

Information Technology
Rice University

Document UNIX 3

June 21, 2000

Customizing the X Windows System

This document helps individuals learn how to customize their X environment. Before you try to cus-
tomize your environment, you should be very familiar with working with X. If you need help getting
started, read the document, Introduction to the X Windows System (UNIX 2).



Rice University, 2000 All Rights Reserved

Document may not be resold to, used by, nor licensed to third parties without written permission from User Services, Rice University.

2

Customizing the X Windows System

Table of Contents

Customizing X ... 4

The getxfiles Command ... 4
The -x Option.. 4

X and twm.. 4

X Start-up Files .. 5

Customizing with Resources.. 6
Resources .. 6
Widgets ... 6
Resource Specification Syntax ... 6
Widget Hierarchy.. 7
Bindings .. 7
Classes and Instances.. 7
Precedence .. 8
Values ... 8
Permitting Error Messages.. 9
The .Xresources File ... 9
Customizing On-The-Fly: The xrdb Command.. 9
Practice Customizations.. 10
Finding X Resources Names... 11

Customizing with Commands.. 11
X Commands .. 11
X Command Options .. 12
The -font Option ... 13
The -geometry Option... 13
The -title Option.. 14
The -xrm Option ... 14
xterm Command Options.. 14
The xset Command ... 15
The xsetroot Command... 16
Using xv to put an Image in the Background ... 17
Notes about Color ... 17
The .Xsetup.twm File.. 17
Customizing On-The-Fly: Direct Entry .. 18

Customizing with New Resource Names... 18
The Console as an Example.. 19
The -name Command Option.. 19
Customizable File Summary... 19

Customizing twm... 20

The twm Start-up File: ... 20

Customizing the X Windows System

3

Testing Changes: Sourcing ...20

Restoring the Default .twmrc..21

twm Instructions..21
File Structure ...21
Variables and Arguments ..21
Strings ..22
Lists..22
Bindings...22
Title Bar Buttons..23
Mouse Buttons ...23
Function Keys..23
Menus ..23
Some Useful Variables ..24
twm Functions ...24
The f.function Function ...25
MoveDelta and the f.deltastop Function..26
The f.exec Function ...26

Special Topics ...26
The Monochrome and Color Variables ...26
Icon Region..27
The bitmap Program ..27
Choosing Icons ..28
Picking Cursors..29
Creating Cursors ..30
The Icon Manager Feature...31

For More Information ...32

Recovering from Failed Customizations ..33

Tips Before Customizing...33
Test On-The-Fly ..33
Save Your Previous Configuration..33
Work in Steps ..33
Alter One File at a Time ..33
Consult Other Individuals..33
Troubleshooting...34
Logging In without X ..34

At a Silicon Graphics workstation..34
At a Sun workstation ..34

Problems or Questions ..35

The getxfiles Command

4

Customizing the X Windows System

Customizing X

This section explains how to customize X. The other two main sections of this document cover
twm customization and recovery from failed customizations.

The getxfiles Command

If you decide to abandon or shelve your customization, Information Technology—not X—provides
the

getxfiles

 command. This command lets you copy the current X default files into your directory.
Since

getxfiles

 is not an X command, it only exists on systems maintained by Information Technol-
ogy.

getxfiles

 requires that you specify a window manager, one of

fvwm

or

4Dwm

 (for SGI’s only).

twm

 is the Tab Window Manager discussed in this document, so most likely you will choose twm.

mwm

 is another window manager (the Motif Window Manager). Generally, if you are using mwm,
the names of your configuration files alter accordingly, i.e.

.twmrc

 becomes

.mwmrc

, likewise
with the

.fvwmrc

 and

.4Dwmrc

 files for fvwm and 4Dwm, respectively.

Example usage:

prompt%

 getxfiles twm

Normally, if you execute

getxfiles

 it replaces your .Xresources and .Xsetup.twm files with the sys-
tem default files. If any of these files already exist, it will ask for confirmation before replacement.
Note that

getxfiles

 by itself does not replace .twmrc; for that, you need to use one of the command
options.

getxfiles

 has several options; three of them appear below.

The -x Option

This option stands for “expert,” and it replaces .Xresources, .Xsetup.twm, and .twmrc.

getxfiles

requires confirmation if a file exists. Thus, you can replace only certain files without losing custom-
izations in other files. Example:

prompt%

getxfiles -x twm

getxfiles

 has other options for copying different combinations of files. Type:

man getxfiles

for more information about the options.

X and twm

X supervises network communication, and often runs a client called a

window manager

, which
handles window functions like moving, resizing, and iconifying. Machines managed by Informa-
tion Technology default to the Tab Window Manager, or twm. This hierarchy allows X to concen-
trate on network communication. As a result, you can customize X without changing twm, and vice
versa.

X Start-up Files

Customizing the X Windows System

5

When you start X, both X and twm read start-up files that include information concerning startup win-
dows, window locations, menus, and mouse button functions. By editing the appropriate file, you
change these attributes.

X Start-up Files

The following start-up files provide information for X when you login. They open windows automati-
cally, position them, set borders and backgrounds, and specify window titles. Because the filenames
begin with a period (.), they normally do not appear when you list your directory with the UNIX com-
mand

ls

1

; use

ls -a

 (for “list all”).

.Xauthority Limits the ability of other compute servers and display servers to affect your
display. You

should not

alter this file; it is designed to be read and written
only by the computer.

.Xdefaults Overwrites any existing X attributes like window size and border width.
Information Technology maintains a .Xdefaults file for all users, which per-
mits certain network-wide changes. If you create your own .Xdefaults file,
you may fail to see such changes. Hence, you

should not

 make your own
file.

.Xresources Like .Xdefaults except that it merges its X attributes with existing X
attributes rather than overwriting them entirely. This property makes it more
flexible than .Xdefaults. This is where you should customize resources for X
applications.

.Xsetup.twm A file containing X commands that open initial windows or icons. Custom-
ize this file to change your initial window setup.

.xinitrc A file containing X commands; it also calls on .Xsetup.twm. Information
Technology maintains a file for all users, so you

should not

make your own
file. Doing so may break things for you down the line.

From the above list, you have two files, .Xresources and .Xsetup.twm, which are available for X cus-
tomization. .Xresources specifies different attributes such as colors, font, and title for each kind of client
(xterm, etc.), which X reads directly.

.Xsetup.twm starts clients automatically when you start an X session and gives information such as
starting location and size for these clients. Unlike .Xresources, the login process reads .Xsetup.twm
directly. As a result, each file has a different syntax.

1. For more information on this and other UNIX commands, consult the on-line manual pages and the document

Introduction to the UNIX Operating System

.

Customizing with Resources

6

Customizing the X Windows System

Customizing with Resources

This section introduces some X terminology, a special X syntax, and explains your default .Xre-
sources file. Some simple exercises familiarize you with ways to customize X by using
resources.The section,

Customizing with Commands

, explains how to customize X with commands
and command options.

