DOC Course 112: Hardware: Tutorial 1 Solution

2.							
ĺ	A B C	A+B+C	(A+B+C)'	A'	B'	C'	A'∙B'∙C'
	000	0	1	1	1	1	1
	001	1	0	1	1	0	0
	010	1	0	1	0	1	0
	011	1	0	1	0	0	0
	100	1	0	0	1	1	0
	101	1	0	0	1	0	0
	110	1	0	0	0	1	0
	111	1	0	0	0	0	0

1. It should of course say "Enter through door 1 or door 3"

3.

Boolean	Arithmetic implementation				
A• B'	A*(1-B)				
A + B	A+B-A*B				
A' + B'	1-A*B				
A eor B	$(A+B) \mod 2$ or $A+B-2*A*B$				

4. There are a lot of possibilities here. To make it into an unambiguous proposition you need to add some brackets. I would preserve the either or nesting

(Coffee) and ((biscuits and (cheese or icecream or freshfruit)) or applepie)

equally well you could have:

((Coffee) and (biscuits and (cheese or icecream) or freshfruit)) or applepie

&c.

Optional problem:

The simplest proof is by induction. In part 2 you proved that it works for 3 variables, so the first step is to assume it works for n variables, thus:

 $(A1 + A2 + A3 + \dots An)' = A1' \bullet A1' \bullet A3' \dots An'$ now consider the case of n+1 variables $(A1 + A2 + A3 + \dots An + An+1)' = ((A1 + A2 + A3 + \dots An) + An+1) = (B+An+1)'$ where B = A1 + A2 + A3 \dots + An

since we can prove the theorem for the case of two variables by truth table we can write: $(B+An+1)' = B' \bullet An+1' = (A1 + A2 + A3 + ... An)' \bullet An+1' = A1' \bullet A1' \bullet A3' ... An'' \bullet An+1'$

Thus if it works for n variables it works for n+1 variables.

QED