UNIX tutorid

After logging on

Throughout the Unix Tutorid section we will use % to indicate the computer's *ready”
prompt.

Is

Let'stry a smple commeand in a command window. Type Isand press .. Isisthe program to list
filesin adirectory. Right now you may or may not see any files-not seeing any files doesn't
mean you don't have any! Just plain Iswon't list hidden files (files whose names start with ™",
like .login). Now try typing:

%ls-a
Dont actudly type the % symbol! Remember, that's the computer's prompt which indicates it
is ready to accept input. The spacing should be exactly as shown. Isfollowed by a space,
folowed by a-a The -aisaflag" which tdlsthe Is program to ligt dl files
For more about command flags see below.
cd
Jugt for fun, let'slook at the contents of ancther directory, one with lots of files. Directory
names in Unix are Sraightforward. They are dl arranged in a tree structure from the root
directory /",
For now, use cd to change your directory to the /bin directory. Type:

% cd /bin

and press <CR>. Now typelsagan. You should see along lig of filesin fect, if you look
carefully you will see files with the names of the commands welve been typing (like Is and cd).
Note that the /bin in the command we typed above was not aflag to cd. It wasa ™ parameter.”
Hagstel ommands how to act, parameterstell them what to act on.

Now return to your login directory with:
% cd

Entering cd with no parameter returns you to your home directory. Y ou can check to meke
surethat it worked by entering:

% pwd

which prints your current (or ~“working") directory. The computer should return aline of
words ssparated by /" symbols which should look something like:

Jamethyst9/home/username

Whatever it returns, the list should end in your username.
Using the On-line Man Pages

Maost Unix commands have very short and sometimes cryptic names like Is. This can make
remembering them difficult. Fortunatdly there are on-line manua pages which dlow you to
display information on a specific program (to lig dl the flags of Is, for example) or lig dl the
information available on acertain topic.

man

To investigate other flags to the Is command (such as which flags will display file Sze and
ownership) you would type man |s.

Using man and more

Try it now. Use man Isto find out how to make the |s program print the Szes of your filesas
well astheir names. After typing man Is and pressing , note how man displays a screenful of
text and then waits with a prompt --More-- a the bottom of the screen.

What man is doing is sending everything it wants to display to the screen through a program
known asa " pager” The pager program is caled more. When you see --More-- (in inverse
video) a the bottom of the screen, just press the space-bar to see the next screenful. Press
<CR>to srall alineat atime,

Have you found the flag yet? The -sflag should display the Szein kilobytes Y ou don't need
to continue paging once you have found the information you need. Press g and more will exit.
Ligting File Sizes

Now typels-as. You can stack flags together like this-thistdlslsto lig dl files, even hidden
files and lig their Szesin kilobytes.

Directory and File Structure

When you lig filesin Unix, it is very hard to tell what kind of filesthey are. The default
behavior of the Is program isto lig the names of dl thefilesin the current directory without
giving any additiond informetion about whether they are text files, executable files or
directoried

Thisis because the "meaning" of the contents of each fileisimposed on it by how you use the
file. To the operating system afileisjust a collection of bytes.

There is a program file which will tel you information about afile (such as whether it

contains binary data) and make a good guess about what creeted the file and what kind of file
itis

FileNames

Unlike other operating systems, filenames are not broken into a name part and atype part.
Names can be many characterslong and can contain most characters. Some characters such as
* and ! have specid meaning to the shell. They should not be used in filenames. If you ever do

need to use such asymbol from the shell, they must be specified snegkily, by ~escgping” them
with abackdash, for example\!.

Directories

Directoriesin Unix art at the root directory “/". Files are “fully pecified" when you ligt
each directory branch needed to get to them.

fusr/locd/lib/news

home/pamdalsrcffile.c
The “File System™ Tree Structure
Usudly disks are ~partitioned” into smadler sized sections cdled partitions If one partition of
the disk fills up the other partitions won't be
affected.
Only certain large directory points are partitions and the choice of these points can vary
among system managers. Partitions are like the larger branches of atree. Partitions will
contain many smaller branches (directories) and leaves (files).
Thedf Program
To examine what disks and partitions exist and are mounted, you can type the df command at
the % prompt. This should display partitions which have names like /dev/sd3g---3 for disk 3, g
for partition g. It will aso digplay the Space usad and available in kilobytes and the " mount
paint" or directory of the partition.

Disk Space Maintenance

It'simportant to keep track of how much disk space you are usng. The commeand du displays
the disk usage of the current directory and dl of its subdirectories. It displaysthe usage, in

kilobytes, for each directory-induding any subdirectories it contains-and ends by displaying
the totdl.

