

Information Technology
Rice University

Document UNIX 7

July 10, 2000

Compilers, Make, and Debuggers
on Sun Workstations

This document gives you basic information on using compilers for several languages on UNIX sys-
tems. It lists extensive resources for learning more about programming languages and compilers.

Rice University, 2000 All Rights Reserved

Document may not be resold to, used by, nor licensed to third parties without written permission from User Services, Rice University.

2

Compilers, Make, and Debuggers on Sun Workstations

Table of Contents

Files Used in Programming.. 3

Compiler Options... 4

Compiler Usage.. 4

Programming Utilities.. 5

The FORTRAN Compiler .. 5
FORTRAN Utilities .. 5
FORTRAN Resources .. 6

The C Compiler.. 6
Utilities.. 6
C Resources .. 7

The C++ Compiler ... 7
C++ Resources.. 7

Using Make .. 8
Elements of Make ... 8
Syntax of the Make Command ... 10
Multiple Programs in a Makefile .. 10
Other Elements in Makefiles .. 11

Non-File Targets .. 11
Comments .. 11
Variables .. 11

Make Resources.. 13

Debuggers .. 13
Image files... 13
Available Debuggers... 13
Debugger Resources ... 14
Storing Your Files.. 14

Problems or Questions? ... 14

Files Used in Programming

Compilers, Make, and Debuggers on Sun Workstations

3

Files Used in Programming

UNIX programming files have a naming convention that has two components, the file name, and the file
suffix. The suffix is almost always a period followed by one letter, for example, (

.c

). Creating a program
on a UNIX system involves several different classes of files and each has its own function in the process
of creating the program. A file’s class is conventionally indicated by the suffix. The list below summa-
rizes the file classes and their suffixes:

source

A text file containing a program or subroutine written in a language such as
C, C++, FORTRAN, or Pascal. The suffix is determined by the language
used:

.c

 for C

.cc

for C++

.f

for FORTRAN

.p

for Pascal

.s

for Assembly Languages

object

Not a text file, not readable by humans. It’s the machine-readable equivalent
of a source code file and is produced by running the source file through a
compiler. There is a 1-1 correspondence: 1 source file produces 1 object file.
Object files have the suffix (

.o

).

header

A file that is usually included in its text form into another source file. Header
files usually contain variable declarations or definitions. Header files have
the suffix (

.h

).

library

A collection of related functions that are in machine readable format and can
be included into a program when it is compiled. Library files have the suffix
(

.a

).

executable

The completed program, capable of running, or being executed, by the com-
puter. By default, executables are given the name

a.out

, but they can be
given any name by using a compiler option described in

Compiler Options

.

Creating a program involves the following basic steps using the file classes described above.

1.

A program is typed into one or more source files in a high level language such as C, C++, or FOR-
TRAN.

2.

The compiler is invoked on the source files and it incorporates the header files and then produces
object code from the source file.

3.

The linker portion of the compiler links the object code modules with libraries to make an execut-
able program. Only the relevant portions of the library files are linked into the program.

4.

Dynamically liked binaries are coupled with shared libraries at run time to create a working memory
image for execution.

Compiler Options

4

Compilers, Make, and Debuggers on Sun Workstations

Because the compilation and linking process produces object code that a particular machine or
CPU architecture can read, it generally cannot be read by a machine or CPU of a different or unre-
lated architecture. For example, a program compiled for a Motorola 68020 CPU can be read by a
Motorola 68030 CPU, since they are related architectures, but the program will not run on a
SPARC architecture CPU.

Compiler Options

There are several options common to all of the compilers discussed below. These common options
are as follows:

-c

Suppress linking; compile only. Make an

.o

 file for each source file.

-o

output

Name the final executable file

output

 instead of

a.out

.

-l

library

Link in routines from the library archive. Library archives are usually
located in a library directory such as

/lib

,

/usr/lib

,

or

 /usr/local/lib

 .
Archives have the naming convention

 lib

library

.a

, such as

libimsl.a

 or

libm.a

.

-p

Generate data for use with the prof utility described in the section

FOR-
TRAN Utilities

.

-gp

Generate data for use with the gprof utility described in the section

FORTRAN Utilities

.

