
 1

UNIX tutorial

After logging on

Throughout the Unix Tutorial section we will use % to indicate the computer's ``ready''
prompt.

ls

Let's try a simple command in a command window. Type ls and press . ls is the program to list
files in a directory. Right now you may or may not see any files-not seeing any files doesn't
mean you don't have any! Just plain ls won't list hidden files (files whose names start with ` .̀'',
like .login). Now try typing:

 % ls -a

Don't actually type the % symbol! Remember, that's the computer's prompt which indicates it
is ready to accept input. The spacing should be exactly as shown. ls followed by a space,
followed by a -a. The -a is a ``flag'' which tells the ls program to list all files.

For more about command flags see below.

cd

Just for fun, let's look at the contents of another directory, one with lots of files. Directory
names in Unix are straightforward. They are all arranged in a tree structure from the root
directory ``/''.

For now, use cd to change your directory to the /bin directory. Type:

 % cd /bin

and press <CR>. Now type ls again. You should see a long list of files-in fact, if you look
carefully you will see files with the names of the commands we've been typing (like ls and cd).
Note that the /bin in the command we typed above was not a flag to cd. It was a ``parameter.''
Flags tell ommands how to act, parameters tell them what to act on.

Now return to your login directory with:

 % cd

Entering cd with no parameter returns you to your home directory. You can check to make
sure that it worked by entering:

 % pwd

 2

which prints your current (or ``working'') directory. The computer should return a line of
words separated by `̀ /'' symbols which should look something like:

 /amethyst9/home/username

Whatever it returns, the list should end in your username.

Using the On-line Man Pages

Most Unix commands have very short and sometimes cryptic names like ls. This can make
remembering them difficult. Fortunately there are on-line manual pages which allow you to
display information on a specific program (to list all the flags of ls, for example) or list all the
information available on a certain topic.

man

To investigate other flags to the ls command (such as which flags will display file size and
ownership) you would type man ls.

Using man and more

Try it now. Use man ls to find out how to make the ls program print the sizes of your files as
well as their names. After typing man ls and pressing , note how man displays a screenful of
text and then waits with a prompt --More-- at the bottom of the screen.

What man is doing is sending everything it wants to display to the screen through a program
known as a ``pager'' The pager program is called more. When you see --More-- (in inverse
video) at the bottom of the screen, just press the space-bar to see the next screenful. Press
<CR> to scroll a line at a time.

Have you found the flag yet? The -s flag should display the size in kilobytes. You don't need
to continue paging once you have found the information you need. Press q and more will exit.

Listing File Sizes

Now type ls -as. You can stack flags together like this-this tells ls to list all files, even hidden
files, and list their sizes in kilobytes.

Directory and File Structure

When you list files in Unix, it is very hard to tell what kind of files they are. The default
behavior of the ls program is to list the names of all the files in the current directory without
giving any additional information about whether they are text files, executable files or
directories!

 3

This is because the ``meaning'' of the contents of each file is imposed on it by how you use the
file. To the operating system a file is just a collection of bytes.

There is a program file which will tell you information about a file (such as whether it
contains binary data) and make a good guess about what created the file and what kind of file
it is.

File Names

Unlike other operating systems, filenames are not broken into a name part and a type part.
Names can be many characters long and can contain most characters. Some characters such as
* and ! have special meaning to the shell. They should not be used in filenames. If you ever do
need to use such a symbol from the shell, they must be specified sneakily, by `̀ escaping'' them
with a backslash, for example \!.

Directories

Directories in Unix start at the root directory ` /̀''. Files are ``fully specified'' when you list
each directory branch needed to get to them.

 /usr/local/lib/news

 /home/pamela/src/file.c

The ``File System'' Tree Structure

Usually disks are ``partitioned'' into smaller sized sections called partitions If one partition of
the disk fills up the other partitions won't be
affected.

Only certain large directory points are partitions and the choice of these points can vary
among system managers. Partitions are like the larger branches of a tree. Partitions will
contain many smaller branches (directories) and leaves (files).

The df Program

To examine what disks and partitions exist and are mounted, you can type the df command at
the % prompt. This should display partitions which have names like /dev/sd3g---3 for disk 3, g
for partition g. It will also display the space used and available in kilobytes and the ``mount
point'' or directory of the partition.

Disk Space Maintenance

It's important to keep track of how much disk space you are using. The command du displays
the disk usage of the current directory and all of its subdirectories. It displays the usage, in

 4

kilobytes, for each directory-including any subdirectories it contains-and ends by displaying
the total.

