Rubric.

37857c10.qxd 6/4/06 9:36 PM Page 297

298 Part III — Beyond del.icio.us

So, given these caveats, if you’re still ready to give it a shot you can use CPAN to install Rubric
and all of its dependencies on a UNIX shell like so:

$ cpan Rubric

If you’ve already configured CPAN in your installation of Perl, this command should happily
run off and start installing all the necessary parts including the most recent release of Rubric.
Note that you may need root or administrator access — or the use of the sudo command —
in order to install via CPAN.

In addition, if you’re feeling adventurous, you can install an even newer developer release with
this CPAN invocation:

$ cpan R/RJ/RJBS/Rubric-0.13_02.tar.gz

This is the newest version as of this writing and is the version the rest of this chapter will dis-
cuss, but you may want to double check for the latest on CPAN. You can also install Rubric
manually by downloading its archive package from the project page listed previously, but going
the automatic route should give you fewer headaches.

Creating and Configuring a Rubric Instance
One of the easiest ways to get an instance of Rubric up and running is by way of a CGI script.
There’s a README file that accompanies Rubric, although you can read the latest version of the
instructions here:

http://search.cpan.org/dist/Rubric/README

The modules behind Rubric normally get installed globally alongside the rest of the Perl mod-
ules on your system, but the Rubric package comes along with a CGI script that ties everything
together. If you installed Rubric by hand, this script was unpacked from the archive along with
everything else. Otherwise, you’ll need to check your local CPAN build directories for the
unpacked archive directory (i.e. $HOME/.cpan/build/Rubric-0.13_02).

Once you’ve found the place where the Rubric archive was unpacked, create a directory on your
Web server where the execution of CGI scripts is allowed. Copy the following from the Rubric
archive into this directory on your Web server:

� rubric.cgi

� css/rubric.css

� etc/rubric.yml

� templates/

37857c10.qxd 6/4/06 9:36 PM Page 298

299Chapter 10 — Exploring Open Source Alternatives

Note that all of the files starting with rubric must end up at the same directory level, but
you’ll want to copy the directory templates itself. So, for instance, this is how a directory list-
ing looks after copying the files:

$ ls
rubric.css rubric.yml rubric.cgi templates/

Once these files are in place, you can edit rubric.yml to configure the instance. For example,
my installation’s configuration looks like this:

dsn: |-
dbi:SQLite:dbname=rubric.db

uri_root: |-
http://deus-x.dyndns.org/~deusx/rubric/rubric.cgi

css_href: |-
/~deusx/rubric/rubric.css

template_path: |-
/Users/deusx/Sites/rubric/templates

The uri_root, css_href, and template_path settings will need alterations to suit the
locations of files you’ve copied to your Web server. After tweaking the configuration file, the
next step is to prepare the SQLite database for use by Rubric. You can do this with the follow-
ing command, while in the same directory as your modified rubric.yml file:

$ perl -MRubric::DBI::Setup -e’Rubric::DBI::Setup->setup_tables’

Alternately, you may find a script named makedb.pl under the bin directory of the unpacked
Rubric archive — you can use this instead to do the same thing, if it’s available:

$ perl makedb.pl

Once you’ve created the blank database, you can then create a new user account for yourself
with the adduser.pl script, also under the bin directory in the package:

$ perl adduser.pl rubric_username rubric_password your@email.com

Importing del.icio.us Bookmarks into Rubric
Although your new Rubric instance should be ready for use after you finish the configuration,
you might want to preload it with bookmarks imported from your del.icio.us account. At this
writing, however, there is no facility within Rubric to import bookmarks via a browser. Instead,
you’ll need to use a command-line tool to bulk load bookmarks into the SQLite database for
use by Rubric.

To do this, you need to install a del.icio.us backup script written by Rubric’s author,
located here:

http://search.cpan.org/~rjbs/delicious-backup-0.01/

37857c10.qxd 6/4/06 9:36 PM Page 299

300 Part III — Beyond del.icio.us

This script can also be installed via CPAN with an invocation like the following:

$ cpan R/RJ/RJBS/delicious-backup-0.01.tar.gz

You’ll probably want to double check that this is the latest version of the backup script, but
the preceding command should get the tool installed for you. After getting the backup script
installed, you’ll need to supply your del.icio.us user name and password in a configuration
file named .delicious in your home directory. The contents of .delicious should look
like this:

user: yourusername
pswd: yourpassword

The next step is to actually use this script to download a copy of your del.icio.us bookmarks in
YAML (Yet Another Markup Language) format, like so:

$ /usr/bin/delbackup -y > bookmarks.yml

This process may take some time, as the delbackup script uses the del.icio.us API to pull
down your bookmark collection as a YAML export. Once it’s done, however, you can dump the
data into the Rubric database with a script found under the bin directory of the unpacked
Rubric archive:

$ perl load_yml.pl rubric_username < bookmarks.yml

Note that this command uses the same rubric_username supplied to the adduser.pl script
above. This will import your del.icio.us bookmarks into your Rubric account.

Managing Bookmarks with Rubric
Finally, after installation and configuration are complete, you should be able to visit your new
Rubric instance in a browser and be rewarded with a view like Figure 10-29. From this page,
you can see most of the basic features of Rubric: bookmarks, notes, tags, and search. You can
also register for an account, as shown in Figure 10-30 — although you should already have
an account created thanks to the adduser.pl script mentioned earlier. You can log in to your
account with the top navigation link, which presents you with the login form as shown in
Figure 10-31.

Once logged in, you can post a new bookmark or note using the “new entry” link in the top
navigation. You can see the entry form in Figure 10-32. This is where Rubric’s slightly different
focus comes into play: Notice that along with a description field for the bookmark entry, there’s
also a much larger body text field.

37857c10.qxd 6/4/06 9:36 PM Page 300

301Chapter 10 — Exploring Open Source Alternatives

FIGURE 10-29: Rubric recent bookmarks page

FIGURE 10-30: Registering for a Rubric account

37857c10.qxd 6/4/06 9:36 PM Page 301

302 Part III — Beyond del.icio.us

FIGURE 10-31: Logging in to Rubric

FIGURE 10-32: Adding a new bookmark to Rubric

Along with keeping and sharing bookmarks, Rubric can be used as a rudimentary blogging sys-
tem — and this text field reflects that aspect of the system because you can compose much
longer bits of writing here than you can on del.icio.us. This is a feature that appears to be under
active development, including effort applied to introducing automatic text formatting conven-
iences offered by other blogging packages.

37857c10.qxd 6/4/06 9:36 PM Page 302

303Chapter 10 — Exploring Open Source Alternatives

About the Rubric API and RSS Feeds
Rubric offers an API and RSS feeds, but does not attempt to clone the equivalents at
del.icio.us. Instead, Rubric treats these more as output template variations on the same meth-
ods allowed via the Web browser user interface. Thus, for example, you can view the latest
entries in a browser at a URL like this:

http://rjbs.manxome.org/rubric/entries

If you want this same data in RSS format, you can add a format parameter:

http://rjbs.manxome.org/rubric/entries?format=rss

There’s also the start of an API for Rubric, so if you’d like to see the most recent entries in
Rubric API XML format, try this:

http://rjbs.manxome.org/rubric/entries?format=api

As of this writing, the API is in its early stages and offers just read-only access to bookmarks.
But because Rubric is under active development, this story may change by the time you check
out the project.

Summary
This chapter introduced you to a few of the available open source alternatives to del.icio.us.
These are by no means an exhaustive set of packages you can find for download, but they are
fairly representative of what’s out there. You could use one of these packages to manage private
bookmarks on a server of your own, yet still get the benefits of a Web-based application.
Similarly, you could install an open source bookmark manager on a company intranet behind a
firewall to facilitate group research.

In the next chapter, you look at some of the entries in the growing list of sites competing with
del.icio.us in the social bookmarking space. Although there are a few exceptions, most of these
sites are not open source but do offer free access to their services and varying degrees of simi-
larity with the features of del.icio.us.

37857c10.qxd 6/4/06 9:36 PM Page 303

37857c10.qxd 6/4/06 9:36 PM Page 304

Checking Out
the Competition

The star of this book is, of course, del.icio.us. But, as you may well
know, del.icio.us isn’t the only game in town with respect to social
bookmarking. In fact, del.icio.us wasn’t even the first site to offer

bookmark-sharing services, and it certainly won’t be the last. In this chapter,
you get an introduction to a few of the competitors in the social bookmark-
ing scene.

Advanced Search and Filtering
with Simpy
Simpy is a straightforward social bookmarking site — much like del.icio.us,
but with the addition of freeform note-taking and advanced search features.
You can see a screenshot of the Simpy home page with recent links in
Figure 11-1, and visit this site yourself here:

www.simpy.com/

With Simpy, you get a full set of tools to manage and share bookmarks
annotated with title, notes, and tags. These tools include bookmarklets to
post while you browse, RSS and Atom feeds to subscribe to updates by per-
son and tag, and a custom REST-based API for third-party applications.
So far, these features make Simpy look like an unassuming del.icio.us
alternative.

However, in addition, you can choose to make your bookmarks public or
private, and even send email notifications to friends when you post a new
link. Simpy offers the ability to export bookmarks and import data from
del.icio.us and most Web browsers. You can leave out URLs entirely and
manage tagged text notes — shopping lists, quotations, To Do items, what-
ever. Simpy also monitors the health of your bookmarks, checking for dead
links and following redirects. In addition, the text of pages is downloaded
and indexed along with your notes and tags.