Resources

X maintains many parameters, each describing a different attribute or a group of attributes of your
X configuration. X uses the term

resources

 for these parameters. Resources might specify an icon’s
border color, a title’s font, or a window’s size. When a client starts, X applies the appropriate
resources.

Your changes do not affect current clients, only the clients started after a your .Xre-
source file has been merged with the resources currently in use by X

.

Widgets

As one of its basic building blocks, X employs components called

widgets

. These provide standard
tools that can be combined to define a client’s appearance, its input and output methods, and other
options. A client usually consists of several widgets, and a widget may contain widgets within
itself. Some programs use no widgets; you must refer to that program’s documentation to deter-
mine what resources are customizable.

Standard widgets used by many X programs include:

•

an input-output area

•

a dialog box (like the network notices displayed when you log in to an X terminal)

•

a command button (like the aXe buttons)

•

a scrollbar

•

a menu

For example, consider the xterm program itself. It has at least three widgets: a Main Options menu,
a VT102 window, and a Tektronix 4010 window. The VT102 window has four widgets: an input-
output area, a scrollbar, a VT Options menu, and a VT Fonts menu. The Tektronix 4010 window
has two widgets: an input-output area and a Tek Options menu.

Resource Specification Syntax

When you declare a resource parameter, you make a

resource specification

. All resource specifica-
tions use the same syntactic structure, shown and explained below.

appname[*/.]subname[*/.]subname[*/.]...: value

appname

The name of a client, such as xterm. If you do not include

appname

 then
all applications to which

subname(s)

 apply will be affected.

[*/.] (binding)

Either an asterisk (for a loose binding), or a period (for a tight binding).
Bindings are explained below.

Customizing with Resources

Customizing the X Windows System

7

subname

If it is the last item,

subname

is a variable or a widget. If it is part of a chain
of

subnames, subname

is a widget.

value

The new resource value. Depending on the variable,

 value

 may be a color, a
number, a geometry, a name, etc.

Widget Hierarchy

The left-hand side of the colon (:) lists the

widget hierarchy

. For example,

xterm*vt100.geometry: 80x48+0+0

is a three-level widget hierarchy: the xterm widget, the vt100 widget, and the geometry widget. The
xterm resides at the highest level of the hierarchy. vt100 is one of the widgets under xterm and geometry
is a widget under vt100.

Bindings

Bindings effectively “walk down” a client’s widget hierarchy. A period (.) produces a

tight

binding

,
which gives an explicit “walking path.” An asterisk (*) creates a

loose binding

 so that if the path from
client to variable is uncertain, X searches for every valid path. Consider the following bindings which
activate the window dimensions:

xterm.vt100.geometry: 80x48+0+0

xterm*geometry: 80x48+0+0

xterm*vt100.geometry: 80x48+0+0

The first resource specification is a tight binding. It also does not work because the actual xterm con-
tains another widget between xterm and vt100.

The second specification, a loose binding, works because X walks down all the paths that begin with
xterm and end with geometry. It yields unexpected results, though, as ALL xterm windows, even nor-
mally small popup windows, will have this geometry. In the last specification, X walks down every path
beginning with and ending with vt100.geometry, so this specification works. It also demonstrates that
you can combine tight and loose bindings in a longer binding.

Observe that you can omit

appname

 altogether to specify every case of a resource. For example, the
resource specification

*scrollbar: on

tells X that every client that permits a scrollbar should activate the scrollbar.

Generally, you should use loose bindings because they maintain compatibility. If later versions of the X
Window System change a client’s widget hierarchy, your customization will probably perform cor-
rectly. Loose bindings are flexible; tight bindings are brittle.

Classes and Instances

Related resource variables constitute a

class

; each variable itself forms an

instance

. An example

1

 can
clarify this concept. An xterm contains a class called Foreground, and Foreground consists of several

Customizing with Resources

8

Customizing the X Windows System

instances: foreground color, pointer color, and text cursor color. Thus, to make these three instances
all be the color blue, you could have the resource specifications:

xterm*foreground: blue

xterm*cursorColor: blue

xterm*pointerColor: blue

or you could specify just the class:

xterm*Foreground: blue

Notice that class names begin with a capital letter, whereas instance names begin with a lowercase
letter (subsequent letters may change case).

Precedence

The two resource characteristics—tight/loose bindings and classes/instances—carry the following
precedence:

1.

More-specific (tighter) bindings take precedence over less-specific (looser) ones.

2.

Instances take precedence over classes.

This precedence means you can make a general resource specification, then preempt it for a few
special cases. As an example of (1), suppose you want all windows except your clock (xclock) to
have a title. You could use the declaration:

*showTitle: on

xclock*showTitle: off

For an example of (2), suppose that for windows, you want a red text cursor, but a blue border and
pointer. You could declare:

xterm*Foreground:blue

xterm*cursorColor: red

Recall that Foreground is a class, but cursorColor is an instance, so when X determines the cursor-
color, cursorColor takes precedence over Foreground.

Values

Most resource specifications take a value that you would naturally associate with the resource. For
example, cursorColor takes a color value, and borderWidth takes an integer value. The geometry
resource requires a value in the form of

geometry

 (more later on this option).

Some resources, like scrollbar, are booleans, and most of them take “on” or “off” as their value.
However, in some cases these resources take “True” or “False,” which can create confusion if you
do not realize this inconsistency. If “on” and “off” do not work, try “True” and “False.”

1. From

X Window Systems User’s Guide, Volume 3

. O’Reilly, Quercia, and Lamb.

Customizing with Resources

Customizing the X Windows System

9

Permitting Error Messages

If you use an invalid widget hierarchy in a resource specification, X fails to complete the specification,
but does not print an error message. When testing new customizations, adding the resource specification

*StringConversionWarnings: on

lets you see any error messages. You can also specify a client, like

axe*StringConversionWarnings: on

if you only want to see error messages for that client (in this example). Similarly, to permit error mes-
sages for all but a few clients, you can add the lines

*StringConversionWarnings: on

xterm*StringConversionWarnings: off

axe*StringConversionWarnings: off

These specifications allow error messages for all clients except xterm and axe.

The .Xresources File

Recall that X reads .Xresources directly, and this file contains only resource specifications. The system
copy of this file is kept in the directory

/usr/lib/X11/xinit

 as

Xresources

 in most of the networks
administered by Information Technology.

In .Xresources an exclamation point (!) indicates a comment. Following the exclamation point, X
ignores any text on the same line, but it allows you to put explanatory notes into the file. You can add as
many comments as you like.

Customizing On-The-Fly: The xrdb Command

This command gives you access to the X Resource Database—also called the
RESOURCE_MANAGER—which contains all of your current X resource specifications. You can
make changes to your X configuration immediately (without having to login and/or start a new X ses-
sion). This feature allows you to test changes to see their effects, but remember that your new resource
specifications only affect subsequent clients.

Some of the more useful options follow; for information on other options, consult the manual pages or
enter

prompt%

 xrdb -help

-backup

suffix

 Use this option with the -

edit

filename

 option. It saves the contents of the file
given with

-edit

 filename in a backup file called filename.suffix, and then
saves the current resource specifications in the file filename.