% du
 display disk usage of current directory
% du -s
 display only total disk usage
% du -s -k
 some versions of Unix need -k to report kilobytes

Your Login Directory

A login directory can always be specified with ~username (~ is commonly called ` t̀widdle,''
derived from proper term ` t̀ilde.'') If you needed to list files in someone else's login directory,
you could do so by issuing the command:

 % ls ~username

substituting in their username. You can do the same with your own directory if you've cd'd
elsewhere. Please note-many people would consider looking at their files an invasion of their
privacy; even if the files are not protected! Just as some people leave their doors unlocked
but do not expect random bypassers to walk in, other people leave their files unprotected.

Subdirectories

If you have many files or multiple things to work on, you probably want to create
subdirectories in your login directory. This allows you to place files which belong together in
one distinct place.

Creating Subdirectories

The program to make a subdirectory is mkdir. If you are in your login directory and wish to
create a directory, type the command:

 % mkdir directory-name

Once this directory has been created you can copy or move files to it (with the cp or mv
programs) or you can cd to the directory and start creating files there.

Copy a file from the current directory into the new subdirectory by typing:

cp filename directory-name/new-filename
 copy file, give it a new name

cp filename directory-name
 copy file, filename will be the same as original

 5

Or cd into the new directory and move the file from elsewhere:

 % cd directory-name
 % cp ../filename .

copies the file from the directory above giving it the same filename: ` .̀'' means ` t̀he current
directory''

Specifying Files

There are two ways you can specify files. Fully, in which case the name of the file includes all
of the root directories and starts with ``/'', or relatively, in which case the filename starts with
the name of a subdirectory or consists solely of its own name.

When Charlotte Lennox (username lennox) created her directory arabella, all of the following
sets of commands could be used to display the same file:

 % more lennox/arabella/chapter1
or
 % cd lennox
 % more arabella/chapter1
or
 % cd lennox/arabella
 % more chapter1

The full file specification, beginning with a `̀ /'' is very system dependent. On our machines,
all your user directories are in the /amethyst9 partition.

Protecting Files and Directories

When created, all files have an owner and group associated with them. The owner is the same
as the username of the person who created the files and the group is the name of the creator's
default login group, such as users, system etc. Most users do not belong to a shared group on
our systems. If the creator of the file belongs to more than one group (you can display the
groups to which you belong with the groups command) then the creator can change the group
of the file between these groups. Otherwise, only the root account can change the group of a
file.

Only the root account can change the ownership of a file.

Displaying owner, group and protection

The command ls -lg filename will list the long directory list entry (which includes owner and
protection bits) and the group of a file.

 6

The display looks something like:

 protection owner group filename
 -rw-r----- hamilton ug munster_village

The Protection Bits

The first position (which is not set) specifies what type of file this is. If it were set, it would
probably be a d (for directory) or l (for link). The next nine positions are divided into three
sets of binary numbers and determine protection to three different sets of people.

 u g o
 rw- r-- ---
 6 4 0

The file has ``mode'' 640. The first bits, set to ``r + w'' (4+2) in our example, specify the
protection for the user who owns the files (u). The user who owns the file can read or write
(which includes delete) the file.

The next trio of bits, set to 4, or ``r,'' in our example, specify access to the file for other users
in the same group as the group of the file. In this case the group is ug-all members of the ug
group can read the file (print it out, copy it, or display it using more).

Finally, all other users are given no access to the file.

The one form of access which no one is given, even the owner, is ``x'' (for execute). This is
because the file is not a program to be executed-it is probably a text file which would have no
meaning to the computer. The x would appear in the 3rd position and have a value of 1.

Changing the Group and the Protection Bits

The group of a file can be changed with the chgrp command. Again, you can only change the
group of a file to a group to which you belong. You would type as follows:

 % chgrp groupname filename

You can change the protection mode of a file with the chmod command. This can be done
relatively or absolutely. The file in the example above had the mode 640. If you wanted to
make the file readable to all other users, you could type:

 % chmod 644 filename
or
 % chmod +4 filename (since the current mode of the file was 640)

For more information see the man page for chmod.

 7

Default Protections: Setting the umask

All files get assigned an initial protection. To set the default initial protection you must set the
value of the variable umask. umask must be defined once per login (usually in the .profile
file). Common umask values include 022, giving read and directory search but not write
permission to the group and others and 077 giving no access to group or other users for all
new files you create.

The Unix Shell Syntax

As mentioned earlier, user commands are parsed by the shell they run. There are many shells
other than the Korn shell which allow different types of shortcuts. We will only discuss the
Korn shell here, but some alternate shells include the C-shell, Bourne shell (/bin/sh), the
Bourne-Again Shell (bash), zsh and tcsh (a C shell variant).