� Advanced search and
filtering with Simpy

� Bookmarking in eclectic
style with Feed Me
Links

� Humane bookmarking
with Ma.gnolia

� Casting Shadow Pages
and bookmarks on
shadows

� Uncovering the latest
news with digg

� Combining feeds and
bookmarks with
Feedmarker

� Managing your special
URLs with Spurl

� Selective bookmark
sharing with Jots

� Bookmarking for
scientists with Connotea

� Capturing bibliographic
citations with CiteULike

chapter

in this chapter

37857c11.qxd 6/4/06 9:36 PM Page 305

306 Part III — Beyond del.icio.us

FIGURE 11-1: Simpy home page

One of the places where Simpy really shines, however, is in advanced search queries. You can
perform searches for text specified in the title, nickname, and tags metadata fields — as well as
focusing on terms within notes and the full text of the bookmarked pages. These field-specific
search terms can be mixed together and combined with wildcard matches. And, you can enrich
your queries with Boolean operators such as AND, OR, and NOT. Read more about Simpy
search capabilities here:

www.simpy.com/simpy/FAQ.do#search

It’s interesting to note that you can get search results in syndication feed form, as described here:

www.simpy.com/simpy/service/feed/

On the social side of things, Simpy provides the ability to form groups of users by invitation
for sharing bookmarks by topic or interest — this is in addition to the ability to query book-
marks by tag. And, in a cross between a search and an inbox feature, you can build Topics from
persistent search filters and user bookmark subscriptions. Of course, bookmarks found via
group or filtered via topic can be requested in RSS form and monitored for updates from a
news aggregator.

37857c11.qxd 6/4/06 9:36 PM Page 306

307Chapter 11 — Checking Out the Competition

Bookmarking in Eclectic Style with Feed Me Links
Feed Me Links is a social bookmarking site whose existence actually predates del.icio.us by sev-
eral years, as it first launched for public use in 2002. Check it out in Figure 11-2, and here on
the Web at this URL:

http://feedmelinks.com/

FIGURE 11-2: Feed Me Links home page

At Feed Me Links, you’ll find a wide array of bookmarklets, sidebars, browser plug-ins, and
search add-ons available to assist in integrating it into your bookmarking and search habits.
RSS feeds are available for every user and tag, and there are a number of ways to get data out
of the system in XML form and as a stylish Flash-based sidebar (see Figure 11-3). Feed Me
Links places an emphasis on the social, including the ability to upload a personal icon and
build a contact list of your “peeps” (see Figure 11-4). You can also further annotate others’
bookmarks with comments of your own. Feed Me Links has a measure of eclectic visual style
and history behind it, which makes it a bit more engaging than the plain stylings on display
at del.icio.us.

37857c11.qxd 6/4/06 9:36 PM Page 307

308 Part III — Beyond del.icio.us

FIGURE 11-4: Contacts list in Feed Me Links

FIGURE 11-3: Flash-based
sidebar for Feed Me Links

37857c11.qxd 6/4/06 9:36 PM Page 308

309Chapter 11 — Checking Out the Competition

The primary author of Feed Me Links, John Manoogian III, has recently made the jump to
open source with this site. Installation instructions weren’t included for this project in the pre-
vious chapter, but this project is worth checking out as it progresses further. To do so, pay a visit
to the project’s home on SourceForge:

http://sourceforge.net/projects/feed-me-links/

Humane Bookmarking with Ma.gnolia
Ma.gnolia is a social bookmarking site with an extra emphasis on the social and visual design
aspects, available here:

http://ma.gnolia.com/

As you can see in Figure 11-5, there’s an effort toward improved visual design and aesthetics as
key features, with nods toward eye pleasing qualities and usability. Including the ability to
attach a title, description, and tags on each link, Ma.gnolia supports the standard set of book-
marking features shown in Figure 11-6.

FIGURE 11-5: The Ma.gnolia home page

37857c11.qxd 6/4/06 9:36 PM Page 309

310 Part III — Beyond del.icio.us

FIGURE 11-6: Personal bookmarks at Ma.gnolia

Beyond these, there are also more specifically social features — with groups (see Figure 11-7)
and a contact list (see Figure 11-8) instead of del.icio.us-style inbox subscriptions. To put a
spotlight on individual users, there’s also a section for Featured Linkers, which has included a
few linkers with some measure of celebrity outside of alpha-geek circles — such as Ira Glass of
NPR fame, and the well-known cooking ace Alton Brown. These touches help push Ma.gnolia
out of the sometimes stark and sterile utility niche del.icio.us serves.

Additionally, Ma.gnolia offers the ability to mark individual bookmarks as private and assigns a
one- to five-star rating. Thumbnail images and cached versions of bookmarked pages are made
available as well. It’s also interesting to note that Magnolia provides semi-pronounceable short
URLs for bookmarks. For example:

http://ma.gnolia.com/bookmarks/scowon/dispatch
http://ma.gnolia.com/bookmarks/netostu/dispatch

On the other hand, although this site does not yet offer a Web-based API, there is limited sup-
port for linkrolls based on JavaScript includes. Opportunities for automated access and integra-
tion in third-party applications are limited as of this writing. However, all in all, Ma.gnolia
aims for a more humane social networking experience as opposed to a utilitarian service.
Everything from visual design down to URL design reflects this goal.

37857c11.qxd 6/4/06 9:36 PM Page 310

311Chapter 11 — Checking Out the Competition

FIGURE 11-7: Groups at Ma.gnolia

FIGURE 11-8: Contacts and People at Ma.gnolia

37857c11.qxd 6/4/06 9:36 PM Page 311

312 Part III — Beyond del.icio.us

Casting Shadow Pages and Bookmarks on Shadows
Shadows is a social bookmarking site whose services are centered on the concept of a Shadow
Page, where users can contribute extended discussion and feedback about a bookmarked URL.
You can check Shadows out here:

www.shadows.com/

As a social bookmarking site, Shadows supports the standard basic features for posting and
searching bookmarks with descriptive notes and tags. This site also provides the ability to
attach a one- to five-star rating to postings. And to make habitual usage easier, you can grab a
pair of bookmarklets or download a toolbar for Firefox and Internet Explorer browsers.

In terms of data access, Shadows offers RSS and Atom feeds for most page views — and it
appears that these feeds even feature Shadows-specific extensions to include privacy and rat-
ings data along with each bookmark feed item. Additionally, there’s a clone of the del.icio.us
API that closely follows the original, such that it shouldn’t be very difficult to adapt third-party
tools for use with Shadows. You can read about the API here:

www.shadows.com/features/site/help/api.htm

Shadows also supports a bit more of the social side of bookmarking, with richer personal pro-
file pages than del.icio.us (see Figure 11-9), as well as topical user groups you can join (see
Figure 11-10).

FIGURE 11-9: A Shadows personal profile

37857c11.qxd 6/4/06 9:36 PM Page 312

313Chapter 11 — Checking Out the Competition

FIGURE 11-10: One of the topical groups on Shadows

The main attraction of Shadows, however, is the Shadow Page — you can see one of these
in Figure 11-11. Beyond the simple view on bookmarks by URL that del.icio.us offers, a
Shadow Page provides a thumbnail of the page, per-URL and per-domain discussion forums,
and a summary of others’ bookmarks and ratings. Shadow Pages are a bit like miniature
portals, offering a bit more depth to the community’s bookmarks and tags devoted to indi-
vidual links.

Uncovering the Latest News with digg
digg could be more accurately described as competition for popular news sites than for
del.icio.us, but it does offer many features in common with social bookmarking services.
You can see a snapshot of the digg home page in Figure 11-12, and visit the site yourself at
this address:

http://digg.com

37857c11.qxd 6/4/06 9:36 PM Page 313

314 Part III — Beyond del.icio.us

FIGURE 11-11: A Shadow Page on Shadows

FIGURE 11-12: digg home page

37857c11.qxd 6/4/06 9:36 PM Page 314

315Chapter 11 — Checking Out the Competition

Most social bookmarking sites center on a personal collection of bookmarks, with varying
degrees of sharing and social features. digg, on the other hand, is all about sharing links with
others for commentary and collaborative promotion. Although it is possible to filter by user on
digg (see Figure 11-13), this site is definitely more about collaborative filtering than individual
utility. And although there is some personal reward to sharing bookmarks on other sites, digg
structures itself around providing reputation-based incentive for sharing the most interesting
news through the use of scoreboards (see Figure 11-14) and badges displaying the number of
“diggs” of approval a particular posting has received.

FIGURE 11-13: A digg user profile

Because digg is more about the intentional promotion of interesting items from around the
Web, you won’t necessarily find an official bookmarklet for super-fast posting or an
import/export facility for your bookmarks. digg requires more attention and personal involve-
ment — the idea being that people are actively attempting to supply useful and interesting sto-
ries to the community. The utility in digg is less about sharing a collection, and more in sharing
attention.

An API for third-party applications may be under development — but because the site itself is
meant to be a focal point and not a generic utility, this API will likely look a bit different from
the one offered by del.icio.us. With respect to data feeds available from digg, you can find RSS
feeds for any category or user’s postings, as well as build JavaScript includes to include digg
headlines on your own site.

37857c11.qxd 6/4/06 9:36 PM Page 315

316 Part III — Beyond del.icio.us

FIGURE 11-14: digg Top Users scoreboard

Combining Feeds and Bookmarks with Feedmarker
Feedmarker is a combination RSS/Atom feed reader and bookmarking service. You can visit
the home page shown in Figure 11-15 at this URL:

www.feedmarker.com

Rather than specializing in visual aesthetics or social connectivity, Feedmarker augments shared
bookmarking with subscriptions to RSS and Atom feeds. You can use a pair of bookmarklets to
add the current pages to your collection, as well as to auto-discover and subscribe to a syndica-
tion feed associated with the current page. You can annotate bookmarks and feed subscriptions
with a title, tags, and notes. Feed subscriptions, however, allow access to the latest updated
items from feeds — you can drill down into the item content as shown in Figure 11-16. In a
sense, these feed subscriptions on Feedmarker are akin to the Live Bookmarks in Firefox men-
tioned earlier in this book.