-edit filename Saves the current resource specifications in the file given by filename. You
may want to use the -backup suffix option with this option.

Customizing with Resources

10 Customizing the X Windows System

-load filename Loads new resource specifications from the file given by filename. Note
that this option erases all current resource specifications, so you may
want to use -merge instead.

-merge filename Merges new resource specifications from the file filename, but does not
erase the current specifications.

-query Lists all the current specifications, in alphabetical order; this option is
very useful. You may need a scrollbar if you have many specifications
that fill up your xterm.

-remove Removes (erases) all resource specifications. Unfortunately, you cannot
remove just one resource specification.

Because of the way the -remove operation works (it erases all the resource specifications), you can-
not remove just one specification. Instead you must save the current specifications with -edit, edit
the file and delete the unwanted resource line or lines, and then use the -load option.

For example, to remove the specification “xclock*mode: analog”, enter

prompt% xrdb -edit currentX

Then edit the file currentX and delete the line containing xclock*mode. Finally, enter

prompt% xrdb -load currentX

to load the altered file of resource specifications.

If you do not give a filename, xrdb assumes you want to type in resource specifications directly
from the keyboard. Enter each resource specification, followed by RETURN. When you have
entered the last specification, type CTRL-D to confirm them. To abort the operation entirely, type
CTRL-C.

If you do not specify an option, xrdb assumes that you want to use the -load option. If you only
want to add one or more resource specifications, enter

prompt% xrdb -merge

and then enter the resource specifications you want to add. The default to -load can cause problems
if you forget to use -merge because xrdb will erase all but the new resource specifications! If you
accidentally forget -merge, type CTRL-U instead of RETURN to abort the command.

If you just enter

prompt% xrdb

then xrdb assumes you want to erase all current specifications and make new ones from the key-
board. If you accidentally enter just “xrdb”, you should just type CTRL-C to abort.

Practice Customizations

Suppose you want your xterm windows to open with a smaller font. First use xlsfonts to check the
available fonts, then change the appropriate resource specification

xterm*font: 6x13

Customizing with Commands

Customizing the X Windows System 11

to select a new font (6x13, for example).

Finding X Resources Names

X provides a program that can be used to determine the X resource hierarchy in X applications that use
the Athena widget set (which includes most applications normally used). This program is called editres.
You can run the program by typing

editres &

To query the resource hierarchy for a particular X application, start that application and choose “Get
Tree” from the Commands Menu in editres. The cursor will change to a crosshair (+). Left click once
on the application you want the resource hierarchy for.

The bottom part of editres will have a left to right graphical depiction of the X resource hierarchy for the
selected application. If this information is larger than area it is displayed in, you’ll need to increase the
window size using your window manager - editres does not have scrollbars.

Next, select an interesting looking widget name somewhere on the right edge of the bottom screen with
the left mouse button. It should highlight. From the Commands Menu you can now choose “Show
Resource Box.” This will display all associated resource names. Unlike editing your .Xresources, you
can update the X resources of running applications with editres using the resource box.

Customizing with Commands

In this section you will learn about X commands and how to use them to customize your X display.

X Commands

UNIX reads X commands, which are then executed by your host just like any other user command.
While most X commands start new clients, some commands control aspects like display access (xhost)
and the screen saver (xset).

For an example of an X command, recall that inside an xterm you enter the user command

prompt% ls

to list the contents of a directory. You can also enter the X command

prompt% axe &

to start a new aXe window. The ampersand (&) tells UNIX to execute the command in the background1
and continue reading input from the xterm.

Just as user commands permit options (specified with a dash), X commands have their own command
options. Continuing the example, entering

prompt% ls -l

1. Background processes are discussed in the document Introduction to the UNIX Operating System.

Customizing with Commands

12 Customizing the X Windows System

lists a directory in long format. The table below describes several X commands, some more useful
than others. Since X commands are read by UNIX, you can enter them directly in an xterm. That
way, you can try several options with one command to find the combination you like best.

Some of the X commands have special options (besides the usual ones in Subsection 1). For exam-
ple, entering xclock displays an analog clock, but entering xclock -digital & produces a digital one.
You can find out more about these X commands and their individual options by consulting the
manual pages.

X Command Options

When starting up a new X client, often command line options may be specified. Some of the
options require an argument. Depending on the option type, the argument may be a number, color,
font, name, title, etc.

One command can use several options at once. For example,

xterm -g 80x30+250+280 -fn 6x12 -title “XTERM WINDOW”

starts an xterm and includes three command options.

X Command Description

maze Creates and solves a maze

oclock Analog clock

puzzle Numbered-tile puzzle

xbiff Mailbox indicator

xcalc Desktop calculator

xclock Analog or digital clock

aXe A text editor

xeyes Eyes watching the mouse

xfd Font displayer

xload Graph displaying a computer’s workload

xlogo Draws ‘X’ logo

xman Read manual pages

xterm xterm terminal emulator

Option (abbr.) arg Description

-background (-bg) color background colora (usually white)

-bordercolor -bd) color border colora(usually black)

-borderwidth (-bw) number window border width in number of pixelsb

-display (-d) display display server to send client output

Customizing with Commands

Customizing the X Windows System 13

The -font Option

X has many available fonts; to list them, enter

prompt% xlsfonts

You may need a scrollbar since the many font names will fill up your window. To view a particular font,
if fontname represents the name of the font you want to view, enter

prompt% xfd -fn fontname &

To find a font that has a desired appearance, there is a font display utility called xfontsel. You can
invoke it by typing:

prompt% xfontsel &

The -geometry Option

The -geometry geometry option specifies a window’s initial size and location. geometry has four parts:
width, height, x offset, and y offset. For icons or graphics windows, width and height give the window
size in pixels. For text windows, the size is given in characters and lines.

The offsets specify the starting position of the window, relative to the edges of the display. Both offsets
require a plus (+) or minus (-) sign. The plus sign refers to an offset from the top corner or left edge, and
the minus sign refers to an offset from the bottom corner or right edge.

-font (-fn) stringc font for text windows like xterm

-foreground (-fg) color foreground colora(usually black)

-geometry (-g) geometry initial size and location of each window

-iconic (-i) start client as icon

-name (-n) stringc name for resources

-reverse (-rv) reverse foreground and background colors

+reverse (+rv) do not reverse foreground and background
colors

-title (-t) stringc title for title bar; for an xterm, use -T

-xrm stringc string is a resource parameter

a. When using a monochrome screen, the only available colors are black and white.
Using a different color may produce a white-on-white or black-on-black window, which
makes the window appear entirely white or entirely black.

b. A pixel is a picture element on the screen. It is the smallest displayable element, and
looks like a small dot when displayed in a contrasting color to the pixels around it. Moni-
tor resolution is generally measured in pixels (e.g., 1280x1024).

c. string does not require quotes unless it contains blankspace. For example, -title North
and -title “North Site”.