The Path

One of the most important elements of the shell is the path. Whenever you type something at
the % prompt, the Korn shell first checks to see if this is an ``alias'' you have defined, and if
not, searches all the directories in your path to determine the program to run.

The path is just a list of directories, searched in order. Your default .profile file in your home
directory will have a path defined for you. If you want other directories (such as a directory of
your own programs) to be searched for commands, add them to your path by editing your
.profile file. This list of directories is stored in the PATH environment variable. We will
discuss how to manipulate environment variables later.

Flags and Parameters

Most commands expect or allow parameters (usually files or directories for the command to
operate on) and many provide option flags. A ``flag'' as we saw before, is a character or string
with a - before it-like the -s we used with the ls command.

Some commands, such as cp and mv require file parameters. Not surprisingly, cp and mv (the
copy and move commands) each require two! One for the original file and one for the new file
or location.

It would seem logical that if ls by itself just lists the current directory then cp filename should
copy a file to the current directory. This is logical-but wrong! Instead you must enter cp
filename . where the ` .̀'' tells cp to place the file in the current directory. filename in this case
would be a long filename with a complete directory specification.

Not surprisingly ls . and ls are almost the same.

Creating Files

 8

The cat Program

cat is one of most versatile commands. The simplest use of cat:

 % cat .profile

displays your .profile file to the screen. Unix allows you to redirect output which would
otherwise go to the screen by using a > and a filename. You could copy your .profile, for
example, by typing:

 % cat .profile > temp

This would have the same effect as:

 % cp .profile temp

More usefully cat will append multiple files together.

 % cat .profile .login > temp

will place copies of your .profile and .kshrc into the same file. Warning! Be careful not to cat a
file onto an existing file! The command:

 % cat .profile > .profile

will destroy the file .profile if it succeeds.

If you fail to give cat a filename to operate on, cat expects you to type in a file from the
keyboard. You must end this with a <Ctrl>-D on a line by itself. <Ctrl>-D is the end-of-file
character.

By combining these two-leaving off the name of a file to input to cat and telling cat to direct
its output to a file with > filename, you can create files.

For example:

 % cat > temp

 ;klajs;dfkjaskj
 alskdj;kjdfskjdf
 <Ctrl>-D
 %

This will create a new file temp, containing the lines of garbage shown above. Note that this
creates a new file-if you want to add things on to the end of an existing file you must use cat

 9

slightly differently. Instead of > you'd use >> which tells the shell to append any output to an
already existing file. If you wanted to add a line onto your .profile, you could type

 % cat >> .profile
 echo "blah blah blah"
 <Ctrl>-D
 %

This would append the line echo "blah blah blah" onto your .profile. Using > here would be a
bad idea-it might obliterate your original .profile file.

Text Editors

cat is fine for files which are small and never need to have real changes made to them, but a
full fledged editor is necessary for typing in papers, programs and mail messages. Among the
editors available vi and emacs. We will not discuss emacs here.

Be careful! Not all Unix editors keep backup copies of files when you edit them.

vi

vi is an editor which has a command mode and a typing mode. When you first startup vi (with
the command vi filename) it expects you to enter commands. If you actually want to enter text
into your file, you must type the insert command i. When you need to switch back to
command mode, hit the escape key, usually in the upper left corner of your keyboard.

To move around you must be in command mode. You can use the arrow keys or use j, k, h, l
to move down, up, left and right.

For more information type man vi.

On the Suns, there is also an interactive text editor called “textedit”. You can start it by using
the pull-down menu, or by typing “textedit &” in a command shell.

Files as Output and Log Files

Ordinarily there are two types of output from commands: output to standard output (stdout)
and to standard error (stderr). The > and >> examples above directed only standard output
from programs into files. To send both the standard output and error to a file when using the C
shell, you should type >& :

 % command >& filename

 10

Logging Your Actions to a File

Sometimes you may wish to log the output of a login session to a file so that you can show it
to somebody or print it out. You can do this with the script command. When you wish to end
the session logging, type exit.

When you start up you should see a message saying script started, file is typescript and when
you finish the script, you should see the message script done. You may want to edit the
typescript file-visible ^M's get placed at the end of each line because linebreaks require two
control sequences for a terminal screen but only one in a file.

Comparing Files

The basic commands for comparing files are:

cmp
 states whether or not the files are the same
diff
 lists line-by-line differences
comm
 three column output displays lines in file 1 only, file 2 only, and both files

See the man pages on these for more information.