%du
display disk usage of current directory
%du -s
display only totdl disk usage
%du -s-k
some verdons of Unix need -k to report kilobytes

Your Login Directory
A login directory can dway's be specified with ~username (~ is commonly cdled “twiddle"
derived from proper term “tilde") If you needed to ligt files in someone dsgslogin directory,
you could do 0 by issuing the commeand:

% Is ~username
subdtituting in their username. Y ou can do the same with your own directory if you've cdd
elsawhere. Please note-many people would congder looking a their files an invasion of their
privecy; even if the files are not protected! Just as some people leave their doors unlocked
but do not expect random bypassers to walk in, other people leave ther files unprotected.
Subdirectories
If you have many files or multiple things to work on, you probably want to cregte
subdirectoriesin your login directory. Thisalows you to place files which beong together in
one digtinct place.
Creating Subdirectories

The program to meke a subdirectory is mkdir. If you are in your login directory and wish to
cregte adirectory, type the command:

% mkdir directory-name

Once this directory has been created you can copy or movefilesto it (with the cp or mv
programs) or you can cd to the directory and start creating files there.

Copy afile from the current directory into the new stbdirectory by typing:

cp filename directory-name/new-filename
copy file giveit anew name

cp filename directory-name
copy file, filename will be the same as origind

Or cd into the new directory and move thefile from dsewhere:

% cd directory-name
% cp ../filename.

copies the file from the directory above giving it the same filename " means ""the current
directory"

Specifying Files

There are two ways you can specify files. Fully, in which case the name of thefile indudesal
of the root directories and Sartswith ~/", or rdatively, in which case the filename sarts with
the name of a subdirectory or conssts solely of its own name.

When Charlotte Lennox (username lennox) crested her directory arabella, dl of the following
sets of commands could be used to display the samefile:

% more lennox/arabellalchapterl
or

% cd lennox

% more arabellalchapterl
or

% cd lennox/arabella

% more chapterl

The full file spedification, beginning with a ™/ is very system dependent. On our machines,
al your user directories are in the /amethyst9 partition.

Protecting Filesand Directories

When cregated, dl files have an owner and group associated with them. The owner is the same
as the username of the person who cregted the files and the group is the name of the cregtor's
default login group, such as users, system etc. Mogt users do not belong to a shared group on
our systems. If the cregtor of the file belongs to more than one group (you can display the
groups to which you belong with the groups commeand) then the crestor can change the group
of the file between these groups. Otherwise, only the root account can change the group of a
file

Only the root account can change the ownership of afile.
Displaying owner, group and protection

The command Is-Ig filename will list the long directory list entry (which indudes owner and
protection bits) and the group of afile.

The digdlay looks something like:

protection owner group filename
TW-r----- hamilton ug munger_village

The Protection Bits
Thefirgt postion (which is not set) specifies what type of filethisis. If it were s, it would

probably be ad (for directory) or | (for link). The next nine postions are divided into three
sets of binary numbers and determine protection to three different sets of people.

u)
w- r-- -
6 4 O

Thefile has "mode" 640. The fird bits, set to “r + w" (4+2) in our example, specify the
protection for the user who owns the files (u). The user who owns the file can read or write
(which includes ddete) thefile.

Thenext trio of bits setto 4, or ~'r," in our example, specify accessto thefile for other users
in the same group as the group of thefile. In this case the group is ug-al members of the ug
group can reed the file (print it out, copy it, or display it usng more).

Findly, dl other users are given no access to thefile.

The one form of access which no aneis given, even the owner, is X" (for execute). Thisis
because the file is not a program to be executedtit is probably atext file which would have no
meaning to the computer. The x would gppear in the 3rd position and have avaue of 1.

Changing the Group and the Protection Bits

The group of afile can be changed with the chgrp command. Again, you can only change the
group of afileto agroup to which you belong. Y ou would type as follows

% chgrp groupname filename

Y ou can change the protection mode of afile with the chmod command. This can be done
relatively or absolutely. Thefile in the example above had the mode 640. If you wanted to
meake the file readable to dl other users, you could type:

% chmod 644 filename

or
% chmod +4 filename (snce the current mode of the file was 640)

For more informeation see the man page for chmod.

Default Protections: Setting the umask

All files get assgned an initid protection. To set the default initid protection you must st the
vaue of the variable umask. umask must be defined once per login (usudly in the .profile
file). Common umask vaues indude 022, giving read and directory search but not write
permission to the group and others and 077 giving no access to group or other usersfor dl
new filesyou cregte.

The Unix Shel Syntax

As mentioned earlier, user commands are parsed by the shell they run. There are many shells
other than the Korn shell which alow different types of shortcuts. We will only discussthe
Korn shell here, but some dternate shells include the G-shell, Bourne shel (/bin/sh), the
Bourne-Again Shdl (bash), zsh and tcsh (a C shdll variant).

ThePath

One of the most important eements of the shell isthe path. Whenever you type something a
the % prompt, the Korn shell firgt checksto seeif thisisan “dias' you have defined, and if

not, searches dl the directories in your path to determine the program to run.