Option (abbr.) arg Description

Customizing with Commands

14 Customizing the X Windows System

You do not have to give a complete geometry argument. In this case, X consults twm for the rest of
the geometry. If it cannot find one, it lets you finish the geometry (by sizing or positioning the win-
dow with the mouse). You can give just a size (width and height) or just a location (x offset and y
offset). However, if you give width, you must give height, and similarly the offsets must be com-
plete.

The easiest way to get a windows geometry exactly how you want it is to use your window man-
ager to size and position the window, then type:

prompt% xwininfo &

in an xterm. When the cursor changes to a crosshair, left click on the window for which you want
the geometry information. The last piece of information listed is the geometry of the window.

The -title Option

The -title option lets you specify the client's title bar string. That way you can distinguish between
different instances of the same kind of client.

Do not confuse the -title option with the -name option. -title simply declares the title in the title
bar; it does not determine which resource specifications X uses. -name tells X to use a certain set of
resource specifications. See the section, Customizing with New Resource Names, for a discussion of
the -name option.

The -xrm Option

The -xrm option lets you make a resource specification rather than putting that specification in a
start-up file. In other words, you can preempt the normal specification when you enter a command.
This preemption only takes place for the command issued with the -xrm option. You can use -xrm
several times with one command, but you must use it for each different resource specification. For
an example, entering

prompt% axe -xrm “axe*iconX:30” -xrm “axe*iconY:50”

gives aXe a specific icon geometry.

xterm Command Options

The xterm command has many command options which affect its initial appearance; many of them
come from the VT Options Menu. For example, the -sb option starts the scrollbar, and -vb turns on
the visual bell. The remainder of this subsection discusses a few xterm option peculiarities.

For a brief description of xterm command options, enter

prompt% xterm -help

For a complete discussion of the xterm command options and resources, consult the on-line manual
pages (man xterm).

Abbreviation Constraints

Customizing with Commands

Customizing the X Windows System 15

A few command options warrant mention, primarily because the regular abbreviations do not work.
They appear below.

-n string

You specify the icon string with this option. It saves you from using a long -xrm option like

prompt% xterm...-xrm "*iconName: string

This option is not an abbreviation for -name which tells X to use a resource name.

-name string

This option instructs X to use the resources under the resource name string. See page 19 for more infor-
mation on -name. You can not use the abbreviation -n for this command option.

-title string

This option functions just as expected, indicating the string for the xterm title bar. You should notice
that you can not abbreviate -title to -t. Instead use the -T abbreviation for
-title . The -t option tells X to start the xterm in Tektronix 4010 mode.

The -e Option

This powerful option lets you start an xterm and, when the new xterm starts, immediately execute a
command. Normally you do not employ this option, but the subsection twm Functions in this document
demonstrates how it produces menu-selectable clients.

Most importantly, the -e option, if used, must be the last option in the xterm command options. That is,
you cannot put another xterm command option like -name or -i after the -e.

The syntax of this option appears below:

prompt% xterm...-e command [arguments]

command can be any user or X command, and if that command requires any of its own options or argu-
ments, they appear where [arguments] appears.

The xset Command

This command lets you set some X preferences like bell volume, mouse speed, auto-repeat, and key
click. Only a few of the options appear below; consult the manual pages for more information or enter

Customizing with Commands

16 Customizing the X Windows System

prompt% xset

The xsetroot Command

With the xsetroot command, you can change aspects of the root window, such as the background
pattern and root window cursor. Like the xset command, you can get a list of options by entering

prompt% xsetroot -help

A few of its options appear below. The section, Special Topics, explains how to make bitmaps, pick
cursors, and make your own cursors.

def Resets the root window to its default settings (grey background and ‘X’
cursor).

cursor cursorname maskname

Specifies the root window cursor as a cursorname and maskname.

cursor cursor_name cursorname

Specifies the root window cursor as one of the standard cursors.

Option Abb. Parameters Description

bell b [on/off] Controls bell: turns it on/off or sets volume (%),
pitch (in hertz), and duration (in milliseconds). With
no parameters, the system defaults apply.

key click c [on/off] [c
[volume]]

Turns key click on/off or gives volume (%). With no
parameters, the system defaults apply.

mouse m [[accelera-
tion][thresh-
old]]

Determines mouse acceleration and threshold.
When you quickly move the mouse more than
threshold pixels (dots), it accelerates to acceleration
times as fast as normal. That means you can move
the cursor accurately and slowly, or jump across the
display with a flick of the wrist. To restore normal
mouse operation, use default.

query q Lists current X preferences.

auto-repeat r [on/off] Turns auto-repeat on or off.

screen saver s [[length]
[period]]

Tells X how long (in seconds) to wait before activat-
ing the screen saver. Other parameters include blank
or noblank to clear the screen or show a c/changing
‘X’ logo, and on or off.

Customizing with Commands

Customizing the X Windows System 17

bitmap bitmapname Uses the bitmap in the file bitmapname as the background pattern.

gray Uses the normal gray background pattern.

Using xv to put an Image in the Background

If you want to use an image for your background, the xv command, available on IT systems, is capable
of this task. The syntax is:

prompt% xv -root -quit filename

xv supports most common Unix image formats. For help or more information, type:

prompt% man xv

or

prompt% xv-help

Notes About Color

When working at a color display server, you can choose from a wide variety of colors when specifying
the background, border, and foreground colors. Enter

prompt% more /usr/lib/X11/rgb.txt

for a list of the available colors. The output includes three columns of numbers indicating the mix of
red, green, and blue; you only need to read the color names. Due to color generation methods, your dis-
play server may not be able to produce every color on its screen at the same time. Normally, Informa-
tion Technology X displays can handle up to 256 colors.

Notice that the .Xresources and .Xsetup.twm files do not contain any color specifications. You can give
color resource specifications and command options if you like. However, twm has its own color fea-
tures, and sometimes they create conflicts with X. For this reason, your color choices may not work as
expected. You may enjoy more success if you modify your .twmrc1 file or use the command option for
your color choices.

The .Xsetup.twm File

Within this file you tell X to open windows and specify attributes like their sizes, locations, and border
widths. The contents of your default file appear below, followed by a brief explanation.

Note that in UNIX, the hash sign (#) indicates a comment. Unlike the .Xresources file, an exclamation
point does not signal a comment.

The system copy of this file is kept in the directory /usr/lib/X11/xinit as Xsetup.twm in most of the net-
works administered by Information Technology.

If a pound sign (#) precedes a command, this makes the rest of the line into a comment. Skipping a
command this way is called commenting out the command.

1. See the section, Customizing twm.

NOTE: Most X
servers on Sun
hardware only

support 256
multaneous colors.
f your background

image uses 240,
there won’t be any

left for other
applications. These

applications may
complain or fail to

run if this is the
case.