37857c11.qxd 6/4/06 9:36 PM Page 316

317Chapter 11 — Checking Out the Competition

FIGURE 11-15: Feedmarker home page

FIGURE 11-16: Viewing items in a feed on Feedmarker

37857c11.qxd 6/4/06 9:36 PM Page 317

318 Part III — Beyond del.icio.us

What’s interesting to note about this bookmarking/feed reader integration, however, is that you
can route feed items right into your bookmark collection as you read. With each feed item,
there’s an Ajax-powered “copy” icon that, when clicked, will prompt you for a choice of tags
and then add the current feed item into your collection without disrupting the page. This
allows for a nice all-in-one workflow between sifting through updates on your favorite sites and
capturing items of interest worth sharing or reading later.

With respect to data access, there’s a nice combined feed of items received from subscribed
feeds, as well as a JavaScript include of the same data. You can use this feed in an aggregator to
get everything in one shot from Feedmarker, or build a sidebar for your site from the JS data.
There does not, however, appear to be an API for Feedmarker at present.

Managing Your Special URLs with Spurl
Spurl offers social bookmarking with a few extra organization features. The Spurl home page is
shown in Figure 11-17. You can visit it yourself at the following address:

http://spurl.net/

FIGURE 11-17: The Spurl home page

37857c11.qxd 6/4/06 9:36 PM Page 318

319Chapter 11 — Checking Out the Competition

According to the FAQ pages, Spurl stands for “special url” — used both as a noun for book-
marks and as a verb for the act of bookmarking. And, like most other social bookmarking sites,
Spurl offers the ability to post links annotated with tags and extended description (see
Figure 11-18).

FIGURE 11-18: A personal collection of Spurls

However, once you’ve submitted a bookmark to the site, you can perform full-text searches on
your own collection and others’. Spurl caches local copies of bookmarked pages, facilitating
both search and later retrieval if or when the bookmarked resource disappears from the Web —
thus helping defeat “linkrot.” In Figure 11-19, you can see how a cached page is presented.
Spurl includes a frame at the top of the page indicating that you are indeed viewing a cached
copy, as well as a selection box to choose among several potential snapshots taken over time.

Like the SiteBar application mentioned in Chapter 10, Spurl offers a sidebar for browser inte-
gration (see Figure 11-20). You can use this sidebar to keep your bookmark collection close at
hand, as well as to navigate folders of bookmarks you can manage from within your account.
And, that’s another key feature of Spurl: Along with tags, you can arrange your bookmarks into
a hierarchical folder of categories — thus getting the best of both worlds, in case you’re not
entirely sold on the idea of tags as the ultimate in bookmark organization.

37857c11.qxd 6/4/06 9:36 PM Page 319

320 Part III — Beyond del.icio.us

FIGURE 11-19: Viewing a page cached by Spurl

FIGURE 11-20:
The Spurl sidebar

37857c11.qxd 6/4/06 9:36 PM Page 320

321Chapter 11 — Checking Out the Competition

One last set of features worth mentioning is that just about every list of bookmarks on Spurl is
also offered in JavaScript include, RSS, and Atom feed formats. There’s also an API available,
but as of this writing the FAQ pages instruct third-party developers to contact the operators of
Spurl directly for details and documentation on how to access it.

Selective Bookmark Sharing with Jots
Jots is a bookmarking service that shares many features with del.icio.us. You can visit the Jots
home page, shown in Figure 11-21, at this URL:

www.jots.com/

FIGURE 11-21: The Jots home page

Jots features a simple user interface for posting tagged and annotated bookmarks, as well as
offering tag-based navigation and search. You can also find RSS feeds for nearly every page
view on the site. Bookmarklets for use during your daily browsing habits are available under the
Tools section, as is a daily blog post feature similar to the one presented for del.icio.us back in
Chapter 8.

37857c11.qxd 6/4/06 9:36 PM Page 321

322 Part III — Beyond del.icio.us

However, one feature where Jots diverges from del.icio.us — and most other social bookmark-
ing sites — is in its implementation of groups. While some bookmarking sites offer groups as a
way for people to share topical bookmarks, groups on Jots is more of a selective privacy feature:
You can create a named group and assign users to it (see Figure 11-22). This group’s name can
then be prefixed with an @ character and used as a “privileged tag” — thus collegebuddies
becomes @collegebuddies.

FIGURE 11-22: Managing groups on Jots

Any bookmarks to which you attach a privileged tag are then visible only to users you’ve
added to the associated group. This is, in a way, the inverse of how most social networking sites
handle groups — rather than allowing anyone to join the group, you’re in charge of the group
membership for your own privileged tags.

Another area where Jots differs from del.icio.us is in its API. Rather than cloning the HTTP-
and-XML API offered by del.icio.us, Jots exposes an API via XML-RPC. The Jots API offers
methods to create, delete, and edit bookmarks — as well as a number of methods to manage
groups and group members. You can read about the Jots API methods here:

http://jots.com/pages/xmlrpc_api.html

37857c11.qxd 6/4/06 9:36 PM Page 322

323Chapter 11 — Checking Out the Competition

Bookmarking for Scientists with Connotea
Connotea offers a shared bookmarking service mainly targeted toward academics and scientists.
A screenshot of recent links posted is offered in Figure 11-23, and the site itself is located here:

www.connotea.org/

FIGURE 11-23: Recent bookmarks at Connotea

As with del.icio.us, you can register for an account with Connotea and post annotated book-
marks directly or via a set of available bookmarklets. However, in using Connotea, along with
URLs from the Web at large, you can also bookmark articles from scientific journals — such
as Nature — which offer Digital Object Identifiers (or DOIs; see www.doi.org).

Connotea attempts to resolve bookmarked DOIs to automatically uncover bibliographic informa-
tion, such as the author and publication in which the resource may be found (see Figure 11-24).
Additionally, if you happen to have access to a library that supports OpenURL access to its card
catalog, Connotea can directly connect you to a copy of a bookmarked publication residing in your
local library stacks. You can read more about these features in the Connotea guide, located here:

www.connotea.org/guide

37857c11.qxd 6/4/06 9:36 PM Page 323

324 Part III — Beyond del.icio.us

FIGURE 11-24: Chasing down a DOI reference from Connotea

Connotea is also available as open source software. Because it’s a bit of a special-interest book-
marking service and takes a bit or work to get up and running, Connotea wasn’t included in
Chapter 10. But, should you want to check it out, you can find details and instructions for
installation here:

www.connotea.org/code

Capturing Bibliographic Citations with CiteULike
CiteULike is another bookmarking service for academics and scientists — perhaps more prop-
erly competition for Connotea than del.icio.us. Where Connotea offers a bit of support for col-
lecting bibliographic data, assembling collections of academic papers and publications is the
main goal at CiteULike. The CiteULike home page is shown in Figure 11-25, which you can
visit at the following URL:

www.citeulike.org/

Although you can use CiteULike to manage bookmarks in general, the main attraction of this
service is its support for the automated extraction of bibliographic information from resources
found at over two-dozen publications and archives of scholarly papers. You can find a handy
bookmarklet to assist in posting bookmarks, along with a list of supported sites and publica-
tions, located at this address:

www.citeulike.org/post

As you can see in Figure 11-26, CiteULike allows users to post bookmarks annotated with title
and tags. However, CiteULike goes even further by automatically digging up the names of
authors, cover art, and more. Visiting a bookmarked resource on CiteULike, you’ll find that the
service can capture the text of book and article abstracts, as well as versions of the resource in
multiple languages.

37857c11.qxd 6/4/06 9:36 PM Page 324

325Chapter 11 — Checking Out the Competition

FIGURE 11-25: CiteULike home page

FIGURE 11-26: Annotated publications bookmarked at CiteULike

37857c11.qxd 6/4/06 9:36 PM Page 325

326 Part III — Beyond del.icio.us

CiteULike is not entirely open source as Connotea is. However, Richard Cameron — the
operator of CiteULike — invites users to contribute to its development by authoring new plug-
ins to extract bookmark data from more sites and archives of publications. You can find more
details on this request by reading the site’s FAQ pages, found here:

www.citeulike.org/faq/all.adp

Summary
This chapter provided an introduction to some of the competition for del.icio.us and what fea-
tures make each site a unique offering. This is far from a comprehensive set of del.icio.us alter-
natives you’ll find out there, but from these you should be able to get a pretty good idea of how
others are trying to follow or improve upon the standard social bookmarking features sup-
ported by del.icio.us — and how some are working to break the mold.

37857c11.qxd 6/4/06 9:36 PM Page 326

Site URLs, Feeds,
and API Methods
Reference

Throughout the pages of this book, you can learn about the browser-
accessible URLs, open API methods, and data feeds made available
by del.icio.us. However, when you get down to playing around with

some hacks of your own, it’s more useful to have everything in a distilled
form — rather than flipping back and forth through the whole book.

With that in mind, my intent in this appendix is to present a quick refer-
ence to many of the URLs and formats introduced throughout the book.
Here, you’ll find a lot of material repeated from earlier chapters, but in a
more condensed form. Once you’ve gotten the hang of how things work, I
hope this part of the book can offer quick reminders while you tinker with
your own del.icio.us mashups and applications. (Note that placeholder text
in URLs is indicated by italic.)

Browser-Viewable Public URLs
While perhaps not an API per se, the structure of browser-accessible
URLs making up the del.icio.us user interface form very regular and easy-
to-template patterns. This makes it easy to automate navigation to various
parts of del.icio.us through things such as hyperlinks, bookmarklets, and
Greasemonkey user scripts.