Compiler Usage

All of the compilers described below have similar syntax and are invoked the same way. The com-
piler can be invoked to produce an executable from the source code without generating any inter-
mediate files in your directory, such as the following example, which uses the FORTRAN
compiler,

f77

:

f77 -o whales tails.f

In this example, f77 compiles the FORTRAN source file

tails.f

into object code, passes it to the
linker, ld, which links it with some default libraries and produces the executable

whales

.

You can also split up the compiling and linking into multiple commands:

f77 -c tails.f

f77 -o whales tails.o

The first line compiles

 tails.f

to

 tails.o

 and puts

tails.o

 into your directory. The second links

tails.o

with some default libraries and produces the executable,

whales

.

In addition to the default libraries, you can specify other libraries to be linked in with the

-l

 flag, as
follows:

Programming Utilities

Compilers, Make, and Debuggers on Sun Workstations

5

f77 -c tails.f

f77 -o whales tails.o -lfish

The

fish

 library would actually be in a file called

libfish.a

stored in one of the library directories.

You can also write your own libraries: compile the object files, aggregate them with

ar

, then use

ranlib

to order them for library use. To modify where the compiler looks for libraries, use the environment
variable

LD_LIBRARY_PATH

. See UNIX1 for instructions on environment variables.

Programming Utilities

UNIX provides several utilities for programming that can be used with executables created by any of
the compilers mentioned in this document. These utilities are:

ctags

Create a tags file for use with the

ex

 and

vi

 editors. A tags file gives the loca-
tion of functions and type definitions in a group of files.

gprof

Display call-graph profile data. This command produces a graphical execu-
tion profile of a program.

prof

Display execution profile data.

tcov

Construct test coverage analysis and statement-by-statement profile.

The FORTRAN Compiler

On UNIX systems, FORTRAN programs are created using the FORTRAN compiler,

f77

. There are
many command line options for the compiler in addition to the ones described in the section,

Compiler
Options

. Refer to the compiler manual pages on-line and in the

 SunOS Reference Manual

 and to the

Sun
FORTRAN User’s Guide

.

FORTRAN Utilities

The following are some of the UNIX utilities and applications that will assist you in creating FOR-
TRAN programs.

fpr

A FORTRAN output filter for printing files that have FORTRAN carriage-
control characters in the first column. Allows printing of non-UNIX style
FORTRAN files on UNIX line-printers.

fsplit

Splits one FORTRAN file with many subroutines into multiple files, each
with one subroutine in it.

dbx

A interactive symbolic debugger that can be used with FORTRAN.

The C Compiler

6

Compilers, Make, and Debuggers on Sun Workstations

adb

An interactive general-purpose low-level debugger.

FORTRAN Resources

The following Sun system documents in the labs will provide more information on programming in
FORTRAN:

Getting Started

Beyond the Basics

Performance Profiling Tools

Numerical Computation Guide

Debugging a Program, SPARCworks 3.1

Programming Utilities Guide

Building Programs with Maketool

Linker and Libraries Guide

Source Compatability Guide

Standards Conformance Guide

System Interface Guide

In addition, Fondren Library has several books and publications on programming in FORTRAN.

The C Compiler

There are three C compilers generally available on the UNIX systems,

 cc

,

gcc,

and

 acc. cc

 is the C
compiler from the system vendor,

gcc

 is the C compiler from the Free Software Foundation’s GNU
Project, and

acc

 is an ansi-compliant C compiler from Sun. There are numerous options for the C
compilers in addition to the ones described in the section,

Compiler Options

. They are detailed in
the

cc

,

gcc,

and

 acc

manual pages and in the documents

C Programmer’s Guide

 and

Using and
Porting GNU CC.

Utilities

The following SunOS utilities can be used when programming in C. Some are used with source
code files and others are used in conjunction with the C compiler and the executable program.

cb

A C program beautifier.

cflow

Generate a flow graph of C source code.

cpp

The C preprocessor.

csplit

Split a file with respect to a given context.

ctrace

Generate a C program execution trace.