The pathisjust alist of directories, searched in order. Y our default .profile filein your home
directory will have a path defined for you. If you want other directories (such as adirectory of
your own programs) to be searched for commands, add them to your peth by editing your
profilefile Thisligt of directoriesis sored in the PATH environment varigble. We will
discuss how to manipulate environment variables later.

Flags and Parameters

Maost commands expect or dlow parameters (usudly files or directories for the command to
operate on) and many provide option flags. A “flag" aswe saw before, is a character or string
with a- beforeit-like the -s we used with the Is command.

Some commands, such as cp and mv require file parameters. Not surprisngly, cp and mv (the
copy and move commands) each require two! Onefor the origind file and one for the new file
or location.

It would seem logicd thet if Isby itsdf just ligs the current directory then cp filename should
copy afileto the current directory. Thisislogicad-but wrong! Instead you must enter cp
filename . wherethe ." tdls cp to place thefile in the current directory. filename in this case
would be along filename with a complete directory specification.

Not surprisingly Is. and Isare dmost the same.

Creeting Files

The cat Program
ca is one of mog versatile commands. The smplest use of cat:
% cat .profile

displays your .profilefile to the screen. Unix alows you to redirect output which would
otherwise go to the screen by using a> and afilename. Y ou could copy your .profile, for

example, by typing:
% cat .profile > temp

Thiswould have the same effect as:
% cp .profile temp

More ussfully cat will gopend multiple files together.
% cat .prafile login > temp

will place copies of your .profile and .kshre into the same file. Warning! Be careful not to cat a
file onto an exigting file! The command:

% cat .profile > .profile
will destroy the file .profileif it succeeds.

If you fail to give cat afilename to operate on, cat expects you to type in afile from the
keyboard. Y ou must end thiswith a<Ctrl>-D on aline by itsdf. <Cirl>-D is the end-of-file
character.

By combining these two-leaving off the name of afileto input to cat and tdling cat to direct
its output to afile with > filename, you cancreste files.

For example:
% ca > temp
Klgjs dfkjask]
alskdj;Kjdfaf
<Crl>-D
%

Thiswill creste anew file temp, containing the lines of garbage shown above. Note that this
crestes anew file-if you want to add things an to the end of an exigting file you must use cat

dightly differently. Ingtead of > you'd use >> which tels the shdll to gppend any output to an
dreedy exiding file. If you wanted to add aline onto your .profile, you could type

% cat >> .profile
echo "blah blah blah”
<Cirl>-D

%

Thiswould append the line echo "blah blah blah" onto your .profile. Using > herewould be a
bad ideerit might obliterate your origind .profilefile.

Text Editors
ca isfinefor fileswhich are smdl and never need to have real changes made to them, but a

full fledged editor is necessary for typing in papers, programs and mail messages Among the
editors avallable vi and emacs. We will not discuss emacs here.

Be careful! Not dl Unix editors kegp backup copies of files when you edit them.

Vi

Vi isan editor which has acommand mode and a typing mode. When you firg startup vi (with
the command vi filename) it expects you to enter commands. If you actualy want to enter text
into your file, you must type the insart command i. When you need to switch back to
command mode, hit the escgpe key, usudly in the upper |eft corner of your keyboard.

To move around you must be in command mode. Y ou can usethe arow keysor usej, k, h, |
to move down, up, left and right.

For more information type man vi.

On the Suns, thereis dso an interactive text editor caled “textedit”. Y ou can gart it by usng
the pull-down menu, or by typing “textedit &” in acommeand shell.

Filesas Output and Log Files

Ordinarily there are two types of output from commands: output to standard output (stdout)
and to slandard error (dderr). The > and >> examples above directed only standard output

from programs into files. To send both the sandard output and error to afile when usng the C
shdll, you should type >& :

% command >& filename

Logging Your Actionsto aFile

Sometimes you may wish to log the output of alogin sesson to afile so that you can show it
to somebody or print it out. Y ou can do this with the script command. When you wish to end
the sesson logging, type exit.

When you gart up you should see a message saying script Sarted, file is typescript and when
you finish the script, you should see the message script done. Y ou may want to edit the
typescript file-visble"M's get placed at the end of each line because linebresks require two
control sequences for atermind screen but only onein afile.

Comparing Files
The basic commeands for comparing filesare:

¢mp
sates whether or not the files are the same
diff
ligs line-by-line differences
comm
three column output displays linesin file 1 only, file 2 only, and both files

See the man pages on these for more information.
Searching Through Files
The grep program can be used to search afile for lines containing a certain string:

% grep dring filename
% grep -i gringfilename (caseinsengtive match)

or not containing a certain gring:
% grep -v gring filename
See the man page for grep--it has many useful options.

more and the vi editor can d<o find gtringsiin files. The commeand is the same in both-type a
/string when at the --More-- prompt or in vi command mode. Thiswill scrall through thefile
s0 that the linewith ““string” in it is placed & the top of the screen in more or move the cursor
to the string desired in vi. Although vi isatext editor there isaverson of vi, view, which lets
you read through files but does not dlow you to change them.