Searching Through Files

The grep program can be used to search a file for lines containing a certain string:

 % grep string filename
 % grep -i string filename (case insensitive match)

or not containing a certain string:

 % grep -v string filename

See the man page for grep---it has many useful options.

more and the vi editor can also find strings in files. The command is the same in both-type a
/string when at the --More-- prompt or in vi command mode. This will scroll through the file
so that the line with ``string'' in it is placed at the top of the screen in more or move the cursor
to the string desired in vi. Although vi is a text editor there is a version of vi, view, which lets
you read through files but does not allow you to change them.

 11

The System and Dealing with Multiple Users

Most Unix commands which return information about how much CPU-time you've used and
how long you've been logged in use the following meanings for the words ` j̀ob'' and
``process.''

When you log in, you start an interactive ` j̀ob'' which lasts until you end it with the logout
command. Using a shell like Korn shell which has `̀ job-control'' you can actually start jobs in
addition to your login job. But for the purposes of the most information returning programs,
job (as in the ``JCPU'' column) refers to your login session.

Processes, on the other hand, are much shorter-lived. Almost every time you type a command
a new process is started. These processes stay ``attached'' to your terminal displaying output to
the screen and, in some cases (interactive programs like text editors and mailers) accepting
input from your keyboard.

Some processes last a very long time-for example the /bin/ksh (Korn shell) process, which
gets started when you login, lasts until you logout.

Information about Your Processes

You can get information about your processes by typing the ps command.

 PID TT STAT TIME COMMAND
 9980 s9 S 0:06 -ksh (ksh)
 12380 s9 R 0:01 ps

The processes executing above are the C shell process and the ps command. Note that both
commands are attached to the same terminal (TT), have different process identification
numbers (PID), and have different amounts of CPU-time (TIME), accumulated.

Information about Other People's Processes

who

The simplest and quickest information you can get about other people is a list of which users
are logged in and at which ` t̀erminals'' (terminal here is either a terminal device line or telnet
or rlogin session). The command to do this is who and it responds quickest of all the
commands discussed here because it simply examines a file which gets updated everytime
someone logs in or out.

Be careful though! This file, utmp, can get out of date if someone's processes die unexpectedly
on the system. Any program which uses utmp to report information may list users who are not
really logged in!

w

 12

The w command is slower than the who command because it returns more information such as
details about what programs people are running. It also returns a line containing the number of
users and the system load average. The load average is the average number of processes ready
to be run by the CPU and is a rough way of estimating how busy a system is.

w also uses the utmp file mentioned above. It takes longer than who because it then looks
around and collects more information about the users it finds in the utmp file.

ps

The ps command used earlier to list your own processes can be used to list other users'
processes as well. who and w list logins-but not individual processes on the system. They don't
list any of the running operating system processes which start when the computer is booted
and which don't have logins.

Since ps doesn't use utmp it is the program to use when you really want to find out what
processes you might have accidentally left on the system or if another user is running any
processes. Note that although ps might report processes for a user, it might be because that
user has left a ``background job'' executing. In this case you should see a ``?'' in the TT field
and the user won't really be logged in.

To get this fuller listing, give the flags -aux to ps. For more information on the uses of ps, type
man ps.

finger

The finger program returns information about other users on the system who may or may not
be logged in. finger by itself returns yet another variation of the list of currently logged in
users. finger followed by a username or an e-mail -style address will return information about
one or more users, the last time they logged into the system where you are fingering them,
their full name, whether or not they have unread mail and, finally, the contents of two files
they may have created: .plan and .project

For more information about using finger or ways to provide information about yourself to
others, type man finger.

Shortcuts

If you use certain command flags regularly (-lga for ls) you can alias them to shorter
commands. You can use wildcard symbols to refer to files with very long names. You can
easily repeat commands you have already executed or modify them slightly and re-execute
them.

 13

Aliases

As mentioned above, you can alias longer commands to shorter strings. For example, ls -F will
list all the files in the current directory followed by a trailing symbol which indicates if they
are executable commands (a *) or directories (a /). If you wanted this to be the default
behavior of ls you could add the following command to your .kshrc file in your home
directory:

 % alias ls ls -F

To list the aliases which are set for your current process, type:

 % alias

without any parameters.

Example for contents of the .kshrc file

Environment file for Korn shell

Environment variables

export EDITOR=$(whence vi) \
#default editor

 HISTFILE=~/.sh_history \
#command history file location

 HISTSIZE=128 \
#max no. of command logged in history

 PWD=$HOME
#initializes the PWD variable

Put info and history number into prompt + other great stuff

export MACN="$(uname -n)"

if [["$TERM" = "xterm"]]
then
 export PS1='�]2;$MACN $PWD '"$LOGNAME [!]$ "
else
 export PS1="$(uname -n) [!]$ "

 14

fi

Aliases

alias ll='ls -al'
#lists all files, verbose

alias h='history -50'
#shows last 50 lines of history stack

alias cls=clear
#clear screen

alias lsd='ls -F | grep "/"'
#lists directories only

alias lsdr='ls -FR | grep "/"'
#recursive list of all directories under current

alias lsr='ls -l | grep ">"'
#shows links

alias lss='ls -l | sort +3 | more'
#sorts a list by owner

alias lsx='ls -F | grep "*"'
#lists the executables

Wildcards

Wildcards are special symbols which allow you to specify matches to letters or letter
sequences as part of a filename.