The C++ Compiler

Compilers, Make, and Debuggers on Sun Workstations 7

cxref Generate a C program cross reference.

indent Indent and format a C program source file.

lint Check a C program for common errors.

mkstr Create an error message file by massaging C source files.

xstr Extract strings from C programs to implement shared strings.

lex Lexical analysis program generator.

yacc Yet another compiler-compiler; parsing program generator.

C Resources

The following Sun system documents in the labs will provide more information on programming in C:

C User Guide

Numerical Computation Guide

Debugging a Program

Programming Utilities Guide

C 4.2 Quick Reference Card

New manuals are the same as listed under FORTRAN Resources. Other resources for C programming
available in the labs:

Using and Porting GNU CC, Richard Stallman, Free Software Foundation, Inc., 1990.

The C Preprocessor, Richard Stallman, Free Software Foundation, Inc., 1990.

lex & yacc, Tony Mason and Doug Brown, O’Reilly Associates, Inc., 1990.

Checking C Programs with lint, Ian Darwin, O’Reilly Associates, Inc., 1988.

In addition, Fondren Library has several books and publications on programming in C.

The C++ Compiler

The C++ compiler is invoked on UNIX systems with either the command CC for the system vendor
version or g++ for the Free Software Foundation version. The C++ compilers have many command line
options in addition to the ones described in the section, Compiler Options. Refer to the CC or g++ man-
ual pages on-line.

C++ Resources

The following documents located in the labs provide extensive information on programming in C++.

C++ User’s Guide, Michael Tiemann, Free Software Foundation, Inc., 1990.

C++ Library Reference, Doug Lea, Free Software Foundation, Inc., 1990.

Using Make

8 Compilers, Make, and Debuggers on Sun Workstations

In addition, Fondren Library has several books and publications on programming in C++:

C++ Quick Reference Card

Tools.h++ Class Library Reference

Tools.h++ User’s Guide

Using Make

For a simple program, with only a single source code file, and not requiring any special libraries,
you could compile and link with a single command, e.g.:

cc -o ducks ducks.c

A more complicated program, though, might involve the source code for several subroutines, and
require several commands:

cc -c ducks.c

cc -c hughey.c

cc -c dewey.c

cc -c louie.c

cc -c ducks ducks.o hughey.o dewey.o louie.o

which would produce the executable ducks. In addition, if the program required the IMSL library
functions, the last line would have to look like this:

cc -o ducks ducks.o hughey.o dewey.o louie.o -limsl

During program development, the programmer would have to keep track of which source code files
were changed, when they would have to be recompiled to make the object code reflect the changes,
and which special libraries needed to be included. For a project with hundreds of source files and
several libraries, this can become an unmanageable task. The make program exists to automate the
program development process.

Elements of Make

The concept of make is fairly simple: you write an additional text file, called a description file,
which tells make what to do to produce the executable from the sources (other uses are possible but
this is the most common). Then you can just type “make” and watch it do the work for you.

Here are some important make terms (which will become clearer with examples):

makefile Another name for the description file, a text file containing commands
that produce the desired result from the starting materials. The descrip-
tion file is often called this because it is usually named makefile or
Makefile.

target Something make is supposed to produce. An executable file is a good
example. Object files can also be targets. Anything you need but don’t

Using Make

Compilers, Make, and Debuggers on Sun Workstations 9

start with is a target. In the command sequences above, the executable
ducks is the eventual target.

dependency Something associated with a given target that must exist and be up-to-date
before that target can be made. In the above example, ducks (executable)
depends on ducks.o, hughey.o, dewey.o, and louie.o because they are
needed to create it. ducks.o, in turn, depends on ducks.c, but not on
hughey.c, dewey.c, or louie.c. hughey.o, dewey.o, and louie.o each depend
on their respective source files also. So ducks depends on each of ducks.c,
hughey.c, dewey.c, and louie.c, but only indirectly, through ducks.o,
hughey.o, dewey.o, and louie.o.

rule The command(s) that make uses to create a target.

An entry in a makefile looks like this:

target: dependencies

rule

The format is rigid: target, colon, one space, dependencies separated by a space, return, tab,
rule, blank line. Note that it must be a single tab, 8 spaces will cause make to fail. If the num-
ber of dependencies is quite large or the rule is very long, you can break the line, putting a
backslash (\) at the end of each incomplete part.