10

The System and Dealing with Multiple Users

Maost Unix commeands which return information about how much CPU-time you've used and
how long you've been logged in use the following meanings for the words ™job" and
“pr .

When you log in, you gart an interactive ~job" which lagts urttil you end it with the logout
command. Usng ashdll like Korn shdll which has ™job-control" you can actudly start jobsin
addition to your login job. But for the purposes of the most information returning programs,
job (asinthe " JCPU" cdumn) refersto your login sesson.

Processes, on the other hand, are much shorter-lived. Almogt every time you type a command
anew processis darted. These processes stay — attached” to your termind displaying output to
the screen and, in some cases (interactive programs like text editors and mailers) accepting
input from your keyboard.

Some processes last a very long time-for example the /binksh (Korn shell) process, which
gets started when you login, lasts until you logout.

Information about Your Processes
Y ou can get information about your processes by typing the ps command.

PID TT STAT TIME COMMAND
E0DVS 006 -ksh (ksh)
123809R 00Lps

The processes executing above are the C shell process and the ps command. Note that both
commands are atached to the sametermind (TT), have different process identification
numbers (PID), and have different amounts of CPU-time (TIME), accumulated.

Information about Other Peopl€'s Processes

who

The amplest and quickest information you can get about other peopleisalist of which users
arelogged in and & which ““terminds’ (termind hereis either atermind deviceline or telnet
or rlogin sesson). The command to do thisiswho and it responds quickest of dl the
commands discussed here because it Smply examines afile which gets updated everytime
someonelogsin or out.

Be careful though! Thisfile, utmp, can get out of dete if someone's processes die unexpectedly
on the system. Any program which uses utmp to report information may list users who are not

redly logged in!

w

1

Thew command is dower than the who command because it returns more information such as
details dbout what programs people are running. It dso returns aline containing the number of
users and the system load average. The load average is the average number of processes ready
to be run by the CPU and isarough way of estimating how busy asysemis.

w dso uses the utmp file mentioned above. 1t takes longer than who because it then looks
around and collects more information about the usersit finds in the utmp file.

ps

The ps command used earlier to list your own processes can be used to list other users
processes as well. who and w ligt logins-but not individua processes on the sysem. They dontt
list any of the running operating system processes which start when the computer is booted
and which don't have logins.

Since ps doen't use utmp it is the program to use when you redly want to find out what
processes you might have accidentdly left on the sysem or if another user is running any
processes. Note that athough ps might report processes for auser, it might be because that
user hasleft a ™ background job" executing. In this case you should seea 7' inthe TT fidd
and the user won't redly be logged in.

To get thisfuller liging, give the flags -aux to ps. For more information on the uses of ps, type
man ps.

finger

Thefinger program returns information about other users on the sysem who may or may not
be logged in. finger by itsdf returns yet another variation of thelist of currently logged in
users. finger followed by a username or an e-mall -style address will return information about
one or more users, the lagt time they logged into the system where you are fingering them,
their full name, whether or not they have unread mail and, findly, the contents of two files
they may have created: .plan and .project

For more information about usng finger or ways to provide information about yoursdlf to
others, type man finger.

Shortcuts

If you use certain command flags regularly (-Igafor Is) you can dias them to shorter
commands. Y ou can use wildcard symbols to refer to files with very long names. You can
eesly repeat commands you have dready executed or modify them dightly and re.execute
them.

Aliases

As mentioned above, you can dias longer commeands to shorter strings. For example, Is -F will
lig dl thefilesin the current directory followed by atraling symbol which indicatesif they

are executable commands (a*) or directories (a/). If you wanted thisto be the default
behavior of Is you could add the fallowing command to your kshrc filein your home
directory:

% diaslIsls-F
Tolist the dliases which are set for your current process, type:

% dias

without any parameters.

Examplefor contentsof the .kshrcfile

#
Environment file for Korn shel
#

Environment variables

export EDITOR=%whence vi)\
#default editor

HISTFILE=~/.sh_history \
#oommeand higory file location

HISTSZE=128 \
#max no. of command logged in history

PWD=$HOME
Hinitidizes the PWD vaiable

Put info and history number into prompt + other great stuff
export MACN="$(uname-n)"

if [["STERM" ="xtem"]]
then

export PSI=T2,$MACN $PWD "$LOGNAME[']$"
dse

export PS1="$(uname-n) [!]$"

13

fi

Aliases

diasll=ls-al'
Higsdl files, verbose

diash="higory -50'
#shows lagt 50 lines of history stack

diascds=clear
#clear screen

diaslsd=lIs-F | grep "/
#Hlids directories only

diasldr=1s-FR | grep"/"
trecurgve lis of dl directories under current

diaslg=ls-I | grep">"
#ahows links

diaslss=lIs-I | sort +3 | more
#aorts aligt by owner

diss|sx=1s-F | grep "*"
#ligts the executables

Wildcards

Wildcards are specid symbols which dlow you to specify matchesto |etters or letter
sequences as part of afilename.