The following is an annotated list of URLs available at del.icio.us that you
can access without first needing to log in to a user account:

� http://del.icio.us/

■ This is, of course, the del.icio.us home page.

� http://del.icio.us/help

■ You can visit this URL to check out the documentation and
help available at del.icio.us.

appendix

37857ca.qxd 6/4/06 9:37 PM Page 327

328 Appendix A — Site URLs, Feeds, and API Methods Reference

� http://del.icio.us/popular

■ This is the address of a page presenting the day’s most popular bookmarks.

� http://del.icio.us/popular?new

■ Appending the ?new parameter filters the popular view for only those bookmarks
posted fresh today.

� http://del.icio.us/popular/TAG

■ The popular bookmarks page can be filtered by tag, specified by the value of the
placeholder TAG.

� http://del.icio.us/tag/

■ A cloud presentation of the top tags used on del.icio.us is available at this URL.

� http://del.icio.us/tag/TAG

■ By replacing the placeholder TAG, you can get a view of the latest bookmarks to
which that tag has been attached.

� http://del.icio.us/tag/TAG1+TAG2+...+TAGn

■ The view of bookmarks by tag can be extended to viewing the intersection of any
number of +-separated values for TAG1..TAGn placeholders.

� http://del.icio.us/url?url=URL

■ By supplying the URL-encoded form of a link as the URL placeholder value, you
can view a detail page listing the history of users who have bookmarked it as well
as their respective submitted descriptions.

� http://del.icio.us/url/MD5

■ The previous URL is basically a convenient alternate for this one. Here, instead of
passing a doubly encoded URL in a parameter, the MD5 hash of a URL is
employed as part of the path. Note that the previous URL actually results in a
redirect to this URL.

� http://del.icio.us/url/MD5?related=1

■ By appending a related parameter onto the previous URL, you can cause del.icio.us
to make recommendations about other possibly related bookmarks for further
browsing.

� http://del.icio.us/USER

■ Visit a single user’s bookmark collection by supplying the user’s name for the USER
placeholder in this URL.

� http://del.icio.us/USER/TAG

■ The view of a user’s bookmarks can be filtered by the tag in place of TAG.

37857ca.qxd 6/4/06 9:37 PM Page 328

329Appendix A — Site URLs, Feeds, and API Methods Reference

� http://del.icio.us/USER/TAG1+TAG2+...+TAGn

■ As in the case for tags in general, multiple +-separated tags may be supplied to fil-
ter a user’s bookmarks on the intersection of tags.

� http://del.icio.us/inbox/USER

■ The aggregated bookmarks from a user’s inbox subscriptions are viewable at this
URL. Note that the inbox feature is not a private one.

Browser-Viewable Private URLs
Once a user has logged in, there’s an expanded set of URLs available. These include the means
to post new bookmarks, as well as pages to manage account settings.

The following is a list of annotated URLs that are available to a user only after login:

� http://del.icio.us/logout

■ Visiting this URL causes the current user to end his or her login session.

� http://del.icio.us/post/

■ Send a user to this page to get the first stage of the generic bookmark posting form.

� http://del.icio.us/post?url=URL& description=DESCRIPTION¬es=NOTES

■ By filling in the placeholders in this URL with a bookmark link, short description,
and more verbose notes, you can send a user to a bookmarking form pre-populated
with this data. Note that although the URL field is required, the other two are
optional.

� http://del.icio.us/post?url=URL &title=TITLE&extended=EXTENDED

■ This URL appears to be a variant of the previous one, where the title parameter
is a synonym for description, and extended is treated the same as notes.
In addition, as discussed in Chapter 2, using the title synonym in lieu of
description appears to short-circuit automated bookmarklet posting.

� http://del.icio.us/post?noui=1&jump=doclose|no

■ These are optional parameters that can be appended to either of the previous URLs.

■ If noui is set to any value (1 or 0), then none of the JavaScript-driven tag recom-
mendation machinery will be supplied — thus providing a simpler bookmark post-
ing form.

■ If jump is set to doclose, the browser window (presumably a popup) will close at
the end of posting the bookmark.

37857ca.qxd 6/4/06 9:37 PM Page 329

330 Appendix A — Site URLs, Feeds, and API Methods Reference

■ If jump is set to no, del.icio.us will return to the user’s collection of bookmarks.

■ If jump is not supplied at all, del.icio.us will redirect the user to the URL just
bookmarked as the final step. This all provides a bit of choice in driving book-
marking workflow.

� http://del.icio.us/for/USER

■ Any bookmarks tagged with for:USER can be privately viewed at this address.

� http://del.icio.us/settings/USER/antisocial

■ Settings for ignoring individual users and tags on the front page and the previous
URL can be managed here.

� http://del.icio.us/settings/USER/profile

■ From this page, a user can manage his or her personal profile information and
change passwords.

� http://del.icio.us/settings/USER/tags

■ You can rename and delete tags applied to all bookmarks in your collection at this
URL, facilitating tag gardening over time.

� http://del.icio.us/settings/USER/import

■ As of this writing, this feature is being rebuilt — but this is where you’ll be able to
import bookmarks from your browser and potentially other bookmarking services.

� http://del.icio.us/settings/USER/export

■ If you’d like to back up your bookmarks or move to another service, you can use
this page to download a copy of your collection in XML.

� http://del.icio.us/settings/USER/inbox

■ Although the aggregate results of a user’s inbox are public, the subscriptions in an
inbox are privately managed at this page.

� http://del.icio.us/settings/USER/bundle

■ This settings page facilitates the creation and management of tag bundles for
a user.

� http://del.icio.us/settings/USER/daily

■ As discussed in Chapter 8, this page allows users to schedule daily blog posting
jobs from del.icio.us via the Blogger API supported by many blog software
packages.

� http://del.icio.us/settings/USER/license

■ From this settings page, you can choose a license under which bookmarks are
offered in RSS feeds. Choices include options ranging from all rights reserved,
to a number of Creative Commons licenses.

37857ca.qxd 6/4/06 9:37 PM Page 330

331Appendix A — Site URLs, Feeds, and API Methods Reference

RSS Feeds
Most of the browser-viewable URLs available for public access have equivalent URLs that
yield alternate RSS feeds. As a rule of thumb, if you drop /rss into the URL just after the
del.icio.us, you’re likely to get what you’re after. Be warned, however, that your software
shouldn’t poll any of these feeds more than twice an hour — not only does del.icio.us not make
useful updates to them more often than that, but you might also find yourself throttled or
blocked from accessing the feeds altogether.

So, for quick reference, here’s an annotated list of some RSS-producing URLs you can access at
del.icio.us:

� http://del.icio.us/rss/

■ This is a firehose feed of all bookmarks posted to del.icio.us.

� http://del.icio.us/rss/popular

■ In this feed, you find items drawn from the day’s most popular posted bookmarks.

� http://del.icio.us/rss/tag/TAG

■ You can filter the firehose of del.icio.us postings down to a single tag with this
RSS feed URL. Just supply the desired tag for the TAG placeholder. However, as of
this writing, attempting to supply multiple tags as an intersection doesn’t seem to
work for RSS feed URLs.

� http://del.icio.us/rss/USER

■ If you’d like to subscribe to a single user’s bookmarks as they’re posted, this is the
feed to use. Be sure to replace the placeholder USER with the desired user name.

� http://del.icio.us/rss/USER/TAG

■ To restrict items returned in the RSS feed to a single tag from a user’s collection,
use this URL.

� http://del.icio.us/rss/USER/TAG1+TAG2+...+TAGn

■ Multiple tags can be supplied to request a tag intersection as a filter for a user’s
bookmarks. This feed URL construction appears to work, despite the general tag
query case not supporting it.

� http://del.icio.us/rss/url?url=URL

■ By supplying a doubly encoded URL for the URL placeholder, you can track book-
marking activity as it occurs on a single Web page.

� http://del.icio.us/rss/url/MD5

■ If you’ve got access to MD5 hashing routines, this might be a simpler option than
the previous per-URL feed option. This form of RSS feed URL was used in
Chapter 9 to build the JavaScript-based del.icio.us comments system.

37857ca.qxd 6/4/06 9:37 PM Page 331

332 Appendix A — Site URLs, Feeds, and API Methods Reference

� http://del.icio.us/rss/for/USER?private=PRIVATE

■ This feed URL can provide you with a feed of bookmarks posted for your
attention using the for: tag prefix. However, there’s no documented way to
programmatically produce the correct value for PRIVATE — you’ll need to
log into del.icio.us and visit the following page to find this feed:
http://del.icio.us/for/deusx.

JSON Feeds
Another alternate form in which bookmarks may be queried from del.icio.us are JSON feeds.
Essentially, these are bookmark posts expressed as valid but simplified JavaScript data struc-
tures. The most basic use of these feeds is in the construction of client-side JavaScript includes,
used in displaying links in blog sidebars and such. You can find more advanced examples of
JSON use in Chapter 9.

This is a relatively new feature, however, and as of this writing you can really get JSON feeds
for bookmarks only of single users and a user’s tags. The following are URLs available for use
in fetching JSON feeds:

� http://del.icio.us/feeds/json/USER

■ At this URL, you can find JSON-encoded recent bookmarks for a single user.

� http://del.icio.us/feeds/json/USER/TAG

■ By appending a tag, you can filter the JSON-encoded bookmarks to a single tag
from a user’s recent postings.

� http://del.icio.us/feeds/json/USER/TAG1+TAG2+...+TAGn

■ Multiple tags may be used as part of the JSON query to perform a tag intersection
filter on a user’s recent bookmarks.