The makefile is typically a list of targets, dependencies, and rules, as in the following example:

whosonfirst: whosonfirst.o abbott.o costello.o

cc -o whosonfirst whosonfirst.o abbott.o costello.o

whosonfirst.o: whosonfirst.c

cc -c whosonfirst.c

abbott.o: abbott.c comic.h

cc -c abbott.c

costello.o: costello.c comic.h

cc -c costello.c

When you tell it to “make whosonfirst,” make ensures that whosonfirst’s dependencies are up-to-date
first: it sees the dependency whosonfirst.o, and “makes” whosonfirst.o, which it does by compiling
whosonfirst.c. Similarly, it sees dependencies on abbott.o, and costello.o, and makes those, which it
does by including comic.h into abbott.c and compiling abbott.c to abbott.o and so on. Then, when all
the dependencies are satisfied, it can make whosonfirst.

Why all the talk about “up-to-date”? One of make’s best features is that it checks to see what’s been
changed since the target was last made. For example, if told to make abbott.o, it checks the last mod-
ification time/date on both abbott.o and abbott.c. If abbott.c has been modified since the last time
abbott.o was modified, then abbott.o is no longer up-to-date, and it compiles abbott.c to abbott.o. If,
however, abbott.o is more recent than the last modification to abbott.c, make concludes that no
changes have been made, that recompiling would not result in any change in abbott.o, and that recom-

Using Make

10 Compilers, Make, and Debuggers on Sun Workstations

piling is therefore unnecessary. Thus, make keeps its targets up-to-date efficiently by changing
only what needs to be changed.

Syntax of the Make Command

The make command has some primary arguments that it can be invoked with. The brackets (“[]”)
below indicate that the argument enclosed within them is optional. In other words, it only has to be
supplied if you want to use it. (The brackets are not typed when supplying the argument.)

make [-f makefilename] [target]

The following is a description of each of the options shown above.

-f makefilename make requires a description file for operation. If no filename is speci-
fied, make looks in the current directory for makefiles under the follow-
ing names, in this order: makefile, Makefile, s.makefile, s.Makefile.
(Note: s.makefile and s.Makefile can only be found in the SCCS revi-
sion control system.) If no filename is specified, and none of the above
files is found in the current directory, make exits with an error message.
Using the -f option relieves you of having to call the description file one
of the names listed above. This is important when you want to have
more than one makefile in a directory.

target You can instruct make to make any target in the makefile by calling its
name. In the above example,

make whosonfirst.o

would only make sure whosonfirst.o was up-to-date (with respect to
whosonfirst.c). It would not even look at whosonfirst, abbott.o, or cos-
tello.o. If no target is specified, the first target in the makefile is used.
Thus, it makes sense to put the main target (usually the executable) first
in the list of targets. You can then just type “make” and the main target
will be made.

There are many other command line options for make but they are used less frequently, or only for
really complicated programs. Refer to the make manual pages in the SunOS Reference Manual or
on-line for a description of these options.

There is another version of make available on some systems (including Owlnet), gnumake from
the Free Software Foundation’s GNU Project. gnumake is invoked in a similar manner to make.

Multiple Programs in a Makefile

Note that one makefile can be set to produce any number of executables or other targets by default,
using a construction like this:

all: rain song

rain: rain.o cats.o dogs.o

Using Make

Compilers, Make, and Debuggers on Sun Workstations 11

cc -o rain rain.o cats.o dogs.o -limsl

song: song.o three.o blind.o mice.o

cc -o song song.o three.o blind.o mice.o

rain.o: rain.c

cc -c rain.c umbrella.h

[...]

When you type “make,” make will make ‘all,’ which will result in both ‘rain’ and ‘song’ being made.

Other Elements in Makefiles

Non-File Targets

Sometimes targets that are not used to compile or link can come in handy. The target may have no
dependencies and only a rule. A frequently used one is:

clean:

rm -f *.o

so when you “make clean,” all object files in the current directory are removed, cleaning up the direc-
tory listing and saving space. (They can be recreated from the source if you need them again.) This is
clearly not a good idea, however, if the object files from more than one program are in the same direc-
tory. Then you would want to specify which few objects to remove:

clean:

rm -f sub1.o sub2.o

Or you could get even more creative, and add:

done: clean

rm -f prog

Then, when you had run the program to your satisfaction and wished to delete the executable, “make
done” would remove the executable and all relevant object code.