Some examples

*

The basic wildcard character. Beware rm *!1
Is*.dat

ligsdl filesending in .dat
Isr*

ligsdl files garting with r

aone character wildcard.
Is?2da

lists 5.det, u.dat, but not 70.dat

[l
limits a character to match one of the characters between the brakets

Is*.[ch]
ligsdl .hand .cfiles
more [Rr][Ee][Aa][Dd][Mm][Ee]
mores the files README, readme, ReadMe, and Readme, among others

Directory Specifications

Y ou've dready met the shortcut. The two other important directory symbolsare *." for the
current directory and ~.." for the previous (parent) directory.

%cd ..
moves you out of asubdirectory into its parent directory.
Environment Variables

Environment variables are pieces of information used by the shell and by other programs. One
very important oneis the PATH variable mentioned earlier. Other important variables you can
st include:

EDITOR
TERM
MAIL

To see what environment variables are set and what they are set to, type the command
printenv. To s&t avariable, use the export command as in the example below.

% TERM=vt100
% EDITOR=vi

Many programs mention environment variables you may want to set for them in their man
pages. Look at the ksh man page for some of the standard ones.

Higtory

Mog shdlsdlow ““command line editing” of some form or another-editing one of the
previous few lines you've typed in and executing the changed line. Y ou can s&t a history
“environment variable' to determine how many previous commeand lines you will have access
to with set history=40

15

History and command recall mechanisms

Recdled commands are retrieved from the higtory file sarting from the most recent up to the
oldest previoudy entered commands. Search strategies may follow vi or emacs syntax and
semantics (only vi mode will be explained below). Firg of dl, pressng the ESC key will
make the Korn shell enter the vi command recdl/editing mode. At that point, you may enter
whatever vi seerching command you like to look for any previoudy entered command. (You
have to think about your higtory file as an edited file that will be scanned by vi or emacs
commeands in the reverse order, thet is from the bottom of the file back to the top of it). The
vi/emacs editor recaling command, which can be repested, will in place display successive
search reaults; if you hit carriage-return @ the time the

displayed recdled command is the one you want, then that command will be executed.

Examples:

having pressed the ESC key, any - key hit will sequentidly display in back order dl the
previoudy entered commands (thet is, 1< -

will display thelast but 1, 2nd - will display the last but 2, and so on).

having pressed the ESC key, and anumber of times the- key, pressng the + key will return
one gep forwards towards the most

recent command.

let say that you have some time ago used a given commeand, and you want to recdl it for
execution. All what you haveto doisto

meake a search gtring operation through your higory file. For example, to recdl the last
gsub commeand, you press ESC, then /gsub.

The vi / search string ddimiter will make the Korn shell find the lagt entered gqsub
commeand in your higtory file

to continue the search operdtion, ill in the reverse order, press the n key. To continue the
search towards the most recent, press N.

You may do thisif you want to find another ingtance of the gqsub command.

of course, you may recdl a command by only entering one of its used parameter, asin :

ESC/-m
will retrieve for example the following command : ggtat -m
if you want to recall a command searching only on itsfirst few characters, you will do (the
caret character enforces the match to
begin at the beginning of theline) :
ESC/ngring
as an dternative of the above, you can merdly do
r gring

Thismight be usad to redo a command given its number, asit gopeared in the prompt.

16

Example:
ro95
will redo the command that was executed & line 95

€etc

Shdl Vi Editing Mode Summary

Thisisour default mode to repeet or edit previous commeands. The table below shows some of
the most ussful commands.

Key Brief Description Key Brief Decription

I Movesforward onecharacter h Moves back one character

N Movestothe dat of theline $ Moves to the end of theline

X Deetesthe current character dw Deletes the current word

db Deletes the previous word ~ Changes case of currert character
ds Déetes from to end of line \ Do filename completion
[RETURN] Executesthecurrentline kor- Fetchesthe previous command
jor+ Fechesthe next commandline v Run full vi sesson on current line

A Insatstext a end of line i Insarts text before current character
w Moves forward one word b Moves back one word
Job Contral

Itisvery easy to do many things at once with the Unix operating system. Since programs and
commeands execute as independent processes you can run them in the ™ background” and
continue on in the foreground with more important tasks or tasks which require keyboard
antry.