Customizing with New Resource Names

18 Customizing the X Windows System

Remember that the ampersand (&) tells UNIX to execute a command in the background and con-
tinue reading additional commands. When customizing you should add the ampersand after each X
command you change or add, except if the last process is changed, in which case the ampersand
should not be added. It is the final process that executes in the foreground during your login ses-
sion; when this process terminates, your X session ends. If it is put in the background, your X ses-
sion will immediately terminate!

The two commands explained below are commands that you should not change. They are vital to
starting X and twm successfully.

twm & starts twm. twm first looks for the file .twmrc (discussed in the section,
Customizing twm) in your directory. If twm cannot find .twmrc it reads
the default system .twmrc file.

$SHELL starts your window properly.

You may modify the other commands and add ones of your own. Observe that these commands are
all X commands, and most of them have an ampersand at the end. A few commands are described
briefly.

xhost allows any specified computer to send its output to your display server.

xset sets the bell and key click to the system defaults, then sets the screen
saver to wait ten minutes (600 seconds) before activating.

xclock places an analog clock in the upper-right hand corner of the display.

xload displays a load meter (indicating how busy your host is).

xbiff puts the mailbox indicator next to the clock.

xterm starts the large window on the left-hand side of the display.

Customizing On-The-Fly: Direct Entry

Since UNIX reads X commands, you can enter them from an xterm and see the results immedi-
ately. Just enter the command and any options. When you discover a desirable command-option
combination, you can add that line to your .Xsetup.twm file. Do not forget to use the ampersand
(&).

Customizing with New Resource Names

One important concept involves using one kind of client but giving it different resource names.
This trick lets you use the same kind of client (several windows, for example) while giving each of
them different attributes. Your console provides the best example.

Customizing with New Resource Names

Customizing the X Windows System 19

The Console as an Example

While your xterm and console both function like an xterm terminal emulator, they have markedly differ-
ent appearances. Compared to your xterm, the console has a different geometry, a smaller font, and an
automatic scrollbar. While these attributes could be specified as a long set of command options, instead
they form a new set of resources, separate from the xterm resources. These new resources fall under the
name of console.

The file .xinitrc executes the command

xterm -name console

This command tells X to start an xterm terminal emulator, but the -name option tells X to use the
resource named console instead of the default resource named xterm.

The different resource specifications under console and xterm give the windows their different appear-
ance. The new resource name (console) creates a set of resource specifications completely independent
of the standard client resource (xterm).

The -name Command Option

By using the -name command option, you can start the same kind of client but give each window of the
client a totally different appearance.

1. Pick the client which should have multiple resource names.

2. Identify the resource specifications to be changed, under the normal name.

3. Choose your own resource name, myResource, for example.

4. Using your new resource name, add the new resource specifications to the X Resource database with
xrdb.

5. Start a client with the -name command option and check its performance.

6. If satisfied, save your changes in your .Xresources file.

X normally uses the resource name for a window’s title, but recall that you can specify a title with the -
title option. -title only declares the string that X puts in the title bar; it does not determine the resource
name.

Customizable File Summary

The three files (.Xresources, .Xsetup.twm, and .twmrc) which you can customize appear in the table
below. Hopefully this table clarifies the use of each file.

File: .Xresources .Xsetup.twm .twmrc

Read by: X UNIX twm

Contents: X resource specifica-
tions

X and user (UNIX)
commands

menus, window
functions, mouse
and key bindings

Syntax: widget hierarchy bind-
ings

commands and
command options

variables and lists

The twm Start-up File:

20 Customizing the X Windows System

Customizing twm
This section explains how to customize aspects of twm. twm handles menus, window operations
(moving, resizing, etc.), and mouse button functions.

The twm Start-up File:

twm reads a start-up file called .twmrc (for “twm Resource Configuration”), which specifies menu
contents and mouse button functions. .twmrc requires a syntax different from both UNIX and X.

The system default .twmrc can be found under /usr/lib/X11/twm/system.twmrc. As you read the
rest of the material, this listing will prove a handy reference.

Note that in.twmrc, a hash sign (#) indicates a comment line.

Testing Changes: Sourcing

This section explains how to test your twm customization. Before you make any changes, you
should backup your existing file, just in case your changes do not work. For example, enter

prompt% cp .twmrc twmrc.old

before editing your .twmrc file.

When you are ready to test your customized .twmrc, activate the twm Window Manager Menu and
select Source .twmrc. This instruction tells twm to read your .twmrc file, and your changes become
effective. You can perform this operation as many times as you like, which enables you to custom-
ize twm incrementally. Just follow this procedure:

1. Backup your current, error-free .twmrc.

2. Make a few changes to your .twmrc.

3. Select Source .twmrc from the twm Menu.

4. Check your changes for proper results.

5. Make any necessary corrections.

6. Repeat this procedure until your twm customization is satisfactory.

Comments: exclamation point (!) hash sign (#) hash sign (#)

File: .Xresources .Xsetup.twm .twmrc

Restoring the Default .twmrc

Customizing the X Windows System 21

Restoring the Default .twmrc

If you run into trouble at any time during your experimentation with .twmrc customization, you can
restore the system default .twmrc until you have figured out what is wrong with your own version. To
restore, copy the system default .twmrc using the following syntax:

getxfiles -R -S -w

twm Instructions

File Structure

twm employs several types of instructions, and generally the .twmrc file consists of three sections:

1. variables

2. bindings (mouse buttons, title bar buttons)

3. menus

You are not required to divide .twmrc into three explicit sections, and the default .twmrc is not divided
as such. However, sectioning .twmrc to some extent can make customization and debugging easier.

Variables and Arguments

twm maintains a large set of predefined variables, which you manipulate to customize twm. Certain
variables simply turn an option on or off, and they are called toggle variables. Other variables require an
argument, usually a number or a string, and some variables take more than one argument.

A variable and its argument(s) are separated by whitespace. Whitespace consists of spaces, TAB charac-
ters, and RETURN characters.

Variable names are case-insensitive, meaning that twm does not distinguish between capital and lower-
case letters. The capitalization simply makes them easier for you to read. For example, DontMoveOff,
Dontmoveoff, and dONtmOVEofF refer to the same variable.

Strings

Enclosed in double quotes (“), strings are case-sensitive. Hence, capitalization can distinguish other-
wise identical strings. Thus, “X applications” and “X Applications” are different strings.

A string usually corresponds to a window or client name. A string matches a window if the string
matches the client name, resource name, or class name. An example may clarify this concept.

Consider the twm variable Icons, which takes a name and associates it with a particular icon.

Icons {“xterm” “xterm.icon”

“console” “xlogo32”

twm Instructions

22 Customizing the X Windows System

“XTerm” “plaid”}

Here, the three names are a client name (xterm), a resource name (console), and a class name
(XTerm). If you start a terminal emulator with

prompt% xterm &

then twm uses the client name, xterm, to pick the icon. Thus, twm selects the xterm.icon in this
case. However, you can indicate a different resource name with the command option. If you enter

prompt% xterm -name console

then twm starts an xterm client but uses the console resources, and thus twm picks the xlogo32
icon. Finally, if you enter

prompt% xterm -name fickle

then twm starts an xterm client and looks for a resource named fickle. If twm cannot find a
resource, twm looks in the corresponding class. Since fickle does not exist, twm uses the class
name for the xterm client, and this class name is XTerm. Therefore, twm chooses the plaid icon.