Comments

Comments can be added anywhere if the first non-blank character on the line is a (“#”). All characters
up to the new line will be ignored. Each comment line must start with a (“#”).

Variables

It is possible to define variables at the beginning of the makefile to be used later on. The syntax for
defining the variable is:

VARIABLE= value

Using Make

12 Compilers, Make, and Debuggers on Sun Workstations

where VARIABLE is (usually) the capitalized variable name you want to use, and value is the
character string assigned to it. The value is all characters up to a newline. If the value is longer than
a line, use the backslash character before the non-terminal newline characters.

The variable substitution takes place by using the following construct in the target, dependency, or
rule.

$(VARIABLE)

For example, one could make up a generic makefile thus:

PROG=

SUBS=

$(PROG): $(PROG).o

f77 -o $(PROG) $(PROG).o: $(SUBS)

$(PROG).o: $(PROG).f

f77 -c $(PROG).f

Then, to use the makefile for different programs, only the lines at the top need be changed. With

PROG=makemyday

SUBS=

make sees the makefile as:

makemyday: makemyday.o

f77 -o makemyday makemyday.o

makemyday.o: makemyday.f

f77 -c makemyday.f

Whereas, with

PROG=makemyday

SUBS=go.o ahead.o punk.o

it looks like

makemyday: makemyday.o

f77 -o makemyday makemyday.o go.o ahead.o punk.o

makemyday.o: makemyday.f

f77 -c makemyday.f

Debuggers

Compilers, Make, and Debuggers on Sun Workstations 13

(Which is fine if you’re not planning to change go.f, ahead.f, or punk.f, and you just have the .o files in
your directory. If you want to include them as targets, you need to add them to the makefile.)

Also, a variable can be used to pass other information on to make. Having

SHELL=/bin/sh

at the beginning with the variable settings results in all the rules being run under the default Bourne
shell, /bin/sh, rather than the C shell, /bin/csh. This is necessary, for example, when using the IBM RTs
to compile FORTRAN.

Make Resources

The following documents, located in the labs or available from the CRC, will help you in using make to
maintain programs.

Programming Utilities Guide, Chapter 5

Beyond the Basics

Debuggers

Image files

On UNIX systems, when you run a program, a copy of it is loaded into a portion of the system’s mem-
ory and the CPU begins executing the instructions there. If an error occurs in the program (a “bug”),
often the execution will halt abruptly. In these instances, the operating system quickly saves a copy of
the relevant portion of its memory to a file on the disk. This is known as a memory dump, and the file is
called an image file. The memory dump is often referred to as a core dump for historical reasons. (Com-
puter memory used to be called “core memory” because before the advent of silicon microchips for
memory, computer memory was constructed of small ferrous cylinders or rings wrapped in copper wire.
The ferrous part was referred to as the “core.”) Following this tradition, the image file dumped to disk is
usually named core. Since this image file is a duplicate of what was in the computer’s memory at the
time of the error, it can be used to discover what the error was.

Available Debuggers

Some of the debuggers available on the various UNIX systems are:

adb A general purpose interactive debugger.

dbx A robust symbolic debugger.

xdbx A more friendly, X Window System interface to dbx.

gdb Free Software Foundation GNU Project symbolic debugger.

Storing Your Files

14 Compilers, Make, and Debuggers on Sun Workstations

Debugger Resources

The following documents in the documentation racks in the labs will assist you in using the various
debuggers available on the system.

Debugging a Programl

gdb Manual

Storing Your Files

While you are developing a program, you will usually generate a number of object files (.o files) in
addition to the source, header, and executable files. When your program development is complete,
you can save a lot of disk space by deleting your .o files. You can use make to clean up your direc-
tory as described in the section, Other Elements in Makefiles. All of the object files can be recreated
from the source files by invoking make again.

Problem or Questions

If you have problems or questions, you can contact the Consulting Center (103 Mudd Lab, or at
713.348.4983). You can also submit it on the Web at http://problem.rice.edu or you can send e-mail
to problem@rice.edu.