For example, you could set a program running in the background while you edit afilein the
foreground.

Thefg and bg Commands

When you type <Cirl>-Z whatever you were doing will pause. If you want the job to go away
without finishing, then you should kill it with the commeand kill %. If you don't want it paused
but want it to continue in the foreground-thet is, if you warnt it to be the primary processto
which dl the characters you type get ddiveredtype fg. If you want it to continue processng in
the background while you work on something ese, type bg.

17

Y ou should not use bg on things which accept input such astext editors or on thingswhich
display copious output like more or ps.

What to Do When Y ou've Suspended Multiple Jobs

If you've got severd processes stopped-perhaps you are editing two files or you have multiple
telnet or rlogin sessons to remote computers-youll need some way of telling fg which job you
want brought to the foreground.

By default fg will return you to the process you most recently suspended. If you wanted to
switch processes you would have to identify it by its job number. This number can be
displayed with the jobs command. For example:

% jobs

[Stopped vi login

[2] + Sopped m

[3] Running cc -O gtest.c
%

The most recently suspended job is marked with a+ symboal. If you wanted to return to job
one ingteed, you would type:

% fg %l
Y ou can type %1 as a shortcut.
Starting Jobsin the Background

Some jobs should gart in the background and stay there-long running compilations or

programs, for example. In this case you can direct them to the background when you start
them rather than after they have aready begun. To gart ajob in the background rather than the
foreground, gppend an & symbal to the end of your command.

Y ou should aways run background processes a alower priority by usng the nice commeand.
Nortinteractive jobs are usualy very good a getting al the resources they need. Running

them at alower priority doesn't hurt them muchtbut it really helps the interactive users-people
running programs that display to termina screens or that require input from the keyboard.

If you need to run CPU-intensive background jobs, learn about how to control the priority of
your jobs by reading the manud pages (man nice and man renice).

Suspend, z and <Ctr|>-Z
Some programs provide you with specid ways of sugpending them. If you started another
shdl by using the ksh commeand, you would have to use the suspend command to suspend it.

18

If you wish to suspend atelnet or rlogin sesson you must first get past the current login to get
the attention of the telnet or rlogin program.

Use (immediately after pressing areturn) to get rlogin's atention. <Ctrl>-Z will suspend an
rlogin sesson.

Use<Citrl>-] to get telnet's attention <Ctrl>-]z will suspend atenet session.

Some Common and Useful Unix Commands For Files

cp

The ¢p command alows you to cregte anew file from an exigting file. The commeand line
format is

% cp input-file-gpec output-file-spec

where input-file-goec and output-file-gpec are vdid Unix file gpecifications. Thefile
specifications indicate the file(s) to copy from and thefile or directory to copy to (outpuit).

Any part of the ilename may be replaced by awildcard symbol (*) and you may specify ether
afilename or adirectory for the output-file-spec. If you do not specify adirectory, you should
be careful that any wildcard used in the input-file-spec does not cause more than one file to get
copied.

% cp new.c old.c
% cp new.* OLD (where OLD isadirectory)

Is

command alowsthe user to get aligt of filesin the current default directory. The command
lineformat is

% Isfile-gpec-lig

where file-spec-list isan optiona parameter of zero or more Unix file specifications (separated
by spaces). The file specification supplied (if any) indicates which directory isto be listed and
the files within the directory to lig.

Ipr

The lpr command tells the system that one or more files are to be printed on the default
printer. If the printer is busy with another user'sfile, an entry will be made in the printer queue
and the filewill be printed after other Ipr requests have been satisfied. The command line
format is

19

BLOCKQUOTE> % Ipr file-spec-lig

where file-spec-list is one or more Unix files to be printed on the default printer. Any part of
the filenames may be replaced by awild card.

Here is more information about where the printers actudly are and what kind of printersare
available.

man

The man command isatool thet gives the user brief descriptions of Unix commands aong
with alig of dl of the command flags that the command can use. To use man, try one of the
following formats

% man command
% man -k topic

more

The more command will print the contents of one or more files on the user'stermind. The
commeand lineformet is

% morefile-spec-lis
more displays a page a atime, waiting for you to press the spacebar at the end o each
screen. At any time you may type g to quit or hto get alist of other commands that more
understands.

mv

The mv command is used to move files to different names or directories. The command line
gyntax is.

% mv input-file-spec output-file-spec
where input-file-goec is the file or files to be renamed or moved. Aswith cp, if you pecify
multiple input files, the output file should be a directory. Otherwise output-file-spec may
specify the new name of the file. Any or al of the filename may be replaced by awild card to
abbreviaeit or to dlow more than one file to be moved. For example:

% mv data.dat ./research/datadat.old

will change the name of the file data.dat to datadat.old and place it in the subdirectory
research. Be very careful when copying or moving multiplefiles.

rm

The rm command dlows you to deete one or more files from a disk. The command line
formatis

% rm file-spec-lig

where file-spec-list is one or more Unix file specifications, separated by spaces ligting which
filesare to be deleted. Beware of rm *! For
example

% rm *.dat able.txt

will deete the file abletxt and dl filesin your current working directory which end in .dat.
Getting rid of unwanted subdirectoriesis alittle more dfficult. Y ou can delete an empty
directory with the commeand rmdir directory-name but you cannot use rmdir to deete a
directory that dill hasfilesinit.