Some examples:

*
 The basic wildcard character. Beware rm *!!
 ls *.dat
 lists all files ending in .dat
 ls r*
 lists all files starting with r
?
 a one character wildcard.
 ls ?.dat

 15

 lists 5.dat, u.dat, but not 70.dat
[]
 limits a character to match one of the characters between the brakets
 ls *.[ch]
 lists all .h and .c files
 more [Rr][Ee][Aa][Dd][Mm][Ee]
 mores the files README, readme,ReadMe, and Readme, among others

Directory Specifications

You've already met the shortcut. The two other important directory symbols are ` .̀'' for the
current directory and ``..'' for the previous (parent) directory.

 % cd ..

moves you out of a subdirectory into its parent directory.

Environment Variables

Environment variables are pieces of information used by the shell and by other programs. One
very important one is the PATH variable mentioned earlier. Other important variables you can
set include:

 EDITOR
 TERM
 MAIL

To see what environment variables are set and what they are set to, type the command
printenv. To set a variable, use the export command as in the example below.

 % TERM=vt100
 % EDITOR=vi

Many programs mention environment variables you may want to set for them in their man
pages. Look at the ksh man page for some of the standard ones.

History

Most shells allow `̀ command line editing'' of some form or another-editing one of the
previous few lines you've typed in and executing the changed line. You can set a history
``environment variable'' to determine how many previous command lines you will have access
to with set history=40

 16

History and command recall mechanisms

Recalled commands are retrieved from the history file starting from the most recent up to the
oldest previously entered commands. Search strategies may follow vi or emacs syntax and
semantics (only vi mode will be explained below). First of all, pressing the ESC key will
make the Korn shell enter the vi command recall/editing mode. At that point, you may enter
whatever vi searching command you like to look for any previously entered command. (You
have to think about your history file as an edited file that will be scanned by vi or emacs
commands in the reverse order, that is from the bottom of the file back to the top of it). The
vi/emacs editor recalling command, which can be repeated, will in place display successive
search results; if you hit carriage-return at the time the
displayed recalled command is the one you want, then that command will be executed.

Examples :

 having pressed the ESC key, any - key hit will sequentially display in back order all the
previously entered commands (that is, 1st -
 will display the last but 1, 2nd - will display the last but 2, and so on).
 having pressed the ESC key, and a number of times the - key, pressing the + key will return
one step forwards towards the most
 recent command.
 let say that you have some time ago used a given command, and you want to recall it for
execution. All what you have to do is to
 make a search string operation through your history file. For example, to recall the last
qsub command, you press ESC, then /qsub.
 The vi / search string delimiter will make the Korn shell find the last entered qsub
command in your history file.
 to continue the search operation, still in the reverse order, press the n key. To continue the
search towards the most recent, press N.
 You may do this if you want to find another instance of the qsub command.
 of course, you may recall a command by only entering one of its used parameter, as in :

 ESC/-m

 will retrieve for example the following command : qstat -m
 if you want to recall a command searching only on its first few characters, you will do (the
caret ^ character enforces the match to
 begin at the beginning of the line) :

 ESC/̂ string

 as an alternative of the above, you can merely do

 r string

 This might be used to redo a command given its number, as it appeared in the prompt.

 17

 Example :

 r 95

 will redo the command that was executed at line 95

 etc

Shell Vi Editing Mode Summary

This is our default mode to repeat or edit previous commands. The table below shows some of
the most useful commands.

Key Brief Description Key Brief Description

l Moves forward one character h Moves back one character
 ̂ Moves to the start of the line $ Moves to the end of the line

x Deletes the current character dw Deletes the current word
db Deletes the previous word ~ Changes case of current character
d$ Deletes from to end of line \ Do filename completion
[RETURN] Executes the current line k or - Fetches the previous command
j or + Fetches the next command line v Run full vi session on current line
A Inserts text at end of line i Inserts text before current character
w Moves forward one word b Moves back one word

Job Control

It is very easy to do many things at once with the Unix operating system. Since programs and
commands execute as independent processes you can run them in the ``background'' and
continue on in the foreground with more important tasks or tasks which require keyboard
entry.

For example, you could set a program running in the background while you edit a file in the
foreground.