Lists

When a variable permits several arguments, these arguments form a list. Braces, {}, enclose a list,
which may include variables and strings. Items within a list are separated by spaces, TABs, or
RETURN characters.

This feature lets you format your lists for easy (or difficult) reading.

For example, twm treats the three lists below identically.

{“xclock” “xbiff” “dclock”}

{“xlock”

 “xbiff”

 “dclock”}

{ “xclock”

“xbiff” “dclock”}

Sometimes the items in a list are grouped in pairs or triplets. For example, the variable Icons lists
names and their corresponding icons:

Icons {“xterm” “xterm.icon”

 “Elm” “letters”

 “aXe” “keyboard16”}

Bindings

The second section of the .twmrc file produces title bar buttons and mouse button functions. Func-
tion keys can also be bound to functions. Do not confuse twm bindings with resource specification

twm Instructions

Customizing the X Windows System 23

bindings. twm bindings link buttons and keys to twm functions; resource specification bindings trace a
path down an X widget hierarchy.

See the section, twm Functions, for information on twm functions, which are not discussed here but are
shown to demonstrate proper binding syntax.

Title Bar Buttons

You can add title bar buttons to all windows with this binding. The syntax for title bar buttons appears
below.

Left/RightTitleButton “ bitmapname ” = function

Left/RightTitleButton indicates where the title bar button should appear. bitmapname tells twm the
name of the button’s picture, and function is a twm function. See the section, Special Topics, to read
how you can select and create bitmaps. Title bar buttons appear in the order they are declared, from left-
to-right for LeftTitleButton and right-to-left for RightTitleButton.

Mouse Buttons

Mouse buttons take a special syntax, which indicates the mouse button, any special keys (modifiers), the
cursor location (context), and the corresponding twm function, respectively.

Button = modifiers : context : function

Button1 corresponds to LEFT, Button2 to MIDDLE, and Button3 to RIGHT; twm also accepts Button4
and Button5, but most hardware (mice and X mouse drivers) does not have these buttons.

The modifiers are c, m, and s (CTRL, META, and SHIFT, respectively). You can indicate a combination
of modifiers with a vertical bar (|). context specifies the cursor location, such as window, title, icon, root,
frame, iconmgr, or all. If several contexts are valid, use a vertical bar (|) to delimit them.

Function Keys

Function keys take the same syntax as mouse buttons, except that the key is surrounded by double
quotes (“)

Key = modifiers : context : function

Menus

The third part of .twmrc defines menus. A menu begins with a header, followed by a list of items and
functions.

Menu “menuname

{

 string1 function1

 string2 function2

twm Instructions

24 Customizing the X Windows System

 string3 function3

 etc.

}

Some Useful Variables

This subsection describes several useful twm variables. You can consult the manual pages for more
information.

DontMoveOff When employed, this variable prevents windows from being placed off
the display. If you use a program which requires a very large window, it
may not fit properly unless you let part of it hang off the edge of the dis-
play

NoTitle Suppresses title bars for windows in the display. For example, you
might suppress the title bar on xclock. MakeTitle may be used with this
option to force titlebars to be put on specific windows.

RandomPlacement When this variable is activated, twm positions new windows randomly,
rather than making you place them. If a window is started with the -
geometry option, then that geometry applies.

DefaultFunction function This variable tells twm which function to execute when you press a key
or mouse button which does not have a function bound to it. Usually
function is something like f.beep or f.nop (the terminal beeps or does
nothing).

twm Functions

Up to this point, you have seen various twm functions in examples and exercises, but you have not
received a formal introduction to them. This subsection describes several twm functions, but you
should consult the manual pages on twm for a complete list.

f.beep Rings the bell (beeps).

f.circledown Lowers the highest window which overlaps another.

f.circleup Raises the lowest window which is overlapped by other windows.

f.deiconify Turns an icon into a window.

f.destroy Kills a client. Not a recommended means of stopping a client; try to exit
the client normally.

f.focus Directs all input to the selected window, regardless of the cursor posi-
tion. You can move the cursor off the window but still type to it. Use
f.unfocus to stop this function.

twm Instructions

Customizing the X Windows System 25

f.forcemove Lets you move a window and allows the window to go off the display. This
function can be useful if you have large windows.

f.iconify (De)iconifies a window or icon.

f.identify Displays a small box listing information like title (although twm calls the
title “Name”), resource name, and class name. Also displays the window
geometry (not icon geometry).

f.lower Lowers a window or icon (sends it to the bottom of the stack of overlapping
windows).

f.menu Activates a menu or submenu named by string. A submenu can have its own
submenu.

f.move Moves a window.

f.nop No operation. Usually used to add a blank line to a menu.

f.quit Stops twm.

f.raise Raises a window or icon (brings it to the top of the stack of overlapping win-
dows).

f.refresh Redraws the display.

f.resize Resizes a window or icon.

f.showiconmgr Forces twm to display the icon manager window or windows.

f.title Adds a centered title, set off by horizontal lines, to a menu.

f.unfocus Turns off focused window and lets the cursor position highlight windows.
See f.focus.

f.winrefresh Refreshes a single window.

The f.function Function

twm lets you create a new window function by combining existing built-in functions. Calling a new
function uses a syntax like f.menu:

f.function string

where string gives the name of the new function. Usually new functions appear after menus, at the very
end of .twmrc. To define a new function, use the form:

Function “string” { function(s)}

Special Topics

26 Customizing the X Windows System

MoveDelta and the f.deltastop Function

The MoveDelta variable and the f.deltastop function let you create an “or” function. Depending on
whether you click or drag, you determine which built-in function takes place. Normally f.deltastop
appears between two built-in functions in a custom-made function.

MoveDelta number

Function “string” { function1 f.deltastop function2}

When performing a custom function, twm executes function1 unless you drag the cursor more than
number pixels (dots). If you do, then twm executes function2.

f.deltastop may not always behave as you expect because some built-in functions act as soon as you
click, while others require dragging. In addition, the order of the built-in functions may affect the
behavior of the new function. Generally, you need to test your custom function, especially if it uses
f.deltastop, to ensure that it performs correctly.

The f.exec Function

Often abbreviated by an exclamation point (!), the f.exec function executes an X or UNIX com-
mand. In your default .twmrc this function enables almost every item in the X Applications menu.
Without this option, that would not be possible.

You can use this function when you want to add another X client or UNIX command to those
accessible from your twm menus.

Special Topics

The Monochrome and Color Variables

These variables prepare your display depending on your monitor type. You can have both variables
in .twmrc and twm consults the proper one for display characteristics. These variables take a list of
other variables which specify different colors for borders, backgrounds, foregrounds, and menus.
The .twmrc file may only have one Monochrome and one Color list.