To ddete adirectory with filesin it, use rm with the -r flag (for recursive).

Korn Shdl Script Programming (ksh)
Overview

The UNIX operating system offers anumber of interactive environments for users, known as
shells The Bourne shdll (sh) represents the oldest and most commonly used shell. The Korn
shdl (ksh) isamodern shdl with many advanced editing and programming features. Each
shell offersa programming language with a unique st of semantic and syntactic festures.
This document provides atutoria on shell programming with the Bourne and Korn shels.
Since the Bourne shdll programming language provides a subset of the Korn shell language,
grester emphads will be placed on ksh programming.

This document assumes that the reader is dready familiar with non-programming aspects of
the sh and ksh shells, such as environment variables, history manipulation, command
subdtitution, pattern matching and wild-cards, and resource files.

Script Basics

Theword script is used to indicate a shell program. Shell scripts differ from other
programming languages (such as C and Fortran) in that they are interpreted by ashell instead
of being compiled into machine executable code.

A stript isaplain text file which contains names of other programs to be executed and

[optionally] shell directives which can affect the execution of programs. Scripts can be created
with editors such as vi and emacs, both of which are commonly available on UNIX systems.

21

Bdow is an example of asample script which, when invoked gppropriately, executes the
commands finger, date and w sequentialy:

finger
date
W

Well assume that this information has been sored in afile caled fdw. This script has no shell

specific commandsin it, only program names. For this reason the fdw script can be executed
by any shel, induding sh, ksh, and csh (csh is known asthe C Shell, and isaso in common
use on many UNIX inddlations).

We might expect that by typing fdw at our shell prompt the three commands contained therein
would be executed. As yet thisis not the
case:
sunrise$ ow
fdw: Permisson denied.
Executing Scripts
There are two methods of executing a shell script:
1.The firg method involves passing the script as an argument to a shell such as sh or ksh:
sunrise$ /binksh fdw
Here the contents of the script are read in by the shell, interpreted and executed aline a a
time. This method of script execution has one mgor drawback: It assumes the end user of the
shell script knows which shdll to execute the script with. Since our fdw script contains no shell
specific syntax thisis not an issue for this example.
2.The second, dightly more sophigticated method of executing a script involves changing the
access permissions of the fdw script so that it is executable. This can be accomplished by way
of the chmod commeand:
sunrise$ chmod u+x faw
Now it is possible to type fdw at the shell prompt and see the expected output.

Comments

Adding commentsto ashdll script is achieved by placing a# character in front of the non-
executable text. It isdways agood idea to document the intent and purpose of any shell script
you develop. Below is our fdw script with a comment added:

This shell executes finger, date and w in order
finger

date

w

Shdls dso understand a specid comment that specifies the path of the shell with which a
script isto be executed. This comment must begin a row 1, column 1 of the script and garts
with the # charactersfollowed by the path of the shell to be executed. For example, to ensure
that the fdw script is executed by the Korn shell we would change fdw as shown below:

#/bin/ksh

This shell executes finger, date and w in order
finger

date

w

Theimportance of the# comment will become evident when we introduce Korn shell specific
syntax that is not understood by sh.

K sh preparedness

Here are the mogt important things to know and do, before redlly getting serious about
shellscripting.

All examples given should be put into somefile, crested by atext editor such as “textedit” on
the sun. You can then run it with "ksh file".Or, do the more officid way; Put the directions
below, exactly as-is, into afile, and follow the directionsinit.

#/bin/ksh

the above mugt dways be the firgt line. But generdly, lines

starting with '# are comments. They dont do anything.
#Thisisthe only time | will put in the '#/bin/ksh’ bit. But
#EVERY EXAMPLE NEEDSIT, unless you want to run the examples with
'ksh filenamée every time.

#

#If for some odd reason, you dont have ksh in /binksh, change
the path above, as appropriate.

#

Then do ‘chmod 0755 name-df-this-file. After that,

you will be able to use the filename directly like a command

echo Yeup, you got the script to work!

Under stand variables

Hopefully, you dready understand the concept of avaridble. It is a place you can sore avaue

to, and then do operations on "whatever is
in this place’ vs the vaue directly.