� http://del.icio.us/feeds/json/USER?count=COUNT

■ The default number of bookmarks returned by a JSON request is 15. This optional
count parameter allows you to specify a new count, between 1 and 100.

� http://del.icio.us/feeds/json/USER?raw=1

■ Typically, the JSON data returned by del.icio.us comes constructed as the defini-
tion of a data structure assigned to the variable Delicious.posts. Supplying the
optional parameter raw will cause just the data structure itself to be returned,
detached from any other JavaScript code. This can be useful for programs that may
be able to parse JSON, but not full JavaScript code.

� http://del.icio.us/feeds/json/USER?callback=CALLBACK

■ By supplying a value for the optional parameter callback, the raw form of the
JSON data will be wrapped in a call to the named function. This is a technique
known as JSONP, which provides a way to trigger processing code upon a success-
ful dynamic fetch of JSON data.

37857ca.qxd 6/4/06 9:37 PM Page 332

333Appendix A — Site URLs, Feeds, and API Methods Reference

Listing A-1 offers a reminder of what JSON data returned from del.icio.us looks like.

Listing A-1: Sample JSON feed from del.icio.us

if(typeof(Delicious) == 'undefined') Delicious = {};
Delicious.posts = [

{"u":"http://support.opml.org/2006/02/01#a671",
"n":"\"How to install your own server\"",
"d":"OPML Editor support: OPML Community Server Howto",
"t":["frontier","opml","webdev"]},

{"u":"http://rentzsch.com/suck/stopStopStopHurtingTheInternet",
"n":"\"My God, they've made metal look good.\" ...",
"d":"rentzsch.com: Stop Stop Stop Hurting the Internet",
"t":["msft","msie","vista","gui","safari","apple","webdev"]}

]

Note that the data shown in Listing A-1 has been reformatted to be just a little easier to visu-
ally inspect. In reality, JSON data returned from del.icio.us has little or no extraneous line
breaks or white space included. This data is composed as JavaScript, defining the variable
Delicious.posts as a list of objects. Each of these objects contains a set of properties:

� u — URL

� n — Title or name

� d — Description

� t — List of tags attached

In addition, Listing A-2 shows what changes when the optional raw parameter is included in
the query.

Listing A-2: Sample raw JSON feed from del.icio.us

[
{"u":"http://support.opml.org/2006/02/01#a671",
"n":"\"How to install your own server\"",
"d":"OPML Editor support: OPML Community Server Howto",
"t":["frontier","opml","webdev"]},

{"u":"http://rentzsch.com/suck/stopStopStopHurtingTheInternet",

continued

37857ca.qxd 6/4/06 9:37 PM Page 333

334 Appendix A — Site URLs, Feeds, and API Methods Reference

Listing A-2 continued

"n":"\"My God, they've made metal look good.\" ...",
"d":"rentzsch.com: Stop Stop Stop Hurting the Internet",
"t":["msft","msie","vista","gui","safari","apple","webdev"]}

]

Note that Listing A-2 is raw JSON data, without any additional JavaScript code. And, just for
the sake of completeness, Listing A-3 offers an example of the result of a query using the
callback parameter.

Listing A-3: Sample raw JSON feed with callback from del.icio.us

FooBar.process_bookmarks([
{"u":"http://support.opml.org/2006/02/01#a671",
"n":"\"How to install your own server\"",
"d":"OPML Editor support: OPML Community Server Howto",
"t":["frontier","opml","webdev"]},

{"u":"http://rentzsch.com/suck/stopStopStopHurtingTheInternet",
"n":"\"My God, they’ve made metal look good.\" ...",
"d":"rentzsch.com: Stop Stop Stop Hurting the Internet",
"t":["msft","msie","vista","gui","safari","apple","webdev"]}

])

Listing A-3 shows the results of a JSON query made with a callback parameter value of
FooBar.process_bookmarks. If you had defined a JavaScript package named FooBar, con-
taining a function process_bookmarks, this function would be called upon the successful
fetch and execution of this JSON code. You can see this technique in use in Chapter 9 during
the display of related del.icio.us links.

File Type and Media Tags
When certain kinds of file URLs are bookmarked at del.icio.us — particularly those identified
by extension as being certain kinds of media files or documents — a set of special system tags is
automatically applied.

Note that these tags have special meaning in the context of RSS feeds. When an RSS feed is
queried from one of these tags, the format changes to an RSS 2.0 feed with <enclosure> tags.
In essence, this turns the feed into a podcast or video cast feed compatible with podcast tuners.

This concept was explained in detail in Chapter 6, but the table mapping extensions to tags is
reproduced in Table A-1 for quick reference.

37857ca.qxd 6/4/06 9:37 PM Page 334

335Appendix A — Site URLs, Feeds, and API Methods Reference

Table A-1 File Extensions Mapped to File Type and Media Tags

File Extension File Type Tag Media Tag

.mp3 system:filetype:mp3 system:media:audio

.wav system:filetype:wav system:media:audio

.mpg system:filetype:mpg system:media:video

.mpeg system:filetype:mpeg system:media:video

.avi system:filetype:avi system:media:video

.wmv system:filetype:wmv system:media:video

.mov system:filetype:mov system:media:video

.tiff system:filetype:jpg system:media:image

.jpeg system:filetype:jpeg system:media:image

.gif system:filetype:gif system:media:image

.tiff system:filetype:png system:media:image

HTTP API Methods and XML Response Formats
The API based on HTTP GET and XML offered by del.icio.us was explored in depth in Chapter
4, and made appearances throughout the rest of the book. This is one of the most interesting facets
of del.icio.us for developers and tinkerers, so this section of the appendix collects descriptions of
methods offered by the API, as well as summaries of the XML data produced by each.

You can read the latest documentation on the API at the following URL:

http://del.icio.us/help/api/

As with all areas of del.icio.us, this API is under constant development, so be sure to consult
this page for up-to-date information.

Using the HTTP API Methods
A few things to remember in general when using the del.icio.us API, rephrased from the previ-
ously mentioned documentation:

� All methods require HTTP authentication, with the user name and password being that
of a registered del.icio.us user account.

� Although at present, the URLs to all API methods begin with the same common base
(e.g., http://del.icio.us/api), you should be sure to parameterize this base URL
in your programs. For some time now, there have been stated plans to move the API to a
new base URL and/or release future versions of the API at different base URLs.

37857ca.qxd 6/4/06 9:37 PM Page 335

336 Appendix A — Site URLs, Feeds, and API Methods Reference

� Wait at least 1 second between successive calls to the API. Performing more frequent
calls to the API may result in your program’s access being throttled — resulting in
HTTP 503 Service Unavailable errors — or your IP address banned from API use alto-
gether. Ideally, a wrapper library for your favorite programming environment will take
care of this requirement.

� And, speaking of getting throttled or banned: If you’re making direct calls to the API —
while building an API wrapper of your own, for instance — be sure to supply a unique
value for the User-Agent header sent with requests. This will allow the servers at
del.icio.us to identify requests made by your code and differentiate it from others, which
may help keep your application from getting caught in a blanket ban or throttle.

� Never post bookmarks to a user’s collection or add tags or notes without their permis-
sion. This is a requirement to use the API, and is just being polite to the user. Adding
tags or note text that identifies the use of your software is just plain rude and considered
an abuse of the API.

Managing Bookmark Posts
The majority of the methods exposed by the del.icio.us API are useful for searching, fetching,
and managing bookmarks.

Retrieving Bookmark Data by Tag, Date, and URL

http://del.icio.us/api/posts/get?tag=TAG&dt=DATE&url=URL

Description
Use this method to fetch bookmarks matching given parameters — defaulting to the last recent
date when bookmarks were posted if no parameters are found.

Parameters

� tag=TAG (optional): Tag by which to filter bookmarks retrieved.

� dt=DATE (optional): Date by which to filter bookmarks, specified as a profile of the
ISO8601 date format (e.g., 2006-03-15T13:10:00Z).

� url=URL (optional): When supplied, available bookmark data for a single URL is
returned.

Response XML

<?xml version=’1.0’ standalone=’yes’?>
<posts dt=”2006-03-15” tag=”” user=”deusx”>

<post href=”http://blog.deconcept.com/2006/03/13/modern-
approach-flash-seo/”

description=”deconcept - A modern approach to Flash SEO”

37857ca.qxd 6/4/06 9:37 PM Page 336

337Appendix A — Site URLs, Feeds, and API Methods Reference

extended=”"You start with your HTML (your
content)..."”

hash=”bfa6de80d06e5fbddbb3f96b4ea726b0”
others=”69”
tag=”css flash javascript seo webdev xhtml”
time=”2006-03-15T12:23:16Z” />

</posts>

Note that this sample XML data has been reformatted slightly for readability.

This is the general format for bookmark data returned from API methods: a document ele-
ment <posts> containing many <post> elements. Attributes on the <posts> tag reflect
parameters supplied with the request (e.g., dt, tag, and user). As for the <post> tags, they
offer data in a number of attributes, including the following:

� href: The bookmarked URL

� description: A short description supplied for the bookmark

� extended: Longer notes attached posted with the bookmark

� hash: An MD5 hash of the bookmark URL

� others: A count of other users who have bookmarked this URL

� tag: Space-separated list of tags attached to this bookmark

� time: ISO8601 timestamp indicating when this bookmark was posted

Retrieving Recently Posted Bookmarks

http://del.icio.us/api/posts/recent?tag=TAG&count=COUNT

Description
Rather than retrieving a full day’s worth of bookmarks, this method can be used to fetch a
specified count of bookmarks regardless of date.