For example, consider the following Monochrome variable:

Monochrome

{

MenuTitleForeground “white”

MenuTitleBackground “black”

BorderTileBackground “white”

BorderTileForeground “white”

BorderColor “black” “console” “white”

“aXe” “white”

Special Topics

Customizing the X Windows System 27

IconBorderColor “white” {“aXe” “black”}

TitleForeground “black” {“console” “white”}

TitleBackground “white” {“console” “black”}

}

First of all, these specifications apply to a monochrome monitor. A similar set of specifications could
fall inside a separate Color variable. Inside the list, the first two variables make menu titles appear in
reverse-video.

The two BorderTile... variables determine the colors used in unhighlighted window borders. twm uses a
tile pattern of two colors, and because both colors are white, unhighlighted windows have a white bor-
der rather than a gray one.

Next, BorderColor tells twm to display a black border for highlighted windows, with the exceptions of
console and aXe windows, which highlight with a white border. Since highlighted and unhighlighted
console and aXe windows employ white borders, they do not appear to highlight.

The next variable gives icons a white border, except the aXe icon, which displays a black border.
Finally, the last two variables specify a normal black-on-white title bar, but the console gets a reverse-
video title bar.

Icon Region

twm lets you declare an area of the display for icons with the IconRegion variable. This variable has the
following form:

IconRegion “ geometry vgrav hgrav cellwidth cellheight

geometry is a regular geometry string. twm divides the icon region into a rectangular grid, and each cell
within the grid has dimensions of cellwidth by cellheight pixels.

vgrav and hgrav give the vertical and horizontal gravities, respectively. vgrav is either North or South,
which fill the icon region from top-to-bottom (North) or bottom-to-top (South). Likewise, hgrav is East
or West; East fills the region from right-to-left, and West from left-to-right.

You can specify more than one IconRegion. In this situation, twm uses the first icon region until it
becomes filled, then proceeds to the next one, and so on.

The bitmap Program

The bitmap Program lets you draw your own icons, cursors, and cursor masks, each of which is repre-
sented by a bitmap. To start bitmap

prompt% bitmap filename WIDTHxHEIGHT &

Special Topics

28 Customizing the X Windows System

where filename is the name of the bitmap file (if it already exists, bitmap will read that file).
WIDTHxHEIGHT give the size of the bitmap in pixels (screen dots). If you do not specify the size,
bitmap uses 16x16.

The following example creates a file called piano that is 80 pixels wide and 65 pixels high. If piano
already exists, bitmap reads that file and uses its dimensions.

prompt% bitmap piano 80x65 &

bitmap is an exceptionally easy-to-use program and has excellent documentation in the manual
pages. For these reasons, you should try bitmap on your own or read the manual pages for more
information.

X and twm include several standard bitmaps; for a list of standard bitmaps, enter

prompt% ls /usr/include/X11/bitmaps

/usr/bin/X11/bitmaps is a directory containing the standard bitmaps. You can view its bitmaps, use
them for icons, cursors, and masks. They can also be useful as a starting point for creating your
own bitmaps.

Choosing Icons

twm lets you pick icons for different applications, and the bitmap program, explained in the previ-
ous section, lets you create new icons. The toggle variable ForceIcons overrides any default icons
so that if a client requests an icon, you can specify a different one.

IconDirectory tells twm in which directory to search for icon bitmaps. By default twm looks in the
directory /usr/include/X11/bitmaps, but if you create a directory of your own icons, you can pro-
vide a different IconDirectory variable.

Finally, Icons lists pairs of windows and icons. A window may be expressed as a client name (the
usual method), a resource name (if you use the X command option), or a class name.

As one example, the default .twmrc contains the lines

ForceIcons

IconDirectory “/usr/include/X11/bitmaps”

Icons

{

 “xterm” “xterm.icon”

 “Elm” “letters”

 “gnuemacs” “keyboard16”

 “Emacs” “keyboard16”

}

The first line makes the subsequent Icons variable override any default icons. The next line gives
the normal icon directory. Finally, the Icons variable includes five windows and their icons; note
that the last three windows use the same icon. Also, Elm and Emacs are both class names.

Special Topics

Customizing the X Windows System 29

You can also give a specific directory path for a particular icon. To do so, just include the entire path
with the icon name. You can use the tilde character (~) to indicate your home directory, or you can use
~userid to indicate someone else’s home directory.

In addition, twm supports three default icons: :xlogo or :iconify (they are the same icon), :resize, and
:question. They are always available.

For example, consider this .twmrc segment:

ForceIcons

IconDirectory “~fred/pictures”

Icons

{

 “aXe” “horse”

 “xterm” “xterm.icon”

 “xman” “~/my.icon”

 “gnuemacs” “:resize”

}

Now twm looks for icons in another person’s (fred’s) home directory. Fred has a directory called pic-
tures, and it contains an icon called horse, so twm finds horse for the icon.

For the xterm icon, twm searches pictures and does not find anything. So twm then looks in its default
directory /usr/bin/X11/bitmaps and finds xterm.icon.

Next twm looks in your home directory for my.icon and uses it for xman. Lastly, twm uses its standard
icon :resize for the gnuemacs icon.

Picking Cursors

Along with icons, you can specify the cursors you want twm to use in different parts of the display. The
cursor definitions should appear before any bindings, menus, or functions. For example, the cursor
defaults are

Cursors

{

 Frame “top left arrow”

 Title “top left arrow”

 Icon “top left arrow”

 IconMgr “top left arrow”

 Move “fleur”

 Resize “fleur”

 Menu “sb left arrow”

Special Topics

30 Customizing the X Windows System

 Button “hand2”

 Wait “watch”

 Select “dot”

 Destroy “pirate”

}

You can find a complete list of standard cursor names by entering

prompt% cd /usr/include/X11

prompt% more cursorfont.h

This action lists the available cursors and produces output that looks like:

/* $XConsortium: cursorfont.h,v 1.2 88/09/06 16:44:27

jim Exp $ */

#define XC_num_glyphs 154

#define XC_X_cursor 0

#define XC_arrow 2

#define XC_based_arrow_down 4

#define XC_based_arrow_up 6

To specify a cursor you only need the cursorname, without the XC or the ending number. Also, in
your specification, the underlines (_) should be replaced by spaces. For a display of the standard
cursors, enter

prompt% xfd -center -fn cursor &

Creating Cursors

You can create your own cursors with bitmap but you must also make a cursor mask. The cursor
and mask must have the same WIDTH and HEIGHT. To get an idea for what cursors and their
masks look like, enter

prompt% xfd -center -fn cursor &

This command displays the standard cursors and their respective masks. Notice how the masks are
usually solid black and form a silhouette of the cursor.