In shdlscripts, generdly, a collection of |etters and/or numbers [akaa'string] can beina
vaiable, aswdl asjug plan numbers

You set avarigble by usng
variablename="some gring here"
OR
vaigblename=1234
Y ou accesswhat isIN avariable, by putting adallar-ggn in front of it.
echo $varigblename
OR
echo ¥ variablename}

If you have JUST anumber in avariable, you can do math operations on it. But that comes
later onin this tutorid.

Put everything in appropriate variables

Wi, okay, not EVERY THING >-) But properly named variables make the script more eeslly

readable. Thereisn't redly a'smple examplefor this snceit isonly "obvious' in large script.

S0 either judt take my word for it, or top reading and go somewhere ese now!

An example of "proper varidble naming practice

#Okay, this script doesnt do anything useful, its just for demo purposes
INPUTFILE="$1"

USERLIST="$2"

OUTPUTFILE="$3"

count=0

while read username ; do
grep Susarname SUSERLIST >>$OUTPUTFILE
count=%$(($count+1))

done < $INPUTFILE

24

echo user count is $count

While the script may not be totaly readable to you yet, | think you'll agreeitisaLOT clearer
than the following;

i=0

whileread line ; do
gep Hine $2 >> $3
I=H($+1))

done <$1

echo $i

Note that '$1' means the first argument to your script.
'$*' means "dl the arguments together

'$# means "how many arguments are there?"

Know your quotes

It is very important to know when, and what type, of quotesto use.
Quotes are generdly used to group things together into asngle entity.

Snge-quotes are literd quotes.
Double-quotes can be expanded

echo "$PWD"

prints out your current directory

echo '$PWD'

prints out the string $PWD

echo $PWDplusthis

prints out NOTHING. no such variable "PWDplusthis

echo "$PWD"plusthis

prints out your current directory, and the string "plusthis’ immediatdly following it. Y ou could
aso accomplish this with the aternate form of

using variables,

echo ${ PWD} plusthis

25

Ksh basics

Thisisaquickie page to run through basic "program flow control" commands if you are
completely new to shell programming. The basic ways to shgpe a program, are loops, and
conditionas. Conditionals say "run this command, IF some condition istrue'. Loops say
"repest

these commands' (usudly, until some condition is met, and then you stop repesting.

Conditionals

IF
The basic type of conditionis"if".

if [$?-eq0]] ; then
print we are okay
else
print something falled
fi

IF the varidble $?is equd to O, THEN print out amessage. Otherwise (else), print out a
different message.

Thefind fi' isrequired. Thisisto dlow you to group multiple things together. Y ou can have
multiple things between if and dse, or between dse and fi, or both. Y ou can even kip the
'dse dtogether!

if [$?-eq0]] ; then

print we are okay

print We can do as much as we like here
fi

case

The case gatement functions like 'switch' in some other languages. Given a particular variable,
jump to aparticular st of commands, based on the vaue of thet variable.

While the syntax issmilar to C on the surface, there are some mgjor differences;
The variable being checked can be a gtring, not just a number
Thereisno "fdl through". Y ou hit only one set of commands
To make up for no fal through', you can 'share variable sates
Y ou can use WILDCARDS to match strings

echo input yes or now

26

read answer
case $answer in

yesY esly)
echo got a postive answer
#thefollowing ;" is mandatory for every set
of comparative xxx) that you do

echo got a'no’
*) a
echo Thisisthe default clause. we are not sure why or

echo what someone would be typing, but we could take
echo action on it here

esac

L oops

while

The basic loop isthe 'while loop; "while' something istrue, keep looping.

There are two ways to stap the loop. The obvious way is when the 'something' is no longer
true. The other way iswith a'break’ command.

keeplooping=1;
while[[$keeplooping -eq 1]] ; do
read quitnow
if ["$quitnow" ="yes']] ; then
- heplooping=0
[
if [["$quitnow" ="qg"]] ; then
breek;
fi
done
until

The other kind of loop in ksh, is'until’. The difference between them is that ‘while implies
looping while something remains true. ‘until’, implies looping until something false, becomes
true

until [[$stopnow -eq 1] ; do
echo just run this once

dopnow=1;

27

echo we should not be here again.
done

for

A for loop, isa"limited loop". It loops a gpecific number of times, to match a specific number
of items. Once you gtart the loop, the number of times you will repest isfixed.

The badc syntax is

for var in onetwo three ; do
echo $var
done

Whatever name you put in place of ‘var', will be updated by each vaue fallowing "in". So the
above loop will print out

one
two
three

But you can ds0 have variables defining the item list. They will be checked ONLY ONCE,
when you gtart the loop.

list="one two threg'

forvarindlig ; do
echo $var
Note: Changing this does NOT affect the loop items
lig="nalig"

done

Thetwo thingsto note are:

11t ills prints out "one" "two" "three
2.D0 NOT quote"digt", for multiple items

If you used "$ligt", it would print out a SINGLE LINE, "one two threg’