Parameters

� tag=TAG (optional): Tag by which to filter recent bookmarks

� count=COUNT (optional): Number of bookmarks to return, with a default of 15 and a
maximum value of 100

Response XML

<?xml version=’1.0’ standalone=’yes’?>
<posts tag=”” user=”deusx”>

<post href=”http://blog.modernmechanix.com/2006/03/13/ascii-art-
1948/”

37857ca.qxd 6/4/06 9:37 PM Page 337

338 Appendix A — Site URLs, Feeds, and API Methods Reference

description=”Modern Mechanix - ASCII Art - 1948”
extended=”"WHILE purely entertaining,

doodling..."”
hash=”2115fcc36b029a7f3028968184c326ff”
tag=”retro asciiart”
time=”2006-03-14T12:11:09Z” />

</posts>

Bookmarks returned by this method follow the same XML format as other methods, with the
same essential attributes.

Fetching All Bookmarks

http://del.icio.us/api/posts/all?tag=TAG

Description
This method can be used to fetch data for all bookmarks. Because this method is very resource
intensive and can potentially return a great deal of data, it should be used very rarely. For
instance, your application could use it upon its first run or for occasional complete backups.
Otherwise, more specific bookmark fetches should be used.

Parameters

� tag=TAG (optional): Filter all tags fetched by the TAG you supply.

Response XML

<?xml version=’1.0’ standalone=’yes’?>
<posts update=”2006-03-15T12:23:16Z” user=”deusx”>

<post
href=”http://blogcritics.org/archives/2005/10/24/045230.php”

description=”Blogcritics.org: CD Review: The Pogues”
extended=”"For those who don’t know any

better,..."”
hash=”acb505259a172540a86a06dc284d27a3”
tag=”music pogues 80s”
time=”2005-10-24T14:09:05Z” />

</posts>

Bookmarks returned by this method follow the same XML format as other methods, with the
same essential attributes.

Checking the Time of the Last Posted Bookmark

http://del.icio.us/api/posts/update

37857ca.qxd 6/4/06 9:37 PM Page 338

339Appendix A — Site URLs, Feeds, and API Methods Reference

Description
This method returns the date of the most recently posted bookmark. The API documentation
advises making a call to this method before attempting a fetch of all bookmarks, to be sure that
there’ve been new bookmarks since the previous fetch.

Parameters

� None.

Response XML

<?xml version=’1.0’ standalone=’yes’?>
<update time=”2006-03-15T12:23:16Z” />

The XML format returned by this method is very simple: a single <update> element with a
time attribute containing an ISO8601 timestamp of the last recent bookmark posted.

Fetching a List of Dates with Available Bookmarks

http://del.icio.us/api/posts/dates?tag=TAG

Description
Some methods accept timestamp values for filtering, which can be constructed at runtime in
your programs. However, by using this method, you can fetch a sort of timestamp “table of
contents” for all bookmarks or individual tags.

Parameters

� tag (optional): Filter dates list for a given tag

Response XML

<?xml version=’1.0’ standalone=’yes’?>
<dates tag=”” user=”deusx”>
<date count=”16” date=”2006-03-15” />
<date count=”15” date=”2006-03-14” />
<date count=”27” date=”2006-03-13” />

...
<date count=”7” date=”2003-09-15” />

</dates>

This format consists of a <dates> document element containing a number of <date> ele-
ments. The <dates> element lists attributes reflecting the API query parameters, while each
<date> element lists a date attribute and a count of bookmarks posted on that date.

Deleting a Bookmark

http://del.icio.us/api/posts/delete?url=URL

37857ca.qxd 6/4/06 9:37 PM Page 339

340 Appendix A — Site URLs, Feeds, and API Methods Reference

Description
Delete a given bookmark from the collection by URL.

Parameters

� url=URL (required): The URL of the bookmark to be deleted

Response XML

<?xml version=’1.0’ standalone=’yes’?>
<result code=”done” />

If for some reason the bookmark deletion fails, the code attribute returned with the <result>
element will be equal to something other than done — usually a description of what error con-
dition occurred.

Posting a New Bookmark

http://del.icio.us/api/posts/add?url=URL& description=
DESCRIPTION&extended=EXTENDED& tags=TAGS&dt=DATE&replace=no

Description
This method can be used to post new bookmarks or update existing ones, defined by the
parameters supplied.

Parameters

� url=URL (required): The URL of the bookmark to be created or updated.

� description=DESCRIPTION (required): Short descriptive title to post with the
bookmark.

� extended=EXTENDED (optional): Longer text block of notes for the bookmark.

� tags=TAGS (optional): Space-separated tags to attach to the bookmark.

� dt=DATESTAMP (optional): Timestamp for the bookmark, following a profile of the
ISO8601 standard (e.g., 2005-03-13T14:23:50Z). Note that the fully specified
date/time value is required, including the GMT time zone of Z. This parameter defaults to
the current time for new bookmarks, and the existing timestamp for existing bookmarks.

� replace=no (optional): If this parameter is supplied, and a bookmark already exists for
this URL, it will not be altered by the details of this API call.

Response XML
<?xml version=’1.0’ standalone=’yes’?>
<result code=”done” />

If for some reason the bookmark posting fails, the code attribute returned with the <result>
element will be equal to something other than “done” — usually a description of what error
condition occurred.

37857ca.qxd 6/4/06 9:37 PM Page 340

341Appendix A — Site URLs, Feeds, and API Methods Reference

Managing Tags and Tag Bundles
One of the most powerful features of the del.icio.us API is the ability to manage tags across
bookmarks without the need to update items in your collection individually.

Fetching a List of Tags and Counts

http://del.icio.us/api/tags/get

Description
With a call to this method, you can get a list of all tags used in your collection along with usage
counts.

Parameters

� None.

Response XML

<?xml version=’1.0’ standalone=’yes’?>
<tags>
<tag count=”21” tag=”aggregators” />
<tag count=”1” tag=”business” />
<tag count=”210” tag=”rss” />
<tag count=”236” tag=”syndication” />
<tag count=”5” tag=”xml” />

</tags>

From this method, the XML returned consists of a <tags> element containing a number of
<tag> elements. Each <tag> element has a count attribute indicating the number of book-
marks for which the tag attribute value has been used.

Renaming a Tag

http://del.icio.us/api/tags/rename?old=OLD&new=NEW

Description
Use this method to rename a tag used across your collection. This comes in handy when gar-
dening tags, such as replacing one tag with a more appropriate one.

Parameters

� old=TAG (required): An existing tag found attached to bookmarks

� new=TAG (required): A new or existing tag with which to replace the old one

Response XML

<?xml version=’1.0’ standalone=’yes’?>
<result>done</result>

37857ca.qxd 6/4/06 9:37 PM Page 341

342 Appendix A — Site URLs, Feeds, and API Methods Reference

If for some reason the bookmark posting fails, the character data returned with the <result>
element will be equal to something other than done — usually a description of what error con-
dition occurred.

Fetching a List of All Tag Bundles

http://del.icio.us/api/tags/bundles/all

Description
A list of all named tag bundles can be fetched with a call to this method.

Parameters

� None.

Response XML
<?xml version=’1.0’ standalone=’yes’?>
<bundles>
<bundle name=”hackingfeeds”

tags=”aggregation aggregator aggregators” />
<bundle name=”music”

tags=”ipod mp3 music” />
</bundles>

This response format offers a <bundles> element containing <bundle> elements for each tag
bundle in the collection. Each tag bundle described in a <bundle> element is named by the
attribute name, associated with the space-separated list of tags in the tag attribute.

Creating or Updating a Tag Bundle

http://del.icio.us/api/tags/bundles/set?bundle=BUNDLE&tags=TAGS

Description
A tag bundle is created or updated from a list of tags using this method.

Parameters

� bundle=BUNDLE (required): The name of the bundle to create or update

� tags=TAGS (required): Space-separated tags from which to make the bundle

Response XML
<?xml version=’1.0’ standalone=’yes’?>
<result>ok</result>

If for some reason the bookmark posting fails, the character data returned with the <result>
element will be equal to something other than ok — usually a description of what error condi-
tion occurred.

37857ca.qxd 6/4/06 9:37 PM Page 342

343Appendix A — Site URLs, Feeds, and API Methods Reference

Deleting a Tag Bundle

http://del.icio.us/api/tags/bundles/delete?bundle=BUNDLE

Description
This method will delete a named tag bundle from the collection.

Parameters

� bundle=BUNDLE (required): The name of the bundle to delete

Response XML

<?xml version=’1.0’ standalone=’yes’?>
<result>done</result>

If for some reason the bookmark posting fails, the character data returned with the <result>
element will be equal to something other than done — usually a description of what error con-
dition occurred.