Since most cursors are larger than one pixel, and the actual pointer size is one pixel, the server
needs to know which of the pixels in the cursor bitmap to assign this role to. This point is called the
hot spot. Bitmap includes a “Set Hot Spot” command.

twm looks for cursors in the directory /usr/include/X11 unless you specify a different directory.
twm does not support a CursorDirectory variable, so you must include the directory for each cursor
and mask. When you specify a bitmap cursor, it requires a bitmap and a mask. Then the Cursor list
includes a third argument which names the mask. For example,

Special Topics

Customizing the X Windows System 31

Cursors

{

 Frame “top left arrow”

 Title “~/cursors/me” “~/cursors/me.mask”

 Icon “gobbler”

 IconMgr “~/cursors/fish” “~/cursors/fish.mask”

The Icon Manager Feature

If you find that you have too many icons floating around your display, or if you get too lazy to place
your icons, twm provides a feature called the icon manager. The icon manager maintains a list of all
your icons in a single location, which keeps your display uncluttered. Do not confuse the icon manager
with the IconRegion previously discussed.

The icon manager lists all your clients, with a mark beside those that are icons. By clicking on a client
in the icon manager, you (de)iconify that client. When the icon manager is running, twm does not dis-
play icons; this act of “disappearing” a window is called unmapping. An unmapped client continues to
run, just like a iconified client, except that it has no icon.

The icon manager uses the following variables, as well as a few color specifications that can be found in
the manual pages:

DontIconifyByUnmapping {}

Normally when the icon manager is running, twm does not display icons.
With this variable, windows in the display become icons rather than disap-
pearing by unmapping.

IconifyByUnmapping The icon is optional with this variable, which instructs twm to convert win-
dows into icons by unmapping. Unmapping effectively causes a window to
disappear, although the client keeps running. Using this variable without the
icon manager can create a problem because you can render a client inacces-
sible.

IconManagerDontShow Clients do not appear in the icon manager list. Normally you use this vari-
able to prevent rarely-iconified clients (like xclock) from occupying space in
the icon manager. With value no, only clients given with IconManagerShow
appear in the icon manager. Thus, the icon manager could run without actu-
ally handling any clients!

IconManagerFont string Specifies the icon manager’s font.

IconManagerGeometry “geometry” columns

For More Information

32 Customizing the X Windows System

Determines the geometry of the icon manager window. columns gives
the number of clients in each row of the window. If columns is not
given, it defaults to 1.

IconManagers { icon-manager-list}

This variable lets you create different icon manager windows for differ-
ent kinds of clients. Each line in icon-manager-list takes the form:

“windowname” ‘‘geometry” columns

windowname identifies the windows for the icon manager, geometry
gives the icon manager’s geometry, and columns determines how many
columns of clients appear. Unlike IconManagerGeometry, columns
must be specified.

 IconManagerShow Specifies client which must be displayed in the icon manager. Make cer-
tain that you use this variable if you use IconManagerDontShow with-
out options.

NoIconManagers Prevents all icon managers from running.

ShowIconManager Tells twm to show the icon manager window or windows. You can also
add the function f.showiconmgr function to a menu.

SortIconManager Instructs the icon manager to sort its clients alphabetically rather then
adding them as they appear.

For More Information

This chapter covers basic twm customization, but many other twm variables (of varying usefulness)
are available. A complete list and description of twm variables and functions appear in the manual
pages. To learn more about twm, consult the on-line manual pages. Enter:

prompt% man twm

For More Information

Customizing the X Windows System 33

Recovering from Failed Customizations
Quite possibly you will make mistakes during your customization. In some cases you can simply edit
the appropriate files, but in other cases you may not even be able to login! This chapter tells you how to
recover from such frightening circumstances.

You need to use UNIX commands for copying, moving, editing, and deleting files. For information on
these commands, consult the document, Introduction to the UNIX Operating System.

Tips Before Customizing

To make customization easier and less painful, the following information provides some foresight into
customization. Realize that your changes may not work at first, and take the proper precautions.

Test On-The-Fly

You can try your X customizations immediately with the xrdb command and by entering X commands
inside an xterm. With twm, you can use the Source .twmrc item from the twm Menu. That way you can
fine-tune your customization before making it permanent. See previous sections in this document for
more information on xrdb, X commands, or twm.

Save Your Previous Configuration

As proper insurance, before you save any new changes, copy your current X and twm files as backups
(under different names than the normal start-up files). This prudence establishes a reference point from
which to work, and you can abandon new changes if you do not like them.

Work in Steps

If you plan to make many modifications, do them in smaller steps. You can concentrate more carefully
on each step and test the changes after each step. If an error occurs, you have a good idea of its location.
When you successfully complete a step, make a backup before continuing.

Alter One File at a Time

Only modify one start-up file at a time. That way if your customization fails, you know which file to
edit.

Consult Other Individuals

Most successful customization results from experience. If you are new to customization, ask for assis-
tance from friends or Information Technology staff members. Keep in mind, however, that customiza-
tion takes a low priority in terms of consulting issue importance.

For More Information

34 Customizing the X Windows System

Troubleshooting

Usually recovery involves identifying an error, correcting it, and testing the correction. A few pos-
sible explanations for errors follow.

• Check your syntax. Recall that the start-up files require a different syntax.

• Make sure you use the proper comment character. Make sure your files contain the proper infor-
mation.

• If you suspect errors, use the line “*StringConversionWarnings: on” in your .Xresources file to
instruct X to report error messages.

• When customizing twm, replace the line twm entry with the line twm -v entry in your .twmrc to
allow twm to generate error messages. Change the line back when your customization is work-
ing.

• If some resource specifications in your .Xresources file do not seem to work properly, try using
a class instead of an instance, and vice versa. For example, if “xterm*scrollBar: on” does not
work, try the line “xterm*ScrollBar: on”.

• If you think an error lies in your .Xsetup.twm, check your use of the ampersand (&) after most
commands in your .Xsetup.twm.

Logging In without X

If your customization has significant errors, you may not even be able to login to recover it. Usually
the error lies in .Xsetup.twm. You need to login without invoking this file, then start a basic X ses-
sion. The following procedure accomplishes this task from a dedicated display server.

At a Silicon Graphics workstation:

1. At the X Start-up Display enter your username.

2. Type your password, but instead of completing the entry with RETURN, press the “F1” key.

At a Sun workstation

1. Before typing your name and password, select Failsafe Session from the menu items Options,
Session.

2. Enter your userid and password as normal.

These steps let you login without reading any of your start-up files. You start the X session without
any defaults and without a window manager. The mouse buttons do not work as usual because twm
is not running. You have a single xterm window, although it has no title or title bar. This functions
like your console window.

Next enter these commands to start a minimal X session.

1. prompt% xrdb -load /usr/lib/X/xinit/Xresources

Loads the system default file.

2. prompt% twm -f /usr/lib/X/twm/system.twmrc &

Starts twm.

Problems or Question

Customizing the X Windows System 35

Now you have begun a X session with the system default configuration. You can edit or replace the nec-
essary start-up files. After making these changes, you can logout, then login to try them.

Problems or Question

If you have any questions or problems, contact the Consulting Center at 713-348-4983 or stop by 103
Mudd Lab. You can also e-mail problem@rice.edu or submit the problem at http://problem.rice.edu
via the World Wide Web.