The fg and bg Commands

When you type <Ctrl>-Z whatever you were doing will pause. If you want the job to go away
without finishing, then you should kill it with the command kill %. If you don't want it paused
but want it to continue in the foreground-that is, if you want it to be the primary process to
which all the characters you type get delivered-type fg. If you want it to continue processing in
the background while you work on something else, type bg.

 18

You should not use bg on things which accept input such as text editors or on things which
display copious output like more or ps.

What to Do When You've Suspended Multiple Jobs

If you've got several processes stopped-perhaps you are editing two files or you have multiple
telnet or rlogin sessions to remote computers-you'll need some way of telling fg which job you
want brought to the foreground.

By default fg will return you to the process you most recently suspended. If you wanted to
switch processes you would have to identify it by its job number. This number can be
displayed with the jobs command. For example:

 % jobs
 [1] Stopped vi .login
 [2] + Stopped rn
 [3] Running cc -O -g test.c
 %

The most recently suspended job is marked with a + symbol. If you wanted to return to job
one instead, you would type:

 % fg %1

You can type %1 as a shortcut.

Starting Jobs in the Background

Some jobs should start in the background and stay there-long running compilations or
programs, for example. In this case you can direct them to the background when you start
them rather than after they have already begun. To start a job in the background rather than the
foreground, append an & symbol to the end of your command.

You should always run background processes at a lower priority by using the nice command.
Non-interactive jobs are usually very good at getting all the resources they need. Running
them at a lower priority doesn't hurt them much-but it really helps the interactive users-people
running programs that display to terminal screens or that require input from the keyboard.

If you need to run CPU-intensive background jobs, learn about how to control the priority of
your jobs by reading the manual pages (man nice and man renice).

Suspend, z and <Ctrl>-Z

Some programs provide you with special ways of suspending them. If you started another
shell by using the ksh command, you would have to use the suspend command to suspend it.

 19

If you wish to suspend a telnet or rlogin session you must first get past the current login to get
the attention of the telnet or rlogin program.

Use (immediately after pressing a return) to get rlogin's attention. <Ctrl>-Z will suspend an
rlogin session.

Use <Ctrl>-] to get telnet's attention <Ctrl>-]z will suspend a telnet session.

Some Common and Useful Unix Commands For Files

cp

The cp command allows you to create a new file from an existing file. The command line
format is:

 % cp input-file-spec output-file-spec

where input-file-spec and output-file-spec are valid Unix file specifications. The file
specifications indicate the file(s) to copy from and the file or directory to copy to (output).
Any part of the ilename may be replaced by a wildcard symbol (*) and you may specify either
a filename or a directory for the output-file-spec. If you do not specify a directory, you should
be careful that any wildcard used in the input-file-spec does not cause more than one file to get
copied.

 % cp new.c old.c
 % cp new.* OLD (where OLD is a directory)

ls

command allows the user to get a list of files in the current default directory. The command
line format is:

 % ls file-spec-list

where file-spec-list is an optional parameter of zero or more Unix file specifications (separated
by spaces). The file specification supplied (if any) indicates which directory is to be listed and
the files within the directory to list.

lpr

The lpr command tells the system that one or more files are to be printed on the default
printer. If the printer is busy with another user's file, an entry will be made in the printer queue
and the file will be printed after other lpr requests have been satisfied. The command line
format is:

 20

BLOCKQUOTE> % lpr file-spec-list

where file-spec-list is one or more Unix files to be printed on the default printer. Any part of
the filenames may be replaced by a wild card.

Here is more information about where the printers actually are and what kind of printers are
available.

man

The man command is a tool that gives the user brief descriptions of Unix commands along
with a list of all of the command flags that the command can use. To use man, try one of the
following formats:

 % man command
 % man -k topic

more

The more command will print the contents of one or more files on the user's terminal. The
command line format is:

 % more file-spec-list

more displays a page at a time, waiting for you to press the space-bar at the end of each
screen. At any time you may type q to quit or h to get a list of other commands that more
understands.

mv

The mv command is used to move files to different names or directories. The command line
syntax is:

 % mv input-file-spec output-file-spec

where input-file-spec is the file or files to be renamed or moved. As with cp, if you specify
multiple input files, the output file should be a directory. Otherwise output-file-spec may
specify the new name of the file. Any or all of the filename may be replaced by a wild card to
abbreviate it or to allow more than one file to be moved. For example:

 % mv data.dat ./research/datadat.old

will change the name of the file data.dat to datadat.old and place it in the subdirectory
research. Be very careful when copying or moving multiple files.