37857ca.qxd 6/4/06 9:37 PM Page 343

37857ca.qxd 6/4/06 9:37 PM Page 344

SYMBOLS
+ (plus sign), tags and, 13
%s, super-fast bookmarklets, 35–36

A
Ajax

browsing bookmarks, 213–224
hacks, browser-side scripting and,

110–111
API. See del.icio.us API
audio

podcasts, bookmarks and, 134–139
streaming audio, Play Tagger and,

133–134

B
backups, bookmarks, Python and, 200–213
bibliographic citations, 324–326
Blogger API, 190–193
blogs

del.icio.us team, 21
linkblogs, 12
posting

bookmark this, 233–235
from bookmarks, 198–199
daily, subscribing to, 190–193
duplicates, 45
Greasemonkey, 44
speed, increasing, 33–37
super-fast, 33–37

tagging, Movable Type and, 248–250
without leaving page, 37–38

posting form, simplifying, 32–33
posts, tagging, WordPress and, 250–252
WordPress and, templates, 235–237

bookmarklets
browser-side scripting and, 109
home page, 24
introduction, 5
Java and, 23
official, 24–27
page customization and, 24
page excerpts, 28–29

JavaScript and, 29
splicing into bookmarklet, 29–30
testing, 30–32

popup window, 25–27
resources, 24
reverse engineering, 26
Standard, 25
super-fast

slowing down, 36–37
Smart Keywords, 35–36
source code, 37

Tantek’s Favelets, 24
Web development and, 24
Wikipedia article, 24

bookmarks
adding, 74–77

Scuttle, 278–279

Index

37857bindex.qxd 6/4/06 9:38 PM Page 345

Ajax and, 213–224
analyzing, utilities, 160–166
backups, Python and, 200–213
blogs posts from, 198–199
browser integration, SiteBar, 283–292
browsing

Ajax and, 213–224
Scuttle, 280–282

built-in RSS feeds, FeedBurner and,
241–242

Clipboard, Pasta and, 158–159
combining, diggdot.us, 166–167
as comments, 260–272
counts, 9
deleting, 78
downloads

delicious2safari, 48–49
to Internet Explorer, 50

FeedBurner and, 241–242
fetching, 68–69

all, 74
filtering, 71–72
most recent, 69–71
navigating by date, 72–74
queries for, 69

geotagging, 139–140
composing, 140–142
Google Maps and, 143–152

importing
to Insipid, 294–295
to Rubric, 299–300
to Scuttle from del.icio.us, 278–279

Insipid and
importing, 294–295
managing, 295–297

Internet Explorer, posting from Context
menu, 50

keywords, Smart Keywords, 34–35
links, JavaScript, unobtrusive, 242–248
Live Bookmarks, RSS Feeds, 41–42
LiveMarks and, 164–165
methods, managing bookmarks,

336–340
mirroring, Python and, 200–213
notes, 9
podcasts, 134–139
popularity, 9, 161–162
Populicio.us, 161–162
posting, 7–8

duplicates, 45
speed, 33–37
super-fast, 33–37
without leaving page, 37–38

posting form, simplifying, 32–33
previewing, Thumblicio.us, 156
private, 91
receiving, tags and, 17–18
RSS feeds

built-in, 241–242
FeedBurner and, 241–242

Safarilicious and, 47–48
scrolling, LiveMarks and, 164–165
searches, Scuttle, 280–282
sending, tags and, 17–18

346 Index ■ B

37857bindex.qxd 6/4/06 9:38 PM Page 346

sharing. See Scuttle
SiteBar and

importing/exporting, 288–289
managing, 285–288

subscribing to, 14–20
as Torrents, Prodigem and, 168–169

synchronization, Foxylicious, 42–43
tracking, inbox and, 15–17
trendalicious, 162–163
updating, 74–77
visualizing, utilities, 160–166
WordPress, templates, 235–237

Bookmarks Manager, bookmarks,
viewing, 25

Bookmarks Toolbar folder, 24
browser integration, SiteBar and, 283–292
browser-side scripting, hacks and

Ajax, 110–111
Greasemonkey, 110
JavaScript, 108–109
XMLHttpRequest, 110–111
XSLT, 111

browsing bookmarks
Ajax and, 213–224
Scuttle, 280–282
SiteBar, 290–291

building mashups
planning, 169–170
TechnoFlickrDeli, 170–180

buttons, bookmarks
My del.icio.us, 24
Post to del.icio.us, 24

C
caching API proxy, building, 224–231
calling del.icio.us API, 67

cURL and, 68
CAPTCHA, 4–5
cite: prefix, 123–124
CiteULike, 324–326
Clipboard, bookmarking, Pasta and,

158–159
Cocoalicious (Mac OS X), 54–55
combining bookmarks, diggdot.us,

166–167
comments, bookmarks as, 260–272
community, joining, 21–22
Connotea, 323–324
Context menu (Internet Explorer), posting

bookmarks from, 50
conventions in tags, 120
CSS (Cascading Style Sheets),

TechnoFlickrDeli and, 180–182
cURL, 68

D
DashLicious (Mac OS X), 56
date, navigating bookmarks by, 72–74
Delancey, 153–154
Delibar (Mac OS X), 55
del.icio.us

blog, 21
home page, 4
mailing list, 21
signing up, 4–6

347Index ■ B–D

37857bindex.qxd 6/4/06 9:38 PM Page 347

del.icio.us API
bookmarks, fetching, 68–74
caching proxy, PHP and, 224–231
calling, 67

cURL and, 68
Perl, 84–85
PHP, 85–86
programming and, 21
Python, 83–84
Ruby, 87

del.icio.us direc.tor, 45–46
user interface and, 155–156

del.icio.us illogical interface, searches,
126–127

del.icio.us Pioneers, 165–166
DeliciousMind, 63–64
delicious2safari, 48–49
delimport (Mac OS X), 56–57
description parameter, super-fast

bookmarklet, 37
digg, 313–316
diggdot.us, 166–167
downloads, bookmarks

delicious2safari, 48–49
to Internet Explorer, 50

duplicate postings, 45

F
Familiar Taste, 45
feed aggregators, RSS feeds, 19–20
Feed Me Links, 307–309

FeedBurner, 186–190
built-in bookmarking and, 241–242

FeedFlare, 241–242
Feedmarker, 316–318
fetching bookmarks, 68–69

all, 74
date, navigating by, 72–74
filtering, 71–72
most recent, 69–71
queries for, 69

file extensions, media files, 129
file types, 334–335
filtering bookmarks, 71–72

Simpy and, 305–306
Firefox

del.icio.us direc.tor, 45–46
del.icio.us extension, installation, 39–41
Familiar Taste, 45
Foxylicious, 42–43
Greasemonkey, 43–46

folders
Bookmarks Toolbar, 24
SiteBar and, 285–288

folksonomy, 117
for: tag prefix, 17, 124
Foxylicious, synchronization, 42–43
FreeMind, 63–64

G
geotagging, 139–142

Google Maps and, 139–142

348 Index ■ D–G

37857bindex.qxd 6/4/06 9:38 PM Page 348

Gnomolicious (Linux), 62
Google Desktop, 60–61
Google Maps, geotagging and, 139–142
Greasemonkey, 43–46

hacks, browser-side scripting and, 111

H
hacks

browser-side scripting
Ajax, 110–111
bookmarklets, 109
Greasemonkey, 110
JavaScript, 108–109
XMLHttpRequest, 110–111
XSLT, 111

introduction, 97–98
JSON and, 101–103
REST and, 106–107
screen scrapers and, 107–108
server-side scripting

Perl, 112
PHP, 112–113
Python, 113
Ruby, 113

SOAP and, 105–106
Web robots and, 107–108
XML and, 100–101

Plain Old XML and, 106–107
XML-RPC and, 103–105

Hot Links, screenshots and, 157
HTTP API methods, 335–336

I
icons, transmission wave, 88
image files, gallery, 130–133
importing, bookmarks

Insipid, 294–295
Rubric, 299–300
to Scuttle from del.icio.us, 278–279
SiteBar, 288–289

inbox
bookmarks, tracking, 15–17
RSS feeds, 90

Insipid
bookmarks

importing, 294–295
managing, 295–297

installation, 293–294
installation

bookmarklets, 5–6
Firefox extension, 39–41
Insipid, 293–294
Rubric, 297–298
Scuttle, 276–277
SiteBar, 283–285

Internet Explorer, bookmarks
downloading to, 50
posting from Context menu, 50

IRC (Internet Relay Chat), del.icio.us
channel, 21

iTunes, subscribing to podcasts,
137–139

349Index ■ G–I

37857bindex.qxd 6/4/06 9:38 PM Page 349

J
JavaScript

hacks and, browser-side scripting,
108–109

linkrolls and, 183–186
page excerpts and, 29
unobtrusive, 242–248
See also JSON

javascript: prefix, 23
joining community, 21–22
Jots, 321–322
JSON feeds, 332–334
JSON (JavaScript Object Notation), 93–95

bookmarks as comments, 260–272
hacks and, 101–103
image gallery building, 130–133
links, related items, 253–260

Juice Receiver, podcast subscriptions,
136–137

jump=doclose parameter, super-fast
bookmarklets and, 36

K
keywords, Smart Keywords, 34–35

super-fast bookmarklets, 35–36
Konqueror Sidebar (Linux), 62–63

L
linkblogs, 12
linkrolls

FeedBurner and, 186–190
JavaScript and, 183–186

links
JavaScript, unobtrusive, 242–248
permalinks, 233–235
private, 91
related items, 10

JSON and, 253–260
tags and, 253–260

RSS feeds, 19
tracking, 92–93

screenshots and, Hot Links, 157
sharing, 6–8
splicing, FeedBurner and, 186–190
tags, associating, 8

Linux
Gnomolicious, 62
Konqueror Sidebar, 62–63

listing tags, 78–79
tag bundles, 81–82

Live Bookmarks, RSS feeds, 41–42
LiveMarks, 164–165

M
Mac OS X

Cocoalicious, 54–55
dashLicious, 56
Delibar, 55
delimport, 56–57
Quicksilver, 57–59
Spotlight, 56–57

Ma.gnolia, 309–311
mailing list, del.icio.us, 21

350 Index ■ J–M

37857bindex.qxd 6/4/06 9:38 PM Page 350

mashup, 97–98
building

planning, 169–170
TechnoFlickrDeli, 170–180

relationships and, 128
MD5 hashes, 11
media files

file extensions, 129
image files, gallery, 130–133
introduction, 128–130
streaming audio, Play Tagger and,

133–134
media tags, 334–335
MetaWeblog API, 190–193
methods

bookmark post management, 336–340
HTTP API methods, 335–336
posts/add, 74–76
posts/delete, 78
tag management, 341–343

mirroring, bookmarks, Python and,
200–213

Movable Type
bookmark this, 233–235
permalinks, 233–235
related links script, 256–257
sidebars, 196–198
tagging posts and, 248–250

My del.icio.us button, 24

N
Net::Delicious (Perl), 84–85

news portals, Popurls, 167–168
Notable plug-in for WordPress, 238–240
notes, 9

Rubric, installation, 297–298

O
open source alternatives, reasons to use, 275
osx tag, 12
overloaded tags, 120

P
page excerpts

JavaScript and, 29
splicing into bookmarklet, 29–30

passwords
CAPTCHA and, 4–5
signup and, 4

peer pressure, tags and, 12
Perl

Net::Delicious, 84–85
server-side scripting, hacks and, 112

permalinks, 233–235
photos, splicing, FeedBurner and, 186–190
PHP

caching API proxy, building, 224–231
PhpDelicious (PHP), 85–86
phpFlickr, 171
server-side scripting, hacks and,

112–113
Plain Old XML, hacks and, 106–107
Play Tagger, 133–134

351Index ■ M–P

37857bindex.qxd 6/4/06 9:38 PM Page 351

podcasts
audio, bookmarks, 134–139
subscribing to

iTunes, 137–139
Juice Receiver, 136–137

video, bookmarks, 134–139
popularity of bookmarks, 9

del.icio.us Pioneers, 165–166
Populicio.us, 161–162
popup window bookmarklet, 25–27
Popurls, 167–168
portals, Popurls, 167–168
Post to del.icio.us button, 24
posts/add method, 74–76
posts/all query, 74
posts/dates query, 72–73
posts/delete method, 78
posts/get query, 71
prefixes

cite:, 123–124
for:, 17, 124
javascript:, 23
via:, 123–124

previewing bookmarks, Thumblicio.us, 156
private bookmarks, 91
Prodigem, subscribing to bookmarks as

Torrents, 168–169
programming, del.icio.us API, 21
pydelicious (Python), 84–85
Python

bookmarks
backups, 200–213
mirroring, 200–213

pydelicious, 83–84
server-side scripting, hacks and, 112

Q
queries

fetching bookmarks, 69
posts/all, 74
posts/dates, 72–73
posts/get, 71
tags/rename, 79–80

Quicksilver (Mac OS X), 57–59
QuirksMode, page excerpts and, 29

R
ranking tags, 9
read_later tag, 121
receiving bookmarks, tags and, 17–18
registration

CAPTCHA, 4–5
email address, 5
passwords, 4–5
Scuttle account, 278

related items, 10
relationships between tags

mashups and, 128
searches, 126–127
Tagbert, 128
TouchGraph, 125–126

REST (Representational State Transfer),
hacks and, 106–107

reverse engineering bookmarklets, 26

352 Index ■ P–R

37857bindex.qxd 6/4/06 9:38 PM Page 352

RSS feeds, 331–332
bookmarking

bookmarks as comments, 260–272
built-in, 241–242
live bookmarks, 41–42

browsing, SiteBar, 290–291
feed aggregators, 19–20
inbox, 90
links, tracking, 92–93
locating, 18–20
monitoring collections, users, 90
popular, 90
private, 91
Rubric, 303
sample, 89
topics, 92
transmission wave icon, 19
TypePad and, 193–196

Rubric
bookmarks

importing, 299–300
managing, 300–302

installation, 297–298
instances, 298–299
RSS feeds, 303
Rubric API, 303

Ruby
Rubilicious, 87
server-side scripting, hacks and, 112

S
%s, super-fast bookmarklets, 35–36

Safari
delicious2safari, 48–49
Sogudi, 46–47

Safarilicious, 47–48
screen scrapers, hacks and, 107–108
screenshots, Hot Links and, 157
scrolling bookmarks, LiveMarks and,

164–165
Scuttle

bookmarks
adding, 278–279
browsing, 280–282
importing from del.icio.us, 279–280
searching, 280–282

installation, 276–277
registration, 278
Scuttle API, 282–283

searches
del.icio.us illogical interface, 126–127
Scuttle, 280–282
Simpy and, 305–306

sending bookmarks, tags and, 17–18
server-side scripting, hacks

Perl, 112
PHP, 112–113
Python, 113
Ruby, 114

Shadows, 312–313
sharing bookmarks. See Scuttle
sharing links, 6–8
sidebars

FeedBurner and, 186–190
Movable Type and, 196–198

353Index ■ R–S

37857bindex.qxd 6/4/06 9:38 PM Page 353

TypePad lists and, 193–196
Yummy and, 196–198

Simpy, 305–306
SiteBar

bookmarks
browsing, 290–291
importing/exporting, 288–289
management, 285–288

browser integration, 291–292
configuration, 283–285
folders, management, 285–288
installation, 283–285
RSS feeds, browsing, 290–291

slowing down super-fast bookmarklets,
36–37

Smart Keywords, 34–35
super-fast bookmarklets, 35–36

SOAP (Simple Object Access Protocol),
hacks and, 105–106

Sociable plug-in for WordPress, 240
social bookmarks manager definition, 9
Sogudi (Safari), 46–47
Sol-Delicious plug-in for WordPress,

237–238
splicing, FeedBurner and, 186–190
Spotlight (Mac OS X), 56–57
Spurl, 318–321
standard bookmarklets, syntax, 25
Stemmer, 159–160
streaming audio, Play Tagger and, 133–134
subscribing

to bookmarks, 14–15
as Torrents, Prodigem and, 168–169

to daily blog posting, 190–193
to podcasts

iTunes, 137–139
Juice Receiver, 136–137

super-fast posting, 33–37
jump=doclose parameter, 36
slowing down, 36–37
Smart Keywords, 35–36
source code, 37

synchronization, bookmarks, Foxylicious,
42–43

T
tag bundles, 80–81

creating, 82
deleting, 82–83
listing, 81–82

Tagbert, 128
tags

+ (plus sign) and, 13
associating, 8
clean up, 79–80
conventions, 120
file types, 334–335
folksonomy, 117
geotagging, 139–152
intersections, 13
links, related items, 253–260
listing, 78–79
mashups and, 128
media tags, 334–335
methods, 341–343

354 Index ■ S–T

37857bindex.qxd 6/4/06 9:38 PM Page 354

Movable Type and, 248–250
organization, 118–119
osx, 12
overloaded, 120
overview, 115–118
peer pressure and, 12
personal benefits, 13
prefixes

cite:, 123–124
for:, 17, 124
javascript:, 23
via:, 123–124

rankings, 9
read_later, 121
receiving bookmarks, 17–18
relationships

mashups and, 128
searches, 126–127
Tagbert, 128
TouchGraph, 125–126

renaming, 79–80
sending bookmarks, 17–18
Stemmer, 159–160
tag clouds, 11
toblog, 121
toread, 122
username and, 13
WordPress and, 250–252

tags/rename query, 79–80
TagSense (Windows), 60
Tantek’s Favelets (bookmarklets), 24

TechnoFlickrDeli
CSS and, 180–182
implementation, 170–180

templates, WordPress, 235–237
Thumblicio.us, 156
toblog tag, 121
topics, RSS feeds, 92
toread tag, 122
Torrents, subscribing to bookmarks,

Prodigem and, 168–169
TouchGraph, 125–126
tracking bookmarks, inbox and, 15–17
transmission wave icon, RSS feeds, 19, 88
trendalicious, 162–163
trends, Vox Delicii, 163–164
TypePad

blogs and, 193–196
sidebar lists, 193–196

U
updating bookmarks, 74–77
URLs, 10–11

JSON feeds, 332–334
private, 329–330
public, 327–329
RSS feeds, 331–332
Spurl, 318–321

user interface
Delancey and, 153–154
del.icio.us direc.tor, 155–156

user scripts, Greasemonkey, 43–46

355Index ■ T–U

37857bindex.qxd 6/4/06 9:38 PM Page 355

username
signup and, 4
tags and, 13

utilities
del.icio.us Pioneers, 165–166
LiveMarks, 164–165
Pasta, 158–159
Populicio.us, 161–162
Stemmer, 159–160
trendalicious, 162–163
Vox Delicii, 163–164

V
via: prefix, 123–124
video, podcasts, bookmarks, 134–139
Vox Delicii, 163–164

W
Web robots, hacks and, 107–108
Wikipedia, bookmarklets and, 24
Windows

Google Desktop, 60–61
TagSense, 60

WordPress
blogs, 198–199
Notable, 238–240
related links script, 257–260
Sociable, 240
Sol-Delicious, 237–238
tagging posts and, 250–252
templates, 234–237

X
XML (Extensible Markup Language)

hacks and, 100–101
Plain Old XML, hacks and, 106–107

XML-RPC, hacks and, 103–105
XMLHttpRequest, hacks, browser-side

scripting and, 110–111
XSLT, hacks, browser-side scripting

and, 111

Y
Yummy, sidebars, 196–198

356 Index ■ U–Y

37857bindex.qxd 6/4/06 9:38 PM Page 356

The best place on the Web to learn about new
technologies, find new gear, discover new

ways to build and modify your systems, and
meet fascinating techheads…just like you.

Visit www.extremetech.com.�

37857bm.qxd 6/4/06 9:38 PM Page 363

How to take it
to the Extreme.

Available wherever books are sold.
Wiley and the Wiley logo are trademarks of John Wiley & Sons, Inc. and/or its affiliates. The ExtremeTech logo is a trademark of Ziff
Davis Publishing Holdings, Inc. Used under license. All other trademarks are the property of their respective owners.

™

If you enjoyed this book,
there are many others like
it for you. From Podcasting
to Hacking Firefox,
ExtremeTech books can
fulfill your urge to hack,
tweak and modify,
providing the tech tips and
tricks readers need to get
the most out of their
hi-tech lives.

37857bm.qxd 6/4/06 9:38 PM Page 364