 21

rm

The rm command allows you to delete one or more files from a disk. The command line
format is:

 % rm file-spec-list

where file-spec-list is one or more Unix file specifications, separated by spaces, listing which
files are to be deleted. Beware of rm *! For
example:

 % rm *.dat able.txt

will delete the file able.txt and all files in your current working directory which end in .dat.
Getting rid of unwanted subdirectories is a little more difficult. You can delete an empty
directory with the command rmdir directory-name but you cannot use rmdir to delete a
directory that still has files in it.

To delete a directory with files in it, use rm with the -r flag (for recursive).

Korn Shell Script Programming (ksh)

Overview

The UNIX operating system offers a number of interactive environments for users, known as
shells. The Bourne shell (sh) represents the oldest and most commonly used shell. The Korn
shell (ksh) is a modern shell with many advanced editing and programming features. Each
shell offers a programming language with a unique set of semantic and syntactic features.
This document provides a tutorial on shell programming with the Bourne and Korn shells.
Since the Bourne shell programming language provides a subset of the Korn shell language,
greater emphasis will be placed on ksh programming.

This document assumes that the reader is already familiar with non-programming aspects of
the sh and ksh shells, such as: environment variables, history manipulation, command
substitution, pattern matching and wild-cards, and resource files.

Script Basics

The word script is used to indicate a shell program. Shell scripts differ from other
programming languages (such as C and Fortran) in that they are interpreted by a shell instead
of being compiled into machine executable code.

A script is a plain text file which contains names of other programs to be executed and
[optionally] shell directives which can affect the execution of programs. Scripts can be created
with editors such as vi and emacs, both of which are commonly available on UNIX systems.

 22

Below is an example of a simple script which, when invoked appropriately, executes the
commands finger, date and w sequentially:

 finger
 date
 w

We'll assume that this information has been stored in a file called fdw. This script has no shell
specific commands in it, only program names. For this reason the fdw script can be executed
by any shell, including sh, ksh, and csh (csh is known as the C Shell, and is also in common
use on many UNIX installations).

We might expect that by typing fdw at our shell prompt the three commands contained therein
would be executed. As yet this is not the
case:

 sunrise$ dw

 fdw: Permission denied.

Executing Scripts

There are two methods of executing a shell script:

1.The first method involves passing the script as an argument to a shell such as sh or ksh:

 sunrise$ /bin/ksh fdw

Here the contents of the script are read in by the shell, interpreted and executed a line at a
time. This method of script execution has one major drawback: It assumes the end user of the
shell script knows which shell to execute the script with. Since our fdw script contains no shell
specific syntax this is not an issue for this example.

2.The second, slightly more sophisticated method of executing a script involves changing the
access permissions of the fdw script so that it is executable. This can be accomplished by way
of the chmod command:

 sunrise$ chmod u+x fdw

Now it is possible to type fdw at the shell prompt and see the expected output.

Comments

 23

Adding comments to a shell script is achieved by placing a # character in front of the non-
executable text. It is always a good idea to document the intent and purpose of any shell script
you develop. Below is our fdw script with a comment added:

 # This shell executes finger, date and w in order
 finger
 date
 w

Shells also understand a special comment that specifies the path of the shell with which a
script is to be executed. This comment must begin at row 1, column 1 of the script and starts
with the #! characters followed by the path of the shell to be executed. For example, to ensure
that the fdw script is executed by the Korn shell we would change fdw as shown below:

 #!/bin/ksh
 # This shell executes finger, date and w in order
 finger
 date
 w

The importance of the #! comment will become evident when we introduce Korn shell specific
syntax that is not understood by sh.

Ksh preparedness

Here are the most important things to know and do, before really getting serious about
shellscripting.

All examples given should be put into some file, created by a text editor such as “textedit” on
the sun. You can then run it with "ksh file".Or, do the more official way; Put the directions
below, exactly as-is, into a file, and follow the directions in it.

#!/bin/ksh
the above must always be the first line. But generally, lines
starting with '#' are comments. They dont do anything.
This is the only time I will put in the '#!/bin/ksh' bit. But
EVERY EXAMPLE NEEDS IT, unless you want to run the examples with
'ksh filename' every time.

If for some odd reason, you dont have ksh in /bin/ksh, change
the path above, as appropriate.

Then do 'chmod 0755 name-of-this-file'. After that,
you will be able to use the filename directly like a command

echo Yeup, you got the script to work!

 24

Understand variables

Hopefully, you already understand the concept of a variable. It is a place you can store a value
to, and then do operations on "whatever is
in this place",vs the value directly.

In shellscripts, generally, a collection of letters and/or numbers [aka a 'string'] can be in a
variable, as well as just plain numbers.

You set a variable by using

variablename="some string here"
 OR
variablename=1234

You access what is IN a variable, by putting a dollar-sign in front of it.

echo $variablename
 OR
echo ${variablename}

If you have JUST a number in a variable, you can do math operations on it. But that comes
later on in this tutorial.

Put everything in appropriate variables

Well, okay, not EVERYTHING :-) But properly named variables make the script more easily
readable. There isn't really a 'simple' example for this, since it is only "obvious" in large script.
So either just take my word for it, or stop reading and go somewhere else now!

An example of "proper" variable naming practice:

#Okay, this script doesnt do anything useful, its just for demo purposes
INPUTFILE="$1"
USERLIST="$2"
OUTPUTFILE="$3"

count=0

while read username ; do
 grep $username $USERLIST >>$OUTPUTFILE
 count=$(($count+1))
done < $INPUTFILE

 25

echo user count is $count

While the script may not be totally readable to you yet, I think you'll agree it is a LOT clearer
than the following;

i=0
while read line ; do
 grep $line $2 >> $3
 i=$(($i+1))
done <$1
echo $i

Note that '$1' means the first argument to your script.
'$*' means "all the arguments together
'$#' means "how many arguments are there?"

Know your quotes

It is very important to know when, and what type, of quotes to use.
Quotes are generally used to group things together into a single entity.

Single-quotes are literal quotes.
Double-quotes can be expanded

 echo "$PWD"

prints out your current directory

 echo '$PWD'

prints out the string $PWD

 echo $PWDplusthis

prints out NOTHING. no such variable "PWDplusthis

 echo "$PWD"plusthis

prints out your current directory, and the string "plusthis" immediately following it. You could
also accomplish this with the alternate form of
using variables,

 echo ${PWD}plusthis

 26

Ksh basics

This is a quickie page to run through basic "program flow control" commands, if you are
completely new to shell programming. The basic ways to shape a program, are loops, and
conditionals. Conditionals say "run this command, IF some condition is true". Loops say
"repeat
these commands" (usually, until some condition is met, and then you stop repeating.

Conditionals

IF

The basic type of condition is "if".

if [[$? -eq 0]] ; then
 print we are okay
else
 print something failed
fi

IF the variable $? is equal to 0, THEN print out a message. Otherwise (else), print out a
different message.

The final 'fi' is required. This is to allow you to group multiple things together. You can have
multiple things between if and else, or between else and fi, or both. You can even skip the
'else' altogether!

if [[$? -eq 0]] ; then
 print we are okay
 print We can do as much as we like here
fi

case

The case statement functions like 'switch' in some other languages. Given a particular variable,
jump to a particular set of commands, based on the value of that variable.

While the syntax is similar to C on the surface, there are some major differences;

 The variable being checked can be a string, not just a number
 There is no "fall through". You hit only one set of commands
 To make up for no 'fall through', you can 'share' variable states
 You can use WILDCARDS to match strings

echo input yes or now

 27

read answer
case $answer in
 yes|Yes|y)
 echo got a positive answer
 # the following ';;' is mandatory for every set
 # of comparative xxx) that you do
 ;;
 no)
 echo got a 'no'
 ;;
 *)
 echo This is the default clause. we are not sure why or
 echo what someone would be typing, but we could take
 echo action on it here
 ;;
esac

Loops

while

The basic loop is the 'while' loop; "while" something is true, keep looping.

There are two ways to stop the loop. The obvious way is when the 'something' is no longer
true. The other way is with a 'break' command.

keeplooping=1;
while [[$keeplooping -eq 1]] ; do
 read quitnow
 if [["$quitnow" = "yes"]] ; then
 keeplooping=0
 fi
 if [["$quitnow" = "q"]] ; then
 break;
 fi
done

until

The other kind of loop in ksh, is 'until'. The difference between them is that 'while' implies
looping while something remains true. 'until', implies looping until something false, becomes
true

until [[$stopnow -eq 1]] ; do
 echo just run this once
 stopnow=1;

 28

 echo we should not be here again.
done

for

A for loop, is a "limited loop". It loops a specific number of times, to match a specific number
of items. Once you start the loop, the number of times you will repeat is fixed.

The basic syntax is

for var in one two three ; do
 echo $var
done

Whatever name you put in place of 'var', will be updated by each value following "in". So the
above loop will print out

one
two
three

But you can also have variables defining the item list. They will be checked ONLY ONCE,
when you start the loop.

list="one two three"
for var in $list ; do
 echo $var
 # Note: Changing this does NOT affect the loop items
 list="nolist"
done

The two things to note are:

 1.It stills prints out "one" "two" "three"
 2.Do NOT quote "$list", for multiple items.

If you used "$list", it would print out a SINGLE LINE, "one two three"

